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RESUMEN DE LA TESIS PARA OPTAR

AL GRADO DE DOCTOR EN INGENIERÍA

ELECTRICA

POR: Felipe Ignacio Inostroza Ferrari

FECHA: 2023

PROF. GUÍA: Martin Adams

Estad́ısticas de detección y conjuntos aleatorios finitos en la
construcción de mapas y localización simultánea

El uso de conjuntos aleatorios finitos (RFS) en la construcción de mapas y localización si-

multánea (SLAM) permite incorporar estad́ısticas de detección y evitar las heuŕısticas de manejo

del mapa y asociación de datos, incluyendo estos problemas en la estimación Bayesiana. Esta

tesis tiene dos objetivos: Incluir modelos de estad́ısticas de detección más precisos y modelos

de descriptores en algoritmos de SLAM basadas en RFS, e introducir un algoritmo de SLAM

basado en RFS que utilice un enfoque de optimización. El primero se cumple modelando las

estad́ısticas de detección y un descriptor de un detector de ćırculos para LIDAR 2D. Estos

modelos se aplican a Rao-Blackwellized (RB)-probability hypothesis density (PHD)-SLAM y

multiple hypothesis (MH)-factored solution to SLAM (FastSLAM), ambos algoritmos muestran

mejor desempeño al usar los modelos propuestos. El segundo objetivo se cumple al proponer

una distribución h́ıbrida conjunto-vector, que se usa para proponer un algoritmo de SLAM que

aprovecha el enfoque de optimización. Resultados de simulación y usando datos públicos de

cámaras estéreo muestran un desempeño competitivo con los algoritmos del estado del arte,

mientras que resuelven el problema de asociación de datos usando el teorema de Bayes.

i



RESUMEN DE LA TESIS PARA OPTAR

AL GRADO DE DOCTOR EN INGENIERÍA

ELECTRICA

POR: Felipe Ignacio Inostroza Ferrari

FECHA: 2023

PROF. GUÍA: Martin Adams

Detection Statistics & Random Finite Sets in Simultaneous
Localization and Mapping

The use of random finite sets (RFSs) in simultaneous localization and mapping (SLAM)

enables the incorporation of detection and clutter statistics and the circumvention of data asso-

ciation and map management heuristics by including these problems in the Bayesian estimation.

The goal of this thesis is twofold: To include more accurate models of detection statistics, as well

as descriptor information, into existing RFS-based and vector-based SLAM algorithms. And

to introduce a batch estimation RFS-based SLAM algorithm. Modeling detection statistics

and a descriptor for a 2D lidar-based circle detector achieved the former goal. These mod-

els are applied to Rao-Blackwellized (RB)-probability hypothesis density (PHD)-SLAM and

multiple hypothesis (MH)-factored solution to SLAM (FastSLAM), and both methods show

improved performance when using the models. The latter goal was achieved by introducing a

joint vector-set distribution, which is used to introduce a SLAM algorithm that takes advan-

tage of the state-of-the-art least squares approach to SLAM. Results on both simulated data

and publicly available stereo-vision data show performance on par with state-of-the-art solutions

while jointly solving the data association problem and the state estimation problem using Bayes

theorem.
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Chapter 1

Introduction

1.1 Motivation

Random finite set (RFS)-based filters have been shown to outperform traditional vector-based

filters when exposed to a significant amount of clutter measurements (i.e., false alarms), both

in target tracking and simultaneous localization and mapping (SLAM) applications. However,

the probability hypothesis density (PHD) filter, which was the only RFS-based method that

had been applied to SLAM using experimental data at the time of starting this thesis, has

been described as having “poor memory”; i.e., it tends to discard old information in favor of

new measurements [1]. It has also been found to have lower performance than vector-based

filters under low amounts of clutter in SLAM applications. Some of the methods that attempt

to solve the problems of the PHD filter are the cardinalized PHD (CPHD) and cardinality-

balanced multi-target multi-Bernoulli (CB-MemBer) filters, and more recently the labelled multi

Bernoulli (LMB) and Generalized Labeled Multi Bernoulli (GLMB) filters[1, 2, 3, 4]. The LMB

has been adapted to SLAM and has been shown to outperform PHD-SLAM in simulation [5].

Concurrently with the development of RFS-based filters in the tracking community, the

robotics SLAM community has moved away from filtering-based solutions to the batch esti-

mation approach, which uses non-linear optimization methods to obtain either a Maximum

Likelihood (ML) or a Maximum a posteriori (MAP) solution [6, 7]. Such methods include

graphSLAM [8], iSAM [9] and iSAM2 [6]. These algorithms, which are usually based on non-

linear least squares optimization, provide more accurate solutions over larger datasets than their

filtering counterparts. These methods rely on external routines to perform data association and

map management, usually based on either maximum likelihood or place recognition algorithms.

The RFS formulation of the problem in this form complicates the optimization process con-

siderably, even when assuming a known number of landmarks. Developing an effective batch
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estimation algorithm using RFSs that includes detection statistics is a primary objective of this

thesis.

The facts presented above provide a compelling reason to derive batch RFS-based SLAM

algorithms, which should result in a superior performance both for large datasets and under

high clutter.

1.2 Problem definition

In this thesis, the SLAM problem will be addressed. Also, the method for extracting detection

statistics proposed during the student’s Master’s thesis [10] will be extended and complemented

with descriptor information. Additionally, a way of calculating detection statistics for visual

Keypoints, for which ground truth information is not available, will be presented. Further, RFS

theory will be used to include data association and map management into the batch estimation

objective function. In summary, the contributions of this thesis are:

• A demonstration of the importance of including detection statistics into current RFS-based

SLAM algorithms.

• The introduction of a new batch SLAM estimation algorithm based on RFS theory.

• The application of this new RFS batch estimation algorithm to visual keypoint data, for

which ground truth information cannot be obtained.

A brief introduction of the SLAM problem now follows.

1.2.1 SLAM Process and Measurement Model Dynamics

SLAM is a state estimation problem, in which the best estimate of the robot trajectory and map

feature positions is sought over time, using all sensor measurements. In general, the underlying

stochastic system representing the robot’s pose component of SLAM using non-linear discrete-

time equations, is represented as:

xk = g(xk−1,uk, δk) (1.1)

zik = h(xk,m
j
k, εk) , (1.2)

where:

• xk represents the robot pose (spatial coordinates and orientation) at time-step k,

• g is the robot motion model,
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• uk is the the odometry measurement at time-step k,

• δk is the process noise at time-step k,

• zik is the i-th measurement vector at time-step k,

• h is the sensor-specific measurement model relating measurement and state in the spatial

domain,

• mj
k is a random vector for the position of landmark j,

• εk is the spatial measurement noise

Traditional vector-based approaches to SLAM concatenate random state vectors that model

the robot and landmarks, in a single vector that is used for the estimation process:

M k ≡
[
m1

k
>
m2

k
> · · · mm

k
>
]>

. (1.3)

Similarly, multiple measurements, corresponding to feature detections are also concatenated as:

zk ≡
[
z1
k
>
z2
k
> · · · znk>

]>
. (1.4)

Furthermore, the generally complex data association problem needs to be solved so that measure-

ment i and feature j correspond to the same landmark linked by the vector-based measurement

model

zik ∼ h(·|mj
k,xk) , (1.5)

which incorporates the spatial noise εk implicitly.

Within the RFS approach, the observed landmarks up to and including time-step k, are

defined as

Mk ≡ {m1
k,m

2
k, ...,m

m
k } , (1.6)

where the number of landmarks, |Mk| = m, is also a random variable. In general, the landmark

from which a measurement is generated is unknown. Furthermore, there is a probability of

detection, PD, associated with every landmark, implying that it may be undetected with proba-

bility 1−PD. Measurements may also be generated from sensor noise or objects of non-interest

(clutter), with assumed known distributions. The set of all n measurements at time-step k is

defined as

Zk ≡ {z1
k, z

2
k, ...,z

n
k} , (1.7)
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where |Zk| = n is a random variable. One could question why the use of RFSs to model the

map is necesary, when traditionally the map is considered static and therefore the map size

is fixed. However, in the SLAM definition even though the map can be assumed static it is

unknown. In a manner similar to the way in which the uncertainty in the landmark positions

should be represented via a distribution, even though they are assumed static, the uncertainty

in the size of the map also needs to be modeled even though the map size does not change.

RFS distributions jointly model the uncertainty both in the map size and spatial uncertainty

in the map elements, ie. the landmarks. In addition to this, map elements coming into the FoV

of the robot for the first time can be modeled as new map elements being born. With these

definitions, a new, set-based, measurement model can be defined:

Zk ≡ H(xk,Mk, εk) ∪ Ek , (1.8)

where Ek represents the clutter and εk represents the spatial noise of the measurements. Using

a probabilistic framework and a filtering approach, the probability density functions (PDFs)

p
(
x0:k,Mk

∣∣∣Z0:k,u1:k

)
, (1.9)

p
(
x0:k,Mk

∣∣∣Z0:k,u1:k

)
(1.10)

are sought by RFS and vector approaches respectively. In both cases, the estimates are made

relative to the initial robot’s pose, at each time step.

1.3 Hypotheses

• The modeling and incorporation of detection statistics into the SLAM problem can im-

prove the performance of SLAM algorithms.

• An RFS formulation of the batch (non-filtering) estimation SLAM problem is possible and

can be used to solve map management and data association using Bayes theorem, instead

of heuristic-based methods.

• Useful detection statistics can be obtained for non-semantic features, for example, Oriented

FAST Rotated Brief (ORB) or scale-invariant feature transform (SIFT) features, allowing

the use of RFS-based methods, even if the detection statistics are not physically meaningful

from a human perspective.
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1.4 Objectives

1.4.1 General Objective

The general objective of this Ph.D. thesis is to propose modified SLAM algorithms, which

account for detection statistical models and descriptor models, resulting in improved SLAM

performance, and to derive the first batch RFS-based solution to SLAM.

1.4.2 Specific Objectives

In particular, the specific objectives are:

• to further develop the application of detection statistics with particle filter-based SLAM,

presented during the Master’s thesis, to also include descriptor likelihoods;

• to compare the performance of filter-based SLAM systems with and without the models

for detection statistics and descriptor likelihoods;

• to propose an RFS-based batch estimation (i.e., smoothing) SLAM algorithm;

• to compare the performance of the proposed batch estimation SLAM algorithm, which

does not require external data association routines, with methods which are given the

correct data association and methods which use heuristic data association decisions. This

comparison is carried out in simulation;

• to adapt the batch RFS-SLAM algorithm to use real stereo visual data;

• to compare the performance of the proposed batch estimation SLAM algorithm with state-

of-the-art algorithms, using a publicly available stereo visual dataset.

1.5 Thesis structure

This thesis is structured as follows.

• Chapter 2 presents a review of the state-of-the-art in SLAM, both vector-based and using

RFS.

• Chapter 3 explains the importance of including detection statistics in SLAM and intro-

duces the concepts for using RFSs in batch SLAM

• Chapter 4 explains the work carried out and advances made in filter-based RFS-SLAM.
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• Chapter 5 introduces a batch SLAM concept based on general optimization methods.

• Chapter 6 proposes a new batch SLAM concept based on a hydrid vector-set distribution,

with extensive simulations and real results.

• Chapter 7 presents the conclusions and possible avenues of future research.

• Annex A presents a list of publications by the author related to this thesis.
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Chapter 2

Literature review

2.1 Introduction

This chapter presents the concepts of random finite sets (RFSs) and then introduces the state

of the art in SLAM methods, both RFS-based and vector-based.

2.2 Random Finite Sets

Traditional Bayesian state estimation has previously focused on vector states. In this paradigm,

the problem is presented as having a prior distribution for the state vector x:

x ∼ p(x) , (2.1)

and the user is provided with a measurement vector z and its corresponding measurement

model:

z ∼ g(z|x) . (2.2)

Using both of these and Bayes Theorem, the posterior is obtained as

p(x|z) =
p(x)g(z|x)

p(z)
. (2.3)

To apply this theorem when either the size of the state vector or data association are unknown,

heuristics with varying degrees of rigor are usually applied. In fact,in the case of random vectors,

Bayes theorem can only be strictly applied when the dimension of the measurement and state

vectors, and the data association are known. When this is not the case, map management
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heuristics are required to associate the state vector elements with the corresponding elements

in the measurement vector, so that Bayes theorem can be applied to the model with assumed

known data association.

Mahler [1] proposed a new paradigm for Bayesian estimation in these cases, by replacing

the state vector x with an RFS X. In this context, it is natural to think of the size of the set

as a random variable. Also, by having no particular order, sets are well suited to handle the

data association rigorously. To solve this problem, Mahler [1] introduced new tools to allow the

propagation of random sets through the Bayes theorem, called Finite Set Statistics. By using

these concepts a variety of new filters have been introduced based on various assumptions.

These include the PHD, the CPHD [1], CB-MemBer [2], the LMB [11], and GLMB [12] filters.

2.2.1 Probability Hypothesis Density filter

In this section, a simplified version of the PHD filter will be introduced. In the PHD filter

the state is assumed to be a Poisson RFS. This means that the elements are independent and

identically distributed and that the cardinality of the set follows a Poisson distribution:

|X| = r ∼ λr

r!
e−λ , (2.4)

where r is the cardinality of the set X and λ corresponds to both the mean and variance of the

distribution. The distribution of the set can then be modeled by its first moment vk(m), called

its intensity or PHD. This intensity function is similar to a probability distribution but, instead

of integrating to unity, it integrates to the mean of the number of randomly varying elements

within the set.

Using this intensity, the PHD filter’s prediction equation propagates the intensity through

time:

v−k (m) =

∫
ps,k(χ)fk|k−1(m|χ)v+

k−1(χ)dχ

+

∫
βk|k−1(m|χ)v+

k−1(χ)dχ+ vbk(m) , (2.5)

where:

• v+
k−1(m) is the intensity of features at m at time k− 1 given all measurements up to time

k − 1,

• v−k (m) is the intensity of features at m at time k given all measurements up to time k−1,

• ps,k(χ) is the probability of a feature at state χ to survive to time k,
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• fk|k−1(m|χ) is the state transition density from state χ to state m,

• βk|k−1(m|χ) is the probability that a feature at state χ will spawn another feature at m,

• vbk(m) is the intensity of the set of new features that might appear at m.

In SLAM, however, features are usually considered to be static, permanent, and incapable of

spawning new features, so the prediction equation simplifies to:

v−k (m) = v+
k−1(m) + vbk(m) . (2.6)

The measurement set, Z, is distributed according to a multi-target measurement model, in

which each element, m, in the state set X generates a measurement with probability PD(m) and

generates no measurement with probability (1 − PD(m)). Clutter measurements are modeled

as a Poisson RFS with given (known) intensity function κ(zi). Therefore, the measurement set

Z is the union of the detection and the clutter sets. Using these assumptions, the PHD update

equation

v+
k (m) = v−k (m)


1− PD(m) +

|Zk|∑

i=1

PD(m)h(zi|m)

κ(zi) +
∫
PD(m′)h(zi|m′)v−k (m′)dm′


 (2.7)

is derived in [1]. In Equation (2.7), κ(zi) is the intensity of the false alarm set at the position

where measurement zi was obtained. In this update equation, v−k (m)(1 − PD(m)) represents

the possibility that features were misdetected while the second term represents detections. To

implement this update equation the intensity can be represented either using sequential Monte-

Carlo methods or a Gaussian mixture (GM) [1]. Sequential Monte Carlo methods have the

advantage of being able to deal with highly non-linear measurement models while the GM-

based implementation has a considerably reduced computational complexity, but is only able

to deal with mildly non-linear measurement models (by using the Extended Kalman Filter

to update means and covariances of each Gaussian Component). Because of the potentially

large size of the SLAM state, which can range from hundreds to millions of features, only the

GM-based solution will be used in this thesis.

2.2.2 The CB-MemBer filter

This section will show the main steps of the cardinality-balanced multi-target multi-Bernoulli

(CB-MemBer) filter as introduced by Vo et. al. in [2]. The CB-MemBer filter models the map

using a multi-Bernoulli RFS. A multi-Bernoulli RFS is defined as the union of Nk Bernoulli

RFSs, where each Bernoulli RFS i has a probability 1−rik of being empty and a probability rik of
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being a singleton m with probability distribution pik(m). The multi-Bernoulli RFS for the map

Mk−1 is then represented by its Nk−1 probabilities of existence rik−1 and spatial distributions

pik−1(m):

Mk−1 =
{(
rik−1, p

i
k−1(m)

)}Nk−1

i=1
. (2.8)

The predicted map at time k for the CB-MemBer filter is then:

Mk|k−1 =
{(
rik−1, p

i
k−1(m)

)}Nk−1

i=1
∪
{(
riB,k|k−1, p

i
B,k|k−1(m)

)}NB,k−1

i=1
, (2.9)

where
{(
riB,k|k−1, p

i
B,k|k−1(m)

)}NB,k−1

i=1
are the parameters of the multi-Bernoulli RFS of new

targets appearing at time k (i.e. the RFS of births). The update step can then be written as:

Mk =
{(
riL,k, p

i
L,k(m)

)}Nk|k−1

i=1
∪
{(
riU,k|k−1, p

i
U,k|k−1(m)

)}|Zk|
i=1

, (2.10)

where

riL,k = rik|k−1

1−
∫
pik|k−1(m)PD(m|xk)dm

1− rik|k−1

∫
pik|k−1(m)PD(m|xk)dm

, (2.11)

piL,k(m) = pik|k−1(m)
1− PD(m|xk)

1−
∫
pik|k−1(m′)PD(m′|xk)dm′

, (2.12)

riU,k|k−1 =

∑Nk|k−1

i=1

ri
k|k−1

(1−ri
k|k−1

)
∫
pi
k|k−1

(m)h(zik|m,xk)PD(m|xk)dm(
1−ri

k|k−1

∫
pi
k|k−1

(m)PD(m|xk)dm
)2

κ(zik|xk) +
∑Nk|k−1

i=1

ri
k|k−1

∫
pi
k|k−1

(m)h(zik|m,xk)PD(m|xk)dm

1−ri
k|k−1

∫
pi
k|k−1

(m)PD(m|xk)dm

, (2.13)

piU,k|k−1(m) =

∑Nk|k−1

i=1

ri
k|k−1

1−ri
k|k−1

pik|k−1(m)h(zik|m,xk)PD(m|xk)
∑Nk|k−1

i=1

ri
k|k−1

1−ri
k|k−1

∫
pik|k−1(m′)h(zik|m′,xk)PD(m′|xk)dm′

. (2.14)

Using these equations the CB-MemBer filter can then be implemented using either a Gaussian

mixture or a particle filter to approximate the spatial distributions p(m).

2.2.3 The labelled multi Bernoulli (LMB) filter

Recently, Reuter et. al. [11] introduced a new filter based on multi-Bernoulli RFSs by adding

unique track labels. The addition of labels allows for an exact estimate of the first posterior

moment, as opposed to the approximate estimate provided by the CB-MemBer, which assumes

a high signal-to-noise ratio.

The LMB filter uses a LMB RFS to model the map. A LMB RFS is a modified multi-
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Bernoulli RFS in which every Bernoulli component has a unique label l ∈ L and can be similarly

described by its parameters

Mk|k−1 = {(rk−1(l), πk−1(m, l))}l∈L . (2.15)

Analogous to Equation 2.9, the predicted map at time k can be written as:

Mk|k−1 = {(rk−1(l), πk−1(m, l))}l∈L ∪
{(
rB,k|k−1(l), πB,k|k−1(m, l)

)}
l∈B , (2.16)

Mk|k−1 =
{(
rk|k−1(l), πk|k−1(m, l)

)}
l∈L+ , (2.17)

where B is the label space of the new (birth) map features appearing at time k, and L+ = L∪B.

The updated LMB RFS can then be approximated as:

Mk = {(rk(l), πk(m, l))}l∈L+ , (2.18)

(2.19)

where

rk(l) =
∑

(I+,θ)∈F (L+)×ΘI+

ω(I+,θ)(Zk)1I+(l) , (2.20)

πk(m, l) =
1

rk(l)

∑

(I+,θ)∈F (L+)×ΘI+

ω(I+,θ)(Zk)1I+(l)πθ(m, l|Zk) , (2.21)

ω(I+,θ)(Zk) ∝ ω+(I+)
∏

l∈I+

∫

m

πk|k−1(m, l)ψZk(m, l, θ)dm , (2.22)

ψZk(m, l, θ) =





PD(m|xk)h(z
θ(l)
k |m,xk)

κ(z
θ(l)
k |xk)

if θ(l) > 0

1− PD(m|xk) if θ(l) = 0
, (2.23)

ω+(I+) =
∏

j∈L+

(
1− rk|k−1(j)

) ∏

l∈I+

1L+(l)rk|k−1(l)

1− rk|k−1(l)
, (2.24)

where F (L+) is the space of all finite subsets of L+, and ΘI+ is the space of all associations θ :

I+ → {0, 1, ..., |Zk|}, such that θ(l) = j > 0 means that label l is associated with measurement

zjk, and θ(l) = 0 means that label l is not associated (missed detection).

2.2.4 The GLMB filter

Vo and Vo [4, 12] introduced a new labeled RFS distribution, namely the GLMB distribution,

which is a conjugate prior when using the standard multitarget tracking measurement models.
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With this model as a prior and the multitarget RFS sensor model, the posterior also has the

form of a GLMB distribution.

The GLMB distribution π(M) is a density over a labeled set M, with label space L and

state space M

π(M) = ∆(M)
∑

c∈C
wc(L(M)) [πc]M , (2.25)

where [πc]M is the set exponent, defined as

[f ]X =
∏

x∈X
f(x) , (2.26)

for any function f(·) and set X, C is a discrete index set, ∆(M) is the distinct label indicator,

defined as

∆(M) = δ|M|(|L(M)|) =





1 for no repeated labels in M
0 else ,

(2.27)

which is zero if there are any repeated labels in the setM, and unity otherwise. wc(L) satisfies

∑

L⊆L

∑

c∈C
wc(L) = 1 , (2.28)

∫
πc(m, l) = 1 . (2.29)

In [12] the GLMB filter is introduced and the corresponding GLMB distribution is shown

to be a conjugate prior when using the labeled RFS sensor model. To prove this the GLMB

distribution from (2.25) is written in a special form to help with the implementation, called the

δ Generalized Labeled Multi Bernoulli (δ-GLMB)

π(M) = ∆(M)
∑

(I,c)∈F(L)×C
w(I,c)δI(L(M))

∏

m,l∈M
πc(m, l) , (2.30)

where δI(L(M)) is the set-valued Kronecker delta which discards all sets M whose labels are

not equal to I, w(c,I) is a real-valued weight, and F(L) is the set of all possible subsets of the

label space L.

The δ-GLMB prediction is then shown to be

π+(M+) = ∆(M+)
∑

(I+,c)∈F(L+)×C
w

(I+,c)
+ δI+(L(M+))

∏

m,l∈M+

πc+(m, l) , (2.31)
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where

w
(I+,c)
+ = wcS(I ∩ L)wB(I+ ∩ B) , (2.32)

wcS(L) = [ηcS]L
∑

I⊇L
[1− ηcS]I−Lw(I,c) , (2.33)

ηcS(l) = 〈pS(·, l), πc(·, l)〉 , (2.34)

πc+(m, l) = 1L(l)pS(m, l) + 1B(l)pB(m, l) , (2.35)

pS(m, l) =
〈pS(·, l)f(m|·, l), πc(·, l)〉

ηcS(l)
, (2.36)

where f(m+|m, l) is the transition density from statem tom+ for surviving elements, pS(m, l)

is the survival probability, pB(m, l) is the birth spatial distribution and wB(·) are the birth

weights. Note that because in this thesis the set-valued variable to be estimated is the map

M, which is assumed static, then these equations are not necessary and the prediction merely

becomes

π+(M+) = π(M) . (2.37)

The δ-GLMB update is then

π(M|Z) = ∆(M)
∑

(I,c)∈F(L)×C

∑

θ∈Θ(I)

w(I,c,θ)(Z)δI(L(M))
[
π(c,θ)(·|Z)

]M
, (2.38)

where Θ(I) is the space of possible associations with domain I, i.e. with existing labels I, and

w(I,c,θ)(Z) ∝ w(I,c)
[
η

(c,θ)
Z

]I
, (2.39)

η
(c,θ)
Z (l) = 〈πc(·, l), ψZ(·, l; θ)〉 , (2.40)

π(c,θ)(m, l|Z) =
π(c)(m, l)ψZ(·, l; θ)

η
(c,θ)
Z (l)

, (2.41)

ψZ(m, l; θ) =





PD(m, l)p
(
zaθ(j)

∣∣∣m
)

κ(zaθ(j))
if (m, l) ∈MAθ

1− PD(m, l) otherwise ,

(2.42)

where zaθ(j) is the measurement associated to map label l according to θ, MAθ is the subset of

M that has been associated to a measurement according to θ.
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2.3 Simultaneous Localization and Mapping

The SLAM problem is one of the fundamental problems in autonomous navigation and has

been considered by some to be the “Holy Grail” of mobile robotics [13]. A robot equipped

with exteroceptive sensors (and optionally proprioceptive) is tasked with estimating a map of

its environment as it transverses it, while concurrently estimating its pose within that map.

During the last two decades, remarkable progress has been made on this problem and this

section reviews the SLAM problem and some of the most important advances.

2.3.1 Observability of SLAM

The first question that should be asked after formulating the SLAM problem is whether it is

actually solvable. In control theory, observability is defined as the ability to estimate the state of

a system from its inputs and outputs. In 2001, Dissanayake, Newman, Clark, Durrant-Whyte,

and Csorba [13] provided a solution to the linear version of the SLAM problem, with known

initial pose, and proved its convergence. This implies that the problem is observable. However,

the observability of the linear version of the problem, cannot be applied to the real SLAM

definition, which is highly non-linear. In 2006, Lee, Wijesoma, and Ibanez Guzman [14] showed

that the two-dimensional non-linear version of SLAM with range bearing measurements and

unknown initial robot pose, is observable only if at least two landmarks have known positions.

Wang and Dissanayake [15] used Fisher’s linear discriminant to show a general way to calculate

the observability of different non-linear SLAM formulations. They used their method to confirm

the results in [14] and show that the solution to two-dimensional SLAM, with known initial

pose and a range bearing measurement model, is observable without the need for known feature

positions.

It is important to note that all the results on the observability of SLAM have been obtained

using the vector-based formulation of SLAM, with known feature number and data association.

