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MECÁNICA TOPOLÓGICA DE METAMATERIALES HIPERESTÁTICOS

La mecánica topológica es un campo emergente que combina conceptos de la mecánica clásica
y las fases topológicas de la materia estudiadas en la teoría de la materia condensada. En
este campo, la topología no trivial de la materia y los estados topológicamente protegidos
se extienden a sistemas mecánicos diseñados artificialmente para mostrar respuestas mecáni-
cas específicas, denominados metamateriales mecánicos. Dentro de este contexto, el estudio
de los modos topológicamente protegidos a frecuencia cero ha recibido un interés particu-
lar, típicamente en sistemas en los que el número de restricciones está equilibrado con el
número de grados de libertad, denominados sistemas isostáticos. En cambio, en esta tesis
nos centramos en sistemas que tienen más restricciones que grados de libertad, denominados
sistemas hiperestáticos, que son más rígidos y estables que los isostáticos.

Comenzamos revisando el marco topológico de los modos de frecuencia cero y, en concreto,
revisamos la cadena isostática, que admite modos topológicamente protegidos a frecuencia
cero y surge como un análogo mecánico para un modelo de aislante topológico prototípico, el
modelo Su-Schrieffer-Heeger, el cual admite estados de energía cero. Más adelante introduci-
mos la cadena hiperestática, un sistema hiperestático inspirado en la cadena isostática que
también puede caracterizarse topológicamente por un número de enrollamiento, y donde la in-
terfaz entre dos cadenas topológicamente distintas, el sistema admite modos topológicamente
protegidos de baja frecuencia exponencialmente localizados en la interfaz. A continuación,
introducimos la generalización de la cadena hiperestática a un sistema compuesto por una
superposición de múltiples cadenas hiperestáticas. Aqui concluimos que es posible carac-
terizar topológicamente el sistema siempre que las cadenas en la composición compartan
ciertas relaciones geométricas y como consecuencia de esto, cada cadena en la composición
diferirá en su rigidez. En este contexto, una interfaz entre dos sistemas de cadenas múltiples
topológicamente distintos, admite estados topológicamente protegidos de baja frecuencia ,
independientemente del número de cadenas en la composición. Por último, estudiamos un
sistema compuesto por una cadena hiperestática geométricamente uniforme pero con una in-
terfaz de elasticidad que también admite un estado exponencialmente localizado en la interfaz
y que proponemos pueda clasificarse topológicamente a futuro. Finalmente, en el régimen
no lineal, se muestra que la cadena hiperestática exhibe un comportamiento solitónico en el
límite de rigidez total de un resorte, como también se encontró en la versión isostática.

Hemos demostrado la existencia de modos topológicamente protegidos en un sistema donde el
número de restricciones puede ser indefinidamente mayor que el número de grados de libertad
y esperamos que nuestro trabajo pueda servir para explorar nuevos sistemas topológicos en
el régimen hiperestático.
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TOPOLOGICAL MECHANICS OF HYPERSTATIC METAMATERIALS

Topological mechanics is an emerging field that combines concepts of classical mechanics and
the topological phases of matter encountered in condensed matter theory. In this field, the
non-trivial bulk topology and the topologically protected states are extended to mechanical
systems artificially designed to exhibit specific mechanical responses, called mechanical meta-
materials. Within this context, the study of topologically protected zero-frequency modes
has received particular interest, typically in systems where the number of constraints is bal-
anced with the number of degrees of freedom, which are called isostatic systems. In contrast,
in this thesis, we focus on systems that have more constraints than degrees of freedom, called
hyperstatic systems, which are more rigid and stable than isostatic ones.

We start by reviewing the zero-frequency modes topological framework and specifically,
we review the isostatic chain, which supports topologically protected zero-frequency modes
and emerges as a mechanical analog for a prototypical topological insulator model, the Su-
Schrieffer-Heeger model, which supports zero-energy states. Later we introduce the hyper-
static chain, which recently was introduced as a hyperstatic system inspired by the isostatic
chain that also can be topologically characterized by a winding number, and where the inter-
face between two topologically distinct hyperstatic chains, the system supports low-frequency
topologically protected modes that are exponentially localized. Next, we introduce the gen-
eralization of this hyperstatic chain to a system that is composed of the superposition of
multiple hyperstatic chains, which we call a multiple-chain system. First, we conclude that
is possible to topologically characterize the system as long as the chains in the composition
share certain geometrical relations. To follow this topological characterization every chain
in the composition will differ in their stiffness. Regarding this, at an interface between two
topologically distinct multiple-chain systems, topologically protected low-frequency states are
supported, regardless of the number of chains in the composition. In addition, we studied a
system composed of a geometrically uniform hyperstatic chain but with an elasticity interface
that also supports an exponentially localized state in the interface which we propose can be
topologically classified in future work. Finally, in the non-linear regime, it is shown that the
hyperstatic chain exhibits a solitonic behavior in the limit of total rigidity of one spring, as
was also encountered in the isostatic version, that supports a zero-energy propagative solu-
tion. We replicate the analyses in the hyperstatic case where we show that only finite energy
solutions are supported.

We have shown the existence of topologically protected modes in a system where the number
of constraints can be indefinitely larger than the number of degrees of freedom and we expect
that our work can serve to explore new topological systems in the hyperstatic regime.
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Para mi abuelita Sesia Salinas

In opposition to the foolish ignorabimus our slogan shall be “We must know – we will know”
David Hilbert
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Chapter 1

Introduction

The new field of topological mechanics combines principles of classical mechanics, and topo-
logical phenomena inherited and inspired by condensed matter theory, where a novel class
of fashioned-designed mechanical materials called metamaterials, fit as a spontaneous link
between these two fields. In this chapter, we will review the basics of classical mechanics,
and topological condensed matter theory, starting by introducing the fundamental topology
concepts. Later we review some examples on topological condensed matter theory includ-
ing a specific model that is important in the problems treated in this thesis. After this we
present the concept of mechanical metamaterials and why there are a good platform to study
topological mechanics problems. We recommend some remarkable books and reviews such
as [1–9] and [10–18] for a detailed discussion on the topics treated in this chapter, and also
many tangential study problems.

1.1 On Topology
In mathematics, a circumference or a sphere are examples of spaces that locally look like
Rn, but not necessarily globally1, which are called manifolds[1], and the mathematics branch
called Topology deals with the properties and classification of these spaces under continuous
deformations. Beyond the formal definition of what is a continuous deformation, it could
be more intuitive to think first of some examples. A spherical surface can be continuously
stretched to obtain, for instance, an ellipsoid. In contrast, when considering the surface of a
plane, is not possible to deform it to get a sphere unless we “glue it”, that is, to glue the plane
boundaries and obtain a closed surface as the sphere. The opposite is also not possible: the
spherical surface cannot be deformed to obtain a plane without “cutting” the sphere at some
point(see Fig. 1.1). All these manifolds are topological spaces2, and in the case of the sphere
and ellipsoid, they are set to be topologically equivalent, while the sphere and the plane are
not. Stretch, bend, and twist, as we usually encounter in mechanics, are particular cases
of homeomorphisms, which are continuous maps with a continuous inverse map[1, 2], and

1n = 1 for the circumference and n = 2 for the sphere
2In this thesis we will assume the term without formally defining what a topological space is or that every

mentioned space is indeed a topological space, since in general, we will deal with well-known spaces.
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consequently one says that two topological spaces are equivalent if there a homeomorphism
between them.

Fig. 1.1: Topological difference between a spherical and plane surface. The spherical surface (top
left) can be continuously deformed to shapes like the one at the bottom left. Similarly, the plane
surface (top right) can be continuously deformed to shapes like the one at the bottom right. However,
by only considering continuous deformations, the deformed sphere cannot become the deformed plane
and vice versa.

Despite that sometimes it is trivial to know if there is a continuum transformation between
spaces, as in the case of the sphere and the ellipsoid, it would be useful to have a method
to evaluate systematically the existence of a continuous transformation between two spaces.
This goal is, nevertheless, too ambitious[1]. Instead, it is possible to partially address the
problem, by knowing when two spaces are not topologically equivalent. For that purpose,
one classifies the spaces with a certain topological invariant that is preserved by continuous
transformations and therefore allows us to assert that two spaces with a different topological
invariant are not equivalent. Some of these invariants can be elemental topological properties,
like space compactness, which refers to the closed and bounded condition of a space, or
space connectedness, which refers to the union of disjoint open sets. However, it must be
noted that the equivalence between spaces can be broken if any invariant differs in two
topological spaces[1, 2]. Notice that the inverse affirmation, that is, that two spaces that
share a topological invariant imply the existence of an homeomorphism between them, is not
true in general, because there could be another invariant where they differ.

So far, treating only elemental topological properties, like the aforementioned ones, does not
allow us to classify some of the most common topological spaces, e.g. the compactness of
a sphere and a torus are similar, when they are topologically different. For this purpose,
the algebraic topology uses algebraic expressions to classify the spaces and instead of the
homeomorphism formulation, it uses broader formulations. For instance, it can be shown
that the genus number (roughly speaking, the number of holes in a surface), is a topological
invariant of two surfaces as long as these spaces are homeomorphic[1]. With this invariant,
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which is obtained from an algebraic expression over the surface, is clear that a sphere S2

with genus number zero is not equivalent to a torus T 2(e.g. a doughnut) with genus number
one. This can be also understood by realizing that it is not possible to transform one space
to the other without closing or opening a hole(see Fig. 1.2). The above comparison leads to
the most common and overused example in topology, referred in the mathematical joke[19]

Q: “What is a topologist? ”
A: “Someone who cannot distinguish between a doughnut and a coffee cup”

because the surface of a “coffee cup” and the torus surface have the same genus number.
Finally, for this thesis, it is important to mention a last invariant that will be relevant in
the next discussions: the homotopy groups of a topological space. Again, avoiding a formal
definition, in a topological space X, the n-th order homotopy group is composed of the
continuous mappings of the Sn sphere onto X, Sn → X. The most elemental homotopy
group is the fundamental one denoted as π1(X) which characterizes the closed loops that
are equivalent between each other[2], where two loops are equivalent if it is possible to
continuously deform one loop into the other. The simplest case is the fundamental group
of a circle π1(S1), where every closed loop can be “drawn” just along the circle line, and
considering that every loop can roll up a different number of times and orientations, thus
π1(S1) ∼= Z. Here “∼=” refers to an isomorphism, which is a bijective map between two groups
that preserve its topology, but also it is common to use just “=”.

To exemplify the concept, it can be helpful to think of two spaces that do not share their
fundamental group. In the sphere, we have that π1(S2) ∼= 0 since any loop that lies on the
surface can be contracted along the surface until reaching a single point as shown in Fig. 1.2.
Instead in the torus T 2 = S1×S1, the fundamental group is more complex, since it is possible
to draw loops over the two independent sections of the surface(see Fig. 1.2), which are just
the two circles that define the torus, and therefore π1(T 2) ∼= π1(S1)⊕ π1(S1) ∼= Z⊕ Z = Z2.
Consequently, this invariant also indicates a topological difference between the sphere and
the torus.

The first homotopy group of a certain space X is usually the most intuitive one, but in
contrast, their higher order homotopy groups, πn(X) n > 1, can be hard to understand even
at low orders, because πn(X) requires to consider a deformable n-sphere Sn over the space X,
which deals with higher dimensional reasoning. The simplest case that does not require going
further from the three-dimensional space is π2(S2), which is the mapping of the deformable
closed spheres, over the spherical surface. This surface can wrap around the sphere(as it
also happened with the loops in the circle) multiple times and orientations(see Fig. 1.2), and
therefore π2(S2) ∼= Z. On account of this, and in favor of reducing to essentials, we will only
deal with problems where the fundamental group can be used to compare the topology of
different topological spaces.

Up to this point, no physics problems have been discussed. Regarding its mathematical
formulation, it is possible to study the topology of many physical systems. Nevertheless,
if there are topological properties, does it have physical meaning? and if they do, what
consequences could we draw about that? As we will review, there are several physics problems
where the topological properties and topological invariants are key features of the study.

3



Fig. 1.2: The spherical surface(top left), has a genus number zero, while a torus surface(bottom left)
has a genus number of one. In addition, these figures also show the closed loops in the surfaces(solid
directed lines) which compose the fundamental homotopy group. In the sphere, every closed loop can
be contracted to a single point. In contrast, in a torus, there are closed loops in two independent
sections of the surface, that cannot be contracted. On the right, the figure shows a schematic view of
the second homotopy group of a sphere. The spherical closed surface mapping (solid lines surface),
can roll up an integer number of times to the inner spherical surface(dashed lines surface).

1.2 Topology in Condensed Matter Theory
In 1980 K. Von Klitzig observed that in a two-dimensional electron gas under a strong ex-
ternal magnetic field at low temperature(> 1 T and ∼ 2 K respectively), the Hall resistivity
becomes quantized in units of h/e2, while the longitudinal resistance dropped to zero[20].
This phenomenon is known as the quantum Hall effect (QHE)(see Fig. 1.3), and its quanti-
zation showed to be highly accurate and robust to microscopic details[21]. A few years later,
Thouless et.al.[22], prove that this resistance quantization can be explained by a topological
invariant, the Chern number, where aspects like the microscopic defects act as “continuous
deformations” of the system, and the quantized response(Hall resistivity) relies on the in-
variance of the Chern number. This number is obtained from the system bulk, where the
bulk is the material zone where the interfaces or surfaces are not influential. While the afore-
mentioned deformations can change the bulk, its Chern number remains invariant[5]. The
discovery and the explanation of the QHE were meritorious of two different Nobel prizes3,
and are one of the most important physics phenomena dealing with topological properties.

The QHE involves two features, the quantized Hall resistivity, explained by a topological
property that endows its robustness, but also a boundary of zero longitudinal resistance.

3In 1985 the prize for Von Klitzig, and 2016 the shared prize for Thouless, Haldane and Kosterlitz
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These two features, bulk and boundary resistivity, appear to be related in some manner.
This relation is one of the most important concepts in the study of topological states of
matter, known as the bulk-boundary correspondence[4, 5]. The correspondence can also be
seen by noting that the bulk shares its robustness with the states on the edge, which are
known as topologically protected states and will remain in the system as long as the bulk
holds this non-trivial Chern number[5].

Fig. 1.3: Measurement of the Hall voltage VH , and the longitudinal voltage Vx in a two-dimensional
electron gas(see inset) cooled to 1.2 K as a function of the external magnetic field. The Hall or
transversal resistivity RH = VH

I = h
e2i

, is quantized for the integer i, while the longitudinal resistance
drops to zero[21], for a current I = 22.5µA. Reprinted from Ref. [23] with permission from IEE.

Inspired by this discovery, there have been additional topological phases of matter discovered
in condensed matter, such as topological insulators. Different from the QHE where the
external magnetic field is required to reach the topological quantized phase, in topological
insulators there are topologically protected states where the bulk topology relies on the
system’s symmetry. What represents these symmetries and how they are related to the
system will be treated in the following section, where we will discuss one of the most extended
examples of a topological insulator, which also is intimately related to the specific problems
of this thesis.

