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In a Stackelberg network pricing game a leader sets prices for a given subset of edges so as to maximize 
profit, after which one or multiple followers choose a shortest path. Our main result shows that the 
profit when allowing for negative prices can be a factor �(log(m · k̄)) larger than the maximum profit 
with only positive prices, where m is the number of priceable edges and k̄ ≤ 2m the number of followers. 
In particular, this factor cannot be bounded for a single follower.
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1. Introduction

Bundle pricing is a very common business strategy to increase 
the profit. In this paper we study how a very simple form of bun-
dle pricing can increase the profit in Stackelberg network pricing 
games. These models are typically used for road tolling problems 
and were first introduced by [25].

In Stackelberg network pricing games a leader moves first by 
setting prices on edges he owns, after which each follower de-
cides on a path of minimum cost between her source and sink. 
The objective of the leader is to maximize profit. It is therefore a 
natural and common assumption in the literature that prices are 
non-negative, see, e.g., [3,6,7,23,34]. However, [25] gave an exam-
ple of a Stackelberg single follower shortest path pricing game in 
which the profit is maximized by using negative prices. We call 
this phenomenon the negative price paradox. The use of negative 
prices in that example can be seen as a bundle pricing strategy of 
the leader that guarantees that the follower uses multiple edges 
owned by the leader. The main question we want to answer is 
how much more profit the leader can earn by using such bun-
dle pricing strategies. Since calculating optimal bundle prices is 
rather intractable as a price has to be determined for each of the 
exponentially many bundles of resources, we restrict our analysis 
to single item pricing. We model bundle pricing by allowing the 
leader to set negative prices.
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For multiple followers, it might not be surprising that the profit 
can be arbitrarily larger with negative prices compared to restrict-
ing to positive prices. However, our main result shows that the 
same is true for a single follower. Our contribution is two-fold. 
From a practical perspective, we show that a very simple bun-
dle pricing mechanism, allowing for negative single item prices, 
can achieve arbitrarily higher profits than single item pricing with 
only positive prices. From a theoretical perspective, we show that 
a seemingly innocent assumption, non-negative prices, might have 
a big impact on the outcome of the game.

1.1. Contribution

We start by studying Stackelberg network pricing games in 
which the followers choose a shortest path from source to sink. 
Our main goal is to quantify the loss in profit due to the assump-
tion that prices are non-negative. For this purpose, we define the 
Price of Positivity (PoP), which is the ratio between the profit of the 
leader when he is allowed to use negative prices and when he is 
not. Theorem 3.3 proves that the PoP can be of order �(log m · k̄), 
where m is the number of priceable edges and k̄ ≤ 2m the num-
ber of followers. We prove that this bound is asymptotically tight 
by means of two different classes of instances. First, Theorem 3.5
shows that the price of positivity can be arbitrarily large even with 
a single follower. To prove this, we use the class of generalized 
Braess graphs [32]. Second, Theorem 3.8 shows that the price of 
positivity can be arbitrarily large in series-parallel graphs given 
that there are sufficiently many followers.

Then we turn to the question of which network topologies are 
immune to the negative price paradox. A network is immune to 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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the negative price paradox if for all instances within that network 
the negative price paradox cannot occur. We show that for a sin-
gle follower series-parallel graphs are exactly the class of networks 
that are immune to the negative price paradox. So in a market in 
which goods are either perfect complements or perfect substitutes, 
this type of bundle pricing will not improve the leader’s profit. As 
a side result, we conclude that Stackelberg network pricing games 
in series-parallel graphs with a single follower are polynomial-time 
solvable.

We lastly consider a different variant of Stackelberg network 
pricing games. We consider the setting in which followers, instead 
of an s, t-path, choose a basis of a given matroid, for instance, a 
spanning tree in a graph. We prove that in this setting the negative 
price paradox cannot occur.

1.2. Related literature

Stackelberg competition was first introduced by [35] and is now 
commonly used to describe leader-follower models. Stackelberg 
network pricing games gained attention due to [25], who used the 
game to model road tolling problems. They showed that the Stack-
elberg shortest path problem is NP-hard for a single follower and 
prices that have lower bounds. [31] proved the more general result 
that the problem is also NP-hard when prices are unrestricted. [23]
and [6] showed that the problem is even APX-hard. For a more 
detailed survey on this problem, see [34]. Recently, also differ-
ent combinatorial problems were studied in a Stackelberg setting. 
For example, minimum spanning trees [12], shortest path trees 
[3,11], packing problems [10], matroids [9] and knapsack problems 
[30,29] have been considered.

[2] and [7] considered single price strategies. They both show 
independently that this very simple pricing strategy provides a 
logarithmic approximation algorithm. [8] extended the analysis of 
this simple algorithm beyond the combinatorial setting to arbitrary 
continuous cost functions.

Using negative prices can be seen as a bundling strategy. The 
performance of selling optimal bundles is widely studied in the 
mechanism design literature. There, it is well-known that revenue 
maximization with more than one good is a difficult problem. For 
some results on the performance of selling optimal bundles, see, 
e.g., [26], and [21], and the references therein.

