

ESTUDIO DE LA ENVOLVENTE EN EL TIEMPO CONSIDERANDO LA SISMICIDAD DE TIPO SUBDUCTIVA EN CHILE PARA LA GENERACIÓN DE CURVAS DE ATENUACIÓN

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERA CIVIL

FRANCISCA JAVIERA LEYTON GARCÍA DE LA HUERTA

PROFESOR GUÍA: FABIÁN ROJAS BARRALES

MIEMBROS DE LA COMISIÓN: RAFAEL RUIZ GARCÍA LUIS LOYOLA FERNÁNDEZ

Este trabajo ha sido financiado por FONDECYT Regular Proyecto Nº1200709

SANTIAGO DE CHILE 2023

RESUMEN DE LA MEMORIA PARA OPTAR AL TÍTULO DE: INGENIERA CIVIL POR: FRANCISCA JAVIERA LEYTON GARCÍA DE LA HUERTA FECHA: 2023 PROF. GUÍA: FABIÁN ROJAS BARRALES

ESTUDIO DE LA ENVOLVENTE EN EL TIEMPO CONSIDERANDO LA SISMICIDAD DE TIPO SUBDUCTIVA EN CHILE PARA LA GENERACIÓN DE CURVAS DE ATENUACIÓN

Chile es un país altamente sísmico ya que se encuentra ubicado sobre la placa Sudamericana que interactúa con la placa de Nazca, ubicada al oeste. Este contacto sismogénico se da a una alta velocidad de convergencia relativa de alrededor 73.9 mm/año (DeMets et al., 2010), lo cual resulta en una intensa sismicidad que produce grandes deformaciones en el continente y terremotos de gran magnitud en el país. Los tipos de sismos que se pueden producir en Chile corresponden a: interplaca tipo "thrust", intraplaca de profundidad intermedia, intraplaca profundo, corticales y "outer-rise". De estos mecanismos, los más relevantes para la ingeniería sísmica corresponden a los dos primeros debido a la recurrencia y magnitud que presentan.

El poder tener conocimiento del nivel de demanda producida por estos terremotos, el análisis de sus efectos sobre la infraestructura, el desarrollo de normas de construcción y diseño y los métodos para determinar el riesgo sísmico sobre las construcciones son algunas de las principales motivaciones para el estudio de los acelerogramas (Carreño et al., 1999). Un acelerograma corresponde a la representación de la aceleración del suelo registrada en una estación sismológica durante un evento sísmico. En ellos es posible encontrar información detallada y precisa sobre la respuesta dinámica del suelo durante un sismo, lo que es esencial para el diseño sísmico seguro de estructuras.

Debido a lo anterior, en el presente trabajo se generan envolventes de los acelerogramas de la zona de subducción chilena utilizando el programa MATLAB con la finalidad de estudiar el comportamiento que poseen los eventos ocurridos en el país. Este varía dependiendo de la magnitud, tipo de mecanismo, tipo de suelo y distancia a la fuente sísmica.

A lo largo del tiempo, se han propuesto varias funciones envolventes que permiten caracterizar el movimiento del suelo. Una de las más conocidas corresponde a la función de modulación gamma (Saragoni y Hart, 1973). Esta función matemática tiene la particularidad de aumentar desde cero hasta alcanzar una intensidad casi constante, representando así la fase de movimiento fuerte de un evento sísmico para luego decaer gradualmente. De esta manera, las envolventes generadas en MATLAB se comparan visualmente con la función de modulación gamma, observando que para aquellos eventos con magnitudes mayores a 7.5 M_w y distancias a la fuente sísmica menores a 250 km, la función deja de ser representativa por lo que se debe buscar otra envolvente que pueda caracterizar de buena manera el comportamiento que presenta el registro de aceleración. En consecuencia, se propone utilizar la función spline cubic de Hermite (Broccardo y Dabaghi, 2017) puesto que es capaz de capturar las distintas fases de movimiento fuerte. Lo anterior se realiza con el propósito de perfeccionar los algoritmos que permiten generar registros artificiales y por consiguiente, que estos logren ser mucho más representativos de las formas originales que poseen los registros de aceleración.

A mis padres.

Agradecimientos

En primer lugar, darle las gracias infinitas a mi familia, Pabla, Vicente y Danae. A mi mamá y papá por siempre luchar y esforzarse para darnos la mejor educación dentro de sus posibilidades, por acompañarme en mis logros y fracasos y por creer en mis capacidades desde que era pequeña, ojalá me alcance la vida para poder retribuirles todo lo que han hecho por mí. A mi hermana por ser un apoyo incondicional desde que tengo memoria, por toda la preocupación y el cuidado que me entregas día a día, por amarme y regalonearme en mis días más difíciles, gracias por ser mi eterna compañera, espero que muy pronto podamos cumplir nuestros sueños compartidos de los que siempre hablamos. A los tres les agradezco especialmente todo el amor y contención que me dieron durante estos siete años de universidad, no estaría escribiendo esto si no fuera por ustedes, los amo muchísimo.

A mi Javi, mi otra mitad, gracias por crecer junto a mí, por mostrarme una amistad tan bonita y por enseñarme lo que significa amar a alguien de corazón, eres mi persona favorita en el mundo. También darle las gracias a Víctor por la amistad y compañía durante todos estos años. Espero que los tres sigamos cumpliendo todas nuestras metas y apoyándonos incondicionalmente, los amo.

A mis amiguitos de la u, Geri, Maite, Consu, Jo, Giovi, Ana, Lau, Franco, Víctor, Martín, Marco, Álvaro y Mati. El almuerzo junto a ustedes siempre era el momento más esperado de mi día. Gracias por todo el apoyo y por los buenos momentos, estoy muy agradecida de haberme encontrado con ustedes en el camino, los quiero. También agradecerle a mis compañeros de civil, gracias a Rodrigo y Álex por acompañarme en todas esas noches de estudio, por siempre hacer de esos momentos estresantes un poquito más agradables, los aprecio infinito.

A mi Camuel, gracias por entregarme una amistad tan genuina y por enseñarme tantas cosas, en especial, el kpop. Gracias por todo el apoyo que siempre me das y por hacerme reír tanto (aunque yo soy más graciosa), te quiero mucho.

A mi profesor guía, Fabián, por su enorme comprensión y por siempre estar disponible para resolver todas mis dudas e inquietudes. También a mis profesores de comisión por aceptar ser parte de este trabajo, al profesor Rafael por sus consejos y su buena voluntad, y a Luis por ofrecerme su apoyo y orientación cuando me encontraba perdida durante este proceso.

Finalmente, a mi familia Leyton por su ayuda y preocupación (mención honrosa a Jean) y a mi familia Díaz por sus buenos deseos a pesar de la distancia. A mis perritos, los seres más puros que existen que me acompañaron día y noche mientras estudiaba. Y obvio, gracias a mis tannies porque son lo mejor que me ha pasado en la vida.

Tabla de Contenido

1.	Intr	oducción 1
	1.1.	Objetivos
		1.1.1. Objetivo principal $\ldots \ldots 2$
		1.1.2. Objetivos específicos $\ldots \ldots 2$
	1.2.	Organización y alcances
2.	Ant	ecedentes de estudio 3
	2.1.	Marco sismotectónico
	2.2.	Características de los eventos sísmicos
		2.2.1. Magnitud
		2.2.2. Profundidad focal
		2.2.3. Distancia a la fuente sísmica
	2.3.	Principales terremotos registrados en el país
	2.4.	Características de los registros sísmicos
		2.4.1. Intensidad de Arias
		2.4.2. Duración del movimiento fuerte
	2.5.	Respuesta sísmica del suelo 11
		2.5.1. Propagación de ondas sísmicas
	2.6.	Función envolvente de un registro
		2.6.1. Función envelope de MATLAB
		2.6.2. Función de modulación gamma 14
3.	Bas	e de datos a utilizar 15
	3.1.	Organización de la información
	3.2.	Eventos de la base de datos
		3.2.1. Distribución de los eventos de la base de datos
	3.3.	Estaciones de la base de datos
		3.3.1. Distribución de las estaciones de la base de datos
	3.4.	Registros de la base de datos
		3.4.1. Distribución de los registros de la base de datos
	3.5.	Distancias a la fuente sísmica
		3.5.1. Distancia hipocentral
		3.5.2. Distancia área de ruptura
	3.6.	Caracterización general de los registros sísmicos
4.	Met	odología empleada 42
	4.1.	Procesamiento de señales
	4.2.	Algoritmo computacional

	4.3.	Cálculo de las envolventes en MATLAB					
5.	Enve	volventes de los registros sísmicos: resultados obtenidos y análisis 4					
	5.1.	Resulta	ados obte	midos	49		
		5.1.1.	Envolver	ntes de sismos interplaca tipo "thrust"	49		
			5.1.1.1.	Magnitud $6.5 \leq M_w < 7.0 \dots \dots \dots \dots \dots \dots \dots \dots \dots$	49		
			5.1.1.2.	Magnitud 7.0 $\leq M_w < 7.5$	55		
			5.1.1.3.	Magnitud 7.5 $\leq M_w < 8.0$	57		
			5.1.1.4.	Magnitud 8.0 M_w	64		
			5.1.1.5.	Magnitud 8.2 M_w	65		
			5.1.1.6.	Magnitud 8.3 M_w	70		
			5.1.1.7.	Magnitud 8.8 M_w	72		
		5.1.2.	Envolver	ntes de sismos intraplaca profundidad intermedia	73		
			5121	Magnitud 6.5 $< M_{\odot} < 7.0$	73		
			5122	Magnitud 7.5 $< M_{\odot} < 8.0$	75		
			0.1.2.2.	$\operatorname{Inagintual}_{\mathcal{A}} = \operatorname{In}_{\mathcal{W}} = 0.0 \cdot \cdot$	10		
6.	Con	clusion	nes		78		
Bi	bliog	rafía			80		
Ar	iexos				83		
	А.	Catálog	go de Eve	entos	83		
	В.	Catálo	go de Est	aciones	104		
	С.	Intensi	_ dad de A	rias y duración significativa	110		
	D. Códigos utilizados en MATLAB				123		
		0*			-		

Índice de Tablas

2.1.	Entradas y salidas de la función envelope peak
3.1.	Estructuración de la base de datos de Registros
3.2.	Estructuración de la base de datos de Eventos
3.3.	Estructuración de la base de datos de Estaciones
3.4.	Distribución de eventos según fuente sismogénica
3.5.	Distribución de eventos según magnitud
3.6.	Distribución de eventos según año de ocurrencia
3.7.	Clasificación de suelos (Decreto Supremo Nº61, 2011)
3.8.	Distribución de estaciones según velocidad de onda de corte V_{s30}
3.9.	Distribución de estaciones según tipo de suelo
3.10.	Distribución de estaciones según tipo de suelo duro y blando
3.11.	Distribución de registros según fuente sismogénica.
3.12.	Distribución de registros según magnitud
3.13.	Distribución de registros según velocidad de onda de corte V_{s30}
3.14.	Distribución de registros según tipo de suelo
3.15.	Distribución de registros según tipo de suelo duro y blando
3.16.	Resumen de pasos utilizados para calcular la distancia hipocentral
3.17.	Áreas de ruptura consideradas en el estudio (Idini, 2016)
3.18.	Resumen de pasos utilizados para calcular la distancia área de ruptura 38
3.19.	Distribución de registros según distancia a la fuente sísmica
4.1.	Entradas y salidas del algoritmo utilizado para procesar las señales
4.2.	Frecuencia de corte normalizada ω_n según tipo de filtro Butterworth 43
4.3.	Clasificaciones de las envolventes
5.1.	Parámetros sísmicos clasificación 1
5.2.	Parámetros sísmicos clasificación 2
5.3.	Parámetros sísmicos clasificación 3
5.4.	Parámetros sísmicos clasificación 4
5.5.	Parámetros sísmicos clasificación 5
5.6.	Parámetros sísmicos clasificación 6
5.7.	Parámetros sísmicos clasificación 7
5.8.	Parámetros sísmicos clasificación 8
5.9.	Parámetros sísmicos clasificación 9
5.10.	Parámetros sísmicos clasificación 10
5.11.	Parámetros sísmicos clasificación 11
5.12.	Parámetros sísmicos clasificación 12
5.13.	Parámetros sísmicos clasificación 13
5.14.	Parámetros sísmicos clasificación 14
5.15.	Parámetros sísmicos clasificación 15

5.17. Parámetros sísmicos clasificación 17. 72 5.18. Parámetros sísmicos clasificación 18. 73 5.19. Parámetros sísmicos clasificación 19. 74 5.20. Parámetros sísmicos clasificación 20. 76 A.1. Caracterización del catálogo de eventos (Parte 1). 83 A.2. Caracterización del catálogo de eventos (Parte 2). 84 A.3. Caracterización del catálogo de eventos (Parte 2). 84 A.5. Caracterización del catálogo de eventos (Parte 5). 87 A.6. Caracterización del catálogo de eventos (Parte 6). 88 A.7. Caracterización del catálogo de eventos (Parte 6). 89 A.8. Caracterización del catálogo de eventos (Parte 1). 93 A.11. Caracterización del catálogo de eventos (Parte 1). 93 A.12. Caracterización del catálogo de eventos (Parte 12). 94 A.13. Caracterización del catálogo de eventos (Parte 14). 96 A.14. Caracterización del catálogo de eventos (Parte 15). 97 A.13. Caracterización del catálogo de eventos (Parte 14). 96 A.14. Caracterización del catálogo de eventos (Parte 10). <t< th=""><th>5.16.</th><th>Parámetros sísmicos clasificación 16</th><th>71</th></t<>	5.16.	Parámetros sísmicos clasificación 16	71
5.18. Parámetros sísmicos clasificación 18. 73 5.19. Parámetros sísmicos clasificación 20. 74 5.20. Parámetros sísmicos clasificación 20. 76 A.1. Caracterización del catálogo de eventos (Parte 1). 83 A.2. Caracterización del catálogo de eventos (Parte 2). 84 A.3. Caracterización del catálogo de eventos (Parte 5). 85 A.4. Caracterización del catálogo de eventos (Parte 5). 87 A.6. Caracterización del catálogo de eventos (Parte 5). 87 A.6. Caracterización del catálogo de eventos (Parte 5). 89 A.7. Caracterización del catálogo de eventos (Parte 7). 99 A.10. Caracterización del catálogo de eventos (Parte 10). 92 A.11. Caracterización del catálogo de eventos (Parte 11). 93 A.12. Caracterización del catálogo de eventos (Parte 12). 94 A.13. Caracterización del catálogo de eventos (Parte 14). 96 A.13. Caracterización del catálogo de eventos (Parte 14). 96 A.13. Caracterización del catálogo de eventos (Parte 15). 97 A.14. Caracterización del catálogo de eventos (Parte 18)	5.17.	Parámetros sísmicos clasificación 17.	72
5.19. Parámetros sísmicos clasificación 19. 74 5.20. Parámetros sísmicos clasificación 20. 76 5.20. Parámetros sísmicos clasificación 20. 76 6.1. Caracterización del catálogo de eventos (Parte 1). 83 A.2. Caracterización del catálogo de eventos (Parte 3). 85 A.4. Caracterización del catálogo de eventos (Parte 5). 86 A.5. Caracterización del catálogo de eventos (Parte 6). 88 A.7. Caracterización del catálogo de eventos (Parte 6). 89 A.8. Caracterización del catálogo de eventos (Parte 9). 90 A.9. Caracterización del catálogo de eventos (Parte 10). 92 A.10. Caracterización del catálogo de eventos (Parte 11). 93 A.12. Caracterización del catálogo de eventos (Parte 12). 94 A.13. Caracterización del catálogo de eventos (Parte 13). 96 A.14. Caracterización del catálogo de eventos (Parte 14). 96 A.15. Caracterización del catálogo de eventos (Parte 15). 97 A.14. Caracterización del catálogo de eventos (Parte 15). 97 A.15. Caracterización del catálogo de eventos (Parte 18	5.18.	Parámetros sísmicos clasificación 18	73
5.20. Parámetros sísmicos clasificación 20. 76 A.1. Caracterización del catálogo de eventos (Parte 1). 83 A.2. Caracterización del catálogo de eventos (Parte 3). 84 A.3. Caracterización del catálogo de eventos (Parte 4). 86 A.5. Caracterización del catálogo de eventos (Parte 5). 87 A.6. Caracterización del catálogo de eventos (Parte 7). 89 A.6. Caracterización del catálogo de eventos (Parte 7). 89 A.8. Caracterización del catálogo de eventos (Parte 7). 89 A.9. Caracterización del catálogo de eventos (Parte 10). 92 A.10. Caracterización del catálogo de eventos (Parte 10). 92 A.11. Caracterización del catálogo de eventos (Parte 11). 93 A.12. Caracterización del catálogo de eventos (Parte 13). 96 A.13. Caracterización del catálogo de eventos (Parte 14). 96 A.14. Caracterización del catálogo de eventos (Parte 17). 97 A.16. Caracterización del catálogo de eventos (Parte 17). 98 A.17. Caracterización del catálogo de eventos (Parte 19). 101 A.20. Caracterización del ca	5.19.	Parámetros sísmicos clasificación 19	74
A.1. Caracterización del catálogo de eventos (Parte 1). 83 A.2. Caracterización del catálogo de eventos (Parte 2). 84 A.3. Caracterización del catálogo de eventos (Parte 4). 85 A.4. Caracterización del catálogo de eventos (Parte 5). 87 A.6. Caracterización del catálogo de eventos (Parte 5). 87 A.6. Caracterización del catálogo de eventos (Parte 5). 87 A.7. Caracterización del catálogo de eventos (Parte 9). 90 A.8. Caracterización del catálogo de eventos (Parte 9). 91 A.10. Caracterización del catálogo de eventos (Parte 10). 92 A.11. Caracterización del catálogo de eventos (Parte 11). 93 A.12. Caracterización del catálogo de eventos (Parte 12). 94 A.13. Caracterización del catálogo de eventos (Parte 13). 95 A.14. Caracterización del catálogo de eventos (Parte 15). 97 A.16. Caracterización del catálogo de eventos (Parte 15). 98 A.17. Caracterización del catálogo de eventos (Parte 19). 101 A.20. Caracterización del catálogo de eventos (Parte 19). 100 A.14. Caracter	5.20.	Parámetros sísmicos clasificación 20	76
A.2. Caracterización del catálogo de eventos (Parte 2). 84 A.3. Caracterización del catálogo de eventos (Parte 3). 85 A.4. Caracterización del catálogo de eventos (Parte 4). 86 A.5. Caracterización del catálogo de eventos (Parte 5). 87 A.6. Caracterización del catálogo de eventos (Parte 6). 88 A.7. Caracterización del catálogo de eventos (Parte 7). 89 A.8. Caracterización del catálogo de eventos (Parte 10). 90 A.9. Caracterización del catálogo de eventos (Parte 11). 93 A.11. Caracterización del catálogo de eventos (Parte 11). 93 A.12. Caracterización del catálogo de eventos (Parte 13). 95 A.13. Caracterización del catálogo de eventos (Parte 13). 95 A.14. Caracterización del catálogo de eventos (Parte 15). 97 A.15. Caracterización del catálogo de eventos (Parte 16). 98 A.17. Caracterización del catálogo de eventos (Parte 17). 99 A.18. Caracterización del catálogo de eventos (Parte 17). 99 A.16. Caracterización del catálogo de eventos (Parte 17). 101 A.20. Caract	A.1.	Caracterización del catálogo de eventos (Parte 1)	83
A.3.Caracterización del catálogo de eventos (Parte 3).85A.4.Caracterización del catálogo de eventos (Parte 4).86A.5.Caracterización del catálogo de eventos (Parte 5).87A.6.Caracterización del catálogo de eventos (Parte 7).89A.7.Caracterización del catálogo de eventos (Parte 8).90A.8.Caracterización del catálogo de eventos (Parte 9).91A.10.Caracterización del catálogo de eventos (Parte 10).92A.11.Caracterización del catálogo de eventos (Parte 11).93A.12.Caracterización del catálogo de eventos (Parte 13).94A.13.Caracterización del catálogo de eventos (Parte 13).95A.14.Caracterización del catálogo de eventos (Parte 13).96A.15.Caracterización del catálogo de eventos (Parte 15).97A.16.Caracterización del catálogo de eventos (Parte 15).97A.17.Caracterización del catálogo de eventos (Parte 15).99A.18.Caracterización del catálogo de eventos (Parte 15).101A.19.Caracterización del catálogo de eventos (Parte 19).102A.20.Caracterización del catálogo de eventos (Parte 19).101A.20.Caracterización del catálogo de eventos (Parte 10).102A.21.Caracterización del catálogo de eventos (Parte 10).102A.22.Caracterización del catálogo de eventos (Parte 10).102A.23.Caracterización del catálogo de eventos (Parte 19).104B.2.Caracterización del catálogo de estaciones (Par	A.2.	Caracterización del catálogo de eventos (Parte 2)	84
A.4. Caracterización del catálogo de eventos (Parte 4). 86 A.5. Caracterización del catálogo de eventos (Parte 5). 87 A.6. Caracterización del catálogo de eventos (Parte 6). 88 A.7. Caracterización del catálogo de eventos (Parte 7). 89 A.8. Caracterización del catálogo de eventos (Parte 9). 90 A.9. Caracterización del catálogo de eventos (Parte 9). 91 A.10. Caracterización del catálogo de eventos (Parte 10). 92 A.11. Caracterización del catálogo de eventos (Parte 11). 93 A.12. Caracterización del catálogo de eventos (Parte 13). 95 A.14. Caracterización del catálogo de eventos (Parte 15). 97 A.15. Caracterización del catálogo de eventos (Parte 15). 97 A.16. Caracterización del catálogo de eventos (Parte 17). 99 A.17. Caracterización del catálogo de eventos (Parte 17). 99 A.18. Caracterización del catálogo de eventos (Parte 19). 100 A.19. Caracterización del catálogo de eventos (Parte 19). 101 A.20. Caracterización del catálogo de eventos (Parte 19). 103 B.1. Car	A.3.	Caracterización del catálogo de eventos (Parte 3)	85
A.5.Caracterización del catálogo de eventos (Parte 5).87A.6.Caracterización del catálogo de eventos (Parte 6).88A.7.Caracterización del catálogo de eventos (Parte 7).89A.8.Caracterización del catálogo de eventos (Parte 8).90A.9.Caracterización del catálogo de eventos (Parte 9).91A.10.Caracterización del catálogo de eventos (Parte 10).92A.11.Caracterización del catálogo de eventos (Parte 11).93A.12.Caracterización del catálogo de eventos (Parte 12).94A.13.Caracterización del catálogo de eventos (Parte 13).95A.14.Caracterización del catálogo de eventos (Parte 15).97A.15.Caracterización del catálogo de eventos (Parte 16).98A.17.Caracterización del catálogo de eventos (Parte 16).98A.17.Caracterización del catálogo de eventos (Parte 19).101A.19.Caracterización del catálogo de eventos (Parte 19).101A.20.Caracterización del catálogo de eventos (Parte 19).102A.21.Caracterización del catálogo de eventos (Parte 2).103B.1.Caracterización del catálogo de eventos (Parte 2).104A.22.Caracterización del catálogo de eventos (Parte 2).103B.1.Caracterización del catálogo de eventos (Parte 2).103B.1.Caracterización del catálogo de estaciones (Parte 3).106B.2.Caracterización del catálogo de estaciones (Parte 4).107B.3.Caracterización del catálogo de estaciones (Par	A.4.	Caracterización del catálogo de eventos (Parte 4)	86
A.6.Caracterización del catálogo de eventos (Parte 6).88A.7.Caracterización del catálogo de eventos (Parte 7).89A.8.Caracterización del catálogo de eventos (Parte 9).90A.9.Caracterización del catálogo de eventos (Parte 9).91A.10.Caracterización del catálogo de eventos (Parte 1).92A.11.Caracterización del catálogo de eventos (Parte 1).93A.12.Caracterización del catálogo de eventos (Parte 13).95A.14.Caracterización del catálogo de eventos (Parte 13).95A.14.Caracterización del catálogo de eventos (Parte 15).97A.16.Caracterización del catálogo de eventos (Parte 16).98A.17.Caracterización del catálogo de eventos (Parte 17).99A.18.Caracterización del catálogo de eventos (Parte 19).101A.20.Caracterización del catálogo de eventos (Parte 19).101A.21.Caracterización del catálogo de eventos (Parte 19).102A.21.Caracterización del catálogo de eventos (Parte 1).103B.1.Caracterización del catálogo de eventos (Parte 2).103B.1.Caracterización del catálogo de estaciones (Parte 1).104B.2.Caracterización del catálogo de estaciones (Parte 1).104B.3.Caracterización del catálogo de estaciones (Parte 1).104B.4.Caracterización del catálogo de estaciones (Parte 1).104B.5.Caracterización del catálogo de estaciones (Parte 1).106B.4.Caracterización del catálogo de estacion	A.5.	Caracterización del catálogo de eventos (Parte 5)	87
A.7.Caracterización del catálogo de eventos (Parte 7).89A.8.Caracterización del catálogo de eventos (Parte 8).90A.9.Caracterización del catálogo de eventos (Parte 10).91A.10.Caracterización del catálogo de eventos (Parte 10).92A.11.Caracterización del catálogo de eventos (Parte 11).93A.12.Caracterización del catálogo de eventos (Parte 12).94A.13.Caracterización del catálogo de eventos (Parte 13).95A.14.Caracterización del catálogo de eventos (Parte 14).96A.15.Caracterización del catálogo de eventos (Parte 15).97A.16.Caracterización del catálogo de eventos (Parte 16).98A.17.Caracterización del catálogo de eventos (Parte 18).100A.18.Caracterización del catálogo de eventos (Parte 18).100A.19.Caracterización del catálogo de eventos (Parte 19).101A.20.Caracterización del catálogo de eventos (Parte 1).103B.1.Caracterización del catálogo de eventos (Parte 1).104B.2.Caracterización del catálogo de eventos (Parte 2).105B.3.Caracterización del catálogo de estaciones (Parte 3).106B.4.Caracterización del catálogo de estaciones (Parte 5).108B.6.Caracterización del catálogo de esta	A.6.	Caracterización del catálogo de eventos (Parte 6)	88
A.8. Caracterización del catálogo de eventos (Parte 8). 90 A.9. Caracterización del catálogo de eventos (Parte 9). 91 A.10. Caracterización del catálogo de eventos (Parte 10). 92 A.11. Caracterización del catálogo de eventos (Parte 11). 93 A.12. Caracterización del catálogo de eventos (Parte 12). 94 A.13. Caracterización del catálogo de eventos (Parte 13). 95 A.14. Caracterización del catálogo de eventos (Parte 14). 96 A.15. Caracterización del catálogo de eventos (Parte 15). 97 A.16. Caracterización del catálogo de eventos (Parte 16). 98 A.17. Caracterización del catálogo de eventos (Parte 18). 100 A.19. Caracterización del catálogo de eventos (Parte 19). 101 A.20. Caracterización del catálogo de eventos (Parte 20). 102 A.21. Caracterización del catálogo de estaciones (Parte 2). 103 B.1. Caracterización del catálogo de estaciones (Parte 2). 104 B.2. Caracterización del catálogo de estaciones (Parte 3). 106 B.3. Caracterización del catálogo de estaciones (Parte 4). 107 B.4. <td>A.7.</td> <td>Caracterización del catálogo de eventos (Parte 7)</td> <td>89</td>	A.7.	Caracterización del catálogo de eventos (Parte 7)	89
A.9. Caracterización del catálogo de eventos (Parte 9). 91 A.10. Caracterización del catálogo de eventos (Parte 10). 92 A.11. Caracterización del catálogo de eventos (Parte 11). 93 A.12. Caracterización del catálogo de eventos (Parte 12). 94 A.13. Caracterización del catálogo de eventos (Parte 13). 95 A.14. Caracterización del catálogo de eventos (Parte 15). 97 A.15. Caracterización del catálogo de eventos (Parte 15). 97 A.16. Caracterización del catálogo de eventos (Parte 16). 98 A.17. Caracterización del catálogo de eventos (Parte 18). 90 A.18. Caracterización del catálogo de eventos (Parte 19). 100 A.19. Caracterización del catálogo de eventos (Parte 19). 101 A.20. Caracterización del catálogo de eventos (Parte 20). 102 A.21. Caracterización del catálogo de estaciones (Parte 2). 103 B.1. Caracterización del catálogo de estaciones (Parte 2). 104 B.2. Caracterización del catálogo de estaciones (Parte 3). 106 B.4. Caracterización del catálogo de estaciones (Parte 4). 107 B.5.<	A.8.	Caracterización del catálogo de eventos (Parte 8)	90
A.10. Caracterización del catálogo de eventos (Parte 10). 92 A.11. Caracterización del catálogo de eventos (Parte 11). 93 A.12. Caracterización del catálogo de eventos (Parte 12). 94 A.13. Caracterización del catálogo de eventos (Parte 13). 95 A.14. Caracterización del catálogo de eventos (Parte 14). 96 A.15. Caracterización del catálogo de eventos (Parte 15). 97 A.16. Caracterización del catálogo de eventos (Parte 16). 98 A.17. Caracterización del catálogo de eventos (Parte 17). 99 A.18. Caracterización del catálogo de eventos (Parte 19). 100 A.19. Caracterización del catálogo de eventos (Parte 19). 101 A.20. Caracterización del catálogo de eventos (Parte 20). 102 A.21. Caracterización del catálogo de estaciones (Parte 2). 103 B.1. Caracterización del catálogo de estaciones (Parte 1). 104 B.2. Caracterización del catálogo de estaciones (Parte 3). 105 B.3. Caracterización del catálogo de estaciones (Parte 4). 107 B.4. Caracterización del catálogo de estaciones (Parte 4). 107 B	A.9.	Caracterización del catálogo de eventos (Parte 9)	91
A.11. Caracterización del catálogo de eventos (Parte 11). 93 A.12. Caracterización del catálogo de eventos (Parte 12). 94 A.13. Caracterización del catálogo de eventos (Parte 13). 95 A.14. Caracterización del catálogo de eventos (Parte 15). 96 A.15. Caracterización del catálogo de eventos (Parte 15). 97 A.16. Caracterización del catálogo de eventos (Parte 16). 98 A.17. Caracterización del catálogo de eventos (Parte 18). 90 A.19. Caracterización del catálogo de eventos (Parte 19). 101 A.20. Caracterización del catálogo de eventos (Parte 20). 102 A.21. Caracterización del catálogo de eventos (Parte 21). 103 B.1. Caracterización del catálogo de estaciones (Parte 2). 104 B.2. Caracterización del catálogo de estaciones (Parte 2). 105 B.3. Caracterización del catálogo de estaciones (Parte 3). 106 B.4. Caracterización del catálogo de estaciones (Parte 4). 107 B.5. Caracterización del catálogo de estaciones (Parte 5). 108 B.6. Caracterización del catálogo de estaciones (Parte 6). 109	A.10.	Caracterización del catálogo de eventos (Parte 10).	92
A.12. Caracterización del catálogo de eventos (Parte 12). 94 A.13. Caracterización del catálogo de eventos (Parte 13). 95 A.14. Caracterización del catálogo de eventos (Parte 14). 96 A.15. Caracterización del catálogo de eventos (Parte 15). 97 A.16. Caracterización del catálogo de eventos (Parte 16). 98 A.17. Caracterización del catálogo de eventos (Parte 17). 99 A.18. Caracterización del catálogo de eventos (Parte 18). 100 A.19. Caracterización del catálogo de eventos (Parte 19). 101 A.20. Caracterización del catálogo de eventos (Parte 21). 102 A.21. Caracterización del catálogo de eventos (Parte 21). 103 B.1. Caracterización del catálogo de estaciones (Parte 1). 104 B.2. Caracterización del catálogo de estaciones (Parte 1). 104 B.2. Caracterización del catálogo de estaciones (Parte 2). 105 B.3. Caracterización del catálogo de estaciones (Parte 4). 106 B.4. Caracterización del catálogo de estaciones (Parte 4). 107 B.5. Caracterización del catálogo de estaciones (Parte 6). 108 B.6. Caracterización del catálogo de estaciones (Parte 6). 109 C.1. Intensidad de Arias y duración significativa clasificación 1 (canal 1). 110 <	A.11.	Caracterización del catálogo de eventos (Parte 11).	93
A.13. Caracterización del catálogo de eventos (Parte 13). 95 A.14. Caracterización del catálogo de eventos (Parte 14). 96 A.15. Caracterización del catálogo de eventos (Parte 15). 97 A.16. Caracterización del catálogo de eventos (Parte 15). 98 A.17. Caracterización del catálogo de eventos (Parte 16). 98 A.17. Caracterización del catálogo de eventos (Parte 18). 100 A.19. Caracterización del catálogo de eventos (Parte 19). 101 A.20. Caracterización del catálogo de eventos (Parte 21). 102 A.21. Caracterización del catálogo de eventos (Parte 21). 103 B.1. Caracterización del catálogo de estaciones (Parte 1). 104 B.2. Caracterización del catálogo de estaciones (Parte 3). 105 B.3. Caracterización del catálogo de estaciones (Parte 3). 106 B.4. Caracterización del catálogo de estaciones (Parte 4). 107 B.5. Caracterización del catálogo de estaciones (Parte 4). 107 B.5. Caracterización del catálogo de estaciones (Parte 6). 109 C.1. Intensidad de Arias y duración significativa clasificación 1 (canal 1). 110 C.2. Intensidad de Arias y duración significativa clasificación 2 (canal 1). 111 C.3. Intensidad de Arias y duración significativa clasificación 3 (canal 2). <	A.12.	Caracterización del catálogo de eventos (Parte 12).	94
A.14. Caracterización del catálogo de eventos (Parte 14). 96 A.15. Caracterización del catálogo de eventos (Parte 15). 97 A.16. Caracterización del catálogo de eventos (Parte 16). 98 A.17. Caracterización del catálogo de eventos (Parte 17). 99 A.18. Caracterización del catálogo de eventos (Parte 18). 100 A.19. Caracterización del catálogo de eventos (Parte 19). 101 A.20. Caracterización del catálogo de eventos (Parte 20). 102 A.21. Caracterización del catálogo de eventos (Parte 21). 103 B.1. Caracterización del catálogo de estaciones (Parte 2). 103 B.1. Caracterización del catálogo de estaciones (Parte 3). 104 B.2. Caracterización del catálogo de estaciones (Parte 4). 107 B.3. Caracterización del catálogo de estaciones (Parte 4). 107 B.5. Caracterización del catálogo de estaciones (Parte 6). 109 C.1. Intensidad de Arias y duración significativa clasificación 1 (canal 1). 110 C.2. Intensidad de Arias y duración significativa clasificación 2 (canal 1). 110 C.3. Intensidad de Arias y duración significativa clasificación 3 (cana	A.13.	Caracterización del catálogo de eventos (Parte 13).	95
A.15. Caracterización del catálogo de eventos (Parte 15). 97 A.16. Caracterización del catálogo de eventos (Parte 16). 98 A.17. Caracterización del catálogo de eventos (Parte 17). 99 A.18. Caracterización del catálogo de eventos (Parte 18). 100 A.19. Caracterización del catálogo de eventos (Parte 19). 101 A.20. Caracterización del catálogo de eventos (Parte 20). 102 A.21. Caracterización del catálogo de eventos (Parte 21). 103 B.1. Caracterización del catálogo de estaciones (Parte 1). 104 B.2. Caracterización del catálogo de estaciones (Parte 1). 104 B.2. Caracterización del catálogo de estaciones (Parte 1). 104 B.2. Caracterización del catálogo de estaciones (Parte 1). 104 B.2. Caracterización del catálogo de estaciones (Parte 4). 107 B.3. Caracterización del catálogo de estaciones (Parte 4). 107 B.4. Caracterización del catálogo de estaciones (Parte 6). 109 C.1. Intensidad de Arias y duración significativa clasificación 1 (canal 1). 110 C.2. Intensidad de Arias y duración significativa clasificación 2 (canal 1).	A.14.	Caracterización del catálogo de eventos (Parte 14).	96
A.16. Caracterización del catálogo de eventos (Parte 16). 98 A.17. Caracterización del catálogo de eventos (Parte 17). 99 A.18. Caracterización del catálogo de eventos (Parte 18). 100 A.19. Caracterización del catálogo de eventos (Parte 19). 101 A.20. Caracterización del catálogo de eventos (Parte 20). 102 A.21. Caracterización del catálogo de eventos (Parte 21). 103 B.1. Caracterización del catálogo de eventos (Parte 21). 103 B.1. Caracterización del catálogo de estaciones (Parte 2). 104 B.2. Caracterización del catálogo de estaciones (Parte 3). 104 B.2. Caracterización del catálogo de estaciones (Parte 3). 105 B.3. Caracterización del catálogo de estaciones (Parte 4). 107 B.4. Caracterización del catálogo de estaciones (Parte 6). 109 C.1. Intensidad de Arias y duración significativa clasificación 1 (canal 1). 110 C.2. Intensidad de Arias y duración significativa clasificación 2 (canal 2). 111 C.3. Intensidad de Arias y duración significativa clasificación 3 (canal 1). 111 C.4. Intensidad de Arias y duración significativa c	A.15.	Caracterización del catálogo de eventos (Parte 15).	97
A.17. Caracterización del catálogo de eventos (Parte 17). 99 A.18. Caracterización del catálogo de eventos (Parte 18). 100 A.19. Caracterización del catálogo de eventos (Parte 19). 101 A.20. Caracterización del catálogo de eventos (Parte 20). 102 A.21. Caracterización del catálogo de eventos (Parte 21). 103 B.1. Caracterización del catálogo de estaciones (Parte 2). 104 B.2. Caracterización del catálogo de estaciones (Parte 2). 105 B.3. Caracterización del catálogo de estaciones (Parte 3). 106 B.4. Caracterización del catálogo de estaciones (Parte 4). 107 B.5. Caracterización del catálogo de estaciones (Parte 4). 107 B.5. Caracterización del catálogo de estaciones (Parte 6). 109 C.1. Intensidad de Arias y duración significativa clasificación 1 (canal 1). 110 C.2. Intensidad de Arias y duración significativa clasificación 2 (canal 1). 111 C.3. Intensidad de Arias y duración significativa clasificación 3 (canal 2). 111 C.4. Intensidad de Arias y duración significativa clasificación 4 (canal 1). 112 C.5. Intensidad de Arias y du	A.16.	Caracterización del catálogo de eventos (Parte 16).	98
A.18. Caracterización del catálogo de eventos (Parte 18). 100 A.19. Caracterización del catálogo de eventos (Parte 19). 101 A.20. Caracterización del catálogo de eventos (Parte 20). 102 A.21. Caracterización del catálogo de eventos (Parte 21). 103 B.1. Caracterización del catálogo de estaciones (Parte 2). 104 B.2. Caracterización del catálogo de estaciones (Parte 2). 105 B.3. Caracterización del catálogo de estaciones (Parte 3). 106 B.4. Caracterización del catálogo de estaciones (Parte 3). 106 B.4. Caracterización del catálogo de estaciones (Parte 4). 107 B.5. Caracterización del catálogo de estaciones (Parte 4). 107 B.6. Caracterización del catálogo de estaciones (Parte 6). 109 C.1. Intensidad de Arias y duración significativa clasificación 1 (canal 1). 110 C.3. Intensidad de Arias y duración significativa clasificación 2 (canal 1). 110 C.4. Intensidad de Arias y duración significativa clasificación 3 (canal 2). 111 C.5. Intensidad de Arias y duración significativa clasificación 4 (canal 1). 112 C.6. Intensidad de Arias y	A.17.	Caracterización del catálogo de eventos (Parte 17).	99
A.19. Caracterización del catálogo de eventos (Parte 19). 101 A.20. Caracterización del catálogo de eventos (Parte 20). 102 A.21. Caracterización del catálogo de eventos (Parte 21). 103 B.1. Caracterización del catálogo de estaciones (Parte 1). 104 B.2. Caracterización del catálogo de estaciones (Parte 2). 105 B.3. Caracterización del catálogo de estaciones (Parte 2). 105 B.3. Caracterización del catálogo de estaciones (Parte 3). 106 B.4. Caracterización del catálogo de estaciones (Parte 4). 107 B.5. Caracterización del catálogo de estaciones (Parte 5). 107 B.6. Caracterización del catálogo de estaciones (Parte 5). 108 B.6. Caracterización del catálogo de estaciones (Parte 6). 109 C.1. Intensidad de Arias y duración significativa clasificación 1 (canal 1). 110 C.2. Intensidad de Arias y duración significativa clasificación 2 (canal 1). 110 C.3. Intensidad de Arias y duración significativa clasificación 3 (canal 1). 111 C.5. Intensidad de Arias y duración significativa clasificación 4 (canal 1). 111 C.6. Intensidad de Arias y	A.18.	Caracterización del catálogo de eventos (Parte 18).	100
A.20. Caracterización del catálogo de eventos (Parte 20). 102 A.21. Caracterización del catálogo de eventos (Parte 21). 103 B.1. Caracterización del catálogo de estaciones (Parte 1). 104 B.2. Caracterización del catálogo de estaciones (Parte 2). 105 B.3. Caracterización del catálogo de estaciones (Parte 3). 106 B.4. Caracterización del catálogo de estaciones (Parte 4). 107 B.5. Caracterización del catálogo de estaciones (Parte 5). 107 B.5. Caracterización del catálogo de estaciones (Parte 5). 108 B.6. Caracterización del catálogo de estaciones (Parte 6). 109 C.1. Intensidad de Arias y duración significativa clasificación 1 (canal 1). 110 C.2. Intensidad de Arias y duración significativa clasificación 2 (canal 1). 110 C.3. Intensidad de Arias y duración significativa clasificación 3 (canal 1). 111 C.5. Intensidad de Arias y duración significativa clasificación 3 (canal 1). 111 C.6. Intensidad de Arias y duración significativa clasificación 4 (canal 2). 111 C.6. Intensidad de Arias y duración significativa clasificación 4 (canal 2). 111 C.7.	A.19.	Caracterización del catálogo de eventos (Parte 19).	101
A.21. Caracterización del catálogo de eventos (Parte 21). 103 B.1. Caracterización del catálogo de estaciones (Parte 1). 104 B.2. Caracterización del catálogo de estaciones (Parte 2). 105 B.3. Caracterización del catálogo de estaciones (Parte 2). 105 B.3. Caracterización del catálogo de estaciones (Parte 3). 106 B.4. Caracterización del catálogo de estaciones (Parte 4). 107 B.5. Caracterización del catálogo de estaciones (Parte 5). 108 B.6. Caracterización del catálogo de estaciones (Parte 5). 109 C.1. Intensidad de Arias y duración significativa clasificación 1 (canal 1). 110 C.2. Intensidad de Arias y duración significativa clasificación 2 (canal 1). 110 C.3. Intensidad de Arias y duración significativa clasificación 2 (canal 2). 111 C.5. Intensidad de Arias y duración significativa clasificación 3 (canal 1). 111 C.6. Intensidad de Arias y duración significativa clasificación 4 (canal 2). 111 C.6. Intensidad de Arias y duración significativa clasificación 4 (canal 2). 111 C.6. Intensidad de Arias y duración significativa clasificación 4 (canal 1). 112	A.20.	Caracterización del catálogo de eventos (Parte 20).	102
B.1. Caracterización del catálogo de estaciones (Parte 1)	A.21.	Caracterización del catálogo de eventos (Parte 21)	103
B.2. Caracterización del catálogo de estaciones (Parte 2). 105 B.3. Caracterización del catálogo de estaciones (Parte 3). 106 B.4. Caracterización del catálogo de estaciones (Parte 4). 107 B.5. Caracterización del catálogo de estaciones (Parte 4). 107 B.5. Caracterización del catálogo de estaciones (Parte 5). 108 B.6. Caracterización del catálogo de estaciones (Parte 6). 109 C.1. Intensidad de Arias y duración significativa clasificación 1 (canal 1). 110 C.2. Intensidad de Arias y duración significativa clasificación 2 (canal 1). 110 C.3. Intensidad de Arias y duración significativa clasificación 2 (canal 1). 110 C.4. Intensidad de Arias y duración significativa clasificación 3 (canal 1). 111 C.5. Intensidad de Arias y duración significativa clasificación 3 (canal 2). 111 C.6. Intensidad de Arias y duración significativa clasificación 4 (canal 1). 112 C.7. Intensidad de Arias y duración significativa clasificación 4 (canal 2). 112 C.8. Intensidad de Arias y duración significativa clasificación 5 (canal 1). 113 C.10. Intensidad de Arias y duración significativa clasificación 6 (canal 1).<	B.1.	Caracterización del catálogo de estaciones (Parte 1)	104
B.3. Caracterización del catálogo de estaciones (Parte 3)	B.2.	Caracterización del catálogo de estaciones (Parte 2)	105
 B.4. Caracterización del catálogo de estaciones (Parte 4)	B.3.	Caracterización del catálogo de estaciones (Parte 3)	106
B.5. Caracterización del catálogo de estaciones (Parte 5)	B.4.	Caracterización del catálogo de estaciones (Parte 4)	107
B.6. Caracterización del catálogo de estaciones (Parte 6)	B.5.	Caracterización del catálogo de estaciones (Parte 5)	108
 C.1. Intensidad de Arias y duración significativa clasificación 1 (canal 1) 110 C.2. Intensidad de Arias y duración significativa clasificación 1 (canal 2) 110 C.3. Intensidad de Arias y duración significativa clasificación 2 (canal 1) 110 C.4. Intensidad de Arias y duración significativa clasificación 2 (canal 2) 111 C.5. Intensidad de Arias y duración significativa clasificación 3 (canal 1) 111 C.6. Intensidad de Arias y duración significativa clasificación 3 (canal 1) 111 C.7. Intensidad de Arias y duración significativa clasificación 4 (canal 1) 112 C.8. Intensidad de Arias y duración significativa clasificación 4 (canal 2) 112 C.9. Intensidad de Arias y duración significativa clasificación 5 (canal 2) 113 C.10. Intensidad de Arias y duración significativa clasificación 5 (canal 1) 113 C.11. Intensidad de Arias y duración significativa clasificación 6 (canal 1) 113 C.12. Intensidad de Arias y duración significativa clasificación 6 (canal 2)	B.6.	Caracterización del catálogo de estaciones (Parte 6)	109
 C.2. Intensidad de Arias y duración significativa clasificación 1 (canal 2) 110 C.3. Intensidad de Arias y duración significativa clasificación 2 (canal 1) 110 C.4. Intensidad de Arias y duración significativa clasificación 2 (canal 2) 111 C.5. Intensidad de Arias y duración significativa clasificación 3 (canal 1) 111 C.6. Intensidad de Arias y duración significativa clasificación 3 (canal 2) 111 C.7. Intensidad de Arias y duración significativa clasificación 4 (canal 1) 112 C.8. Intensidad de Arias y duración significativa clasificación 4 (canal 2) 112 C.9. Intensidad de Arias y duración significativa clasificación 5 (canal 1) 113 C.10. Intensidad de Arias y duración significativa clasificación 5 (canal 1) 113 C.11. Intensidad de Arias y duración significativa clasificación 6 (canal 1)	C.1.	Intensidad de Arias y duración significativa clasificación 1 (canal 1)	110
 C.3. Intensidad de Arias y duración significativa clasificación 2 (canal 1) 110 C.4. Intensidad de Arias y duración significativa clasificación 2 (canal 2) 111 C.5. Intensidad de Arias y duración significativa clasificación 3 (canal 1) 111 C.6. Intensidad de Arias y duración significativa clasificación 3 (canal 2) 111 C.7. Intensidad de Arias y duración significativa clasificación 4 (canal 1) 112 C.7. Intensidad de Arias y duración significativa clasificación 4 (canal 1) 112 C.8. Intensidad de Arias y duración significativa clasificación 4 (canal 2) 112 C.9. Intensidad de Arias y duración significativa clasificación 5 (canal 1) 113 C.10. Intensidad de Arias y duración significativa clasificación 5 (canal 2)	C.2.	Intensidad de Arias y duración significativa clasificación 1 (canal 2)	110
 C.4. Intensidad de Arias y duración significativa clasificación 2 (canal 2) 111 C.5. Intensidad de Arias y duración significativa clasificación 3 (canal 1) 111 C.6. Intensidad de Arias y duración significativa clasificación 3 (canal 2) 111 C.7. Intensidad de Arias y duración significativa clasificación 4 (canal 1) 112 C.8. Intensidad de Arias y duración significativa clasificación 4 (canal 2) 112 C.9. Intensidad de Arias y duración significativa clasificación 5 (canal 1) 113 C.10. Intensidad de Arias y duración significativa clasificación 5 (canal 1) 113 C.11. Intensidad de Arias y duración significativa clasificación 6 (canal 2) 113 C.12. Intensidad de Arias y duración significativa clasificación 6 (canal 1) 114 C.13. Intensidad de Arias y duración significativa clasificación 7 (canal 1)	C.3.	Intensidad de Arias y duración significativa clasificación 2 (canal 1)	110
 C.5. Intensidad de Arias y duración significativa clasificación 3 (canal 1)	C.4.	Intensidad de Arias y duración significativa clasificación 2 (canal 2)	111
 C.6. Intensidad de Arias y duración significativa clasificación 3 (canal 2) 111 C.7. Intensidad de Arias y duración significativa clasificación 4 (canal 1) 112 C.8. Intensidad de Arias y duración significativa clasificación 4 (canal 2) 112 C.9. Intensidad de Arias y duración significativa clasificación 5 (canal 1) 113 C.10. Intensidad de Arias y duración significativa clasificación 5 (canal 2) 113 C.11. Intensidad de Arias y duración significativa clasificación 6 (canal 2)	C.5.	Intensidad de Arias y duración significativa clasificación 3 (canal 1)	111
 C.7. Intensidad de Arias y duración significativa clasificación 4 (canal 1)	C.6.	Intensidad de Arias y duración significativa clasificación 3 (canal 2)	111
 C.8. Intensidad de Arias y duración significativa clasificación 4 (canal 2) 112 C.9. Intensidad de Arias y duración significativa clasificación 5 (canal 1) 113 C.10. Intensidad de Arias y duración significativa clasificación 5 (canal 2) 113 C.11. Intensidad de Arias y duración significativa clasificación 6 (canal 1) 113 C.12. Intensidad de Arias y duración significativa clasificación 6 (canal 2)	C.7.	Intensidad de Arias y duración significativa clasificación 4 (canal 1)	112
 C.9. Intensidad de Arias y duración significativa clasificación 5 (canal 1)	C.8.	Intensidad de Arias y duración significativa clasificación 4 (canal 2)	112
 C.10. Intensidad de Arias y duración significativa clasificación 5 (canal 2) 113 C.11. Intensidad de Arias y duración significativa clasificación 6 (canal 1) 113 C.12. Intensidad de Arias y duración significativa clasificación 6 (canal 2) 114 C.13. Intensidad de Arias y duración significativa clasificación 7 (canal 1) 114 C.14. Intensidad de Arias y duración significativa clasificación 7 (canal 2) 114 C.15. Intensidad de Arias y duración significativa clasificación 8 (canal 1) 114 	C.9.	Intensidad de Arias y duración significativa clasificación 5 (canal 1)	113
 C.11. Intensidad de Arias y duración significativa clasificación 6 (canal 1) 113 C.12. Intensidad de Arias y duración significativa clasificación 6 (canal 2) 114 C.13. Intensidad de Arias y duración significativa clasificación 7 (canal 1) 114 C.14. Intensidad de Arias y duración significativa clasificación 7 (canal 2) 114 C.15. Intensidad de Arias y duración significativa clasificación 8 (canal 1) 114 	C.10.	Intensidad de Arias y duración significativa clasificación 5 (canal 2)	113
 C.12. Intensidad de Arias y duración significativa clasificación 6 (canal 2) 114 C.13. Intensidad de Arias y duración significativa clasificación 7 (canal 1) 114 C.14. Intensidad de Arias y duración significativa clasificación 7 (canal 2) 114 C.15. Intensidad de Arias y duración significativa clasificación 8 (canal 1)	C.11.	Intensidad de Arias y duración significativa clasificación 6 (canal 1)	113
 C.13. Intensidad de Arias y duración significativa clasificación 7 (canal 1) 114 C.14. Intensidad de Arias y duración significativa clasificación 7 (canal 2) 114 C.15. Intensidad de Arias y duración significativa clasificación 8 (canal 1)	C.12.	Intensidad de Arias y duración significativa clasificación 6 (canal 2)	114
C.14. Intensidad de Arias y duración significativa clasificación 7 (canal 2) 114 C.15. Intensidad de Arias y duración significativa clasificación 8 (canal 1)	C.13.	Intensidad de Arias y duración significativa clasificación 7 (canal 1)	114
C 15 Intensidad de Arias y duración significativa clasificación 8 (canal 1) 115	C.14.	Intensidad de Arias y duración significativa clasificación 7 (canal 2)	114
C.15. Intensidad de Arias y duración significativa erasineación o (canar 1)	C.15.	Intensidad de Arias y duración significativa clasificación 8 (canal 1)	115