5



Fig. 1.4: The structural diagram of a polyacetylene molecule (top), and the diagram of the SSH
model (bottom). In the SSH model, every unit cell is composed of two sites, in the sub-lattice A and
B, represented by empty circles and filled circles respectively. The sites are coupled by an intra-cell
hopping v and an inter-cell hopping w, and the line thickness between sites represents the strength
of these couplings(in this case v > w).

1.2.1 The Su-Schrieffer-Heeger Model
The Su-Schrieffer-Heeger model (SSH)[24] is a prototypical example of a topological insula-
tor, and emerges as a tight binding model to describe the electronic conduction along the
polyacetylene molecule, an organic polymer composed of carbon and hydrogen atoms, with
an alternating double and single bond between the carbon ones (see Fig. 1.4). The model
describes spin-less charged particles on a one-dimensional lattice where each unit cell host
two sites A and B with an inter-cell hopping v and an intra-cell hopping w, as shown in
Fig. 1.4. A bulk Hamiltonian can be written to describe its bulk electronic conduction od
these particles and can be addressed by considering a lattice under periodic boundary con-
ditions(PBC). From the stationary Schrödinger equation describing the evolution of these
particles along the periodic lattice, the following eigenvalue equation is obtained,

Ĥ(k) |un(k)⟩ = En(k) |un(k)⟩ |un(k)⟩ = an(k) |A⟩+ bn(k) |B⟩

where Ĥ(k) and |un(k)⟩ are the bulk k-space Hamiltonian and the k-space eigenstate of
energy En(k) respectively, and |A⟩(|B⟩) denotes the state of the chain for the particles in
sublattice A(B). The above equation can be written in a matrix form as

H(k)
(
a(k)
b(k)

)
= E(k)

(
a(k)
b(k)

)
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where H(k) is the bulk k-space Hamiltonian matrix:

H(k) =
(

0 v + w e−ik

v + w e−ik 0

)
=
(

0 h(k)
h∗(k) 0

)

From the above equation, the dispersion relation E(k) is obtained

E(k) = ±
√
v2 + w2 + 2vw cos k

−π 0 π

k

−1

0

1

E
(k

)

v > w

−π 0 π

k

−1

0

1

v = w

−π 0 π

k

−1

0

1

v < w

Fig. 1.5: At the top, the figure shows the band diagram of the dispersion relation E(k), for three
different cases as indicated in each diagram. The color orange(light blue) represents the filled(empty)
energy band. In the bottom, is shown the parameterization of the vector d in the dx, dy plane for
the three cases of the energy band diagrams, where each parameterization corresponds to the case
for the band diagram above the parameterization.

In Fig. 1.5, the dispersion relation shows an energy band gap as long as v ̸= w, which means
that the system is an insulator, and becomes a conductor for v = w. Notice that in two
chains, with w > v and w < v, and equal |v − w|, the bands look identical, however, there
is a relevant difference not distinguishable in E(k), the topological facet present in this type
of system that differentiates it from a regular insulator. This difference can be appreciated
as we consider the vector d(k) = (v + w cos k, w sin k, 0), which arises from the expansion
of H(k) = d(k) · σ, where σ = σ̂x + σ̂y + σ̂z and {σ̂i} is the Pauli matrices basis4. The
parameterization of d(k) as k runs through the first Brillouin zone k : 0 → 2π, draws a

4Where the factor of σ̂0 = 1 is zero
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closed circle in the dx, dy plane, which can be topologically classified according to depending
on this circle enclose or not the coordinates origin. This classification is encoded in the
winding number :

ν = 1
2πi

∫ π

−π
dk

d

dk
ln h(k) (1.1)

The winding number is the characteristic topological invariant present in one-dimensional sys-
tems, in difference from the Chern number that characterizes the topology in two-dimensional
systems, such as the mentioned QHE. The computation of ν for different hopping pairs re-
sults in ν = 1(ν = 0) when the chain hoppings comply with w > v(v < w), and becomes
undefined when the energy band gap closes at w = v(see Fig. 1.5). Beyond the information
obtained from the bulk, there is physical relevance of these topological features in addition
to the difference for the v < w and v > w cases. Despite that the two gapped systems in
Fig. 1.5 share their electronic bands, these systems are topologically different according to
ν, because two PBC systems of v < w and v > w that latter we ‘’cut”, results in two finite
chains that exhibit an elemental difference. The chain where ν = 1(w > v), also known as
the topological case, will support zero energy states in the thermodynamic limit5, as long as
the energy band gap remains open, but in contrast, the topologically trivial case (ν = 0),
will behave as an ordinary insulator. Remarkably these zero-energy modes will be exponen-
tially localized in the edges because the zero energy level lies in the energy band gap, and
consequently these modes cannot propagate through the bulk. Furthermore, these states are
topologically protected states and will remain in the chain as long as the system preserves
its non-trivial topology. This close relation between the bulk topology and the edge states is
the aforementioned bulk-boundary correspondence.

Fig. 1.6: Finite SSH model chain for w > v, where zero energy modes appear at the boundaries.
The highlight gradient under the sites represents the exponentially localized nature of these modes,
which is supported only in the sub-lattice A(B) in the left(right).

If the winding number represents a topological signature in the system, it should be invariant
under continuous deformations. Here they are called adiabatic transformations and must meet
the following conditions: In a Hamiltonian, this transformation can only produce continuous
variations that keep open the bulk energy band gap, but also the transformation must preserve
the relevant symmetries of the system[4]. In quantum mechanics, a symmetry represents

5In a finite case, only when v = 0 there are completely localized zero energy states, and out of this limit are
exponentially localized almost-zero energy states, but in the thermodynamic limit is a good approximation
call them as zero energy states.
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a transformation where the Hamiltonian remains unchanged and can be represented by a
unitary operator Û , as

[Ĥ, Û ] = 0
⇔ ÛĤÛ † = Ĥ

This system in contrast exhibits a more specific type of symmetry, a chiral symmetry Ûs,
which involves a transformation that changes the Hamiltonian into its “mirror image‘’,

ÛsĤÛ
†
s = −Ĥ

The presence of Ûs in a system implies a symmetric energy spectrum(but not the inverse
statement), as we observe in the SSH model, where each eigenstate |ψ⟩ of energy E has
their chiral symmetric partner ÛS |ψ⟩ of energy −E. Additionally, a chiral symmetric system
can be described by two subsystems with no interaction between the sites from the same
subsystem. This feature is also present in the SSH model since there are no diagonal terms
in H(k) that couple sites that share sub-lattice index A or B, and implies that necessary
dz = 0 in d(k), which guarantees that this parameterized loop, is restricted to the dx, dy
plane. Therefore the preservation of the symmetry by an adiabatic transformation can only
shift the parameterization d(k) in the dx, dy plane, and cannot change ν without passing
through d(k) = 0 which would close the gap where ν it is not well-defined.

In a chiral symmetric system, each zero energy state, in difference from the ordinary states,
is supported exclusively in one of the two sub-systems. For instance, in the SSH model, a
finite topological chain supports a zero energy state at the left edge, described only by states
of sublattice index A, and a second zero energy state at the right edge, described only by
states of sublattice index B (see Fig. 1.6). In addition to the finite chain, it is also possible to
obtain these modes at the interface of two topologically distinct systems, as shown in Fig. 1.7
where there are three domains of fully dimerized chains, i.e. where v = 0 or w = 0, and there
are two different types of completely localized zero energy states in the system.

Fig. 1.7: Three domains of dimerization in the SSH model. The figure shows a localized zero mode
shared between two sites in the sub-lattice B, and another zero mode located only in a single site of
sub-lattice A.

In the previous system, there is an essential relation between the chiral symmetry and the
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system’s topological properties, but more symmetries can be present in quantum mechanical
systems. Indeed, based on three prominent symmetries: time reversal symmetry, particle
hole symmetry and chiral symmetry there is an extended classification scheme for topological
insulators6 called the tenfold way[25]. According to the Hamiltonian symmetries, this scheme
developed a topological classification with respect to the homotopy groups of the Hamiltonian
topological space. For instance, because of the chiral symmetry present in the SSH model,
this model can be classified by this scheme, and the predictions are in concordance with
the values obtained by its winding number. This systematic way of categorizing topological
phases of matter provides powerful tools for characterizing the topological properties of these
materials, and because of this advantage, a similar methodology will be recurrent in the
following chapter’s discussions.

Up to this point, we have talked about two systems that exhibit topological properties due
to different causes, the QHE and a one-dimensional topological insulator, the SSS model.
Even though these systems represent a promising class of materials with distinct topological
features, their practical realizations have several drawbacks that restrict their applicability
or utility. For instance, the first QHE realizations require highly specialized experimental
setups, such as low-temperature control and high magnetic fields[21] which could make it
difficult to study these systems. Also, topological insulators usually require a strong spin-
orbit coupling or finely tuned fermi energy level[26]. Despite that there have been notable
advances in recent years[27, 28], the implementation of analog systems has emerged as an
alternative. In the recent years, several of these analogs have been developed in photonic
crystals [29–31], phononics [32–57], mechanics [14–18, 32–84] and beyond, and despite is not
possible to capture all the physics displayed in the quantum cases, many of it has been found
an analogous. In particular, we are interested in the mechanical cases, and in the next section
we discuss their advantages and why they are good candidates to display these topological
phenomena.

1.3 Mechanical Metamaterials
According to one of the most extended and comprehensive definitions, metamaterials are
artificial and ordered composites that exhibit exceptional macroscopic properties, that arise
as a collective manifestation of a structure[85, 86]. This structure is built of several intended
components usually arranged in regular patterns, acting as meta-atoms, where the distinctive
features are obtained chiefly from this structure, rather than the chemical and physical prop-
erties of the material composition at the microscopic level[13]. This wide definition allows
the development of metamaterials in several science fields, classifying them according to the
nature of their functionality[10]. When a fashioned mechanical response is obtained, they are
called mechanical metamaterials [87]. Such a general classification can include wide types
of mechanical systems, including even some systems as old as those of Newton[88], but in
modern times has become a trending research topic.

Among some of the modern examples of metamaterials, there are ones with unusual quasi-
6More precisely, it classifies topological insulators and superconductors, but the latter is beyond the scope

of this discussion for the time being.
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(a)

(b)

(c)

Fig. 1.8: Metamaterials Examples. In (a) is shown a metamaterial of negative Poisson ratio, where
(a.1), (a.2) and (a.3) are different levels of compression and the zoom highlight the patter which
takes the holes in the material when compressed. Reproduced from ref. [89]. In (b) is shown an
ultralightweight mechanical metamaterial made by stereolithography and electroplating with copper
where its voids have approximately the same mass as the surrounding elastic structure. Reproduced
from ref. [90]. In (c) is shown an origami sonic barrier and its corresponding cross-section view,
as well as the implementation at the side of a road. Reproduced from ref. [91]

static responses such as a negative Poisson’s ratio(i.e. auxetic)[92–94](see Fig. 1.8a), neg-
ative compressibility [95] or ultra-lightweight properties[90, 96](see Fig. 1.8b). In addition,
some remarkable dynamical responses also can be found in mechanical metamaterials, such
as acoustic wave guiding[97–99], acoustic cloaking[100, 101], or vibration isolation[48, 102–
104](see Fig. 1.8c). Indeed many of the aforementioned dynamical examples can be con-
sidered also as a phononic crystals, where a periodic structure is designed to control the
propagation of acoustic or elastic waves[11, 88](see Fig. 1.8c). These materials are partic-
ularly important in our discussion since the periodic structure is a fundamental feature in
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condensed matter systems(e.g. the SSH model previously treated). Most of the mentioned
examples work only in linear mechanics, but beyond this, there are fascinating ways that
take benefits from the intrinsic non-linearities of these materials. In this context, there is a
wide type of non-linearities that can be considered, which can lead to an even richer variety
of mechanical responses[105]. For instance, some non-linear responses can arise from geo-
metrically nonlinear deformation or structural instabilities, as some metamaterials design the
mechanical response by making use of the buckling instability[89, 106], or the propagation
of non-linear waves[66, 84, 105, 107]. In this thesis, we study a mechanical metamaterial, in
both linear and the nonlinear regime, but the former being the major part of our study. This
is because we are interested in the topological part of these systems, which is treated in the
linear regime of oscillations.

1.4 Topological Mechanics
There are several rich phenomena restricted to the atomic scale, or that do not seem replicable
at other scales. Some of these were the topological phases of matter such as the QHE
or the topological insulators discussed in this chapter, which were for years a phenomena
restricted to the electronic case, but in the present time some analogs of thse phenomena
have been found even in classical mechanics systems [14, 17, 62, 64]. These systems can
be more intuitive than quantum systems, and aspects as a wide range of materials and
fabrication techniques allow for a precise design of structures geometries and properties [10].
The scalability of theses systems can also be beneficiated by this versability, which facilitates
the production of metamaterials in a wide variety of sizes, from macroscale structures to
microscale devices [13, 86]. Furthermore, the macroscopic scale of mechanical systems allows
for direct observation and manipulation of their properties, and the required equipment for
these experimental realizations is notably more accessible than in the quantum case. Overall,
all these advantages allow us to state that mechanical systems are an excellent candidate for
these analogies.

Topological mechanics is the branch of mechanical metamaterials that deals with topological
aspects inspired by the topological phases of matter in condensed matter physics [14, 16].
As in condensed matter systems, the mechanical modes in topological mechanics systems
are protected by the non-trivial bulk topology, and therefore the study of this topology is a
central study of these systems. At first sight, the mechanical and quantum problem looks very
different, starting from the fact that Newton’s equation of classical mechanics is a second-
order differential equation in time. In contrast, the Schrödinger equation which governs the
quantum mechanics is only a first-order time differential equation. Similarly, the frequency of
the normal modes in a mechanical system can only take non-negative eigenvalues; in contrast,
in an electronic Hamiltonian, it is possible to have negative eigenvalues too. Depending on
the mechanical system, this first problem can be solved in different ways, as we will explain
in the next chapter.

Probably the first approach of a classical system in the line of topological insulators physics
was done by Prodan and Prodan [78] where the concentration of energy at the edges of
microtubules in live cells was explained using topological band theory including a non-trivial
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(a)

(b)
(c)

Fig. 1.9: Topological mechanics metamaterials. In (a) is a mechanical analogous for the quantum
anomalous Hall effect, where a hexagonal lattice of gyroscopes and springs with a mass attached
at the top, is arranged in an hexagonal lattice as shown in (a.2). The “Chern number” of each
frequency band is shown in the left of (a.3), where the right figure shown the edges modes that
appear in the frequency band-gaps in a finite lattice. These modes are robust and propagate along
the edge as shown in (a.1). Reproduced from [48]. In (b) is shown the experimental realization
of the SSH model in a highly tunable mechanical system made of cylindrical granular particles. By
tuning the contact angles between the cylinders, the system can manifest boundary modes in a finite
system. Reproduced from [108]. In (c) is shown the experimental realization of patterned elastic
plates with reversed blind holes(zoom inset) that support topological boundary modes as shown in
the interface between two domains. Reproduced from [109].

