
Received February 28, 2022, accepted April 4, 2022, date of publication April 12, 2022, date of current version April 22, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3166910

Iris Recognition Using Low-Level CNN Layers
Without Training and Single Matching
JORGE E. ZAMBRANO 1, (Graduate Student Member, IEEE),
DANIEL P. BENALCAZAR 1, (Member, IEEE),
CLAUDIO A. PEREZ 1, (Senior Member, IEEE),
AND KEVIN W. BOWYER 2, (Life Fellow, IEEE)
1Department of Electrical Engineering and Advanced Mining Technology Center, Universidad de Chile, Santiago 8370451, Chile
2Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA

Corresponding author: Claudio A. Perez (clperez@ing.uchile.cl)

This work was supported in part by the Agencia Nacional de Investigacion y Desarrollo (ANID) under Grant FONDECYT 1191610,
Center AFB180004, Center ANID/BASAL FB210024, Becas/Doctorado Nacional under Grant 21191614; and in part by the Department
of Electrical Engineering and Advanced Mining Technology Center, Universidad de Chile.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Bioethics Committee, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile under Resolution No. 011.

ABSTRACT Iris is one of the most accurate biometrics. This has led to the successful development of
large-scale applications. However, with population growth, and new international applications, datasets
are constantly increasing in size, requiring more robust and faster methods. Many descriptors and feature
extractors have been developed to extract features that represent the iris biometric pattern. Most of them
have been designed by human experts and require a bit-shifting process to increase their robustness to eye
rotations, at the expense of increased matching time. We propose a fast iris recognition method that requires
a single matching operation and is based on pre-trained image classification models as feature extractors.
Our approach uses the filters of the first layers from Convolutional Neural Networks as feature extractors and
does not require fine-tuning for new datasets. Since our selected features extracted from convolutional layers
encode the iris surface, they have the advantage of not being restricted to specific spatial positions. Thus,
it is not necessary to perform a bit-shifting process in the matching stage, eliminating a significant number
of computations. Additionally, to mitigate the effect produced by the mask border in rubber-sheet images,
we propose filtering the feature map tensors by masking their channels and selecting the most relevant
features. Our method was assessed on the publicly available datasets CASIA Iris Lamp and CASIA Iris
Thousand, and showed significant improvement both in accuracy and in matching time.

INDEX TERMS Biometrics, bit-shifting, deep-learning features, feature extraction, iris recognition, pupil
dilation.

I. INTRODUCTION
Iris Recognition (IR) has become one of the most accurate
approaches for biometric identification. The iris tissue forms
complex patterns that are stable in time which makes it one of
the most successful biometric methods [1]–[4]. Furthermore,
the high level of accuracy (ACC) that can be obtained has
led to the successful development of large-scale applications;
for example, India’s Unique ID program [5], and the United
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Arab Emirates’ border-crossing surveillance [6]. However,
with population growth and new international applications,
such as those used for identification at border controls [7],
[8], datasets are constantly increasing in size, requiring more
robust and faster methods.

Since the pioneering work by John Daugman, which
uses Gabor phase-quadrant features as descriptors [9], [10],
iris recognition has progressed not only in accuracy, but
also in the number of available datasets for research and
evaluation [11], [12]. Many descriptors and feature extractors
have been developed to extract the best features to represent
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this biometric pattern. Most of them have been designed
by human experts and are based on experimental results
[13]–[15]. Additionally, these classical ‘‘iris code’’ methods
require a bit-shifting process to increase their robustness to
eye rotations, at the expense of matching time [16], [17].
For example, Czajka et al. [18] and Fang [19] employed
33 matching operations per comparison (16 at the right, 16 at
the left and at the center one) to cover rotations between
±11.25◦.

With a deep learning approach, filters are no longer
created by human experts, but, rather, an optimization
process is performed to find the best coefficients, using
a training process [20]–[22]. In addition, it is common
to train a classifier, such as a Support Vector Machine
(SVM), Multi Perceptron Layer (MPL), or Random Forest
(RF), with a training stage [14], [23], [24]. The training
stage could be a limitation since, for IR, there is not a
standard dataset with enough images to adjust millions of
parameters [25].

