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Dr. Vı́ctor Muñoz . . . . . . . . . . . . . . . . . . . . . . . .

Dr. Roberto Navarro . . . . . . . . . . . . . . . . . . . . . . . .

Dr. Mario Riquelme . . . . . . . . . . . . . . . . . . . . . . . .

i



Biography

I was born in Santiago in 1995. With my mother and sister,
we lived for a year in Mulchén and then settled in Quilpué, in
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Summary

In the inner heliosphere, space measurements have revealed that plasma can be
described by the Kappa distributions family, which are characterized by the value
of κ, indicating how far plasma is from the ideal Maxwell-Boltzmann equilibrium
distribution. In magnetized plasma with enough temperature, spontaneous emissions
such as magnetic fluctuations can emerge when a free source of energy is available.
When supra-thermal plasma species are involved, these emissions get enhanced, and
the Kappa distribution family improves the description of the related non-thermal
effects. However, the lack of agreement over Kappa distribution interpretations and
applications highlights the need for further exploration to gain a proper understanding
of their properties and applications.

In this work, we present a systematic and quantitative comparison of Kappa-
distributed magnetized plasma with the Original-Olbertian and Modified versions of
Kappa distributions through electromagnetic fluctuations in different temperature
anisotropy (A), plasma beta (β), and kappa value (κ) scenarios. Our results show
that Olbertian-Kappa electron species exhibit high energy levels that scale with
increasing values of β and decreasing values of κ, even when the same thermal
speed is considered for all studied cases. Conversely, Modified-Kappa supra-thermal
electron species exhibit less total magnetic energy results with lower kappa values,
even when compared to the Maxwell distribution equilibrium results in the same
macroscopic parameter configuration.

This work demonstrates quantitative differences in the spectrum of magnetic
fluctuations when Kappa distributions are involved. With this study, we aim to
provide a powerful spectrum analysis tool to gain insights about κ-distributed plasma
in space via indirect measurements of fluctuating field correlations.
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Chapter 1

Introduction

Plasma is an exceptional form of matter that exists in our observable universe. It
is noted by the removal of electrons from atoms, which results in the development
of an ionized gas. Consequently, this medium is saturated with numerous charged
particles, leading to complex interactions between them. Moreover, such interactions
between charged particles may be binary or collective, making the plasma rich in wave
physics with wave-wave or wave-particle interactions [1, 2]. Nevertheless, the largest
laboratory of plasma research exists beyond the Earth, in space, encompassing the
entire Solar system and even extending beyond it.

The plasma that propagates through space from the Sun provides an opportunity
to study the thermodynamics of the Solar System. This plasma is mainly influenced
by the interplanetary magnetic field, and this feature makes plasma susceptible to
magnetization with arising and evanescence currents due to the drifting of charged
particles. In addition, space plasma in our Solar System generally evolves in a virtual
collision scenario. Thus, particles probably do not experience hard collisions, but
rather interact with each other through collective behavior mediated by magnetic
fields generated by other particles. This feature is highly efficient in maintaining
quasi-stable thermal conditions in the constantly hot, diluted, and poorly collisional
scenario of space plasma.[3, 4].

The poorly-collisional nature of plasma leads to unexpectedly low cooling rates
and unsolved thermal relaxation processes [5–9]. Hence, space plasma is characterized
by long-range interactions of charges with high correlations between charge densities,
induced currents, and electromagnetic fields. These correlations are accounted by
neglecting the binary collision scenario, as correlations arise simultaneously between
all interactions of particles in plasmas, making them non-independent from each
other. Otherwise, these correlations may be destroyed by randomly considering
binary collisions at a certain time, thereby ignoring the development of spatial and

1



temporal correlations [10].

In theory, in a magnetized plasma scenario, these correlations in poorly-collisional
plasmas holds on a scale relative to the gyroradius and gyromotion of electrons.
Therefore, the plasma develops a mechanism that acts in a shorter time compared
to the collision frequency to maintain itself in quasi-stable thermal conditions. Such
a scenario occurs in plasmas emanating from the Sun, where observational data
measure non-Maxwellian particle velocity distributions [11, 12]. Instead of decaying
through larger velocities following a Gaussian distribution, it follows a power-law
behavior that is well-fitted by kappa distributions. The high-energy tails of these
distributions exhibit a decay that follows the Lorentzian function. In addition, they
depend on the kappa value, which is a measure of how far the kappa distributions
deviate from the thermal equilibrium that is described by a Maxwell distribution.

The morphology of velocity distributions in space plasma is affected by several
non-thermal effects, such as electrostatic and electromagnetic instabilities, turbulence,
non-linear particle-wave, and wave-wave interactions, etc. [13–15]. Additionally,
the long-range interaction of charged species with high levels of correlation breaks
the ideal Gibbs-Boltzmann statistics [16, 17]. Therefore, it is reasonable to explore
generalized velocity distribution models like kappa distributions that go beyond ideal
equilibrium statistics [18, 19].

The use of kappa distributions takes into account the contribution of the high
thermal energy population in addressing typical space plasma problems. For example,
it can be used to improve the description of the heat flux during the acceleration of the
solar wind, as well as to describe enhanced kinetic instabilities driven by anisotropies,
or to improve the description of non-thermal features such as particle acceleration
during magnetic reconnection, as occurs in our magnetosphere [20, 21]. Generally,
velocity distribution measurements in the solar wind and near Earth’s magnetosphere
usually arise in quasi-stable plasma conditions and involve suprathermal particles. In
this scenario, the poorly-collisional feature cannot ensure local thermal equilibrium,
and due to its purely electromagnetic nature, the plasma exists for a long time in a
state of kinetic turbulence [22, 23]. Moreover, the linear kinetic theory on Vlasov-
Maxwell’s equations predicts transverse electromagnetic and parallel electrostatic
collective modes for magnetized plasma. They include, ordinary, extraordinary, and
whistler-cyclotron modes for transverse waves and Langmuir waves [24, 25].

For waves propagating parallel to the background magnetic field, the stability of
the whistler-cyclotron mode is affected by suprathermal electrons with a velocity
large enough to reach the phase velocity of the wave and exchange energy via
cyclotron resonance [26]. This results in positive growth rates for the whistler-
cyclotron instability, which are typically higher than those predicted by a Maxwell
distribution. Thus, to obtain an accurate and comprehensive description of plasma
fluctuations, the contribution of suprathermal particles must be considered not only
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in the measurements of dispersion properties but also in the overall fluctuating
behavior of the plasma [27, 28].

A key question concerning kappa distributions is how they are formed in the
space plasma environment. These distributions are believed to develop in plasma
environments where particle acceleration is expected, due to the presence of enhanced
tails. This suggests that they develop in regions where heating mechanisms are
present, particularly in scenarios involving Langmuir and cyclotron resonances, such
as those found in electrostatic and electromagnetic turbulence in the solar wind.
Furthermore, these distributions exhibit not only enhanced tails but also distinct
core shapes, illustrating the versatility of this distribution in various space plasma
environments.

Despite their prevalence in space plasmas, kappa distributions have been subject
to questions about their fundamental properties due to theoretical interpretations.
For instance, when kappa values are low, these distributions exhibit non-exponential
decay, which results in their divergence at higher-order moments of velocity. Besides,
these distributions cannot achieve the additive property of entropy that is obtained
from thermodynamics. Instead, when computing this property, a subtractive term
appears, and its interpretation is unclear. The purpose of this example is to evidence
that kappa distribution presents several challenges for understanding its model, and
while it is not the primary focus of this writing, it deserves further exploration [29].
However, empirical observational results of these distributions are ubiquitous in space
plasma literature [30]. We think that it is time to develop a proper interpretation for
these distributions to better understand the theoretical results and their implications.

In the literature, we can identify two main interpretations of the kappa models.
The first distribution corresponds to the Olbertian distribution, which was originally
proposed empirically for measuring the energy values of electrons in the Earth’s
magnetotail [31, 32]. In this space plasma scenario, one would expect acceleration
of particles due to excess energy in the magnetic reconnection. This inadvertently
or intentionally proposes a scenario for particle acceleration where this distribution
may be preferably developed. On the other hand, another interpretation of the
kappa distribution considers it to be developed in a scenario where a mechanism
can retain larger densities of particles with lower velocities than predicted by a
Maxwell distribution. Besides, the same mechanism or another can develop a small
density of particles with large velocities [10]. Therefore, this interpretation of kappa
distributions suggests that they may be developed in resonance scenarios, such as
electromagnetic resonance. The modified kappa interpretation retains the concept of
temperature from thermodynamics, in contrast to the original Olbertian distribution.
The Olbertian distribution defines a temperature that depends on the κ parameter,
and this temperature is larger than what would be computed from the Maxwell
distribution in the framework of kinetic theory. Therefore, these interpretations of
kappa distribution are still under discussion for their appropriate application in space
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plasma scenarios.

Considering the examples shown above and the background of kappa distributions,
in this thesis we adressed the following question: how can we differentiate between the
two main interpretations of kappa distributions using electromagnetic fluctuations?
Recently, Marian Lazar et al. [33], showed different destabilizing effects of supra
thermal population in the whistler-cyclotron dispersion branch in a plasma modeled
with the two kappa distribution interpretations. Here, we suggest that the continuum
spectra of magnetic fluctuations around this branch are different, and the study of
them will offer relevant information about the morphology of each distribution.

This work analyzes the levels of finite electromagnetic fluctuations using both
thermal and non-thermal descriptions of high-energy electron populations through
kappa distributions with the same thermal speed. The analysis aims to demonstrate
differences in the energy of the continuum fluctuating spectra, where the plasma
system only considers parallel dispersion branches in relation to the background
magnetic field. We perform a schematic analysis of the magnetic field fluctuation
spectrum in terms of the temperature anisotropy, the plasma beta, and the kappa
parameter. The thesis consists of seven chapters. The next chapter will review the
generalities of kappa distributions and electromagnetic fluctuations in the solar wind.
The third chapter will review the two main interpretations of kappa models and how
to compare them. The fourth and fifth chapters will review the results of linear
kinetic and electromagnetic fluctuation theories in magnetized plasma. The sixth
chapter will present a comparative scheme of the theoretical results with numerical
results obtained from particle-in-cell simulations. The last chapter will provide a
summary of the results along with concluding remarks.
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Chapter 2

Solar Wind: Relationship with
kappa distribution and turbulence

The Sun provides continuous plasma to the interplanetary media extending its last
layer, the solar corona, into space [34, 35]. The space domain filled with plasma
is called heliosphere and the heliosheath bounds it. Inside this space region, we
understand solar wind as the plasma blown out from the Sun. To answer the question
of how the plasma is blown out as a wind into the interplanetary medium, there are
currently two main theories. One is based on MHD (magnetohydrodynamics), and
the other is based on the kinetic framework [36].

In the fluid treatment, the solar wind is explained as a fluid streaming away due to
the pressure difference between the Sun and the interplanetary medium. This theory
is generally accepted, although it must be taken with care because some assumptions
of the heat flux may be partially valid. In this description, the plasma must be close
to thermodynamic equilibrium, which is not necessarily true in the corona [35]. Due
to this feature, the heat flux by fast electrons goes under a non-collisional regime,
resulting in unexpected heat flow rates in the solar wind. Therefore, this theory must
assume a uniform temperature (infinite heat conductivity). On the other hand, the
kinetic approach takes the solar wind as an evaporation of the outer layer of the Sun
into the interplanetary space. This shows no problem with the heat flux because
the heat flux is calculated within the theory. However, both theories’ limitations are
complex and reviewed in the reference [37].

Regardless of the model of its ejection, the solar wind is typically categorized
into two velocity regimes: the fast wind, which pertains to bulk ion velocities
exceeding approximately 450 − 600 km/s, and the slow wind, which corresponds
to ion velocities below this range. This rough range of velocity threshold is an
assumption still under revision [38, 39]. This feature of slow and fast wind arises
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from the complex morphology of the Sun’s magnetic field. In solar minimum activity,
the Sun is dipolar, and the fast wind emerges from a large region in the North and
South magnetic poles [37]. This suggests that fast winds come from areas with open
magnetic flux, developing larger particle velocities. On the other hand, the slow wind
comes from active zones near the magnetic equator. This suggests that the slow wind
originates from regions with closed magnetic flux, resulting in slower particle velocity
development. During periods of maximum solar activity, it becomes challenging to
distinguish between the sources of the fast and slow solar winds as the magnetic field
morphology becomes more complex and entangled, resembling a ball of yarn.

The solar wind is primarily composed of hydrogen, with minor quantities of
helium isotopes and traces of heavier ions [40]. Due to extremely hot conditions,
electrons are ripped away from these atoms, playing a crucial role in the solar wind
stabilization or destabilization. The velocity distributions of electrons in the solar
wind are often non-equilibrium and can be measured through various means. One
such means is the measurement of asymmetry in the velocity field, also known
as skewness. Skewness can further evolve into temperature anisotropies through
heat flux mechanisms. One way to evidence non-equilibrium velocity distribution
measurements of electrons in the solar wind is to study their contribution to non-
thermal processes, such as kinetic instabilities and electromagnetic fluctuations.

These fluctuations are often displayed in temperature anisotropy and electron
plasma beta diagrams, which show the intensity and occurrence of these fluctuations
in different space plasma scenarios, such as slow and fast wind, or magnetic reconnect-
ion in the Earth’s magnetosphere [41, 42]. The temperature anisotropy represents
the ratio between the mean kinetic energy in the background magnetic field axis and
the perpendicular direction, while the beta parameter indicates the ratio between
the thermal energy and the magnetic energy of any plasma specie. Studying the
spectra of such fluctuations in these diagrams can be helpful in detecting plasma
that deviate from thermal equilibrium [43–45].

The contribution of electrons with high energy is essential to properly describe
the heating mechanism and stability of the solar wind. Recent studies have shown
that kappa distribution can better reproduce the electron distribution up to 1 keV
compared to a combination of two Maxwellians [11, 46]. Since electrons in the
solar wind have a wide range of energy from 1 keV to 10 keV, it is expected that
kappa distributions provide a more accurate description. kappa distribution is also
a solution state to the electrostatic turbulence [47]. It is worth noting that these
electrostatic fluctuations are continuously measured in the solar wind [48, 49].

Moreover, using ideal Maxwell distributions to obtain electrostatic spectra in
the solar wind may lead to an unfair computation of the electron temperature [50,
51]. This is because temperature depends on the measured energy range, and the
Maxwell distributions are not sufficient to accurately represent energetic electrons in
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the solar wind. Considering all these facts about high energy electrons, kappa and
ideal Maxwell distributions, and electrostatic turbulence, it is reasonable to believe
that kappa distributions are involved in the oscillatory behavior of plasma species
through electrostatic and electromagnetic resonance.