Chern number. However, it was after Kane and Lubensky’s work[72] that the subject became
much more popular. They showed that the existence of certain topologically protected zero-
frequency modes in spring-mass systems can be understood as the sum of a local boundary
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contribution and a bulk topological contribution that relies on the system symmetry. In the
next years, the topological mechanics study have been expanded to diverse new topological
mechanics systems [14–18, 32–84], where we highlight numerous SSH model analogs [37,
43, 56, 57, 67, 72, 108, 110–113], or the mechanical analogs of some quantum Hall effect
variants, such as the analog for the quantum anomalous Hall effect [48, 59](see Fig. 1.9a) and
the analogs for the quantum spin Hall effect [42, 46, 109].

Along the line of the topological-zero frequency modes, the framework introduced by Kane
and Lubensky [72] serves as the inspiration for various new problems, but also many of
these problems inherited a fundamental characteristic of these systems, the balance between
degrees of freedom(DOF) and constraints, which we call isostatic. In contrast in this thesis,
the motivation is to study the existence of these modes in systems where the constraint
number is higher than the DOF number, and where the aforementioned scheme is not valid.
We refer to these types of systems as hyperstatic or overconstrained.

1.5 Outline and Thesis Contribution
Since our problems are still highly related to the topological zero-frequency modes intro-
duced by Kane and Lubensky, in Chapter 2 we widely discuss this scheme and after this, in
Chapter 3, we introduce a hyperstatic mechanical system that exhibits topological modes,
introduced recently by Kedia et.al.[73]. In Chapter 4 we generalize the hyperstatic topolog-
ical modes to even further constrained systems under certain symmetry conditions. Later,
in Chapter 5, we take the previously mentioned system and describe the response of the
system under non-linear deformations, where we show the existence of non-linear waves, pre-
viously described in an isostatic system[66]. In this thesis, we studied whether topological
zero-frequency modes, which were previously restricted to isostatic systems, may be extended
to hyperstatic systems in some way. We uncovered the limitations of a recent model that
describes topologicalmodes in a hyperstatic system, but we were also able to expand this
scheme outside of this domain, leading to numerous additional promising problems.
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Chapter 2

Topological Mechanics of Zero Modes

The study of topological mechanics depends on mainly three factors, the mechanical system,
the eventual topological properties and how to characterize these topological properties. In
this chapter, we will set the approach of this thesis to these points. Our study focus is
the mass-springs systems, a prototypical example of a physical systems that can be used to
model a wide range of phenomena in physics and various science fields. We will review that
these systems can exhibit a specific type of zero-frequency modes which can be topologically
described by the inherited tools of topological insulators. In the first part, we review the
physical formalism which facilitates the study of these modes and their physical meaning and
after this, we discuss its topological properties.

2.1 Zero Frequency Modes in Mechanical Lattices
In mass-spring systems, the systems are composed of ideal springs and punctual masses,
which allow for a basic but versatile description. Our interest is specific zero-frequency modes
that are intimately related to the structural stability of the system in the linear regime. In
the following section, a review of a specific formalism is shown, which leads directly to the
aforementioned modes and their consequences.

2.1.1 Equilibrium and Compatibility Matrices
Under small perturbations over the equilibrium positions of masses in an ideal mass-spring
system, the dynamics can be completely described by two structural matrices, Q and R :=
QT , called the equilibrium and compatibility matrix respectively. To discuss the physical
meaning of both matrices, consider a system compose of N total punctual equal masses in d
dimensions connected by a total of Nb springs or bonds(see Fig. 2.1), where these springs can
rotate freely around each site. The matrix that maps the Nb-dimensional space of tensions
in springs to the dN -dimensional space of forces on masses is the dN × Nb dimensional
equilibrium matrix Q

Q t = −f , (2.1)
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(a) (b) (c)

Fig. 2.1: Three mass-spring systems. The solid circles represent identical punctual masses, con-
nected by bonds or springs represented by solid or dotted lines. The frame in (a) and (b) frame
only differs in the middle spring, while the frame (c) represents the center frame under different
constraints and elastic constant limits. In (c), the two top masses of the central frame are fixed to
the plane, denoted with a gray center solid circle, while three of the springs become rigid bars(solid
lines), and the remaining spring is denoted with a dotted line, remains as a normal spring, resulting
in a system of two coupled pendulums.

in which the vector t is composed of the tension in springs and f is the vector of the forces ex-
erted on the masses. On the other hand, the equilibrium displacement of the connected masses
determines the elongation of each spring. The Nb-dimensional tensions space is mapped to
the dN -dimensional displacement space in the linear regime by the Nb × dN -dimensional
compatibility matrix R:

Ru = e , (2.2)

where u is the vector of the mass displacements and e the vector of spring elongations. Notice
that (2.1) and (2.2) serve to argue why equilibrium and compatibility matrix are transposes
of each other. To understand this consider an infinitesimal work produced by an external
force f and the resulting displacements. This work would be the same as the one produced
by tensions and their correspondent spring extensions, which shows the relation:

Wf = fT
i ui = (Qijtj)Tui = tTj Qjiui Wt = tTj ej = tTj Rjiui

The computations of Q or R can be obtained by analyzing the tension-force or extension-
displacement geometrical relations, respectively. For instance, in Fig. 2.1 there are three
simple frames differing in the number of springs, where the compatibility matrix for the
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frame of Fig. 2.1a is given by

R =


−1 0 1 0 0 0 0 0
0 0 0 1 0 −1 0 0
0 0 0 0 1 0 −1 0
0 1 0 0 0 0 0 −1
0 0 1√

2
1√
2 0 0 − 1√

2 − 1√
2

 ,

which can be obtained by displacing the masses in an infinitesimal quantity and expressing
the spring extension due to this displacement. Notice that by removing the last row in the
above matrix we also obtain R for the frame in Fig. 2.1b. In principle, this general framework
allows us to describe wide types of mechanical systems, from this simple cases to larger or
disordered systems[114–116]. Simple mass-spring systems can also reach additional systems
by introducing some additional constraints or limits. For instance, the system in Fig. 2.1b
composed of four masses system of eight DOFs and four springs, can be converted in the
system to the system in Fig. 2.1c, if we restrict the movement of two masses and where the
all the springs become rigid except the spring between these masses. This system could be
a (zero-gravity) double-coupled pendulum where there is one spring and two DOFs. Indeed,
similar pendulum systems are the principal study object in this thesis.

As an ideal system, the above framework assumes that the spring is described by ideal
Hookean springs of constant κ, summarized in the Nb ×Nb diagonal elastic constant matrix
K. According to this, the elastic energy Ve of the system can be written as

Ve =
1
2κjje

2
j

= 1
2κjj(Rjiui)2

= 1
2κjj(Rjiui)TRjiui

= 1
2κjjuiRijRjiui

= 1
2uiRijκjjRjiui

= 1
2u

T QκRu

In addition to this energy, the kinetic energy of the punctual masses can be written also
in function of a mass-matrix, but for our purposes, all the masses are equal to m. With a
similar procedure can be shown that the kinetic energy Ek is given by

Ek =
1
2mu̇

T u̇
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Therefore, given the Lagrangian L = Ek−Ve, the equation of motion of the system is obtained
from the Euler-Lagrange equation,

müi = −∂Vel
∂ui

⇔ üi = −Dij ui (2.3)

whereD = 1
m
Q κ R it is called the dynamical matrix. From the above equation, raise the char-

acteristic eigenvalue problem under the usual harmonic decomposition u(x) = un(x)e−iωt:

ω2un = Dun (2.4)

for some frequency ω. In Section 2.2, we will widely discuss eq.(2.3) and eq. (2.4) and how
to link these equations to the quantum mechanical problem, to make use of its topological
tools.

2.1.2 Zero Frequency Modes
The vectorial spaces described by Q and R encode relevant physical modes on their null
spaces, as the ones shown in Fig. 2.2. The null space of R corresponds to the set of dis-
placements that result in neither elongation nor compression of any spring, often known as
zero-energy modes(ZM). These states usually include the lattice translation and rotation, but
also some non-trivial ZM(see Fig. 2.2), sometimes called floppy modes or mechanism[115].
The ZM represents the inherent mobility of the structure or the instability of some parts,
which is why one says that the structure is kinematically determined if the only nontrivial
ZMs are uniform displacements or rotations[117]. In contrast, the null space of Q is the set of
tensions that produce zero forces at each point, called states of self-stress(SSS), that is a SSS
implies a spring tension distribution different from zero, that is balanced to reach equilibrium.
The SSS produces that external loads or other disturbances do not deform the structure and
maintain its shape. Similarly, if there are no SSSs, the structure is statically determined since
is it always possible to know the force distribution in the system[117]. According to these
two definitions, in Fig. 2.2, only the central frame is kinematically and statically determined.

There is also a close relation between ZMs and SSSs, which can be viewed by considering
the rank-nullity theorem from linear algebra[118]. If some system supports Ns SSSs and N0
ZMs, two relations arise from the vectorial spaces of Q and R:

RankQ+NullQ = Nb RankR +NullR = dN

⇒ RankQ+Ns = Nb ⇒ RankR +N0 = dN

Because the matrix and its transpose range are the same, these two last equations provide
the following significant result

N0 −Ns = dN −Nb (2.5)
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Fig. 2.2: Three mass-spring systems that differ in their zero-frequency modes. The left frame
shows one of the four ZMs supported in this system, represented as the blurred bond and masses,
while the rest three modes are analogs but along the remaining bonds. The right frame supports
one SSS represented by the arrows over the bonds, which in this case correspond to compression
and extension of some springs according to the arrow directions. The central system, in difference
from the others, does not support any SSS, and only trivial ZMs(displacement and rotations) and
therefore is statically and kinematically determined.

which relates the ZMs and SSSs numbers by simply counting the springs and masses in the
system, known as the Maxwell rule, or Maxwell-Calladine theorem, due to their establishment
of this rule at different times[119, 120]. According to the Maxwell-Calladine theorem, we can
distinguish three different regimes, isostatic, floppy, and the one that we are interested in,
hyperstatic. These regimes refer to the stability in the structure, where Maxwell described
the following[119], which is equivalent to eq. (2.5).

A d-dimensional frame of N sites, is stable only if z > dN−d(d+1)/2, where z is the average
coordination number related to the number of springs Nb = zN/2. For large N the stability
critical point is then zc = 2d, where we found the isostatic system. When z > zc the system
will be hyperstatic or overconstrained, where the SSSs predominates over the ZMs, and in
contrast, the system is floppy for z < zc, where are more ZMs than SSSs. This classification
says nothing about the geometry or order in the system. Thinking on the typical systems in
condensed matter physics, we will treat only spatially periodic lattices. Concerning this, the
most extended criteria to call a periodic system isostatic is that under PBC z = zc[15, 115],
and for a hyperstatic system under PBC z > zc, which will be the criteria in this thesis.

2.1.3 Periodic Lattices
The lattices that we are interested in are spatially periodic for sites and connections, and
therefore each site and spring can be represented in a Bravais lattice[115, 121]. Consider a
unit cell of the lattice, that is, a region that can reproduce the Bravais lattice by tiling this
cell. If every unit cell has n sites and nb springs, then in the equilibrium, any site or spring in
the lattice can be written as the position of certain unit cell of index s, Rs, plus the position
rµ(rσ) of any site(spring) within the cell:

Rs,µ(σ) = Rs + rµ(σ)
µ = 1, · · · , n
σ = 1, · · · , nb
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When the lattice is distorted, the sites in the lattice are displaced from the equilibrium to a
new position Rs,µ+uµ(s), then the vector u is composed by uµ(s), for every µ in a unit cell,
and for every cell s. Similarly, it can be understood how the vectors f , e and t are composed.
Because of the cell periodicity, a spatial discrete Fourier transform(FT) over the unit cells
can be obtained for all these vectors:

uµ(k) =
∑
s

uµ(s) exp(−ik · (Rs + rµ)) fµ(k) =
∑
s

fµ(s) exp(−ik · (Rs + rµ))

eσ(k) =
∑
s

eσ(s) exp(−ik · (Rs + rσ)) tσ(k) =
∑
s

tσ(s) exp(−ik · (Rs + rσ))

for the wavenumber k, which is an scalar in one-dimensional system. By computing the FT
for each µ and σ, it is possible to write the vectors u, t,f and e from these computations

u(k) = (u1(k), ...,un(k)) f(k) = (f1(k), ...,fn(k))
e(k) = (e1(k), ..., enb

(k)) t(k) = (t1(k), ..., tnb
(k)) (2.6)

On the other hand, in a periodic lattice, the equilibrium and compatibility matrices are
composed of sub-matrices associated with each unit cell:

Qij(k) =
∑
s

e−ik·(Rs−Rs′ )Qij(s, s′) Rij(k) =
∑
s

e−ik·(Rs−Rs′ )Rij(s, s′) (2.7)

where s and s′ are the indexes of the sub-matrix that identify each unit cell, and according to
the number of sites and springs in the unit cell, Q(k) and R(k), are matrices of dimensions
dn × nb and nb × dn respectively. In addition notice that R(k) = Q†(k), because R = QT .
Considering the expressions (2.6) and (2.7) it is possible to rewrite the expressions (2.1) and
(2.2) in the Fourier space as,

Q(k)t(k) = f(k) R(k)u(k) = e(k)

Likewise, the theorem exposed in the equation (2.5) apply over each wavenumber k:

n0(k)− ns(k) = dn− nb (2.8)

where n0(k) and ns(k) are the null spaces of C(k) and Q(k). Usually, to compute any of
these Fourier transforms, it is enough to consider a PBC lattice, where we have some number
of possible k, and as would be expected the total number of ZM of these systems should be
N0 = ∑

k n0(k), and analog for the SSSs, NS = ∑
k ns(k). Usually, if there exists, some of

these modes can be seen with the naked eye at k = 0, that is, a collective mode, like an
ordinary collective displacement.
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2.2 Link Between Quantum and Classical problems
The topological mechanical approach of using tools from the topological insulators framework,
at first sight, deals with many elemental problems, starting with the governing equations
difference. In this section, our milestone is to derive a way to connect these equations in
some manner. The generic equation in our systems is given by eq. (2.3), but is also possible
to consider some extra terms to include some additional force contribution, for instance,
velocity-dependent forces such as Lorentz or Coriolis forces, which can imply additional
effects like symmetry breaking[14, 48, 59], which is not necessary for the specific systems
treated in this thesis.

On the other hand, the time-dependent Schrodinger equation takes the form1,

i
d

dt
ψ(t) = Hψ(t) (2.9)

for some eigenstate ψ̂ with a Hamiltonian matrix H in a quantum mechanics system. At first
sight, the mechanical and quantum problems look very different, starting from the fact that
eq. (2.3) is a second-order differential equation in time, while the Schrödinger equation is only
a first-order time differential equation. Similarly, the resultant eigenvalues in eq. (2.3) can
only be non-negative; in contrast, an electronic Hamiltonian can have negative eigenvalues.
To relate both systems, our focus is to rewrite (2.3) as the Schrödinger equation. To achieve
this we promote the displacements vector u to the matrix

(
u̇ u

)T
, obtaining

d

dt

(
u̇
u

)
=
(
0 −D
1 0

)(
u̇
u

)
(2.10)

where we gathered the time dependence notation for simplicity. To reach the form of eq. (2.9),
in the above equation it is necessary to discompose D on two matrices where we consider
the decomposition on Q and R because of the modes of our interest. However, as you can
read in the remarkable work of Susstrunk and Huber [47], the decomposition of D is not
unique. Moreover, since we deal with non-dissipative and reciprocal interactions, D should
be a positive semi-definite matrix2, which implies that

√
D is well-defined, and therefore

any square root decomposition can be taken into account, depending on the system, or the
topological framework.