A more common application of pricing in road tolling problems 
is to restore inefficiency in models with congestion externalities. 
[4] showed that marginal tolls induce efficient flows when con-
sidering the model introduced by [37]. Optimal tolls also exist 
when users are heterogeneous with respect to the trade-off be-
tween time and money. See, e.g., [15,18,24,36]. With selfish lead-
ers, efficiency can be attained with a monopolist [1,22] or with 
competition regulation [20,16].

A seemingly related paradox is Braess’s paradox [5]. It describes 
the phenomenon in which the increase of resources, like build-
ing a new road in a network, may in fact lead to larger costs 
for the users. [27] derived a characterization that shows that for 
undirected single-commodity networks, series-parallel graphs are 
the largest class of graphs for which Braess’s paradox does not oc-
cur. This result has been generalized by [14] and [13] to directed 
graphs and multi-commodity instances. Roughgarden [32] investi-
gated how to improve the performance of a network when it is 
allowed to remove edges. [19] proved that the matroid property is 
the maximal property that guarantees the absence of the Braess’s 
paradox.

2. Model

A Stackelberg network pricing game is given by a tuple M =
(G, (ce)e∈E , E p, K , (sk, tk, Rk)k∈K ), where G = (V , E) is a directed 
100
s u v t

1

p1 p2

1

p3

Fig. 1. The negative price paradox for R = 3.

multigraph, ce ∈ R+ is the fixed cost of edge e ∈ E , E p ⊆ E is 
the set of priceable edges, K = {1, . . . , ̄k} is the set of followers, 
(sk, tk) ∈ V × V with sk �= tk is the source-sink pair and Rk ∈ R+
is the reservation value of follower k for each k ∈ K . For each k ∈ K , 
let Pk denote the set of simple sk, tk-paths.

A Stackelberg network pricing game contains two types of play-
ers: one leader, and one or more followers. For each priceable edge 
e ∈ E p , the leader specifies a price pe ∈R. Let p = (pe)e∈E p denote 
a vector of prices. Given a vector of prices p ∈ RE p , the total cost 
of a simple path P ∈Pk for follower k ∈ K is defined by

cP =
∑
e∈P

ce +
∑

e∈P∩E p

pe,

and we define Pk(p) = {P ∈ Pk | cP ≤ Rk and cP ≤ cP ′ for all P ′ ∈
Pk}. For each p ∈ RE p , each follower chooses a simple path P ∈
Pk(p), and if no such path exists, chooses P = ∅.

For each p ∈RE p , the profit of the leader is equal to

π(p) =
∑
k∈K

∑
e∈P∩E p

pe.

We assume that the leader wants to maximize his profit. To this 
end, we call a price vector p ∈ RE p optimal if for all p′ ∈ RE p , 
π(p) ≥ π(p′). We denote an optimal strategy by p∗ . We call 
a price vector p ∈ R

E p
+ optimal for non-negative prices if for all 

p′ ∈ R
E p
+ , π(p) ≥ π(p′). We denote an optimal strategy for non-

negative prices by p∗+ . For a given model M, we define the price 
of positivity by

PoP (M) = π(p∗)
π(p∗+)

.

We make the following two assumptions. First, we assume that 
when the followers face multiple optimal solutions, ties are bro-
ken in favor of the leader. Second, we assume that the graph is 
irredundant, i.e., each edge is contained in at least one sk, tk-path 
for some k ∈ K . Edges that are on no such path are not relevant 
for our problem and can be deleted.

We first give an example that illustrates the phenomenon we 
want to study. A similar example was given by [25].

Example 2.1. Consider a game with one follower that chooses a 
shortest path from s to t in the network of Fig. 1. For ease of no-
tation, we omit the superscripts of the follower when we consider 
a single follower. The priceable edges are depicted as thicker ar-
rows, and right above each edge is its cost or price. Whenever we 
do not write a fixed cost of a priceable edge in a figure, we as-
sume the fixed cost to be zero. The reservation value is R = 3. Let 
P1, P2 and P3 denote the paths defined by the edges that join the 
sequences of vertices (s, u, v, t), (s, u, t) and (s, v, t), respectively.

Suppose that p1, p2, p3 ≥ 0. If the leader wants to induce P1
as a shortest path for the follower, then necessarily p1 + p2 ≤ 1
and p2 + p3 ≤ 1 and thus π(p) = p1 + p2 + p3 ≤ p1 + 2p2 +
p3 ≤ 2. If the leader wants the follower to choose path P2, then 
p1 + 1 ≤ 3 and thus π(p) = p1 ≤ 2. Similarly for path P3. Com-
bining these three statements implies π(p∗+) ≤ 2. Price vector 
p∗+ = (p1, p2, p3) = (1, 0, 1) yields π(p∗+) = 2.
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Now, if the leader sets prices p∗ = (3, −3, 3), then P1 has a cost 
of 3, and P2 and P3 have a cost of 4, and thus the follower will 
choose path P1. Hence π(p∗) = 3 and PoP (M) = 3/2.