As the topic of this work concerns electromagnetic fluctuations, we will briefly
review some reasons for the existence of these fluctuations in space plasma. Firstly,
it is believed that they could be due to the remnants of MHD turbulence. The
turbulence at the MHD scale corresponds to a collection of large-scale waves, whose
spatial distribution creates turbulence in the magnetofluid. From this turbulence,
kinetic energy is transferred towards smaller scales, causing enhanced thermal motion
of electrons, which in turn allows for emissions to occur from them. These emissions
are reabsorbed, generating electromagnetic fluctuations. This is schematically shown
in the left panel of Figure 2.1, where at the kinetic scale, the zoom represents the
stochastic motion of electrons that are provoking electromagnetic fluctuations.

Another possibility for the release of electromagnetic fluctuations in a plasma
is when it is initially in an unstable condition near an instability threshold. Then
the plasma stabilizes via emissions that are reabsorbed, causing electromagnetic
fluctuations. This is schematized in the first two figures of the right panel in Figure
2.1. In the last figure of this panel, we review the third reason, which is when the
plasma is initially in a quasi-stable state, meaning that it exists for a long period
of time around an equilibrium state with a degree of fluctuations caused by the
stochastic thermal motion of particles. For this reason, spontaneous emissions are
generated, which are at the same time absorbed by other charged particles, leading
to a finite level of electromagnetic fluctuations that can be measured in theory with
the fluctuation dissipation theorem [52–54].

Along with the discussion on the origin of the solar wind, turbulence, and the
correlation between kappa distributions and these space plasma phenomena, the
upcoming chapter will examine two of the primary interpretations of the kappa
model, often utilized to describe electron velocity distributions in space plasma
scenarios.
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Figure 2.1: The left panel shows the transfer of kinetic energy from MHD
turbulence, which results in electromagnetic fluctuations at the kinetic scale. The
sinusoidal signal represents turbulence, and the red dot represents electrons with
high energy. Additionally, the arrows represent velocities, and the wave symbols
represent emissions. The right panel depicts a scenario in which the stabilization of
unstable plasmas near an instability threshold occurs due to emissions that generate
electromagnetic fluctuations. At the bottom, there is a diagram that illustrates a
plasma near an equilibrium state that naturally produces emissions from the thermal
motion of charges. These emissions are then reabsorbed by other charged particles,
resulting in electromagnetic fluctuations.
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Chapter 3

Review of kappa distributions

The family of kappa distributions is advantageous in describing high energy ranges
of various plasma species that are far from thermal equilibrium, particularly in space
plasma environments, when compared to mixed Maxwell-Boltzmann models[11]. In
this approach, each population in plasma with different thermal energies (core,
halo, strahl, and super-halo) is described by Maxwell distributions with different
temperatures to achieve accurate fitting. This results in a larger parameter space and
a model that is too specific for each observation, which unfairly describes particles
with high velocities, thereby limiting the generalizability of the model [55–57].

Fortunately, the kappa distribution family takes into account the description of
particles with both high and low energies. This allows for a single kappa model to
provide a better description of the velocity distribution compared to an idealized
Maxwellian distribution. Furthermore, kappa distributions are found in abundance
in the Sun’s structure, the solar wind, the magnetosphere of planets, and throughout
the entire solar system and beyond [58–64]. Although this family of kappa functions
improves the description in space plasma scenarios, the proper interpretation of
its empirical existence and the appropriate choice of its application are still under
revision [11, 27].

To explore some of the features of these distributions, we will briefly discuss the
difference between the two main kappa models. Specifically, we will focus on two
main kappa models in space plasma, using the notation proposed by Lazar in 2021
[11]. According to this notation, the empirical kappa model is referred to as the
Olbertian or Original kappa distribution, named after its author [31], similar to how
the Maxwellian distribution is named after Maxwell. Alternatively, we refer to a
modified interpretation of this distribution as the Modified kappa version because it
modifies the parametrization of the original kappa version.[65]. We use subscripts
to differentiate between quantities for each distribution. Specifically, we use Mx for
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Maxwell distribution quantities, Ob for Olbertian distribution quantities, and Md
for Modified distribution quantities.

In order to provide a guide for discerning between the application of kappa
distributions, we present the two analytical models for the Olbertian and modified
cases in the anisotropic representation. Respectively, they are,

FOb(v) =
nαΓ(κα + 1)

π3/2θ3⊥αθ
2
||ακ

3/2
α Γ(κα − 1/2)

(
1 +

v2⊥
καθ2⊥α

+
v2||

καθ2||α

)−(κα+1)

, (3.1)

FMd(v) = Cκ

(
1 +

v2⊥
(κα − 3/2)θ2⊥α

+
v2||

(κα − 3/2)θ2||α

)−(κα+1)

, (3.2)

Cκ =
nαΓ(κα + 1)

π3/2θ3⊥αθ
2
||α(κα − 3/2)3/2Γ(κα − 1/2)

.

Here, Γ is the gamma function, θ⊥,|| the thermal speed. The subscript α is the
α plasma specie. These representations correspond to the Tsallis-kappa-like models,
with the exponent being −(κα+1) [29]. Additionally, these distributions differ in the
framework of kinetic theory due to the κ parametrization of temperature. In plasmas
out of equilibrium described by an Olbertian distribution, a kinetic temperature is
interpreted for each κ value using the second velocity moment of the distribution.
This results in a larger kinetic kappa-dependent temperature than that computed
from a Maxwell distribution.

T
(κOb)
|| =

mα

kB

∫
FκO

v2||dv
2
|| =

κα

κα − 1.5
T

(M)
|| , (3.3)

T
(κOb)
⊥ =

mα

2kB

∫
FκO

v2⊥dv
2
⊥ =

κα

κα − 1.5
T

(M)
⊥ . (3.4)

This parametrization requires that the concept of thermal speed be retained as
equivalent to that computed in thermal equilibrium from a Maxwell distribution.

θ
(κOb)
α||,⊥ = θ

(M)
α||,⊥. (3.5)

This results in a wider mean width of the kappa distribution while preserving the
same peak as the Maxwell distribution. As a result, the morphology of the velocity
distribution shows an enhanced tail formed at the expense of the core density but
still maintains the quasi-thermal core shape of the Maxwell distribution, as shown
in Figure 3.1.

In addition, upon a quick examination of the morphology of both cases, we can
find indications of the system where they may have been developed. The morphology
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of the Olbertian case is represented in the right panel of Figure 3.1. Compared to the
equilibrium, large supra-thermal tails can be observed, indicating that particles have
developed higher velocities. In a scenario where the density in phase space of the
distribution remains constant, it is expected that these particles with higher velocities
are formed at the expense of the core particles. Therefore, a mechanism must be
accelerating these particles to form higher densities of particles with more extensive
velocities. One hypothetical example of such a mechanism could be electrostatic
turbulence in the solar wind. Particles highly influenced by an oscillating electric
field gain energy in resonance with electrostatic waves, thereby heating them and
increasing their velocities. This is why this type of distribution is widely accepted
in the space plasma community, as it offers a natural first attempt description of a
space plasma scenario.

On the other hand, the Modified kappa model preserves the same concept of
temperature as that obtained in thermal equilibrium.

T
(κMo)
|| =

mα

kB

∫
FκMo

v2||dv
2
|| = T

(M)
|| , (3.6)

T
(κMo)
⊥ =

mα

2kB

∫
FκMo

v2⊥dv
2
⊥ = T

(M)
⊥ . (3.7)

(3.8)

However, this interpretation requires a kappa-dependent thermal speed, which is
larger than the one obtained in thermal equilibrium.

θ
(κMo)
α||,⊥ =

2κα − 3

2κα

θ
(M)
α||,⊥. (3.9)

The Modified kappa model retains the same mean width as the Maxwellian function
due to its preservation of the concept of thermodynamic temperature. However, its
core has a sharper, narrower, and kappa-dependent peak compared to the Maxwell
distribution. To maintain the interpretation of temperature in equilibrium, faint
suprathermal tails with the same decay slope as the Olbertian distribution are also
present to compensate for the high density of particles with low energy (refer to
Figure 3.1). This description is applicable to lower kappa values, while for higher
values, both kappa models recover the morphology of a velocity distribution in
equilibrium.

Comparing the morphology of the Modified kappa distribution with that of the
Maxwell distribution provides insights into the environment in which it may develop.
The enhanced peak, which accounts for the kappa-dependent thermal speed, suggests
a scenario where a mechanism can retain more particles at low velocities when it is
out of thermal equilibrium, compared to the same macroscopic plasma parameters in
thermal equilibrium with a Maxwell distribution. This scenario can also accelerate
or maintain particles with larger velocities, forming faint suprathermal tails. These
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Figure 3.1: The figure displays the velocity distribution functions of both the
kappa and Maxwell models. f(u) is the respective distribution function and u is
a dimensionless velocity normalized to an arbitrary value. The solid line represents
the Maxwellian distribution, while the dashed lines show the kappa distributions for
two values of the parameter κ: a large non-thermal scenario with κ = 3 and a nearly
thermal equilibrium scenario with κ = 10. The range of kappa values between these
two thresholds is typical of the non-thermal regimes encountered in the Heliosphere
at distances of 1 to 3 astronomical units (AU) from the Sun [65].

observations suggest that the mechanism involved corresponds to an electromagnetic
resonance scenario.

Both kappa distributions have been shown to accurately represent various space
plasma scenarios, either theoretically or empirically. In the next chapter, we will
explore their associated electromagnetic fluctuations and the results obtained from
these analyses.
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Chapter 4

Kinetic linear theory and
electromagnetic fluctuations

4.1 Review of dispersion theory for kappa

distributions

We obtained expressions for the dispersion tensor elements in magnetized plasmas
using linear kinetic theory. In our notation, subscripts± and || indicate perpendicular
and parallel directions, respectively, with respect to the background mean magnetic
field. The ± subscript refers to the right- or left-hand helicity of the wave.

At a particular point (t = 0) in the Vlasov-Maxwell system, we introduce an
electric and magnetic field disturbance and a perturbation of the velocity distribution
under neutral and current-free initial conditions.

E = δE,

B = B0 + δB,

f = f0 + δf.

Here, δ represents perturbed quantities at first order, and the subscript 0 represents
equilibrium quantities. By retaining only first-order terms, we found an analytical
expression for the dispersion tensor. This tensor is diagonal when we consider waves
propagating parallel to the background magnetic field. The dispersion relation of
waves propagating parallel to the background magnetic field is computed with the
equation

Λ+Λ−Λ|| = 0, (4.1)
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where Λ|| and Λ± are the diagonal elements of the dispersion tensor in the parallel and
perpendicular directions with respect to the background magnetic field, respectively.
Here, the components of the dispersion tensor are

Λ± = 1− η2 + 4π
∑
α

χ±α, (4.2)

Λ|| = 1 + 4π
∑
α

χ||α. (4.3)

The sum is over α plasma species and χα represents the electric susceptibility tensor.
Also, η = ck/ω corresponds to the wave refractive index. The electric susceptibility
tensor elements are

χ±α =
ω2
pα

4ω

∫
∂fα
∂v⊥

±
k||
ω

(
v⊥

∂fα
∂v||

− v||
∂fα
∂v⊥

)
dv||dv⊥, (4.4)

χ||α =
ω2
pα

4ω

∫
v||v⊥

ω − k||v||

∂fα
∂v||

dv||dv⊥. (4.5)

(4.6)

Here, we obtained these expressions in the Fourier-Laplace domain as it is the natural
space for signal analysis. Hence, k and ω represent the frequency and wave number,
respectively, after transforming time-space quantities. Additionally, ωpα denotes the
plasma frequency.

In the case of the Maxwell distribution, the susceptibility tensor elements are

χ± =
ω2
pα

4πω2
(A+ ϕ±Z(ξ±) + 1) , (4.7)

Z(ξ) =
1√
π

∞∫
∞

es
2

s− ξ
ds;ϕ± = Aξ± ∓ Ωα

k||u||
; ξ± =

ω ± Ωα

k||u||
;A =

T⊥

T||
.

Where Z(ξn) is the dispersion function defined for Maxwellian plasmas [66], and
ξn is the ratio between the phase velocity of the electromagnetic wave and the parallel
thermal speed of the species α. In addition, A represents the temperature anisotropy,
and ϕn includes an additional term to ξn, divided by the temperature anisotropy.

In addition, for the Olbertian kappa distribution, the computation of the same
elements leads to

χ± =
ω2
pα

4πω2
(A+ ϕ±Zκ(ξ±) + 1) . (4.8)
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On the other hand, the same elements but for the Modified kappa distribution are

χ± =
ω2
pα

4πω2
(A+ ϕ±κZκ(ξ±κ) + 1) . (4.9)

where

ϕ±κ =

(
κ

κ− 3/2

)1/2

ϕ±; ξ±κ =

(
κ

κ− 3/2

)1/2

ξ±,

Zκ =
Γ(κ)√

πκΓ(κ− 1)

∞∫
−∞

dt

(t− ξ)(1 + t2

κ
)κ
.

It is worth noting that here we have used a modified definition of the kappa
dispersion function Zκ(ξn) in the Olbertian and Modified distribution cases [67–69].
See appendix A for more details on the deduction of these tensors in the distribution
cases shown above.

4.2 Review of electromagnetic fluctuations in

magnetized plasma

To obtain an analytical expression for the electromagnetic fluctuations, we consider
a periodic perturbation δhµ in a magnetized electron-proton plasma [70, 71]. Here,
µ represents a component of a Cartesian coordinate system {i, j, k}. Initially, the
plasma system is neutral and current-free.

fα =
∑
α

Fα. (4.10)

Here, fα is the sum of the distribution function of all plasma species α. By considering
the perturbation in the distribution and retaining only first-order terms, we obtain

fα = fα0 + δhµ
∂fα0
∂Hµ

, (4.11)

The component of the kinetic energy in the direction µ is denoted by Hµ, hence sum
over µ direction is implicit.

δhµ
∂fα0
∂Hµ

= δhi
∂fα0
∂Hi

+ δhj
∂fα0
∂Hj

+ δhk
∂fα0
∂Hk

. (4.12)

Taking the statistical average of a component of the disturbed electric field gives
us,

⟨δEi(t)⟩ =

∫
δEi(t)

(
fα(H0) + δhµ

∂fα
∂Hµ

)
dv∫ (

fα(H0) + δhµ
∂fα
∂Hµ

)
dv

. (4.13)
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It is worth noting that initially there was no disturbance, hence ⟨δE(t)⟩ = 0.
This must be considered in 4.13. Again, we only retain only first-order terms of
4.13. Besides, to obtain the spectra of electromagnetic fluctuations, we perform the
Fourier-Laplace transform of the quantities in 4.13, leading to

⟨δEi(k,ω)⟩ =

∫
δÊ∗

i δĥµ
∂fα
∂Hµ

dv∫
fαdv

. (4.14)

Here, we define Fourier-Laplace transformed quantities with a hat, such as δÊi :=
δEi(k,ω) and δĥµ := δhµ(k,ω). In addition, ()∗ means the complex conjugate expression.