One approach to solve these limitations has been to extract
iris features using publicly-available models, trained for nat-
ural image classification [25]–[27], and face recognition [28].
Most of these methods use the rubber sheet model as the
input, and apply a mask to eliminate non-iris features, such
as eyelids, eyelashes, and reflection artifacts [4], [16], [29],
[30]. This approach has been very successful, however, there
are still some limitations, including fine-tuning for each new
iris dataset. Additionally, the effect of the mask, when the
extracted features are not fixed at specific spatial locations,
has not been well studied. The masking step may introduce
errors since extracted features might be contaminated with
the shape of the mask.

In this article, we propose a fast IR method that
requires a single matching operation and is based on
pre-trained image classification models as feature extractors
[25]–[28]. Our approach uses the filters of the early layers
from Convolutional Neural Networks (CNNs) as feature
extractors, and our method does not require fine-tuning for
new datasets. Since features extracted from convolutional
layers encode the iris surface, they have the advantage of not
being restricted to specific spatial positions. Thus, it is not
necessary to perform a bit-shifting process in the matching
stage, eliminating a significant number of computations.
Additionally, our method aims to mitigate the masking
effect produced by the mask border in rubber sheet images.
To reduce this effect, we propose filtering the feature map
tensors by masking their channels and selecting the most
relevant features.

The main contributions of this paper are the following:
(1) Developing an IR method based on selecting a layer
from a CNN for feature extraction that does not require a
training process; (2) Developing a method that does not need
bit-shifting, thus reducing the matching time; (3) Proposing
a novel method to reduce the impact of the mask on the
extracted features; (4) Evaluating the performance of our
method on publicly-available iris datasets such as CASIA

Iris Lamp, and CASIA Iris Thousand; and (5) Improving
accuracy on datasets that contain subjects with significant
dilation changes.

II. RELATED METHODS
Daugman proposed the use of a Gabor phase-quadrant
descriptor to extract features from iris images, obtaining
high matching efficiency, and popularizing the iris as a
reliable biometric [9], [10], [16]. More descriptors have been
proposed for feature extraction, leveraging the advantages
of the complex texture of the iris. Approaches based on
Haar wavelets [31], wavelet packets [32], spatial filter
banks [33], directional filter banks [34], Discrete Cosine and
Fourier Transform [35], [36], Local Binary Patterns [37],
and Binarized Statistical Image Features (BSIF) [18], have
been investigated, achieving both low false matching and
high recognition rates [18]. Not only has the texture provided
by the 2D image been used, but also the 3D information
corresponding to the relief in the iris tissue has been explored
recently with excellent performance [29], [38].

With the arrival of Deep Learning techniques, new IR
approaches have been developed. DeepIris was presented by
Liu et al. [39] in 2016 as the first attempt to solve the problem
using CNNs. The model consists of a CNN, and a pairwise
filter bank for iris verification. Gangwar and Joshi [40]
proposed two deeper architectures, called DeepIrisNet A, and
B. Both attained superior performance on the ND-IRIS-0405,
and ND-CrossSensor-Iris-2013 datasets [41], [42]. Zhao and
Kumar [43] presented a network called UniNet, based on
fully convolutional networks. They introduced a loss function
related to a variation of the Triplet Loss [44], to focus
on the bit-shifting, and non-iris masking operations in the
matching stage [43]. Wang and Kumar [45] proposed a model
based on dilated convolutional kernels and residual network
learning to obtain the more representative features from iris
images.

Employing off-the-shelf weights, as well as fine-tuning
techniques, has been explored to avoid the problem of
requiring large iris datasets to adjust millions of parameters
in complex architectures [25]. Minaee et al. [26] investigated
the convolutional layers of a pre-trained VGG for iris
feature extraction, and they evaluated different numbers of
components in PCA carried out by an SVM, to achieve greater
accuracy. Nguyen et al. [25] went deeper, employing five
pre-trained image classificationmodels for feature extraction,
using pre-selected layers, and training a multiclassification
SVM method. Boyd et al. [28] improved Nguyen’s approach
by adding a fine-tuning stage and using different off-the-
shelf weights. They relied on a One versus Rest SVM as a
classifier before applying PCA in the features extracted to
reduce the dimensionality. Zhao et al. introduced a method
based on the capsule network architecture [27]. They built
several convolution structures with various depths according
to different outputs of pre-trained classic networks to dock
with the capsule structure. The results in three datasets
exceeded the baseline [27].
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It is worth noting that all the approaches cited above
depend on a training stage, either in the network itself, the
classifier, the dimensionality reduction, or in the fine-tuning
stage. Furthermore, the effect of the masking process on the
selected features has not been considered in previous models.