Let �k
v(p) denote the cost of a shortest simple sk-v path of fol-

lower k ∈ K for a given vector of prices p ∈RE p . Observe that for 
all M we have that

π(p∗) ≤
∑
k∈K

min{Rk, �k
tk (∞)} − �k

tk (0) (1)

and the right-hand side represents the surplus that can be ex-
tracted from the followers. [7] proved the existence of a logarith-
mic approximation algorithm that in polynomial time calculates a 
non-negative single price strategy, i.e., a vector of prices that sets the 
same price on all priceable edges for Stackelberg network pricing 
games. This result is later used in our analysis, so for complete-
ness we formally state it below. Let Hn = ∑n

i=1
1
i denote the n-th 

harmonic number.

Theorem 2.2 ([7]). For all ε > 0, there exists a non-negative single price 
strategy that yields a profit of at least
∑

k∈K min{Rk, �k
tk (∞)} − �k

tk (0)

(1 + ε) · Hmk̄

.

Remark 2.3. [7] assumes that priceable edges do not have a fixed 
cost. An instance of our model can be transformed to an instance 
of their model by splitting the priceable edge into two edges: one 
priceable edge and one fixed cost edge. Such a transformation does 
not change the profit of the leader.

3. Optimal profit

3.1. Warmup

Our first result formalizes an observation from Example 2.1 for 
a single follower. If the leader owns a shortest path of the follower 
when pe = 0 for all e ∈ E p , then the leader can extract all surplus 
from the follower by using negative prices. In particular, these sin-
gle follower problems are solvable in polynomial time as they can 
be solved by means of a linear program.

Proposition 3.1. Let k̄ = 1 and P0 ∈ P (0). If P0 ⊆ E p , then π(p∗) =
min{R, �t(∞)} − �t(0).

Proof. Assume that P0 ⊆ E p . We will show that the leader can 
extract all surplus from the follower while inducing path P0 as 
a shortest path. Set pe = ∞ for all e ∈ E P \ P0. The profit maxi-
mization problem of the leader under the constraint that P0 is a 
shortest path is

max
(pe)e∈E p ,(�v (p))v∈V

∑
e∈P0

pe

�v(p) − �u(p) − pe = ce ∀e = (u, v) ∈ P0
�v(p) − �u(p) ≤ ce ∀e = (u, v) ∈ E \ E p

�s(p) = 0
�t(p) ≤ R.

The above constraints guarantee that P0 is a shortest path for any 
feasible price vector p. Notice the problem is feasible and bounded. 
In fact, by definition of P0, a feasible solution is to set pe = 0 for 
all e ∈ P0, and the optimal value is at most R .

Define E ′ = P0 ∪ E \ E P , δ−(v) = {(u, v) ∈ E ′ for some u ∈ V }
and δ+(v) = {(v, w) ∈ E ′ for some w ∈ V }. The dual of the above 
linear program is
101
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Fig. 2. A triangle network.

min
(ye)e∈E′ ,ys,yt

∑
e∈E ′ ye · ce + yt · R

∑
e∈δ−(v) ye − ∑

e∈δ+(v) ye = 0 ∀v ∈ V \ {s, t}∑
e∈δ−(s) ye − ys − ∑

e∈δ+(s) ye = 0∑
e∈δ−(t) ye + yt − ∑

e∈δ+(t) ye = 0
ye = −1 ∀e ∈ P0
ye ≥ 0 ∀e ∈ E \ E p

yt ≥ 0,

which is equivalent to

min
(ye)e∈E\E p ,ys,yt

∑
e∈E\E p

ye · ce + yt · R − ∑
e∈P0

ce

∀v ∈ V \ {s, t} : ∑e∈δ−(v)∩(E\E p) ye − ∑
e∈δ+(v)∩(E\E p) ye = 0∑

e∈δ−(s)∩(E\E p) ye − ys − ∑
e∈δ+(s)∩(E\E p) ye = −1∑

e∈δ−(t)∩(E\E p) ye + yt − ∑
e∈δ+(t)∩(E\E p) ye = 1

∀e ∈ E \ E p : ye ≥ 0
yt ≥ 0.

If we remove the additive term of − 
∑

e∈P0
ce = −�t(0), this lin-

ear program corresponds to the problem of finding the shortest 
s, t-path in the network that results from deleting all edges in E p

and adding an edge from s to t with fixed cost R . Therefore, by 
definition of �t(∞), we conclude that the optimal value is exactly 
min{R, �t(∞)} − �t(0). �

The result in Proposition 3.1 only applies to a single follower, 
as the following example shows.

Example 3.2. Consider the network in Fig. 2, where K = {1, 2, 3}. 
Let R1 = 1 and R2 = R3 = 2. Observe that the leader owns a short-
est path from source to sink when pe = 0 for all e ∈ E for each 
follower k ∈ K .

The total surplus of all followers equals 
∑

k∈K Rk − �k
t (0) = 1 +

2 + 2 = 5. However, the following set is empty and thus the leader 
cannot extract all surplus:

{(p1, p2, p3) ∈R3 | p1 + p2 = 1, p2 + p3 = 2, p1 + p3 = 2,

p3 ≤ 1}.

