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Replacing quarantine of COVID‑19 
contacts with periodic testing 
is also effective in mitigating 
the risk of transmission
Patricio Foncea1, Susana Mondschein2,3* & Marcelo Olivares2,3

The quarantine of identified close contacts has been vital to reducing transmission rates and averting 
secondary infection risk before symptom onset and by asymptomatic cases. The effectiveness of this 
contact tracing strategy to mitigate transmission is sensitive to the adherence to quarantines, which 
may be lower for longer quarantine periods or in vaccinated populations (where perceptions of risk 
are reduced). This study develops a simulation model to evaluate contact tracing strategies based 
on the sequential testing of identified contacts after exposure as an alternative to quarantines, in 
which contacts are isolated only after confirmation by a positive test. The analysis considers different 
number and types of tests (PCR and lateral flow antigen tests (LFA)) to identify the cost-effective 
testing policies that minimize the expected infecting days post-exposure considering different levels 
of testing capacity. This analysis suggests that even a limited number of tests can be effective at 
reducing secondary infection risk: two LFA tests (with optimal timing) avert infectiousness at a level 
that is comparable to 14-day quarantine with 80–90% adherence, or equivalently, 7–9 day quarantine 
with full adherence (depending on the sensitivity of the LFA test). Adding a third test (PCR or LFA) 
reaches the efficiency of a 14-day quarantine with 90–100% adherence. These results are robust to the 
exposure dates of the contact, test sensitivity of LFA and alternative models of viral load evolution, 
which suggests that simple testing rules can be effective for improving contact tracing in settings 
where strict quarantine adherence is difficult to implement.

The COVID-19 pandemic has imposed many challenges on societies around the world. The virulence of the 
outbreak has required strict nonpharmaceutical interventions, such as massive lockdowns, curfews, contact 
quarantines, sanitary measures, travel restrictions, and testing surveillance. Although many of these policies 
have been useful for containing outbreaks1,2, they have also imposed a significant social and economic burden 
on most countries3.

Since the first outbreak of COVID-19 in early 2020, new scientific knowledge has been rapidly developed 
regarding the characteristics of this virus, such as the viral load evolution of an infected individual4, infectious-
ness profile5, transmission patterns6 and cardinal symptoms7. A significant challenge in containing transmission 
is to halt infections generated before symptom onset and by asymptomatic cases, thus making symptom monitor-
ing insufficient to contain the spread of the virus8,9, even with close monitoring of close contacts10. Therefore, 
preventive quarantines of potentially exposed individuals have been a fundamental mitigation measure to reduce 
transmission in the community. These quarantine policies vary across countries, both in terms of the target 
population and the quarantine protocol. Most countries require preventive quarantine of traced contact between 
10 and 14 days11,12. Restrictions to incoming international travelers also vary across countries, ranging from no 
quarantine when a recent negative test result is provided to others requiring strict quarantines ranging from 10 
to 14 days. Some countries even use dedicated facilities to quarantine incoming travelers. These traveling restric-
tions have led many traveling website hubs to provide detailed information on quarantine and testing protocols 
by country, (Wego: https://​blog.​wego.​com/​covid​19-​travel-​restr​ictio​ns-​by-​desti​nation-​count​ry/; Kayak: https://​
www.​kayak.​com/​travel-​restr​ictio​ns).

The design of targeted and temporally restricted quarantine protocols for traced contacts and higher-risk 
individuals should account for the associated risk reduction of the policy as well as the costs imposed on the 
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target population. Quarantines have been associated with economic cost and adverse mental health effects, both 
when targeted to specific individuals (e.g. travellers and close contacts)13, and massive lockdowns and mobility 
restrictions14. These studies report negative consequences of quarantines such as post-traumatic stress symptoms, 
confusion, and anger, which are worsened by longer quarantine duration, infection fears, frustration, boredom, 
inadequate information, and financial loss among others. Quarantine measures that are too strict may reduce 
compliance and the incentives to report close contacts, thereby reducing the effectiveness of contact tracing 
strategies15. Approximately 75% of U.S. subjects who were surveyed indicated that they would adhere with 
quarantine for 14 days when mandated by a health official; however, compliance can be as low as 60% in specific 
demographic groups16. Of those who declare their lack of willingness to comply, 44% indicate that they do not 
think that quarantining is necessary.

Improvements in testing technologies have helped to shorten quarantine periods while maintaining a low 
risk of secondary infections by exposed contacts17. For example, the WHO quarantine recommendations for 
contacts of individuals with a confirmed or probable case of COVID-19 have been made more flexible and 
evolved from 14 days from their last exposure18 to more discretionary measures, such as advising local public 
health authorities to account for local conditions and needs to determine the length of quarantine. These options 
include stopping quarantine for contacts that have not presented symptoms after day 10 or after day 7 with a 
negative diagnostic specimen test12,19.

As vaccination campaigns continue to advance, transmission rates are expected to fall, thereby reducing the 
risk of infection of contacts exposed to a confirmed case. Nevertheless, some risk of transmission is still present 
due to the lower effectiveness of some vaccines in preventing infection and uncertainty associated with virus 
variants20; therefore, contact tracing will continue to be relevant. However, vaccination is likely to reduce the 
perception of risk of exposed contacts, which could lower compliance with strict quarantine measures15. Hence, 
the focus of this study is to analyze alternatives to quarantine of traced contacts to reduce the risk of secondary 
infections.

Access to low-cost PCR and lateral flow antigen (LFA) tests has become widespread21, and this massive avail-
ability of detection tests enables the close monitoring of traced contacts without the need to confine exposed 
individuals (unless a positive test result), which lowers the quarantine costs without increasing the secondary 
transmission risks. Thus, we analyze the optimal timing of different types of tests to reduce the risk of exposure of 
active (not quarantined) unconfirmed contacts to susceptible individuals, thereby helping to reduce both infec-
tion risk and the costs of quarantine through a cost-efficient use of testing resources. This finding is particularly 
important for minimizing disruptions in essential activities, such as highly specialized workers, teachers, students 
and healthcare workers, where quarantines may require major re-organization of the operations. Similar strate-
gies could be used to ease quarantine requirements on foreign travel.