C.16.	Intensidad de Arias y duración significativa	a clasificación	8 (canal 2)	115
C.17.	Intensidad de Arias y duración significativa	l clasificación	9 (canal 1)	115
C.18.	Intensidad de Arias y duración significativa	a clasificación	9 (canal 2)	116
C.19.	Intensidad de Arias y duración significativa	a clasificación	$10 (canal 1). \dots$	116
C.20.	Intensidad de Arias y duración significativa	a clasificación	$10 (canal 2). \dots$	116
C.21.	Intensidad de Arias y duración significativa	a clasificación	11 (canal 1). \dots .	117
C.22.	Intensidad de Arias y duración significativa	a clasificación	11 (canal 2)	117
C.23.	Intensidad de Arias y duración significativa	a clasificación	$12 (canal 1). \dots$	117
C.24.	Intensidad de Arias y duración significativa	a clasificación	12 (canal 2)	117
C.25.	Intensidad de Arias y duración significativa	a clasificación	13 (canal 1)	118
C.26.	Intensidad de Arias y duración significativa	a clasificación	13 (canal 2)	118
C.27.	Intensidad de Arias y duración significativa	a clasificación	$14 (canal 1). \dots \dots$	118
C.28.	Intensidad de Arias y duración significativa	a clasificación	14 (canal 2)	119
C.29.	Intensidad de Arias y duración significativa	a clasificación	15 (canal 1)	119
C.30.	Intensidad de Arias y duración significativa	a clasificación	15 (canal 2)	119
C.31.	Intensidad de Arias y duración significativa	a clasificación	16 (canal 1)	119
C.32.	Intensidad de Arias y duración significativa	a clasificación	16 (canal 2)	120
C.33.	Intensidad de Arias y duración significativa	a clasificación	$17 (canal 1). \dots$	120
C.34.	Intensidad de Arias y duración significativa	a clasificación	$17 (canal 2). \dots$	120
C.35.	Intensidad de Arias y duración significativa	a clasificación	18 (canal 1)	121
C.36.	Intensidad de Arias y duración significativa	a clasificación	18 (canal 2)	121
C.37.	Intensidad de Arias y duración significativa	a clasificación	19 (canal 1) $($	121
C.38.	Intensidad de Arias y duración significativa	a clasificación	19 (canal 2)	122
C.39.	Intensidad de Arias y duración significativa	a clasificación	20 (canal 1)	122
C.40.	Intensidad de Arias y duración significativa	a clasificación	20 (canal 2)	122

Índice de Ilustraciones

2.1.	Distribución de las placas tectónicas en la Tierra (PRS, 2020)	4
2.2.	Zona de subducción y tipos de sismos que ocurren en el territorio nacional (CSN,	
	2014).	5
2.3.	Esquema de definiciones de distancias utilizadas en ingeniería sísmica (Loyola,	
	2020).	7
2.4.	Tendencia de la Intensidad de Arias acumulada a lo largo del tiempo y acelero-	
	gramas registrados por las estaciones (a) Amatrice y (b) Norcia para terremotos	
	ocurridos el 2016 en el centro de Italia (Fasan et al., 2016).	9
2.5.	Evaluación de la duración entre intervalos (umbral de aceleración de 0.05g) para	
	los movimientos del suelo registrados en el sitio del aeropuerto de North Palm	
	Springs durante terremotos de $M = 6.0$ y 7.3 (Kempton y Stewart, 2006)	10
2.6.	Evaluación de los parámetros de duración significativa D_{5-75} y D_{5-95} para los	
	movimientos del suelo registrados en el sitio del aeropuerto de North Palm	
	Springs (Kempton y Stewart, 2006)	10
2.7.	Deformaciones producidas por las ondas de cuerpo donde se caracterizan las (a)	
	ondas P y (b) ondas SV (Kramer, 1996). \ldots	11
2.8.	Deformaciones producidas por las ondas de superficie donde se caracterizan las	
	(a) ondas Rayleigh y (b) ondas Love (Kramer, 1996).	12
2.9.	Identificación de las ondas de cuerpo (P y S) y ondas de superficie para un	
	registro (MTU, s.f.).	12
2.10.	Ejemplo de envolvente entregada por MATLAB para el evento ocurrido el 13 de	
	noviembre de 2009. \ldots	13
2.11.	Función de modulación gamma para valores específicos de α (Loyola, 2020)	14
3.1.	Distribución de los eventos en planta según fuente sismogénica	19
3.2.	Histograma de eventos según fuente sismogénica	20
3.3.	Distribución de los eventos en planta según fuente sismogénica y magnitud	21
3.4.	Histograma de eventos según magnitud	22
3.5.	Histograma de eventos según año	23
3.6.	Distribución en planta de las estaciones utilizadas	24
3.7.	Histograma de estaciones según velocidad de onda de corte V_{s30}	25
3.8.	Histograma de estaciones según tipo de suelo.	26
3.9.	Histograma de estaciones según tipo de suelo duro y blando	27
3.10.	Histograma de registros según fuente sismogénica	28
3.11.	Histograma de registros según magnitud	29
3.12.	Histograma de registros según velocidad de onda de corte V_{s30}	30
3.13.	Histograma de registros según tipo de suelo.	31
3.14.	Histograma de registros según tipo de suelo duro y blando	32
3.15.	Representación visual de la distancia hipocentral (Kayal, 2006)	32

3.16.	Sistema de coordenadas geográficas (ArcGIS, s.f.).	33
3.17.	Esquema de las coordenadas utilizadas para describir los modelos de falla finita.	
	Se muestra el rumbo (ϕ), el manteo (δ), la profundidad de la esquina inferior	
	izquierda (H_{top}) , largo (L) y ancho (W) del área de ruptura (Idini, 2016)	34
3.18.	Área de ruptura propuesta para el terremoto de Chile Central en 1985 (Idini,	
	2016)	35
3.19.	Área de ruptura propuesta para el terremoto de Antofagasta en 1995 (Idini, 2016).	36
3.20.	Área de ruptura propuesta para el terremoto de Tocopilla en 2007 (Idini, 2016).	36
3.21.	Área de ruptura propuesta para el terremoto de Maule en 2010 (Idini, 2016).	37
3.22.	Área de ruptura propuesta para el terremoto de Iquique en 2014 (Idini, 2016).	37
3.23.	Histograma de registros según distancia a la fuente sísmica	39
3.24.	Magnitud vs. PGA para sismos intraplaca de profundidad intermedia	40
3.25.	Distancia a la fuente sísmica v s. PGA para sismos interplaca tipo "thrust".	40
3.26.	Distancia a la fuente sísmica vs. PGA para sismos intraplaca de profundidad	
	intermedia	41
3.27.	Distancia a la fuente sísmica vs. magnitud.	41
4.1.	Remoción de ruido aplicando un filtro pasa banda al registro de aceleración	
	correspondiente al terremoto de Coquimbo 2015 obtenido en la estación V01A.	44
4.2.	Envolventes correspondientes al canal 1 (izquierda) y canal 2 (derecha) del even-	
	to ocurrido el 03 de abril del 2014 obtenido por la estación PB08, con un np de	
	460	46
4.3.	Envolventes correspondientes al canal 1 (izquierda) y canal 2 (derecha) del even-	
	to ocurrido el 03 de abril del 2014 obtenido por la estación PB08, con un np de	
	1000	46
4.4.	Envolvente correspondiente al canal 1 del evento ocurrido el 03 de abril del 2014	
	obtenido por la estación PB08, con un np de 861	47
4.5.	Envolvente correspondiente al canal 2 del evento ocurrido el 03 de abril del 2014	
1.0	obtenido por la estación PB08, con un np de 907	47
4.0.	Ejemplo de conjunto de envolventes para la clasificación 3 (canal 1) \mathbf{E}	48
4.1.	Ejemplo de conjunto de envolventes para la clasificación 3 (canal 2) G	48
5.1. E 9	Conjunto de envolventes para la clasificación 1 (canal 1)	50
0.2. 5-2	Conjunto de envolventes para la clasificación 1 (canal 2)	50
0.5.	v Hert	51
5.4	Conjunto de envelventes para la elegificación 2 (canal 1)	51
5.5	Conjunto de envolventes para la clasificación 2 (canal 1)	50
5.6	Conjunto de envolventes para la clasificación 3 (canal 1)	52
5.0. 5.7	Conjunto de envolventes para la clasificación 3 (canal 1). \ldots \ldots \ldots	53
5.8	Conjunto de envolventes para la clasificación 4 (canal 2)	54
5.0. 5.0	Conjunto de envolventes para la clasificación 4 (canal 1). $\dots \dots \dots \dots \dots$	55
5.10	Conjunto de envolventes para la clasificación 5 (canal 2). \ldots	56
5.10.	Conjunto de envolventes para la clasificación 5 (canal 1). \ldots \ldots \ldots	56
5.12	Conjunto de envolventes para la clasificación 6 (canal 2). \ldots \ldots \ldots	57
5.12.	Conjunto de envolventes para la clasificación 6 (canal 2)	58
5.14	Comparación entre funciones envolventes: spline cubic de Hermite v gamma (a)	50
U.T.T.	Envolventes a lo largo del tiempo sobre registro de aceleraciones: (b) Intensidad	
	de Arias acumulada para las envolventes (Broccardo y Dabaghi 2017)	50
	a mas a mas a more as chronenes (Dioccardo y Dabagin, 2017)	00

х

5 1 5	Conjunto de envolventes para la clasificación 7 (canal 1)	50
5.16	Conjunto de envolventes para la clasificación 7 (canal 1). $\dots \dots \dots \dots$	60
5.10.	Conjunto de envolventes para la clasificación 7 (canal 2)	00
5.17.	Conjunto de envolventes para la clasificación 8 (canal 1)	61
5.18.	Conjunto de envolventes para la clasificación 8 (canal 2)	61
5.19.	Conjunto de envolventes para la clasificación 9 (canal 1)	62
5.20.	Conjunto de envolventes para la clasificación 9 (canal 2)	62
5.21.	Conjunto de envolventes para la clasificación 10 (canal 1)	63
5.22.	Conjunto de envolventes para la clasificación 10 (canal 2).	63
5.23.	Conjunto de envolventes para la clasificación 11 (canal 1).	64
5.24.	Conjunto de envolventes para la clasificación 11 (canal 2).	65
5.25.	Conjunto de envolventes para la clasificación 12 (canal 1).	66
5.26.	Conjunto de envolventes para la clasificación 12 (canal 2).	66
5.27.	Conjunto de envolventes para la clasificación 13 (canal 1).	67
5.28.	Conjunto de envolventes para la clasificación 13 (canal 2).	68
5.29.	Conjunto de envolventes para la clasificación 14 (canal 1)	69
5.30.	Conjunto de envolventes para la clasificación 14 (canal 2)	69
5.31.	Conjunto de envolventes para la clasificación 15 (canal 1)	70
5.32.	Conjunto de envolventes para la clasificación 15 (canal 2)	70
5.33.	Conjunto de envolventes para la clasificación 16 (canal 1).	71
5.34.	Conjunto de envolventes para la clasificación 16 (canal 2).	71
5.35.	Conjunto de envolventes para la clasificación 17 (canal 1).	72
5.36.	Conjunto de envolventes para la clasificación 17 (canal 2).	73
5.37.	Conjunto de envolventes para la clasificación 18 (canal 1).	74
5.38.	Conjunto de envolventes para la clasificación 18 (canal 2).	74
5.39.	Conjunto de envolventes para la clasificación 19 (canal 1).	75
5.40.	Conjunto de envolventes para la clasificación 19 (canal 2)	75
5.41.	Conjunto de envolventes para la clasificación 20 (canal 1).	76
5.42.	Conjunto de envolventes para la clasificación 20 (canal 2)	76

Capítulo 1 Introducción

Es sabido que Chile se encuentra ubicado en una de las regiones sísmicas más activas del planeta. Lo anterior se explica principalmente por el contacto sismogénico de la placa de Nazca con la placa Sudamericana que da origen a distintos tipos de terremotos. En efecto, los últimos registros importantes corresponden a los eventos de Maule (2010, 8.8 M_w), Iquique (2014, 8.2 M_w) e Illapel (2015, 8.4 M_w). En este contexto, el estudio del comportamiento del movimiento de suelo a través del análisis de la envolvente del registro de aceleración que permita entender el riesgo sísmico de aquellos eventos más recurrentes que suceden en la zona en función de sus características es un aspecto muy relevante.

De esta manera, se caracteriza en primera instancia la información correspondiente a 272 estaciones ubicadas a lo largo del país, 924 eventos y 4.076 registros recopilados. La información se obtiene desde diversas fuentes, tales como la Oficina Nacional de Emergencia del Ministerio del Interior, Centro Sismológico Nacional, Integrated Plate Boundary Observatory Chile y la Red de Cobertura Nacional de Acelerógrafos del Departamento de Ingeniería Civil de la Universidad de Chile (Tiznado, 2020). Una vez caracterizada la base de datos, se procede a trabajar con los acelerogramas los cuales luego de procesarlos, poseen una forma que puede ser caracterizada a través de la generación de su envolvente.

El desarrollo de las envolventes para cada registro se realiza considerando los eventos más recurrentes en el territorio nacional, es decir, sismos interplaca tipo "thrust" e intraplaca de profundidad intermedia, de magnitud mayor a 6.5 M_w y distancia a la fuente sísmica menor a 250 km. Este proceso se realiza a través del programa MATLAB utilizando su función envelope peak. Una vez escogida la envolvente que mejor se adecúa al registro de aceleración, se realiza una comparación de la envolvente escogida con una función envolvente propuesta anteriormente (Saragoni y Hart, 1973) y se estudian aquellas envolventes que se escapan de lo esperado para poder proponer una función más representativa.

