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ESCUELA DE POSTGRADO Y EDUCACIÓN CONTINUA
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RESUMEN

ESTUDIO DE LA GENERACIÓN DE ENTROPÍA LOCAL EN MEDIOS POROSOS BAJO
REGIMEN LAMINAR Y TURBULENTO

Recientemente, en los últimos 15 años, las estructuras porosas han sido propuestas como
una solución interesante en el diseño de sistemas de intercambio y almacenamiento de enerǵıa
a altas temperaturas, ambos para aplicaciones de en sistemas de concentración solar de
potencia. La amplia área de transferencia de la matriz porosa permite alcanzar altas eficiencias
de conversión, particularmente en aplicaciones de alta temperatura para gases compresibles
(CO2 o aire). Sin embargo, la presencia de la matriz porosa incrementa la resistencia
hidrodinámica sobre el flujo y, en consecuencia, genera irreversibilidades que controlar.
Asimismo, las duras condiciones de operación en algunos casos y la complejidad inherente
a la simulación de un medio poroso tortuoso hacen que la tarea de simulación y análisis
aún sea un problema complejo de resolver en reǵımenes turbulentos. Por lo tanto, para este
trabajo se propone la generación de entroṕıa como una figura de mérito integral capaz de
incorporar los diferentes mecanismos de generación de irreversibilidades en una sola variable
sobre el transporte y gestión de potencial energético. Adicionalmente, un análisis enfocado
en la entroṕıa, su transporte y generación proporciona la posibilidad de distinguir la calidad
del potencial energético de cada flujo de enerǵıa desde o hacia el sistema.

A pesar de que la entroṕıa como concepto tiene al menos 200 años, no existe una expresión
y un método de simulación que permita determinar la generación de entroṕıa a escala local
(LEG) en medios porosos y distinguir sus diferentes mecanismos de generación. Al incorporar
un matriz porosa al análisis, aparecen mecanismos de transferencia de calor volumétrica y
de disipación de enerǵıa adicionales que no se encuentran en flujos internos libres. Esto hace
necesario el estudio sobre la modelación de dichos mecanismos adicionales y su repercusión en
la generación de entroṕıa. El presente trabajo propone un análisis teórico sobre las ecuaciones
fundamentales que gobiernan el transporte de masa, enerǵıa y momentum, y a partir de
ellas, desarrolla una expresión f́ısico-matemática para el transporte y generación de entroṕıa
en medios porosos. Además, se presenta una metodoloǵıa de análisis para aplicar el modelo
teórico de LEG en herramientas de simulación de CFD.

Se presenta un análisis adimensional preliminar sobre la expresión de LEG para determinar
las variables adimensionales que definen el nivel de significancia de cada mecanismo de LEG.
Posteriormente, se implemeta un experimento numérico en un caso de estudio simplificado y
representativo, para estudiar el comportamiento de un canal poroso bajo 200 configuraciones
variando las condiciones de borde de diseño y operación. Los resultados muestran que las
irreversibilidades asociadas a la resistencia hidráulica en medios porosos pueden dominar la
generación de entroṕıa global por sobre los mecanismos de transferencia de calor volumétrica.
Asimismo, se definen puntos de inflexión donde la resistencia hidráulica puede dominar la
LEG para diferentes configuraciones de Reynolds, porosidad y diferencia de temperatura
entre el medio sólido y ĺıquido. La resistencia hidrodinámica de Forchheimer puede dominar
la LEG por sobre los efectos asociados a la transferencia de calor volumétrica para reǵımenes
de alto número de Reynolds (ReD > 100), con una porosidad menor a 0,6.
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Abstract

Recently, in the last 15 years, porous structures have been proposed as an interesting
solution in the design of high-temperature energy storage and exchange systems, both for
applications in concentrated solar power (CSP) systems. The wide exchange area of the solid
matrix allows to reaching higher conversion efficiencies, particularly in high-temperature
applications ( 1000°C) for compressible gases (CO2 or air). However, the presence of the
solid matrix increases the hydrodynamic resistance of the flow and, consequently, generates
irreversibilities to control. Similarly, the arduous operating conditions in some cases and the
inherent complexity of simulating a tortuous porous medium make the task of simulation and
analysis still a complex problem to solve in turbulent systems. Therefore, in this work, the
generation of entropy is proposed as a comprehensive figure of merit capable of incorporating
the different mechanisms of generation of irreversibilities in a single variable on the transport
and management of the energy. Additionally, an analysis focused on the transport and
generation of entropy to distinguish the quality of the energy potential of each energy flow
interacting with a system.

Despite the fact that entropy as a concept is at least 200 years old, there is no methodology
in the literature that allows to determining the local entropy generation (LEG) in porous
media and distinguishing its different generation mechanisms. When a porous matrix is
included in the analysis, additional volumetric heat transfer and energy dissipation mechanisms
appear that are not found in free internal flows. This makes it necessary to study the modeling
of these additional mechanisms and their impact on the generation of entropy. This work
proposes a theoretical analysis of the transport equations of mass, energy, and momentum,
and from them develops a physical-mathematical expression for the transport and generation
of entropy in porous media. Furthermore, a methodology is presented to apply the LEG
theoretical model in CFD simulation tools.

A preliminary dimensionless analysis on the LEG expression is presented to determine
the dimensionless variables that define the level of significance of each LEG mechanism.
Subsequently, a numerical experiment is implemented in a porous channel under 200 design
and operation configurations. The results show that the irreversibilities associated with
hydraulic resistance in porous media can dominate the LEG rate over volumetric heat transfer
mechanisms. Similarly, inflection points are determined where the hydraulic resistance
can dominate the LEG for different ReD, porosity, and inlet temperature difference. The
hydrodynamic resistance effect dominate the total LEG in comparison to the volumetric
heat transfer for high porous Reynolds regimes (ReD > 100) when the porosity is below 0.6.
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Chapter 1

Introduction

1.1 First steps of the Entropy in history

The second law of thermodynamics and its fundamentals have been the object of wide
scientific study and discussion since the XIX century. In 1823, Sadi Carnot, aimed by his
father’s work, Lazare Carnot, published his reflections on the motive power of heat (Carnot,
1824a,b). At that time, the young thermal engines were subordinated to efficiencies of around
2% (Hanlon, 2020). From this, Carnot focused his study on the recognition of the phenomena
responsible for potential losses in energy transfer processes. Carnot proposed that heat flows
from high to low temperatures, as a mass of water that flows between high and low heights
in a waterfall. From this analogy, Carnot established that the maximum motive power
potential of a heat engine depends only on the temperature difference, independent of the
engine design. In the same way, the maximum power potential of hydraulic systems depends
only on the height difference, ṁ(zhigh − zlow) (Kostic, 2011). In addition, Carnot coined the
concept of reversibility, establishing that directionality exists in thermal processes, and effects
such as friction and/or heat transfer can make a process less reversible and consequently less
efficient (Salvi and Schettino, 2019; Hanlon, 2020). With this idea in mind, Carnot defined
an ideal cycle composed only of reversible processes, the famous Carnot’s cycle. This cycle
establishes an upper limit for the efficiency of a real thermal engine, subject to the operating
temperatures of the said system. Through his analogy between water falls and heat transfer,
Carnot established that the maximum efficiency that a thermal engine can reach is the
Carnot’s cycle efficiency, and it only depends on the temperature difference between the
energy source and energy sink.

Despite the fact that Carnot’s ideas laid the foundations for building the second law of
thermodynamics, in its time, his self-managed publication did not have much dissemination
and attention from the scientific community. The document with Carnot’s reflections had
no more than 600 copies in circulation (Salvi and Schettino, 2019). It was thanks to the
subsequent publication in 1834 of the mathematician Emile Clapeyron about the Carnot’s
reflections (Clapeyron, 1834; Girolami, 2020; Hanlon, 2020), that these concepts would spread
throughout the scientific community. Due to the work of Clapeyron, the ideas of Carnot
reached to inspire William Thompson, or most known in history as Lord Kelvin, for his later

1



work about the second law of thermodynamics. Due to the limited number of available copies
of Carnot’s reflections, in 1845 it was almost impossible to find an original copy. It was also
impossible for Kelvin to find a copy of Carnot’s memoirs in Paris (Salvi and Schettino, 2019).

Later, a few months apart, in 1850 Kelvin (Thomson, 1853) and Clausius (Clausius, 1850)
presented the statements that restrict the operation of thermal machines and refrigeration
systems, respectively. Clausius established that ”No process is possible whose sole result
is the transfer of heat from a body of lower temperature to a body of higher temperature”,
establishing an operating framework for refrigeration systems. For his part, Kelvin established
that ”It is impossible, by means of inanimate material agency, to derive a mechanical
effect from any portion of matter by cooling it below the temperature of the coldest of the
surrounding objects”, where he defines the restriction for the operation of thermal engines.

In his fourth memoir (Clausius, 1856), in 1854, based on Carnot’s second principle
(developed numerically by Clapeyron) on the efficiency of a reversible engine, Clausius
established the relationship between the heat transfer Q and the temperature T that would
give way to the constitution of entropy later. Carnot´s principle:

”the motive power of heat is independent of the agents employed to realize it; its quantity
is fixed solely by the temperatures of the bodies between which is effected, finally, the transfer
of the caloric”

Thus, with the contribution of Clapeyron, the last idea could be written as follows:

ηrev =
∂W

∂Q
=

T

C(T )
(1.1)

where ηrev is the efficiency of a reversible engine, T is the temperature, and C(T ) is a function
of T (proposed by Clapeyron from the idea of Carnot), and W and Q are the work and heat
produced and consumed, respectively.

Then, in his fourth memoir (Clausius, 1856), Clausius stated that if the process is
reversible, ”the transformations which occur must exactly cancel each other, so that their
algebraical sum is zero”. Clausius defined the transformation value as N , as follows:

N =

˛
∂Q

T
= 0 (1.2)

Later in 1865, in his ninth memoir(Clausius, 1879), Clausius established his famous
inequality, extending the aforementioned idea to either case, reversible or not, where the
sum of the transformations for cyclical processes can only be negative or equal to zero 1, as
follows:

N =

˛
∂Q

T
≤ 0 (1.3)

where N is the transformation value, Q the heat transfer rate, and T the temperature.

1Considering that the heat that leaves the system from a thermal reservoir is positive and, analogously,
the heat that enters to the system from a thermal reservoir is positive.
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In addition to that, Clausius defines one of the most important concept in thermodynamics
and the manner in which the science sees the universe.

On his ninth memoir N was baptized by Clausius as Entropy, and defined with the symbol
”S”, as seen below:

S =

˛
∂Q

T
≤ 0 (1.4)

dS =
∂Q

T
(1.5)

For the construction of the concept, Clausius took the Greek word ”τρoπη”(trope), which
means transform, and combined it with the syllable ”en”. Alluding to the fact that entropy
means transformational content. Likewise, he argued that the choice of the syllable ”en” was
made deliberately to maintain the proximity between the concepts of energy and entropy,
and consequently, creating an alliteration between both concepts(Clausius, 1879).

Finally, realizing the impact of his discovery, Clausius closes his work with the following
two statements.

• The energy of the universe is constant.

• The entropy of the universe tends to a maximum

After the development of the second law of thermodynamics and its modifications as we
know it today, several studies appeared focusing on the manifestations that entropy can have
depending on the transport phenomenon to be studied (Moran, 1989). In the 70’s, from
the economic crisis several authors encouraged their efforts to increase the efficiency of the
processes, optimizing the design of systems in order to take the maximum benefits of the
limited fuel sources (Moran and Sciubba, 1994; Bejan, 2002). In the following 20 years,
assisted by the growing computational and technological capacity of the time, the scientific
community set out to modify the traditional energy based analysis giving way to the study
of entropy generation at local scale.

Although an energy analysis based only on the first law of thermodynamics allows to
determine the performance of a system with respect to the energy inputs which it receives,
the first law efficiency can be misleading in some cases (Dincer and Rosen, 2012). The first-
law efficiency hides important information about how close the analyzed system is to the
ideal (reversible) case. On the other hand, the second law allows us to know how the system
generates inefficiencies and which regions are responsible for the energy degradation(Bejan,
2013).

Therefore, it is important to have the theoretical support to determine the generation of
entropy in its different generation mechanisms. Given the complexity of energy generation,
storage and distribution systems today, it is usual have more than one generation mechanism
occurring simultaneously. Furthermore, with the advent of advanced data management and
simulation technologies, there exists adequate computational capability to carry out first and
second law analysis on a differential scale.
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Accordingly, this document presents the study and development of an expression to
determine the generation of entropy at a local scale in porous media, under non-thermal
equilibrium considering laminar and turbulent regimes.

The expression and methodology developed in this work, provides the possibility to study
and determine computationally the entropy generation and its spatial distribution in systems
which exchange, manage and store energy through porous structures. These structures have
a wide spectrum of applications in concentrating solar systems, thermal energy storage and
hydrogen generation systems, among others.

1.2 Porous Media Applied to Engineering

The transport phenomena between a solid porous matrix and fluid or multiphase fluid
mixtures have been an active research subject during the last 70 years (Ávila-Maŕın, 2011;
Ergun and Orning, 1949; Vafai, 2015) due to their large capacity to exchange and store
thermal energy (Kalita and Dass, 2011; Calderón-Vásquez et al., 2021). The first interest
in the literature was focused on heat exchange devices and their applications as reacting
and/or filtering media (Baumann et al., 2020); however, particularly during the last 20
years, several authors have proposed novel technological solutions for energy conversion and
storage systems, such as hydrogen reactors, and concentrated solar power (CSP) systems
(Ávila-Maŕın, 2011; Kribus et al., 1996; Kun-Can et al., 2017; Villafán-Vidales et al., 2011;
Wu and Yu, 2007; Wu et al., 2010; Xu et al., 2011; Younis and Viskanta, 1993). Likewise, due
to the expansion of CSP systems during the last years, porous heat exchangers have been
proposed as an interesting solution to increase the operating temperatures of solar tower
systems using volumetric receivers. The main idea is to increase the maximum temperature
of the working fluid in the solar receiver, enabling the possibility of achieving higher overall
conversion efficiencies. Currently, the operation of commercial central receiver CSP systems
has a benchmark operating temperature of around 600 °C, established by the limit of chemical
stability of the working fluid: molten nitrate salts (Ho and Iverson, 2014). In this context,
some authors (Ávila-Maŕın, 2011) have proposed the use of compressible gases as working
fluids in combination with a porous volumetric solar receiver (VSR) to increase the operating
temperature to 1000-1200 °C and, consequently, increasing the conversion efficiencies to levels
of around 50% (Ávila-Maŕın, 2011; Kribus et al., 2014). A similar idea has been proposed
for thermal energy storage systems (TES) (Singh et al., 2019), using porous solid media
as a sensible heat storage matrix in interaction with compressible gases. Nevertheless, the
use of this kind of system implies dealing with several challenges in the design phase, mainly
related to difficulties in the computational modelling stage to properly describe the transport
phenomena in a complex solid porous matrix of mini- and microchannels.

Implementing a porous media either in a volumetric receiver or in a thermal storage
system increases the heat exchanging area between the solid and the fluid; however, at the
same time, the hydraulic resistance also increases significantly. Therefore, during the design
process, it is necessary to consider a detailed analysis for determining the best configuration,
material, and geometry of the porous media (i.e., ceramic foam, wire mesh, packed bed,
among others.), aiming to maximize the benefits of the porous morphology. In the same
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direction, it is necessary to have a figure of merit able to consider the trade-off of the
disadvantages and benefits in the same analysis. With this goal, some authors have proposed
different approaches for assessing different materials, geometries, and designs in terms of heat
exchange capacity and/or hydraulic resistance (Ávila-Maŕın et al., 2019; Bai, 2010; Hischier
et al., 2012; Wu et al., 2011a), showing promising results in terms of VSR technology. In
2012, Hischier et al. (Hischier et al., 2012) presented a complete analysis methodology, which
defined two parameters of thermal efficiency for the concentrating and absorbing systems,
respectively. Later, the authors evaluated them for several operating configurations. Their
results report thermal efficiencies of 90% and outlet air temperatures of 1273 K for the
configuration that minimizes thermal losses. From this result, it should be interesting
to extend the decision criteria and include the concept of energy quality, as stated by
the second law of thermodynamics, in the decision parameter the influence of the fluid
temperature. A second-law analysis offers the possibility, through the entropy generation
concept, to compute the irreversibilities, expressed as thermal losses and pressure drop, and
the quality of the energy dispatched in terms of the outlet temperature. In 2014, Kribus
et al. (Kribus et al., 2014) presented a complete review of the modeling methods and
available correlations for VSR systems, considering radiative, convective, and conductive
heat transfer, and pressure drop across the absorber. Nevertheless, despite the evidenced
progress, the assessments still present significant discrepancies regarding the behavior of
porous systems and the heat transfer capacity of porous systems. In their analysis, the
authors concluded that some convective heat transfer results do not match or overestimate
the heat transfer capacity of porous foams, hindering the design process and comparison
with other technological proposals. Finally, the authors state that an additional effort is still
required in the specification of material and design approaches for building structures that
reach reliable high operating temperatures and conversion efficiencies. Therefore, developing
a figure of merit, coupled with a detailed methodology for assessing the design of VSR
systems would be significantly useful. The present study aims to describe the potential
use of local entropy generation (LEG) as a metric to evaluate the performance of porous
media systems, integrating thermodynamic costs in one single parameter and the loss of
useful energy potential (Bejan, 1995). Through the use of entropy generation as a metric
it is possible to assess the irreversibilities generated by the transport phenomena (mass,
momentum, and energy) and, at the same time, to distinguish the best design option in
terms of the quality of energy (Sarmiento-Laurel et al., 2019). Thus, the proposed analysis
of entropy generation offers additional information on the internal conversion processes and
the rationale use of the energy resources (Bejan, 1995; Sarmiento-Laurel et al., 2019).

