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RESUMEN DE LA TESIS PARA OPTAR
AL GRADO DE DOCTORA EN COMPUTACION
POR: ALISON FERNANDEZ BLANCO
FECHA: 2023
PROF. GUIA: ALEXANDRE BERGEL
PROF. CO-GUIA: JUAN PABLO SANDOVAL ALCOCER

FUNDAMENTO EMPÍRICO PARA EL ANÁLISIS DEL USO DE LA
MEMORIA A TRAVÉS DE VISUALIZACIONES DE SOFTWARE

Los desarrolladores a menudo pasan mucho tiempo monitoreando manualmente el uso de
memoria para localizar anomaĺıas (p. ej., fugas, sobrecargas de memoria) que puedan generar
fallas en las aplicaciones de software. Por esta razón, se han propuesto herramientas que
proporcionan una amplia gama de información a través de informes de texto o visualizaciones.
Sin embargo, todav́ıa hay poca comprensión de las necesidades del programador al analizar
el uso de la memoria, qué tan bien las herramientas y los enfoques actuales ayudan a los
usuarios en este proceso y la percepción que los programadores tienen de las herramientas.

En esta tesis, llevamos a cabo una revisión sistemática sobre visualizaciones de software
enfocadas en el análisis del uso de la memoria con el objetivo de organizar e introducir una
taxonomı́a basada en cinco dimensiones relevantes. Como resultado, este estudio destaca (i)
las principales caracteŕısticas de los enfoques visuales actuales, (ii) los desaf́ıos del campo y
(iii) una serie de áreas de investigación que vale la pena explorar. Con base en este estudio,
proponemos Vismep, un prototipo de visualización interactiva para ayudar a los programadores
a analizar el uso de memoria de las aplicaciones de Python. Basamos el diseño de Vismep en
las caracteŕısticas comunes utilizadas en las áreas más modernas y en algunos aspectos que
valen la pena explorar. También presentamos un estudio exploratorio para comprender cómo
los programadores emplean Vismep para analizar el uso de memoria de las aplicaciones de
Python y su percepción de Vismep. Nuestros hallazgos ilustran que los programadores usan
información dinámica y estática para satisfacer cinco necesidades. Además, reportamos el uso
de Vismep para la obtención de la información requerida, los desaf́ıos enfrentados durante el
proceso y la percepción de esfuerzo de carga mental y usabilidad. Para entender con mayor
precisión las necesidades de los programadores a la hora de analizar el consumo de memoria,
realizamos un estudio más exhaustivo utilizando Vismep y Tracemalloc, el perfilador de
memoria estándar en Python. Como resultado, proporcionamos un catálogo de 34 preguntas
que los programadores se hacen al analizar el consumo de memoria. También presentamos un
análisis detallado del uso de Vismep y Tracemalloc para responder a estas preguntas y las
dificultades que enfrentan los profesionales durante el proceso.
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EMPIRICAL FOUNDATION FOR MEMORY USAGE ANALYSIS
THROUGH SOFTWARE VISUALIZATIONS

Developers often spend substantial time manually monitoring memory consumption
to localize memory anomalies (e.g., memory leaks, memory bloats) that usually generate
crashes on software applications. For this reason, a number of memory profiling tools have
been proposed providing a wide range of information displayed through full-text reports or
visualizations. However, there is still little understanding of the programmer’s needs when
analyzing memory usage, how well current tools and approaches support users in this process
and the practitioners’ perception of the tools.

In this thesis, we conducted a systematic literature review about software visualizations for
memory usage analysis to organize and introduce a taxonomy based on five dimensions relevant
to software visualizations. As a result, this study highlights (i) the main characteristics of
current visual approaches, (ii) the challenges of the field, and (iii) a number of research
areas that are worth exploring. Based on this study, we propose Vismep, an interactive
visualization prototype to help programmers analyze Python applications’ memory usage. We
based Vismep’s design on the common characteristics used on state-of-the-art and some areas
worthy of exploring. We also present an exploratory study to understand how programmers
employ Vismep to analyze the memory usage of Python applications and their perception
of Vismep. Our findings illustrate that programmers use dynamic and static information
to satisfy five needs. In addition, we reported the Vismep usage for obtaining the required
information, the challenges faced during the process, and the perception of mental workload
effort and usability. In order to understand more precisely the programmers’ needs when
analyzing memory consumption, we conducted a more exhaustive study using Vismep and
Tracemalloc, the standard memory profiler in Python. As a result, we provide a catalog of
34 questions programmers ask themselves when analyzing memory consumption. We also
present a detailed analysis of the use of Vismep and Tracemalloc to answer these questions
and the difficulties that practitioners face during the process.
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Agradezco la comprensión y la gúıa de Angelica Aguirre y Sandra Gaez que amorosamente
ayudan a los estudiantes. Gracias a Renato Cerro por toda la ayuda en el area de inglés. Y
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Chapter 1

Introduction

Memory space is a limited computational resource (e.g., system on a chip, cloud computing),
and nowadays, software applications manage a vast amount of data (e.g., data science, machine
learning, artificial intelligence) that increases over time. Software applications need to allocate
memory to store data values and data structures. If a program allocates memory, never
releases it, and runs for a sufficiently long time, it will eventually crash due to memory
mismanagement. Therefore, developing tools or techniques that help programmers to analyze
the memory consumption of programs and detect memory issues is part of the leading research
ideas considered relevant in software engineering [76, 78, 90]. In the following, we enlist the
factors that make memory consumption analysis and bug detection relevant and challenging:

Memory management challenges. Regardless of whether memory management is manual
or automatic, programmers may face memory issues. In some cases, like C and many
other languages, programmers must manually manage memory allocation. Manual memory
management is an error-prone process since developers may release memory too early or too
late. For instance, a programmer attempting to use data values after they have been freed
causes a fatal run-time error. Another common issue is not remembering to free allocated
memory when it is no longer necessary; consequently, a long-running program will eventually
crash since it will reach the limit on the available memory. On the other hand, Java, Ruby,
and Python, among others, provide garbage collectors to manage memory automatically.
The garbage collector tries to reclaim memory that was allocated by the program but is
no longer referenced. Therefore, the garbage collectors relieve programmers from manual
memory management and help programmers to avoid some issues. However, garbage collectors
will not release the corresponding memory of unused objects that are still referenced [52].
Consequently, programmers may encounter memory issues even with the help of a garbage
collector.

The impact of memory issues. Memory issues are severe and usually make software
applications crash and lead to performance degradation, such as in Mozilla, Apache, and the
Linux kernel [52, 139]. Thus, memory issues should be detected and addressed at an early
stage of development. However, memory bugs usually are not detected with the traditional
testing processes and become perceptible in the production environment when the software
application is more prone to manage a vast amount of data for a long time.
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Furthermore, memory bugs are usually difficult to locate and repair since the programmer
needs to (i) profoundly understand the program’s functionality, (ii) perform a careful exami-
nation of the source code, and (iii) collect and analyze a diverse set of dynamic and static
aspects (e.g., memory allocations, garbage collector information) at once [90, 165, 166]. Based
on these points, some studies [78, 52, 139] indicate that programmers often spend considerable
time and effort locating and fixing memory issues. These studies also reveal that memory bugs
could be detected before the execution of a program by inspecting the source code manually.
However, the most dangerous bugs are those observed when a programmer finds a performance
degradation in a production environment, a raised memory error (out-of-memory), or a failing
test. Ghanavati et al. [52] pinpoint that programmers verify the presence of memory bugs
using memory profiler tools since the information these tools provide can considerably help
developers reproduce and analyze the issue defects.

Figure 1.1: The memory issue #45489 reported in the pandas package that shows the code
example which generates a memory leak due to keeping references to no longer needed objects.

To illustrate more clearly the challenge of monitoring memory consumption and addressing
memory issues, consider the memory issue reported in the pandas package1. Pandas is a
flexible and powerful package for supporting programmers in data science/data analysis and

1https://github.com/pandas-dev/pandas/pull/45489
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machine learning tasks. The reported issue was reproducible with the code illustrated at
Figure 1.1. The code essentially creates a dictionary (data), then a data frame object (df) is
created based on data and converted into a JSON string several times. At first glance, it is a
simple piece of code that allocates the necessary memory to fulfill its purpose. However, when
GitHub users analyzed the code with memory profilers, they discovered that memory usage
increases too much over time because it keeps holding references to objects that are no longer
needed. This anomaly is one of the prevalent issues that damage program performance, and
it is mostly located using memory profilers [52, 78, 139].

1.1 Analyzing Memory Usage

As mentioned, programmers locate memory anomalies through manual inspection of the code
or using memory profilers. Identifying memory bugs by manual inspection is a complex and
error-prone task since it requires the programmer to comprehend the program’s functionality
and perform an exhaustive inspection of code. However, this knowledge is usually insufficient
to locate and repair memory issues [52, 139]. Hence, to assist developers in this activity,
software development environments provide memory profilers to monitor and report resource
usage during software execution.

A profiler is designed to report information about the behavior exhibited by a target
program during its execution. Profilers help developers evaluate how well software applications
perform based on dynamic aspects, such as execution time, frequency of calls, and memory
allocations. Therefore, memory profilers are tools that help programmers assess the memory
usage of a program. Memory profilers collect a wide range of aspects from a software application
and report information through full-text reports [80, 117], non-interactive visualizations [3, 6],
and interactive visualizations [27, 54, 156] to support programmers in analyzing memory
consumption.

Memory profilers provide different metrics such as garbage collection information (e.g.,
[7, 117, 156, 157]), memory allocations (e.g., [22, 27, 54, 98, 156, 157]), calling relationships
between functions (e.g., [5, 22, 98, 157]), among others. Consequently, this information helps
programmers in analyzing certain aspects of the software application. For instance, consider
Tracemalloc [7], a memory profiler tool provided by Python to trace memory blocks allocated
using full-text reports. The Tracemalloc API helps users with a variety of activities, such as
(i) tracing where an object was allocated, (ii) showing statistics about the allocated memory
blocks per filename and per line number: total size, number, and the average size of allocated
memory blocks, and (iii) computing the differences between two snapshots to detect memory
leaks.

To exemplify the features of Tracemalloc, Figure 1.2 illustrates a piece of the traceback of
the object that allocates most memory of the running example of Figure 1.1. This report
indicates that most memory is allocated by the line where to_json function is called. If we
scrutinize the traceback, we can notice that the execution path involves code lines from the
generic.py and base.py files and are responsible for allocating most memory. These files are
modified to repair the memory leak in the reported issue.
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1003 memory blocks: 390669.2 KiB
  File "PandasIssue.py", line 38
    export_dataframe()
  File "PandasIssue.py", line 6
    df.to_json(orient='split', indent=0)
  File "/opt/anaconda3/envs/vismepExperiment/lib/python3.7/site-packages/pandas/core/generic.py", line 2305
    indent=indent,
  File "/opt/anaconda3/envs/vismepExperiment/lib/python3.7/site-packages/pandas/io/json/_json.py", line 84
    indent=indent,
  File "/opt/anaconda3/envs/vismepExperiment/lib/python3.7/site-packages/pandas/io/json/_json.py", line 144
    self.indent,
  File "/opt/anaconda3/envs/vismepExperiment/lib/python3.7/site-packages/pandas/io/json/_json.py", line 244
    indent,
  File "/opt/anaconda3/envs/vismepExperiment/lib/python3.7/site-packages/pandas/io/json/_json.py", line 166
    indent=indent,
  File "/opt/anaconda3/envs/vismepExperiment/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3852
    return self._data.view(np.ndarray)
  File "/opt/anaconda3/envs/vismepExperiment/lib/python3.7/site-packages/pandas/core/indexes/range.py", line 166
    self.start, self.stop, self.step, dtype=np.int64
(vismepExperiment) Alisons-MacBook-Pro:ThesisExample nosila$ 

Figure 1.2: The traceback of the object that allocates most memory of the running example
of memory issue #45489 reported in the pandas package. The report shows the part of code
and the execution path which allocate the most memory during program execution.

Although programmers are equipped with memory profiler tools in several programming
languages (e.g., Java, C++) [27, 54, 100, 113, 156, 172], programmers sometimes spend a
considerable amount of time locating memory anomalies and repairing them using these
tools since they struggle to find the required information or interpreting the report, among
others [34, 52, 139, 166].

In this dissertation, we study how software visualizations support programmers in analyzing
memory usage. Consequently, we describe in the next sections the characteristics of software
visualization, how they are evaluated, and the drawbacks of software visualizations, considering
the aspects previously mentioned.

1.2 Visualizing Memory Consumption

Software visualizations are known to be adequate at supporting practitioners in software
comprehension and impacting the understanding of software analysis positively [43, 45, 103].
Thus, numerous software visualizations have been proposed over the years to facilitate the
analysis of memory usage for programmers. As well as the memory profilers that provide
textual reports, software visualizations display a broad spectrum of information (e.g., object
creation [82, 97], memory access [54, 118]) using diverse visual representation (e.g., node-link
diagrams [9, 22, 156], flame graphs [27, 54], sunburst [46]) and interaction mechanisms to help
developers with memory consumption analysis. For instance, in 2018, we proposed a visual
memory profiler [22] for Pharo that uses a graph with visual hints to display information about
the calling relationships between methods, the objects allocations, the number and the type
of objects allocated, and the code responsible for allocating these objects. This visualization
helps programmers locate and analyze object allocation sites to detect unnecessary object
allocations that can lead to memory growth or high workload in the garbage collector.

Past studies introduced and described the potential benefits that memory profilers can offer
to analyze the memory consumption of applications [27, 54, 98, 157]. These studies usually
show how their authors locate or repair memory issues reported in open-source projects.
However, they do not assess whether these tools satisfy developers’ information needs when
analyzing memory usage. Furthermore, few studies present an evaluation showing detailed
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information about how proposed software visualizations perform when programmers analyze
memory usage and address memory anomalies [22, 63, 156]. Therefore, there is limited
empirical evidence about (i) what information programmers need when analyzing memory
and addressing issues, (ii) how programmers employ tools to satisfy these needs, and (iii) the
user experience of programmers when employing tools.

1.3 Understanding the Problem of Visualizing Memory

Usage

As mentioned, diverse software visualizations have been proposed to analyze memory con-
sumption during software applications’ development. Nonetheless, a number of open problems
have limited their widespread use. We believe that these drawbacks are:

• Difficulties finding an appropriate software visualization. Software visualizations are
designed considering several characteristics (e.g., data, visual representation) to support
developers when performing a task. A developer might struggle to find a suitable
visualization for analyzing memory usage and addressing anomalies due to the lack of
organization and information amongst proposed visualizations. Finally, if prototypes
are unavailable, this affects (i) practitioners for employing adequate visualizations and
(ii) researchers for comparing new proposals with the state-of-art or identifying potential
challenges and hints for improvement.

• Evidence of software visualizations in practice. How practitioners perceive and inter-
act with visualizations can significantly affect their understanding of data and the
approach’s usefulness [96, 144]. A limited number of articles present evidence about how
practitioners employ visualizations during memory consumption analysis [22, 63, 156].
Consequently, little is known about how developers employ visualizations to satisfy their
needs. Also, most proposals fail to examine if the problem domain of visualizations is
in touch with the needs of developers, the data is sufficient and helpful, or the visual
representation is intuitive, among others. Even if a proposed visualization is found and
considered suitable, practitioners are usually unsure of the effectiveness of visualizations.

• Information about programmers needs and challenges. To the best of our knowledge,
there is no detailed empirical data about what information is required by programmers
when analyzing memory usage and addressing memory anomalies, how they analyze the
information required to perform tasks and the challenges in which programmers need
assistance. We consider this information valuable for designing suitable tools in this
context and demonstrating their usefulness to practitioners.

In this dissertation, we focus on obtaining detailed information on the characteristics of
the visualizations and how people currently use and perceive these tools to obtain information
that meets their needs. Thus, our empirical foundation can provide valuable support to design
tools that adequately help developers analyze memory consumption.
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1.4 Our Proposal

We consider that software visualizations could be an alternative to support programmers
analyzing memory usage. However, previously mentioned challenges limit tool builders and
researchers in providing adequate tools and visual support to help developers assess their
programs’ memory consumption. Therefore, providing an empirical foundation based on
specific aspects could be valuable for researchers and tool builders to design and improve
tools that assist programmers with the correct problems in a way that is more likely helpful
and suitable for practitioners. For our empirical foundation, we consider (i) what information
programmers need when analyzing memory and addressing issues, (ii) how programmers
employ tools to satisfy these needs, and (iii) the user experience of programmers when
employing tools.

Thesis statement. We formally state our thesis as follows:

An empirical foundation based on the exploration of (i) what information about
software aspects programmers need to understand, (ii) how they use tools to discover
that information, and (iii) how they perceive the tools improves the design of software
visualizations that facilitate programmers in analyzing memory usage.

1.4.1 Research goals

We have identified the following research goals:

• Understand (i) the main characteristics of current visual approaches that help program-
mers in analyzing memory usage, (ii) the challenges of the field, and (iii) research areas
that are worth exploring.

• Propose and develop a software visualization tool to analyze applications’ memory usage
based on the characteristics of state-of-art.

• Propose and conduct an empirical study to understand how the implemented visual tool
supports practitioners when analyzing memory usage and how they perceive the tool.

• Propose and conduct an empirical study to comprehend (i) what programmers need to
know when analyzing memory usage and (ii) how programmers find that information
using memory tools.

1.5 Contributions

The main contributions of this thesis are summarized as follows and have been published in
the listed references:
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• Literature review. We have systematically selected and categorized articles centered on
software visualizations that support practitioners in analyzing the memory consumption
of programs based on the (i) tasks supported, (ii) data abstracted, (iii) visual repre-
sentation, (iv) evaluations conducted, and (v) prototype availability. We identified the
main challenges of visualizing memory consumption and evaluating approaches, as well
as, opportunities for improvement [23].

• Software visualization in practice. We implemented Vismep, an interactive visualization
prototype to help programmers analyze Python applications’ memory usage as shown
in Figure 1.3. This prototype is designed based on the findings from the previous
contribution and characteristics of state-of-art. In addition, we also conducted an
exploratory study with programmers to validate how Vismep supports practitioners
when analyzing memory usage [24]. Section 1.6 provides an overview about our visual
approach.

• Programmer needs and tool usage. We conducted observational studies to understand
(i) what a programmer needs to know when analyzing memory usage and (ii) how
a programmer finds that information using memory tools. We provide a catalog
of questions programmers ask themselves when analyzing memory consumption and
addressing memory issues. Additionally, we presented a detailed analysis of how some
tools are used to answer these questions (Under review).

1.6 Vismep Overview

One of the contributions of this dissertation is Vismep, an interactive visualization prototype
to assist programmers in analyzing the memory usage of Python programs (see Chapter 3).
This section briefly summarizes our proposed visualization through a small example and the
issue mentioned before.

Vismep outlines how the program runs and uses memory during its execution using four
views. The main view, called Call graph view, shows the program execution with a memory
footprint through a call graph with visual hints. To illustrate, consider the code (a) in
Figure 1.3 that generates a Canvas, adds 1000 shapes to the canvas, and then asks if the
canvas is empty. However, to verify if the canvas is empty (isEmpty function), the allShapes

function is called. Consequently, an unnecessary computational operation is made for this
program goal as shown in code of Figure 1.3. The unnecessary allocation of objects is one
of the reasons that cause memory bloats [156, 22]. Memory bloat is an issue that exposes
the inefficient use of memory by a program [156]. Note that an application may be free of
memory leaks but could require excessive memory to operate correctly due to memory bloat.
Figure 1.3 shows the main view of Vismep in two different situations. We observe the main
view of Vismep (b) for running the canvas example and the view (c) for the canvas code
without unnecessary allocations. Note that the call graph presents fewer nodes in the view
without the memory issue than in the original code.

Vismep in action. To show how Vismep performs with larger and more complex applications,
consider the reported issue in Figure 1.1. Figure 1.4 displays on the right, the main view of
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class Canvas:

 def __init__(self):
  self.shapes = []

 def isEmpty(self):
  return len(self.allShapes()) == 0

 def allShapes(self):
  self.visitor = Visitor()
  for shape in self.shapes:
   shape.accept(self.visitor)
  return self.visitor.getVisitedShapes()

 def add(self, aShape):
  self.shapes.append(aShape)

class Shape:

 def accept(self, aVisitor):
  aVisitor.visitShape(self)

class Visitor:

 def __init__(self):
  self.visitedShapes = []

 def getVisitedShapes(self):
  return self.visitedShapes

 def visitShape(self, aShape):
  self.visitedShapes.append(aShape)

def main():
 c = Canvas()
 for i in range(1000):
  c.add(Shape())
 c.isEmpty()

(a) Canvas example (b) Example with memory bloat (c) Example without memory bloat

Code line that causes 
a memory bloat 

Figure 1.3: (a) A code example that illustrates a canvas with many shapes and performs an
unnecessary computational operation to verify if the canvas is empty. (b) The main view of
Vismep for running example of canvas, and (c) running example without the memory issue.

Vismep running example in Figure 1.1 consuming in total around 728 MB. On the left, we
observe the view of Vismep without the memory issue in the running example, consuming a
total of 299 MB. Note that both call graphs’ structures are similar, but they present some
differences in the execution path of to_json function, which is responsible for allocating most
memory. On the right, the execution path contains more method/function calls than on the
left due to the changes to repair the memory issue.

1.7 Scope and Limitations

This dissertation voluntarily focuses on the Python ecosystem, and the conducted explorative
studies involve programmers with experience in Python and different applications using
popular Python packages. Python is frequently used and supported by the Python community
and industry (https://www.python.org/) in diverse topics (e.g., machine learning, data
science). However, few studies focused on analyzing memory consumption and memory issue
detection in Python. Most literature centered on memory usage analysis considers other
languages (e.g., Java, C++).

We believe this thesis provides valuable insights into (i) what information programmers
look for to analyze memory usage and address memory issues, (ii) how programmers employ
tools to get that information, and (iii) their perception of tools. However, we do not diversify
our thesis by covering other programming languages, software applications, and tools due to
the difficulty of conducting such studies on a large scale. Consequently, our findings may not
be generalized to other software applications and memory profiling tools beyond the Python
ecosystem.
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Analysis with the memory leak Analysis without the memory leak

(a) Analysis with the memory leak (b) Analysis without the memory leak

(a) Analysis with the memory leak (b) Analysis without the memory leak

execution path 
of to_json

Figure 1.4: The main view of Vismep for running example in Figure 1.1 (right) and running
example without the memory issue (left).

1.8 Related Publications

This section lists all publications and products created during the Ph.D. work.

Main contributions. The main contributions of this thesis have been published as follows:

• Alison Fernandez Blanco, Alexandre Bergel, and Juan Pablo Sandoval Alcocer. Software
visualizations to analyze memory consumption: A literature review. ACM Computing
Surveys (CSUR), 2022, vol. 55, no 1, pp 1-34.

• Alison Fernandez Blanco, Alexandre Bergel, Juan Pablo Sandoval Alcocer, and Araceli
Queirolo Cordova. Visualizing Memory Consumption with Vismep. Proceedings of the
2022 IEEE Working Conference on Software Visualization (VISSOFT).

• Alison Fernandez Blanco, Araceli Queirolo Cordova, Alexandre Bergel, and Juan Pablo
Sandoval Alcocer. Asking and Answering Questions During Memory Consumption
Analysis. (Under review)

Other contributions. Tangentially related to this thesis, the author also co-authored:

• Alison Fernandez Blanco, Juan Pablo Sandoval Alcocer, and Alexandre Bergel. Effective
visualization of object allocation sites. Proceedings of the 2018 IEEE Working Conference
on Software Visualization (VISSOFT).

• Alison Fernandez Blanco. Towards memory consumption visualization for non-experts.
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Software. Software products developed during the author’s thesis:

• Alison Fernandez Blanco, Juan Pablo Sandoval Alcocer, and Alexandre Bergel. Effective
Visualization of Object Allocation Sites. Artifact presented at Proceedings of the
2018 IEEE Working Conference on Software Visualization (VISSOFT). Available at:
https://doi.org/10.5281/zenodo.1311788

• Alison Fernandez Blanco, Alexandre Bergel, Juan Pablo Sandoval Alcocer, and Araceli
Queirolo Cordova. Visualizing Memory Consumption with Vismep. Available at:
https://github.com/Balison/Vismep

1.9 Thesis Outline

This dissertation is structured as follows:

• Chapter 2, Software Visualizations to Analyze Memory Consumption, presents
a systematic literature review of software visualizations that help analyze the memory
consumption of programs. It introduces a taxonomy based on five dimensions and
highlights (i) the main characteristics of current visual approaches, (ii) the challenges of
the field, and (iii) a number of research areas that are worth exploring.

• Chapter 3, Visualizing Memory Consumption with Vismep, introduces Vismep.
More precisely, it describes how we design Vismep based on the common characteristics
used in the state-of-art and the areas that are worth of exploring. This software
visualization tool that helps programmers analyze memory usage in Python applications.
It also presents an exploratory study that illustrates how programmers employ Vismep
to analyze the memory usage of Python applications and the perception that they have
of Vismep.

• Chapter 4, Answering and Asking Questions During Memory Consumption
Analysis, explores programmer questions during memory usage analysis when using
Tracemalloc and Vismep. It provides a detailed analysis of how programmers use to
answer those questions. It also highlights the barriers that programmers face during the
process and discusses how well existing tools could support a programmer in answering
these questions.

• Chapter 5, Conclusions, summarizes the contributions of this work and discusses
the limitations and our future research directions.
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Chapter 2

Software Visualizations to Analyze
Memory Consumption

Understanding and optimizing memory usage of software applications is a difficult task, usually
involving the analysis of large amounts of memory-related complex data. Over the years,
numerous software visualizations have been proposed to help developers analyze the memory
usage information of their programs. This chapter reports a systematic literature review of
published works centered on software visualizations for analyzing the memory consumption
of programs. We have systematically selected 46 articles and categorized them based on
the (i) tasks supported, (ii) data abstracted, (iii) visual representation, (iv) evaluations
conducted, and (v) prototype availability. As a result, we introduced a taxonomy based on
these five dimensions to identify the main challenges of visualizing memory consumption and
opportunities for improvement. Additionally, we describe a number of research areas that are
worth exploring.

The content of this chapter is based on the publication “Software Visualizations to Analyze
Memory Consumption: A Literature Review” [23] (co-authored with Alexandre Bergel and
Juan Pablo Sandoval) and has been reformatted according to departmental guidelines.

2.1 Introduction

Software development often involves deep and intricate technical aspects. Execution time and
memory consumption are two primary resources in software engineering [137, 139]. Keeping
the amount of memory consumed by a software system under control is an example of such a
programming challenge.

Understanding software execution. Manually understanding and addressing memory
issues is challenging since it usually involves analyzing several metrics at once and requires
a thorough analysis of the respective code [22, 29]. Therefore, software development envi-
ronments provide tools to monitor and report resource usage during software execution to
support programmers in these activities. An example of such a tool is the execution profiler,
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designed to report information about the behavior exhibited by a target program during its
execution. The information reported is usually displayed through full-text reports or textual
tables.

Visualizing memory consumption. Over the years, the research community of software
visualization has proposed a variety of visualizations to support software comprehension
[45, 74]. It has also been shown that interactive visualization reinforces the cognition that
facilitates human interaction to explore and understand data [146]. Due to this, software
visualizations enriched with interaction mechanisms become a powerful alternative for display-
ing profiler reports to support developers in understanding and addressing memory-related
issues. Nonetheless, the lack of organization and information around these visual approaches
hinders their widespread use and limits the identification of potential challenges and hints for
improvement in the field.

This chapter presents a systematic literature review of software visualizations to support
programmers in analyzing memory consumption and addressing memory issues. We initially
used keyword searches against three popular scientific databases and complemented it with
a bi-directional snowballing and a manual search of relevant venues. As a result, we found
420 articles published without counting duplicates. We then selected 46 articles based
on inclusion/exclusion criteria and quality assessment. In this way, we included only the
studies centered on visualizations to analyze the memory consumption of a software program.
Consequently, we excluded articles that only focus on memory issues without visualization,
articles that analyze the memory used by the visualization per se, and articles that focus
on other performance metrics excluding memory usage. In summary, our systematic review
focuses on published works centered on visualizations that assist practitioners in examining
memory usage to identify optimization opportunities.

Structure of the chapter. Section 2.2 presents the methodology we followed in this study.
Section 2.3 displays the main findings by answering the questions defined in Section 2.2.1.
Section 2.4 provides the open challenges for the new visualizations centered on analyzing
memory usage. Section 2.5 discusses the state-of-art. Section 2.6 discusses the threats to the
validity of this study, and Section 2.7 exposes the future work and the conclusions.

2.2 Methodology

This literature review follows a systematic and rigorous methodology to identify and cate-
gorize literature related to memory consumption visualization. We use a seven high-level
steps methodology inspired by well-recognized software engineering guidelines for systematic
reviews [69, 70]. Our steps are shown in Figure 2.1.

We describe each one of these steps in the following sections.
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Figure 2.1: Overview of the workflow of the literature review.

2.2.1 Research Questions

The purpose of this literature review is to inspect, analyze, and discuss the state-of-art regard-
ing software visualizations focused on helping developers to understand memory consumption.
In particular, we are interested in addressing the research questions described in Table 2.1.
We believe that answering these research questions (RQ) will assist future researchers in
creating new visualizations focused on supporting developers during memory consumption
analysis.

Table 2.1: Research Questions

Research Question Dimension & Rationale

RQ1: Which tasks are supported by the soft-
ware visualizations to help users with the anal-
ysis of memory consumption?

Problem Domain: Identify the tasks that software visualiza-
tion targets to facilitate during the memory consumption
analysis. For instance, identify bottlenecks or detect mem-
ory leaks.

RQ2: What aspects of the software are ab-
stracted by the software visualizations to help
users with the analysis of memory consump-
tion?

Data: Software visualizations display large amounts of
data (e.g., memory allocations, memory accesses) extracted
from the execution or code of software applications. This
information allows developers to understand the memory
consumption of a program.

RQ3: Which software visualizations have
been proposed to help users with the analy-
sis of memory consumption?

Visual Representation: The use of different visual tech-
niques to abstract complex and related data is an important
topic. The way on which visual elements are rendered and
presented to the user is also relevant because it may impact
how the user interacts and perceives the visualization. In
particular, we are interested in reviewing:
RQ3.1: Which visual techniques are used?
RQ3.2: Which interaction tasks are supported?
RQ3.3: Where are the visual elements rendered?

RQ4: How are software visualizations to help
users with the analysis of memory consump-
tion evaluated?

Evaluation: Analyzing how software visualization is evalu-
ated provides (i) an overview of the proposed visualization’s
effectiveness and usefulness and (ii) a better understanding
of conducted evaluation strategies.

RQ5: What software visualization tools or
prototypes are available to help users with the
analysis of memory consumption?

Availability: The availability of a prototype or tool is an
opportunity (i) for practitioners to benefit from the ap-
proach and (ii) for researchers to replicate the results or
complementing the associated research articles.
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Dimensions. Our research questions focus on five dimensions: problem domain, data, visual
representation, evaluation, and artifact. The research questions and their dimensions were
inspired by six surveys [81, 83, 85, 105, 106, 119]. These studies present a number of relevant
dimensions to give an enriched overview of software visualizations. Table 2.2 shows the six
surveys mentioned previously with their respective dimensions and how they are related to
our research questions.

Table 2.2: An overview to the relations between our dimensions and the dimensions proposed
by some works of the state-of-art.

Survey RQ1 RQ2 RQ3 RQ4 RQ5

Price et al. [106, 105] Purpose Scope,
content

Form, method, interaction,
effectiveness

Empirical
evaluation

-

Roman et al. [119] - Scope,
abstraction

Specification, method,
interface, presentation

- -

Maletic et al. [81] Task Target Representation, medium - -

Mattila et al. [83] Context Data source Visualization aspects Evaluation
aspects

-

Merino et al. [85] Task Data source Representation, medium - Tool

RQ1 centers on software engineering tasks supported by the visualization. RQ1 was
inspired by three previous studies: Price et al. [105, 106] provide taxonomies with a minor
summary about the intention of the visualizations on their Purpose dimension. Maletic et al.
[81], Mattila et al. [83] and Merino et al. [85] consider general tasks of software engineering
like reverse engineering, maintenance, and testing. Compared to these works, our Problem
Domain dimension focuses on detailed software engineering tasks related to memory usage.

In the case of RQ2 and RQ3, the surveys mentioned previously present detailed informa-
tion for these dimensions, providing an analysis of the collected data and how this data is
abstracted visually to the user. In this literature review, our Data dimension describes the
metrics considered for the analysis of memory usage, and the Visual Representation dimension
reports the visual encodings, interactions, and medium used by the approaches.

Our study also includes two dimensions: RQ4 and RQ5 corresponding to evaluation
and availability. RQ4 was only covered by Price et al. [105, 106] and Mattila et al. [83],
and RQ5 by Merino et al. [85]. We include both dimensions since they are relevant in the
research community to understand how the visualizations were evaluated and if they may be
replicable.

2.2.2 Search Strategy

Initial manual search. According to the Systematic Literature Review guidelines [70, 162],
before performing an automatic search phrase and defining an inclusion/exclusion criteria, it
is necessary to search for an initial set of relevant articles. To do this, we manually reviewed
the articles published between 2017 and 2020 in the following scientific venues:
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• IEEE International Working Conference on Software Visualization (VISSOFT)

• International Symposium on Memory Management (ISMM)

We selected these conferences because the articles dedicated to software visualization
and memory management present a sound corpus for our study. Besides, these conferences
are classified respectively in the good (B) and excellent (A) category according to CORE
rankings1, which determines conference rankings based on a mix of indicators (e.g., citation
rates, paper submission, acceptance rates). The result of our initial manual search ends up
with five articles [22, 27, 54, 157, 123]. We used these papers as a base to define our search
strategy by extracting search terms derived from the research questions.

Search phrase development. We extracted the search terms that fit our scope of the title,
abstract, and keywords from the articles found at the initial manual search. Furthermore, we
expanded these search terms with synonyms and alternatives as shown in Table 2.3.

Table 2.3: Search terms and alternatives of spelling

Term Alternatives

Memory* memory heap, memory allocation, memory consume, memory consumption, memory usage,
memory management, memory issues, memory issue, memory bloats, memory leaks, memory
access, memory address

Visual* visualize, visualization, visualisation, visual, visuals, visualizations, visualisations

Software* software, program, application

To find potential articles considered for our study, we combined these terms into a query
as it follows:

Memory* AND Visual* AND Software*

The previous query represents the condition that an article should meet to be considered
in our study. We executed the query against the abstract. We did not limit the search based
on publication date to find the most significant number of relevant articles for our study. We
performed the search over three digital libraries:

• ACM Digital Library

• IEEE Xplore

• Scopus

1https://www.core.edu.au/conference-portal
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As a result, we found 533 papers that meet these criteria, including our initial set of five
papers. The latter gives a level of certainty that we could find any article that proposes
a visualization to assist developers with memory usage analysis. However, we may have a
number of false positives that we detected in the following steps. Additionally, annex A
presents the search strings used for each digital library mentioned before.

Additional manual paper selection. In the previous phase, we found articles that contain
the keywords used in the query search. As a result, we located articles that may be useful and
representative. However, we may have missed some relevant articles. For instance, articles
that use more particular memory-related keywords (e.g., cache, fragmentation) may or may
not be considered by our query. Therefore, in order to not miss any related paper, we also
performed a manual search on the last ten editions (2010-2020) from the following venues:

• IEEE International Working Conference on Software Visualization (VISSOFT), the
continue of IEEE International Workshop on Visualizing Software for Understanding
and Analysis (VISSOFT) and ACM Symposia on Software Visualization (SOFTVIS)

• International Symposium on Memory Management (ISMM)

We selected these conferences because we noticed that most of the articles resulting from our
automatic phrase search were published in them. We also reviewed only articles published in
the last ten issues due to our time and human resources. In total, around 305 articles were
published in these venues over the last ten editions. We manually reviewed each article based
on its title and abstract. Consequently, we found ten articles that fall within the scope of
this literature review. However, seven articles were found in the earlier phases. Therefore, we
identified three additional articles during this phase.

Bi-directional snowballing. We performed a backward and forward snowballing over the
ten articles found in the previous phase to complete our search. The snowballing procedure
consists of identifying additional studies using the system of references between articles [161].
For this reason, we checked the references in each article, and we reviewed the list of articles
that reference any article of our selection. Thus, we could add relevant research published
after or before the publication date of our selection set by performing several iterations until
non-relevant papers are referenced. We then selected Google Scholar to perform the forward
snowballing due to the facilities provided to select the papers that cite a specific one. On
the other hand, the backward snowballing was performed manually. Consequently, over two
iterations, we found 56 additional articles that could be considered in this study, collecting a
total of 420 papers without counting duplicated articles.