Teniendo en cuenta que Chile es uno de los países con más actividad sísmica en el mundo, donde se han registrado grandes terremotos en el pasado, y por lo mismo, existe una enorme posibilidad de que sucedan grandes terremotos en el futuro, resulta de vital importancia estudiar, comprender y evaluar el peligro que los sismos representan en el país, implementar todos los procedimientos necesarios para reducir los riesgos, mejorar el diseño y construcción de infraestructuras adecuadas, y proporcionar la información pertinente para minimizar los efectos devastadores que pudieran producir estos eventos sísmicos.

1.1. Objetivos

1.1.1. Objetivo principal

El objetivo general corresponde al estudio del comportamiento de la envolvente en el tiempo de los registros de aceleración para la sismicidad de tipo subductiva en Chile para poder utilizarse en la generación de curvas de atenuación.

1.1.2. Objetivos específicos

- Recopilar del estudio realizado por Tiznado (Tiznado, 2020) los registros de aceleración de los sismos chilenos mayores a 5.0 M_w y caracterizarlos según fuente sismogénica, magnitud, velocidad de onda de corte, tipo de suelo y distancia a la fuente sísmica, entre otros.
- Generar las envolventes en el tiempo a través de la función envelope peak de MATLAB para eventos sísmicos de magnitud mayor a 6.5 M_w y distancia a la fuente sísmica menor a 250 km.
- Comparar los resultados obtenidos con una envolvente conocida correspondiente a la función de modulación gamma (Saragoni y Hart, 1973), analizando su representatividad para el proceso subductivo chileno correspondiente a múltiples fases de movimiento fuerte.

1.2. Organización y alcances

En el Capítulo 1 se presenta una breve introducción del trabajo de título, los objetivos, tanto general como específicos, la organización empleada y los respectivos alcances.

En el Capítulo 2, se da a conocer un marco bibliográfico donde se aborda el contexto sismotectónico chileno, se presentan las características de los eventos sísmicos junto con los principales terremotos ocurridos en el país. Luego se detallan las características de los registros sísmicos que sientan las bases del presente trabajo.

En el Capítulo 3, se describe la base de datos a utilizar, se caracterizan los eventos sísmicos, las estaciones sismológicas y los registros utilizados. Además, se detalla la metodología empleada para el cálculo de la distancia a la fuente sísmica.

En el Capítulo 4, se describe la metodología empleada al momento de procesar las señales desde un punto de vista teórico para luego dar a conocer el algoritmo computacional utilizado para este fin junto con los pasos realizados para obtener las envolventes de los registros.

En el Capítulo 5, se presentan las envolventes de los registros de aceleración obtenidas y además, se realiza un análisis de estos.

Finalmente, en el Capítulo 6, es posible dar cuenta de las principales conclusiones del presente trabajo y aquellas recomendaciones que surgen de este.

Capítulo 2

Antecedentes de estudio

2.1. Marco sismotectónico

La tectónica de placas corresponde a la teoría unificadora de la geología y geofísica la cual sostiene que la región más externa y rígida de la Tierra, denominada litosfera, constituida por la corteza y la parte superior del manto, se encuentra fragmentada en numerosas piezas rígidas de diferentes tamaños y formas denominadas *placas*, que se mueven entre sí.

El movimiento de estas placas no ocurre de manera uniforme puesto que existen zonas donde el movimiento es muy lento y otras donde el movimiento es muy rápido, como por ejemplo, la región de Chile Central, donde la placa de Nazca subduce bajo la placa Sudamericana a una velocidad de convergencia relativa de 73.9 mm/año (DeMets et al., 2010). En consecuencia, estos movimientos tectónicos producen deformaciones en la corteza terrestre, generando la formación de montañas, actividad sísmica, vulcanismo, pliegues y fallas, cuencas sedimentarias, entre otros procesos geológicos.

Los límites de las placas tectónicas se dividen en:

- 1. Bordes divergentes: corresponde a aquella zona donde se genera nueva corteza a medida que las placas se separan unas de otras y el magma que empuja hacia arriba desde el manto crea una nueva corteza. Un ejemplo de este tipo de límites es la dorsal Mesoatlántica.
- 2. Bordes convergentes: corresponde a aquella zona donde las placas se mueven unas hacia otras chocando entre sí y, a veces, una placa se hunde o subduce debajo de otra. La convergencia se puede clasificar en:
 - Oceánica-continental: ocurre cuando una placa con corteza oceánica colisiona con una placa con corteza continental. Esta última al ser más ligera flota sobre la corteza oceánica la cual se desliza bajo el manto. Un ejemplo de este tipo de borde corresponde a la interacción entre la placa de Nazca (oceánica) con la placa Sudamericana (continental).
 - Oceánica-oceánica: ocurre cuando dos placas con corteza oceánica colisionan y en consecuencia, la más antigua, que es más densa y fría, subduce bajo la otra formando una fosa oceánica. Un ejemplo de lo anterior corresponde a la fosa de Las Marianas. Esta colisión también puede producir actividad volcánica donde se genera una cadena en forma de arco de islas volcánicas.

- Continental-continental: ocurre cuando dos placas continentales chocan entre sí. En este caso, no existe subducción debido a que las cortezas continentales tienen una gran capacidad de flotación resistiendo el movimiento descendente. De esta manera, la corteza tiende a doblarse y ser empujada hacia arriba o hacia los lados. La cordillera del Himalaya corresponde al resultado de varias colisiones continentales producidas a lo largo de varios millones de años entre la placa India y la placa Euroasiática.
- 3. Bordes transformantes: corresponde a aquella zona donde las placas se mueven horizontalmente de manera paralela pero en sentido contrario. Existen dos tipos de fallas transformantes, las que dividen y desplazan las dorsales oceánicas en segmentos cortos y rectos, y por otro lado, las que ocurren entre los bordes pasivos de las placas tectónicas como por ejemplo, la falla de San Andrés, en California, donde la placa del Pacífico, ubicada al oeste se mueve hacia el noroeste en relación con la placa Norteamericana, provocando terremotos a lo largo de la falla.

Las principales placas tectónicas son: del Pacífico, Antártica, Sudamericana, Norteamericana, Africana, Euroasiática y Australiana. Luego las placas de tamaño mediano corresponden a la placa del Caribe, de Cocos, de Nazca, India, Filipina, Arábiga, de Scotia y de Juan de Fuca. A continuación se ilustran sus ubicaciones:

Figura 2.1: Distribución de las placas tectónicas en la Tierra (PRS, 2020).

En la Figura 2.1 es posible apreciar que Chile está ubicado sobre la placa Sudamericana, la cual limita al oeste en un margen convergente con las placas de Nazca y Antártica, generando zonas de subducción, mientras que la placa de Scotia desliza horizontalmente respecto a la placa Sudamericana, en un borde transformante. Luego, es evidente que todo Chile está expuesto a la ocurrencia de terremotos.

Tal como se mencionó anteriormente, debido a la alta velocidad de convergencia entre la placa de Nazca y Sudamericana, la sismicidad en esa zona es la más intensa y produce los mayores terremotos en el país. En general, estas placas están "trabadas", acumulando energía hasta que, finalmente, esta energía es liberada causando un terremoto (CSN, 2014).

Los tipos de sismos se clasifican en:

- a) "Outer-rise": sismos ocurridos bajo el mar, al interior de la placa oceánica de Nazca. Este tipo de eventos están alejados de la costa chilena pero pueden generar tsunamis importantes. En Chile no hay registros de este tipo de sismos con magnitud mayor a 7.5 M_w .
- b) Interplaca tipo "thrust": ocurren cuando la placa oceánica de Nazca que avanza de oesteeste y la placa continental Sudamericana que avanza en sentido contrario interactúan entre sí generando la zona de subducción que da origen a la mayoría de sismos ocurridos en el territorio nacional. Ejemplos de este tipo de sismos son el terremoto de Valdivia (1960, 9.5 M_w), Maule (2010, 8.8 M_w), Iquique (2014, 8.2 M_w) e Illapel (2015, 8.4 M_w).
- c) Intraplaca oceánica: también conocidos como sismos de profundidad intermedia, ocurren al interior de la placa de Nazca producto del quiebre de esta placa a profundidades de entre 60 y 300 [km] por lo que no suponen un peligro tsunamigénico pero aquellos sismos más superficiales si pueden generar un gran daño estructural. Ejemplos de este tipo de sismos son el terremoto de Chillán (1939, 7.8 M_w) y Punitaqui (1997, 7.1 M_w).
- d) Intraplaca continental: también conocidos como sismos corticales o superficiales, ocurren al interior de la placa continental Sudamericana y se producen en fallas al interior de la corteza a muy baja profundidad por lo que pueden tener un alto potencial de daño. Ejemplos de este tipo de sismos son el terremoto de Las Melosas (1958, 6.9 M_w), Aroma (2001, 6.3 M_w) y Aysén (2007, 6.2 M_w).
- e) Intraplaca profundo: ocurren al interior de la placa de Nazca al igual que los intraplaca de profundidad intermedia pero la diferencia es que estos eventos ocurren a profundidades mayores de 250 km.

La ubicación de los tipos de sismos mencionados anteriormente se puede apreciar en la Figura 2.2 a continuación:

Figura 2.2: Zona de subducción y tipos de sismos que ocurren en el territorio nacional (CSN, 2014).

2.2. Características de los eventos sísmicos

2.2.1. Magnitud

La magnitud está relacionada con la cantidad de energía sísmica liberada en el hipocentro del terremoto. Se basa en la amplitud de las ondas sísmicas registradas por instrumentos que tienen una calibración común y está representada por un único valor determinado instrumentalmente (USGS, 2021). Este valor puede expresarse en números enteros y fracciones decimales. Debido a la base logarítmica de la escala, cada aumento de magnitud de un número entero representa un aumento de diez veces en la amplitud medida.

La primera escala de magnitud sísmica correspondiente a la escala sismológica de Richter, denominada magnitud local M_l , fue propuesta en 1935 por Charles F. Richter, y desarrollada en conjunto con Beno Gutenberg. Luego, en 1979, Thomas C. Hanks y Hiroo Kanamori desarrollaron la magnitud de momento M_w como alternativa más precisa a la magnitud local M_l (Hanks y Kanamori, 1979) y desde entonces se ha convertido en el método más común para describir el tamaño de un evento sísmico, donde se mide cuantitativamente la cantidad de energía liberada producto de un sismo.

La magnitud de momento se calcula a partir de la falla y el desplazamiento promedio que se produce en la ruptura y se puede considerar como un tamaño relativo del evento sísmico. Tal como se mencionó anteriormente, es una medida más precisa y consistente que la magnitud local M_l , la cual sólo se basa en la amplitud de las ondas sísmicas registradas por los sismógrafos y tiene la desventaja de saturarse para sismos de magnitudes altas.

2.2.2. Profundidad focal

La profundidad focal de un terremoto se refiere a la distancia vertical desde la superficie terrestre hasta el hipocentro, que corresponde al punto de origen (foco) del evento sísmico donde se produce la liberación de energía. Los terremotos tienen lugar en la corteza o manto superior, por lo tanto, pueden ocurrir a diferentes profundidades, desde la superficie hasta aproximadamente 800 kilómetros bajo el nivel de suelo.

La profundidad de un terremoto puede afectar la intensidad de las ondas sísmicas que viajan a la superficie y, por lo tanto, el daño que se puede producir en las estructuras. Por ejemplo, los terremotos superficiales suelen ser más intensos que los terremotos profundos debido a que las ondas sísmicas tienen menos material para viajar antes de llegar a la superficie. Esta profundidad se puede determinar a través de la información obtenida por las estaciones sismológicas que registran las ondas sísmicas generadas por el terremoto.

2.2.3. Distancia a la fuente sísmica

Corresponde a la distancia entre el sitio de donde se obtiene la observación, es decir, desde la estación sismológica, a la ubicación de la fuente sísmica que genera la onda que la produce. Las definiciones más utilizadas de distancias son:

1. Distancia epicentral (R_{epi}) : se define como la distancia entre la estación sismográfica y el epicentro que corresponde a la proyección en superficie del inicio de la ruptura del evento sísmico.

- 2. Distancia hipocentral (R_{hyp}) : se define como la distancia entre la estación sismográfica y el hipocentro del terremoto o inicio de la ruptura del evento sísmico, considerando su profundidad.
- 3. Distancia Joyner-Boore (R_{JB}) : corresponde a una medida de distancia para fuentes extendidas y se define como la menor distancia entre la posición del sitio que registra la observación y un punto perteneciente a la proyección en superficie del área del plano de ruptura del evento sísmico.
- 4. Distancia área ruptura (R_{rup}) : corresponde a una medida de distancia para fuentes extendidas y se define como la menor distancia entre la posición del sitio que registra la observación y un punto perteneciente al área del plano de ruptura del evento sísmico, considerando su ubicación en profundidad.
- 5. Distancia área aspereza (R_{asp}) : también es una medida de distancia para fuentes extendidas y se define como la distancia más cercana entre la posición del sitio que registra la observación y el área de aspereza, correspondiente a la zona de mayor liberación de esfuerzo.

En la Figura 2.3 presentada a continuación se ilustran los distintos tipos de distancias a la fuente sísmica.

Figura 2.3: Esquema de definiciones de distancias utilizadas en ingeniería sísmica (Loyola, 2020).

2.3. Principales terremotos registrados en el país

1. Valdivia 1960: el domingo 22 de mayo de 1960, a las 15:11 horas, ocurrió el evento sísmico de mayor magnitud registrado en el mundo instrumentalmente. Este megaterremoto de magnitud 9.5 M_w , con epicentro costero y un deslizamiento promedio de 17 metros a lo largo de una ruptura de 850 por 130 kilómetros cuadrados (Barrientos y Ward, 1990), entre Concepción y la Península de Taitao liberó una gran cantidad de energía durante más de cinco minutos, generando deformaciones permanentes en la superficie terrestre junto con un devastador tsunami que impactó las costas chilenas y extensas regiones de toda la cuenca del Pacífico (PRS, 2020).

- 2. Chile Central 1985: el domingo 03 de marzo de 1985, a las 22:47 horas, ocurrió un gran terremoto de magnitud 8.0 M_w que produjo una gran cantidad de daño estructural en las localidades de San Antonio, Melipilla, Valparaíso y Viña del Mar así como también en Santiago. Fue posible identificar que se produjo una intensa actividad preliminar cerca del epicentro del terremoto principal durante 11 días antes del terremoto. Las réplicas del terremoto de 1985 definieron un área de ruptura de 170 por 110 kilómetros cuadrados y los datos históricos sugieren que la región al sur de la zona de ruptura debe considerarse una brecha de alto potencial sísmico que puede romperse en un gran terremoto en las próximas pocas decenas de años (Comte et al., 1986).
- 3. Antofagasta 1995: el domingo 30 de julio de 1995, alrededor de las 05:11 horas, ocurrió un fuerte terremoto de subducción de magnitud 8.1 M_w en el norte del país. El terremoto tuvo lugar justo al sur de la gran brecha sísmica donde había ocurrido anteriormente un gran terremoto de magnitud 9 M_w en 1877. La ruptura principal se inició por debajo de la península de Mejillones y se propagó hacia el sur. El área total de ruptura fue de 185 por 90 kilómetros cuadrados, provocando una ola de tsunami de 2 a 2.5 metros de altura, a lo largo de la costa desde Mejillones hasta Taltal (Delouis et al., 1997). A pesar de su gran magnitud, el terremoto de subducción de Antofagasta causó daños relativamente pequeños en el área afectada aunque lamentablemente dejó 3 muertos.
- 4. Maule 2010: el sábado 27 de febrero de 2010, a las 03:34 horas, un megaterremoto de magnitud 8.8 M_w sacudió la costa de la región del Maule. Este evento fue generado por la liberación repentina de energía debido a la concentración de esfuerzos en un segmento de la zona de subducción andina ampliamente conocida como brecha sísmica madura y fue el megaterremoto más grande registrado a lo largo de este segmento desde el terremoto de Valdivia de 1960 (Lorito et al., 2011). El tsunami que siguió causó graves daños en las costas adyacentes, con alturas máximas de ola de más de 10 metros en Constitución y una inundación devastadora en las islas Juan Fernández, a unos 600 kilómetros de la costa, dejando 525 víctimas fatales y cerca de 2 millones de damnificados.
- 5. Iquique 2014: el martes 01 de abril de 2014, a las 20:46 horas, ocurrió el terremoto del Norte Grande que rompió con una porción altamente acoplada de la brecha sísmica del norte del país la cual se rompió por última vez en 1877. La sismicidad frente a la costa de Iquique comenzó a aumentar en enero de 2014. Después del 16 de marzo, ocurrieron varios eventos de magnitud mayor a 6 M_w cerca de la zona de acoplamiento bajo. Estos eventos migraron hacia el norte durante unos 50 kilómetros hasta que ocurrió el terremoto del 01 de abril (Ruiz et al., 2014).
- 6. Illapel 2015: el miércoles 16 de septiembre de 2015, a las 19:54 horas, ocurrió una secuencia de terremotos en Coquimbo a lo largo de la interfaz de la zona de subducción en una brecha sísmica conocida. El evento principal, de magnitud 8.3 M_w , rompió una sección de 230 por 100 kilómetros cuadrados del límite entre las placas de Nazca y Sudamericana y fue seguido inmediatamente por olas de tsunami con una altura máxima de entre 10 y 11 metros sobre el nivel del mar medido justo al norte del epicentro (De Pascale et al., 2015) y varias réplicas, incluida una 7.1 M_w y un sismo de 7.6 M_w . Los efectos de los terremotos y tsunamis se observaron desde Valparaíso hasta La Serena y el temblor del suelo se sintió hasta Buenos Aires, Uruguay y el sur de Brasil, lugares a más de 1200 kilómetros al este del epicentro y dentro de regiones continentales estables (Candia et al., 2017).

2.4. Características de los registros sísmicos

2.4.1. Intensidad de Arias

La Intensidad de Arias, propuesta por A. Arias en 1970, es un parámetro de movimiento de suelo que contiene el potencial destructivo de un sismo y se define como la energía total almacenada por una serie infinita de osciladores de peso unitario, los cuales se caracterizan por tener un grado de libertad y frecuencias que varían uniformemente desde cero hasta infinito (Travasarou et al., 2003). La Intensidad de Arias se calcula como la integral del cuadrado de la aceleración en el tiempo, y su expresión se presenta en la Ecuación 2.1:

$$I_a = \frac{\pi}{2g} \int_0^{t_{max}} a^2(t) dt$$
 (2.1)

donde g corresponde a la aceleración de gravedad, a(t) corresponde a la aceleración del registro de interés, mientras que t_{max} es el tiempo de duración total del registro.

Figura 2.4: Tendencia de la Intensidad de Arias acumulada a lo largo del tiempo y acelerogramas registrados por las estaciones (a) Amatrice y (b) Norcia para terremotos ocurridos el 2016 en el centro de Italia (Fasan et al., 2016).

La Intensidad de Arias se calcula tradicionalmente por separado para cada una de las dos componentes horizontales del movimiento fuerte del suelo registrado. Sin embargo, esta puede variar según el autor, donde es posible estimar la Intensidad de Arias como la media aritmética de las componentes horizontales, la suma de las componentes horizontales, la media geométrica o como el máximo de las componentes horizontales.

La importancia de la Intensidad de Arias se debe a que la amplitud, el contenido de frecuencia y la duración del movimiento del suelo se incorporan en ella, por lo tanto, es probable que sea un predictor más efectivo del potencial de daño sísmico en relación con las estructuras de período corto, la licuefacción y la estabilidad de taludes sísmicos, y ha comenzado a considerarse como una medida de movimiento del suelo adecuada para su uso en el análisis probabilístico de peligrosidad sísmica, así como la estimación de pérdidas por terremotos (Lee et al., 2012).

2.4.2. Duración del movimiento fuerte

La duración de movimiento fuerte es un parámetro importante en la falla de estructuras o sistemas geotécnicos producto de la solicitación sísmica, debido al daño asociado a cargas cíclicas. A lo largo del tiempo se han propuesto muchos tipos de parámetros de duración donde los más utilizados son la duración entre intervalos (*bracketed duration*) y la duración significativa.

La duración entre intervalos se define como el tiempo transcurrido entre la primera y la última excursión más allá de un umbral de aceleración especificado, normalmente 0.05g o 0.1g. La desventaja de esta duración se debe a que los parámetros pueden ser sensibles a las aceleraciones de umbral y a los pequeños subeventos que ocurren hacia el final de una grabación. Por estas y otras razones, a menudo se prefieren otras definiciones de duración (Kempton y Stewart, 2006).

Figura 2.5: Evaluación de la duración entre intervalos (umbral de aceleración de 0.05g) para los movimientos del suelo registrados en el sitio del aeropuerto de North Palm Springs durante terremotos de M = 6.0 y 7.3 (Kempton y Stewart, 2006).

Por otra parte, la duración significativa se define como el intervalo de tiempo en que se ha liberado una cantidad determinada de energía. La acumulación de energía liberada se representa mediante la Intensidad de Arias definida anteriormente. Dos medidas comunes de duración significativa corresponden a los intervalos de tiempo entre 5-75% y 5-95% de la Intensidad de Arias acumulada.

Figura 2.6: Evaluación de los parámetros de duración significativa D_{5-75} y D_{5-95} para los movimientos del suelo registrados en el sitio del aeropuerto de North Palm Springs (Kempton y Stewart, 2006).

2.5. Respuesta sísmica del suelo

2.5.1. Propagación de ondas sísmicas

Cuando ocurre un terremoto, se produce una liberación de energía que genera vibraciones y ondas sísmicas que se propagan a través de la tierra. Estas ondas corresponden a las ondas de cuerpo que viajan por el interior de la tierra y las ondas de superficie que como su nombre lo indica, se transmiten a través de la superficie.

Existen dos tipos de ondas de cuerpo, las ondas P y ondas S. Las ondas P, también conocidas como ondas primarias, son más rápidas que las ondas S y generan un movimiento longitudinal, ya que mueven las partículas en la dirección de propagación del frente de ondas, produciendo dilatación y compresión del material que atraviesan, lo cual les permite viajar a través de los tres estados de la materia.

Las ondas S, generan un movimiento transversal, causando deformaciones de corte a medida que viajan a través de un material. El movimiento de una partícula individual es perpendicular a la dirección de viaje de la onda S (Kramer, 1996). Se propagan sobre un plano, por lo que se pueden descomponer en dos ondas con dirección de movimiento ortogonal: ondas SV (en el plano vertical) y ondas SH (en el plano horizontal).

Figura 2.7: Deformaciones producidas por las ondas de cuerpo donde se caracterizan las (a) ondas P y (b) ondas SV (Kramer, 1996).

Por otra parte, las ondas superficiales se generan debido a la interacción entre las ondas de cuerpo (P y S) y la superficie libre. Viajan a lo largo de la superficie terrestre de manera paralela y sus amplitudes decaen exponencialmente con la profundidad.

Existen dos tipos de ondas superficiales, las ondas Rayleigh y las ondas Love. Las ondas de Rayleigh, son producidas por la interferencia entre las ondas P y SV en la superficie terrestre e implican un movimiento tanto vertical como horizontal. Por su parte, las ondas Love resultan por la interacción de las ondas SH con una capa de la tierra superficial y no tienen una componente vertical asociada (Kramer, 1996).

Figura 2.8: Deformaciones producidas por las ondas de superficie donde se caracterizan las (a) ondas Rayleigh y (b) ondas Love (Kramer, 1996).

Una vez comprendido el comportamiento de las ondas, es posible identificarlas en los registros de aceleración de un determinado evento. Debido a que la velocidad de las ondas P es mayor que cualquier otra, es la primera en llegar, es decir, corresponde al primer pulso de energía registrado sobre el nivel de ruido existente. Luego, las ondas S se pueden identificar ya que están asociadas al inicio del movimiento fuerte. Finalmente, las ondas superficiales, se asocian al decaimiento de la amplitud del registro (coda). Lo anterior se ilustra en la Figura 2.9, donde se aprecia la llegada de las ondas P, ondas S y las ondas superficiales.

Figura 2.9: Identificación de las ondas de cuerpo (P y S) y ondas de superficie para un registro (MTU, s.f.).

2.6. Función envolvente de un registro

Al momento de estudiar la envolvente de un registro de aceleración, cualquier función que incremente de manera gradual desde cero hasta alcanzar su peak, representando la fase de movimiento fuerte y que luego decaiga gradualmente es válida como función envolvente en el tiempo. En el presente trabajo se aplicará la función *envelope* de MATLAB a registros de aceleración y se comparará con la función de modulación gamma (Saragoni y Hart, 1973).

2.6.1. Función envelope de MATLAB

El programa MATLAB contiene una función *envelope* que devuelve la envolvente de una señal (MathWorks, 2015). Para esta función se tienen tres tipos: *analytic*, *rms*, y *peak*.

La función envelope analytic devuelve las envolventes determinadas mediante la magnitud de su señal analítica. La función envelope rms devuelve las envolventes superior e inferior de la raíz cuadrada media de la señal analítica. Por último, la función envelope peak, devuelve las envolventes cuadradas peak superior e inferior. Las envolventes se determinan utilizando la interpolación por splines¹ sobre máximos locales separados por al menos np muestras. Esta función corresponde a la función utilizada en el presente trabajo debido a que es la más suavizada de las tres y por consiguiente, permite visualizar la forma que posee la envolvente del registro de una manera más adecuada.

Tabla 2.1: Entradas y salidas de la función envelope peak.

input \rightarrow	Х	secuencia de entrada, es decir, el registro o señal.
	np	separación entre peaks.
$\mathrm{output} \rightarrow$	yupper	envolvente superior de la secuencia de entrada.
	ylower	envolvente inferior de la secuencia de entrada.

Tal como se menciona en la Tabla 2.1, el número de np corresponde a la separación entre peaks, el cual varía por registro, y además, para cada canal horizontal. A continuación se muestra un ejemplo de la envolvente para el evento ocurrido el 13 de noviembre de 2009. En este caso, se utiliza un np de 750 para el canal horizontal 1 y se considera solamente la envolvente positiva que entrega el programa.

Figura 2.10: Ejemplo de envolvente entregada por MATLAB para el evento ocurrido el 13 de noviembre de 2009.

¹ Corresponden a un método numérico de interpolación que minimiza la curvatura general de la superficie a aproximar, lo cual resulta en una superficie suave y continua que pasa exactamente por los puntos deseados sin crear oscilaciones no deseadas.

2.6.2. Función de modulación gamma

Hoy en día, existen algoritmos numéricos que permiten generar registros artificiales compatibles en características generales con los registros que se obtienen a través de estaciones sismológicas. En este sentido, un tema importante corresponde al estudio de la forma que debe presentar la envolvente de un registro artificial de tal modo que sea capaz de describir el comportamiento que poseen los registros de una manera realista.

Debido a lo anterior, con el propósito de caracterizar los registros de aceleración, se han propuesto diferentes envolventes a lo largo del tiempo. En el presente trabajo se hará una comparación de las curvas obtenidas con la forma que posee función gamma propuesta por (Saragoni y Hart, 1973) la cual está definida por lo siguiente:

$$\varphi(t) = \alpha_1 t^{\alpha_2 - 1} \exp^{-\alpha_3 t} \tag{2.2}$$

donde α_1 , α_2 y α_3 son los parámetros de calibración.

Se tiene que α_1 es un parámetro relacionado con la intensidad, mientras que α_2 y α_3 son los parámetros que caracterizan la forma de la envolvente. A continuación se ilustra la función de modulación gamma para ciertos valores específicos de α .

Figura 2.11: Función de modulación gamma para valores específicos de α (Loyola, 2020).

Los parámetros de la función envolvente se pueden relacionar con las características de los eventos sísmicos, donde se espera que dichos parámetros estén definidos por propiedades con sentido físico presentes en los registros de aceleración. Por ende, se relaciona α_1 con la Intensidad de Arias (I_a) detallada en la Sección 2.4.1, α_2 con el intervalo de tiempo en el cual se alcanza el 5-95 % de la Intensidad de Arias (D_{5-95}) detallado en la Sección 2.4.2 y α_3 con el ratio en que se obtiene el peak de la envolvente (Boore, 2003) y el tiempo en donde se alcanza la reducción del 95 % del valor peak (λ_p).

Capítulo 3 Base de datos a utilizar

La base de datos de registros a utilizar es una recopilación de toda la información disponible hasta el año 2020 realizada por Tiznado (Tiznado, 2020) correspondiente a 524 estaciones activas y 16 inactivas. La información se recopila desde diversas fuentes, tales como la Oficina Nacional de Emergencia del Ministerio del Interior (ONEMI), Centro Sismológico Nacional (CSN), Integrated Plate Boundary Observatory Chile (IPOC) y la Red de Cobertura Nacional de Acelerógrafos del Departamento de Ingeniería Civil de la Universidad de Chile (RENADIC). Esta recopilación de diferentes registros se realiza complementando la información utilizada por Idini (Idini, 2016), junto con la otorgada por el Departamento de Ingeniería Civil de la Universidad de Chile.

3.1. Organización de la información

El manejo de los datos se realiza a través de la plataforma MATLAB, siguiendo la organización utilizada por Idini (Idini, 2016), González (González, 2017) y actualizada por Tiznado (Tiznado, 2020), donde la información se organiza en estructuras y contendores de mapas. La base de datos compilada consta de: 272 estaciones, 924 eventos y 4.076 registros.

Los Registros están organizados en forma de una estructura (struct), que corresponde a una forma de agrupar los datos de diferentes tipos, bajo un mismo nombre, donde cada registro posee una estación y evento único asociado, y está enumerado en la estructura por el índice *i* que es un entero positivo. A continuación se presenta un detalle de las propiedades asociadas a esta estructura.

Estructura	Propiedad	Descripción
	.canal1	Double con los datos del acelerograma en el canal 1 (componente horizontal).
	.canal2	Double con los datos del acelerograma en el canal 2 (componente horizontal).
$\operatorname{Registros}(i) \rightarrow$.canal3	<i>Double</i> con los datos del acelerograma en el canal 3 (componente vertical).
	.evento	Char con el nombre del evento.
	.estación	Char con el nombre de la estación.
	.muestreo	$Double\ {\rm con}$ la frecuencia de muestreo o toma
		de datos.

Tabla 3.1: Estructuración de la base de datos de Registros.

El CatalogoEventos está organizado como un objeto de mapa (*Map object*), es decir, una estructura de datos que permite recuperar valores utilizando una clave correspondiente. Las claves pueden ser número reales o vectores de caracteres (*string*) y proporcionan más flexibilidad para el acceso a los datos que los índices de una matriz o vector.

El nombre y la ID de cada evento está asociado al momento de su ocurrencia de la siguiente forma: 'AAMMDDhhmm', donde AA corresponde a los últimos 2 dígitos del año, MM corresponde al mes, DD corresponde al día, hh corresponde a la hora en formato de 24 horas y mm corresponde a los minutos, todos expresados en 2 dígitos.

Como se mencionó anteriormente, cada registro de la base de datos tiene un evento único asociado. De esta manera, para poder recuperar los datos de cada evento, la clave correspondiente será CatalogoEventos(Registros(i).evento). A continuación se presenta un detalle de las propiedades asociadas a este objeto.

Objeto	Propiedad	Descripción
	.id	Char con el nombre del evento.
	.fecha	Char con la fecha del evento.
	.hora	Char con la hora del evento.
	.magnitud	Double con la magnitud del evento.
	.latitud	Double con la latitud del evento [°].
	.longitud	Double con la longitud del evento [°].
$CatalogoEventos(i) {\rightarrow}$.profundidad	<i>Double</i> con la profundidad focal del hipocen- tro [km].
	.refhip	<i>Char</i> con referencia al catálogo de donde se obtienen las coordenadas del hipocentro.
	.refmag	Char con referencia al catálogo de donde se obtienen los parámetros del tensor de mo- mento $(M_w, \text{ rumbo}, \text{ manteo y mecanismo}).$
	.tipo	Char con la identificación del mecanismo del terremoto ^{a} .
	.rumbo	Double con el rumbo del tensor de momento.
	.manteo	<i>Double</i> con el manteo del tensor de momento.
	.arup	Double con el área de ruptura del sismo.
	.izqinf	<i>Double</i> con las coordenadas de latitud y lon- gitud de la izquierda inferior del área de rup- tura.
	.asp1	Double con el área de aspereza.
	.izqinfA1	Double con las coordenadas de latitud y lon-
	-	gitud de la izquierda inferior del área de aspereza.

Tabla 3.2: Estructuración de la base de datos de Eventos.

^a Eventos interplaca tipo "thrust" se indican con una letra T, eventos intraplaca de profundidad intermedia con una I, eventos "outer-rise" con un Or, eventos intraplaca profundos con un Ip y eventos corticales con una S.

El CatalogoEstaciones también está organizado como un objeto de mapa (*Map object*). Las estaciones están identificadas por nombres compuestos de tres a cinco caracteres formados por números y letras, construidos en base a una abreviación del nombre original, más una enumeración en algunos casos.

Ahora bien, en este caso, como cada registro de la base de datos tiene una estación única asociada, para poder recuperar los datos de cada estación, la clave correspondiente será CatalogoEstaciones(Registros(i).estacion). A continuación se presenta un detalle de las propiedades asociadas a este objeto.