Our study contributes to the literature on the analysis of quarantine strategies of traced contact in different 
settings. Several modeling studies suggest that quarantine periods can be shortened to 7 days with a negative 
PCR test at the end of this period because it has a residual risk equivalent to a quarantine period of 14 days with 
no testing22,23. The recent modeling study by24 also suggests that daily LFA testing of traced contacts over 5 days 
without quarantine if all tests are negative can actually reduce the risk of secondary infections relative to a mitiga-
tion strategy of 14 quarantine days with moderate levels of adherence. Following that idea, we evaluate alternative 
sequential testing schemes when different numbers and types of tests are available to monitor traced contacts 
that are not under quarantine, with isolation only triggered when the case is confirmed through a positive test.

This study was motivated through the design of testing and quarantine policies for schools in Chile, where 
in-person teaching has been prohibited during most of the pandemic. In planning a safe return to in-person 
schooling, Chilean health authorities have developed protocols on how to handle confirmed cases and require 
quarantines of the complete classroom of an infected student with flexibility on the quarantine strategies for 
teachers, who received priority in the immunization campaign and whose quarantine may induce severe disrup-
tions in the school operation. An alternative to quarantine is to allow teachers to continue face-to-face teaching 
but closely monitor them through an optimal design of PCR and LFA tests to reduce the risk of secondary infec-
tions. A similar strategy can be used to ease the quarantine requirements of the classroom of infected students, 
where the risk of transmission has been shown to be relatively low for younger students25 along with the adoption 
of masks and other mitigation measures26,27. This test-to-stay approach has been implemented in the US and UK, 
reporting significant increase in in-person teaching28–31.

Our modeling approach is similar to that of4,23 and used simulation methods to generate scenarios of viral 
loads of infected contacts that may or may not present symptoms. These simulated viral load paths relate the 
infectiousness of the contact with test sensitivity during post-exposure time, enabling us to model the reduction 
of secondary infections under alternative sequential testing schemes. Our modeling analysis confirms the findings 
of4 that despite the lower sensitivity of LFA tests relative to PCR, they are more efficient in averting infections 
when PCR tests take more than one day to confirm the results. We also corroborate the result of23 that daily LFA 
testing during 5 days postexposure, with isolation required after a positive test result, essentially averts all the 
risk of secondary infections and is equivalent to a 14-day quarantine policy for high adherence scenarios. We 
show that these results are robust to the days of exposure of the traced contact with the index case, test sensitiv-
ity scenarios and to alternative models of viral load evolution. When testing resources are scarce, our modeling 
analysis suggests that using three LFA tests with an appropriate timing during the postexposure period can also 
achieve a very low risk of secondary infections, which is superior to that of a 14-day quarantine policy with 90% 
adherence. Our analysis shows that the timing of these sequential tests is important because suboptimal testing 
schedules may substantially increase the risk of secondary infections.

Another important difference of our work compared to that of4,23 is that we analyze settings with uncertainty 
on the exact day of exposure of the contact (22follows a similar approach to model exposure uncertainty of 
incoming travelers based on the incidence of country of origin). This difference is important for studying settings 
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with structured contact networks that meet recurrently, such as workplaces, schools, healthcare facilities and 
households. We show that modeling this uncertainty is relevant for the design of an optimal testing schedule 
and should also account for different types of index cases: we cover scenarios where the index case is identified 
at symptom onset or by surveillance testing, among others.

Our modeling analysis suggests that an optimal design of testing strategies of traced contacts after exposure 
can be effective for gradually easing quarantine requirements for essential activities where the costs of quaran-
tines are high or have low adherence rates. Nevertheless, the implications of the proposed quarantine/testing 
strategies need to be evaluated with caution because they might impact the behavior of confirmed cases and 
their contacts in multiple dimensions. On the positive side, easing quarantine requirements may lead to higher 
adherence of these policies by the traced contacts and a higher proportion of contacts reported by an index case. 
On the negative side, relaxing quarantine policies may reduce the adoption of other mitigation measures in the 
community and work environments (such as the use of personal protective equipment and physical distanc-
ing). Further research is needed to empirically evaluate the overall impact of the proposed contact monitoring 
schemes on community transmission.

Overview of the modeling approach
To relate test sensitivity with infectiousness, we model the evolution of viral load of infected individuals by rep-
licating the methodology used in4. Test sensitivity is affected by three complementary factors: (1) the timing of 
the test (relative to exposure time); (2) the level of detection (LOD) of the type of test used; and (3) the quality 
of the swab sample. We incorporate all three into our modeling approach.

Given a set of days of exposure, we generated a sample of random paths describing potential scenarios of 
viral load evolution over time. Individuals become infectious when their viral load exceeds 106 cp/ml4,32. Each 
viral load path is simulated using five control points generated as random variables: (1) the day of infection; (2) 
the time (since the infection date) at which the minimum level of detection (LOD) with PCR test is reached; 
(3) the peak level of viral load and the time it is reached; (4) the time of symptom onset for symptomatic cases; 
and (5) the time at which the infectious period ends. This simulation procedure is illustrated in Fig. 1, where 

Figure 1.   Description of the simulation of viral load paths. The horizontal axis represents a timeline, with t = 0 
representing the date of detection of the index case and its contact. Each gray line indicates one simulated viral 
load path of the infected contact, which is generated randomly using 5 control points shown with squares for 2 
independent paths (with light and dark colors). Control 1 is the day of infection, which in the example includes 
days-1 and -2 for each respective path. Control point 2 is the day on which a viral load is detectable by PCR. 
Control 3 is generated only for symptomatic cases and corresponds to the day of symptom onset (represented 
with a dark circle). Control 4 is the peak viral load and the day it is attained. Control 5 is the day at which the 
infectious period ends and indicates the slope of the viral load decline. Red dots indicate the infectious days 
on each viral path; individuals self-isolate the day after presenting symptoms; therefore infecting days post-
symptoms are averted. The top part of the figure shows the probability that the infected contact is contagious 
on that day (excluding days where infection is averted). Expected infecting days, which are conditional on the 
contact being infected, are equal to the sum of these probabilities.
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the horizontal axis is a timeline, with t = 0 representing the time at which the index case is confirmed and the 
individual is identified as contact. Exposure dates of the contact occur during or before the confirmation date 
( t ≤ 0 ). Further details on the simulation, including the probability distributions used to simulate the control 
points, are described in the Appendix B.