In our case, we are more specifically interested in the decomposition D = QR when Q ∈
RN×M and N ̸= M in general. For the sake of rewriting eq.(2.10) as (2.9), consider the
transformation matrix (

0
i1

R
0
)

where we emphasize that 1 is the N -dimensional identity, which in addition to the dimensions
1Considering the Plank constant as one
2Symmetric or hermitian, of non-negative eigenvalues
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of R, M × N , leads in general to an a rectangular transformation matrix. Thus we obtain
that (2.10) under this transformation takes the form,

i
d

dt

(
Ru
iu̇
)
=
(
R
0

0
Q
)(

Ru
iu̇
)

or alternatively according to eq.(2.9), the above equation can be written as

i
d

dt
ψ = Hψ ψ =

(
Ru
iu̇
)
, H =

(
R
0

0
Q
)

where H is a (M + N)-dimensional square matrix. This formulation includes the entire
spectrum of (2.3), and could be fruitful to write this formulation as the eigenvalue equation
considering the expansion u = un(x)e−iωt

ω

(
Run

ωun
)
=
(
R
0

0
Q
)(

Run

ωun
)

However, the above formulation does not include the ZM, since when ω = 0 and Run = 0,
the structure of the eigenvector raises a trivial zero vector. In the general case, when there is
no structure for the eigenvector, the above equation would include both the ZMs and SSSs,
thus a solution to this problem can be to modify the formulation to modify the eigenvector
space. This modification emerges naturally after considering the matrix H2, which shares
the eigenvectors of H and their eigenvalues are the square of the eigenvalues of H

H2 =
(

0
QR

RQ
0
)
=
(
0
D

D̃
0
)

where D̃ = RQ, share the non-zero eigenvalues with D, but differs in their zero eigenvalues:

QR un = ω2un QR u = 0
RQ(Run) = ω2(Run) RQ(Ru) = RQ t = 0

where the eigenvectors of D̃, t = Ru, are the spring tensions. In addition, the zero modes
of D correspond to the ZMs mentioned in the previous section, while the zero modes of D̃
correspond to the SSSs. Notice that the u at the SSS are not displacements, but are springs
extensions required in the SSS. Therefore, the eigenvalue equation of H2 which includes both
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ZM and SSS is given by

ω2
(
Run

un

)
=
(
0
D

D̃
0
)(

Run

un

)

where its square root can be easily written:

±ω
(
Run

un
)
=
(
R
0

0
Q
)(

Run

un
)

which is nothing more that
(
Run

ωun
)
→
(
Run

un
)
respect the previous formulation. Notice that

this last equation takes the form of the time-independent Schrödinger equation

Eψ = Hψ H =
(
R
0

0
Q
)

ψ =
(
Run

un
)

E = ±ω (2.11)

and also works their representation in the Fourier space k given by

H(k) =
(
R(k)
0

0
Q(k)

)
ψ(k) =

(
R(k)u(k)
u(k)

)
(2.12)

2.2.1 Symmetry Analysis
The matrix H can be topologically classified in the framework of topological insulators. In
a similar form as treated by Susstrunk and Huber[47], we examine what would imply on the
mechanical system a symmetries analysis on the k-space matrix H(k). We will not elaborate
much further on the meaning of these symmetries beyond the examples in Section 1.2 since we
are focused on what they imply on the mechanical system in this formulation. For additional
details, you can refer to the many excellent reviews of the classification based on topological
insulators symmetries at ref[5, 6, 8, 9, 25]

The three symmetries involved in this classification are the time-reversal symmetry T (TRS),
the particle-hole symmetry C (PHS), and the chiral symmetry S, discussed in the SSH model.
Based on the aforementioned classification, we consider a TRS and PHS if the symmetry
operators T and C act on H(k) as

T H(k) = H(−k)T
CH(k) = −H(−k)C

for some anti-unitary operator T 2, C2 = ±1. In the case of TRS, since H is purely real, and
therefore H(k) complex, the generic operator T = 1K, with K as the complex conjugation
operator, allows to always guarantee this symmetry no matter the dimensions of Q and R.
This means nothing else that the band structure is symmetric under k→ −k, as expected in
these ideal systems. Thinking in quantum systems that require a TRS breaking, it is possible
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to break this symmetry in multiple forms on some mechanical systems, for instance consid-
ering some additional forces, that lead to interesting topological mechanics phenomena[48,
59]. For PHS, the symmetry also can be achieved by considering C = UCK, where UC is the
unitary operator

UC =
(

0
1N

−1M

0
)

where the dimension of the identity are picked considering that Q(k) ∈ CN×M . This sym-
metry implies that H(k) has a symmetric spectrum that is, for every mode at +ω there is a
symmetric partner at −ω (the negative frequency does not have any physical meaning, but
we will back to this point at the end of this discussion). The combination of both symmetries
operators, acts as a chiral symmetry Us, in the same form as in the SSH model

(CT )†H(k)(CT ) = UCH(k)UC = −H

which implies that the chiral symmetry operator is S = Us = UC. As we mentioned in
Section 1.2 a chiral symmetry implies some consequences in the band structure of H(k).
First, an eigenstate at wave-vector k and some eigenvalue En, their chiral partner is also
at k, but with −En, and these states can have contributions of both parts of the sub-
lattices as long as E ̸= 0, where each zero energy state is only supported in one sub-lattice
simultaneously. The first point can be directly verified in this case when considering the
aforementioned chiral operator S = Us and the equation (2.12)

H Usψ(k) = −Us Hψ(k) = −ω
(

0
1N

−1M

0
)(

R(k)u(k)
u(k)

)

= −ω
(
−R(k)u(k)
u(k)

)

which is effectively the chiral partner of ψ. However, the minus sign in the frequency does not
have any physical meaning but is the consequence of the doubling of DOF in the formulation.
The second point refers to the zero-energy states, which in the SSH model are only supported
in one sub-lattice per state. This also can be verified by considering ω = 0

H(k) =
(
R(k)
0

0
Q(k)

)(
R(k)un(k)
un(k)

)
= 0

which implies

Q(k)R(k)un(k) = 0
R(k)un(k) = 0

where the first are the SSSs and the second the ZMs. If some ZM is associated with uZM(k),
then R(k)uZM(k) cannot be in NullQ, since this space is composed only by non-zero vectors,
and R(k)uZM(k) = 0 (this analysis equivalent to the Rank-Nullity theorem or the Maxwell-
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Calladine theorem). Thus the zero-frequency modes in H(k) looks like(
0

uZM(k)
)

and
(
R(k)uSSS(k)

0
)

for ZMs and SSSs respectively. So far, all the expected consequences of this symmetry are
supported by H(k), and therefore, thinking on the SSH model is natural to ask if also there
are topological aspects within these systems, which will be treated in detail in the following
chapter.

2.3 Isostatic Topological Mechanics
Among the several studies on topological mechanics in the past few years, a seminal paper
by Kane and Lubensky [72] on a topological characterization in mechanical systems of these
zero-frequency modes(ZMs and SSSs), marked one of the starting points of this trend. The
authors showed that the Maxwell-Calladine theorem from eq. (2.5), which quantifies the
difference between ZMs and SSSs, arises as a contribution of the topological properties of the
system and local mismatch of springs and sites. We will start explaining their framework with
the illustrative mechanical system that can be understood as an analog of the SSH model
system, and later we review how this topological classification can be extended. However,
the analysis of ref [72] was limited to the isostatic regime, where there is a balance of springs
and DOFs, where the existence of ZMs or SSS is equiprobable, and as we will review at the
end, is not possible to extrapolate their analysis directly out of this limit.

2.3.1 Isostatic Chain

Fig. 2.3: Isostatic Chain System. The chain is composed of identical mass-less rigid bars(black
solid thick line) of radius r attached to a static horizontal line(gray solid thin line), and to which an
identical punctual mass(red solid circle) is attached at the free end of each bar. Each bar rotation
point is equally spaced from its neighbors a distance a, and an identical ideal spring(yellow dashed
lines) is attached to the masses of every two adjacent bars, where the length of the springs is chosen
in such a way that the bars are arranged in an alternating rest angle θ̄ or π − θ̄ with respect to the
vertical. We take the convention of measuring the angles in an alternating direction so that all bars
will have the same rest angle θ̄. For a small perturbation φn the n-th bar tilt around the rest angle.
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The isostatic chain emerges as a mechanical analog of the SSH model, which exhibits topolog-
ical zero-energy state (see Section 1.2). In this section, we present the system and its analogy
with the SSH model and use slightly different explanations than those already mentioned in
the typical articles[15, 72]. The mechanical model of this chain, presented in Fig. 2.3 consists
of a one-dimensional array of rigid bars of length r that rotates about a fixed point, separated
by a distance a. At the end of each bar, there is the same punctual mass, which has attached
an ideal spring that connects two adjacent bars. The natural length of these springs is chosen
to that the bar array forms an alternating rest angle θ̄ with the upward or downward normal.
This last detail implies that the orientation of the angle measurement also alternates from
chain to chain. An unit cell in the chain is right compatible if is composed of a spring on
the left and a bar on the right, or is left compatible in the opposite case. The former option
will be used in this initial analysis, and later we will discuss the second case. This system is
isostatic, since in periodic boundary conditions, there is exactly one DOF and one restriction
per unit cell. Under small perturbations, the angle at each bar goes as θs = θ̄ + φs, for
φs ≪ θ̄. Thus the extension e of each spring is given by

e(θn, θn+1) = ℓ(θn, θn+1)− ℓ(θ̄, θ̄)

where

ℓ(θn, θn+1) =
√
(a− r sin θn + r sin θn+1)2 + (r cos θn + r cos θn+1)2

In the linear regime, this extension can be approximated as

e(θ̄ + φn, θ̄ + φn+1) ≈ e(θ̄, θ̄) + φn
∂e

∂θn

∣∣∣∣∣
θn=θn+1=θ̄

+ φn+1
∂e

∂θn+1

∣∣∣∣∣
θn=θn+1=θ̄

≈ −v1φn + v2φn+1

where

v1,2 =
r cos θ̄(a± 2r sin θ̄)√

a2 + 4r2 cos2 θ̄

The geometrical parameters v1,2, are related to θ̄ > 0(< 0) when |v1| > |v2|(|v1| < |v2|),
and θ̄ = 0 when |v1| = |v2|. The expression for e is enough to write the compatibility
and equilibrium matrix, where Rφ = e relate the extension of the spring e and the angle
perturbation φ as expected, but Qt = −τ now relate the springs tensions with the torque τ
on the bars. For instance in a chain under PBC composed of four unit cells, these relations
take the form
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0
0

−v1
v2

0
−v1
v2

0

−v1
v2

0
0

v2

0
0

−v1


φ4

φ3

φ2

φ1
 =


e4

e3

e2

e1



−v1
0
0
v2

0
0
v2

−v1

0
v2

−v1
0

v2

−v1
0
0 


t4

t3

t2

t1
 = −


τ4

τ3

τ2

τ1


Notice the expected delay in the index for R and Q, because the first refers to the springs
and the second to the bars. The above results can be summarized in the matrix H

H =
(
Rs,s′

0
0

Qs,s′
)
=
(
v1δs,s′ − v2δs,s′+1

0
0

v1δs,s′ − v2δs,s′−1
)

On the other hand, the Fourier transform, R(k) orQ(k), can be easily obtained from eq. (2.7),
which corresponds to scalars rather than matrices, due to the equal DOFs and constraints
number per unit cell:

H(k) =
(
R(k)
0

0
Q(k)

)
=
(
v2 − v1e

ika
0

0
v2 − v1e

−ika
)

(2.13)

thus the dispersion relation ω(k) is obtained from H, obtaining then3

ω(k) = ±
√
v21 + v22 − 2v1v2 cos(k)

For this mechanical system, there is a frequency band gap around ω = 0, except when
|v1| = |v2|, where it closes at k = 0 and where all the bars are in a vertical position. In the
rest of the cases, the chain is orientated in one direction, depending on the relative magnitude
of v1 and v2. According to the Maxwell-Calladine theorem (2.8), under PBC conditions, the
chain has no ZMs or SSSs as long as |v1| ≠ |v2|, but in contrast, when |v1| = |v2|, a ZM and
a SSS appear at k = 0, that is, a uniform perturbation produce the ZM, and the uniform
pre-stress in the springs is the SSS. On the other hand, in the finite chain case, the chain
necessary has one spring less than the number of bars, and according to the Maxwell-Calladine
theorem, it is necessary that N0 −NS = 1. We already said that the bulk does not support
a ZM or SSS when |v1| ≠ |v2|, then these modes should appear at the edges, but a SSS is
not possible here because it requires two springs, and therefore the unique option is that in
a finite case, there are one ZM and zero SSS. Depending on the orientation of the chain, this

3Considering the elastic constant, the inertia moment, and the lattice spacing as one
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Fig. 2.4: Isostatic chain dispersion relation. The figure shows the band diagram ω(k) for three
different pairs of values (v1, v2), from left to right (1, 0.7), (0.7, 0.7) and (0.7, 1), as also is labeled as
a relative relation in the title of each diagram. The dispersion relation closes the gap in the middle
figure, where the bars are in a vertical position, while in the remaining two cases the bands look
identical because the absolute difference v1 − v2 is equal, even though they differ in v1 and v2.

mode is located at the left or right edge, and its decay is obtained as

Cs,s′ = v2φs − v1φs−1 = 0

φs−1 =
(
v2
v1

)
φs

⇒ φN−s =
(
v2
v1

)s

φN

in a finite chain of N bars. This result only has physical meaning for |v1| > |v2| where the ZM
is exponentially located at the left edge and decaying to the right. It is direct to understand
that in a chain with an opposite orientation, there is also a ZM located at the left side that
decays to the right, and we will back to this case later. Notice that up to this point, we can
identify many similarities with the SSH model.

First, the Hamiltonian bulk matrix of the SSH model is identical to H(k) at eq. (2.13), while
the eigenstates in the SSH model are composed of the sub-lattice coefficients, and here the
eigenvector in eq.(2.12) is composed by the eigenstates of D and D̃, which correspond to
angular displacements and tension respectively.

|ψ⟩ =
(
b(k)
a(k)

)
⇔ ψ =

(
R(k)u(k)
u(k)

)

For this reason, there is a correspondence one-to-one between these systems, where the
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Fig. 2.5: Zero energy mode in the isostatic chain and the analog in the SSH model. The right
oriented isostatic chain(top), where v2 < v1, supports an exponentially localized ZM in the right
edge, which is analog to electronic zero energy mode in the SSH model(bottom) when the intra-cell
coupling is smaller than the inter-cell coupling. This analogy is between the bar perturbation(spring
tension) and the B(A) site in the SSH model(see Fig. 1.4). The highlight gradient under the figure
represents the amplitude decaying of the mode. On the left side of the figure is shown the eventual
next unit cell, wherein the SSH model is only necessary to include an additional site A, while
the analog in the isostatic chain implies the inclusion of a spring(which does not have mechanical
relevance due the unit cell choice).

springs can be identified with the A-sites in the SSH model and the B-sites with the masses
when considering a right compatible chain. However, there are two relevant points in this
analogy, that can lead to confusion. First, in contrast to the SSH model where a zero-energy
mode appears only when the intercell coupling is bigger than the intracell coupling, in this
mechanical case the ZM appears to be in the chain no matter the relation between v1 and v2,
and also can cause confusion that in the mechanical case, the ZM only appear at one edge,
but in the opposite does not appear to be a ZM. These two apparent discordance however
have a physical meaning in the isostatic chain where we have an alternative explanation.