1.3 Entropy Generation in the Literature

The concept of entropy generation has been widely discussed in the last 40 years (Bejan,
1980; Sciacovelli et al., 2015), and it has recently received a special emphasis due to the need
for increasing the exchange and conversion efficiencies in energy systems (Sciacovelli et al.,
2015). However, despite the potential of entropy generation as a development parameter
on design and optimization (Han et al., 2021; Liu et al., 2021; Song and Liu, 2018), most
of the entropy generation analyses have focused on large or medium-scale systems (such as
power plants or their components) (see Figure 1.1). On the other hand, the differential-
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scale for Computational Fluid Dynamics (CFD) analyses is limited mainly to the first law
of thermodynamics, focusing on the energy losses such as pressure drop and thermal losses.
However, some authors have conducted interesting studies regarding entropy generation on

Figure 1.1: The two-dimensional structure of the field of entropy generation minimization
(Adapted from (Bejan, 2013)).

micro and nano scales applied to heat transfer in porous media (Betchen and Straatman,
2008; Mahian et al., 2013; Torabi et al., 2019).

In 2008, Betchen and Straatman (2008) developed an entropy generation function for
nonthermal equilibrium (NTE) heat transfer in high-conductivity foams using a volume-
average scope in transport equations (Quintard and Whitaker, 1994). The proposed model
offers an appropriate theoretical expression for the viscous dissipation entropy generation
through high conductivity foams in several realistic applications, opening pathways for novel
conceptual proposals. Although the analysis of Betchen and Straatman proposes a theoretical
expression for LEG in a porous foam, the results reported are restricted to laminar regimes.
In addition to that, and despite their considerations, the final entropy model does not include
a practical expression to determine the LEG by turbulent dissipation in terms of available
turbulence models (k-ε, k-ω SST, etc.) (Wilcox, 2006). Usually, viscous dissipation effects
are neglected since they do not significantly affect the entropy generation in comparison to
the heat transfer. However, turbulence has indeed an impact on the mixing and advection
of heat during the exchange process.

Mahian et al. (2013) reviewed the state of the art in entropy analysis for nanofluid
applications, reporting several contributions in the literature regarding differential-scale entropy
analysis. The authors stated the importance of suitable relations to calculate the thermophysical
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properties because, in some cases, different thermophysical models could produce opposite
predictions for the entropy generation. In 2010, Feng and Kleinstreuer (2010) presented a
heat transfer analysis on parallel disc systems, using nano-fluids under laminar flow regimes.
The analysis considers the entropy generation as a figure of merit, showing a comparison
between the entropy generation due to viscous effects and the heat transfer, recognizing the
design configurations where the viscous dissipation is negligible against the entropy variation
due to heat transfer. In the same way, in 2011, Moghaddami et al. (2011) presented a second
law analysis on nano fluid flows through a circular pipe under laminar and turbulent regimes,
varying the volume fraction of particles. The authors distinguished the dominant entropy
generation mechanisms and defined the optimal design in each flow configuration.

Later in 2014, from their previous research work on LEG in porous foams (Betchen and
Straatman, 2008), Betchen and Straatman (2014) conducted a pore-scale CFD analysis of
high-conductivity foam heat exchangers. The analysis defines some recommendable pore
geometries to maximize the heat exchange capacity by minimizing the entropy generation.
Furthermore, in 2015, based on Betchen and Straatman’s entropy generation model (Betchen
and Straatman, 2008), Ting et al. (2015) presented a numerical analysis of nanofluid flow
through porous media, focused on studying the relevance of viscous dissipation in modeling
entropy generation. The authors concluded that neglecting the viscous dissipation effects in
the analysis overestimates in 10% the fluid friction irreversibilities and significantly underestimates
the heat transfer irreversibilities, concluding that it is relevant to consider this effect to ensure
the accuracy of the results. Recently, in 2019, Torabi et al. (2019) presented a numerical
analysis of entropy generation in porous media at the pore scale. From the results, the
authors show the impact on the heat exchange capacity of the porous media in terms of
the diameter and shape of the pores under high Reynolds configurations. A RANS model
was implemented, based on the proposals of Kock and Herwig (2004, 2005) to determine
the viscous entropy generation in terms of the outlet parameters of viscous dissipation and
turbulent kinetic energy (TKE) of k-ε and k-ω turbulence models (Wilcox, 2006).

In 2005, Kock and Herwig (2005) presented a numerical model to link turbulence models
such as k-ε and k-ω (Wilcox, 2006) to the theoretical expression of entropy generation defined
by Bejan (2013).

From the above, an analysis using the LEG offers advantages on the optimization and
CFD design task, in comparison to the commonly used pressure drop and heat transfer
performance analysis. In that regard, an entropy generation analysis is an excellent assessing
tool able to consider the trade-off between the benefit of the high heat-exchanging area of
porous heat exchange systems, and the thermodynamic costs of pressure drop produced by
the presence of the solid matrix. Nevertheless, despite the extensive study in the literature on
second law analysis, it is necessary a LEG model able to determine the entropy generation and
its generation mechanisms in fluid flows through a porous matrix, from low to high Reynolds
regimes. In that sense, encouraged by the wide field of applications of porous media (CSP
VSR, TES, and hydrogen generation systems), and the advantages of the LEG as a figure
of merit stated in the literature, the present work describes an assessment methodology for
the design and optimization of heat exchange porous media systems. The proposed model
allows for determining the LEG for different entropy generation mechanisms (heat exchange
and viscous dissipation) from high to low Reynolds regimes. The methodology determines
the LEG as a post-process result from the solutions of continuity, momentum, and energy
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equations, without the need of solving an additional transport entropy equation per se.

Although some authors have analyzed the generation of entropy in porous heat exchange
devices (Betchen and Straatman, 2014; Torabi et al., 2017, 2019), the analyzes were performed
on a specific geometry of spherical or oval pores at pore-scale limiting the impact of the results
under one or two types of porous geometry. Currently, several porous geometries have been
proposed in the literature, such as ceramic and metal foams (Capuano et al., 2016; Pabst
et al., 2017; Wu et al., 2011a, 2010), packed wire mesh (Avila-Marin et al., 2018, 2019), packed
bed of rock or solid spheres (Spelling et al., 2012), and mineral wool (Fend et al., 2004a),
among others. Therefore, the proposed model is designed at a macroscopic scale based on the
volume averaging method (Quintard and Whitaker, 1994), with the objective of simplifying
the numerical task and opening the analysis to any available geometry. Furthermore, based
on the proposal of Kock and Herwig (2004), the generation of turbulent viscous dissipation
entropy was determined by the available RANS turbulence models, by adapting the local
entropy model to the available turbulence model developed for porous media by Nakayama
and Kawahara (1999), Pedras and de Lemos (2001), and Teruel and Rizwan-uddin (2009b,a).
Finally, the heat exchange of a Newtonian fluid through a porous medium is numerically
analyzed to identify the scope of the local entropy model.

Summarizing the information presented in the literature review, Tab 1.1: shows the most
relevant articles in the state of the art. This is a selection of articles that helped to direct
the development of the methodology proposed in this investigation.

Table 1.1: Relevant articles for the investigation

Contribution to this research Reference
Main guidelines on the theoretical development of entropy
generation at differential scale.

Bejan (2013)

Volume averaging methodology on transport equations in
porous media.

Quintard and Whitaker (1994)

Theory on the transport phenomena in porous media under
turbulent regimes. Development of a k-epsilon-based
turbulence model adapted to porous media, through volume
averaging method over Reynolds (RANS) time-averaged
equations.

Pedras and de Lemos (2001)
de Lemos (2012)

Develop an expression for the entropy generation rate from
k and epsilon CFD results under turbulent regimes in
internal flows.

Kock and Herwig (2004, 2005)

Theoretical and dimensionless analysis of entropy generation
in porous media.

Betchen and Straatman (2008)
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1.4 Hypothesis and objectives

1.4.1 Hypothesis

It is possible to establish a physical-mathematical model to study the LEG rate and entropy
transport in porous media. The distribution of the LEG rate can be studied through different
generation mechanisms under turbulent and laminar regimes.

To demonstrate the principal hypothesis, the following specific hypotheses are considered.

• The LEG mechanisms in porous media of viscous dissipation and heat transfer can be
described in terms of the turbulent kinetic energy (TKE) k and the TKE dissipation rate
ε from a macroscopic scaled k− ε turbulence model, and the macroscopic interaction
parameters about volumetric heat transfer and drag surface forces between the solid
matrix and the fluid.

• The LEG rate of thermal conduction and viscous dissipation, related to time fluctuations
of temperature and velocity in a porous medium, can be determined by macroscopic
turbulent effects modeled in the macroscopic scaled k− ε turbulence model.

1.4.2 General Objective

Apply a novel methodology for the study of the local entropy generation and its spatial
distribution in porous media, distinguishing its different generation mechanisms from high
to low Reynolds regimes.

1.4.3 Specific Objectives

• Develop a physical-mathematical expression for macroscopic entropy transport in porous
media by the spatial-time averaging method.

• Define an empirical relationship to determine the LEG rate in porous media from the
vectorial and scalar results of temperature, velocity, TKE, and ε.

• Develop a CFD solver to model the LEG rate for porous media in OpenFoam.

• Study the spatial distribution and numerical significance of the LEG rate separated by
generation mechanisms.

1.5 Overview of contributions

The main contributions of this work are as follows.
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• Develop a macroscopic expression of LEG for porous media under laminar and turbulent
flow regimes, considering nonthermal equilibrium.

• Define a methodology to determine the LEG mechanisms from the CFD scalar and
vectorial results (temperature, velocity, TKE, and ε).

• Analyze the LEG distribution and compare its different generation mechanisms through
a numerical experiment applied to a porous channel, considering different porosities,
temperature differences, and Reynolds regimes.

The content presented in this doctoral research conforms to the results presented in
a conference article (Sarmiento-Laurel et al., 2019), and a journal article in “Engineering
Applications of Computational Fluid Mechanics” (Sarmiento-Laurel et al., 2022), and the
development of a computational CFD simulation tool for OpenFOAM V9 (2021) for analyzing
local entropy generation in a porous medium.

The first article (Sarmiento-Laurel et al., 2019) shows an energy-based analysis on a
porous VSR and the influence of the porous geometry and the solid material on the device
performance. Likewise, the usual way to evaluate the performance of a porous heat exchanger
is discussed, concluding that it is insufficient to employ an analysis based on the heat transfer
rate and the pressure drop separately, as it is usual in the literature. Despite the fact that
these parameters of interest are relevant to performance, it is difficult to account for their
impact on a single objective function, furthermore, there is no clarity about the quality of
the energy exchanged and the degradation of its energy potential.

Unlike an energy-based analysis, a second law analysis can make a distinction about the
quality of the energy exchanged by the device from the temperature associated with each
heat flow in a porous medium. From this reflection on a VSR as a porous heat exchanger, the
second part of the doctoral research was directed on the study of the transport equations and
simulation methodologies in porous media, to develop an expression for the transport and
generation rate of entropy at a local scale and the additional effects related to the presence
of a porous matrix.

Thus, the depth analysis of the LEG in porous media constitutes the results presented
in the journal ”Engineering Applications of Computational Fluid Mechanics” (Sarmiento-
Laurel et al., 2022). Through the model developed, the analysis of entropy transport and
LEG, it is possible to account for the additional irreversibilities associated with the presence
of the porous medium (volumetric heat transfer and hydraulic resistance) in a single equation.
Likewise, the impact of weight that each LEG mechanism has on the generation of entropy
on a global scale is evaluated.

Chapter 2 shows a review of the governing equations of transport phenomena in porous
media and a volume-averaging methodology to analyze them. Chapter 3 shows a preliminary
1D energy analysis of a porous heat exchanger, Chapter 4 presents a physical-mathematical
development of an expression for the local entropy transport and entropy generation rate
in porous media. In addition, Chapter 4 shows a methodology for determining the LEG
rate for turbulence regimes. Chapter 5 presents a study case for the proposed entropy model
implemented in a CFD solver on OpenFOAM (OpenFOAM V9, 2021).Finally, the conclusions
are presented in Chapter 6.
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Chapter 2

Transport phenomena in porous media

In order to study the transport phenomena in a porous medium, Chapter 2 presents the
conservation equations and the methodology reported in the literature to model the spatial
dispersion of the thermophysical properties. Finally, the expression of energy transport is
determined at the macroscopic scale.

Two strategies are defined to study the transport phenomena in porous structures, which
depend on the characteristic scale of the problem (Kaviany, 1999). The first, the pore-scale
scope, consists in studying the interactions between the fluid and solid phase as a large matrix
of channels (see Figure 2.1). The pore-scale analysis offers a complete and detailed view of
the differential scale of the specific solid-fluid interactions of mass, momentum, and energy
over the pore surface. Nevertheless, the high computational cost restricts the applicability
of the analysis for larger components or devices.

Figure 2.1: Temperature field of a porous media at the pore-scale. Reprinted from (Du et al.,
2017), Copyright (2023), with permission from the Journal Energy, Elsevier.

Figure 2.1 shows an example of pore-scale analysis, where the solid matrix is studied in
detail, considering every micro channel inside the porous matrix. There, a solid matrix was
obtained using X-ray computed tomography of a real porous media. Then the structure is
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processed to reduce the number of 3D faces. Finally, the space between the pores is processed
for mesh generation.

On the other hand, the second strategy proposes modeling the solid matrix effects as
macroscopic field effects over a fluid flow, such as hydraulic resistance and volumetric heat
transfer. The macro-scale analysis considers a minimum characteristic length small enough to
consider a discrete number of pores and its drag effect as a volumetric phenomenon, assuming
the discrete number of pores as a continuum. Thus, as shown in Figure 2.2, the results are
presented for solid and fluid phases as two continuous medias where it is not possible to
distinguish the pores or solid-fluid boundaries. The presence effects of the solid matrix are
simulated as field phenomena in the fluid phase. Figure 2.2 shows the temperature field for
solid and fluid phases in a volumetric receiver of concentrated solar energy. Concentrated
radiation enters from the left side and passes through the solid medium until it is extinguished
as it moves to the right. At the same time, a stream of ambient air enters from the left,
increasing its temperature upstream.

Figure 2.2: Temperature field of a porous media considering a macro-scale analysis. Reprinted
from (Chen et al., 2017), Copyright (2023), with permission from International Journal
Energy Conversion and Management, Elsevier.

2.1 Volume Averaging Method

In a similar form to the time-average proposed by Reynolds in 1895 (Reynolds, 1895), the
macroscopic analysis considers a Representative Elementary Volume (REV) as the minimum
volume of the analysis presented by Slattery (1967) and Whitaker (1969, 1998). Figure 2.3
shows the spatial dispersion of the property ϕ in a REV. The property ϕ is separated in a
volume-average of ϕ in the REV and fluctuations from the average, as follows.

〈ϕ〉V =
1

∆V

ˆ
∆V

ϕdV (2.1)

ϕ̄ =
1

∆t

ˆ
∆t

ϕdτ (2.2)
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Figure 2.3: Variation of a property in a Representative Elementary Volume (REV). Reprinted
from (de Lemos, 2012), Copyright (2023), with permission from International Journal of Heat
and Mass Transfer, Elsevier.

where ϕ is an auxiliary property, 〈ϕ〉V is the average value of ϕ at any point inside of a
representative elementary volume of size ∆V and analogously, ϕ̄ is the average value in a
time interval of ∆t. Then the value of 〈ϕf〉V is related to the intrinsic average for the fluid
phase 〈ϕf〉i as follows.