2.2.3 Inclusion & Exclusion Criteria

We elaborated inclusion and exclusion criteria based on the scope of this study. Table 2.4
details the inclusion and exclusion criteria. In particular, we are interested in papers that use
visualization techniques to help developers understand and address memory issues.
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Table 2.4: Inclusion and Exclusion Criteria

Inclusion Criteria

• I1: Papers published in a peer reviewed journal, conference or workshop on data visualization,
computer science, or computer engineering.

• I2: Papers written in English.

Exclusion Criteria

• E1: Papers that focus on other performance metrics (e.g., execution time).

• E2: Papers that only study memory issues or visualization issues.

• E3: Posters, keynotes, challenges and previous papers that only introduce the idea of most
recent full papers (e.g., short papers).

We performed a revision of 420 articles based on inclusion/exclusion criteria. The thesis
author and the two thesis supervisors independently read and analyzed the title, abstract,
keywords, and venue to decide if an article is excluded or not. However, if a reviewer does not
have enough information to decide, the reviewer should read the introduction and conclusions
of the article. Next, each reviewer responds independently if an article should be included or
not using a spreadsheet that lists the 420 articles.

Then, we examined the spreadsheet responses to calculate the Fleiss’ kappa for the inter-
rater reliability [49]. As a result, we got 0.72 for the Fleiss’ kappa analysis, which is generally
considered a good agreement beyond chance [50]. We also identified 38 articles on which we
have discrepancies in the spreadsheet responses. Most of these differences were related to
E1 and E2 criteria. For instance, some articles focus on using a software visualization to
understand the trace execution of programs, but not explicitly center on memory consumption.
On the other hand, other articles are dedicated to analyzing memory problems, but not
primarily with software visualizations.

To resolve all conflicts, we conducted a second review of the 38 articles, analyzing the full
content of each article. We then had a discussion session to develop an agreement based on
the responses from the second review. As a result, a total of 49 articles are candidates to be
included in our study.

2.2.4 Quality Assessment

This phase involves the selection of the papers based on their quality [70, 104]. To exclude the
articles with insufficient information to contribute to this study, we examine the theoretical
contribution, and the experimental evaluation with the checklist used in software engineering
surveys [102, 147] detailed in Table 2.5.

In this step, we assess the quality of each paper based on the checklist illustrated in
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Table 2.5: Quality assessment adopted from [147]

# Questions

Theorical contribution

1 Is at least one of the research questions addressed?
2 Was the study designed to address some of the research questions?
3 Is a problem description for the research explicitly provided?
4 Is the problem description for the research supported by references to other work?
5 Are the contributions of the research clearly described?
6 Are the assumptions, if any, clearly stated?
7 Is there sufficient evidence to support the claims of the research?

Experimental evaluation

8 Is the research design, or the way the research was organized, clearly described?
9 Is a prototype, simulation or empirical study presented?

10 Is the experimental setup clearly described?
11 Are results from multiple different experiments included?
12 Are results from multiple runs of each experiment included?
13 Are the experimental results compared with other approaches?
14 Are negative results, if any, presented?
15 Is the statistical significance of the results assessed?
16 Are the limitations or threats to validity clearly stated?
17 Are the links between data, interpretation and conclusions clear?

Table 2.5. We assigned a score to every question in the checklist independently. The score
has a numeric scale of three levels: yes (2 points), partial (1 point), and no (0 points). The
final score of a paper is measured by summing up the score of all questions. Since the form
has 17 questions, the total score of the articles varies from 0 to 34.

Additionally, we follow the criteria of Usman et al. [147] by using the lower quartile
(34/4 = 8.5) as the limit point for including an article based on quality. As a result, all the
articles with a score above 8.5 points were considered relevant hence they present enough
information to address our research questions.

In total, 35 articles met the quality assessment with the approval of the thesis author and
the two thesis supervisors, while 14 articles were detected as discrepancies. Consequently, a
second pass was made over these 14 articles. At the second pass, each reviewer independently
read and examined the quality assessment of each article again. We then moved on to a
discussion session to resolve conflicts by consensus. Finally, with the second pass, a total of
46 articles were selected to be included in the literature review.

2.2.5 Data Extraction

To extract the necessary data, the thesis author was in charge of examining each of the
46 articles. From each article, the thesis author collected general information (e.g., title,
publication year, venue) and information according to the dimensions and rationale of the
research questions. Although the data extractor reviewed the entire document, the data
extractor focused on many particular sections in order to answer the research questions:
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• RQ1 – Problem Domain: Abstract, introduction, evaluation, conclusion.

• RQ2 – Data: Data collection, data extraction, profiling information.

• RQ3 – Visual Representation: Visualization, detailed view, visual design, display.

• RQ4 – Evaluation: Evaluation, case study, applications, usage scenario.

• RQ5 – Availability: Visualization, implementation, conclusion.

The data extractor was also careful to search for data to respond to RQ5 because sometimes
artifacts or data sets are placed as a reference or footnotes.

In order to validate the data extraction, the two thesis supervisors checked the data to
confirm that extraction was correct. Next, we discussed and resolved any disagreements by
reviewing the articles and data extraction forms. We then recorded the final data value for
data analysis.

We noticed that some articles do not present information to respond to all the research
questions during this phase. For example, some articles lack information about the interactions
supported, the medium used, or the evaluation conducted. We discussed the data synthesis of
these cases in Section 2.2.6 and Section 2.3.

2.2.6 Data Analysis

This section describes the data analysis methods conducted to answer our research questions.

Thematic analysis. We opted to conduct a thematic analysis [141] for RQ1 and RQ2 since
we noted that the proposed classification schemes from previous software visualization surveys
were general for helping us answer these research questions. In order to create a classification
scheme, the thesis author conducted the thematic analysis following a number of specific
steps:

• Familiarization. Extracted data is read and reread to have an overview of the informa-
tion.

• Generating codes. The thesis author assigned codes that reflect relevant features to
answer the research questions. For example, the author assigned the code “Detection
of memory fragmentation” for the text: “To help the user find potential memory
fragmentation problems, we display memory blocks that have been freed exactly one
time and not reused” [118]. Additionally, continuous reviews were conducted to refine
codes and determine if they were assigned correctly. The latter requires comparing two
text segments assigned to the same code to inspect if they reflect the same feature.

• Constructing initial themes. All codes are compiled with their associated data into
coherent groups to identify initial themes (broader patterns) that help address the
respective research questions. The codes that seem to not belong to a specific theme
were grouped as miscellaneous and analyzed in the next step.
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• Reviewing themes. Initial themes were checked against the associated data (e.g.,
segments of text) and refined to create a final set of themes.

• Defining and naming themes. Each theme of the final set was defined with a detailed
description and an informative name. For instance, the themes for RQ2 are generated
based on the source of the data abstracted (e.g., data from program execution, data
from source code, data from versions).

Finally, the two thesis supervisors checked the process by reviewing the consistency of
codes and themes against the associated data and examining if the themes created respond
to RQ1 and RQ2. We held three meetings to discuss the disagreements or potential issues of
the generated codes and themes. As a consequence, we minimized potential inconsistencies in
the coding process.

Content analysis. We conducted a deductive content analysis [41, 47] to answer RQ3.1,
RQ3.2, and RQ4 since the data synthesis was performed based on defined classification
schemes from previous studies shown in Table 2.6.

Table 2.6: Classification scheme

ID Dimension Proposed by Classification scheme

RQ3.1 Visual techniques Keim [66] Geometrically-transformed displays, iconic displays,
dense pixel displays, stacked displays and standard
2D/3D displays

RQ3.2 Interactions Yi et al. [167] Select, explore, reconfigure, encode, abstract/elaborate,
filter and connect

RQ4 Evaluation Merino et al. [84] No explicit evaluation, empirical, theoretical

For RQ3.2, we classified only the articles that present information to answer the research
question. We exposed the number of articles that lack data to answer these research questions.
For RQ4, Merino and colleagues proposed a category of “No explicit evaluation” for these
cases.

The classification of articles for RQ3.1, RQ3.2, and RQ4 was performed by the thesis
author and one thesis supervisor independently. Each one filled a spreadsheet to classify
the articles based on a detailed description of the predetermined categories. Later, to check
the agreement between reviewers, we calculated metrics for reliability (Cohen’s kappa [152],
percentage of agreement). As a result, we noticed that reviewers present a “substantial
agreement” (kappa > 0.61) and a percentage agreement above 80% at classifying the articles
for most categories. However, we noted disagreements on the classification based on the
interactions supported and the evaluations conducted (case study vs. usage scenario). We
discussed the disagreements in meetings by exposing the data and examining the description
of the categories. Consequently, we resolved the discrepancies and advanced to expose the
results to answer the research questions.

Finally, to respond to RQ3.3 we only reviewed the medium employed. And for RQ5, we
listed the link for the prototype and the additional information (video, sample data) provided
in the link.
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2.3 Results

Table 2.7 summarizes the results of all steps in our systematic search methodology. It shows
different stages of the process for search and selected relevant articles. Unique columns show
the number of non-duplicated articles. As a result, we found that 32.27% of the articles found
in the search phase over digital libraries were duplicated articles.

We also noticed that 11.66% of the articles found during the search phases were selected
based on the inclusion/exclusion criteria.

Table 2.7: Systematic Search Results

Source Date Search
Results

Unique Incl./Excl.
Criteria

Quality
Assessment

Included

ACM DL March 18, 2021 209

IEEE March 18, 2021 72

SCOPUS March 18, 2021 252

Search phrase 533 361 27 24 24

Additional
manual search

3 3 3 3 3

Bi-directional
snowballing

56 56 19 19 19

Total 46

In the end, Table 2.8 and Table 2.9 display the 46 articles that passed our inclusion/exclu-
sion criteria and satisfied the criteria of our quality assessment. A set of collected data from
the 46 articles is available online2.

Publication year. During the search phase in digital libraries, we do not limit the search
based on publication dates. We also do not exclude articles based on their publication date
during the selection phase. However, we noted that the articles considered by our study
were published between 1996 and 2020 (see Figure 2.2). Furthermore, we detected that the
number of published articles increased over time, with high peaks (4 articles published) in
2002, 2010, and 2018. Note that these peaks may be due to external factors such as adopting
new paradigms or developing applications for new domains.

Venues. Regarding the distribution of articles based on the venue, we identified 27 different
venues where the papers were published. Most of the venues are related to software visual-
izations, software maintenance and software comprehension. Furthermore, we observed that
32.60% of selected studies were published in software visualization conferences (VISSOFT
and SOFTVIS). We also noticed that 17.39% of the articles were published in journals usually
involved with computer graphics and visualizations (e.g., Computer Graphics Forum, IEEE
TVCG). Finally, the remaining articles were published in various conferences and workshops,
usually related to software maintenance and software comprehension (e.g., ISMM, ICSME).

2https://www.dropbox.com/s/7srvxiacftg2pm1/ArticleClassification.csv?dl=0
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Table 2.8: The included papers in the study (S1-S30)

ID Title Venue Year Ref.

S1 Evaluating an Interactive Memory Analysis Tool: Findings from
a Cognitive Walkthrough and a User Study

PACMHCI 2020 [156]

S2 Memory Cities: Visualizing Heap Memory Evolution Using the
Software City Metaphor

VISSOFT 2020 [157]

S3 PVC.js: visualizing C programs on web browsers for novices Heliyon 2020 [63]
S4 Enhancing Commit Graphs with Visual Runtime Clues VISSOFT 2019 [123]
S5 Visual performance analysis of memory behavior in a task-based

runtime on hybrid platforms
CCGRID 2019 [98]

S6 Detailed heap profiling ISMM 2018 [27]
S7 Effective visualization of object allocation sites VISSOFT 2018 [22]
S8 NumaMMA: NUMA MeMory Analyzer ICPP 2018 [145]
S9 Memaxes: Visualization and analytics for characterizing complex

memory performance behaviors
TVCG 2018 [53]

S10 Atlantis: Improving the analysis and visualization of large
assembly execution traces

ICSME 2017 [61]

S11 Visual exploration of memory traces and call stacks VISSOFT 2017 [54]
S12 Leveraging Managed Runtime Systems to Build, Analyze, and

Optimize Memory Graphs
VEE 2016 [135]

S13 Interactive visualization of cross-layer performance anomalies in
dynamic task-parallel applications and systems

ISPASS 2016 [44]

S14 Efficiently identifying object production sites SANER 2015 [62]
S15 TABARNAC: Visualizing and resolving memory access issues on

NUMA architectures
VPA 2015 [18]

S16 Visualization of memory access behavior on hierarchical NUMA
architectures

VPA 2014 [160]

S17 A visual approach to investigating shared and global memory
behavior of CUDA kernels

Comput Graph
Forum

2013 [120]

S18 Visualizing the allocation and death of objects VISSOFT 2013 [151]
S19 Abstracting runtime heaps for program understanding IEEE TSE 2012 [82]
S20 Topological analysis and visualization of cyclical behavior in

memory reference traces
PacificVis 2012 [33]

S21 Vasco: A visual approach to explore object churn in framework-
intensive applications

ICSM 2012 [46]

S22 Abstract visualization of runtime memory behavior VISSOFT 2011 [32]
S23 A map of the heap: Revealing design abstractions in runtime

structures
SOFTVIS 2010 [97]

S24 Allocray: Memory allocation visualization for unmanaged
languages

SOFTVIS 2010 [118]

S25 Automated construction of memory diagrams for program
comprehension

ACM SE 2010 [37]

S26 Heapviz: interactive heap visualization for program
understanding and debugging

SOFTVIS 2010 [9]

S27 Making Sense of Large Heaps ECOOP 2009 [89]
S28 Visualizing the Java heap to detect memory problems VISSOFT 2009 [115]
S29 Hdpv: Interactive, faithful, in-vivo runtime state visualization

for C/C++ and Java
SOFTVIS 2008 [138]

S30 Interactive Visualization for Memory Reference Traces Comput Graph
Forum

2008 [31]
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Table 2.9: The included papers in the study (S31-S46)

ID Title Venue Year Ref.

S31 Visualizing dynamic memory allocations VISSOFT 2007 [93]
S32 Visualising dynamic memory allocators ISMM 2006 [28]
S33 Jove: Java as it happens SOFTVIS 2005 [116]
S34 YACO: A User Conducted Visualization Tool for Supporting

Cache Optimization
HPCC 2005 [111]

S35 Interactive locality optimization on numa architectures SOFTVIS 2003 [94]
S36 Visualizing Java in action SOFTVIS 2003 [114]
S37 GCspy: an adaptable heap visualisation framework OOPSLA 2002 [109]
S38 Visualising the train garbage collector ISMM 2002 [108]
S39 Visualizing memory graphs Software

Visualization
2002 [171]

S40 Visualizing the execution of Java programs Software
Visualization

2002 [39]

S41 Visualizing the impact of the cache on program execution ICIV 2001 [168]
S42 Visualizing the memory access behavior of shared memory

applications on NUMA architectures
ICCS 2001 [140]

S43 Visualizing reference patterns for solving memory leaks in Java ECOOP 1999 [40]
S44 A cache visualization tool Computer

vol. 30
1997 [148]

S45 DDD — a free graphical front-end for Unix debuggers SIGPLAN Not. 1996 [170]
S46 Monitoring data-structure evolution in distributed

message-passing programs
HICSS 1996 [124]

2.3.1 RQ1: Problems Domain

Selected articles propose software visualizations that usually target to help developers perform
debugging and performance tasks. We performed thematic analysis to find patterns over the
data to provide details of which tasks are supported by these visualizations. As a result, we
detected themes that help users adopt a suitable software visualization according to their
requirements. We classified the visualizations based on (i) focus point analysis and (ii) issue
detection. Table 2.10 shows the distribution of papers based on this classification. According
to our classification, a visualization could focus on analyzing a specific point and detecting
multiple memory issues. As a result, a visualization could belong to multiple categories.

Focus point analysis. Articles explain why the proposed visualization is helpful in different
sections. During our thematic analysis, we noticed that a number of articles present a general
description by specifying that the proposed visualization has a general purpose in helping
developers understand and monitor an application’s memory consumption. On the other
hand, we found articles that propose dedicated visualizations that allow users to analyze
specific points (e.g., data structure, cache behavior). We classified the articles based on the
focus point analysis described below.

• Specific architecture. We found 23.91% articles dedicated to analyzing the memory
consumption of applications with specific architectures (HPC, parallel, embedded,
distributed). These articles usually propose visualizations that display how the data is
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Figure 2.2: The 46 included papers by publication year.

Table 2.10: Classification of articles based on the tasks

Problem domain References Total

Focus point analysis Specific architectures S5, S8-S9, S12-S13, S15-S17, S35, S42, S46 11
Data structure S3, S19, S23, S25-S29, S33, S36, S39-S40, S43,

S45
14

Cache performance S22, S30, S34, S41, S44 5
Memory regression S4 1
General S1-S2, S6-S7, S10-S11, S14, S18, S20-S21,

S24, S31-S32, S37-S38
15

Issue detection Memory leak S1, S2, S24, S26-S29, S40, S43, S46 10
Memory bloat S1, S4, S6-S7, S14, S18-S19, S27-S28 9
Memory churn S1, S21, S24, S28-S29, S38 6
Memory fragmentation S5, S24, S31-S32, S37-S38 6

accessed and used by multiple threads and multiple processors. For example, article
S35 [94] allow developers to understand the memory access behavior of parallel NUMA
applications. This article proposes a visualization that helps developers identify which
nodes perform the memory accesses and detect an opportunity to reduce remote memory
accesses.

• Data structure. According to Cormen et al. [36], a data structure is a way to store,
manage and organize data to facilitate access and modifications. There is a variety of
data structures employed in software applications (e.g., lists, dictionaries). However, the
inefficient usage of data structure and its operations (e.g., adding, removing elements)
generates memory issues that affect the performance. For this reason, data structure
analysis is a prevalent task during software development. We detected that 30.46%
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of visualizations support developers in analyzing and inspecting data structures. For
instance, article S26 [9] proposes Heapviz that allows developers to identify large data
structures and which objects are shared by several data structures. Heapviz displays
a node-link diagram to visualize the references between objects and locate the nodes
using a radial layout to use screen space efficiently.

• Cache performance. Cache stores data so that future requests for that data can
be responded more quickly. Tracking the cache activity in a software application
helps developers understand memory performance at a fine-grained level. Accordingly,
developers may require and analyze memory access and cache performance; hence,
the cache activity’s analysis influences detecting memory access anomalies. We found
that 10.86% of visualizations support developers in analyzing cache performance. For
example, article S34 [111] propose YACO to help users with the analysis of access
patterns and cache misses. YACO present multiple views to display statistics related to
cache performance and allow developers to find data that frequently enter and leave the
cache.

• Memory regression. Source code changes may impact the performance of an application
[11]. Only article S4 [123] allows developers to analyze the memory variations between
code changes. This article proposes Spark Circle that enables users to compare two
commits based on the number of allocated objects, the execution time, and the number
of modified methods. As a consequence, a developer can identify the growth or reduction
of allocated objects between commits.

• General. As we mentioned before, we found 32.60% of the articles do not focus on a
specific point. These articles determine that the goal of the proposed visualization is to
analyze memory consumption. Therefore we could not find specific analysis points such
as analysis of data structures or cache behavior. During the generation of codes, we
detected that these articles usually display memory access or heap usage. Furthermore,
most of these articles are useful for detecting memory issues.

Issue detection. We found that 47.82% of the articles propose visualizations that allow
developers to identify memory issues. Additionally, we detected several articles that claim
to present helpful visualizations to address memory anomalies but do not specify which
kind of anomalies or particular situations can be addressed with the proposed visualization.
Consequently, we only classified the articles that present a detailed description of the memory
issues addressed and how developers could employ the visualization to find these anomalies.
We described the memory issues that were found below.

• Memory leak. A memory leak is an issue deeply related to improper memory management
[25, 52]. A memory leak occurs when an unused memory allocation cannot be released
from memory [40]. The latter usually happens because there are allocations that
reference an unused allocation. As a consequence, the application can run out of
memory and crash. We found that 21.73% of the visualizations help developers in
detecting memory leaks. For instance, article S40 [39] presents a node-link diagram to
display the references between the objects not reclaimed by the garbage collector. This
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Hot spots and patterns of resource usage are immediately visible in this view. You
can get more detailed information about individual elements by clicking on them or
merely positioning the mouse cursor over them. The view also gives you a good idea
of when objects are created and garbage collected. (A rectangle turns into an outline
when the object has been collected.) This can help you spot memory leaks, as we
explain later.

The lines in the view represent relationships among objects. For example, Fig. 1
shows all the method calls on objects of class java/lang/Integer. You can tell the view
to indicate how each object calls, creates, or refers to other objects. Seeing connec-
tions among objects is useful for detailed investigation of calling and reference
relationships. However, the combinatorial nature of these relationships will make any
program larger than “Hello world” hard to examine.

Fig. 1. Histogram view

3   Pattern Extraction in the Reference Pattern View

Complexity is indeed a challenge when visualizing the execution of object-oriented
programs. We deal with complexity in a number of ways. First, a good visualization
makes it much easier to interpret complicated behavior than poring through textual
data. In this section we discuss another technique, pattern extraction, that can sim-
plify visualizations by eliminating extraneous detail. Later in this paper we discuss yet
another approach to handling complexity, employing database techniques to structure
the information.

Figure 2.3: Visualization proposed by De Pauw et al. [39] to illustrate the references between
the objects not reclaimed by the garbage collector in Java. ©2002 “Visualizing the Execution
of Java Programs” by Wim De Pauw et al.. Reproduced with permission from Springer
Nature.

visualization allows developers to identify memory leaks by exploring which objects are
no longer used but are referenced by other objects (see Figure 2.3).

• Memory bloat. Memory bloat exposes inefficient use of memory by a program [156]. A
memory overhead significantly affects software applications by reducing their scalability
and usability. Developers should notice that an application may be free of memory
leaks, but could require excessive memory to operate correctly. According to LaToza
et al. [76], developers usually ask, “How big is this in memory?” and “How many of
these objects get created?” These questions are related to distinguish memory growth.
Addressing memory bloats impacts the application behavior, making it more usable and
faster in some cases [65]. We detected that 19.56% of visualizations support developers
in identifying excessive memory consumption. For example, article S1 [156] allows
developers to explore and observe memory consumption over time by using multiple
views with AntTracks. As a result, AntTracks assists developers in detecting memory
growth and exploring suspicious time windows in which objects are allocated over time,
as shown in Figure 2.4.

• Memory churn. This issue occurs when an application allocates and releases a large
number of short-living objects [46]. For example, memory churn can happen if a program
allocates several new objects in the middle of nested loops. As a result, the time spent
on allocating objects in a heap and the number of garbage collections increase. Thus the
application decreases its performance due to frequent garbage collection. We detected
that 13.04% of the visualizations help developers in detecting memory churn. For
example, article S21 [46] proposes Vasco, a visualization that allows developers to
identify where and when an object is allocated and no longer used. The authors of
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Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study 75:7

(a) The Overview plots the application’s memory footprint and GC overhead and allows to select a suspicious
memory leak time window.

(b) Users can choose from a list of classifier combina-
tions to group heap objects.

(c) The TrendViz view displays the heap evolution
grouped by the selected classifier combination.

(d) The heap state view displays the classified heap at
a certain point in time as a tree table.

(e) The graph view highlights the paths from a selected
group of objects (shown at the bo�om) to its most
important GC roots (colored nodes).

Fig. 1. Memory leak analysis in AntTracks.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

Figure 2.4: AntTracks [156] provides overview plots about the application’s memory footprint
and garbage collector overhead and allows practitioners to explore a time window. ©Used with
permission of ACM (Association for Computing Machinery), from “Evaluating an Interactive
Memory Analysis Tool: Findings from a Cognitive Walkthrough and a User Study” by Markus
Weninger et al., 2020; permission conveyed through Copyright Clearance Center, Inc.

Vasco described how they use visualization to reuse some objects and reduce the number
of allocations and garbage collections.

• Memory fragmentation. This issue related to a failure at reusing memory that has been
released. Furthermore, excessive fragmentation over memory may lead to more costly
performance behavior. We found that 13.04% of the visualizations help developers
identify memory fragmentation. For instance, article S31 [93] allows users to analyze
the behavior of a memory allocator by displaying the memory accesses through time.
This visualization enables developers to identify unnecessary fragmentation since free
memory blocks can be detected quickly.

We also noticed that selected articles usually define the roles of users of visualizations.
We detected that 13.04% of the visualizations help students or novice developers analyze
memory consumption. For example, article S3 [63] presents PVC to support students
with understanding the program execution status and behavior. The authors of this article
experimented with 35 university students to evaluate the usability of PVC. Furthermore, most
of the visualizations (89.13%) assist developers and software engineers. Some of these articles
determine that proposed visualizations are suitable for supporting developers with experience
in software engineering and with knowledge of memory management.

RQ1: Software visualizations are designed to support programmers for different pur-
poses. We detected five focus points of analysis: (i) memory usage analysis in specific
architecture (23.91%), (ii) data structure analysis (30.46%), (iii) cache performance
analysis (10.86%), (iv) memory regression (0.46%), and (v) general purposes such as
memory access or heap usage analysis (32.60%). We also found that around 47.82% of
software visualizations help to identify memory issues.
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2.3.2 RQ2: Data

Monitoring and analyzing memory usage is a complex task for developers since it is necessary
to collect and examine different software aspects. The selected articles usually present detailed
sections to describe the data collection. We noticed that several articles implement a profiler
to gather information. Other studies use dedicated tools for this purpose, such as Pin [80],
Jinsight [39], DynamoRIO 3, etc. Nonetheless, some studies only describe the information
visualized, but do not explicitly mention how they collect the data.

We defined the classification scheme according to the sources from which various data
were collected. As a result, the articles are categorized based on three sources: (i) program
execution, (ii) source code, and (ii) version control systems. In this classification, software
visualizations can belong to multiple categories, as shown in Table 2.11.

Table 2.11: Classification of articles based on the data source

Data source Data References Total

Program
execution

Memory allocations S4, S7, S14, S19, S21, S23, S25-S27, S33, S39, S45 12
Memory allocations
and release

S1-S2, S12, S18, S28-S29, S31-S32, S36-S38, S40,
S43

13

Memory events S3, S5-S6, S8-S11, S13, S15-S17, S20, S22, S24,
S30, S34-S35, S41-S42, S44, S46

21

Relationships between
functions/methods

S1, S6-S7, S10-S11, S14, S21, S40 8

Variable references S1-S3, S12, S19, S23, S25-S29, S39-S40, S43, S45 15
Time S4-S6, S11, S16, S30-S31, S33, S36, S40-S41, S44 12
Threads S5, S6, S8, S10, S13, S15-S17, S24, S33, S36, S40 12
Data shared between
computational units

S5, S8-S9, S13, S15-S17, S35, S42, S46 10

Source code Line of code S3, S5-S6, S10, S17, S20, S22, S24, S29, S33,
S45-S46

12

Class S1-S2, S7, S11, S14, S18, S21, S28, S36, S40 10
Structural component S1, S10-S11, S36 4

Version control
system

Code changes S4 1

Program execution. This category involves the articles that collect or calculate data
from program execution. This information facilitates the understanding of the behavior of a
program. All the articles extract various data from program execution to support developers
with memory consumption analysis. However, we noticed that the information selected varies
in different aspects.

During the program execution, a large number of memory events occur. Articles regularly
mention that memory traces are collected. However, the concept of memory trace could be
too general, so we focused on the details of the memory traces collected. We considered three
memory events: (i) data is allocated in sections of memory (allocations), (ii) data allocated is

3http://dynamorio.org
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used (read and write), and (iii) the occupied memory that is not needed anymore should be
released (deallocation).

• Memory allocations. We detected that 26.08% of the articles describe extracting data
related to memory allocations but do not consider when the memory is released due
to the difficulty of extracting this kind of information [116]. These articles usually
provide visualizations that display the objects allocated during the program execution
to identify objects that consume more memory and distinguish how these objects are
related. However, according to our previous research [22], this information could be
insufficient at helping developers detect optimization opportunities and address memory
issues quickly.

Fig. 3. An application’s heap visualized with memory cities shortly after
startup (left) and 2 minutes / 300 garbage collections later (right). Districts
are colored blue-ish based on their hierarchy level, buildings are colored from
gray to red based on their growth. The ten buildings with the strongest growth
are shown in solid mode, while the others have reduced opacity.

IV. DATA

This section discusses in more detail which data is needed
by software cities in general, how this need translates to
memory cities, and how we collect and process the needed
data using AntTracks.

A. General

In general, a software city is built upon tree data. In its most
basic form, each tree node contains a key for identification
and at least one value based on which the city is laid out.
Nevertheless, limiting each tree node to a single value also
massively limits the number of visual attributes a software
city can make use of. For example, a single value can be
represented by the size of a building, with no other attributes
such as color that could convey further information. If each
tree node contained three values, one of them could be used to
calculate a building’s base area, one could be used to calculate
the building’s height, and one could be used to determine the
building’s color, providing much more information for more
diverse inspections. Using more visual attributes can make the
visualization richer, yet complex mappings should be used for
complex tasks or expert systems only since the mappings may
become challenging to perceive [29]. Thus, when designing a
new software city for a certain task (such as memory cities
for the task of heap memory evolution analysis), the designers
first have to decide whether they want to develop an expert
system or a system that is also usable by novices.

B. Memory Cities

Since many expert memory monitoring tools already exist,
our focus is to make memory anomaly inspection easier
for novice users [42]. To achieve this, the goal of memory
cities is to provide enough details to enable the detection
of memory anomalies such as memory leaks, while keeping
the visualization simple enough to understand it without prior
training or explanations.

Once this decision is made, the next step is to define which
data is needed. In general, a memory city is based on a
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Fig. 4. We use tree mapping to lay out the buildings in memory cities.

tree in which each node represents a group of heap objects.
As already discussed in Section II, a grouping tree can be
constructed in AntTracks by applying a user-defined set of
classifiers on the heap to group its objects accordingly. There
are two ways to aggregate the heap objects in each node:
Either by counting the number of objects, or by counting the
number of bytes that the respective objects take up in the
heap. We decided that for every tree node both metrics should
be available for visualization in the memory city. Thus, our
memory city tool expects the following data in each tree node:

• A unique key to identify the object group
(e.g., “Heap#Person#m1”).

• A name to display (e.g., “m1()”).
• A role that specifies the object group’s grouping criteria

(e.g., “Allocation Site”).
• An object count value.
• A byte count value.
• A list of child nodes which is empty for leaf nodes.
Since the heap grows and shrinks over time while an

application is running (as new objects are allocated and others
are freed by the GC), a major goal is to visualize this memory
evolution. Especially, memory cities should help users to
detect object groups that grow suspiciously strong, as this
behavior hints at memory leaks. To this end, a memory city
may not only load a single tree, but also a list of trees
(representing heap states at garbage collection points), where
each tree has a timestamp to ensure correct ordering.

Once such a list of trees has been imported, the memory
city calculates two meta trees that are used to lay out the city
and to highlight buildings: The max tree stores the maximum
number of objects and bytes a tree node represents at any point
in time (in other words, the largest size a district or building
may reach), while a growth tree stores the growth of each node
between the first and the last grouping tree.

Our memory city visualization has explicitly been developed
to not depend on AntTracks’ grouping trees or any internals
of AntTracks. To achieve this, we provide two ways of how to
import data into our memory cities tool: Either by loading a
list of grouping trees in JSON format2 from disk, or by sending
a list of grouping trees in JSON format to the memory cities
tool via a WebSocket. Thus, any other memory monitoring
tool besides AntTracks could also use our memory cities tool

2JSON format example for list of grouping trees: http://ssw.jku.at/General/
Staff/Weninger/AntTracks/VISSOFT20/MemoryCities.json

���
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Figure 2.5: An example of Memory cities [157] representing the program’s heap shortly after
startup (left) and 2 minutes and 300 garbage collections later (right). ©2020 Year IEEE.
Reprinted, with permission, from “Memory Cities: Visualizing Heap Memory Evolution Using
the Software City Metaphor” by Markus Weninger et al., 2020.

• Memory allocations and release. We found that 28.26% of the articles determine
gathering data from memory allocations and memory release by tracking specific
instructions (e.g., free, delete) or based on garbage collection events. For example,
articles S1 [156], and S2 [157] abstract the heap memory evolution through time to
assist developers in quickly detecting memory issues (e.g., memory leaks, memory
bloats). Figure 2.5 illustrates the approach proposed by article S2, which shows at the
left an application’s heap visualized with memory cities shortly after startup and at the
right the state of the heap 2 minutes and 300 garbage collections later.

• Memory events. A total of 45.65% articles collect data from all memory events described
previously. Some of these articles present visualizations to support students or developers
with understanding memory consumption. For example, article S6 [27] proposes Memoro,
a profiler with a visualization that shows how a program uses the memory. Memoro
calculates useful metrics (lifetime, usage, useful lifetime) based on the data extracted
(e.g., number of reads, number of writes) from the memory accesses. These defined
metrics allow developers to detect inefficient use of memory quickly. On the other hand,
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other articles propose visualizations for specific aspects, such as cache performance
analysis or memory analysis in HPC applications.

Furthermore, articles usually specify collecting metrics (e.g., memory address, size) involved
with each memory event. Additionally, some articles describe gathering additional information
described below to assist developers with memory consumption analysis.

• Relationships between functions/methods. Extracting the calling relationships is a
common strategy to assist developers with control-flow analysis [76]. Commercial tools
(e.g., JProfiler4, Yourkit5) display this information using a tree structure as shown in
Figure 2.6.

Figure 2.6: JProfiler displaying the methods executed with a Calling Context Tree.

We found that 17.39% of the articles describe collecting this information to determine
how functions are related to memory events and track specific functions. To exemplify,
article S11 [54] helps developers understand memory consumption by extracting the
memory accesses and the call stack. The visualization connects a dense scatter plot for
memory accesses and a flame graph for the call stack. As a result, this visualization
allows developers to explore through the memory accesses and determine which functions
are involved.

• References between variables. Some articles proposed visualizations to support developers
with data flow analysis. For this reason, 32.60% of the articles specify the extraction of
references between variables. The articles focused on analyzing the memory consumption
in object-oriented programming languages, which usually display the allocated objects
and the references between these objects. For instance, article S2 [157] proposes Memory
cities, a visualization to inspect memory growth and reference patterns over objects.
Weninger and colleagues employed Memory cities to identify memory leaks by examining
reference patterns.

• Time. We found that 26.08% of the articles explicitly describe collecting how much
time is spent executing some instruction or when a memory event occurs to facilitate
the program understanding.

4https://www.ej-technologies.com/products/jprofiler/overview.html
5https://www.yourkit.com
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• Threads. For 26.08% of the articles specify extracting which threads are involved in
memory events. Article S33 [116] describes that showing the threads created, destroyed
and what each thread is doing is fundamental to show programmers detailed information
about the program’s behavior.

• Data shared between computational units. We detect that 21.73% of the articles describe
gathering information related to how memory resources are shared among processors.
These articles present visualizations to assist developers in understanding the memory
management between multiple processors.

Source code. The articles that present static aspects, which are inferred without executing
the program belong to this category. We found that 47.82% of articles usually extract static
information to help developers map data collected from program execution to source code.
The latter benefits developers by identifying and proposing changes on the source code that
reduce memory consumption or repair memory issues.

• Line of code. We detected that 26.08% of articles extract the file and line of code
corresponding to memory events. These articles usually propose visualizations with
interaction mechanisms to provide the line of code or a highlighted piece of source code
for relating the data from program execution to source code quickly.

Class. We found that 21.74% of articles collect information at the level of class. As a
result, developers can pinpoint classes with specific issues. For example, article S18
[151] highlights classes that contain methods involved with several allocations or several
deallocations.

• Structural component. We found that 8.69% of articles gather information about which
package or module is involved with memory events. These articles usually present
visualizations that group visual elements based on a structural component. For instance,
article S11 [54] displays the functions executed through visual elements and assigns the
color of these visual elements based on the module as shown in Figure 2.7.

Version control systems. Only article S4 [123] describes extracting data from commits or
changes on source code between versions. This article proposes a graph of glyphs to identify
memory regressions between consecutive commits.

RQ2: All software visualizations show data from the program execution. The most
popular data from program execution involves memory events (allocations, accesses,
releases) and references between variables. About 47.82% of software visualizations
display static information. Only one visual approach displays information about changes
between versions.