Consider the right compatible finite chain, where the ZM appears at the bar on the right edge.
In the SSH model, the right ZM analog(the zero energy state) is on B site, and according to
this same analogy also an analog should appear at the left side, but in the sub-lattice A. In
the isostatic chain, the sub-lattice A is analog to a spring, and therefore that mode should
be a SSS, but this mode is not possible if we do not add a new pendulum to left the and
therefore another unit cell. According to this conclusion, it is not possible to have an isolated
finite SSH, but we can build an interface that “disconnect” two finite chains. If we consider
the analog the SSH model, the coupling would fulfill that the interaction for both sides of
the interface would vanish(see Fig. 2.7), however in principle, we do not know what is the
relation between the couplings at both sides of the interface, to be physically realizable in
the mechanical case.

If we consider that the right compatible finite chain has an equilibrium angle θ̄R > 0, we can
obtain the new coefficients for the interface, and impose the condition of vanishing coupling,
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(a) (b)

Fig. 2.6: Unit-cell dependence of the mechanical-electronic analogy. When the isostatic chain in
Fig. 2.5 takes the opposite orientation, the ZM also appears but on the opposite edge. However,
to explicitly obtain this analogy the isostatic chain unit cell has to be in concordance with the unit
cell choice in the SSH model. In the case shown in Fig. 2.5 the unit cell choice is right-compatible,
shown here in (b), where the dotted line encloses the unit cell choice, and where there is a direct
correspondence between the couplings v1 ↔ w and v2 ↔ v, in concordance for the existence of the
ZMs in the mechanical and electronic case. We the left-compatible unit-cell (a) is chosen in the
isostatic chain the same ZM is obtained in the left edge, and now the analog SSH model also has a
different unit cell.

Fig. 2.7: The figure shows the left edge of a finite topological chain in the SSH model. An isostatic
chain, which may be the analog of a finite chain in the SSH model, should decouple somehow at
the left edge (for a rigth-compatible chain), that is v1 = 0, as in the SSH model where the intracell
coupling vanish. In principle, we do not know what this condition may imply for the mechanical
case on the left side of the decoupled interface.

but the unique realizable solution for the mechanical case is that the bar at the interface
follows θ̄ = 0 and that the chain at the left side of the interface must have an equilibrium
angle θ̄L = −θ̄R(see Fig. 2.8). With this solution, the analogy is complete, in Fig. 2.8 a
right-compatible isostatic chain supports a ZM in the bar angle(sub-lattice B), and in the
opposite edge, at the interface, there is a SSS. The left side of the system will also have a
ZM, and share the SSS with the right side of the chain, but the choice of the unit cell as
right compatible produce that the analogy is not valid on this side, however, if we consider a
left compatible unit cell(see Fig. 2.6), now the analogy with the SSH model is with this side.
The ZM in the left compatible chain is given by
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(a)

(b)

Fig. 2.8: Zero modes and self-stress modes in the isostatic chain. In (a) the figure shows an
interface between two isostatic chains where a localized ZM is supported at each edge. The chains
have an opposite orientation and an equilibrium angle θ̄ = ± sin−1(a/2r), where each spring is
aligned with the bar. At the interface, there is a vertical bar that guarantees the decoupling condition,
and a localized SSS mode is supported in the adjacent springs to this bar. This system is also analog
to an interface in the SSH model between two fully dimerized chains, as shown in (b), where the
analogy for a right-compatible chain is shown at the top and the analogy with the left-compatible
chain is shown at the bottom.

Cs,s′ = v2φs+1 − v1φs = 0

φs+1 =
(
v1
v2

)
φs

⇒ φs =
(
v1
v2

)s

φ0

where |v1| < |v2| is the physical case, as expected, where the mode is located at the left edge
and exponentially decays to the right, while the matrix R(Q) is equal to the matrix Q(R) in
the right compatible chain.
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Fig. 2.9: Parameterization in the complex plane of R(k), for the three cases showed in Fig. 2.4.
When v2 > v1(v2 < v1) the winding number of this parameterization is zero(one), in concordance
with the number of ZM at the right edge(for a right-compatible unit cell). As in the SSH model, the
winding number is not well-defined when v1 = v2.

2.3.2 Topological Classification
So far, all these analogies also reach the winding number in the SSH model. In Section 1.2 we
mentioned that based on the Hamiltonian symmetries, it is possible to classify the quantum
system concerning homotopy groups. Since H in this case follows the same symmetries
as the SSH model, also shares its topological properties. More specifically, according to this
classification, the fundamental homotopy group of the corresponding space in one-dimensional
systems is π1(H(k)) = Z, which similarly to the SSH model, a winding number can describe
this invariant:

n = 1
2πi

∫ π/a

−π/a
dk

d

dk
ln(|R(k)|)

where “|R(k)|” denotes the determinant of R(k), and a is the lattice spacing. This formulation
is equivalent to the one in eq.(1.1), and returns n = 1 or n = 0 when the parameterization of
R(k) in the complex plane winds or not the origin. The winding number also can be computed
by using Q, but here the parameterization wind clockwise and therefore the possible values
are n = −1 and n = 0. As in the SSH model, where this invariant is related to the zero energy
states, here it is related to the zero frequency states. The isostatic chain supports a ZM in
the right(left) boundary and will be zero when the mode is not supported in this boundary.
Similarly, this winding number also distinguishes the trivial and topological phases in the
mechanical chain, but for a topologically non-trivial chain which is non-trivial for certain
uni-cell choice, the same chain will be trivial for the opposite unit-cell choice(see Fig. 2.6).

The fact that unit cell matters in the winding number result, implies that this winding
number is not gauge invariant. However, this problem can be fixed by including the unit cell
choice, summarized in a different number which counts the ZM depending on the unit cell
choice [15].

2.3.3 Extension and Limitations
The preceding review on the topological characterization of H, can be widely applied to
periodic lattices, as long as the equation of motion can be described via eq. (2.11), which
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guarantees the symmetry features on H(k). The usual extension of the problem is to consider
two-dimensional(2D) isostatic systems, where R(k) and Q(k) depends on a vector wavenum-
ber rather than a scalar. The bulk topological properties in these cases depend on the winding
number

ni=0,1 =
1
2πi

∮
Ci

dk · Tr
[
Q−1(k)∇kQ(k)

]
for certain closed paths Ci in the first Brillouin zone. In this thesis we are not interested in
going too deeply into this counting for 2D systems, instead, we will focus on the fundamental
limitations it presents, but a detailed explanation can be found in the references[72, 115]. The
above topological index depends on the fundamental assumption that the lattices are isostatic,
and therefore R(k) and Q(k) are square matrices, where the topological numbers n are well-
defined. In contrast, for rectangular matrices, the above expression for the winding number
is not valid anymore, as in the case of hyperstatic systems. The Maxwell-Calladine theorem
and the zero-frequency modes can also be present in these systems, but their topological
characterization and how they are related to these modes is still unknown. Nevertheless, the
symmetry aspects on H do not depend on the dimension of Q and R, and then there are no
reasons to think that there are topological properties beyond the isostatic regime, and that
are not been taken into account in the topological scheme.
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Chapter 3

Hyperstatic Topological Mechanics

As we mentioned in the past chapters, the Maxwell-Calladine theorem tells us that in systems
that are in the hyperstatic regime, i.e. when the coordination number is larger than the
degrees of freedom, self-stress modes are predominant over the zero energy modes in the
system. However, this does not imply that such a rigid system cannot host rich static or
dynamic behavior due to its topology. The same methodology applied to isostatic systems
may not be useful in rigid ones to study or characterize the topologically protected modes.
Over and above, there are recent studies that show the topological existence of these modes,
in free boundaries and interfaces[73]. Our work in this chapter is mainly focused on this
last case, where we will review an hyperstatic system that presents topologically protected
low-frequency modes.

3.1 Hyperstatic Chain
The system we will study in this section is a hyperstatic generalization of the previous
chapter’s system. It was introduced recently as an example of topologically protected modes
in the interface of a hyperstatic system[73], and in this section, we will give a brief report of the
main result that concerns our purpose. The system is made up of two isostatic chains(shown
in Chapter 2) with opposite signs for the equilibrium angle θ̄. These chains are joined in their
rotation point, obtaining a straight bar that can rotate around their middle point, and that
has an alternating angle equilibrium angle with respect to the vertical(see Fig. 3.1). This
mechanical configuration then has two constraints(springs) and one DOF(rotation angle θ)
at each unit cell n, being then an over-constrained or hyperstatic system. The rotation angle
of the nth-bar is given by θn(t) = θ̄ + φn for a small perturbation φn ≪ θ̄, measuring the
angles in an alternating form just as in the isostatic chain. This last consideration also makes
it possible to distinguish between chains with θ̄ < 0 and θ̄ > 0. In the linear regime, the
geometrical parameters v1,2 that arise from the linear expansion of the spring extension are
the same that in the isostatic chain, but here there is an additional spring per cell which
implies that in a N -bars system under PBC, R is exactly a (2N × N)-dimensional matrix.
For instance, if the system in Fig. 3.1 is a four-bars chain under PBC, R is given by,

34



Fig. 3.1: Hyperstatic chain system. The system is built by coupling two isostatic chains with
opposite signs for the equilibrium angle. The resultant system is composed of straight bars of length
2r that rotate around their middle point, where each unit cell has two springs and one DOF. As
in the isostatic chain, the rotations points are separated by a distance a, and the n-th bar tilt φn

around the rest angle.

R = 1√
2


v1

−v2
0
0
0
0

−v2
v1

0
0
0
0

−v2
v1

v1

−v2

0
0

−v2
v1

v1

−v2
0
0

−v2
v1

v1

−v2
0
0
0
0


(3.1)

Also in the above equation, the geometrical parameters v1,2 can be reduced to one dimen-
sionless parameter 1 c = v1

v2
= a+2r sin θ̄

a−2r sin θ̄
, where c < 1(c > 1) when θ̄ < 0(θ̄ > 0), and c = 1 for

1With the appropriated normalization
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θ̄ = 0(see Fig. 3.2). Therefore the above compatibility matrix can be written as

R = 1√
2


c
−1
0
0
0
0
−1
c

0
0
0
0
−1
c
c
−1

0
0
−1
c
c
−1
0
0

−1
c
c
−1
0
0
0
0


(3.2)

Therefore, in a generic system, R can be written in a compressed form

R =
(
R2p,q

R2p−1,q
)
= 1√

2

(
cδp,q − δp,q+1
cδp,q − δp,q−1

)

In the previous chapter, we assert that in this thesis the criteria to refer to a system as “hyper-
static”, is that given a periodical configuration of the system the bulk k-space compatibility
matrix R(k) is a rectangular matrix, where the number of rows(related to the coordination
number), is strictly greater than the columns(related to the DOFs number). This condition
can be verified in this system by computing R(k) according to (2.7), that is

R(k) = 1√
2

(
c− e−ik
c− eik

)
(3.3)

Up to this point in this system, the matrix dimension is the only main difference with the
isostatic chain, but due to this extra spring, the Maxwell-Calladine theorem also reveals some
effects on the ZMs and SSSs in the system. To analyze this consider the k-space version of
this theorem (see eq. (2.8)) which in this case leads to N0(k) − Ns(k) = −1, that is, there
is always one SSS more than ZM at each k. More specifically, when c ̸= 1, there are no
zero modes since NullR(k) = 0 for all k, while NullQ(k) = 1, which means that in a PBC
system, for each bar, there is one SSS(see Fig. 3.2c). In contrast, just as in the isostatic
chain when the bars are in a vertical position, or equivalently c = 1, is possible to obtain
that NullR(k = 0) = 1, that is, a uniform ZM(see Fig. 3.2b), which will be relevant in the
discussion of the topological properties of the system.

There is one last important difference between these chains when we consider a finite system.
In the isostatic case, the finite chain directly implies the existence of ZM at the edges, which
depending on the orientation θ̄ can be located at the left or right edge. However in a finite
hyperstatic chain, even though the inversion +θ̄ → −θ̄ flips the chain, this makes no difference
for the bars located at the edge because this chain is the superposition of a +θ̄ and −θ̄ chain,
where at each edge one of these chains would be compatible for the ZM and one would not
be. Nonetheless, this does not imply something specific to a chain interface, which is the
focus of study in this system.
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(a) θ̄ < 0 (b) θ̄ = 0 (c) θ̄ > 0

Fig. 3.2: The three possible equilibrium configurations in the hyperstatic chain, for θ̄ < 0, θ̄ = 0
and θ̄ > 0 in (a), (b), and (c) respectively. Additionally, under PBC, that is, when the first and
third bar represents the same bar, in (b) and (c) is shown the ZM and a SSS that the chain support
respectively.

3.2 Topological Characterization of Non-Square Matri-
ces

Let us remember how the topological classification arises in isostatic lattices. The classifica-
tion and their topological invariant are obtained from a specific type of quantum mechanical
system that shares their symmetries with H (see eq. (2.11)) and results that the topological
properties can be described by mean a winding number that depends on the bulk space ma-
trix Q(k) or R(k). The extension of this winding number is possible since these two matrices
are square in the isostatic regime, but the extension would not be possible to do it if this
condition is not met. Up to this point, independently if it has a physical meaning, in a hy-
perstatic system Q(k) and R(k) are rectangular, and therefore it is not possible to use of this
method. However, if we look back at H(k), its symmetries do not depend on the dimensions
of R and Q, and the chiral symmetry in H(k) is nothing but the manifestation of classical
mechanics’ time-reversal symmetry. The problem emerges in the topological characterization
and the topological invariant formulation, where the isostatic framework recurs to the tenfold
way explained in Chapter 1, so in the hyperstatic case arises the question, is it possible to
topologically classify these spaces? That eventual topological classification should work on
non-square matrices, which is the focus of this section. Fortunately for this purpose, there
are some topological studies about this problem, where a “tenfold way inspired”[25] topo-
logical characterization on non-square matrices can be a good option following the isostatic
methodology[79]. In the following section, we will discuss this classification and later what
implies in the hyperstatic chain.