Objeto	Propiedad	Descripción
	.estación	Char con el nombre de la estación.
	.latitud	Double con la latitud de la estación [°].
	.longitud	Double con la longitud de la estación [°].
	.canal1	<i>Char</i> con la descripción del canal 1 (compo- nente horizontal).
	.canal2	<i>Char</i> con la descripción del canal 2 (compo- nente horizontal).
	.canal3	<i>Char</i> con la descripción del canal 3 (compo- nente vertical).
$CatalogoEstaciones(i) {\rightarrow}$.VS	Double con la velocidad de onda de corte pro-
		medio de los primeros 30 metros de profun- didad.
	.Instrumento	<i>Char</i> con la descripción del instrumento uti- lizado.
	.Referencia	<i>Char</i> con la localidad o punto de interés cer- cano a la ubicación de la estación.
	.TipoSuelo_n	<i>Char</i> con el número de peaks que presenta el suelo de la estación.
	.TipoSuelo_433	Char con el tipo de suelo según NCh433.
	$.TipoSuelo_T$	Char con el tipo de suelo según el período.
	.Periodo	<i>Char</i> con el rango de período donde se pro- duce amplificación.
	.TipoSuelo_gen	Char con el tipo de suelo genérico.
	.old	<i>Double</i> con la información de antigüedad de la estación.

Tabla 3.3: Estructuración de la base de datos de Estaciones.

3.2. Eventos de la base de datos

En relación a los eventos sísmicos, se caracterizan aquellos datos de aceleraciones disponibles y magnitudes mayores a 5 M_w . De los 924 eventos de la base de datos, sólo se consideran aquellos que poseen el campo (*field* en MATLAB) con el mecanismo asociado y eventos con una distancia a la fuente sísmica menor a 800 km. En el Anexo A se muestra un detalle del catálogo de eventos en su totalidad.

A continuación se ilustra la caracterización de los datos. Cabe destacar que no todos los eventos de la base de datos poseen toda la información requerida por lo tanto esta caracterización es parcial.

3.2.1. Distribución de los eventos de la base de datos

• Fuente sismogénica

Figura 3.1: Distribución de los eventos en planta según fuente sismogénica.

A continuación se complementa la información de la Figura 3.1 con la distribución de los eventos según la fuente sismogénica:

Tipo de sismo	Cantidad de eventos
Interplaca tipo "thrust"	87
Intraplaca de profundidad intermedia	69
Outer-rise	10
Intraplaca profundo	2
Cortical o superficial	2
Total eventos	170

Tabla 3.4: Distribución de eventos según fuente sismogénica.

También es posible ilustrar esta distribución a través de un histograma:

Figura 3.2: Histograma de eventos según fuente sismogénica.

• Magnitud de momento

Distribución de los eventos en planta según fuente sismogénica y magnitud

Figura 3.3: Distribución de los eventos en planta según fuente sismogénica y magnitud.

A continuación se complementa la información de la Figura 3.3 con la distribución de los eventos según magnitud:

Magnitud M_w	Cantidad de eventos
$5 \le M_w < 5.5$	25
$5.5 \le M_w < 6$	73
$6 \le M_w < 6.5$	38
$6.5 \le M_w < 7$	19
$7 \le M_w < 7.5$	6
$7.5 \le M_w < 8$	4
$8 \le M_w < 8.5$	4
$8.5 \le M_w < 9$	1
Total eventos	170

Tabla 3.5: Distribución de eventos según magnitud

También es posible ilustrar esta distribución a través de un histograma:

Figura 3.4: Histograma de eventos según magnitud.

• Eventos por año

Año	Cantidad de eventos	Año	Cantidad de eventos
1981	1	2005	6
1985	5	2006	5
1996	1	2007	9
1997	3	2008	4
1998	5	2009	4
1999	3	2010	19
2000	3	2011	15
2001	3	2012	8
2002	9	2013	6
2003	3	2014	38
2004	4	2015	16
	Total eventos		170

Tabla 3.6: Distribución de eventos según año de ocurrencia

Es posible ilustrar esta distribución a través de un histograma:

Figura 3.5: Histograma de eventos según año.

3.3. Estaciones de la base de datos

Gracias a la información disponible se ha podido realizar un catastro de un total de 524 estaciones activas disponibles a lo largo de todo chile, además de 16 en estado inactivo.

Las variables consideradas corresponden a: la red de estaciones de ONEMI, CSN, IPOC y RENADIC, las coordenadas de las estaciones ilustradas en la Figura 3.6 y finalmente la clasificación del suelo detallada en la Tabla 3.7 a continuación:

Tipo de suelo	$\mathbf{V}_{s30} \; [\mathbf{m/s}]$
A: Roca, suelo cementado	≥ 900
B: Roca blanda o fracturada, suelo muy denso o muy firme	≥ 500
C: Suelo denso o firme	≥ 350
D: Suelo medianamente denso, o firme	≥ 180
E: Suelo de compacidad, o consistencia mediana	< 180
F: Suelos especiales	

Tabla 3.7: Clasificación de suelos (Decreto Supremo Nº61, 2011)

3.3.1. Distribución de las estaciones de la base de datos

• Coordenadas de las estaciones

Figura 3.6: Distribución en planta de las estaciones utilizadas.

• Velocidad de onda de corte 2

Velocidad de onda de corte V_{s30} [m/s]	Cantidad de estaciones
$200 \le V_{s30} < 300$	5
$300 \le V_{s30} < 400$	15
$400 \le V_{s30} < 500$	3
$500 \le V_{s30} < 600$	11
$600 \le V_{s30} < 700$	11
$700 \le V_{s30} < 800$	1
$800 \le V_{s30} < 900$	1
$1100 \le V_{s30} < 1200$	1
$1200 \le V_{s30} < 1300$	1
$1400 \le V_{s30} < 1500$	1
$1500 \le V_{s30} < 1600$	1
$3000 \le V_{s30} < 3100$	1
Total estaciones	52

Tabla 3.8: Distribución de estaciones según velocidad de onda de corte V_{s30} .

 $\overline{^2}$ La cantidad de estaciones se reduce debido a la gran cantidad de estaciones con Vs₃₀ asociada nula.
Es posible ilustrar esta distribución a través de un histograma:

Figura 3.7: Histograma de estaciones según velocidad de onda de corte V_{s30} .

• Tipo de suelo

Tipo de suelo	Cantidad de estaciones
А	28
В	35
\mathbf{C}	18
D	26
${ m E}$	5
\mathbf{F}	12
Total estaciones	124

Tabla 3.9: Distribución de estaciones según tipo de suelo.

Figura 3.8: Histograma de estaciones según tipo de suelo.

Ahora bien, como los suelos tipo F son suelos especiales, se excluyen de la siguiente clasificación donde se consideran suelos duros los tipos A, B y suelos blandos los tipos C, D y E. Resultando lo siguiente:

Tabla 3.10: Distribución de estaciones	según tip	po de suelo	duro y blando.
--	-----------	-------------	----------------

Tipo de suelo	Cantidad de estaciones
Suelo duro	63
Suelo blando	49
Total estaciones	112

Figura 3.9: Histograma de estaciones según tipo de suelo duro y blando.

3.4. Registros de la base de datos

En relación a los registros sísmicos, se utilizan aquellos datos de aceleraciones disponibles y magnitudes mayores a 5 M_w . De los 4.076 registros de la base de datos, sólo se consideran aquellos que poseen el campo (*field* en MATLAB) correspondiente, es decir, aquellos que tengan mecanismo asociado y se descartan todos los registros con una distancia a la fuente sísmica mayor a 800 km. Debido a lo anterior, esta caracterización es parcial.

3.4.1. Distribución de los registros de la base de datos

• Fuente sismogénica

Tipo de sismo	Cantidad de registros
Interplaca tipo "thrust"	818
Intraplaca de profundidad intermedia	346
Outer-rise	72
Cortical o superficial	33
Intraplaca profundo	22
Total registros	1291

Tabla 3.11: Distribución de registros según fuente sismogénica.

Figura 3.10: Histograma de registros según fuente sismogénica.

• Magnitud de momento

Magnitud M_w	Cantidad de registros
$5 \le M_w < 5.5$	42
$5.5 \le M_w < 6$	583
$6 \le M_w < 6.5$	303
$6.5 \le M_w < 7$	156
$7 \le M_w < 7.5$	36
$7.5 \le M_w < 8$	63
$8 \le M_w < 8.5$	76
$8.5 \le M_w < 9$	32
Total registros	1291

Tabla 3.12: Distribución de registros según magnitud

Figura 3.11: Histograma de registros según magnitud.

• Velocidad de onda de corte 3

Velocidad de onda de corte V_{s30} [m/s]	Cantidad de registros
$200 \le V_{s30} < 300$	40
$300 \le V_{s30} < 400$	94
$400 \le V_{s30} < 500$	29
$500 \le V_{s30} < 600$	41
$600 \le V_{s30} < 700$	55
$700 \le V_{s30} < 800$	1
$800 \le V_{s30} < 900$	44
$1100 \le V_{s30} < 1200$	13
$1200 \le V_{s30} < 1300$	2
$1400 \le V_{s30} < 1500$	3
$1500 \le V_{s30} < 1600$	24
$3000 \le V_{s30} < 3100$	3
Total registros	349

Tabla 3.13: Distribución de registros según velocidad de onda de corte V_{s30} .

 $[\]overline{\ }^{3}$ La cantidad de estaciones se reduce debido a la gran cantidad de registros con Vs₃₀ asociada nula.

Figura 3.12: Histograma de registros según velocidad de onda de corte V_{s30} .

• Tipo de suelo

Tipo de suelo	Cantidad de registros
А	392
В	280
\mathbf{C}	161
D	277
${ m E}$	59
\mathbf{F}	122
Total registros	1291

Tabla 3.14: Distribución de registros según tipo de suelo.

Figura 3.13: Histograma de registros según tipo de suelo.

Ahora bien, como los suelos tipo F son suelos especiales, se excluyen de la siguiente clasificación donde se consideran suelos duros los tipos A, B y suelos blandos los tipos C, D y E. Resultando lo siguiente:

Tipo de suelo	Cantidad de registros
Suelo duro	672
Suelo blando	497
Total registros	1169

Figura 3.14: Histograma de registros según tipo de suelo duro y blando.

3.5. Distancias a la fuente sísmica

Tal como se estudió en la Sección 2.2.3, se pueden distinguir distintas distancias a la fuente sísmica. En el presente estudio se trabaja principalmente con la distancia hipocentral ya que los eventos se modelan como fuentes sísmicas puntuales. Sin embargo, para grandes terremotos interplaca los cuales poseen zonas de grandes extensiones desde las cuales se generan las ondas responsables del movimiento de suelo, se debe trabajar con la distancia del área de ruptura.

3.5.1. Distancia hipocentral

A continuación se detallará el procedimiento realizado para calcular la distancia hipocentral. La Figura 3.15 muestra la geometría simple de la distancia epicentral X, la distancia hipocentral D y la profundidad de foco H de un terremoto.

Figura 3.15: Representación visual de la distancia hipocentral (Kayal, 2006).

Debido a que la Tierra es esférica, se debe representar por medio de un sistema de coordenadas 3D (x,y,z), donde las mediciones x,y representan la ubicación en la superficie de la Tierra (latitud y longitud) y z representa la altura bajo la superficie.

Figura 3.16: Sistema de coordenadas geográficas (ArcGIS, s.f.).

Los pasos realizados para calcular la distancia hipocentral se detallan en la Tabla 3.16.

Tabla 3.16: Resumen de pasos utilizados para calcular la distancia hipocentral.

1:	Se calcula el radio del hipocentro del evento sísmico. Para poder
	obtenerlo se debe calcular en primer lugar el radio terrestre de la
	latitud del sismo y luego, se le resta la profundidad del sismo.
2:	Se calculan las coordenadas cartesianas del hipocentro tomando en cuenta el radio del hipocentro, latitud y longitud del sismo.
3:	Se calcula el radio de la estación sismológica. Como la estación se encuentra en la superficie, no se le debe restar ningún tipo de profundidad por lo que sólo se realiza el cálculo del radio terrestre de la latitud de la estación.
4:	Se calculan las coordenadas cartesianas de la estación tomando en cuenta el radio, latitud y longitud de esta.
5:	Como se tienen las coordenadas cartesianas del hipocentro y de la estación, se procede a calcular la distancia euclidiana entre estas dos coordenadas tridimensionales.

3.5.2. Distancia área de ruptura

Para aquellos terremotos interplaca de gran magnitud se debe tener en consideración que las ondas dinámicas se producen debido al deslizamiento de un bloque sobre otro en la zona de subducción chilena. Este fenómeno se propaga a una velocidad determinada sobre un plano que se denomina área de ruptura. Con el propósito de modelar de manera simplificada este fenómeno, se utiliza una definición del plano de ruptura para eventos interplaca chilenos formada por un rectángulo cuyo largo se extiende a lo largo del rumbo del contacto entre placas y su ancho a lo largo del manteo (ver Figura 3.17). Para su localización dentro de un

plano de coordenadas, se utilizan la latitud, longitud y profundidad de su esquina inferior izquierda, vista con orientación de norte a sur (Idini, 2016). Así, para estos eventos se calcula la mínima distancia entre la posición donde se ubica la estación sismológica y un punto perteneciente al área del plano de ruptura del evento sísmico.

Figura 3.17: Esquema de las coordenadas utilizadas para describir los modelos de falla finita. Se muestra el rumbo (ϕ), el manteo (δ), la profundidad de la esquina inferior izquierda (H_{top}), largo (L) y ancho (W) del área de ruptura (Idini, 2016).

En la Tabla 3.17 se dan a conocer aquellas áreas de ruptura rectangulares propuestas por Idini (Idini, 2016) como modelos de falla finita para los terremotos de Chile Central (1985, 8.0 M_w), Antofagasta (1995, 7.8 M_w), Tocopilla (2007, 7.8 M_w), Maule (2010, 8.8 M_w), Iquique (2014, 8.2 M_w) e Illapel (2015, 8.3 M_w).

La ventaja de trabajar con los modelos propuestos como representación de la fuente sísmica, en lugar de considerar sólo el hipocentro, se debe a que estos permiten generar mejores representaciones de las trayectorias de las ondas emitidas en terremotos interplaca de gran magnitud. En estos casos, el hipocentro indica el lugar desde el cual se inicia la propagación del deslizamiento producto de la ruptura, más no es una representación exacta del origen de todas las ondas de movimiento generadas.

Evento sísmico	Coordenadas esquina inferior izquierda [°], [°]	Longitud y ancho [km], [km]	Rumbo y manteo [°], [°]
Chile Central 1985	-34.30, -72.75	220, 140	11, 26
Antofagasta 1995	-25.00, -71.15	185, 80	6, 22
Tocopilla 2007	-23.25, -70.50	145, 55	2, 20
Maule 2010	-37.80, -74.45	500, 150	19, 18
Iquique 2014	-20.25, -71.00	120, 85	-5, 15
Illapel 2015	-32.50, -72.50	200, 50	4, 19

Tabla 3.17: Áreas de ruptura consideradas en el estudio (Idini, 2016).

A continuación se ilustran aquellas áreas de ruptura propuestas consideradas en el presente trabajo a excepción del evento sísmico de Illapel de 2015. Estas se construyen en base a una serie de estudios completos que incluyen las secuencias completas del terremoto, inversiones de desplazamiento, modelos cinemáticos de ruptura, etc. Así, para cada evento, es posible asociar áreas dentro de un plano que poseen valores mínimos de deslizamiento al plano de falla donde la roca se fracturó, considerando el rumbo y manteo del plano de falla (Idini, 2016).

Se tiene el área de ruptura propuesta para el terremoto de Chile Central en 1985:

Figura 3.18: Área de ruptura propuesta para el terremoto de Chile Central en 1985 (Idini, 2016).

Se tiene el área de ruptura propuesta para el terremoto de Antofagasta en 1995:

Figura 3.19: Área de ruptura propuesta para el terremoto de Antofagasta en 1995 (Idini, 2016).

Se tiene el área de ruptura propuesta para el terremoto de Tocopilla en 2007:

Figura 3.20: Área de ruptura propuesta para el terremoto de Tocopilla en 2007 (Idini, 2016).

Se tiene el área de ruptura propuesta para el terremoto de Maule en 2010:

Figura 3.21: Área de ruptura propuesta para el terremoto de Maule en 2010 (Idini, 2016).

Se tiene el área de ruptura propuesta para el terremoto de Iquique en 2014:

Figura 3.22: Área de ruptura propuesta para el terremoto de Iquique en 2014 (Idini, 2016).

Ahora bien, para calcular la distancia del área de ruptura se construye una grilla de puntos en cada uno de los casos en base al largo y ancho del rectángulo con el fin de obtener la distancia más cercana entre un punto cualquiera en superficie y el punto de observación en la estación sismológica. A continuación, en la Tabla 3.18, se detalla el procedimiento realizado.

Tabla 3.18: Resumen de pasos utilizados para calcular la distancia área de ruptura.

1:	Se calcula la grilla que representa el área de ruptura. Esta posee un
	espaciamiento entre puntos de 1 km y depende del largo y ancho del rectángulo y la profundidad de la columna más cercana a la fosa Chile-Perú.
2:	Para obtener la profundidad de la columna más cercana a la fosa Chile-Perú (H_{top} en la Figura 3.17) se calcula la mínima distancia entre las coordenadas geográficas de la fosa y la esquina inferior izquierda (latitud y longitud).
3:	Como se tiene la mínima distancia entre estos dos puntos y se co- noce el manteo del plano de ruptura entonces, por trigonometría se obtiene la profundidad gracias a la tangente del manteo.
4:	Ahora bien, a esta profundidad se le debe agregar la profundidad que tendrá cada punto en la grilla debido a la inclinación del plano de ruptura. Por trigonometría esta profundidad se puede obtener trabajando con el ancho del rectángulo y la tangente del manteo.
5:	De esta manera, la grilla tendrá tres columnas relacionadas a su ancho, largo y profundidad.
6:	Se calcula la distancia en x e y entre las coordenadas geográficas de la estación sismológica y la esquina inferior izquierda las cuales se corrigen posteriormente por el rumbo del plano de ruptura.
7:	Posteriormente, a la distancia en x se le resta el ancho del rectángulo que representa el área de ruptura y a la distancia en y se le resta el largo del rectángulo.
8:	Luego, por trigonometría, es posible calcular la mínima distancia entre el área de ruptura y la estación sismológica, la cual no será la final debido a la inclinación que presenta el plano de ruptura, lo cual se verá a continuación.
9:	Como se tiene la mínima distancia en superficie y la profundidad, bastará calcular la distancia entre este punto de la grilla y la esta- ción sismológica por trigonometría.
10:	La distancia final corresponderá al valor más pequeño, considerado el más cercano entre el plano de ruptura y la estación sismológica.

Luego, con la final de caracterizar las distancias, se obtiene la siguiente distribución según la distancia a la fuente sísmica, donde se trabaja con distancia hipocentral en la mayoría de los registros y para aquellos con una magnitud $M_w \ge 7.8$, se utiliza la distancia área de ruptura.

Distancia a la fuente sísmica [km]	Cantidad de registros
$0 \le R < 100$	226
$100 \le R < 200$	643
$200 \le R < 300$	245
$300 \le R < 400$	111
$400 \le R < 500$	47
$500 \le R < 600$	9
$600 \le R < 700$	9
$700 \le R < 800$	1
Total registros	1291

Tabla 3.19: Distribución de registros según distancia a la fuente sísmica.

Figura 3.23: Histograma de registros según distancia a la fuente sísmica.

3.6. Caracterización general de los registros sísmicos

A continuación se realiza una caracterización de los parámetros sísmicos de los registros de aceleración en estudio. Se tiene la magnitud y PGA para los sismos intraplaca de profundidad intermedia.

Figura 3.24: Magnitud vs. PGA para sismos intraplaca de profundidad intermedia.

Por otro lado, se tiene la relación entre la distancia a la fuente sísmica y el PGA para sismos interplaca tipo "thrust".

Distancia a la fuente sísmica vs. PGA para sismos interplaca tipo "thrust"

Figura 3.25: Distancia a la fuente sísmica v
s. PGA para sismos interplaca tipo "thrust".

Y la relación entre la distancia a la fuente sísmica y el PGA para sismos intraplaca de profundidad intermedia.

Figura 3.26: Distancia a la fuente sísmica vs. PGA para sismos intraplaca de profundidad intermedia.

Finalmente, se caracterizan los eventos interplaca tipo "thrust" e intraplaca de profundidad intermedia relacionando la distancia a la fuente sísmica con su magnitud.

Distancia a la fuente sísmica vs. Magnitud M

Figura 3.27: Distancia a la fuente sísmica vs. magnitud.

Capítulo 4

Metodología empleada

4.1. Procesamiento de señales

Los registros de los acelerógrafos de movimiento fuerte son esenciales ya que sientan las bases para todas las caracterizaciones de la vibración del suelo durante un terremoto empleadas en el diseño sísmico. En este sentido, se debe tener en cuenta que si se lleva a cabo un estudio que involucre la utilización de señales de movimiento obtenidas a través de instrumentos durante un terremoto, se deben considerar las limitaciones que poseen sus formas originales en su intento de representar el movimiento real ocurrido puesto que invariablemente contienen ruido que distorsiona la señal tanto en frecuencias altas como bajas.

En consecuencia, el propósito del procesamiento de acelerogramas es disminuir al máximo las relaciones de señal-ruido dentro del rango de frecuencias de interés del estudio en específico (Boore y Bommer, 2005). El procesamiento de señales se debe realizar debido a que la información que es posible recuperar de las grabaciones es limitada, es decir, no se puede afirmar que se obtiene una descripción completa y precisa del movimiento del suelo a partir de acelerogramas.

Ahora bien, existen acelerógrafos analógicos y digitales. Los primeros presentan tres desventajas importantes. En primer lugar, con el fin de no desperdiciar grandes cantidades del medio de grabación, funcionan en espera, activados por un umbral específico de aceleración, lo que implica que los primeros movimientos a menudo no se graban. La segunda desventaja está relacionada con sus características dinámicas, en donde la frecuencia natural de los transductores de los acelerógrafos en instrumentos analógicos generalmente se limita a unos 25 Hz. La tercera y más importante desventaja de los instrumentos analógicos es el simple hecho de que para poder utilizar la grabación en cualquier análisis de ingeniería, es necesario digitalizar las trazas, un proceso que requiere mucho tiempo y es laborioso, además de como una de las principales fuentes de ruido (Boore y Bommer, 2005).

Por otra parte, los instrumentos digitales brindan una solución a las tres desventajas asociadas a los acelerógrafos analógicos ya que funcionan de manera continua y pueden retener las llegadas de la primera ola. Su rango de frecuencia está entre 50 y 100 Hz y finalmente, la conversión de analógico a digital se realiza dentro del instrumento proporcionando además una mejor resolución.

Tal como se mencionó anteriormente, los acelerogramas frecuentemente poseen ruido debido a fenómenos naturales como también por el tratamiento de los datos (Carreño et al., 1999). Para resolver los problemas de ruido, se utilizan filtros que recortan la amplitud de la señal a partir de cierta frecuencia de esquina f_c . Existen diversos tipos de filtros según el tipo de decaimiento que posean, donde uno de los más comunes en la ingeniería sísmica corresponde al filtro Butterworth, el que se puede aplicar de manera causal o acausal.

Dentro de las herramientas programadas que posee MATLAB, la función *butter* permite diseñar un filtro del tipo Butterworth, indicando su orden y las frecuencias de esquina relativas a la mitad de la frecuencia de muestreo de la serie de tiempo. Se trabaja además con la función *filtfilt* que convoluciona la señal con los filtros dos veces en direcciones opuestas garantizando una fase nula en el resultado final.

4.2. Algoritmo computacional

Con el fin de procesar los registros de aceleración, se trabaja en el programa MATLAB utilizando un algoritmo computacional que se puede caracterizar en la siguiente Tabla 4.1:

input \rightarrow	ac	registro de aceleraciones por corregir.
	Fs	frecuencia de muestreo.
	Ν	orden del filtro Butterworth usado para filtrar la señal.
	f_1	frecuencia de corte inferior.
	f_2	frecuencia de corte superior.
	zeros	incorporación de ceros al inicio y final del registro.
	phase	utilización de la función filfilt dando como resultado una distorsión de fase cero
output \	0	
$output \rightarrow$	a	aceleración corregida.
	V	velocidad corregida.
	d	desplazamiento corregido.

Tabla 4.1: Entradas y salidas del algoritmo utilizado para procesar las señales.

En primer lugar, se trabaja con la función *butter*, que tal como se señaló con anterioridad, permite diseñar un filtro Butterworth, en este caso, de orden 4, con frecuencia de corte normalizada ω_n . Si la función de procesamiento recibe sólo la frecuencia de corte inferior f_1 se tendrá un filtro pasa alto, si recibe sólo la frecuencia de corte superior f_2 se tendrá un filtro pasa bajo y si recibe ambas frecuencias, entonces se tendrá un filtro pasa banda y la frecuencia de corte normalizada ω_n estará dada por:

Tabla 4.2: Frecuencia de corte normalizada ω_n según tipo de filtro Butterworth.

Filtro pasa alto	Filtro pasa bajo	Filtro pasa banda
$\frac{f_1}{\left(\frac{Fs}{2}\right)}$	$\frac{f_2}{\left(\frac{Fs}{2}\right)}$	$\frac{\begin{bmatrix} f_1 & f_2 \end{bmatrix}}{\left(\frac{Fs}{2}\right)}$

En el estudio, se trabaja con un filtro pasa banda, eliminando el ruido de alta y baja frecuencia simultáneamente. Se utilizan frecuencias de corte inferior f_1 y superior f_2 típicas de 0.167 Hz y 25 Hz, respectivamente. Cabe destacar que estas frecuencias de corte pueden variar cuando se estudian los espectros de respuesta de los registros de aceleración. Lo anterior se debe a que es comúnmente necesario trabajar períodos de respuesta más largos. Sin embargo, en el presente estudio, no es necesario ya que utilizando los valores típicos de las frecuencias de corte inferior y superior, se obtiene un buen procesamiento de los registros.

Ahora bien, al trabajar con la función *butter*, se obtienen sus coeficientes de la función de transferencia del filtro Butterworth. Luego, en el algoritmo se incorporan ceros tanto al inicio como al final del registro y se extrae la tendencia lineal del registro a través de la función *detrend* de MATLAB aplicada sobre el registro de aceleración. Posteriormente, el registro se filtra e integra para obtener la velocidad y el desplazamiento. Lo anterior se realiza a través de la función *filtfilt* (filtro en ambas direcciones) y da como resultado una distorsión de fase cero. Finalmente se eliminan los ceros que se incorporaron antes y se procede a graficar.

A continuación se muestra ejemplo donde se identifica un registro de aceleración filtrado para el terremoto de Coquimbo ocurrido el día 16 de septiembre de 2015 obtenido por la estación V01A.

Figura 4.1: Remoción de ruido aplicando un filtro pasa banda al registro de aceleración correspondiente al terremoto de Coquimbo 2015 obtenido en la estación V01A.

4.3. Cálculo de las envolventes en MATLAB

Una vez que se procesan los registros de aceleración, es posible comenzar con el cálculo de las envolventes a través del programa MATLAB. Lo primero que se considera son las clasificaciones⁴, presentadas en la Tabla 4.3, las cuales están dadas por mecanismo, magnitud, tipo de suelo y distancia a la fuente sísmica.

De esta manera, se consideran solamente sismos interplaca tipo "thrust" e intraplaca de profundidad intermedia. Las magnitudes consideradas van desde 6.5 M_w a 8.8 M_w . El tipo de suelo en estudio es en roca, es decir, tipos de suelo A y B. Y finalmente, se descartan todos aquellos registros que posean una distancia a la fuente sísmica mayor a 250 km.

Nº	Mecanismo	Magnitud	Distancia [km]
1	Interplaca tipo "thrust"	$6.5 \le M_w < 7.0$	$0 \le d < 100$
2	Interplaca tipo "thrust"	$6.5 \le M_w < 7.0$	$100 \le d < 150$
3	Interplaca tipo "thrust"	$6.5 \le M_w < 7.0$	$150 \le d < 200$
4	Interplaca tipo "thrust"	$6.5 \le M_w < 7.0$	$200 \le d < 250$
5	Interplaca tipo "thrust"	$7.0 \le M_w < 7.5$	$100 \le d < 200$
6	Interplaca tipo "thrust"	$7.5 \le M_w < 8.0$	$0 \le d < 50$
7	Interplaca tipo "thrust"	$7.5 \le M_w < 8.0$	$50 \le d < 100$
8	Interplaca tipo "thrust"	$7.5 \le M_w < 8.0$	$100 \le d < 150$
9	Interplaca tipo "thrust"	$7.5 \le M_w < 8.0$	$150 \le d < 200$
10	Interplaca tipo "thrust"	$7.5 \le M_w < 8.0$	$200 \le d < 250$
11	Interplaca tipo "thrust"	$8.0 M_w$	$100 \le d < 200$
12	Interplaca tipo "thrust"	$8.2 M_w$	$0 \le d < 50$
13	Interplaca tipo "thrust"	$8.2 M_w$	$50 \le d < 100$
14	Interplaca tipo "thrust"	$8.2 M_w$	$100 \le d < 200$
15	Interplaca tipo "thrust"	$8.2 M_w$	$200 \le d < 250$
16	Interplaca tipo "thrust"	$8.3 M_w$	$100 \le d < 200$
17	Interplaca tipo "thrust"	$8.8 M_w$	$100 \le d < 200$
18	Intraplaca profundidad intermedia	$6.5 \le M_w < 7.0$	$0 \le d < 100$
19	Intraplaca profundidad intermedia	$6.5 \le M_w < 7.0$	$100 \le d < 200$
20	Intraplaca profundidad intermedia	$7.5 \le M_w < 8.0$	$200 \le d < 250$

Tabla 4.3: Clasificaciones de las envolventes.

Ahora bien, para cada clasificación, se debe realizar el cálculo de las envolventes de los registros de aceleración. Este se realiza a través de la función *envelope peak*, destacando que sólo se toma en cuenta la envolvente positiva que entrega el programa. Se observa que el np que considera la función varía para cada registro y además, para cada canal considerado, es decir, para el canal horizontal 1 y 2. Lo anterior implica que se debe graficar la envolvente

⁴ Cabe señalar que en un principio, las magnitudes se estudian en intervalos de 0.5 M_w y las distancias en un intervalo de 100 km. Sin embargo, dependiendo de la cantidad de registros para cada clasificación, esto puede ir variando con la finalidad de que las curvas sean suficientes para cada una de ellas.

del registro en un rango de np entre 450 y 1000. Una vez que se tienen todas las envolventes graficadas, se escoge la que mejor se adecúa al registro y que mejor lo caracteriza de manera visual. Se debe considerar que un np pequeño representa una separación entre peaks menor, mientras que un np más grande tendrá una separación entre peaks mayor. Lo anterior se traduce en que la curva se comienza a suavizar a medida que el np es mayor.

Con el propósito de ilustrar lo ya mencionado, es posible notar la diferencia entre las curvas para el mismo registro del evento ocurrido el 03 de abril del 2014 obtenido por la estación PB08, utilizando un np de 460 en la Figura 4.2 y un np de 1000 en la Figura 4.3.

Figura 4.2: Envolventes correspondientes al canal 1 (izquierda) y canal 2 (derecha) del evento ocurrido el 03 de abril del 2014 obtenido por la estación PB08, con un np de 460.

Figura 4.3: Envolventes correspondientes al canal 1 (izquierda) y canal 2 (derecha) del evento ocurrido el 03 de abril del 2014 obtenido por la estación PB08, con un np de 1000.

Como es posible notar, la envolvente generada con un np mayor se puede considerar una mejor representación de la forma que posee el registro de aceleración. Sin embargo, un npmuy grande puede presentar un comportamiento inesperado, tal como se aprecia al comienzo de la curva para el canal 1, en la Figura 4.3. Debido a lo anterior, el rango de estudio se determina entre 450 y 1000, y siempre se debe seleccionar la envolvente más adecuada, donde se pueda apreciar la forma que presenta el registro de aceleración y que además, presente un buen comportamiento a lo largo del tiempo. Luego, para cada registro se calcula la Intensidad de Arias I_a correspondiente lo cual permite a su vez calcular la duración significativa D_{5-95} .

Cabe destacar que debido a las limitaciones propias del programa MATLAB y su función envelope peak, muchas veces no se presenta un comportamiento totalmente ideal, es decir, las curvas podrían escapar de la forma esperada. Sin embargo, es importante notar que el presente estudio busca caracterizar la forma que presentan los registros de aceleración, y para este fin, la forma que presentan las curvas generadas durante la duración significativa D_{5-95} es lo fundamental.

A modo de ejemplo, para el evento ocurrido el 03 de abril del 2014, en la Figura 4.4 es posible notar que la curva escogida con un np de 861, en su inicio presenta una pequeña alteración en su forma, sin embargo, la envolvente en general es capaz de representar bien la forma del registro, y es en efecto, la curva seleccionada en el estudio (en comparación a las demás curvas obtenidas). Por otra parte, en la Figura 4.5, se observa una envolvente seleccionada con un np de 907, prácticamente ideal.