3.2. Main results

We now prove the main theorem. We characterize the loss in 
profit due to assuming that prices are non-negative. Let F(m, ̄k)

be the family of Stackelberg network pricing games with |E p | = m
and |K | = k̄ ≤ 2m .

Theorem 3.3.

sup
¯

PoP (M) ∈ �
(

log(m · k̄)
)

.

M∈F(m,k)
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Fig. 3. The h-th network in the proof of Theorem 3.4.

We separate the result into three distinct theorems: one for the 
upper bound, one for a lower bound with k̄ = 1 and another for a 
lower bound with k̄ = 2m − 1.

Theorem 3.4. Let M ∈F(m, ̄k). Then

PoP (M) ≤ Hmk̄.

Proof. Let p∗ ∈ RE p , p∗+ ∈ R
E p
+ denote an optimal and an optimal 

positive strategy of the leader, respectively. Given that Theorem 2.2
is true for every ε > 0, we have that

π(p∗+) ≥
∑

k∈K min{Rk, �k
tk (∞)} − �k

tk (0)

Hmk̄

. (2)

Combining (1) and (2) yields the result. �
The next result shows that the price of positivity can be arbi-

trarily large, even if there is only a single follower.

Theorem 3.5. For all n ∈N , there exists a model Mwith m = 22n−1 −1
and k̄ = 1 such that

PoP (M) ≥ n.

Proof. Assume that k̄ = 1 with a reservation value of R . Consider 
the network of Fig. 3, where h ≥ 1. Besides s and t , there are h left 
vertices v�

1, v
�
2, . . . , v

�
h and h right vertices vr

1, v
r
2, . . . , v

r
h . There is 

a fixed cost edge from s to each left vertex v�
i , with cost c�

i , for 
each i ∈ {1, . . . ,h}. There is a fixed cost edge from each right vertex 
vr

i to t , with cost cr
i , for each i ∈ {1, . . . ,h}. There is a priceable 

edge from v�
i to vr

i for each i ∈ {1, . . . ,h} and a priceable edge 
from vr

i to v�
i+1 for each i ∈ {1, . . . ,h − 1}, each having a fixed cost 

of 0. Denote their prices by pr
i and p�

i , respectively. Assume that 
c�

1 = cr
h = 0, and c�

i , c
r
i ≥ 0 for all i ∈ {1, . . . , h}.

Note first that every path in the graph is completely defined 
by an edge leaving s and an edge entering t . For 1 ≤ i ≤ j ≤ h, 
we define Pij as the path starting with edge (s, v�

i ) and ending 
with edge (vr

j, t). Let π∗+(Pij) denote the maximum profit when 
we impose that path Pij is chosen by the follower and prices are 
all non-negative. Observe that the leader can always delete a price-
able edge by setting its price to be ∞. Notice that path Pij might 
never be chosen: in this case, define π∗+(Pij) = 0.

In order to bound the optimal profit with positive prices, we 
need the following two lemmas. We bound π∗+(Pij) first for the 
case i = j and then for the case i < j.
102
Lemma 3.6. Let 1 ≤ i ≤ h. If c�
i + cr

i > R, then π∗+(Pii) = 0. If c�
i + cr

i ≤
R, then

π∗+(Pii) ≤ R − c�
i − cr

i .

Proof. The fixed cost of path Pii equals c�
i + cr

i . Thus, if c�
i + cr

i >

R , then Pii is never chosen by the follower when prices are non-
negative and therefore π∗+(Pii) = 0. Otherwise, the cost of Pii for 
the follower is pr

i +c�
i +cr

i , so if it is less than the reservation value 
R , we must have that π∗+(Pii) = pr

i ≤ R − c�
i − cr

i . �
Lemma 3.7. Let 1 ≤ i ≤ j′ < i′ ≤ j ≤ h. If c�

i > c�
i′ , then π∗+(Pij) = 0. If 

cr
j > cr

j′ , then π∗+(Pij) = 0. If c�
i ≤ c�

i′ and cr
j ≤ cr

j′ , then

π∗+(Pij) ≤ c�
i′ − c�

i + cr
j′ − cr

j .

Proof. If c�
i > c�

i′ , then Pi′ j has a lower cost than Pij and thus Pij
is never a shortest path. If cr

j > cr
j′ , then Pij′ has a lower cost than 

Pij and thus Pij is never a shortest path.
If c�

i ≤ c�
i′ and cr

j ≤ cr
j′ , then we have to make sure that the total 

cost of Pij is at most the cost of Pi′ j and Pij′ . In other words, 
we have to guarantee that the cost of reaching v�

i′ following Pij is 
lower than the edge (s, v�

i′ ), and that the cost of the path from vr
j′

to t following Pij is lower than the edge (vr
j′ , t). This means that 

c�
i +∑i′−1

m=i pr
m +∑i′−1

m=i p�
m ≤ c�

i′ and cr
j +

∑ j
m= j′+1 pr

m +∑ j−1
m= j′ p�

m ≤
cr

j′ , and thus π∗+(Pij) = ∑ j
m=i pr

m +∑ j−1
m=i p�

m ≤ c�
i′ −c�

i +cr
j′ −cr

j . �
Let n ∈ N , with n ≥ 2, and h = 4n−1. We define fixed costs 

for the h-th network such that the maximum profit using non-
negative prices is 2 while the maximum profit when allowing 
negative prices is 2n. Let R = 2n. We will set fixed costs that sat-
isfy