3.2.1 Classification
To discuss the topological characterization used, consider a general case where R ∈ RM×N ,
which will be useful for the thesis work. Inspired by the eigenvalues topological analysis in
the topological insulators tenfold-way classification, in this classification, it is considered a
singular value decomposition(SVD) for R(k)(since), namely R(k) = UΛRV

†, where ΛR is the
M × N -dimensional singular values matrix with non-zero values only in the main diagonal
called singular values, and U, V are the SVD transformation matrices. Following the analogy
with the tenfold-way characterization, in the SVD decomposition, a flattening of the singular
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values is applied ΛR → Λ̃R, where each non-zero value is replaced by 1. This process lead to
two Λ̃R types, depending on the bigger dimension of R, where these matrices take the form

Λ̃R =


0

...
0
0

...
0
1

0

...
0
0

...
1
0

· · ·

...
· · ·
· · ·

...
· · ·
· · ·

0

...
0
1

...
0
0


=
(
0N,(M−N)

1N

)
when M > N

Λ̃R =


0

...
0
1

0

...
1
0

· · ·

...
· · ·
· · ·

1

...
0
0

0

...
0
0

· · ·

...
· · ·
· · ·

0

...
0
0 =

(
1M 0M,(N−M)

)
when M < N

With the above matrix, it is possible to obtain a R flattened version from the SVD transfor-
mation matrix U, V , that is

R̃ = U Λ̃RV
† ,

where this matrix is topologically classified by its homotopy groups. For further details, the
extended analysis of the classification can be read in ref. [122], while the topological analysis
where rectangular matrices as R̃ belongs can be read in ref. [3]. In this thesis, we will treat
only two cases, when R is a real or complex rectangular matrix. When R is complex, the
homotopy groups of R̃ are high-order non-trivial groups[122] where is not clear how to write
the invariant. In contrast for real R, the space R̃ is isomorphic to well-know spaces from
which the first non-trivial homotopy groups of R̃ are obtained[3]

π∆(R̃ ∈ RM×N) ∼=

Z for N = 1 or ∆ even
Z2 for N ≥ 2 and ∆ odd

∆ := |M −N | , (3.4)

where π∆ is the ∆-st order homotopy group with ∆ the dimension difference in R. In general,
is not clear what this invariant is, but R̃ could suggest it.

3.2.2 Topological Invariant
Returning to the hyperstatic chain, the topological problem is not completely solved, because
the invariant formulation is unknown up to this point. The approach of use the above
classification is not the best candidate, because R(k) is complex in this case. However, in
ref. [73] they argue the existence of symmetry as a solution. They postulate that a generic
system of any dimensions has a generalized inversion symmetry (GIS) if there is a unitary

38



transformation for the compatibility matrix R(k), namely

R(k) = UR(k)W † , (3.5)

where U,W are unitary matrices such that R(k) is real for a real wavenumber k. Notice that
this symmetry could be present even if the number of degrees of freedom is different from the
number of restrictions, as in the hyperstatic chain. This case is precisely an example of this
symmetry because for R(k) in equation (3.3), the desired unitary transformation is given by

R(k) = 1√
2

(
i
1

−i
1
)
· 1√

2

(
c− e−ik
c− eik

)
·
(
1
)

(3.6)

⇒ R(k) =
(

sin k
c− cos k

)

Fig. 3.3: The parameterization of the components of R(k) is a circle that can enclose or not
the origin when c > 1(top left) or c < 1(top left) respectively. When an interface between these
two different topological phases is built(bottom), the system supports an exponentially localized state
around the interface(represented by the highlight at the interface), which has a finite frequency and
lies in the frequency band gap.

According to the topological characterization discussed in the previous section, for R(k), its
flattened version is given by

R̃(k) = 1√
(c− cos k)2 + sin2(k)

(
sin k

c− cos k
)

According to (3.4), here ∆ = 1 and therefore the fundamental homotopy group is π1(R̃(k)) ∼=
Z, for which here the topological invariant is a winding number ν of the curve parametrized
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by the components of R(k) when k run through the first Brillouin zone, according to (3.6).
Notice that this clearly could be viewed directly on R(k), but the above classification is a
formal scheme to argue this. Beyond the topological properties of this space, the question is
if all of this has some kind of physical meaning in the physical system, and it is possible to
realize that this invariant distinguishes two (topological) chain phases for c > 1 or c < 1 with
a winding number zero or one respectively(see Fig. 3.3.a). In the following section, we will
expose what relevance has in the chain’s dynamics and compare it with the isostatic chain.

3.3 Soft Interface Modes
Up to this point, this hyperstatic chain does not show significant differences with their iso-
static version, rather than be stiffer. But as we mentioned in the chapter preamble, the topo-
logical behavior here happens at low frequency, in contrast to the zero frequency modes(ZMs
and SSSs) in the isostatic case. This statement could lead to thinking that these two prob-
lems are not related, but as we will review they have the same nature. First, the equation
of motion for small perturbations can be obtained using the dynamical matrix. However,
according to the previous section, the existence of two topological phases leads us to think
about the possible effects of an interface between them. For the sake of this, if we allow for
site-variations in c, i.e c→ cn the movement equation for the perturbation φn is given by

φ̈n = −QRφn

= −
(
φn(c2n + 1)− 1

2φn−1(cn + cn−1)−
1
2φn+1(cn + cn+1)

)
φ̈n = −(cn − 1)2φn + cn(φn+1 − 2φn + φn−1)

+ (cn+1 − cn)
φn+1

2 − (cn − cn−1)
φn−1

2 (3.7)

in their non-dimensional version, which will be discussed at the end of the chapter. In an
infinite system, a single change in c produces an interface for two different values for c, cL
and cR for the left and right sides of the interface respectively. Most of these interfaces are
physically trivial, except for the interface of two topologically different chains, which happen
around c = 1, that is an interface cL < 1 and cR > 1(see Fig. 3.3). More specifically when
the difference from c = 1 is symmetric at both sides, that is, when both chains have the same
frequency gap or equivalently cL + cR = 2, it is possible to analytically obtain a mode of
finite-frequency given by

ω2 = 4m2
0 − 2m4

0
4−m2

0
where cL = 1 +m0 and cR = 1−m0

This mode is located within the frequency band gap(see Fig. 3.4), and therefore is expo-
nentially localized at both sides of the interface. This mode is called a soft mode since it is
located just under the lowest band.

In Fig. 3.4 a simulation over a long chain under PBC for cL = 1.3 and cR = 0.7 shows
the existence of the vibration mode of frequencyω = 0.296, where the units of ω had been
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Fig. 3.4: The figure shown the dispersion relation ω(k) for the interface system in Fig. 3.3. The
solid line represents the frequency bands for the bulk of both sides of the interface, where the colors
distinguish the left and right side bulk band. The points represent the results of a numerical sim-
ulation of an interface system under PBC and the horizontal dotted gray line in the main figure
indicates the lowest bulk frequency. The zoomed part in the figure shows the modes at the interface
which are located just below the bulk bands. An additional horizontal line(orange) passes through
the lowest modes, which are modes of the interface’s closest bars.

dropped in the non-dimensionalization equation of motion, discussed in the next section.
This frequency is within the band gap, and in the vicinity of k = 0, which corresponds to
the interface mode of the two bars at the interface, with the wavelength equal to the system
length. The modes arise as reminiscent of the zero modes at c = 1, which appear as a
consequence of merging the topologically different chains from c < 1 to c > 1. The mode
frequency and decaying length depend only on the difference from c = 1 at both sides of
the interface (see Fig. 3.5a), but in addition, the interface supports the mode even when the
frequency band gap is different at both sides of the interface, i.e. cL + cR ̸= 2(see Fig. 3.5b)
which shown the robustness of these modes.

3.4 Important Remarks
There are some relevant points, which are omitted in ref [73], but that we think are relevant
to take into account. First, there is an implicit normalization in the equation of motion that
will be important in the next chapter’s discussion. The equation of motion with no treatment
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Fig. 3.5: In (a) is shown the decay of the soft-modes for different values of cL = 1 + m0 and
cR = 1 − m0 and their corresponding frequency ω. In (b) is shown the pair (cL, cR) for which
these soft modes can be supported in the interface. The simulations were done for each point in the
grid, and the cases that support the mode are the thick orange points(c = 1 where omitted since the
frequency band gap closes).

is given by eq. (2.3):

φ̈(k) = −D(k)φ(k)

= −
(
c− e−ik c− eik

) (
κv22
2J

) (
c− e−ik
c− eik

)
φ(k)

for some inertia moment J . Consider the non-dimensional variable τ , related to the time as
t = τtc, for a time constant tc. Then with the operator

(
d
dt

)2
= 1

t2c

d2

dτ2
the above equation is

rewritten as2

d2φ(k)
dτ 2

= − 1√
2

(
c− e−ik c− eik

) (
κt2cv

2
2

J

)
1√
2

(
c− e−ik
c− eik

)
φ(k)

By setting κt2cv
2
2

J
= 1, the frequency scale in the system is 1

tc
:= ω0 = v2

√
κ
J
. Notice that this

scaling depends on the geometrical parameter v2, and therefore two chains with different c
also differ in this scaling. By setting the geometry of the system for two sides with cL ̸= cR,
this will imply that both sides of the chain will have a different elasticity if we want to use
the same time scale.

Also, it is important to remark that to merge two chains of different c, it is necessary to
choose two springs in the interface that guarantee the chain’s mechanical equilibrium, as we
did for the interface modes in the isostatic chain in Chapter 2. These springs are different

2The trivial non-dimensionalization for the spatial variable is the lattice spacing a
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from the ones in the bulk of the chains, and therefore the bars at the interface are coupled
by different factors than cL and cR which are neglected in the equation of motion (3.7).
Considering this, the equation of motion is given by

φ̈n = −
(
−cL(R)φn−1 + φn(c2L(R) + 1)− cL(R)φn+1

)
for n < 0(n > 1)

φ̈0 = −
(1
2φ0

(
2 + c2I + c2L

)
− φ−1cL − φ1cI

)
(3.8)

φ̈1 = −
(1
2φ1

(
2 + c2I + c2R

)
− φ2cR − φ0cI

)

for an interface between n = 0 and n = 1m where cI = v1I
v2I

, and v1I,2I are the corresponding
linear terms for the interface springs extension, where cL ̸= cI ̸= cR which is the assumption
used in ref. [73] for the bars at the interface, but is not true in general. We assert that to
deal with the soft modes shown in the previous sections, at the interface cL, cR should be
near one and cL + cR = 2. By considering this, the equation of motion (3.7) remains a good
approximation of eq. (3.8). Notice that this implies that the results of Fig. 3.5b that are far
from c ∼ 1 could have a different nature than the modes c ∼ 1. This question is still open in
our analysis.
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Chapter 4

Hyperstatic Chain Generalization

The topological soft modes showed in the previous chapter were a direct consequence of the
zero modes at c = 1, but as we mentioned in the previous chapter when the number of
constraints in the system increases, the system becomes stiffer until there is a point where
the system does not support any ZM. However, that assumption is only valid considering
only one bond between two sites. In the hyperstatic chain, at each angle, two springs are
connected, which allows for the existence of zero modes, even when the DOFs have been
increased. This increase in the number of constraints was done by adding more restrictions
to bars that already have one constraint per unit cell in the isostatic case. In this thesis, we
ask, what if we similarly increase the stiffness in the system? In this section, we show that
in stiffer chains, under specific fulfilled requirements, the topological characterization from
the previous section can be generalized, and where the soft modes encountered in the regular
hyperstatic chain also can be supported.

4.1 Multiple Chain System
The following scheme can build a stiffer hyperstatic chain, and keep the simplicity to explain
the topological aspect of the problem. The approach to generalize the problem, similar to
the one used in Chapter 3, is to include more constraints without breaking the symmetry
of the system (which should sound logical for the topological problem), while holding the
characteristic physics at c = 1. To build a system that supports these requirements, consider
n different and independent infinite hyperstatic chains, where θ̄ and r are free parameters
at each chain(see Fig. 4.1), but the periodicity a between bars is the same at each chain.
Now, we place all these chains on the same line, so that the rotation points coincide, and
additionally we couple the n chains at each site so that now all these chains rotate with the
same angle. The resultant system has one DOF and 2n constraints per unit cell, which we
call a multiple chain system. The compatibility matrix R of this system can be written by
a direct extension of the single hyperstatic chain but for multiple geometrical parameters
v1,2(one pair per chain). This mean that in this case, R, can be written exactly as in (3.1),
but with a promotion of v1,2 into vectors that is
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Fig. 4.1: Multiple Hyperstatic Chain. The chain is composed of multiple hyperstatic chains in
the same line, where all the bars in the same site are “glued”, and rotates collectively. Each chain
only shares its periodicity and attached masses, but the equilibrium angle θ̄ and the bar radius r
may differ. The shape of the masses does not have a physical meaning and is only for better chain
differentiation.

v1,2 → v1,2 =


v1,2,(n−1)

...
v1,2,(1)

v1,2(0)
 where v1,2(i) =

ri cos θ̄i(1± 2ri sin θ̄i)√
1 + 4r2i cos2 θ̄i

It is more comprehensible to reorder the rows in the k-space compatibility matrix R(k), and
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similarly to the hyperstatic chain, write it in terms of multiple values for cm one for each
chain in the composition. Thus for n coupled chains, R(k) takes the form

R(k) = 1√
2n



v2(0)(c0 − eik)
v2(0)(c0 − e−ik)

...
v2(n−1)(cn−1 − eik)
v2(n−1)(cn−1 − e−ik)

 (4.1)

where ci = v1(i)/v2(i) is defined exactly as in the previous section, however now it can be
different for each chain. In eq. (4.1), as we discuss in the final part of Chapter 3, the authors
did not discuss its normalization of the factor v2(i) by inertia moment and the elastic constant.
However, this assumption has an implicit detail that now would be relevant, which is that
there is a dependence between the inertia moment, the elastic constant and c. In the single
hyperstatic chain, this implies not other than scaling the energy of the system, but in the
case of the multiple chain system, it is not possible to ensure normalization in every chain.
Nonetheless, it is possible to get rid of every v2(i) if we re-scale by choosing different elastic
constants in each chain, although now there will be an energy difference between the chains.
By doing so for n coupled chains R(k) takes the form

R(k) = 1√
2n



c0 − eik

c0 − e−ik

...
cn−1 − eik

cn−1 − e−ik

 . (4.2)

For the moment, we assert without proof that under some conditions, this scaling does not
have a significant influence on topological properties. This scaling and how is applied to
multiple chain system will be discussed later in this chapter, to quantify these effects in the
system with a known topology.

4.2 Topological Characterization
We already reach the target of increasing the constraint number and not the number of DOFs,
and the next step is to analyze the topological properties of the multiple chain system, how
it can be related to an eventual topological non-trivial behavior and also what conditions
would to be met in that case. This last detail in the hyperstatic chain was closely related
to the symmetry in the system, which allows for a topological classification according to the
discussion of Chapter 3. To keep this symmetry in our system would be a priority, which
requires the existence of some unitary transformation to be present, according to equation
(3.5). Given the R(k) shape in (4.2), we notice that in this case the transformation can be
obtained by a direct generalization of the transformation U used in (3.6). That is, a block
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diagonal matrix with the (2×2)-dimensional unitary transformation used in that case at each
block(which is also unitary), since each block acts independently on each R(k) subsystem

R(k) = UR(k)W †

= 1√
2



1 1
i −i

1 1
i −i

. . .


1√
2n



c0 − eik

c0 − e−ik

c1 − eik

c1 − e−ik

...



⇒ R(k) = 1√
n



c0 − cos k
sin k

c1 − cos k
sin k
...