Figura 4.4: Envolvente correspondiente al canal 1 del evento ocurrido el 03 de abril del 2014 obtenido por la estación PB08, con un np de 861.

Figura 4.5: Envolvente correspondiente al canal 2 del evento ocurrido el 03 de abril del 2014 obtenido por la estación PB08, con un np de 907.

Una vez finalizado este proceso, es posible calcular el error medio \bar{e} asociado a la envolvente con respecto al registro. Lo anterior no se puede realizar a la inversa ya que el menor error medio asociado calculado siempre estaría relacionado a la envolvente con el np más pequeño ya que la separación entre peaks es menor, y en consecuencia la envolvente se ajustaría mucho más al registro, lo cual no significa que sea la envolvente más idónea para representar la forma presentada.

Posteriormente, se proceden a graficar todas las envolventes para cada clasificación. Las curvas son normalizadas por su Peak Ground Acceleration (PGA) y una vez que se encuentran graficadas en su conjunto, se decide tomar en cuenta el peak de la curva que se encuentre más

a la derecha dentro del conjunto para alinear todas las curvas en esa misma posición y así poder visualizar el comportamiento de las envolventes de una manera más clara y ordenada.

Con el fin de ilustrar, se tiene que el evento del 03 de abril del 2014 obtenido por la estación PB08, se encuentra dentro de la clasificación 3. De esta manera, en la Figura 4.6 es posible visualizar el conjunto de envolventes del canal horizontal 1 para la clasificación 3 y en la Figura 4.7 el conjunto de envolventes del canal horizontal 2.

Figura 4.6: Ejemplo de conjunto de envolventes para la clasificación 3 (canal 1).

Figura 4.7: Ejemplo de conjunto de envolventes para la clasificación 3 (canal 2).

A continuación, en el Capítulo 5 se darán a conocer los resultados obtenidos siguiendo la metodología detalla anteriormente.

Capítulo 5

Envolventes de los registros sísmicos: resultados obtenidos y análisis

En el presente Capítulo se darán a conocer los resultados obtenidos de manera gráfica para las clasificaciones en estudio, mencionadas en la Sección 4.3 y detalladas en la Tabla 4.3. Para poder ver en detalle los resultados obtenidos de calcular la Intensidad de Arias I_a o la duración significativa D_{5-95} , se puede revisar el Anexo C.

Se debe recordar además que en la Sección 2.6.1, se señala que la función *envelope peak* de MATLAB trabaja con un *np*, el cual varía para cada registro y además, para cada canal del mismo. Este *np* entrega una envolvente que posee un error medio entre ella y el acelerograma, el cual se calcula para cada caso. Cabe señalar que se descartan todos aquellos acelerogramas donde no es posible determinar la llegada de la onda P. Lo anterior se debe principalmente a que la función envolvente que entrega el programa MATLAB, la cual caracteriza el registro, no es representativa y no corresponde a una función envolvente esperada.

5.1. Resultados obtenidos

5.1.1. Envolventes de sismos interplaca tipo "thrust"

5.1.1.1. Magnitud $6.5 \le M_w < 7.0$

• Clasificación 1: Distancia 0 $[\text{km}] \leq d < 100 [\text{km}]$

A continuación se detallan los parámetros sísmicos de la clasificación 1:

ID	Evento	Magnitud M_w	Distancia [km]	Estación	Tipo de suelo	np_1	np_2	\bar{e}_1	\bar{e}_2
57	0911130305	6.5	44.27	PIS	A*	750	528	0.006	0.007
354	1404030158	6.5	78.72	HMBCX	В	550	667	0.006	0.007
369	1404030158	6.5	97.78	PSGCX	А	460	675	0.002	0.003
673	1404030158	6.5	55.70	T03A	В	640	496	0.004	0.003
745	1404030158	6.5	59.64	T08A	В	599	928	0.003	0.003
762	1404030158	6.5	93.88	T09A	A^*	947	610	0.001	0.001
1318	1404030158	6.5	55.76	T05A	В	564	784	0.002	0.002
3972	8503250514	6.5	81.74	ILO	В	_	—		_

Tabla 5.1: Parámetros sísmicos clasificación 1.

A continuación se muestra el conjunto de envolventes del canal horizontal 1 para esta clasificación:

Figura 5.1: Conjunto de envolventes para la clasificación 1 (canal 1).

A continuación se muestra el conjunto de envolventes del canal horizontal 2 para esta clasificación:

Figura 5.2: Conjunto de envolventes para la clasificación 1 (canal 2).

Para esta clasificación, es posible notar que las envolventes obtenidas que definen y caracterizan el comportamiento de los registros sísmicos están bien representadas por la función de modulación gamma propuesta por Saragoni y Hart, presentada anteriormente en la Sección 2.6.2 e ilustrada en la siguiente Figura 5.3 con el propósito de comparar visualmente las curvas. Es evidente que dentro del conjunto de envolventes pueden existir pequeñas variaciones pero en general, las curvas aumentan gradualmente hasta llegar a su peak para luego comenzar a disminuir progresivamente.

Figura 5.3: Forma característica de la función de modulación gamma propuesta por Saragoni y Hart.

- Clasificación 2: Distancia 100 [km]
 $\leq d < 150$ [km]

A continuación se detallan los parámetros sísmicos de la clasificación 2:

ID	Evento	Magnitud M_w	Distancia [km]	Estación	Tipo de suelo	np_1	np_2	\bar{e}_1	\bar{e}_2
320	1404012357	6.9	135.66	HMBCX	В				
335	1404012357	6.9	112.21	PSGCX	А				
356	1404030158	6.5	142.94	PB01	A^*	804	748	0.011	0.009
973	1404030158	6.5	135.34	PICA	B^*	1000	624	0.004	0.004
1051	1509170355	6.5	129.52	CO03	B^*	598	500	0.002	0.002
1052	1509170410	6.7	133.56	CO03	B^*	824	732	0.003	0.002
1056	1509211739	6.6	131.64	CO03	B^*	837	970	0.002	0.001
2861	1509211739	6.6	140.92	V02A	B*	1000	681	0.005	0.004

Tabla 5.2: Parámetros sísmicos clasificación 2.

A continuación se muestra el conjunto de envolventes del canal horizontal 1 para esta clasificación:

Figura 5.4: Conjunto de envolventes para la clasificación 2 (canal 1).

A continuación se muestra el conjunto de envolventes del canal horizontal 2 para esta clasificación:

Figura 5.5: Conjunto de envolventes para la clasificación 2 (canal 2).

Con respecto a esta clasificación se tiene que, en general, las envolventes obtenidas también están bien representadas por la función de modulación gamma propuesta por Saragoni y Hart (ver Figura 5.3). Sin embargo, en las Figuras 5.4 y 5.5 es posible observar dos curvas envolventes que destacan del resto, tanto para el canal 1 como para el canal 2. Estas envolventes pertenecen a los registros ID: 1051 e ID: 2861, y su comportamiento se debe principalmente a que antes del Peak Ground Acceleration (PGA), los registros llegan a valores de 0.3 aproximadamente, valores mucho más altos que el resto, por lo tanto, la función utilizada en MATLAB incursiona en pequeño peak antes de llegar al peak máximo. Debido a esto, estas curvas no aumentan gradualmente como es lo esperado, sin embargo, esto depende únicamente de la función *envelope peak* utilizada y sus limitaciones.

• Clasificación 3: Distancia 150 [km] $\leq d < 200$ [km]

A continuación se detallan los parámetros sísmicos de la clasificación 3:

ID	Evento	Magnitud M_w	Distancia [km]	Estación	Tipo de suelo	np_1	np_2	\bar{e}_1	\bar{e}_2
321	1404012357	6.9	181.85	MNMCX	B^*				
332	1404012357	6.9	168.66	PB12	A^*				
355	1404030158	6.5	169.85	MNMCX	B^*	674	1000	0.004	0.007
361	1404030158	6.5	175.27	PB07	A^*	538	728	0.005	0.004
362	1404030158	6.5	153.24	PB08	A^*	861	907	0.005	0.005
366	1404030158	6.5	193.09	PB12	A^*	1000	611	0.003	0.003
2641	1509170355	6.5	181.77	V02A	B^*	1000	940	0.003	0.003
2662	1509170410	6.7	170.65	V02A	B*	992	915	0.005	0.005

Tabla 5.3: Parámetros sísmicos clasificación 3.

A continuación se muestra el conjunto de envolventes del canal horizontal 1 para esta clasificación:

Figura 5.6: Conjunto de envolventes para la clasificación 3 (canal 1).

En la Figura 5.6 es posible observar dos curvas que destacan del resto para el canal 1, las cuales pertenecen a los registros ID: 2641 e ID: 2662, y su comportamiento se debe, al contrario del caso anterior, a que después del Peak Ground Acceleration (PGA), los registros llegan a valores de 0.5 aproximadamente, por lo tanto, la función utilizada incursiona en pequeño peak después de llegar al peak máximo. Debido a esto, estas curvas no decaen gradualmente como es lo esperado (ver Figura 5.3), sin embargo, esto nuevamente depende de la función utilizada y sus limitaciones.

A continuación se muestra el conjunto de envolventes del canal horizontal 2 para esta clasificación:

Figura 5.7: Conjunto de envolventes para la clasificación 3 (canal 2).

• Clasificación 4: Distancia 200 $[\text{km}] \leq d < 250 [\text{km}]$

A continuación se detallan los parámetros sísmicos de la clasificación 4:

ID	Evento	Magnitud M_w	Distancia [km]	Estación	Tipo de suelo	np_1	np_2	\bar{e}_1	\bar{e}_2
322	1404012357	6.9	210.70	PB01	A*	_			
327	1404012357	6.9	238.77	PB07	A^*				
328	1404012357	6.9	205.74	PB08	A^*				
334	1404012357	6.9	243.58	PB16	A^*				
357	1404030158	6.5	212.88	PB03	A^*	700	1000	0.003	0.003
358	1404030158	6.5	230.58	PB04	A^*	995	981	0.003	0.004
363	1404030158	6.5	217.47	PB09	A^*	692	720	0.004	0.004
368	1404030158	6.5	248.81	PB16	A^*	816	766	0.001	0.001
2650	1509170355	6.5	227.59	C09O	B^*	982	922	0.002	0.002
2678	1509170410	6.7	234.70	C09O	B^*	870	695	0.002	0.002

Tabla 5.4: Parámetros sísmicos clasificación 4.

A continuación se muestra el conjunto de envolventes del canal horizontal 1 para esta clasificación:

Figura 5.8: Conjunto de envolventes para la clasificación 4 (canal 1).

En la Figura 5.8, se pueden notar dos curvas que tienen el mismo comportamiento señalado previamente, tanto el ID: 2650 como ID: 2678, poseen aceleraciones que destacan del resto tanto antes como después del Peak Ground Acceleration (PGA), lo cual implica que se toman en cuenta estos peaks debido a las limitaciones propias de la función de MATLAB y por lo tanto, estas curvas envolventes no logran un ascenso y decaimiento gradual como la función de modulación gamma ilustrada en la Figura 5.3. Esto también se puede observar para el canal 2, en la Figura 5.9.

A continuación se muestra el conjunto de envolventes del canal horizontal 2 para esta clasificación:

Figura 5.9: Conjunto de envolventes para la clasificación 4 (canal 2).

5.1.1.2. Magnitud 7.0 $\leq M_w < 7.5$

• Clasificación 5: Distancia 100 [km] $\leq d < 200$ [km]

A continuación se detallan los parámetros sísmicos de la clasificación 5:

ID	Evento	Magnitud M_w	Distancia [km]	Estación	Tipo de suelo	np_1	np_2	\bar{e}_1	\bar{e}_2
1049	1509162318	7.0	134.82	CO03	B*	1000	995	0.002	0.007
1112	1509162318	7.0	160.59	VA01	B^*	614	807	0.002	0.003
2551	1509162318	7.0	162.00	V02A	B^*	1000	1000	0.010	0.010
3949	8504090157	7.1	120.45	ILO	В				
3950	8504090157	7.1	117.26	QUIN	В				
3953	8504090157	7.1	118.02	END	В				
3969	8503040032	7.4	195.81	ILO	В				
3970	8503040032	7.4	156.89	SFER	В				

Tabla 5.5: Parámetros sísmicos clasificación 5.

A continuación se muestra el conjunto de envolventes del canal horizontal 1 para esta clasificación:

Figura 5.10: Conjunto de envolventes para la clasificación 5 (canal 1).

A continuación se muestra el conjunto de envolventes del canal horizontal 2 para esta clasificación:

Figura 5.11: Conjunto de envolventes para la clasificación 5 (canal 2).

Luego de estudiar todas las envolventes de los sismos interplaca tipo "thrust" con magnitudes menores a 7.5 M_w , es decir, desde la clasificación 1 hasta la clasificación 5, es posible apreciar que las envolventes que definen y caracterizan el comportamiento de los registros sísmicos en su mayoría están bien representados por la función de modulación gamma propuesta por Saragoni y Hart (ver Figura 5.3). En efecto, se logra distinguir una función que va aumentando gradualmente hasta llegar a su peak para luego descender de manera progresiva. De esta manera, para estas clasificaciones se tiene que en general las funciones envolventes obtenidas a través de MATLAB poseen una forma suavizada, siendo coherentes con la función gamma.

5.1.1.3. Magnitud 7.5 $\leq M_w < 8.0$

• Clasificación 6: Distancia 0 $[\text{km}] \leq d < 50 \ [\text{km}]$

A continuación se detallan los parámetros sísmicos de la clasificación 6:

ID	Evento	Magnitud M_w	Distancia [km]	Estación	Tipo de suelo	np_1	np_2	\bar{e}_1	\bar{e}_2
77	0711141540	7.7	39.33	TOCP	A*	1000	966	0.032	0.035
87	0711141540	7.7	41.91	PB04	A^*	678	823	0.049	0.056
88	0711141540	7.7	40.59	PB05	A^*	591	460	0.030	0.038
371	1404030243	7.7	38.95	TA01	B*	717	576	0.014	0.011

Tabla 5.6: Parámetros sísmicos clasificación 6.

A continuación se muestra el conjunto de envolventes del canal horizontal 1 para esta clasificación:

Figura 5.12: Conjunto de envolventes para la clasificación 6 (canal 1).

Es posible notar que las envolventes obtenidas comienzan a comportarse de una manera distinta en comparación a las clasificaciones estudiadas anteriormente. Tal como se aprecia en la Figura 5.12, estos saltos después del peak son mucho más considerables y la forma que adopta la envolvente logra ser mucho más pronunciada, lo cual implica que para algunos eventos no es posible aplicar la función envolvente gamma ya que no se ajusta al registro de aceleración, es decir, no es representativa. Lo anterior se debe principalmente a que los registros comienzan a presentar más de un peak y esta vez la forma que presenta la envolvente no se debe a las limitaciones de la función utilizada en MATLAB sino que se debe a que el suelo para mayores magnitudes puede presentar múltiples fases de movimiento fuerte.

A continuación se muestra el conjunto de envolventes del canal horizontal 2 para esta clasificación:

Figura 5.13: Conjunto de envolventes para la clasificación 6 (canal 2).

En la Figura 5.13 se aprecia el mismo comportamiento de las envolventes, incluso, para el ID: 371 existen tres peaks. En este sentido, tal como se mencionó previamente, la función moduladora gamma propuesta por Saragoni y Hart (ver Figura 5.3) con la cual se comparaban las envolventes ya no es representativa de los registros de aceleración.

En consecuencia, para estos casos, la función de modulación en el tiempo que se propone corresponde a una nueva función paramétrica basada en una interpolación spline cúbica monótona (Broccardo y Dabaghi, 2017). En el estudio realizado por Broccardo y Dabaghi, la función de modulación del tiempo se define directamente mediante parámetros físicamente significativos seleccionados cuidadosamente que describen la acumulación de la Intensidad de Arias de la serie temporal del movimiento del suelo. Lo anterior simplifica el procedimiento de ajuste y permite una gama más flexible de formas que incluyen múltiples peaks. Así, se modela la energía acumulada esperada del proceso, que es igual a la energía acumulada de la función de modulación.

La Figura 5.14a) muestra la spline de Hermite cúbica suavizada (línea continua) que se ajusta al movimiento objetivo seleccionado. Se puede observar que la función de modulación propuesta es capaz de capturar las dos distintas fases de movimiento fuerte, lo que no es posible cuando se utiliza una función de modulación gamma (línea discontinua).

Como se verá en las gráficas de las siguientes clasificaciones, esta nueva función de modulación podría aplicarse al resto de sismos interplaca tipo "thrust", mayores o igual a 7.5 M_w , es decir, las clasificaciones 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 y 17.

Figura 5.14: Comparación entre funciones envolventes: spline cubic de Hermite y gamma, (a) Envolventes a lo largo del tiempo sobre registro de aceleraciones; (b) Intensidad de Arias acumulada para las envolventes (Broccardo y Dabaghi, 2017).

• Clasificación 7: Distancia 50 [km] $\leq d < 100$ [km]

A continuación se detallan los parámetros sísmicos de la clasificación 7:

ID	Evento	Magnitud M_w	Distancia [km]	Estación	Tipo de suelo	np_1	np_2	\bar{e}_1	\bar{e}_2
2	0711141540	7.7	58.29	ANTO	A*	700	771	0.009	0.008
89	0711141540	7.7	69.62	PB06	A^*	629	484	0.031	0.035
90	0711141540	7.7	57.59	PB07	A^*	1000	975	0.035	0.047
372	1404030243	7.7	69.01	HMBCX	В	570	608	0.013	0.013
520	1404030243	7.7	52.11	T03A	В	909	887	0.026	0.024
746	1404030243	7.7	53.01	T08A	В	522	521	0.023	0.028
1319	1404030243	7.7	53.28	T05A	В	749	976	0.016	0.016

Tabla 5.7: Parámetros sísmicos clasificación 7.

A continuación se muestra el conjunto de envolventes del canal horizontal 1 para esta clasificación:

Figura 5.15: Conjunto de envolventes para la clasificación 7 (canal 1).

A continuación se muestra el conjunto de envolventes del canal horizontal 2 para esta clasificación:

Figura 5.16: Conjunto de envolventes para la clasificación 7 (canal 2).

- Clasificación 8: Distancia 100 [km]
 $\leq \, d < 150$ [km]

A continuación se detallan los parámetros sísmicos de la clasificación 8:

ID	Evento	Magnitud M_w	Distancia [km]	Estación	Tipo de suelo	np_1	np_2	\bar{e}_1	\bar{e}_2
86	0711141540	7.7	126.26	PB01	A*	565	959	0.018	0.017
374	1404030243	7.7	118.04	PB01	A^*	525	485	0.007	0.007
379	1404030243	7.7	148.54	PB07	A^*	989	708	0.004	0.003
380	1404030243	7.7	142.92	PB08	A^*	1000	822	0.004	0.003
387	1404030243	7.7	110.73	PSGCX	А	643	585	0.004	0.005
763	1404030243	7.7	108.66	T09A	A^*	742	1000	0.009	0.011
974	1404030243	7.7	118.62	PICA	B*	1000	1000	0.035	0.040

Tabla 5.8: Parámetros sísmicos clasificación 8.

A continuación se muestra el conjunto de envolventes del canal horizontal 1 para esta clasificación:

Figura 5.17: Conjunto de envolventes para la clasificación 8 (canal 1).

Figura 5.18: Conjunto de envolventes para la clasificación 8 (canal 2).

• Clasificación 9: Distancia 150 [km] $\leq \, d < 200$ [km]

A continuación se detallan los parámetros sísmicos de la clasificación 9:

ID	Evento	Magnitud M_w	Distancia [km]	Estación	Tipo de suelo	np_1	np_2	\bar{e}_1	\bar{e}_2
48	0711141540	7.7	185.40	PICA	B*	1000	850	0.021	0.021
373	1404030243	7.7	179.52	MNMCX	B^*	936	1000	0.011	0.010
375	1404030243	7.7	186.16	PB03	A^*	900	826	0.003	0.002
381	1404030243	7.7	190.49	PB09	A^*	967	807	0.005	0.003
570	1404030243	7.7	162.79	GO01	B^*	987	885	0.018	0.014

Tabla 5.9: Parámetros sísmicos clasificación 9.

Figura 5.19: Conjunto de envolventes para la clasificación 9 (canal 1).

A continuación se muestra el conjunto de envolventes del canal horizontal 2 para esta clasificación:

Figura 5.20: Conjunto de envolventes para la clasificación 9 (canal 2).

• Clasificación 10: Distancia 200 [km] $\leq d < 250$ [km] A continuación se detallan los parámetros sísmicos de la clasificación 10:

Tabla 5.10: Parámetros sísmicos clasificación 10.

ID	Evento	Magnitud M_w	Distancia [km]	Estación	Tipo de suelo	np_1	np_2	\bar{e}_1	\bar{e}_2
91	0711141540	7.7	227.60	PB08	A^*	865	673	0.004	0.004
376	1404030243	7.7	205.69	PB04	A^*	785	988	0.003	0.003
384	1404030243	7.7	213.46	PB12	A^*	1000	934	0.003	0.003
837	1404030243	7.7	227.10	ACRU	А	941	956	0.005	0.007
993	1404030243	7.7	234.21	POCO	В	876	944	0.008	0.010

Figura 5.21: Conjunto de envolventes para la clasificación 10 (canal 1).

Figura 5.22: Conjunto de envolventes para la clasificación 10 (canal 2).

5.1.1.4. Magnitud 8.0 M_w

• Clasificación 11: Distancia 100 [km] $\leq \, d < 200$ [km]

A continuación se detallan los parámetros sísmicos de la clasificación 11:

ID	Evento	Magnitud M_w	Distancia [km]	Estación	Tipo de suelo	np_1	np_2	\bar{e}_1	\bar{e}_2
3919	8503032247	8.0	100.67	SFER	В	497	652	0.060	0.050
3921	8503032247	8.0	109.34	END	В	668	533	0.030	0.026
3926	8503032247	8.0	123.44	ILLA	В	_	_		
3932	8503032247	8.0	126.89	TAL	В	460	596	0.043	0.043

Tabla 5.11: Parámetros sísmicos clasificación 11.

A continuación se muestra el conjunto de envolventes del canal horizontal 1 para esta clasificación:

Figura 5.23: Conjunto de envolventes para la clasificación 11 (canal 1).

Figura 5.24: Conjunto de envolventes para la clasificación 11 (canal 2).

5.1.1.5. Magnitud 8.2 M_w

• Clasificación 12: Distancia 0 [km] $\leq d < 50$ [km]

A continuación se detallan los parámetros sísmicos de la clasificación 12:

ID	Evento	Magnitud M_w	Distancia [km]	Estación	Tipo de suelo	np_1	np_2	\bar{e}_1	\bar{e}_2
318	1404012346	8.2	35.70	PSGCX	А	709	855	0.016	0.018
514	1404012346	8.2	35.74	T08A	В	950	1000	0.033	0.038
515	1404012346	8.2	31.48	T09A	A^*	596	635	0.033	0.045
517	1404012346	8.2	32.42	T03A	В	959	920	0.042	0.048
1235	1404012346	8.2	31.97	T05A	В	973	895	0.028	0.025

Tabla 5.12: Parámetros sísmicos clasificación 12.

Figura 5.25: Conjunto de envolventes para la clasificación 12 (canal 1).

Figura 5.26: Conjunto de envolventes para la clasificación 12 (canal 2).

Clasificación 13: Distancia 50 [km] ≤ d < 100 [km]
 A continuación se detallan los parámetros sísmicos de la clasificación 13:

Tabla 5.13: Parámetros sísmicos clasificación 13.

ID	Evento	Magnitud M_w	Distancia [km]	Estación	Tipo de suelo	np_1	np_2	\bar{e}_1	\bar{e}_2
301	1404012346	8.2	52.28	TA01	B*	502	460	0.015	0.014
302	1404012346	8.2	50.99	HMBCX	В	976	562	0.022	0.022
303	1404012346	8.2	87.58	MNMCX	B^*	691	889	0.025	0.033
315	1404012346	8.2	62.56	PB12	A^*	1000	961	0.013	0.011
836	1404012346	8.2	74.95	ACRU	А	983	842	0.020	0.019
992	1404012346	8.2	84.49	POCO	В		_		

Figura 5.27: Conjunto de envolventes para la clasificación 13 (canal 1).

Figura 5.28: Conjunto de envolventes para la clasificación 13 (canal 2).

• Clasificación 14: Distancia 100 [km] $\leq d < 200$ [km]

A continuación se detallan los parámetros sísmicos de la clasificación 14:

ID	Evento	Magnitud M_w	Distancia [km]	Estación	Tipo de suelo	np_1	np_2	\bar{e}_1	\bar{e}_2
305	1404012346	8.2	130.91	PB01	A^*		_		
310	1404012346	8.2	178.57	PB07	A^*	857	976	0.007	0.006
311	1404012346	8.2	125.25	PB08	A^*	807	779	0.009	0.009
317	1404012346	8.2	129.78	PB16	A^*	915	1000	0.004	0.005
569	1404012346	8.2	125.18	GO01	B^*	875	1000	0.025	0.032
971	1404012346	8.2	111.57	PICA	B^*	1000	939	0.032	0.028

Tabla 5.14: Parámetros sísmicos clasificación 14.

Figura 5.29: Conjunto de envolventes para la clasificación 14 (canal 1).

Figura 5.30: Conjunto de envolventes para la clasificación 14 (canal 2).

• Clasificación 15: Distancia 200 [km] $\leq d < 250$ [km]

A continuación se detallan los parámetros sísmicos de la clasificación 15:

ID	Evento	Magnitud M_w	Distancia [km]	Estación	Tipo de suelo	np_1	np_2	\bar{e}_1	\bar{e}_2
306	1404012346	8.2	216.30	PB03	A*	996	991	0.004	0.004
307	1404012346	8.2	240.34	PB04	A^*	953	831	0.004	0.005
312	1404012346	8.2	213.22	PB09	A^*	975	998	0.008	0.008

Tabla 5.15: Parámetros sísmicos clasificación 15.

Figura 5.31: Conjunto de envolventes para la clasificación 15 (canal 1).

A continuación se muestra el conjunto de envolventes del canal horizontal 2 para esta clasificación:

Figura 5.32: Conjunto de envolventes para la clasificación 15 (canal 2).

5.1.1.6. Magnitud 8.3 M_w

Clasificación 16: Distancia 100 [km] ≤ d < 200 [km]
 A continuación se detallan los parámetros sísmicos de la clasificación 16:

Tabla 5.16: Parámetros sísmicos clasificación 16.

ID	Evento	Magnitud M_w	Distancia [km]	Estación	Tipo de suelo	np_1	np_2	\bar{e}_1	\bar{e}_2
1020	1509162254	8.3	140.31	CO03	B*	922	979	0.040	0.034
1024	1509162254	8.3	183.71	MT09	A^*	983	919	0.005	0.005
1040	1509162254	8.3	159.95	C09O	B^*	977	901	0.017	0.018

Figura 5.33: Conjunto de envolventes para la clasificación 16 (canal 1).

Figura 5.34: Conjunto de envolventes para la clasificación 16 (canal 2).

5.1.1.7. Magnitud 8.8 M_w

• Clasificación 17: Distancia 100 [km] $\leq d < 200$ [km]

A continuación se detallan los parámetros sísmicos de la clasificación 17:

ID	Evento	Magnitud M_w	Distancia [km]	Estación	Tipo de suelo	np_1	np_2	\bar{e}_1	\bar{e}_2
75	1002270634	8.8	143.55	MET	В	998	854	0.024	0.022
98	1002270634	8.8	138.77	ANTU	В	781	460	0.022	0.020
100	1002270634	8.8	143.49	SLUC	A^*	1000	1000	0.002	0.002
102	1002270634	8.8	164.04	SJCH	В	992	766	0.078	0.060
3876	1002270634	8.8	102.03	CURI	В	877	805	0.104	0.052
3896	1002270634	8.8	168.53	PAP	В	763	958	0.061	0.070
3909	1002270634	8.8	112.05	VALU	А				
3966	1002270634	8.8	162.75	ZACH	В				

Tabla 5.17: Parámetros sísmicos clasificación 17.

A continuación se muestra el conjunto de envolventes del canal horizontal 1 para esta clasificación:

Figura 5.35: Conjunto de envolventes para la clasificación 17 (canal 1).

Figura 5.36: Conjunto de envolventes para la clasificación 17 (canal 2).

5.1.2. Envolventes de sismos intraplaca profundidad intermedia

5.1.2.1. Magnitud $6.5 \le M_w < 7.0$

• Clasificación 18: Distancia 0 [km] $\leq d < 100$ [km]

A continuación se detallan los parámetros sísmicos de la clasificación 18:

ID	Evento	Magnitud M_w	Distancia [km]	Estación	Tipo de suelo	np_1	np_2	\bar{e}_1	\bar{e}_2
37	0712160809	6.7	66.05	MJPU	A*	863	694	0.018	0.023
93	0712160809	6.7	83.92	PB04	A^*	527	922	0.031	0.033
94	0712160809	6.7	57.63	PB05	A^*	505	544	0.034	0.026
95	0712160809	6.7	83.07	PB06	A^*	936	519	0.040	0.031
3945	8111111737	6.7	66.86	LIG	В	854	682	0.076	0.117
3946	8111111737	6.7	64.04	PAP	В	752	720	0.074	0.106

Tabla 5.18: Parámetros sísmicos clasificación 18.

Figura 5.37: Conjunto de envolventes para la clasificación 18 (canal 1).

Figura 5.38: Conjunto de envolventes para la clasificación 18 (canal 2).

• Clasificación 19: Distancia 100 [km] $\leq d < 200$ [km]

A continuación se detallan los parámetros sísmicos de la clasificación 19:

ID	Evento	Magnitud M_w	Distancia [km]	Estación	Tipo de suelo	np_1	np_2	\bar{e}_1	\bar{e}_2
78	0712160809	6.7	105.23	TOCP	A*	710	762	0.005	0.003
92	0712160809	6.7	115.84	PB03	A^*	826	801	0.024	0.023
96	0712160809	6.7	143.01	PB07	A^*	964	974	0.015	0.020
574	1301302015	6.8	104.65	GO03	A^*	675	684	0.009	0.013
1192	1310312303	6.6	112.57	C09O	B^*	935	935	0.002	0.003

Tabla 5.19: Parámetros sísmicos clasificación 19.

Figura 5.39: Conjunto de envolventes para la clasificación 19 (canal 1).

A continuación se muestra el conjunto de envolventes del canal horizontal 2 para esta clasificación:

Figura 5.40: Conjunto de envolventes para la clasificación 19 (canal 2).

5.1.2.2. Magnitud 7.5 $\leq M_w < 8.0$

Clasificación 20: Distancia 200 [km] ≤ d < 250 [km]
 A continuación se detallan los parámetros sísmicos de la clasificación 20:

Tabla 5.20: Parámetros sísmicos clasificación 20.

ID	Evento	Magnitud M_w	Distancia [km]	Estación	Tipo de suelo	np_1	np_2	\bar{e}_1	\bar{e}_2
9	0506132244	7.8	229.31	ACRU	А	880	1000	0.016	0.018
60	0506132244	7.8	220.71	POCO	В	979	597	0.029	0.027

Figura 5.41: Conjunto de envolventes para la clasificación 20 (canal 1).

A continuación se muestra el conjunto de envolventes del canal horizontal 2 para esta clasificación:

Figura 5.42: Conjunto de envolventes para la clasificación 20 (canal 2).

Al momento de estudiar las clasificaciones de eventos intraplaca de profundidad intermedia, es posible notar que son sólo tres. En las Figuras 5.37 y 5.38, se observa que las envolventes obtenidas pueden están muy bien representadas por la función de modulación gamma (ver Figura 5.3), ya que en general todas las curvas van aumentando de manera gradual alcanzando su máximo valor de aceleración (PGA) para luego decrecer de forma progresiva. Para la siguiente clasificación, es decir, para la clasificación 19, se tiene un curva que destaca dentro del conjunto y es la ilustrada en la Figura 5.39, donde se tiene que aquella curva que incursiona en un segundo peak corresponde al registro ID: 1192. Lo anterior se debe principalmente a limitaciones de la función de MATLAB y no está relacionado con la forma que posee el registro de aceleración en sí. Lo mismo ocurre con la última clasificación, en las Figuras 5.41 y 5.42, las curvas presentan un pequeño peak al principio, lo que implica que la función de MATLAB tomó en cuenta estos valores antes del PGA en vez de realizar un incremento gradual.

Capítulo 6 Conclusiones

En la actualidad, existen metodologías numéricas que permiten generar registros artificiales compatibles en características generales con los registros que se obtienen a través de estaciones sismológicas. En este sentido, una de las interrogantes que existen es la forma que debe presentar la envolvente de un registro artificial de tal modo que sea capaz de describir el comportamiento de una manera realista. Por tal motivo, el presente trabajo tiene como objetivo realizar un estudio del comportamiento de la envolvente en el tiempo de los registros de aceleración para lograr que en un futuro los algoritmos que permiten generar registros artificiales puedan ser mucho más compatibles con la realidad para entender así su riesgo.