Therefore these results cannot be directly applied to the set-based definition of the SLAM

problem.

2.3.2 Vector-based SLAM

Dissanayake, Newman, Clark, Durrant-Whyte, and Csorba [13] introduced a solution based on

the extended Kalman filter (EKF), EKF-SLAM, given known target number and data asso-

ciation. In the case of linear measurement and robot motion models (i.e., the Kalman filter

(KF)) they proved that it will converge monotonically to the correct solution, for both the map

estimate and robot trajectory. The complexity of this algorithm is O(|z| |m|2), where |z| and
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|m| are the number of measurements and number of landmarks respectively.

Thrun, Liu, Koller, Ng, Ghahramani, and Durrant-Whyte [16] introduced a solution to

SLAM by modifying the dual of the EKF, called the extended information filter (EIF). In EIF-

SLAM instead of representing the posterior using its mean µ and covariance Σ it is represented

using the information matrix H and information vector b, defined as:

H ≡ Σ−1 (2.43)

b ≡ µTH . (2.44)

In [16], the authors showed that the solution to EIF-SLAM in this form is naturally sparse.

By enforcing this sparseness the authors reduced the complexity of both the prediction and the

update steps to constant time. This considers the addition of a single measurement at a time,

making the complexity of the algorithm O(|Z|). However, significant computation is required

to recover the mean and covariance from the information matrix and vector. It was shown that

this new sparse EIF (SEIF) is more likely to become inconsistent (i.e. overconfident) than its

non-sparse counterpart, but this did not seem to impact the results of the experiments.

Montemerlo, Thrun, Koller, Wegbreit, et al. [17] introduced a Rao-Blackwellized (RB)-

particle filter (PF) solution to SLAM, called a factored solution to SLAM (FastSLAM), by

factoring the Bayes posterior into:

p
(
x0:k,Mk

∣∣∣Zk,u0:k

)
= p

(
x0:k

∣∣∣Zk,u0:k

)
p
(
Mk

∣∣∣x0:k, Zk,u0:k

)
(2.45)

= p
(
x0:k

∣∣∣Zk,u0:k

) |Mk|∏

i=0

p
(
mi

∣∣∣x0:k, Zk,u0:k

)
. (2.46)

This implies that landmarks in the map are conditionally independent given the robot’s tra-

jectory. Therefore, instead of using a single EKF with a state vector of dimension |Mk|, each

particle uses a collection of |Mk| fixed dimension EKFs to track individual landmarks separately.

To do this the full trajectory has to be estimated, for which a particle filter is used. Finally,

by storing the features in a K-D Tree they managed to reduce the computational complexity of

the algorithm to O(|Zk| log(|Mk|))
Montemerlo, Thrun, Koller, and Wegbreit [18] proposed an improved version of FastSLAM,

called FastSLAM 2.0, in which the measurements are included in the proposal distribution of

the particle filter. This allows for more efficient use of the particles, permitting either the use

of a reduced number of particles or the potential closure of longer loops.

Nieto, Guivant, Nebot, and Thrun [19] introduced a different modification to the FastSLAM

algorithm by applying the Multiple Hypothesis Tracking concepts to deal with the data associ-
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ation problem in SLAM. Multiple Hypothesis Tracking is a deferred decision strategy in which

multiple data association hypotheses are kept in anticipation that future measurements will

disambiguate the data association uncertainty. In this algorithm, called multiple hypothesis

(MH)-FastSLAM, when a particle determines that multiple hypotheses are possible it splits

into several particles with identical pose values to its parent, one representing each possible

data association, including a new feature and false alarm hypotheses. After this, the regular

weighting and re-sampling of particles are expected to resolve the uncertainty at a future time.

Thrun and Montemerlo [20] proposed a different strategy to solve the SLAM problem, called

graph SLAM. This is also referred to in the literature as batch estimation and bundle adjustment

from computer vision. Graph SLAM consists of progressively building a graph of soft constraints

(referred to in [20] as information constraints). In this graph each measurement zik introduces

a constraint between the landmark it represents and the robot’s pose at time k, xk:

fk(z
i
k,xk) ≡ (zik − h(xk,m

j(i)
k ))>Q−1

k (zik − h(xk,m
j(i)
k )) , (2.47)

where Qk is the covariance of the measurement model, which is assumed to have additive

Gaussian noise. Similarly, each movement of the robot introduces a constraint between two

contiguous poses of the robot xk and xk−1:

gk(xk,xk−1) ≡ (xk − g(uk−1,xk−1))>R−1
k (xk − g(uk−1,xk−1)) , (2.48)

whereRk is the covariance of the motion model, which is also assumed to have additive Gaussian

noise. Using this graph the solution is obtained by minimizing the cost function (2.49).

min
x0:k

(
x>0 Ω0x0 +

∑

k

∑

i

fk(z
i
k,xk) +

∑

k

gk(xk,xk−1)

)
, (2.49)

where x0 is the initial pose of the robot and the x>0 Ω0x0 term is called an anchoring constraint,

where Ω0 should be a positive definite matrix, and it anchors the absolute coordinates of the

map by locking the first pose of the trajectory to [0, 0, 0], or some other known pose. The

minimization problem can be solved in many ways, but in the paper, it was solved by linearising

it and solving it in the information space. Then, not only the mode is recovered but also its

associated covariance.

Kümmerle, Grisetti, Strasdat, Konolige, and Burgard [21] introduced a library, named g2o,

to solve general least squares optimization such as the one introduced above. In this library,
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the optimization function is simplified as (2.50).

F (x) =
∑

<i,j>∈C
e(xi,xj, zij)

ᵀΩije(xi,xj, zij) (2.50a)

x∗ = arg min
x
F (x) (2.50b)

where C is the set of measurements, in which measurement zij relates state variable xi to xj.

e(xi,xj, zij) is the error function and Ωij is the information matrix. In this formulation, both

odometry measurements, as well as landmark measurements, simply relate different states to

each other. g2o utilizes the sparse structure of this function, particularly the sparse structure

of the hessian matrix of F (x), to efficiently solve the optimization function. For this, it uses

sparse linear solvers and non-linear optimization algorithms, both of which can be selected.

Further, it is capable of using the special structure of the landmarks in SLAM, which do not

have measurements that relate them to each other to increase the efficiency of the solver.

Kaess, Ranganathan, and Dellaert [9] introduced incremental Smoothing and Mapping

(iSAM) which solves SLAM using a special structure, called a Bayes tree which enables iSAM

to solve the optimization formulation in an incremental fashion. The Bayes tree formulation is

equivalent to the Cholesky square root of the Hessian matrix. This allows the solver to partially

use the previous solution to incrementally solve the next optimization when adding new poses

and measurements to the optimization problem. iSAM2 [6] is a follow-up to iSAM and it uses

the Bayes tree representation while checking dynamically whether the linearization point of each

measurement needs to be updated. Additionally, it reorders the variables in the estimate to

reduce the fill-in of the Cholesky decomposition.

Mur-Artal, Montiel, and Tardós [22] proposed a complete monocular visual SLAM solution,

using g2o [21] as a backend and the ORB keypoint detector and descriptor pair [23] as is basis. In

this system ORB keypoints are extracted on each image and are matched with each other using

their descriptors. Importantly this system uses three separate threads to accomplish real-time

robust performance, Tracking, Local Mapping, and Loop Closing. In the Tracking thread only

the latest camera pose is estimated using the set of already estimated keypoints as a known map.

This thread is capable of running at the camera framerate, providing a real-time estimation of

the current camera pose. The Tracking thread decides on whether the current frame should

be a Keyframe and therefore be optimized as a part of the trajectory, based on how many of

the detections in the current frame are seen by Keyframes already in the trajectory estimate,.

The Local Mapping thread inserts the Keyframes given by Tracking into the g2o optimizer and

performs the map management, i.e. creating new Keypoints and removing existing Keypoints

from the map, while it runs a limited trajectory optimization only optimizing the last keyframe

and the other Keyframes connected to it through the spanning tree. The Loop Closing thread
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takes the latest Keyframe from the Local Mapping thread and tries to detect loop closures

between it and any Keypose in the trajectory estimate. To achieve this, the ORB features are

compared using bag of words approach.

In [24], the ORBSLAM algorithm is extended to use stereo or RGB-D cameras and to be

able to run the algorithm in localization-only mode with a fixed map. Finally, in [25], the

authors further extend the algorithm to multisession SLAM in which the robot can start in the

previously mapped area and is able to localize itself and continue the SLAM process.

Zhang and Singh [26] introduced another solution to the SLAM problem, called Lidar Odom-

etry And Mapping (LOAM). The LOAM algorithm is based on 3D lidar measurements. This

algorithm takes advantage of the asymmetric resolution of modern 3D lidar sensors, which usu-

ally have a limited number of high-resolution layers. Therefore features are extracted in each

layer separately and then they can be associated across layers. These features are planar regions

and corners. Neither of them are strictly Keypoints since they do not have a point location and

a single feature can result in multiple detections.

Shan and Englot [27] created a similar solution based on LOAM called Lightweight and

Ground Optimized LOAM (LeGO-LOAM). In this version of the algorithm the floor/ground

is not discarded, and an iterative closest point (ICP)-based loop closure method.

Collectively all the methods previously described are vector-based solutions to SLAM. This

means that they have to rely on heuristics to solve both the data association and map manage-

ment problems. For this reason, this thesis will focus on set-based methods which rely on the

Bayes theorem to solve these problems jointly with the conventional state estimation problem.

2.3.3 Random Finite Set-based SLAM

Mullane, Vo, and Adams [28] introduced the concept of Random Finite Sets into the SLAM

problem. By recognizing that the SLAM state is more naturally represented by a set, instead

of a vector, they were able to include the data association and map management problems into

the Bayesian estimation paradigm. Previous solutions to the SLAM problem, such as the ones

described in the previous section, resolved these problems using heuristic approaches.

Leung, Inostroza, and Adams [29] showed that the RB-PHD-SLAM is closely related to

FastSLAM, and that RB-PHD-SLAM is equivalent to FastSLAM under ideal conditions.

Deusch, Reuter, and Dietmayer [5] applied the LMB filter to SLAM and showed that it has

better performance than PHD-SLAM in simulation [5].

Moratuwage, Adams, and Inostroza [30] applied the δ-GLMB filter to SLAM with a Rao

Blackbellized formulation, similar to the one in the other RFS SLAM filters in this section. 1

1This work was carried out during the course of this thesis and in collaboration with the author.
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Gao, Battistelli, and Chisci [31] improved on the RB-PHD-SLAM by using a proposal distri-

bution that is closer to the posterior distribution on the latest robot pose, in a manner similar

to the way that FastSLAM-2 improves FastSLAM.

2.3.4 Evaluating SLAM performance

Any SLAM solution will be composed of a trajectory estimate xest
0:K and a map estimate Mest.

Metrics to evaluate SLAM performance have usually focused on the trajectory. This is because

it is possible to measure the sensor’s pose using outside-in methods, thus producing a ground

truth trajectory xgt
0:K against which different algorithms can be measured.

Metrics to evaluate trajectory error include Absolute Trajectory Error (ATE) and Relative

Position Error (RPE) [32]. Sturm, Engelhard, Endres, Burgard, and Cremers [32] introduced

the ATE and RPE metrics. In the ATE metric both trajectories are first aligned by rotating,

translating, and optionally scaling the estimated trajectory to match the ground truth one.

After alignment the individual positions xaligned
0:K are compared and the RMS value of the error

is calculated, producing the ATE value

ATE =

(
1

K + 1

K∑

k=0

∥∥∥trans(xaligned
k )− trans(xgt

k )
∥∥∥

2
)1/2

, (2.51)

where trans(·) is a function that returns the translation part of a pose, i.e. the position.

In the RPE metric, the trajectories need not be aligned and only the differences between

poses are measured. The error metric is then calculated by estimating the relative pose with a

fixed time difference ∆

APE =

(
1

K + 1−∆

K∑

k=∆

∥∥∥trans(
(
xest
k−∆

)−1
xest
k )− trans(

(
xgt
k−∆

)−1
xgt
k )
∥∥∥

2
)1/2

. (2.52)

This metric is designed to evaluate the local consistency of the trajectory. Therefore, the

behavior of this metric is particularly useful to evaluate odometry algorithms that perform no

loop closures.

Metrics to evaluate the map estimate are much more rarely used in robotics. This is because

most SLAM algorithms use landmarks that are non-semantic. Therefore obtaining a ground

truth map is impossible for these kinds of algorithms. Furthermore, algorithms that don’t use

the exact same landmark type and algorithms that do not use landmarks at all cannot be

compared using these metrics. However, when a ground truth map exists, metrics coming from

the target tracking literature can be used, such as optimal sub-pattern assignment (OSPA) [33].

Schuhmacher, Vo, and Vo [33] introduced the OSPA metric to measure the difference between
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two sets X = {x1, ...,xm}, of size m and Y = {y1, ...,yn}, of size n, the OSPA metric with

distance parameter c and order p is defined as

OSPA(X,Y, c, d) =

(
1

n
min
θ

n∑

i=1

d(c)(xθ(i),yi)
p + (n−m)

)1/p

, (2.53)

if n ≥ m and OSPA(X,Y, c, d) = OSPA(Y,X, c, d) otherwise, and d(c)(x,y) = min(c, d(x,y)).

2.4 Non-linear Optimization

2.4.1 General unconstrained optimization

Particle Swarm Optimization

One method to maximize a non-linear function, as needed by any Maximum Likelihood solution

to SLAM, is Particle Swarm Optimization (PSO) [34]. Due to the heuristic nature of PSO, many

variations exist. An explanation of one of the most common variations, known as Standard PSO

2007 (SPSO-2007), and used in this thesis, follows.

Let the optimization problem to solve be

arg min
x
f(x) , (2.54)

where x is the variable to optimize with respect to function f(·). In PSO a set of particles

with positions xij and velocities vij is defined with the expectation that, as the particles move

according to their velocities

xij+1 = xij + vij , (2.55)

the positions of the particles will converge to the optimal solution x∗. SPSO-2007 uses a fixed

number of particles np according to

np = b10 + 2
√
Dc , (2.56)

where D is the number of dimensions of x. This formula considers a suggested particle swarm size

but is not required for SPSO-2007 compatibility. Particle positions and velocities are initialized

randomly following the uniform distribution within the search space [xmin,xmax]

xi0 = U(xmin,xmax) (2.57)

vi0 = 0.5(U(xmin,xmax)− xi0) . (2.58)
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Where U(a, b) is the uniform distribution in the interval [a, b]. Then each particle will calculate

its new velocity as a function of its own position and current velocity and the positions of the

particles within a neighborhood - i.e. for each component of particle i at iteration j, the velocity

will be

vij = wvij + r1φp(l
i
j − xij) + r2φg(g

i
j − xij) , (2.59)

where r1 and r2 are random numbers uniformly distributed in the interval [0, 1], lij is the best

(lowest f(·)) position visited by particle i and gij is the best position visited by any of the

particles in particle i’s neighborhood. w, φp and φg are parameters typically set to the values2:

w =
1

2 ln(2)
' 0.721 (2.60)

φp = φg = 0.5 + ln(2) ' 1.193 .

This neighborhood is defined randomly by having each particle inform K other particles at

random (i.e. adding themselves to the other particles’ neighborhoods). Typically K = 3. If at

any iteration the best solution found does not improve, then all neighborhoods are randomly

redrawn using the same process [34].

2.4.2 Non-linear Least Squares

In the non-linear least squares formulation, the function to be minimized has the form

arg min
x
f(x) = (z − h(x))>Ω−1(z − h(x)) , (2.61)

where h(x) is a general non-linear function, z is a vector, typically containing the measurement

values, which does not depend on the variable x. Ω is a weighting matrix that weights the

different components of the error. Typically this is the measurement information matrix which

is usually diagonal.

Based this form, a family of algorithms has been developed to efficiently find the least squared

error solution. The most common ones are gradient descent, the Gauss-Newton method, and

the Levenberg-Marquardt algorithm [35].

In all three algorithms, we start with an initial guess at the optimum value of x, x0, and

then we iteratively approximate the solution with estimates xi which should converge to the

optimum value of x.

2As stated in [34], these parameters have been shown empirically to produce good results.
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Gradient descent updates the current estimate using the gradient at the location

xi+1 = xi − α
∂f

∂x

ᵀ

(xi) , (2.62)

with α being a scalar parameter. Calculating the gradient of f(x) at the current approximation

gives

∂f

∂x
(xi) =

∂

∂x
(z − h(x))>Ω−1(z − h(x)) , (2.63)

∂f

∂x
(xi) = −2(z − h(xi))

>Ω−1∂h

∂x
(xi) . (2.64)

yielding the update formula for gradient descent

xi+1 = xi + α2JΩ−1(z − h(xi)) , (2.65)

where the gradient or Jacobian was given as J = ∂h
∂x

(xi) for brevity.

The Gauss-Newton method is an improvement on this, which assumes that the objective

function can be approximated in the vicinity of xi by a quadratic function as follows.

h(xi + ∆x) ≈ h(xi) + J∆x . (2.66)

Using this approximation the solution to the optimization problem becomes a linear equation,

resulting in the Gauss-Newton method

xi+1 = xi + ∆xi , (2.67)

with ∆xi being calculated by solving the linear problem

JᵀΩ−1J∆xi = JΩ−1(z − h(xi))) . (2.68)

The previous two algorithms have the problem that their performances can vary significantly

depending on the initialization point x0. The Levenberg-Marquardt algorithm improves on both

these algorithms using the following intermediate solution.

(JᵀΩ−1J∆ + λI)xi = JΩ−1(z − h(xi))) , (2.69)

where λ is an adaptive parameter. It can be inferred from equation (2.69), that when λ is in

the vicinity of zero, the update is equivalent to the Gauss-Newton algorithm and when λ is very

high the update is equivalent to gradient descent. Usually, λ is initialized with a high value,
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and if the value after the update increases (i.e. we are moving away from the optimum) then

λ is increased, else as the approximation gets closer and closer to the optimum, λ is lowered

accelerating the convergence with the Gauss-Newton update step. The Levenberg-Marquardt

algorithm is widely used in many least squares problems, including in SLAM batch solvers such

as g2o[21] and GTSAM[36], both of which are used in this thesis.
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Chapter 3

Detection Statistics in SLAM

3.1 Introduction

In this Chapter, the importance of detection statistics in both vector and RFS-based SLAM is

summarized. Additionally, a formulation of the RFS-based batch estimation approach to SLAM

is presented.

3.2 Filtering-Based SLAM Techniques & Detection

Statistics

Most vector-based solutions to SLAM which adopt features require a map management routine

to manage the addition and removal of features from the map estimate. Such methods vary in

mathematical rigor. While some are heuristic in nature, others use a binary Bayes filter [18, 37].

In the binary Bayes filter the probability of existence P ([mi]E |x0:k,Z0:k) of the i-th map

feature vector, mi, given the history of robot poses from discrete-time 0 to k, x0:k, and all

feature measurement sets, Z0:k, is updated at each step. This is achieved using the probabilistic

evidence provided by the current measurement set Zk, and assumed or known data association:

P (
[
mi
]

E
|x0:k,Z0:k) =

p(Zk|xk, [mi]E)P ([mi]E |x0:k−1,Z0:k−1)

p(Zk|Z0:k−1)
, (3.1)

we can write the probability of non-existence of mi , P ([mi]Ē |x0:k,Z0:k) as

P (
[
mi
]

Ē
|x0:k,Z0:k) =

p(Zk|xk, [mi]Ē)P ([mi]Ē |x0:k−1,Z0:k−1)

p(Zk|Z0:k−1)
. (3.2)

Noticing that dividing the previous equations cancels out the p(Zk|Z0:k−1), we can express (3.1)
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in log-odds form as follows,

lk(m
i) = lk−1(mi) + log

P ([mi]E |xk,Zk)
1− P ([mi]E |xk,Zk)

− log
P ([mi]E)

1− P ([mi]E)
, (3.3)

where the log-odds lk(m
i) are defined as:

lk(m
i) ≡ log

P ([mi]E |x0:k,Z0:k)

1− P ([mi]E |x0:k,Z0:k)
. (3.4)

By setting the prior probability of existence P ([mi]E) to a non-informative prior (0.5), the

last term in Equation (3.3) is eliminated. Then, incorporating modeled or known probabilities

of detection and false alarm, the probabilistic evidence provided by the measurements can be

calculated as shown in [38]

P (
[
mi
]

E
|xk,Zk) =

(1− PD(mi))PFAP ([mi]E) + PD(mi)P ([mi]E)

PFA + (1− PFA)PD(mi)P ([mi]E)
, (3.5)

when mi is associated to a measurement in Zk, and as

P (
[
mi
]

E
|xk,Zk) =

(1− PD(mi))P ([mi]E)

(1− P ([mi]E)) + (1− PD(mi))P ([mi]E)
, (3.6)

when mi is unassociated. PD(mi) is the probability of detection of feature mi, PFA is the

probability of a measurement being a false alarm [38]. Both quantities are constants that must

be substituted into (3.5) and (3.6) and then into (3.3) when an association or a non-association

occurs. From Equation (3.3) it can be seen that a simple measurement counting heuristic can be

interpreted as a log-odds binary Bayes filter with an implicitly assumed probability of detection

and false alarm. Prior research which has adopted this approach includes [18].

3.2.1 Evaluating SLAM performance

Any SLAM solution will be composed of an estimated trajectory and estimated map. Metrics

for evaluating the performance of this results have been mainly focused on the trajectory. This

is because of the ease of measuring the trajectory by external means, producing a ground truth

angainst which the estimated trajectory can be compared to. Metrics to evaluate the trajectory

error include the
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3.2.2 RFS SLAM and the Importance of Detection Statistics

Mullane et al. [28] introduced the concept of RFSs into the SLAM problem. By recognizing that

the SLAM state can be naturally represented by a random set, they were able to include the

data association and map management problems into the Bayesian estimation paradigm. Since

an RFS implementation of SLAM will be used as the primary demonstration of the importance

of determining the detection statistics in this thesis, an overview of Rao Blackwellized (RB)-

PHD-SLAM now follows.

Using the Rao-Blackwellized Particle Filter as in FastSLAM, the SLAM posterior PDF

(Equation (1.9)) can be factored into the form [17, 39]

p
(
x0:k

∣∣∣Zk,u0:k

)
p
(
Mk

∣∣∣x0:k,Zk,u0:k

)
, (3.7)

such that the first term in (3.7) is a PDF on the robot’s trajectory and can be sampled using

particles. The second term in (3.7) is the PDF of the map conditioned on the robot’s trajec-

tory. In the RFS-based approach, if the map RFS is assumed to follow a multi-object Poisson

distribution, such that features are independent and identically distributed (IID) as1

p
(
Mk = {m1

k,m
2
k, ...,m

mk
k }
∣∣∣ |Mk| = mk

)
= mk!

mk∏

i=1

pm(mi) , (3.8)

where pm(·) is the spatial distribution for the features in the map, then the PDF of the map

RFS can be fully represented by its PHD, also referred to as an intensity function, vk:

vk = vk(m) = λpm(m). (3.9)

The number of features is assumed Poisson distributed with parameter λ according to

p
(
|Mk| = mk

∣∣∣λ
)

=
λmk exp(−λ)

mk!
. (3.10)

These assumptions allow the PDF of the map RFS to be approximated by a time-varying PHD.

The map PDF is then approximated as

p(Mk = {m1
k,m

2
k ... m

mk
k }) =

∏mk
i=1 vk(m

i
k)

exp(
∫
vk(m)dm)

. (3.11)

In contrast to vector-based RB-PF approaches, which typically use the EKF to update the

Gaussians for individual landmarks, a PHD filter is used to update the map intensity function

1Note that the mk! term is necessary since a set includes all possible permutations of its elements.
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in RB-PHD-SLAM [39]. An overview of the main steps in the RB-PHD-SLAM filter now follows,

highlighting the importance of detection statistics.

Particle Propagation

At time-step k, the particles representing the prior distribution,

x
[i]
k−1 ∼ p

(
x0:k−1

∣∣∣Z1:k−1,u0:k−1

)
(3.12)

are propagated forward in time by sampling the motion noise, δ
[i]
k , and using the robot motion

model (1.1):

x
[i]
k ∼ g(x

[i]
k−1,uk−1, δ

[i]
k−1) −→ p

(
x0:k

∣∣∣Z1:k−1,u0:k−1

)
. (3.13)

This step is common to vector-based Rao-Blackwellized solutions to SLAM, such as FastSLAM

[17].

Prediction

For each particle, its map intensity from the previous update, v+
k−1(m), is augmented with an

arbitrarily small birth intensity vbk, according to the PHD filter predictor equation:

v−k (m) = v+
k−1(m) + vbk(m) (3.14)

The birth intensity vbk(m) represents the number of new features that might appear at m and

is usually heuristically determined. This intensity is required to model the appearance of new

features and is similar to the proposal distribution concept in FastSLAM.

Map Update

The map intensity for each particle is updated with the latest measurements according to the

PHD filter update equation

v+
k (m) = v−k (m)(1− PD(m|xk)) + (3.15)

v−k (m)

|Zk|∑

i

PD(m|xk)h(zik|m,xk)

κ(zik|xk) +
∫
PD(m′|xk)h(zik|m′,xk)v−k (m′)dm′

,

where h(zik|m,xk) is the i-th measurement’s/detected feature’s spatial likelihood and κ(zik|xk)
is the intensity of the clutter RFS at time k. The first term in (3.15) is a copy of v−k (m)

27



reduced by the factor (1− PD(m|xk)) to account for the possibility that the predicted features

are undetected. In the second term, note that instead of determining data association based on

an external algorithm, the PHD filter determines how much the landmark estimate is influenced

by each and every measurement.