 . (4.3)

Here R(k) is simply the result of the concatenation of each R(k) obtained as an independent
system. The above results in the desired symmetry requirement, but also according to the
discussion in Chapter 3, it is easier to get into a topological classification of R(k) rather than
their complex form. According to the homotopy group presented in eq. (3.4), here the first
nontrivial homotopy group is always Z, no matter the number of chains in the composition,
and the order of this group is the difference between the DOFs and constraints, that is, for a
multiple chain system of n-chains, π∆=2n−1 ∼= Z. As we mentioned in Chapter 1, these high-
order topological groups are out of discussion in this work, and for this reason, we looked
for additional details that would simplify the problem. As a starting point, we can consider
a multiple chain system composed of only two hyperstatic chains superposed, where R(k)
represents the parameterization in R4 dependent on c0 and c1. However, if we select any set
of four different vectors {R(ki)} in this parameterization, we can prove that using the cross
product1, this is a set of orthogonal vectors,

R(k1) · [R(k2)×R(k3)×R(k4)] = 0 ,

for any set {ki} of different wave vector k ∈ [ 0, 2π). The result implies that the parameteriza-
tion lies in a (4−1)-hyperplane, but if we would like to use a topological characterization like
the winding number, seems reasonable to ask under what conditions this hyperplane encloses
the origin, following the idea from Chapter 3. If the origin belongs to this hyperplane, it is
necessary that

[c0 − c1][sin(k1 − k2)− sin(k1 − k3) + sin(k2 − k3)] = 0 (4.4)
1In the context of multi-linear algebra
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where {ki} are a set of different wave vector in [ 0, 2π). Because the right term is not zero
in general, the origin lies on the hyperplane only if c0 = c1. With this hint in mind, we can
apply this idea to several chains in equation (4.2). Suppose n coupled chains our system,
where R(k) is a (2n)-dimensional column vector as in (4.3), which can be expanded as

R(k) = c0v0 + · · ·+ cmv2m−2 − cos k(v0 + · · ·+ v2m−2)
+ sin k(v1 + · · ·+ v2m−1) . (4.5)

Here {vj} is the basis column vector set in the transformed space. In addition to the previous
equation, we notice that due to the unitary transformation vj = (vj−1)∗, which implies that
this parameterization will always lie in an (n+1)-dimensional effective space, no matter the c
values. The topological description of the previous section only takes into account the num-
ber of constraints and the symmetry aspects of the space, instead, this last result considers
particular aspects of this system which could lead to a more specific characterization. By
considering this effective dimension, in a n multiple chain system, the first non-trivial homo-
topy group is still Z[3] but instead being the group π2m−1 is now πm+1. As explained above,
we are not interested in trying to find topological invariants in high-homotopy groups but
does not appear to be additional ways to simplify such a generic problem. In this context,
the result obtained in (4.4) arises as the obvious hint. Only when we have the same value
for c in every chain the effective dimension decreases to 2, whereby formalizing the entire
previous analysis, we can write R from equation (4.5) as

R(k) = (c− cos k)v′0 + sin k (v′0)∗ .

Here {v0, (v′0)∗} span a 2-dimensional plane, that shares the same homotopy group [3] as the
single hyperstatic case. Consequently, we can use the same topological characterization used
in the single chain case as long as chains have the same c value.

Despite the above simple requirement, as we mentioned before in this chapter, ci is a function
of ri and θ̄ at each bar, which allows to built of chains with the same c-value, but this does not
imply that the chains are the same(see Fig. 4.2): It only implies that θ̄ has the same sign in
every chain in the composition, but may differ in magnitude as well as the bar radius, as shown
in Fig. 4.2. More specifically, starting from a reference chain of parameters θ̄0, r0, to couple
additional chains of equal c the radius in each new chain goes as ri(θ̄i) = r0(sin θ̄0/ sin θ̄i),
which implies that for ri < r0(ri > r0) require that |θ̄i| < |θ̄0|(|θ̄i| > |θ̄0|). Nonetheless, as we
will review in the following section there are also some additional requirements.

4.3 Normalization Consideration
As we indicate in the section beginning, the assumption of normalization over every chain
has no topological consequences under determined conditions, which we will discuss in the
following analysis. Consider two coupled chains system with equal c, for some different values

48



−π/2 −π/4 0 π/4 π/2

θ̄

−2

−1

0

1

2

3

c(
θ̄,
r)

10−1

100

101r

Fig. 4.2: The parameter c(θ̄, r)(top) is plotted as a function of θ̄ for multiple radius r, where its
value follows the color bar at the right. Notice that for a specific c value, it can be achieved by
multiple values of r and θ̄, where the unique requirement for two chains that share c is that θ̄ in
both chains has the same sign, as shown the bottom figure, where the blurred chain of θ̄ < 0 is not
compatible with the remaining two highlighted chains with θ̄ > 0.

κ0,1, θ̄0,1, r0,1. In this case, the equation of motion in the Fourier space is

φ̈(k) = −D(k)φ(k)

= −R(k)†
(

0
v2(0)

v2(1)

0
)(

0
κ0
J

κ1
J

0
)(

0
v2(0)

v2(1)

0
)
R(k)φ(k)

for some total inertia moment J and where the three matrices between R(k)† and R(k)
should be equal to the identity. As the chains share c, the variables are related according
to r0 sin θ̄1 = r1 sin θ̄0. Then by setting

v22(0)
J

= 1, κ0 = 1 and the non-dimentionalization
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explained in Section 3.4, the remaining normalizing elastic constants can be written as

κi(ri, r, θ̄) =
(r cos θ̄(1− 2r2 sin θ̄))2(1 + 4r2i − 4r2 sin2 θ̄)
(1− 2rri sin θ̄)2(1 + 4r2 cos2 θ̄)(r2i − r2 sin2 θ̄)

where we have changed r0 → r, θ̄0 → θ̄. The above expression can be applied to an undeter-
mined number of additional chains, but there are some limit values for which this scaling is
not well-defined, and depend on the geometric configuration of the system. For instance, the
function is approximated to first order as

κi(ri, r, θ̄) ≈
cos2 θ̄

(ri/r)2 − sin2 θ̄
when r ≪ 1

κi(ri, r, θ̄) ≈
[1 + 4r2(ri/r)2]

[
1 + 4r2((ri/r)− 1)θ̄

]
(1 + 4r2)(ri/r)2

when |θ̄| ≪ 1

In the limit r ≪ 1(c ∼ 1) the function has a divergence at a critical radius rmin = r sin θ̄,
where κi is only well-defined for rmin < ri because a chain with smaller radius requires a
negative κi(see Fig. 4.3). In the regular cases, κi is bigger(smaller)than one, when ri <
r(ri > r). In difference when θ̄ ≪ 1, and r ∼ a = 1 the function has a minimum value
typically at ri/r ∼ 1, but most of the possible chains will have κi > 1. Additionally, a
divergence appears at ri → 0, which corresponds to the bars approaching the horizontal
position, where the divergence point is at the equilibrium angle ±π/2. Also, there is an
upper radius limit(see inset Fig. 4.3b) where a divergence appears, because when ri is big
enough to “touch” the bar in the neighbor sites, then c becomes negative, which produces
some consequences that we will discuss in the next section, but for now we are restricted to
c values out of these divergence points. We assert that under the previous conditions, we
can keep the topological analysis from the previous section and the topological properties
of the multiple chains system are not altered. Under a continuous change c, we can also
continuously change the system to preserve the shape of R(k) as in eq.(4.2), however, this
does not imply that this energetic difference between chains has no other consequences in
the dynamics of the chain’s soft-modes.

4.4 Soft Modes in Multiple Chain System
The soft modes presented in the single chain can be understood as the reminiscence of the
zero mode at c = 1, thus sounds reasonable to ask if is it possible to replicate them in the
multiple chain case. Because of the effective dimension of R in the multiple chain system
when the c values are equal, the equation of motion takes the same form as eq. (3.7) and
therefore at the interface of two topologically distinct chains with cL + cR = 2 there is also
a soft mode, that in principle has the same frequency and decay length as the hyperstatic
single chain.

As shown in Fig. 4.4, it is possible to couple from two up to an undetermined number
of chains, restricted only by the limiting values for the equilibrium angles and the elastic
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Fig. 4.3: Normalization in the multiple chain system. In (b) is shown the plot of κi(ri/r, θ̄) in the
two limits mentioned in the main text, including the negative part(light blue) in the limit r ≪ 1,
and an inset that shows the second divergence in the limit case of |θ̄| ≪ 1. The line color in (b)
represents the values of κi in the diagrams (a) and (c), which are systems in the limit cases |θ̄| ≪ 1
and r ≪ 1 respectively. The site spacing in (a) and (c) are equal, and the thick green bar represent
the reference bar ri/r = 1.
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Fig. 4.4: Topological soft modes in the interface between two different topological chains for cL = 1.3
and cR = 0.7 for several multiple chain systems. The left row shows the n-th site amplitude |φn|
in a logarithmic scale for the topological soft mode in the chain, where the dashed line represents
the theoretical prediction in the single chain case, and the solid line represents the numerical result
in a multiple chain system with radius according to the legend that indicates the ri/r ratio of the
composition, and where the reference chain is the one of ri/r = 1. On the right side of each plot is
shown the interface of the corresponding system(the chain is infinite in both directions) and where
the spring color represents the spring elastic constant according to the colors of Fig. 4.3 and where
the size scale of all the bars was readjusted by a factor of x2.5 for better visualization.
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Fig. 4.5: By coupling some particular chains, the decay length can be adjusted to follow the expected
one, as shown in (a), where the corresponding system is shown in (c). The decay length (b)
corresponds to the system shown in (d), composed of thirty-seven, where eighteen chains equally
angular-spaced with a bigger and smaller radius than the reference chain have been coupled. Both
figures, (c) and (d) show the system with the same values of r, θ̄, a than the system in Fig. 4.4 and
also the lines represent the same, but here the bar sizes are shown in the real scale. The spring color
represents the spring elastic constant according to the colors of Fig. 4.3



Fig. 4.6: The unit cell used before includes one spring at each side of the bar(left), now we will
take a chain that includes both springs at right-side(right).

constants. Notice that depending on the additional coupled chains, the decaying length
appears to be slightly different from the one predicted theoretically, depending on which
additional chains are coupled. When the system has two chains, the decaying length differs
on the left(right) side when the additional chain has a bar radius bigger(smaller) than the
radius of the reference chain, but when combining chains with bigger and smaller radii the
effect appears to be compensated in some manner(see Fig. 4.5). This is in general hard to
reach and is not related only to the number of chains with smaller and bigger radii than the
reference chain, as shown in Fig. 4.5b.d, however, rather than a disadvantage, this scheme
provides a method to tune the decaying length of the mode by controlling the number of
chains and their equilibrium angle or radius. The difference between the predicted and the
obtained decay length confirms that the energy scale is also a relevant factor to take into
account in this interface state, which is protected by the topological nature of the system,
even when the system has an undetermined number of constraints.

4.5 Localized Modes in Variable Stiffness Chain
Inspired by the vacuum-boundary edge states that can appear on topological insulators, we
look for something similar in the regular hyperstatic chain. However, our first calculations
raise that in a semi-infinite hyperstatic chain, the system does not show relevant phenomena
in principle. This is a consequence of the symmetry of the chain, which is only appreciable
when comparing two chains in an interface, in contrast to the boundary of a finite chain
where both chain phases are equivalent. Because of this, we look again at the interface
system where we test a different type of interface. This interface consists of an infinite and
geometrically uniform where an elastic constant interface is possible. Particularly, we are
interested in the case where the energy scale difference between both sides of this interface
is large.

For this purpose, it is convenient to redefine the unit cell as we have been treating it. Consider
the R from eq. (3.2), now we consider the unit cell as shown in Fig. 4.6, where the new unit
cell includes the elastic constant value at both sides of the interface. By doing this R can be
written as, (

R2j−1,j′

R2j,j′

)
=
√
κj
2

(
cjδj,j′ − δj,j′−1
cj+1δj,j′−1 − δj,j′

)

where κj is the j-th unit cell elastic constant. From R, we can obtain the equation of motion
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from ü = −Du

ün = −
∑
j,l

RT
n,jRj,l ul

= −
∑
j,l

Rj,nRj,l ul

= −
∑
k,l

(R2j−1,nR2j−1,l +R2j,nR2j,l) ul

= −1
2
∑
j,l

[(cjδj,n − δj,n−1)(cjδj,l − δj,l−1)κj + (cj+1δj,n−1 − δj,n)(cj+1δj,l−1 − δj,l)κj]ul

= −1
2
∑
j,l

[cjδj,ncjδj,l − cjδj,nδj,l−1 − cjδj,n−1δj,l + δj,n−1δj,l−1

+ cj+1δj,n−1cj+1δj,l−1 − cj+1δj,n−1δj,l − δj,ncj+1δj,l−1 + δj,nδj,l]ulκj
⇒ 2ün = −un(c2n + 1)(κn + κn−1) + un+1κn(cn + cn+1) + un−1κn−1(cn + cn−1)

which can be rewritten as

2ü = −(c2n − 1)2(κn + κn−1)un + cn(un+1κn − 2un(κn + κn−1) + un−1κn−1)
+ un+1κncn+1 + un−1κn−1cn−1

which is equal to equation (3.7) when κ = 1. Consider an interface for two values of κ,
namely κL and κR for the left and right sides respectively, where c is constant in the chain.
If un = u0z

ne−iωt, the equation of motion in the system for the left and right side is given by

ω2 = κL(c− 1)2 − cκL(zL + z−1
L − 2)

ω2 = κR(c− 1)2 − cκR(zR + z−1
R − 2)

By solving the equation system, for κR = 1 it is possible to obtain an interface localized
mode that is in the energy band gap, for certain values of c given by,

ω2(c) = (c2 − 1)2(1 + κL)
2(c2 + 1)

The possible values of c where the mode is supported increase as κL → 0, where the mode
exists for any c ̸= {0, 1}, but the κL ≪ 1 is enough to have considerable possible values for
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c as shown in Fig. 4.7. The mode is localized when c is in the set

(−∞,−c0) ∪
( 1
−c0

, 0
)
∪
(
0, 1
c0

)
∪ (c0,∞) where c0 =

1 +√
κL

1−√
κL

There is also an analytic expression for the decay zL, zR, but we preferred to show the plot
in Fig. 4.7, where is visible that the decay on the right side is very slow to compare with the
right side. In difference from the previous mode, rather than for topological reasons, here
the mode is explained by the energy difference between both chains.