III. METHODOLOGY
Our method consists of six steps. The first two include:
iris segmentation and normalization, followed by image
preprocessing that uses masking and image enhancement.
The next four steps are performed in a loop assessing the
IR performance for features extracted from all the convo-
lutional layers of a CNN. We include the most important
CNN models designed for image classification as feature
extractor engines, such as, DenseNet [46], Inception [47],
Inception ResNet [48], NASNetMobile [49], ResNet [50],
and Xception [51]. However, our method could be applied
to any other CNN. IR tests are performed using the features
extracted from one convolutional layer at a time on a standard
iris dataset. Then, for each model, we compare the IR results
using all the convolutional layers and select the layer that
provides the highest accuracy as the best set of feature
extractors. Assessing each convolutional layer is done using
a random subset of the CASIA Iris Lamp dataset, as is
explained in section H. Finally, we tested our IR method on
various datasets with the best convolutional layer selected to
extract iris features. The experiments and the reported results
were executed on an Intel(R) Core (TM) i7-10750H CPU @
2.60GHz 2.59 GHz computer, using Python 3.8. The steps are
detailed as follows:

A. IRIS SEGMENTATION AND NORMALIZATION
We used the implementation provided by Wang et.al. [52] to
obtain the iris mask, and the iris and pupil contours. Then,
circles were fitted to the contours to obtain the center and
the radius, which were used to normalize the irises and their
masks using Daugman’s Rubber Sheet model.

B. IMAGE PREPROCESSING
Before feature extraction, iris rubber sheets were converted
from grayscale to RGB images to make them compatible with
the CNN feature extraction process. This was performed by
tripling the grayscale single channel to obtain an image with
three channels. Images are resized to 224 × 224 pixels to
become the input of each model in the Keras framework [53].
Next, we applied contrast-enhancement to the rubber sheets
using the CLAHE method [54]. In this method, the images
are converted from the RGB into the HSV domain, where
the third channel (Value) is equalized with the parameters’
Clip Limit at 10.0, and the Tile Grid Size at (8, 8). Then,
images are returned to the RGB space to be masked. Fig. 1
shows an example of this process. As shown, the texture in
(c) is enhanced compared to that in (a). Finally, the output of
the image preprocessing step is used as the input to the CNN
models in the loop to find the best features.

FIGURE 1. (a) Iris Rubber Sheet. (b) Mask. (c) Enhanced and masked Iris
Rubber Sheet after the image preprocessing step.

C. FEATURE EXTRACTION
After image preprocessing, feature extraction is performed
using some of the most reliable models for image classifica-
tion: DenseNet [46], Inception [47], Inception ResNet [48],
NASNetMobile [49], ResNet [50], and Xception [51]. The
weights for the CNN models were obtained from the Ima-
geNet dataset [55]. These extracted features are considered to
be feature maps that will become feature vectors after reduc-
ing the mask impact on the extracted features in the next step.

D. REDUCING THE MASK EFFECT
It is important tomask the iris rubber sheets to avoid including
irrelevant information, such as eyelids, eyelashes, light
reflections, or other artifacts [15], [56], [57]. Nevertheless,
when the iris image is masked, additional information is
placed in the image, e.g., the shape of the mask. The contour
of the mask may be a strong attribute that is included
in the feature maps [58]–[60]. For example, a bias may
be introduced since irises with similar masks could be
considered to be similar, although belonging to different
subjects. Conversely, some datasets contain images that were
captured under almost the same conditions, thus, generating
similar masks for the same subject. In this case, not only are
the features matched, but also the mask shape is affecting the
results.