〈ϕf〉v = φ〈ϕf〉i (2.3)

where φ is the porosity, considering a mean local value of porosity. Nevertheless, in a more
accurate analysis is possible include the spatial dispersion of the porosity.

Then, the volume decomposition of ϕ (Hsu and Cheng, 1990; Quintard and Whitaker,
1994; de Lemos, 2012) is expressed as follows:

ϕ = 〈ϕ〉i + iϕ (2.4)

where iϕ is the spatial deviation of ϕ.

In addition, for deriving operators (Howes and Whitaker, 1985; de Lemos, 2012) presents
the following relationship to consider the flow of a property between phases, as heat or surface
forces. 〈

∂

∂xi
(ϕ)

〉V
=

∂

∂xi

(
φ〈ϕ〉i

)
+

1

∆V

ˆ
Ai

nϕdsi (2.5)

〈
∂ϕk
∂xk

〉V
=

∂

∂xk

(
φ〈ϕk〉i

)
+

1

∆V

ˆ
Ai

n · ϕdsi (2.6)
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where n is the unitary normal vector, and ui the velocity phase to the interfacial area Ai
between the fluid and the solid phases.

2.1.1 Time-average and spatial-average

To take into account the turbulent effects in porous media de Lemos proposes a double
decomposition in space and time as follows (de Lemos, 2012).

ϕ = 〈ϕ + ϕ′〉i + i(ϕ + ϕ′) (2.7)

then,
ϕ = 〈ϕ 〉i + 〈ϕ′〉i + iϕ + iϕ′ (2.8)

where 〈ϕ 〉i is the time and volume-averaged ϕ, 〈ϕ′〉i is the volume average of the time
fluctuation of ϕ, iϕ is the volume deviation of the time average of ϕ, and iϕ′ is the volume
deviation of the time fluctuation of ϕ.

Finally, as it was established by Pedras and de Lemos (2001), both averaging operators
(time and spatial) are independent among them (Commutative property). Therefore, the
order of application of these does not modify the resulting equation or property, as follows.

Thus,

〈ϕ〉V (x, t) =
1

∆t

ˆ
∆t

(
1

∆V

ˆ
∆V

ϕdV

)
dτ

=
1

∆V

ˆ
∆V

(
1

∆t

ˆ
∆t

ϕdτ

)
dV = 〈ϕ̄〉V (x, t) (2.9)

Through Eq.(2.8) and (2.9), the spatial and temporal fluctuations of advected a property
in a porous medium can be separated and analyzed independently. This method is applied
later in Chapter 3 for the entropy transport equation, to define an expression linking the
local-scale entropy generation with the effect of spatial deviations and time fluctuation.

2.2 Transport equations for mass, momentum, and energy

In order to analyze the entropy transport in porous media, first it is necessary conduct
a detailed study of the conservation equations of mass, momentum, and energy. In the
following sections, the transport equations are developed from their general expression.
Then, the volume-averaging method is applied step by step to conclude in the analysis
of entropy transport and, in consequence, finish in an expression for the volume-averaged
entropy transport equation.
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2.2.1 Continuity and Momentum equations

The momentum and mass conservation equations below, are a result of applying the volume-
averaging method to an isotropic porous medium. There, the properties are presented
through the volume-average 〈ϕf〉i described in equation Eq.(2.3). The momentum conservation
equation considers two additional terms to model the hydraulic resistance that the solid
matrix exerts on the fluid. In these two terms (Eq.(2.11)), are accounted the interaction and
exchange of momentum between the solid and fluid phases through the shear and pressure
stresses (associated with the drag forces).

Taking the conservation equations of mass and momentum using the constitutive equation
for Newtonian fluids (de Lemos, 2012; Kaviany, 1999), and applying the volume average, the
macroscopic conservation equations are defined as follows:

∂ρf
∂t

+ ρf
∂

∂xk

(
φ 〈uk〉i

)
= 0 (2.10)

∂
(
ρfφ〈uj〉i

)
∂t

+ ρf
∂

∂xk

(
φ〈ujuk〉i

)
=

∂

∂xi

(
−φ〈P 〉iδij + φµ

(
∂〈ui〉i

∂xj
+
∂〈uj〉i

∂xi

)

− 2

3
φµ

(
δij
∂〈uk〉i

∂xk

))

+
µ

∆V

ˆ
Ai

((
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

(
δij
∂uk
∂xk

))
· ndsi︸ ︷︷ ︸

Darcy HR

− 1

∆V

ˆ
Ai

Pndsi︸ ︷︷ ︸
Forchheimer HR

(2.11)

where ρf is the fluid density, u the velocity, φ the porosity, P the time-averaged fluid pressure
and µ the fluid viscosity.

The last two terms of the right-hand side in Eq.(2.11) derive from the Eq.(2.5) and Eq.(2.6)
applied to both surface force terms, pressure, and viscous shear stress. They represent the
interaction between the fluid with the solid matrix as a drag force. They are commonly
defined as the Darcy-Forchheimer’s hydrodynamic resistance terms (Pedras and de Lemos,
2001), and are expressed as R as follows:

R =
µ

∆V

ˆ
Ai

((
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

(
δij
∂uk
∂xk

))
· ndsi︸ ︷︷ ︸

Darcy HR

− 1

∆V

ˆ
Ai

Pndsi︸ ︷︷ ︸
Forchheimer HR

= φ

(
µf
k1

uD +
ρf
k2

|uD|uD
)

(2.12)
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The last two terms in Eq.(2.12) are determined experimentally, considering the darcian
velocity vector uD = φ〈uj〉i, where k1 (m−1) and k2 (m−2) are correlation constants.

2.2.2 Energy equation

The first step to analyze the entropy generation is to study the complete expression of the
energy transport equation in a control volume at the differential scale. Therefore, this section
shows the mathematical development for an energy transport equation in porous media, and
the additional terms that arise from the interaction of the solid and liquid phases (Currie,
2016; Cohen and Kundu, 2004).

Below is the energy transport considering the total energy per unit mass (kinetic plus
internal), the heat rate, and the total work done by the surface forces ∂

∂xi
(ujσij).

∂

∂t

(
ρfe+

1

2
ρfujuj

)
+

∂

∂xk

((
ρfe+

1

2
ρfujuj

)
uk

)
=

∂

∂xi
(ujσij) + ujρffj −

∂qj
∂xj

(2.13)

where e is the fluid internal energy per unit of mass, σij the surface forces tensor, fj the mass
forces vector and, qj net the heat flux.

Expanding and regrouping the left-hand side terms in Eq. (2.13) (see the complete
mathematical development in Annex (A.1), it holds,

ρf

[(
∂

∂t
(e) +

∂

∂xk
(e)uk

)
+

(
uj
∂

∂t
(uj) +

∂

∂xk
(uj)ujuk

)]
= uj

∂

∂xi
(σij) + σij

∂

∂xi
(uj) + ujρffj −

∂qj
∂xj

(2.14)

Therefore, by applying space-averaging 〈〉v in Eq.(2.14), the following expression holds,

ρf

[(
∂

∂t

(
φ〈e〉i

)
+ φ

〈
∂

∂xk
(e)uk

〉i)

+ φ

〈(
uj
∂

∂t
(uj) +

∂

∂xk
(uj)ujuk

)〉i]

=

〈
uj

∂

∂xi
(σij)

〉V
+ φ

〈
σij

∂

∂xi
(uj)

〉i
+ φ〈ujρffj〉i

−
[
∂ (〈qj〉v)
∂xj

+
∂

∂xj

(
1

∆V

ˆ
Ai

nλfTfdsi

)
+

1

∆V

ˆ
Ai

n · λf
∂Tf
∂xj

dsi

]
(2.15)

where λf is fluid conductivity and Tf is fluid temperature. In addition, the last two terms
on the right-side represent the local conduction between the solid and fluid phases, and the
convective heat transfer between the solid and fluid, respectively.
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Once the general expression for energy transport has been developed (Eq. (2.14)), the
volume average method is applied to find out all the effects associated with the fluid-solid
interaction in energy transport. After applying the spatial averages the exchange of energy
and stresses between the solid and the fluid must be accounted for. Thus, from the first and
fourth terms to the right of equation Eq. (2.14),emerge the terms associated with hydraulic
resistance and volumetric heat exchange, respectively. Consequently, the items below present
the mathematical development of the terms representing the trade between the solid and the
fluid.

First, the term
〈

∂
∂xi

(σij)
〉V

is analyzed to develop the hydraulic resistance terms in detail.

Expanding the first term of the right-hand side in Eq.(2.15), and applying the space-averaging
〈〉v. 〈

uj
∂

∂xi
(σij)

〉V
= φ〈uj〉i

〈
∂

∂xi
(σij)

〉V
+ φ

〈
iuj

i(
∂

∂xi
(σij)

)〉i

(2.16)

Also, expanding the gradient of the surface forces tensor
〈

∂
∂xi

(σij)
〉V

, as follows:〈
∂

∂xi
(σij)

〉V
=

∂

∂xi

(
φ

〈(
−Pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ

(
δij
∂uk
∂xk

))〉i)

+
µ

∆V

ˆ
Ai

((
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

(
δij
∂uk
∂xk

))
· ndsi︸ ︷︷ ︸

Darcy HR

− 1

∆V

ˆ
Ai

Pndsi︸ ︷︷ ︸
Forchheimer HR

(2.17)

Then, the last two terms of the right-hand side in Eq.(2.17) are the Darcy-Forchheimer’s
hydrodynamic resistance terms. Darcy’s term represents the shear stresses associated with
the drag generated by the solid on the fluid in motion. On the other hand, the Forchheimer
term represents the efforts associated with the forces perpendicular to the solid. Both terms
multiplied by the fluid velocity 〈uj〉i, represent the loss of energy associated with the hydraulic
resistance or, in other words, the useless work that the flow does against the porous matrix,
generating irreversibilities. These two terms have great relevance in the LEG rate. So, they
are written as follows:〈

∂

∂xi
(σij)

〉V
=

∂

∂xi

(
−φ 〈P 〉i δij + φµ

(
∂〈ui〉i

∂xj
+
∂〈uj〉i

∂xi

)

− 2

3
φµ

(
δij
∂〈uk〉i

∂xk

))
+R (2.18)
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To obtain the complete expression of the surface forces tensor
〈
uj

∂
∂xi

(σij)
〉V

, the Eq.(2.18)

is included in Eq.(2.16), as follows:〈
uj

∂

∂xi
(σij)

〉V
= φ〈uj〉i

∂

∂xi

(
−φ〈P 〉iδij + φµ

(
∂〈ui〉i

∂xj
+
∂〈uj〉i

∂xi

)

− 2

3
φµ

(
δij
∂〈uk〉i

∂xk

))

+ φ〈uj〉iR + φ

〈(
i(uj)

i(
∂

∂xi
(σij)

))〉i

= φ〈uj〉i
∂

∂xi

(
φ〈σij〉i

)
+ φ〈uj〉iR

+ φ

〈(
i(uj)

i(
∂

∂xi
(σij)

))〉i

(2.19)

Thus, introducing the extended surface forces tensor Eq.(2.19) into the energy transport
Eq.(2.15),

ρf

[(
∂

∂t

(
φ〈e〉i

)
+ φ

〈
∂

∂xk
(e)uk

〉i)

+ φ

〈(
uj
∂

∂t
(uj) +

∂

∂xk
(uj)ujuk

)〉i]
= φ〈uj〉i

∂

∂xi

(
φ〈σij〉i

)
+ φ〈uj〉iR + φ

〈(
i(uj)

i(
∂

∂xi
(σij)

))〉i

+ φ

〈
σij

∂

∂xi
(uj)

〉i
+ φ〈ujρffj〉i

−
[
∂ (〈qj〉v)
∂xj

+
∂

∂xj

(
1

∆V

ˆ
Ai

nλfTf dsi

)
+

1

∆V

ˆ
Ai

n · λf
∂Tf
∂xj

dsi

]
(2.20)

Eq.(2.20) shows a general version of the energy transport in porous medium considering
a macroscopic approach. There, the terms of energy exchange between both phases are
presented, which represent the volumetric interaction of stresses and heat transfer between
both phases. Additionally, it is possible to observe that the third and fourth terms on the
left-hand side are canceled by the first and third terms on the right-hand side, since these
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terms collectively amount to the product of uj with the momentum equation (see annex
(A.2)).

ρf

[(
∂

∂t

(
φ〈e〉i

)
+ φ

〈
∂

∂xk
(e)uk

〉i)]

= φ

〈
σij

∂

∂xi
(uj)

〉i
+ φ〈uj〉iR

−
[
∂ (〈qj〉v)
∂xj

+
∂

∂xj

(
1

∆V

ˆ
Ai

nλfTfdsi

)
+

1

∆V

ˆ
Ai

n ·
(
λf
∂Tf
∂xj

)
dsi

]
(2.21)

The fourth and fifth terms on the right side correspond to the local conduction and
volumetric heat transfer between the solid and fluid phases, respectively. In the literature,
both heat transfer mechanisms are determined by computational simulations at the pore-
scale, and in some cases experimentally (Kuwahara et al., 1996). The local conduction
between each phase is determined as follows (de Lemos, 2012):

qsf,j =
1

∆V

ˆ
Ai

nλfTfdsi = −λfs
∂〈Tf〉i

∂xj
(2.22)

where λfs is the local thermal conductivity tensor, usually determined by computational
simulation at the pore-scale. For simplicity, the local conduction term is considered inside
the heat transfer term 〈qj〉v in the effective conductivity tensor, given by:

λeff,f = φλfδij + λfs (2.23)

On the other hand, the volumetric convective heat transfer is determined as a function of
the temperature difference of each phase (Kaviany, 1999; Saito and de Lemos, 2005; de Lemos,
2012) as follows.

1

∆V

ˆ
Ai

n ·
(
λf
∂Tf
∂xj

)
dsi = hiai

(
〈Tf〉i − 〈Ts〉i

)
(2.24)

where hi is the interfacial convective heat transfer and ai the surface area per unit of volume.

Usually, the volumetric convection heat transfer coefficient and the local thermal conductivity
tensor are determined experimentally and depend on the geometrical distribution of the solid
matrix (such as packed rock bed, ceramic foam, wire mesh, etc.).

Now, for simplicity, Eq.(2.21) is written as follows:

ρf

[(
∂

∂t

(
φ〈e〉i

)
+

〈
∂

∂xk
(e)uk

〉i)]

= φ

〈
σij

∂

∂xi
(uj)

〉i
+ φ〈uj〉iR

− ∂

∂xj
(〈qj〉v) + hiai

(
〈Ts〉i − 〈Tf〉i

)
(2.25)
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Expanding the first term on the right-side of deformation work in Eq.(2.25), it is possible
to determine the viscous dissipation term Φ (Currie, 2016), as follows:

φ

〈
σij

∂

∂xi
(uj)

〉i
= φ

〈
−Pδij

∂uj
∂xi

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

)
∂uj
∂xi

− 2

3
φµ

(
δij
∂uk
∂xk

)
∂uj
∂xi

〉i
(2.26)

φ
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∂xi
(uj)
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〈
−P ∂uk

∂xk
+
µ

2
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∂ui
∂xj

+
∂uj
∂xi

)2
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3
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(
∂uk
∂xk
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(2.27)

φ

〈
σij

∂

∂xi
(uj)

〉i
= φ

〈
−P ∂uk

∂xk
+ Φ

〉i
(2.28)

Thus, replacing the Eq.(2.28) in Eq.(2.25), the following expression holds,

ρf

D
(
φ〈e〉i

)
Dt


= −φ

〈
P
∂uk
∂xk

〉i
+ φ〈Φ〉i + φ〈uj〉iR−

∂

∂xj
(〈qj〉v)

+ hiai

(
〈Ts〉i − 〈Tf〉i

)
(2.29)

Finally, considering the continuity equation to replace the term ∂uk
∂xk

= 1
ρf

D(ρf )

Dt
in Eq.(2.29)

(Currie, 2016; Cantwell, 2022) the energy expression is described as follows:

ρf

D
(
φ〈e〉i

)
Dt


= φ

〈
P

1

ρf

D(ρf )

Dt

〉i
+ φ〈Φ〉i + φ〈uj〉iR−

∂

∂xj
(〈qj〉v)

+ hiai

(
〈Ts〉i − 〈Tf〉i

)
(2.30)

Commonly in the literature, the energy equation suffers some simplifications, principally
for simplicity against the modeling of complex systems. Usually the second and third terms
on the right-side of Eq.(2.30) are neglected (Kribus et al., 2014). Nevertheless, for the correct
entropy analysis and modelling, this work considers the complete expression for the energy
transport in (2.30). Later in Chapter 4, the expression (2.30) is expanded and modified to
develop a detailed entropy transport equation.
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To recapitulate, Chapter 2 presents the development in detail of an extended expression
for energy transport in a porous medium. From this, it is possible to build an expression for
entropy transport. The results presented in this chapter are used in Chapter 4 to establish a
macroscopic-scale entropy transport equation. The volumetric terms of stresses exchange and
heat transfer determined in this chapter, are the starting point to recognize the additional
LEG mechanisms due to the presence of the solid matrix, and the interaction between both
phases.
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Chapter 3

1D Energy analysis of a porous heat
exchanger

As mentioned in Chapter 1, porous media have several applications for heat exchange and
storage. Thus, this chapter presents a study case as a preliminary analysis of the transport
phenomenon in porous media.