2.3.3 RQ3: Visual Representation

This section covers the analysis and categorization of the selected papers based on three
relevant aspects in the software visualization field: visual techniques, interactions, and medium.
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Fig. 3. A click on points in the scatter plot highlights memory accesses
generated by the same function and shows a tooltip next to the selected point.
It contains information on the selected memory access gathered by our profiling
tool.

semi-transparent bars marking skipped address ranges (padding,
cf. Figure 2), so empty space inside a range shows as the
background color. We distribute ticks and labels irregularly
on the y-axis to mark only valid address ranges and obey a
(user-definable) minimal distance to the next tick.

To find hints for code optimization, the points representing
memory accesses alone are insufficient. Our tool provides
several interactive techniques related to the scatter plot and
supporting exploration. Mainly, a user should be able to
detect interesting access patterns and reference them with the
original source code. Clicking on an individual point reveals
meta information on the respective memory access, such as
function name, data address, etc. Additionally, all points of
the same source code function are highlighted to emphasize
the underlying access pattern (cf. Figure 3). Tooltips and
decorations are rendered with Blendish8 and NanoVG9.

To improve the readability of the scatter plot further with
respect to the source code context, the user may choose to
show the call stack as an alternative x-axis. We represent the
evolution of the call stack over execution time as a flame
graph [3]. Using the flame graph (cf. Figure 4), it is simple
to identify portions of code responsible for certain memory
access behavior. Additionally, the flame graph alleviates one
limitation of the scatter plot. A point carries the instruction
address of an instruction within the function that issued the
memory access. However, these functions often reside in the
kernel or runtime library. Only the call stack allows tracing
such a function back to user code, and, therefore, portions
of code which can be optimized. To emphasize the relation
between points of the scatter plot and elements of the call
stack, both use the same colormap, which we suggest to tie to
the modules. We use a user-defined transfer function to map
modules to colors by projecting the module index into the
texture space of the transfer function and read the color at that
position.

Our call stack representation provides additional interactive
techniques. Tooltips reveal meta information on call stack

8https://bitbucket.org/duangle/oui-blendish/src
9https://github.com/memononen/nanovg

Fig. 4. We depict the progression of an application’s call stack over time as
flame graph. It can be displayed as an alternative x-axis to the scatter plot.
Each box corresponds to a method called in the application. Therefore, a user
can relate memory accesses to the source code. The flame graph uses the
same color map as the scatter plot. In this case, colors are assigned based on
modules.

elements which are especially important if the element size is
too small to display the respective module or function name.
Clicking on a call stack element will highlight all points of
memory accesses in the scatter plot that have been issued by
the respective function. This interaction also shows the range
of addresses a function accesses.

Instead of implementing a new rendering framework from
scratch, we implemented our approach as a plug-in for the
MegaMol [30] framework.

VI. EXAMPLES

In this section, we demonstrate the applicability of our
visualization to the runtime behavior of different algorithms
and application scenarios. Memory access strategies or patterns
are influenced by varying implementation details and different
algorithm characteristics. We identify some fingerprint-like
patterns. However, an extensive field study and classification
of possible memory patterns is beyond the scope of this work.
A summary of the code used for the tests can be found in the
supplemental material. All examples have been compiled using
Visual C++ and traced on an x86-64 Windows 10 system.

A. Matrices

We have implemented two simple example procedures,
namely row-major and column-major to demonstrate our
technique (cf. Algorithm 1). While there is no difference
between those two in terms of results, there is a difference
regarding memory pattern and thus performance (cf. Figure 5).
First, we locate the timespan of each procedure at Mark
A and B using the flame graph. Every splat above those
rectangles depicts a memory access by those functions. We
know from experience and developer references that cache-
coherent memory access is fast. Therefore, we would expect
the fast version to be a straight linear scan through memory.
When comparing the highlighted rectangles, Mark A shows a
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Figure 2.7: Gralka et al. [54] illustrate the application’s call stack over time as a flame graph.
Each box corresponds to a method called in the application. In this case, colors are assigned
based on modules. ©2017 Year IEEE. Reprinted, with permission, from “Visual Exploration
of Memory Traces and Call Stacks” by Patrick Gralka et al.

Table 2.12: Classification of articles based on the visual technique

Visual techniques References Total

Geometrically-transformed S1-S3, S5, S7, S10, S14, S16-S20, S22-S23, S25-S27, S29, S33, S39,
S40, S43, S45

23

Iconic S2, S4-S5, S7, S14, S22, S25, S28, S33, S36, S40, S43 12
Dense Pixel S8, S11, S13, S15, S24, S30, S31-S32, S35, S37-S38, S41 12
Stacked S2, S6, S9, S11, S12, S21, S28, S29, S33, S36, S40 11
Standard 2D/3D S1, S5-S6, S9-S10, S14-S15, S34, S42, S44, S46 11

2.3.3.1 Visual techniques

Authors proposing a software visualization employ different visual techniques to explore the
information collected from a software application. We categorize the articles according to the
classification scheme proposed by Keim [66]. As a result, Table 2.12 illustrates the distribution
of articles based on five categories. In the following, we describe the results of these categories.

• Geometrically-transformed. According to Keim [66] geometrically transformed techniques
transform multidimensional data into low dimensional data. This transformation
involves mapping an object to a set of points and lines in 2D or 3D (e.g., node-link
diagrams, parallel coordinates). Half of the selected articles (50%) employ geometrically
transformed techniques. This category is the most frequent since several authors
propose node-link diagrams to represent relationships, such as object references or
the relationships between functions. For instance, article S26 [9] proposes Heapviz to
explore and identify primary data structures. Heapviz displays a node-link diagram
where the nodes represent object instances, and the edges denote the references between
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objects as shown in Figure 2.8. Heapviz allows developers to identify populated data
structures, data structures containing other data structures, and objects referenced by
several data structures.

Figure 3: A Heapviz visualization of a HashSet containing 100 objects. The graph on the left is unsummarized,
and the one on the right is summarized. The supplemental video demonstrates the interactive capabilities of
our system using this visualization example.

demonstrates how the user can interact with Heapviz. Be-
cause our work relies on the user’s being able to explore the
graph interactively, we recommend that the reader view the
video to have a better understanding of how Heapviz works
and how it can be used.

5.3.1 Canvas Movement
The user is able to pan the view around the visualization,

zoom in and out by arbitrary distances, and zoom the dis-
play to fit the entire graph. Additionally, the graph can be
laid out relative to a node of the user’s choosing, recentering
the view on that node and bringing the entire graph back
towards the new center.

5.3.2 Selection and Dragging
Nodes may be added to or removed from the current se-

lection set either individually or by subtrees (as defined by
the dominance tree). Once nodes are selected they can be
dragged. By default, dragged nodes maintain their distance
from the root node of the layout; however, the user may
enable free movement of nodes.

5.3.3 Search
Heapviz provides the user with a search bar that per-

forms an incremental search (search-as-you-type) over the
names, member variable names, and member variable val-
ues of nodes. Nodes that fulfill the query are highlighted
as they are found, a feature that reveals patterns of where
particular objects or values may be found in the heap. Al-
ternatively, searching can help the user quickly identify a
particular node he or she would like to investigate.

5.3.4 Field View
Nodes in the graph have a variety of attributes that can

be displayed to the user: member variable names, member
variable values, number of instances (for summarized nodes)
and size in bytes. When the user selects a node, Heapviz
displays all node attributes that apply to the selected node.
This allows the user to inspect the instance values of any
Java object.

5.3.5 Expanding and Collapsing
The user can interactively collapse and expand nodes in

the Heapviz graph. Only nodes that have children in the
dominance tree can be expanded or collapsed. A node that
dominates an entire subtree can be said to represent that
subtree; the ability to expand (show) or collapse (hide) that
subtree behind the dominating node offers the user a way
both to reduce unwanted visual clutter and to conceptually
simplify the graph.

5.3.6 Edge Visibility Toggles
The user is able to individually enable or disable the dis-

play of the two edge sets via a set of toggles. Dominance
edges can provide revealing information about conceptual
connections between data structures when the user is un-
familiar with the program; pointer edges show the actual
structure of the object graph, and thus are useful for both
program understanding and debugging.

6. CASE STUDIES
We now present the results of visualizing data structures

in several Java programs and use these as a basis for discus-
sion of Heapviz’s strengths and weaknesses. First, we show
two constructed examples (micro-benchmarks) built using
standard container classes. Second, we explore two real-
world benchmarks, 209 db [27] and SPEC JBB 2000 [28].

6.1 Constructed Examples
We first consider two examples constructed from standard

data structures from the Java class library. In both cases,
Heapviz can help users understand how a data structure is
implemented without looking at the source code.

6.1.1 HashSet
Consider a set data structure: a collection that contains

no duplicate elements and no ordering. One can implement
a set using a hash table, which maps keys to values. The
keys of the hash table are the elements of the set; the values
are irrelevant but must be present. The Java class library
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Figure 2.8: Heapviz [9] presents an interactive visualization to support the analysis of data
structures. ©Republished with permission of ACM (Association for Computing Machinery),
from “Heapviz: interactive heap visualization for program understanding and debugging”,
by Edward E. Aftandilian, Sean Kelley, Connor Gramazio, Nathan Ricci, Sara L. Su, and
Samuel Z. Guyer. 2010. Permission conveyed through Copyright Clearance Center, Inc.

• Iconic displays. This category involves visual techniques, which map the multidimen-
sional data attributes to icon features (e.g., tile bars, star icons). As a result, iconic
techniques display icons whose characteristics vary concerning the data attributes. Of
the selected articles, 26.08% employ iconic techniques. For example, S4 [123] introduced
the glyph called Spark Circle to analyze the variations of metrics (objects allocation
variation, number of changed methods, execution time variation) between consecutive
commits in a commit-graph visualization as shown in Figure 2.9. In this visualization,
each spark circle has three segments, the pink segment for the number of changed
methods, the orange segment for the objects allocation variation, and the blue segment
for execution time variation. The height of each segment is proportional to the absolute
value of the respective metric, and the border is black if any metric increases. As a
result, the authors of this visualization detected performance and memory regressions.

• Dense pixel. This category includes techniques that represent data values as pixels and
group them based on their dimension in specific areas (e.g., matrix visualizations). In
total, 26.08% of the selected articles use dense pixel techniques to represent a large
amount of data (e.g., memory accesses). For example, article S31 [93] proposes a
visualization tool shown in Figure 2.10 to analyze the behavior of memory allocators in
C programs. The main view presents an orthogonal dense pixel layout of time versus
memory addresses, which displays hundreds of thousands of allocation events without
wasting screen space. The rectangular sizes represent the lifetime and size of blocks,
and the color displays the allocation process. This visualization allows developers to
analyze memory allocators to optimize their functionality for reducing fragmentation.
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Fig. 2. Heapviz [1] presents an interactive visualization to support the analysis of data structures.
©Republished with permission of ACM (Association for Computing Machinery), from “Heapviz: interac-
tive heap visualization for program understanding and debugging,” by Edward E. A!andilian, Sean Kelley,
Connor Gramazio, Nathan Ricci, Sara L. Su, and Samuel Z. Guyer. 2010. Permission conveyed through Copy-
right Clearance Center, Inc.

Fig. 3. Visualization proposed by Sandoval [77] to analyze variations between commits. ©2019 Year IEEE.
Reprinted, with permission, from “Enhancing Commit Graphs with Visual Runtime Clues” by Juan Pablo
Sandoval Alcocer, 2019.

commit-graph visualization as shown in Figure 3. In this visualization, each spark circle has517
three segments, the pink segment for the number of changed methods, the orange segment518
for the objects allocation variation, and the blue segment for execution time variation. The519
height of each segment is proportional to the absolute value of the respective metric, and520
the border is black if any metric increases. As a result, the authors of this visualization521
detected performance and memory regressions.522

— Dense pixel. This category includes techniques that represent data values as pixels and523
group them based on their dimension in speci!c areas (e.g., matrix visualizations).524
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Figure 2.9: Visualization proposed by Sandoval [123] to analyze variations between commits.
©2019 Year IEEE. Reprinted, with permission, from “Enhancing Commit Graphs with Visual
Runtime Clues” by Juan Pablo Sandoval Alcocer, 2019.

• Stacked displays. This category includes visual techniques that show data with a
hierarchy structure (e.g., treemaps [130], hierarchical stacking). Of the articles, 23.91%
employ stacked displays to represent hierarchical partitioning. To illustrate, Figure 2.11
shows Vasco, an interactive visualization to explore object churn proposed in article
S21 [46]. Vasco represents the calling relationships between functions by employing a
sunburst. Vasco allows users to detect problematical functions by mapping the color and
angle to different metrics (e.g., number of allocated objects, number of captured objects).
As a result, users can explore functions that allocate many objects that are eventually
released and which functions release them. The authors of Vasco demonstrated how to
employ their visualization to find and solve memory churn.

• Standard 2D/3D. The articles which describe techniques such as plots of two or three
dimensions (x-axis, y-axis, and z-axis) belong to this category. In total, 23.91% of the
selected papers present standard 2D/3D displays (e.g., bar charts, pie charts). For
instance, article S34 [111] employs standard techniques to analyze cache behavior.
YACO support developer on understanding cache performance by displaying several bar
charts and pie charts to present the statistics on cache hits and misses.

Finally, we found that 39.13% of the selected studies employ more than one visual
technique. Consequently, the most popular combination of visual techniques involves the
geometrically-transformed display with iconic display.

Views. All the visualizations display the information in one or more views. Commonly, the
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Main visualization

Time axis

Memory axis

Occupancy bar

Block detail view

Context view

Figure 1. Interactive tool for visualizing dynamic memory allocations

memory. Following the x axis, we can see what happens
over a given memory range in time. Following the y axis,
we see a snapshot of the memory at a given moment. Rect-
angle sizes show the lifetime and size of blocks. This layout
is fast and straightforward to compute. We color every rect-
angle to show a data attribute aij via a suitable color map-
ping scheme.

time (seconds)

memory (KB)

{zoom in

highly dynamic period

first phase second phase third phase

list
allocations

Figure 2. Visualizing allocations in one bin

Figure 2 illustrates the basic idea for a memory alloca-

tion log dataset containing 119932 allocations spanning a
period of 4 minutes done by 54 concurrent processes. Color
shows the allocating process ID1. This image shows sev-
eral facts: The ”blue” process allocates the most memory.
Since the y axis maps to the address space, the long rectan-
gles at the image bottom show that the ”blue” process allo-
cates memory early and frees it as last. After start, almost
no extra memory is allocated in the first third of the mon-
itored period. Next, the ”green” process rapidly allocates
many equal-sized blocks, all at one moment, and frees them
quickly after, as shown by the thin vertical green stripes.
We discovered that this pattern of same-lifetime blocks is
typical for container objects such as lists. These lists use
about a third of the free memory (y axis), so they are quite
important. The second third of the period shows a high fre-
quency allocation-freeing pattern which almost fills up the
entire memory at some points. In the last third, there are
few allocations. All memory is freed in the end.

Figure 1 shows an actual snapshot of our visualiza-
tion tool. The main view shows the memory dynamics in
the currently selected bin. The view can be zoomed and
scrolled along the vertical (memory) axis, which is useful
when visualizing very large memory spaces (megabytes) or
bins with very small block sizes (few kilobytes). To the
right of the main view, a context view acts like a scrollbar:
The complete memory range is visualized, and the user can
drag a slider (the red frame) to scroll the view to the area
of interest. Under the main view, an occupancy bar is dis-

1We strongly recommend viewing all figures in full color

33

Figure 2.10: Visualization proposed by Moreta and Telea [93] to analyze memory allocations
behavior. ©2007 Year IEEE. Reprinted, with permission, from “Visualizing Dynamic Memory
Allocations” by Sergio Moreta, 2007.

use of well-integrated multiple views facilitates the exploration of distinct aspects of the data.
To illustrate the number of views used on the selected papers, we reviewed the visualization
description provided in each one. We found that 47.82% of the studies describe using a
single view to display all the information. Most of these papers enrich their visualizations by
combining two or more visual techniques, as we described previously. We also noticed that
39.13% of the articles report employing between two to four views. Finally, we detected that
13.04% of the articles adopt more than four views, usually to display other aspects through
visualizations with standard 2D/3D techniques.

RQ3.1: Around 60.87% of software visualizations employ one visual technique, and
the remaining use two or more techniques. The most popular technique (50%) is the
geometrically-transformed.

2.3.3.2 Interactions

Some visualizations increased their effectiveness by providing interaction options to the
users. Usually, a practitioner has the intention of performing some actions over the graphics
to facilitate information analysis. However, few articles explicitly describe the supported
interactions. This information is usually mixed with the visualization description or a section
on usage scenarios. In a number of cases this information was placed in some footnotes. In
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(a) Initial view (b) Refined view (c) Details for all invocations of the
getAllModelURIs method

Figure 5. JAZZ

(a) Initial view (b) Captures view (c) Details for the hasConnectAccess method

(d) Details for the hasConnectAccess method

Figure 6. CDMS

Figure 6c shows the same view with all previously
identified sources of churn removed (by using the “Se-
lect other invocations of this method” option followed
by “Remove selection”). The threshold for the metric
has also been adjusted to show more capturing loca-
tions. In the figure, the mouse pointer is located on
the SecurityServer.hasConnectAccess method,
which captures a large number of temporaries. As the
information panel indicates Figure 6d, this node captures
300 temporaries of 8 different types. Its region captures
an additional 700 temporaries. Interestingly, an inspection
of the immediate sibling of this node in the view re-
veals exactly the same local capture behavior. Selecting
the “Show allocating methods” option for either of these
nodes reveals another clue. The hasConnectAccess
method was invoked 20 times in the trace, and it created 20
SecurityDescriptor structures (one per invocation).

Each security descriptor is created and initialized by dese-
rializing a stream of bytes, resulting in 1000 temporaries
being created in the process.

A manual inspection of the code reveals that each
SecurityDescriptor instance is created for a specific
Id instance. Caching SecurityDescriptors within
their associated Id objects would therefore prevent most
of these temporaries from being repeatedly created. It is
also worth noting that hasConnectAccess is guarded
by a global flag that determines whether security checks are
enabled. During performance testing, it is conceivable that
such checks could be disabled, thus leading to very different
performance characteristics.

V. RELATED WORK

Visualizing execution data. A large body of existing
work proposes visualization techniques to help with program

Figure 2.11: Vasco [46], an interactive visualization to explore object churn. ©2012 Year
IEEE. Reprinted, with permission, from “Vasco: A visual approach to explore object churn
in framework-intensive applications” by Fleur Duseau, 2012.

order to analyze the interaction options that proposed visualizations support, we resorted to
classifying only articles that explicitly specify the supported interactions. This classification
was based on the taxonomy proposed by Yi et al. [167]:

• Select: mark something as interesting. Distinguish visual elements of interest is relevant
for dense visualizations. We found that 60.86% of the visualizations support this
interaction. For example, article S2 [157] presents Memory cities, a visualization to
analyze heap evolution using the software city metaphor. In this visualization, the
buildings are colored using a gradient ranging from gray to red. Memory cities allow
the user to highlight a building in blue and thus facilitate its tracking over evolution.

• Explore: show me something else. A user can view a limited amount of graphic elements
due to a large amount of data and the screen space used to display them. Users usually
are interested in seeking out something new by moving the camera across a scene. This
category includes interaction techniques (e.g., panning) that allow users to explore
different sub-collections of data. We observed that 54.34% of the articles provided
exploration techniques. For instance, article S2 [157] allows moving the camera to view
the visualization from above, with a perspective as though the observer were a bird for
facilitating inspection of visual elements.

• Reconfigure: show me a different arrangement. The arrangement of elements on the
screen helps analyze data. We noticed that 17.39% of the visualizations support this
task, like article S7 [22] presents a node-link diagram that allows users to modify the
layout by dragging nodes.

• Encode: show me a different representation. This category involves the interactions
that enable a user to modify the visual representation. We found that 10.86% of the
visualizations support metric selection like article S21 [46] that presents Vasco that
provides a menu bar to change the metrics for color or size of arcs.
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• Abstract/Elaborate: show me more or less detail. To examine the details of an element
of interest is a primary task. Therefore, this category includes details-on-demand
interactions. According to Yi and colleagues, the interactions in this category allow
developers to adjust the level of abstraction of a data representation. This category is
the most frequent in visualizations (60.86%). Usually, the visualizations provide pop-up
windows or provide panels with detailed information.

• Filter: show me something conditionally. Filtering according to criteria allows users to
focus on specific elements quickly. We detected that 32.60% of visualizations enable
users to hide elements that do not satisfy a condition. For example, article S7 [22]
presents a menu for excluding methods based on the type of objects that they allocate.

• Connect: show me related items. Users focusing on an element of interest will typically
explore its relationships with other elements. We found that 21.74% of the visualizations
provide interactions to support the navigation through the related elements. For
instance, article S7 [22] facilitate this task by highlighting the edges and nodes related
to a selected node.

Additionally, we found that 28.26% of the articles do not explicitly describe the interaction
mechanisms provided or specify the intentions of users when they interact with visualizations.
We also noticed that the visualization mantra “Overview first, zoom and filter, then details
on demand” [131] is not always considered by the proposed visualizations.

RQ3.2: Around 71.74% of software visualizations provide interaction mechanisms. The
most popular interactions involve (i) distinguishing elements of interest (select) and (ii)
examining the details of an element of interest (abstract/elaborate).

2.3.3.3 Medium

Advanced technology provides users different ways to interact with 3D or 2D visualizations.
Maletic and colleagues [81] explained that mediums (e.g., single monitor, wall displays,
immersive virtual reality environments) might improve visual representations since they
present distinct characteristics. Although monitoring resource consumption may involve some
dedicated devices [86], most of the selected visualizations are rendered on a standard monitor
of a desktop computer or laptop. Some articles do not explicitly provide the medium, but
we inferred that visualizations are rendered on a standard computer screen. As a result, we
found that no study exploited the medium to enhance visualizations dedicated to supporting
memory consumption analysis tasks.

RQ3.3: Most software visualizations are rendered on a standard monitor of a desktop
computer or laptop. Some articles do not explicitly mention the medium used.
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2.3.4 RQ4: Evaluation

This section describes the distinct evaluation strategies to validate the effectiveness of the
selected software visualizations. We classify the selected studies in three categories based on
the work of Merino et al. [84]: theoretical, empirical and no explicit evaluation. Table 2.13
illustrates the distribution of articles based on the strategies used to evaluate visualizations.

Table 2.13: Classification of articles based on the strategies used to evaluate visualizations

Categories Strategy References Total

Empirical Usage scenario S2, S4-S6, S8-S13, S15, S17, S19-S23, S25-S27, S29-S31,
S35, S38, S41

26

Anecdotal evidence S14, S19, S24, S28, S43 5
Experiment S1, S3, S7 3

No explicit
evaluation

S16, S18, S32-S34, S36-S37, S39-S40, S42, S44-S46 13

We found that 28.26% of the articles do not provide an evaluation, while the remaining
present an empirical evaluation. These empirical evaluations are divided into subcategories
described below.

• Usage scenario. Of the selected studies, 56.52% only provide application examples.
These usage scenarios provide an extended description of how to address memory
issues or analyze memory usage with the proposed software visualization. The authors
highlight the interactions and the advantages of their visualizations by analyzing popular
benchmarks like DaCapo suite [21], DB suite, Reptile [153], GCOld [107], Paraffins, or
open-source projects. Half of the papers in this category presented usage scenarios as
case studies. Nonetheless, they do not explicitly describe that professional developers
in the industry context with real-world applications employ the visualization. Most of
the authors usually give an extended description to demonstrate the effectiveness of
their visualization in different cases. However, this description is limited to providing
the article authors’ experience in using their tool, bearing the risk of biased conclusions
according to different articles [162, 169].

• Anecdotal evidence. We found that four articles present a short section, usually with
the title “industrial experience”, where they informally describe the use of the visual-
ization on software companies with professional engineers. In this way, they claim the
effectiveness of the visualization, but they do not present data of formal interviews or
questionnaires. For example, article S24 [118] collects information from an informal
interview to four programmers with the think-aloud method. The goal of this interview
is to collect information about how developers employ Allocray to detect memory leaks.
This research summarizes the usability observations and the feedback of the participants
during the interview.

• Experiment. Three articles present experiments with participants over software applica-
tions. For instance, paper S7 [22] carries out a user study to evaluate their visualization.
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The authors explain with details the interviews with eight participants, who use the
tool to achieve some tasks. This study describes the results and observations during the
work sessions and gathered feedback from the participants.

Finally, none of the selected articles evaluate their visualizations with professional de-
velopers and real-world software applications in the context of the software industry. As
we mentioned in the category of use scenarios, 28.26% of the articles present sections titled
“Case studies”, however the users involved in the evaluation are the authors of the articles.
According to Merino and colleagues [84], a study that provides an evaluation with authors
instead of independent developers, is considered a “Usage Scenario”.

RQ4: Most software visualizations are evaluated empirically. About 56.52% of software
visualizations provide usage scenarios as an evaluation strategy. However, most articles
lack robust empirical evaluation of how visualizations perform in practice with software
developers and real-world applications.

2.3.5 RQ5: Availability

This section lists the selected software visualizations that are available. Most of the software
visualizations support a group of people to address a problem of a particular context, this
group of people is commonly called audience [81]. Having an available tool benefits the target
audience to perform software engineering tasks over real-world applications. Also, researchers
can conduct how their approach works compared with other visualization proposals by using
controlled experiments.

We extracted from the selected articles the tool’s name and the links from which the
visualization tool is available. However, only 21.73% of the articles provide an existing link,
and 6.52% of the articles present a non-existing link. Additionally, we performed web searches
based on the article’s title, the authors, and the tool’s name to find visualization tools available
for the remaining articles. As a result, we identified links to visualization tools for 23.91%
of the articles due to web search. Table 2.14 details the information of available software
visualizations tools. Table 2.14 presents the tool’s name, where the link was found (article
content or web search), the link, and extra information presented aside from the article to
install and use the software visualization.

Extra information. We focused on the variety of information that could be available to
enrich the experience and facilitate the use of the visualization. Therefore, we detected the
presence of the following information:

• Video. Some links provide a video explaining features of the visualization. In this case,
five links present a video showing the use of the visualization as supplemental material.

• Sample data. Some conferences promote the release of datasets to gain public data and
the possibility of replicability. Six links provide a list of sample data, which reference
the data collected from the applications used in the article as examples.
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Table 2.14: Visualization tools and additional information from the selected articles. The
information was verified on 18/05/2021.

ID Ref. Tool Location Link Video Sample Data

S1 [156] AntTracks Article http://mevss.jku.at/?page_id=

1592

S2 [157] Memory
Cities

Article https://doi.org/10.5281/zenodo.

3991785

X X

S3 [63] PVC Article https://github.com/RYOSKATE/

PlayVisualizerC.js

X

S6 [27] Memoro Article https://github.com/epfl-vlsc/

memoro

S7 [22] – Article http://dx.doi.org/10.5281/zenodo.

1311787

X

S8 [145] NumaMMA Article https://github.com/numamma/

numamma

X

S9 [53] MemAxes Web
search

https://github.com/LLNL/MemAxes X

S13 [44] Aftermath Web
search

https://www.aftermath-tracing.

com/installation/

X

S14 [62] Memory
blueprint

Web
search

http://smalltalkhub.com/

ainfante/MemoryProfiler/

S15 [18] Tabarnac Article https://github.com/dbeniamine/

Tabarnac

S19 [82] HeapDbg Article http://heapdbg.codeplex.com

S21 [46] Vasco Web
search

http://geodes.iro.umontreal.ca/

en/projects/vasco/

X

S26 [9] Heapviz Web
search

https://github.com/eaftan/

heapviz

S28 [115] Dyvise Article ftp://ftp.cs.brown.edu/u/spr/

dyvise.tar.gz

S31 [93] – Web
search

http://www.staff.science.uu.

nl/~telea001/uploads/Software/

MemoView/

S33 [116] Jove Web
search

http://cs.brown.edu/~spr/

research/visjove.html

X

S36 [114] Jive Web
search

http://cs.brown.edu/~spr/

research/vizjive.html

X

S37 [109] GCspy Web
search

https://www.cs.kent.ac.uk/

projects/gc/gcspy/

S39 [171] Memory
graphs

Article http://www.st.cs.uni-sb.de/

memgraphs/

X

S41 [168] – Web
search

http://www.cs.toronto.edu/

~yijun/cacheviz.guide.html

S45 [170] DDD Web
search

https://www.gnu.org/software/

ddd/

RQ5: Overall, around 54.36% of the visualizations are not available. Furthermore,
only 21.37% of software visualizations are available through a valid link in the articles,
and about 23.91% of visualizations are available on the web.
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2.4 Discussion and Open Challenges

The results described previously provide a general overview of the state-of-art software
visualizations centered on the analysis of memory consumption. We have described distinct
features and categorized the selected software visualizations to answer our research questions.
This section discusses some findings, open challenges for our proposed dimensions, and
highlights some initial observations. Also, we provide recommendations to practitioners and
researchers based on our research questions.

Tasks supported. The selected software visualizations attempt to facilitate the analysis
and solution of several memory issues (e.g., memory bloat or fragmentation). The design of
these visualizations is based on assumptions of developers’ needs about the memory issue to
be addressed. However, to our knowledge, developer design requirements or needs for each
particular memory issue has not been thoroughly researched yet. In the past, several studies
have analyzed what developers asked during software development [76, 133], revealing a number
of needs to be addressed. However, no study provides detailed questions related to memory
consumption analysis. Having solid knowledge about developers’ needs while addressing these
issues may help improve the design and effectiveness of the proposed visualization tools.

Observation 1: Programmers’ needs during memory usage analysis and memory issue
repairing are not entirely studied.

Section 2.3.1 details the classification of articles based on the provided tasks to support
programmers over the analysis of memory usage. According to our findings, various visual-
izations help developers with memory consumption analysis by focusing on different aspects.
More than half of the visualizations in General and Data structure are available. However,
few visualizations are available to assist developers in analyzing applications with specific
architectures, and one visualization is available for analyzing cache behavior. The unique
visualization to analyze memory regression is not available. We also detected that at least
two visualizations are available to detect each type of memory issue. However, the number of
visualizations available is reduced.

Observation 2: Domain-specific memory analysis, memory issue identification, and
memory regression analysis are not fully explored yet, leaving an open opportunity.

Data abstracted. Section 2.3.2 describes the aspects of the software involved in the analysis
of memory consumption. According to our findings, a set of articles develop a strategy to
gather information, while others use dedicated tools, and the data extracted by these tools are
from different projects. The variety of analyzed projects, tools, and data collection strategies
makes it difficult to compare proposed visualizations. However, creating a baseline of project
set (i.e., projects with particular memory issues) and collection strategies may offer developers
and future researchers a guide to successfully gathering specific data and baselines to contrast
their tools with state of the art.
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Observation 3: Comparing proposed visualizations is difficult due to the variety of
data collection strategies, analyzed projects, and the availability of tools.

Regarding the aspects extracted, we found that most visualizations dismiss mapping the
information from program execution with information from source code, like lines of code or
classes. Consequently, developers may deal with problems detecting which part of the code is
causing or participating in a memory issue. Relating memory metrics with source code is still
an open area for further research.

Observation 4: Connecting dynamic information to static information is not popular
in software visualizations for this context. However, this could facilitate detecting the
causes of memory anomalies.

Visual representation. Section 2.3.3 details the visual techniques used, the interaction
options supported, and the medium where the visualization is displayed. We found specific
trends in visualizations when using some visual techniques depending on the domain of the
problem. For example, most visualizations that assist developers with data structure analysis
employ geometrically transformed techniques. However, there is no evidence of the advantages
of using a particular visual representation for a single problem domain. In addition, we found
that most of the articles present multiple views to display the information. In the same way,
we do not observe if using a single view presents better, similar, or worse results than using
multiple views.

Observation 5: Some software visualizations present different techniques to represent
the same data. However, it is not known which technique is more suitable.

Finally, we detected that most of the studies employ a single monitor screen to render
the visualization. We encourage researchers to analyze the impact of the medium on the
effectiveness of visualizations centered on support memory consumption analysis by employing
different mediums to render the visualization, like wall-display, multi-touch tables, or a 3D
immersive environment.

Observation 6: The use of other medium (e.g., 3D immerse environment, wall-display)
than single monitor screen is not explored for software visualizations focused in support
memory usage analysis.

Evaluation. Section 2.3.4 summarizes the evaluation strategies used by the selected articles.
We found that most articles lack robust empirical evaluation that involves software developers.
For instance, we detected that only three articles present evaluations with users of the target
audience and expose the comments and observations during the work sessions. We also
observed usage scenarios presented as case studies, which detail the author’s experience in
employing the proposed visualization to analyze memory consumption.
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Observation 7: There is a limited empirical evidence about how programmers employ
software visualizations when analyzing memory usage and addressing memory issues.

Conducting experiments could be difficult because the nature of the problem domain may
require expert developers with a high level of knowledge regarding memory management.
Besides, designing and conducting robust experiments is an aspect that memory visualization
articles need to improve.

Availability. Actually, only 21.73% of the articles present a valid link where the software
visualization tool is available. We detected three articles published between 2002 and 1997
that provide no valid links. Additionally, we found links with software visualization tools for
23.91% of the articles by performing a search on the web that could be tedious, as we explain
in Section 2.3.5. We must highlight that we did not try to install the tool nor verify whether
it works. However, we enlisted the additional information (videos that show how to use it
correctly or a data sample) that the link presents to support users with the visualization tool.

Observation 8: Programmers may fail to adopt software visualizations to perform
tasks related to memory consumption analysis and memory issues detection due to the
lack of visualizations available for their use.

2.5 Related Work

To the best of our knowledge, this work is the first literature review of software visualizations
focused on supporting the user to comprehend memory consumption. Nevertheless, relevant
work was published in the software visualization field covering different aspects over the years
[105, 106, 119].

Scope. Focus on software visualizations over a general context: these surveys [13, 105, 106,
119, 143], systematic literature reviews [68, 83, 85, 95, 142, 149], taxonomies or classifications
[43, 81] generate findings of how visualizations support users on software engineering tasks. In
addition, a number of studies cover visualizations supporting specific aspects of the software
engineering field. For example, there are literature reviews [67, 129, 158] focused on software
visualizations to support the analysis of software architecture design. These studies analyze
how software architecture is visually represented to examine the design based on features
like complexity, cohesion, etc. Another popular domain is software evolution. For this
domain, Novais et al. [101], and Salameh et al. [121] published systematic studies centered
on visualizations to display how certain software elements (e.g., source code, dependencies)
change over time.

In addition, several studies [10, 58, 64] focus on using software visualization in educational
programming. These studies examine the benefits of using visualizations to improve and
facilitate students’ learning process. The studies consider the effectiveness of software
visualization in engaging students in the field of education. Our study detected six articles
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that propose software visualizations to help students or novice developers analyze memory
consumption.

Furthermore, Bedu et al. [17] presented a tertiary systematic literature review on software
visualization. This article identifies topic (e.g., architecture, education) trends of surveys
focused on software visualizations and issues related to software visualizations (e.g., scalability,
validation).

Dimensions. Furthermore, most of the surveys and systematic literature reviews [81, 83,
85, 106, 105, 119] cover the tasks that are supported, the gathered information, and the
visual techniques used to display the information. The main variation is our survey’s scope;
consequently, the tasks supported and the collected information are more specific than in prior
works. For example, we discussed that our visualizations under study help developers analyze
the program behavior and support debugging tasks following the classification scheme of prior
work. However, our findings show various focus points (e.g., data structures, cache behavior)
to analyze and different memory issues (e.g., memory leak, memory bloat) to address. We
also provided which data (e.g., threads, time) and which information sources (e.g., program
execution, source code) are collected, similar to the study of Merino et al. [85]. However, we
considered how the extracted data from different sources is related to helping developers with
memory consumption analysis.

Furthermore, a minor number of the studies mentioned in this section cover the evaluation
and availability dimension. However, some systematic reviews focus explicitly on how software
visualizations are evaluated. The cases by Merino et al. [84], Sensalire et al. [127], and
Seriai et al. [128] examine the different evaluation strategies to validate certain features of a
software visualization study (e.g., effectiveness, usability). These studies provide guidelines
to produce enough evidence to evaluate software visualizations and describe some challenges
in the field. They also explain the weak empirical evidence among software visualizations
and detail the inconsistencies in the studies. Our findings expose that 73.91% of the articles
present empirical evaluations, mostly usage scenarios. However, the number of studies that
describe experiments and case studies is minor. Our results confirm that few articles evaluate
visualizations with developers and real-world applications as prior work details.

We noticed that few studies [30, 85] examine the availability of software visualizations.
However, our study does not limit publications’ data and focuses on visualizations that
support memory consumption. Consequently, we provide links to visualization tools not
considered by the prior work.