To reduce this bias, we propose including just the elements
in the feature map tensors that belong to iris features
outside of the mask. The first step consists of obtaining the
dimensions of the final feature map used [w, h, ch] (width,
height, channels). It is important to know just the width and
the height since all the channels will be filtered in the same
way. Next, a mesh grid is created over the original mask
with the same feature map dimensions, and all the cells that
belong to a portion of the mask are disabled, as is shown
in Fig. 2. This process creates a new mask with dimensions
of [w, h] which is stored with the feature map tensor. The
new masks will be used in the next step for filtering the
corresponding feature maps. This new mask will not place
additional information in the image, but it will eliminate
elements of the feature map tensor that contain information
about the mask placed on the iris rubber sheet.

E. ENCODING AND MATCHING FEATURE VECTORS
To compare two irises, the feature maps and their masks are
loaded, and a unique mask is created by the AND logical
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FIGURE 2. Process of creating a new mask for feature map filtering. First,
a mesh grid is placed over the original mask. Just the cells without any
part of the mask are used to create the new mask.

operation between both of the masks. Next, all the channels
of both feature maps are filtered using the unique mask, and
the results are flattened, obtaining the Feature Vectors.

Feature Vectors are normalized to obtain a mean of zero
and a standard deviation of one. Then, we select the most
important features contained in the vector using a λ value.
Fig. 3 depicts the selection process, with just the values inside
the interval [−λ;+λ] considered, while the rest of them are
ignored. It is done by creating a mask designed for the vectors
using the expressions:

MV1 = |FV1 | ≤ λ, (1)

MV2 = |FV2 | ≤ λ, (2)

MV = MV1&MV2 , (3)

where MV1 and MV2 represent the available positions in the
Feature Vectors FV1 and FV2 according to the λ value. MV
corresponds to the unified mask, which was obtained with the
logical AND operator. The last step of the selection process
is to obtain the final values using the unified mask in both
feature vectors.

The feature selection process is essential because it reduces
the dimensionality of the feature vectors, avoiding outlier
values and reducing the computational cost [61]. Once the
best convolutional layers have been selected in each model,
the IR performance ismeasured by evaluating different values
of λ. Here, the best results were obtained with values close to
1 in most of the models, so we decided to use λ = 1 from then
on. We used the same subset of the CASIA Iris Lamp dataset
to select the best λ value as that used for layer selection. Fig. 4
shows an example of the Accuracy obtained in an experiment
selecting features from Xception with different values
of λ.

To encode the new feature vectors, we created binarized
vectors using a threshold of zero; thus, both vectors could
be compared using the Hamming Distance. The length of the
encoded features depends on the backbone used, the selected
layer, and then, on the new mask and the feature selection
process.

FIGURE 3. Feature Vector Normalized Histogram (µ = 0; std = 1). Just the
values inside the red box are considered. Then, features are binarized
using a threshold (zero).

FIGURE 4. IR accuracy obtained by evaluating different values of λ from
0.5 to 4.0 with features extracted from Xception.

F. MEASURING PERFORMANCE
In this paper, we report using the False Reject Rate (FRR)
that yielded a False Accept Rate (FAR) equal to 0.1% and
the Accuracy (FAR=FRR) [25], [27]. Both metrics are used
for selecting the best convolutional layer for various CNNs
in the loop process. For cases where the maximum ACC and
minimum FRR does not coincide, the best layer was selected
by finding the greatest difference between these two metrics.

G. CNN ARCHITECTURES
We investigated six of the most important models for image
classification that were trained for the Large-Scale Visual
Recognition Challenge (ILSVRC) [55]. The models were
implemented on Keras 2.3.1 using the pre-trained ImageNet
weights [62]. Table 1 lists the six models and the layer
types explored in each CNN. Convolutional layers were
used in Inception V3, Inception ResNet V2, and Xception.
Concatenation and Residual Layers are used for DenseNet
201 and ResNet 50, respectively. It is worth noting that
Concatenation Layers correspond to Dense Blocks, which
are formed by Convolutional Layers [46]. In the same way,
each Residual Layer is formed by Convolutional, Activation
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TABLE 1. Models used for feature extraction, and the type of layer
explored in each CNN. The third column shows the number of layers
explored. Concatenation and Residual layers include the convolutional
layers explored [46], [50]. For NASNetMobile we just use Normal Cells
because Reduction Cells returns feature maps reduced by a factor of two,
thus reducing information [49].