As a result of their large exchange area, porous media are good candidates for the design
of heat exchange devices. Nevertheless, due to the drag produced by the presence of the
porous matrix, it is necessary to analyse the design, geometry and porosity, to maximize
the exchange rate, and also, to minimize losses due to pressure drop. In that context, the
discussion in Chapter 3 examines the performance as heat exchange medium for two different
porous media applied in a volumetric receiver for CSP.

The behaviour of two different porous media are compared applied in a volumetric receiver
for concentrating solar power. The analysis proposes a figure of merit based in energy losses to
compare with two configurations for the receiver design. One considers a square microchannel
honeycomb structure as porous media, and the second considers a ceramic foam as heat
exchange media.

3.1 Motivation

After the initial development in the 80’s, the CSP industry has experienced considerable
growth since 2007 (Kribus et al., 1996; Ávila-Maŕın, 2011). In this period, new technologies
have reached commercial maturity and new concepts have emerged. Among the CSP technologies,
central receiver systems (CRS) have received larger attention during the last years, since
the higher operating temperatures allow reaching higher thermal-to-electricity conversion
efficiencies. In this context, two main operating schemes have emerged for this technology:
Direct Steam Generation and Molten Nitrate Salts receivers, which are denominated as
the first and second generation, respectively. Aiming to further improve the conversion
efficiencies, several authors proposed the use of compressible gases (CO2 or air) as working
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fluid, due to its thermal stability up to 1200◦C. The use of such working fluids requires the
implementation of volumetric absorbers. Among the compressible gases, air offers additional
advantages by the lower operating pressure and cost, when using atmospheric air in open
receiver systems. However, achieving temperatures higher than 1200◦C in volumetric absorbers
presents two scientific challenges. The first is related to the computational modelling of the
transport phenomena inside the porous media, coupling the viscous effects, compressibility,
the convective heat transfer, and the extinction-propagation of the concentrated radiation
in the solid media. The second challenge is related to the design process regarding the
configuration, distribution and material selection of the solid media, with the aim of dealing
with the challenging operating conditions. As a consequence, Chapter 3 presents a performance
analysis of an open volumetric absorber using atmospheric air as working fluid, comparing
honeycomb mini-channel (HC) and ceramic foam (CF) as solid exchange medium.

3.2 Volumetric solar receiver design

A volumetric receiver heats a compressible gas, such as air or supercritical CO2, taking
advantage of the large exchange area of a solid porous medium (packed rock bed, ceramic
foam, mini-channel honeycomb, etc.), as shown in Fig 2.3. Likewise, the porous media
receives concentrated solar energy from a heliostat field, which permeates upstream trough
the porous matrix in the direction of flow. Currently, air is the most studied working fluid
due to the simplicity in the implementation, because it is not necessary to deal with high
operating pressures of CO2. Thus, most of the tested systems use open receivers heating
atmospheric air (Ávila-Maŕın, 2011).

Several designs of porous media are proposed in the literature, which could be classified
by type of material or the geometric configuration that forms the porous matrix, as follows
in Table 3.1:

Structure Material Reference
Packed bed Rock (Esence et al., 2017; Calderón-Vásquez et al., 2021)

Foam
Metal
Ceramic Carbide

(Wu and Yu, 2007; Wu et al., 2011a)

Wire mesh
Metal
Ceramic Carbide

(Avila-Marin et al., 2018, 2019)

Packed wool
mesh

Mineral
Ceramic Carbide

(Fend et al., 2004a)

Mini-Channel
Metal
Ceramic Carbide

(Capuano et al., 2016; Pabst et al., 2017)

Table 3.1: Porous media classification

Although the literature offers a wide range of studied porous materials (Table 3.1), the
big problem is that there are not enough experimental data to compare satisfactorily the
different proposals, and also there are no parameters or figures of merit that allow comparing
and measuring the benefit regarded to variations in porous matrix geometry, design, and
material implemented in a technological application. Thus, the present work proposes to
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Figure 3.1: Diagram of volumetric absorber. Reprinted from (Fend et al., 2004b), Copyright
(2023), with permission from Journal Solar Energy Materials and Solar Cells, Elsevier.

study the local entropy transport in order to analyze the local entropy generation as a
performance figure, considering the different mechanisms of entropy generation and their
relation with the design, the porous matrix geometry, and flow characteristics. Despite several
configurations for volumetric receivers have been proposed in the literature (Ávila-Maŕın,
2011), the present analysis focusses on comparing two of the most studied configurations,
HC and CF. The HC structure presents simplicity for the manufacturing process and offers
a low pressure drop. On the other hand, the CF proposal offers outstanding heat exchange
capabilities, due to its larger exchange area, but increasing the pressure drop (Wu et al., 2010;
Chen et al., 2017; Kribus et al., 2014). Therefore, this relationship, between the benefits of
increasing the exchange area and the disadvantages of the pressure drop involved, encourages
the analysis presented herein. Thus, in order to establish a comparison framework between
both technological options, the methodology proposes a figure of merit able to assess and
compare the performance of CF and HC, including the heat exchange benefits and pressure
drop involved at the same time. The computational modelling of both technologies was
performed through an one-dimensional (1D) model under the same operating conditions for
each technology.

3.3 One dimensional analysis of a volumetric solar receiver

To understand the basic concepts about transport phenomena in porous media and the
framework commonly used for comparing the performance of some devices in the literature,
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a one-dimension analysis was implemented over two volumetric solar receiver systems. The
receivers are composed of CF and HC, respectively (see Fig 3.2). Both devices receive
concentrated solar radiation which penetrates the solid matrix and extinguishes its value
across the porous medium. On the one hand, the ceramic foam receiver offers more exchange
area between solid and fluid phases but implies a higher pressure drop in the process. On the
other hand, the mini-channel receiver has a lower exchange area with a lower pressure drop.
Thus, to have an idea about the performance of both devices were implemented one of the
most used figures of merit in the literature to compare heat exchange devices, the goodness
factor. This factor was proposed by Bergles et al. (1976) to study the performance of heat
exchange devices, comparing the heat transferred to the fluid with the power lost by the
pressure drop through the heat exchange device. Thus, considering the relation between the
pressure drop and the heat exchange capacity of each aforementioned device, it is proposed a
modified volumetric goodness factor as a comparison figure of merit. Thereby, this previous
analysis shows how volumetric receivers are studied until now, and what are the additional
advantages that an entropy generation analysis can offer for the decision task of defining the
best design or geometry for a volumetric solar receiver.

Figure 3.2: Distribution scheme for macroscopic analysis (Sarmiento-Laurel et al., 2019)

3.4 Model Assumptions

The 1D model for both structures was developed in MATLAB using the Runge Kutta
numerical integration method (RK4). The system of equations for each kind of absorber
considers a) Conservation of mass of the fluid domain, b) Conservation of momentum of
the flow, and c) Conservation of energy in the solid and fluid domain. In addition to
that, each energy conservation in the solid medium considers a source term for accounting
the propagation of the radiation in the solid (considering extinction and emission effects).
Likewise, some assumptions were considered to simplify the analysis, considering that the
model solves both systems (HC and CF) at the same time. Thus, the assumptions are as
follows:

• Conduction effects through the fluid are neglected in both models.

25



• Radiative absorption at the fluid phase is neglected in both systems.

• Both processes are in steady-state.

• Air is considered an ideal gas.

• Isotropic distribution of porosity.

• Momentum diffusion by viscous effects inside the fluid is neglected in both systems.

• Isolated system on the parallel walls to the flow direction.

• The flow is in Forchheimer regime, Rep < 150 (the Forchheimer term must be considered
in the hydrodynamic resistance effort on the momentum equation).

3.5 Theoretical model

Then from the equations stated in Chapter 2, the equation system for both devices is as
follows:

3.5.1 Continuity and momentum equations

∂

∂xk
(ρfU) = 0 (3.1)

∂

∂xk
(ρfUU) = − ∂

∂xi

(
〈P 〉iδij

)
− F (3.2)

where U is the fluid velocity, which changes to the fluid apparent Darcian velocity uD = φu
for the ceramic foam analysis. F is the hydrodynamic resistance in each medium as follows:

Ceramic Foam Hydrodynamic Resistance

FCF = R = φ(
µ

k1

uD +
ρf
k2

|uD|uD) (3.3)

where both k1 and k2, are correlation constants determined by Wu’s correlation for Ceramic
Foam (Wu and Yu, 2007). Thus, the right terms in Eq.(3.3) represent the normal and
tangential forces done by the solid matrix over the fluid mean flow, respectively.

Honeycomb Mini-channel Hydrodynamic Resistance

FHC = f
ρ

2l
u2 (3.4)

where l is the mini-channel axial length, f the friction factor concerning to a square channel
(Bejan, 1995).
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3.5.2 Fluid energy equation

ρf
∂

∂xk
(cp,fuD〈Tf〉i) = h(〈Ts〉i − 〈Tf〉i) (3.5)

where h is the convection heat transfer coefficient in each medium. For the CF this term
represents the volumetric convection heat transfer between the solid and fluid phases, considering
the presence of the solid as a macroscopic field effect over the flow (Hsu and Cheng, 1990).
This last coefficient was determined by the correlation proposed by Wu et al. (2011b). On
the other hand, the HC model considers the standard convection heat transfer in a square
channel, which represents the heat exchange per unit of area on the channel wall (Bejan,
2013).

3.5.3 Solid energy equation

∂

∂xj
(λs

∂

∂xj
(φ〈Tf〉i)) = h(〈Ts〉i − 〈Tf〉i) + Sr (3.6)

where Sr is the radiative heat source in the solid phase. This source term represents the
propagation of the radiation through the receiver, which is determined in different ways
according to both mediums. Thus, the source term of the HC considers the equation proposed
by Worth et al. (1996), which includes the emission and absorption effects of the radiation
entering the square mini-channel. On the other hand, to determine the radiative source in
the CF is necessary to solve the radiative transfer equation (RTE) in the solid (Eq. 3.10
Eq. 3.12). Thus, the P1 (see section 3.5.4) approximation model was implemented to solve
the RTE (Wu et al., 2011a; Andrienko and Surzhikov, 2012; Chen et al., 2017; Modest, 2013).

3.5.4 Radiative energy transport in porous media as a participating
media

To consider the transport of radiative energy through the solar receiver, where the radiative
energy is usually considered as a heat source only inside the solid matrix, the radiative effects
over the fluid phase were neglected. Thus, the RTE (Modest, 2013) performs an energy
balance between the radiative energy emitted and scattered by the media and the radiative
energy received by emission and scattering in the surrounding of the control volume (see
Fig 3.3). Also, the radiation in the porous media is split into collimated and diffuse radiation,
where the first is related to the radiation which penetrates the participating media without
losing its direction, and the second corresponds to the amount of radiation scattered and
emitted by the surroundings.

s̄ · ∇I(r, ŝ) = kIb(r)− βI(r, ŝ) +
σsη
4π

ˆ
4π

I(r, ŝ′)dΩ′ (3.7)

where I(r, ŝ) is the radiative intensity flux in the direction ŝ located on the position r, σsη
is the scattering coefficient, k is the absorption coefficient and ω is the solid angle. The
extinction coefficient β = k + σs.
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Figure 3.3: Attenuation of radiative intensity by absorption and scattering (Modest, 2013).

PN and P1 approximation methods

To model the transfer of radiative energy in a gray medium (which participates in the
absorption, emission and dispersion of radiative energy) it is necessary to have an expression
for the radiative intensity flux I(r, ŝ) in the RTE. Thus, in the literature there are several
proposals to shape the I(r, ŝ) (Eq. 3.7). The PN method is often recommended to model the
I(r, ŝ) in a medium with radiative characteristics without strong anisotropy. This method
consists in defining an expression for I(r, ŝ) from a number N of Fourier terms (Modest,
2013), as follows:

I(r, ŝ) =
∞∑
l=0

l∑
m=−l

Iml (r)Y m
l (ŝ) (3.8)

where Iml (r) are a position-dependent coefficients, r is the position vector in spherical coordinates,
and Y m

l (ŝ) are spherical harmonic terms.

Due to its complexity, it is common for the PN method to be used up to the third order.
Thus, the P1 approximation is a simple case of the PN method taking the first order of the
Fourier series. Then the expression for I(r, ŝ) is the following:

I(r, ŝ) =
1

4π
(G(r) + 3qr(r) · ŝ) (3.9)

where qr is the radiative heat transfer rate and G is the total irradiation.

From the Eq. 3.9 it is possible to determine the equation for RTE (Eq. 3.7) (Andrienko
and Surzhikov, 2012; Modest, 2013; Kribus et al., 2014), as follows:
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∂

∂xi

(
1

3(k + σs)
(
∂

∂xj
Gs)

)
= k(4σ〈Ts〉i

4
+Gs) + σsGc (3.10)

where σ is the Stefan–Boltzmann constant, the total irradiation G = Gc + Gs composed by
the diffuse integrated intensity Gs and the collimated irradiation in the flow direction Gc(x),
as follows:

Gc = I0e
−βx (3.11)

Considering as following expressions the radiative heat source in solid phase:

Sr = ∇ · qr = −k(G− 4σ〈Ts〉i
4
) (3.12)

The aforementioned optical properties are computed considering the optical approximations
for porous media proposed by Vafai (2015).

3.6 Boundary conditions

The equations of mass, momentum, and energy transport for a volumetric receiver (Eq. 3.1
to Eq. 3.5), consider the following boundary conditions:

• The inlet velocity is uc = 1 (ms−1), which is considered as the apparent uD velocity
for the ceramic foam and, on the other hand, the comparison velocity is divided by the
porosity and used as the pore real velocity (pore velocity in porous media analysis).

• The pore diameter in the ceramic is equal to the mini-channel in the honeycomb.

• The axial area of the receiver is a square with high length l = 0.05 (m).

• The incident radiation is fixed at I0 = 600 (kWm−2).

Continuity and Momentum transport equation

• u|x=0 = 1 (ms−1)
(3.13)

• P |x=0 = 101.314 (kPa)

Energy transport equation for fluid-phase:

• Tf |x=0 = 298.15 K
(3.14)

Energy transport equation for solid-phase:
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• Ts|x=0 = Ts,shoot

• qs|x=0 = −k(σ(T 4
s,shoot − T 4

∞) + I0)
(3.15)

• qs|x=L = 0 (kWm−2)

In addition, to solve the RTE equation on the ceramic foam receiver was considered the
Marshak’s boundary conditions (Krittacom and Kamiuto, 2009), as follows:

• G|x=0 = I0

(3.16)

• 1
3(k+σs)

( ∂
∂xj
Gs)|x=0 = 2σT 4

∞ −
G|x=0

2

3.7 Mesh Convergence Analysis

The one-dimensional analysis was implemented through the fourth-order Runge-Kutta method.
To define the necessary number of elements, the convergence of the total rate of heat with
respect to the number of elements was analyzed. Fig 3.4 shows the variation of the total
rate of heat transferred for the Caramic Foam and the Honey Comb, respectively. It can be
noted that from the 600 elements the variation of the heat transfer stabilizes in a range of
variation below 0.1%. From this, a grid of 2000 elements was defined to ensure convergence
of the analysis.

Figure 3.4: Mesh convergence analysis for φ = 0.6 and Uc = 10 (ms−1).

30



3.8 Volumetric Goodness Factor

Aiming to analyze and compare the performance of the HC and CF volumetric receivers, it
is proposed a modification of the goodness factor proposed initially by Bergles et al. (Bergles
et al., 1976; Shah et al., 2003). In essence, this figure of merit compares the heat transfer
capacity of different heat exchange devices, including a penalization which accounts for the
pressure drop associated in each case. Nevertheless, Bergles’ goodness factor is commonly
applied considering average properties (as temperature and fluid velocity) in each side of heat
exchange, or in other cases, the logarithmic mean temperature difference between hot and
cold sides of the analyzed exchange device. For this analysis, the volumetric goodness factor
is integrated through the receiver to compare the real total amount of exchanged energy per
unit of time with the total power lost by the hydrodynamic effects. The volumetric goodness
factor is defined as follows:

GFHC =

ˆ L

0

h(Ts − Tf )
ρfu(FHC)

dx (3.17)

GFCF =

ˆ L

0

hv(〈Ts〉i − 〈Tf〉
i
)

ρf〈u〉i(FCF )
dx (3.18)

where L is the total length of the receiver in flow direction, GF the volumetric total goodness
factor, HC, and CF subscripts represent both technologic proposals honeycomb and ceramic
foam, respectively. Finally, both benefit figures of merit are confronted in the comparison
factor, which allows determining the best technology considering different design configurations.