Methodology. As mentioned, most of the relevant prior work focuses on reviewing the
state-of-art in the software visualization field. These studies also follow the steps proposed in
distinct guidelines for systematic reviews [70, 104]. However, they present differences with our
work in some steps. For example, the construction of the search string could be less complex
due to the scope of the studies. Therefore, the number of articles resulting from searching
over digital databases and the number of selected papers tend to be higher than ours.
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2.6 Threats to validity

Our study and results are subject to validity threats. To carefully identify possible threats
and analyze how their impact may be mitigated, we decided the following:

Search of articles. A threat to the validity of this study may be not cover all the relevant
articles. We performed a systematic search to find articles that propose visualization centered
on supporting developers with memory consumption analysis. We developed our search query
based on keywords from articles that belong to our scope published between 2017 and 2020 in
the most cited venues dedicated to software visualization or memory management. However,
our search query is biased by the specific keywords of this set of articles. We decided to
decrease this threat by performing an additional manual search and bi-directional snowballing.
These two phases assisted in our finding of missing relevant studies.

Selection of articles. A relevant article may be excluded during the selection phase and
vice versa. We defined inclusion/exclusion criteria and a quality assessment to reduce bias
in selecting articles. During the selection of inclusion/exclusion criteria, we independently
review the title and the abstract to consider if an article should be included or not. We
calculated the Fleiss’ kappa for the inter-rater reliability, and the result was 0,72%, which is
generally considered a good agreement. We then discussed and resolved the disagreements
during meetings. For the quality assessment, we adopted a checklist to examine the quality of
papers. The discrepancies found were reviewed again in a second iteration, and discussion
sessions were carried out to reach a consensus.

Data extraction. Another threat to consider is that the data extraction process could be
biased. We mitigated this threat by establishing a protocol to extract the data for each
paper. The thesis author managed a spreadsheet to keep records of relevant text segments
and identify irregularities like missing information. The two thesis supervisors review if the
data extracted was correct.

Data analysis. During the data analysis, we performed thematic analysis and content
analysis to answer our research questions. The thesis author performed a systematic process
to conduct a thematic analysis for RQ1 and RQ2. This process includes generating codes and
defining themes (patterns) that help answer the research questions. The codes and themes
generated vary depending on the coder’s experience, point of view, and level of abstraction.
For example, to respond to RQ1, we detected visualizations focused on analyzing specific
points. However, some articles were too general at determining their objectives, so we decided
to consider these articles as a general-purpose group since no specific pattern was found. We
tried to reduce this threat by checking the consistency of the process. Due to this, the two
thesis supervisors examined the description of themes and the data coding. We carried out
three discussion meetings to analyze the codes and the themes generated. As a result, we
solve the differences.

To answer RQ3.1, RQ3.2, and RQ4, we conducted a content analysis. We selected
classification schemes proposed in previous studies. We code the data based on these schemes
and measure the agreement between the thesis author and the thesis supervisors. We detected
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some specific discrepancies that were discussed and solved during a meeting.

2.7 Summary

This chapter summarizes the software visualizations that support programmers in analyzing
memory consumption or addressing memory issues. We systematically selected 46 articles
and categorized these articles based on five dimensions (i) the tasks supported, (ii) data
abstracted, (iii) visual representation employed (visual techniques, interactions mechanisms
provided, and the medium used), (iv) evaluations conducted, and (v) tools availability. The
following paragraphs summarize our results about the five dimensions.

Tasks supported. We use thematic analysis to generate the categories based on the infor-
mation about the purpose of the visualization to help the programmer in some tasks related
to memory consumption analysis. Therefore, we classified the articles based on the focus
point analysis and memory issue detection. According to the classification in focus point
analysis, most software visualizations focus on supporting programmers in data structure
and general purposes involved with memory usage analysis, such as heap analysis. On the
other hand, there is not much research on visualizations to support memory regression or
cache performance analysis. We also noticed that around 47.82% of the visualizations support
memory issue detection. Consequently, memory issue identification is not fully explored yet,
leaving an open opportunity.

Initially, we focus on looking for an empirical catalog of the developers’ requirements or
needs during memory usage analysis or memory issues detection to use it as a classification
scheme to categorize the articles. However, we noticed that no study provides detailed questions
or information about the needs of programmers when analyzing memory consumption. We
consider that providing a solid knowledge about developers’ needs while addressing these
issues may help improve the design and effectiveness of the proposed visualization tools.

Data abstracted. We defined the classification scheme according to the sources from
which various data were collected. We found that all software visualizations show data
from the program execution. The most popular data extracted from program execution
involves memory events (allocations, accesses, releases) and references between variables.
About 47.82% of software visualizations display static information. Only one visual approach
displays information about changes between versions. Additionally, our findings show that most
visualizations dismiss connecting the information from program execution with information
from source code, like lines of code or classes. We consider that collecting information from
both sources reduces the effort of practitioners to analyze memory consumption.

Visual representation. We categorize the articles according to the classification scheme
proposed by Keim [66]. We found that 60.87% of software visualizations employ one visual
technique. The most popular technique is the geometrically-transformed display, frequently
used in articles that propose node-link diagrams representing relationships between elements.
We also noticed that most software visualizations provide interaction mechanisms. However,
the visualization mantra “Overview first, zoom and filter, then details on demand” [131] is
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not always considered by the existing visualizations. Finally, most software visualizations are
displayed using a standard monitor. We consider that visualizations could be implemented to
use other mediums, such as tactile devices or 3D environments.

Evaluation. We classify the selected studies based on the work of Merino et al. [84]. Our
results show that most software visualizations are evaluated empirically. About 56.52% of
software visualizations provide usage scenarios as an evaluation strategy and used popular
benchmarks like DaCapo suite [21], DB suite, Reptile [153], GCOld [107], Paraffins, or open-
source projects. However, most articles lack robust empirical evaluation of how visualizations
perform in practice with software developers and real-world applications.

Availability. We extracted from the selected articles the tool’s name and the links from
which the visualization tool is available. Only 21.73% of the articles provide an existing link.
Additionally, we identified links to visualization tools for 23.91% of the articles due to web
search. Overall, around 54.36% of the visualizations are not available. Consequently, we
consider the lack of availability one of the main weak points in the field.

In this chapter, we found the popular features among current software visualizations,
opportunities for improvement, and open challenges in the field. In the following chapter, we
will focus on exploring some of the following points: (i) the usefulness of displaying aspects
from software related with how the program runs and connects the source code with dynamic
information, (ii) how a visualization performs in practice, and (iii) the programmers’ needs
during memory usage analysis.

47



Chapter 3

Visualizing Memory Consumption
with Vismep

In this chapter, we introduce Vismep, an interactive visualization prototype to assist pro-
grammers in analyzing the memory usage of Python programs. Vismep summarizes how
the program runs and allocates memory using polymetric views [74]. Vismep also connects
the source code with dynamic information. Chapter 2 positions the proposed visualization
against the state of the art, where the main differences are the connection between source
code and dynamic information, as well as displaying metrics focused on how the programs
run (e.g., calling relationship between functions/methods). Therefore, we explored how
valuable this information is for practitioners. Consequently, this chapter also presents an
exploratory study to understand how Vismep supports eleven programmers in practice and
the perceptions of programmers about the tool. As a result, we reported five information
needs when participants analyze memory consumption and how they use Vismep to satisfy
these needs. Besides, participants positively perceived Vismep due to its valuable views and
high overall usability.

The content of this chapter is based on the publication “Visualizing Memory Consumption
with Vismep” [24] (co-authored with Alexandre Bergel, Juan Pablo Sandoval, and Araceli
Queirolo Cordova) and has been reformatted according to departmental guidelines. Addition-
ally, this chapter is also related to the bachelor’s dissertation of Araceli Queirolo Cordova titled
“Mejorar la usabilidad y efectividad de una herramienta de perfilamiento de memoria” [112].
The bachelor’s dissertation was supervised by the first supervisor and the author of this Ph.D.
dissertation.

3.1 Introduction

Monitoring and understanding an application’s memory usage help programmers discover
anomalies that may be non-trivial and could provoke crashes and performance degradation
[52, 90, 139]. Numerous memory profiling tools have been proposed to assist programmers in
monitoring memory usage and identifying memory anomalies [80, 99, 154]. Typically, these
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tools report the information related to memory usage through full-text reports or tables.
Moreover, several software visualizations with interaction mechanisms were considered suitable
alternatives for helping programmers examine and address memory issues [22, 27, 54, 157]
since visualizations are known to support practitioners in software comprehension [45, 74].

Although various tools are provided, some studies claim that programmers usually need
substantial time to understand memory usage, detect anomalies, and repair issues [78, 166].
This situation could occur because little is known about what information programmers
need when analyzing the memory usage of programs. In this chapter, we introduce a visual
approach based on the state of the art and provide detailed information about the performance
of this approach in practice. Consequently, we present a contribution in two relevant points
mentioned in Chapter 2. Firstly, this chapter provides initial information about programmers’
needs when analyzing memory usage. Secondly, we provide empirical evidence about how
programmers employ our visual approach to find the information required to satisfy their
needs. Obtaining this information represents a stepping stone in (i) enhancing the evaluations
of software visualizations by providing detailed empirical evidence and (ii) an initial knowledge
about the programmers’ needs when analyzing memory usage. Consequently, our study could
be valuable to demonstrate whether a tool provides adequate support, benefits, limitations,
and how to improve the design.

As mentioned previously, this chapter introduces Vismep, an interactive visualization
prototype to help programmers analyze Python application memory usage. Vismep gathers
and reports information (e.g., calls between functions, memory usage) using polymetric
views [74]. In order to explore and analyze the behavior and perception of programmers
when employing Vismep, we conducted an exploratory study with eleven participants who
analyzed their software’s memory consumption using Vismep. We carefully monitored which
information programmers usually look for when analyzing memory usage, how they use
Vismep to obtain this information, and how they perceive Vismep.

Our findings indicate that programmers look for dynamic and static information to (a)
identify relevant code - the functions/methods involved in implementing specific behavior
or belonging to particular modules, (b) locate allocation hotspots - the functions/methods
or code lines that allocate most memory, (c) inspect circumstances, rationale, and events of
selected functions/methods - the circumstances in which functions/methods are executed,
their rationale and the memory events (allocation, access, release) related, (d) detect memory
anomalies - code involved with excessive or inefficient memory usage, and (e) trace the cause of
anomalies - how memory anomalies affect memory usage behavior. Additionally, programmers
used a wide range of Vismep features to perform previously mentioned activities. Furthermore,
we found missing information and opportunities for improvement that could guide the design
and implementation of Vismep and other tools. We also noticed that Vismep is positively
perceived since participants indicated a low to moderate mental workload effort when using it
and considered that Vismep offers high overall usability.

Contributions. In summary, this chapter makes the following contributions:

• Vismep, an interactive visualization prototype that supports programmers in analyzing
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memory consumption over Python applications. Vismep is publicly available1. We
also presented an artifact that contains all the documentation necessary to install and
execute Vismep in three different operative systems [48]. This artifact was accepted
and received the “Open Research Objects (ORO)” and “Reviewed Objects of Research
(ROR)” badges at the ROSE Festival of the 38th IEEE International Conference on
Software Maintenance and Evolution (ICSME 2022).

• The information needs - relevant code, allocation hotspots, circumstances, rationale,
and events, memory anomalies, and cause of anomalies - that programmers have when
analyzing memory consumption.

• A detailed report that summarizes how programmers employ Vismep to obtain the
required information and how programmers perceive Vismep.

Structure of the chapter. Section 3.2 summarizes the prior work. In Section 3.3, we
describe in detail Vismep. Section 3.4 details the exploratory study conducted to understand
how Vismep support programmers and how they perceive Vismep. Section 3.5 describes the
results obtained about the information needs, Vismep usage and perception of Vismep. In
Section 3.6, we discuss our findings and the limitations of the study. Section 3.7 provides the
threats to validity of the study. Finally, Section 3.8 concludes and outlines future work.

3.2 Related Work

This section highlights and summarizes the background and literature related to (i) memory
consumption analysis in Python, (ii) software visualizations for memory usage analysis, and
(iii) the evaluation of those software visualizations.

3.2.1 Memory Consumption Analysis in Python

Several libraries and tools center on memory usage analysis in Python. Table 3.1 illustrates
the tools/libraries along with the (i) activities they claim to support, (ii) information collected,
and (iii) report presentation used. We extracted this information and other data (e.g.,
installation requirements, links) from their respective documentation2.

These libraries and tools extract diverse information and report it using textual reports,
non-interactive visualizations, and interactive visualizations. The libraries mentioned are
highly expressive, flexible, and can generate tuned reports (primarily textual), but users must
modify their code using the correct API calls. For instance, memory profiler [3] provides a
decorator (@profile) to mark the functions to be profiled and report the memory used by each
code line from the selected function. On the other hand, when practitioners employ some
tools [8, 5] to extract information and show it usually through visualizations, they often select

1https://github.com/Balison/Vismep
2https://www.dropbox.com/s/49mdqg5n11bhvdd/PythonMemoryProfilers.csv?dl=0
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Table 3.1: Libraries and tools along with (i) the activities that claim to support (A1 =
Analyzing memory usage of entities; A2 = Analyzing allocation hotspots; A3 = Analyzing
memory usage over time; A4 = Analyzing leaking objects), (ii) the information reported (M.A.
= Memory allocations; M.R = Memory releases; R.F. = Relationships between functions;
V.R. = Variable references; T. = Time; TH. = Threads; L.C. = Lines of code; C. = Class;
S.C. = Structural component) and (iii) the report presentation used. The information was
verified at 02/09/2022.

Library/Tool
Activities

Information reported
Report presentation

Program execution Source code

A1 A2 A3 A4 M.A. M.R. R.F. V.R. T. TH. L.C. C. S.C. Textual Visualization

Guppy [1] X 7 X X X 7 7 X 7 7 7 X 7 X 7

Muppy [2] X 7 X X X 7 7 X 7 7 7 X 7 X 7

Objgraph [6] X 7 7 X X 7 7 X 7 7 7 X 7 7 X
Memory profiler [3] X X X 7 X X 7 7 X 7 X 7 7 X X
Tracemalloc [7] X X X 7 X X X 7 7 7 X 7 X X 7

Fil [5] X X 7 7 X 7 X 7 7 7 X 7 X 7 X
vprof [8] X X X 7 X X X 7 X 7 X X X X X
Scalene [20] X X X 7 X X 7 7 X X X 7 7 X X
memray [4] X X X 7 X X X 7 X X X X X X X

the data gathered using flags presented in the documentation without manually changing the
code.

Both libraries and tools commonly claim to help programmers in the following activities:

Analyzing memory usage of entities. Some libraries and tools show the memory used
by a particular entity (variable, function). For example, Muppy, Guppy, and vprof enlist the
memory used by the allocations made during program execution. Other options [3, 4, 5, 7, 20]
display the functions executed, and their memory consumed.

Analyzing allocation hotspots. Several libraries and tools report the code that allocates
most memory (allocation hotspots). For instance, Tracemalloc and memory profiler enlists
the allocation hotspots (code lines). Fil, memray highlight the code (line of code, function)
responsible for allocating most memory using visual hints (e.g., color, size).

Analyzing memory usage over time. Some libraries and tools [3, 4, 8, 20] display the
memory usage over time through line charts or sparklines. Although other memory profilers
[1, 2, 7] do not collect any time metric, they help users note changes in memory usage between
points in time. For example, Tracemalloc shows how memory usage changes (increased,
decreased) before and after executing a function.

Analyzing leaking objects. Few libraries [1, 2, 6] show the memory allocations made
at a given point in time (after a function call) along with the objects that reference these
allocations. For instance, objgraph displays a graph where each node is an object allocated
in memory, and the edges represent the references between objects. These libraries allow
programmers to detect memory leaks by locating unused memory resources.

This study not only introduces Vismep, but provides a detailed investigation of how
programmers use Vismep to analyze Python applications. Also, we should mention that
although Vismep collects information typically extracted by some of these libraries/tools, it
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displays and connects the information differently. More specifically, we display four interactive
views that employ different visual techniques (e.g., geometrically-transformed displays, 2D
displays) to summarize how the program runs and allocates memory instead of tables, textual
reports, or non-interactive visualizations. Vismep also allows users to inspect the source
code of the functions executed, something that most options do not consider or have limited
support (e.g., Tracemalloc shows only the lines that occupy the most memory).

3.2.2 Studies on Software Visualization for Memory Usage Analy-
sis

As was illustrated in Chapter 2, the published works that propose software visualizations
employ multiple techniques to display a variety of information and support programmers
when analyzing memory usage. Several studies show the calls between functions/methods
with a memory footprint (e.g., memory allocations, memory accesses, memory releases) using
node-link diagrams or stacked displays [22, 27, 46, 54, 93, 156]. These visualizations help
programmers explore and locate functions/methods related to problematic memory events
(allocations, accesses, releases), leading to memory anomalies (e.g., memory bloat, memory
leak). Other studies propose visualizations to represent references between objects and assist
programmers in memory leak detection by highlighting objects not reclaimed by the garbage
collector [39, 40, 156]. Also, showing this information is helpful for data structure analysis by
locating objects shared by data structures [9].

Although Vismep does not introduce a novel visualization technique, it adequately combines
demonstrated techniques, such as the node-link diagram and the scatter plot. Also, it connects
the source code with information from program execution, something that most visualizations
dismiss [23]. Besides, Vismep does not explicitly show the allocations made during program
execution; instead, it highlights the memory usage per function and line-by-line. Consequently,
the level of detail of the information provided on memory consumption differs from that used
by most visualizations. Furthermore, this study presents Vismep that supports visualizations
of Python applications, which despite Python’s popularity, it is not often investigated in the
published articles.

3.2.3 Software Visualization Evaluation

Software visualizations that assist programmers with memory consumption analysis are
difficult to evaluate. Most studies usually evaluate these software visualization approaches
through usage scenarios [27, 32, 46, 54, 123], showing the benefits of approaches. Nevertheless,
little is known about how diverse programmers use and perceive visualizations to inspect
applications’ memory usage. According to Chapter 2, evaluating visualizations with developers
could be challenging since it may require participants experienced in memory monitoring.
In addition, providing detailed evidence as to whether an approach is adequate to support
some programmers’ needs in this problem domain is problematic since these needs are not
thoroughly researched yet. Consequently, few software visualizations are evaluated through
user studies [22, 63, 156]. Among them, most focus on task completion and correctness. We
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consider analyzing other variables to recognize the effect that visualizations have in this
context. Therefore, we (i) identified the information required by programmers when analyzing
memory usage using Vismep, (ii) explored how programmers employ Vismep to obtain this
information, and (iii) analyzed how programmers perceive Vismep.

3.3 Vismep

In this section, we describe the design of Vismep, how it works, and illustrate the features
with an example.

3.3.1 Overview

Vismep is an interactive visualization prototype designed to help programmers in analyzing
the memory usage of Python applications. Vismep collects the memory traces during the
execution of a Python program and displays the information through interactive views (see
Figure 3.1). In addition, Vismep is equipped with an event-tracking system to facilitate the
detection of events made by a user.
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Figure 3.1: The Vismep overview. The Vismep profiler collects the memory traces from the
execution of a Python program and generates CSV files with the information. Our visualizer
then reads the files generated and displays the main interactive view (Call graph view) through
which the user can navigate and access the other complementary views.

Vismep profiler. To extract run-time information of the program execution, we implemented
a profiler for Vismep. This profiler is based on two popular python modules, memory profiler 3

and trace4. The Vismep profiler collects the following data:

• Invoked functions/methods. Vismep extracts a set of invoked functions/methods during
program execution using the sys module5. For each function, it also collects: the
function/method name, file, number of lines of code, and number of executions.

• Memory usage per function and line-by-line. Vismep gathers a memory footprint for
each invoked function/method, such as the amount of memory allocated per function
and line-by-line during program execution. The profiler collects this information based
on the functionality of memory profiler module. In summary, we consider two aspects:
(i) the memory usage of the Python interpreter after a line has been executed and

3https://github.com/pythonprofilers/memory_profiler
4https://github.com/python/cpython/blob/3.10/Lib/trace.py
5https://docs.python.org/es/3/library/sys.html
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(ii) the difference in memory of the current line with respect to the last one. We also
consider this approach when extracting the memory usage per function.

• Relationships between functions/methods. The profiler collects the calling relationships
between functions/methods during program execution based on the approach of trace
module.

The profiler generates CSV files with the information previously mentioned. Note that
Vismep extracts this information since our goal is to explore the usefulness of displaying
aspects from the control flow and connecting the source code with dynamic information when
programmers analyze memory usage. In Chapter 2, we reported that visualizations do not
commonly display these aspects but some studies claim that it may be useful to comprehend
memory management and detect the causes of memory anomalies. Unfortunately, these
studies lack or present limited empirical evidence to show when or how these aspects are
required. Furthermore, the profiler provides various helpful features of two popular modules
previously mentioned. However, the profiler could also present some issues involved with
these modules, such as the accuracy of memory usage, overhead, the performance execution,
among others. In this chapter, we evaluate whether or not Vismep features are useful for
programmers when analyzing memory usage. In addition, we also pinpoint aspects to improve
the support.

Vismep visualizer. To visualize the information extracted by the profiler, Vismep use
polymetric views [74] to provide interactive visualizations that run on top of Pharo6, the live
programming environment. We present four visualizations: (i) Call Graph view, (ii) Source
code view, (iii) Sub call Graph view, and (iv) Scatter plot view. These visualizations and the
interactions are detailed in the following subsections.

Event tracking system. We equipped Vismep with an event-tracking system to facilitate
the detection of events made by a user. This system automatically detects motions (e.g.,
mouse hovering over a visual element, clicks) when the interactive visualizations are displayed.
Vismep also presents a End Session button on the Call graph view to stop the tracking system
and export the user actions to a CSV file. Vismep generates a new CSV file each time that
the visualizer is opened.

The event tracking system generates a CSV file with the following information:

• Time and position. The current time and mouse cursor position.

• View used. The view in which the mouse cursor is located (if it is outside any view,
it does not detect movements): Call graph, Scatter plot, Source code X, and Sub Call
Graph X, where X is the selected function/method.

• Event performed. The events made by the user: over (by default, when the mouse cursor
is above a visual element) or click (when the user selects a visual element).

6http://pharo.org
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• Visual element. The visual element involved with an event performed by the user:
nothing (default value) or the name of the function/method that was focused (over) or
selected (click).

During the data collection, we used this system to identify the actions made on a view, the
popular views, and the flow followed to obtain the information that participants considered
valuable.

The implementation of Vismep and the learning material are publicly available7. Ad-
ditionally, we present an artifact that contains all the documentation necessary to install
and execute Vismep in three different operative systems available on Zenodo and accessible
through DOI [48].

3.3.2 Vismep In a Nutshell: Exploring a Pandas Issue

To illustrate Vismep, we analyzed a memory issue reported in the pandas package8. Pandas
is a flexible and powerful package for supporting programmers in data science/data analysis
and machine learning tasks. The issue reported was reproducible with the piece of code listed
in the righthand panel of Figure 3.2 (labeled as SC). The code essentially creates a dictionary
(data) in line 2, and between lines 3 and 5, a dataframe object is created based on data and
converts it into a JSON string several times.

Figure 3.2 gives an overview of Vismep. The left view is the Call graph view that displays
the calling relationships between the invoked functions/methods. In the Call graph view, the
export dataframe function that consumes 728.474 MB is selected. Consequently, the Source
code view is displayed on the right-hand side to show the source code of the selected function
(export dataframe). Vismep also provides alternative views, such as Scatter plot view and
Sub call graph view. Figure 3.5 shows the Scatter plot view that presents a graph to assist the
user in quickly noting the relationship between the memory consumed and the number of
executions of the functions/methods invoked. Figure 3.4 displays the Sub call graph view that
indicates the callers and callees of a particular function, in this case the to json function.

3.3.3 Call graph view

This view helps users understand how the program runs and uses memory. It shows a node-link
diagram commonly used to illustrate the calling relationships between functions/methods [23].
It also displays the memory footprint and additional information (e.g., name, number of
executions, size) for each executed function/method. In Chapter 2, we discovered several
alternatives to visualize information of calling relationships between functions. However, we
noticed no empirical evidence of which visual representation is better for this purpose. We
decided to use a node-link diagram because it is a visual representation that (i) is widely

7https://github.com/Balison/Vismep
8https://github.com/pandas-dev/pandas/pull/45489
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CG
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CG
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Figure 3.2: Illustrating a memory issue of pandas with Vismep. Call Graph view (CG) shows
the memory usage along the execution path. Each node denotes an executed function, and
the edges indicate the calling relationships. When a function is selected, its border turns
orange, and its source code is displayed in Source Code view (SC). Each line background
from the source code denotes the memory usage increment from gray (low increase) to orange
(high increase). If there is no increase, the background is white.

utilized by current tools and (ii) is simple to understand and does not imply a very high
learning curve [14].

Function/
Method

#Executions

#Memory

HighLow

#Lines of 
code

Black border for function/method of external libraries.

B

A

Edge width proportional to the number of times that 
the calling relationship occurs.

C

Figure 3.3: On the right, the legend for Call graph view and Sub call graph view, the width
of a node corresponds to the function’s average memory, and the height denotes the times
a function is executed. On the left, an example with Call graph view, where A function is
executed few times and consumes a lot of memory. A calls first B (a few times) and then C

(several times).
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Nodes. As Figure 3.3 illustrates, each node is a function/method invoked during the program
execution. The visual mapping of a node is the following:

• The width represents the average memory consumed (MB) by a function/method.

• The height denotes how many times the function/method is executed.

• The color indicates the number of lines of code used to define the function/method.
The color varies from light to dark green, the darker the node the greater the number
of lines of code. However if the source code (e.g., defined in native C sources) cannot
be retrieved by inspect package9, the color is gray.

• The border shows if the function/method belongs to an external library (e.g., pandas,
random).

Note that the use of polymetric views [74] helps users identify exceptional entities (e.g.,
hotspot allocations, unexpected memory usage) based on the visual attributes [42]. For
instance, export dataframe function is the widest node and has the least height of the nodes
in the view since it consumes around 728 MB with a single execution in Figure 3.2.

Edges. Edges between functions/methods indicate the calling relationships. The edge’s
arrow indicates the direction of the calling relationship to help users distinguish a caller from
a callee. The edge’s width denotes the number of times the calling relationship occurs during
program execution. For example, Figure 3.3 shows that A function calls to B function and C

function. Also, displays that A function calls more times to C function than to B function, due
to the width of edges.

Layout. The functions/methods are located in the view using a vertical tree layout. As a
result, the roots that usually include main function are located at the top, and leaves are
placed at the bottom. Additionally, the functions/methods are sorted based on the invocation
order from right to left.

3.3.4 Source Code View

When a function/method is selected, a Source code view is built at the right, as shown in
Figure 3.2 (SC). This view displays the source code of the selected function/method and
highlights the background code lines based on the memory used. The background fades
from light gray (i.e., little memory usage) to orange (i.e., high memory usage) depending
on how much memory consumption increased after executing that line. A white background
indicates that the memory did not increase. Consequently, this view connects dynamic aspects
with source code, so users can easily identify the code piece that allocates most memory
or anomalies [23]. To illustrate, in Figure 3.2, we observe that line 5 allocates the highest
amount of memory when df is converted to a JSON string, thus, export dataframe function
calls to to json function.

9https://docs.python.org/3/library/inspect.html
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3.3.5 Sub Call Graph View

Literature [14, 19] reported that the larger the node-link diagram, the more complex it is to
understand the visualization. Consequently, we opted for creating the Sub call graph view to
reduce complexity of exploring the Call graph view. Therefore, Sub call graph view assists the
user in quickly identifying the execution path of a particular node that she/he would like to
investigate. When selecting the Callgraph tab at the top of the Source code view, the Sub call
graph view is shown instead of the source code.

Figure 3.4: Overview of Sub call graph view.

Figure 3.4 illustrates the Sub call graph view that presents a summarized call graph based
on a function/method. It visualizes the callers and callees of a selected function/method,
where the callers and callees are located at the left and right of the selected function/method,
respectively. For example, we can observe in Figure 3.4 that to json function is called by
export dataframe function 500 times. For each time that to json function is called, to json

function calls to other three functions: to json, is nonnegative int, and handle fromlist

(part of a C library). Node labels are placed behind nodes to not clutter the visualization.
The effect is to favor an unobstructed layout of nodes. A label is temporarily moved to the
foreground when the mouse hovers a node, as illustrated in Figure 3.4.

3.3.6 Scatter Plot View

Vismep supports users in determining the relationship between the total memory consumed
(sum of memory allocated per execution) and the number of executions of the functions/meth-
ods invoked. Scatter plot view represents each function/method as a point (e,m) where e is
the number of times the function/method is executed (X-axis), and m the amount of memory
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allocated by the function/method (Y-axis). The color of each point ranges from light to
intense green to indicate the size in terms of lines of code.

Figure 3.5: Overview of Scatter plot view.

Figure 3.5 shows that write function allocates most total memory (around 3077 MB) and
it is executed 500 times. This function is called indirectly in line 5 at the export dataframe

function (Figure 3.2), and focuses on converting the df to a JSON string. More specifically,
write function allocates around 6 MB each time it is executed. Figure 3.5 also illustrates

some functions/methods in which the total memory used is negative. The latter indicates
that during some execution or executions of a function/method, the garbage collector is
activated, and several blocks of memory are released. Functions releasing memory have a
negative memory allocation.

3.3.7 Interactions

Vismep provides a number of interactions to facilitate the exploration of the Python application
under analysis.

Canvas movement. The user can pan the view around the different visualizations, zoom
in and out by arbitrary distances, and zoom the display to fit the entire visualization.

Mouse hovering. As Figure 3.2 and Figure 3.4 shows, when the user hovers the mouse
cursor above an invoked function/method, a popup window appears with information about
the respective function/method, such as the name, the number of executions, and the average
amount of memory consumed. If the user performs this action over an invoked function/method
in the Call graph view (Figure 3.2) and the Sub call graph view (Figure 3.4), the incoming
and outgoing edges are highlighted in red and blue, respectively.
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Drag. The user can select a function/method node and drag the node with all its callee nodes
to change the position of nodes in the Call graph view and Sub call graph view. Manually
dragging it is useful to cluster nodes in an ad-hoc fashion.

Search. Vismep offers the user a button named Find at the top left of the Call graph view
(Figure 3.2) that performs a search over the name of an invoked function/method. The user
should select the desired function/method from a window that enlists the functions/methods
that fulfill the query. Consequently, the selected function/method is highlighted.

Drill down. Vismep provides the user an option to obtain detailed data about a particular
invoked function/method. Clicking a function/method shows two views: Source code view
(Figure 3.2) and Sub call graph view (Figure 3.4). In addition, the user can navigate over these
views by continually selecting nodes in each view, as illustrated in Figure 3.6. In this case,
the user could observe the overview of the program with the Call graph view (left), inspect
the source code of export_dataframe function (middle), and explore the calling relationships of
to_json function (right) that is called by export_dataframe in line 5.

Figure 3.6: The user can navigate over different views of Vismep by continually interacting
with each view. On the right, the user selects the export_dataframe function in Call graph
view. Due to drill down, export_dataframe code is displayed in the middle view (Source code
view). Then, the user selects the to_json called by export_dataframe to inspect the calling
relationships of to_json function using Sub call graph view.

3.4 Methodology

We designed and conducted an exploratory study to understand how programmers employ
and perceive Vismep when analyzing the memory usage of Python applications. Figure 3.7
illustrates the steps we used for our study.

The following subsections explain these steps.
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Figure 3.7: Overview of the workflow of the exploratory study.

3.4.1 Research Questions

Our study is designed to answer the following research questions (RQ):

• RQ1: How does Vismep support programmers when analyzing memory consumption?

– RQ1.1: What information do programmers look for when analyzing memory
consumption using Vismep?

– RQ1.2: How do programmers employ Vismep to obtain this information?

• RQ2: How do programmers perceive Vismep when analyzing memory consumption?

– RQ2.1: How does Vismep impact the cognitive load?

– RQ2.2: How useful do programmers consider Vismep?

– RQ2.3: What are the perceptions of the programmers on the current features of
Vismep?

To respond RQ1, we examined the behavior of programmers and the actions made with
Vismep during memory consumption analysis. To answer RQ2, we collected impressions of
the cognitive load and the usability perceived by programmers when employing Vismep. We
also extracted the participant’s feedback from the features offered by Vismep.

3.4.2 Participants & Applications

We invited students and bachelors from our university and members of Python communities
to participate in our study. As a result, eleven programmers freely opted to participate
(see Table 3.2), all familiar with Python programming. Their average age was 27 years old
(std. dev. 1.9). Participants were from diverse fields of study; three participants have or are
pursuing a degree in Computer Science, and the remaining were in other fields (e.g., Geology,
Electrical). Two participants were from the industry, three were in research centers, three
pursued a master’s degree, and the rest were bachelors. We included Python programmers
with different study fields since we consider that several Python users (e.g., data analysts) do
not necessarily have or are not pursuing a Computer Science degree.

Participants exhibited various levels of experience in Python programming. Their average
experience in Python was 4.6 years (std. dev. 2.4). Participants also self-assessed their
expertise using a Likert scale of five steps i.e., 1 (novice) to 5 (expert). The average experience
in Python programming was 3.4 (std. dev. 0.8).
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Table 3.2: Information of participants (Python programming experience (years); Self-
assessment expertise (Likert-scale: 1 (novice) to 5 (expert)); Experience in memory usage
analysis; Experience in addressing memory issues; Strategies when analyzing memory usage).

ID Study Field Python Programming Experience in Memory Usage Analysis and Issues

Experience Self-assessment Memory Usage Addressing Strategies

(Years) Expertise Analysis Memory Issues Used

P1 Geology 9 2.5 X X Logs

P2 Computer Science 1.5 3 X X Logs

P3 Electrical Engineering 4 3.5 X X Manual

P4 Electrical Engineering 8 5 X 7 -

P5 Aerospace Engineering 2.5 3 X 7 -

P6 Computer Science 6 4 X X Manual

P7 Physical Engineering 5 3 X X Manual

P8 Mathematical Engineering 3 3.5 X 7 -

P9 Metallurgical Engineering 1 3 X X Manual

P10 Computer Science 4 2.5 X X Web search

P11 Computer Science 5 4 X X Manual

Experience in memory usage analysis. Eight participants showed experience examining
memory usage and addressing memory issues. We asked experienced participants how they
usually monitor memory consumption or manage memory anomalies in Python applications,
and we detected some strategies used:

• Manual. Five participants usually trace the code execution to identify a piece of code
(e.g., unused data, allocation sites) with the risk of causing memory anomalies (e.g.,
memory bloat, memory leak).

• Logs. Two participants usually insert events (e.g., print messages) at the functions or
methods they consider prone to memory issues. For instance, they print a message
when a specific data structure is created, modified, or accessed.

• Web search. One participant prefers to perform a web search with the characteristics
involved with a memory issue to repair it.

Projects under study. We described explicitly in the invitation that the study focused on
understanding how programmers analyze memory consumption in Python applications. We
also specified that volunteers participating in this study must choose a Python application
to analyze during the study since monitoring memory usage is not a trivial activity, and
the practitioner requires deep knowledge about the code under analysis. Consequently,
participants selected different programs with which they were familiar. Most of the selected
applications belong to the domain of data analysis, artificial intelligence, and machine learning.
Additionally, they mentioned that their selection was based on either (i) they considered
memory usage a potential threat to their application or (ii) they wanted to verify assumptions
about memory usage and find ways to reduce memory usage.
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3.4.3 Procedure

The study consisted of carrying out a work session for each participant with her/his selected
application. A work session begins with the moderator presenting the study’s objective and
characteristics described in the invitation to programmers who agreed to participate. The
moderator also asked the participant to use the think-aloud technique [60] during the session.

Category Question Rationale

Characterizing
memory usage

Q1: Can you characterize the
memory consumption of your ap-
plication?

The participant identifies and describes the informa-
tion relevant to the memory usage analysis (e.g., allo-
cation sites, allocations made).

Understanding
memory usage

Q2: What have you learned from
your application? Do you find
anything surprising ( e.g., anoma-
lies)?

The participant contrasts the information provided
by Vismep with her/his assumptions. Also, she/he
explains if Vismep provides additional and unknown
information and which potential issues may exist in
her/his program.

Optimizing
memory usage

Q3: Do you find an opportu-
nity to decrease memory con-
sumption?

The participant localizes and explains which parts of
the code may be modified to reduce the memory usage
of her/his program.

Q4: If you find an opportunity to
decrease memory usage, can you
improve it and run the profiler
again?

The participant modifies the code’s parts that are
assumed to be the root cause of a memory anomaly.
Also, she/he employs Vismep over the changed pro-
gram to verify the impact of the changes in memory
usage.