Function ReLU, and Batch Normalization Layers [50];
here just the Convolutional Layers are considered. Finally,
NASNetMobile is composed of Normal and Reduction
Cells [49]. Reduction Cells were not used because they return
a feature map whose height and width are reduced by a factor
of two, while Normal Cells return a featuremapwith the same
dimensions as the previous one [49].

H. DATABASES
For the CNN layer selection, we evaluated 678 sets of
features, each one extracted from one of the various layers
shown in Table 1. For this evaluation, we used a subset of
CASIA Iris Lamp [63], with 30% of the classes on which it
was not used in the test set, to compare our results with those
published previously. This subset with 30% of the classes to
select the best layers was subject disjoint. The 678 sets of
features from Table 1 were evaluated using the same subset
from the CASIA Iris Lamp dataset for a fair comparison, thus
allowing the selection of the best layer for each model.

Once the best layer was selected for each model, we used
the partitions of CASIA Iris Thousand, and CASIA Iris Lamp
as the previously published results for the final assessment
of our method [25], [27]. These partitions were formed to
compare our results to those previously published using the
same conditions. We selected 30% of the classes for CASIA
Iris Thousand to obtain the same number of images as in
Nguyen’s work [25], in the same way. For the CASIA Iris
Lamp dataset, 1,500 images were selected as the test partition
as in Zhao’s work [27].

Additionally, we selected the partitions for both CASIA
Iris Thousand, and Iris Lamp, to obtain two datasets that
contain iris images with significant dilation changes for the
same subject.Wemeasured and sorted the difference between
the smallest and the largest dilation level for each class.
Then, the images of the subjects with the largest dilation
differences were selected. We decided to use 1,500 iris
images from each dataset. Finally, using the iCAM TD100
sensor, we created a dataset with 20 classes to study the effect
of pupil dilation. Iris images were obtained after a subject was
in a room in absolute darkness. Images were captured while
the illumination was increased and decreased, to make the
pupil dilate and constrict. The largest dilation was 0.60 and

FIGURE 5. ACC (%) and %FRR (@FAR=0.1%) as a function of the layer
number for feature extraction in DenseNet 201. The best results were
obtained for the selected layer number 14.

the smallest was 0.22, obtained on different subjects. The
largest and smallest dilation range in a subject was 0.34 and
0.14, respectively. The iris images were obtained with the
approval of the Bioethics Committee, Facultad de Ciencias
Fisicas y Matematicas, Universidad de Chile (resolution
No.011, May 19, 2019), and the signed informed consent was
obtained from all subjects. After that, iris images were sorted
according to their dilation level and the smallest number of
available images in a class was selected, obtaining 30 images
per class. Images in the rest of the classes were sampled
uniformly according to their dilation increment. The iris
dataset will be available on GitHub.1

IV. RESULTS AND DISCUSSION
A. LAYER SELECTION RESULTS
To decide the best layer to use as a feature extractor, ACC
and FRR at FAR= 0.1% were obtained for all convolutional
layers for each of the six CNNs in Table 1. Both metrics
were depicted as a function of the layer position within
each CNN showing the layers that provide the best results
(red star) as feature extractors; see Figs. 5 - 10. These
figures show the results obtained for ACC and FRR (at
FAR= 0.1%) for all convolutional layers. For the CNNs
DenseNet 201, NASNetMobile, ResNet 50, and Xception,
the highest ACC and the lowest FRR were reached for the
same layer. For Inception V3 and Inception ResNet V2,
the maximum ACC and minimum FRR did not coincide, and
the best layer was selected as the one with greatest difference
between these two metrics. Table 2 summarizes the selected
layer for each of the CNN models, showing the selected
layer name, number, relative position, and fraction within
the layers. The name of each layer is based on the Keras
2.3.1 framework [62]. Although the best layer is selected for
each CNN, it can be observed in Fig. 5 - 10 that there are
several possible layers that will yield similar IR results. Our

1https://github.com/JorgeZam/Dilation-Dataset-iCAMTD100
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FIGURE 6. ACC (%) and %FRR (@FAR=0.1%) as a function of the layer
number for feature extraction in Inception V3. The best results were
obtained for the selected layer number 25.