ψ =
GFCF
GFHC

(3.19)

3.9 1D Analysis Results

Fig 3.5 and Fig 3.7 show the temperature distribution considering different material porosities,
for a ceramic foam and honeycomb receiver, respectively. In both, honeycomb and ceramic
foam, the inlet velocity is defined as a boundary condition at 1 m/s (for ceramic foam this
corresponds to the real velocity). For each medium the porosity has a significative influence
in solid inlet temperature, ranging its value between ∼ 800 K to ∼ 110 K for CF and ∼ 700
K to ∼ 900 K for HC, considering porosities from 0.5 to 0.9.

Regarding the ceramic foam (Fig 3.5), an increase in the porosity causes a decline in the
solid axial area at the inlet face, decreasing the outlet temperature and the total length of
the receiver. That length represents the distance necessary to reach a thermal equilibrium
between the solid and fluid phases, which ranges from 0.01 to 0.025 m when the porosity
takes values from 0.5 to 0.9, respectively. The porosity has a direct impact on the penetration
of the radiation through the solid, which is strongly related to the solid temperature and the
receiver equilibrium length at the same time. Thus, the solid temperature at the inlet shows
a decrease when the porosity varies from 0.5 to 0.7 reaching its minimum value at a porosity
of 0.7. Then, for porosities over 0.7 the solid temperature increases. This phenomenon is
due to two simultaneous effects, first, a lower porosity implies an increment in the solid axial
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Figure 3.5: Temperature distribution for the solid and fluid phases in the flow direction, for a
Ceramic Foam porous media in the receiver, considering a fixed mass flow (Sarmiento-Laurel
et al., 2019).

area of the receiver, increasing the amount of radiative energy captured by the solid near the
inlet side, then the temperature of the solid rises. Nevertheless, for porosities over 0.7, the
previous effect loses significance against the fact that increasing the porosity dismisses the
mass of solid, and so the temperature in the solid face increases again. The second effect,
lower porosity values imply an increase in the extinction coefficient, which in consequence,
reduces the penetration length of the radiation through the solid matrix (see Fig 3.6). Thus,
a variation in the porosity has an important influence in the radiative source distribution
inside the solid, which reaches higher values near the inlet side with a high rate of decrease
in the flow direction for lower porosities, and on the other hand, normalizes its distribution
in the flow direction for higher porosities. The honeycomb receiver (Fig 3.7) shows an
opposite effect with the change in porosity compared to the aforementioned results with
respect to the ceramic foam receiver. This is due to the configuration of the mini-channels of
the honeycomb. The mini-channel configuration allows the radiation, normal to the receiver
and proportional to ϕ (fluid portion), to pass across the medium without interacting with the
walls of the solid inside the channel, considerably reducing the amount of radiative energy
reaching the inner wall of the solid. Moreover, the necessary length to achieve the thermal
equilibrium presents ranges from 0.015 to 0.06 m, using more material than the ceramic foam
to reach the thermal equilibrium. This difference is due to the way that the different solid
media exchange heat with the working fluid. The honeycomb mini-channel offers a lower
heat exchange area per unit of length between solid and fluid phases than the ceramic foam.
However, this advantage for the ceramic foam implies that the fluid is in constant contact
with the inner pore walls (Wu et al., 2010), increasing the irreversibilities related to the drag
forces associated with the presence of the solid matrix, commonly illustrated as pressure drop
terms of Darcy-Forchheimer’s law (Kaviany, 1999).

Figure 3.8 shows the outlet temperature of the fluid in both configurations and the result
of the comparison factor, which faces the goodness factor of both technologies. It is possible
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Figure 3.6: Radiative source distribution in the flow direction for the ceramic foam,
considering a fixed mass flow. (Sarmiento-Laurel et al., 2019).

Figure 3.7: Temperature distribution for the solid and fluid phase in the flow direction, for
a honeycomb porous media in the receiver. Considering a fix mass flow (Sarmiento-Laurel
et al., 2019).

to note how the comparison factor shows a difference of one order of magnitude in all of the
porosity ranges, indicating that the ceramic foam has a better performance in all the studied
design porosities. This result is unexpected considering that the ceramic foam has a higher
hydrodynamic resistance than the honeycomb, due to the inherent tortuosity of the flow path
lines within the solid matrix of ceramic foam (Kaviany, 1999). Nevertheless, the definition of
the volumetric goodness factor considers the complete effect of the loss of power by pressure
drop along with the receiver, which is strongly associated with the receiver’s length, and for
this analysis, the total length of the HC is more than double the length of the CF. Thus,
despite the ceramic foam presenting a higher hydrodynamic resistance, its impact on the
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volumetric goodness factor is not significant enough compared to its benefit related to the
heat transferred to the fluid.

Figure 3.8: Comparison factor and fluid outlet temperature, for different porosities,
considering a fixed inlet fluid velocity of (1ms−1) (Sarmiento-Laurel et al., 2019).

Figure 3.9 shows the volumetric goodness factor of both technical proposals considering
porosities from 0.5 to 0.9. Similarly to the result presented in Figure 3.8, the ceramic
foam receiver achieves the highest benefit in terms of the volumetric goodness factor for
all porosities. Furthermore, in both technologies, the optimum porosity is 0.9 where the
goodness factor is 2.07×105 and 2.29×104 for honeycomb mini-channel and ceramic foam
receiver, respectively. In both cases, the principal reason for making a decision about the
porosity is the amount of power lost in terms of pressure drop, which is minimum for higher
porosities despite the possibility of delivering a higher temperature outlet when considering
lower porosities. However, the results in Figure 13 show that the highest outlet temperature
of the fluid is reached for porosities of 0.5 and 0.9 for CF and HC, respectively, and for
porosities of 0.9 (the best case in both technologies in terms of the goodness factor), the
outlet temperature is higher in the HC than in the CF.

3.10 1D Model Main Conclusions

This chapter shows two simplified models, to solve in one dimension the heat exchange process
inside two technologies of volumetric receiver, and proposes a comparison factor to measure
and compare the benefit of both technological proposals, with the objective of maximizing
the heat transferred to the fluid, incurring in the minimum energy lost by the pressure
drop. The benefit of this figure of merit considers the energy transferred per unit of time
to the working fluid and the power loss due to hydrodynamic resistance of each exchange
medium, allowing to compare two different exchange geometries and consider its principal
advantages and disadvantages at the same time. The volumetric goodness factor included in
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Figure 3.9: Goodness factor for a honeycomb and ceramic foam receivers, considering different
porosities (Sarmiento-Laurel et al., 2019).

this analysis explains in a better form the benefit of the devices than others proposed in the
literature, because it does not consider an average temperature in the solid and fluid sides
or an approximation as the logarithmic mean temperature difference.

The ceramic foam receiver technology offers more exchange area between both phases
(fluid and solid), reducing in 58.3% the necessary length to reach the thermal equilibrium
compared to the honeycomb mini-channel. Furthermore, the amount of solid material is
considerably lower than the honeycomb proposal.

The honeycomb mini-channel reaches higher fluid outlet temperatures from 629.9 to 679.3
K for porosities greater than 0.755. The comparison factor is greater than 9.08 for the
complete range of porosity studied in this research. This reinforces the idea about the ceramic
foam is the best technology, despite the fact that a solid foam porous medium has a higher
hydrodynamic resistance than a mini-channel exchange medium.

However, it is important to note the contradiction of the optimum selection between both
approaches, due to the difference in outlet temperatures at a porosity of 0.9. The volumetric
goodness factor shows the design which exchanges energy reducing the hydrodynamic losses,
however, a higher outlet temperature is also an important factor to take into consideration in
the design process. Thus, it is necessary to determine a figure of merit capable of including
the quality of the outlet energy. This last idea makes it necessary to include the entropy
concept in a future analysis. The entropy generated considers the effects related to the
irreversibilities of the heat transfer process and the hydrodynamic resistance, and additionally
includes the concept of energy quality, distinguishing the difference between outlet fluids at
different temperatures. Thereby, this previous analysis and results allow to defining the main
objective of the present proposal, giving a practical sense for studying entropy transport and
its generation mechanisms in porous media.
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Chapter 4

Local entropy generation model for
numerical CFD analysis of fluid flows
through porous media, under laminar
and turbulent regime

Chapter 4 presents the central part of this thesis. A new expression for entropy generation
in porous media is developed and a method is developed to solve it using CFD tools. It is
common in the literature that simulation research the implementation of models developed
previously by other authors, but there are few works that present the development and
implementation of an original model to predict and analyze a phenomenon.

In this chapter, a theoretical expression for local entropy transport and LEG in porous
media is developed under low and high Reynolds regimes. First, the spatial dispersion terms
associated with macroscopic analysis in a porous medium are studied and developed. Second,
the LEG mechanisms by volumetric heat transfer and hydraulic resistance are recognized and
mathematically developed. Subsequently, the Reynolds time-averaging method is applied
to the entropy transport equation to incorporate the turbulent effects that can appear in
high Reynolds regimes. These effects are represented by an expression for turbulent viscous
dissipation disaggregated from the mean terms. Analogously, an expression is developed for
the LEG by conductive heat transfer associated with temperature time-fluctuations. Finally,
an expression is proposed to model the LEG associated with the turbulent component of
viscous dissipation and the turbulent component of LEG due to conductive heat transfer.
The LEG expression is determined as a post-process from the scalar and vectorial CFD fields
resulting of temperature, pressure, k, ε, and velocity.

Later, in Chapter 5, a numerical experiment is conducted to implement the theoretical
model stated in Chapter 4. Due to the complexity associated with the instrumentation in
porous media, it is reasonable to perform a numerical investigation to evaluate the performance
of the proposed model in an initial implementation stage (Ghalandari et al., 2019; Salih et al.,
2019).
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4.1 Local Entropy Analysis

As a first step to establish a general expression for entropy transport, the entropy is developed
as a thermophysical property using the Gibbs’ equation from the specific energy and the
flow work in the energy conservation equation. Thus, considering the continuity equation

(Eq. 2.11) to change the term ∂uk
∂xk

= − 1
ρf

D(ρf )

Dt
in the energy equation (Eq. 2.30, Chapter 2),

and using the definition of entropy from the Gibbs’ equation (Bejan, 2013; Currie, 2016;
Cantwell, 2022) (see Annex (A.3)), it is possible to establish an expression for entropy
transport as follows:

ρf

D
(
φ〈e〉i

)
Dt


= φ

〈
P

1

ρf

D(ρf )

Dt

〉i
+ φ〈Φ〉i + φ〈uj〉iR−

∂

∂xj
(〈qj〉v)

+ hiai

(
〈Ts〉i − 〈Tf〉i

)
(4.1)

ρf

〈Tf〉iD
(
φ〈s〉i

)
Dt


= − ∂

∂xj
(〈qj〉v) + φ〈Φ〉i + φ〈uj〉iR

+ hiai

(
〈Ts〉i − 〈Tf〉i

)
(4.2)

ρf

[
∂

∂t

(
φ〈s〉i

)
+ φ

〈
∂

∂xk
(uks)

〉i]

= − 1

〈Tf〉i
∂

∂xj
(〈qj〉v) +

φ〈Φ〉i

〈Tf〉i

+
φ〈uj〉i

〈Tf〉i
R +

hiai

〈Tf〉i
(
〈Ts〉i − 〈Tf〉i

)
(4.3)

where s is the entropy per mass unit.

Expanding the heat transfer term on the right side of Eq. 4.3, and using the expression
∂
∂xj

( qj
T

)
= 1

T
∂
∂xj

(qj)− qj
T 2

∂
∂xj

(T ),

ρf

[
∂

∂t

(
φ〈s〉i

)
+ φ

〈
∂

∂xk
(uks)

〉i]

= −

 ∂

∂xj

(
〈qj〉v

〈Tf〉i

)
+
〈qj〉v(
〈Tf〉i

)2

∂

∂xj

(
〈Tf〉i

)
+
φ〈Φ〉i

〈Tf〉i
+
φ〈uj〉i

〈Tf〉i
R +

hiai

〈Tf〉i
(
〈Ts〉i − 〈Tf〉i

)
(4.4)
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In addition, it is possible to express the directional heat flux of the second term on
the right-side in terms of the Fourier’s law of heat conduction (Bejan, 2013) in Eq. 4.4 as,

〈qj〉v = −λeff,f ∂〈Tf 〉
i

∂xj
, and the first term on the right-side as a volumetric heat source, as

follows:

ρf

[
∂

∂t

(
φ〈s〉i

)
+ φ

〈
∂

∂xk
(uks)

〉i]

= −

 ∂

∂xj

(
〈qj〉v

〈Tf〉i

)
− λeff,f(
〈Tf〉i

)2

∂〈Tf〉i

∂xj

∂〈Tf〉i

∂xj


+
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+
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R +
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)
(4.5)
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)
(4.6)

Expanding the second term of the left-side in Eq. 4.6, the convective entropy transport
due to spatial dispersion of entropy and velocity is determined as follows:

ρf

[
∂

∂t

(
φ〈s〉i

)
+ φ

∂

∂xk

(
〈uk〉i〈s〉i

)]
= −ρfφ
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(
〈qj〉v

〈Tf〉i

)

+
λeff,f(
〈Tf〉i

)2

(
∂〈Tf〉i
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+
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+
φ〈uj〉i

〈Tf〉i
R +
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(
〈Ts〉i − 〈Tf〉i

)
(4.7)

Therefore, Eq. 4.7 shows the local entropy transport in a porous media through a macroscopic
point of view, where each term represents the following phenomena defined in Table 4.1:

Finally, to consider the turbulent effects in the analysis, the time-averaging (Reynolds,
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Table 4.1: Local entropy transport terms

Term Definition

ρfφ〈uk〉i〈s〉i
Convective term of microscopic advection of entropy
through the spatial mean velocity.

ρfφ
∂
∂xk

(
〈iukis〉

i
) Convective entropy transport due to spatial dispersion

of entropy and velocity. This term is also present in
laminar convective heat transfer, ReD < 150 (Forchheimer
flow regime (Kaviany, 1999; Quintard and Whitaker, 1994),

considering ReD =
ρfuDdp

µ
and dp the mean pore diameter.

∂
∂xj

(
〈qj〉v

〈Tf〉i
)

Macroscopic entropy generation due to the heat exchange
of the fluid control volume with the surroundings.

λeff,f(
〈Tf〉i

)2

(
∂〈Tf〉i
∂xj

)2
Macroscopic LEG by conduction heat transfer due to the
spatial-mean temperature of the fluid.

φ〈Φ〉i

〈Tf〉i
Macroscopic LEG by viscous dissipation due to
spatial-mean mean-velocity of the fluid.

φ〈uj〉i

〈Tf〉i
R

Entropy generation due to work realized by drag efforts,
related to the solid-fluid interaction.

hiai

〈Tf〉i
(
〈Ts〉i − 〈Tf〉i

) Heat transfer entropy generation due to the local heat
microscopic heat exchange between fluid and solid phases.

1895) is applied to Eq. 4.6, where ϕ̄ is the time average of ϕ, as follows:
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〉i (〈Ts〉i − 〈Tf〉i) (4.9)

Considering that the solid matrix is rigid and static the fluctuating mechanical energy

〈uj〉i
′
R′ is zero, thus, the fifth term on the right-side of Eq. 4.9 is neglected (Pedras and
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de Lemos, 2001; de Lemos, 2012; de Lemos and Pedras, 2001).
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Expanding the second and third terms on the right-hand side in Eq. 4.10, both related
to entropy generation by conduction heat transfer and viscous dissipation, respectively:
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The Eq. 4.10 shows the transport of entropy in a porous medium, considering the effects
associated with time-fluctuations at high Reynolds regimes, and the degradation of the energy
potential associated with the interaction between both phases (solid and fluid). In particular,
the interaction is associated with the volumetric heat exchange and the hydraulic resistance
of the drag forces caused by the presence of the solid matrix.