The source of energy for the perturbation is believed to be the stochastic motion
of charges. When the charges have sufficient kinetic energy, their motion generates
fields that are then absorbed by other charges [25, 54]. As a result, the perturbation
is

δĥµ = − i

2ω
δĴµδÊi. (4.15)

In addition, the linear kinetic theory relates the disturbed current density to the
perturbation of the electric field in the computation of the dispersion tensor (see
Appendix A). Thus, the following relation holds,

⟨δÊi⟩ =
4πδĴµ
ω2

Λ−1
iµ . (4.16)

In addition, the term δĴµ is arbitrary since it represents the source of the spontaneous
emissions. Therefore, we assume that it depends only on the initial conditions of the
plasma system. With this assumption, the linear response of magnetized plasmas is
non-dependent on the disturbance δĴµ. By merging Eqs. 4.14, 4.15, and 4.16, we
obtain ∫

δÊµδÊ
∗
i
∂fα
∂Hµ

dv∫
fαdv

=
8π

iω
Λ−1

iµ . (4.17)

It’s worth noting that the electric field fluctuations δÊµδÊ
∗
i in the last expression

depend explicitly on the inverse of the dispersion tensor elements. As a result, it’s
expected that fluctuations will be enhanced around the plasma’s dispersion modes.

Considering only waves propagating parallel to the background magnetic field in
equation 4.17 (±=µ = i and Λij = δiµΛµ, where δij is the Kronecker delta), and
adding the same expression with its conjugate leads to,∫

δÊ2
µ

∂fα
∂Hµ

dv∫
fαdv

=
8π

i(ω + ω∗)
(Λ−1∗

µ − Λ−1
µ ). (4.18)

We are only computing transverse electric field fluctuations because, under the given
system conditions, ⟨δB2

||⟩ = 0. For velocity distributions, such as the Maxwellian
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and the kappa models, the fluctuating electric field can be expressed in integral form
as ∫

δÊ2
µ

∂fα
∂Hµ

dx∫
fαdx

= −αµ⟨δÊ2
µ⟩. (4.19)

Where αµ is a scalar function to be determined by macroscopic parameters of the
distribution in the direction µ. Hence, for these kappa interpretation models or
Maxwell-distributed plasmas, we obtain,

⟨δÊ2
µ⟩ =

8π

iαµ(ω + ω∗)
(Λ−1∗

µ − Λ−1
µ ). (4.20)

As an example, we compute the α⊥ scalar function in the Maxwell anisotropic
distribution case,

FMxα =
1

π3/2θ2α⊥θα||
e

(
− v2⊥

θ2
α⊥

−
v2||
θ2
α||

)
. (4.21)

The change in kinetic energy in the distributions in the direction µ = {⊥, ||} is
mediated by

∂FMxα

∂Hµ

= − 2

mαθ2αµ

1

π3/2θ2α⊥θα||
FMα. (4.22)

Substituting this result into equation 4.22 yields∫
δÊ2

µ
∂fα
∂Hµ

dx∫
fαdx

= − 1

kBTµα

1

π3/2θ2α⊥θα||

∫
dv3FMαδÊ

2
µ∫

fαdx
= − 1

kBTµα

⟨δÊ2
µ⟩.

Hence, replacing αµ = 1/kBTµ in equation 4.20, we get,

⟨δÊ2
µ⟩ =

8πkBTµ

i(ω + ω∗)
(Λ−1∗

µ − Λ−1
µ ). (4.23)

From the equation above, we can calculate the magnetic field fluctuations using the
Ampére-Faraday laws, such that

⟨δB̂2
µ⟩ = η2||

8πkBTµ

i(ω + ω∗)
(Λ−1∗

µ − Λ−1
µ ). (4.24)

Here η|| corresponds to the wave refraction index. It is worth noting that this last
equation is consistent with the results in the references [15, 41, 42, 53, 70–72].

Then, using equation 4.24 (see Appendix B and references [70, 71] for more
details), we can compute the transverse magnetic fluctuations of the electromagnetic
cyclotron mode. In the case of equilibrium thermal conditions, we obtain

1

8π
[⟨|B⊥|2⟩α] = η2

kBT⊥α

ωλ⊥
· Im

[
4πχ⊥α

Λ⊥

]
. (4.25)
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Here, [⟨|B⊥|2⟩α] corresponds to the magnetic fluctuations of species alpha in the
continuum spectra of frequency and wave number. In this expression, λ⊥ represents
the transverse element of the dispersion tensor in vacuum. Besides, χ⊥α represents
the transverse electric susceptibility element, and Λ⊥ represents the dispersion tensor
element of species alpha. In addition, the analytical expression for the Olbertian case
is

1

8π
[⟨|B⊥|2⟩α]κα = η2

κα − 1

κα − 3/2
· kBT⊥α

ωλ⊥
· Im

[
4πχ⊥α

Λ⊥

]
κα−1

. (4.26)

The kappa Modified case also has a κ index subscript, indicating kappa-dependent
spectra of magnetic fluctuations. Later, we will demonstrate that the shape and
intensity of the spectra depend highly on this value in different ways for both
interpretations of kappa distributions, even with the same thermal speed.

For the Modified case, the spectra of magnetic fluctuations are given by

1

8π
[⟨|B⊥|2⟩α]κα = η2

κα − 5/2

κα − 3/2
· kBT⊥α

ωλ⊥
· Im

[
4πχ⊥α

Λ⊥

]
κα−1

. (4.27)

With these results we will discuss in the next chapter about differences and similitudes
in the parallel electromagnetic dispersion branch and the associated fluctuating
electromagnetic spectra.
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Chapter 5

Results from linear kinetic theory
and electromagnetic fluctuations

With the kinetic theory results from the previous chapter, we will review the behavior
of parallel modes propagating along the background magnetic field. These modes
become particularly relevant in plasmas that are out of equilibrium because, under
certain macroscopic parameter configurations such as temperature anisotropy or beta
values, they can significantly impact the plasma’s stability.

We compute the dispersion relation in the case of the Maxwell and both kappa
velocity distribution models in figure 5.1. We analyzed a simple set of macroscopic
parameters (β = {0.01, 0.1, 1}, A = T⊥/T|| = 1, κ = {3, 10}) and found the electron
whistler cyclotron mode in a quasi-stationary regime under isotropic temperature
conditions. Since all macroscopic parameters have the same values for electrons and
protons, we have omitted the α subscript.

The dispersion branches for different β values are shown in the top panel of
figure 5.1. We observe that the kappa (dotted and dashed) and Maxwellian (solid)
distribution dispersion relation results for each beta value are similar in the respective
low frequency and wave number configurations. Each dispersion branch, on the other
hand, begins to separate from the others at smaller spatial scales (as shown in the
subpanels where each branch diverges from the others, this happens for larger wave
numbers and for smaller beta values). Therefore, non-thermal effects become more
relevant for smaller scales. This is due to the presence of suprathermal electrons
(and the accumulation of low energy population in the case of the modified kappa
model), which affects the stationary regime of the wave in different ways.

In addition, the bottom panel shows the growth rate for all cases mentioned
before. For all β values, the original kappa have almost the same stationary regarding
the respective equilibrium limit (κ → ∞). Still, the damping rate becomes softer for
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Figure 5.1: The top panel shows the dispersion branches of the whistler-cyclotron
mode for the ratio of electron plasma frequency to gyro-frequency, ωpe/|Ωe| =
5 (similar results are obtained for higher frequency ratios [42]). Besides, the
wavenumber is normalized to the electron inertial lenght. We considered two
non-thermal scenarios, with κ = 3, 10, and three different plasma beta values,
β = 0.01, 0.1, 1. The bottom panel shows the corresponding growth rates of the
dispersion branches. We have also included subpanels where the dispersion branches
separate in a specific wave number and where the growth rates represent a quasi-
stationary regime of the wave.

the larger wave number values. A large density of suprathermal electrons interact
via electromagnetic resonance with the wave in this range.

Interestingly, for the Modified kappa case, the growth rates are even lower for
larger wavenumbers compared to the Olbertian and equilibrium cases for the entire
range of κ and β configurations considered. As the wave number decreases, each
branch separates from the others, and in the Modified kappa case, the frequencies
are higher compared to the Olbertian and Maxwell cases, before the separation occurs
at k||λe ≃ 2. (see κ = 3 and β = 0.01 configuration on Fig. 5.1). These properties
are attributed to the high density of electrons with low velocities, rather than the
suprathermal population. This is evidenced by the differences in dispersion behavior
when comparing the Olbertian and Maxwell distribution results.
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It is worth noticing that the features described above about the damping rate
are even more remarkable in the lowest kappa value case (κ = 3) and the larger beta
value configuration (β = 1). Besides, as expected in the equilibrium case, when the
β value decrease, the stationary state (Im(ω) = 0) is broader in the wave number
range (0 < k||λe < 1) because of a rigid magnetic power governing the plasma. In
addition, with an increment of the κ value, both kappa results recover almost the
same trend in the dispersion branch and growth rates of the Maxwell case.

5.1 Whistler cyclotron and firehose mode driven

by temperature anisotropies

In this study, we show temperature anisotropies and their influence on magnetic
fluctuations. We compute quasi-unstable transverse collective modes with Im(ω) > 0
for two temperature anisotropy configurations, A = 0.8 and A = 1.2. These values
correspond to threshold values measured in the solar wind at 1 AU from the Sun
[73]. This temperature anisotropy scenario breaks the symmetry of the velocity
field, generating instabilities (Im(ω) > 0) such as whistler-cyclotron (A < 1) or
firehose (A > 1) modes. Even though these instabilities exist in a range of β and κ
configurations, the firehose case becomes relevant for a higher beta value [3, 42].

In Figure 5.2, on the top panel, we present the dispersion relation of the firehose
mode. It is noticeable that each dispersion branch separates from the others more
significantly compared to the isotropic case (see the top-left panel of Figure 5.1 and
top-left subpanels of Figure 5.2). Due to the temperature anisotropy value A = 0.8,
is expected an enhanced contribution of the non-thermal effects from suprathermal
electrons for larger wave numbers. Moreover, for this anisotropy configuration, we
observe a pronounced divergence in the curves from the stationary regime of all
distribution models compared to the isotropic temperature case. This highlights the
significant destabilizing contribution from suprathermal electrons in the larger wave
number regime, where free energy from anisotropy is available. However, all the
other features described in the isotropic case remain conserved.

Figure 5.3 displays the dispersion relation of the whistler cyclotron mode for a
temperature anisotropy of A = 1.2, with the same κ and β parameters as Figure 5.1.

As shown in the top panel of figure 5.3, we compute the whistler-cyclotron
dispersion relation branch for each κ and β value. For this plasma collective mode
configuration, the dispersion relation of both kappa distributions seems to have
a similar trend. They are similar to what occurs in the temperature anisotropy
configurations of A = 0.8 and A = 1 (see figures 5.1, 5.2, and 5.3).
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Figure 5.2: Top panel represents dispersion branches of the firehose wave mode
for ωpe/|Ωe| = 5 and the temperature anisotropy configuration, A = 0.8. We use
the same κ and β configuration of figure 5.1. Also, the same color code of figure
5.1 was used. The bottom panel represents the corresponding growth rate of the
dispersion branches for each case. The subpanels indicate where the dispersion
properties diverge when each distribution model is used.

Soft changes in anisotropy result in similar dispersion branches for this collective
mode across all distribution models, consistent with previous findings [33, 74]. To
further analyze the dispersion behavior, we also computed the growth rates for the
different distribution models in the bottom panel of Figure 5.3. For this temperature
anisotropy configuration, we observed differences between the Olbertian (red) and
Modified (blue) distributions in terms of positive growth rates (Im(ω) > 0).

In the scenario where κ = 3, we observe that in the larger space scale configuration,
the maximum growth rate of this mode is proportional to Im(ω) = {10−6, 10−4, 10−2}
for the corresponding beta values β = {0.01, 0.1, 1}. As the plasma becomes highly
magnetized, i.e., β values decrease, the Maxwell distribution has a broader range
of wave numbers where this mode remains stable. Conversely, as β values increase,
the stable range in thermal equilibrium narrows down sufficiently to approach the
wavelength range where this mode becomes quasi-stable or unstable in both kappa
distributions.
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Figure 5.3: In the top panel is dispersion relations for the whistler-cyclotron wave
in the case of A = 1.2 configuration, and in the bottom panel are the respective
growth rates. The rest of the parameters and color codes are equal to figure 5.1.
The subpanels indicate positive growth rates for each beta value.

Even for β = 1, for the Maxwell equilibrium case, the stationary regime becomes
unstable (Im(ω) > 0) in the same wavelength range of both kappa distribution
interpretations. Besides, the growth rate in the Olbertian case is always more
significant than in the Modified case. This suggests that the larger population
of suprathermal electrons described by the Olbertian distribution interacts with
this dispersion branch monotonously. On the other hand, the smaller amount of
suprathermal population of the Modified distribution and the enhanced amount of
particles with low velocity leads to smaller growth rates.

However, as the kappa value increases, this non-thermal effect tends to disappear,
resulting in growth rates similar to the equilibrium case in both kappa distributions.
While the differences mentioned above may be considered minor in guiding the
discernment of plasmas out of equilibrium by both kappa models, analyzing the
continuum spectra of magnetic fluctuations will reveal more significant differences.
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5.2 Results of electromagnetic fluctuations in

magnetized plasmas with kappa distributions

This section shows the differences in the continuum spectra of magnetic fluctuations
wrapping the plasma dispersion modes described above.

Figure 5.4: The figure shows normalized spontaneous magnetic fluctuations with
respect to the mean value of the background magnetic field, plotted in terms of
normalized wavenumber and frequency. Here, λe represents the electron inertial
length and Ωe is the electron cyclotron frequency. The left column corresponds to
low β cases, while the right column corresponds to high β cases. The intensity of
the magnetic fluctuations is represented by a logarithmic scale color bar. Each row
shows the results for one of the three distributions with variations in the κ value, and
the dashed curves indicate the dispersion branch of the transverse electromagnetic
mode for each distribution case. The color code used for the dispersion results is
consistent with Figure 5.1, where Maxwell is represented by black, Olbertian by red,
and Modified by blue.

In Figure 5.4, we show thermal (Maxwell) and non-thermal (kappa) equilibrium
magnetic fluctuations from lower to higher β = {0.1, 1} and κ = {3, 10} configuration.
Besides, we plot the whistler-cyclotron branch in a dashed curve for each case with
its typical frequency regime Ωp < ω < Ωe. We found high-intensity spectra of
magnetic fluctuations surrounding the whistler cyclotron branch. At first glance, we
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can see that the spectrum of fluctuations becomes broader in Fourier space around
the whistler branch for both kappa distributions compared to the thermal equilibrium
distribution results in the first row.