The red points in Fig. 1 show the days on each path in which the individual was infectious, i.e., when the 
viral load exceeds the level of infectiousness ( 106 cp/ml). Symptomatic cases are assumed to self-isolate after 
symptom onset, whereas asymptomatic cases are not isolated and therefore continue to infect throughout the 
infectious period. Conditional on being infected at exposure, the probability that the individual is infecting 
others on a given day is the fraction of sample paths that are above the infectiousness threshold on that day. The 
expected number of infecting days is the sum of these probabilities across all days after the first exposure date. 
An example of these calculations is provided in Fig. 1 for the illustrative sample paths that were simulated. In 
the actual simulation, we consider 200,000 sample paths for each exposure date. The probability distribution of 
the exposure data is described next.

Modeling uncertainty in the exposure time.  Our methodology incorporates uncertainty on the day in 
which the contact has been infected, considering a range of possible exposure days of index case with the traced 
contact. This modeling approach is more realistic in settings with structured contact networks that interact fre-
quently (e.g. school and workplace).

The uncertainty in the exposure time is modeled using a probabilistic approach, deriving the probability 
distribution for the days in which the transmission from the index case to the contact may have occurred; this 
probability distribution is used to simulate the contact’s viral load. Specifically, let t ∈ {0,−1, . . . ,−14} represent 
the set of possible exposure days, where t = 0 is the day of index case confirmation (we consider up to 2 weeks 
before confirmation as possible exposure dates). Infection occurs on day t when: (1) the index case is during 
the infectious period on that day, which is presented by the probability pt ; and (2) the contact was not previ-
ously infected and transmission from the infectious index to the susceptible contact. The latter is represented by 
the infectivity parameter β , which represents the transmission probability, conditional on the index case been 
infectious.

The probability distribution pt (index case is infectious on day t) depends on how the index case was detected 
at t = 0 . The model considers three types of index case detection: (1) symptomatic index case detected at symp-
tom onset; (2) asymptomatic index case detected by a randomly performed LFA test; and (3) asymptomatic 
index case detected by a weekly surveillance screening with LFA test. To compute pt on each of these three 
scenarios, we simulate a large sample of viral load paths of the index case starting on each possible infection 
date t ∈ [−14,−1] . From this large sample, we select the paths that are feasible with the index case detection 
on t. For example, for the scenario where the index case is detected at symptom onset, only the simulated paths 
that present symptoms on day t = 0 are selected. For the scenario detected by a random LFA, the selected paths 
include the simulations with viral load above the LOD ( 105 cp/ml) on day t = 0 . Using this selected sample, pt 
is computed as the fraction of selected paths that exceed the infectious threshold ( 106 ) on day t. The top panel 
of Fig. 2 shows the calculations of pt for the three scenarios considered in the model. The area under the curve 
represents the average number of days in which the index case was infectious previous to detection.

Conditional on been infectious, the probability that the index case infects the contact on a given day is given 
by the infectivity parameter β (we assume that the infectivity is constant during the infectious period, that is, 
when the viral load is above 106 ). Define the events: (1) St = the contact has not been infected up to time t; and 
(2) It = index case is infectious at time t. The probability that the contact is infected at day t can be expressed as:

where the term in the product represents the probability that the contact was not infected up to time t (i.e. Pr(St) ). 
Appendix B provides further details on how to compute rt using simulation methods. Conditioning on the event 
that the contact was infected, the probability that the exposure occured in day t is obtained by normalization, 
rt
/
∑−14

j=0 rj . Note that this exposure time distribution depends on the infectivity parameter β . The bottom panel 
of Fig. 2 shows the (normalized) probability distribution of the exposure date for an infected contact for two 
values of β equal to 0.1 and 1.0 (Low and High) under the different scenarios of index case confirmation. As 
the figure illustrates, increasing the infectivity parameter β moves the distribution of the infection time to the 
left, because the the exposure time is more likely to occur during the first interactions of the index case with 
the contact. This effect is larger for the scenario where the index case is detected at symptom onset, which has a 
narrower range of possible exposure days. The figure suggests that for the other two scenarios (random LFA test 
and weekly LFA test), the exposure time distribution is not very sensitive to the infectivity parameter.

The simulations were generated using multiple values of β (0.01, 0.1, 0.5 and 1.0) to assess whether the effi-
ciency of the testing schedules are sensitive to the infectivity profile. This is important because infectivity may 
vary depending on the context, including the usage of personal protective equipment, indoor ventilation, vaccine 
adoption, type of contact (e.g. household) and potential risk factors33.