Finally, the following equation shows the LEG rate desaggregating the different generation
mechanisms related to the presence of the porous media and the turbulent effects.
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Adding the complete expressions of the Darcy-Forchheimer analysis and the spatial-
averaging method (Kaviany, 1999; de Lemos, 2012) in terms of R̄ and hi, the entropy
generation rate is:
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Rewriting the last three right-side terms, as is usually done in the literature for the
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empirical correlations, Eq. 4.13 is as follows:
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Bejan presented an intuitive expression for the entropy generation in porous media under
Darcian regime (ReD < 1) (Bejan, 1995). In addition to this idea, Eq. 4.14 extends the
analysis to higher values of ReD

1 from the Darcian flow regime to post-Forchheimer and
fully turbulent flow regimes, and including the LEG due to the volumetric heat transfer
between the flow and the solid matrix.

Bejan’s expression:

〈ṡgen〉i =
λf(
〈Tf〉i

)2

(
∂〈Tf〉i

∂xj

)2

+
µf

k1〈Tf〉i
uD

2 (4.15)

In addition to Bejan’s LEG equation, in 2008 Betchen and Straatman (2008) presented
an extension of LEG in porous media where the LEG was considered as a Forchheimer
hydrodynamic resistance term and the volumetric heat transfer was included. Nevertheless,
this expression was restricted to Forchheimer flow regime (ReD < 150). Thus, the expression
developed in Eq. 4.14 includes the LEG related to the velocity and temperature time fluctuation
effects.

Finally, from the expression for the LEG developed in this section, the following two
sections are focused on developing a methodology that allows determining the LEG rate in
Eq. 4.14 as a post process, without the need to solve an additional transport equation.

1considering ReD as the Reynolds number based in the mean pore diameter dp: ReD = ρfuDdp/µ
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Table 4.2: Volume-averaged k − ε terms

Gk Gε Authors
φρfε∞ φC2ερfε∞

ε∞
k∞

Nakayama and Kawahara (1999)

Ckρf
φ〈k〉iūD√

K

φC2εCkρf 〈ε〉iūD√
K

Pedras and de Lemos (2001)
φµūD
K

+
φρfCE |ūD|ūD√

K

φf(φ,K)ρf 〈ε〉iūD√
K

Teruel and Rizwan-uddin (2009b,a)

4.2 Local entropy generation in turbulent share flows

Several authors (Nakayama and Kawahara, 1999; Pedras and de Lemos, 2001; Teruel and
Rizwan-uddin, 2009b,a) in the literature have presented their closure models to extend
the k − ε turbulence equations scope to porous media by a macroscopic view. In general
terms, the proposals have the same structure of the usual k− ε turbulence model (Khan and
Straatman, 2016). It includes an additional term in each equation related to the production
and dissipation of macroscopic TKE, due to the presence of the solid matrix Gk and Gε (see
Table 4.2), as follows:

∂
(
ρf〈k〉i

)
∂t

+ ρf
∂

∂xk

(
uD,k〈k〉i

)
= − ∂

∂xj

[(
µ+

µtφ
σk

)
∂

∂xj

(
φ〈k〉i

)]
+ Pk − ρfφ〈ε〉i +Gk (4.16)

∂
(
ρf〈ε〉i

)
∂t

+ ρf
∂

∂xk

(
uD,k〈ε〉i

)
= − ∂

∂xj

[(
µ+

µtφ
σk

)
∂

∂xj

(
φ〈ε〉i

)]
+ C1Pi

〈ε〉i

〈k〉i
− C2

〈ε〉i

〈k〉i
(
ρfφ〈ε〉i

)
+Gε (4.17)

where 〈k〉i is the volume average TKE, 〈ε〉i is the volume average of the dissipation rate of
TKE, Pi is the production rate of 〈k〉i, Gi is the generation rate of 〈k〉i, µtφ is the turbulent
viscosity for porous media, and C1, C2, σk are k − ε model constants. CE is the inertial
coefficient of porous media, and f(φ,K) introduced by Teruel and Rizwan-uddin (2009b) to
include the effects of the morphology of the solid matrix. This function is zero for φ = 1
and tends to infinity for φ = 0. Moreover, Nakayama and Kawahara (1999) defined ε∞ and
k∞ as model constants that must be determined experimentally using a pore-scale numerical
analysis.

Therefore, to solve the usual transport equations of mass, momentum, and energy (in
Annex (A.4)), this analysis aims to determine the LEG without solving an additional entropy
transport equation. Thus, the present analysis proposes an expression to determine the LEG
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as a post-process from the velocity, temperature, k, and ε solution fields, after solving the
volume-averaged conservation equations and the turbulence k−ε equations for porous media
in the literature. When studying Eq. 4.14 it is possible to separate 〈ṡgen〉v into two main
groups of entropy generation mechanisms, heat transfer 〈ṡΘ〉v and viscous dissipation 〈ṡΦ〉v,
as follows:

〈ṡΘ〉v =
λeff,f(〈
Tf
〉i)2

〈(
∂Tf
∂xj

)2
〉i

︸ ︷︷ ︸
〈ṡΘ,C̄〉v

+
λeff,f(〈
Tf
〉i)2

〈(
∂Tf

′

∂xj

)2
〉i

︸ ︷︷ ︸
〈ṡΘ,C′〉v

+
hiai〈
Tf
〉i (〈Ts〉i − 〈Tf〉i)︸ ︷︷ ︸

ṡΘ,V

(4.18)

where
〈
ṡΘ,C̄

〉v
is the LEG rate by the conductive heat transfer related to the time-average

fluid temperature, 〈ṡΘ,C′〉v is the LEG rate due to the conductive heat transfer associated
with the fluid temperature fluctuations. The last term ṡΘ,v is the entropy generation rate,
due the volumetric heat transfer between the solid and fluid phases. Analogously,

〈ṡΦ〉v =
µφ〈
Tf
〉i
〈1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)2

− 2

3

(
∂ūk
∂xk

)2
〉i


︸ ︷︷ ︸
〈ṡΦ,D̄〉v

+
µφ〈
Tf
〉i
〈1

2

(
∂ui′

∂xj
+
∂uj ′

∂xi

)2

− 2

3

(
∂uk ′

∂xk

)2
〉i


︸ ︷︷ ︸
〈ṡΦ,D′〉v

+
φ〈
Tf
〉i ( µ

k1

uD
2 +

ρf
k2

|uD|2uD
)

︸ ︷︷ ︸
ṡΦ,DF

(4.19)

where
〈
ṡΦ,D̄

〉v
is the LEG rate due to viscous dissipation related to the time-average velocity,

〈ṡΦ,D′〉v is the LEG rate by viscous dissipation regarded to the fluid velocity time fluctuations,
and ṡΦ,DF is the LEG rate associated with Darcy-Forchheimer’s hydrodynamic resistance due
to the presence of the solid matrix against the flow.

4.3 Entropy generation by turbulent dissipation and

thermal dispersion for CFD

For the analysis of 〈ṡΦ〉v and 〈ṡΘ〉v, the terms
〈
ṡΘ,C̄

〉v
, ṡΘ,v and

〈
ṡΦ,D̄

〉v
can be calculated

by solving the transport and volume averaged k − ε equations. On the other hand, the
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fluctuation terms 〈ṡΦ,D′〉v and 〈ṡΘ,C′〉v, are determined from the k − ε scalar results. Thus,
from the ε definition:

〈ṡΦ,D′〉v =
µφ〈
Tf
〉i
〈1

2

(
∂ui′

∂xj
+
∂uj ′

∂xi

)2

− 2

3

(
∂uk ′

∂xk

)2
〉i


=
φµ〈ε〉i〈
Tf
〉i (4.20)

where 〈ε〉i is the viscous dissipation scalar term of the volume averaged turbulence model
k − ε.

To solve the term 〈ṡΦ,D′〉v it is necessary to consider the dissipation of the temperature

fluctuation εΘ = αf

(
∂Tf

′

∂xj

)2

defined by Nagano and Kim (1988) in their two equations

turbulence model, which establishes two pairs of equations, k − ε and kΘ − εΘ, where the
second defines the temperature field fluctuations. Thus, 〈ṡΘ,C′〉v can be rewritten as:

〈ṡΘ,C′〉v =
λeff,f(〈
Tf
〉i)2

〈(
∂Tf

′

∂xj

)2
〉i

=
ρfcp,fφ(〈
Tf
〉i)2 〈εΘ〉i (4.21)

To determine the term εΘ without solving an additional kΘ − εΘ pair of equations, Kock
and Herwig (2004) have proposed a useful approximation, which consists in approximating
εΘ as the production rate of kΘ defined as Pk,Θ (Kock and Herwig, 2005; Gersten and Herwig,
2013). From this approximation, it is possible to determine εΘ without solving an additional
kΘ − εΘ equation system. This approximation is usually considered valid in the logarithmic
region. Thus, εΘ can be rewritten as follow:

ρfεΘ = Pk,Θ = −ρfuj ′T ′
∂T̄f
∂xj

(4.22)

Extending Eq.4.22 to 〈εΘ〉i,

ρfφ〈εΘ〉i = −ρfφ〈uj ′T ′〉i
∂
〈
T̄f
〉i

∂xj
(4.23)

In addition, to solve for the terms 〈uj ′T ′〉i, a Boussinesque-like approach is applied (Kock
and Herwig, 2004), adapted to the volume-average method proposed by de Lemos (2012);
Nakayama and Kawahara (1999), through the eddy-diffusivity concept.

− 〈uj ′T ′〉i = αtφ
∂
〈
T̄f
〉i

∂xj
(4.24)

where αtφ = µtφ/ρfPrtφ is the turbulent thermal diffusivity for porous media, Prtφ = µtφ/αtφ
is the turbulent volume average Prandtl number, and µtφ is the turbulent viscosity for porous
media µtφ = ρfCµ(〈k〉i)2/〈ε〉i, stated by de Lemos (2012); Lee and Howell (1987).
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Finally, replacing Eq.4.23 and Eq.4.24 in Eq.4.21:

〈εΘ〉i = −

(
αtφ

∂
〈
T̄f
〉i

∂xj

)
∂
〈
T̄f
〉i

∂xj
(4.25)

〈ṡΘ,C′〉v =
ρfcp,f(〈
Tf
〉i)2

Cµ(〈k〉i)2
φ

Prtφ〈ε〉i

×

(∂〈T̄f〉i
∂x

)2

+

(
∂
〈
T̄f
〉i

∂y

)2

+

(
∂
〈
T̄f
〉i

∂z

)2
 (4.26)

Hence, from the mathematical methodology described above it is possible to determine the
LEG without solving an additional entropy transport equation or kΘ − εΘ equation system,
additional to the usual conservation equations and k− ε turbulence model for porous media.

Recapitulating, the proposed expression determines the LEG for a flow through a porous
medium, considering the effects associated with the turbulence and the transfer of heat and
momentum between the solid and liquid phases. The definitive expression for the LEG for
CFD and the assumptions considered are shown below. Local entropy generation model
assumptions:

• Non-thermal equilibrium between the solid and fluid phases.

• There is no mass exchange between the solid phase and the liquid phase.

• The solid matrix is rigid and static in space.

• A Newtonian fluid is considered.

• The turbulence is modeled using k − ε equation system.

• The mechanical energy of the fluctuating hydrodynamic drag force 〈uj〉i
′
R′ is neglected

(de Lemos, 2012).

• The temperature fluctuation εΘ and the production rate of kΘ have the same order of
magnitude; ergo: εΘ = Pk,Θ.

46



〈ṡgen,f〉v

=

λeff,f + λtφ,f(〈
Tf
〉i)2

(∂〈T̄f〉i
∂xj

)2

+
hiai〈
Tf
〉i (〈Ts〉i − 〈Tf〉i)

+
µφ〈
Tf
〉i
〈1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)2

− 2

3

(
∂ūk
∂xk

)2
〉i


+
φµ〈ε〉i〈
Tf
〉i +

φ〈
Tf
〉i ( µ

k1

uD
2 +

ρf
k2

|uD|2uD
)

(4.27)

From the model presented in this chapter it is concluded that it is possible to develop an
expression for the generation and transport of entropy at a local scale in a porous medium.
Through the proposed methodology it is possible to determine the contribution of the different
entropy generation mechanisms, distinguishing the additional generation mechanisms that
arise from the volumetric exchange of heat and stress between the fluid and the solid porous
matrix.
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Chapter 5

Numerical experiment: Study Case

From the LEG equation and the modeling methodology developed in Chapter 4, Chapter 5
presents a case of study where the LEG is analyzed under different boundary temperatures
and Reynolds regimes. Similarly, to put the proposed methodology into practice, a computational
simulation tool has been developed in OpenFOAM V9 (2021) for this case. The tool consists
of a CFD solver composed of two main libraries, the first is developed to simulate heat transfer
in porous media considering NTE between solid and fluid, and the second library links the
temperature, velocity, and pressure fields to determine the different LEG mechanisms stated
in Chapter 4.

5.1 OpenFOAM®

OpenFOAM (Open-source Field Operation and Manipulation) is an open-source toolbox
developed in C++ and distributed by the OpenFOAM Foundation (OpenFOAM V9, 2021).
The toolbox works as a framework for the integration and development of approximately 100
libraries written in object-oriented languages (see Figure 5.1).

The latest version of OpenFOAM offers around 200 applications for the analysis of
problems of transport phenomena in fluids and/or solids. Applications are divided into
2 categories, solvers, and utilities. The solvers are focused on the simulation of specific
problems such as: compressible flows, fluid mechanics in non-Newtonian fluids, heat transfer,
and turbulence, among others. On the other hand, the utilities cover a wide range of uses
focused on data management for pre- and post-processing of results, as well as the integration
of applications in problems that require more than one solver (see Figure 5.2).

The software has the advantage of being built through sub-elements as independent
classes, allowing the user to build and attach new modules without damaging or inducing
errors in the core code of the software. This allows the experienced user to develop new tools
and take advantage of the long list of utilities that OpenFOAM has.

In numerical modeling, OpenFOAM allows to control the numerical scheme separately
for each term in a differential equation, increasing the user’s control over their model.
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Figure 5.1: OpenFOAM directory.

Figure 5.2: Overview of OpenFOAM structure (Greenshields, 2022).

In its standard version, OpenFOAM does not have a graphical interface, working directly
in the Linux terminal. This makes it usually difficult for a new user to use this tool. However,
in the long run, working from the terminal allows for more accurate and faster control of the
parametric analysis of multiple simulations.
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5.1.1 Development of SgenPorousSimpleFoam solver in OpenFOAM

The proposed solver SgenPorousSimpleFoam, was developed from the structure of the simpleFoam
solver. SimpleFoam employs the SIMPLE algorithm (Semi-Implicit Method for pressure
Linked Equations) of Patankar and Spalding (1972); Patankar (2018) to solve the pressure
and velocity fields of the continuity and momentum equations, considering steady state for
isothermal flows. Equations 5.1 and 5.2, are considered for the simpleFoam library, as follows:

ρf
∂(ūk)

∂xk
= 0 (5.1)

ρf
∂(ūjūk)

∂xk
=

∂

∂xi

(
−P̄ δij + (µ+ µT )

((
∂ūi
∂xj

+
∂ūj
∂xi

)
− 2

3
δij
∂uk
∂xk

))
(5.2)

where µ is the viscosity of the fluid and µT is the turbulent fluid viscosity.

The development of new solvers in OpenFOAM allows to define in detail the equation
system and the variables to be implemented. Therefore, in the present work, a solver
was developed to model the transport phenomena through a porous medium, considering
the energy equations for the solid and fluid phases separately (non-thermal equilibrium
configuration (Eq. 2.29)), and the hydrodynamic resistance due to the presence of the solid
matrix.

To determine the hydrodynamic resistance effects related to the presence of the solid
porous matrix, the terms of Darcy and Forchheimer are added to Eq. 5.2 as follows:

ρf
∂

∂xk

(
φ〈ūjūk〉i

)
=

∂

∂xi

(
−φ
〈
P̄
〉i
δij + φ(µ+ µT )

(
∂〈ūi〉i

∂xj
+
∂〈ūj〉i

∂xi

)

− 2

3
φ(µ+ µT )

(
δij
∂〈ūk〉i

∂xk

))
− φ

(
µ

k1

uD +
ρf
k2

|uD|uD
)

(5.3)

where ū the time-averaged velocity, u
′

the velocity time-fluctuation term, φ the porosity,
and P̄ the time-averaged fluid pressure. The fluid viscosity is determined through the
Sutherland law (Sutherland, 1893).

The last two terms on the right side of Eq. 5.3 derive from the expressions (2.5) and (2.6)
applied to both surface force terms, pressure and viscous shear stress. They represent the
interaction between the fluid and the solid matrix as drag force components.

On the other hand, the energy equations for the fluid and solid phases are included as
follows.