c�
i = 2n − 2 − cr

i = cr
h/2+1−i = 2n − 2 − c�

h/2+1−i, (3)

for all 1 ≤ i ≤ h/2. Thus, we only need to specify c�
h/2+i for 1 ≤ i ≤

h/2.
We start by letting c�

h/2+1 = 1. We define 2n − 3 sets of edges 
Si recursively, where each set Si with i = 1, . . . , 2n − 3 consists 
of 2i−1 edges. For each set Si with i = 1, . . . , 2n − 3, define the 
fixed costs of the next 2i−1 edges as the fixed costs of all pre-
viously defined 2i−1 edges plus 1. More precisely, for each Si

with i = 1, . . . , 2n − 3, we take c�
h/2+2i−1+ j

= c�
h/2+ j + 1 for all 

j = 1, . . . , 2i−1. In other words, we define the following sequence:

(1); (2); (2,3); (2,3,3,4); (2,3,3,4,3,4,4,5); . . . ;
(2,3, . . . ,2n − 2).

Now, we will prove that given these fixed costs, π∗+(Pij) ≤ 2 for 
all 1 ≤ i ≤ j ≤ h. Firstly, by condition (3), c�

i + cr
i = 2n − 2 for all 

1 ≤ i ≤ h, and thus by Lemma 3.6, π∗+(Pii) ≤ 2.
Secondly, for each path Pij with i ≤ h/2 and j ≥ h/2 + 1, 

Lemma 3.7 with i′ = h/2 + 1 and j′ = h/2 implies π∗+(Pij) ≤
2 − c�

i − cr
j ≤ 2. Then by symmetry of the constructed graph, we 

can restrict ourselves to paths Pij with i ≥ h/2 + 1.
Thirdly, consider a path Pij with i ≥ h/2 + 1 and suppose that

h

2
+ 1 ≤ i ≤ h

2
+ 2i′′−1 and

h

2
+ 2i′′−1 + 1 ≤ j ≤ h

2
+ 2i′′ (4)

for some 1 ≤ i′′ ≤ 2n − 3. Necessarily c�
i ≥ 1 and cr

j = 2n − 2 − c�
j ≥

2n − 2 − (i′′ + 1) from the definition of the costs. If we take i′ =
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Fig. 4. The n-th path graph.

h/2 + 2i′′−1 + 1 and j′ = h/2 + 2i′′−1, then c�
i′ = 2 and cr

j′ = 2n −
2 − i′′ . So Lemma 3.7 implies that π∗+(Pij) ≤ c�

i′ − c�
i + cr

j′ − cr
j ≤ 2. 

If condition (4) does not hold, then h/2 + 2i′′−1 + 1 ≤ i ≤ j ≤ h/2 +
2i′′ , for some 1 ≤ i′′ ≤ 2n − 3. Therefore, by Lemma 3.7, for any 
i ≤ j′ < i′ ≤ j, we have that π∗+(Pij) ≤ c�

i′ − c�
i + cr

j′ − cr
j . But from 

the definition of the costs, c�
i′ − c�

i + cr
j′ − cr

j = c�

i′−2i′′−1 − c�

i−2i′′−1 +
cr

j′−2i′′−1 − cr
j−2i′′−1 . So any bound that we can derive by applying 

Lemma 3.7 for Pi−2i′′−1, j−2i′′−1 , also holds for Pij . If i < j we can 
iterate this procedure until condition (4) holds, so we conclude 
that π∗+(Pij) ≤ 2.

Combining the above three steps yields π∗+(Pij) ≤ 2 for all 1 ≤
i ≤ j ≤ h. Notice that with the prices pr

i = R for i = 1, . . . , h and 
p�

i = −R for i = 1, . . . , h − 1, every s, t-path costs at least R and 
path P1h yields a profit of R . Thus, PoP (M) = 2n

2 = n for each 
n ∈N . �

The last result of this section proves that the price of positiv-
ity can be arbitrarily large for series-parallel networks, as long as 
there are sufficiently many followers.

Theorem 3.8. For all n ∈ N , there exists a model M with m = n and 
k̄ = 2n − 1 followers such that

PoP (M) ≥ n/2.

Proof. Consider the network of Fig. 4, where n ≥ 1. Let ci = 2n−i+1

for i = 1, . . . , n. For each i = 1, . . . , n, there are 2i−1 followers with 
source-sink pair (s, ti) and reservation value ci .