Importance Weighting and Re-sampling

The weighting and re-sampling of particles is the method used to update the robot trajectory

PDF after propagation (also known as the proposal distribution). This is given by

p
(
x0:k

∣∣∣Z1:k−1,u0:k−1

)
. (3.16)

This has to be updated to become a new PDF representing the robot trajectory after measure-

ment updates (or the target distribution),

p
(
x0:k

∣∣∣Z1:k,u0:k−1

)
. (3.17)

Bayes rule allows the weighting distribution to be expressed in terms of (3.16) and (3.17):

p
(
x0:k

∣∣∣Z1:k−1,u0:k−1

)

p
(
x0:k

∣∣∣Z1:k,u0:k−1

) = θp
(
Zk
∣∣∣x0:k,Z1:k−1

)
, (3.18)

in which θ is a normalizing constant. Since (3.16) and (3.17) are sampled using particles, the

weighting distribution, defined as wk, is also sampled such that a weight is calculated for each

particle. To solve (3.18), Bayes theorem gives

wk ≡ p
(
Zk
∣∣∣x0:k,Z1:k−1

)

= p
(
Zk
∣∣∣Mk,x0:k

) p
(
Mk

∣∣∣Z1:k−1,x0:k

)

p
(
Mk

∣∣∣Z1:k,x0:k

) . (3.19)

Equation (3.19) can be solved because the map RFS is assumed to be multi-object, Poisson

distributed. Note from (3.19) that the choice of the map, Mk, for which the expression is

evaluated in its general form is theoretically arbitrary since the right-hand side of the first line

of (3.19) is independent of the map. This has led to multiple solutions that adopt the empty-

set strategy, the single-feature strategy and multi-feature strategy in determining the particle

weight wk in (3.19) [38, 40]. Although wk is theoretically independent of the map, because

of the approximations involved in the PHD Filter, it has been shown that the choice of the
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Figure 3.1: A hypothetical pentagon detector, occluded by walls. The yellow area shows a zone where
PD(mj

k|xk) is high and in the white zones, PD(mj
k|xk) = 0. From a geometric perspective, objects 1 and

2 should have high values of PD(mj
k|xk), while object 3 should have a significantly reduced PD(mj

k|xk)
due to its partial occlusion by the wall. Objects 4, 5 and 6 would be expected to have PD(mj

k|xk) = 0.

map can have a significant effect on the performance of the filter and that the multi-feature

strategy is superior to the others [38]. This is achieved at the cost of an increased computational

complexity. The multi-feature strategy is adopted in this work. In [39, 41] the implementation

of RB-PHD-SLAM Equations (3.13), (3.14) and (3.15) using Gaussian mixtures are shown.

Importantly, within the above four steps, the map update and particle weighting steps require

the knowledge of both the probability of detection, PD(m|xk), of the feature detector and the

distribution (defined by its first moment or PHD) of its false alarms, κ(zik|xk).

3.2.3 How do Detection Statistics Affect SLAM?

In SLAM, the map feature probability of detection PD(mj
k|xk) (in (3.5) and (3.15)), the prob-

ability of false alarm PFA(zlk|xk) (in (3.5)) and the false alarm intensity κ(zik|xk) (in (3.15)),

depend on the state of the robot and environment - i.e.

PD(mj
k|xk)←− PD(mj

k|xk,Γ) , (3.20)

PFA(zlk|xk)←− PFA(zlk|xk,Γ) , (3.21)

κ(zik|xk)←− κ(zik|xk,Γ) . (3.22)

Here, Γ represents the total state of the environment including, but not limited to, the subset

of it being estimated (i.e., the vicinity of the feature locations) [37]. For example, if the sensor

being used is affected by occlusions, then it may be the case that not all objects that can

cause the occlusions are represented in the SLAM map Mk. Therefore, theoretically, the total

environmental state Γ, which includes these objects, would be necessary. As an example, Fig.

3.1 shows a hypothetical shape (pentagon) detector, which can be occluded by walls. The value

of PD(mj
k|xk) associated with each pentagon is therefore highly dependent on the state of both

the robot and the environment, in this case, the quantity and relative location of the walls. Even
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though the walls may not constitute map features of interest, they still affect the probability of

detection of the pentagons. The spatial distribution of false alarms is complex to model since

the source of false alarms can vary depending on the environment. Given this lack of knowledge

about the false alarm distribution, approximating it by the least informative distribution, i.e.

the uniform distribution is usually accepted as a reasonable assumption [42]. The expected

number of false alarms can be estimated by utilizing a feature detector in an environment with

a known number and location of features and analyzing the number of false alarms, or it can

be left as a parameter of the algorithm to tune.

3.3 RFS-based batch estimation

SLAM solutions using the batch estimation approach are usually maximum likelihood strategies

in which the likelihood function,

p
(
Z1:k,u0:k−1

∣∣∣x0:k,M
)
, (3.23)

is maximized over all possible trajectories, x0:k, and maps, M. Assuming that the number

of landmarks is known, and using a known data association hypothesis, this likelihood can be

expressed as:

k∏

i=1

g(xi|xi−1,ui−1)

|Zi|∏

j

h(zji |xi,mai(j)) , (3.24)

where the function ai(j) represents the data association of measurement zji .

The objective function of (3.23) can be formulated using the RFS framework, by using the

set-based measurement and motion models:

k∏

i=1

g(xi|xi−1,ui−1)p
(
Zi
∣∣∣xk,M

)
. (3.25)

As can be seen from (3.25), the likelihood is very similar to (3.24) but uses the RFS-based

measurement model p
(
Zi
∣∣∣xi,M

)
:

p
(
Zi
∣∣∣xi,M

)
= p

(
Zi
∣∣∣xi,

{
m1,m2, . . . ,m|M|

})

=
∑

θ

pκ

(
ZĀθi

) ∏

mj∈MĀθ

(
1− PD

(
mj|xi

)) ∏

mj∈MAθ

PD

(
mj|xi

)
p
(
z
aθ(j)
i

∣∣∣mj,xi

)
(3.26)
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where θ is a possible association between the elements ofM and Zi, ZĀθi is the set of measure-

ments in Zi that is not associated with a landmark in the map according to θ. Similarly, MAθ

is the set of landmarks in M that are associated with a measurement in Zi , again according

to θ. pκ

(
ZĀθi

)
is the probability of all measurements in ZĀθi being clutter.

Now applying log() to (3.25) gives

log
(
p
(
Z1:k,u0:k−1

∣∣∣x0:k,M
))

=
k∑

i=1

log (g(xi|xi−1,ui−1)) + log
(
p
(
Zi
∣∣∣xk,M

))
(3.27)

=
k∑

i=1

log (g(xi|xi−1,ui−1)) + log

(∑

θ

p
(
Zi
∣∣∣xk,M, θ

))
.

(3.28)

In [29], (3.26) is derived and shown to generalize its vector counterpart.

Using the RFS-based objective function from (3.26), the non-linear optimization can be per-

formed over all possible map sizes |M|. This function would also not require a data association

hypothesis to perform the optimization. In Chapter 5 the optimization of this objective func-

tion is carried out with general optimization methods and evaluate the performance compared

is compared to to state-of-the-art vector-based SLAM batch estimation algorithm, which have

access to the ground truth data association. The partly integer nature of the optimization (i.e.

the number of features in the map) will cause significant difficulties for the optimization method.

Chapter 6 then uses a new joint vector-set distribution to find a Maximum a posteriori solution

to SLAM, with much better results, comparable to state-of-the-art solutions to SLAM.
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Chapter 4

Detection Statistics in Filter-Based

SLAM

4.1 Introduction

In the field of target tracking, detection statistics are considered to be of prime importance.

For example, it has long been recognized that a sensor’s received signal amplitudes, correspond-

ing to true targets, should be higher than those corresponding to false alarms, and that this

information should be utilized [43]. However, this requires the Signal-to-Noise Ratio (SNR) cor-

responding to targets to be known from any sensor to target viewpoint. Since such information

is typically unavailable, detection probabilities are usually naively considered to be constant

(but not necessarily zero or unity), despite the fact that the relative positions of objects with

respect to the sensor, and occlusions, have a large effect on those objects’ detection probabilities

[43].

Within the autonomous robotic, feature-based navigation literature, a vehicle’s onboard

sensors are used to obtain exteroceptive measurements. Measurements and feature estimate

uncertainties are typically considered to lie solely in the spatial, rather than the detection,

domain and often modeled with range and bearing uncertainties [37, 44]. The joint estimation

of feature locations, and the trajectory of a robotic vehicle, which obtains measurements from

these features, within a common coordinate frame is referred to as feature-based SLAM. In most

SLAM algorithms it is considered the task of external map management, outlier rejection, and

data association algorithms to minimize the problems of false alarms and missed detections,

before map estimation takes place, so that mathematically, the probabilities of detection of

features that have been associated are assumed to be unity and the probabilities that the

associated measurements are false alarms are assumed to be zero. Similarly, the probabilities of
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detection of unassociated features are assumed to be zero, while the probabilities of false alarm

of unassociated measurements are assumed to be unity [29].

In SLAM, the probability of detection is particularly important, since features that exit the

field of view (FoV) of the sensor(s) are expected to remain in the map estimate, contrary to target

tracking problems, in which the maintenance of tracks for targets that exit the FoV is usually

not required. However, principled methods which currently provide such statistics calculate

them based upon the measurements themselves, such as Constant False Alarm Rate (CFAR)

processors [45]. In both the binary Bayes Filter and RFS-SLAM, feature state-based detection

statistics are required both in the presence and absence of corresponding measurements, since the

existence probabilities of feature states must be updated in both cases. Further, in RFS-SLAM,

the detection statistics required are state-dependent, and there are no feature to measurement

association decisions. Therefore, measurement-based detection statistics, such as those provided

by CFAR processors, cannot be directly applied. This chapter, therefore, addresses methods

to estimate these statistics on a per estimated feature basis. This takes into account feature

descriptor information, which is not part of the spatial location of the measurement, to aid

both in map-management and data association, within vector-based SLAM approaches, and for

direct use within RFS-SLAM methods.

To apply this concept to spatial-based features, this work proposes the use of a feature de-

scriptor, based on the estimated number of unoccluded range points sensed from that feature.

This feature descriptor depends on the current best estimate of the SLAM state and the cur-

rent range-based sensor scan, but not any detected features from that scan. This avoids the

necessity for data association between detected and currently estimated features when applying

the descriptor. In contrast to standard feature-based SLAM methods, which discard any data

which has not contributed to a feature detection, a sub-set of this remaining data provides

the extra information necessary to estimate the probability of detection of features, even when

partially occluded. It will be demonstrated that this descriptor can provide an approximate suf-

ficient statistic to define a SLAM state-dependent distribution on the probability of detection

of a feature. Results will demonstrate superior SLAM performances than those obtained from

the equivalent algorithms, with the usually assumed constant feature probabilities of detection

within the sensor’s FoV.

The work in this chapter was partially published in [46], the author’s Master’s degree thesis

[10], and [47]. The work in [46] and the Master’s thesis [10] shows the determination of the

detection statistics for the detector used in a local park environment. Meanwhile, [47] shows via

simulation, that the incorporation of a descriptor into RFS-based SLAM can be advantageous.

This chapter extends [46, 47] by providing more detailed simulation analyses, demonstrating

the applicability of the descriptor to standard detection concepts based on the random sample
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consensus (RANSAC) algorithm [48] and also by generating detection statistics for tree detection

in a local park environment (Santiago, Chile), and successfully applying it to the publicly

available Victoria park dataset, from Sydney, Australia.

This chapter has two main contributions. The first shows that including detection statistics

into SLAM solutions can be advantageous. The second is the introduction of a descriptor,

namely the number of points used by the detector, whose prediction can be used to calculate

the detection statistics for features extracted from range sensor data, particularly lidar data. The

contributions of this chapter are based on the derivation of a range-based feature descriptor. An

algorithm capable of estimating the probability of detection for any range-based detector, based

on the expected value of the descriptor, is then presented. This is followed by an evaluation

of the effects of including both the probability of detection and the descriptor information

into set-based RB-PHD-SLAM, and the conceptually similar vector-based SLAM algorithm

MH-FastSLAM. Each framework is compared, both with and without the use of the described

descriptor.

4.2 Estimating Feature Detection Statistics Based on

Range Data

4.2.1 Estimating Probability of Detection PD(mj
k|xk)

This section provides a quantified model of the probability of detection of features, based on

a descriptor related to range/bearing data for use in any robotic navigation formulation. Al-

though the descriptor can be inspired by the chosen detector algorithm, a more general solution,

which is independent of the detector used to extract those features, and which takes into ac-

count occlusions, is presented here. Therefore, the chosen descriptor model does not use any

information about the feature detector itself and can be used with any detector that estimates

both the position and shape attributes of a feature, such as RANSAC [48].

As shown in Fig. 4.1, given the robot’s location, xk, and the location and other attributes,

such as the shape, of features, mj
k, (i.e. a SLAM state), the number of range points that the

feature is predicted to return (red and green points in the figure), can be calculated via ray

casting [37]. These predicted range values are then compared with the actual range values from

the sensor (black points). If the actual range values at particular bearing angles are considerably

lower than predicted, then the predicted range points at those bearing angles are labelled as

occluded (red points) and the number of remaining, unoccluded (green) points is defined as

n̂(mj
k,xk). n̂(mj

k,xk) will be examined as an approximate sufficient statistic, which determines
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Object not included in 
SLAM state

Feature modelled in 
the SLAM state

Figure 4.1: Analysis of range data from a circular shaped feature. The number of predicted (green)
points n̂(mj

k,xk), which are unoccluded, is used as a sufficient statistic of the probability of detection

PD(mj
k|xk) of the feature.

the probability of detection of the feature.1 Since n̂(mj
k,xk) is calculated using ray casting, its

effectiveness will depend on the validity of using ray casting to predict the measurements of the

range sensor. In its current form, this should apply to any narrow beam range sensor, being

best suited to lidar sensors.

It should be noted that n̂(mj
k,xk) is expressed only as a function of the SLAM state (xk

and mj
k). This is despite the fact that the current range scan is necessary to determine which, if

any, of the predicted points determined via ray casting are occluded by any objects not included

within the SLAM map stateMk. Although the current scan is necessary to determine this, the

detected features themselves Zk are not required, meaning that no data association between

detections zik ∈ Zk and m̂j
k ∈ M̂k, where M̂k is the estimated map at time k, is necessary. In

fact, it is a sub-set of the range values from each scan, which are not necessarily used by the

SLAM feature state detector, which are used to determine n̂(mj
k,xk). In contrast to standard

feature-based SLAM methods, which discard such data within each scan, in this work, this data

provides the extra information necessary to estimate the probability of detection of features, even

when partially occluded. Therefore, this chapter analyses the feasibility of assuming n̂(mj
k,xk)

to be a sufficient statistic of PD(mj
k|xk) - i.e. It poses the question of whether

PD(mj
k|xk,Γ, n̂(mj

k,xk)) ≈ PD(mj
k|n̂(mj

k,xk)). (4.1)

1Note that n̂(mj
k,xk) can be theoretically calculated for any general values ofmj

k and xk. For implementation
purposes however, if the SLAM estimate is modelled in vector form, using Normal distributions to model
the robot and feature states (e.g. standard EKF SLAM), then xk and mj

k would be replaced with x̂k and

m̂j
k representing the estimated means of the Normal distributions representing the vehicle and feature states

respectively. Alternatively, if an RB solution to SLAM is used, in which a Gaussian model of the features is
assumed (e.g. FastSLAM or RB-GM-PHD-SLAM), then xk would be replaced with the state of the i-th particle

x
[i]
k under consideration, and again mj

k would be replaced with m̂j
k.
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It should also be noted that, the analysis presented here could be applied in tracking ap-

proaches such as [42], allowing the inclusion of unmodelled objects within the calculation of

the detection probabilities. In particular, n̂(mj
k,xk) could be used to estimate the mean of the

Poisson RFS used in [42], representing the number of measurements per extended feature.

As carried out in [49] the dependency of PD(mj
k|n̂(mj

k,xk)) on n̂(mj
k,xk) could be calculated

by integrating the variables used by the detector over the detectable area:

PD(mj
k|n̂(mj

k,xk)) =

∫

θ∈θvol
pD(θ|n̂(mj

k,xk))dθ, (4.2)

where θ is the descriptor used by the detector to make its decision, θvol is the multi-dimensional

volume in the descriptor space where the detector will decide to return a feature detection, and

pD() is a multivariate distribution corresponding to detections. Unlike typical radar detectors,

which use only the returned power for detection decisions, a general feature detector can use

several quantities to make its decision. (4.2) generalizes the probability of detection of a range-

based feature extractor, given occlusion information n̂(mj
k,xk)).

One method to estimate the probability of detection is to estimate pD(θ|n̂(mj
k,xk)), and

then use (4.2) to determine PD(mj
k|n̂(mj

k,xk)). The potentially high dimensionality of both θ

and θvol however, means that a large data set containing a significant number of descriptor θ,

n̂(mj
k,xk) pairs would be required. A simpler method is to learn PD(mj

k|n̂(mj
k,xk)) directly

from measurements within a test data set as follows.

Experimental Determination of Detection Probabilities

This section demonstrates that feature probabilities of detection can be adequately and exper-

imentally quantified based on n̂(mj
k,xk), via statistical analyses on range data sets. Initially, a

dataset is required from an environment where the ground truth positions of features are known,

via independent means. A way to achieve this is through the use of features identifiable by hu-

mans - i.e. semantic features. (4.1) approximates the probability of detection of such a feature,

which should be based on all the necessary information, Γ, by the probability of detection given

the value of the single parameter n̂(mj
k,xk).

In the test data set, measurements manually associated with known ground truth features

were used to determine the probability of detection of those features, conditioned on the number

of unoccluded points. Intuitively, the more “representative” the test data is of the actual

environment in which SLAM is to be achieved, the better the detection probability estimates

would be expected to be. However, if the number of unoccluded points is a good approximation

of a sufficient statistic of the detection probability, then it should have an impact on range data

based SLAM performance in general environments.
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Therefore, within the test data set, the predicted number of unoccluded points in the scan

recorded at time k, n̂(mj
k,xk), for each feature,mj

k ∈Mk, - robot pose, xk, pair, was calculated.

For every possible number i of calculated unoccluded points, the actual number of times n̂act

that a particular value of n̂(mj
k,xk) was calculated within the dataset as follows

n̂act =
Ns∑

k=0

∑

mj
k∈Mk

δ(n̂(mj
k,xk), i) ∀i ≥ 0, (4.3)

where Ns is the total number of scans in the dataset and δ(·, ·) is the Kronecker delta function.

The number of times that a feature, with a predicted number of unoccluded points,

n̂(mj
k,xk), equal to i, produced a valid detection, n̂det is given by:

n̂det =
Ns∑

k=0

∑

mj
k∈Mk

δ(n̂(mj
k,xk), i) c(m

j
k, k) ∀i ≥ 0 (4.4)

where c(mj
k, k) is an indicator function, which equals unity if feature mj

k ∈ Mk was detected

in the scan recorded at time k, and zero otherwise. Then, the probability of detection for each

feature with a predicted number of points, n̂(mj
k,xk), equal to i, can be approximated as the

ratio of (4.4) and (4.3):

PD(mj
k|n̂(mj

k,xk) = i) ≈ n̂det/n̂act. (4.5)

The estimated probabilities of detection, utilizing the above concept, will be shown graphically

in Section 4.6.1.

4.2.2 Estimating Probabilities of False Alarm

A full analysis of the probability of false alarm would require a model for every possible range

scan, which does not contain any of the semantic features of interest. In practise this is infeasible.

Importantly, the statistical representation of the number of false alarms in RB-PHD-SLAM2 is

a Poisson random set, which only requires an estimate of their expected number. When using

the binary Bayes filter, the probability of false alarm can be approximated by dividing the total

number of false alarms by the total number of detected features in the dataset,

PFA(zlk|xk) ≈
(

Ns∑

k=0

NFA(k)

)
/
(

Ns∑

k=0

Nm(k)

)
, (4.6)

2and indeed in many target tracking formulations.
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where Nm(k) is the total number of features detected in the scan recorded at time k and NFA(k)

is the total number of detected features that could not be associated with any feature in the

scan recorded at time k. In a manner similar to the probabilities of detection outlined above,

the statistical analysis of range based data, known to not contain the chosen semantic features,

can yield an informative estimate of the probability of false alarm. This data can be obtained

by either taking a scan in an environment known not to contain the features of interest or by

identifying and removing detections which are manually associated with actual features from a

sufficiently large dataset, as carried out here. The clutter distribution was modelled as Poisson

in number, with mean value equal to the average number of false alarms per scan. Its spatial

distribution was modelled as uniform, resulting in the following clutter intensity function for

use in (3.15):

κ(zik|xk) ≈
(

Ns∑

k=0

NFA(k)

)
/

Ns

∫

zFoV

dz


 . (4.7)

4.3 Including Descriptor Information into SLAM

4.3.1 Including Descriptor Information into PHD-SLAM

In the field of target tracking, Clark et. al. [49] proposed a modification to the PHD filter

that uses RADAR measurement amplitude information together with each accompanying range

value. The idea behind this paper is to use this theory and replace the target amplitude

with a general feature descriptor, by changing the likelihoods accordingly. Then the extended

measurement vectors z̊ik are defined as

z̊ik ≡ [zik ai]
>
, (4.8)

where zik corresponds to the spatial part of the measurement (i.e., what used to be the entire

measurement), and ai is the amplitude information (which in general could be replaced by a

descriptor). Hence, h̊(̊zik|mj
k,xk) and κ̊(̊zik|xk) account for the joint likelihood of target state

and amplitude. In [49], the distributions of this amplitude, under false alarm and detection

hypotheses, were modelled as Swerling type I and II models [50], which provide probabilistic

(Rayleigh) models of received power fluctuations when the RADAR-to-target viewing aspect

changes. The dependency on the environment is modelled by a single parameter d, where the

expected (mean) SNR from a target was 1 + d, where pFA(a) and pD(a|d) are the distributions

of a for false alarms and targets of interest respectively. The modified PHD update equation
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used in [49] is then

vk
+(m) = v−k (m)(1− PD(d)) + v−k (m)

×
|Zk|∑

i

PD(d)h̊(̊zik|m,xk)

κ̊(̊zik|xk) +
∫
PD(d)h̊(̊zik|m,xk)v

−
k (m)dm

, (4.9)

where

h̊(̊zik|m,xk) = gτa(ai|d)h(zik|m,xk) (4.10)

represents the product of the feature detection probability, the amplitude measurement likeli-

hood and the spatial measurement likelihood, and

κ̊(̊zik|xk) = κ(zik|xk)gτFA(ai) (4.11)

represents the extended clutter intensity, including the amplitude likelihood. gτa(ai|d) and

gτFA(ai) are the measurement and false alarm likelihoods of the amplitude ai, related to mea-

surement zi, based on a detection threshold τ . And PD(d) is the probability of detection given

an object SNR. This is

PD(d) =

∫

a>τ

pD(a|d)da , (4.12)

gτFA(ai) =





pFA(ai)∫
ai>τ

pFA(ai)dai
, ai ≥ τ

0.0, ai < τ
, (4.13)

gτa(ai|d) =





pD(ai)∫
ai>τ

pD(ai|d)dai
, ai ≥ τ

0.0, ai < τ
, (4.14)

where the value of pD(a|d) and pFA(ai) and their integrals are determined by the model of the

received signal amplitude, which is modelled as a Swerling model [49]. The difference between

(4.9) and the standard PHD update (3.15) is the inclusion of the measurement and false alarm

likelihoods. Measurements which are more likely to be true detections rather than false alarms,

will receive higher weights.

In this chapter, instead of using the Swerling-based Rayleigh distributions of the received

signal amplitude, adopted for radar measurement likelihoods in [49], a generic descriptor model

is applied. The extended measurement vectors z̊ik here are redefined as

z̊ik ≡ [zik θ
i
k]
>
, (4.15)
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where θik is a descriptor vector accompanying measurement zik. Along with this, a variable

dθ equivalent to the target SNR is used. A general probability distribution pD(θ|dθ) for true

detections can be used to define a feature likelihood equivalent to gτa(ai|d) in (4.14), for the

general feature descriptor θ i.e.

gθvol
θ (θ|dθ) =





pD(θ|dθ)∫
θvol

pD(θ|dθ)dθ
if θ ∈ θvol

0.0 if θ 6∈ θvol

. (4.16)

An example of such a descriptor vector will be given in Section 4.6.3. In (4.16), pD(θ|dθ) is

a distribution on θ, with known parameter dθ being equivalent to the SNR in the RADAR

implementation. A different distribution pFA(θ) has to be used to model false alarms in the

detectable volume.

gθvol
FA (θ) =





pFA(θ)∫
θvol

pFA(θ)dθ
if θ ∈ θvol

0.0 if θ 6∈ θvol

. (4.17)

These likelihoods can be used with the detection statistics PD(m|n̂(m,xk)) and κ(zik|xk) in a

modified PHD filter update equation equivalent to (4.9), now given by

v+
k (m) = v−k (m)(1− PD(m|n̂(m,xk))) + v−k (m)×
|Zk|∑

i

PD(m|n̂(m,xk))h̊(̊zik|m,xk)

κ̊(̊zik|xk) +
∫
PD(m|n̂(m,xk))h̊(̊zik|m,xk)v

−
k (m)dm

. (4.18)

In principle, θ can be any descriptor-based on the measurement. It is desirable that its

distribution for detections pD(θ|dθ) and for false alarms pFA(θ) are as separated in the θ space

as possible, so that the measurements that are more likely to be false alarms will have lower

weights in the modified PHD update Equation (4.18). If the likelihoods gθvol
FA (θ) and gθvol

θ (θ|dθ)
are approximately equal, the modified PHD filter update in (4.18) will tend to its traditional

form, given in (3.15). In this chapter the descriptor θ will be the number of points nd used to

detect the feature. The variable dθ, which is equivalent to the target SNR in Clark’s work, is

the predicted value of nd, i.e. dθ = n̂(m,xk).
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4.3.2 Including Descriptor Information into MH-FastSLAM

(MH-FastSLAM)

Since PD(mj
k,xk) is used within the binary Bayes addition to MH-FastSLAM, the descriptor

information can be included by replacing (1.5) with the extended measurement likelihood

h̊(̊zik|mj
k,xk,dθ) = gθvol

θ (θ|dθ)h(zik|mj
k,xk) (4.19)

in the data association and particle weighting steps. In MH-FastSLAM there is no mechanism

known to the authors, to incorporate gθvol
FA (θ) and therefore it is not used.

Note that (4.9) requires estimates of both PD(d) and gτa(ai|d) as well as the clutter term

κ(zik|xk)gτFA(a). Similarly, (4.19) requires an estimate of gθvol
θ (θ|dθ). A similar concept is

applied in the following sections, in which instead of received amplitude information, a range -

bearing - based feature descriptor θ is defined, which uses ray casting3.