Table 3.3: Questions answered by the participants.

Additionally, each work session is structured as follows:

1. Background and expectations. The participant answered general questions to gather
demographic data such as their age, gender, level of experience in Python programming,
analyzing memory usage and addressing memory issues. The moderator then asked
the participant for an opinion about the memory consumed by her/his application.
The participant also explains which elements (e.g., functions, methods, allocations)
may produce a memory anomaly (e.g., memory bloat, memory leak) during program
execution.

2. Exploration. The participant read the learning material of Vismep and had an exploration
phase to familiarize herself/himself with the visualization tool.

3. Tasks. The participant employed Vismep to analyze the memory usage of her/his
application and responds to the questions listed in Table 3.3. We deliberately asked
these questions to ensure that participants had a goal they cared about and looked
for the information they considered valuable to understand memory usage and detect
optimization opportunities. We consider that providing defined tasks (e.g., select
allocation hotspots) instead of these questions would prevent participants from naturally
defining a goal they care about when analyzing memory usage.
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4. Online forms. The participant filled out two online forms to measure the mental
workload (NASA-TLX) [56] and the perceived usability of Vismep (SUS) [12]. These
two self-assessment techniques are hugely popular in empirical studies and are applicable
in our case.

5. Post-study questionnaire. Finally, the participant answered verbally and informally
open questions regarding their observations, perceptions, and desired improvements of
Vismep.

We observed, tracked, and monitored the participants’ interactions with Vismep throughout
the work sessions. We also recorded a video of the screen and the audio of the laptop used by
the participants.

Pilot study. We conducted pilot studies with a set of other participants than those of
the group that participated in the study. Our pilot studies involve three participants from
computer science and three from mathematical and mechanical engineering. These participants
have three to seven years of Python programming experience and a self-rated experience of
between 3 and 4 using a five-step Likert scale, i.e., 1 (beginner) to 5 (expert). During the pilot,
each participant selected an application with familiar code (e.g., own code, company project,
personal project) and analyzed the memory usage of their selected application with Vismep.
Figure 3.8 and Figure 3.9 illustrate screenshots of some pilot studies where participants
explored the Vismep views to understand how the program manages the memory and runs.

(a) Vista principal. (b) Diagrama de dispersión.

Figura 5.3: Resultado del participante P3. Entre las librerías usadas están numpy, pai_io y
argparse.

Figura 5.4: Resultado del participante P4 con la tarea 4.1. Entre las librerías usadas están
TensorFlow. Gráfico de sub-llamadas de fit_transform y código fuente de __exit__.

20

(a) Call graph view (b) Scatter plot view
(a) Call graph view (b) Scatter plot view

Figure 3.8: During the pilot study, the first participant used the Call graph view (a) and the
Scatter plot view (b) to identify the allocation hotspots.

Pilot studies helped us improve the tutorial and question descriptions in Table 3.3. The
pilot also revealed some bugs or inconsistencies (problems with interaction mechanisms) in
Vismep, which were resolved for the exploratory study.
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(a) Vista principal y código fuente de main.

(b) Diagrama de dispersión. (c) Vista principal y gráfico de sub-llamadas de train.

Figura 5.7: Resultado del participante P7. Entre las librerías usadas están numpy, matplotlib,
pandas, mlxtend.

Figura 5.8: Resultado del participante P8. Entre las librerías usadas están tkinter, copy,
webbrowser. Vista principal y código fuente de GUIy.

22

Figure 3.9: During the pilot study, the sixth participant explores the node’s source code in
the Call graph view.

3.4.4 Data Collection and Transcription

We collected a variety of data to answer our research questions. Next, we discuss the data
collection process.

Interactions extraction. To answer RQ1, we collected the actions made by participants
when using Vismep to answer the questions in Table 3.3. We reviewed and checked the
tracking logs and video recordings for each session to generate a spreadsheet that summarizes
the session. Each spreadsheet presents (i) the question asked by the moderator, (ii) the
verbalized thoughts of participants, (iii) the corresponding period of time in the video records,
(iv) the actions made by the participants, and (v) the Vismep views used. To illustrate this
information, consider the following example:

Question asked: Q1
Time: 00:02:50 - 00:03:45
Verbalized thoughts: The MAIN_RUN function is the principal function of my program.
What does the function do? This function initializes some variables and calls other
functions to run the simulation and plot the data. Here, I also see that calling the
CREATE_REPORT function is the code line that consumes the most memory.
Participant actions: The participant explores the source code of MAIN_RUN function
and describes what the code does by pointing out the lines responsible for calling other
functions. The participant also locates the highlighted lines of the view and identifies
the line that allocates the most memory.
Views used: Source code view

Furthermore, to minimize biases during this process, the student supervised by the thesis
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author generated the spreadsheets, and thesis author checked if the data was consistent with
the audio, video records, and the logs from the event tracking system.

User experience extraction. To respond to RQ2, we gathered the answers from the
following online forms:

• NASA-TLX. It is widely used to measure subjective mental workload [56]. NASA-TLX
derives an overall workload score based on six workload dimensions: mental demand,
physical demand, temporal demand, performance, effort, and level of frustration.

• SUS. The System Usability Scale is a reliable and standard technique to evaluate the
usability of a system [12]. This questionnaire contains ten statements to measure the
perceived usability of a system.

Next, we transferred the results of the NASA-TLX and SUS questionnaires into a spread-
sheet for computational purposes. We also collected the responses of the participants corre-
sponding to the post-study questionnaire. Furthermore, we checked the verbalized thoughts
of participants to extract information related to the perception of Vismep features.

3.4.5 Data Analysis

This section illustrates the methods used to analyze the gathered data.

Interactions analysis. The thesis author analyzed the spreadsheets using open and
descriptive coding [122] to identify themes (activities) related to the information required by
participants (RQ1.1), similar to the study of Velez and colleagues [150]. One of the thesis
supervisors checked the consistency of codes and observations to minimize biases during this
process. Next, based on the generated codes, the thesis author checked which actions were
performed to obtain the data required using Vismep (RQ1.2).

User experience analysis. We calculated and examined the NASA-TLX and SUS scores
reported by eleven participants to respond to RQ2.1 and RQ2.2. To answer RQ2.3, we
followed the open coding method [35] to analyze the answers to the post-study questionnaire.
First, we detected concepts and keywords in the collected data. We then grouped the concepts
to generate coherent groups (categories) that highlight broader patterns.

3.5 Results

This section details the results to answer the two research questions proposed in the study.
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3.5.1 RQ1.1: Information needs

We identified that participants looked for dynamic and static information for five themes to
answer questions (Table 3.3). Table 3.4 lists the themes and the number of participants that
looked for each theme. We next detailed what information participants searched to respond
to the questions based on the following categories.

Table 3.4: Information needs, actions performed, and views (CGV = Call graph view; SCV =
Source code view; SPV = Scatter plot view; SCGV = Sub call graph view) in Vismep that
the eleven participants explored to analyze applications from Python.

Theme Information need for Freq. Actions Explored
views

Freq.

Relevant
code

Detect code that is involved
in implementing certain
behavior or belonging to
particular modules, files.

11 Search functions/methods
based on name.
Search functions/methods
based on module.

CGV 11

Inspect the functions/methods
source code.

SCV 4

Allocation
hotspots

Detect code that allocates
most memory.

11 Discover and compare memory
usage of functions/methods.

CGV
SPV
SCGV

11
9
2

Discover and compare memory
usage of code lines.

SCV 11

Circum-
stances,
rationale
and events

Understand under what
circumstances
functions/methods are
executed, their rationale and
the memory events related.

11 Inspect the functions/methods
callers, callees and execution
path.

CGV
SCGV

11
7

Inspect functions/methods
rationale.
Inspect functions/methods
memory events (allocations,
accesses, releases)

SCV 11

Memory
anomalies

Locate code involved with ex-
cessive or inefficient memory
usage.

11 Analyze memory usage of al-
location hotspots or relevant
code.

CGV
SPV

11
3

Inspect the circumstances, ra-
tionale and events of allocation
hotspots or relevant code.

CGV
SCV

7
5

Anomalies
cause

Locate the root cause of an
anomaly.

7 Inspect the circumstances, ra-
tionale and events of memory
anomalies.
Analyze how memory anoma-
lies affect the memory usage
and functionality of relevant
code

CGV
SCV

7
4

Characterizing memory usage. When participants characterized the memory used in
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their applications, all of them identified relevant code; the functions/methods considered vital
for the program functionality based on participants’ knowledge about the program under
analysis. Also, all participants searched for allocation hotspots; the functions/methods or
code lines that allocate most memory. After participants detected functions/methods from
relevant code or allocation hotspots, they often expanded their information by understanding
their circumstances, rationale, and events. More specifically, as the participants knew which
functions/methods were interesting to them (relevant code, allocation hotspots), participants
wanted detailed information about (i) the circumstances that caused their execution, (ii)
the intention behind their implementation (i.e., rationale), and (iii) the memory events
(allocations, accesses, releases) related with them.

Understanding memory usage. To understand the memory used by their applications,
participants located relevant code and allocation hotspots. Participants then contrasted the
memory consumed by those functions/methods with the assumptions that participants held.

Participants also tried to locate memory anomalies; code involved with excessive or
inefficient memory usage. When detecting memory anomalies, participants mostly attempted
to identify unexpected memory usage behavior in relevant code and allocation hotspots and
determine if the memory consumed was necessary or not for the proper functionality of the
program.

Optimizing memory usage. When participants tried to reduce the memory consumed by
their application, most traced the anomalies cause; the root cause responsible for excessive
or inefficient memory usage (memory anomalies). Then, these participants analyzed how to
address the memory anomalies based on the anomalies’ cause.

Other participants considered that their applications do not contain a memory anomaly.
Consequently, they located allocation hotspots and tried to comprehend their circumstances,
rationale, and events for locating an optimization opportunity.

RQ1.1: Programmers looked for dynamic and static information to (a) identify relevant
code; code involved in implementing certain behavior or that belongs to particular
modules, (b) locate allocation hotspots; code that allocate most memory, (c) inspect
circumstances, rationale, and events of selected functions/methods; the circumstances
in which functions/methods are executed, their rationale and the memory events
(allocation, access, release) related, (d) detect memory anomalies; code involved with
excessive or inefficient memory usage, and (e) trace the cause of anomalies; how memory
anomalies affect memory usage behavior.

3.5.2 RQ1.2: Use of Vismep

Table 3.4 lists the actions that participants performed to look for each theme, the Vismep
views used to execute the actions, and the number of participants that performed those
actions per view. We described how participants employed Vismep to get the information
needed for the identified themes in the following.
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Characterizing memory usage. All the participants characterized the memory used by
their application using Vismep. Consequently, participants located relevant code, detected
allocation hotspots and explored the circumstances, rationale, and events of functions/methods
of interest.

When looking for relevant code, participants searched in the Call graph view function-
s/methods based on their name or the module to which they belong. Some participants were
unsure about the rationale behind a function/method based only on these aspects. Thus,
they inspected the code with Source code view to confirm that the function/methods provide
certain functionality.

To detect the allocation hotspots, participants discovered the memory usage of function-
s/methods and compared the visual cues of nodes in Call graph view and Sub call graph view.
However, participants sometimes struggle to identify allocation hotspots in Call graph view
due to the presence of several nodes. For this reason, participants usually employed Scatter
plot view to quickly found the allocation hotspots or confirm the expected allocation hotspots
located previously. All participants also determined the code lines that allocated the most
memory with Source code view by comparing the highlighted lines. Figure 3.10 illustrates a
screenshot when the first participant detected allocation hotspots using Call graph view.

(a) Vista principal. (b) Diagrama de dispersión.

Figura 5.3: Resultado del participante P3. Entre las librerías usadas están numpy, pai_io y
argparse.

Figura 5.4: Resultado del participante P4 con la tarea 4.1. Entre las librerías usadas están
TensorFlow. Gráfico de sub-llamadas de fit_transform y código fuente de __exit__.

20

(a) Call graph view (b) Scatter plot view

Figure 3.10: The first participant focused on main function in the Call graph view. Then, she
selected the respective node to understand the code of main function and detect lines of code
responsible for allocating the most memory.

Moreover, when inspecting the circumstances, rationale, and events of selected func-
tions/methods, participants used three views. Participants employed Call graph view and
Sub call graph view to explore the callers, callees, and the execution path of a particular
function/method. Some participants mentioned that Sub call graph view was more suitable
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for detecting the situations involved in the execution of a function/method and navigating
quickly and iteratively through the calling relationships compared to the Call graph view.

To comprehend the rationale and identify the memory events (allocations, accesses,
releases) related to some functions/methods, participants explored the Source code view.
Therefore, participants quickly discovered memory allocations following the highlighted lines.
To exemplify, Figure 3.10 displays a screenshot when the first participant selected a node
corresponding to main in Call graph view and inspected the Source code view to understand
the rationale of the code and memory allocations made. They also profoundly examined the
code to identify and understand the memory accesses and releases since Vismep does not
support these activities.

Understanding memory usage. All participants understood the memory consumed by
their applications. They inspected the memory used by allocation hotspots and relevant code
by hovering the cursor over the respective nodes in Call graph view and Scatter plot view.
Next, they verified if the memory consumed by those functions/methods was the expected.
Consequently, some participants detected (i) unexpected allocation hotspots, (ii) relevant
code that consume more or less memory than anticipated, and (iii) that most allocation
hotspots are involved with external libraries (e.g., pandas, numpy).

Figure 3.11: The fifth participant explored the calling relationships involved with create_report

in Sub call graph view to determine under what circumstances this function is executed and if
the memory allocated by this function is necessary.

When looking for memory anomalies, participants first located the allocation hotspots
and relevant code in the Call graph view and Scatter plot view. Next, participants analyzed
the memory used by those functions/methods to determine if the memory consumed was
excessive or unnecessary, considering the correct program functionality. Four participants did
not detect any memory anomaly since most allocation hotspots belong to external libraries,
and the memory used was considered not excessive. The remaining participants checked the
circumstances, rationale, and events of the allocation hotspots and relevant code to locate
any unnecessary and unexcepted memory behavior. Thus, participants analyzed the number
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of executions, memory usage, and under what circumstances those functions/methods are
executed using the Call graph view or Sub call graph view. For example, Figure 3.11 illustrates
when the fifth participant navigates through the calling relationships of create_report function
to understand why this function is executed and if the memory used by this allocation hotspot
is essential for the program. Additionally, some participants examined the rationale and
memory events in the Source code view to estimate if the memory usage is reasonable and if
the memory allocations are essential.

Optimizing memory usage. Participants reduced or tried to reduce memory usage
by analyzing the circumstances, rationale, and events of memory anomalies or allocation
hotspots. Participants employed Call graph view to inspect the circumstances in which these
functions/methods are executed. Besides, some participants explored the Source code view to
analyze the memory events and how changing some code lines could affect memory usage and
functionality of relevant code.

Furthermore, four participants did not locate any memory anomaly and could not find
any optimization opportunity. These participants mentioned that to reduce the memory
consumption, they required more knowledge and time to fully comprehend the circumstances,
rationale, and events about allocation hotspots that belong to external libraries.

Seven participants identified anomalies cause. As a result, they found (i) the use of
unsuitable data structure, (ii) unnecessary memory allocations, and (iii) the presence of
temporary allocations (allocations created and released from memory several times). We
must mention that participants did not modify their code using Vismep since this activity
is not supported yet. As a result, they changed the source code program using an IDE or
a text editor. However, only four successfully modified the code with the information from
anomalies cause. These participants used Vismep again to inspect the memory usage of the
allocation hotspots or relevant code using Call graph view or Scatter plot view. The remaining
participants had problems programming the optimizations since these changes negatively
impacted the application’s functionality.

RQ1.2: Overall, programmers used various views to obtain information about memory
usage. To detect relevant code and allocation hotspots, participants explored the Call
graph view. Besides, they used the Scatter plot view to confirm the allocation hotspots
found in other views. To inspect the circumstances, rationale, and events of particular
functions/methods, most participants used the Call graph view, but some of them
indicated that Sub call graph view was more suitable for this activity. To locate memory
anomalies, participants looked for the information previously mentioned via the Call
graph view and Source code view. Finally, participants detected anomalies cause by
inspecting the calling relationships in Call graph view and analyzing how anomalies
affect the functionality with the Source code view.
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3.5.3 RQ2.1: Cognitive Load

Table 3.5 shows ranges and mean values of the overall and dimensions TLX scores over Vismep.
NASA-TLX score ranges from 0 (low mental workload) to 100 (high mental workload). The
average task load index reported by participants using Vismep for memory consumption
analysis is 29.69 (std. dev. 14.07). According to Grier [55] and Hertzum [57], this indicates a
low to moderate effort.

Table 3.5: Ranges and means of overall workload and dimensions TLX scores.

Min Max Mean SD

Overall TLX 11.66 56.66 29.69 14.07

Dimensions

Mental demand 10 80 44.54 26.21

Physical demand 0 70 14.54 20.67

Temporal demand 10 70 42.72 17.93

Performance 0 50 16.36 15.66

Effort 20 80 43.63 23.77

Frustration 0 40 16.36 16.89

The score for dimensions varies from 0 (low demand) to 100 (high demand), except
for the performance, which ranges from 0 (high overall performance) to 100 (low overall
performance). We identified that mental demand, temporal demand, and effort means are
the highest among all dimensions. We consider that these scores reflect the issues that some
participants mentioned when locating allocation hotspots and inspecting the circumstances,
rationale, and events in a Call graph view with several functions/methods (mostly from
external libraries). It also points out that although Vismep indicates useful information and
satisfies some needs, one factor that negatively impacts practitioners is Vismep’s performance
mentioned in Section 3.5.5.

RQ2.1: Participants often perceive a low to moderate mental workload effort using
Vismep. Besides, the mental demand, temporal demand, and effort could be reduced
by improving the profiler and Vismep support for specific activities.

3.5.4 RQ2.2: Perception of usability

Table 3.6 illustrates ranges and mean values of the SUS score and components of SUS scores
associated with Vismep. SUS score varies from 0 (worst imaginable) to 100 (excellent). The
average SUS score calculated from the participant’s answers is 72.5 (std. dev. 7.98). According
to Sauro [125] Vismep is graded “C+” which indicates a “good” usability score.

We detailed the scores for the components of SUS to understand the participant’s perception
of the different aspects of usability. The score for components ranges from 1 to 5. These
components represent positive aspects (i.e., Q1, Q3, Q5, Q7, and Q9) and negative aspects
(i.e., Q2, Q4, Q6, Q8, and Q10) of usability. We detected that Vismep achieved higher scores
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Table 3.6: Ranges and means of overall SUS and components of SUS scores.

Min Max Mean SD

Overall SUS 60 82.5 72.5 7.98

Usability aspects

Q1: Willing to use the tool 3 5 3.91 0.53

Q2: Complexity of the tool 1 3 1.90 0.53

Q3: Ease of use 3 5 4 0.45

Q4: Need of support to use 2 5 3.09 1.13

Q5: Integrity of functions 3 5 4 0.45

Q6: Inconsistency 1 3 1.91 0.83

Q7: Intuitiveness 2 5 3.82 0.98

Q8: Cumbersomeness to use 1 4 1.63 0.92

Q9: Feeling confident to use 2 5 3.73 0.90

Q10: Required learning-effort 1 3 1.90 0.70

in positive aspects and lower scores for negative aspects (except for the need of support to use
Vismep). Section 3.5.5 details that most programmers need support to use Vismep because
they were unsure about (i) how to run the profiler and (ii) the state of the profiler (e.g., still
running or stopped for an issue).

RQ2.2: Participants perceived that Vismep provides high overall usability considered
“good”. Improving the profiler and the learning material could reduce the requirement of
support when a user employs Vismep.

3.5.5 RQ2.3: Perception of Vismep features

We identified nine general themes by using grounded theory [35] to process the feedback.
Each theme is presented with its name, the number of times a theme occurs in the sessions
and the number of participants who explicitly expressed it. First, we consider the following
themes as positive:

• Useful views and interactions. [24 occurrences / 11 participants] Participants mentioned
that Vismep provides useful views and interactions to analyze the memory consumed by
their applications. They described that some views were suitable for quickly locating
relevant code (Call graph view), allocation hotspots (Scatter plot view), among others.
Additionally, the views assist programmers in comprehending diverse aspects (e.g.,
memory usage, number of executions, calls between functions/methods), as well as
locating memory anomalies or unexpected behaviors. Participants also navigated over
various views iteratively was helpful to inspect circumstances, rationale, and events of
relevant code and allocation hotspots quickly and trace anomalies cause.

• Visual aspects. [11 occurrences / 8 participants] Participants highlighted some positive
points over the visual cues. They indicated that visualizations were intuitive and easy
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to use due to the visual mapping. For instance, some programmers mentioned that the
Call graph view offers a good overview of the application. Additionally, they emphasized
that the Source code view and Sub call graph view provided visual cues that support
the inspection of circumstances, rationale, and events of selected functions/methods.

• Connection with source code. [10 occurrences / 7 participants] Participants indicated
that connecting the dynamic aspects with the source code helped them comprehend
program behavior, memory events associated with a function/method, and discover
memory anomalies. Participants highlighted the facilities over navigating between the
Source code view and other views.

• Usability. [6 occurrences / 5 participants] Participants said that Vismep was easy to
use, intuitive, and useful for analyzing memory usage. As a result, some participants
indicated that they would like to use the prototype daily.

We also detected themes that we considered negative points of Vismep:

• Opportunities for improvement. [27 occurrences / 10 participants] Most participants
made suggestions on various aspects of Vismep. To illustrate, eight participants indicated
that filtering functions/methods based on criteria (e.g., module, memory usage) would
facilitate the navigation in Call graph view and locating allocation hotspots and relevant
code. On the other hand, three participants said that adding a message to show the
profiler progress and improving the tutorial would reduce the need for support in using
the prototype. Besides, they commented that improving Vismep’s performance would
help reduce temporal demand.

• Missing information. [10 occurrences / 6 participants] Participants indicated that it
would be helpful to provide information regarding (i) distribution of memory over the
function/methods, (ii) memory evolution over time, and (iii) allocations made over time
and their memory usage.

• Bugs. [6 occurrences / 4 participants] Participants also detected some bugs. For example,
three participants identified issues in Vismep when the source code of functions/methods
from external libraries were displayed. Also, two participants mentioned problems with
some interactions (e.g., static highlighted nodes).

• Metric selection. [4 occurrences / 3 participants] Participants suggested that letting
users modify the visual mapping, scales, and displayed metrics could be very useful for
quickly locating the information required.

• Integration with IDE. [2 occurrences / 2 participants] Participants suggested that it
would be useful to present Vismep features integrated with a programming environment.

RQ2.3: Overall, participants appreciated the views and usability offered by Vismep. We
also located some opportunities to improve Vismep, such as (i) adding new interactions,
(ii) considering new information (memory usage over time), and (ii) fixing bugs.
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3.6 Discussion

This study shows that our participants looked for dynamic and static information to (a)
locate relevant code, (b) identify allocation hotspots, (c) inspect the circumstances, rationale,
and events of functions/methods, (d) infer memory anomalies, and (e) trace the cause of
anomalies.

It is expected that participants require dynamic information, especially about memory allo-
cations, since it is commonly reported by tools/libraries in Python and software visualizations
in general (see Chapter 2). However, the level of granularity in the information (e.g., memory
used, objects allocated, number of objects allocated) and the precision of this information
varies between the diverse tools/libraries in Python and the software visualizations in general.
During the work sessions, we observed that participants sometimes needed different levels of
granularity in the information, including data more specific than the ones provided by Vismep
or other profilers. For instance, Vismep only reports the memory usage per function and
line-by-line, but it does not inform about the allocated data or the number of instances. When
some participants tried to optimize the memory usage of their applications, they looked for
information about specific allocations (e.g., arrays, dictionaries). Although they could find the
information through manual searches in Vismep, this process could be facilitated by showing
different levels of granularity in the information. Therefore, we consider the granularity level
in the information an interesting point to consider when supporting programmers.

Furthermore, some participants looked for information that Vismep does not provide, such
as memory usage over time or explicit information about memory releases (information about
garbage collection). For instance, a number of participants looked for information about the
allocation and release of objects over time to detect the presence of temporary allocations
(allocations created and released from memory several times) and reduce the workload in the
garbage collector. Therefore, this study also exposes the relevance of other metrics related to
memory usage. In these cases, other tools may support programmers with this information
(see Section 3.2); however, it cannot be assured whether the programmers would be able to
use them properly or how effective the tools are in these cases.

We also found that participants inspected the source code several times when identifying
relevant code or comprehending the rationale behind the code. Additionally, Vismep supports
participants in detecting code lines that allocate the most memory and understands why
the memory is allocated by connecting the code with dynamic information (Source code
view). As a result, we detect that mapping the source code with dynamic information helps
programmers perform tasks related to memory usage analysis. Several software visualizations,
tools, and libraries that support programmers when analyzing memory usage do not provide
support for viewing the source code or connecting the code directly with dynamic aspects (see
Chapter 2). Consequently, the programmer must use any of these options and a source code
editor. We cannot be sure that connecting source code with dynamic information like we do
with Vismep is much more comfortable and better for programmers than using a tool and a
source code editor simultaneously. However, we believe that it could affect the user experience
of programmers. For example, connecting the source code with dynamic aspects may reduce
the mental demand perceived due to the operations of managing different environments
simultaneously, as well as, increase integrity about the tool’s functions and the perception
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that it is easier to use. A follow-up study is necessary to confirm these assumptions.

We should also mention that our results are linked to Vismep. Consequently, if the
participants had used another tool (e.g., other data displayed and other visual techniques
used), the needs and the flow that the programmers follow could have been different. However,
we believe that our results give a good insight into the behavior and needs of programmers
when analyzing memory consumption. Likewise, we believe that the design of our study
represents a stepping stone in the area, since we present a method to provide empirical
evidence about how a visualization performs in practice.

3.7 Threats to validity

We identified and organized some threats to our research’s validity based on the work of
Wohlin et al. [163].

Conclusion Validity. The individual differences among participants, the sample size and
the use of Vismep could impact our conclusion. Therefore, our conclusion might not be
representative. Consequently, our results could be different given other tools or participants.
We try to reduce this threat by selecting programmers with different backgrounds and
experience levels. However, an additional study that involves more people and other tools
may mitigate this threat.

Internal Validity. Participants were not familiar with Vismep prior to the study. The
latter may restrict participants’ effective use of Vismep for memory usage analysis, causing a
low SUS score and a high mental workload. The exploration period was part of the study to
mitigate this threat. However, the score for question 4 in SUS form (Table 3.6) indicates a
need for help when using Vismep.

To minimize the inconsistency during the data collection and transcription process for
RQ1, the student supervised by the thesis author generated spreadsheets that summarize the
work sessions. To generate these spreadsheets, she used tools to generate subtitle files from
the recordings, which subsequently go through a process of revising and improving the parts
that have not been well written. The YouTube Marks10 tool was also used to facilitate the
analysis of videos by placing tags and adding comments to those tags in order to divide and
identify the parts of the sessions more easily. Additionally, the thesis author checked if the
spreadsheets generated were consistent with the audio, video records, and tracking logs to
minimize biases during the process.

For the data analysis of this study, the thesis author identified the information needs.
However, identifying information needs based on a participant’s behavior can be inaccurate
since they do not always verbalize their thoughts explicitly. To minimize the inaccuracy in
the process, a thesis supervisor contrasted different scenarios and the use of Vismep to satisfy
the information needs. This supervisor also checked if the information needs identified were
consistent with the information in the spreadsheets.

10https://github.com/tinchodias/youtube-marks
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Construct Validity. We voluntarily centered on the Python programming language. Par-
ticipants selected applications under analysis with which they were familiar. Data from each
work session was carefully examined and collected using records, logs and observation while
participants tackled a particular question.

External Validity. The difficulty of carrying out this type of large-scale study restricts the
generalization of our results. For example, transcribing and obtaining the information needed
for a session requires considerable time. This study presents a number of sessions similar to
some related works (e.g., Fernandez [22] with eight sessions), and the participants’ variability
may represent this tool’s end users. The generalization of results is limited due to the number
of participants, the lack of diversity in tasks, and the duration of the sessions. In addition,
involving participants who voluntarily participate in the study and choose applications with
specific memory issues according to the study goals takes time and effort.

This study focuses on analyzing the memory consumption of Python applications. During
the study, we try to cover various applications (e.g., artificial intelligence, machine learning,
data science, simulators) according to the choices of each participant (own code, own project).
Furthermore, it is necessary to mention that more complex projects could cause more visual
clutter or more issues collecting data because Vismep’s performance is one of its most
significant weaknesses, as mentioned in the Section 3.5.5.

Although the external validity is limited, we believe this study provides relevant evidence
on the feasibility of Vismep in supporting programmers when analyzing memory consumption.

3.8 Summary

This chapter introduces Vismep, an interactive visualization prototype that helps programmers
analyze the memory usage of Python applications, and presents an exploratory study involving
eleven participants that used Vismep to analyze the memory usage of their projects. In
the following paragraphs, we summarize our observations about the (i) information that
participants looked for during the study for analyzing the memory usage of their programs,
(ii) the usage of Vismep to obtain the information that they considered essential, and (iii)
their perception of the tool in terms of mental workload and usability perception.

Information needs. Our results show that programmers need to explore dynamic and
static information to (a) locate relevant code, (b) identify allocation hotspots, (c) inspect the
circumstances, rationale, and events of functions/methods, (d) infer memory anomalies, and
(e) trace the cause of anomalies.

Vismep usage. Participants used different Vismep views or combined some of them to
obtain the required information. Some participants explained that some views are more
suitable for some activities, such as Scatter plot view to identify functions that allocate most
memory (allocation hotspots) or Sub call graph view to explore the control flow (circum-
stances). Additionally, we reported when participants struggled to use Vismep to perform the
activities. We detected missing information that users required and possibilities to improve
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the design of Vismep and other tools.

Perceptions. We noted that Vismep is positively perceived because participants indicated a
low to moderate mental workload effort when using it and estimated that Vismep offers high
overall usability. Furthermore, we also detected positive and negative aspects that participants
mentioned about Vismep. These aspects open the door to potential improvements and points
to consider for supporting programmers, as well as, the factors (e.g., easy to use, intuitive,
useful) that participants desire from a tool.

In this chapter, we found that participants looked for dynamic and static information
when analyzing memory usage. Consequently, displaying how the program runs (calling
relationships between functions) and connecting the source code with dynamic aspects are
considered beneficial. In the following chapter, we will look at the questions programmers
ask while analyzing memory usage and how they answer those questions using Vismep and a
popular Python package called Tracemalloc to analyze memory usage.
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Chapter 4

Answering and Asking Questions
During Memory Consumption
Analysis

In Chapter 3, we reported the information that eleven programmers looked for when analyzing
memory usage and how they used and perceived Vismep to obtain this information. In this
chapter, we conducted a more exhaustive study to understand more precisely participants’
questions when analyzing memory usage and how well Vismep and Tracemalloc address those
needs. Therefore, we conducted an exploratory study with twenty-two programmers that
assessed the memory consumption of their programs using Vismep and Tracemalloc. Note
that in this study, we involved a greater sample of participants than in the study of Chapter 3,
and we added Tracemalloc to provide more information about the needs of programmers when
analyzing the memory consumption of programs and the use of tools. From our observations,
we provide a catalog of 34 questions programmers ask themselves when analyzing memory
consumption. We also present a detailed analysis of the use of Vismep and Tracemalloc to
answer these questions and the difficulties that participants face during the process. Our
results highlight the importance of (i) comparing and displaying information at different levels
and (ii) connecting dynamic information with source code. As far as we are aware, our study
is the first to highlight some challenges and express practicability concerns when analyzing
memory consumption.

The content of this chapter is based on the publication “Asking and Answering Questions
During Memory Consumption Analysis” (co-authored with Araceli Queirolo Cordova, Alexan-
dre Bergel and Juan Pablo Sandoval) under review. This chapter is also involved with the
bachelor’s dissertation of Araceli Queirolo Cordova titled “Mejorar la usabilidad y efectividad
de una herramienta de perfilamiento de memoria” [112]. As mentioned in Chapter 3, the
bachelor’s dissertation was supervised by the first supervisor and the author of this Ph.D.
dissertation.
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4.1 Introduction

Developers often spend a substantial amount of time manually monitoring memory consump-
tion to localize memory anomalies (e.g., memory leaks, memory bloats) that usually generate
crashes on software applications [90, 139, 165]. For this reason, a number of memory profiling
tools have been proposed providing a wide range of information displayed through full-text
reports or visualizations [22, 27, 80, 154].

Although equipped with dedicated tools, previous work claimed that usually reported
information may be insufficient or complex for programmers to locate memory anomalies
and repair them [34, 78, 166]. Furthermore, other investigations also argue that how the
information is displayed (full-text or visualizations) impacts the understanding of software
analysis [43, 45, 103, 106].

There is still little understanding of the programmer’s needs when analyzing memory
usage. For example, the questions how does a programmer extract information to analyze
the memory used by a program? and how well do current tools and approaches support this
process? have no precise and concrete answers, as mentioned in Chapter 2.

This chapter presents an exploratory study to provide a comprehensive and empirically-
based set of questions that programmers ask during memory consumption analysis. We
focused on understanding how programmers employ Python’s memory profiler tools because
Python is considered one of the most popular programming languages1, and it is primarily
applied to Data Science and Machine Learning applications in academia and several companies
[88, 136]. The latter supports the intuition that Python programmers are more likely to face
memory issues in their programming activities.

We selected two memory profilers, Vismep and Tracemalloc, for our study. These profilers
provide diverse information through interactive visualizations and full-text reports, respectively.
Memory profilers offer an extensive variety of features, and most profilers broadly differ on
how information is provided and navigated. For example, some profilers [7, 8] may provide
details about the garbage collector activity, while some others [5, 48] may focus on the
context-call-tree or control flow. For this reason, selecting two different memory profilers
instead of one hopefully enables us to cover different questions programmers ask themselves.
In addition, the selected memory profilers together provide a variety of features typically
proposed by current memory profilers.

We observed twenty-two programmers analyzing software applications with which they were
familiar, using the two memory profilers, and responding to open questions. We deliberately
asked open questions to ensure participants had a goal they cared about and looked for the
information they considered valuable to understand memory usage and detect optimization
opportunities. Then, we centered on collecting and analyzing data about the questions asked
by participants and how they employed Vismep and Tracemalloc to answer those questions.
For this, we followed a similar method of data extraction and analysis presented in other
studies focused on identifying the information needs of developers [73, 133, 134].

1https://insights.stackoverflow.com/survey/2019
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This paper makes the following contributions:

Catalog of questions. We present an empirically-based catalog of 34 different questions
asked by the participants. We have placed these questions into five categories based on the
information needed and the behavior of the programmer to answer a question: understanding
source code, understanding control flow, discovering the memory usage in a single point of
time, comparing and contrasting memory consumption, and discovering memory events. To
our knowledge, this is the most comprehensive list published to date that programmers may
ask for when analyzing memory consumption.

Tool usage analysis. We provide an observational analysis about how programmers employ
Vismep and Tracemalloc to answer the raised questions. We discovered that participants
numerous times need to combine multiple views (e.g., Call graph view and Source code view)
from Vismep or use multiple API calls from Tracemalloc to obtain the required information.
We also reported the questions that participants could not answer using these tools. Based
on these results, we discuss the support missing from Vismep and Tracemalloc. Our analysis
provides an opportunity to guide and improve the design of tools to answer particular questions
and support programmers more effectively.

Structure of the chapter. Section 4.2 summarizes the prior empirical studies focused
on gathering information needs in other fields. Section 4.3 details the exploratory study.
Section 4.4 presents the 34 different questions and 775 question occurrences during the work
sessions. Section 4.5 details how programmers employed Vismep and Tracemalloc to respond
to the raised questions and which types of questions were not answered. In Section 4.6, we
discuss our findings and the open challenges. Finally, we close the paper with threats to
validity in Section 4.7 and conclusion in Section 4.8.

4.2 Related Work

Several studies centered on extracting information about developers’ needs. As a result, these
studies usually present emerging questions raised by developers in particular scenarios.

Sillito et al. detect 44 types of questions asked by programmers during software evolution
tasks [133, 134]. These questions are categorized based on the kind and scope of the required
information. Also, the study exposes that developers need better tool support to answer
some specific questions. In a similar field, Kubelka et al. [72, 73] analyze the impact of live
programming when developers perform software evolution tasks and identified eight additional
questions compared to the set of questions provided by Sillito and colleagues [133, 134].
Additionally, Kubelka et al. notice that Live Programming impacts the questions asked by
developers and the use of tools.

LaToza et al. survey professional developers and gather 94 questions grouped into 21
categories [76]. The study reports that the most frequent questions deal with the intent and
rationale of code.