Con el fin de lograr este objetivo, se realiza en primer lugar una recopilación del estudio realizado por Tiznado (Tiznado, 2020) de los registros de aceleración de sismos chilenos mayores a 5.0 M_w y posteriormente se caracterizan según fuente sismogénica, magnitud, velocidad de onda de corte, tipo de suelo y distancia a la fuente sísmica. De esta descripción de los registros es posible notar que los sismos más relevantes dentro del territorio nacional corresponden a los sismos de mecanismo interplaca tipo "thrust" e intraplaca de profundidad intermedia (ver Figura 3.10). También es posible observar que la mayoría de los sismos ocurridos en Chile presentan magnitudes entre 5.5 M_w y 7.0 M_w (ver Figura 3.11). Con respecto a la caracterización según la velocidad de onda de corte, esta no es del todo representativa ya que la cantidad de registros que poseen una velocidad de onda asociada en la base de datos son muy pocos por lo que lo ilustrado en la Figura 3.12 se puede considerar una descripción incompleta en comparación al resto. Luego, se tiene la caracterización por tipo de suelo, donde es posible apreciar que la mayoría corresponden a suelos tipo A y B (ver Figura 3.13). Ahora bien, tal como se aprecia en la Tabla 3.7 correspondiente a la clasificación de suelos según el D.S Nº61, los tipos A y B pueden ser considerados suelo duro y los tipos C, D y E, suelo blando. Lo anterior da a entender que la mayoría de los registros ocurren en suelo duro (ver Figura 3.14). Después se tiene la caracterización por distancia a la fuente sísmica, donde es posible distinguir la distancia al área de ruptura para los sismos detallados en la Tabla 3.17 y la distancia hipocentral para el resto. De esta caracterización se puede notar que la mayoría de los registros poseen una distancia a la fuente sísmica menor a 300 km (ver Figura 3.23). Finalmente, se realiza una caracterización general de los registros, de aquí cabe destacar que en las Figuras 3.25 v 3.26 se muestra que a medida que la distancia a la fuente sísmica aumenta, la aceleración máxima del suelo (PGA) disminuye, lo cual tiene relación con la teoría ya que a medida que las ondas sísmicas viajan a través del suelo, se van debilitando.

Ahora bien, una vez caracterizada la base de datos, a través de la función envelope peak de MATLAB, se realiza la generación de envolventes para los registros de aceleración del territorio nacional más relevantes. De esta manera, se trabaja sólo con sismos que poseen un mecanismo interplaca tipo "thrust" e intraplaca de profundidad intermedia, en suelo tipo roca, con magnitudes desde 6.5 M_w hasta 8.8 M_w y una distancia a la fuente sísmica menor a 250 km. Cabe señalar que la función utiliza un np, correspondiente a la separación entre peaks, que varía para cada registro y canal del mismo. Como es el único input que recibe la función, se trabaja en un rango de valores para np de 450 a 1000 con el fin de encontrar la curva más adecuada. Lo anterior puede ser considerada una limitación de la función ya que en unos pocos casos puede resultar en una envolvente no del todo característica del registro.

Finalmente, una vez obtenidos los resultados para cada clasificación, las formas que poseen las envolventes de los registros de aceleración se comparan visualmente con respecto a una envolvente propuesta en el pasado denominada función moduladora gamma (Saragoni y Hart, 1973). De este análisis se logra desprender que para sismos interplaca tipo "thrust" de magnitud menor a 7.5 M_w y para sismos intraplaca de profundidad intermedia, la forma que posee la envolvente está bien caracterizada por la función moduladora gamma. Para poder visualizar lo anterior basta reparar en la forma que posee el conjunto de envolventes para la clasificación 1 (canal 1) ilustrada en la Figura 5.1 y el conjunto de envolventes para la clasificación 18 (canal 1) mostrada en la Figura 5.37 y compararla con la forma que posee la función de modulación gamma propuesta por Saragoni y Hart, la cual se puede apreciar en la Figura 5.3. Por otra parte, para aquellos sismos interplaca tipo "thrust" de magnitud mayor o igual a 7.5 M_w , en general, el proceso subductivo incursiona en múltiples fases de movimiento fuerte ya que no se presenta el comportamiento típico de un registro de aceleración, donde existe la llegada de la onda primaria P para luego identificar la llegada de la onda secundaria S, siguiendo con su decaimiento de la amplitud del registro (coda). Para ciertos acelerogramas, se tiene que una vez que llega la onda S, esta no presenta un decaimiento gradual hasta llegar a cero sino que comienza a tener otros peaks considerables, los cuales son fáciles de identificar. Lo anterior implica que la función gamma no es representativa para este tipo de casos, donde se debe buscar otra función que pueda caracterizar de buena manera el comportamiento que presenta el registro de aceleración. En consecuencia, cuando se presenta este caso, por ejemplo, la clasificación 13 (ver Figura 5.27), lo ideal sería usar otra función envolvente correspondiente a la función spline cubic de Hermite ya que es capaz de capturar las distintas fases de movimiento fuerte (ver Figura 5.14) con el propósito de perfeccionar los algoritmos que permiten generar registros artificiales y por consiguiente, que estos logren ser mucho más representativos de las formas que poseen los registros de aceleración en la realidad.

Bibliografía

- ArcGIS. (s.f.). Georreferenciación y sistemas de coordenadas. Descargado de https:// resources.arcgis.com/es/help/getting-started/articles/026n00000000000.htm
- Barrientos, S. E., y Ward, S. N. (1990). The 1960 Chile earthquake: inversion for slip distribution from surface deformation. *Geophysical Journal International*, 103(3), 589-598. doi: 10.1111/j.1365-246X.1990.tb05673.x
- Boore, D. (2003, 03). Simulation of ground motion using the stochastic method. *Pure and Applied Geophysics*, 160, 635-676. doi: 10.1007/PL00012553
- Boore, D., y Bommer, J. (2005). Processing of strong-motion accelerograms: needs, options and consequences. Soil Dynamics and Earthquake Engineering, 25(2), 93-115. doi: 10.1016/j.soildyn.2004.10.007
- Broccardo, M., y Dabaghi, M. (2017). A spectral-based stochastic ground motion model with a non-parametric time-modulating function [Conference Paper]. (12th International Conference on Structural Safety and Reliability (ICOSSAR12); Conference Location: Vienna, Austria; Conference Date: August 6-17, 2017)
- Candia, G., de Pascale, G. P., Montalva, G., y Ledezma, C. (2017). Geotechnical aspects of the 2015 mw 8.3 illapel megathrust earthquake sequence in chile. *Earthquake Spectra*, 33(2), 709-728. doi: 10.1193/031716EQS043M
- Carreño, E., Bravo, B., Suárez, A., y Tordesillas, J. (1999). Registro y tratamiento de acelerogramas. *Física de la Tierra*, 11, 81-11.
- Comte, D., Eisenberg, A., Lorca, E., Pardo, M., Ponce, L., Saragoni, R., ... Suárez, G. (1986).
 The 1985 central chile earthquake: A repeat of previous great earthquakes in the region? Science, 233(4762), 449–453. Descargado de http://www.jstor.org/stable/1697810
- CSN. (2014). Sismicidad y terremotos en chile. Descargado de http://www.csn.uchile.cl/ wp-content/uploads/2014/06/001_terremotos_y_sismicidad_chile.pdf
- Decreto Supremo N°61. (2011). [Ministerio de Vivienda y Urbanismo]. Aprueba reglamento que fija el diseño sísmico de edificios y deroga decreto Nº 117, de 2010. 02 de noviembre de 2011.
- Delouis, B., Monfret, T., Dorbath, L., Pardo, M., Rivera, L., Comte, D., ... Cisternas, A. (1997). The Mw = 8.0 Antofagasta (northern Chile) earthquake of 30 July 1995: A precursor to the end of the large 1877 gap. Bulletin of the Seismological Society of America, 87(2), 427-445. doi: 10.1785/BSSA0870020427
- DeMets, C., Gordon, R. G., y Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181(1), 1-80. doi: 10.1111/j.1365-246X.2009.04491 .x

- De Pascale, G., Candia, G., Montalva, G., y Ledezma, C. (2015). Geotechnical reconnaissance of the 2015 mw8.3 illapel, chile earthquake. Descargado de https://learningfromearthquakes.org/2015-09-16-illapel-chile/images/2015_09 _16_illapel_chile/pdfs/GEER_Illapel_Earthquake_2015.pdf doi: 10.13140/ RG.2.1.3649.2887
- Fasan, M., Magrin, A., Amadio, C., Romanelli, F., Vaccari, F., y Panza, G. (2016). A seismological and engineering perspective on the 2016 central italy earthquakes. *International Journal of Earthquake and Impact Engineering (IJEIE)*, 1, 395-420. doi: 10.1504/IJEIE.2016.10004076
- González, D. (2017). Generación de espectros de respuesta con sismos chilenos para suelos en función de su período fundamental y nivel de amplificación. [Trabajo de título]. Universidad de Chile, Departamento de Ingeniería Civil.
- Hanks, T. C., y Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84 (B5), 2348-2350. doi: 10.1029/JB084iB05p02348
- Idini, B. (2016). Curvas de atenuación para terremotos intraplaca e interplaca en la zona de subducción chilena. [Tesis de magíster]. Universidad de Chile, Departamento de Ingeniería Civil.
- Kayal, J. R. (2006). Seismic waves and earthquake location.
- Kempton, J. J., y Stewart, J. P. (2006). Prediction equations for significant duration of earthquake ground motions considering site and near-source effects. *Earthquake Spectra*, 22(4), 985-1013. doi: 10.1193/1.2358175
- Kramer, S. L. (1996). *Geotechnical earthquake engineering*. New Jersey 07458: Prentice Hall Upper Saddle River.
- Lee, C., Hsieh, B., Sung, C., y Lin, P. (2012). Regional Arias Intensity Attenuation Relationship for Taiwan Considering VS30. Bulletin of the Seismological Society of America, 102(1), 129-142. doi: 10.1785/0120100268
- Lorito, S., Romano, F., Atzori, S., Tong, X., Avallone, A., McCloskey, J., ... Piatanesi, A. (2011). Limited overlap between the seismic gap and coseismic slip of the great 2010 chile earthquake. *Nature Geoscience*, 4, 173-177. doi: 10.1038/ngeo1073
- Loyola, L. (2020). Generación estocástica de registros artificiales compatibles con la amenaza sísmica chilena [Tesis de magíster]. Universidad de Chile, Departamento de Ingeniería Civil.
- MathWorks. (2015). Signal envelope. Descargado de https://www.mathworks.com/help/ signal/ref/envelope.html
- MTU. (s.f.). Seismology. Descargado de https://www.mtu.edu/geo/community/ seismology/learn/seismology-study/
- PRS. (2020). La sismología en chile: Cronología histórica. Descargado de https://prs.dgf .uchile.cl/linea-de-tiempo/
- Ruiz, S., Metois, M., Fuenzalida, A., Ruiz, J., Leyton, F., Grandin, R., ... Campos, J. (2014). Intense foreshocks and a slow slip event preceded the 2014 iquique mw 8.1 earthquake. *Science*, 345 (6201), 1165-1169. doi: 10.1126/science.1256074
- Saragoni, G. R., y Hart, G. C. (1973). Simulation of artificial earthquakes. Earthquake

Engineering & Structural Dynamics, 2(3), 249-267. doi: 10.1002/eqe.4290020305

- Tiznado, C. (2020). Propuesta de espectros de respuesta para suelos en chile. [Tesis de magíster]. Universidad de Chile, Departamento de Ingeniería Civil.
- Travasarou, T., Bray, J. D., y Abrahamson, N. A. (2003). Empirical attenuation relationship for arias intensity. *Earthquake Engineering & Structural Dynamics*, 32(7), 1133-1155. doi: 10.1002/eqe.270
- USGS. (2021). The severity of an earthquake. Descargado de https://pubs.usgs.gov/gip/ earthq4/severitygip.html

Anexos

Anexo A. Catálogo de Eventos

Nº	ID	Fecha	Hora	Magnitud	Latitud [°]	Longitud [°]	Profundidad [km]	Tipo
1	9801301216	30-01-1998	12:16	7	-23,846	-70,149	41,4	Т
2	0711141540	14-11-2007	15:40	7.7	-22,321	-69,780	33,6	Т
3	0202260832	26-02-2002	8:32	5.4	-18,289	-69,722	92,5	Ι
4	0507131206	13-07-2005	12:06	5.7	-17,857	-70,212	79,3	Ι
5	0510171923	17 - 10 - 2005	19:23	5.7	-17,732	-69,548	123,3	Ι
6	0911130305	13-11-2009	3:05	6.5	-19,469	-70,418	36,0	Т
7	9911300401	30-11-1999	4:01	6.6	-18,917	-69,141	$124,\! 6$	Ι
8	0506132244	13-06-2005	22:44	7.8	-20,000	-69,190	105,5	Ι
9	0611201438	20-11-2006	14:38	5.5	$-17,\!694$	-70,161	41,5	Т
10	0107070938	07-07-2001	9:38	7.6	$-17,\!530$	-71,930	14,1	Т
11	0108080333	09-08-2001	3:33	5.6	-18,221	-69,456	114,1	Ι
12	0802041701	04-02-2008	17:01	6.3	-20,186	-69,948	42,8	Т
13	0803011951	01-03-2008	19:51	5.6	-20,315	-69,982	38,8	Т
14	0803242039	24-03-2008	20:39	6.2	-20,078	-68,973	120,8	Ι
15	0711151503	15 - 11 - 2007	15:03	6.3	-22,898	-70,415	31,4	Т
16	0711151506	15 - 11 - 2007	15:06	6.8	-22,739	-70,077	35,0	Т
17	0711170307	17 - 11 - 2007	3:07	5.5	-23,010	-70,229	34,5	Т
18	0712160809	16 - 12 - 2007	8:09	6.7	-22,888	-70,129	57,0	Ι
19	0712130723	13 - 12 - 2007	7:23	6.2	-23,234	-70,528	$30,\!6$	Т
20	0211121306	12 - 11 - 2002	13:06	5.2	-20,118	-68,714	114,0	Ι
21	0408250512	25-08-2004	5:12	5.1	-20,318	-68,943	93,2	Ι
22	0503180135	19-03-2005	1:35	5.3	-20,401	-68,687	109,5	Ι
23	0503240354	25-03-2005	3:54	5.1	-20,248	-68,892	97,4	Ι
24	0508130239	14-08-2005	2:39	5.8	-19,742	-69,081	$114,\! 6$	Ι
25	0603270523	27-03-2006	5:23	5.2	-20,847	-69,525	59,3	Ι
26	0604092050	09-04-2006	20:50	5.7	-20,467	-70,229	36,2	Т
27	0710250835	25 - 10 - 2007	8:35	5.6	-20,538	-68,683	102,5	Ι
28	0902112045	11-02-2009	20:45	5.3	-20,253	-68,912	108,9	Ι
29	0907151521	15-07-2009	15:21	5.2	-20,382	-69,146	$111,\!3$	Ι
30	0904160208	17-04-2009	2:08	6.1	$-19,\!581$	-70,502	28,7	Т

Tabla A.1: Caracterización del catálogo de eventos (Parte 1).

NIO	ID	Fachs	Uone	Magnitud	Latitud	Longitud	Profundidad	Tine
INF	ID	геспа	пога	Magintud	[o]	[°]	[km]	тро
31	0711180702	18-11-2007	7:02	5.3	-18,581	-69,526	98,8	Ι
32	0205230023	24-05-2002	0:23	5.5	-31,964	-70,963	$61,\!6$	Ι
33	0206181356	18-06-2002	13:56	6.4	-30,830	-71,060	54,0	Т
34	0306201330	20-06-2003	13:30	6.8	-30,650	-71,530	32,0	Т
35	0401100725	10-01-2004	7:25	5.6	-30,842	-71,711	53,3	Т
36	0610121805	12-10-2006	18:05	6.3	-31,260	-71,330	31,0	Т
37	1002270634	27-02-2010	6:34	8.8	-36,149	-72,933	28,1	Т
38	9602221340	22-02-1996	13:40	6	-33,588	-71,552	47,3	Т
39	9703250014	25-03-1997	0:14	5.5	-33,424	-70,565	88,5	Ι
40	9710150103	15-10-1997	1:03	7.1	-30,891	-71,154	62,3	Ι
41	0006160755	16-06-2000	7:55	6.4	-33,830	-70,100	114,0	Ι
42	9908010106	02-08-1999	1:06	5.5	-33,104	-70,197	105,3	Ι
43	0712151822	15-12-2007	18:22	5.9	-32,693	-71,619	28,9	Т
44	0812190936	19-12-2008	9:36	5.7	-32,418	-71,724	37,1	Т
45	1002270801	27-02-2010	8:01	7.4	-37,840	-75,211	35,0	Or
46	0205231552	23-05-2002	15:52	5.9	-30,780	-71,230	44,0	Т
47	0409272258	27-09-2004	22:58	5.5	-32,633	-71,688	40,7	Т
48	9810291955	29-10-1998	19:55	5.3	-32,827	-70,512	94,7	Ι
49	1405140338	14-05-2014	3:38	5.6	-22,739	-67,063	265,3	Ip
50	1405161708	16-05-2014	17:08	5.5	-23,493	-68,859	111,8	Ι
51	1405170911	17-05-2014	9:11	5.6	-19,989	-70,896	42,6	Т
52	1405301141	30-05-2014	11:41	-	-	-	-	-
53	1405301532	30-05-2014	15:32	5.6	-21,302	-69,999	$59,\! 6$	Ι
54	1406190938	19-06-2014	9:38	5.7	-19,931	-70,906	38,8	Т
55	1406191954	19-06-2014	19:54	5.8	-19,815	-70,941	40,1	Т
56	1406201953	20-06-2014	19:53	5.6	-19,772	-70,942	39,7	Т
57	1406202022	20-06-2014	20:22	5.8	-19,744	-71,002	38,2	Т
58	1407141124	14-07-2014	11:24	5.5	-17,882	-73,125	25,1	Or
59	1407232139	23-07-2014	21:39	5.5	-20,238	-68,740	122,0	Ι
60	1404012346	01-04-2014	23:46	8.2	-19,572	-70,908	38,9	Т
61	1404012357	01-04-2014	23:57	6.9	-19,916	-71,081	$36,\!6$	Т
62	1404020446	02-04-2014	4:46	5.5	-20,134	-70,792	38,6	Т
63	1404030158	03-04-2014	1:58	6.5	-20,314	-70,583	30,7	Т
64	1404030243	03-04-2014	2:43	7.7	-20,517	-70,439	27,7	Т
65	1404030526	03-04-2014	5:26	6.4	-20,798	-70,651	38,0	Т
66	1404040137	04-04-2014	1:37	6.3	-20,616	-70,566	40,2	Т
67	1404071343	07-04-2014	13:43	5.7	-20,131	-70,905	$35,\!6$	Т
68	1404081014	08-04-2014	10:14	5.6	-20,558	-70,978	38,2	Т
69	1404110001	11-04-2014	0:01	6.2	-20,717	-70,649	38,9	Т
70	1404131211	13-04-2014	12:11	5.5	-20,585	-70,713	$23,\!6$	Т
71	1404192054	19-04-2014	20:54	5.8	-19,965	-71,112	40,0	Т
72	1403162116	16-03-2014	21:16	6.7	-19,965	-70,814	20,6	\mathbf{S}
73	1403231820	23-03-2014	18:20	6.3	-19,794	-71,943	33,8	Or
74	1407130718	13-07-2014	7:18	5.6	-30,748	-70,620	83,4	-
75	1210111722	11-10-2012	17:22	5.5	-32.879	-70.651	95.0	Ι

Tabla A.2: Caracterización del catálogo de eventos (Parte 2).

NIO	ID	Facha	Hore	Magnitud	Latitud	Longitud	Profundidad	Tino
IN	ID	recha	1101a	Magintuu	[°]	[°]	[km]	Tibo
76	1401291001	29-01-2014	10:01	5.6	-18,564	-69,597	122,0	I
77	1404040952	04-04-2014	9:52	5.4	-31,476	-70,639	106,3	-
78	1404050222	05-04-2014	2:22	5.6	-32,669	-71,295	42,3	Т
79	1307101432	10-07-2013	14:32	5.6	-19,367	-69,522	112,9	Ι
80	1403311253	31-03-2014	12:53	5.6	-19,511	-69,174	114,5	Ι
81	1205190835	19-05-2012	8:35	5.8	-25,729	-70,562	28,0	Т
82	1312040539	04-12-2013	5:39	5.5	-24,578	-69,295	72,4	-
83	1208070039	07-08-2012	0:39	5.3	-27,878	-70,579	73,5	Ι
84	1301302015	30-01-2013	20:15	6.8	-28,178	-70,882	52,2	Ι
85	1204300739	30-04-2012	7:39	5.6	-29,800	-71,641	43,1	Т
86	1211141902	14-11-2012	19:02	6.1	-29,237	-71,235	82,3	Ι
87	1310312303	31-10-2013	23:03	6.6	-30,372	-71,501	52,0	Ι
88	1106201635	20-06-2011	16:35	6.4	-21,874	-68,668	128,7	Ι
89	1403170511	17-03-2014	5:11	6.4	-19,928	-70,944	28,3	Т
90	1203240728	24-03-2012	7:28	5.2	-33,052	-71,063	$68,\!8$	-
91	1005060242	06-05-2010	2:42	6.2	-18,316	-70,766	38,9	Т
92	1006261901	26-06-2010	19:01	5.5	-19,109	-69,626	105,9	Ι
93	1103061231	06-03-2011	12:31	6.3	-18,309	-69,440	112,4	Ι
94	1205141000	14-05-2012	10:00	6.2	-18,115	-70,237	119,6	Ι
95	1209211217	21-09-2012	12:17	5.4	-19,719	-69,335	100,8	Ι
96	1010221931	22-10-2010	19:31	5.8	-21,010	-68,806	136,3	Ι
97	1102282045	28-02-2011	20:45	5.2	-20,457	-69,271	101,4	Ι
98	1301132123	13-01-2013	21:23	5.3	-20,116	-69,315	89,9	Ι
99	1308230834	23-08-2013	8:34	5.8	-22,278	-68,855	117,5	Ι
100	1402121143	12-02-2014	11:43	5.6	-22,354	-68,813	99,9	Ι
101	1007120011	12-07-2010	0:11	6.3	-22,354	-68,633	125,3	Ι
102	1111050713	05-11-2011	7:13	5.7	-23,506	-70,236	43,2	Т
103	1401070343	07-01-2014	3:43	5.2	-20,989	-69,729	97,3	-
104	1210080150	08-10-2012	1:50	5.7	-21,828	-68,537	121,3	Ι
105	1403201841	20-03-2014	18:41	5.1	-24,032	-69,250	96,5	Ι
106	1403182126	18-03-2014	21:26	5.8	-19,958	-70,944	38,1	Т
107	1403221259	22-03-2014	12:59	6.2	-19,836	-71,384	31,8	Or
108	1403241126	24-03-2014	11:26	5.7	-19,846	-70,828	$40,\!6$	Т
109	1403241140	24-03-2014	11:40	5.6	-19,822	-70,868	41,1	Т
110	1403241545	24-03-2014	15:45	5.7	-19,594	-70,791	43,0	Т
111	0203280456	28-03-2002	4:56	6.5	-21,698	-68,450	122,0	Ι
112	1011061215	06-11-2010	12:15	5	-18,965	-69,490	105,3	Ι
113	0201141536	14-01-2002	15:36	5.8	-18,508	-70,135	$5,\!0$	\mathbf{S}
114	1104021059	02-04-2011	10:59	5.9	$-19,\!684$	-69,355	100,5	Ι
115	1110221007	22-10-2011	10:07	5.1	-18,144	-69,594	123,8	Ι
116	1301091838	09-01-2013	18:38	5	-18,045	-69,695	111,2	Ι
117	0008111731	11-08-2000	17:31	5.2	-18,181	-70,431	58,5	Ι
118	0008181321	18-08-2000	13:21	5.2	-19,169	-70,136	$46,\! 6$	Ι
119	9812011558	01-12-1998	15:58	5.3	-17,593	-69,292	142,7	Ι
120	1003251357	25-03-2010	13:57	6.3	-35,992	-72,731	33.8	Т

Tabla A.3: Caracterización del catálogo de eventos (Parte 3).

NIO	ID	Fachs	Uone	Mognitud	Latitud	Longitud	Profundidad	Tine
IN	ID	геспа	пога	Magintud	[°]	[°]	[km]	Tibo
121	1004021934	02-04-2010	19:34	6	-36,118	-72,898	29,0	Т
122	1004162315	16-04-2010	23:15	5.6	$-37,\!604$	$-74,\!658$	20,0	Or
123	1004180149	18-04-2010	1:49	6	-37,377	-74,018	9,1	Т
124	1005251309	25-05-2010	13:09	5.6	$-37,\!645$	-73,183	47,9	Т
125	1007140832	14-07-2010	8:32	5.8	-38,113	-74,131	26,9	Т
126	1007141505	14-07-2010	15:05	5.5	-38,291	-73,868	20,9	Т
127	1009090728	09-09-2010	7:28	6.2	-36,986	-74,397	$28,\!8$	Or
128	1009300026	30-09-2010	0:26	5.8	-36,249	-74,256	20,2	Or
129	1010230558	23-10-2010	5:58	5.5	-37,791	-74,088	45,5	Т
130	1101022020	02-01-2011	20:20	7.2	-38,355	-73,326	24,0	Т
131	1102051611	05-02-2011	16:11	5.8	-37,621	-73,448	28,9	Т
132	1102112005	11-02-2011	20:05	6.9	-36,422	-73,960	26,0	Т
133	1102130851	13-02-2011	8:51	5.8	-36,565	-73,178	20,7	Т
134	1102140340	14-02-2011	3:40	6.7	-35,380	-72,834	21,0	Т
135	1106011255	01-06-2011	12:55	6.3	-37,566	-75,216	8,7	Or
136	1109031620	03-09-2011	16:20	5.8	-38,312	-74,753	17,2	Or
137	1102142156	14-02-2011	21:56	5.2	-20,031	-69,401	99,0	Ι
138	1107151455	15-07-2011	14:55	5.4	-21,177	-68,781	125,1	Ι
139	1401040011	04-01-2014	0:11	5.7	-20,687	-70,795	26,1	Т
140	1408230445	23-08-2014	4:45	5.7	-20,189	-69,076	100,3	Ι
141	0301060054	06-01-2003	0:54	5.7	-33,778	-70,369	112,4	Ι
142	1203252237	25-03-2012	22:37	7.1	-35,200	-72,217	40,7	Т
143	1204170350	17-04-2012	3:50	6.7	-32,787	-71,812	35,0	Т
144	1306192129	19-06-2013	21:29	5.2	-32,621	-70,236	107,1	Ι
145	1408232232	23-08-2014	22:32	6.4	-32,737	-71,498	40,1	Т
146	9811271027	27-11-1998	10:27	5.5	-32,995	-69,342	120,1	Ι
147	1007061354	06-07-2010	13:54	6.3	-35,664	-72,111	46,3	Т
148	0204011959	01-04-2002	19:59	6.3	-29,592	-71,677	67,0	Ι
149	0306192304	19-06-2003	23:04	5.6	-30,658	-71,773	26,1	Т
150	0412080603	08-12-2004	6:03	5.8	-30,848	-71,639	33,2	Т
151	0610150133	15-10-2006	1:33	5.5	-30,303	-71,472	47,1	Т
152	0610232100	23-10-2006	21:00	5.8	-21,947	-66,233	260,0	Ι
153	0209240357	24-09-2002	3:57	6.2	-31,419	-69,158	117,3	Ι
154	0306010252	01-06-2003	2:52	5.5	-32,950	-71,969	33,0	Т
155	9809031738	03-09-1998	17:38	6.5	-29,368	-71,620	12,0	Т
156	9810100412	10-10-1998	4:12	5.7	-33,440	-71,938	$35,\!6$	Т
157	9902051607	05-02-1999	16:07	5.3	-34,812	-70,848	103,2	Ι
158	1509162254	16-09-2015	22:54	8.3	-31,570	-71,654	25,0	Т
159	1505290428	29-05-2015	4:28	5.5	-28,221	-70,637	42,7	-
160	1503230451	23-03-2015	4:51	6.4	-18,420	-69,270	121,0	Ι
161	1503181827	18-03-2015	18:27	6.2	-36,100	-74,140	23,0	Or
162	1509162316	16-09-2015	23:16	6.1	-31,900	-71,900	29,2	Т
163	1509162318	16-09-2015	23:18	7	-31,590	-71,790	16,5	Т
164	1504010817	01-04-2015	8:17	5.5	-29,349	-71,659	39,6	-
165	1508232310	23-08-2015	23:10	5.7	-29,720	-71,250	50,1	Т

Tabla A.4: Caracterización del catálogo de eventos (Parte 4).

NIO	ID	Facha	Hore	Magnitud	Latitud	Longitud	Profundidad	Tino
IN	ID	Fecha	1101a	Magintuu	[°]	[•]	$[\mathbf{km}]$	Tipo
166	1502171435	17-02-2015	14:35	5.8	-32,383	-70,988	77,5	-
167	1509260251	26-09-2015	2:51	6.3	-30,790	-71,420	40,3	Т
168	1509170141	17-09-2015	1:41	6.4	-31,110	$-71,\!650$	49,5	Т
169	1509170355	17-09-2015	3:55	6.5	-31,460	-71,700	$53,\!3$	Т
170	1509170410	17-09-2015	4:10	6.7	-31,540	-71,750	40,7	Т
171	1509190907	19-09-2015	9:07	5.7	-31,130	-71,580	34,2	Т
172	1509200302	20-09-2015	3:02	5.5	-30,790	-71,319	48,3	-
173	1509210539	21-09-2015	5:39	6.1	-31,760	-71,740	40,7	Т
174	1509211739	21-09-2015	17:39	6.6	-31,760	-71,550	13,0	Т
175	1509220712	22-09-2015	7:12	6	-31,450	-71,130	63,3	Ι
176	1410070509	07-10-2014	5:09	5.5	-19,650	-69,470	109,2	Ι
177	1509162259	16-09-2015	22:59	6.4	-31,620	-71,750	26,7	Т
178	1509172040	17-09-2015	20:40	5.5	-30,040	-71,670	32,7	Т
179	1503281636	28-03-2015	16:36	5.6	-22,190	-68,700	111,7	Ι
180	1506101352	10-06-2015	13:52	6	-22,430	-68,580	130,5	Ι
181	1509011528	01-09-2015	15:28	5.6	-19,785	-69,245	97,2	-
182	1509281528	28-09-2015	15:28	5.9	-23,880	-67,120	249,9	Ip
183	1006051518	05-06-2010	15:18	5.1	-21,545	-70,020	26,8	-
184	1008041534	04-08-2010	15:34	5.2	-36,788	-74,068	26,7	-
185	1008050601	05-08-2010	6:01	6	-37,420	-74,073	33,5	-
186	1008050627	05-08-2010	6:27	6	-37,531	-73,821	36,3	-
187	1008051749	05-08-2010	17:49	5.7	-37,562	-73,772	29,3	-
188	1008052035	05-08-2010	20:35	5.2	-20,104	-70,816	23,9	-
189	1008091551	09-08-2010	15:51	5.3	-37,729	-73,393	47,8	-
190	1008220349	22-08-2010	3:49	5.4	-36,533	-73,720	19,1	-
191	1008251202	25-08-2010	12:02	5.2	-22,704	-69,184	76,9	-
192	1008290850	29-08-2010	8:50	5.2	-37,684	-74,095	26,2	-
193	1009060320	06-09-2010	3:20	5.4	-37,486	-73,575	17,0	-
194	1009081447	08-09-2010	14:47	5.3	-18,249	-69,813	121,1	-
195	1009090727	09-09-2010	7:27	6	-36,986	-74,397	28,8	-
196	1010230138	23-10-2010	1:38	5.4	-29,594	-71,112	44,0	-
197	1101100602	10-01-2011	6:02	5.9	-35,604	-73,604	22,8	-
198	1101182130	18-01-2011	21:30	5.8	-19,201	-69,397	102,7	-
199	1102131035	13-02-2011	10:35	5.5	-36,730	-73,397	32,3	-
200	1102131344	13-02-2011	13:44	5.1	-36,940	-72,904	55,0	-
201	1102280129	28-02-2011	1:29	5.9	-37,360	-73,695	31,5	-
202	1103190912	19-03-2011	9:12	5	-20,322	-69,538	109,3	-
203	1110031735	03-10-2011	17:35	5.1	-20,199	-69,249	102,1	-
204	1202110258	11-02-2012	2:58	5.8	-37,448	-73,897	19,0	-
205	1203031101	03-03-2012	11:01	5.6	-30,189	-71,448	34,6	-
206	1203041627	04-03-2012	16:27	5.3	-21,602	-70,061	47,1	-
207	1203100226	10-03-2012	2:26	5.3	-19,738	-69,250	101,0	-
208	1203192152	19-03-2012	21:52	5	-25,005	-69,752	100,5	-
209	1204010731	01-04-2012	7:31	5.2	-23,056	-69,316	93.8	-
210	1208270039	27-08-2012	0:39	5	-23,742	-69,418	99,0	-

Tabla A.5: Caracterización del catálogo de eventos (Parte 5).