FIGURE 7. ACC (%) and %FRR (@FAR=0.1%) as a function of the layer
number for feature extraction in Inception Resnet V2. The best results
were obtained for the selected layer number 42.

proposed method, therefore, allows finding many possible
solutions using various layers as feature extractors from each
CNN.

It should be noted that the best selected layers for iris
feature extraction are located within the first 33% of the
CNN architecture. It has been recognized [64] that the
first layers in the CNN architecture extract general abstract
patterns compared to those of the final layers that code
more complex image information belonging to the ImageNet
dataset [64][55]. Table 2 shows in the fourth column the
fraction of the layers used for each of the CNN architectures
on Table 1. Requiring only the first 33%, or less, of each
CNN architecture is also an advantage in terms of the
computational time required to extract features.

B. IRIS RECOGNITION AND MATCHING TIME RESULTS
Our results were compared to those of Zhao [27]. We used
a partition with the same number of images as in [27] for a

FIGURE 8. ACC (%) and %FRR (@FAR=0.1%) as a function of the layer
number for feature extraction in NASNetMobile. The best results were
obtained for the selected layer number 16.

FIGURE 9. ACC (%) and %FRR (@FAR=0.1%) as a function of the layer
number for feature extraction in ResNet 50. The best results were
obtained for the selected layer number 17.

TABLE 2. Selected layers after assessing the IR accuracy and FRR
(@FAR=0.1%) for all convolutional layers for each CNN shown in the first
column. The selected layer provides the best iris feature extraction using
a subset of CASIA Iris Lamp. The name of the layers is based on the Keras
2.3.1 framework.

fair comparison, as is detailed in the Methods section. Zhao
reported the ACC and the Equal Error Rate (EER). We are
also reporting the total number of errors, which is the sum
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FIGURE 10. ACC (%) and %FRR (@FAR=0.1%) as a function of the layer
number for feature extraction in Xception. The best results were obtained
for the selected layer number 21.

TABLE 3. IR results in the CASIA Iris Lamp test partition (the test partition
according to [27]). The first two rows correspond to the baseline, and the
best model reported in [27]. The third row corresponds to the IR approach
available in [65]. The six last rows are of our method.

of the false negatives (FN), plus the false positives (FP),
and the matching time. In addition, we compare to Czajka’s
approach [18] implemented inMATLAB [65]. The results are
presented on Table 3. The best results are highlighted in bold
text.

As can be observed on Table 3 regarding the CASIA Iris
Lamp dataset, our method overtakes all the best previously
published results [16], [27], and those obtained using the
available GitHub [65]. The number of errors obtained by our
method is also the least. From our six alternatives, DenseNet
201 reached the best result with the smallest number of errors.
It can be observed in the last column of Table 3 that the
lowest matching time was obtained with NASNetMobile, and
Inception models. The most accurate model is DenseNet 201,
while the fastest is NASNetMobile.

TABLE 4. IR results for the CASIA Iris Thousand test partition [25]. The
first two rows correspond to the baseline and the best model reported
in [25]. The third row corresponds to the IR approach available in [65].
The six last rows are based on our method. Accuracy was measured using
a FAR=0.1% [25]. (*) indicates the approximate time. The best measured
metrics appear in bold text.

Using the test partition of CASIA Iris Thousand in order to
compare our results to those previously published [25], and to
those obtained using the available GitHub [65], we obtained
the results presented in Table 4. In this table, we used the
FAR= 0.1% to measure the ACC to be able to compare
our results to those previously published. Not only was the
accuracy obtained higher, but also the matching time was
significantly lower than that required by BSIF.