Fritz et al. identify 78 questions raised by developers with a lack of tool support during
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software development [51]. The study also reports that answering these questions involves
connecting information from different sources (e.g., source code, change sets, teams).

De Alwis et al. collect 36 questions from literature, blogs, and their experience in software
development [38]. They claim that developers present difficulties answering several questions
because connecting multiple results from different tools is necessary to extract the required
information.

Ko et al. detect 21 types of questions when analyzing software development teams [71].
The work highlights that the most frequent questions are related to mistakes in the code and
co-workers’ activities.

LaToza et al. focus on reachability questions and enlisted 12 questions with their difficulty
and frequency [75]. The results show that reachability questions are challenging to answer
and are associated with the most prolonged activities. Due to this, tools with support to
answer these questions are relevant.

In contrast to the studies previously mentioned, to our knowledge, our work is the first
observational study centered on developer information needs during memory consumption
analysis.

Impact. We consider that documenting solid knowledge about programmers’ needs while
monitoring memory usage helps (i) improve the design and effectiveness of the current tools
and new ones, (ii) recognize if a tool fits the programmers’ needs and which needs may
not currently be covered and (iii) facilitate the organization of current approaches to help
practitioners find a suitable tool for their needs.

4.3 Methodology

Our study investigates the questions Python programmers raised during memory usage analysis
and how programmers answer these questions using memory profiler tools. Consequently, we
designed an exploratory study as Figure 4.1 illustrates. The following subsections describe
the main steps of the study.
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Figure 4.1: Overview of the workflow of the exploratory study.

4.3.1 Research Questions

We aim to answer the following research questions (RQ):
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• RQ1: What questions do Python programmers ask when analyzing memory usage?

• RQ2: How do Python programmers answer these questions using Vismep and Trace-
malloc?

To answer RQ1, we collected and classified questions asked by programmers during the
work sessions. We inferred these questions based on the developer’s actions and events. Finally,
to respond to RQ2, we analyzed the features of memory profiler tools that programmers
employed to respond to questions identified in RQ1. We also detected the unanswered
questions. In addition, we explored the efforts made by the participants to answer these
questions and whether or not the tools used in this study were supportive in answering these
questions.

4.3.2 Memory Profiler Tools

We selected Tracemalloc and Vismep to understand the impact of memory profiler tools on
supporting programmers with memory usage analysis.

Figure 4.2: Enlisting the top ten memory allocation hotspots and total memory allocated
using Tracemalloc.

Tracemalloc. As mentioned in Chapter 3, Tracemalloc is one of the most flexible libraries
and provides multiple API calls to extract specific information related to memory usage
through full-text reports. Programmers must modify the application’s code under study when
using Tracemalloc [7]. Tracemalloc is part of the standard distribution of Python. It provides
several features:

• Display TOP. This feature assists programmers in enlisting the memory allocation
hotspots (code line, file), as shown in Figure 4.2.
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• Compute differences. Tracemalloc supports programmers in exploring memory usage
over time by indicating the differences (increase, decrease) in memory consumption
before and after executing the potential leaking function.

• Get traceback. This feature helps programmers trace a particular memory allocation
by identifying the execution path, specifically, in which case the memory allocation is
made.

• Get traced memory. Tracemalloc presents functions that extract the total memory
consumed and the memory used in maximum peeks.

1 2

3 4

Changing views

Figure 4.3: Visualizing an example with Vismep (1) Call graph view – the main view that
summarizes the functions with the calling relationships and the memory footprint,(2) Source
code view – a view that displays the source code and highlights allocation hotspots, (3) Scatter
plot view – a secondary view that shows the relationships between memory used and the
execution times of functions, (4) Sub call graph view – for navigating through the calling
relationships of a function.
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Vismep. As mentioned in Chapter 3, Vismep is an interactive visualization for supporting
programmers in analyzing memory usage over Python applications. To employ Vismep, a
developer must execute scripts with specific parameters. Vismep collects the invoked functions
with their respective memory footprint during the program execution. Vismep also gathers
the calling relationships between invoked functions. To display this information, Vismep
provides multiple views as shown in Figure 4.3:

• Call graph view. The main view summarizes the functions with the calling relationships
and the memory footprint using an interactive call graph. The call graph view assists
users in locating relevant code, detecting allocation hotspots (functions), and identifying
the circumstances in which memory is allocated.

• Source code view. This view displays the source code of a function and highlights the
memory allocation hotspots (code lines). It supports practitioners in detecting allocation
hotspots at a more fine-grained level (code line) and understanding the memory events
involved with a particular code.

• Scatter plot view. Vismep provides a secondary view that shows the relationships
between memory used and the execution times of functions. The scatter plot view
assists programmers in exploring allocation hotspots (functions) and learning how the
memory is used (allocated/released) during the program execution.

• Sub call graph view. Vismep facilitates users in navigating a selected function’s direct
calling relationships. As a result, the user can select a memory allocation site (function)
and navigate through an execution path.

Vismep also provides several interaction mechanisms, such as canvas movement (e.g.,
panning, zoom in and out), search option (find a function based on its name), and options to
obtain detailed data about a particular function (e.g., popup window with information-on-
demand).

Selecting memory profilers. We selected Tracemalloc and Vismep for several reasons:

• Reported information. Tracemalloc and Vismep provide information to perform various
tasks described in Chapter 3 (e.g., analyzing allocation hotspots, analyzing the memory
usage of entities). Furthermore, they connect dynamic information (e.g., memory
allocations) with the source code at different levels. Therefore, we consider that they
help programmers trace memory events and better understand program behavior.

• Report presentation. Tracemalloc provides only full-text reports, which has become
standard among other libraries and tools for profiling. On the other hand, Vismep
reports the information only using interactive visualizations that could facilitate data
comprehension [146, 159]. Consequently, we considered investigating how programmers
employ both approaches.

• Availability and maintenance. Tracemalloc and Vismep are available, maintained, and
provide material (structured documentation, examples) for practitioners to learn how to
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use them. Tracemalloc is a native module2 used internally in Python to improve other
functionalities (e.g., ResourceWarning reports). As a result, it works independently of the
operative system and has no external dependencies. Furthermore, Chapter 3 introduced
Vismep and presented how Vismep support programmers with memory usage assessment
[48].

Therefore, we expect that selecting these two different memory profilers will increase the
diversity and range of the questions asked by practitioners.

4.3.3 Participants & Applications

To recruit participants, we sent invitations to students and bachelors from our university
and members of a number of Python communities. We make it clear in the invitation that
the study investigates how programmers analyze the memory used by familiar code using
memory profiler tools. We also explained that programmers who want to participate in the
study must select a Python program. Since monitoring memory usage is not a trivial activity,
participants must select an application they are familiar with (own code, project). Besides,
they should be interested in the activity because (i) they considered memory usage a potential
threat to their application or (ii) they wanted to verify assumptions about memory usage and
find ways to reduce memory usage.

We selected twenty-two programmers who agreed to participate voluntarily and chose a
Python application for the study. These participants belong to diverse study fields since we
consider that several Python users (e.g., data scientists, journalists) do not necessarily have
or are not pursuing a Computer Science degree. We also included participants who were not
necessarily experienced in dealing with memory issues since our goal is not to observe how
participants specifically address particular memory issues.

Demographic data. Twenty-two programmers participated in our study, of which six were
females. Five participants were from the industry, four were in research centers, four pursued
a master’s degree, and the rest were in their bachelor’s studies. In addition, a total of eleven
participants have or are pursuing a degree in Computer Science, and the remaining in other
fields (e.g., Geology, Math, Electrical).

Experience in Python programming. Participants manifested various experience levels
in software development, but all were familiar with Python programming. Their average
experience in programming with Python was 4.70 years (std. dev. 2.24). Also, participants
self-assessed their experience using a Likert scale of five steps, i.e., 1 (novice) to 5 (expert).
As a result, the average experience in Python programming was 3.29 (std. dev. 0.73).

Experience in memory usage analysis. All the participants have experience in monitor-
ing memory usage and fourteen participants have experience addressing memory issues. We
surveyed the participants about their common practices when analyzing memory consumption.
Then we applied a coding technique [126] to study the answers in order to recognize the

2https://python.readthedocs.io/en/stable/whatsnew/3.6.html
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Table 4.1: Information of participants (Python programming experience (years); Self-
assessment expertise (Likert-scale: 1 (novice) to 5 (expert)); Experience in memory usage
analysis; Experience in addressing memory issues; Activities when analyzing memory usage).
Participants from groups G1 and G2 present gray and white backgrounds, respectively.

ID Study Field Gender Python Programming Experience in Memory Usage Analysis and Issues

Experience Self-assessment Memory Usage Addressing Activities

(Years) Expertise Analysis Memory Issues Performed

P1 Geology Female 9 2.5 X X A1, A2

P2 Electrical Engineering Male 4 3.5 X X A1, A2

P3 Electrical Engineering Male 6 4 X X A1, A2, A3

P4 Physical Engineering Female 5 3 X X A1, A2

P5 Electrical Engineering Male 8 5 X 7 A1, A2

P6 Aerospace Engineering Male 2.5 3 X 7 A1, A2

P7 Computer Science Female 1.5 3 X X A1, A2

P8 Computer Science Male 6 4 X X A1, A2

P9 Computer Science Male 4 3 X X A1, A2

P10 Computer Science Male 5 4 X 7 A1, A2

P11 Computer Science Female 3 3 X 7 A1, A2

P12 Metallurgical Engineering Male 1 3 X X A1, A2

P13 Electrical Engineering Male 8 3.5 X X A1, A2

P14 Pedagogy in Math and Computing Female 3 2 X X A1, A2

P15 Mathematical Engineering Male 3 3.5 X 7 A1, A2

P16 Pedagogy in Math and Computing Male 1 2 X 7 A1, A2

P17 Computer Science Male 7 4 X X A1, A2

P18 Computer Science Male 5.5 4 X X A1, A2

P19 Computer Science Male 5 2.5 X X A1, A2, A3

P20 Computer Science Male 6 4 X X A1, A2

P21 Computer Science Female 4 3 X 7 A1, A2

P22 Computer Science Male 6 3 X 7 A1, A2

practices adopted. We identified that participants often perform two or more activities:

• A1: Analyze memory usage of entities. All participants often examine the memory
used by particular entities (variables, data structures, functions). For instance, P5 said

“I frequently explore how much memory allocates certain functions or data structures
(arrays, dictionary) which I suspect could cause excessive memory usage”.

• A2: Analyze allocation hotspots. All participants usually investigate the hotspots (code
that consumes most memory) and which allocations are made. For example, several
participants mentioned “I usually focus on finding code that consumes most memory,
and I try to understand why it allocates this amount of memory”.

• A3: Analyze memory usage over time. Two participants usually explore how the memory
is managed (used, released) over time. They mentioned that this action helps detect
memory leaks and excessive memory usage.

We also observed that most participants usually modify their code to analyze allocation
hotspots or the memory usage of specific entities (e.g., variable, function) by using functions
from dedicated libraries. Only one participant usually employs a memory profiler tool.

For our study, we randomly divided the participants into two groups, G1 and G2, each
containing eleven participants. These groups are balanced with participants from the computer
science field and other fields (e.g., electrical engineering, mathematical engineering). Table 4.1
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summarizes the profile of the participants and presents the participants from G1 and G2 with
gray and white backgrounds, respectively.

Applications. As mentioned before, we explicitly asked participants to choose a Python
application to analyze during the study. Since monitoring memory usage is not a trivial
activity, we suggest that participants select an application they are familiar with (own code,
project) and find it interesting to analyze in terms of memory consumption. Consequently,
participants selected different programs (e.g., data analysis, artificial intelligence, machine
learning) with which they were familiar. Additionally, they mentioned that their selection was
based on either (i) they considered memory usage a potential threat to their application or
(ii) they wanted to verify assumptions about memory usage and find ways to reduce memory
consumption.

4.3.4 Procedure

We conducted a work session for each participant with her/his respective application. Each
work session started with a moderator explaining the study’s goals described in the invitation
to programmers who agreed to participate in the study. The moderator also explained how the
think-aloud protocol [60] works and asked the participant to use it during the session. Then,
general questions are asked to the participant to collect demographic data such as age, gender,
experience in Python programming, memory usage analysis, and addressing memory issues.
After these questions, the participant describes her/his application and gives an opinion
about the application’s memory usage. The participant also explains the expectations or
assumptions about elements (e.g., functions, instances) that may produce a memory anomaly
(e.g., memory bloat, leak) during the program execution.

Furthermore, the session proceeded with two phases, each with a different memory profiler
tool. Both phases are structured as follows:

Table 4.2: Questions made to the participant.

Open Question Rationale

Q1: Can you characterize the memory
consumption of your application?

The participant identifies the information relevant for memory
usage analysis, such as the allocation hotspots or the allocations
made during program execution.

Q2: What have you learned from your
application? Anything surprising?

The participant contrasts the profiler’s report with her/his
assumptions. Also, she/he describes if the profiler’s report
provides additional or unknown valuable information and the
potential issues that the application has.

Q3: Do you find an opportunity to de-
crease memory consumption? If yes,
can you improve it and run the profiler
again?

The participant describes and discusses the opportunities to
reduce the application’s memory usage, if any. The participant
also modifies the code that could cause a memory anomaly.
Then, the participant verifies the impact of the changes in the
application’s memory usage using the memory profiler tool.

1. Exploration. The participant read the documentation about the memory profiler tool and
had an exploration phase to familiarize herself/himself with the tool. The participant
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also had the opportunity of asking the moderator questions about the tool or its
documentation.

2. Open-questions. The participant employed the respective memory profiler tool for
analyzing the memory usage of her/his application and answered the open questions
in Table 4.2. Since our purpose is to explore how participants behave when analyzing
memory usage, we deliberately asked open questions to ensure that participants had
a goal they cared about and looked for the information they considered valuable to
understand memory usage and detect optimization opportunities.

3. Online forms. The participant filled out two online forms to obtain information about
the mental workload (NASA-TLX) [56] and the perceived usability (SUS) [12] for both
tools. These two self-assessment techniques are hugely popular in empirical studies and
are applicable to provide information about perceptions.

4. Post-study questionnaire. The participant answered verbally and informally open
questions regarding their observations, recommendations, and perceptions of the memory
profiler tool.

In the case of the participants in G1, they first worked with Vismep and then with
Tracemalloc. For participants in G2, they first employed Tracemalloc and then Vismep. In
both phases, participants analyzed the same application they selected. Note that our goal
has not been to compare Vismep and Tracemalloc but to explore how programmers use these
tools when analyzing memory usage.

We recorded a video of the screen and the laptop’s audio used during the work sessions.
These recordings were used later to collect data and analyze participants’ reasoning process.

Study Decisions. We asked the same open questions proposed in Chapter 3 since we aimed
that participants had a goal they cared about and looked for the information they considered
valuable to understand memory usage and detect optimization opportunities. Therefore, we
considered that providing defined tasks (e.g., select allocation hotspots) instead of these
questions would prevent participants from naturally defining a goal they care about when
analyzing memory usage.

Furthermore, we expected that dividing participants into two groups (G1 and G2) and
analyzing the same application with Vismep and Tracemalloc would increase the diversity
and range of the questions asked by practitioners. We also contemplated that programmers
might analyze memory usage and address memory issues using several tools since they require
various features not necessarily supported by a single tool, as shown in Chapter 3. Note that
our goal has not been to compare Vismep and Tracemalloc but to explore how programmers
use these tools when analyzing memory usage.

Finally, note that participants filled out two online forms to measure the mental workload
(NASA-TLX) and the perceived usability (SUS) for both tools. We gathered this information
to obtain feedback about participants’ perceptions of the tools (see annex B) and consider it
for future research.
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4.3.5 Data Collection and Transcription

This section describes the variety of data gathered to answer our research questions and the
data collection process.

Events extraction. To answer RQ1 and RQ2, we aim to identify questions asked by the
practitioners and how they employ memory profilers during memory consumption analysis.
To achieve our goal, we use a method similar to the Chapter 3 study to extract information
from the work sessions. Therefore, we collected data when participants employed Vismep and
Tracemalloc to answer the open questions in Table 4.2.

Firstly, we reviewed and checked session video and audio recordings to generate spreadsheets
that summarize each work session. Each spreadsheet contains: (i) the memory profiler (Vismep
or Tracemalloc) used, (ii) the open question that the participant responded, (iii) the respective
period of time in the video record, (iv) the verbalized thoughts of the participant, (v) the
actions made by the participant, and (vi) the memory profiler tool features used.

To minimize biases in the data collection process, the student supervised by the thesis
author generated the spreadsheets, and the thesis author checked if the data from the
spreadsheets was consistent with the audio and video records.

4.3.6 Data Analysis

This section describes the methods employed to analyze the collected data.

Questions inference. To identify the questions asked by the participants during our study,
we performed an analysis method similar to the one proposed by Kubelka and colleagues [73].
This method consists of two steps: (i) identifying the concrete questions by analyzing the
video and (ii) generalizing, encoding, and unifying the concrete questions.

Firstly, we detected concrete questions using the spreadsheets generated for each work
session. Some questions were inferred based on the actions and verbalized thoughts of the
participants. For example, we inferred “What part (function, line of code, instance) of main
function consumes the most memory?” as the concrete question for the actions mentioned in
the following example:
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Tool: Vismep
Open-question: Q1
Time: 00:01:40 - 00:01:53
Verbalized thoughts: For the main function, the lines that consume much memory
are reading the file, detecting the fire, and showing the points where the fire is detected.
Participant actions: The participant observes the source code of main function and
jumps to the highlighted lines of the view while pointing out and describing the code
lines.
Features used: Source code view
Inferred question: What part (function, line of code, instance) of main consumes the
most memory?

We also gathered concrete questions that the participants directly mentioned. To illustrate,
P6 passed the cursor over the CALC_PARAMETERS function and examined the connected nodes
with blue edges (outgoing functions) while he asked, “Which functions do CALC_PARAMETERS

call?”.

Then, we defined generic questions based on concrete questions to abstract the details of
a given task. For this, we generalized the questions by identifying similar concrete questions.
For instance, we inferred the generic question “Which functions does this function call?” from
the concrete question “Which functions does CALC_PARAMETERS call?” to reference any function
on the execution of a program. We also mapped some questions with the questions mentioned
by Sillito et al. [133, 134] and Kubelka et al. [73] due to the presence of questions related
to understanding the control flow and the rationale behind the source code. For example,
we transcripted “Where is this method called or type referenced?” proposed by Sillito et al.,
instead of our generic question “Which functions call this function?”. We noticed that the
participants asked these type of questions to enrich their comprehension of the software
application and make decisions about memory anomalies or opportunities for improvement in
memory usage.

To minimize biases in the data analysis, the student supervised by the thesis author
inferred the concrete and generic questions, and the thesis author checked if the inferred
questions (concrete and generic) were consistent with the information in spreadsheets. In
addition, the thesis author and the two thesis supervisors held two meetings to discuss any
discrepancy in the inferred questions’ consistency.

Classification scheme creation. We opted to organize the discussion of the inferred
questions around a classification scheme. To create this classification scheme, the thesis author
conducted a thematic analysis [141] by following these steps:

• Familiarization. The inferred questions were read and reread to obtain an overview of
the data.

• Generating codes. To reflect relevant features of each question, the author in charge
assigned codes. For instance, the author assigned the code “Understanding intent and
implementation” for the question “Which entities (functions, lines of code, instances) are
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involved in the implementation of this behavior?”. Furthermore, the author conducted
continuous reviews to refine and check the consistency of the assigned codes.

• Constructing initial themes. The author created coherent groups to identify broader
patterns based on the assigned codes with their associated inferred questions. If a code
does not belong to a specific theme, it is assigned to a miscellaneous group and analyzed
later.

• Reviewing themes. The author checked the initial themes against the inferred questions
to refine and create the final themes.

• Defining and naming themes. Final themes were defined with a descriptive name and a
detailed description.

Additionally, the two thesis supervisors reviewed the consistency of codes and themes
against the associated data. We held two meetings to discuss the disagreements or potential
issues of the generated codes and themes. Consequently, we minimized potential inconsistencies
in the coding process.

Furthermore, a thesis supervisor and a professional software engineer independently
categorized the inferred questions using the generated classification scheme to validate the
reliability. For this, each one filled out a spreadsheet to categorize the inferred questions
based on the detailed description of the created categories. Subsequently, we calculated the
Cohen kappa [152] as a reliability metric to examine the agreement between reviewers. As
a result, we detected that reviewers present an “almost perfect agreement” (kappa > 0.81).
The latter suggests that the classification scheme presents accurate representations (themes)
for the inferred questions.

Events and questions analysis. To answer RQ2, we first extracted the actions made by
the participants and the features used to answer the inferred questions. Then we gathered
patterns by concentrating on frequent actions performed to answer specific questions using
certain features of Vismep and Tracemalloc. Furthermore, we also located questions that
participants declared they could not answer using the memory profiler tools.

We considered whether or not the question asked was answered based on the verbalized
thoughts of the participants. For instance, participants suggest that questions were not
answered when they mentioned phrases like “I can’t find out with the information I have” or

“I think this change would reduce memory but I can’t do it right now because it will take a lot
of time and it’s complex”.

4.4 Results: What Questions do Python Programmers

Ask During Memory Usage Analysis?

We identified 34 different questions and 775 question occurrences from 22 work sessions, with
a total duration of 24 hours (exploration, open-questions, and post-study questionnaire). Also,
we generated a classification scheme with five categories to organize these inferred questions.
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Table 4.3 illustrates the distribution of questions per category and the occurrences raised by
the participants during the work sessions. The first column provides the questions categorized
according to our classification scheme. The following twenty-two columns summarize the
questions occurrences during each work session with the format: #Total questions occurrences
(#Ocurrences using Vismep / #Ocurrences using Tracemalloc) if any occurrence, otherwise
the cell is empty. We also use the cell background to show the relative frequency of the
questions, in which green darker backgrounds indicate the most frequent questions in the
sessions. Additionally, the last column follows the format previously described and represents
the total number of question occurrences per question or category.

The following sections describe each category and the questions related to them.

4.4.1 Understanding Static Structure, Intent and Implementation

This category involves questions centered on understanding aspects of the source code, such
as its static structure, rationale, and implementation. We noticed that in this category, six
questions and 158 question occurrences (20%) were raised during the work sessions. The
following questions are most frequent in this category: “4. What does the declaration or
definition of this look like?”, “1. Which entities (functions, lines of code, instances) are
involved in the implementation of this behavior?”, and “2. Which entities (functions, lines of
code, class) belong to this file or module?”

We observed that these questions usually were asked when participants: (i) searched for a
particular piece of code to analyze its memory usage and (ii) located a memory anomaly or
an opportunity to reduce memory usage.

Finding a particular code. When participants characterize the memory consumed by their
applications, they commonly focus on finding entities (functions, instances) relevant to the
program functionality based on their knowledge to analyze its memory usage. For example, P3
wanted to analyze the memory usage of some auxiliary functions that he considered relevant:
“I want to find my auxiliary functions that perform multiple calculations and I want to know
how much memory they consume”. Participants usually found relevant entities based on the
provided behavior, the module they belong to, and the entity’s name. As a result, the next
questions were asked: ”1. Which entities (functions, lines of code, instances) are involved in
the implementation of this behavior?” , “2. Which entities (functions, lines of code, class)
belong to this file or module?”, and ”3. Is there an entity named something like this in that
unit (project, package, or class)?”

Locating anomalies and improvements. When participants tried to determine if an
entity (function, line of code) was involved with an anomaly (e.g., memory bloat, leak), they
often explored the entity’s source code to decide if the memory consumed was necessary or
not for the correct functionality of the program. Furthermore, when participants locate an
anomaly or an opportunity for reducing memory usage, they center on the parts of code
responsible for the anomaly to investigate how it is defined or structured and what the code
is supposed to do. Consequently, participants asked the following questions: “4. What does
the declaration or definition of this look like?”, “5. What are the parts of this entity (function,
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Table 4.3: Questions per category and the occurrences raised during the work sessions. Each
column corresponding to a participant presents the format: T (A/B), where A denotes the
number of occurrences using Vismep, B indicates the number of occurrences using Tracemalloc,
and T denotes the total number of occurrences. Note that if T is zero, the cell is empty.

Questions Type per Category P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 Total

Understanding Static Structure, Intent and
Implementation

1. Which entities (functions, lines of code, instances)
are involved in the implementation of this behavior?

2

(2/0)

1

(1/0)

2

(2/0)

2

(2/0)

1

(1/0)

1

(1/0)

2

(1/1)

1

(1/0)

1

(1/0)

2

(2/0)

1

(1/0)

2

(2/0)

2

(2/0)

1

(1/0)

2

(2/0)

2

(2/0)

1

(1/0)

2

(2/0)

3

(3/0)

2

(2/0)

33

(32/1)

2. Which entities (functions, lines of code, class)
belong to this file or module?

4

(1/3)

1

(0/1)

3

(2/1)

2

(0/2)

2

(1/1)

1

(1/0)

2

(1/1)

3

(2/1)

3

(2/1)

2

(2/0)

2

(2/0)

1

(1/0)

2

(1/1)

1

(0/1)

4

(3/1)

33

(19/14)

3. Is there an entity named something like this in
that unit (project, package, or class)?

1

(1/0)

2

(2/0)

1

(1/0)

1

(1/0)

6

(6/0)

2

(2/0)

2

(2/0)

1

(1/0)

1

(1/0)

17

(17/0)

4. What does the declaration or definition of this
looks like?

4

(0/4)

7

(1/6)

3

(2/1)

2

(2/0)

2

(0/2)

4

(2/2)

2

(2/0)

1

(1/0)

4

(3/1)

5

(5/0)

3

(3/0)

1

(1/0)

1

(1/0)

5

(1/4)

1

(1/0)

1

(1/0)

46

(26/20)

5. What are the parts of this entity (function, in-
stance, type)?

2

(2/0)

2

(2/0)

6. What is the behavior that these entities (func-
tions, lines of code, instances) provide together?

2

(1/1)

2

(1/1)

1

(1/0)

2

(2/0)

2

(2/0)

3

(1/2)

1

(0/1)

1

(1/0)

1

(0/1)

3

(2/1)

1

(0/1)

7

(2/5)

1

(1/0)

27

(14/13)

Total in the category 12

(4/8)

9

(2/7)

6

(5/1)

9

(8/1)

8

(3/5)

9

(6/3)

7

(6/1)

8

(7/1)

11

(7/4)

3

(2/1)

1

(1/0)

11

(10/1)

14

(13/1)

3

(3/0)

8

(7/1)

2

(2/0)

5

(4/1)

6

(5/1)

13

(3/10)

1

(1/0)

9

(8/1)

3

(3/0)

158

(110/48)

Understanding Control Flow

7. Which entities (functions, lines of code) are the
most executed?

1

(1/0)

1

(1/0)

3

(3/0)

1

(1/0)

2

(2/0)

2

(2/0)

1

(1/0)

1

(1/0)

1

(1/0)

2

(2/0)

15

(15/0)

8. Where is this method called or referenced? 1

(0/1)

1

(1/0)

1

(1/0)

2

(2/0)

1

(1/0)

1

(0/1)

1

(1/0)

1

(1/0)

1

(1/0)

10

(8/2)

9. When during the execution is this method called? 2

(0/2)

1

(0/1)

1

(1/0)

1

(0/1)

5

(1/4)

10. Which functions are called by this function? 2

(2/0)

2

(2/0)

4

(4/0)

1

(1/0)

2

(2/0)

1

(1/0)

1

(1/0)

1

(1/0)

1

(1/0)

1

(1/0)

4

(4/0)

3

(3/0)

1

(1/0)

24

(24/0)

11. How many times is this entity (function or line
of code) executed?

2

(0/2)

2

(0/2)

2

(2/0)

8

(8/0)

1

(1/0)

2

(2/0)

2

(2/0)

2

(2/0)

2

(2/0)

1

(1/0)

2

(2/0)

26

(22/4)

12. How many recursive calls happen during this
operation?

1

(1/0)

2

(1/1)

3

(2/1)

13. Which execution path is being taken in this
case?

1

(0/1)

1

(1/0)

1

(1/0)

2

(2/0)

2

(1/1)

2

(1/1)

6

(5/1)

2

(1/1)

6

(4/2)

7

(7/0)

2

(2/0)

3

(2/1)

2

(2/0)

5

(2/3)

3

(3/0)

4

(4/0)

5

(4/1)

54

(42/12)

14. Under what circumstances is this method called
or exception thrown?

1

(0/1)

1

(1/0)

1

(1/0)

3

(3/0)

2

(2/0)

2

(2/0)

1

(0/1)

2

(2/0)

1

(0/1)

4

(3/1)

2

(2/0)

20

(16/4)

15. In what order are these functions executed? 1

(1/0)

1

(1/0)

1

(1/0)

3

(2/1)

6

(5/1)

Total in the category 7

(1/6)

7

(4/3)

9

(9/0)

3

(2/1)

20

(20/0)

14

(13/1)

8

(7/1)

6

(4/2)

11

(9/2)

1

(1/0)

5

(4/1)

12

(9/3)

12

(11/1)

3

(3/0)

9

(7/2)

1

(1/0)

4

(3/1)

2

(2/0)

11

(8/3)

3

(3/0)

7

(7/0)

8

(7/1)

163

(135/28)

Discovering Memory Usage in a Single Point
of Time

16. How much memory does this entity (function,
instance, line of code) consume?

3

(3/0)

2

(1/1)

5

(4/1)

1

(1/0)

2

(2/0)

14

(14/0)

3

(3/0)

2

(2/0)

4

(4/0)

1

(0/1)

3

(1/2)

3

(2/1)

1

(1/0)

2

(2/0)

46

(40/6)

17. How much memory do these parts of the code
consume together?

3

(2/1)

3

(1/2)

4

(4/0)

1

(0/1)

3

(1/2)

5

(2/3)

3

(1/2)

1

(1/0)

1

(1/0)

4

(2/2)

4

(1/3)

1

(0/1)

1

(0/1)

2

(1/1)

3

(3/0)

5

(1/4)

1

(1/0)

1

(1/0)

46

(23/23)

18. How much memory in total is being consumed? 3

(2/1)

2

(2/0)

1

(0/1)

2

(0/2)

1

(0/1)

1

(1/0)

2

(0/2)

1

(0/1)

1

(0/1)

14

(5/9)

19. Why do these parts of code consume this amount
of memory?

1

(0/1)

2

(1/1)

4

(4/0)

3

(2/1)

4

(3/1)

1

(1/0)

1

(1/0)

5

(3/2)

6

(3/3)

1

(1/0)

2

(0/2)

1

(0/1)

1

(1/0)

1

(0/1)

1

(1/0)

17

(4/13)

3

(0/3)

1

(0/1)

55

(25/30)

20. How much is the maximum memory peak? 1

(1/0)

1

(0/1)

1

(0/1)

3

(1/2)

Total in the category 6

(5/1)

4

(1/3)

11

(8/3)

4

(4/0)

9

(6/3)

10

(7/3)

9

(5/4)

15

(15/0)

14

(8/6)

9

(6/3)

6

(5/1)

3

(1/2)

9

(3/6)

4

(1/3)

3

(1/2)

3

(1/2)

5

(1/4)

7

(6/1)

23

(6/17)

4

(1/3)

4

(3/1)

2

(0/2)

164

(94/70)

Comparing and Contrasting Memory Usage

21. How does memory usage evolve over time? 1

(1/0)

1

(0/1)

1

(1/0)

5

(3/2)

2

(0/2)

1

(0/1)

1

(0/1)

2

(0/2)

1

(0/1)

15

(5/10)

22. Which entities (functions, lines of code, in-
stances) allocate most memory?

9

(6/3)

5

(3/2)

6

(4/2)

5

(4/1)

7

(2/5)

11

(5/6)

5

(1/4)

12

(8/4)

3

(0/3)

7

(4/3)

3

(1/2)

2

(1/1)

5

(4/1)

3

(0/3)

3

(1/2)

3

(1/2)

7

(2/5)

6

(4/2)

14

(4/10)

4

(3/1)

7

(3/4)

3

(1/2)

130

(62/68)

23. What will be the impact in memory consump-
tion of this change?

1

(0/1)

1

(0/1)

3

(3/0)

1

(1/0)

2

(0/2)

1

(1/0)

3

(1/2)

1

(1/0)

1

(0/1)

2

(0/2)

1

(1/0)

2

(0/2)

8

(3/5)

3

(1/2)

30

(12/18)

24. What is the difference in memory consumption
between these similar parts of the code (e.g., between
sets of methods)?

1

(1/0)

1

(1/0)

1

(1/0)

1

(0/1)

4

(3/1)

25. What are the differences in memory consump-
tion between this point of time and that point of
time?

1

(0/1)

2

(0/2)

1

(0/1)

1

(0/1)

1

(0/1)

1

(0/1)

2

(0/2)

10

(0/10)

1

(0/1)

20

(0/20)

26. What is the difference in memory consumption
between these code executions?

2

(1/1)

1

(0/1)

2

(1/1)

1

(1/0)

2

(0/2)

1

(0/1)

1

(0/1)

10

(3/7)

27. What part (function, line of code, instance) of
this function consumes the most memory?

1

(1/0)

1

(1/0)

2

(2/0)

3

(3/0)

2

(2/0)

1

(1/0)

1

(1/0)

1

(1/0)

2

(2/0)

1

(1/0)

2

(2/0)

1

(1/0)

6

(6/0)

2

(2/0)

3

(3/0)

1

(1/0)

30

(30/0)

Total in the category 10

(7/3)

10

(6/4)

10

(5/5)

8

(7/1)

10

(3/7)

18

(7/11)

9

(4/5)

19

(13/6)

12

(7/5)

9

(4/5)

6

(2/4)

3

(2/1)

12

(5/7)

5

(2/3)

9

(4/5)

5

(3/2)

9

(3/6)

8

(4/4)

42

(13/29)

9

(6/3)

11

(6/5)

5

(2/3)

239

(115/124)

Discovering Memory Events

28. Where in the code are memory allocations made
in this function?

6

(6/0)

2

(2/0)

1

(1/0)

1

(1/0)

1

(1/0)

4

(4/0)

7

(7/0)

1

(0/1)

2

(1/1)

1

(0/1)

26

(23/3)

29. Where are instances of this class created? 1

(1/0)

1

(1/0)

2

(2/0)

30. When are these instances garbage collected? 4

(3/1)

2

(1/1)

1

(1/0)

1

(1/0)

8

(6/2)

31. What data is being modified in this code? 1

(1/0)

2

(2/0)

1

(1/0)

1

(1/0)

1

(1/0)

1

(1/0)

7

(7/0)

32. How does this data structure look at runtime? 1

(1/0)

3

(2/1)

4

(3/1)

33. What objects are created? 2

(2/0)

2

(2/0)

34. Where is this variable or data structure being
accessed?

1

(1/0)

1

(1/0)

2

(2/0)

Total in the category 6

(6/0)

0

(0/0)

2

(2/0)

1

(1/0)

3

(3/0)

10

(9/1)

1

(1/0)

0

(0/0)

11

(9/2)

0

(0/0)

7

(7/0)

3

(3/0)

1

(1/0)

1

(0/1)

1

(1/0)

0

(0/0)

0

(0/0)

0

(0/0)

2

(1/1)

0

(0/0)

2

(1/1)

0

(0/0)

51

(45/6)

Total 41

(23/18)

30

(13/17)

38

(29/9)

25

(22/3)

50

(35/15)

61

(42/19)

34

(23/11)

48

(39/9)

59

(40/19)

22

(13/9)

25

(19/6)

32

(25/7)

48

(33/15)

16

(9/7)

30

(20/10)

11

(7/4)

23

(11/12)

23

(17/6)

91

(31/60)

17

(11/6)

33

(25/8)

18

(12/6)

775

(499/276)
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instance, type)?”, and “6. What is the behavior that these entities (functions, lines of code,
instances) provide together?”

Finding 1.1: Participants asked questions about understanding the aspects of source
code for (i) searching relevant code and (ii) locating anomalies or opportunities for
improvement.

4.4.2 Understanding Control Flow

Questions related to understanding the control flow (e.g., exploring the relationships between
functions, identifying when or in which situations some functions are called) belong to this
category. This category contains nine questions, and 163 question occurrences (21%) were
asked during work sessions. The most frequent questions in this category are: “13. Which
execution path is being taken in this case?”, “12. How many times is this entity (function or
line of code) executed?”, and “10. Which functions are called by this function?”

Participants commonly raised these questions when (i) comprehending the execution of
a particular code that impacted the memory usage (allocations, releases, accesses) and (ii)
detecting the root cause of a memory issue.