Modeling testing strategies.  Expected infecting days can be reduced with contact tracing and immediate 
quarantine. Note that quarantine at t = 1 does not fully mitigate the contact’s infecting days because the infec-
tious period of the contact may start before the index case was detected. As an alternative to quarantine, identi-
fied contacts may continue with active circulation with a test schedule to detect a potential infection, thereby 
reducing the costs of unnecessary quarantines when the contact case has not been infected. A test schedule 

rt = β Pr(It |St) ·
∏

j≤t−1

(1− β Pr(Ij|Sj)),
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Figure 2.   The top panel shows the probability of the index case been infectious on each day prior to the 
confirmation date ( t = 0 ). Each facet describes a different scenario on how the index case was detected: (1) at 
symptom onset; (2) asymptomatic detected with a random LFA test; (3) asymptomatic detected with a weekly 
surveillance LFA test. The bottom panel shows the distribution of the exposure time of a contact that was 
infected on or before the index confirmation date, for each scenario. The distribution is calculated using two 
infectivity parameter values, Low (0.1) and High (1.0). The overlap between these distributions is shown in 
purple color.
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is defined as a set of test interventions on specified dates, where each test performed has an associated LOD, 
sensitivity and delay to inform the test result. Two types of tests were considered for this analysis: (1) PCR test, 
with LOD = 103 and a 1-day delay to report results, and (2) LFA test, with LOD = 104.5 and immediate reporting 
(zero delay).

The sensitivity of the test depends on the viral load of the subject, the test’s LOD and the quality of the sam-
ple swab (pre-analytic factors). Table 1 describes the sensitivity of the different tests considered in our analysis. 
Sensitivity of PCR is set to 100% above a viral load of 10334. For LFA, we considered different scenarios which 
account for reported differences among manufacturers and the type of sample swab used. 32compare more than 
100 LFA tests, reporting test sensitivity relative to PCR for different cycle threshold values. We converted cycle 
thresholds to viral load assuming an equivalence of Ct values of 35 and 25 to viral loads of 103 and 106 , interpo-
lating for intermediate values assuming that a Ct increase of one corresponds to a factor of two in the viral load 
concentration. We used the top decile of the reported tests to define the LFA High scenario. Note that the sample 
swabs in that study where collected by professional health care personnel, which can be higher compared to 
self-collected samples (i.e. home testing). Studies by35–37 comparing self-collected versus professional-collected 
swabs show differences in test sensitivity in the order of 5–15%. Hence, we considered an intermediate sensitivity 
parameter reducing the high performance LFA test by 10%, generating the LFA Med scenario shown in Table 1. 
The LFA Med-Low scenario was constructed using the bottom decile of the tests studied in32, using professional-
collected swabs; the LFA Low reduces that sensitivity by 10% to account for a self-collected swab. This range 
of sensitivity considered for LFA tests is consistent with the values reported in recent studies38,39. PCR tests are 
reported with a 1 day delay, while LFA tests provide immediate results with no delay in all the scenarios. Figure 3 
shows the infectiousness profile and test sensitivity during post-exposure date ( t = 0 ) based on the simulated 
viral load paths of our model.

Table 1.   Sensitivity of the different types of tests considered in the study. PCR test have 100% sensitivity when 
viral load exceeds 106 (cp/ml), and zero below that threshold. Four scenarios of sensitivities were considered 
for LFA tests (High, Med and Low), all with a LOD of 104.5.

Ct log(Viral load) PCR

LFA

High Med Med-Low Low

< 25 > 6 1.0 1.0 0.9 0.85 0.75

[ 25 , 30 ] [ 4.5 , 6 ] 1.0 0.85 0.75 0.15 0.05

[ 30 , 35 ] [ 3 , 4.5 ] 1.0 0 0 0 0

Test delay 1 day No delay

Figure 3.   Infectiousness of a Covid-19 case, based on 10 thousand viral load simulations of asymptomatic 
and symptomatic cases with exposure time at t = 0 . The bottom panel of the figure shows the probability of 
developing symptoms on each day following exposure and the sensitivity of PCR tests and LFA tests (using the 
LFA Med scenario from Table 1).
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The false negative rate (FNR) of a test is defined as the probability of obtaining a negative test result on an 
infected subject. In our simulation, the FNR of PCR tests can be calculated as the fraction of sample paths with 
viral load below the LOD of the test ( 103 cp/ml). The top panel of Fig. 4 illustrates an example of a test schedule 
with one PCR test implemented 1 day after the index case detection ( t = 1 ). The contact is isolated when the 
test gives a positive results with 1 day of delay, and the infecting days for these cases correspond to the purple 
dots shown in the figure. Note that these detected case do infect during the day the PCR test was taken due to 
the 1 day delay in reporting. Negative results filter out all the sample paths with viral loads above LOD = 103 on 
day t = 1 : all of these paths are discarded when test results are reported; therefore, an infected individual could 
evolve on only one of the remaining paths with viral loads below the LOD on the test date. The discarded paths 
are “grayed-out” in the figure, and their infection days are eliminated.

The red dots in Fig. 4 represent the possible infecting days when the infected contact remained active in the 
community after a false negative PCR test result. The fraction of paths above the infectious threshold that have 
not been isolated represents the probability that the individual is infectious on that day. These infecting days, 
which are referred to as the residual risk22, are generated by the paths that were not filtered out by the PCR test 
on day 1. Considering both scenarios, namely, a true positive and false negative test result, the expected infecting 
days (conditional on infection at exposure) is equal to 2.79 in this example (shown by the label in the upper-right 
corner of the top panel). Of these total expected infecting days, 2.44 correspond to days after the index case 
detection date and could have been avoided by a strict quarantine of the contact.

The middle panel of Fig. 4 shows a test schedule with an LFA test performed at day t = 3 . In this example, 
we use the LFA Med parameters from Table 1, hence there could be false negatives even when viral load exceeds 
the LOD of the test. Despite its lower sensitivity relative to PCR testing, the FNR for this LFA test drops (relative 
to the PCR test on day 1) because a larger fraction of sample paths exceeds the LOD on day 3, thus implying 
a higher chance of detection. The expected infection days prior to the positive test result increase for this test 
schedule (i.e. there are more purple dots); however, this increase is compensated with a larger reduction in the 
residual risk of false negative results (fewer red dots). The overall effect is that delaying the PCR test from day 1 
to a LFA test on day 3 reduces the overall expected infection days from 2.79 to 2.45.