4.3.3 Adding Descriptor Information into RB-PHD-SLAM, a Proof

of Concept

To demonstrate the applicability of [49] in RB-PHD-SLAM, a preliminary simulation was per-

formed. Both the regular RB-PHD-SLAM algorithm from [51] and RB-PHD-SLAM with the

modified PHD filter that includes target descriptor information (4.9) were executed in a sim-

ulated environment. Range-Bearing measurements were simulated along with a descriptor de-

scribed completely by its detection and false alarm distributions (gτa(ai|d) and gτFA(ai), respec-

tively). The descriptor ai for detections was modelled using a Normal distribution to represent

gτa(ai|d) with a mean of 4 and a standard deviation of 2, while the descriptor ai for false alarms

was modelled using an exponential distribution to represent gτFA(ai) with parameter λ = 0.77,

corresponding to any reasonably well separated detection and false alarm distributions in the

descriptor space. For example, the descriptor ai could represent the received power, or contrast

value, accompanying each range and bearing measurement. The false alarm rate was increased

to the point where the unmodified RB-PHD-SLAM trajectory estimate diverged from its ground

truth path by exceeding a minimum Euclidean error of 2.0m. This corresponded to an average

of 50% of the detected features being false alarms (12.5 false features per time step). Results

for both the unmodified and modified RB-PHD-SLAM algorithms, based on (3.15) and (4.9)

respectively, are shown in Figs. 4.2a and 4.2b. As can be seen in the figures, the addition of

target descriptor information improves the solution in terms of both the trajectory and map

3Ray casting, also referred to as ray tracing, is a method to calculate the ideal range that a range sensor
would return in the absence of noise, given robot and feature location estimates.
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estimates. The mapping error was also evaluated using the Optimal Sub-Pattern Assignment

(OSPA) metric, which penalizes both spatial and cardinality map errors [33], as shown in Fig.

4.3. The metric shows an improved performance of the modified algorithm compared to the

original RB-PHD-SLAM solution. This demonstrates that, in principle, adding a descriptor, at

least to the RB-PHD-SLAM filter, can improve its performance.
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(a) RB-PHD-SLAM without target amplitude information.
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(b) RB-PHD-SLAM with target amplitude information.

Figure 4.2: RB-PHD-SLAM simulation results. A 3 sigma ellipse is shown for every estimated land-
mark.
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Figure 4.3: The average OSPA distance from (2.53) between the ground truth and estimated maps.
The errors where averaged over 5 independent simulations.
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4.4 Learning from Simulated Range Data

This section demonstrates the validity of the concept to determine the detection statistics of a

feature detector, based on the number of unoccluded points n̂(mj
k,xk) described in section 4.2.

It is applied in a simulated environment with a feature extraction method based on RANSAC.

The environment was simulated with the Gazebo simulator [52], composed of cylinders, which

are the features of interest, and cuboids, which are objects of non-interest. The SLAM state

will be composed of the trajectory of the robot and the center coordinates of the cylinders in

the vehicle’s plane of motion. The simulated environment is shown in Fig. 4.4a and its plan

view is also shown in the background of the SLAM results in Fig. 4.10.

A simple two-step detector is used in the simulation, composed of a segmentation method

(based on a distance threshold of 0.3m), followed by RANSAC to detect circular objects in the

segmented data. The RANSAC algorithm was implemented based on a required circular in-lier

number of 13 range points and an in-lier distance threshold of 0.02m and was executed 12, 500

times per feature, corresponding to a RANSAC detection failure rate of 1.7%.

4.4.1 Estimating the Detection Probability PD(mj
k|n̂(mj

k,xk))

By using the known poses of the robot and features provided by the simulator, (4.5) can be

applied to obtain an estimate of the probability of detection given the predicted number of

points, PD(mj
k|n̂(mj

k,xk)). Fig. 4.5 shows the results. A 99% confidence interval was calculated

based on the number of points available at each value of n̂(mj
k,xk), showing the uncertainty

in the estimate. As can be seen from the figure, the probability of detection given a predicted

number of points n̂(mj
k,xk) is very close to zero when n̂(mj

k,xk)) is lower than 7, then it tends

to increase as n̂(mj
k,xk) increases to 14. For values of n̂(mj

k,xk)) higher than 14 the probability

(a) (b)

Figure 4.4: Simulated environments used to obtain the detection statistics. The same environment
used in simulations (a) and a second dataset (b).
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Figure 4.5: The probability of detection as a function of the number of unoccluded points n̂(mj
k,xk).

Based on the amount of data available, a 99% confidence interval is calculated, the bounds of which
are shown.

of detection fluctuates about a value of approximately 0.8. This could be interpreted as the

intrinsic probability of detection of the feature detector being 0.8, once it is known not to be

occluded.

4.4.2 Estimating PFA(zlk|xk) and Intensity Function κ(zik|xk)
To estimate the probability of false alarm and, for the case of the RB-PHD-SLAM filter, the

false alarm intensity function, the same dataset can be used, labelling the unassociated mea-

surements as false alarms and estimating the statistical parameters of those measurements. In

particular, since the clutter distribution is assumed Poisson in the PHD filter, only the average

number of false alarms per scan needs to be estimated. To assess the accuracy of the Poisson

approximation, Fig. 4.6 shows a distribution of the number of false alarms per scan, and a

Poisson distribution (red) with parameter λ = 0.06 calculated from the sampled data. κ(zik|xk)
was then be determined from (4.7):

κ(zik|xk) ≈

Ns∑
k=0

NFA(k)

Ns

∫
zFoV

dz
=

λ∫
zFoV

dz
(4.20)

while PFA(zlk|xk) was determined from (4.6) to be 2.34%
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Figure 4.6: Distribution of the number of false alarms per scan, from the simulation. The red graph
shows the equivalent Poisson distribution.

4.4.3 Estimating Feature Likelihoods gθvolθ (θ) and gθvolFA (θ)

In general, after choosing a suitable descriptor, data needs to be obtained in an environment

with features identified by independent means in order to model the probability distributions

pD(θ) and pFA(θ).

As in [49], where the conditional distribution pD(a|d) was determined from a Rayleigh dis-

tribution, a descriptor which depends on the assumed sufficient statistic n̂(mj
k,xk) is necessary

here. A descriptor θ = nd is therefore defined, corresponding to the number of range points

used in the detection of a feature. As stated in section 4.3, nd would be equivalent to a and

n̂(mj
k,xk) to d in [49]. Therefore, gθvol

θ (θ) = p(nd|n̂(mj
k,xk)) needs to be determined. To

model the distribution p(nd|n̂(mj
k,xk)), first the joint probability distribution p(nd, n̂(mj

k,xk))

is modelled (Fig. 4.7). For this purpose, nd is plotted as a function of n̂(mj
k,xk), from a total

of 10091 simulated laser scans which produced 27193 measurements, in Fig. 4.7. As can be seen

in the figure there is a strong dependency of nd on n̂(mj
k,xk).

Estimating p(nd|n̂(mj
k,xk)) directly would be difficult given the sparsity of the data at some

values of n̂(mj
k,xk) (see Fig. 4.7 at values of n̂(mj

k,xk) of 120 and higher). A contour of an

equivalent Normal distribution is also shown in Fig. 4.7. Using the estimated mean µ and

covariance Σ the conditional distribution can be obtained as

p(nd|n̂(mj
k,xk)) = N

(
nd|µ(nd|n̂(mj

k,xk)),

Σ(nd|n̂(mj
k,xk))

)
, (4.21)
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Figure 4.7: Number of points nd measured as a function of the predicted number of points n̂(mj
k,xk).

The dependency of nd on n̂(mj
k,xk) can be observed in this figure. The contours of an equivalent

bivariate Normal distribution are also shown.

where

µ(nd|n̂(mj
k,xk)) = µ1 +

Σ12

Σ22

(n̂(mj
k,xk)− µ2) , (4.22)

Σ(nd|n̂(mj
k,xk)) = Σ11 −

Σ12Σ21

Σ22

, (4.23)

where Σlm is the element of the matrix Σ in row l and column m, and µl is the lth element of

vector µ.

Finally, by using the fact that the RANSAC circle detector cannot generate detections with

less points than a threshold Nmin (= 13 in this case), the Normal distribution should be rescaled.

This final conditional distribution is

gθvol
θ (θ) =





p(nd|n̂(mj
k,xk))∫∞

Nmin
p(nd|n̂(mj

k,xk))dnd
if nd ≥ Nmin

0 if nd < Nmin

, (4.24)

and is shown in Fig. 4.8.

For the case of false alarms the distribution of the number of points gθvol
FA (θ) has to be mod-

elled using known false alarms from the same simulated dataset. Fig. 4.9 shows the histogram

for the number of false alarms, along with an equivalent exponential distribution

gθvol
FA (θ) = λnd

exp (−λnd
(nd −Nmin)), (4.25)

where, from Fig. 4.9, λnd
= 0.041 and Nmin = 13. The results of applying this descriptor in

simulated SLAM trials, will be shown in Section 4.5.
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Figure 4.8: The conditional distribution of nd given n̂(mj
k,xk), calculated from the Normal distribution

of Fig. 4.7.
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Figure 4.9: Descriptor distribution for false alarms, which resembles an exponential distribution.

4.5 Simulated SLAM Results

Table 4.1 shows the parameters used in the simulations. Figure 4.10 presents the results of

running the algorithms with and without the proposed detection statistics. The ground truth

map features are displayed using red stars and the estimated map features using blue crosses.

The ground truth trajectory is shown with a red line and the estimated trajectory with a conti-

nous blue line. The red dashed line shows the odometry input (dead reckoning). A satisfactory

SLAM solution should estimate both the map and trajectory accurately, hence ideally the red

stars and blue crosses and the red and blue lines should coincide. The background of each

graph is a top-down view of the simulated environment. Figs. 4.10a and 4.10b show the results

of using a constant probability of detection of 0.7 within the sensors FoV for RB-PHD-SLAM

and MH-FastSLAM respectively. Figs. 4.10c and 4.10d show the results with the proposed

detection statistics from (4.5) and Fig. 4.5 for RB-PHD-SLAM and MH-FastSLAM respec-

tively, while Figs. 4.10e and 4.10f include both the proposed detection statistics as well as the
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(a) RB-PHD-SLAM with constant PD.
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(b) MH-FastSLAM with constant PD.
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(c) RB-PHD-SLAM with the learned probabil-
ity of detection.
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(d) MH-FastSLAM with the learned probability
of detection.
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(e) RB-PHD-SLAM with the learned probabil-
ity of detection and descriptor information.
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(f) MH-FastSLAM with the learned probability
of detection and descriptor information.

Figure 4.10: SLAM results in a simulated environment. Highlighted in green: area where the detector
performance significantly differs. Highlighted in pink: sections of trajectory where only a single feature
was in the FoV of the robot’s sensor.
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Parameter Value Equation

PD(mj
k|n̂(mj

k,xk)) See Fig. 4.5 (4.5)
λ 0.06 (4.20)

PFA(zlk|xk) 2.34% (4.6)

µ [52.25 52.98]> (4.22)

Σ

[
602.10 628.97
628.97 664.65

]
(4.23)

λnd
0.041 (4.25)

Table 4.1: The parameters used in the SLAM simulations.

proposed descriptor likelihoods from (4.24) and (4.25) for RB-PHD-SLAM and MH-FastSLAM

respectively.

Including the proposed detection statistics improves the SLAM estimates for RB-PHD-

SLAM and in the initial part of the trajectory for MH-FastSLAM (Figs. 4.10c and 4.10d). The

incorporation of the descriptor information (Figs. 4.10e and 4.10f) has its largest impact on the

MH-FastSLAM results. An area where the detector produced false measurements is highlighted

in green in the figures. It can be seen that both algorithms, when based on a constant probability

of detection, fail to map the area correctly, with RB-PHD-SLAM missing two features, and

MH-FastSLAM including many false alarms. Only by adding both the descriptor and detection

statistics is MH-FastSLAM able to map the area correctly. Sections of the robot’s trajectory

where only a single feature was visible are highlighted as a pink shaded area. In these sections,

both algorithms provide improved trajectory estimation when using the descriptor information.

From Figs. 4.10a and 4.10b it can be seen that MH-FastSLAM has more trouble at the initial

sharp “U” turn (close to the origin). This can be explained by the fact that the PHD filter

is quick to initialize new estimates, allowing it to deal with the initial sharp turn. Conversely,

when a feature’s probability of detection is non-zero, the PHD filter can remove features too

quickly, if not sensed. This explains why two of the features in the green area are never correctly

mapped at the end of each run.

Figures 4.11 and 4.12 show the trajectory and mapping errors, respectively. The errors show

similar results as can be observed in figure 4.10. In particular, the inclusion of the detection

statistics improves the results in the first part of the trajectory (up to approximately 1300[s]).

After this time, the inclusion of the detection statistics without using the descriptor in MH-

FastSLAM causes the algorithm to diverge more quickly than the algorithm using a constant

probability of detection. Importantly both algorithms have a significantly improved trajectory

when including both the descriptor and the variable probability of detection.
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Figure 4.11: Average OSPA errors between the ground truth map and the map estimates. Errors where
averaged over 5 different runs.
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Figure 4.12: Average position error over time. Errors where averaged over 5 different runs.
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Figure 4.13: The probability of detection as a function of the number of unoccluded points n̂(mj
k,xk).

Based on the number of points available in the test data set, a 99% confidence interval is calculated,
the bounds of which are shown.

4.5.1 Using a different training dataset

To test the generality of using the proposed descriptor, a second training dataset has been used

to produce different detection statistics. Figure 4.4 shows the environments used. These two

environments differ in terms of the radii of the circles and their spacing. The spacing of the

cylinders is important since, for example, closely located cylinders can cause the detector to

generate less circles than are actually present, with false centers and radii. For example, the

closely spaced cylinders in the lower left corner of Fig. 4.4a result in the false alarms within the

green circles in Figs. 4.10b and 4.10d.

Fig. 4.13 shows the probability of detection obtained from the training dataset of Fig. 4.4b.

As can be seen from the figure, the transition from close to zero probability of detection to a

high probability of detection occurs at approximately the same value n̂(mj
k,xk) = 13, but the

values of the probability of detection are significantly different. The SLAM algorithms were

then rerun based on the detection statistics shown in Fig. 4.13.

As can be seen in Figure 4.14 the mapping errors are similar to the statistics calculated

from the same environment. MH-FastSLAM does not benefit from using only the detection

statistics, but it does benefit slightly from adding both the detection statistics and the descriptor

information. On the other hand PHD-SLAM benefits mainly from having accurate detection

statistics and the descriptor only produces a small improvement.

Figure 4.15 shows the trajectory errors obtained using the new detection statistics. The tra-

jectory error plots clearly display the issues PHD-SLAM has when lacking the detection statis-

tics, while having similar results with and without the descriptor information. MH-FastSLAM

has less benefits than when using the environment-specific detection statistics, but when using

the both the descriptor and detection statistics the pose error is still lowest for most of the
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Figure 4.14: Average OSPA errors between the ground truth map and the map estimates. Errors where
averaged over 5 different runs.
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Figure 4.15: Average position error over time. Errors where averaged over 5 different runs.

trajectory. Annex B shows the same algorithms used to generate Fig. 4.10 based on the new

training environment. A single SLAM result is shown for each algorithm out of five Monte Carlo

runs.

4.6 Learning from a Park Environment

This section applies the concepts described in Section 4.4 to data obtained in a real park

environment. The method explained is valid for any shape detector to which ray casting can be

performed. A simple circular feature detector, based on the detector described by Guivant et. al.

in [53], is applied here. This detector first segments the laser scan into clusters, using a simple
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distance threshold, and then fits a circle to each cluster, via mean squared error minimization.

Further details of the detector can de found in [46]. The dataset used to learn PD(mj
k|n̂(mj

k,xk))

and κ(zik|xk) was recorded in a park near the Universidad de Chile. The data set consisted of

2397 scans taken from 19 known vehicle poses. The area covered by the dataset contained 174

tree trunks and lamp posts, the number and locations of which where verified by independent

means to form ground truth. Naturally, the generality of such an environment is questionable.

In general, any semantic feature detection statistics can be determined in a manner similar to

methods given in the following sub-sections but should be based on data sets from environments

known to contain a significant number of the type of semantic feature sought.

4.6.1 Estimating Detection Probability PD(mj
k|n̂(mj

k,xk))

Fig. 4.16 shows the results of applying (4.5) to the data set, where the probability of detecting

a circular object (in this case a tree) is highly dependant on the number of unoccluded points4.

The figure also shows a 99% confidence interval, based on the number of data points available

for each value of n̂(mj
k,xk). It should be noted that there is less data corresponding to features

that have a high number of unoccluded points. Therefore, for such features, the uncertainty

in the estimated value of PD(mj
k|n̂(mj

k,xk)) is higher, as shown by the confidence interval.

Additionally, it can be seen that the probablity of detection goes down when the predicted

number of points increases past 6. This may be due to the fact that many of the observed real

trees are not perfectly circular, and with an increased number of points the circle detector may

be rejecting detections due to the real trees not being circular enough.

4.6.2 Estimating PFA(zlk|xk) and κ(zik|xk)
Similarly to the explanation in Section 4.4.2, for the case of the park dataset, the histogram of

the number of false alarms per scan is shown in Fig. 4.17, along with its equivalent, theoretical

Poisson distribution (with parameter λ = 9.3) plotted in red. κ(zik|xk) was again determined

from (4.20), while PFA(zlk|xk) was determined from (4.6) to be 47.19%.

4.6.3 Estimating Feature Likelihoods gθvolθ (θ) and gθvolFA (θ)

As in Section 4.4.3, to model the distribution of the number of range values used to generate

a detection, given p(n|n̂(mj
k,xk)), first the joint probability distribution p(n, n̂(mj

k,xk)) is

4Note that the values of the probability in Fig. 4.16 differ significantly from those in Fig. 4.5. This is because
the feature detector used in the park can detect features using less range points than the RANSAC detector,
which needs a relatively large number of inliers to differentiate detections from any other randomly generated
circle. Further, the RANSAC detector was used in a simulated environment with a lower clutter rate.
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Figure 4.16: The probability of detection as a function of the number of unoccluded points n̂(mj
k,xk).

Based on the number of points available in the test data set, a 99% confidence interval is calculated,
the bounds of which are shown.
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Figure 4.17: A distribution of the number of false alarms per scan, obtained from the test dataset.

modelled, shown in Fig. 4.18. In contrast to the simulated range data analysed in Section 4.4.3,
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Figure 4.18: Number of measured points nd as a function of the predicted number of points n̂(mj
k,xk).

The contours of an equivalent Gaussian mixture (comprised of 4 Gaussian components) are also shown.

a single Gaussian distribution would not accurately model the data in Fig. 4.18, therefore a
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Gaussian mixture

p(n, n̂(mj
k,xk)) =

∑

i

wiN (n, n̂(mj
k,xk)|µi,Σi) (4.26)

is used. To estimate the Gaussian mixture parameters, the Expectation Maximization (EM)

[54] algorithm was then applied, based on a predetermined (in this case selected to be 4 to avoid

overfitting to the data) number of Gaussian components. A contour plot of the result is also

shown in Fig. 4.18. Using the estimated Gaussian mixture the conditional distribution can be

obtained as

p(n|n̂(mj
k,xk)) =

p(n, n̂(mj
k,xk))

p(n̂(mj
k,xk))

(4.27)

=
p(n, n̂(mj

k,xk))∫
p(n, n̂(mj

k,xk))dn
. (4.28)

By substituting (4.26) into (4.27) the conditional distribution becomes

gθvol
θ (θ) = p(n|n̂(mj

k,xk)) (4.29)

=

∑
iwiN (n, n̂(mj

k,xk)|µi,Σi)∑
iwiN (n̂(mj

k,xk)|µi(2),Σi(2, 2))
,

where µi(2) and Σi(2, 2) are the elements of the mean and covariance matrix respectively,

which correspond to n̂(mj
k,xk). Fig. 4.19 shows a contour plot of the conditional distribution

calculated using (4.29) corresponding to the Gaussian mixture of Fig. 4.18.
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Figure 4.19: The conditional distribution of nd given n̂(mj
k,xk) calculated from the Gaussian mixture

of Fig. 4.18.

For the case of false alarms, the distribution of nd, based on known false alarms from the
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park environment and shown in blue in Fig. 4.20, was modelled with an exponential distribution

gθvol
FA (θ) = λnd

exp (−λnd
(nd −Nmin)), (4.30)

with parameters λnd
= 0.5124 and Nmin = 4 (red curve). The results of applying this descriptor
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Figure 4.20: Descriptor distribution for false alarms (blue), and its equivalent exponential distribution
(red).

in SLAM will be shown in Section 4.7.

4.7 Experimental SLAM Results

The performance of utilizing the probability of detection and descriptor information in Parque

O’Higgins, Santiago and with the publicly available Victoria Park dataset [53], are evaluated in

Sections 4.7.1 and 4.7.2 respectively. Table 4.2 shows the parameters used, which are common

to both datasets.

4.7.1 Experiments in Parque O’Higgins, Santiago

The robotic platform for collecting the experimental dataset was a Clearpath Husky A-200

robot equipped with a Sick LD-LRS-1000 laser range finder, with a reported maximum range

of 80m at 10% reflectivity. The Husky’s wheel encoders provided odometry measurements, uk,

used in the motion model in (1.1). The experiments were conducted in the same environment

where the detection statistics were determined, albeit with a different dataset. Although not a

very general result, this provides the best estimate of the real detection statistics that will be

encountered in the experiments.

The robot ended its trajectory at approximately the same position as it started. The re-

sults for the constant probability of detection versions of RB-PHD-SLAM and MH-FastSLAM
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Parameter Value Equation

PD(mj
k|n̂(mj

k,xk)) See Fig. 4.16 (4.5)
λ 9.3 (4.20)

PFA(zlk|xk) 47.19% (4.6)
ω1 0.41 (4.29)

µ1 [2.75 4.32]> (4.29)

Σ1

[
2.31 0.24
0.24 0.22

]
(4.29)

ω2 0.18 (4.29)

µ2 [10.96 13.38]> (4.29)

Σ2

[
52.82 33.44
33.44 27.93

]
(4.29)

ω3 0.03 (4.29)

µ3 [16.01 22.42]> (4.29)

Σ1

[
195.57 112.94
112.94 177.9

]
(4.29)

ω4 0.38 (4.29)

µ4 [3.89 6.23]> (4.29)

Σ4

[
5.96 1.12
1.12 1.48

]
(4.29)

λnd
0.5124 (4.25)

Table 4.2: The parameters used in the SLAM experiments.
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Average Final position error
PHD-SLAM MH-FastSLAM

Constant PD(mj
k|xk) 1.36m 1.07m

Proposed PD(mj
k|xk) 1.33m 0.68m

Using descriptor 0.53m 0.67m

Table 4.3: Average error in the final position (averaged over 5 monte carlo runs).

are shown in Figs. 4.21a and 4.21b, in which optimal performance in each case occurred for

PD(mj
k|xk) = 0.7 and 0.5 respectively.

The variable probability of detection versions of RB-PHD-SLAM and MH-FastSLAM, which

use (4.5) and Fig. 4.16 are shown in Figs 4.21c and 4.21d respectively, and the modified versions,

which include feature descriptor information from (4.29) and (4.30), are shown in Figs. 4.22a

and 4.22b, respectively.

In the case of RB-PHD-SLAM, visually, the map estimates of both the proposed algorithms

appear to be better than the algorithm using a constant probability of detection, which removes

most features from the map as soon as they stop being detected. This is because of the probable

mismatch between the assumed constant probability of detection and the actual probability of

detection. This effect can be observed particularly in the section of the maps highlighted

with a red rectangle. In this rectangle, the algorithm which assumes a constant probability of

detection, completely removes the estimates from its map. This occurs because the Gaussians

that represent the estimates are multiplied many times by a factor of (1− PD(mj
k|xk)), with a

falsely high probability of detection (see the first term in the RHS of (3.15)). However, by using

the proposed detection statistics the filter is able to maintain the estimates. The trajectory

estimate of the constant probability RB-PHD-SLAM filter (Fig. 4.21a) is also worse than its

variable PD(mj
k|xk) counterpart (Fig. 4.21c), as the pose estimate does not exactly return to

its starting position, as shown in Table 4.3. The difference between the variable probability RB-

PHD-SLAM and the version modified to include descriptor information is more subtle, but can

still be appreciated in Figs. 4.21c and 4.22a. Map estimates of the latter algorithm are closer to

the ground truth. This can be observed mostly in the lower half of the figures. Additionally, as

can be seen in Table 4.3, the final estimated robot position is closer to the starting point when

the the descriptor information was used.

Fig. 4.21d, when compared with Fig. 4.21b, shows that with MH-FastSLAM, the proposed

probability of detection also improves the map estimates, by allowing the filter to maintain the

estimates of features when they are occluded. This is particularly noticeable in the row of trees

located at approximately x = −60m (pink rectangle), where the map estimates corresponding to

these trees are maintained, while MH-FastSLAM based on a constant probability of detection
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(a) RB-PHD-SLAM with constant PD. (b) MH-FastSLAM with constant PD.

(c) RB-PHD-SLAM with the learned PD(·). (d) MH-FastSLAM with the learned PD(·).

Figure 4.21: SLAM results in Parque O’Higgins, Santiago, Chile. Red rectangle: Area of the map
that shows most improvement in RB-PHD-SLAM and MH-FastSLAM by including detection statistics.
Pink rectangle: Area of the map that shows most improvement in MH-FastSLAM by using the detection
statistics.
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(a) RB-PHD-SLAM with the learned probabil-
ity of detection and descriptor information.

(b) MH-FastSLAM with the learned probability
of detection and descriptor information.

Figure 4.22: SLAM results in Parque O’Higgins, Santiago, Chile. Red rectangle: Area of the map
that shows most improvement in RB-PHD-SLAM and MH-FastSLAM by including detection statistics.
Pink rectangle: Area of the map that shows most improvement in MH-FastSLAM by using the detection
statistics.

failed to do so (Fig. 4.21b). This could be explained by the fact that these estimates are

occluded by other trees for a long time before they exit the theoretical FoV. The effect of the

variable PD(mj
k|xk) on the trajectory is less severe, but as can be seen in Table 4.3 the final

point of the trajectory is closer to the starting point. Including descriptor information into

MH-FastSLAM (Fig. 4.22b), removes most of the clusters of false features and improves the

trajectory estimate.

To quantify the mapping errors in each case, figure 4.23 shows the OSPA errors between the

estimated and ground truth maps, giving greater clarity of the mapping performance of each

algorithm. In the case of both RB-PHD-SLAM and MH-FastSLAM, the metric confirms the

higher map quality produced by employing the variable probability of detection and the further

improved performance when using feature descriptor information5.