This is due to the stochastic motion of high-energy charges, which reaches a larger
frequency and wave number range, leading to the spreading of magnetic fluctuations
compared to the equilibrium case. We have shown this in Figure 5.1, in which
each kappa dispersion branch separates from the Maxwellian one for larger wave
numbers and frequencies. Hence, the shape of the spectra is related to the wave
dispersion branch, and different non-thermal distributions lead to different intensities
and shapes of magnetic fluctuations.

For the Modified case, we observe that the high density of low-energy electrons
tends to distribute the high intensity of magnetic fluctuations around the whistler
branch. In contrast, the Olbertian case shows a broader spectrum of fluctuations (see
the left column of Figure 5.4 for κ = 3). Additionally, in the same column, we can
see that due to the enhanced suprathermal electron population, the Olbertian case
for κ = 3 produces a spectrum similar to the Modified case, but with high-energy
electrons spreading uniformly magnetic fluctuations to larger frequencies.

Even though all distribution cases share the same thermal speed in the low beta
regime, where a strong background magnetic field balances the destabilizing effects of
the suprathermal population, this feature still holds. We can compare these results
with what we have shown in Figure 5.1, where keeping the lowest beta regime leads
to similar damping rates and dispersion branches of the collective mode. Looking at
the continuum spectra of these modes reveals hidden information about magnetized
suprathermal electrons. Furthermore, in the last two rows of the first column in
Figure 5.4, we show a higher kappa value selection, which almost recovers the shape
of thermal equilibrium whistler cyclotron fluctuations in both kappa cases. However,
there is a slight difference in intensity values between them and also with respect to
the Maxwell case.

In the right column, the intensity of fluctuations increases with higher beta value
selection (β = 1). The spectra obtained from all distribution cases shift the peak
of magnetic fluctuations towards a smaller wavelength regime in this β regime. It’s
worth noting that the equilibrium case will always have the most prominent peak
intensity of fluctuations for smaller wavelengths than both kappa interpretations.

Moreover, we can obtain the decay of magnetic fluctuations in term of the
frequency ω by integrating over the entire wave number spectrum (refer to Figure
5.5). It’s worth noting that at ω/|Ωe| = 1, the curves exhibit fluctuations caused by
the resonance of electrons with the first multiple of the cyclotron frequency.

In Figure 5.5, we present the results for reduced magnetic fluctuations energy for
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Figure 5.5: Reduced magnetic energy in terms of frequency, ⟨δB2⟩ω = ω−ᾱ, is shown
for each velocity distribution case. These results were obtained by integrating over
the wave number of all fluctuating magnetic spectra shown in Figure 5.4. The
black curve corresponds to the Maxwell thermal equilibrium case, while the blue
and red curves represent the non-thermal Modified kappa and Olbertian kappa cases,
respectively. As the reduced energy decays as a power law ω−ᾱi , we plotted the decay
index for each curve, where i ∈ {Mx,Md, Ob} corresponds to the Maxwell, Modified,
and Olbertian cases, respectively.

the Modified, Olbertian, and Maxwell distributions. For both kappa distributions,
the decay in frequency shows a steep slope in the Modified case for the κ = 3
configuration, while for the Olbertian case, the decay slope is softer. This difference
is due to rigid spectra of magnetic fluctuations in the Olbertian case, supported by
a larger density of suprathermal electrons that spread enhanced electromagnetic
fluctuations towards larger frequency values. Therefore, the decay of magnetic
fluctuations in the Olbertian case is slower than that of the Modified case. We
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explain the slower decay as a result of the lower power value decay (⟨dB2⟩ω = ω−ᾱi).

For magnetized plasmas with β = 0.1, both kappa distribution cases show a lower
index decay slope than the equilibrium case. As we increase to β = 1, we observe
a larger α value for the Modified case and a lower value for the same index in the
Olbertian case. This is expected since the Modified case has a higher intensity of
fluctuations for frequencies relative to the whistler-cyclotron mode. Moreover, as we
increase the kappa value to κ = 10, both kappa results follow the equilibrium decay
with almost the same slope.

5.3 Difference in the complete spectra of magnetic

fluctuations for both kappa distributions

We can identify similarities and differences in the complete spectra of each velocity
distribution case by subtracting them. This comparison allows us to understand the
spectrum disturbance caused by non-thermal species by directly comparing these
kappa results with the ideal Maxwell equilibrium case. Therefore, we present an
analysis of subtracting fluctuating magnetic spectra between each distribution case.

In the first column of Figure 5.6, we show the subtraction of the Olbertian-
Modified spectra. Near the whistler-cyclotron branch (white tones), both spectra
of fluctuations are similar, but the Olbertian case has higher intensities (reddish
tones). Beyond the frequencies of the whistler-cyclotron dispersion branch, the
red color indicates an increased power of magnetic fluctuations provided by the
Olbertian spectra case. As we showed in highly magnetized plasmas with κ = 3, 10
configurations, the pronounced red tone over the Fourier domain indicates the crucial
role of suprathermal particles. This means that the high intensity of fluctuations is
distributed with a more homogeneous feature than the Modified case.

In addition, we computed the subtraction of both kappa spectra in the middle and
last column with the respective equilibrium case (κ → ∞). In the second column of
Figure 5.6, the red color predominating in a triangular area denotes the zone wherein
thermal-equilibrium fluctuations are more intense than in the Modified kappa case.
This triangle emerges from the first multiple of the cyclotron frequency at near-zero
wave number, spreading over the Fourier domain, which is bounded by a blue color.
This indicates that the Modified case of whistler fluctuation predominates for higher-
frequency configurations. This result is expected by the larger velocities reached by
the small number of suprathermal electrons that can spread magnetic fluctuations
in this frequency regime.

In contrast, in the last column, blue indicates the predominance of the intense

27



Figure 5.6: The left column shows the subtracted fluctuating magnetic spectrum
for both kappa distributions. The middle column represents the subtraction between
the Maxwell and Modified kappa cases, and the last column shows the subtraction
between the Maxwell and Olbertian kappa cases. The two top rows show the results
for the β = 0.1 configuration and κ = {3, 10}, while the two bottom rows are for
the β = 1 configuration and κ = {3, 10}. The remaining parameters are the same
as in Figure 5.4. The color bar indicates the predominant region for each spectrum,
calculated as sgn(dB2

i−j)|ln(|dB2
i−j|)|, where i, j ∈ {Mx,Md, Ob}. The red and blue

colors indicate where the intensity of fluctuations is predominant for each spectrum
in the Fourier domain. Additionally, λe and Ωe correspond to the electron inertial
length and the electron cyclotron frequency, respectively.

Olbertian spectrum. Here, the red triangle shape of thermal fluctuations from
the Maxwell distribution does not appear, and instead, the rest of the spectrum
shows a slight red color around whistler fluctuations (predominance of the Maxwell
case). This is an expected result because the Maxwell case has a small area in the
Fourier domain to distribute the energy of the magnetic fluctuations. Moreover, the
enhancement of electromagnetic fluctuations in practically the whole spectrum of
fluctuations provided by the Olbertian case is evident. This feature is due to the
high density of the suprathermal population available to generate electromagnetic
fluctuations over a wider frequency domain.
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In the last two rows of Figure 5.6, we present a similar comparative scheme, but
for β = 1. Here, the logarithmic color scale is on a narrower range due to the high
thermal energy of the plasma controlling its behavior. Moreover, the same analysis
used for β = 0.1 can be applied to β = 1, except that all magnetic spectra subtraction
structures become broader. In particular, the triangle shape in the middle column
is wider and has more red tones, indicating a greater difference in the spectra of
electromagnetic fluctuations.

5.4 Differentiation between the interpretation of

both kappa distributions in energy results

In this section, we compute the total energy of magnetic fluctuations by integrating
magnetic fluctuations in the frequency and wave number domain. The left panel
of Figure 5.7 shows the energy of magnetic fluctuations respect to the κ value over
different β values. Considering κ/(κ− 3/2) = 1, we recover the thermal equilibrium
energy case. Comparing Olbertian’s total magnetic spectra energy (red color) with
the thermal equilibrium case, we show that total magnetic energy gets enhanced
with decreasing kappa value.

In contrast, the suprathermal character of the Modified case (blue curves) does
not share this feature and shows even less energy toward kappa value decrement. The
enhanced narrow core of the distribution with decreasing kappa value supports this
low magnetic spectral energy in the Modified case. Also, low density in suprathermal
tails is insufficient to compensate for the effects of the low-energy core. Hence the
small number of suprathermal particles contributes poorly to the energy of magnetic
fluctuations, even compared with the Maxwell equilibrium case.

In the right panel, we present the decay power index for each non-thermal
distribution interpretation and the ideal equilibrium case. For β = 0.1, we observe
that the decay of both kappa spectra becomes softer as κ values decrease. On the
other hand, for the β = 1 scenario, the kappa Modified index decay becomes larger
as κ values decrease. However, the decay index results obtained from the Olbertian
distribution do not follow this trend, indicating the rigid quality of electromagnetic
fluctuations out of thermal equilibrium. Furthermore, for β = 1, we observe that
as κ values decrease, the α index of the power law decay becomes larger even when
compared to the index computed at equilibrium. This is an expected result due to
the non-thermal features becoming more evident with larger beta values and the
resonance scenario from the results shown in Figure 5.4 for the Modified case.
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Figure 5.7: The left panel shows the total energy of magnetic fluctuations for
each velocity distribution case analyzed in different β regimes, presented in terms of
κ/(κ− 3/2). In this function, the limit κ → ∞ tends to κ/(κ− 3/2) = 1, recovering
the thermal equilibrium case. The entire energy spectrum shown is normalized to
the Maxwell case in the configuration β = 0.1. The right panel displays the index
of the power-law decay, ⟨dB2⟩ = ω−ᾱ, for each case. The ᾱi index is the same as in
Figure 5.5, but for additional κ cases. The black marker represents the Maxwell
distribution result, while the red and blue markers represent the Olbertian and
Modified distribution results, respectively.

5.5 Review of the ratio of the electron plasma

frequency to gyro frequency

Motivated by different space plasma scenarios, we turn our analysis to the ratio of
the plasma frequency to the gyro frequency. Here, we compute the total energy of the
fluctuating spectra for all distribution cases in terms of the parameter P = ωpe/|Ωe|.
In figure 5.8, the first row shows the energy cases for the Olbertian distribution,
where decreasing κ for any P value results in higher energy levels. This feature is
shared for both β values showed in here.

It is worth noting that each P result was separated from the others by adding a
constant. This was intentionally made to evidence differences or similitudes because
there are no significant changes in energy toward variations in P . In the second row
of Figure 5.8, we present the energy cases for the Modified distribution. In both β
values (β = 0.1 and β = 1), we observe a decrease in energy as κ decreases. These
results suggest that P is not a parameter that enables us to distinguish the spectra
generated by these distributions.
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Figure 5.8: The top panels show the total energies of Olbertian magnetic fluctuations
for different P = ωpe/Ωe values, where ωpe is the electron plasma frequency, in terms
of κ/(κ−3/2). The bottom panels display the corresponding results for the Modified
case. All energies are normalized to the β = 0.1 Maxwell case. The markers represent
the total magnetic energy values for P = {5, 10, 50}.

5.6 Fluctuating magnetic spectra and temperature

anisotropy values

In Figure 5.9, we also compute electromagnetic fluctuations for two temperature
anisotropies values, A = 0.8 and A = 1.2.

It is worth noting that the black line at ω/|Ωe| ≃ 0 represents electromagnetic
fluctuations surrounding wave modes that become relevant for ion frequencies. The
left panel shows the anisotropy case of A = 0.8, and the right panel shows the
magnetic fluctuation spectra cases for A = 1.2. It is evident that in these anisotropy
configurations, all magnetic spectra are enhanced and broader than the isotropic
temperature case shown in Figure 5.4. Also, the shape of the spectra changes with
discontinuous contour lines and levels due to the enhanced fluctuations at ω/|Ωe| ≃ 0.

Besides, for A = 0.8 in the κ = 3 configuration, these spectra tend to deform
even more following the dispersion branch for the negative frequency values. The
equilibrium case in the first row tends to distribute magnetic fluctuations with
symmetry surrounding the firehose mode. Regarding the Modified case in the second
row, electromagnetic fluctuations spread with more intensity for negative frequencies,
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Figure 5.9: The graphs show normalized magnetic fluctuations with respect to
the mean background magnetic field Bo. The first two columns display the cases
for A = 0.8, and the last two columns are for A = 1.2. For each temperature
anisotropy regime, the left panels show the low β = 0.1 cases, and the right panels
show the β = 1 cases. The color bar is logarithmic and represents the intensity of
the fluctuations. In each subpanel, we plot the fluctuating spectra of both kappa
distributions and the Maxwell equilibrium case. For both kappa models, we selected
two kappa values, κ = 3 and κ = 10, which are typically measured values in the
non-thermal range of several space environments [10]. We also show the respective
dispersion branch of Figures 5.3 and 5.2 in dashed lines.

suggesting an enhanced electromagnetic resonance feature. In the third row, for the
Olbertian case, electromagnetic fluctuations spread more uniformly, similar to the
equilibrium case.

In the first row of Maxwell results for A = 1.2, the charges spread magnetic
fluctuations more symmetrically around the dispersion branch, which is a shared
feature with the isotropic case (see Figure 5.4). In the second row, fluctuations are
also more symmetrical around the whistler branch for the Modified case, but they
are more concentrated compared to the Olbertian case shown in the third row. This
suggests an enhanced electromagnetic condition for the Modified case.

In the last two rows, we plotted the κ = 10 scenario for the Olbertian and
Modified cases for A = 0.8 and A = 1.2. Both kappa spectra almost recover
the features of the thermal equilibrium scenario in this configuration. However,
the analysis of the continuum spectra of magnetic fluctuations has more distinctive
features to distinguish between the two kappa distribution results. These features
were not apparent in the linear dispersion theory results.
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In addition, we compute the reduced magnetic power for two anisotropy values
A = 0.8 and A = 1.2.

Figure 5.10: We plot the reduced magnetic energy for each velocity distribution
in terms of normalized frequency, using the same parameters as Figure 5.5 for each
temperature anisotropy regime (A = 0.8 and A = 1.2).

In the reduced spectra shown in Figure 5.10, the left and right panels display the
anisotropy configurations A = 0.8 and A = 1.2, respectively. The β values change by
row, and the κ values change by column. Generally, these temperature anisotropy
configurations exhibit the same decay features described above for the isotropic case
(see Figure 5.5).

It is worth noting that, in this case, the whistler-cyclotron mode is unstable. This
suggests that the contribution from the suprathermal population gets enhanced for
larger temperature anisotropy values. This affects the decay of the reduced magnetic
power. Also, for these temperature anisotropy values when κ = 10, both kappa
results tend to follow the thermal equilibrium decay. These results motivate the
comparison of the total continuum spectra for all distribution cases in the following
section.
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5.7 Temperature anisotropy cases for the

subtraction in the spectra

To review consistency across the full range of magnetic fluctuating spectra, we
computed the cases of A = 0.8 and A = 1.2. Generally, we found that small changes
in the temperature anisotropy values lead to results that are almost identical to those
observed in the isotropic case.