In order to bound the optimal profit with positive prices, we 
claim that if a follower with source-sink pair (s, ti) chooses the 
path of priceable edges, then all source-sink pairs (s, t j) with 
j = 1, . . . , i also choose the path of priceable edges. This follows 
because the reservation value of follower j < i is larger than i, but 
the cost of the path of priceable edges is at most as large. So in 
order to maximize profit, the leader can restrict himself to choos-
ing p1 ∈ {c1, . . . , cn} and pi = 0 for all i = 2, . . . , n. Setting p1 = ci

yields a profit of 2n−i+1 ∑i
j=1 2 j−1 = 2n+1(1 − 2−i) ≤ 2n+1 for all 

i = 2, . . . , n.
The price vector p∗

i = ci − ci−1, where c0 = 0, for all i = 1, . . . , n
yields a profit of 

∑n
i=1 2n = n · 2n . Hence PoP (M) ≥ n/2. �

4. Immune structures to the negative price paradox

We divide the following section into two parts. In the first part 
we restrict ourselves to instances with a single follower and char-
acterize the class of topologies that are immune to the negative 
price paradox, i.e., for which the price of positivity is 1. In the sec-
ond part we consider a different variant of the model in which 
followers choose bases of a matroid, instead of paths in a network. 
We prove that in this variant the price of positivity is always 1.
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Fig. 5. A series-parallel graph is immune to the negative price paradox.

4.1. Shortest path follower

In this section we assume K = {1}. Let Gst denote a graph 
G = (V , E) with a fixed source-sink pair (s, t). We say that a 
graph Gst is immune to the negative price paradox if for all models 
M = (Gst , (ce)e∈E , E p, K = {1}, (s, t, R)), PoP (M) = 1. A directed 
graph is series-parallel with source s and sink t , if it either con-
sists of a single edge (s, t), or is obtained from two series-parallel 
graphs with source-sink pairs (s1, t1) and (s2, t2) composed either 
in series or in parallel. In both types of compositions we take the 
disjoint union of the sets of edges, but merge the source-sink pairs 
in different ways. In a series composition, t1 is identified with s2, 
s1 becomes s and t2 becomes t . In a parallel composition, s1 is 
identified with s2 and becomes s, and t1 is identified with t2 and 
becomes t .

The main result in this section shows that the leader can ex-
tract all surplus from the follower in series-parallel graphs by using 
non-negative prices, where the source-sink pair of the graph is the 
same as the source-sink pair of the follower.

Theorem 4.1. Let |K | = 1. If G is series-parallel, then π(p∗+) = min{R,

�t(∞)} − �t(0).

Proof. Let us define some notation first. An open ear is a directed 
simple path and we describe an open ear either by the set of edges 
it is composed of, or by the sequence of vertices it visits. The start 
and end vertex of an open ear are the first and last vertex it visits, 
respectively. We refer to all other vertices it visits as its internal 
vertices.

An open ear decomposition of G = (V , E) is a partition of E into 
open ears {E1, . . . , Eh̄} such that for all 2 ≤ i ≤ h̄, the start and end 
vertex of Ei are visited by some other open ears E j and E j′ , with 
j ≤ j′ < i, and no internal vertex of Ei is visited by an open ear 
E j′′ with j′′ < i. We say an open ear decomposition {E1, . . . , Eh̄} is 
nested if (i) for all 2 ≤ i ≤ h̄, both the start and end vertex of Ei are 
visited by the same open ear E j with j < i; and (ii) for all j < i <
i′ , if the start and end vertices of both Ei and Ei′ are visited by E j , 
then their nest intervals in E j are either disjoint or one a subset of 
the other, where the nest interval of Ei in E j is the subset of edges 
of E j between the start and end vertices of Ei . Notice that an open 
ear decomposition of a series-parallel network can be constructed 
starting with an arbitrary s, t-path and iteratively adding open ears 
until all edges are covered. Eppstein [17] proved that every open 
ear decomposition of a series-parallel graph is nested.

In this proof we can assume w.l.o.g. that �t(∞) ≤ R . If this was 
not the case, we could add a fixed-price edge from s to t with a 
fixed cost of R . With this addition the graph would remain series-
parallel and since there is only one follower, π(p∗+) and π(p∗)
would remain unchanged.

Let P0 ∈ P (0). Denote by p′ the vector of non-negative prices 
that yields the maximum profit under the restriction that P0 ∈
P (p′). This maximization problem is well defined and has at least 
one solution (all prices equal to 0). We will prove that in fact 
π(p′) = �t(∞) − �t(0).

Assume by contradiction that π(p′) < �t(∞) − �t(0). We prove 
that there exists a path P̂ ⊆ E \ E p that costs strictly less than 
�t(∞), which contradicts the definition of �t(∞). We will con-
struct an open ear decomposition of G , starting with E1 = P0. First, 
create the vector p′′ starting with p′ and setting the price of all 
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priceable edges outside P0 to ∞. Clearly π(p′′) = π(p′). Second, 
take any e2 ∈ P0 ∩ E p . See Fig. 5. If no such e2 exists, �t(∞) = �t(0)

and thus π(p′) < 0 which is a contradiction as the leader can al-
ways guarantee a profit of π(0) = 0. There must exist an open ear 
that we denote E2 ⊆ E \ E p with start and end vertex in E1 = P0
such that e2 is in its nest interval and the cost of E2 equals the 
cost of its nest interval under the pricing p′′ . If such an open ear 
did not exist, the leader could increase the price of e2 without 
changing the shortest path of the follower, increasing his profit.