4.7.2 Victoria Park dataset

To confirm the results obtained using the dataset gathered in Parque O’Higgins, the Victoria

Park benchmark dataset was used [53]. The Victoria park dataset is similar to the Parque

5It should be noted, that the focus here is to demonstrate the improvement in both RB-PHD-SLAM and MH-
FastSLAM when feature descriptor information is used, and not to compare RB-PHD-SLAM and MH-FastSLAM.
Although under the relatively low clutter conditions used in the SLAM experiments here, MH-FastSLAM out
performs RB-PHD-SLAM, the converse is true under higher clutter conditions [51].
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Figure 4.23: Average OSPA errors between the ground truth map and the map estimates. Errors where
averaged over 5 different runs.

O’Higgins dataset, in the sense that trees are the natural features of the environment. This

dataset provides the opportunity to test the generality of the detection statistics and descriptor

likelihoods learned based on data from Parque O’Higgins with a dataset taken by different

researchers and in a different location. Additionally, these statistics will be tested on the

detector provided with the data set [53], which was only modified to provide the number of

points used in each detection. This detector, although it also detects circular cross-sectioned

objects, is different from the detector used to gather the statistics in Parque O’Higgins.

Figs. 4.24a and 4.24b show the results of the standard RB-PHD-SLAM and MH-FastSLAM

filters, with constant values PD(mj
k|xk) = 0.4 and 0.7 respectively, determined by trial and

error, to optimize filter performance in each case. The “forgetful” nature of RB-PHD-SLAM is

evident, due to the probable mismatch in the estimated and actual probabilities of detection,

causing it to diverge (Fig. 4.24a).

Figs. 4.24c and 4.24d show the results of RB-PHD-SLAM and MH-FastSLAM respectively,

using the values of PD(mj
k|xk) learned in Parque O’Higgins, and Figs. 4.24e and 4.24f show the

effect of using the additional descriptor information. The solutions shown in Figs. 4.24c and

4.24e both converge to trajectories similar to other published SLAM solutions [6, 55].

In the case of MH-FastSLAM all three versions converge to approximately the same trajec-

tory, although using the learned detection statistics produced a map with many more features,

while adding the descriptor removed a few of the added features. Due to the lack of map ground

truth information and the partial absence of trajectory GPS information, it is difficult to judge

the performance of the proposed modifications in this dataset. It should be noted however, that

in the satellite image, some of the added features correspond to real trees, specifically in the

lower right corner of the image, across the street from the park location.
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(a) RB-PHD-SLAM with constant probability
of detection.

(b) MH-FastSLAM with constant probability of
detection.

(c) RB-PHD-SLAM with the probability of de-
tection learned in Parque O’Higgins.

(d) MH-FastSLAM with the probability of de-
tection learned in Parque O’Higgins.

(e) RB-PHD-SLAM with the learned probabil-
ity of detection and descriptor information.

(f) MH-FastSLAM with the learned probability
of detection and descriptor information.

Figure 4.24: SLAM results in Victoria Park, Sydney, Australia.
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4.8 Summary

The importance of detection, as well as the usually considered spatial, statistics upon SLAM

performance was demonstrated in this chapter. Insights were derived from the target tracking

community, in which the amplitude of radar data has been used as a target descriptor to

provide detection statistics and likelihoods, to accompany radar range values. This concept

was extended to give a generalized robotic map feature descriptor for range measuring sensors,

based on the state dependent expected number of unoccluded points, available via ray casting.

The difference between the actual and predicted number of range points received from a feature,

proved to be a useful approximation of a sufficient statistic to aid feature-based SLAM, while

accounting for map feature occlusions. SLAM simulations, with known map ground truth as

well as outdoor SLAM experiments verified the importance of including detection statistics into

SLAM algorithms. It was particularly encouraging, that the generation of detection statistics for

SLAM maps based on tree locations, learned in one park location (Santiago, Chile), were able to

provide improvements to SLAM algorithms using a data set and a different detector in another

location (Sydney, Australia). The SLAM algorithms tested were vector-based MH-FastSLAM in

conjunction with a binary Bayes filter, which utilized the derived detection statistics, and RFS-

based glsrb-GM-PHD-SLAM, which incorporates the statistics directly into its set state-based

Bayesian recursion.
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Chapter 5

PSO-RFS-SLAM

5.1 Introduction

The facts presented in chapter 3 provide a compelling reason to derive a maximum likelihood

RFS-based SLAM method, which should result in a superior performance both for large datasets

and under high clutter and detection uncertainty. In this chapter an initial version of such a

method will be presented. By maximizing the RFS-based measurement likelihood, this chapter

demonstrates that Maximum Likelihood (ML) SLAM is possible without the need for external

data association algorithms. Fundamentally, it will be shown that RFS-based ML-SLAM con-

verges to an equivalent solution to its traditional vector-based counterpart, but without the need

for correct data association information. The validity of this approach will be shown through

the solution of 1D and 2D simulated datasets.

In Section 5.2 the PSO algorithm is adapted to the RFS-SLAM problem. Results of 1D and

2D simulations are shown in Section 5.3, and Section 5.4 summarizes the chapter.

5.2 Applying PSO to SLAM

To maximize the likelihood from RFS-based equation (3.25) using a PSO approach, a modified

version of the SPSO-2007 algorithm is used. First, for numerical stability, the log-likelihood

(3.28) is used. A set of particles is created, each with a state consisting of a trajectory and a

map:

xij = (xi0:k,Mi). (5.1)
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5.2.1 Particle initialization

Given that the search space is not constrained as in the SPSO-2007 definition, to initialize the

particle set, the robot motion model is used to generate a random dead reckoning trajectory.

Once a particle has a trajectory for each of the measurements obtained, a new landmark is

created with probability Pinit. Landmarks are created with the inverse measurement model and

the already initialized robot pose, and sampling noise from the landmark uncertainty generated

from the inverse measurement model.

5.2.2 Particle motion

In most PSO definitions, the state is a vector. This means that equation (2.59) can be directly

applied to the robot trajectory x0:k, however, the map M is a set, thus (2.59) needs to be

adapted.

We therefore define the velocity of a set by attaching a velocity component to each vector

element of the set. Then, to modify the velocity of a set we use a method inspired by the OSPA

metric [56]. Map elements are associated by linear assignment as if calculating the OSPA metric,

and then the velocity of the associated elements can be calculated directly, using equation (2.59).

For the unassociated measurements a new parameter φcard is added. Then, if a map element

in xij is not associated it will be eliminated with probability equal to φcard, and unassociated

map elements in lij and gij will be added to xij with probability φcard. This parameter is given

a small value (e.g. φcard ' 0.15). As an added modification, even associated features can be

removed with a smaller probability (' 0.01). This small random move is designed to stop the

optimizer converging to a local optima.

5.2.3 Gradient-based optimization step

Given the high correlation between states, which characterizes the SLAM problem, when the

particle motion is applied to the trajectory, the measurement likelihood usually decreases. To

compensate for this and to improve the convergence properties of PSO, a gradient-based opti-

mization step is performed for every particle every Kopt steps (Kopt ∈ [10, 100]).

To maximize the likelihood from equation (3.25) the log-likelihood (3.28) is used. The

summation on the left of (3.28) is a traditional non-linear least squares optimization problem

(assuming Gaussian noise in g(·)), however, in the summation on the right, the log(·) does

not cancel with the exponentials. For the left summation, the gradient can be calculated in a
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straightforward manner, but for the summation on the right we obtain

∂

∂xk
log

(∑

θ

p
(
Zi
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))
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θ
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Zi
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) . (5.2)

If the single feature measurement model is Gaussian and the clutter rate and probability of

detection are assumed constant then the gradient ∂
∂xk

log (·), defined in (5.2), would be
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(5.5)

where Ωzj is the square root of the information matrix of measurement zj. The information

matrix of a distribution is defined as the inverse of its covariance matrix. Applying the product

rule gives
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(5.8)

Therefore, we obtain a weighted average of the traditional non-linear least squares, weighted by

the RFS measurement likelihoods. However, the non-log likelihoods still need to be evaluated,

which can cause numerical instabilities, especially if the initialization point is too far away from

the real values of the map and trajectory (as occurs most of the time with random initialization).

Therefore to increase the numerical stability, the log-sum-exp trick is used.
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The log-sum-exp trick

Adding a log-exp pair to the right-hand side term in equation (3.28) gives

l
(
Z0:k

∣∣∣x0:k,m,u0:k−1

)
=

k∑

i=1

log (g(xi|xi−1,ui−1))

+
k∑

i=0

log

(∑

θ

exp(log(p
(
Zi
∣∣∣xi,M, θ

)
))

)
. (5.9)

Expanding p
(
Zi
∣∣∣xi,M, θ

)
on the right hand side of (5.9):

rhs(5.9) =
k∑

i=1

log (g(xi|xi−1,ui−1)) +
k∑

i=0

log

(∑

θ

exp

[

log

(
∏
zji∈Zi

κ(zji )

exp(
∫
κ(z)dz)

∏

mj∈M
(1− PD(mj|xi))

∏

zji∈ZA
θ

PD(mθ(j)|xi)
(1− PD(mθ(j)|xi))κ(zji )

p
(
zji

∣∣∣xi,mθ(j)
))])

. (5.10)

Turning the log of the products into sums gives:

l
(
Z0:k

∣∣∣x0:k,m,u0:k−1

)
=

k∑

i=1

log (g(xi|xi−1,ui−1))

+
k∑

i=0

log

(∑

θ

exp

[ ∑

zji∈Zi

log(κ(zji ))−
∫
κ(z)dz

+
∑

mj∈MAθ

log(1− PD(mj|xi)) +
∑

zji∈ZA
θ

logit(PD(mθ(j)|xi))

− log(κ(zji )) + l
(
zji

∣∣∣xi,mθ(j)
)])

, (5.11)

where l (·|·) is the single-feature log-likelihood, and the logit function is defined as logit(x) =
log(x)

1−log(x)
. Then the most likely data association can be taken out of the log function, by sub-
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tracting its value in every exponential giving:

l
(
Z0:k

∣∣∣x0:k,m,u0:k−1

)
=

k∑

i=1

log (g(xi|xi−1,ui−1))

+
k∑

i=0

∑

zji∈Zi

[
log(κ(zji )) +

∫
κ(z)dz

+
∑

mj∈M
log(1− PD(mj|xi)) +

∑

zji∈ZA
θ
max

logit(PD(mθmax(j)|xi))

− log(κ(zji )) + l
(
zji

∣∣∣xi,mθmax(j)
)]

+ log

(∑

θ

exp

[ ∑

zji∈ZA
θ

logit(PD(mθ(j)|xi))− log(κ(zji ))

+ l
(
zji

∣∣∣xi,mθ(j)
)
−

∑

zji∈ZA
θ
max

logit(PD(mθmax(j)|xi))

− log(κ(zji )) + l
(
zji

∣∣∣xi,mθmax(j)
)])

. (5.12)

This objective function can now be interpreted as the log-likelihood using the most likely data

association θmax, which is calculated using the Hungarian method, plus a correction factor,

which accounts for all other association possibilities. This correction factor approaches zero

whenever only one data association is likely. Conversely, the correction factor will be nonzero

whenever multiple data associations are likely. Note therefore, that the Hungarian method

is only necessary in order to rewrite equation (5.11) in terms of differences between the log-

likelihoods of the associations and the most likely association, resulting in a more numerically

stable form. This avoids the calculation of exponentials of large negative values. This function is

then optimized using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Note that only

the spatial position of the landmarks and poses of the robot are optimized, meaning that during

this step the map size does not change. However, the estimate of the map size is optimized in

the PSO particle motion step.
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5.3 Simulated SLAM Results

5.3.1 Proof of concept for RFS maximum likelihood SLAM in 1D

To show that using an RFS approach to maximum likelihood SLAM is feasible, a 1D simulation

is carried out and compared with a traditional method using the correct data association.

In this simulation, a 1D robot moves through a 1D map, observing landmarks and its own

odometry. Both of these measurements are corrupted by zero mean Gaussian noise. To be

able to use a traditional least squares random vector method, measurements are simulated

with a label representing the landmark that generated it. These labels are then used by the

traditional method for measurement detection to landmark association. On the contrary, the

RFS formulation ignores these labels. A constant probability of detection of 0.9 and a clutter

intensity of 0.01 was used to generate missed detections and Poisson distributed false alarms

in the robot’s field of view. Measurements were generated with a spatial variance of 10−4[m2],

while odometry readings used a variance of 10−2[m2].

Figures 5.1 and 5.2 show an example solution to this problem, solved by maximizing the

traditional measurement likelihood and the RFS-based measurement likelihood from (3.25),

respectively. As can be seen from the figures, both solutions converge to the ground truth

trajectory and map. It is important to note that, in addition to not having the data association,

the RFS-based solution is also solving for the map size, making the optimization problem partly

integer, which is significantly more difficult than solving only for the positions of the map

elements. Figure 5.3 shows the robot position error of both algorithms, averaged over 5 Monte

Carlo runs. Both errors are of the same order of magnitude.

5.3.2 RFS maximum likelihood in 2D

To demonstrate the validity of RFS ML SLAM further, a 2D simulation was carried out and

compared with the traditional vector-based approach. Measurements were simulated with a 0.9

probability of detection and a clutter intensity of 0.001 in the sensor’s field of view. Measure-

ments were generated with a range variance of 10−4[m2] and a bearing variance of 10−4[rad2],

while odometry readings used a variance of 2× 10−4[m2], both in the x and y directions, and

an angular variance of 2× 10−4[rad2]. As can be seen from figures 5.4 and 5.5, both trajectories

and maps converge to a solution very close to ground truth. Further, both solutions are similar

to each other, presenting a small translational error in the same direction. This error may be

because of the random nature of the measurements, meaning that the most likely trajectory is

not necessarily the correct one. Figure 5.6 shows the x and y positional errors (averaged over

5 Monte Carlo runs) between the estimates and the simulated ground truth. As can be seen
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Figure 5.1: The solution to a 1D SLAM problem using the traditional least squares approach.
The ground truth, estimated, and dead reckoning trajectories are plotted as red, green, and
dashed red lines, respectively (top). In the lower graph, the ground truth map is shown as red
stars, the estimated map as red points, and all the measurements are shown as green points.
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Figure 5.2: The solution to a 1D SLAM problem by maximizing the RFS measurement likeli-
hood using an adapted PSO method. The particle, ground truth, estimated, and dead reckoning
trajectories are plotted as blue, red, green, and dashed red lines, respectively (top). Note that
most particles have converged to the ground truth so they appear almost superimposed. The
noisy trajectories that can be seen are a small fraction of the particles. In the lower graph, the
ground truth map is shown as red stars (at y = −1), the estimated map is shown as red points
(at y = index of the most likely particle) and the estimated map of each particle is shown as
blue points plotted at y = index of each particle.
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Figure 5.3: The absolute robot position error of the maximum likelihood solution obtained
through the traditional vector-based, least squares, approach plotted in red, and the RFS-based
maximum likelihood solution plotted in blue. Errors were averaged over 5 Monte Carlo runs.
As can be seen, both errors are of the same order of magnitude.
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from the figure, again both algorithms yield very similar error curves, to the point that they

are closer to each other than to the ground truth.
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Figure 5.4: The solution to a 2D SLAM problem using the traditional least squares method.
The ground truth and estimated trajectories are plotted as red and green lines, respectively
(top). In the lower graph, the ground truth map is shown as red stars, the estimated map is
shown as red points and all the measurements are shown as small green stars (mostly being
occluded by the markers for the estimated landmarks).
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Figure 5.5: The solution to a 2D SLAM problem by maximizing the RFS measurement likeli-
hood using an adapted PSO method. The particle, ground truth and estimated trajectories are
plotted as blue, red, and green lines, respectively (top). Note that most of the particles have
converged to the ground truth so they are shown superimposed. In the lower graph, the ground
truth map is shown as red stars, the estimated map is shown as red points and the estimated
map of each particle is shown as blue points.
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Figure 5.6: The absolute robot position error of the maximum likelihood solution obtained
through the traditional vector-based, least squares, approach plotted in red, and the RFS-
based maximum likelihood solution plotted in blue. The errors in the x variable are plotted as
continuous lines and the errors in the y variable are plotted as dashed lines. Both error curves
are similar.
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5.4 Summary

In this Chapter, an RFS-based maximum likelihood solution to SLAM has been introduced. The

likelihood function to maximize was presented using RFS theory and the PSO algorithm was

adapted to this problem and used together with gradient-based methods. The optimization of

this function was compared to the use of non-linear least squares solvers on the traditional likeli-

hood function which assumes known data association and no clutter, using 1D and 2D simulated

SLAM datasets. It was shown that the optimization of this new function can converge to the

solution obtained with known data association, even though no such information was provided

to the ML-RFS-SLAM algorithm. The ability to perform robust SLAM, without the necessity

of fragile data association decisions, opens avenues for significant research. Algorithms that

maximize the RFS measurement likelihood and simultaneously offer computationally tractable

solutions could vastly increase the robustness of SLAM.

In chapter 6 an improved solution, with a maximum a posteriori approach, will address the

computational complexity of the optimization method so that the RFS maximum likelihood

SLAM concept can be successfully applied to larger real-world datasets.
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Chapter 6

RFS-based Non-linear Least Squares

Optimization Approach

6.1 Introduction

The previous exploration of the batch RFS approach has shown the limitations of general

optimization methods, such as PSO when compared to the specialized algorithms that are used

in the SLAM graph optimization approach (e.g. Levenberg Marquardt). With the objective

of using these algorithms to exploit the correlation between the states being estimated, and

its sparse nature (i.e. the sparse information matrix) this section will therefore introduce an

RFS-based formulation which includes these correlations, so that state of the art optimization

approaches can be used as a part of the proposed algorithm.

We know from the robotics literature that, given the correct data association, the SLAM

problem can be solved by the use of a non-linear least squares solver. This can be modified to

be robust to a limited number of outliers by changing the function being minimized from the

squared error function to an outlier tolerating error function, such as the Huber function [57].

Solving the SLAM problem in this way allows the linearisation point of the non-linear like-

lihood function to be updated when the estimated state changes significantly. In contrast to

filtering approaches, in which the likelihood function at time k is linearised using the informa-

tion up to time k (usually by linearising at the predicted state), batch approaches can update

this linearisation point using information from measurements taken at times beyond k. It also

enables the use of sparse matrix methods to exploit the sparsely connected measurement graph

typical in the SLAM formulation.

Therefore in this section, the SLAM state is modeled as a joint distribution, representing

the vector-valued trajectory and the set-valued map, referred to as the Vector-Generalized
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Labeled Multi Bernoulli (V-GLMB) distribution. This distribution has components that can

be calculated using state-of-the-art methods such as the g2o solver [21]. Using this model, an

optimization approach can still be used to maximize the likelihood from (3.28). The V-GLMB

distribution will be introduced and then used to generate a SLAM formulation in the following

sections, together with results comparing V-GLMB-SLAM to state-of-the-art solutions.

6.2 A Joint Vector-Bernoulli distribution

To provide a SLAM solution which has the advantages of both batch and RFS-based approaches,

we first consider the simplest possible set model, in which the map is a random set with at most

one element. We define a Joint Vector-Bernoulli distribution as a distribution on the tuple

χK = (x0:K ,M). The distribution is defined as π(χK) ,

π(χK) =





(1− r)π0(x0:K) χK = (x0:K ,∅)

rπ1(x0:K ,m) χK = (x0:K , {m})
0 else

(6.1)

where r is the probability of existence of feature m, π0(x0:K) is a vector distribution on the

vehicle trajectory, given that the map is empty, π1(x0:K ,m) is a joint vector distribution on the

vehicle trajectory (vector) and map element m (set) tuple, given that the map contains only a

single element m. Note that the vector state x0:K and element of the set m can, in general, be

correlated either linearly or otherwise.

It can be shown that this distribution integrates to 1 over the joint vector-set statespace by
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stating the joint integral as follows.

∫

χK

π(χK) =

∫

x0:K

∫

M
π(χK)

=

∫

x0:K

∫

M





(1− r)π0(x0:K) χK = (x0:K ,∅)

rπ1(x0:K ,m) χK = (x0:K , {m})
0 else

=

∫

M





(1− r)
∫
x0:K

π0(x0:K) χK = (x0:K ,∅)

r
∫
x0:K

π1(x0:K ,m) χK = (x0:K , {m})
0 else

=
1

0!
(1− r)

∫

x0:K

π0(x0:K) +
1

1!
r

∫

m

∫

x0:K

π1(x0:K ,m)

= (1− r) + r = 1

(6.2)

were we have used the fact that π0(x0:K) and π1(x0:K ,m) are vector distributions and therefore

integrate to 1.

6.3 A Joint Vector-GLMB distribution

We can generalize the previous distribution to arbitrary set sizes by following the work of Vo

and Vo [12] to extend the joint vector-set idea to a GLMB set distribution. We write a V-GLMB

distribution as

π(χK) = ∆(M)
∑

c∈C
wc(L(M))πc(x0:K , ~v(M)) , (6.3)

where ∆(M) is the distinct label indicator, defined as

∆(M) = δ|M|(|L(M)|) =





1 for no repeated labels in M
0 else ,

(6.4)

which will be zero if there are any repeated labels in the set M, and unity otherwise.

~v(M) = M (6.5)

is a function, that we call “vectorize”, which takes a labeled RFS M, and returns a vector

version of the labeled RFS using the order of the labels (this could be the elements of the set
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in that same label order, or it could be any fixed permutation of that order1). To make sure

that this distribution is normalized , i.e. it integrates to 1, the component weights must comply

with with ∑

L⊆L

∑

c∈C
wc(L) ≡ 1. (6.6)

A short proof of this fact is shown in Annex C.

In the case of feature-based SLAM, “labels” correspond to distinct feature/landmark identi-

ties. C is a finite index set. πc(·) is a vector distribution, possibly including correlation between

target/features in M and the vector state x0:k. In the implementation of the GLMB filter

[12], i.e. the application of Bayes theorem, the index c corresponds to a single data association

hypothesis between a subset of the available measurements and the elements m of the mapM,

the remaining measurements being hypothesized to be false alarms.

Equation (6.3) can be expressed in δ-GLMB form as:

wc(L(M)) =
∑

I∈F(L)

w(c,I)δI(L(M)) , (6.7)

where δI(L(M)) is the set-valued Kronecker delta which discards all sets M whose labels are

not equal to I, w(c,I) is a real-valued weight, and F(L) is the set of all possible subsets of the

label space L. Substituting (6.7) into (6.3) yields

π(χk) = ∆(M)
∑

c∈C

∑

I∈F(L)

w(c,I)δI(L(M))πc(x0:k, ~v(M)) . (6.8)

However, since for each c there will only be a finite number of non-zero weights w(c,I), we

can simplify the notation by using the index set Ck to index the pair (ck, I). This means the

set of existing labels I depends on the index c and is now referred to as Ic. The δ-V-GLMB

distribution can then be restated as:

π(χk) = ∆(M)
∑

ck∈Ck
wckδIck (L(M))πck(x0:k, ~v(M)) . (6.9)

Table 6.1 shows an example of a simple V-GLMB distribution with two components, a

trajectory of length 1, and an index set Ck = {0, 1}. This example is in 1D space and therefore

both the trajectory and landmarks are 1D variables. The distribution is given by (6.9), with

the parameters given by the table. This means that k = 0 and the trajectory is composed only

1Defining the “vectorize” function to use some other order (like the inverse), would change the definition of
the vectorized set. However, this would not change any other aspect of the posterior probability distribution, or
the resulting algorithm to approximate it
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ck wck Ick πc(x0:k, ~v(M)) ~v(M) µck Σck

0 0.5 {0} N (x0:k, ~v(M);µ0,Σ0)

[
x0

m1

] [
0.0
1.0

] [
0.3 0.01
0.01 0.2

]

1 0.5 {0, 1} N (x0:k, ~v(M);µ1,Σ1)




x0

m1

m2







0.0
1.0
3.0







0.2 0.01 0.01
0.01 0.2 0.02
0.01 0.2 0.2




Table 6.1: Example of a simple V-GLMB distribution with 2 components.

of one pose x0, usually set to x0 = 0.0. Note that the length of the trajectory, being a vector,

does not change throughout all the components. This distribution has just 2 components and

it describes two landmarks, where landmark 1 is hypothesized to exist in every component, and

landmark 2 is hypothesized to exist only in component ck = 1. In this example, the distributions

are Normally distributed, with correlations between both the trajectory and the landmarks.

To formulate the SLAM solution, it is possible to apply Bayes theorem to the Vector-GLMB

distribution (6.9) to get the full posterior. The prediction step is

p
(
χk+1

∣∣∣Z0:k,u1:k+1

)
= p

(
χk

∣∣∣Z0:k,u1:k

)
p
(
xk+1

∣∣∣xk,uk+1

)
, (6.10)

and the corresponding update step is

p
(
χk+1

∣∣∣Z0:k+1,u1:k+1

)
=
p
(
χk

∣∣∣Z0:k,u1:k

)
p
(
xk+1

∣∣∣xk,uk+1

)
p
(
Zk+1

∣∣∣xk+1,M
)

p (Zk+1)
, (6.11)

where p (Zk+1) is a normalization constant and does not need to be explicitly calculated. The

measurement likelihood can be stated as in (3.26), rewritten here as

p
(
Zk
∣∣∣xk,M

)
= p

(
Zk
∣∣∣xk,

{
m1,m2, . . . ,m|M|

})

=
∑

θk


pκ

(
ZĀθkk

) ∏

mj∈MĀθk

(
1− PD

(
mj|xk

)) ∏

zik∈Z
Aθk
k

PD

(
maθk (i)|xk

)
p
(
zik

∣∣∣mj,xk

)

 , (6.12)

where the association function aθk(i) is the inverse of the aθk(j) that was used in (3.26)2.