Comprehending code execution. To better understand why particular code parts (specific
entities or allocation hotspots) were executed, participants often investigated the circumstances
that caused their execution and the relationships between functions/methods. For instance,
P12 identified a function that consumed most memory and asked “Under what circumstances is
this __new__ function called?” P12 explored the relationships between functions and discovered
that __new__ function was called several times to generate multiple data frames that later are
transformed into arrays using the numpy package.

Detecting the root cause of an issue. Programmers also centered on the control flow to
detect the parts of code responsible for excessive or inefficient memory usage. For example,
P19 located an allocation hotspot that threatened memory consumption and asked “Which
execution path is being taken to generate this amount of objects?” to trace the root cause of
the issue and analyze if the current code could be modified.

Finding 1.2 Participants raised questions about understanding the control flow for
(i) comprehending the execution of a particular code that impacted the memory usage
and (ii) detecting the root cause of a memory issue.

4.4.3 Discovering Memory Usage in a Single Point of Time

This category involves questions about discovering memory usage at a single point in time.
We detected five questions and 164 question occurrences (21%) in this category. We also
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noticed that the most popular questions are: “19. Why do these parts of code consume this
amount of memory?”, “16. How much memory does this entity (function, instance, line of
code) consume?”, and “17. How much memory do these parts of the code consume together?”

Participants asked these questions when they (i) investigated the memory usage of
particular entities and (ii) analyzed memory usage at a specific time. Answering these
questions helps programmers understand how some entities impact memory consumption.

Exploring memory usage of entities. Participants usually asked for the memory used
by certain entities during the application’s execution. For example, P8 asked “How much
memory do the functions in charge of plotting my figures consume?” to verify and confirm
that these functions used most of the memory. Also, participants asked “19. Why do these
parts of code consume this amount of memory?” especially when they found (i) unexpected
entities as allocation hotspots or (ii) code that consumed more or less memory than expected.

Analyzing memory usage at a specific time. Some participants look for information
about the total memory used at a particular time. For instance, P3 asked “How much memory
in total was consumed so far?” to analyze the impact in memory usage of some functions
during the execution. Also, some participants asked “20. How much is the maximum memory
peak?” to detect the amount of allocated memory at the time when the memory usage was at
its peak.

Finding 1.3 Participants asked questions about discovering memory usage at a single
point in time for examining the memory used by particular entities or on a specific
time.

4.4.4 Comparing and Contrasting Memory Usage

Questions about comparing and contrasting memory usage belong to this category. We
identified seven questions and 239 question occurrences (31%) grouped in this category.
Question “22. Which entities (functions, lines of code, instances) allocate most memory?” is
the most frequently raised by participants.

Participants often raised questions from this category when they (i) detected allocation
hotspots, (ii) investigated memory over time, and (iii) contrasting memory usage.

Detecting allocation hotspots. To locate memory anomalies and opportunities for improve-
ment, participants compared the memory consumed by entities to determine the allocation
hotspots; thus, programmers asked “22. Which entities (functions, lines of code, instances)
allocate the most memory?” and “27. What part (function, line of code, instance) of this
function consumes the most memory?”

Investigating memory over time. Some participants focused on how memory consump-
tion varies during program execution. The latter helps programmers detect memory growth
and potential leaks. Consequently, participants asked: “21. How does memory usage evolve
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over time?”, and “25. What are the differences in memory consumption between this point of
time and that point of time?”

Constrasting memory usage. Some participants tried to find opportunities to reduce
memory usage by analyzing the memory used by parts of the code (“24. What is the
difference in memory consumption between these similar parts of the code (e.g., between sets of
methods)?”) or distinct code executions (“26. What is the difference in memory consumption
between these code executions?”) As a result, programmers usually need to execute the code
multiple times and compare the memory usage. Also, we noticed that when programmers
propose a change, they often want to determine how it affects memory consumption and
functionality (“23. What will be the impact on memory consumption of this change?”)

Finding 1.4 Participants raised questions about comparing and contrasting memory
usage when (i) detecting allocation hotspots, (ii) investigating memory over time, and
(iii) contrasting memory usage.

4.4.5 Discovering Memory Events

Questions about discovering and locating memory events are grouped in this category. A
total of seven questions and 51 question occurrences (7%) were raised by participants and
belong to this category. The most frequent question is “28. Where in the code are memory
allocations made in this function?”

Participants asked these questions to detect an anomaly and optimization opportunity by
exploring (i) memory allocations, (ii) memory accesses, and (iii) memory releases.

Exploring memory allocations. Some participants inspected the data allocated in memory
and the code responsible for this action. Consequently, participants asked: (“28. Where in
the code are memory allocations made in this function?”, “29. Where are instances of this
class created?”, “32. How does this data structure look at runtime?”, “33. What objects are
created?”)

Exploring memory accesses. Since the data allocated is used in different operations (read
and write). Some participants explored how the data allocated in memory was used and why.
As a result, participants asked: “31. What data is being modified in this code?” and “34.
Where is this variable or data structure being accessed?”

Exploring memory releases. Some participants asked “30. When are these instances
garbage collected?” to examine if memory occupied by data that is no longer needed was
released.

Finding 1.5 Participants asked questions about understanding memory events to
detect an anomaly and optimization opportunity. They usually explored (i) memory
allocations, (ii) memory accesses, and (iii) memory releases.
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4.5 Results: How do Python Programmers Answer These

Questions Using Vismep and Tracemalloc?

We detected that 665 question occurrences (86%) raised by participants that were answered
using features from the selected memory profilers. Consequently, a total of 110 question
occurrences (14%) asked by participants either (i) cannot be answered using the features
of Vismep or Tracemalloc or (ii) practitioners are not able to benefit from memory profiler
features (difficulties at interpreting or finding the required information).

To present detailed information about the tool usage and support, we analyzed the
information required, the actions performed, and the features from Vismep and Tracemalloc
that were employed to answer the questions. This section is organized around the five
categories of questions.

4.5.1 Understanding Static Structure and Implementation

Participants responded to 150 question occurrences (95% of the occurrences in category)
about understanding static structure and implementation during the work sessions.

Responding to question 1 “Which entities (functions, lines of code, instances) are involved
in the implementation of this behavior?” is about finding code parts to a particular function-
ality. To answer this question using Vismep, participants usually searched for a specific entity
based on its name or structural component (file or module). Participants often then check
the entity’s code to ensure it is related to specific behavior and explore their relationships
with other entities that could be involved in the same task. Consequently, participants often
employed the Call graph view and the Source code view. For Tracemalloc, a participant
manually inspected the source code of allocation hotspots based on the static information
about the file and line number reported with Display TOP to verify if some hotspots were
involved with the functionality that he considered problematic.

Questions 2 “Which entities (functions, lines of code, class) belong to this file or module?”
and 3 “Is there an entity named something like this in that unit (project, package, or class)?”
require finding entities based on their structural component (file or module they belong to) or
name. To answer these questions with Vismep, participants often (i) manually inspect and
search the name and file of entities in diverse views (Call graph view, Scatter plot view, Sub
call graph view) using the popup windows, (ii) use the search mechanism to locate an entity
with a particular name, and (iii) explore the Source code view of entities to ensure that they
belong to a specific unit. When participants employed Tracemalloc, they answered question 2
by manually searching the names of files or modules in the textual reports (Display TOP,
Get traceback) and exploring their source code.

Questions 4 “What does the declaration or definition of this look like?” and 5 “What
are the parts of this entity (function, instance, type)?” involve inspecting the source code of
entities. Participants responded to these questions by inspecting the source code of a given
entity using Source code view from Vismep (see Figure 4.4). Also, participants explored the
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(a) Vista principal. (b) Diagrama de dispersión.

Figura 5.3: Resultado del participante P3. Entre las librerías usadas están numpy, pai_io y
argparse.

Figura 5.4: Resultado del participante P4 con la tarea 4.1. Entre las librerías usadas están
TensorFlow. Gráfico de sub-llamadas de fit_transform y código fuente de __exit__.

20

(a) Call graph view (b) Scatter plot view

Figure 4.4: P19 wanted to understand the rationale and implementation of remove_tags_region
function. Consequently, the participant selected the respective node to display the view that
contains the source code of remove_tags_region function and inspect the code.

source code of entities using the static information shown in diverse textual reports (Display
TOP, Compute differences, Get traceback)

Responding to question 6 “What is the behavior that these entities (functions, lines of
code, instances) provide together?” requires understanding the task in which specific parts of
code were associated. Participants often answer this question by exploring the source code
of entities and their relationships to understand how these entities impact the program’s
functionality. When participants used Vismep, they focused on inspecting Source code view
and exploring the relationships using Call graph view or Sub call graph view. In the case of
Tracemalloc, participants often opened and moved between several windows to inspect the
source code of the targeted entities and their relationship.

Finding 2.1 Questions from understanding source code commonly involve searching
entities based on (i) name, (ii) structural component, or (ii) functionality. Some questions
also require exploring relationships between code entities. In general, answering these
questions is well supported by Vismep (Source code view combined with other views)
and Tracemalloc (includes file and code line in various reports).
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4.5.2 Understanding Control Flow

A total of 137 question occurrences (84% of the occurrences in the category) were answered
during sessions.

Questions 7 “Which entities (functions, lines of code) are the most executed?”, 11 “How
many times is this entity (function or line of code) executed?” and 12 “How many recursive
calls happen during this operation?” is about how entities were executed. To respond to these
questions, participants used Vismep to examine the information about the entity’s execution
with the popup windows or visual hints. For instance, participants often used Scatter plot
view to investigate the position of entities since the X-axis in the chart represents the number
of executions. Participants also selected Call graph view or Sub call graph view to inspect
the height of nodes (proportional to the number of executions) and look for nodes with loops
among their edges to identify recursion. Participants could not respond to questions 11 and
12 using Tracemalloc.

Answering questions 8 “Where is this method called or referenced?” and 10 “Which
functions are called by this function?” require examining control flow information, specifically
the relationship between functions. When participants used Vismep, they responded to
these questions by exploring the relationships between nodes in Call graph view and Sub
call graph view as shown in Figure 4.5. Sometimes they also inspected the code of certain
functions/methods to indicate the line of code responsible for calling a function (Source code
view). Participants could not answer question 8 employing Tracemalloc.

(a) Vista principal. (b) Diagrama de dispersión.

Figura 5.3: Resultado del participante P3. Entre las librerías usadas están numpy, pai_io y
argparse.

Figura 5.4: Resultado del participante P4 con la tarea 4.1. Entre las librerías usadas están
TensorFlow. Gráfico de sub-llamadas de fit_transform y código fuente de __exit__.

20

(a) Call graph view (b) Scatter plot view

Figure 4.5: P9 explores the calling relationships between functions in Call graph view and
inspects which functions are called in the code using the Source code view.
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Questions 9 “When during the execution is this method called?”, 13 “Which execution path
is being taken in this case?”, 14 “Under what circumstances is this method called or exception
thrown?” and 15 “In what order are these functions executed?” consider understanding
dynamic aspects of the control flow or data flow in a particular context. To answer questions
13, 14, and 15 using Vismep, participants investigated and navigated iteratively over the (i)
code of functions (Source code view) and (ii) relationships between functions (Call graph view,
Sub call graph view). When participants employed Tracemalloc, they answered these questions
by (i) analyzing the chain of executions that lead to a particular memory allocation (Get
traceback) and (ii) searching manually for the references to functions/methods and inspecting
the respective code.

Finding 2.2 Questions about understanding control flow usually consider exploring
information about relationships between entities. In most cases, obtaining this infor-
mation is relatively well supported by Vismep (Call graph view or Sub call graph view
combined with other views) and Tracemalloc (Get traceback).

4.5.3 Discovering Memory Usage at a Single Point of Time

Participants responded to 144 question occurrences (88% of the occurrences in the category)
about discovering memory usage at a point in time.

Responding to question 16 “How much memory does this entity (function, instance, line
of code) consume?” and 17 “How much memory do these parts of the code consume together”
require exploring the memory usage of one or multiple entities altogether. When participants
answered these questions with Vismep, they often investigated the information about memory
usage of entities in the views (Call graph view, Scatter plot view, Sub call graph view). For
Tracemalloc, participants used API calls (Display TOP, Compute differences) that report the
memory usage of lines of code as shown in Figure 4.6. Besides, with both tools, participants
performed mental operations with the information from each group entity to respond to
question 17.

Questions 18 “How much memory in total is being consumed?” and 20 “How much is
the maximum memory peak?” are about exploring the memory allocated at a point. Some
participants answered question 18 with Vismep by locating the root function responsible for
the program execution and inspecting its memory used in Call graph view and Scatter plot
view. Participants could not respond to question 20 with Vismep. In the case of Tracemalloc,
participants selected API calls to show the total memory usage (Display TOP, Get traced
memory) and the memory peak (Get traced memory) in the textual reports.

Question 19 “Why do these parts of code consume this amount of memory?” considers
dynamic and static aspects of the program to understand the reasons behind memory usage.
To answer this question, participants usually focused on selected code parts and explored (i) the
memory used by them, (ii) other code parts associated with their execution (control flow), and
(iii) its source code to gain a better comprehension of program behavior. Consequently, when
using Vismep, participants usually inspected the memory usage information (detailed in popup
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(a) Parte de la visualización con AlProfiler, en el gráfico de llamadas y un
código fuente.

(b) Parte de los resultados con Tracemalloc, con el ejemplo de obtener las 10
líneas que consumen más memoria

(c) Parte de los resultados con memory-profiler.

Figura 5.9: Resultado del participante E4.

35

Figure 4.6: P8 used the API calls from Display TOP to enlist the parts of code that allocated
the most memory and focused on the amount of memory allocated by specific lines of code.

windows), the relationships between functions (Call graph view or Sub call graph view), and
the code (Source code view). For Tracemalloc, some participants often reported the memory
used by parts of code and inspected in depth its source code. Other participants reported the
changes in memory usage after and before executing these parts of code (Compute differences
along with the chain of code execution that caused the memory allocations associated with
them (Get traceback).

Finding 2.3 Questions about discovering memory usage at a point typically involve
examining information about the memory allocated by entities or at a point. Some
questions also require exploring code and relationships between entities. In general,
answering questions in this category is well supported by Vismep (Call graph view and
other views combined) and Tracemalloc (includes memory used by entities in various
reports and at a point with Get traced memory).

4.5.4 Comparing and Contrasting Memory Usage

A total of 199 question occurrences (83% of the occurrences in the category) were answered
by participants.

Responding to question 21 “How does memory usage evolve over time?” and 25 “What
are the differences in memory consumption between this point of time and that point of
time?” considers understanding changes in memory usage over time. When participants
used Tracemalloc, they answered question 21 by answering multiple occurrences of question
25. They often report if the memory increased or decreased after and before executing a
function using the API calls from Compute differences (see Figure 4.7). Consequently, some
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participants obtained information about the changes in memory usage over time by inspecting
several reports from Compute differences. Some participants did not respond to question 21
using Vismep, and question 25 was not asked when Vismep was used.

(a) Vista principal. (b) Diagrama de dispersión.

Figura 5.3: Resultado del participante P3. Entre las librerías usadas están numpy, pai_io y
argparse.

Figura 5.4: Resultado del participante P4 con la tarea 4.1. Entre las librerías usadas están
TensorFlow. Gráfico de sub-llamadas de fit_transform y código fuente de __exit__.

20

(a) Call graph view (b) Scatter plot view

Figure 4.7: P19 used the API calls from Compute differences to understand how the memory
is allocated and released when a selected function is executed multiple times. The report
shows the lines responsible for changing memory usage each time the function is executed.

Questions 22 “Which entities (functions, lines of code, instances) allocate most memory?”,
24 “What is the difference in memory consumption between these similar parts of the code
(e.g., between sets of methods)?” and 27 “What part (function, line of code, instance) of
this function consumes the most memory?” is about comparing the memory allocated by
entities and locating the code responsible for these allocations. To answer questions 22 and
24, participants center on locating allocation hotspots. For these cases, participants often
explored and manually compared the visual cues of elements in diverse views of Vismep. For
example, to identify allocation sites between functions, they searched the widest nodes in
Call graph view or the points located at the top in Scatter plot view since the width and the
position in Y-axis indicate the memory usage. To identify code lines or instances that allocate
most memory in a function, participants inspected the Source code view and located the
lines with a darker background. For Tracemalloc, participants responded to these questions
by reporting with Display TOP the allocation hotspots along with the file and the line of
number. In the case of question 24, participants compared the memory usage of code parts
utilizing information from background color in Source code view using Vismep or checking
changes using Compute differences with Tracemalloc.

Answering questions 23 “What will be the impact in memory consumption of this change?”
and 26 “What is the difference in memory consumption between these code executions?”
require to detect changes in memory usage between versions or executions. To respond to
these questions using Tracemalloc, participants usually reported the memory usage during
program execution through various features (Display TOP, Get traced memory) for each
version or execution. Then, participants manually compared the information from these
reports to locate changes in memory usage based on a change or a different input. Participants
could not answer these questions with Vismep.
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Finding 2.4 Some questions about comparing memory usage consider exploring memory
usage over time. Answering these questions is well supported by Tracemalloc (Compute
differences). The remaining questions in this category commonly involve comparing
memory consumed by entities, versions, and code executions. Some questions also
require locating the code responsible for allocations. In most cases, obtaining this
information is relatively well supported by Vismep (Call graph view, Source code view
and combined views) and Tracemalloc (Display TOP and Compute differences).

4.5.5 Discovering Memory Events

A total of 35 question occurrences (69% of the occurrences in the category) about discovering
memory events were answered by participants.

Questions 28 “Where in the code are memory allocations made in this function?” is
about locating the code responsible for any memory allocation inside a function. Participants
answered question 28 by detecting code lines with a colored background in Source code view
with Vismep (see Figure 4.8) and inspecting the code lines that allocate memory in reports
(Display TOP, Compute differences) of Tracemalloc.

(a) Vista principal. (b) Diagrama de dispersión.

Figura 5.3: Resultado del participante P3. Entre las librerías usadas están numpy, pai_io y
argparse.

Figura 5.4: Resultado del participante P4 con la tarea 4.1. Entre las librerías usadas están
TensorFlow. Gráfico de sub-llamadas de fit_transform y código fuente de __exit__.

20

(a) Call graph view (b) Scatter plot view

Figure 4.8: P8 inspects the code of SA function using the Source code view to identify the
memory allocations made in the function by focusing on the highlighted lines.

Answering questions 29 “Where are instances of this class created?”, 30 “When are these
instances garbage collected?” and 33 “What objects are created?” consider understanding
information about the creation and release from the memory of instances. Participants
could not answer question 29 using Vismep, and occurrences from this question did not arise
when participants used Tracemalloc. To answer question 30, a participant detected and
inspected the points associated with certain instances and when the memory decreased with
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Compute differences from Tracemalloc. Participants could not respond to questions 30 and
33 using Vismep, and no occurrence from question 33 was asked by participants when using
Tracemalloc.

Question 31 “What data is being modified in this code?”, 32 “How does this data structure
look at runtime?” and 34 “Where is this variable or data structure being accessed?” are about
exploring the state of a particular data structure or locating the code responsible for accessing
it. To answer questions 31 and 34 with Vismep, participants often examined the source code
associated with a particular data and explored their relationships with other entities using
Source code view and Call graph view. Occurrences from questions 31 and 34 were not asked
when participants used Tracemalloc. In addition, participants were unable to answer question
32 with either tool.

Finding 2.5 Questions about discovering memory events generally involve locating code
responsible for memory events (allocations, releases, accesses). Answering questions
around allocations is partially supported by Vismep (Source code view, combined views)
and Tracemalloc (Display TOP, Compute differences).

4.5.6 Unanswered questions

We detected that 110 question occurrences (14%) asked during work sessions were not answered.
We explored the difficulties and attempts that participants made to try to answer the questions
from the five categories.

Understanding source code. Participants had difficulties answering questions 2 “Which
entities (functions, lines of code, class) belong to this file or module?” and 3 “Is there an entity
named something like this in that unit (project, package, or class)?” To detect entities based
on their structural component (file, module) or name, participants manually inspected many
entities to obtain the information required. The latter caused mental fatigue because there
was no automatic way to do this operation. Additionally, when some participants respond
to question 6 “What is the behavior that these entities (functions, lines of code, instances)
provide together?”, they inspected relationships between several entities to better understand
the group’s functionality, but they mentioned that this operation demands considerable mental
effort.

Finding 2.6 We detected that tool support for answering questions about source code
could be limited when searching entities.

Understanding control flow. Some participants could not answer questions 9 “When
during the execution is this method called?”, 13 “Which execution path is being taken in this
case?”, 14 “Under what circumstances is this method called or exception thrown?” and 15 “In
what order are these functions executed?” The latter occurs because participants struggle to
get control or data flow information in a particular context. For example, participants failed
to answer question 9 “When during the execution is this method called?” using Vismep and
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Tracemalloc since it involves the context of a particular point, and these tools do not extract
context information. Some participants did not respond to questions 8 “Where is this method
called or referenced?”, 11 “How many times is this entity (function or line of code) executed?”
and 12 “How many recursive calls happen during this operation?” using Tracemalloc because
it lacks features to extract this information.

Finding 2.7 Some participants considered the reported information insufficient due to
(i) the lack of context in both tools and (ii) the level of support in analyzing relationships
between functions and entity execution for Tracemalloc.

Discovering memory usage in a point. Some participants asked questions 16 “How
much memory does this entity (function, instance, line of code) consume?” and 17 “How
much memory do these parts of the code consume together” at a fine-grained level (line of
code, instance). However, they could not respond to these questions due to the lack of explicit
information for these cases in Vismep and Tracemalloc. The participants that asked about
memory used by lines of code in Vismep explored the Source code view and only found that
the visual hints of background code were the unique information about memory usage at
code line. Another example is when P2 did not find any suitable features in Tracemalloc
to obtain the information required to answer the question “How much memory does this
variable consume?”. Furthermore, one participant could not answer question 20 “How much
is the maximum memory peak?” with Vismep since the profiler did not explicitly show the
information. Finally, we noticed that participants had challenges with question 19 “Why
do these parts of code consume this amount of memory?” since the navigation between
dynamic information (memory usage, program execution) and static information (source code,
structural component) was not always connected adequately.

Finding 2.8 We detected that participants require more support in (i) understanding
memory usage at a fine-grained level (line of code, instance) and (ii) connecting static
and dynamic information.

Comparing and contrasting memory usage. Some participants did not answer questions
22 “Which entities (functions, lines of code, instances) allocate most memory?”, and 24 “What
is the difference in memory consumption between these similar parts of the code ( e.g., between
sets of methods)?” using Vismep, since it does not explicitly present information about
memory consumed by code lines. Participants often had difficulties manually comparing the
information about memory usage displayed by multiple reports using Vismep and Tracemalloc.
The latter is an action frequently performed to answer questions 23 “What will be the impact in
memory consumption of this change?” and 26 “What is the difference in memory consumption
between these code executions?” In addition, participants did not respond to question 21
“How does memory usage evolve over time?” with Vismep because it lacks adequate support
in analyzing memory usage over time. Besides, participants also faced difficulties using
Tracemalloc to answer this question. In some cases, they manually compared several reports
and gave up due to high mental demand.
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Finding 2.9 We noticed that participants need more support in (i) understanding
memory usage at a fine-grained level (line of code, instance), (ii) analyzing memory
usage over time using Vismep and (iii) comparing dynamic information at different
levels (e.g., between executions and versions).

Discovering memory events. Participants failed to answer question 29 “Where are
instances of this class created?” with Vismep, they tried identifying functions associated with
creating specific instances and exploring their relationships to locate the code responsible
for calling them. However, performing this search was tedious and expensive; as a result,
participants concluded that the information was insufficient to answer this question directly.
Most participants also mentioned that Vismep and Tracemalloc do not provide the required
information to answer questions 30 “When are these instances garbage collected?” and 33

“What objects are created?” To answer question 32 “How does this data structure look at
runtime?”, participants considered that there was no feature of tools that could be useful.
Furthermore, one participant mentioned that Vismep does not provide enough information to
answer question 34 “Where is this variable or data structure being accessed?”

Finding 2.10 Participants often struggle when obtaining information about the (i)
creation or release of instances and (ii) the state of data structures during program
execution.

4.5.7 Suggestions

We collected suggestions and observations from participants’ answers to the post-study
questionnaire. In the following, we detail the information gathered for Vismep:

• Entities from a particular file/module. Most participants were surprised by the impact
of external libraries on the complexity of their application. Due to this, the analysis
of memory consumption was complex since some participants focused on exploring
the memory usage of specific entities that do not belong to external libraries. Six
participants explicitly suggested adding the option to filter or exclude functions based
on their structural components. Additionally, they suggested adding information about
the percentage of memory usage per structural component (e.g., external libraries).

• Fine-grained memory usage. Some participants asked about memory used by variables
or lines of code. Although Vismep provides visual hints with the code line background
in Source code view, it does not present explicit information on how much memory a
line of code or a variable consumes. Two participants explicitly recommended adding
this information.

• Metric selection. A number of participants had difficulty comparing entities based on
the default visual mapping. Therefore, two participants recommended adding an option
for the user to select the mapping between metrics (e.g., memory usage, number of
executions) and visual features (e.g., width, height, color).
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• Vismep performance. Some participants highlighted the importance of improving the
profiler’s performance since, in some cases, the data extraction took a long time compared
to the execution time of the application to be analyzed.

The participants also provide some observations related to Tracemalloc:

• Connecting dynamic with static information. Most participants had difficulties exploring
the dynamic information displayed in textual reports and inspecting the associated
source code. For example, participants struggle when analyzing relationships between
functions and entity execution.

• Selecting and using features. Some participants struggled to obtain the necessary
information using Tracemalloc. Phrases like “it is tiring having to add lines of code in
specific places” or “I was frustrated using Tracemalloc, I could not get the level of detail
I wanted in the information” were frequent during work sessions. In addition, twelve
participants dealt with errors when running the modified code to get the necessary
information.

4.6 Discussion

We discuss our findings and contrast them with other prior work as necessary.

4.6.1 Questions asked by participants

We found three categories centered on memory usage: (i) discovering memory consumption at a
single point in time, (ii) comparing and contrasting memory consumption, and (iii) discovering
memory events. Although these findings may not be surprising since they are involved with
primary activities (e.g., performance, inspection of memory anomalies) mentioned in previous
work [76, 156], we provide empirical evidence about their relevance.

We also detected questions about understanding the source code and the control flow.
We included these questions because participants asked them to answer questions from the
rest of the categories. To illustrate, after locating allocation hotspots, several participants
asked “Why do these parts of code consume this amount of memory?” Then, to answer this
question, participants inspected the source code of the particular allocation hotspot (“What
does the definition of this looks like?”) and explored the control flow to understand why that
code is executed (“Under what circumstances is this method called?”). Our results show that
programmers require support for software comprehension when addressing a memory issue or
determining the root cause of a potential failure.

Questions of other studies. We reported that participants asked questions that were and
were not reported in studies on developer information needs. For example, most questions
about discovering memory usage at a single point in time and comparing and contrasting
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memory usage were not identified by any other study. This situation may occur due to the
lack of information about the needs of programmers during memory consumption analysis
[23]. Consequently, our study provides valuable information to guide researchers in designing
tools that adequately support programmers in this context.

Furthermore, most questions we report about understanding source code and control flow
were informed by studies about programming change tasks [72, 73, 133, 134]. In addition,
some questions asked for discovering memory events were classified as questions related to data
flow or performance in previous studies [73, 76]. These situations illustrate that programmers
asked common questions about software comprehension, whether to perform programming
change tasks, face memory issues or determine the cause of a failure.

Questions frequency. We divided our participants into two groups, G1 and G2. Participants
from G1 first used Vismep (FP) and then Tracemalloc (SP), while in G2, the order of tools was
reversed. We observed that participants from G1 usually ask more questions than participants
from G2. We also noticed that questions about discovering memory events were asked more
often in G1 than in G2. One explanation for this difference is the applications selected by
participants and how they address issues. For example, some participants (P6, P9) from
G1 chose applications with memory anomalies (leaks, bloats) and centered on exploring the
memory allocations and releases when addressing these issues.

We also detected that questions from the first, second, and last categories arose more
frequently when participants used Vismep. One reason for this difference is that programmers
considered that Vismep gives more support to answer these questions than Tracemalloc; thus,
more questions arose. In addition, questions from the third and fourth categories were asked
more often during the first phase of both groups. One contributing factor may be the learning
effect in the study. In other words, some participants asked questions about the program’s
memory usage during the second phase considering the knowledge acquired from the first
phase. For instance, some participants could avoid asking about the memory used by some
entities they know are not a threat to memory usage based on analysis from the first phase.

Learning effect. Participants analyzed the same application with Vismep and Tracemalloc.
The order for using each tool was defined based on the participant’s group (G1 and G2). Each
participant decided when to end up the first phase to start the second phase and use another
tool. Therefore, we did not force participants to switch from one tool to another. In the
second phase, participants generally (i) located or confirmed the information or assumptions
they had in the first phase, (ii) used the knowledge from the first phase to analyze the code
further, and (iii) detected new information. We also noted that participants asked more
or fewer questions between phases due to the tool’s limitations or because they had prior
knowledge of the first phase. To illustrate, participants asked more questions about memory
evolution over time using Tracemalloc due to the support that this tool offers. In addition, as
mentioned before, we discussed that the frequency of questions might vary due to different
reasons (e.g., tool usage, application selected). Note that our goal is not to compare Vismep
and Tracemalloc or rate the questions for relevance based on the frequency.

Furthermore, we increased the diversity and range of the questions asked by practitioners
due to dividing participants into two groups balanced based on their study field and observing
how they analyzed the same application with both tools in a different order. We also found
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that programmers analyze memory usage and address memory issues using a wide range of
features that are not necessarily supported by a single tool.

Study field effect. We examined if the questions asked may vary based on the participant’s
study field. We analyzed the differences in questions between two groups of participants:
(i) group C, which contains participants in the Computer Science field, and (ii) group N,
which contains the rest of the participants. As a result, group N participants often asked
more questions about understanding source code and control flow. In addition, group C
participants usually asked more questions about discovering memory usage at a point in time
and comparing memory usage. These differences could be that participants from fields distinct
to Computer Science may need to explore several entities at different levels to understand the
program’s behavior and structure.

Self-assessment expertise effect. We inspected if the questions asked may vary based on
the participant’s expertise in Python. We analyzed the differences in questions between two
groups of participants: (i) group E, which contains participants with self-assessment expertise
above 3.2 (average), and (ii) group N, which contains the rest of the participants. As a result,
group N participants usually asked more questions about understanding source code, control
flow, and discovering memory events. Group E participants often asked more questions about
discovering memory usage at a point in time and comparing memory usage. A factor that
may cause these differences could be that participants considered themselves with expertise
above regular in Python could obtain information to modify their code, optimize memory
usage and perform fewer operations to comprehend the program’s functionality.

Gender effect. Some studies [15, 16] have shown differences between males and females
when debugging. Our study involved twenty-two participants, of which six were female. We
detected that both male and female programmers ask questions from the five categories. We
also found that female programmers usually ask more questions about discovering memory
events, while in the other categories, the question frequencies are often higher for male
programmers. However, we could not ensure that these situations are due to gender since our
study presents (i) a small sample, which is not balanced between males and females, and (ii)
variations in sessions (e.g., applications selected). Nonetheless, studies of the gender-related
issues within tasks related to memory consumption analysis would significantly extend this
work.

Furthermore, any observations about the occurrences of the questions should be treated
carefully as the sessions from which the data is extracted varied in diverse ways (e.g., different
applications, presence of memory issues). Notice that we cannot conclude that the reason for
differences among questions asked is due to the background of participants (e.g., study field,
experience in Python) due to the variations in sessions.

4.6.2 Answering questions

We observed that Vismep and Tracemalloc could support programmers in answering most
questions inferred in this study. However, Section 4.5.6 details that these tools could present
limitations in answering some questions. Consequently, we believe programmers need more
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comprehensive support in (i) comparing and piecing information together, (ii) connecting
dynamic information with source code. Besides, programmers require extracting information
about dynamic aspects at different levels (e.g., control flow in context, memory usage by code
lines and instances).

Support of other tools. We believe that most libraries/tools in Python might support most
questions inferred in our study due to the reported information and the activities they claim to
support. For example, some options [4, 20] could help answer most questions in comparing and
contrasting memory usage since they extract information about (i) the allocation hotspots and
(ii) memory usage over time (explicit information about time according to documentation). In
addition, other options [1, 2, 6] may provide adequate support for answering some questions
about memory events, specifically creation and release of specific instances. Furthermore, we
consider that some options could not adequately support answering questions about source
code and control flow because they do not collect information from these aspects, or the way
of connecting dynamic information and source code may be insufficient.

Nonetheless, further research must be conducted with other tools to confirm if programmers
could use them to answer these questions.

Learning effect. We defined that a question is answered only if the participant demonstrates
and explains how she/he employs the corresponding tool to respond to the question and
mentions the answer. Vismep and Tracemalloc differed in the information reported and how
information is provided and navigated. Consequently, programmers used different strategies
to manage both tools and obtain certain information. For example, participants compared the
visual hints of elements in the Call graph view and Source code view to identify allocation hot
spots with Vismep. On the other hand, participants used the Display TOP from Tracemalloc
to obtain the same information.

Study field effect. We observe that participants, regardless of their study field and tool’s
usage, usually answered a similar proportion of questions for all categories except understanding
control flow. Computer science participants tend to answer more questions about control
flow. The latter may be because these participants may be more accustomed to performing
operations to explore information on this aspect.

Self-assessment expertise effect. We analyzed the differences in questions between
two groups of participants: (i) group E, which contains participants with self-assessment
expertise above 3.2 (average), and (ii) group N, which contains the rest of the participants.
Participants from both groups, regardless of the tool’s use, often answered a similar proportion
of questions for all categories except discovering memory events. Participants from group E
usually responded to more questions about discovering memory events. One factor may be
that experienced participants could extract information by using different features to obtain
information that was not explicitly displayed (e.g., allocations, releases).

Gender effect. We noticed that participants, regardless of gender, often answered a
similar proportion of questions for all categories except discovering memory usage at a single
point and discovering memory events. Female programmers tend to answer more questions
about discovering memory usage at a single point and discovering memory events than male
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programmers. This situation could occur because females were found efficient users of tinkering
in previous studies [15, 16].

4.7 Threats to validity

Our study and results are subject to validity threats [162]. To carefully identify possible
threats and analyze how their impact may be mitigated, we decided the following:

Conclusion validity. Our conclusions are founded on an exploratory study involving
programmers analyzing the memory usage of their Python applications using memory profilers.
However, our conclusions are based on observing only twenty-two participants, a relatively
low sample. We try to reduce this threat by selecting participants with diverse backgrounds
(e.g., study fields, experience in Python programming). Although we had no indication that
increasing the number of participants may invalidate our result, the frequency of questions in
our results may be affected.

Internal validity. The student supervised by the thesis author performed the data collection
and transcription of each work session. Then, the thesis author checked the generated spread-
sheets based on the video recordings and event logs to minimize inconsistencies. Furthermore,
the thesis author conducted the steps to identify the questions asked by the participants.
Identifying concrete questions based on user behavior may be inaccurate, as participants did
not explicitly verbalize their thoughts. Finally, the process of defining general questions may
suffer from uncertainty. For instance, it can be challenging to distinguish question 23 ”What
will be the impact in memory consumption change?” from question 26 ”What is the difference
in memory consumption between these code executions?”. To minimize inaccuracy in the
inference process, the thesis author contrasted different scenarios and events related to the
same questions and checked if the inferred questions were consistent with the information from
spreadsheets. All the authors held two meetings to discuss any discrepancy in the inferred
questions’ consistency.

Regarding the classification scheme, the thesis author conducted a thematic analysis
to organize the inferred questions based on the information needed and the programmer’s
behavior to answer a question. The codes and themes generated vary depending on the coder’s
experience, level of abstraction, and point of view. To mitigate this threat, two supervisors of
this thesis checked the consistency of the process by examining the description of themes with
the associated data. We conducted two meetings to discuss and resolve the disagreements
among generated codes and themes. Additionally, two reviewers independently categorized
the inferred questions using the classification scheme, and a measure of agreement between
reviewers was calculated to validate the reliability.