Assume inductively that we have constructed a sequence of dis-
joint open ears {E1, E2, . . . , Ei}, with i ≥ 2, that forms an open ear 
decomposition of ∪i

j=1 E j that is nested. To be more precise, as-
sume for each j > j′ ≥ 2 that the nest intervals of E j and E j′ are 
contained in E1 and are either disjoint or one a subset of the other. 
For each 2 ≤ j ≤ i, denote by Ê j the nest interval of E j in E1. As-
sume there exists ei+1 ∈ P0 ∩ E p \ (∪i

j=2 Ê j). Analogous to the case 
of e2, there must be an open ear Ei+1 with its start and end ver-
tices in P0, its nest interval Ê i+1 containing ei+1, and the cost of 
Ei+1 equal to the cost of Ê i+1 under the pricing p′′. Necessarily the 
internal vertices of Ei+1 are not visited by previous open ears, as 
otherwise, we obtain an open ear decomposition that is not nested, 
which would contradict the assumption that G is series-parallel. 
At some point, we have covered all priceable edges of P0, and at 
this point ei+1 does not exist. Now, since the obtained decomposi-
tion is nested, we can construct a path P̂ that avoids all priceable 
edges in P0, using open ears with disjoint nest intervals, that has 
the same cost as P0 under p′′ . We conclude noting that the cost of 
P0 under p′′ is at most π(p′) + �t(0) which by our assumption is 
strictly less than �t(∞), which is a contradiction. �
Corollary 4.2. Stackelberg network pricing games in series-parallel 
graphs with a single follower are polynomial-time solvable.

Proof. Theorem 4.1 shows that the leader can extract all surplus 
from the follower. In order to do so, the follower must choose a 
path P0 ∈ P (0). For a given choice of path of the follower, the 
problem of the leader can be written as a linear program (see the 
proof of Proposition 3.1). In fact, [25] even gives a combinatorial 
algorithm to solve this problem in polynomial time. �
Theorem 4.3. Let |K | = 1. A graph Gst is immune to the negative price 
paradox if and only if Gst is a series-parallel graph.

Proof. First, assume that Gst is a series-parallel graph. It follows 
from (1) and Theorem 4.1 that Gst is immune to the negative price 
paradox.

Second, assume that Gst is not a series-parallel graph. We 
show that there is a model M = (Gst , (ce)e∈E , E p, R) such that 
PoP (M) > 1.

For a path P , denote by V (P ) the set of vertices it visits. We 
call a subgraph G ′ of G an s, t-paradox if G ′ = P1 ∪ P2 ∪ P3 is the 
union of three paths P1, P2, P3 with the following properties:

(i) P1 is an s, t-path going through distinct vertices a, u, v, b such 
that s �P1 a ≺P1 u ≺P1 v ≺P1 b �P1 t , where (≺P1) denotes the 
order in which P1 visits the vertices.

(ii) P2 is an a − v path with V (P2) ∩ V (P1) = {a, v}.
(iii) P3 is a u − b path with V (P3) ∩ V (P1) = {u, b} and V (P3) ∩

V (P2) = ∅.

[14] proved that if Gst is not series-parallel, then Gst has a sub-
graph that is an s, t-paradox. Let G ′

st = (V ′, E ′) = P1 ∪ P2 ∪ P3 be an 
s, t-paradox contained in Gst . Let e1, e2 be the two outgoing edges 
from a with e1 ∈ P2 and e2 ∈ P1, let e3 be an outgoing edge from 
u with e3 ∈ P1, and let e4, e5 be the two incoming edges to b with 
104
s a u v b t

e1

e2 e3

e5

e4

Fig. 6. An s, t-paradox.
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Fig. 7. A series-parallel graph.

e4 ∈ P1 and e5 ∈ P3. Define M as follows: ce = 1 if e ∈ {e1, e5}, 
ce = 0 if e ∈ E ′ \ {e1, e5} and ce = ∞ if e ∈ E \ E ′ , E p = {e2, e3, e4}, 
and R = 3. See Fig. 6 for an illustration.

Suppose that p ∈ R
E p
+ . No matter which path is selected by 

the follower, π(p) ≤ 2. Now, suppose that p∗ = (pe2 , pe3 , pe4) =
(3, −3, 3), then π(p∗) = 3. Hence PoP (M) = 3

2 > 1. �
We stress that there is no analogous version of Theorem 4.1

for multiple followers. In the following example we present an in-
stance with two followers in a series-parallel graph where it is not 
possible to extract all surplus from both followers simultaneously.

Example 4.4. Consider the network of Fig. 7. Each follower k = 1, 2
is defined by (sk, t), and R1 = 1 and R2 = 2.

The profit π(p) is 2p if p ∈ [0, 1] and p if p ∈ (1, 2], whereas 
the sum of the surplus of the followers is 3.

4.2. Matroid followers

A more general description of the model we have been look-
ing at is the following. A Stackelberg pricing game is a tuple 
M = (

E, (ce)e∈E , E p, K , (Sk)k∈K , (Rk)k∈K
)
, where E is the set of re-

sources, ce ∈ R is a fixed cost for each e ∈ E , E p ⊆ E is the set of 
priceable resources, K = {1, . . . , ̄k} is the set of followers, Sk ⊆ 2E

is the set of strategies and Rk ∈ R+ is the reservation value for 
each k ∈ K .