The most accurate models are DenseNet 201, Incep-
tion V3, and Xception. The main difference among these
models can be observed in the false matches (number of
errors FP+FN), with DenseNet having a better performance.
The fastest model is NASNetMobile, again, as in its use
with the CASIA Iris Lamp dataset, but with the lowest
accuracy. The best metrics results appear in bold text on
Table 4.

C. DILATION ROBUSTNESS RESULTS
Our method was tested on three datasets formed by subjects
with significant pupil dilation changes. These three datasets
were described in the previous section. Results show the
FRR at FAR= 0.1%, the Accuracy, and the number of False
Positives and Negatives detected. The matching time was
reported as well, demonstrating that our methods are faster
compared to the baselines [18], [66]. Table 5 shows the
results achieved on our dataset. Although the results of IR
accuracy are similar, our models show better results in the
numbers of FP and FN. The matching time required was
also reduced, with the highest being 33 minutes, and the
lowest at 109 seconds. The best performances were obtained
by DenseNet 201 and ResNet 50, and the lowest required
matching time was achieved by NASNetMobile. The best
results appear in bold text. Table 6 and Table 7 present the
results obtained on both the CASIA Iris subsets designed
for pupil dilation, as was explained in the Methods section,
part H. CASIA Iris Thousand, besides having subjects with
significant dilation changes, included intra-class variations
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TABLE 5. IR results on our dataset with significant dilation changes. The
first two rows correspond to results of the baselines [18], [66]. The six last
rows show the results obtained with our method.

TABLE 6. IR results for subset of CASIA Iris Thousand with significant
dilation changes.

such as eyeglasses, and specular reflections [12], [63]. For
that reason, the performance achieved is lower than in the
CASIA Iris Lamp version. Our results on lines 3-8 of
Tables 6 and 7 show lower FRR compared to those of the
baselines, OSIris and BSIF [18], [66]. Our Accuracies are
greater than those obtained with [18], [66]. Also, our method
shows lower numbers of errors (FP+FN) on both Tables, and
a lower matching time using NASNetMobile. The matching
time was reduced from more than 10 hours to approximately
10 minutes.

D. FEATURE MAPS FILTERING - MASK EFFECT
In our method the feature maps were filtered after the feature
extraction, and the best features were selected to reduce the
effect of the mask contours. Table 8 shows the results of IR
using our proposed method with filtering of the feature maps
(the same as those of Table 4) compared with no filtering of
the feature maps on the CASIA Iris Thousand dataset, test
partition. In this last case, no filtering of the information of
the mask contour in the channels of the Feature Map Tensors
was performed for any of the CNN models. In Table 8 it can
be observed that the accuracies increased, and the number of
errors (FP+FN) decreased with our method by 13.10% and

TABLE 7. IR results in the subset of CASIA Iris Lamp with significant
dilation changes.

TABLE 8. IR results for CASIA Iris Thousand test partition. As in Table 4,
the ACC is measured using FAR=0.1%.

99.08%, respectively, for the most accurate model (DenseNet
201). On the other hand, the improvements in accuracy and
decrease in false matches (number of errors FP+FN) for
our faster model (NASNetMobile) were 11.86% and 98.85%.
Therefore, our method for minimizing the effect of the mask
significantly improves the accuracy and decreases the number
of errors.

E. FEATURE EXTRACTION TIME
As shown in Table 2, the fraction of layers (number of
layers used/total number of layers) in the CNN architecture
used for feature extraction represents less than 33% in the
six proposed backbones. This ensures that the propagation
time through the CNN layers in our method will be reduced
compared to the time needed by the methods that use all
the CNN layers. Table 9 shows the measured time required
to extract features from a group of 5,000 images from the
CASIA Iris Thousand, using the whole backbone (second
column) compared to those of our method using the fraction
of layers for the six backbones (detailed on Table 2). When
our method was used with only a fraction of the architecture,
the time required for feature extraction is even shorter.
As shown in Table 9 the time required for feature extraction
is reduced by 59.33% using our most accurate method
(DenseNet 201). In the same way, our faster method in
the matching stage (NASNetMobile) reduced the time for
feature extraction by 47.18%. This improvement can have a
significant impact in real large-scale applications.