The bottom panel of Fig. 4 illustrates a test schedule that combines PCR and LFA tests taken on days 1 and 3 
respectively. Note how the first PCR test on day 1 was capable of detecting infected contact in scenarios where 
infection occurred on earlier exposure dates, which reduces the infection days for the scenarios that are detected 
with the LFA test on day 3. This initial “filtering” of cases at day 1 also increases the FNR of the LFA test on day 3. 
Altogether, incorporating an additional PCR test on day 1 to a LFA test scheduled on day 3 reduces the expected 
infecting days from 2.45 to 1.77.

The above examples are provided to illustrate our modeling approach, which can be applied to different types 
of tests varying their LOD, sensitivity and reporting delay. We applied this methodology to study all possible test 
combinations that can be generated with up to two PCR tests and five LFA tests within the 8 days following the 
index case detection date, considering different numbers of tests and testing dates.

Although the proposed strategy of sequential testing increases the likelihood of false positives (thereby gen-
erating quarantines for non-infected contacts), we found that its impact is negligible relative to the benchmark 
policy of quarantining all close contacts. For example, for a LFA specificity of 99%36,40, a healthy close contact 
would have a probability of ( 1− (0.99)n ) of a false positive if n tests are performed. Hence, a testing strategy 
with three LFA tests leads to a false positive rate of 0.03: for every 100 non-infected close contacts that would be 
subject to a strict quarantine, there would be, on average, only 3 people undergoing an unnecessary quarantine 
when the sequential testing strategy is used. This false positive rate can be further reduced by conducting repeated 
testing after a positive result, as suggested for surveillance testing21.

The results of the analysis are presented next. All the data used in this analysis are synthetic and generated 
via simulation using Python and R code, to be made publicly available.

Results
We evaluated all testing policies considering a maximum of 2 PCR and 5 LFA tests. For LFA tests, we considered 
the LFA Med scenario described in Table 1 to model the sensitivity of the test. Later we show some results with 
other scenarios of the LFA sensitivity parameters. Figure 5 shows the results for the scenario where the contact 
was exposed to an index case detected at symptom onset. The top panel shows the performance of different 
numbers and combinations of tests, thus allowing two tests of different types on the same day, and different 
values of the infectivity parameter β (0.01, 0.1, 0.5 and 1.0). Each dot in the plot shows the expected infecting 
days of a feasible testing policy for a fixed infectivity parameter. The dispersion across testing policies is illus-
trated with dot plots and box plots, and the policies are grouped by the number of PCR and LFA tests used, with 
each pair (#PCR,#LFA) indicating the number of tests of each type. Dot plots with higher densities represent 
clusters of policies that achieve similar performance. Testing policies are ordered from lower to higher costs on 
the horizontal axis; because PCR tests are typically more costly, policies within the same group are reported in 
increasing order of PCR tests. We notice that the costs of PCR testing can be lowered by pooling specimens from 
multiple samples; however, this cost reduction is less effective when prevalence is high, as would be expected 
with effective contact tracing41.

The horizontal red line shows the expected number of infecting days of the traced contact when he/she 
remains active in the community until self-isolation only at symptom onset (for asymptomatic cases, there is no 
isolation), giving an upper bound of 5.44 expected infecting days when neither testing nor quarantine are used. 
The horizontal blue line shows the lowest expected number of infecting days of the traced contact if he/she is 
immediately quarantined upon confirmation of the index case (with 100% adherence), and it is equal to 0.26 
expected infecting days, which represents a lower bound on the performance of all possible testing policies. The 
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Figure 4.   Examples of test schedules for an infected contact and their impacts on the infecting days. The top 
panel shows a schedule with the PCR test on day 1 after index case confirmation. Purple dots indicate infecting 
days for the contact when detected by the test and red dots show the infecting days for undetected cases. Viral 
paths are shown in light gray after they are detected by the corresponding test. The middle panel shows the 
performance of an LFA test on day 3. The bottom panel shows the performance of two sequential tests, PCR on 
day 1 and LFA on day 3, with the yellow dots representing the infection days for the scenarios that are detected 
with the second test after a false negative in the first test.
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Figure 5.   Evaluation of testing policies for a traced contact exposed to an index case identified by symptom 
onset. In the upper and middle panels, the horizontal axis contains the number of PCR and LFA tests. Blue, 
green, purple, and red horizontal lines correspond to the average infecting days when traced contact is 
quarantined for 14 days with adherence of 100%, 90%, 80%, and 0%, respectively. In the upper panel, each dot 
displays the performance of a testing schedule and infectivity parameter, and the lower and upper limits of boxes 
are the 25% and 75% quartiles. For the robust testing policies, the middle panel displays the average expected 
infecting days (small squares), the range of the expected infecting days across all parameters (gray rectangles) 
and the 10% and 90% percentiles across all the simulation runs analyzed. The lowest panel shows the schedule of 
the robust testing policy for each group of tests.
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analysis suggests that with 5 tests, the averted risk reaches this lower bound; therefore, all reported results are 
limited to 5 tests or fewer (LFA and PCR combined).

For each pair (#PCR, #LFA), we identified the optimal policy by selecting the testing schedule that minimizes 
the expected infecting days; we found that the optimal testing schedule was similar across all the parameter values 
of infectivity ( β ) that were used to simulate the exposure time distribution, with some exceptions. An example 
where the optimal policy changes with β is when a single test is available: the simulations using a higher infectivity 
parameter suggest that earlier testing is more efficient to avert risk, because it is more likely that the contact was 
exposed earlier (see Fig. 2). When the optimal testing schedule changes depending on the infectivity parameter, 
we also identify the policy that minimizes the worst-case scenario (i.e. highest expected infecting days) across 
all values of β , hereon referred to as the robust testing policy.