Given a vector of prices p ∈ RE p , the total cost of a set S ∈ Sk

for follower k ∈ K is defined by

cS =
∑
e∈S

ce +
∑

e∈S∩E p

pe.

For each p, each follower chooses a set Sk(p) ∈ Sk with csk(p) ≤ Rk

so as to minimize total costs, and if no such set exists, chooses 
Sk(p) = ∅.

So far we have studied the case where E is the set of edges in 
a network and Sk is the set of sk, tk-paths for each k ∈ K . Now, 
we assume that set system (E, Sk) is a matroid for each k ∈ K . 
A matroid is a tuple M = (E, I), where E is a finite set, called 
the ground set, and I ⊆ 2E is a non-empty family of subsets of 
E , called independent sets, such that: (1) ∅ ∈ I , (2) if X ∈ I and 
Y ⊆ X , then Y ∈ I , and (3) if X, Y ∈ I with |X | > |Y |, then there 
exists an e ∈ X \ Y such that Y ∪{e} ∈ I (this property is called the 
augmentation property). The inclusion-wise maximal independent 
sets of I are called bases of matroid M . See [28,33,38] for more 
information on matroids.



A. Cristi and M. Schröder Operations Research Letters 50 (2022) 99–106
We now consider the case in which instead of a path, each fol-
lower k chooses a minimum cost basis of a given matroid Mk =
(E, Ik). This is a generalization of the setting considered in [12], in 
which followers choose spanning trees of a given graph. We prove 
that in this case there is no need for negative prices.

Theorem 4.5. Let M be a Stackelberg game where Sk is the base set of 
a matroid Mk for each follower k ∈ K . Then PoP (M) = 1.

We first prove a lemma that is standard for matroids and then 
proceed to prove Theorem 4.5. These proofs strongly rely on the 
fact that matroids are exactly those structures for which the greedy 
algorithm finds the optimal solution. Greedy algorithms are very 
simple algorithms in which in each step a local optimal choice 
is selected. This means that we can assume that for finding a 
minimum cost base, each follower considers sequentially the next 
cheapest resource. If adding this resource to the set is feasible, 
then the resource is selected. If not, the resource is not selected.

Lemma 4.6. Let M = (E, I) be a matroid with weights w : E →R, and 
A a minimum weight base. If w ′ is obtained by increasing the weight 
of an element e ∈ E, and if A is not optimal under w ′, then there is an 
element f ∈ E such that A − e + f is an optimal base under w ′.

Proof. Assume A is not optimal under w ′ , and that we run in par-
allel the greedy algorithm on both instances. Call G1 the greedy 
algorithm running with weights w and G2 the greedy algorithm 
running with weight w ′ . When looking at the ordered lists, it is 
clear that both lists are equal up to element e. So the partial solu-
tions up to element e are the same. Now, when G1 finds e, it adds 
it to the solution, but G2 sees the next element. Since A is not 
optimal for w ′ , G2 must find an element f /∈ A and add it to the 
partial solution before it reaches e in the list induced by w ′ . Be-
sides e and f , the two algorithms have added the same resources 
so far. Therefore, the two partial solutions have the same size, and 
then, when one of the two algorithms can add a new item, the 
other can as well, because of the augmentation property, whereas 
if a new item cannot be added for one algorithm, it also cannot be 
added for the other algorithm, again by the augmentation prop-
erty. With this observation we can conclude that, at the end, the 
only difference between the two solutions is elements e and f . �
Proof of Theorem 4.5. Assume by contradiction that in p∗ , the op-
timal strategy of the leader, there is a negative price p∗

e < 0 for 
some resource e ∈ E p . For each k ∈ K , let Sk(p∗) be the optimal 
strategy for agent k, given p∗ , obtained using the greedy algorithm. 
Let now p′ be equal to p∗ in every resource but e, in which p′

e = 0.
If Sk(p∗) is not optimal under p′ , by Lemma 4.6 there is an ele-

ment f ∈ E such that Sk(p∗) −e + f is optimal for the follower k. If 
f /∈ E p , then the profit for the leader increases because he was los-
ing value in e, and if f ∈ E p , the optimality of Sk(p∗) implies that 
p∗

e ≤ p∗
f and then the leader also increases his profit. We conclude 

that there is a positive solution p∗+ such that π(p∗) ≤ π(p∗+). �
5. Open problems

Several natural questions remain open. One important open 
question is whether the lower bound on the price of positivity 
obtained in Theorem 3.8 is asymptotically tight in the number of 
priceable edges. From [7], we know that a quadratic upper bound 
applies, whereas the lower bound only grows linearly. A second 
open question is whether there is a simple characterization of a 
maximal class of structures that are immune to the negative price 
paradox when having a single follower. Note that such a class of 
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structures should contain paths in series-parallel graphs and bases 
of matroids.

A potential generalization is to allow for congestion externali-
ties. We have an example that shows that the price of positivity 
can already be larger than one in non-atomic congestion games on 
series-parallel graphs. This direction would also open up research 
towards models with multiple leaders.
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