Figure 5.11: This figure shows the same normalized magnetic fluctuations as Figure
5.6, but for the A = 0.8 and A = 1.2 temperature anisotropy cases.

Considering the left and right panels of figure 5.11, we show that differences in
complete spectra described for the isotropic case are preserved in the temperature
anisotropic cases. These results are consistent with the ones shown in figures 5.10,
where small changes in anisotropies lead to almost equal changes in the magnetic
spectra. All features described in Figure 5.6 apply to these anisotropy configurations.

5.8 Energy of magnetic fluctuations in

temperature anisotropy case

Here we compute the temperature anisotropy cases of the Figure 5.7. As shown
above, the trend of energy in terms of a κ and β values evidence differences in the
power of magnetic fluctuations in plasmas out of thermal equilibrium described with
both kappa distributions.
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The analysis is the same for both anisotropy regimes of A = 0.8 and 1.2, as shown
in the left and right panels of Figure 5.12, respectively. Even though for the A = 1.2
regime and β = 1 scenario, we expect the whistler dispersion branch to be unstable
with positive growth rates proportional to Ωe = 10−4 (see Figure 5.3), this does not
significantly change or influence the energy calculated for the κ = 3 value, as well
as for larger values of kappa (κ = 10). Thus, this temperature anisotropy regime
shares the same features as the isotropic regime.

Figure 5.12: Top panel shows the total energy of spontaneous magnetic fluctuations
for each velocity distribution case for two temperature anisotropy values, A = 0.8
and A = 1.2. The bottom panel shows the respective decay exponent of the reduced
magnetic spectra with power-law decay behavior (⟨δB2⟩ = ω−α), using the same color
code as in Figure 5.7. When considering the limit κ → ∞, we recover the thermal
equilibrium limit, κ/(κ− 3/2) = 1. All energy spectrum cases are normalized to the
thermal equilibrium case with β = 0.1.

It is worth noting that for larger kappa values, the linear kinetic theory predicts
κ−1 transverse dispersion modes. Hence, for larger κ configurations, the integration
over frequency and wave number of [⟨dB2⟩(ω,k)]κ ∝ [Λ−1]κ−1 may pass over some
dispersion modes due to the frequency and wave number resolution of the tensor
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calculation. This produces numerical issues, resulting in noise in the energy and
exponent decay results for larger κ values.
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Chapter 6

Comparison between theory and
simulation results

In this chapter, we briefly analyze 1.5D PIC results to assess the consistency of the
theoretical results (for more details, see appendix B). In Figure 6.1, we show the
isotropic temperature case of magnetic fluctuations. Theoretical results are shown
on the left panel, and simulation results are on the right. Generally, the fluctuations
have the same shape in theory and simulations. However, the simulations show
an enhanced level of fluctuations in the same frequency and wave number range.
Additionally, in the simulation results, mirror dispersion branches appear for positive
frequencies in the positive range of frequencies (see Figure 6.1, β = 0.1 case for
positive frequencies). These are symmetrical dispersion branches of the whistler-
cyclotron mode.

However, to obtain comparable spectra shapes with the theory, we apply a
Gaussian filter to smooth the simulation results. In general, simulations show the
same core shape of magnetic fluctuations as the theoretical results. This means
that fluctuations are enhanced and broadened as the β value increases and the κ
value decreases. Simulations also preserve the characteristic features of the Modified
and Olbertian cases, where the Modified spectra tend to distribute high intensity of
fluctuations for frequencies near the whistler dispersion branch, and the Olbertian
spectra show a homogeneous distribution of these fluctuations, as occurs with the
Maxwell model. This leads to comparable results in the reduced magnetic spectra
obtained from both theory and simulations.

In figure 6.2, we plot the reduced decay spectra for theoretical and simulation
results. Generally, simulations and theory results share the same decay behavior.
Nevertheless, simulations do from higher energy levels. In addition, Maxwell and
Modified distribution results (dashed black and blue colors) tend to be closer to
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Figure 6.1: Normalized spontaneous magnetic fluctuations are shown with respect
to the mean value of the background magnetic field. The theoretical results are
displayed in the left panel, and the simulation results are shown on the right.
The color bar is in logarithmic scale, representing the intensity of the magnetic
fluctuations.

simulations results. This happens in theory results, but for the Olbertian and
Maxwell distribution cases (solid red and black curves). However, we will show
below that simulations and theory share almost the same decay index.

Figure 6.2 displays the reduced decay spectra for both theoretical and simulation
results. The decay behavior is generally similar for both simulations and theory
results. However, the simulations show higher energy levels. Additionally, the
Maxwell and Modified distribution results (dashed black and blue colors) are closer
to the simulation results. This is also observed in the theory results, but for the
Olbertian and Maxwell distribution cases (solid red and black curves). However,
we will demonstrate below that simulations and theory share nearly the same decay
index (see Figure 6.3).

We also computed the total energy of magnetic fluctuations and the corresponding
decay index for the simulation results in Figure 6.3. Here, we compare the total
energy and index decay between theory and simulation results. As shown in Figure
6.3, for Olbertian cases (red colors), the theory results represented with solid markers
match the energy results of simulation data represented with open markers, but with
slightly less energy.

However, there are differences in the trend for the Modified cases (blue colors)
between theory (void markers) and simulation (solid markers). In theory results, the
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Figure 6.2: Reduced magnetic energy, in terms of frequency ⟨δB2⟩ω = ω−α, is shown
for each velocity distribution case. This is the same result as in Figure 5.5 but with
simulation results shown as dashed lines.

energy values decrease as the κ value decreases. In contrast, for simulation results, as
κ decreases, the energy remains almost equal to the equilibrium case (β = 1) or even
increases (β = 0.1). This behavior in theoretical results is due to the dependence of
the dispersion tensor elements in the analytic expression of magnetic fluctuations,
which takes into account electromagnetic resonance effects that simulations handle
differently. In theory, we compute second-order correlations with a linear dispersion
tensor at first order, while simulations consider higher non-linear orders in their
results.

The exponent decay of both kappa distribution theory results matches well with
the trend in β and κ values observed in the simulations. Furthermore, by increasing
the κ value, both simulations and theory results are able to recover the thermal
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Figure 6.3: The left panel shows the total energy of magnetic fluctuations for
each velocity distribution case analyzed in different β regimes, presented in terms of
κ/(κ− 3/2). In this function, the limit κ → ∞ tends to κ/(κ− 3/2) = 1, recovering
the thermal equilibrium case. The entire energy spectrum shown is normalized to
the Maxwell case in the configuration β = 0.1. The right panel displays the index
of the power-law decay, ⟨dB2⟩ = ω−ᾱ, for each case. The ᾱi index is the same as in
Figure 5.5, but for additional κ cases. The black marker represents the Maxwell
distribution result, while the red and blue markers represent the Olbertian and
Modified distribution results, respectively. Void markers are for PIC data, and solid
markers represent theory results. Each panel is in semi-log.

equilibrium energy and decay exponent. Additionally, both the kappa models in
theory and simulations increase the energy by increasing the β parameter. These
results provide strong support for the theoretical prediction of magnetic fluctuations.

6.1 Temperature anisotropy results

For completeness, we briefly analyze theoretical results of temperature anisotropic
conditions compared to simulation results in Figure 6.4. We include the respective
simulation results from Figure 5.9. It is evident that simulations have weaker
fluctuation levels near zero frequency compared to theory, which predicts fluctuations
around the zero frequency value due to the explicit dependence of the dispersion
tensor. In addition, the shape of the spectra shown in Figure 6.4 is different as
simulation results do not show any discontinuity of contour levels (see Figure 6.4).
However, the other features between theory and simulations described in Figure 6.1
apply to this case.

In addition, we computed the reduced magnetic spectra decay with theoretical
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Figure 6.4: Simulation results of Figure 5.9.

results in Figure 6.5 for the anisotropic temperature cases. The features described
above for the isotropic case in Figure 6.2 are also observed in these cases. Both
theory and simulation results show fluctuations near the ω/|Ωe| = 1.3 value, which
is due to electron resonance with the electromagnetic wave mode. Hence, near the
peak of the reduced magnetic energy, we expect enhanced fluctuations at the first
multiple of the cyclotron frequency.

Figure 6.5: Reduced magnetic energy. Temperature anisotropy results of Figure
6.5.
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Finally, we also perform anisotropic temperature cases for Figure 6.3. The results
for energy and decay index obtained from theory and simulations, as shown in Figure
6.6, preserve the features described above in the isotropic case (see Figure 6.3). This
result suggests that small changes in anisotropy lead to similar magnetic spectra
results.

Figure 6.6: Total magnetic energy and power-law decay exponent for the
temperature anisotropy cases shown in Figure 6.3. We use the same color code
of Figure 6.5 for each velocity distribution result.
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Chapter 7

Conclusion

In this study, we aim to distinguish between the two kappa models (Olbertian and
Modified velocity distributions). We use the theory of electromagnetic fluctuations
for magnetized plasmas that are out of equilibrium, as well as PIC simulations. Our
main results come from analyzing the subtracting spectra (shown in Figure 5.6) and
the energy of these fluctuations with respect to the κ value (shown in Figure 6.3).
We found that both kappa models exhibit a high intensity of fluctuations distributed
in a distinct manner for each kappa model, in comparison to the equilibrium case,
and how is the energy obtained from the spectra of both models while the κ value
decreases.

Specifically, this work replicates the linear kinetic and electromagnetic fluctuation
theory for magnetized plasmas that are out of equilibrium [33, 70, 71, 74]. However,
we enhance the analysis by examining the use of the Modified kappa distribution,
with macroscopic parameters set within a range commonly observed in the solar
wind. Our analysis revealed differences in the magnetic fluctuation spectra and their
energy range. The linear kinetic results from the two main interpretations of the
kappa distribution give us insights into the contribution of suprathermal electrons to
the continuum spectra of magnetic fluctuations. Additionally, we analyzed the role
of high-density, low-velocity electrons in the Modified kappa case.

Since a kappa distribution is an asymptotic result of electrostatic turbulence,
which is frequently observed in the solar wind near the plasma frequency, we believe
it deserves further exploration. However, it is worth noting that these distributions
have numerical issues, such as divergence on higher-velocity moments. Furthermore,
the Modified kappa distribution does not reproduce the thermal core for lower values
of κ, which makes the scenarios where it is applicable more specific and complex.
However, the ubiquitous empirical observations in space plasma environments makes
these models valid.

43



The kappa-distributed electron plasma exhibits differences in the contribution of
supra-thermal electron populations (and low-energy electrons in the Modified case)
to the energy decay of the reduced magnetic spectra, as well as in the shape and
power of the fluctuating magnetic field spectrum. The behavior of electromagnetic
fluctuations obtained from each distribution case follows a similar trend when changes
are made to the β parameter. It is expected that the power of magnetic field
fluctuations will increase as the β values become larger. The main difference lies
in the trend of the kappa values changes. Electrons with high kinetic energy,
described by the Olbertian distribution, interact differently via cyclotron resonance
with whistler cyclotron waves. This leads to a larger damping rate decay at smaller
space scales and enhanced growth rates regarding the Modified kappa model.

Regarding the full spectrum of magnetic fluctuations, the Olbertian distribution
describes electrons with high energy that spread magnetic fluctuations uniformly over
a larger frequency domain. In contrast, the Modified kappa distribution considers
the electrons that spread magnetic field fluctuations to be distributed closely around
the typical frequency range of whistler-cyclotron waves, which is |Ωp| < ω < |Ωe|.
This feature suggests that the changes in the magnetic field are concentrated near
the dispersion branch due to the large population of low-energy particles, without
propagating magnetic fluctuations to larger frequencies. Furthermore, the magnetic
spectra modeled with the Modified kappa distribution exhibits a similar shape to
the Olbertian distribution, as both models take into account the contribution of
suprathermal electrons to magnetic field fluctuations, unlike the Maxwell function.
It is worth noting that the high intensity of magnetic field changes in the Modified
case in comparison with the Maxwell case is even more concentrated close to the
electromagnetic mode’s dispersion branch.

The power law decay of the reduced magnetic fluctuating spectrum ⟨dB2⟩ = ω−ᾱi

exhibits a steeper slope decay in the Modified case as compared to the Olbertian
distribution. It can be attributed to the fact that the large intensity of fluctuations
is concentrated near the first multiple of the cyclotron frequency in the Modified case,
which is not a shared feature of the Olbertian model. As a result, this observation
provides evidence of a more uniform distribution of the magnetic fluctuations in
the Olbertian model. In addition, for the Olbertian case, as κ decreases, the decay
slope flattens for any β and κ values, compared to the Modified and the Maxwell
distributions. The large amount of electrons with high energy modeled with the
Olbertian distribution causes magnetic fluctuations to be rigid over a larger frequency
range. Interestingly, for β = 1, the Modified case exhibits an even larger value of
the decay exponent as compared to the Maxwell and Olbertian distributions at the
same macroscopic parameter configuration when the κ value is decreased. Besides,
small changes in the temperature anisotropy do not significantly change the decay
index in comparison with the isotropic case.

Furthermore, comparing the entire spectra of all distribution models in terms
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of wave number and frequency reveals interesting features that can be used to
distinguish between these models. One of the distinguishing features among these
distribution models is the intensity of magnetic fluctuations for each case. The
Olbertian distribution exhibits more intense fluctuations than both the Modified
and Maxwell cases. In the Modified case, compared to the Maxwell distribution
model, there are triangular bands at higher frequencies where spontaneous magnetic
fluctuations are more intense. Below this frequency regime, magnetic fluctuations
modeled with a Maxwellian distribution predominate. This feature suggests a way
to distinguish between the Modified kappa model and the Maxwell distribution in
terms of magnetic fluctuations. The spectra of the Modified case are always broader
than those of the Maxwell case.

Furthermore, in Chapter six, we conducted a comparative analysis between the
theoretical predictions and simulation results. It is noteworthy that, in general, the
theoretical predictions are consistent with the simulation results, which reaffirms
the relevance of electromagnetic fluctuation plasma analysis when the plasma is out
of thermal equilibrium. However, in the Modified case, there are differences in the
energy values of magnetic fluctuations for low κ values. Theoretical results show
that the energy values of magnetic fluctuations in the Modified case decrease as
the κ value decreases. On the other hand, in the Olbertian case, the energy of
magnetic fluctuations increases as the κ value decreases. In the Modified case, the
energy values in simulation data are almost equal to those obtained in the Maxwell
distribution case when the κ value decreases. Furthermore, in the Olbertian case,
both theory and simulations show a trend of increasing magnetic fluctuation energy
as the κ value decreases. However, the energy values obtained in simulations are
consistently larger than those predicted by theory.