The middle panel of Fig. 5 shows in further detail the performance of the robust testing policy for each pair 
(#PCR, #LFA). The small squares represents the average expected infecting days and the gray rectangles the 
range of expected infecting days, across all the values of the infectivity parameters used in the simulation. The 
error bars indicate the 10% and 90% percentiles of the number of infecting days across all the simulated sample 
paths for the selected policy. This graph also includes two additional benchmarks indicated by the light blue and 
purple horizontal lines, which correspond to a 14-day quarantine with 90% and 80% adherence (but imposing 
full isolation at symptom onset of the infected contact).

The bottom panel shows in further detail the days in which the tests are performed for the robust testing 
policies (black squares represent the days when the PCR/LFA tests should be performed). In Appendix D, 
Tables D.41, D.42 and D.43 show the detailed testing schedules for all robust policies, and the false negative rates 
at each epoch when a test is performed.

Figure 5 suggests that sequential testing strategies can be an effective alternative to quarantines to avert sec-
ondary infection risk of traced contacts. For example, two LFA tests can lead to a lower risk relative to a 14-day 
quarantine with 85% adherence; and three LFA tests can be as effective as a quarantine with 90% adherence.

However, the results also suggest that the timing of these tests is highly relevant. The optimal schedule of the 
two LFA tests is on days 1 and 3, thus leading to 0.99 expected infection days. However, changing to a testing 
schedule on days 1 and 2 deteriorates the performance to 1.49 expected infecting days, a 50% increase on the 
risk relative to the optimal strategy. Similarly, when using 2 LFAs and 1 PCR, the optimal schedule on days 1 
and 2 for the LFA and day 3 for the PCR leads to an average of 0.63 infection days compared to 1.37 days when 
using a schedule of LFAs in days 1 and 2 and PCR at day 1 (a 117% increase in the risk of secondary infection). 
The top panel of Fig. 5 shows significant dispersion on the performance across testing strategies using the same 
number of tests, suggesting that optimizing the dates of the tests matters.

Analysis with other types of index case detection.  Figure 6 shows the results for the scenario when 
the contact was exposed to an index case detected by a LFA test. In this scenario, the index case has no symptoms 
at the moment of detection and hence could be presymptomatic or asymptomatic, which in turn affects the pos-
sible dates of exposure. Specifically, since we model an environment where contacts are recurrent, the range of 
possible dates of infection is longer when the index case is asymptomatic (see Fig. 2). This longer time period 
of exposure increases the likelihood that the contact is already infectious at the time the index case is detected. 
Consequently, the lower bound represented by the blue horizontal line, which was attained with immediate 
quarantine of the traced contact at t = 1 and 100% adherence, leads to an expected infecting days of 0.78, which 
is significantly higher than the 0.26 bound attained when the index case is detected at symptom onset, see Fig. 5. 
The upper bound, illustrated by the red line, is the expected infecting days without quarantine or testing, with 
isolation only at symptom onset. Hence, this upper bound does not depend on the exposure time of the contact.

In qualitative terms, the results of Fig. 6 (i.e. index case detected by LFA) are similar to those obtained in Fig. 5. 
Two LFA tests with optimal testing time reduce the secondary infection risk relative to a 14-day quarantine with 
80% adherence, and adding a third LFA test attains a lower risk relative to a quarantine with 90% adherence. 
The optimal testing schedule for each PCR/LFA combination was similar across all the infectivity parameters 
applied in the simulation.

The two scenarios analyzed in Figs. 5 and 6 differ in the probability distribution of the exposure days (pre-
sented in Fig. 2). An intermediate scenario can be analyzed when the index case is detected by a weekly sur-
veillance LFA test, with a range of 7 exposure days prior to index case detection. The results of this scenario, as 
reported in Figure D.11 in the Appendix, are qualitatively similar to those obtained in the previous two scenarios. 
The main difference is that the lower bound attained with immediate quarantine with 100% adherence reaches 
0.28, which represents a 64% reduction relative to the bound attained when the index case is detected with a 
random LFA test. Hence, increasing the frequency of a surveillance testing program is useful for improving the 
case detection rate and simultaneously increasing the efficiency of contact tracing.

Alternative scenarios of LFA test sensitivity.  Overall, the results suggest that sequential testing with 
LFA tests is a cost effective alternative to quarantines to mitigate infection risk of traced contacts, when consider-
ing tests of moderate sensitivity levels (90% for viral loads above 106 (cp/ml) and 75% for loads between 104.5 and 
106 (cp/ml)). However, there is mixed evidence of the sensitivity of LFA in practice and it is of interest to analyze 
how this test sensitivity may impact the effectiveness of the sequential testing strategy relative to quarantines of 
close contacts.

Figure 7 shows the robust testing schedules generated based on the simulations with the LFA Med-Low test 
sensitivity scenario (see Table 1). As expected, there is an increase in the expected infecting days for the testing 
schemes using LFA tests alone; this drop is more pronounced when using one or two LFA tests, and is negligible 
when using three or more tests. This suggests that using sequential testing may compensate the lower sensitivity 
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Figure 6.   Evaluation of testing policies for a traced contact exposed to an index case detected by random LFA 
test. In the upper and middle panels, the horizontal axis contains the number of PCR and LFA tests. Blue, green, 
purple, and red horizontal lines correspond to the average infecting days when traced contact is quarantined 
for 14 days with adherence of 100%, 90%, 80%, and 0%, respectively. In the upper panel, each dot displays the 
performance of a testing schedule and infectivity parameter, and the lower and upper limits of boxes are the 25% 
and 75% quartiles. For the robust testing policies, the middle panel displays the average expected infecting days 
(small squares), the range of the expected infecting days across all parameters (gray rectangles) and the 10% and 
90% percentiles. The lowest panel shows the schedule of the robust testing policy for each group of tests.
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of the tests. Interestingly, a testing scheme with one LFA and one PCR achieves a similar performance relative to 
2 sequential PCR tests, showing the value of combining tests with different LODs. The robust testing schedules 
for other levels of LFA test sensitivity are reported in Appendix D.2.