ρfcp,f

(
∂

∂xk

(
φ
〈
Tf uk

〉i))
=

∂

∂xk

(
λeff,f

∂
〈
Tf
〉i

∂xk

)
+ hiai

(〈
Ts
〉i − 〈Tf〉i) (5.4)
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0 =
∂

∂xk

(
(1− φ)λs

∂
〈
Tf
〉i

∂xk

)
− hiai

(〈
Ts
〉i − 〈Tf〉i) (5.5)

where cp is the specific heat, λ the thermal conductivity, T̄ is the time-averaged temperature,
and the subscripts f and s are related to fluid and solid phases, respectively. Fluid density

is determined using the ideal gases state equation, ρf =
〈P〉i

Rgas〈Tf〉i

The last term on the right side of Eq. 5.4 and Eq. 5.5 represents the volumetric heat
exchange between the solid and liquid mediums, where hiai varies as a function of the porosity
and tortuosity of the solid medium, usually determined by a numerical CFD experiment at
the pore scale (Chen et al., 2017).

Thus, SgenPorousSimpleFoam determines the LEG as a post-process function result after
solving the momentum and energy equations. SgenPorousSimpleFoam couples the available
turbulence libraries for RAS (Reynolds average simulation) models to use the scalars results
of k and ε in the LEG expression stated in Chapter 4, as follows:

〈ṡgen,f〉v

=

λeff,f + λtφ,f(〈
Tf
〉i)2

(∂〈T̄f〉i
∂xj

)2

+
hiai〈
Tf
〉i (〈Ts〉i − 〈Tf〉i)

+
µφ〈
Tf
〉i
〈1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)2

− 2

3

(
∂ūk
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〉i


+
φµ〈ε〉i〈
Tf
〉i +

φ〈
Tf
〉i ( µ

k1

uD
2 +

ρf
k2

|uD|2uD
)

(5.6)

The diagram in Figure 5.3 shows the additional equations and properties that were added
into the structure of SgenPorousSimpleFoam.

Assumptions of the solver:

• Isotropic porosity distribution.

• Air is considered an ideal gas.

• Steady-state regime.

• Constant thermo-physical properties for the solid phase.

• For simplicity, the local conduction between the solid and fluid phases is neglected;
ergo ∂

∂xj
( 1

∆V

´
Ai

nλfTfdsi).

Finally, to validate the solver developed, a comparison was made by adjusting the model
parameters to the analysis presented in 2000 by Alazmi and Vafai (2000). In their analysis,
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Figure 5.3: SgenPororusSimpleFoam case directory.

several models of transport phenomena for heat exchange in porous media are applied in a
2D simulation of a porous channel and then compared. Figure 5.4 shows the axial profile
of dimensionless temperature for each phase (fluid and solid), located at X = 0.1, where
X = H/L is the dimensionless distance in the flow direction. The results are in good
agreement with those from the work of Alazmi and Vafai (2000).

Figure 5.4: Axial dimensionless temperature distribution considering NTE heat transfer.
φ = 0.6, Da = 10−4, dp = 0.008(m), ks/kf = 25, ReD = 1000. (Sarmiento-Laurel et al.,
2022)
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5.2 Case of study: 2D Porous Heat Exchanger

5.2.1 System Description

The physical-mathematical model and the methodology presented in Chapter 4 define a
way to study the entropy transport in porous energy exchange devices and, in addition, to
know its performance through the spatial distribution of the LEG rate. By determining the
LEG, it is possible to recognize the weak points of the system and establish modifications
or key decisions in the design that allow for the best use of the available energy resource.
As reviewed in Chapter 1, entropy generation is proposed as a measure associated with the
inefficiencies of a process or, in the words of Clausius and Carnot (Carnot, 1824b; Clausius,
1879), with the degradation of the energy potential available in an energy reservoir. Thus,
the proposed methodology and its subsequent implementation in a CFD analysis offer an
analysis tool for design optimization in devices that incorporate porous media into their
design. Consequently, to ground the concepts reviewed in Chapter 4, in this chapter a
numerical experiment is developed on a basic but illustrative case, which allows showing the
applications and potential of the proposed methodology.

For the implementation of the mathematical model that describes the LEG rate, an
application for CFD simulation was developed in the OpenFOAM V9 (2021) software. This
application was developed exclusively for this work, incorporating the terms of volumetric
energy transfer and hydraulic resistance in the transport equations to be solved. With respect
to the numerical experiment, a case in two dimensions was studied as a starting point for the
use of this tool. The case study consists of an air flow through a porous channel under different
boundary conditions: the temperature difference between both phases at the entrance of the
channel and the entrance speed. Similarly, a simple case study was chosen in terms of
geometry, but fast in terms of computational cost, to make a wide sweep in the boundary
conditions and flow regimes. Thus, the results can be a starting point for other more detailed
analyses of technological applications, such as packed rock-bed thermal storage or volumetric
solar receivers.

The temperatures of the solid and the fluid are fixed at the entrance, as shown in Figure
5.5. For the complete parametrical analysis described in the following sections, the inlet fluid
temperature is fixed at 300 K, and the temperature difference with the solid inlet varies from
0 to 1000 K. The temperatures of the upper and lower walls are set as the average between
the solid and fluid inlet temperatures, as follows.

Tw =
Tf,in + Ts,in

2
(5.7)

Additionally, Table 5.1 summarizes the key physical parameters considered for the analysis.
Finally, the solving tolerance for the residuals was fixed at 10−7, considering a grid resolution
of 500 × 1000 elements, as shown in Figure 5.6. The turbulent effects were determined
through the k−ε equations of the RAS turbulence library considering the following constants:
Cµ = 0.09, σk = 1, σε = 1.3, C1ε = 1.44, and C2ε = 1.92.
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Figure 5.5: Case of study diagram (Sarmiento-Laurel et al., 2022)

Table 5.1: Analysis parameters

Value
System Parameter
Pore diameter (dp) 0.0015 m
Channel height (H) 0.05 m
Channel length (L) 0.05 m
Type of fluid Air (Ideal Gas)

Solid medium
Ceramic Foam
(Wu et al., 2011b)

Thermal conductivity
of the solid (λs)

80 Wm−1K−1

Simulation Parameters

Fluid inlet temperature 〈 ¯Tf,in〉
i

300 K

Solid inlet temperature 〈 ¯Ts,in〉
i

from 301 to 1300 K
Turbulent Prandtl
number (Prt)

0.9

Outlet pressure (pout) 101.3 kPa
Reynolds number (ReD) from 1 to 1000

5.2.2 Boundary conditions

To solve the momentum and continuity equation system, the inlet velocity and the outlet
pressure are considered as fixed values. Likewise, to solve the energy equation system, the
inlet and wall temperatures of the solid and fluid phases are fixed values. Finally, on the
domain boundaries, the gradient is set to zero for the following variables, as seen in Figure
5.5.

∂u1

∂x

∣∣∣∣
x=L

=
∂P

∂x

∣∣∣∣
x=0

=
∂
〈
T̄f
〉i

∂x

∣∣∣∣∣
x=L

=
∂
〈
T̄s
〉i

∂x

∣∣∣∣∣
x=L

= 0 (5.8)
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Figure 5.6: blockMesh algebraically generated grid

5.3 Dimensionless Analysis

From the development performed in Chapter 4, there is a detailed expression for each LEG
mechanism on Eq.5.6. From this, it is reasonable to conduct a preliminary dimensionless
analysis. As a prelude to numerical analysis in CFD, a dimensionless analysis provides more
information about the significance of each LEG mechanism in the studied system under the
established boundary conditions. Consequently, this section shows the development of the
LEG equation presented in detail in Chapter 4 in its dimensionless version. In addition, the
most relevant factors or dimensionless numbers in each LEG mechanism are recognized.

The dimensionless analysis was developed considering the following dimensionless variables:

∗xi =
xi
H
, ∗ūi =

ūi
U0

θf =
Tf − Tf,in
Tw − Tf,in

, γf =
Tf,in

Tw − Tf,in

θs =
Ts − Ts,in
Tw − Ts,in

, γs =
Ts,in

Tw − Ts,in

where ∗xi is the dimensionless longitude, ∗ūi is the dimensionless velocity, U0 is the inlet
velocity, θ is the dimensionless temperature difference, and γ is the dimensionless inlet
temperature. The subscripts f and s denote the fluid and solid phases, respectively. Thus,
as it was proposed by Betchen and Straatman (2008), the dimensionless LEG term is written
as follows:

∗〈ṡgen,f〉v =
〈ṡgen,f〉vH2

λf
(5.9)
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∗〈ṡgen,f〉v = ∗〈ṡΘ,C̄

〉v
+ ∗〈ṡΘ,C′〉v + ∗ṡΘ,V + ∗〈ṡΦ,D̄

〉v
+ ∗〈ṡΦ,D′〉v + ∗ṡΦ,DF (5.10)

where ∗() refers to a dimensionless expression. Then, substituting the dimensionless properties
on the Eq. 4.19, yields:

∗〈ṡΘ,C̄

〉v
+ ∗〈ṡΘ,C′〉v + ∗ṡΘ,V

=

(
φλfH

2

λf (θf + γf )
2H2

+
ρfcp,fµtφH

2

λf (θf + γf )
2H2

)
×

[(
∂θf
∂∗x

)2

+

(
∂θf
∂∗y

)2

+

(
∂θf
∂∗z

)2
]

+
hiaiH

2

λf (θf + γf )
[(θs + γs)− (θf + γf )] (5.11)

Regrouping terms,

∗〈ṡΘ,C̄

〉v
+ ∗〈ṡΘ,C′〉v + ∗ṡΘ,V

=

(
φλf + λtφ,f

λf (θf + γf )
2

)
∗〈Θ〉i +

NuH(aiH)

(θf + γf )
[(θs + γs)− (θf + γf )] (5.12)

where NuH = hiH
λf

is the Nusselt number based on the channel high H, λtφ,f is the fluid

turbulent thermal conductivity, and ∗〈Θ〉i is the volume-averaged thermal diffusion term.

Analogously, for the viscous and Darcy-Forchheimer terms in Eq. 4.20:

∗〈ṡΦ,D̄

〉v
+ ∗〈ṡΦ,D′〉v

=
2µφU0

2H2

λf (θf + γf )H2

〈(∂∗ūi
∂∗xj

+
∂∗ūj
∂∗xi

)2

+

(
∂∗ūk
∂∗xk

)2
〉i

+

〈(
∂∗ui′

∂∗xj
+
∂∗uj ′

∂∗xi

)2

+

(
∂∗uk ′

∂∗xk

)2
〉i
 (5.13)

∗〈ṡΦ,D̄

〉v
+ ∗〈ṡΦ,D′〉v =

PrEc

(θf + γf )
∗〈Φ〉i (5.14)

∗ṡΦ,DF =
φH2

λf (θf + γf )

(
µU0

2

k1

+
ρfU0

3

k2

|∗uD|
)
∗uD

2
(5.15)

∗ṡΦ,DF =
PrEc

(θf + γf )

(
1

Da
+

ReH√
Da
|∗uD|

)
∗uD

2
(5.16)

where ReH = uDH/µ is the Reynolds number based on the channel high H, Da = K/dp
2 is

the Darcy number, Pr = µcp,f/λf is the Prandtl number, and Ec = Uo
2/(cp,f (Tw − Tf,in)) is

the Eckert number.
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Finally, the following equation shows the complete expression of ∗〈ṡgen,f〉v considering all
the mechanisms of LEG, such as heat conduction, volumetric heat transfer, viscous effects,
and hydrodynamic resistance.

∗〈ṡgen,f〉v =

(
φλf + λtφ,f

λf (θf + γf )
2

)
︸ ︷︷ ︸

NCHT

∗〈Θ〉i +
NuH(aiH)

(θf + γf )︸ ︷︷ ︸
NVHT

[(θs + γs)− (θf + γf )]

+

 PrEc

(θf + γf )︸ ︷︷ ︸
NV

∗〈Φ〉i +
PrEc

(θf + γf )Da︸ ︷︷ ︸
ND

+
PrEcReH

(θf + γf )
√

Da︸ ︷︷ ︸
NFH

|∗uD|

 ∗uD2
(5.17)

From the equation Eq. 5.17 it is possible to identify the key factors that define the impact
of macroscopic conduction heat transfer (NCHT ), volumetric heat transfer (NVHT ), viscous
effects (NV ), and Darcy-Forchheimer hydrodynamic resistances (ND and NFH).

5.4 Results and discussion

The dimensionless LEG term in Eq. 5.17 shows five key factors which define the magnitude of
each entropy generation mechanism. Figure 5.7 shows the results of the post-processed LEG,
including the variation of the two most significant parameters, comparing their development
under different porosities, temperatures, and ranging the porous Reynolds number from 10
to 1000 (laminar and turbulent).

As shown in Figure 5.7, the heat transfer dimensionless factors were analyzed ranging the
inlet temperature difference ∆T from 10 to 1000 K. The heat conduction factor NCHT and
the volumetric heat transfer factor NV HT reach their highest values about 3 and 6 magnitude
orders, respectively, when the Reynolds number is over 200; and reach their maximum value
for φ = 0, 9 at ∆T = 1000 K. As expected, the volumetric heat transfer dominates the heat
transfer of LEG and reaches it maximum value for higher porosities, which it is translated as
higher exchange areas. Nevertheless, a CFD analysis is necessary to conclude the influence of
each mechanism and to determine its spatial distribution, because the two phenomena obey
to different temperature fields. The conduction obeys to the fluid field temperature and the
volumetric heat transfer to the interaction phenomenon between the two phases.

Analogously, Figure 5.8 shows the same dimensionless analysis applied to the viscous and
hydrodynamic mechanisms of the LEG. Due to the low viscosity that the working fluid (air)
exhibits in the full range of analysis, the viscous LEG is negligible for all cases. The same
effect occurs for Darcy’s viscous hydrodynamic resistance, which is negligible for the complete
domain analyzed. On the other hand, Forchheimer’s hydrodynamic resistance does present
a significant impact on the LEG. The value of NFH reaches 9 magnitude orders for porosity
of 0.1. In low porosity configurations, the fluid is constantly impinging on the solid matrix,
significantly increasing the amount of useless work done by the flow over the porous media.
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Figure 5.7: Heat transfer dimensionless factors, from laminar to turbulent porous Reynolds
regimes.

Summarizing the dimensionless analysis of each LEG mechanism in Figure 5.7 and Figure 5.8,
the maximum values of each magnitude factor are: NCHT < 2 × 103, NV HT < 2 × 106,
NV < 10−1, ND < 10−7, NFH < 1010. Hydrodynamic effects are usually neglected in
entropy generation analyzes (Bejan, 1995). Nevertheless, the magnitude of the Forchheimer’s
hydrodynamic term expressed trough NFH , makes it necessary to consider its effect at the
differential scale CFD analyses, in either laminar or turbulent regimes. Figure 5.9 shows the
distribution of NV HT/NFH to compare the impact of each LEG mechanism on the different
ranges of analysis (porosity, temperature difference, and porous Reynolds regime).

In Figure 5.9 it is possible to recognize the inflection points where Forchheimer’s hydrodynamic
resistance dominates the LEG compared to the volumetric heat transfer. For a porosity of
0.1, the magnitude of NFH dominates for ReD greater than 13.43, 29.92, and 36.62, for ∆T
of 10, 100, and 1000 K, respectively. For higher porosities, 0.5 and 0.9, the volumetric heat
transfer phenomenon dominates the LEG rate, but it is necessary to perform a numerical
CFD analysis to define with precision the regions in the domain where each mechanism
dominates over the others.

Consequently, a CFD analysis was performed to adjust the preliminary results in Figure 5.9.
On the upper-side, Figure 5.10 shows the axial mean temperature profile for solid and fluid
phases for two cases (of the 200 configurations analyzed) with the same ReD and inlet
temperature difference, and considering different porosities. There, the thermal equilibrium
is reached for a higher porosity (φ = 0.8), because a higher porosity implies a greater heat
exchange area. Similarly, at the bottom-side of Figure 5.10, shows the LEG distribution
along the porous heat exchanger considering the previously mentioned porosities. There, it is
possible to recognize the inflection points where the LEG by volumetric heat transfer ceases to
predominate over the LEG associated with the Darcy and Forchheimer hydraulic resistance,
which occurs. The inflection occurs at x/L = 0.094 when Sgen = 448.572(WK−1m−3), and
at x/L = 0.036 when Sgen = 19.282(kWK−1m−3), for porosities of 0.4 and 0.8 respectively.
This inflection is due to the thermal equilibrium that has been reached at this critical point,
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Figure 5.8: Viscous dissipation, Darcy’s, and Forchheimer’s hydrodynamic resistances
dimensionless factors, from laminar to turbulent porous Reynolds regimes.

and consequently, the LEG due to volumetric heat exchange decreases significantly. From
this, areas where some LEG mechanism dominates over others are recognized, and this can
be strongly related to design parameters, operation, or characteristics of the porous medium
or fluid.