NIO	ID	Fachs	Uono	Mognitud	Latitud	Longitud	Profundidad	Tine
IN	ID	геспа	nora	Magintuu	[°]	[°]	[km]	тро
211	1208300804	30-08-2012	8:04	5.2	-37,244	-73,857	40,4	-
212	1211130311	13 - 11 - 2012	3:11	5.1	-20,540	-69,030	93,0	-
213	1211160038	16 - 11 - 2012	0:38	5.3	-21,506	-69,488	61,7	-
214	1301010351	01-01-2013	3:51	5.1	-20,810	-69,670	$58,\! 6$	-
215	1303021142	02-03-2013	11:42	5.1	-22,851	-70,375	50,7	-
216	1308151026	15-08-2013	10:26	4.9	-32,514	$-71,\!642$	48,0	-
217	1309071913	07-09-2013	19:13	5.2	-19,617	-69,299	100,1	-
218	1309241708	24-09-2013	17:08	4.2	-29,834	-71,317	56,4	-
219	1309292306	29-09-2013	23:06	5.2	-37,469	-73,753	49,3	-
220	1309292323	29-09-2013	23:23	5.5	-37,472	-73,883	42,5	-
221	1310290340	29-10-2013	3:40	5	-30,705	-71,279	46,9	-
222	1311151003	15-11-2013	10:03	4.2	-30,544	-71,607	23,4	-
223	1312150801	15-12-2013	8:01	4.5	-30,771	-71,390	35,4	-
224	1312220153	22-12-2013	1:53	5	-32,872	-70,621	95,3	-
225	1401022239	02-01-2014	22:39	4.9	-32,961	-71,386	44,8	-
226	1402051151	05-02-2014	11:51	5.2	-21,377	-69,517	39,6	-
227	1402232340	23-02-2014	23:40	5.3	-23,847	-68,785	105,8	-
228	1403022055	02-03-2014	20:55	4.2	-19,164	-69,330	109,7	-
229	1403141531	14-03-2014	15:31	4.9	-19,459	-69,453	92,6	-
230	1403170012	17-03-2014	0:12	4.5	-19,987	-70,747	22,7	-
231	1403170519	17-03-2014	5:19	5.1	-19,994	-70,885	36,2	-
232	1403170544	17-03-2014	5:44	4.5	-20,012	-70,834	$9,\!6$	-
233	1403171112	17-03-2014	11:12	5.1	-19,912	-70,908	32,9	-
234	1403182133	18-03-2014	21:33	5	-20,025	-70,844	19,8	-
235	1403221314	22-03-2014	13:14	5.3	-19,821	-70,881	20,1	-
236	1403241132	24-03-2014	11:32	5.1	-19,796	-70,808	42,1	-
237	1404012349	01-04-2014	23:49	7.5	-20,085	-70,389	26,8	-
238	1404012352	01-04-2014	23:52	6.6	-19,615	-70,545	32,5	-
239	1404012358	01-04-2014	23:58	6.6	-20,101	-70,937	20,4	-
240	1404020003	02-04-2014	0:03	5.9	-19,839	-70,934	22,5	-
241	1404020004	02-04-2014	0:04	5.1	-19,624	-70,628	36,2	-
242	1404020021	02-04-2014	0:21	5.1	-20,056	-71,019	2,3	-
243	1404020033	02-04-2014	0:33	5.4	-20,191	-70,821	23,3	-
244	1404020037	02-04-2014	0:37	5.1	-20,032	-70,521	34,0	-
245	1404020057	02-04-2014	0:57	4.5	-19,805	-70,485	33,0	-
246	1404020129	02-04-2014	1:29	5.1	-20,033	-70,949	21,3	-
247	1404020304	02-04-2014	3:04	4.5	-19,750	-69,973	42,1	-
248	1404020320	02-04-2014	3:20	4.5	-20,119	-70,394	30,5	-
249	1404020323	02-04-2014	3:23	4.3	-19,387	-70,262	38,5	-
250	1404020340	02-04-2014	3:40	5	-19,966	-71,116	33,3	-
251	1404020413	02-04-2014	4:13	4.8	-19,573	-70,530	33,7	-
252	1404020416	02-04-2014	4:16	4.9	-19,955	-70,879	28,8	-
253	1404020419	02-04-2014	4:19	5.1	-19,890	-71,112	39,0	-
254	1404020458	02-04-2014	4:58	4.2	-20,156	-70,071	$43,\!6$	-
255	1404020509	02-04-2014	5:09	4.7	-20,382	-70,585	26,3	-

Tabla A.6: Caracterización del catálogo de eventos (Parte 6).

Nº	ID	Focha	Hora	Magnitud	Latitud	Longitud	Profundidad	Tipo
IN	ID	recha	1101a	Magintuu	[°]	[•]	[km]	Tibo
256	1404020703	02-04-2014	7:03	4.6	-20,148	-70,103	45,7	-
257	1404020821	02-04-2014	8:21	4	-20,077	-70,466	28,0	-
258	1404021107	02-04-2014	11:07	5.3	-19,992	-71,053	32,2	-
259	1404021613	02-04-2014	16:13	4	-19,948	-70,401	33,0	-
260	1404021712	02-04-2014	17:12	4.3	-19,795	-70,286	41,5	-
261	1404021740	02-04-2014	17:40	4.4	-19,890	-70,077	$52,\!8$	-
262	1404021929	02-04-2014	19:29	4.4	-20,158	-70,396	35,7	-
263	1404021943	02-04-2014	19:43	4	-19,849	-70,274	41,4	-
264	1404021950	02-04-2014	19:50	4.6	-20,058	-70,520	28,1	-
265	1404030256	03-04-2014	2:56	5.3	-20,737	-70,540	12,9	-
266	1404030259	03-04-2014	2:59	4.5	-20,568	-70,426	28,5	-
267	1404030311	03-04-2014	3:11	5.1	-20,615	-70,556	36,1	-
268	1404030345	03-04-2014	3:45	5	-19,965	-70,913	20,4	-
269	1404030404	03-04-2014	4:04	4.5	-20,348	-70,544	26,1	-
270	1404030417	03-04-2014	4:17	5	-20,593	-70,675	12,1	-
271	1404030506	03-04-2014	5:06	4.3	-20,341	-70,716	26,3	-
272	1404030534	03-04-2014	5:34	4.6	-20,466	-70,573	$19,\! 6$	-
273	1404030551	03-04-2014	5:51	5.5	-20,769	-70,437	31,0	-
274	1404030654	03-04-2014	6:54	4.7	-20,625	-70,635	30,1	-
275	1404030656	03-04-2014	6:56	4.4	-20,359	-70,033	$42,\!6$	-
276	1404030908	03-04-2014	9:08	4.8	-20,284	-70,468	37,1	-
277	1404030923	03-04-2014	9:23	5.2	-20,595	-70,767	16,1	-
278	1404031145	03-04-2014	11:45	4	-20,342	-69,920	48,5	-
279	1404031150	03-04-2014	11:50	4.7	-20,657	-70,338	32,4	-
280	1404031349	03-04-2014	13:49	4.5	-20,475	-70,486	27,5	-
281	1404031434	03-04-2014	14:34	4.8	-20,596	-70,934	36,3	-
282	1404032028	03-04-2014	20:28	4.2	-20,071	-70,549	33,6	-
283	1404032301	03-04-2014	23:01	4.1	-20,311	-70,510	21,1	-
284	1404032313	03-04-2014	23:13	4.3	-20,167	-70,371	34,7	-
285	1404032337	03-04-2014	23:37	5.1	-20,178	-70,627	41,1	-
286	1404040434	04-04-2014	4:34	5.2	-22,162	-70,264	70,4	-
287	1404040953	04-04-2014	9:53	4.6	-20,625	-70,702	20,3	-
288	1404041420	04-04-2014	14:20	4	-20,366	-69,856	50,3	-
289	1404050011	05-04-2014	0:11	4	-20,353	-69,949	43,7	-
290	1404050033	05-04-2014	0:33	4.8	-20,167	-70,524	$36,\!6$	-
291	1404050405	05-04-2014	4:05	4.7	-20,707	-70,688	30,1	-
292	1404050528	05-04-2014	5:28	4.6	-20,604	-70,674	21,2	-
293	1404050544	05-04-2014	5:44	5.4	-20,161	-70,538	43,2	-
294	1404050701	05-04-2014	7:01	4.1	-20,273	-70,216	40,5	-
295	1404050816	05-04-2014	8:16	4.3	-20,279	-70,030	52,4	-
296	1404052020	05-04-2014	20:20	4.5	-19,872	-70,225	45,2	-
297	1404061406	06-04-2014	14:06	5	-20,414	-70,983	45,1	-
298	1404061654	06-04-2014	16:54	4	-20,169	-70,371	37,8	-
299	1404062055	06-04-2014	20:55	4.5	-19,766	-70,495	40,7	-
300	1404070325	07-04-2014	3:25	4.3	-20,035	-69,292	101,8	-

Tabla A.7: Caracterización del catálogo de eventos (Parte 7).

Nº	ID	Fecha	Hora	Magnitud	Latitud	Longitud	Profundidad	Tipo
201	1404070694	07.04.0014	6.94	4 7				
301 202	1404070624	07-04-2014	0:24	4.7	-20,037	-70,872	30,2	-
302 202	1404071347	07-04-2014	13:47	-	-	-	-	-
303 204	1404071405	07-04-2014	14:05	0 4 7	-20,150	-70,900	38,7	-
304	1404071746	07-04-2014	17:40	4.7	-20,135	-70,374	29,4	-
305	1404080103	08-04-2014	1:03	-	-	-	-	-
306	1404080153	08-04-2014	1:53	4	-20,357	-69,889	51,5	-
307	1404080520	08-04-2014	5:20	-	-	-	-	-
308	1404080540	08-04-2014	5:40	4.6	-20,512	-70,654	30,0	-
309	1404080543	08-04-2014	5:43	4.8	-20,541	-70,699	26,0	-
310	1404080755	08-04-2014	7:55	4.4	-20,582	-70,731	35,0	-
311	1404090444	09-04-2014	4:44	4.3	-20,399	-70,476	32,1	-
312	1404090749	09-04-2014	7:49	4.6	-19,869	-70,937	$33,\!3$	-
313	1404090752	09-04-2014	7:52	4.5	-19,874	-70,883	32,8	-
314	1404091106	09-04-2014	11:06	4.9	-20,784	-70,806	15,2	-
315	1404091114	09-04-2014	11:14	5	-20,616	-70,923	22,9	-
316	1404091220	09-04-2014	12:20	4.3	-19,988	-70,110	39,4	-
317	1404100010	10-04-2014	0:10	4.7	-20,336	-70,871	$15,\!8$	-
318	1404101148	10-04-2014	11:48	4.3	-20,233	-70,905	36,7	-
319	1404101749	10-04-2014	17:49	4.9	-19,987	-71,030	38,4	-
320	1404102211	10-04-2014	22:11	4.3	-20,549	-70,972	33,1	-
321	1404110839	11-04-2014	8:39	4.6	-20,550	-70,811	37,7	-
322	1404110855	11-04-2014	8:55	5	-19,941	-70,927	39,4	-
323	1404111049	11-04-2014	10:49	4.4	-23,251	-68,917	112,1	-
324	1404111200	11-04-2014	12:00	5.3	-20,082	-70,510	39,5	-
325	1404112143	11-04-2014	21:43	4.3	-20,283	-70,469	29,5	-
326	1404112356	11-04-2014	23:56	4.5	-20,706	-70,720	22,1	-
327	1404140556	14-04-2014	5:56	4.9	-20,732	-70,789	25.6	-
328	1404150422	15-04-2014	4:22	4.1	-20,043	-70,458	29.5	-
329	1404151609	15-04-2014	16:09	5.3	-20.204	-70.858	39.9	-
330	1404151617	15-04-2014	16:17	4.3	-20.232	-70.854	22.5	_
331	1404151621	15-04-2014	16:21	_	_	_	_	_
332	1404151712	15-04-2014	17:12	4.6	-20.205	-70.899	39.7	_
333	1404151859	15-04-2014	18:59	_		-	-	_
334	1404160314	16-04-2014	3:14	_	-	-	_	_
335	1404160319	16-04-2014	3.11	4.4	-20 190	-70.876	36.3	_
336	1404180812	18-04-2014	8.12	4 1	-20,533	-70.381	39.4	_
337	1404182345	18-04-2014	23.45	4.4	-20,660	-70.948	46.9	_
338	1404102040	21 04 2014	13.30	1.1	-20,000	-10,540	40,0	
330	1404211559 1404221815	21-04-2014	10.09	-	- 25 781	-	72.0	-
240 240	1404231813	23-04-2014	0.24	4.0	-20,701	-70,704	75,9	-
040 941	1404240024	24-04-2014	0.24	4.2	-20,011	-09,101	94,1 25 0	-
341 249	1404240430	24-04-2014	4:00	4.9	-20,090	-70,900	əə,ŏ 26_4	-
042 049	1404241020	24-04-2014	10:20	4.8	-19,903	-11,110	30,4 27.7	-
343	1404250301	25-04-2014	3:01	4.0	-20,277	-10,984	31,1	-
344 245	1404280247	28-04-2014	2:47	4	-20,507	-10,194	20,7	-
345	1404280459	28-04-2014	4:59	-	-	-	-	-

Tabla A.8: Caracterización del catálogo de eventos (Parte 8).

NIO	ID	Facha	Uone	Magnitud	Latitud	Longitud	Profundidad	Tine
IN-	ID	геспа	пога	Magintud	[⁰]	[°]	[km]	тро
346	1404301754	30-04-2014	17:54	4.2	-20,450	-69,470	26,9	_
347	1404301800	30-04-2014	18:00	5.1	-32,723	-71,746	21,3	-
348	1405011645	01-05-2014	16:45	4.8	-19,953	-71,283	26,7	-
349	1405040446	04-05-2014	4:46	4.9	-20,011	-71,055	31,8	-
350	1405041921	04-05-2014	19:21	4.5	-20,035	-70,918	42,0	-
351	1405050201	05-05-2014	2:01	4.5	-20,176	-70,351	42,5	-
352	1405050252	05-05-2014	2:52	4.6	-19,927	-70,832	43,1	-
353	1405050306	05-05-2014	3:06	4.1	-19,935	-70,884	41,3	-
354	1405050902	05-05-2014	9:02	4.7	-19,279	-71,027	37,9	-
355	1405051121	05-05-2014	11:21	-	-	-	-	-
356	1405051338	05-05-2014	13:38	5.1	-20,225	-68,194	171,8	-
357	1405052252	05-05-2014	22:52	4.8	-19,856	-70,870	42,1	-
358	1405070356	07-05-2014	3:56	4.4	-19,572	-70,410	$34,\!6$	-
359	1405071327	07-05-2014	13:27	4.8	-19,961	-70,979	$33,\!6$	-
360	1405091144	09-05-2014	11:44	4.8	-34,714	$-71,\!689$	44,4	-
361	1405092109	09-05-2014	21:09	4.1	-20,187	-70,430	34,2	-
362	1405100312	10-05-2014	3:12	4.6	-20,171	-69,230	95,3	-
363	1405121154	12-05-2014	11:54	4.6	-20,646	-70,919	36,1	-
364	1405121627	12-05-2014	16:27	4.3	-29,634	-71,235	64,9	-
365	1405140551	14-05-2014	5:51	5.4	-19,677	-71,186	$37,\!3$	-
366	1405151328	15-05-2014	13:28	4.2	-32,142	-71,762	19,8	-
367	1405170923	17-05-2014	9:23	4.4	-19,949	-70,934	31,9	-
368	1405171018	17-05-2014	10:18	4.6	-19,960	-70,977	33,4	-
369	1405191810	19-05-2014	18:10	4	-32,809	-71,154	60,1	-
370	1405210900	21-05-2014	9:00	5.6	-30,452	-71,311	36,2	-
371	1405221421	22-05-2014	14:21	4.1	-20,328	-69,885	57,2	-
372	1405270334	27-05-2014	3:34	4.7	-20,859	-70,470	30,1	-
373	1405281027	28-05-2014	10:27	4.3	-32,288	-71,556	$57,\!3$	-
374	1405281814	28-05-2014	18:14	4.5	-20,249	-70,748	31,0	-
375	1405290147	29-05-2014	1:47	4.2	-33,742	-71,924	43,8	-
376	1405302206	30-05-2014	22:06	5.1	-33,536	-72,250	39,1	-
377	1405310917	31-05-2014	9:17	4.1	-19,787	-70,496	$34,\!6$	-
378	1406020544	02-06-2014	5:44	4.5	-33,777	-72,008	35,9	-
379	1406041704	04-06-2014	17:04	4.9	$-20,\!645$	-70,790	$23,\!8$	-
380	1406052019	05-06-2014	20:19	-	-	-	-	-
381	1406061237	06-06-2014	12:37	4.7	-28,964	-71,399	57,4	-
382	1406071355	07-06-2014	13:55	4.6	-35,201	-71,791	42,2	-
383	1406080813	08-06-2014	8:13	4.4	-32,598	-71,672	20,0	-
384	1406082124	08-06-2014	21:24	4.3	-20,224	-70,847	40,3	-
385	1406121228	12-06-2014	12:28	5.1	-30,745	-70,564	$52,\!6$	-
386	1406142213	14-06-2014	22:13	5.5	-24,943	-69,401	108,0	-
387	1406150231	15-06-2014	2:31	4	$-32,\!649$	-71,463	40,1	-
388	1406160917	16-06-2014	9:17	5	-23,970	-69,564	90,7	-
389	1406180402	18-06-2014	4:02	4.5	-20,210	-70,885	19,2	-
390	1406182327	18-06-2014	23:27	4.3	-20,218	-70,902	35,1	-

Tabla A.9: Caracterización del catálogo de eventos (Parte 9).

NIO	ID	Facha	Hore	Magnitud	Latitud	Longitud	Profundidad	Tino
IN	ID	геспа	пога	Magintuu	[°]	[°]	$[\mathbf{km}]$	ripo
391	1406191959	19-06-2014	19:59	5	-19,840	-70,889	39,3	-
392	1406241732	24-06-2014	17:32	4.1	-32,632	-71,537	39,1	-
393	1406271830	27-06-2014	18:30	4.5	-30,172	-71,124	64,2	-
394	1406281547	28-06-2014	15:47	4.2	-20,343	-69,678	53,2	-
395	1407010117	01-07-2014	1:17	4	-20,467	-70,135	39,0	-
396	1407030250	03-07-2014	2:50	5	-34,758	-71,835	41,3	-
397	1407081604	08-07-2014	16:04	4.6	-20,777	-70,521	37,9	-
398	1407081956	08-07-2014	19:56	4	-19,317	-69,429	100,1	-
399	1407090804	09-07-2014	8:04	4.1	-22,918	-70,461	39,3	-
400	1407120655	12-07-2014	6:55	4.2	-19,703	-69,127	111,5	-
401	1407130316	13-07-2014	3:16	5	-32,930	-71,340	50,7	-
402	1407130846	13-07-2014	8:46	4.8	-24,074	-69,191	90,7	-
403	1407132054	13-07-2014	20:54	5.6	-20,238	-70,309	40,7	-
404	1407151112	15-07-2014	11:12	4.3	-19,936	-70,112	45,2	-
405	1407180524	18-07-2014	5:24	4.7	-20,148	-70,991	38,7	-
406	1407210021	21-07-2014	0:21	4.7	-20,153	-70,541	39,5	-
407	1407211528	21-07-2014	15:28	4	-20.266	-69.982	51.3	-
408	1407250116	25-07-2014	1:16	4	-29.644	-71.457	35.1	-
409	1407262125	26-07-2014	21:25	4.4	-22,968	-69.875	53.1	-
410	1407290047	29-07-2014	0:47	4.6	-20.132	-70.478	32.5	-
411	1407291301	29-07-2014	13:01	4	-20.117	-70.370	21.7	-
412	1407312040	31-07-2014	20:40	4.7	-31.812	-71.235	74.5	_
413	1408080410	08-08-2014	4:10	4.8	-33.777	-72.203	16.5	_
414	1408091240	09-08-2014	12:40	4.2	-23,153	-70.643	42.1	_
415	1408130102	13-08-2014	1:02	4.4	-20,434	-69.459	79.4	_
416	1408140002	14-08-2014	0:02	5.6	-20,158	-70.023	50.9	_
417	1408150203	15-08-2014	2.03	4 5	-20,340	-68 802	122.1	_
418	1408160942	16-08-2014	9.42	4 7	-21742	-69 137	90.1	_
419	1408161010	16-08-2014	10.12	4 7	-20.028	-71 018	42.0	_
420	1408170543	17-08-2014	5.43	4.2	-20.067	-69 248	104.6	_
421	1408171830	17-08-2014	18.30	4.2	-20,001	-70 366	40.2	_
421	1408180734	18-08-2014	7.34	4.1	-19 867	-69 206	103.4	_
422	1408100734	19-08-2014	73.04 23.12	4.1	-20 729	-70 614	2023	_
420	1408192312	19-08-2014 19-08-2014	20.12	4.9	-20,120 -20,732	-70,014	41.3	
424	1408132331	23-08-2014	20.01	4.2	-20,752 -32,755	-70,714	41,5	_
420	1408242323	23-08-2014	23.23	4 6.8	-52,155 -15,979	-73,826	40,3 157.0	_
420	1408242521 1408311853	24-08-2014	18.53	0.8	-10,272	-73,820	187,0	-
421	1400040026	04 00 2014	0.26	5 1	-20,524	-70,033	40,0	-
420	1409040920	04-09-2014 05 00 2014	9.20	J.1 4 7	-20,702	-70,343	58,0	-
429	1409052049	15 00 2014	20:49	4.7	-30,037	-71,338	56,7 84.0	-
400 491	1409190039	10-09-2014	0:00	4.0	-31,973 19 750	-11,241	04,9 109 1	-
401 420	1409100342	10-09-2014	5:4Z	4.0	-10,709	-70,009	102,1	-
432 499	1409181814	18 00 2014	10:14	4.2	-20,227 25,490	-10,841	39,0 E2 4	-
433	1409182004	10-09-2014	20:04 10:00	4	-20,480 25.655	-70,040	00,4 25 0	-
434 497	1409191022	19-09-2014	10:22	4.8	-35,055	-13,030	30,∠ 110.¢	-
435	1409210918	21-09-2014	9:18	4.4	-20,090	-09,039	112,0	-

Tabla A.10: Caracterización del catálogo de eventos (Parte 10).

NIO	ID	Fachs	Uono	Mognitud	Latitud	Longitud	Profundidad	Tine
IN-	ID	геспа	пога	Magintud	[°]	[°]	[km]	тро
436	1409241116	24-09-2014	11:16	6.3	-23,623	-67,160	257,3	-
437	1409270848	27-09-2014	8:48	4.1	-36,008	-71,552	101,8	-
438	1409280846	28-09-2014	8:46	5.4	-35,623	-73,209	10,4	-
439	1410071233	07-10-2014	12:33	5	-19,993	-70,952	52,1	-
440	1410080827	08-10-2014	8:27	4.3	-36,001	-72,136	29,6	-
441	1410121623	12-10-2014	16:23	4.4	-30,815	-71,067	75,9	-
442	1410140916	14-10-2014	9:16	4.9	-33,733	-72,071	19,1	-
443	1410140950	14-10-2014	9:50	4.2	-33,701	-72,023	10,1	-
444	1410150457	15-10-2014	4:57	4.4	-25,001	-69,946	64,4	-
445	1410201018	20-10-2014	10:18	5.2	-35,609	-71,555	91,4	-
446	1410232131	23-10-2014	21:31	5	-20,255	-69,199	101,6	-
447	1410240716	24-10-2014	7:16	4.6	-33,996	-72,242	25,3	-
448	1410260252	26-10-2014	2:52	4.7	-20,568	-70,553	44,8	-
449	1410310246	31-10-2014	2:46	4.7	-19,390	-69,196	113,4	-
450	1411041144	04-11-2014	11:44	4.9	-41,227	-73,831	25,4	-
451	1411101138	10-11-2014	11:38	5.6	-21,631	-68,725	111,3	-
452	1411161055	16-11-2014	10:55	4	-20,812	-69,951	45,4	-
453	1411170033	17-11-2014	0:33	5.1	-32,959	-70,600	86,2	-
454	1411220627	22-11-2014	6:27	4	-40,768	-73,127	64,4	-
455	1411220650	22-11-2014	6:50	4.9	-20,033	-71,121	16,0	-
456	1411241923	24-11-2014	19:23	4.9	-20,090	-69,232	97,6	-
457	1411250855	25-11-2014	8:55	5	-20,536	-68,761	111,1	-
458	1411280822	28-11-2014	8:22	4.4	-30,309	-71,391	52,1	-
459	1411282055	28-11-2014	20:55	4.2	-30,943	-71,458	79,7	-
460	1411291330	29-11-2014	13:30	4.8	-29,776	-71,281	60,1	-
461	1411291418	29-11-2014	14:18	5.1	-19,948	-71,129	30,1	-
462	1411292019	29-11-2014	20:19	4.3	-19,922	-71,044	35,1	-
463	1411300846	30-11-2014	8:46	4.1	-19,176	-69,387	99,2	-
464	1412020356	02-12-2014	3:56	4.6	-20,279	-71,055	33,0	-
465	1412030938	03-12-2014	9:38	5.2	-22,607	-70,201	70,0	-
466	1412121235	12-12-2014	12:35	5.4	-19,847	-70,917	33,7	-
467	1412160443	16-12-2014	4:43	4.7	-20,473	-68,962	98,9	-
468	1412180624	18-12-2014	6:24	5.2	-20,381	-68,867	103,3	-
469	1412211236	21-12-2014	12:36	4.7	-35,737	-71,704	83,1	-
470	1412211731	21-12-2014	17:31	4.2	-32,568	-71,684	$29,\!6$	-
471	1412252211	25-12-2014	22:11	4.2	-30,888	-71,585	$67,\! 6$	-
472	1412272206	27-12-2014	22:06	4.6	-30,169	-71,468	31,7	-
473	1412281814	28-12-2014	18:14	4.9	-19,882	-68,890	113,8	-
474	1412310519	31-12-2014	5:19	4.5	-19,145	-69,124	117,3	-
475	1501012108	01-01-2015	21:08	4.9	-31,072	-71,347	61,2	-
476	1501071335	07-01-2015	13:35	4.2	-32,791	-71,694	20,1	-
477	1501091148	09-01-2015	11:48	5.2	-20,401	-69,025	110,4	-
478	1501101755	10-01-2015	17:55	5.3	-21,630	-68,658	109,8	-
479	1501111116	11-01-2015	11:16	4	-31,452	$-71,\!625$	$45,\! 6$	-
480	1501131434	13-01-2015	14:34	4.3	-33,590	-70,330	113,0	-

Tabla A.11: Caracterización del catálogo de eventos (Parte 11).

NIO	ID	Facha	Hore	Magnitud	Latitud	Longitud	Profundidad	Tino
IN	ID	Fecha	1101a	Magintuu	[°]	[°]	[km]	Tibo
481	1501131512	13-01-2015	15:12	4.2	-33,329	-70,640	90,3	-
482	1501150519	15-01-2015	5:19	4.8	-33,683	-71,097	68,2	-
483	1501171426	17-01-2015	14:26	4.7	-24,239	-67,419	214,1	-
484	1501180359	18-01-2015	3:59	4.9	-32,703	-71,703	25,8	-
485	1501201734	20-01-2015	17:34	5.2	-23,409	-70,457	47,4	-
486	1501211733	21-01-2015	17:33	4.1	-29,805	-71,248	60,1	-
487	1501221615	22-01-2015	16:15	4.5	-22,990	-70,222	48,2	-
488	1501230125	23-01-2015	1:25	4.4	-29,841	-71,456	64,4	-
489	1501231412	23-01-2015	14:12	5	-18,121	-69,469	119,6	-
490	1501250847	25-01-2015	8:47	5.2	-34,756	-71,813	$43,\!4$	-
491	1501290008	29-01-2015	0:08	4.9	-31,567	-70,545	116,3	-
492	1502021049	02-02-2015	10:49	6.3	-32,000	-67,530	147,8	Ι
493	1502040145	04-02-2015	1:45	4.1	-29,412	-70,633	83,3	-
494	1502041309	04-02-2015	13:09	4.3	-29,375	-71,008	78,9	-
495	1502101333	10-02-2015	13:33	4.1	-19,753	-69,287	97,7	-
496	1502110511	11-02-2015	5:11	4.8	-34,205	-71,832	44,2	-
497	1502111707	11-02-2015	17:07	5	-30,214	-71,320	67,7	-
498	1502111857	11-02-2015	18:57	6.6	-23,167	-66,863	238,9	-
499	1502141210	14-02-2015	12:10	4.1	-32,572	-71,689	27,5	-
500	1502162033	16-02-2015	20:33	4.8	-30,282	-71,530	35,5	-
501	1502170750	17-02-2015	7:50	4.6	-30,959	-71,303	59,1	-
502	1502180047	18-02-2015	0:47	4.7	-35,080	-71,136	106,6	-
503	1502220540	22-02-2015	5:40	4.5	-20,044	-70,938	42,7	-
504	1502222107	22-02-2015	21:07	4.3	-18,866	-69,286	123,4	-
505	1502231436	23-02-2015	14:36	4.2	-29,163	-70,679	84,9	-
506	1502240513	24-02-2015	5:13	5.2	-22,686	-67,324	261,8	-
507	1503021653	02-03-2015	16:53	5.2	-27,909	-71,026	34,0	-
508	1503031245	03-03-2015	12:45	5.2	-20,358	-69,145	106,2	-
509	1503052130	05-03-2015	21:30	5.3	-29,319	-71,111	60,0	-
510	1503090322	09-03-2015	3:22	4.9	-19,688	-69,482	96,8	-
511	1503120950	12-03-2015	9:50	4.6	-36,172	-73,091	14,2	-
512	1503140123	14-03-2015	1:23	4.1	-20,455	-70,148	18,2	-
513	1503141603	14-03-2015	16:03	5	-27,865	-70,889	47,0	-
514	1503172343	17-03-2015	23:43	4.3	-29,671	-71,505	$50,\!5$	-
515	1503192039	19-03-2015	20:39	4.3	-19,264	-70,224	76,6	-
516	1503241731	24-03-2015	17:31	4.2	-32,235	-71,734	35,1	-
517	1503242246	24-03-2015	22:46	4.8	-20,680	-70,785	15,5	-
518	1503251929	25-03-2015	19:29	5	-29,488	-69,723	118,8	-
519	1503261745	26-03-2015	17:45	4.9	-31,063	-71,798	30,5	-
520	1504011554	01-04-2015	15:54	4	-33,744	-71,019	66,5	-
521	1504020742	02-04-2015	7:42	4.8	-28,650	-70,807	45,1	-
522	1504071132	07-04-2015	11:32	4.6	-36,175	-72,164	62,7	-
523	1504081029	08-04-2015	10:29	4.4	-19,250	-69,263	115,9	-
524	1504130300	13-04-2015	3:00	4.7	-40,252	-73,678	41,9	-
525	1504132216	13-04-2015	22:16	5.1	-21,110	-68,705	129,1	-

Tabla A.12: Caracterización del catálogo de eventos (Parte 12).

Nº	ID	Fecha	Hora	Magnitud	Latitud	Longitud	Profundidad	Tipo
					[o]	[°]	$[\mathbf{km}]$	Tibo
526	1504190233	19-04-2015	2:33	4	-19,370	-70,181	39,0	_
527	1505120036	12-05-2015	0:36	4	-33,307	-70,470	93,3	-
528	1505131440	13-05-2015	14:40	4.5	-29,921	-71,285	59,8	-
529	1505141508	14-05-2015	15:08	5.3	-28,785	-71,457	52,2	-
530	1505150239	15-05-2015	2:39	4	-31,555	-71,598	47,1	-
531	1505150605	15-05-2015	6:05	4.5	-29,574	-71,242	66,5	-
532	1505160851	16-05-2015	8:51	4.6	-33,080	-71,933	33,3	-
533	1505210603	21-05-2015	6:03	4.7	-32,066	-70,267	114,9	-
534	1505212034	21-05-2015	20:34	4.8	-34,891	-71,795	40,4	-
535	1505212133	21-05-2015	21:33	4.1	-19,910	-69,960	64,3	-
536	1505221939	22-05-2015	19:39	5.3	-20,205	-70,847	40,2	-
537	1505230642	23-05-2015	6:42	4.4	-20,231	-70,856	31,7	-
538	1505231309	23-05-2015	13:09	4.6	-20,190	-70,807	27,4	-
539	1505240122	24-05-2015	1:22	4.4	-20,209	-68,874	128,7	-
540	1505261032	26-05-2015	10:32	5.7	-22,061	-68,522	133,6	-
541	1505280955	28-05-2015	9:55	4.1	-20,145	-70,102	43,6	-
542	1505311608	31-05-2015	16:08	4.9	-19,910	-70,911	32,0	-
543	1506011812	01-06-2015	18:12	4.3	-30,636	-70,307	10,2	-
544	1506041949	04-06-2015	19:49	4.3	-23,135	-69,649	61,0	-
545	1506091238	09-06-2015	12:38	4.5	-20,207	-70,945	31,3	-
546	1506091359	09-06-2015	13:59	4.4	-20,222	-70,927	35,0	-
547	1506100056	10-06-2015	0:56	4.2	-20,145	-69,235	97,7	-
548	1506170721	17-06-2015	7:21	4.4	-20,252	-70,737	23,7	-
549	1506220913	22-06-2015	9:13	4.9	-33,779	-70,467	105,1	-
550	1506221142	22-06-2015	11:42	5.3	-21,777	-68,420	133,8	-
551	1506242218	24-06-2015	22:18	4.5	-30,369	-71,275	50,2	-
552	1507051440	05-07-2015	14:40	4.6	-19,470	-69,557	110,0	-
553	1507060305	06-07-2015	3:05	4.3	-20,909	-69,245	105,6	-
554	1507060732	06-07-2015	7:32	4.2	-30,911	-71,513	74,3	-
555	1507071335	07-07-2015	13:35	5.2	-33,435	-70,336	117,3	-
556	1507120654	12-07-2015	6:54	4.1	-32,085	-71,160	$63,\!6$	-
557	1507132116	13-07-2015	21:16	5.1	-33,054	-70,305	111,9	-
558	1507161048	16-07-2015	10:48	5.3	-29,533	-71,750	31,0	-
559	1507171111	17-07-2015	11:11	5.3	-35,522	-73,351	36,9	-
560	1507231728	23-07-2015	17:28	4	-31,913	-71,103	65,1	-
561	1507241412	24-07-2015	14:12	4.4	-30,922	-71,203	56,7	-
562	1507242314	24-07-2015	23:14	5.3	-20,290	-70,174	38,2	-
563	1507271523	27-07-2015	15:23	4.7	-29,500	-70,768	86,3	-
564	1507281805	28-07-2015	18:05	5	-34,995	-71,832	42,2	-
565	1507301032	30-07-2015	10:32	5.1	-21,193	-68,734	112,0	-
566	1508011953	01-08-2015	19:53	4.3	-31,964	-71,198	65,0	-
567	1508041111	04-08-2015	11:11	4.7	-20,591	-69,263	108,1	-
568	1508100940	10-08-2015	9:40	5.1	-29,483	-71,216	55,1	-
569	1508101704	10-08-2015	17:04	4.3	-19,558	-69,320	99,4	-
570	1508120014	12-08-2015	0:14	5.3	-31,732	-71,606	41,9	-

Tabla A.13: Caracterización del catálogo de eventos (Parte 13).