Substituting the measurement likelihood (6.12) and (6.9) into (6.11) and noting that π(χk) =

2A single association θk can either be expressed as a function relating the landmark to measurement index
(as in (3.26)) or relating the measurement index to the associated landmark index, as in (6.12). Since every
term in the summation in (6.12) has the same set of measurements and since this set is usually much smaller
than the set of landmarks, it is more convenient to use the latter formulation.
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p
(
χk

∣∣∣Z0:k,u1:k

)
yields

p
(
χk+1

∣∣∣Z0:k+1,u1:k+1

)
∼ ∆(M)

∑

ck∈Ck
wckδIck (L(M))πck(x0:k, ~v(M))p

(
xk+1

∣∣∣xk,uk+1

)

∑

θk+1

[
pκ

(
ZĀθk+1

k+1

) ∏

mj∈MĀθk+1

(
1− PD

(
mj|xk+1

))

∏

zik+1∈Z
Aθk+1
k+1

PD

(
maθk+1

(i)|xk+1

)
p
(
zik+1

∣∣∣maθk (i),xk+1

)]
.

(6.13)

Moving the summation over associations θk+1 yields

p
(
χk+1

∣∣∣Z1:k+1,u1:k+1

)
∼ ∆(M)

∑

ck∈Ck

∑

θk+1

[
wckδIck (L(M))πck(x0:k, ~v(M))

p
(
xk+1

∣∣∣xk,uk+1

)
pκ

(
ZĀθk+1

k+1

) ∏

mj∈MĀθk+1

(
1− PD

(
mj|xk+1

))

∏

zik+1∈Z
Aθk+1
k+1

PD

(
maθk+1

(i)|xk+1

)
p
(
zik+1

∣∣∣maθk+1
(i),xk+1

)]
, (6.14)

which is a new Joint Vector-δ-GLMB distribution of the form:

π(χk+1) = ∆(M)
∑

ck+1∈Ck+1

wck+1δIck+1 (L(M))πck+1(x0:k, ~v(M)) , (6.15)

with the new index ck+1 being extended by every possible data association θk+1. The new set

of indices Ck+1 will be the product of the existing indices Ck with the set of all possible data

associations Θk+1. Therefore

Ck+1 = Ck ×Θk+1 , (6.16a)

ck+1 = (ck, θk+1) , (6.16b)

wck+1 = wck
∫
πck(x0:k, ~v(M))p

(
xk+1

∣∣∣xk,uk+1

)
pκ

(
ZĀθk+1

k+1

)
(6.16c)

∏

mj∈MĀθk+1

(
1− PD

(
mj|xk+1

)) ∏

zik+1∈Z
Aθk+1
k+1

PD

(
maθk+1

(i)|xk+1

)
p
(
zik+1

∣∣∣maθk+1
(i),xk+1

)
dχk+1 ,
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where,

πck+1(x0:k+1, ~v(M)) =
wck

wck+1
πck(x0:k, ~v(M))p

(
xk+1

∣∣∣xk,uk
)
pκ

(
ZĀθkk+1

)
, (6.16d)

∏

mj∈MĀθk+1

(
1− PD

(
mj|xk+1

)) ∏

zik+1∈Z
Aθk+1
k+1

PD

(
maθk+1

(i)|xk+1

)
p
(
zik+1

∣∣∣maθk+1
(i),xk+1

)
.

With this definition, it is possible to start with an V-GLMB-SLAM prior and recursively

calculate the full posterior of the V-GLMB-SLAM distribution

6.3.1 Normal distribution approximation

To apply the V-GLMB model we take equations (6.16a) to (6.16d), and model πck(·) with a

Normal distribution.

πck(x0:k, ~v(M)) = N (x0:k, ~v(M);µck ,Σck) , (6.17)

where µck and Σck are the mean and covariance of the normal distribution of component ck,

respectively. This can be updated with linearized motion and measurement models through

equations (6.16a) to (6.16d) by the use of a(n) (extended) Kalman Filter for each new component

ck+1 in Ck+1. This means we would end up with an EKF-SLAM solution for each possible data

association. However, as stated previously, graph-based optimization approaches have been

shown to provide solutions superior to filter-based approaches for the non-linear yet sparse

nature of SLAM. Therefore a graph-based approximation, yet still Gaussian, follows.

Substituting the normal distribution approximation into (6.3) yields

π(χk) = ∆(M)
∑

ck∈Ck
wckδIck (L(M))N (x0:k, ~v(M);µck ,Σck) . (6.18)

The resulting posterior requires the update of Ck+1, ck+1, wck+1 and πck+1(x0:k, ~v(M)), which

are given by replacing the spatial distribution πck(x0:k, ~v(M)) with the normal distribution
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N (x0:k, ~v(M);µck ,Σck) in (6.16):

Ck+1 = Ck ×Θk+1 , (6.19a)

ck+1 = (ck, θk+1) , (6.19b)

wck+1 = wck
∫
N (x0:k, ~v(M);µck ,Σck) p

(
xk+1

∣∣∣xk,uk+1

)
pκ

(
ZĀθk+1

k+1

)

∏

mj∈MĀθk+1

(
1− PD

(
mj|xk+1

)) ∏

zik+1∈Z
Aθk+1
k+1

PD

(
maθk+1

(i)|xk+1

)
p
(
zik+1

∣∣∣maθk+1
(i),xk+1

)
dχk+1 ,

(6.19c)

πck+1(x0:k, ~v(M)) =
wck

wck+1
N (x0:k, ~v(M);µck ,Σck) p

(
xk+1

∣∣∣xk,uk+1

)
pκ

(
ZĀθk+1

k+1

)

∏

mj∈MĀθk+1

(
1− PD

(
mj|xk+1

)) ∏

zik+1∈Z
Aθk+1
k+1

PD

(
maθk+1

(i)|xk+1

)
p
(
zik+1

∣∣∣maθk+1
(i),xk+1

)
.

(6.19d)

By assuming that the probability of detection PD (mj|xk+1) varies slowly with both the robot

pose xk+1 and the landmark location mj3, we can approximate the posterior by using the value

of PD (mj|xk+1) at the mean µck of the normal distribution and assuming it is constant for the

sake of integration. It will therefore be referred to as P
(j,k+1)
D from here on. Then:

Ck+1 = Ck ×Θk , (6.20a)

ck+1 = (ck, θk+1) , (6.20b)

wck+1 = wckpκ

(
ZĀθk+1

k+1

) ∏

mj∈MĀθk+1

(
1− P (j,k+1)

D

) ∏

zik+1∈Z
Aθk+1
k+1

P
(aθk+1

(i),k+1)

D

∫
N (x0:k, ~v(M);µck ,Σck) p

(
xk+1

∣∣∣xk,uk+1

) ∏

zik+1∈Z
Aθk+1
k+1

p
(
zik+1

∣∣∣maθk+1
(i),xk+1

)
dχk+1 ,

(6.20c)

πck+1(x0:k, ~v(M)) ∼ N (x0:k, ~v(M);µck ,Σck) p
(
xk+1

∣∣∣xk,uk+1

)

∏

zik+1∈Z
Aθk+1
k+1

p
(
zik+1

∣∣∣maθk+1
(i),xk+1

)
, (6.20d)

where (6.20d) has been stated as a similarity (without writing the normalization constant) for

3This approximation may not be accurate at the edge of the field of view (FoV) of the sensor, accounting for
this could be an avenue for future research
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brevity. Since it is a vector probability distribution, it simply needs to be normalized. Finally

equations (6.20) can be used to solve the SLAM problem using any choice of the existing vector-

based SLAM methods. We can use equations (6.20a) to (6.20d) to state the posterior after K

updates:

CK = C∅ ×Θ0 ×Θ1 × · · · ×ΘK , (6.21a)

cK = (c∅, θ0, · · · , θK) , (6.21b)

wcK = wcK−1pκ

(
ZĀθKK

) ∏

mj∈MĀθK

(
1− P (j,K)

D

) ∏

ziK∈Z
AθK
K

P
(aθK (i),K)

D

∫
πcK−1(x0:K−1, ~v(M))p

(
xK

∣∣∣xK−1,uK

) ∏

ziK∈Z
AθK
K

p
(
ziK

∣∣∣maθK (i),xK

)
dχK , (6.21c)

πcK (x0:K , ~v(M)) ∼ N (x0, ~v(M);µc∅ ,Σc∅)
K∏

k=1

p
(
xk

∣∣∣xk−1,uk

) K∏

k=0

∏

zik∈Z
Aθk
k

p
(
zik

∣∣∣maθk (i),xk

)
.

(6.21d)

Note that the component weight wcK is still stated as a function of the previous weight

wcK−1 and spatial distribution πcK−1(x0:K−1, ~v(M)) . We can solve for the weight by replacing

πcK (x0:K−1, ~v(M)) in (6.21c) using the normalized version of (6.21d):

wcK = wcK−1pκ

(
ZĀθKK

) ∏

mj∈MĀθK

(
1− P (j,K)

D

) ∏

ziK∈Z
AθK
K

P
(aθK (i),K)

D

∫ N (x0, ~v(M);µc∅ ,Σc∅)
∏K−1

k=1 p
(
xk

∣∣∣xk−1,uk

)∏K−1
k=0

∏
zik∈Z

Aθk
k

p
(
zik

∣∣∣maθk (i),xk

)

∫
N (x0, ~v(M);µc∅ ,Σc∅)

∏K−1
k=1 p

(
xk

∣∣∣xk−1,uk

)∏K−1
k=0

∏
zik∈Z

Aθk
k

p
(
zik

∣∣∣maθk (i),xk

)

p
(
xK

∣∣∣xK−1,uK

) ∏

ziK∈Z
AθK
K

p
(
ziK

∣∣∣maθK (i),xK

)
dχK (6.22)
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which can be restated as

wcK = wcK−1pκ

(
ZĀθkK

) ∏

mj∈MĀθK

(
1− P (j,k)

D

) ∏

ziK∈Z
AθK
K

P
(aθK (i),K)

D

∫
N (x0, ~v(M);µc∅ ,Σc∅)

∏K
k=1 p

(
xk

∣∣∣xk−1,uk−1

)∏K
k=0

∏
zik∈Z

Aθk
k

p
(
zik

∣∣∣maθk (i),xk

)
dχK

∫
N (x0, ~v(M);µc∅ ,Σc∅)

∏K−1
k=1 p

(
xk

∣∣∣xk−1,uk

)∏K−1
k=0

∏
zik∈Z

Aθk
k

p
(
zik

∣∣∣maθk (i),xk

)
dχK−1

.

(6.23)

This recursive equation can be expanded as

wcK = wc∅
K∏

k=0

pκ

(
ZĀθkk

) ∏

mj∈MĀθk

(
1− P (j,i)

D

) ∏

zik∈Z
Aθk
k

P
(aθk (i),k)

D

∫
N (x0, ~v(M);µc,Σc)

K∏

k=1

p
(
xk

∣∣∣xk−1,uk

) K∏

k=0

∏

zik∈Z
Aθk
k

p
(
zik

∣∣∣maθk (i),xk

)
dχK . (6.24)

Therefore we can state the full vector-GLMB posterior as

CK = C∅ ×Θ0 ×Θ1 × · · · ×ΘK , (6.25a)

cK = (c∅, θ0, · · · , θK) , (6.25b)

wcK = wc∅
K∏

k=0

pκ

(
ZĀθkk

) ∏

mj∈MĀθk

(
1− P (j,i)

D

) ∏

zik∈Z
Aθk
k

P
(aθk (i),k)

D

∫
N (x0, ~v(M);µc∅ ,Σc∅)

K∏

k=1

p
(
xk

∣∣∣xk−1,uk

) K∏

k=0

∏

zik∈Z
Aθk
k

p
(
zik

∣∣∣maθk (i),xk

)
dχK , (6.25c)

πcK (x0:K , ~v(M)) ∼ N (x0, ~v(M);µc∅ ,Σc∅)
K∏

k=1

p
(
xk

∣∣∣xk−1,uk

) K∏

k=0

∏

zik∈Z
Aθk
k

p
(
zik

∣∣∣maθk (i),xk

)
.

(6.25d)

6.4 Calculating the component weight

Equations (6.25a) to (6.25d) provide the full SLAM posterior. We know that when using a non-

linear least squares approach, we can efficiently solve for the spatial posterior πcK (x0:K , ~v(M)).

We still need an efficient method for calculating the component weight wcK for each data asso-
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ciation hypothesis. The posterior (6.25d) in its full form is:

πcK (x0:K , ~v(M)) =

N (x0, ~v(M);µc∅ ,Σc∅)
K∏
k=1

p
(
xk

∣∣∣xk−1,uk

) K∏
i=0

∏
zik∈Z

Aθk
k

p
(
zik

∣∣∣maθk (i),xk

)

q(ck,Z1:K ,u1:K)
(6.26)

where

q(ck,Z0:K ,u1:K) =
∫
N (x0, ~v(M);µc∅ ,Σc∅)

K∏

k=1

p
(
xk

∣∣∣xk−1,uk

) K∏

k=0

∏

zik∈Z
Aθk
k

p
(
zik

∣∣∣maθk (i),xk

)
dχK (6.27)

is the normalization factor.

Approximating the motion and measurement models, p
(
xk

∣∣∣xk−1,uk

)
and p

(
zik

∣∣∣maθk (i),xk

)
,

by non-linear models with additive Gaussian noise

p
(
xk

∣∣∣xk−1,uk

)
= N

(
xk; fu(xk−1),Σodo

)
(6.28)

p
(
zik

∣∣∣maθk (i),xk

)
= N

(
zik; fz(m

aθk (i),xk),Σ
z
)
, (6.29)

where fu(xk−1) and fz(m
aθk (i),xk) are non-linear functions producing the mean of the motion

and measurement models respectively. Σodo and Σz are the covariances of the motion and

measurement models. Using (6.28) and (6.29), it is possible to approximate the spatial posterior

with a Gaussian distribution:

πcK (x0:K , ~v(M)) = N
(
x0:K , ~v(M);µMAP ,ΣMAP

)
(6.30)

with parameters determined by the least squares solvers. Then:

q(cK ,Z0:K ,u1:K) =

N (x0, ~v(M);µc∅ ,Σc∅)
K∏
k=1

p
(
xk

∣∣∣xk−1,uk

) K∏
k=0

∏
zik∈Z

Aθk
k

p
(
zik

∣∣∣maθk (i),xk

)

N (x0:K , ~v(M);µMAP ,ΣMAP )

(6.31)

where µc∅ and Σc∅ represent the mean and covariance of the initial spatial estimate of the prior

distribution. µMAP and ΣMAP correspond to the mean and covariance of the posterior spatial
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estimate given by the least squares solver. Taking logs of (6.31) gives

log(q(cK ,Z0:K ,u1:K)) = log (N (x0, ~v(M);µc∅ ,Σc∅)) +
K∑

k=1

l
(
xk

∣∣∣xk−1,uk

)

K∑

k=0

∑

zik∈Z
Aθk
k

l
(
zik

∣∣∣maθk (i),xk

)
− log

(
N
(
x0:K , ~v(M);µMAP ,ΣMAP

))
.

(6.32)

Writing out the Normal distributions we get

log(q(ck,Z0:K ,u1:K)) = −1

2

[
|χ0| log(2π) + (χ0 − µc∅)>(Σc∅)−1(χ0 − µc∅) + log(det(Σc∅))

+
K∑

k=1

|xk| log(2π) + (xk − f(xk−1,uk))
>(Σodo)−1(xk − f(xk−1,uk)) + log(det(Σodo))

+
K∑

k=0

∑

zik∈Z
Aθk
k

|zik| log(2π) + (zik − h(maθk (i),xk))
>(Σz)−1(zik − h(maθk (i),xk)) + log(det(Σz))

−
(
|χK | log(2π) + log(det(ΣMAP )) + (χK − µMAP )>Σ−1

MAP (χK − µMAP )
)
]
. (6.33)

By noting that |χK | = |χ0| + K|xk| and substituting this into (6.33) various terms cancel as

follows

log(q(ck,Z0:K ,u1:K)) = −1

2

[

���
���

�|χ0| log(2π) + (χ0 − µc∅)>(Σc∅)−1(χ0 − µc∅) + log(det(Σc∅))

+
K∑

k=1
���

���
�|xk| log(2π) + (xk − f(xk−1,uk))

>(Σodo)−1(xk − f(xk−1,uk)) + log(det(Σodo))

+
K∑

k=0

∑

zik∈Z
Aθk
k

|zik| log(2π) + (zik − h(maθk (i),xk))
>(Σz)−1(zik − h(maθk (i),xk)) + log(det(Σz))

−
(
((((

(((|χK | log(2π) + log(det(ΣMAP )) + (χK − µMAP )>Σ−1
MAP (χK − µMAP )

)
]
. (6.34)

We can also use the approximation that near the SLAM solution, the non-linear error functions
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can be substituted with a truncated Taylor series to second order, as follows

(χ0 − µc∅)>(Σc∅)−1(χ0 − µc∅) +
K∑

k=1

(xk − f(xk−1,uk))
>(Σodo)−1(xk − f(xk−1,uk))

+
K∑

k=0

∑

zik∈Z
Aθk
k

(zik − h(maθk (i),xk))
>(Σz)−1(zik − h(maθk (i),xk))

≈
∑

r

e>r Ωrer + ∆χK
ᵀJᵀ

r ΩrJr∆χK ,

(6.35)

with e>r Ωrer being the error of each constraint evaluated at the spatial estimate µMAP . Then

the weight can be calculated as

log(q(ck,Z0:K ,u1:K)) ≈ −1

2

[
K∑

k=1

log(det(Σodo)) +
K∑

k=0

∑

zik∈Z
Aθk
k

|zik| log(2π) + log(det(Σz))

+
∑

r

e>r Ωrer + ∆χK
ᵀJᵀ

r ΩrJr∆χK −
(

log(det(ΣMAP )) + (χK − µMAP )>Σ−1
MAP (χK − µMAP )

)]

= −1

2

[
K∑

k=0

∑

zik∈Z
Aθk
k

|zik| log(2π) +
∑

r

e>r Ωrer + ∆χK
ᵀJᵀ

r ΩrJr∆χK − log(det(Ωr))

−
(

log(det(ΣMAP )) + (χK − µMAP )>Σ−1
MAP (χK − µMAP )

)]
. (6.36)

It should also be noted that Σ−1
MAP =

∑
r J

ᵀ
r ΩrJr which cancels out the term ∆χK

ᵀJᵀ
r ΩrJr∆χK

as follows

log(q(ck,Z0:K ,u1:K)) ≈ −1

2

[
K∑

k=0

∑

zik∈Z
Aθk
k

|zik| log(2π) +
∑

r

e>r Ωrer +
(((

((((
(((

∆χK
ᵀJᵀ

r ΩrJr∆χK

− log(det(Ωr))−
(

log(det(ΣMAP )) +
((((

((((
(((

((((
(((

(χK − µMAP )>Σ−1
MAP (χK − µMAP )

)]

log(q(ck,Z0:K ,u1:K)) ≈ −1

2

[
K∑

k=0

∑

zik∈Z
Aθk
k

|zik| log(2π) +
∑

r

e>r Ωrer − log(det(Ωr))

−
(

log(det(ΣMAP ))
)]

(6.37)
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giving

log(q(cK ,Z1:K ,u0:K)) ≈ −1

2

[∑

r

e>r Ωrer + log(det(
∑

r

Jᵀ
r ΩrJr))−

∑

r

log(det(Ωr))

+
K∑

k=0

∑

zik∈Z
Aθk
k

|zik| log(2π)

]
. (6.38)

This has linear complexity in the number of landmarks and measurements, except for the

log(det(
∑

r J
>
r ΩrJr)) term. However, some optimization algorithms (among which are iSam and

the g2o solver) conveniently calculate the Cholesky decomposition of matrix
∑

r J
>
r ΩrJr. Then

we can calculate its determinant simply by multiplying all the diagonal elements in the Cholesky

lower triangular matrix L, keeping the complexity linear in the number of measurements. i.e.

if
∑

r Ωr = LL∗, and L is a lower triangular matrix, L∗ denoting the conjugate transpose of L,

then

log(det(
∑

r

J>r ΩrJr)) = 2
∑

i

log(Li,i) . (6.39)

Taking logs of both sides of (6.25c) and substituting (6.39) and (6.38), gives

log(wcK ) = log(wc∅) +
K∑

k=0

log(pκ

(
ZĀθkk

)
) +

∑

mj∈MĀθi

log
(

1− P (j,i)
D

)
+

∑

zik∈Z
Aθk
k

log(P
(aθk (i),k)

D )

− 1

2

[∑

r

e>r Ωrer + 2
∑

i

log(Li,i)−
∑

r

log(det(Ωr)) +
k∑

i=0

∑

zik∈Z
Aθk
k

|zik| log(2π)

]
,

(6.40)

which can be used in the implementation of this SLAM method. Finally, all that remains is to

include a reasonable prior:

{wc∅ , πc∅(x0, ~v(M))}c∅∈C∅ . (6.41)

We will model the prior as a known initial position x∗0, for which a Dirac delta is used, i.e.

p(x0) = δ(x0 − x∗0), and a Multi-Bernoulli distribution can be used to model the map M, with

a predefined set of possible landmarks M0.
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Then we have a distribution

πc∅(x0,M) = δ(x0 − x∗0)N (~v(M);µc∅ ,Σc∅) (6.42)

wc∅ =
∏

mj∈M

PE(j)

1− PE(j)

∏

mj∈M0

1− PE(j) (6.43)

µc∅ =




µ0

...

µj

...

µ|M|




mj∈M

(6.44)

Ωc∅ =




Ωc∅
0 0 0 0 0

0 ... 0 0 0

0 0 Ωc∅
j 0 0

0 0 0 ... 0

0 0 0 0 Ωc∅
|M|




mj∈M

, (6.45)

where each element j ofM0 can exist with probability PE(j) (set to a constant value according

to the expected density of landmarks) and if it exists, it has a Normal spatial distribution with

mean µj and information matrix Ωc∅
j . Applying this as a prior, the posterior becomes.

CK = C∅ ×Θ0 ×Θ1 × · · · ×ΘK , (6.46a)

cK = (c∅, θ0, · · · , θK) , (6.46b)

log(wcK ) =
∑

mj∈M
log(PE(j))− log(1− PE(j)) +

∑

mj∈M0

log(1− PE(j))

+
K∑

k=0

log(pκ

(
ZĀθkk

)
) +

∑

mj∈MĀθk

log(
(

1− P (j,k)
D

)
) +

∑

zik∈Z
Aθk
k

log(P
(aθk (i),k)

D )

− 1

2

[∑

r

e>r Ωrer + 2
∑

i

log(Li,i)−
∑

r

log(det(Ωr)) +
K∑

k=0

∑

zik∈Z
Aθk
k

|zik| log(2π)

]
,

(6.46c)
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and

πcK (x0:K , ~v(M)) ∼ δ(x0 − x∗0)N (~v(M);µc∅ ,Σc∅)
K∏

k=1

p
(
xk

∣∣∣xk−1,uk

)

×
K∏

k=0

∏

zik∈Z
Aθk
k

p
(
zik

∣∣∣maθk (i),xk

)
, (6.46d)

with

µc∅ =




µ0

...

µj

...

µ|M|




mj∈M

(6.46e)

Ωc∅ =




Ωc∅
0 0 0 0 0

0 ... 0 0 0

0 0 Ωc∅
j 0 0

0 0 0 ... 0

0 0 0 0 Ωc∅
|M|




mj∈M

. (6.46f)

6.5 A visual demonstration of V-GLMB-SLAM

In this section, a graphical representation of an example of V-GLMB-SLAM is explained. In

figure 6.1 several data association hypotheses at time k − 1 are shown. These, along with

their component weights and the spatial location of the trajectory and landmark positions,

given by solving the graph optimization problem (using g2o, iSAM or some other vector-based

SLAM method), constitute the SLAM posterior distribution. In this figure, the hypothesized

landmarks, from the prior V-GLMB distribution, are shown as grey hexagons. Landmark mea-

surements are shown as blue dashed lines. Solid red lines show associations. As an example, in

the first component of the V-GLMB solution, shown in figure 6.1a, no measurement is associ-

ated. Therefore in this component, no landmarks are hypothesized to exist. Given the absence

of previous measurements to indicate that the landmarks should exist this would be the most

likely possibility and would have the highest component weight, given typical parameters4. Fig-

ure 6.1b shows a single association hypothesis between measurement z2
k−1 and landmark m2.

4One could have a prior in which initial landmarks have higher probability of existence, e.g. when SLAM is
being initialized with a map estimated by some other method. However, typically SLAM is initialized with an
unknown map so each initial landmark’s probability of existence should be low.
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(a) No measurements are associated and therefore
no landmarks exist.

  

(b) Measurement z2
k−1 is associated with landmark

m2.

  

(c) Measurement z1
k−1 is associated with landmark

m1.

  

(d) Both measurements are associated.

Figure 6.1: A visual representation of an V-GLMB distribution at time k − 1, composed of
4 components. Note that not all possible data associations are included, thus the number of
components in this distribution has been truncated.

Therefore only m2 is deemed to exist. Similarly figures 6.1c and 6.1d show another two data

association hypotheses. In figure 6.1c, landmark m3 is hypothesized to be associated with z1
k−1,

with m3 hypothesized to exist. Figure 6.1d shows a both m2 and m3 being hypothesized to exist

and being associated with z2
k−1 and z3

k−1, respectively. One could expect more components to

exist, representing every possible data association. Were the V-GLMB algorithm to be applied

without limiting the number of components, all of these hypotheses would be in the estimate.

However, due to computational constraints, the number of components has to be limited and

in this example, it has been limited to 4.

In figure 6.2 the components of the V-GLMB distribution at time k are shown. In this Figure,

the orange dashed lines correspond to odometry (dead-reckoning) measurements/inputs. In our

proposed algorithm we would start with no measurements associated at time k, as shown in
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(a) No measurements at time k are associated.

  

(b) Measurement z1
k is associated with landmark

m3, Measurement z2
k is associated with landmark

m5.

  

(c) Measurement z1
k is associated with landmark

m3.

Figure 6.2: A representation of four components of an V-GLMB at time k
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(a) Gibbs sampling step 1: The association hy-
pothesis of z1

k−1 is being sampled, and possible as-
sociations are shown in brown.

(b) Gibbs sampling step 1 outcome: The associa-
tion hypothesis of z1

k−1 was sampled, m3 was se-
lected.

(c) Gibbs sampling step 2: The association hy-
pothesis of z2

k−1 is being sampled, and possible as-
sociations are shown in brown.

(d) Gibbs sampling step 2 outcome: The associa-
tion hypothesis of z2

k−1 was sampled, m2 was se-
lected.