VOLUME 10, 2022 41283



J. E. Zambrano et al.: Iris Recognition Using Low-Level CNN Layers Without Training and Single Matching

TABLE 9. Times required for feature extraction using the whole
backbone, and with our method using a fraction of the architecture as
specified on Table 2 for each of the six CNNs. The fraction of the
architecture used is shown in the fourth column on Table 2. The test was
performed on a dataset of 5,000 iris images from the CASIA Iris Thousand.

TABLE 10. Computed hamming distance for the maximum rotations of
±11.25◦. The test was performed on the test partition of the CASIA Iris
Lamp dataset.

F. SINGLE MATCHING AND SMALL IRIS ROTATIONS
To test the robustness of our method to small iris rota-
tions, we performed horizontal displacements on the rubber
sheet images equivalent to rotations in the range ±11.25◦

[18], [19]. Subsequently, the features maps were extracted
and processed as explained previously. Then, we computed
the Hamming Distance (HD) among the vectors representing
the original image and those vectors from the rotated images,
for each model. As expected, with no rotation the HD was
zero, and the maximum HD was obtained for rotations of
±11.25◦. We used the images of the CASIA Iris Lamp
dataset test partition, to compute the HD. Table 10 shows
the maximum HDs obtained for the maximum rotations
(±11.25◦), for each model. All the maximum HDs are under
the decision threshold used for our results on Table 3 for
CASIA Iris Lamp. These results are compatible with the fact
that our method requires only a single matching instead of
bit-shifting.

G. RUBBER SHEET CONTRAST ENHANCEMENT
In our method, rubber sheet images are preprocessed to
enhance the texture of the iris tissue. Table 11 shows
the accuracies using the proposed rubber sheet contrast
enhancement, compared to those without the enhancement.
In this test we used the CASIA Iris Lamp dataset test partition.
Results on Table 11 show that accuracies increased, and the
number of errors decreased with our contrast enhancement by
0.21% and 32.16%, respectively, for the most accurate model
(DenseNet 201). The improvements in accuracy and decrease
in false matches for our faster model (NASNetMobile) were
0.55% and 26.21%, respectively.

TABLE 11. Contrast enhancement results for CASIA Iris Lamp test
partition.

V. CONCLUSION
We have proposed a novel method for IR, based on feature
extraction by a CNN, that does not require a training stage.
Iris features are extracted by using fewer than 33% of the
convolutional layers of the most important pre-trained CNNs
for image classification. This ensures that the propagation
time through the CNN layers is reduced compared to that
with methods that use all the CNN layers, as was shown on
Table 9. Feature maps obtained were processed to reduce
the effect of the mask contours on the rubber sheet images,
by filtering the feature maps channels, and selecting the best
features. It was also shown, on Table 8, that results in IR
improve by using our proposed filtering of the feature maps,
compared to when just using the mask on the rubber sheet.
The proposed IR method does not require fine-tuning to be
tested on different datasets since instead of using a classifier,
a simple and fast matching among the codes is performed.
Our approach requires only a single matching operation since
the abstract features that are extracted from the CNN have the
advantage of not being tied to specific spatial positions. This
allows our method to reduce the matching time significantly
compared to OSIris [66] and BSIF Domain-Specific [18]
implementations. For example, on a dataset that contains
1,500 images, which involves 1,124,250 comparisons, the
baselines registered more than 10 hours for the matching
stage. In contrast, our fastest (based on NASNetMobile back-
bone), and slowest (based on Xception backbone) models
for the same number of comparisons require approximately
10 minutes and 2.5 hours, respectively. The performance
obtained by all our implemented models was above that of
the previously published results on the CASIA Iris Lamp and
CASIA Iris Thousand datasets, using the same partitions and
datasets for a fair comparison. Among the backbones tested,
DenseNet and Inception networks were the best models for
iris feature extraction, obtaining the highest IR performance.
In addition, our approach has improved IR results on datasets
with large changes in pupil dilation, based on CASIA Iris
Lamp and CASIA Iris Thousand, as well as on our own
dataset, which was created specifically with eyes with wide
pupil dilation differences.
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