Our analysis has focused in comparing risk-reduction strategies of sequential testing with no quarantine 
relative to a 14-day quarantine with different levels of adherence. As an alternative, in what follows, we compare 
the performance of this sequential testing strategy with quarantines of different time extensions. The top panel 
of Fig. 8 shows the expected infection days of using strict quarantines (with 100% adherence and no testing) of 
different time length, between 1 and 12 days, starting at the time of detection of the index case. Expected infecting 
days is calculated taking an average across all the values of the infectivity parameter β used in the simulations, 

Figure 7.   Robust testing policies for the LFA Med-Low test sensitivity scenario.
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and these calculations are presented separately for the different alternatives of index case detection. Quaran-
tines of three or fewer days lead to more than 5 infection days on average, which can be significantly reduced 
by increasing the length of the quarantine, down to one or lower infection days for quarantines of more than 10 
days. Note that the expected infecting days do not reach zero as we increase the length of the quarantine because 
the infection days of the contact prior to index case detection are unavoidable.

The bottom panel shows the number of sequential LFA tests without quarantine that reach the same effective-
ness as a strict quarantine, for different time lengths. This number is calculated for the alternative scenarios of 
LFA test sensitivity reported in Table 1. For example, using four LFA tests of High sensitivity (with the robust 
testing schedule shown in Figs. 5, 6) and no quarantine if results are negative, achieves a lower risk than 12 days 
of strict quarantine.

The results in Fig. 8 also suggest that test sensitivity is relevant to determine the effectiveness of sequential 
testing strategy. When using Low sensitivity LFA tests, it may not be possible to achieve the effectiveness of a 12 
day quarantine: the simulations show that the best outcome that can be achieve with up to 5 LFA tests is equiva-
lent to a 9-day strict quarantine, which is about 0.5 infection days higher than what could be achieved with the 
same number of tests with High sensitivity or, alternatively, 12 days of strict quarantine. Nevertheless, short 
quarantines of 7 or fewer days—a policy that has been used by many countries to quarantine incoming travelers 
(e.g. Thailand, Italy, and Austria as for Dec 21st 2021, https://​www.​kayak.​com/​travel-​restr​ictio​ns)—could be 
replaced by 2 sequential LFA tests without increasing infection risk (the optimal schedule of these tests varies 
depending on the test sensitivity). In summary, these results reinforce the conclusion that sequential testing of 
close contacts can be an effective alternative to quarantines, even when using low sensitivity tests, if the timing 
of these tests is set appropriately.

Comparing alternative models of viral load trajectories.  Our main results were generated based 
on the viral load trajectories developed in4, who combined empirical data from several sources published 
during 2020. Recent studies have shown that some of the variants of concern may exhibit different viral load 
trajectories42. shows that the Alpha variant tends to rise faster leading to an earlier infectious period43. shows 
differences in the rise and decline of viral loads among pre-Alpha, Alpha and Delta variants.

To check the robustness of our results, we replicated all the analysis using the more recent study by42, who esti-
mate viral load trajectories based on sequential PCR tests of more than 25 thousand confirmed Covid-19 cases in 
Germany. The detailed results of this analysis are reported in Appendix D.3, leading to the following conclusions:

Figure 8.   Substituting quarantines with sequential testing without increasing infection risk. The top panel 
shows the infection days of a pure quarantine strategy of different time extension (1–12 days) and 100% 
adherence. Quarantine of the contact begins with the detection of the index case and each facet shows the 
calculations for alternative scenarios of index case detection. The bottom panel shows the number of LFA tests 
that would be needed to replace the quarantine with an optimal sequential testing strategy (with no quarantine 
when tests are negative) without increasing infection risk, considering different levels of test sensitivity (see 
Table 1). Blank entries indicate that the corresponding quarantine time extension cannot be replaced with 5 or 
fewer tests.

https://www.kayak.com/travel-restrictions
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•	 The performance of sequential testing relative to strict quarantines of traced contacts is similar to what we 
obtained in our main results. Based on the simulations with the LFA Med test sensitivity scenario, we find 
that two tests with no quarantines is equivalent to a 14 day quarantine with 80–90% adherence. The perfor-
mance with 3 and 4 tests is equivalent to 90–100% adherence. The performance with 5 tests is close to 100% 
adherence of the 14–day strict quarantine.

•	 With the lower sensitivity scenario LFA Med-Low, the results based on the viral load trajectories of42 have 
small drop in performance, similar to what we obtained in our main results.

•	 The performance for the cases where the index is detected at symptom onset are similar to those obtained 
when the detection is with a random LFA test, a pattern that is also consistent with our main results.

•	 The optimal schedules obtained with the42 viral loads are similar to those reported in our main results. In42, 
some of the tests are scheduled one day later, because the viral load trajectories in this model tend to decline 
more slowly, leading to a more extended infectious period and thereby a higher residual risk (see Figure 
D.31).

Overall, our key results appear to be robust to adjustments in the viral load trajectories. Nevertheless, it is 
important to continuously revise the optimal testing strategies based on new empirical evidence of viral load 
evolution, and on this regard our simulation approach is relatively flexible to accommodate alternative models. 
Although the computational times of running these simulations was reasonably fast for the purpose of this study, 
evaluating testing strategies in real time could be achieved more efficiently by pre-computing infectious state 
transitions using a simplified Markovian model, adapting the approach implemented in22,44.

Discussion
Most countries use quarantines for traced contacts and isolation for confirmed cases of COVID-19, with the 
purpose of avoiding the further spread of the virus. These strategies are costly, and qualitative studies show 
that adherence to them is highly dependent on risk perception and the degree of monitoring by the health 
authority45,46.

In this paper, we propose an alternative to quarantines for traced contacts based on sequential PCR and/or 
LFA tests (with isolation of confirmed cases) and show that by choosing the appropriate test mix and timing, it 
is possible to reach the same risks of secondary infections compared to that of quarantines with high levels of 
adherence. For example, the use of 4 consecutive LFAs since notification is equivalent to a 14-day quarantine 
with 90–100% adherence; this can be achieved even when using LFA tests with relatively low levels of sensitivity.