Figure 6.3: A representation of the Gibbs sampling process. Possible associations are shown as
brown lines, selected associations hypotheses are shown as red lines, and the field of view of the
sensor is shown as a green circle.

figure 6.1a. Then the Gibbs sampler iterates over the other possible data association hypotheses,

two of which are shown on Figures 6.2b and 6.2c

Figures 6.3 and 6.4 show the Gibbs sampler iterating through each data association hypoth-

esis corresponding to the component shown in Figure 6.2a, and the resulting sample, shown in

Figure 6.4d, corresponds to the component shown in 6.2c. The field of view of the robot’s sensor

is shown as a green circle. The Gibbs sampling process iterates through each measurement in

ascending order (i.e. z1
k−1, z

2
k−1, z

1
k, z

2
k,). Figure 6.3a shows the first step, the initial association

corresponds to the one shown in Figure 6.2a. In this step, the association hypothesis of z1
k−1 is

being sampled, which is highlighted with a yellow ellipse. Possible association hypotheses are

shown as brown lines, all starting from z1
k−1 and going to each possible landmark. As can be
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(a) Gibbs sampling step 3: The association of z1
k

is being sampled, possible associations are shown
in brown.

(b) Gibbs sampling step 3 outcome: The associa-
tion of z1

k is was sampled, z1
k is hypothesized to be

a false alarm.

(c) Gibbs sampling step 4: The association of z2
k

is being sampled, possible associations are shown
in brown.

(d) Gibbs sampling step 4 outcome: The associa-
tion of z2

k is was sampled, m5 was selected .

Figure 6.4: A visual representation of the Gibbs sampling process
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seen, only landmarks inside the field of view and that are not already associated to another

measurement at time k− 1 are possible association hypotheses. Figure 6.3b shows the outcome

of the first step. As the most likely candidate, landmark m3 is selected. Figure 6.3c shows the

second step, now the association of measurement z2
k−1 is being sampled. Similarly to before,

the most likely outcome is selected, shown in figure 6.3d, with m2 being selected as the current

hypothesis. Figure 6.4a shows the third step corresponding to measurement z1
k, with m3, m4

and m5 all being possible associations. This time the most likely association is not selected, due

to randomness, measurement z1
k is hypothesized to be a false alarm, as shown in figure 6.4b. In

the last step, shown in figures 6.4c and 6.4d, z2
k’s association hypothesis is being sampled, this

time m5 is hypothesised to be associated with z2
k. This results in the sampled data association

hypothesis of the new component, as shown in figure 6.2c.

6.6 V-GLMB-SLAM implementation

As expected, the full Bayes posterior (6.46a) to (6.46f) will include all possible measurements

to map feature state data associations. However, calculating every one will be computationally

infeasible for all but the most basic examples. We, therefore, need to approximate the posterior

with a smaller number of possible data association hypotheses. In the filtering approach, the

spatial estimates remain the same when selecting different data association hypotheses. On the

contrary, in this approach, when selecting a new data association, an optimization has to be

carried out to adjust the spatial estimates before calculating the new measurement likelihood.

Therefore there is no way to select an association by weight before running the optimization

problem defined by the association hypothesis and there is no way to iterate through the associ-

ations in decreasing weight order. However, every additional component added to the estimate

will decrease the error between the estimate and the true Bayesian posterior (6.46) which con-

tains all possible components at time K in CK . This was proven for the GLMB distribution

using the L1 distance in [4]. Therefore it is not necessary to add the components to the approx-

imated posterior in strictly decreasing order by weight, even if it is desirable to decrease the

error faster. Therefore, even a two-component V-GLMB estimate will have lower error when

compared with the true posterior V-GLMB distribution than an estimate from a single data

association using the data association from either component.

It is in this step that the proposed algorithm allows for external information to explore the

data association hypotheses. This can be seen as a problem, given that inefficient exploration

of data association hypotheses can make the algorithm have less than adequate performance.

On the other hand, being able to include additional possible data association hypotheses for

example given by an external “loop closure” algorithm, can be an advantage, because these
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Data: Z0:K , u0:K−1

Result: {cK , wcK}cK∈CK , cKmax, w
cKmax , πcKmax(x0:K , ~v(M))

i← 0;
cK ← initialAssociationGuess();
πcK (x0:K , ~v(M))← optimize(cK ,Z0:K , u0:K);
wcK ← calculateWeight(cK , π

cK (x0:K , ~v(M)));
wcKmax ← wcK ;
cKmax ← cK ;
πcKmax(x0:K , ~v(M))← πcK (x0:K , ~v(M));
while i < max iterations do

cK ← guessAssociation( {cK , wcK}cK∈CK );
if cK ∈ CK then

go to next iteration;
else
CK ← CK ∪ cK ;
πcK (x0:K , ~v(M))← optimize(cK ,Z0:K , u0:K);
wcK ← calculateWeight(cK , π

cK (x0:K , ~v(M)));
if wcK > wcKmax then

wcKmax ← wcK ;
cKmax ← cK ;
πcKmax(x0:K , ~v(M))← πcK (x0:K , ~v(M));

end

end

end
Algorithm 1: V-GLMB-SLAM: Overview

solutions will be naturally included in the Bayes posterior.

The pseudo-code of the proposed algorithm is shown in Algorithm 1. As can be seen, the

output of the algorithm will be the set of examined data association hypotheses and their

weights {cK , wcK}cK∈CK , and the trajectory estimate with the highest weight and its associated

landmarks estimate πcKmax(x0:K , ~v(M)). The algorithm proceeds by successively “guessing” the

association hypothesis, ideally producing the higher weighted components cK of the posterior

distribution.

The algorithm can then use either g2o, isam2, or a similar graph optimization algorithm to

produce spatial estimates, and a principled way of generating new data association possibilities

based on the already explored data associations and their weights {cK , wcK}cK∈CK .

We propose to use a Gibbs sampler, which will sample the data association hypotheses

based on their conditional likelihood (conditioned on the current state). The data association

hypotheses are “multi-scan”, in a manner similar to [58], i.e. we iterate over the association

hypotheses at every time k ∈ {0 : K} and not just at the latest time K. However, if we are

dealing with a static map, the implementation is much simpler than in [58]. i.e. we don’t have
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to deal with target birth, death or movement.

In summary, we need to sample from the highest weight components from the posterior

V-GLMB (6.25). However, the weight cannot be calculated before running an expensive opti-

mization. This is because the normal distribution will change it’s mean and covariance based

on the new data association hypothesis.

To simplify the implementation, the components ck, whose data association hypothesis has

landmarks existing without any detections hypothesized to be associated with them, can be

discarded. This is because even though the components ck in which landmarks that are never

detected exist have non-zero weight, they have low weight and are not useful. These landmark

hypotheses come from the prior map V-GLMB distribution. This is particularly true since the

part of the map which has never been in the field of view of the sensor(s) will have many such

possibly existing landmark hypotheses. Discarding the previously defined components, allows

us to define, within a single component, that a landmark is hypothesized to exist if and only if

it has one or more measurements associated with it. Without this assumption, each component

hypothesis would have to store which landmarks exist, alongside the data association hypothesis

which would only associate landmarks that exist according to the hypothesis.

A data association hypothesis θ can be represented by extending the already defined as-

sociation function aθk(i) to return −1 if zik is hypothesized to be a false alarm. Then a data

association θ will be completely determined by the data association function aθk(i) with k rang-

ing from 0 to K. Given an initial component weight5 wcK , and distribution πcK (x0:k, ~v(M)),

which has a data association hypothesis aθk(i), we will sample a new data association hypoth-

esis θ? with the Gibbs sampler. i.e. for each measurement zik in Z0:k we would like to sample

the association of zik given all the other data associations, proportional to the weights of the

components. For this, we need to approximate the weights of the new components that will

result when changing aθk(i) to aθ?k(i). First, the landmarks that are in the field of view at time

k are calculated as Mk. Then the probability of associating measurement zik to landmark mj

in the field of view will be proportional to the component weight log(wcK ) (6.46c). Therefore,

the log of the probability of setting aθ?k(i) = j is

log(p(aθ?k(i) = j)) = log(wcK ) + constant (6.47)

log(p(aθ?k(i) = j)) ≈ log(P
(j,k)
D )− log(1− P (j,k)

D )

− 1

2

[
e>r Ωrer + 2

∑

i

log(Li,i) + |zik| log(2π)

]
, (6.48)

5Stored as log(wcK ) for numerical stability
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if mj exists (i.e. has at least one other measurement associated), and

log(p(aθ?k(i) = j)) ≈ log(P
(j,k)
D )− log(1− P (j,k)

D ) + log(PE(j))− log(1− PE(j))

+
∑

k|mj∈Mk

log(1− P (j,k)
D )− 1

2

[
e>r Ωrer + 2

∑

i

log(Li,i) + |zik| log(2π)

]
(6.49)

if mj does not exist. It should be noted that

log(p(aθ?k(i) = −1)) ≈ log(pκ
(
zik
)
) , (6.50)

where, for the approximation, we have assumed that the spatial estimate (the position of the

landmarks and robot) will not change. To approximate the change in the determinant of the

Hessian matrix6, we will calculate the change in the determinant of the sub-matrix related to

the current measurement (i.e. the sub-matrix involving landmark j and pose k ). i.e., we

approximate

det(Ωc?)

det(Ωc)
=

det(Jz(m
j,xk)

>
ΩzJz(m

j,xk) + Ωc)

det(Ωc)
≈

det(Jz(m
j,xk)

>
ΩzJz(m

j,xk) + Ωc
mj ,xk

)

det(Ωc
mj ,xk

)
,

(6.51)

where Ωc is the information matrix of the spatial estimate resulting from the existing data

association θ, Ωc? is the information matrix of the spatial estimate resulting from the new data

association θ?, and Ωc
mj ,xk

is the submatrix of Ωc, corresponding to landmark mj and robot

pose xk.

By sampling new data association hypotheses aθ?k(i) for each measurement i according to

these weights, we can define a Gibbs “move” function that can sample from possible data

association hypotheses approximately in proportion to the component weight wcK .

6.6.1 A landmark birth move

When examining the probabilities used by the Gibbs sampler, as well as the preliminary perfor-

mance of the sampling algorithm, we note that, because the Gibbs sampler changes associations

one at a time, moving from a hypothesis of a landmark not existing to it existing, will neces-

sarily mean that the landmark has only a single detection. Therefore the probability of making

that change (6.49) will be dominated by the missed detections and the Gibbs sampler will very

rarely create new landmarks. We, therefore, add a reversible jump Markov step to create new

landmarks.

6The Hessian matrix approximates the information matrix of the component
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During Gibbs sampling, when a measurement association hypothesis is set to false alarm, the

most likely data association (among nonexisting landmarks) for it is found. A counter nmax(m
j)

for the most likely landmark is then incremented. This is equivalent to, for each landmark that

is hypothesized not to exist, the number of measurements that are currently hypothesized to be

false alarms and are closest to that landmark is calculated as nmax(m
j). After sampling using

the Gibbs sampler, each landmark hypothesized not to exist is created with a probability equal

to

pbirth(m
j) = min

(
nmax(m

j)
∑

k|mj∈Mk
P

(j,k)
D

, 1

)
, (6.52)

where the denominator corresponds to the expected number of measurements for that specific

landmark. This new landmark hypothesis is associated with all the measurements that were

used to calculate nmax(m
j).

6.6.2 A landmark death move

Intuitively, once a birth move has been added, the next heuristic to add would be landmark

death. Landmarks can be randomly removed with probability proportional to the number of

missed detections and inversely proportional to the number of detections.

6.6.3 Sampling the associations

With the Gibbs, birth, and death “moves” algorithm 1 is defined, which determines guessAsso-

ciation( {cK , wcK}cK∈CK ) to be applying either the Gibbs sampler with some probability pGibbs

or birth-death move with probability 1 − pGibbs. Additionally, to speed up the convergence,

the estimate is initialized by using the nearest neighbor data association, thus determining

initialAssociationGuess().

C0
K = {(c0

K , log(wc
0
K ))} (6.53)

(6.54)

In order to save memory, the association and weight are stored in an ordered (by weight)

container (e.g. an ordered tree, or some other data structure), and the trajectory and spatial

locations of landmarks are discarded. Then the new estimate of the V-GLMB distribution will

be.

Ci+1
K = CiK ∪

(
ci+1
K , log(wc

i+1
K )
)
, (6.55)
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where the new included component
(
ci+1
K , log(wc

i+1
K )
)

will be calculated in a manner sim-

ilar to simulated annealing, by first sampling n components from CiK in proportion to

exp(log(wcK )/T (i)). Where T (i) is a parameter called temperature, that starts high and is

lowered according to a cooling schedule at each iteration. Then, each sampled component first

uses the birth move to randomly create landmarks from false alarm measurements, and the

death move to remove landmarks with few detections and many missed detections. The algo-

rithm then proceeds to sample the data association hypothesis according to the Gibbs sampler

nGibbs times. With the sampled data association hypothesis, each component uses a non-linear

least squares optimizer (in our case g2o), to optimize the spatial estimate and produce a Hes-

sian/information matrix, which is used to calculate the new weight, log(wc
i+1
K ). Finally, the new

component is added to the V-GLMB distribution.

6.6.4 A note on computational complexity

The computational complexity of the resulting V-GLMB-SLAM algorithm in O(·) notation

would be

O(V-GLMB-SLAM) = O (I (O(Gibbs sampler) +O(Optimizer) +O(CalculateWeight)))

(6.56)

O(V-GLMB-SLAM) = O (I (O(CalcDAProbs +NGibbs |Z0:k|) +O(Optimizer) + |Z0:k|+K))

(6.57)

O(V-GLMB-SLAM) = I (|Z0:k| |M|+NGibbs |Z0:k|+O(Optimizer) + |Z0:k|+K) (6.58)

O(V-GLMB-SLAM) = I (|Z0:k| (|M|+NGibbs) +O(Optimizer) + |Z0:k|+K) (6.59)

where I is the number of V-GLMB iterations, NGibbs is the number of Gibbs sampler iterations.

Importantly the value of I that is required to generate good results, depends on the sampling

method that generates candidate association hypotheses. Therefore I could be reduced by

improving or replacing the current Gibbs sampler. It can be observed that the batch optimizer

must be run I times, resulting in a higher computational complexity than traditional algorithms

that just use a single heuristically determined data association. The complexity could be reduced

by improving the sampling algorithm, therefore sampling less unlikely associations thus sampling

the more likely associations faster.
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6.7 Simulated Results

The V-GLMB-SLAM algorithm was applied to 2D simulated data, from the simulator included

with the g2o software [21], which simulates a random trajectory and measurements with given

data associations. This simulation allows for missed detections with a constant probability of

missed detection. False alarms were added to the simulated detections, in order to evaluate the

algorithm’s tolerance to them. V-GLMB-SLAM is then compared with the solution provided

by the g2o solver directly using the correct data association, which will be considered “ground

truth”. In addition to using the ground truth data association, g2o is also run using the nearest

neighbor data association calculated at each time k, using the robot pose determined by solving

g2o up to time k − 1 with the already determined data associations. Maximum likelihood data

association is also determined using the Hungarian algorithm based on the likelihoods given by

the RFS model of the measurements, as RB-GLMB-SLAM would do for its first component (if

using Murty’s algorithm and not the Gibbs sampler to select associations).

These three algorithms were tested, and compared with “ground truth” using multiple values

for the odometry covariance matrix (Ω−1
u ) as well as by varying the average number of added

false alarms (λ) and the probability of detection (PD). The odometry information matrix Ωu is

Ωu =



ωu 0 0

0 ωu 0

0 0 10ωu


 , (6.60)

where the information for the orientation part of the pose is higher. All three algorithms were

tested until the settings generated unsatisfactory trajectory estimates. At each pair ((ωu, λ)) of

odometry noise covariance and false alarm rate, the simulated measurements (both landmark

and odometry) are generated 20 times with the same ground truth trajectory and map. All

three algorithms are executed on the 20 simulated datasets. These Monte Carlo simulations

all have the same trajectory but with different instantiations (seeds) for the noise added to

odometry and landmark measurements.

The Relative Pose Error metric is calculated using the python package [59] for each esti-

mated trajectory and the value is averaged over the 20 Monte Carlo simulations at each pair

of values (ωu, λ). Figures 6.5 and 6.6 show the relative pose error and absolute pose error cal-

culated for 0, 0.01, 0.03, 0.1, 0.5, 1 added false alarms per scan, respectively. As can be seen in

figure 6.5, when no false alarms are added the relative pose error of the V-GLMB solution is

approximately equal to the maximum likelihood and nearest neighbor solution for low odometry

noise covariance (ωu >= 300) and is better than both these algorithms for more challenging

odometry covariance values (70 < ωu ≤ 100) and all algorithms fail when the odometry is so
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Figure 6.5: Median Relative Position Error, varying odometry noise and number of false alarms.

Figure 6.6: Median Absolute Position Error, varying odometry noise and number of false
alarms.
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Figure 6.7: Median Relative Position Error, varying PD and the measurement noise.

bad that associating the landmarks is too difficult (ωu = 70). Additionally, the measurement

noise (Ωz), where

Ωz =

[
ωz 0

0 ωz

]
, (6.61)

and the probability of detection PD were also varied. This was carried out by fixing the odometry

information to ωu = 100 and varying PD to be 0.5, 0.8, or 0.95 and varying ωz to be 50, 300, or

700.

Figures 6.7 and 6.8 show the median value for the relative position error and absolute

position error,avergaed over 20 Monte Carlo runs, respectively. As can be seen in both figures

V-GLMB-SLAM has the best performance for all the values of (ωz, PD) tested. Note that

as PD is lowered, the difference between V-GLMB-SLAM and maximum likelihood or nearest

neighbor data association increases, which is to be expected. Interestingly the difference also

increases when the measurement information increases, which is unexpected since less noisy

measurments should convey more information. However, if the motion noise is much higher

than the measurement noise, it is possible that some measurements are erroneously determined

to be separate landmarks, while V-GLMB-SLAM is able to find the correct association.

Figures 6.9, 6.10 and 6.11 show the solutions obtained by using the g2o optimization library

with nearest neighbor data association, maximum likelihood data association, and our proposed

algorithm, respectively. The g2o solution using the ground truth data association is shown as
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Figure 6.8: Median Absoute Position Error, varying PD and the measurement noise.

Figure 6.9: Nearest neighbor data association. Low odometry noise.

109



Figure 6.10: Maximum likelihood data association. Low odometry noise.

Figure 6.11: V-GLMB-SLAM solution. Low odometry noise.
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ground truth in red in all three figures. In this case, the information matrix corresponding to

the landmark measurements is

Ωz =

[
1000 0

0 1000

]
, (6.62)

where the matrix elements correspond to a standard deviation in the x and y directions of

0.03[m] ≈
√

1
1000

. The odometry information matrix is

Ωu =




150 0 0

0 150 0

0 0 1500


 , (6.63)

where the matrix elements correspond to a standard deviation of 0.08[m] ≈
√

1
150

in the x and

y directions and 0.026[rad] ≈
√

1
3000

[rad] in the angular direction. The probability of detection

was PD = 0.95 in a circular FoV with radius r = 5[m] and zero outside. With these settings, it

can be seen that all three algorithms perform adequately, with the estimated trajectories being

much closer to the ground truth trajectory than the initial “dead-reckoning” trajectory. With

the odometry noise being relatively low, the association between measurements and landmarks

is adequately solved by all three algorithms. In the case of V-GLMB the correct association is

not the only one in the posterior, however, it is the most likely one.

Figures 6.12, 6.13 and 6.14 show the solutions obtained by using the g2o optimization library

with nearest neighbor data association, maximum likelihood data association, and our proposed

algorithm, respectively. The settings are the same as the previous example except the odometry

information was reduced to

Ωu =




80 0 0

0 80 0

0 0 800


 , (6.64)

where the matrix elements correspond to a standard deviation of 0.11[m] ≈
√

1
80

in the x and

y directions and 0.035[rad] ≈
√

1
800

in the angular direction. With this decreased odometry

information (increased odometry noise) the maximum likelihood and nearest neighbor data as-

sociation heuristics are unable to find the correct association and the iterative method proposed

here finds a data association that is closer to the ground truth and provides a superior estimated

trajectory.

Figures 6.15, 6.16 and 6.17 show the solutions obtained by using the g2o optimization library

with nearest neighbor data association, maximum likelihood data association, and our proposed
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Figure 6.12: Nearest neighbor data association. Medium odometry noise.

Figure 6.13: Maximum likelihood data association. Medium odometry noise.
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Figure 6.14: V-GLMB-SLAM solution. Medium odometry noise.

Figure 6.15: Nearest neighbor data association. High odometry noise.
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Figure 6.16: Maximum likelihood data association. High odometry noise.

Figure 6.17: V-GLMB-SLAM solution. High odometry noise.
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Figure 6.18: Nearest neighbor data association. High PD.

algorithm, respectively. The odometry information has been further reduced to

Ωu =




50 0 0

0 50 0

0 0 500


 , (6.65)

where the matrix elements correspond to a standard deviation of 0.14[m] ≈
√

1
50

in the x

and y directions and 0.044[rad] ≈
√

1
500

in the angular direction. Under these more difficult

conditions no algorithm is able to correctly estimate the trajectory. As can be seen in figure

6.17, in this case the V-GLMB-SLAM algorithm, after creating a “bad” estimate for a while,

it stops producing new data associations. Therefore the trajectory estimate is incomplete, this

can be easily detected and reported, allowing an autonomous system to fail gracefully instead

of proceeding with a bad trajectory estimate.

Figures 6.18, 6.19 and 6.20 show the solutions obtained by using the g2o optimization library

with nearest neighbor data association, maximum likelihood data association, and our proposed
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Figure 6.19: Maximum likelihood data association. High PD.

Figure 6.20: V-GLMB-SLAM solution. High PD.
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Figure 6.21: Nearest neighbor data association. Medium PD.

Figure 6.22: Maximum likelihood data association. Medium PD.
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Figure 6.23: V-GLMB-SLAM solution. Medium PD.

Figure 6.24: Nearest neighbor data association. Low PD.
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Figure 6.25: Maximum likelihood data association. Low PD.

Figure 6.26: V-GLMB-SLAM solution. Low PD.
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algorithm, respectively. In these examples the odometry noise was fixed at

Ωu =




70 0 0

0 70 0

0 0 700


 , (6.66)

while the measurement information was

Ωz =

[
300 0

0 300

]
, (6.67)

and the probability of detection was set to a high value PD = 0.95. As can be seen from

these figures all three algorithms perform adequately. Then in figures 6.21, 6.22 and 6.23 the

probability of detection was lowered to PD = 0.8. In these figures it can be appreciated that both

maximum likelihood and nearest neighbor fail have higher error in their estimated trajectories.

This can be explained due to the fact that they overestimate the number of landmarks. it can be

seen in several spots that both algorithms have multiple estimated landmarks where they should

have only a single landmark. V-GLMB-SLAM however is able to produce adequate estimates

of both the trajectory and landmarks. When lowering the probability of detection even more

to PD = 0.5, it can be seen from figures 6.24, 6.25 and 6.26 that the same effect are even more

pronounced, and while the performance of V-GLMB-SLAM degrades, according to the lower

quality data, the trajectory and map are still acceptable with only a global rotation.

Figures 6.27 to 6.35 show the effects of varying the measurement noise/information. In these

examples the odometry noise was fixed at

Ωu =




70 0 0

0 70 0

0 0 700


 , (6.68)

while the probility of detection was fixed to PD = 0.8. Figures 6.27, 6.28 and 6.29 show the

solutions obtained by using the g2o optimization library with nearest neighbor data association,

maximum likelihood data association, and our proposed algorithm, respectively, all with a low

measurement information of

Ωz =

[
50 0

0 50

]
. (6.69)

Interestingly under higher measurement noise all three algorithms perform adequately. Then
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Figure 6.27: Nearest neighbor data association. Low measurement Information.

Figure 6.28: Maximum likelihood data association. Low measurement Information.
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Figure 6.29: V-GLMB-SLAM solution. Low measurement Information.

Figure 6.30: Nearest neighbor data association. Medium measurement Information.
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Figure 6.31: Maximum likelihood data association. Medium measurement Information.

Figure 6.32: V-GLMB-SLAM solution. Medium measurement Information.
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Figure 6.33: Nearest neighbor data association. High measurement Information.

Figure 6.34: Maximum likelihood data association. High measurement Information.
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Figure 6.35: V-GLMB-SLAM solution. High measurement Information.

when decreasing the measurement noise, by setting

Ωz =

[
300 0

0 300

]
, (6.70)

as can be seen in figures 6.30, 6.31 and 6.32, the robustness of V-GLMB-SLAM starts to show.

Again both maximum likelihood and nearest neighbor data association make the same mistake

of splitting landmarks into multiple estimates. This effect only increases when further increasing

the measurement information to

Ωz =

[
700 0

0 700

]
(6.71)

in figures 6.33, 6.34 and 6.35.

6.8 Stereo Visual SLAM results

The algorithm proposed in the simulations was adapted to work with visual stereo data, specif-

ically from the Euroc dataset. Visual data was chosen over 3D LIDAR data because of the

availability of keypoint detector descriptor pairs. 3D LIDAR SLAM is typically performed
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either with scan-matching approaches or with landmark detectors that can produce multiple

detections for a single landmark, which violates the Measurement Model used in the current

formulation. Extended target RFS detection models could be used along with this kind of data

in future research.

Therefore a state-of-the-art visual SLAM algorithm was chosen as inspiration for the devel-

opment of a V-GLMB-based SLAM algorithm. In particular the ORBSLAM3 algorithm [25]

was chosen due to its performance, robustness and open source codebase. As in all three ORB-

SLAM algorithms, the ORB keypoint detector and descriptor are used by V-GLMB-SLAM as

its measurements.

ORB is a visual keypoint detector and descriptor. The detection part of ORB is based on

the FAST keypoint detector [60], with an additional orientation component. Each detection

is then enhanced with a Binary Robust Independent Elementary Features (BRIEF) descriptor

[61]. This descriptor is a binary string computed by a comparing the pixel values of predefined

pairs in a vicinity of the keypoint, these pairs are rotated by the keypoint orientation.

6.8.1 Measurement Model

Stereo measurements are modeled as

zik = [ul , vl , ur , orbz]
ᵀ , (6.72)

where zik is a single element of the measurement set Zk, ul and vl are the left image pixel

coordinates of the detection, ur is the pixel x coordinate of the stereo detection in the right

image, and orbz is the ORB descriptor of measurement zik. vr, the y coordinate of the pixel in

the right image, is not used because its value is determined by the stereo epipolar constraint,

therefore its value does not contribute information. The map elements of M are modeled as:

mj = [x , y , z , orbm]ᵀ , (6.73)

where x, y, and z are the 3D coordinates of the keypoint and orbm is the ORB descriptor of

the keypoint.