From the two systems studied in Figure 5.10, Figure 5.11 presents the total spatial
distribution of LEG. There, two zones can be recognized, a high LEG near the inlet and
a stabilization value for the LEG at the point of thermal equilibrium. Downstream of
the inflection point, the level of LEG is dominated by the hydraulic resistance mechanism,
which, in other words, is strongly related to the porosity. Furthermore, by integrating the
LEG into the entire control volume, the LEG in both cases is displayed in Figure 5.11.
The volumetric heat transfer LEG is ṠΘ,V = 0.0247(WK−1), hydrodynamic resistance LEG
ṠΦ,DF = 0.2379(WK−1), and the total LEG Ṡgen = 0.2627(WK−1), for φ = 0.4; analogously,
the ṠΘ,V = 0.0892(WK−1), ṠΦ,DF = 0.0058(WK−1), and Ṡgen = 0.0950(WK−1), for φ = 0.8.
Therefore, there are porosity configurations where the LEG due to hydraulic resistance can be
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Figure 5.9: Comparison of dimensionless volumetric heat transfer against the Forchheimer’s
hydrodynamic resistance effect over the LEG

greater than the LEG associated with heat transfer, which is contrary to what is commonly
expected. From this idea, the following results show a sweep through different cases varying
the design and operation parameters, to study the total LEG and the predominance of its
generation mechanisms.

From the LEG distribution presented in figure Figure 5.10, it is interesting to note
that the LEG can vary its spatial distribution in the flow direction, establishing zones and,
additionally, these zones can be dominated by one or another LEG mechanism. On the other
hand, the LEG mechanisms are usually linked to different operating or design conditions,
such as temperature or porosity, respectively. Therefore, it is possible to develop design
strategies for entropy generation minimization, from the results of a spatial analysis of the
LEG distribution. Thus, a design strategy can define the operating and design conditions for
each zone as a function of the most significant LEG mechanism. For this, it is necessary to
perform a detailed CFD analysis of a particular geometry on a technological application.

However, the phenomenon mentioned above could be due to a particular case within
multiple contour or design configurations, which can be associated with different porous
devices for storage, heat exchange, or energy generation. In other configurations of operation,
design, or materials, other LEG mechanisms could dominate, such as hydraulic resistance
or viscous dissipation. In consequence, the present analysis focuses on studying a wide
range of operating configurations in order to guide future analyses aimed at devices in
particular, such as hydrogen reactors, TES, VSR, among others. Then Figure 5.12 shows the
computational results for 200 CFD cases under different boundary conditions and operating
configurations, ranging the porosity of the solid matrix from 0.2 to 0.8, and the solid-fluid inlet
temperature difference from 0 to 1000 K. These results could be useful for low-temperature
configurations as sensible thermal energy storages and for high-temperature differences as
VSR. NSgen compares the integrated LEG in the entire volume of heat transfer with viscous
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Figure 5.10: a) Mean axial temperature profile for porosities of 0.4 and 0.8; b) Longitudinal
LEG profile for porosities of 0.4 and 0.8. Both cases consider ReD = 400 and ∆Tin = 10 K.

and hydrodynamic resistances (Annex (A.5)).

Similarly to the results shown in the previous dimensionless analysis, inflection points
are recognized where the hydrodynamic effects are more relevant than the heat transfer
LEG mechanisms. The red line in Figure 5.12 remark that the points were NSgen is equal
to 1. It is interesting to note that the hydrodynamic LEG mechanisms are dominant in
several configurations, which is unexpected. Thus, Forchheimer’s effects are more relevant
under higher porous Reynolds regimes, and its influence decreases with porosity. Taking into
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Figure 5.11: Total LEG distribution for ReD = 400 and ∆Tin = 10 K, considering a) φ = 0.4,
and b) φ = 0.8.

account cases where the temperature difference is below 100 K (normal in TES operation),
the inflection points are ReD of 15, 100, 600, and 1000 for porosities of 0.2, 0.4, 0.6, and
0.8, respectively. These ranges of ∆T are commonly observed in sensible TES, where the
temperature differences between the solid and fluid phases are below 100 K, for charge
and discharge cycles. Consequently, at porosities below 0.4 the hydrodynamic resistance
is dominant in laminar and turbulent regimes (turbulent: ReD ≥ 300). On the other
hand, at porosities over 0.4 the hydrodynamic resistances are relevant only for turbulent
regimes. Therefore, since the design of thermal storage considers porosities of around 0.4,
it is necessary to consider the hydraulic resistance in the simulation and subsequent second
law analysis, to minimize the entropy generation. Analogously, for ∆T greater than 100 K,
the LEG mechanisms by heat transfer dominate under laminar and turbulent regimes for
porosities higher than 0.6. These configurations are usually observed on VSR systems where
the porosities are around 0.8 and the temperature differences on the inlet are close to 1000
K. Therefore, it is recommended to focus on minimizing LEG by heat transfer to optimize
the thermodynamic performance of the VSR.

The entropy generation as a figure of merit allows one to distinguish the weak points of
a particular design to focus efforts on the design task. Likewise, if the different generation
mechanisms are recognized, it is possible to make a detailed optimization of the design and the
operation conditions for systems of storage, generation, and transfer energy. Consequently,
Figure 5.13 shows the entropy generation integrated in the control volume for different
operating conditions in terms of the Reynolds number and the temperature difference at
the inlet of the porous channel. Although Figure 5.12 recognized some inflection points
where one mechanism of LEG may predominate over another, it is also important to account
for how much entropy is generated (associated irreversibilities) in each case. Thus, it is
possible to recognize critical cases and, in such cases, define which mechanism dominates the
LEG and in which zone it is located.
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Figure 5.12: Comparison factor for the volumetric heat transfer against the Forchheimer’s
hydrodynamic resistance effect over the LEG.

In Figure 5.13 the entropy rate reaches its maximum value of 825.18 W/K for a porosity
of 0.2, with a low variation related to the temperature difference at the entrance. This is due
to the high impact of the hydrodynamic resistance on the LEG rate, presented in Figure 5.12.
Likewise, the case of porosity of 0.2 shows the largest increase in entropy generation as the
Reynolds number increases, reaching an increase of 4 orders of magnitude. This is because
a lower porosity means a large area of solid obstructing the flow path. For a porosity of
0.4, a similar trend to the previous case is achieved from Reynolds numbers greater than
100 (inflection point for that porosity). A similar trend is observed at porosity of 0.4 where
the largest increase in the entropy generation is in the cases where the hydraulic resistance
dominates at Reynolds numbers greater than 100 (ReD ≥ 100). For Reynolds below 100, the
main increase of entropy generation is dominated by the temperature difference between both
media at the inlet, mainly associated with the sold-fluid volumetric heat transfer. Finally, for
porosities over 0.6 the total entropy generation in the volume does not increase significantly
with the Reynolds number. The entropy generation in this last range is strongly linked to
the temperature difference between both media.
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Figure 5.13: Total LEG rate integrated for the complete volume.
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Chapter 6

Conclusions

A study of the energy and entropy transport in porous media was developed. The analysis
considers Reynolds’ time-averaging and the spatial volume-averaging methods to develop an
entropy transport equation for fluid flow in a porous medium, under laminar to turbulent
regimes. A physical and mathematical methodology was proposed to determine the LEG from
the formulated thermo-physical local entropy transport model (Eq. 4.11). The methodology
was developed to determine the LEG rate as a post-process function from the velocity,
temperature, k, and ε fields, commonly resulting from regular CFD analysis. The proposed
methodology allows determining the LEG without solving an additional transport entropy
equation. Furthermore, a dimensionless analysis was developed in the LEG model to determine
the key dimensionless parameters that define the magnitude of each LEG mechanism recognized
in this study: LEG by conduction, volumetric heat transfer, hydrodynamic resistance, viscous
dissipation, and turbulent dissipation. Finally, a numerical experiment was developed to
study and compare the dominance of the different LEG mechanisms, considering different
configurations of inlet temperature, porosity, and flow regime. The results are proposed as a
starting point for future CFD entropy analysis applied to solar thermal sensible heat storage
systems, solar hydrogen generation reactors, and volumetric solar receivers, among others.

The LEG model allows studying the performance of a porous heat exchange device,
distinguishing different LEG mechanisms (or irreversibility sources), such as momentum
dissipation phenomena, porous hydraulic resistance, and heat transfer, in a single figure
of merit. Therefore, it is possible to measure the disadvantages related to the pressure
drop and viscous effects of a porous medium 〈ṡΦ〉v, and at the same time, determine the
benefits related to the large heat exchange area related to the porous matrix. Furthermore,
through the entropy concept, the most rational way to exchange thermal energy is recognized,
distinguishing the level of irreversibilities 〈ṡΘ〉v under different design and/or operation
restrictions.

The presented model defines a physico-mathematical expression for each LEG mechanism,
allowing to distinguish areas of significance where one mechanism may be more relevant than
another. Therefore, it is possible to establish different design and/or operation strategies in
terms of the type of LEG mechanism to be minimized. The proposed expression for the LEG
is a starting point for future optimization work on the design of porous devices to minimize
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the LEG or, in other words, its level of irreversibility.

The numerical experiment shows an analysis on a porous channel evaluated in 200 configurations
for its boundary conditions, where the Reynolds number varies from laminar to turbulent
regime, and the inlet temperature difference between the solid and porous phases varies
from 1 to 1000 K. From the numerical results in a porous channel, the LEG rate can
be dominated principally by volumetric heat transfer or hydrodynamic resistance entropy
generation mechanisms. Also, at a temperature difference of 100 K, inflection points are
observed. The inflection points establish the ReD where both principal LEG mechanisms have
equal significance in the global LEG rate. Inflection points are ReD of 15, 100, 600, and 1000
for porosities of 0.2, 0.4, 0.6, and 0.8, respectively. For porosities below 0.4 the hydrodynamic
resistance dominates in laminar and turbulent regimes (turbulent: ReD ≥ 300). Thus, it is
concluded that the mechanism of entropy generation associated with hydraulic resistance
is more significant for laminar and turbulent regimes in the design and optimization of
thermal storage systems, which usually coincide with porosities close to 0.4. Analogously,
for ∆T greater than 100 K, the LEG mechanism associated with volumetric heat transfer
dominates under laminar and turbulent regimes for porosities greater than 0.6. Therefore,
the entropy generation associated with the volumetric heat transfer LEG mechanism and its
spatial distribution dominates in the global LEG and, consequently, in the optimization and
design of high-temperature heat exchange systems such as VSR for CSP. It is usual for a
VSR to consider porosities around 0.8 and temperature differences at the inlet from 1000 K.

An analysis based on a LEG model allows to recognize and compare the impact of all
the irreversibility mechanisms in a single figure of merit, allowing to define the main focuses
in the optimization procedure, during the design of porous media systems. From the model
presented in this thesis, it is possible to localize spatially and define the dominant LEG
mechanism for different areas in a porous device. Thus, it is possible to define design strategies
in function of the different regions of the analysis and the restrictions of geometry and
operation.

In future research, the proposed LEG expression and dimensionless parameters could
be implemented to study more working fluids and porous media configurations (wire mesh,
wool, packed bed, ceramic foam, etc.), allowing to optimize novel applications on storage,
exchange, and generation of energy.

6.1 Future Work

The proposed theoretical model, the methodology, and its computational implementation
help direct some promising lines of research, as follows.

Regarding exergoeconomic analysis, the proposed simulation tool and methodology open
the possibility to extend the study of heat-exchanging porous devises to second-law analyses.
The LEG expression allows access to entropy minimization and exergetic analyses on the
design of a porous system for storage and exchange of energy. Currently, porous heat
exchangers have interesting applications in volumetric receives for CSP systems and packed
rock bed energy storage systems. However, the porous material, porosity, and geometry are
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still a matter for discussion.

Because of their large exchange area, porous media have promising potential in applications
for hydrogen and syngas production through inert porous media reactors. As in the previous
point, the contributions of this doctoral work open the door to analysis and optimization
through the minimization of entropy generation in reactors for hydrogen and syngas production.

Finally, the proposed expression for the LEG is a first step for the development of an
expression that considers mass exchanges and changes in chemical potential. The latter
could be a useful tool in the analysis and design of porous membrane desalination systems.
The analysis of the LEG allows to determine a design that better manages the energy used
for the generation of fresh water.
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California.

Worth, D. J., Spence, A., Crumpton, P. I., and Kolaczkowski, S. T. (1996). Radiative
exchange between square parallel channels in a concentric monolith structure. Int. J. Heat
Mass Transf., 39(7):1463–1474.

Wu, J. and Yu, B. (2007). A fractal resistance model for flow through porous media. Int. J.
Heat Mass Transf., 50(19):3925–3932.

Wu, Z., Caliot, C., Bai, F., Flamant, G., Wang, Z., Zhang, J., and Tian, C. (2010).
Experimental and numerical studies of the pressure drop in ceramic foams for volumetric
solar receiver applications. Appl. Energy, 87(2):504–513.

Wu, Z., Caliot, C., Flamant, G., and Wang, Z. (2011a). Coupled radiation and flow modeling
in ceramic foam volumetric solar air receivers. Solar Energy, 85(9):2374–2385.

Wu, Z., Caliot, C., Flamant, G., and Wang, Z. (2011b). Numerical simulation of convective
heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver
performances. Int. J. Heat Mass Transf., 54(7):1527–1537.

74



Xu, C., Song, Z., Chen, L.-d., and Zhen, Y. (2011). Numerical investigation on porous media
heat transfer in a solar tower receiver. Renewable Energy, 36(3):1138–1144.

Younis, L. B. and Viskanta, R. (1993). Experimental determination of the volumetric heat
transfer coefficient between stream of air and ceramic foam. Int. J. Heat Mass Transf.,
36(6):1425–1434.

75



Annex A

A.1 General energy equation
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where e is internal energy per unit of mass, σij the surface forces tensor, fj the mass forces
vector and qj net the heat flux.
Then, expanding and regrouping the left-hand side terms,
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Substituting the continuity equation in the first and second parentheses in Equation A.4.
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Thus, including Equation A.6 in Equation A.1,
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A.2 Spatial-averaging method on momentum equation

Multiplying for uj and applying the spatial-averaging method over the momentum transport
equation, the relation used in Equation (11) is determined as follows:
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A.3 Energy and entropy relation from Gibbs’ equation

From the Gibbs equation Cantwell (2022).
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A.4 Spatial-averaged transport equations for NTE porous

media

A.4.1 Continuity and momentum equations
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where ρf is the fluid density, ū the time-averaged velocity, u
′

the velocity time-fluctuation
term, φ the porosity, P̄ the time-averaged fluid pressure and µ fluid viscosity.

The last two terms in Eq. A.16 derive from the expressions (2.5) and (2.6) applied to both
surface force terms, pressure, and viscous shear stress. They represent the interaction between
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the fluid with the solid matrix as a drag force. Commonly are defined as Darcy–Forchheimer
terms Pedras and de Lemos (2001), as follows:

R̄ = φ

(
µf
k1

uD +
ρf
k2

|uD|uD
)

(A.17)

The last two in Equation (A.17) are determined experimentally, considering the Darcian
velocity uD = φui, where k1 and k2 are correlation constants.

A.4.2 Energy equation

The energy equation is split into two parts to consider NTE de Lemos (2012) between both
phases (fluid and solid).
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where cp is the specific heat, λ the thermal conductivity, T̄ is time-averaged temperature, T
′

the temperature fluctuation in time term, and the subscripts f and s are related to fluid and
solid phases, respectively.

A.5 Comparison factor NSgen

NSgen compares the integrated LEG on the entire volume of heat transfer against the viscous
and hydrodynamic resistances.

NSgen =
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)
d

A´
C,

A

(〈
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where
〈
ṡΘ,C̄

〉v
is the LEG rate by the conductive heat transfer related to the time-average

fluid temperature, 〈ṡΘ,C′〉v is the LEG rate due to the conductive heat transfer associated
with the fluid temperature fluctuations. The last term ṡΘ,v is the entropy generation rate,
due the volumetric heat transfer between the solid and fluid phases,

〈
ṡΦ,D̄

〉v
is the LEG rate

due to viscous dissipation related to the time-average velocity, 〈ṡΦ,D′〉v is the LEG rate by
viscous dissipation regarded to the fluid velocity time fluctuations, and ṡΦ,DF is the LEG
rate associated to Darcy-Forchheimer’s hydrodynamic resistance due to the presence of the
solid matrix against the flow.
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