When considering more realistic adherence to quarantines of 80–90%, a testing approach that consists of two 
or three LFA tests can actually attain a lower risk of secondary infections compared to those with quarantines. We 
show that the optimal timing of these tests is important to effectively avert infectiousness of the exposed contact. 
For example, in the case of an index case detected at symptom onset, conducting LFA tests of high quality but 
with a self-collected sample on the first and third days after contact is determined is more effective at averting 
secondary risk infections relative to a 14-day quarantine with 80% adherence (assuming 100% compliance in 
the isolation of the contact when confirmed by a positive test). In the scenarios with lower LFA test sensitivity, 
combining one LFA test and one PCR test achieves a similar performance compared to a 14-day quarantine with 
80–90% adherence. These conclusions hold for alternative models of viral load trajectories4,42.

Our modeling analysis captures three important aspects that determine the effectiveness of sequential testing 
to reduce the infection risk of traced contacts.

First, for a number of available tests, not all feasible schedules lead to good results; therefore, among all pos-
sible test allocations during the contact tracing period, choosing the optimal one leads to significant differences 
in terms of effectiveness in reducing secondary infection risk.

Second, for a given number of available tests, using only high sensitivity PCR tests does not necessarily result 
in the optimal testing plan, due to delays in the test results. This result extends the conclusions of4 obtained when 
analyzing surveillance testing strategies. Using PCR is effective to confirm traced contact while maintaining strict 
quarantine; however, when compliance with quarantine is imperfect, the delay in reporting results increases the 
risk of secondary infection. This risk can be more effectively managed combining high sensitivity PCR tests with 
a lower sensitivity LFA test with immediate results; moreover, the cost of this strategy is usually lower.

Third, our analysis suggests that in environments with structured contact networks with recurrent risk of 
exposure, the effectiveness of quarantines and post exposure testing of traced contacts depends on how the index 
case is detected. In this environment, asymptomatic index cases may lead to a wider range of possible exposure 
dates, thereby increasing the likelihood that the exposed contact is already infectious at the time of case noti-
fication. Increasing the frequency of surveillance testing is useful for reducing this risk, thereby improving the 
efficiency of the contact tracing strategies analyzed in this work. Interestingly, although the effectiveness of post 
exposure testing varies depending on the range and probability distribution of the exposure days, the optimal 
testing schedules that should be implemented to avert secondary infection risk are relatively similar across all 
the scenarios that were analyzed, and their performance relative to quarantines with different levels of adher-
ence was also similar.

Our modeling approach is subject to limitations. First, we assume that confirmed cases fully adhere to strict 
isolation, which is plausible to implement in environments with stricter control, such as workplaces, healthcare 
facilities and schools, or where isolation in dedicated facilities is feasible. However, strict isolation may be difficult 
to implement in other environments, such as households or for social contact networks. Second, our analysis is 
based on simulated viral load trajectories that have been calibrated in previous work4,42. However, recent work 
by43,47 suggests that the viral load of new variants (such as Delta) may exhibit differences from those reported 
for the original strains during the initial waves of the COVID-19 pandemic. Interestingly, our results suggest 
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that the effectiveness of sequential testing is similar for alternative models of viral load trajectories, some of 
which included variants of concern. Nevertheless, our results must be interpreted with caution and may require 
further analysis in the future with alternative models of viral load evolution. Third, testing strategies may lead 
to changes in the behavior of the traced contacts on their adoption of complementary prevention measures, 
such as masking and personal hygiene, which are relevant when the individual is actively in contact with the 
susceptible population.

Our analysis is focused on improving contact tracing for essential workers, such as medical staff, teachers, 
and specialized workers, among others, where quarantines might heavily disturb the normal functioning of 
crucial activities. We implemented some of the insights obtained from the modeling analysis in two schools in 
Chile, with the objective of maximizing in-person teaching during 2021. In Chile, health authorities mandate 
that upon a confirmed case of a student in the school, the whole class where the student attended two days prior 
to case confirmation or symptom onset should be quarantined for 14 days. The mandate leaves to the discretion 
of school management how to handle the teachers that followed the mandatory hygiene measures during teach-
ing hours in the class (wearing mask, open windows and hand washing). A 14-day quarantine of the teacher—a 
practice that was implemented by many schools in Chile—would generate disruptions in in-person teaching for 
other classes at the school. Instead, these two pilot schools opted to maintain in-person teaching for the exposed 
teachers that were vaccinated, but conducting three LFA tests during the 5 days following the index case detec-
tion. These tests would complement the regular weekly surveillance testing that was implemented at the schools. 
Between March 3rd and December 7th of 2021, 69 students were confirmed with a positive PCR tests, leading to 
181 teachers who where suspect contacts and, therefore, followed the sequential LFA testing strategy (all of them 
were vaccinated). All of the 543 LFA tests gave negative results; 65 of the teachers also had a negative PCR test. 
Overall, this resulted in 1810 in-person teaching days that would have otherwise been lost under the strategy of 
strict quarantine of the teachers.

Furthermore, as countries are working on finding ways to normalize certain economic activities, foreign travel 
has been at the center of discussion. Travel has been restricted, and testing at airports and quarantines upon 
arrival have been implemented in many countries. However, these strategies will become difficult to implement 
and enforce at a large scale as airport traffic approaches pre-pandemic levels. Therefore, the sequential testing 
strategies studied in this work might become an effective alternative to complement quarantines for travelers or 
other settings where adherence to quarantine mandates is low.

Code availability
All codes used in the research are documented and available at https://​datos.​uchile.​cl/​datas​et.​xhtml?​persi​stent​
Id=​doi:​10.​34691/​FK2/​GT1XHA.
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