There may be a possible explanation for the discrepancy between the theory and
simulation results, which is that the theory explicitly considers the dependence of the
dispersion tensor, whereas this is not accounted for in the simulations. Additionally,
PIC simulations incorporate non-linear effects that are not present in the theory of
fluctuations. Nevertheless, the agreement between the theory and simulation results
highlights the idea that small variations in anisotropy lead to insignificant changes
compared to the isotropic case.

There is a discrepancy between the Maxwell function and the Modified function
cores for lower κ values. Thereby, it is challenging to attribute these differences solely
to the faint suprathermal population of the Modified case. To explain the differences
between the two kappa models in growth rates, stationary regime, damping rates,
and the associated continuum spectra of magnetic fluctuations, the analysis of the
Modified case must consider the effects of the low-energy core species combined
with faint suprathermal tails. While the differences in the wave dispersion branch
and growth rates are minor in the isotropic and anisotropic temperature cases, the
complete magnetic spectra analysis provides a possibility to differentiate plasmas
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modeled with both kappa distributions.

The projection of this work is to enhance the analysis using non-linear higher-
order results. By utilizing the weak electrostatic turbulence theory described in
reference [47], we intend to develop an electromagnetic theory for non-linear higher
orders. These results will allow us to consider the spontaneous and induced processes
that are involved in electromagnetic fluctuations. To provide an accurate description,
it may be necessary to use Klimontovich’s equation [54] instead of Vlasov’s equation
[24]. The advantage of this kinetic particle equation is that it incorporates sponta-
neous and induced processes and balances them in a manner similar to a Fokker-
Planck equation for higher non-linear orders.

Considering this last kinetic particle equation will improve the description of
wave-wave and wave-particle interactions and offer a more accurate characterization
of the different contributions of plasma species with high energy, modeled with both
kappa interpretations. Additionally, we plan to develop a wave kinetic equation
in the framework of kappa models that properly describes higher non-linear order
interactions of suprathermal charges emissions. This would guide the search for
answers to questions about coronal heating and unexpected cooling rates with unsol-
ved heat-flux mechanisms in the radial evolution of the solar wind. In this spirit,
improving the numerical scheme to include the thermal relaxation process toward
higher time scales will also be necessary.

In addition to the mentioned objectives, we aim to expand the scope of this
work by applying it to spectrographic techniques. To achieve this, we plan to
incorporate different kappa distribution models into the analysis, resulting in a more
comprehensive investigation of enhanced electromagnetic fluctuations. This would
improve upon the idealized electrostatic spectra results that are typically measured
in the solar wind, as they tend to underestimate the contribution of suprathermal
plasma populations [37]. By studying electromagnetic fluctuations, we will gain
a better understanding of the properties of the Alvenic solar wind in the context
of temperature anisotropy and beta diagrams. Ultimately, we hope to apply this
theory to observational data obtained from spacecraft missions, making it a valuable
tool for the space plasma community to differentiate between various non-thermal
equilibrium scenarios.
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Publications

The articles derived from this thesis are listed below.

1. Daniel H.P., Bea Zenteno-Quinteros, Pablo S. Moya, R. López, and M. Lazar,
“Spectra of spontaneous emissions in high frequency magnetized κ-plasma” (in
prep.)

2. Daniel H.P., Bea Zenteno-Quinteros, and Pablo S. Moya, “Spectra of anisotropic
temperature spontaneous emissions through 1.5D PIC simulations” (in prep.)
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Appendix A

A.1 Linear kinetic analysis

Consider a magnetized plasma system at a high-frequency scale, where we can neglect
the thermal motion of ions. Additionally, Coulomb collisions are ineffective in this
high-frequency regime, therefore, we can consider Vlasov’s particle kinetic equation.
The closed equation starts with Maxwell’s equations.

∇ · E = 4πρ, (A.1)

∇ ·B = 0, (A.2)

∇× E =
1

c

∂B

∂t
, (A.3)

∇×B =
1

c

∂E

∂t
+

4π

c
J. (A.4)

Here, E represents the electric field, B represents the magnetic field, and J
represents the current density. The velocity of light is denoted by c. Besides, to
evolve the particle distribution fα, we utilize Vlasov’s equation.

∂fα
∂t

+ v · ∇rfα +
qα
mα

(
E+

v

c
×B

)
· ∇vfα = 0. (A.5)

Here, qα andmα are charge and mass. Moreover, to close the system we define charge
and current density that satisfy the continuity equation, where ρ stands for charge
density, and n is the particle density,

ρ = qαn

∫
dv3fα, (A.6)

J = qαn

∫
dv3vfα. (A.7)

In addition, we establish stability conditions for linear analysis of the perturbation.
The stationary state of quasi-equilibrium Vlasov’s equation for initially current-free
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and neutral plasma implies,

qα
mα

(v
c
×B

)
· ∇vfα0 = 0. (A.8)

At a certain time (t = 0), we consider a perturbation in the electromagnetic field
and a perturbation in the velocity distribution,

E = δE, (A.9)

B = B0 + δB, (A.10)

fα = fα0 + δfα. (A.11)

(A.12)

Linear perturbed quantities are specified with a δ. B0 is the background magnetic
field. Subscript 0 indicates equilibrium quantities. The velocity is given in cylindrical
coordinates, where the parallel and perpendicular directions are defined with respect
to the background magnetic field, as follows,

v = v⊥ρ̂+ v||ẑ. (A.13)

We assume a gyrotropic solution for the disturbance of the velocity distribution,
where ∇v is in the cylindrical coordinate system. This leads to

∇vδf0α · ϕ̂ =
1

v⊥

∂δf0α
∂ϕ

. (A.14)

Here ϕ is the azimuthal angle. Then,

qα
mα

B0

c

∂δf0α
∂ϕ

= Ωα
∂δf0α
∂ϕ

, (A.15)

where Ωα is the gyro-frequency. To solve these types of differential equations, we
apply Laplace-Fourier transform. For a quantity A, the respective transformation
into frequency and wave number domain leads to,

Akω =
1

(2π)3/2

∞∫
0

dt

∫
d3rArte

−i(k·r−ωt). (A.16)

On the other hand, the inverse of the transform Laplace-Fourier

Art =
1

(2π)5/2

∫
d3k

iω̄+∞∫
iω̄−∞

dωAkωe
i(k·r−ωt), ω̄ > ω0. (A.17)

For ω0 the singularity with a larger complex value and ω̄ is larger than ω0 (see
reference [75] for more details). Moreover, we use Â := A(k, ω) for transformed
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quantities. Then, by transforming the Vlasov-Maxwell equations and retaining only
first-order terms, we obtain,

i(v · k− ω)δf̂α + Ωα
∂δf̂

∂ϕ
+

qα
mα

(
δÊ+

v

c
× δB̂

)
· ∇vfα0 = 0. (A.18)

On the other hand, from Ampere’s law and Faraday’s law, we obtain

λδÊ =
4π

c
δĴ, (A.19)

where λ is the dispersion tensor in the vacuum. Here the current density in Fourier
space is,

δĴ = qα

∫
dvvδf̂α, (A.20)

with
δf̂α = FδÊ. (A.21)

Where F is a vector containing information about the dispersion properties, and it
will be calculated below. Then, the induced current density is

δĴ = qα

∫
dv3vδf̂ = qα

(∫
dv3vF

)
δÊ. (A.22)

Considering the Eq. A.18, we compute

∂δf̂α
∂ϕ

+
i(v · k− ω)

Ωα

δf̂α − qα
mαΩα

(
δÊ+

v

c
× δB̂

)
· ∇vfα0 = 0. (A.23)

This first-order partial differential equation may be solved by the integrating factor,
such that the solution is

δf̂α = e−
∫
P (ϕ)dϕ

∫
e
∫
P (ϕ)dϕQ(ϕ)dϕ, (A.24)

with P (ϕ) and Q(ϕ) functions that belong to class C1 of differentiable functions,
which are

P (ϕ) =
i

Ωα

(ω − v · k), (A.25)

Q(ϕ) =
qα

mαΩα

(
δÊ+

v

c
× δB̂

)
. (A.26)

Considering only parallel propagation (k × δB̂ = 0), from Maxwell’s equations, we
obtain δB̂ = (c/ω)k× δÊ. Replacing these results into Q(ϕ),

P (ϕ) =
i

Ωα

(ω − k||v||) (A.27)∫
P (ϕ)dϕ =

i

Ωα

(ω − k||v||)ϕ, (A.28)

Q(ϕ) =
qα

mαΩα

(
δÊ+

v

ω
× k× δÊ

)
. (A.29)
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Expanding Q(ϕ) using the double cross product vector identity,

Q(ϕ) =
qα

mαΩα

(
δÊ+

v

ω
× k× δÊ

)
,

Q(ϕ) =
qα

mαΩα

(
δÊ+

1

ω
(v · δÊk− (v · k)δÊ)

)
· ∇vf0α. (A.30)

By considering the Cartesian coordinate system in the directions {i, j, k}, we obtain,

v · δÊ = (v⊥ cosϕî+ v⊥ sinϕĵ + v||k̂) · δÊ. (A.31)

In addition,

∇vf0α =
∂fα0
∂v⊥

cosϕî+
∂fα0
∂v⊥

sinϕĵ +
∂fα
∂v||

k̂. (A.32)

Hence, replacing equations A.31 and A.32 into A.30,

Q(ϕ) =
qα

mαΩαω

[(
∆̄ cosϕî+ ∆̄ sinϕĵ + ω

∂f0α
∂v||

k̂

)
· δÊ

]
, (A.33)

Q(ϕ) =
qα

mαΩαω
F̄ · δÊ. (A.34)

Here, ∆̄ and F̄ stand for

∆̄ = (ω − v||k||)
∂fα0
∂v⊥

+ k||v||
∂fα0
∂v||

, (A.35)

F̄ = ∆̄ cosϕî+ ∆̄ sinϕĵ + ω
∂f0α
∂v||

k̂. (A.36)

Therefore, replacing equations A.35 and A.36 in A.24,

δf̂α = e−(i/Ωα)(ω−v||k||)ϕ

∫
e−(i/Ωα)(ω−v||k||)ϕ

qα
mαΩαω

F̄ · δÊ. (A.37)

Then to simplify A.37, we define

σ =
ω − k||v||

Ωα

. (A.38)

Besides, to solve equation A.37 we use,∫
eiσϕ cosϕdϕ = −eσϕ(σ cosϕ− i sinϕ)

σ2 − 1
, (A.39)∫

eiσϕ sinϕdϕ =
eσϕ(cosϕ− iσ sinϕ)

σ2 − 1
, (A.40)∫

eiσϕdϕ = −i
eiσϕ

σ
. (A.41)
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Using this last set of integrals in equation A.38 we find F in equation A.21,

Fi = −∆qα
mαω

i
(
(ω − k||v||) cosϕ− Ωαi sinϕ

)
, (A.42)

Fj = −∆qα
mαω

i
(
Ωαi cosϕ− (ω − k||v||) sinϕ

)
, (A.43)

Fk = − qα
mα

i
1

ω − v||k||

∂fα0
∂v||

. (A.44)

Here, ∆ means,

∆ =

(
(ω − v||k||)

∂fα0
∂v⊥

+ k||v||
∂fα0
∂v||

)(
1

(ω − k||v||)2 − Ω2
α

)
. (A.45)

Hence, the current density at linear order may be expressed as

δĴ = qα

∫
dvvδf̂ = qα

(∫
dvvF

)
δÊ = qαMαδÊ. (A.46)

In this last expression, Mα is a tensor with elements given by

M11 = −i
qα

mαω

∫∫
v2⊥∆̄dv⊥dv||

σ2 − 1

∫
σ cos2 ϕ− isinϕ cosϕdϕ, (A.47)

M12 = −i
qα

mαω

∫∫
v2⊥∆̄dv⊥dv||

σ2 − 1

∫
i cos2 ϕ+ σ sinϕ cosϕdϕ, (A.48)

M13 = −i
qα

mαω

∫∫ v2⊥ω
∂fα0

∂v||

α
dv⊥dv||

∫
cosϕdϕ, (A.49)

M21 = −i
qα

mαω

∫∫
v2⊥∆̄dv⊥dv||

σ2 − 1

∫
iσ cosϕ sinϕ− isin2ϕ cosϕdϕ, (A.50)

M22 = −i
qα

mαω

∫∫
v2⊥∆̄dv⊥dv||

σ2 − 1

∫
i cosϕ sinϕ+ σ sin2 ϕdϕ, (A.51)

M23 = −i
qα

mαω

∫∫ v2⊥ω
∂fα0

∂v||

α
dv⊥dv||

∫
sinϕdϕ, (A.52)

M31 = −i
qα

mαω

∫∫
v⊥v||∆̄dv⊥dv||

σ2 − 1

∫
σ cosϕ− isinϕdϕ, (A.53)

M32 = −i
qα

mαω

∫∫
v⊥v||∆̄dv⊥dv||

σ2 − 1

∫
i cosϕ+ σ sinϕdϕ, (A.54)

M33 = −2πi
qα

mαω

∫∫ v⊥v||ω
∂fα0

∂v||

α
dv⊥dv||. (A.55)

(A.56)
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Integrating over the azimuthal angle domain ϕ ∈ [0, 2π], we can obtain the following
expressions for the elements of the tensor Mα,

M11 = −i
qα

mαω

∫∫
πσ

v2⊥∆̄dv⊥dv||
σ2 − 1

, (A.57)

M12 =
qα

mαω

∫∫
π
v2⊥∆̄dv⊥dv||

σ2 − 1
, (A.58)

M21 = −M12, (A.59)

M22 = M11, (A.60)

M33 = −2πi
qα

mαω

∫∫ v⊥v||ω
∂fα0

∂v||

α
dv⊥dv||, (A.61)

M13 = M23 = M31 = M32 = 0. (A.62)

(A.63)

Now replacing these results into Eqs. A.46 and then into A.19, we could find the
dispersion tensor elements,

Λ11 = Λ22 = 1− η2 + 4πχ11, (A.64)

Λ12 = −Λ21 = 4πχ12, (A.65)

Λ33 = 1 + 4πχ33, (A.66)

Λ13 = Λ23 = Λ31 = Λ32 = 0. (A.67)

Where χij are elements of the electric susceptibility tensor. From here, we can show
that for parallel waves propagation, this tensor is diagonal,

Λ± = Λ11 ± iΛ12, (A.68)

Λ|| = Λ33, (A.69)

in the polarized coordinates (+ right and - for the left). The elements are

Λ± = 1− η2 + 4π
∑
α

χ±α, (A.70)

Λ|| = 1 + 4π
∑
α

χ||α. (A.71)

Then, the electric susceptibility tensor elements in terms of velocity distribution are

χ± =
ω2
pα

4ω

∫
∂fα
∂v⊥

±
k||
ω

(
v⊥

∂fα
∂v||

− v||
∂fα
∂v⊥

)
dv||dv⊥, (A.72)

χ|| =
ω2
pα

4ω

∫
v||v⊥

ω − k||v||

∂fα
∂v||

dv||dv⊥. (A.73)

(A.74)
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A.2 Analytic results

From linear kinetic theory, we have obtained expressions for the elements of the
susceptibility tensor, which in the case of a Maxwellian distribution are given by,

χ± =
ω2
pα

4πω2
(A+ ϕ±Z(ξ±) + 1) , (A.75)

where

Z(ξ) =
1√
π

∞∫
∞

es
2

s− ξ
ds;ϕ± = Aξ± ∓ Ωα

k||u||
; ξ± =

ω ± Ωα

k||u||
;A =

T⊥

T||
.