Using these definitions, the single feature measurement model is determined as

p
(
zik

∣∣∣maθk (i),xk

)
= N (ul, vl, ur|µ(mj,xk),Σstereo)λorb exp(−λorbdh(orbz, orbm)) , (6.74)

where dh(·) is the Hamming distance between the ORB descriptors of the map and measurement,

λorb is a parameter of the distribution on this Hamming distance7, xk is the robot/sensor pose

7This parameter determines how well the ORB descriptor matches between detections
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at time k, and Σstereo is the covariance of the resulting pixel coordinates given by

Σstereo =



σ2

pix 0 0

0 σ2
pix 0

0 0 σ2
pix


 . (6.75)

Another important component of the overall measurement model is the probability of detection

model, which is determined based on the implementation of the ORBSLAM algorithms, as

follows:

P
(j,k)
D = PD(mj,xk) = PD · isInFrustum(mj,xk) · depthCheck(mj,xk) · angleCheck(mj,xk)

(6.76)

where PD is a constant value, which is set as a parameter of the algorithm, isInFrustum(mj,xk)

is a function that checks that the keypoint mj is within the frustum of both cameras, i.e. their

predicted pixel values fall within both cameras’ image sensors:

isInFrustum(mj,xk) =





if minu ≤ ûl, ûr ≤ maxu ,

1 and minv ≤ v̂l ≤ maxv ,

and ẑ > 0 ,

0 else ,

(6.77)

where ûl, ûr, v̂l are the predicted pixel coordinates based on the robot pose xk and keypoint

estimate mj, minu,maxu,minv,maxv are the minimum and maximum pixel coordinates, and ẑ

is the z coordinate of the keypoint in the camera frame, confirming that the keypoint is not

behind the camera.

depthCheck(mj,xk) is a function that checks that the predicted depth (the distance between

the camera pose xk and the keypoint mj) is within the minimum and maximum depth values,

mindistance(mj) and maxdistance(mj), respectively:

depthCheck(mj,xk) =





1 if mindistance(mj) ≤ ‖mj − xk‖ ≤ maxdistance(mj) ,

0 else .
(6.78)

These minimum and maximum values are calculated, in a manner similar to those used in ORB-

SLAM, by using the detections already in the detection hypothesis of mj. For each detection,

the predicted maximum depth is calculated as 1.8scaleFactor(level), where scaleFactor(level)

is the scale factor of the level at which the ORB detection was detected. maxdistance(mj) is
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then the average of the max distances calculated from each detection. The minimum depth is

calculated as mindistance(mj) = 0.4maxdistance(mj)
scaleFactor(maxlevel)

.

angleCheck(mj,xk) is a function that checks the viewing angle is consistent with previous

detections,

angleCheck(mj,xk) =





1 if
〈
N̂(mj), mj−xk

‖mj−xk‖

〉
< viewingCosLimit ,

0 else ,

(6.79)

where viewingCosLimit is a parameter that limits the maximum possible viewing angle for a

keypoint to be in the Field of view. To determine this, the average viewing direction N̂(mj)

is computed using all current associations by averaging the normalized difference between the

robot position xk and the keypoint mj.

N̂(mj) =

∑
k∈isdetected(mj)

mj−xk
‖mj−xk‖∑

k∈isdetected(mj) 1
. (6.80)

6.8.2 Motion Model

The drone’s motion is modeled with pure Brownian motion, which is the simplest type of motion

model. This is implemented using the GTSAM “BetweenFactor”, which simply evaluates it’s

error as a function of the difference between two poses. Since this factor does not involve any

set states8, then changing the factor to a more advanced model, such as one including IMU

measurements, does not change the theoretical formulation.

6.8.3 Keypose logic

As more and more robot poses are continually being added to the trajectory being optimized,

the computational cost of running the optimization grows without bounds. A common way to

reduce the speed at which this cost increases is to only optimize a subset of the trajectory’s

poses. These poses can be determined using heuristic logic, as is done in ORBSLAM [25]. In

that approach, the number of keypoints that are detected in the current pose/frame are also

detected in other already existing keyposes/keyframes are counted. If most of the keypoints

detected in the current frame are detected in multiple other keyframes, then the current frame

is determined not to be a keyframe, else the current frame is determined to be a keyframe.

However, the joint formulation being explored in this thesis has different data associations for

8The motion model factor only includes two robot poses, xk and xk+1, both of which are in the vector portion
of the V-GLMB model.
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Algorithm V201 V202 V203
ORBSLAM2 0.037 0.035 –
ORBSLAM3 0.041 0.028 0.521
Vins-Fusion 0.230 0.200 –

SVO 0.050 0.090 0.790
V-GLMB-SLAM 0.038 0.046 –

Table 6.2: Absolute Trajectory Error on the Euroc Vicon Room 2 dataset.

every component in the current estimate. This implies that, were the keypose logic to depend

on the associations, as in ORBSLAM, then the set of keyposes being optimized would vary from

component to component in the V-GLMB formulation, rendering the components incomparable

with each other with respect to their weight. For this reason, the keypose logic here is limited

to using a predetermined set of poses. Having an adaptable logic for keyposes, while keeping

the functionality of the Bayesian inference, is left as a possible avenue of future research.

For the stereo vision implementation, the keypose logic was determined with two integer

parameters numPosesToOptimize and keyposeSkip. The most recent numPosesToOptimize are

all included in the optimization, while one out of every keyposeSkip of the older poses are

included in the optimization as keyposes.

6.8.4 Euroc Dataset results

With all these steps defined, the completed algorithm can be executed using the ORB stereo

detections on the Euroc Vicon Room 2 (V02) dataset. This dataset consists of three separate

trajectories V201, V202, and V203. These trajectories varied in the motion of the drone, which

had increasing speeds and accelerations and were labeled as “easy”, “medium”, and “difficult”

for the V201, V202, and V203 trajectories, respectively. The results with this particular dataset

can be compared with some of the state-of-the-art SLAM methods by calculating the ATE

metric. Table 6.2 shows the RMSE ATE metric for V-GLMB-SLAM and 4 other state-of-the-art

algorithms, namely ORBSLAM2, ORBSLAM3, Vins-Fusion, and SVO. The row corresponding

to V-GLMB-SLAM was filled using the evo python package [59] to calculate the RMSE ATE.

The rest of the rows were filled using the values from [25]. It can be seen from the table

that even though V-GLMB-SLAM is not the best in each group, it is highly competitive while

solving the data association problem in a purely Bayesian framework, removing the need for the

data association heuristics, necessary with the other algorithms. Note that the entries in Table

6.2 containing a “-” mean that the corresponding SLAM algorithm was unable to provide an

estimate for the entire trajectory.

Figures 6.36 to 6.50 show the detailed trajectories estimated by V-GLMB-SLAM for each
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of the three trajectories. The ground truth trajectory is shown as a grey dashed line, while the

estimated trajectory is shown as a colored solid line. The start of each trajectory is marked

with a black circle. The estimated line color shows the instantaneous position error in meters.

As can be seen from Figure 6.36, in the “easy” dataset the whole trajectory is estimated very

accurately, with its highest error being at the end of the trajectory. This can be easily explained

by the fact that when landing the drone, some of its highest accelerations occured, while si-

multaneously the stereo camera points at the floor which has low texture and does not produce

ORB detections. Figures 6.37 and 6.38 show top-down and side view 2D perspectives, respec-

tively. Figure 6.39 show the trajectory obtained from running the latest version of the publicly

available ORBSLAM3 code9. Importantly, the performance is lower than the values that Table

6.2 indicates, which may have been run with a different version of the orbslam3 code, or run

with a more powerful computer. Figure 6.40 shows a plot of the instantaneous position error

for V-GLMB-SLAM in blue and ORBSLAM3 in green, used to calculate the ATE metric. From

this plot it can be seen that V-GLMB-SLAM instantaneous error is lower most of the time,

while at the end of the trajectory ORBSLAM3 does not provide an estimate, this is because the

ORBSLAM3 algorithm is in its lost state for the same reasons that the V-GLMB-SLAM has

its highest error in that part of the trajectory. Arguably, ORBSLAM3 could detect and close

a loop were the trajectory to continue further. Figure 6.41 shows a violin plot [62] of the error

for both V-GLMB-SLAM in blue and ORBSLAM3 in green. As can be seen from the figure,

in this dataset the error of V-GLMB-SLAM is slightly lower than the one obtained with the

currently available version of ORBSLAM3.

A similar performance resulted for trajectory V202 as shown in Figures 6.42, 6.43, and 6.44.

This time however we can see some artifacts, or single poses with quite high instantaneous

error, as is particularly evident in Figure 6.43 near (x, y) = (2.0, 2.5). Figure 6.45 shows the

trajectory obtained from running the publicly available ORBSLAM3 code. Figure 6.46 shows

the instantaneous position error of V-GLMB-SLAM, as a blue line, and ORBSLAM3, as a green

line. From this plot it can be seen that the error of V-GLMB-SLAM is lower than ORBSLAM3,

while it has some peaks of instantanously high error. Figure 6.47 shows a violin plot [62] of

the error for both V-GLMB-SLAM in blue and ORBSLAM3 in green. Interestingly, as can be

seen in figure 6.47, with this version of the ORBSLAM3 code, the performance is significantly

lower than V-GLMB-SLAM error. However, it should be noted that ORBSLAM3 is a real-time

algorithm while V-GLMB-SLAM currently runs somewhere between 50 to 100 times slower than

real-time.

In the “difficult” dataset, which has the highest speeds and accelerations, the V-GLMB-

9Taken from the git repository at https://github.com/UZ-SLAMLab/ORB_SLAM3 with the latest version avail-
able, i.e. commit 4452a3c4ab75b1cde34e5505a36ec3f9edcdc4c4 .
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Figure 6.36: V-GLMB-SLAM results with the euroc V201 “easy” dataset - 3D view. The
ground truth trajectory is shown as a grey dashed line, and the estimated trajectory as a solid
line, colored with the instantaneous position error in meters. The start of the trajectory is
marked with a black circle.

SLAM algorithm fails to produce a complete estimate of the trajectory. This happens when

the Gibbs sampler stops producing data associations that produce V-GLMB components with

higher weights. Figures 6.48, 6.49, and 6.50 show the incomplete trajectory estimate. Figure

6.51 shows the trajectory obtained from running the publicly available ORBSLAM3 code. Figure

6.52 shows a plot of the instantaneous position error, of the estimated part of the trajectory,

shown for V-GLMB-SLAM as a blue line and for ORBSLAM3 as a green line. We can see

in these figures that the trajectory error for V-GLMB-SLAM is at its highest just before the

V-GLMB-SLAM algorithm stops producing more and more likely data associations. It can

also be seen that with this version of ORBSLAM3, the algorithm gets lost multiple times and

although it recovers partially from some of them is not able to recover from its final lost state

and therefore it does not provide an estimate of the full trajectory. The histogram (violin plot)

for this trajectory is not plotted because with both algorithms estimating different parts of the

trajectory it would not be meaningful to compare them.
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Figure 6.37: V-GLMB-SLAM results with the euroc V201 “easy” dataset - Top-down view.
The ground truth trajectory is shown as a grey dashed line, and the estimated trajectory as a
solid line, colored with the instantaneous position error in meters. The start of the trajectory
is marked with a black circle.
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Figure 6.38: V-GLMB-SLAM results with the euroc V201 “easy” dataset - Side view. The
ground truth trajectory is shown as a grey dashed line, and the estimated trajectory as a solid
line, colored with the instantaneous position error in meters. The start of the trajectory is
marked with a black circle.

Figure 6.39: ORBSLAM3 results on the euroc V201 “easy” dataset - 3D view. The ground
truth trajectory is shown as a grey dashed line, and the estimated trajectory as a solid line,
colored with the instantaneous position error in meters. The start of the trajectory is marked
with a black circle.
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Figure 6.40: Position error over time of V-GLMB-SLAM, shown as a blue line , and ORB-
SLAM3, shown as a green line, with the euroc V201 “easy” dataset. The x axis shows time and
the y axis is the instantaneous position error in meters.

Figure 6.41: Histogram of the position error of V-GLMB-SLAM and ORBSLAM3 with the
euroc V201 “easy” dataset. The y axis shows position error in meters and the width of each
plot shows the frequency of that error.
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Figure 6.42: V-GLMB-SLAM results with the euroc V202 “medium” dataset - 3D view. The
ground truth trajectory is shown as a grey dashed line, and the estimated trajectory as a solid
line, colored with the instantaneous position error in meters. The start of the trajectory is
marked with a black circle.
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Figure 6.43: V-GLMB-SLAM results with the euroc V202 “medium” dataset - Top-down view.
The ground truth trajectory is shown as a grey dashed line, and the estimated trajectory as a
solid line, colored with the instantaneous position error in meters. The start of the trajectory
is marked with a black circle.

Figure 6.44: V-GLMB-SLAM results with the euroc V202 “medium” dataset - Side view. The
ground truth trajectory is shown as a grey dashed line, and the estimated trajectory as a solid
line, colored with the instantaneous position error in meters.
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Figure 6.45: ORBSLAM3 results on the euroc V202 “medium” dataset - 3D view. The ground
truth trajectory is shown as a grey dashed line, and the estimated trajectory as a solid line,
colored with the instantaneous position error in meters. The start of the trajectory is marked
with a black circle.

Figure 6.46: Position error over time of V-GLMB-SLAM results with the euroc V202 “medium”
dataset. The x axis shows time and the y axis is the instantaneous position error in meters.
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Figure 6.47: Position error over time of ORBSLAM3 results on the euroc V202 “medium”
dataset. The x axis shows time and the y axis is the instantaneous position error in meters.

Figures 6.53 and 6.54 show interesting intermediate results on the V202 dataset. These

results occur just before and just after the stereo camera turns and observes keypoints that

were first detected close to the start of the trajectory, thus closing a “loop”. As can be seen

from Figure 6.54, the error is considerably lowered and the trajectory is significantly corrected

backward by more than 100 poses. This type of “loop closure” corrects too many poses for a

particle filter-based SLAM algorithm to be able to correct, since the number of particles needed

to represent the uncertainty over a trajectory this long would be prohibitively high.
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Figure 6.48: V-GLMB-SLAM results with the euroc V203 “difficult” dataset - 3D view. The
ground truth trajectory is shown as a grey dashed line, and the estimated trajectory as a solid
line, colored with the instantaneous position error in meters. The start of the trajectory is
marked with a black circle.
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Figure 6.49: V-GLMB-SLAM results with the euroc V203 “difficult” dataset - Top-down view.
The ground truth trajectory is shown as a grey dashed line, and the estimated trajectory as a
solid line, colored with the instantaneous position error in meters. The start of the trajectory
is marked with a black circle.
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Figure 6.50: V-GLMB-SLAM results with the euroc V203 “difficult” dataset - Side view. The
ground truth trajectory is shown as a grey dashed line, and the estimated trajectory as a solid
line, colored with the instantaneous position error in meters. The start of the trajectory is
marked with a black circle.

Figure 6.51: ORBSLAM3 results on the euroc V203 “difficult” dataset - 3D view. The ground
truth trajectory is shown as a grey dashed line, and the estimated trajectory as a solid line,
colored with the instantaneous position error in meters. The start of both trajectories are
marked with black circles.
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Figure 6.52: Position error over time of V-GLMB-SLAM results with the euroc V203 “difficult”
dataset. The x axis shows time and the y axis is the instantaneous position error in meters.
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Figure 6.53: Intermediate V-GLMB-SLAM results with the euroc V202 “medium” dataset
- 3D view. The ground truth trajectory is shown as a grey dashed line, and the estimated
trajectory as a solid line, colored with the instantaneous position error in meters. The start of
the trajectory is marked with a black circle.
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Figure 6.54: Intermediate V-GLMB-SLAM results with the euroc V202 “medium” dataset
- 3D view. The ground truth trajectory is shown as a grey dashed line, and the estimated
trajectory as a solid line, colored with the instantaneous position error in meters. The start of
the trajectory is marked with a black circle.
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6.9 Summary

In this chapter, a set-based SLAM posterior has been defined using a joint set-vector-based

state. This formulation enables the proposed V-GLMB-SLAM algorithm to merge the SLAM

back and front ends into a single Bayesian formulation while using sparse graph optimization

methods, which have been shown to be well-suited to the SLAM problem. As with other RFS

formulations of SLAM, this formulation uses a model of the probability of detection and descrip-

tor likelihoods. Simulations have shown promising results, comparing the proposed algorithm

with graph optimization methods using the theoretically correct data association, and Maximum

Likelihood data association. Real stereo-vision SLAM results also show competitive results with

state-of-the-art algorithms. This new formulation requires far fewer heuristics than competing

state-of-the-art algorithms and solves the data association problem using purely Bayesian in-

formation. With the current implementation, this increased theoretical soundness comes at an

increased computational cost.
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Chapter 7

Conclusions and future work

In this thesis, we have explored the idea of using RFSs to include detection statistics into the

SLAM formulation, as well as reduce the number of heuristics required for a complete SLAM

solution. We have derived a model for the detection statistics of a 2D lidar tree/circle detector

that includes occlusions along with a descriptor for that same detector. These models were

used and shown to improve the performance of both MH-FastSLAM and RB-PHD-SLAM.

These results have shown that incorporating detection statistics and descriptor information into

SLAM is a worthwhile endeavor.

Second, a batch SLAM approach using an RFS formulation was attempted based on a gen-

eral unconstrained optimization algorithm PSO. Results showed that this approach is severely

limited by the high computational cost of running a general optimization method, especially

when other more specialized methods are possible.

Third, a new distribution based on the RFS-based GLMB distribution was created, namely

the V-GLMB distribution. This distribution was then used to take advantage of existing non-

linear least squares optimization methods. The advantages of this algorithm were explored in

simulation and a stereo-vision-based SLAM algorithm was developed using this algorithm and

the ORB keypoint detector and descriptor pair, with results on par with the state-of-the-art

ORBSLAM3 algorithm. Even though ground truth landmark positions cannot be obtained for

ORB features, the probability of detection and descriptor likelihoods were successfully included

in the Bayesian estimation by creating models for them inspired by the heuristics used in the

ORBSLAM family of algorithms. With the current implementation, the additional theoretical

soundness of this model comes at the cost of increased computational complexity.
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7.1 Future avenues of research

Future research should focus on the association sampling step of the V-GLMB-SLAM algorithm.

Since possible associations need to be chosen before performing the expensive calculation of the

component weight wcK , which requires graph optimization, the order in which these association

hypotheses are selected is critical for the resulting performance of the SLAM solution. Two

possible approaches to improve the Gibbs sampler are proposed next:

7.1.1 Random sample consensus

Currently, the Gibbs sampler uses the previously estimated pose at time k, xk, to approximate

the pose after the graph optimization step. This pose is used in calculating the partial association

probabilities, from which association hypotheses are sampled, assuming the pose will not move

during the optimization step.

A possible alternative to this approach would be to randomly sample the minimum number

of associations to give an estimate of the pose, as is done in RANSAC. The pose xk could be

calculated directly given the rest of the trajectory, or the optimizer could be used to perform a

less costly optimization limited to xk. This pose could then be used by the Gibbs sampler as

it currently uses the previous estimate, which can then sample the new association hypothesis.

This sampled hypothesis is then used by the full optimization method evaluated with the com-

ponent weight. Arguably this method could improve the proposed associations by more quickly

exploring data associations, which would have an unlikely probability of being correct based on

the currently estimated data association but would have a high likelihood after performing the

graph optimization.

7.1.2 Association matrix

A second particular possible improvement would be to maintain a matrix of the association like-

lihoods at each time k using the existing components cK with their associations (θ0, · · · , θK) and

weights wcK . This matrix Ak would contain values proportional to the likelihood of associations

being correct.

Ak(i, j) =
∑

wcK |aθk (i)=j

wcK . (7.1)

Once the estimated posterior has several components, sampling new possible associations from

Ak may produce new likely associations. It should be noted however that in this s associated

wit Ak does not model the correlations between the different associations.
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[25] C. Campos, R. Elvira, J. J. G. Rodŕıguez, J. M. M. Montiel, and J. D. Tardós. Orb-slam3:

An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE

Transactions on Robotics, 37(6):1874–1890, 2021. doi: 10.1109/TRO.2021.3075644.

[26] J. Zhang and S. Singh. Loam: Lidar odometry and mapping in real-time. In Robotics:

Science and Systems, 2014.

[27] T. Shan and B. Englot. Lego-loam: Lightweight and ground-optimized lidar odometry and

mapping on variable terrain. In 2018 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 4758–4765, 2018. doi: 10.1109/IROS.2018.8594299.

[28] J. Mullane, B.-N. Vo, and M. Adams. Rao-Blackwellised PHD SLAM. In Proceedings of

IEEE International Conference on Robotics and Automation (ICRA), pages 5410–5416,

2010.

[29] K. Leung, F. Inostroza, and M. Adams. Generalizing random-vector SLAM with random

finite sets. In IEEE Int. Conf. Robotics and Automation (ICRA), pages 4583–4588, 2015.

[30] D. Moratuwage, M. Adams, and F. Inostroza. δ-generalised labelled multi-bernoulli simul-

taneous localisation and mapping. In 2018 International Conference on Control, Automa-

tion and Information Sciences (ICCAIS), pages 175–182, 2018. doi: 10.1109/ICCAIS.2018.

8570448.

[31] L. Gao, G. Battistelli, and L. Chisci. Phd-slam 2.0: Efficient slam in the presence of

missdetections and clutter. IEEE Transactions on Robotics, 37(5):1834–1843, 2021. doi:

10.1109/TRO.2021.3052078.

150



[32] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for

the evaluation of rgb-d slam systems. In 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 573–580, 2012. doi: 10.1109/IROS.2012.6385773.

[33] D. Schuhmacher, B.-T. Vo, and B.-N. Vo. A consistent metric for performance evaluation

of multi-object filters. IEEE Trans. Signal Processing, 56(8):3447–3457, 2008.

[34] B. K. Panigrahi, Y. Shi, and M.-H. Lim. Handbook of swarm intelligence: concepts, prin-

ciples and applications, volume 8. Springer Science & Business Media, 2011.
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Annex B

Simulation results with other training

dataset

Figure B.1 shows the same algorithms used to generate Fig. 4.10 based on the training environ-

ment shown in Figure 4.4. A single SLAM result is shown for each algorithm out of five Monte

Carlo runs.
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(a) RB-PHD-SLAM with a constant probabil-
ity of detection.

10 5 0 5
x[m]

10

8

6

4

2

0

2

4

6

8

y[
m

]

Estimated Trajectory
Ground Truth Landmark
Estimated Landmarks
Dead Reckoning Trajectory
Ground Truth Trajectory

(b) MH-FastSLAM with a constant probability
of detection.
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(c) RB-PHD-SLAM with the learned probabil-
ity of detection.
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(d) MH-FastSLAM with the learned probability
of detection.
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(e) RB-PHD-SLAM with the learned probabil-
ity of detection and descriptor information.
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(f) MH-FastSLAM with the learned probability
of detection and descriptor information.

Figure B.1: SLAM results in a simulated environment.
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Annex C

Proof that joint Vector-Set distribution

integrates to 1

Repeating the definition of a joint Vector-Set distribution, from equation (6.3).

π(χK) = ∆(M)
∑

c∈C
wc(L(M))πc(x0:K , ~v(M)) (C.1)

We write the joint integral over the vector trajectory x0:K and set M:

∫

χK

π(χK) =

∫

χK

∆(M)
∑

c∈C
wc(L(M))πc(x0:K , ~v(M)) (C.2)

=

∫

x0:K

∫

M
∆(M)

∑

c∈C
wc(L(M))πc(x0:K , ~v(M)) (C.3)

=

∫

M
∆(M)

∑

c∈C
wc(L(M))

∫

x0:K

πc(x0:K , ~v(M)) (C.4)

Using this form we note that
∫
x0:K

πc(x0:K , ~v(M)) will be the marginal spatial distribution of

M in component c, since the trajectory is integrated out. We no relabel it as

∫

x0:K

πc(x0:K , ~v(M)) = πcM(~v(M)) . (C.5)

The marginal distribution of M is then

∆(M)
∑

c∈C
wc(L(M))πcM(~v(M)) , (C.6)
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which is very close to a GLMB distribution, with the significant caveat that in a GLMB com-

ponent each element in the set is independently distributed, while the marginal distribution

derived from the proposed joint distribution will inevitably include high correlations between

the elements of the map.

Given this, the rest of the proof will be analogous to the proof that a GLMB distribution

integrates to unity. Continuing with the proof

∫

χK

π(χK) (C.7)

=

∫

M
∆(M)

∑

c∈C
wc(L(M))πcM(~v(M)) (C.8)

=
∞∑

n=0

1

n!

∫

(L,M)∈(L,M)n
∆(L)

∑

c∈C
wc(L)πcM(~v(L,M)) (C.9)

=
∞∑

n=0

1

n!

∑

l1∈L
· · ·
∑

ln∈L

∫

m1

· · ·
∫

mn

∆((l1 · · · ln))
∑

c∈C
wc((l1 · · · ln))πcM(~v((l1,m1) · · · (ln,mn)))

(C.10)

=
∞∑

n=0

1

n!

∑

l1∈L
· · ·
∑

ln∈L
∆((l1 · · · ln))

∑

c∈C
wc((l1 · · · ln))

���
���

���
��

���
���

���
�:1

∫

m1

· · ·
∫

mn

πcM(~v((l1,m1) · · · (ln,mn)))

(C.11)

Noting that the remaining integrals integrate to one

=
∞∑

n=0

1

n!

∑

l1∈L
· · ·
∑

ln∈L
∆((l1 · · · ln))

∑

c∈C
wc((l1 · · · ln)) . (C.12)

From here we note that every set of size n , {l1 · · · ln} will appear exactly n! times and since the

component weight wc(·) does not depend on the order of the labels the integral becomes

=
∞∑

n=0

1

��n!
��n!

∑

L∈Fn(L)

∑

c∈C
wc(L) (C.13)
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where Fn(L) is the set of all sets of size n in label space L.

=
∞∑

n=0

∑

L∈Fn(L)

∑

c∈C
wc(L) (C.14)

=
∑

L⊆L

∑

c∈C
wc(L) ≡ 1 (C.15)

This is, by definition, unity.
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