Construct validity. We focus on understanding how programmers analyze the memory
usage of Python programs using memory profiler tools. Therefore, we voluntarily centered on
the Python programming language. For the study, participants chose software applications
with which they were familiar to analyze them during the sessions. Furthermore, data from
each work session was carefully examined and collected using records, logs, and observation.
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External validity. The selected memory profiler tools and the individual differences among
participants influence the programmers’ questions and how they answer those. Consequently,
our data could be different given a completely distinct set of memory profiler tools or
participants. The latter must be considered when interpreting or generalizing the results. We
mitigated this threat by selecting programmers with different backgrounds and experience
levels. In addition, we opted for memory profiler tools that provide diverse information and
report presentations commonly offered by other tools for the memory usage analysis. We also
discussed and analyzed the tool support for answering questions considering the features of
the tools. As a result, we noticed that many of the inferred questions were independent of
whether they could be answered with the tools or not. Furthermore, no new questions were
detected in the last work sessions. The latter suggests that some of our results will likely
generalize to other Python tools. However, a follow-up study in which participants were asked
to work with another set of memory profiler tools would help demonstrate that one or more
questions have more or no support than noted in our analysis.

Our results also need to be interpreted relative to the programming language and the
open questions used in the study. We focused on understanding the impact of memory
profiler tools on supporting programmers during memory consumption analysis for Python
applications. The participants selected Python applications with which they were familiar and
answered open questions to ensure that participants had a goal they cared about and looked
for the information they considered valuable. We do not diversify our study by covering other
programming languages due to the difficulty of conducting such studies on a large scale. For
example, data collection and transcription are expensive as it takes about one day to complete
this process per work session. Furthermore, our study does not present tasks more specific
and detailed (e.g., identify five allocation hotspots) since our goal is to gather questions that
programmers consider relevant. Consequently, diversifying the study in these aspects would
be valuable for prioritizing future research and efforts around building tools to support the
needs in particular situations.

As mentioned above, the sessions in our study varied along several dimensions, and we
have not thoroughly analyzed how the questions asked and the answering behavior varied
along those dimensions. Although we discussed in Section 4.6 the differences between question
frequencies and the questions asked and answers by participants with diverse backgrounds,
this information is insufficient to conclude that the study field or the programming experience
affects the questions asked and how the tools are used. Obtaining precise information about
the latter would require a study set up with more controls on the dimensions along which the
sessions are allowed to vary.

4.8 Summary

We conducted an observational study to provide (i) an empirically-based set of questions that
programmers ask during memory usage analysis and (ii) a report about how programmers
those questions with Vismep and Tracemalloc. In our exploratory study, we observed 22
programmers analyzing the memory consumption of Python applications with which they
were familiar using these two tools.
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Asking questions. We found 34 different questions raised by participants and organized
them into five categories based on the information needed and the programmer’s behavior: (i)
understanding source code, (ii) understanding control flow, (iii) discovering the memory usage
at a single point of time, (iv) comparing and contrasting memory usage, and (v) discovering
memory events.

Answering questions. We noticed that answering most questions of our study is generally
well supported by Vismep and Tracemalloc. However, participants often had difficulties
with these tools in some activities (i) searching entities, (ii) understanding control flow in
a particular context, (iii) understanding memory usage at a fine-grained level (line of code,
instance), (iv) connecting static and dynamic information, (v) comparing dynamic information
at different levels (e.g., between executions and versions) and (vi) exploring creation, release
and the state of data structures. Consequently, we consider that programmers require more
comprehensive support in (i) comparing and piecing information together and (ii) connecting
dynamic information with source code.

We also discussed that some prior work [22, 154, 156] and other tools may provide support
to answer the questions inferred in our study due to the information collected and the tasks
they claim to support. However, a follow-up study will help recognize the degree of support
that may provide other tools for programmers to answer these questions.

The significant implication is that there is still much to learn about how programmers
analyze memory usage. Multiple studies beyond this are needed to thoroughly understand how
programmers perform these activities in different contexts. Those insights can be leveraged
to create new tools or improve current tools to support programmers in their development
environments.
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Chapter 5

Conclusions

This chapter summarizes the dissertation contributions, discusses our studies, and points to
possible future works.

5.1 Dissertation Contributions

This dissertation makes a number of contributions which are summarized below considering
the addressed research questions.

Literature review. We reported a systematic literature review of published works centered
on software visualizations for analyzing the memory consumption of programs in Chapter 2.
We have systematically selected 46 articles and categorized them based on the tasks supported,
data abstracted, visual representations, evaluations conducted, and prototype availability.
As a result, we introduce a taxonomy based on these five dimensions to identify the main
challenges of visualizing memory consumption and opportunities for improvement. This study
answers the following five research questions:

• “Which tasks are supported by the software visualizations to help users with the analysis
of memory consumption?” We used thematic analysis to generate a classification scheme
since an empirical catalog of tasks that shows the programmers’ needs or requirements
during memory usage analysis and memory issue repairing is missing. As a result, we
classified the articles based on (i) focus point analysis and (ii) memory issue detection.
According to the classification in focus point analysis, most software visualizations
focus on supporting programmers in data structure and general purposes involved
with memory usage analysis, such as heap analysis. Furthermore, the research on
visualizations to support memory regression or cache performance analysis is limited.
We also noticed that around 47.82% of the visualizations support memory issue detection.
Consequently, memory issue identification is not fully explored yet, leaving an open
opportunity.

• “What aspects of the software are abstracted by the software visualizations to help users
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with the analysis of memory consumption?” We generated a classification scheme
according to the sources from which various data were collected. We found that all
software visualizations display data from the program execution. The most popular data
extracted from program execution involves memory events (allocations, accesses, releases)
and references between variables. About 47.82% of software visualizations show static
information. Only one visual approach displays information about changes between
versions. Additionally, our findings show that most visualizations dismiss connecting
the information from program execution with information from source code, like lines
of code or classes. We consider that illustrating and piecing together information from
both sources reduces the effort of practitioners to analyze memory consumption.

• “Which software visualizations have been proposed to help users with the analysis of
memory consumption?” We categorized the articles according to the classification
scheme proposed by Keim [66]. As a result, we discovered that 60.87% of software visu-
alizations employ one visual technique. The most popular technique is the geometrically-
transformed display, frequently used in articles that propose node-link diagrams to
illustrate relationships between elements. We also detected that most software visualiza-
tions provide interaction mechanisms. However, the visualization mantra“Overview first,
zoom and filter, then details on demand” [131] is not always considered by the current
visualizations. Finally, most software visualizations are displayed using a standard
monitor. Therefore, it will be valuable to implement visualizations that use other
mediums, such as tactile devices or 3D environments, and study their effectiveness in
the field.

• “How are software visualizations to help users with the analysis of memory consumption
evaluated?” We classified the selected studies based on the work of Merino et al. [84].
Our results indicate that most software visualizations are evaluated empirically. About
56.52% of articles provide usage scenarios as an evaluation strategy and use popular
benchmarks like DaCapo suite [21], DB suite, Reptile [153], GCOld [107], Paraffins,
or open-source projects to demonstrate the benefits of the proposed visualization.
Nonetheless, most articles lack robust empirical evaluation of how visualizations perform
in practice with software developers and real-world applications.

• “What software visualization tools or prototypes are available to help users with the
analysis of memory consumption?” We collected from the selected articles the tool’s
name and the links from which the visualization tool is available. Only 21.73% of the
articles provide an existing link. Additionally, we identified links to visualization tools
for 23.91% of the articles due to web search. Overall, around 54.36% of the visualizations
are not available. Consequently, we consider the lack of availability one of the main
weak points in the field.

Software visualization in practice. In Chapter 3, we introduced Vismep, an interactive
visualization prototype to assist programmers in monitoring the memory usage of Python
programs. Vismep summarizes how the program runs and allocates memory using polymetric
views [74]. Vismep also connects the source code with dynamic information. Chapter 2 reports
that these software aspects (the connection between source code and dynamic information,
calling relationships between functions/methods) are not commonly displayed. Therefore, we
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explored how valuable this information is for practitioners. We also presented an exploratory
study to understand how Vismep supports eleven programmers in practice and the perceptions
of programmers about the tool. This study answers the following research questions:

• “How does Vismep support programmers when analyzing memory consumption?” We
found that participants looked for dynamic and static information to (a) identify relevant
code; code involved in implementing certain behavior or that belongs to particular
modules, (b) locate allocation hotspots; code that allocates most memory, (c) inspect
circumstances, rationale, and events of selected functions/methods; the circumstances in
which functions/methods are executed, their rationale and the memory events (allocation,
access, release) related, (d) detect memory anomalies; code involved with excessive or
inefficient memory usage, and (e) trace the cause of anomalies; how memory anomalies
affect memory usage behavior. We also noticed that Participants used different Vismep
views or combined some of them to obtain the required information. Furthermore, we
noticed that participants considered some views more suitable based on the activities
performed. For example, they often used the Scatter plot view to identify functions
that allocate most memory (allocation hotspots) or Sub call graph view to explore the
control flow (circumstances). Additionally, we reported when participants struggled
to use Vismep to perform the activities. We detected missing information that users
required and possibilities to improve the design of Vismep and other tools.

• “How do programmers perceive Vismep when analyzing memory consumption?” We
reported that participants positively perceived Vismep because they indicated a low
to moderate mental workload effort when using it and estimated that Vismep offers
high overall usability. Furthermore, we also detected positive and negative aspects
that participants mentioned about Vismep. These aspects open the door to potential
improvements and points to consider for supporting programmers, as well as, the factors
(e.g., easy to use, intuitive, useful) that participants desire from a tool.

Programmer needs and tool usage. In Chapter 4, we extended our interest to study
participants’ questions when analyzing memory usage and how well Vismep and Tracemalloc
address those needs. Therefore, we conducted an exploratory study with twenty-two program-
mers analyzing the memory consumption of Python applications with which they were familiar
using Vismep and Tracemalloc. From our observations, we provided (i) an empirically-based
set of questions that programmers ask during memory usage analysis and (ii) a report about
how programmers answer those questions with Vismep and Tracemalloc. As far as we know,
our study is the first to highlight some challenges and express practicability concerns when
analyzing memory consumption. This study answers the following research questions:

• “What questions do Python programmers ask when analyzing memory usage?” We found
34 different questions raised by participants and organized them into five categories
based on the information needed and the programmer’s behavior: (i) understanding
source code, (ii) understanding control flow, (iii) discovering the memory usage at a
single point of time, (iv) comparing and contrasting memory usage, and (v) discovering
memory events. We included questions about understanding source code and control
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flow because participants asked them to answer questions from the rest of the categories.
Our results show that programmers require support for software comprehension when
addressing a memory issue or determining the root cause of a potential failure. Since
our study is the first centered on the needs programmers have when analyzing memory
usage, we reported (i) asked questions that were not reported in previous studies on
developer information needs, and (ii) a valuable information to guide researchers in
designing tools that adequately support programmers in this context.

• “How do Python programmers answer these questions using Vismep and Tracemalloc?”
We provided an observational analysis about how programmers employ Vismep and
Tracemalloc to answer the raised questions. We discovered that participants numerous
times need to combine multiple views (e.g., Call graph view and Source code view) from
Vismep or use multiple API calls from Tracemalloc to obtain the required information.
We noticed that answering most questions of our study is generally well supported by
Vismep and Tracemalloc. However, participants often had difficulties with these tools
in some activities (i) searching entities, (ii) understanding control flow in a particular
context, (iii) understanding memory usage at a fine-grained level (line of code, instance),
(iv) connecting static and dynamic information, (v) comparing dynamic information
at different levels (e.g., between executions and versions) and (vi) exploring creation,
release and the state of data structures. Consequently, we consider that programmers
require more comprehensive support in (i) comparing and piecing information together
and (ii) connecting dynamic information with source code.

5.2 Limitations

Literature review. As far as we know, the literature review presented in this thesis is
the first one focused on software visualizations that help the user to comprehend memory
usage. We conducted our study following guidelines for systematic reviews [69, 70] and
considering the main characteristics of surveys [81, 83, 84, 85, 105, 106, 119] focused on
software visualizations. However, our study and results are subject to certain limitations:

• Search of articles. Our study may not cover all the relevant articles in the field. Although
we performed a systematic search based on various steps, our search query is biased
by the specific keywords of this set of articles. We decided to decrease this threat by
performing an additional manual search and bi-directional snowballing. These two
phases assisted in our finding some missing relevant studies.

• Selection of articles. A relevant article may be excluded during the selection phase
and vice versa. We specified inclusion/exclusion criteria and a quality assessment to
reduce bias in selecting articles. We also calculated inter-rater reliability metrics among
reviewers and held meetings to discuss discrepancies.

• Data extraction. The data extraction process could be biased. To reduce this threat,
we defined a protocol to collect each article’s data. The thesis author managed a
spreadsheet to keep records of relevant text segments and recognize irregularities like
missing information. The two thesis supervisors checked if the data gathered was correct.
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• Data analysis. The data analysis process could be biased. The thematic analysis process
includes generating codes and defining themes (patterns) that allow answering the
research questions. The codes and themes generated differ depending on the coder’s
experience, point of view, and level of abstraction. For example, to respond to RQ1, we
detected visualizations focused on analyzing specific points. However, some articles do
not present clear or explicit objectives; therefore, we created a general-purpose group
to add articles with no specific pattern. We tried to reduce this threat by checking
the consistency of the process. Due to this, the two thesis supervisors examined the
description of themes and the data coding. We held three discussion meetings to analyze
the codes and the themes generated. As a result, we solve the differences.

Software visualization in practice. We introduced Vismep, an interactive visualization
prototype to assist programmers in analyzing the memory usage of Python programs. Vismep
summarizes how the program runs and allocates memory using polymetric views [74]. Vismep
also connects the source code with dynamic information. We also examined how valuable
this information is for practitioners with an exploratory study involving eleven programmers.
This study and the findings are subject to some limitations:

• Information of Vismep. Vismep highlights the memory usage per function and line-by-
line to point out memory allocations. It also connects the source code with information
from program execution, something that most visualizations dismiss [23], since we want
to know the impact of this information on program comprehension. However, Vismep
does not show information provided by other approaches [23], such as objects created,
garbage collection information, and memory usage over time. Therefore, our results
could be different considering this kind of information. We try to reduce this threat by
collecting information widely reported by current tools Chapter 3.

• Vismep visual design. Although Vismep does not introduce a novel visualization tech-
nique, it adequately combines demonstrated techniques, such as polymetric views [74],
the node-link diagram and the scatter plot. We decided to use a linked node because
they are widely utilized to represent calling relationships between functions in software
visualizations centered on assisting memory consumption analysis (see Chapter 2).
Therefore, since we wanted to understand how well the current tools support some
practitioners, we used a component similar to the ones in the current tools. Secondly,
linked node diagrams are commonly used to represent relationships between elements, so
it is a visual representation that is simple to understand and does not imply a very high
learning curve [14]. However, the larger the graph, the more complex it is to understand
the visualization. Consequently, we opted for creating the Sub call graph view to reduce
complexity and allow users to focus on specific elements. Furthermore, in Chapter 2,
we noticed alternatives to visualize call graphs, however, there is no empirical evidence
of which visual representation is better for this purpose. Regarding the decision to
use visual properties, the idea was to use polymetric views [74] to help users identify
exceptional entities (e.g., hotspot allocations, unexpected memory usage) based on the
visual attributes [42]. Nonetheless, there is still a room for improvement in visualization
(e.g., filtering and navigating).
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• Selection of participants and applications. The individual differences among participants,
the sample size, and the use of Vismep could impact our conclusion. Therefore, our
conclusion might not be representative. Consequently, our results could be different
given other tools or participants. We try to reduce this threat by selecting programmers
with different backgrounds and experience levels. However, an additional study that
involves more people and other tools may mitigate this threat.

• Data extraction. The data extraction could be biased. During the data collection and
transcription process for RQ1, spreadsheets that summarize the work sessions were
generated. Tools were employed to generate subtitle files from the recordings, which
subsequently go through a process of revising and improving the poorly written parts.
The YouTube Marks1 tool was also used to facilitate the analysis of videos by placing
tags and adding comments to those tags in order to divide and identify the parts of
the sessions more easily. Additionally, the thesis author checked if the spreadsheets
generated were consistent with the audio, video records, and tracking logs to minimize
biases during the process.

• Data analysis. The data analysis process could be biased. For the data analysis of
this study, the thesis author identified the information needs. However, identifying
information needs based on a participant’s behavior can be inaccurate since they do not
always verbalize their thoughts explicitly. To minimize the inaccuracy in the process,
a thesis supervisor contrasted different scenarios and the use of Vismep to satisfy the
information needs. This supervisor also checked if the information needs identified were
consistent with the information in the spreadsheets.

• Generalization of results. The difficulty of conducting this type of large-scale study
restricts the generalization of our results. For instance, transcribing and obtaining
the information needed for a session requires considerable time. This study presents a
number of sessions similar to some prior works (e.g., Fernandez [22] with eight sessions),
and the participants’ variability may represent this tool’s end users. The generalization
of results is limited due to the number of participants, the lack of diversity in tasks,
and the duration of the sessions. In addition, involving participants who voluntarily
participate in the study and choose applications with specific memory issues according
to the study goals takes time and effort.

Programmer needs and tool usage. We research programmers’ questions when analyzing
memory usage and how well Vismep and Tracemalloc address those needs. We conducted
an exploratory study with twenty-two programmers analyzing the memory consumption of
Python applications with which they were familiar using Vismep and Tracemalloc. This study
and the findings are subject to some limitations:

• Study design. We asked the same open questions proposed in Chapter 3 since we aimed
that participants had a goal they cared about and looked for the information they
considered valuable to understand memory usage and detect optimization opportunities.

1https://github.com/tinchodias/youtube-marks
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Thus, we considered that providing defined tasks (e.g., select allocation hotspots) in-
stead of these questions would prevent participants from naturally defining a goal they
care about when analyzing memory usage. Furthermore, we expected that dividing
participants into two groups (G1 and G2) and analyzing the same application with
Vismep and Tracemalloc would increase the variety and range of the practitioners’ ques-
tions. We also considered that programmers might analyze memory usage and address
memory issues using several tools since they require various features not necessarily
supported by a single tool, as shown in Chapter 3. Note that our goal has not been
to compare Vismep and Tracemalloc but to explore how programmers use these tools
when analyzing memory usage. However, an empirical study comparing Vismep and
Tracemalloc would be valuable for future research.

• Data extraction. The data extraction could be biased. The student supervised by the
thesis author performed the data collection and transcription of each work session. Then,
the thesis author checked the generated spreadsheets based on the video recordings and
event logs to minimize inconsistencies. Furthermore, the thesis author conducted the
steps to identify the questions asked by the participants. Identifying concrete questions
based on user behavior may be inaccurate, as participants did not explicitly verbalize
their thoughts. Finally, the process of defining general questions may suffer from
uncertainty. For instance, it can be challenging to distinguish question 23 “What will be
the impact in memory consumption change?” from question 26 “What is the difference
in memory consumption between these code executions?”. To minimize inaccuracy
in the inference process, the thesis author contrasted different scenarios and events
related to the same questions and checked if the inferred questions were consistent with
the information from spreadsheets. All the authors held two meetings to discuss any
discrepancy in the inferred questions’ consistency.

• Data analysis. Regarding the classification scheme, the thesis author conducted a
thematic analysis to organize the inferred questions based on the information needed
and the programmer’s behavior in answering a question. The codes and themes generated
vary depending on the coder’s experience, level of abstraction, and point of view. To
mitigate this threat, two supervisors of this thesis checked the consistency of the process
by examining the description of themes with the associated data. We conducted two
meetings to discuss and resolve the disagreements among generated codes and themes.
Additionally, two reviewers independently categorized the inferred questions using the
classification scheme, and a measure of agreement between reviewers was calculated to
validate the reliability.

• Generalization of results. The selected memory profiler tools and the individual differ-
ences among participants influence the programmers’ questions and how they answer
those. Consequently, our data could differ given a distinct set of memory profiler tools or
participants. The latter must be considered when interpreting or generalizing the results.
We mitigated this threat by selecting programmers with different backgrounds and
experience levels. In addition, we opted for memory profiler tools that provide diverse
information and report presentations commonly offered by other tools for memory usage
analysis. We also discussed and analyzed the tool support for answering questions
considering the features of the tools. As a result, we noticed that many of the inferred
questions were independent of whether they could be answered with the tools or not.
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Furthermore, no new questions were detected in the last work sessions. The latter
suggests that some of our results will likely generalize to other Python tools. A follow-up
study in which participants were asked to work with another set of memory profiler
tools would help demonstrate that one or more questions have more or no support than
noted in our analysis.

5.3 Empirical Foundation Impact

Literature review. Software visualizations are designed considering several dimensions
(e.g., data abstracted, visual representation) to support developers when performing a task.
Organizing and collecting software visualizations helps (i) practitioners to find a suitable
visualization for their task, and (ii) researchers analyze the state-of-art and detect challenges
or research areas that are worth exploring [81, 83, 84, 85, 105, 106, 119]. To the best of
our knowledge, our work is the first literature review of software visualizations focused on
supporting the user to comprehend memory consumption.

We conclude that our findings are valuable in guiding new research and facilitating
practitioners to find available software visualizations. Our study also shows if aspects
mentioned in prior work have been considered or not through time. For instance, prior work
[83, 84] published between 2016 and 2018 mentioned that evaluation is weak in software
visualizations and that this needs to be worked. However, our results indicate that most
articles lack evidence regarding how visualizations perform in practice, including articles
published after 2018. We consider that some points need to be considered to progress more in
this topic (see Section 5.4).

Furthermore, we noticed that software visualization has not fully explored domain-specific
memory analysis, memory issue identification, and memory regression analysis. Recent
publications [77, 79, 110] are moving in this direction; therefore, our research shows research
areas worth exploring in the right direction. Similarly, we detected that employing another
medium (e.g., 3D immerse environment, wall-display) than a single monitor screen could be
attractive since prior work shows the relevance of medium in software visualizations [86]. The
latter could be in the right direction due to the increment of recent publications using other
mediums [59, 91, 92].

Software visualization in practice. One of the goals of this thesis is to explore the
following points considered at Chapter 2: (i) the benefit of displaying aspects from software
related to how the program runs and mapping the source code with dynamic information,
(ii) how a visualization perform in practice, and (iii) the programmers’ needs during memory
usage analysis. To achieve this, we introduced Vismep, an interactive visualization prototype
to assist practitioners in analyzing the memory usage of Python programs. Vismep was
designed considering the aspects of the software mentioned above to study how valuable
this information is for practitioners. In addition, we also conducted an exploratory study
to understand how Vismep supports eleven programmers in practice and the perceptions of
programmers about the tool.
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This work provides empirical evidence about the benefits of visualizing aspects from
dynamic and static information and connecting the source code with dynamic information.
This evidence also points out how programmers use Vismep to analyze the memory usage
of Python programs (familiar code) and obtain information that they consider valuable.
Therefore, this study is a stepping stone for further researchers to report visualization usage
and examine whether the visualization helps programmers obtain the required information
or struggle in the process. Furthermore, the limitations of this study and the experience of
carrying it out made us notice some points that need to be considered to improve empirical
evaluations in the field (see Section 5.4).

Programmer needs and tool usage. This dissertation also presents an exploratory study
with twenty-two programmers monitoring the memory usage of Python programs with which
they were familiar using Vismep and Tracemalloc. We analyzed the information programmers
need about the software application when analyzing memory usage since it is key to better
support this activity and observing how current tools satisfy these needs. As a result, we
present (i) an empirically-based set of questions that programmers ask during memory usage
analysis and (ii) a report about how programmers answer those questions with Vismep and
Tracemalloc.

We conclude that our findings represent empirical support to confirm some assumptions of
prior work [22, 154, 156]. We also consider that our reports about programmers’ needs while
monitoring memory usage would help improve the design of the current and new tools, as
described in Chapter 4. Additionally, further researchers could use our results to (i) recognize
how well a tool satisfies the programmers’ needs, and (ii) propose a tool supporting needs
that may not currently be covered. Finally, our results could facilitate the organization of
current approaches to help practitioners find a suitable tool for their needs (see Section 5.4).

5.4 Future Work

This dissertation provides incentives for follow-up studies, which we formulate in this section.

Organizing visualizations. As mentioned in Chapter 2, we could expand our classification
of visualizations by considering the programmers’ needs found in Chapter 4. Therefore,
this future work could organize the data more accurately to identify which tasks support
visualizations and detect which current approaches are suitable to satisfy certain programmers’
needs. Another further research that may be helpful is to generate a software visualization
ontology [87] based on the information extracted in Chapter 2 and by updating the review
to add recent publications [24, 26] and other data (e.g., requirements, if it is maintained)
from tools. Based on this ontology, a tool could be implemented that is capable of visualizing,
filtering, and updating information. Consequently, this work could support (i) practitioners
in finding a suitable tool based on diverse aspects (e.g., tasks supported, data illustrated,
require execution environment) and (ii) researchers in locating visualizations that could be
baselines for an experiment and exploring state-of-art.

Evaluating visualizations. We found that some studies focused on visualizing memory
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usage adopted an empirical strategy to evaluate their approaches (see Chapter 2). However,
we noticed that most articles lack robust empirical evaluation that involves software developers.
We also detected, based on our exploratory studies from Chapter 3 and Chapter 4, that
conducting empirical studies with participants of the target audience could be complex since
several aspects must be considered:

• Tasks. The software visualizations studied in this dissertation are proposed to support
programmers in tasks dealing with concerns related to memory usage analysis. We
found in Chapter 2 that little is known about the information programmers need when
analyzing memory usage. Consequently, the goals of proposed visualizations may differ
from the developers’ current needs since we noticed in Chapter 2 that some visualizations
are based on authors’ personal experiences or assumptions without empirical backup.
The studies described in Chapter 3 and Chapter 4 provide empirical evidence about
the information programmer needs. As a result, our findings could be used to confirm
and support design decisions and improve evaluations in software visualizations by
considering the needs of programmers. However, as mentioned in the previous chapters,
a wide range of further studies could be conducted to explore the needs of programmers
in this field fully. For instance, analyze the programmers’ needs under more specific
situations (e.g., to solve particular memory issues, analysis of memory usage in particular
architectures) and in a more controlled environment.

• Participants. Some studies recommended conducting experiments with participants
of the target audience [84, 163]. In our case, to improve the evaluations for software
visualizations, the nature of the problem domain may require expert developers with a
high level of knowledge regarding memory management [156]. For instance, to evaluate
visualizations focused on analyzing cache performance or applications with certain
architecture (e.g., HPC), participants should understand the illustrated information
to perform the respective tasks. Therefore, the studies must consider the goal of the
evaluation to define how to select the participants (e.g., novice programmers, experts in
performance). We consider that studying the aspects of participants for studies in the
field could be interesting [132, 164].

• Applications under study. We noticed in Chapter 2 that articles present reports of
using their proposed visualization to analyze various software programs or projects.
However, several studies do not explicitly describe the context or situation in which
these projects were analyzed, and many are not openly available as open-source projects.
Therefore, it is challenging to replicate evaluations and have a standardized way of
evaluating visualizations to promote their comparison. Consequently, further work that
would be valuable is creating a project set (i.e., projects with particular memory issues)
to facilitate researchers gathering specific data from particular projects and promote
evaluations that ease comparison across tools.

• Aspects to be evaluated. As mentioned before, it is relevant to explicitly define the
evaluation’s goal and define which aspects of the visualizations are evaluated. In
Chapter 3 and Chapter 4, we center on usefulness, cognitive load, and usability. In
future work, we plan to study other aspects (e.g., time, correctness, recollection,
emotions) to expand the assessment of software visualizations.
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Visualizing memory usage. In Chapter 3, we introduced Vismep and explored how
valuable Vismep is for practitioners when analyzing the memory usage of Python applications
by conducting an explorative study. Our results show (i) the benefits of visualizing certain
aspects of software, (ii) how programmers use Vismep to find relevant information for assessing
memory usage, and (iii) the perceptions of programmers about Vismep. Furthermore, we
also detected missing information that users required and suggestions about how to improve
the design of Vismep. Consequently, it would be beneficial to (i) collect and visualize some
information (e.g., memory releases, memory accesses) that Vismep does not show currently
and (ii) explore other kinds of visual techniques and interactions to enhance the visualization
of Vismep. Additionally, conducting studies focused on developing specialized visual tools to
help users face and repair particular memory issues (e.g., leaks, churn) would contribute to
expanding the field’s opportunities.

Missed opportunities and other aspects. In Chapter 4, we reported the questions that
programmers ask themselves when analyzing the memory usage of familiar software projects.
We also described how they used Vismep and Tracemalloc to answer those questions. In
addition, we summarize when participants had difficulties during the process. However, it
would be valuable to document the situations systematically and propose a guide system [155]
as tool improvement to help users to take advantage of the information that tools provide.

Furthermore, conducting studies where the variables are more controlled (controlled
experiments) would be valuable because it would extend our research and provide more
information about the behavior of programmers when analyzing memory consumption. For
instance, we could explore whether certain factors related to the developers’ profiles concerning
background and experience may influence tool usage or the asked questions. Another example
for future work is generating a ranking of the questions asked for a particular situation, as
well as, examining situations related to addressing memory issues.

Analyzing other languages. Finally, our results are still limited due to the selected
programming language. We plan to conduct more studies considering other languages (e.g.,
Java, Javascript) to explore the differences and similarities of tools usage, questions asked,
and perceptions.
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[162] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and Anders
Wesslén. Experimentation in software engineering. Springer Science & Business Media,
2012.
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Annex A

Search String for Digital Libraries

Table A.1 shows the search queries used for the three digital libraries.

Table A.1: Search query for the three digital libraries

Digital library Search query

ACM Abstract : ((software OR program OR application) AND (visualize OR
visualization OR visualisation OR visualizations OR visualisations OR
visuals OR visual) AND (”memory heap” OR ”memory allocation” OR
”memory consume” OR ”memory consumption” OR ”memory usage” OR
”memory management” OR ”memory issues” OR ”memory issue” ”memory
bloats” OR ”memory leaks” OR ”memory access” OR ”memory address”))

IEEE Xplore (”Abstract”: ”software” OR ”Abstract”: ”program” OR ”Abstract”: ”appli-
cation”) AND (”Abstract”: ”visualize” OR ”Abstract”: ”visualization” OR
”Abstract”: ”visualisation” OR ”Abstract”: ”visualizations” OR ”Abstract”:
”visualisations” OR ”Abstract”: ”visuals” OR ”Abstract”: ”visual”) AND
(”Abstract”: ”memory heap” OR ”Abstract”: ”memory allocation” OR
”Abstract”: ”memory consume” OR ”Abstract”: ”memory consumption”
OR ”Abstract”: ”memory usage” OR ”Abstract”: ”memory management”
OR ”Abstract”: ”memory issues” OR ”Abstract”: ”memory bloats” OR
”Abstract”: ”memory leaks” OR ”Abstract”: ”memory access” OR ”Ab-
stract”: ”memory address”)

Scopus ABS ( ( software OR program OR application ) AND ( visualize OR
visualization OR visualisation OR visualizations OR visualisations OR
visuals OR visual ) AND ( ”memory heap” OR ”memory allocation” OR
”memory consume” OR ”memory consumption” OR ”memory usage” OR
”memory management” OR ”memory issues” OR ”memory issue” OR
”memory bloats” OR ”memory leaks” OR ”memory access” OR ”memory
address” ) ) AND ( LIMIT-TO ( SUBJAREA , ”COMP” ) ) AND ( LIMIT-
TO ( DOCTYPE , ”cp” ) OR LIMIT-TO ( DOCTYPE , ”ar” ) ) AND (
LIMIT-TO ( LANGUAGE , ”English” ) )
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Annex B

Perception of Vismep and Tracemalloc

We provide information about the subjective mental workload and the usability perception
experienced by participants using Vismep and Tracemalloc. Note that this information was
extracted from the empirical study in Chapter 4, which aimed to identify questions that
programmers ask when analyzing memory and how they use tools to answer them. Therefore,
the data presented below cannot be used to compare Vismep and Tracemalloc since the study
design does not consider that objective. However, it provides a stepping stone for future work.

B.1 Cognitive Load

Table B.1 shows mean and standard deviation values of the overall and dimensions TLX
scores for each group (G1 and G2) for Vismep and Tracemalloc. NASA-TLX score ranges
from 0 (low mental workload) to 100 (high mental workload). Participants’ average task
load index using Vismep is 29.24 (std. dev. 14.34) for G1 and 30.76 (std. dev. 8.92) for
G2. Therefore, according to Grier [55], and Hertzum [57], these measures indicate a low to
moderate effort. The average cognitive load registered by participants using Tracemalloc is
36.67 (std. dev. 19.78) for G1 and 42.88 (std. dev. 24.24) for G2. As a consequence, these
measures show moderate effort.

Dimensions. The score for dimensions varies from 0 (low demand) to 100 (high demand),
except for the performance, which ranges from 0 (high overall performance) to 100 (low
overall performance). Regardless of their group, participants perceived that mental demand,
temporal demand, and effort means are the highest among all dimensions for Vismep. These
scores are consistent with the challenges and problems reported in Section 4.5.6. In the case of
Tracemalloc, participants, regardless of the group, registered that mental demand and effort
means are the highest among all dimensions for Tracemalloc. These measures could reflect the
challenging mental operations mentioned during the sessions since most participants struggle
to navigate between dynamic information and code.
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Table B.1: Means of overall workload and dimensions TLX scores for G1 and G2 using Vismep
and Tracemalloc.

G1 G2

Vismep Tracemalloc Vismep Tracemalloc

Mean SD Mean SD Mean SD Mean SD

Overall TLX 29.24 14.34 36.67 19.78 30.76 8.92 42.88 24.24

Dimensions

Mental demand 43.63 25.79 46.36 31.71 42.73 17.94 57.27 29.36

Physical demand 17.27 20.54 21.82 27.50 17.27 20.04 32.73 29.36

Temporal demand 40 17.89 30 25.29 42.73 26.49 39.09 24.27

Performance 15.45 17.53 44.55 30.78 18.18 15.37 33.64 28.38

Effort 44.55 24.23 40.91 31.77 36.36 16.89 51.82 27.86

Frustration 14.55 16.95 36.36 27.67 27.27 24.94 42.73 35.24

B.2 Usability

Table B.2 illustrates mean and standard deviation values of the SUS score and components
of SUS scores associated for G1 and G2 with Vismep and Tracemalloc. SUS score varies
from 0 (worst imaginable) to 100 (excellent). The average SUS score calculated from the
participant’s answers for Vismep is 72.05 (std. dev. 12.62) for G1 and 73.64 (std. dev. 11.09)
for G2. According to Sauro [125], Vismep is graded as “C+” and “B-”, which indicate a
“good” usability score. The average SUS score recorded by participants using Tracemalloc is
44.09 (std. dev. 20.38) for G1 and 49.09 (std. dev. 21.22) for G2. These measures correspond
to a grade of “F”, which indicates an “awful” usability score.

Table B.2: Means of overall SUS and components of SUS scores for G1 and G2 using Vismep
and Tracemalloc.

G1 G2

Vismep Tracemalloc Vismep Tracemalloc

Mean SD Mean SD Mean SD Mean SD

Overall SUS 72.05 12.64 44.09 20.38 73.64 11.09 49.09 21.22

Usability aspects

Q1: Willing to use the tool 4 0.63 2.27 1.10 3.82 1.08 2.55 1.13

Q2: Complexity of the tool 1.91 0.83 3.09 1.04 2.27 1.01 3.27 1.42

Q3: Ease of use 4 0.45 3 1.18 3.91 0.94 3.27 1.01

Q4: Need of support to use 2.91 1.14 3.45 1.04 2.91 1.14 3.36 1.21

Q5: Integrity of functions 4.09 0.54 3.27 1.01 4 0.89 3.18 1.25

Q6: Inconsistency 1.82 0.75 2.91 0.94 1.36 0.67 2.45 0.69

Q7: Intuitiveness 3.45 1.21 2.36 1.43 4 1 2.63 1.29

Q8: Cumbersomeness to use 1.73 1.01 2.82 1.17 1.73 0.65 2.45 0.69

Q9: Feeling confident to use 3.82 0.60 2.18 0.60 3.82 0.98 2.55 1.04

Q10: Required learning-effort 2.18 1.17 3.18 1.33 1.82 0.75 3 1.26
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Components. We detailed the SUS components’ scores to understand the participant’s
perception of usability. The score for components ranges from 1 to 5. These components
represent positive aspects (i.e., Q1, Q3, Q5, Q7, and Q9) and negative aspects (i.e., Q2,
Q4, Q6, Q8, and Q10) of usability. Regardless of the group, Vismep achieved higher scores
for positive aspects and lower scores for negative aspects (except for the need for support
to use Vismep). These results reflect that some programmers struggle with this tool due to
(i) doubts about explicit information or interactions and (ii) its performance. Tracemalloc
obtained some lower scores for positive aspects (willingness to use Tracemalloc, intuitiveness,
and feeling confident to use) and some higher scores for negative aspects (complexity of
Tracemalloc and need of support to use). These scores are related to the challenges and
observations participants made since some perceived that obtaining the required information
was challenging and dealt with errors when running the modified code to get the necessary
information.
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