For the Olbertian Kappa, we obtain,

χ± =
ω2
pα

4πω2
(A+ ϕ±Zκ(ξ±) + 1) . (A.76)

For the Modified Kappa,

χ± =
ω2
pα

4πω2
(A+ ϕ±κZκ(ξ±κ) + 1) . (A.77)

where

ϕ±κ =

(
κ

κ− 3/2

)1/2

ϕ±; ξ±κ =

(
κ

κ− 3/2

)1/2

ξ±

Zκ =
Γ(κ)√

πκΓ(κ− 1)

∞∫
−∞

dt

(t− ξ)(1 + t2

κ
)κ
,

Zk(ξ) = i
κ− 1

2

κ3/2
F21

[
1, 2κ, κ+ 1;

1

2

(
1− ξ

i
√
κ

)]
. (A.78)

Where F21 is the hypergeometric function, which can be used instead of the modified
dispersion function for both Kappa interpretations when κ > 1/2 [72].

A.3 Normalization and parametrization

To obtain information at the kinetic scale of electrons, we use dimensionless expre-
ssions by normalizing frequencies to the absolute value of the electron gyro-frequency
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and wave numbers are normalized to electron inertial length.

x =
ω

|Ωe|
; y =

kc

ωpe

, (A.79)

Aα =
mα

mp

, (A.80)

µα =
T⊥α

T||α
, (A.81)

Zα =
qα
e
, (A.82)

Pα =
ωpα

|Ωe|
(A.83)

βα|| =
n0kBTα||

B2
0/8π

, (A.84)

ηα =
nα

n0

. (A.85)

(A.86)

The dimensionless version of the wave refractive index is,

k2
||c

2

ω2
=

(
y2

ω2
pe

c2

)
c2

x2|Ωe|2
=

y2

x2

ω2
pe

|Ωe|2
=

y2

x2
P 2. (A.87)

The second term, which also appears in all dispersion tensor elements stands for

ξ0α =
ω

kuα
||
=

x|Ωe|(
ωpey

cuα
||

) =
x

y

|Ωe|c
ωpeuα

||
=

x

y

| − e|B0

mec

√
me

4πn0e2
c

uα
||
,

ξ0α =
x

y

B0√
4πn0me

√
mα

2kBTα
||
·

√
nα
0

nα
0

=
x

y

B0√
8πnα

0kBT
α
||

√
nα
0

n0

√
mα

me

,

ξ0α =
x

y

√
1

βα
||

√
nα
0

n0

√
mα

me

·
√

mp

mp

=
x

y

√
1

βα
||

√
ηα
√
Aα

√
1

Ae

=
x

y

√
ηαAα

β||αAe

. (A.88)

The next term stands for

ξαn =
ω

k||u
α
||
+ n

Ωα

k||u
α
||
. (A.89)

As we showed above, the first term is already dimensionless, therefore we focus only
on the second term

Ωα

k||uα
||
=

Ωα(ωpe

c
y
) =

1

y

Ωαc

ωpeuα
||
=

1

y

(
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4πnoe2
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√
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qαB0

mαc

√
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√
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=
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1
√
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·
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√
Ae

√
1

Aα

√
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. (A.90)

Hence, the whole dimensionless term is,

ξαn =
x

y

√
ηαAα

βα
||Ae

+
nZα

y

√
Aeηα
βα
||Aα

. (A.91)

With these results we obtain

ϕα
n =

1

y

√
Aαηα

Aeβα
||

(
x− nZα

Ae

Aα

)
+

n

y
Zα

√
Aeηα

Aαβ||α

1

µα

. (A.92)

All dimensionless expressions described above are valid for all distribution cases, but
for the Modified case it will be useful to weight this expression with a function of κ
values,

ξαnκ =

√
κ

κ− 3/2
ξαn , (A.93)

ϕnκ =

√
κ

κ− 3/2
ϕn. (A.94)

The last term to have all dispersion tensor elements dimensionless and normalized
is,
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=
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=
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. (A.95)
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Appendix B

B.1 Electromagnetic fluctuations in

magnetized plasma

In Fourier domain the pertubation of the electric field may be expressed as

⟨δEi(k,ω)⟩ =

∫
δÊ∗

i δĥµ
∂fα
∂Hµ

dv∫
fαdv

. (B.1)

Here, we define Fourier-Laplace transformed quantities with a hat, such as δÊi :=
δEi(k,ω) and δĥµ := δhµ(k,ω). In addition, ()∗ means the complex conjugate expression.

We propose variations in the internal energy δhµ for which the dissipative linear
process holds. Hence, from charge and energy conservation laws, the time variation
of the local perturbation stands for

∂δhµ

∂t
= −

∫
δEµ · δJµdV. (B.2)

The source of the perturbation is considered purely by the inverse of the Joule
heating, i.e., stochastic movement of charges or energy supplied by current densities
opposite to the electric field. To obtain the spectra of magnetic fluctuations, it would
be useful to compute Fourier components of this quantity.

δĥµ = − i

2ω
δĴµδÊi.. (B.3)

In addition, from linear kinetic theory, we can obtain

⟨δÊi⟩ =
4πδĴµ
ω2

Λ−1
iµ . (B.4)
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By replacing Eqs. B.4 and B.3 in B.1 and considering that linear response of the
magnetized plasmas is non-dependent on the disturbance δĴµ,∫

δÊµδÊ
∗
i
∂fα
∂Hµ

dv∫
fαdv

=
8π

iω
Λ−1

iµ . (B.5)

This expression added whit its conjugate,

iω

∫
δÊµδÊ

∗
i
∂fα
∂Hµ

dv∫
fαdv

+ iω∗

∫
δÊiδÊ

∗
µ

∂fα
∂Hµ

dv∫
fαdv

= 8π(Λ−1∗
iµ − Λ−1

µi ). (B.6)

It is easy to prove that for the right-hand side of this expression (RHS) (see reference
[75])

8π(Λ−1∗
iµ − Λ−1

µi ) = 32π2(λ−1∗
in χ∗

nmΛ
−1∗
mµ − Λ−1

µmχmnλ
−1
ni ). (B.7)

From this expression we could use the assumption of parallel propagation cases,
then the dispersion tensor is diagonal, hence, λij = λiδij, Λij = Λiδij and χij = χiδij.
Then, the right hand of the equation B.7,

RHS = 32π2(δµmδmnδni)(λ
−1∗
i χ∗

nΛ
−1∗
m − Λ−1

µ χmλ
−1
n ). (B.8)

Hence, replacing this result in Eq. B.6

RHS = iω

∫
δÊµδÊ

∗
i
∂fα
∂Hµ

dv∫
fαdv

+ iω∗

∫
δÊiδÊ

∗
µ

∂fα
∂Hµ

dv∫
fαdv

, (B.9)

RHS = 32π2(δµmδmnδni)(λ
−1∗
i χ∗

nΛ
−1∗
m − Λ−1

µ χmλ
−1
n ). (B.10)

Then, considering i = µ in equation B.6, with the results of the RHS described
above, we obtain∫

δÊ2
µ

∂fα
∂Hµ

dv∫
fαdv

=
32π2

i(ω + ω∗)
(λ−1∗

µ χ∗
µΛ

−1∗
µ − Λ−1

µ χµλ
−1
µ ). (B.11)

For some representation of velocity distribution, usually exhibited in space plasma,
the integral form of fluctuating electric field may be expressed as∫

δÊ2
⊥

∂fα
∂H⊥

dx∫
fαdx

= α⊥⟨δÊ2
⊥⟩. (B.12)

Where αµ is a scalar function to be determined by macroscopic parameters of the
distribution in the direction µ (sum over µ index is implicit). Hence, we obtain

⟨δÊ2
⊥⟩ =

32π2

iα⊥(ω + ω∗)
(λ−1∗

⊥ χ∗
⊥Λ

−1∗
⊥ − Λ−1

⊥ χ⊥λ
−1
⊥ ). (B.13)
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B.2 Electromagnetic fluctuations theory

for Kappa distributions

A general expression of both Kappa distributions is,

Fα = Cσα,κα

[
1 +

v2⊥
(κα − σα)u2

⊥
+

(v|| − Uα)
2

(κα − σα)u2
||

]−κα−1

. (B.14)

Here, Cσα,κα is a constant of normalization, u⊥,|| are the respective thermal velocities,
Uα is a drift velocity, and σα a free parameter, with σα = {0, 3/2} values. Then, the
change in kinetic energy in the distributions in the direction µ = {⊥, ||} is mediated
by

∂Fα

∂Hµ

= − 2

mαu2
µ

κα + 1

kα − σα

Cσα,κα

[
1 +

v2⊥
(κα − σα)u2

⊥
+

(v|| − Uα)
2

(κα − σα)u2
||

]−κα−2

. (B.15)

Then, including this result in the equation B.12,[∫
δÊ2

⊥
∂fα
∂H⊥

dx∫
fαdx

]
κα

= − 1

kBT⊥α

kα + 1

κα − σα

Cσα,κα

∫
dv3 · (B.16)

·

[
1 +

v2⊥
(κα − σα)u2

⊥
+

(v|| − Uα)
2

(κα − σα)u2
||

]−κα−2

|E⊥|2. (B.17)

To find an equivalent expression of the fluctuating electric field for this distribution,
we do this substitution,

vi√
κα − σα

=
xi√

κα − σα + 1
, dvi =

√
(κα − σα)√

(κα − σα + 1)
dxi.

Hence, ∫
δÊ2

⊥
∂fα
∂H⊥

dx∫
fαdx

= − 1

kBT⊥α

kα + 1

κα − σα

√
(κα − σα)3√

(κα − σα + 1)3
·

·Cσα,κα

∫
dx3

[
1 +

v2⊥
(κα − σα + 1)u2

⊥
+

(v|| − Uα)
2

(κα − σα + 1)u2
||

]−κα−2

|E⊥|2. (B.18)

Rearranging equation B.18,[∫
δÊ2

⊥
∂fα
∂H⊥

dx∫
fαdx

]
κα

= − 1

kBT⊥α

(kα + 1)
√

(κα − σα)√
(κα − σα + 1)3

Cσα,κα

Cσα,κα+1

.[⟨|E⊥|2⟩α]κα+1. (B.19)
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We change the notation to specify Cκα,a,b the constant for the Modified case.

Cκα,a,b =
1

π3/2u2
⊥αu||α

καΓ(κα)

(κα − 3/2)3/2Γ(κα − 1
2
)
, (B.20)

Cκα+1,a,b =
1

π3/2u2
⊥αu||α

(κα + 1)Γ(κα + 1)

(κα − 1/2)3/2Γ(κα + 1
2
)
. (B.21)

On the other hand, for the Olbertian case we change the constant, Cκα,a,b. Then
working on the next expression,

Cκα,a,b =
1

π3/2u2
⊥αu||α

Γ(κα)

κ
1/2
α Γ(κα − 1

2
)
, (B.22)

Cκα+1,a,b =
1

π3/2u2
⊥αu||α

Γ(κα + 1)

(κα + 1)1/2Γ(κα + 1
2
)
. (B.23)

Then, it is useful to take the following expression for the Modified case,

Cκα,a,b

Cκα+1,a,b

=
(κα − 1/2)3/2

(κα − 3/2)3/2
· κα − 1/2

(κα + 1)
. (B.24)

In the Olbertian case,

Cκα,a,b

Cκα+1,a,b

=
Γ(κα)

κ
1/2
α Γ(κα − 1

2
)
·
(κα + 1)1/2Γ(κα + 1

2
)

Γ(κα + 1)
, (B.25)

Cκα,a,b

Cκα+1,a,b

=
(κα + 1)1/2

κ
1/2
α

· κα − 1/2

κα

. (B.26)

Furthermore, for the Olbertian case σα = 0, then,[∫
δÊ2

⊥
∂fα
∂H⊥

dx∫
fαdx

]
κα

= − 1

kBT⊥α

√
(κα)√

(κα + 1)

Cσα,κα,a,b

Cσα,κα+1,a,b

[⟨|E⊥|2⟩α]κα+1, (B.27)

[∫
δÊ2

⊥
∂fα
∂H⊥

dx∫
fαdx

]
κα

= − 1

kBT⊥α

√
(κα)√

(κα + 1)

(κα + 1)1/2

κ
1/2
α

· κα − 1/2

κα

[⟨|E⊥|2⟩α]κα+1,

(B.28)[∫
δÊ2

⊥
∂fα
∂H⊥

dx∫
fαdx

]
κα

= − 1

kBT⊥α

· κα − 1/2

κα

[⟨|E⊥|2⟩α]κα+1. (B.29)

Now, for the Modified case σα = 3/2, we obtain a similar result,[∫
δÊ2

⊥
∂fα
∂H⊥

dx∫
fαdx

]
κα

= − 1

kBT⊥α

(κα + 1)
√

(κα − 3/2)√
(κα − 3/2 + 1)3

Cσα,κα,a,b

Cσα,κα+1,a,b

[⟨|E⊥|2⟩α]κα+1,

67



[∫
δÊ2

⊥
∂fα
∂H⊥

dx∫
fαdx

]
κα

= − 1

kBT⊥α

(κα + 1)
√

(κα − 3/2)√
(κα − 3/2 + 1)3

· (B.30)

·(κα − 1/2)3/2

(κα − 3/2)3/2
· κα − 1/2

(κα + 1)
[⟨|E⊥|2⟩α]κα+1, (B.31)

[∫
δÊ2

⊥
∂fα
∂H⊥

dx∫
fαdx

]
κα

= − 1

kBT⊥α

· κα − 1/2

(κα − 3/2)
[⟨|E⊥|2⟩α]κα+1. (B.32)

Then, again for the Olbertian case,[∫
δÊ2

⊥
∂fα
∂H⊥

dx∫
fαdx

]
κα

= − 1

kBT⊥α

· κα − 1/2

κα

[⟨|E⊥|2⟩α]κα+1, (B.33)

1

8π
[⟨|E⊥|2⟩α]κα =

κα − 1

κα − 3/2
· kBT⊥α

ωλ⊥
· Im

[
4πχ⊥α

Λ⊥

]
, (B.34)