In this problem, we came across a detail that we had not taken into account so far. Notice
that the mode does not appear to be restricted to the typical values of c, because there is no
geometrical dependence for c as we treat in previous sections. This allows us to take negative
values of c, where the bars intersect each other(see Fig. 4.8). In the limit case when c = −1,
implies that a = 0, i.e. all the bars are located at the same point. For negative values of
c, the band gap closes at ±π/a, for c = −1, that is, the oscillation has a wavelength of 2a
instead of zero for the c > 1 case. This led to thinking if the interface modes could exist near
c = −1 instead of c = 1, which is our current focus in the topological part of the problem.
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Fig. 4.7: The figure shows ω2(c)(solid line) for three different values of κL, which can be compared
with the lowest propagative frequency for the variable stiffness chain(dotted line). There are values
of c for which the state is localized, which can be distinguished by looking at the decay, where the
dashed line below one is the decay |zR(c)| and the dashed line bigger than one is |zL(c)|



Fig. 4.8: The figure shows a schematic view of the interface in the variable stiffness chain, for
c < 0(top) and c > 0(bottom). The chain is infinite in both directions and the dashed lines represent
the normal springs from the right side κR = 1 and the dotted line represents the springs of vanishing
elasticity κL. The red highlighted zone represents the decay amplitude of the mode



Chapter 5

Non-Linear Waves in Hyperstatic
Chain

The isostatic chain reviewed in Chapter 2, presents a band gap as long as the bars are not
in a vertical position(c = 1), and in the finite case also can present ZM and SSS depending
on the configuration. In the most simple case, a topological ZM is located in the compatible
side of the chain that is exponentially localized at the edge, as we explained in Chapter 2.
These consequences are only valid in the linear regime where infinitesimal oscillations are
considered. Instead, a finite amplitude implies non-linear dynamics which is far from the
effects discussed in this chapter. In particular, this finite movement can be well explained
in the limit when the springs become rigid bars that we call linkage isostatic chain, where
the chain describes non-linear solitary waves called solitons[66]. Inspired by this effect on
the linkage isostatic chain, we explored what would imply a similar limit on the hyperstatic
chain. In this chapter, we explore these effects and compare them with the results obtained
in the isostatic version.

5.1 Brief Review of the Linkage Isostatic Chain
In difference from the linear elasticity approach, when the isostatic topological chain springs
become rigid, the system becomes a rigid-bars chain which we call linkage isostatic chain,
which can behave in rich manners different from their regular case. In principle, the compat-
ible edge of the chain supports a similar floppy mode, but in addition to big amplitudes, the
system also propagates a non-linear wave along the chain(see Fig. 5.1). It had been proved
that the propagation of this mechanical mode is described as a soliton[66] that remarkably
can propagate with zero energy, in difference from a linear oscillation in the regular chain,
and where the unique zero mode is the floppy mode that does not propagate. Depending on
the relation of the geometrical parameters, it is possible to distinguish two phases, flipper
and spinner phases, for r sin2 θ̄ < a or r sin2 θ̄ > a respectively. We will discuss only the
flipper case in this chapter, where we start reviewing the results of ref [66], for the sake of
understanding the consequences in the hyperstatic case.
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Fig. 5.1: The figure shows the temporal evolution of the non-linear wave propagation in the isostatic
chain, starting from the frame just under t0 and ending at the frame just over tf , following the
highlight in the middle of the columns, where the left column continues at right column. The dashed
lines represent the springs that become rigid bars.

At the starting point, to understand how it is described this movement, consider the discrete
Lagrangian of the regular isostatic chain:

L =
n∑

i=1

Mr2

2

(
dθi
dt

)2

−
n−1∑
i=1

1
2κ

[
ℓ(θi, θi+1)− ℓ

]2
(5.1)

where ℓ = ℓ(θ̄, θ̄) and ℓ(θ, θ′) is the length of the spring as defined in Chapter 2.
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In the non-linear regime, the spring length does not change ostensibly, that is [ℓi,i+1−ℓ]2 ≈ 0,
thus we discard all the higher terms than quadratic for this length change. In addition to
the limit of small θ̄, the approximation [ℓ(θn, θn+1) + ℓ]2 ≈ 4ℓ2, capture these conditions. By
taking this it is possible to write the potential energy term in (5.1) as

1
2κ[ℓ(θi, θi+1)− ℓ]2 = 1

2κ[ℓ(θi, θi+1)− ℓ]2 [ℓ(θi, θi+1) + ℓ]2

[ℓ(θi, θi+1) + ℓ]2

≈ κ

8l̄2
[ℓ(θi, θi+1)2 − ℓ

2]2

When ℓ and ℓ(θn, θn+1) are replaced in the above equation, the potential in the spring is

Vi,i+1 =
κ

2ℓ2
[ar(sin θi+1 − sin θi)− r2 cos 2θ̄ + r2 cos(θi + θi+1)]2 (5.2)

Next, a continuum limit a can be taken over the chain in the potential term, which describes
the dynamics for a→ 0, and where the discrete variable θi can be promoted to the continuum
field θ(x), where x is the spatial variable. To apply this limit consider the expansion of the
spatial variable centered at the inter-space between two bars x = a(i + 1/2), where the two
angular discrete variables θi and θi+1 are expanded to first order as,

θi → θ
(
x− a

2

)
≈ θ(x)− a

2

(
∂θ

∂x

)

θi+1 → θ
(
x+ a

2

)
≈ θ(x) + a

2

(
∂θ

∂x

)

Considering these expansions and the equation (5.2), the potential energy density can be
written as

aV (θ) = κ

2ℓ2
(
ar
[
sin

(
θ
(
x+ a

2

))
− sin

(
θ
(
x− a

2

))]
− r2 cos 2θ̄ + r2 cos 2θ(x)

)2
(5.3)

= κ

2ℓ2

(
a2r cos θ(x)∂θ

∂x
+ r2 sin2 θ̄ − r2 sin2 θ(x)− r2 cos2 θ̄ + r2 cos2 θ(x)

)2

= 2κ
ℓ
2

(
a2

2
du

dx
+ ū2 − u2

)2

where u = r sin θ and ū = r sin θ̄ . Similarly, the kinetic energy term in eq. (5.1), in the
continuum limit under the approximation θ̇i(t) ≈ θ̇(x, t), become the kinetic energy density
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is given by

aT (θ̇) = 1
2Mr2θ̇(x, t)2 [r

2 cos2 θ(x, t)]
[r2 cos2 θ(x, t)]

= 1
2

Mr2

(r2 − r2 sin2 θ(x, t))(r
2 cos2 θ(x, t)θ̇(x, t))2

= 1
2

Mr2

(r2 − u2)

(
du

dt

)2

Therefore, given both energy densities, we can write the Lagrangian in the continuum limit
as

L =

∫
dx [T (u̇)− V (u)]

L =

∫
dx

M
2a

(
∂u

∂t

)2

− κa3

2ℓ2

(
∂u

∂x

)2

− 2κ
aℓ

2 (ū
2 − u2)2 − κa

ℓ
2
∂u

∂x
(ū2 − u2)


L =

∫
dx

M
2a

(
∂u

∂t

)2

− κa3

2ℓ2

(
∂u

∂x

)2

− 2κ
aℓ

2 (ū
2 − u2)2

−
∫
dx

[
κa

ℓ
2
∂u

∂x
(ū2 − u2)

]

where only the first term on the kinetic contribution was considered, which es is valid enough
in the limit θ ≪ 1. Notice that every term in the integral scale consistently in the limit
a→ 0 and k → ∞, which in turn implies thatM scale with a1. Given L, the Euler-Lagrange
equations lead to

M

a

∂2u

∂t2
− κa3

ℓ
2
∂2u

∂x2
− 8κ
aℓ

2 ū
2u+ 8κ

aℓ
2u

3 = 0 (5.4)

The Lagrangian which supports the above equation of motion is usually written as

L = 1
2

(
∂ϕ

∂t

)2

− 1
4(1− ϕ2)2

which is called a ϕ4 model [123] and support multiple solutions. Considering the solutions in
the ϕ4, the equation (5.4) supports the trivial solution u = 0, which is an unstable solution
where the bars are in a vertical position. Additionally, there are two ordinary solutions
u = ±ū, for the two stables and degenerated solution. On the other hand, the non-trivial
solution is obtained by considering the field at u(x→ ±∞, t) = ±ū and u(x→ ∓∞, t) = ±ū,

1This analysis is more clear by non-dimensionalizing the equations first.
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Fig. 5.2: The figure shows the two solutions isostatic linkage chain non-linear wave, the kink
solution(top) and the anti-kink solution(bottom)

where the solutions are given by

u(x, t) = ±ū tanh

 x− x0 − vt(
a2

2ū

)√
1− v2

c2


which are called the kink(-) and antikink(+) solutions for the positive and negative sign(see
Fig. 5.2), respectively, where c = (a2/ℓ

√
κ/M) is the velocity of sound in the medium.

By introducing the kink solution in the potential energy density in eq. (5.3), a perfect
square is obtained and therefore the kink solution propagates in the chain with zero energy.
Remarkably, this solution propagates with smaller energy than the linear oscillations. In
contrast, this does not apply to the antikink solution, which propagates with finite energy.

5.2 Hyperstatic Case
Knowing about the soliton in the isostatic chain, we wondered if it was possible to obtain a
similar result in the hyperstatic one. However, here is not possible to take the rigid spring
limit in all the springs, because the system will be completely static. Nonetheless, we can take
this limit only in one spring per unit cell. Our first numerical simulations in this limit(see
Fig. 5.3) showed a similar non-linear wave as in the linkage isostatic case. In this context,
we did a similar theoretical analysis in the hyperstatic chain to understand the difference
between both cases.

The discrete Lagrangian in a hyperstatic chain with two springs of elastic constant κ1 and
κ2 is given by
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Fig. 5.3: The figure shows the temporal evolution of the non-linear wave propagation in the hyper-
static chain, starting from the frame just under t0 and ending at the frame just over tf , following
the highlight in the middle of the columns, where the left column continues at right column. The
dashed thick lines represent the springs that become rigid bars, while the dashed thin lines represent
the non-rigid springs.

L =
n∑

i=1

Mr2

2

(
dθi
dt

)2

−
n−1∑
i=1

1
2κ1

[
ℓ(θi, θi+1)− ℓ

]2
−

n−1∑
i=1

1
2κ2

[
ℓ(θi+1, θi)− ℓ

]2
= Liso −

n−1∑
i=1

1
2κ2

[
ℓ(θi+1, θi)− ℓ

]2
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Here the Lagrangian only differs from the isostatic one, Liso, in the second potential energy
term due to the extra spring. However, in this case, the rigid and the non-rigid spring are
related geometrically. More specifically if κ1 is the elastic constant of the rigid spring, in the
limit [ℓi,i+1 − ℓ]2 ≈ 0, the extension in the remaining spring, [ℓ(θi+1, θi)− ℓ]2, can be written
as

1
2κ2(ℓ(θi+1, θi)− ℓ)2 = κ2

2

(
−ℓ+

√
ℓ
2 − (a− r sin θi + r sin θi+1)2 + (a− r sin θi+1 + r sin θi)2

)2

= κ2ℓ
2

2

−1 +

√√√√1− 4ar(sin θi+1 − sin θi)
ℓ
2

2

≈ 2κ2
(
ar(sin θi+1 − sin θi)

ℓ

)2

In this point, we can proceed similarly than in the isostatic case, where we consider θi →
θ
(
x− a

2

)
y θi+1 → θ

(
x+ a

2

)
, that implies that the contribution to potential energy density

due to this new spring is given by

aV2(θ) =
2κ2
ℓ
2

(
ar
[
sin θ

(
x+ a

2

)
− sin θ

(
x− a

2

)])2

= 2κ2
ℓ
2

(
a2r cos θ(x)∂θ
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2

(
a2
du

dx

)2

Considering this contribution, in this case, the Lagrangian in the continuous limit would be
similar to the one shown in the isostatic case but considering the contribution to the potential
energy density of both springs, that is,

L =

∫
dx [T (u̇)− V1(u)− V2(u)]

L =

∫
dx

M
2a

(
∂u
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2ℓ2
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2 (ū
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(ū2 − u2)

]
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where κ̃ = κ1 + 4κ2. From the above Lagrangian, the equation of motion is obtained

M

a

∂2u

∂t2
− κ̃a3

ℓ
2
∂2u

∂x2
− 8κ1
aℓ

2 ū
2u+ 8κ1

aℓ
2 u

3 = 0

where the solution is similar to the one in the isostatic case:

u(x, t) = ±ū tanh

 x− x0 − vt(
a2

2ū

√
κ1
κ̃

)√
1− v2

c2


but in difference now both solutions, kink and anti-kink, have non-zero energy. The kink
solution, which in the isostatic case propagates with zero energy, now propagates with an
energy Vkink which to first order in κ2 is given by

Vkink
κ1a2

= 4κ2
3ℓ2

[
a2r3 sin3 θ̄ tanh(2κ1r sin θ̄)

] [
tanh2(2κ1r sin θ̄)− 3

]
Despite that this is finite energy, we are still interested in knowing if this energy propagates
along the chain with smaller energy than the linear oscillations, which is our current work in
this problem.
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Chapter 6

Conclusions

In this thesis, we have studied if the topological zero-frequency modes, which were relegated
to isostatic systems, can be extended in some manner to hyperstatic systems. Based on a
recent model which describes topological soft modes in a particular hyperstatic system, we
came across the limits of its scheme, but also we were able to generalize this scheme out of
this regime, and we reach several new promising problems.

Our work in Chapter 4 allows us to build a system where the DOF number remains constant
but the number of constrain can grow, in principle to infinity. This system supports topo-
logically protected soft modes which are characterized by a topological invariant controlled
by a single c value, that arises from a generalization of the topological invariant described in
the single chain case. In this problem, there are several open questions to answer. We are
still not sure how the number of chains is related to the decay length of the interface modes.
Based on the results for a big number of chains which shows that the decay rates decrease
as the number of chains increases, we conjecture that the mode at the interface may not be
supported in the limit of an infinite number of chains

In addition, we have looking for new generalizations of this system and possible topological
generalizations. For instance, we can consider several chains placed in the same line as in
the multiple chain system, instead of coupling the chains with the same angle θ, we can
consider that each chain has a different rotation ratio, and analyze under what condition
similar modes can appear. On the other hand, we have been working in a possible localized
mode near c = −1 for the regular hyperstatic chain, where the chain also supports ZM as in
c = 1 and where our initial calculations suggest that in an interface between two different
values cL and cR, where cL+cL = −2 the system also exhibit a localized mode. However, this
problem still requires further analysis, a review of all the details and additional numerical
simulations.

In the variable stiffness hyperstatic chain, a possible topological characterization for the
encountered modes has been searched, since it also appears to be robust to geometrical
changes in c if the elastic constant κL remains small enough. In principle, we could think
that this eventual topological characterization should differentiate the different sets of c values
for which the state is exponentially localized.
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Finally in Chapter 5 we generalize the non-linear waves described in the isostatic chain in
the limit of rigid springs, where in the hyperstatic case the analog is built by taking one rigid
and one normal spring per unit cell. In difference to the isostatic case, where the system
supports a zero-energy solution that propagates along the chain(the kink), in the hyperstatic
case all the solutions have finite energy. We still have to verify if the kink solution in this
case can propagate with an smaller energy than the required by the linear waves. If this is
the case, this solution is still an interesting mode to take into account, despite that is not a
zero-energy mode anymore.

In summary, our work has been fruitful, since we have been able to demonstrate that the
topological phenomena that emerge from the zero energy modes in an isostatic system seem
to extend to an hyperstatic chain and finite frequency modes. However, it is not yet clear
whether there is any way to construct a more general theoretical framework that would allow
us to study the topology more generically. What we can state without a doubt is that if we
look for the effects that emerge as reminiscent of zero-energy modes in hyperstatic systems,
they will inevitably be associated with rectangular equilibrium and compatibility matrices,
and therefore it is inevitable to take into account the topology of these matrices, as we did
in the generalization of the hyperstatic chain.
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