1

8π
[⟨|B⊥|2⟩α]κα =

c2k2
|

ω2

κα − 1

κα − 3/2
· kBT⊥α

ωλ⊥
· Im

[
4πχ⊥α

Λ⊥

]
κα−1

. (B.35)

Also, for the Modified case

1

8π
[⟨|E⊥|2⟩α]κα =

κα − 5/2

κα − 3/2
· kBT⊥α

ωλ⊥
· Im

[
4πχ⊥α

Λ⊥

]
, (B.36)

1

8π
[⟨|B⊥|2⟩α]κα =

c2k2
|

ω2

κα − 5/2

κα − 3/2
· kBT⊥α

ωλ⊥
· Im

[
4πχ⊥α

Λ⊥

]
κα−1

. (B.37)

In summary, from electromagnetic fluctuations theory, we compute the scalar function
αµ = 1/kBTµα, then the magnetic spectra for the thermal case were obtained
considering Maxwell equations,

1

8π
[⟨|Bµ|2⟩α]κα = η2

kBTµα

ωλµ

· Im
[
4πχµα

Λµ

]
. (B.38)

For the Olbertian case αµ = (1/kBTµα)(κα − 3/2)/(κα − 1) and the fluctuating
magnetic spectra is

1

8π
[⟨|Bµ|2⟩α]κα = η2

κα − 1

κα − 3/2
· kBTµα

ωλµ

· Im
[
4πχµα

Λµ

]
κα−1

. (B.39)

For the Modified case αµ = (1/kBTµα)(κα − 5/2)/(κα − 1) and magnetic spectra is

1

8π
[⟨|Bµ|2⟩α]κα = η2

κα − 5/2

κα − 3/2
· kBTµα

ωλµ

· Im
[
4πχµα

Λµ

]
κα−1

. (B.40)
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B.3 Normalized dimensionless magnetic

fluctuations

Here, we compute normalized magnetic fluctuation for the Maxwell case. Then, we
use the same parameters of dimensionless kinetic theory. Besides, to get Olbertian
and Modified expressions for magnetic fluctuations is useful to replace the respective
dispersion tensor and weight the result by the respective function of κ values. Hence,
the magnetic fluctuations for the Maxwell case stands for

⟨|δB±|2⟩ =
c2k2

||

w2

32π2

1−
c2k2||
ω2

∑
α

kBTα⊥

ω
Im

(
χα±

Λ±

)
. (B.41)

Generating a normalized expression

n0|Ωe|
2B2

0

⟨|δB±|2⟩ =
c2k2

||

w2

32π2

1−
c2k2||
ω2

∑
α

n0|Ωe|
2B2

0

kBTα⊥

ω
Im

(
χα±

Λ±

)
. (B.42)

In the previous section on dimensionless kinetic theory, we presented the dimension-
less elements for each distribution case. In this expression, everything is dimension-
less except for the term

n0|Ωe|
2B2

0

kBTα⊥

ω
=

n0|Ωe|
2B2

0

kBTα⊥

x|Ωe|
,

n0|Ωe|
2B2

0

kBTα⊥

ω
=

1

2x

kBTα⊥n0

Bα
0

· n
2
08π

nα
08π

=
1

2x

kBTα⊥n
α
08π

B2
0

n0

nα
08π

, (B.43)

n0|Ωe|
2B2

0

kBTα⊥

ω
=

1

2x
βα
⊥
1

ηα

1

8π
=

βα
⊥

2 · 8πηα
1

x
. (B.44)

Then the normalized and dimensionless expression stands for

n0|Ωe|
2B2

0

⟨|δB±|2⟩ = 4π
y2

x2P
2

1− y2

x2P 2

∑
α

βα
⊥

2ηα

1

x
Im

(
χα±

Λ±

)
. (B.45)
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Appendix C

C.1 Review of PIC space and time dimensions

To obtain electromagnetic fluctuation results for comparison with the ones obtained
in theory, we use data from a particle-in-cell code. Therefore, below we will review
the structure and particularities of this code.

Figure C.1: Space and frequency dimensions to be considered in PIC scenarios. In
the subpanel is a scheme of a one-dimensional grid used in the 1.5D particle-in-cell
code. This grid has Nx cells.

In Figure C.1, we illustrate the space-time dimensions where explicit PIC codes
are effective in describing kinetic plasma physics. The frequency range accessible
with this approach corresponds to ωpe < ω < Ωi, while the typical length of the
system, L, is beyond the electron Debye length λDe for magnetized plasmas, and
falls between the gyro-radii of both species, ρe < L < ρi, or between the electron
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and ion inertial lengths, λe < L < λi.

The sub-panel shows a schematic representation of the computational domain
used in simulating the magnetized plasma. It consists of a one-dimensional grid
with Nx = 2048 cells and 1000 particles per cell.

C.2 Stability conditions of the code

PIC codes must satisfy space-time constraints to ensure code stability. The time
domain of the simulation must satisfy a threshold to prevent information from
propagating faster than the speed of light. To accurately describe electron kinetic
physics, the time step must be smaller than the time it takes an electromagnetic
wave to travel one cell in a single time step,

ωpe∆t < 2. (C.1)

Additionally, since electromagnetic fields are calculated on a grid, the Courant
condition must be satisfied:

c∆t < ∆x < λD, (C.2)

where information propagation of electromagnetic waves towards the time step is
ensured, and the spacing between grids must be less than or equal to the Debye
length.

C.3 Code parameters

In PIC codes, to have relevant information around a space-time scale of interest,
variables inside the code must be properly dimensionless. Hence, here we show the
dimensionless expression used in the code. First, the time step is normalized to the
electron plasma frequency

t =
∆t

ωpe

, ωpe =

√
4πn0e2

me

. (C.3)

In addition, the space step is normalized to the inertial length of the electrons

x =
∆xωpe

c
. (C.4)

All velocities are normalized to the speed of light.

v̄ =
v

c
. (C.5)
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The magnetic field is normalized to the mean magnetic field B0 with a weight factor
indicating the rate of electron plasma frequency to electron gyro-frequency.

B =
B

B0P
, (C.6)

where P is the ratio of plasma frequency and electron gyro-frequency. Also, the
charge density is normalized to the electron density

ρ =
ρ

n0e
. (C.7)

Then, the current density is normalized to

J =
J

en0c
. (C.8)

The selected parameters used in the code are listed below.

me

mp

= 1836, (C.9)

L = 265λe, (C.10)

Tmax = 16365, (C.11)

Nx = 2048, (C.12)

dt =
0.08

ωpe

, (C.13)

particles per cell = 103, (C.14)

P =
ωpe

|Ωe|
= 5. (C.15)

C.4 Code scheme

To numerically solve the scheme shown in Figure C.2, we review the numerical
methods involved. The positions and velocities of the particles are solved using the
Boris-Buneman method. This method starts with the Lorentz equation

dv

dt
=

q

m
(E+ v×B). (C.16)

The discretization in time of Equation C.16 is given by,

vt+∆t
2 − vt−∆t

2

∆t
=

q

m
(Et +

vt+∆t
2 − vt−∆t

2

∆t
×Bt). (C.17)
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Figure C.2: Time iteration step for the PIC code.

Hence, considering the Boris-Bunemman method, the next step of positions and
velocity in a magnetized plasma scheme,

x∆t+1 = x∆t +∆tv∆t+1/2, (C.18)

v∆t+1/2 = v̄∆t−1/2 +
∆tq

2m
E∆t, (C.19)

(C.20)

with

v̄∆t−1/2 = u+

[
u+

(
u× ∆tqE∆t

2m

)
×B∆t

∆tq

m
/

(
1 +

(
∆tqB∆t

2m

)2
)]

(C.21)

u = v∆t−1/2 +
∆tq

2m
E∆t. (C.22)

The interpolation framework for each species’ particle distribution fs(x,v, t) is
obtained by summing up allNs particles for each super particle distribution fp(x,v, t)
(the simulated particle distribution).

fs(x,v, t) =
Ns∑
n=1

fp(x,v, t). (C.23)

Additionally, to calculate the contribution of particles to the grid, it is useful
to write each computational particle distribution in terms of the shape function S.
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Hence,
fp(x,v, t) = NpSx(x− xp)Sv(v− vp), (C.24)

where the subscripts x and v, stand for the shape function in space and velocity.
Usually, for spatial shape function, it is used a b-spline function and for velocities a
delta function. The first order of this b-spline function stands for

b0(ξ) =


1 if |ξ| < 1/2,

0 otherwise.
(C.25)

For larger orders,

bl =

∞∫
∞

b0(ξ − ξ′)bl−1(ξ
′)dξ′, (C.26)

With the conditions

∞∑
i

bl(ξ + i) = 1, (C.27)

∞∫
∞

bl(ξ)dξ = 1. (C.28)

In this code implementation, we use the 2-spline function, which has a smooth
Maxwellian shape. With this consideration, the motion equation for each super-
particle may be expressed as

dxp

dt
= vp, (C.29)

dvp

dt
=

q

m
(Ep + vp ×Bp). (C.30)

The mesh where the electromagnetic field is solved, denoted by the subscript g,
can be used to interpolate to the particles by employing the following interpolation
function in an L-dimensional space of the grid.

W (xg − xp) =

∫
L

Sx(x− xp)b0

(
x− xg

∆x

)
dx =

b1(x− xp)

δx
. (C.31)

Hence, the interpolated electromagnetic field from the grid to the particle are

Ep =
∑
g

EgW (xg − xp), (C.32)

Bp =
∑
g

BgW (xg − xp). (C.33)

(C.34)
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Also, charge density ρ and current density J may be interpolated to the grid as

ρg =
1

∆x

∑
p

qW (xg − xp), (C.35)

Jg =
1

∆x

∑
p

qvpW (xg − xp). (C.36)

Then, integrating the shape function and the electromagnetic fields in the space L
to compute the electromagnetic fields of the particles,

Ep =

∫
L

Sx(x− xp)E(x)dx, (C.37)

Bp =

∫
L

Sx(x− xp)B(x)dx. (C.38)

To solve Maxwell equations on the one-dimensional grid we use discretization with
finite differences at second order. Hence, the one-dimension Maxwell system stands
for

1

c

∂By

∂t
=

∂Ez

∂x
, (C.39)

1

c

∂Ez

∂t
=

(
∂By

∂x
− jz

)
. (C.40)

For simplicity, we neglect the source term jz first, hence

1

c

∂By

∂t
=

∂Ez

∂x
, (C.41)

1

c

∂Ez

∂t
=

(
∂By

∂x

)
. (C.42)

Then, considering a central difference around x position with Taylor expansion, the
spatial differentiation on Maxwell equations,

1

c

∂By

∂t
=

Ez(x+∆x, t)− Ez(x−∆x, t)

2∆x
, (C.43)

1

c

∂Ez

∂t
=

By(x+∆x, t)−By(x−∆x, t)

2∆x
. (C.44)

By considering a normalization ∆x/2 = ∆x, we obtain

1

c

∂By

∂t
=

Ez(x+ ∆x
2
, t)− Ez(x− ∆x

2
, t)

∆x
, (C.45)

1

c

∂Ez

∂t
=

By(x+ ∆x
2
, t)−By(x− ∆x

2
, t)

∆x
. (C.46)
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We consider a staggered unidimensional uncoupled grid, noting that for an electric
field evaluated at x0, would be not related to any electric field evaluated at x0+n∆x
for odd numbers. This holds also for the magnetic field.

1

c

(
∂By

∂t

)
x+n∆x

2

=
Ez(x+ n∆x, t)− Ez(x− n∆x, t)

∆x
, (C.47)

1

c

(
∂Ez

∂t

)
n∆x

=
By(x+ n∆x

2
, t)−By(x− n∆x

2
, t)

∆x
. (C.48)

To simplify the notation, A(x+ n∆x) = (A)n, hence,

1

c

(
∂By

∂t

)
n+ 1

2

=
(Ez(t))n+1 − (Ez(t))n

∆x
, (C.49)

1

c

(
∂Ez

∂t

)
n

=
(By(t))n+ 1

2
− (By(t))n− 1

2

∆x
. (C.50)

When we discretize the fields in time, we observe that the field points can be
decoupled into nearby points by considering even or odd steps,

1

c

(
(By)n+ 1

2
,m+ 1

2
− (By)n+ 1

2
,m− 1

2

∆t

)
=

(Ez)n+1,m − (Ez)n,m
∆x

, (C.51)

1

c

(
(Ez)n,m+1 − (Ez)n,m

∆t

)
=

(By)n+ 1
2
,m+ 1

2
− (By)n− 1

2
,m+ 1

2

∆x
. (C.52)

Hence, the next step in time for the electromagnetic fields yields

1

c

(
(By)n+ 1

2
,m+ 1

2

∆t

)
= (By)n+ 1

2
,m− 1

2
+

∆t

∆x

(Ez)n+1,m − (Ez)n,m
∆x

, (C.53)

1

c

(
(Ez)n,m+1

∆t

)
= (Ez)n,m +

∆t

∆x

(By)n+ 1
2
,m+ 1

2
− (By)n− 1

2
,m+ 1

2

∆x
. (C.54)

Now for our system, the magnetic field along x direction is constant and the system
considers the source (J),

(By)n,m+1 = (By)n,m +
∆t

∆x
((Ez)n+ 1

2
,m+ 1

2
− (Ez)n− 1

2
,m+ 1

2
), (C.55)

(Bz)n+ 1
2
,m+ 1

2
= (Bz)n+ 1

2
,m− 1

2
− ∆t

∆x
((Ey)n+ 1

2
,m − (Ez)n− 1

2
,m). (C.56)

(C.57)
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For the electric field,

(Ex)n+ 1
2
,m+ 1

2
= (Ex)n+ 1

2
,m− 1

2
−∆t(Jx)n+ 1

2
,m+ 1

2
, (C.58)

(Ey)n,m+1 = (Ey)n,m − ∆t

∆x
((Bz)n+ 1

2
,m+ 1

2
− (Bz)n− 1

2
,m+

1

2
)

− ∆t(Jy)n,m+1, (C.59)

(Ez)n+ 1
2
,m+ 1

2
= (Ez)n+ 1

2
,m+ 1

2
+

∆t

∆x
((By)n+1,m − (By)n,m)

− ∆t(Jz)n+ 1
2
,m+ 1

2
. (C.60)

In addition, these fields have periodic boundary conditions, given by

Ey(N0) = Ey(Nx)

Ez(1) = Ez(Nx + 1)

By(N0) = Ey(Nx)

Bz(1) = Ez(Nx + 1)

In addition, as shown in Figure C.2, the longitudinal electric field in the grid
computed by Ampere’s-Maxwell law is corrected to ensure consistency with Poisson’s
equation. This condition reduces numerical noise and results in a smooth time
evolution of the code. This is a code based on KEMPO-1, implemented and modified
by Adolfo Viñas, Rodrigo López, and Pablo Moya [42].
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