NIO	ID	Facha	Uono	Magnitud	Latitud	Longitud	Profundidad	Tine
11	ID	recha	mora	Magintuu	[°]	[°]	[km]	TIPO
571	1508121745	12-08-2015	17:45	4	-32,894	-70,471	13,8	-
572	1508171151	17-08-2015	11:51	4.4	-19,411	-69,341	$105,\! 6$	-
573	1508232020	23-08-2015	20:20	4.2	-20,357	-70,277	46,1	-
574	1508232057	23-08-2015	20:57	4.4	-19,677	-70,248	69,2	-
575	1508240118	24-08-2015	1:18	4.9	-20,415	-69,141	111,5	-
576	1508240242	24-08-2015	2:42	4.3	-29,844	-71,239	44,9	-
577	1508240513	24-08-2015	5:13	5.2	-29,882	-71,252	44,7	-
578	1508250616	25-08-2015	6:16	4.5	-29,795	-71,201	63,2	-
579	1508312026	31-08-2015	20:26	4.2	-19,357	-67,803	$245,\! 6$	-
580	1509020022	02-09-2015	0:22	4.5	-33,720	-72,297	39,1	-
581	1509031424	03-09-2015	14:24	4.7	-23,094	-68,371	135,3	-
582	1509101440	10-09-2015	14:40	4.6	-19,979	-70,970	30,7	-
583	1509140604	14-09-2015	6:04	4.6	-25,037	-70,481	$55,\!5$	-
584	1509152121	15-09-2015	21:21	5.1	-19,967	-71,050	38,3	-
585	1509152203	15-09-2015	22:03	4.9	-19,997	-70,961	35,7	-
586	1509161824	16-09-2015	18:24	5	-19,936	-70,959	34,8	-
587	1509161856	16-09-2015	18:56	4.5	-19,918	-70,898	39,8	-
588	1509162303	16-09-2015	23:03	6.1	-31,733	-71,677	30,0	-
589	1509162338	16-09-2015	23:38	5.6	-31,882	-71,888	35,1	-
590	1509170006	17-09-2015	0:06	5.3	-30,996	-71,478	38,4	-
591	1509170022	17-09-2015	0:22	5.5	-31,489	-72,001	31,1	-
592	1509170112	17-09-2015	1:12	4.6	-31,476	-71,522	35,1	-
593	1509170121	17-09-2015	1:21	5.1	-31,719	-71,705	13,5	-
594	1509170133	17-09-2015	1:33	6	-31,644	-72,100	35,1	-
595	1509170252	17-09-2015	2:52	4.8	-30,920	-71,350	44,7	-
596	1509170259	17-09-2015	2:59	5.5	-30,980	-71,364	53,7	-
597	1509170312	17-09-2015	3:12	5.4	-30,922	-71,264	47,1	-
598	1509170402	17-09-2015	4:02	5.7	-31,247	-71,894	33,0	-
599	1509170426	17-09-2015	4:26	5.7	-31,464	-71,811	34,7	-
600	1509170544	17-09-2015	5:44	5.3	-31,825	-71,958	25,1	-
601	1509170728	17-09-2015	7:28	4.7	-31,507	-71,579	43,7	-
602	1509170800	17-09-2015	8:00	4.6	-30,677	-71,390	45,5	-
603	1509170832	17-09-2015	8:32	5	-31,601	-71,408	38,8	-
604	1509171012	17-09-2015	10:12	5.3	-30,536	$-71,\!632$	29,7	-
605	1509171031	17-09-2015	10:31	5	-30,933	-71,459	51,1	-
606	1509171224	17-09-2015	12:24	5	-31,383	-71,736	$25,\!6$	-
607	1509171258	17-09-2015	12:58	4.9	-30,694	-71,559	31,9	-
608	1509171304	17-09-2015	13:04	4.2	-30,289	-71,703	15,8	-
609	1509171332	17-09-2015	13:32	6	-32,143	-72,173	$33,\!6$	-
610	1509171410	17-09-2015	14:10	4.1	-30,880	-71,325	43,4	-
611	1509171419	17-09-2015	14:19	5.7	-30,937	-71,996	32,0	-
612	1509171604	17-09-2015	16:04	5.3	$-31,\!554$	-72,072	42,5	-
613	1509171608	17-09-2015	16:08	5.3	-29,854	-70,485	39,2	-
614	1509171646	17-09-2015	16:46	5	-31,504	-71,737	41,8	-
615	1509171652	17-09-2015	16:52	5.3	-29,935	-71,961	30,0	-

Tabla A.14: Caracterización del catálogo de eventos (Parte 14).
NIO	ID Fecha		ha Hora	Magnitud	Latitud	Longitud	Profundidad	Tino
IN	ID	геспа	nora	Magintuu	[°]	[•]	[km]	Tibo
616	1509171654	17-09-2015	16:54	4.3	-30,764	-71,456	43,3	-
617	1509171732	17-09-2015	17:32	4.8	$-30,\!684$	$-71,\!614$	$33,\!3$	-
618	1509171758	17-09-2015	17:58	4.3	-30,829	-71,382	43,7	-
619	1509172239	17-09-2015	22:39	5.2	-30,937	$-71,\!645$	29,4	-
620	1509172333	17-09-2015	23:33	4	-31,028	-71,382	45,0	-
621	1509180315	18-09-2015	3:15	5.2	-31,447	-71,530	45,1	-
622	1509180533	18-09-2015	5:33	4.6	-31,153	-71,373	45,0	-
623	1509180744	18-09-2015	7:44	4.5	-31,376	-71,559	40,9	-
624	1509180910	18-09-2015	9:10	6	-32,060	-72,102	33,0	-
625	1509181408	18-09-2015	14:08	4.5	-30,872	-71,269	44,8	-
626	1509181921	18-09-2015	19:21	4	-30,851	-71,352	47,7	-
627	1509181954	18-09-2015	19:54	4.7	-30,107	-71,547	16,4	-
628	1509190122	19-09-2015	1:22	4	-30,785	-71,436	44,2	-
629	1509190444	19-09-2015	4:44	4.6	-30,815	-71,393	$51,\!4$	-
630	1509190506	19-09-2015	5:06	6.3	-29,653	-72,276	30,0	-
631	1509190627	19-09-2015	6:27	4.9	-28,853	-71,305	45,1	-
632	1509191046	19-09-2015	10:46	4.5	-34,001	-71,199	70,6	-
633	1509191252	19-09-2015	12:52	6.3	-32,326	-71,906	26,9	-
634	1509191309	19-09-2015	13:09	5.7	-30,623	-71,908	29,4	-
635	1509191813	19-09-2015	18:13	4.8	-31,314	-71,714	42,5	-
636	1509191909	19-09-2015	19:09	4.6	-32,363	-71,782	$37,\!3$	-
637	1509192259	19-09-2015	22:59	4.8	-30,725	-71,297	28,0	-
638	1509200010	20-09-2015	0:10	4.4	-30,843	-71,599	34,2	-
639	1509200655	20-09-2015	6:55	4.8	-30,596	-71,609	31,8	-
640	1509201431	20-09-2015	14:31	5.2	-30,592	-71,740	38,0	-
641	1509201718	20-09-2015	17:18	4.8	-30,659	-71,744	37,2	-
642	1509210005	21-09-2015	0:05	4.4	-30,764	-71,456	40,0	-
643	1509210718	21-09-2015	7:18	4.5	-30,664	-71,407	38,9	-
644	1509211013	21-09-2015	10:13	4.5	-30,730	-71,339	29,9	-
645	1509211105	21-09-2015	11:05	4	-30,967	-71,465	31,7	-
646	1509211537	21-09-2015	15:37	6	-31,113	-71,792	29,8	-
647	1509211648	21-09-2015	16:48	4.3	-30,827	-71,462	49,2	-
648	1509211836	21-09-2015	18:36	5.8	-31,087	-71,769	31,4	-
649	1509211956	21-09-2015	19:56	6	-31,770	-71,599	36,5	-
650	1509220837	22-09-2015	8:37	4.6	-30,416	-71,596	$23,\!6$	-
651	1509220854	22-09-2015	8:54	4.4	-31,570	-71,914	29,7	-
652	1509221317	22-09-2015	13:17	4.5	-32,236	-71,770	25,0	-
653	1509221340	22-09-2015	13:40	4.2	-33,318	-71,317	$51,\!3$	-
654	1509222226	22-09-2015	22:26	5	-31,024	-71,571	44,0	-
655	1509231509	23-09-2015	15:09	4	-30,972	$-71,\!604$	41,3	-
656	1509231525	23-09-2015	15:25	4	-31,545	-71,822	37,2	-
657	1509240714	24-09-2015	7:14	4.8	-20,214	-69,150	99,8	-
658	1509241613	24-09-2015	16:13	5.4	-30,705	-71,398	50,0	-
659	1509241634	24-09-2015	16:34	4.4	-30,707	-71,427	47,9	-
660	1509241820	24-09-2015	18:20	4	-30,876	-71,448	$50,\!6$	-

Tabla A.15: Caracterización del catálogo de eventos (Parte 15).

NIO	ID	Facha	Hore	Magnitud	Latitud	Longitud	Profundidad	Tino
1N-	ID	геспа	пога	Magintud	[o]	[°]	[km]	тро
661	1509250321	25-09-2015	3:21	5.3	-20,910	-69,221	90,7	-
662	1509260303	26-09-2015	3:03	4.4	-30,766	-71,405	38,2	-
663	1509260324	26-09-2015	3:24	4.1	-30,788	-71,392	40,1	-
664	1509260453	26-09-2015	4:53	4.4	-30,721	-71,389	49,7	-
665	1509260819	26-09-2015	8:19	4.1	-30,757	-71,387	50,1	-
666	1509260844	26-09-2015	8:44	4.1	-30,818	-71,413	49,9	-
667	1509270828	27-09-2015	8:28	4.6	-30,732	-71,473	43,4	-
668	1509272104	27-09-2015	21:04	5.3	-31,669	-71,701	36,9	-
669	1509272253	27-09-2015	22:53	4.4	-30,915	-71,438	43,2	-
670	1509281644	28-09-2015	16:44	4.1	-30,975	-71,320	48,0	-
671	1509291859	29-09-2015	18:59	4.2	-31,793	-71,380	29,1	-
672	1509300200	30-09-2015	2:00	4.9	-30,663	-71,724	$36,\!6$	-
673	1509301821	30-09-2015	18:21	4.7	-30,638	-71,722	$35,\!6$	-
674	1509302259	30-09-2015	22:59	4.6	-30,745	-71,411	48,1	-
675	1510010206	01-10-2015	2:06	4.8	-30,719	-71,428	48,5	-
676	1510010928	01-10-2015	9:28	4	-31,759	-71,353	47,8	-
677	1510011355	01-10-2015	13:55	4	-32,626	-71,568	$22,\!3$	-
678	1510011400	01-10-2015	14:00	4.3	-29,739	-71,312	$52,\!5$	-
679	1510011647	01-10-2015	16:47	4.4	-32,860	-72,025	29,1	-
680	1510020828	02-10-2015	8:28	4.9	-36,488	-71,728	109,9	-
681	1510021448	02-10-2015	14:48	4.3	-32,069	-71,779	39,0	-
682	1510021504	02-10-2015	15:04	4.5	-30,532	-71,358	49,1	-
683	1510021622	02-10-2015	16:22	4.9	-30,579	-71,600	32,5	-
684	1510022002	02-10-2015	20:02	4	-31,082	-71,334	58,3	-
685	1510030426	03-10-2015	4:26	4.1	-32,834	-72,029	25,2	-
686	1510030603	03-10-2015	6:03	6.1	-37,556	-73,743	20,0	-
687	1510030626	03-10-2015	6:26	6	-30,368	-71,371	33,9	-
688	1510030826	03-10-2015	8:26	4.2	-30,341	-71,452	55,8	-
689	1510031121	03-10-2015	11:21	5.3	-29,856	$-71,\!637$	40,9	-
690	1510031348	03-10-2015	13:48	4.7	-29,989	-71,534	25,9	-
691	1510031859	03-10-2015	18:59	4.3	-30,779	-71,414	48,9	-
692	1510031943	03-10-2015	19:43	4.3	-29,452	-71,129	$54,\! 6$	-
693	1510031953	03-10-2015	19:53	4.4	-38,318	-74,160	$28,\!8$	-
694	1510040349	04-10-2015	3:49	5.2	-30,373	-72,199	22,2	-
695	1510041011	04-10-2015	10:11	5.2	-30,656	-71,627	29,9	-
696	1510041657	04-10-2015	16:57	4.8	-30,539	-72,182	$32,\!6$	-
697	1510041821	04-10-2015	18:21	4.3	-30,342	-71,463	30,7	-
698	1510051633	05-10-2015	16:33	6.1	-30,350	-71,466	29,0	-
699	1510060607	06-10-2015	6:07	4.4	-25,210	-70,192	42,6	-
700	1510061047	06-10-2015	10:47	5.1	-31,515	-71,446	15,1	-
701	1510062248	06-10-2015	22:48	5	-30,851	-71,460	46,3	-
702	1510070800	07-10-2015	8:00	5.2	-30,298	-71,228	24,5	-
703	1510090409	09-10-2015	4:09	5.5	-16,329	-70,000	233,0	-
704	1510090608	09-10-2015	6:08	4.7	-30,819	-71,420	48,1	-
705	1510090652	09-10-2015	6:52	4	-31,521	-71,491	45,3	-

Tabla A.16: Caracterización del catálogo de eventos (Parte 16).

NO	ID	Facha	Hore	Magnitud	Latitud	Longitud	Profundidad	Tino
IN	ID	геспа	пога	Magintuu	[°]	[°]	[km]	ripo
706	1510091827	09-10-2015	18:27	5.5	-31,764	-71,706	35,5	-
707	1510101316	10 - 10 - 2015	13:16	4.2	-30,520	-71,558	25,4	-
708	1510110233	11 - 10 - 2015	2:33	4.8	-30,708	-71,445	$47,\! 6$	-
709	1510111654	11 - 10 - 2015	16:54	4.8	-30,695	-71,712	40,1	-
710	1510112123	11-10-2015	21:23	4.3	-30,689	-71,414	47,8	-
711	1510120146	12-10-2015	1:46	4.3	-30,704	-71,431	46,0	-
712	1510120315	12-10-2015	3:15	5.4	-31,181	-71,786	39,1	-
713	1510120331	12-10-2015	3:31	5	-31,193	-71,788	31,1	-
714	1510121027	12-10-2015	10:27	4.2	-30,429	-71,684	$31,\!3$	-
715	1510121459	12-10-2015	14:59	4.7	-30,568	-71,710	35,5	-
716	1510121601	12-10-2015	16:01	4.5	-30,756	-71,369	$53,\!8$	-
717	1510121646	12-10-2015	16:46	5	-30,670	-71,708	35,4	-
718	1510140835	14-10-2015	8:35	4.2	-31,264	-71,460	49,9	-
719	1510141256	14-10-2015	12:56	4	-22,575	-68,710	108,8	-
720	1510151103	15-10-2015	11:03	4.6	-30,855	-71,734	45,9	-
721	1510151923	15-10-2015	19:23	5.1	-30,573	-71,609	35,5	-
722	1510152039	15-10-2015	20:39	4.5	-30,573	-71,629	33,0	-
723	1510152218	15-10-2015	22:18	4.3	-30,674	-71,740	36,7	-
724	1510160443	16-10-2015	4:43	4.8	-20,070	-68,894	115,2	-
725	1510160650	16-10-2015	6:50	4.1	-30,620	-71,525	41,2	-
726	1510161249	16-10-2015	12:49	4.3	-31,465	-71,719	37,1	-
727	1510161658	16-10-2015	16:58	4.4	-30,568	-71,624	37,0	-
728	1510170701	17-10-2015	7:01	4.5	-20,581	-70,629	16,7	-
729	1510181248	18-10-2015	12:48	5	-35,969	-72,668	50,0	-
730	1510181848	18-10-2015	18:48	4.2	-19,459	-69,307	108,4	-
731	1510191437	19-10-2015	14:37	4.5	-33,468	-70,852	75,7	-
732	1510200401	20-10-2015	4:01	4	-29,983	-71,016	85,1	-
733	1510200406	20-10-2015	4:06	5	-30,757	-71,456	50,2	-
734	1510201006	20-10-2015	10:06	5.2	-30,736	-71,443	50,2	-
735	1510202145	20-10-2015	21:45	4.5	-30,399	-71,596	16,8	-
736	1510202355	20-10-2015	23:55	4.3	-30,818	-71,400	50,4	-
737	1510211439	21-10-2015	14:39	4.8	-20,374	-69,298	100,5	-
738	1510211845	21-10-2015	18:45	5	-30,826	-71,382	50,3	-
739	1510220002	22-10-2015	0:02	4.5	-30,322	-71,661	35,0	-
740	1510222022	22-10-2015	20:22	4.5	-30,387	-71,688	24,8	-
741	1510230152	23-10-2015	1:52	4.2	-32,510	-71,723	$32,\!6$	-
742	1510231447	23-10-2015	14:47	4.2	-30,769	-71,436	49,5	-
743	1510241452	24-10-2015	14:52	4	-30,042	-71,309	52,1	-
744	1510241817	24-10-2015	18:17	4.4	-30,707	-71,683	25,0	-
745	1510241906	24-10-2015	19:06	4.2	-30,524	-71,646	36,9	-
746	1510242124	24-10-2015	21:24	5	-31,438	-71,430	50,8	-
747	1510250402	25-10-2015	4:02	4.5	-41,928	-73,550	$52,\!6$	-
748	1510250546	25-10-2015	5:46	4.6	-20,386	-68,966	110,7	-
749	1510251313	25-10-2015	13:13	4.7	-29,721	-71,201	44,5	-
750	1510251537	25-10-2015	15:37	4	-39,471	-72,527	76,5	-

Tabla A.17: Caracterización del catálogo de eventos (Parte 17).

NIO	ID	Facha	Hore	Magnitud	Latitud	Longitud	Profundidad	Tino
IN	ID	recha	1101a	Magintuu	[°]	[°]	[km]	Tibo
751	1510271832	27-10-2015	18:32	4.1	-32,767	-71,745	38,1	-
752	1510280412	28-10-2015	4:12	4.7	-30,320	-71,509	39,8	-
753	1510280454	28-10-2015	4:54	4.2	-30,849	-71,384	$51,\!6$	-
754	1510280908	28-10-2015	9:08	4.5	-23,153	-70,607	$31,\!3$	-
755	1510291028	29-10-2015	10:28	4	-28,781	-70,191	90,7	-
756	1510291408	29-10-2015	14:08	4.3	-30,617	-71,642	43,0	-
757	1510300305	30-10-2015	3:05	4	-19,303	-69,619	97,1	-
758	1511010128	01-11-2015	1:28	5.1	-38,823	-73,420	50,0	-
759	1511011516	01-11-2015	15:16	5.9	-23,232	-68,535	$114,\! 6$	-
760	1511030143	03-11-2015	1:43	4.9	-30,639	-71,717	35,7	-
761	1511031028	03-11-2015	10:28	4	-31,262	-72,187	19,9	-
762	1511032130	03-11-2015	21:30	4	-30,796	-71,411	$49,\! 6$	-
763	1511050128	05-11-2015	1:28	4.3	-30,683	-71,389	41,2	-
764	1511051702	05-11-2015	17:02	4.8	-30,714	-71,762	33,4	-
765	1511060844	06-11-2015	8:44	5.1	-30,160	-72,131	42,2	-
766	1511061144	06-11-2015	11:44	4.6	-19,990	-68,946	106,0	-
767	1511070704	07-11-2015	7:04	6	-29,467	-72,354	15,0	-
768	1511070731	07-11-2015	7:31	6.8	-30,870	-71,431	47,8	-
769	1511070916	07-11-2015	9:16	4.4	-30,824	-71,377	50,0	-
770	1511071031	07-11-2015	10:31	4.9	-30,765	-71,363	46,7	-
771	1511071038	07-11-2015	10:38	4.3	-30,779	-71,396	55,1	-
772	1511071053	07-11-2015	10:53	6	-30,719	-71,367	48,0	-
773	1511071151	07-11-2015	11:51	4.3	-30,698	-71,632	27,5	-
774	1511071516	07-11-2015	15:16	4	-30,834	-71,403	49,3	-
775	1511072356	07-11-2015	23:56	4.5	-30,714	-71,385	47,3	-
776	1511080813	08-11-2015	8:13	5.5	-17,472	-69,791	194,4	-
777	1511090446	09-11-2015	4:46	5.4	-23,477	-69,027	116,1	-
778	1511101258	10-11-2015	12:58	5	-30,798	-71,456	56,7	-
779	1511101748	10-11-2015	17:48	5.4	-22,254	-68,805	126,1	-
780	1511101938	10-11-2015	19:38	4.3	-30,817	-71,419	49,7	-
781	1511102348	10-11-2015	23:48	5	-29,504	-71,970	53,0	-
782	1511110154	11-11-2015	1:54	6.9	-29,460	-72,120	32,9	-
783	1511110223	11-11-2015	2:23	5.1	-29,461	-71,756	15,1	-
784	1511110246	11-11-2015	2:46	6.9	-29,552	-72,261	11,6	-
785	1511110759	11-11-2015	7:59	4.4	-31,771	-71,522	35,3	-
786	1511141258	14-11-2015	12:58	4.3	-30,740	-71,413	43,9	-
787	1511150518	15-11-2015	5:18	4	-30,706	-71,382	49,6	-
788	1511152148	15-11-2015	21:48	4.1	-22,563	-68,910	102,2	-
789	1511160455	16-11-2015	4:55	4.5	-18,788	-69,943	85,1	-
790	1511160957	16-11-2015	9:57	4	-30,588	-71,271	47,3	-
791	1511171316	17-11-2015	13:16	4.5	-30,684	-71,363	$54,\!5$	-
792	1511180613	18-11-2015	6:13	4.6	-19,343	-69,386	108,1	-
793	1511190502	19-11-2015	5:02	4.2	-30,251	-71,778	4,9	-
794	1511210012	21-11-2015	0:12	4.5	-32,971	-70,286	105,5	-
795	1511212212	21-11-2015	22:12	4.5	-30,630	-71,664	35,7	-

Tabla A.18: Caracterización del catálogo de eventos (Parte 18).

NIO	ID	Fachs	Uono	Magnitud	Latitud	Longitud	Profundidad	Tine
IN-	ID	геспа	пога	Magnitud	[°]	[°]	[km]	тро
796	1511212216	21-11-2015	22:16	4.3	-30,638	-71,667	38,4	-
797	1511212305	21 - 11 - 2015	23:05	6	-30,607	-71,797	34,9	-
798	1511220557	22-11-2015	5:57	4.8	-30,411	-71,708	38,1	-
799	1511221249	22-11-2015	12:49	4.4	-30,682	$-71,\!646$	66,9	-
800	1511221523	22-11-2015	15:23	4.3	-30,261	-71,585	40,4	-
801	1511222216	22-11-2015	22:16	5.1	-23,627	-69,052	97,4	-
802	1511250404	25 - 11 - 2015	4:04	4	-19,962	-69,187	105,1	-
803	1511272100	27-11-2015	21:00	6.3	-24,779	-70,546	37,2	-
804	1511272145	27-11-2015	21:45	5	-24,740	-70,547	38,9	-
805	1511280544	28-11-2015	5:44	5.4	-30,341	-72,343	31,5	-
806	1511280608	28-11-2015	6:08	4.5	-30,664	-71,757	$36,\! 6$	-
807	1511290047	29-11-2015	0:47	4.2	-30,342	-71,543	17,4	-
808	1512010304	01-12-2015	3:04	4.6	-30,407	$-71,\!626$	17,9	-
809	1512011208	01-12-2015	12:08	5.1	-30,290	-71,507	50,8	-
810	1512011339	01-12-2015	13:39	5.3	-16,579	-71,295	127,6	-
811	1512011429	01-12-2015	14:29	4	-30,650	-71,544	43,7	-
812	1512021513	02-12-2015	15:13	4.4	-19,666	-69,265	$100,\!6$	-
813	1512030832	03-12-2015	8:32	5.1	-29,840	-71,540	48,1	-
814	1512032109	03-12-2015	21:09	4	-20,783	-69,255	104,0	-
815	1512040844	04-12-2015	8:44	4.5	-30,796	-71,461	$52,\!6$	-
816	1512070751	07-12-2015	7:51	5.5	-31,131	-71,264	47,0	-
817	1512081256	08-12-2015	12:56	5.6	-30,844	-71,713	40,3	-
818	1512100009	10 - 12 - 2015	0:09	5.3	-35,914	-73,562	$14,\!4$	-
819	1512100750	10-12-2015	7:50	4.2	-20,663	-69,191	105,2	-
820	1512112207	11 - 12 - 2015	22:07	4.4	-19,752	-69,242	97,7	-
821	1512120348	12 - 12 - 2015	3:48	4.3	-25,543	-70,484	$57,\!6$	-
822	1512121508	12 - 12 - 2015	15:08	4.9	-35,077	-71,915	51,1	-
823	1512131208	13 - 12 - 2015	12:08	4.1	-30,633	-71,606	32,2	-
824	1512150422	15 - 12 - 2015	4:22	4.1	-30,695	-71,725	34,7	-
825	1512150451	15 - 12 - 2015	4:51	4.7	-29,346	-71,988	23,2	-
826	1512160035	16 - 12 - 2015	0:35	4.1	-27,279	-69,999	103,9	-
827	1512170418	17 - 12 - 2015	4:18	4.4	-30,750	-71,387	$53,\!1$	-
828	1512170655	17 - 12 - 2015	6:55	4.5	-30,382	$-71,\!682$	25,1	-
829	1512172256	17 - 12 - 2015	22:56	4.3	-30,628	$-71,\!664$	41,3	-
830	1512180234	18 - 12 - 2015	2:34	4.2	-30,617	$-71,\!672$	39,2	-
831	1512191925	19-12-2015	19:25	6	-30,637	-71,308	49,5	-
832	1512202251	20 - 12 - 2015	22:51	4	-30,591	-71,246	62,1	-
833	1512221846	22 - 12 - 2015	18:46	4.6	-30,803	-71,251	62,1	-
834	1512232353	23 - 12 - 2015	23:53	4.4	-20,539	-69,215	112,1	-
835	1512251511	25 - 12 - 2015	15:11	4.5	-30,587	-71,289	59,8	-
836	1512271234	27 - 12 - 2015	12:34	4.5	-20,686	-68,795	104,8	-
837	1512281436	28-12-2015	14:36	4.4	-29,333	-71,876	35,0	-
838	1512292020	29-12-2015	20:20	4	-25,781	-70,623	39,1	-
839	1601051745	05-01-2016	17:45	4.1	-20,014	-69,147	101,0	-
840	1601071540	07-01-2016	15:40	5.3	-41,721	-74,147	41.3	-

Tabla A.19: Caracterización del catálogo de eventos (Parte 19).

NIO	ID	Fachs	Uono	Magnitud	Latitud	Longitud	Profundidad	Tine
IN-	ID	геспа	пога	Magintud	[°]	[°]	[km]	тро
841	1601080111	08-01-2016	1:11	6	-30,674	-71,657	32,5	_
842	1601081212	08-01-2016	12:12	4.5	-41,711	-74,122	42,0	-
843	1601081841	08-01-2016	18:41	4.7	-32,944	-70,680	93,0	-
844	1601090903	09-01-2016	9:03	4.6	-19,829	-69,117	$103,\! 6$	-
845	1601100436	10-01-2016	4:36	4.9	-36,395	-72,735	$38,\! 6$	-
846	1601101333	10-01-2016	13:33	5	-31,316	-71,733	42,0	-
847	1601131220	13-01-2016	12:20	4.8	-19,278	-70,131	53,1	-
848	1601140029	14-01-2016	0:29	4.2	-28,646	-70,083	110,2	-
849	1601171528	17-01-2016	15:28	5	-21,339	-68,885	90,8	-
850	1601171705	17-01-2016	17:05	4.2	-26,436	-70,868	55,1	-
851	1601191139	19-01-2016	11:39	5.1	-22,970	-69,009	96,5	-
852	1601192145	19-01-2016	21:45	4.2	-30,457	-71,703	$33,\!8$	-
853	1601210607	21-01-2016	6:07	4.4	-30,512	-71,217	$57,\!3$	-
854	1601211336	21-01-2016	13:36	4.6	-30,394	-71,518	43,7	-
855	1601260019	26-01-2016	0:19	5.1	-32,649	-71,849	29,5	-
856	1601260135	26-01-2016	1:35	4.4	-30,724	-71,453	48,4	-
857	1601271316	27-01-2016	13:16	4.8	-30,662	-71,688	33,0	-
858	1601282036	28-01-2016	20:36	4.2	-29,726	-71,631	49,3	-
859	1601292007	29-01-2016	20:07	5.2	-30,363	-71,539	43,7	-
860	1601300927	30-01-2016	9:27	4.2	-30,172	-71,618	42,1	-
861	1602092059	09-02-2016	20:59	4.1	-24,337	-67,294	103,1	-
862	1602100033	10-02-2016	0:33	6.4	-30,634	-71,649	37,0	-
863	1602100047	10-02-2016	0:47	4.7	-30,654	-71,496	30,3	-
864	1602100052	10-02-2016	0:52	4.8	-30,662	-71,548	29,5	-
865	1602122232	12-02-2016	22:32	5	-19,943	-70,311	$53,\!3$	-
866	1602161650	16-02-2016	16:50	4.2	-30,270	-71,269	59,1	-
867	1602190533	19-02-2016	5:33	5.4	-30,587	-71,695	36,3	-
868	1602220637	22-02-2016	6:37	6	-30,488	-72,227	31,4	-
869	1602231029	23-02-2016	10:29	4	-33,212	-71,387	55,8	-
870	1602231519	23-02-2016	15:19	4.4	-23,867	-67,273	233,1	-
871	1602241702	24-02-2016	17:02	4.7	-29,957	-71,663	38,8	-
872	1602241910	24-02-2016	19:10	4.7	-29,799	-71,478	38,2	-
873	1602242159	24-02-2016	21:59	4.3	-30,067	-71,047	69,5	-
874	1602251127	25-02-2016	11:27	4.7	-30,772	-71,384	45,0	-
875	1602251535	25-02-2016	15:35	5.3	-23,055	-69,045	94,7	-
876	1603020949	02-03-2016	9:49	5.1	-18,646	-70,606	$47,\! 6$	-
877	1603031347	03-03-2016	13:47	4.3	-30,157	-71,443	32,1	-
878	1603051731	05-03-2016	17:31	4.4	-20,725	-69,693	34,9	-
879	1603090940	09-03-2016	9:40	4.4	-30,718	-71,402	42,2	-
880	1603091328	09-03-2016	13:28	5.1	-30,444	-71,311	$54,\! 6$	-
881	1603101757	10-03-2016	17:57	4	-19,233	-69,975	$56,\!5$	-
882	1603110702	11-03-2016	7:02	5	-23,079	-68,900	101,9	-
883	1603121605	12-03-2016	16:05	5.2	-30,307	-71,539	44,7	-
884	1603141026	14-03-2016	10:26	4.5	-32,352	-71,614	40,4	-
885	1603160349	16-03-2016	3:49	5.6	-31.270	-71.880	30.5	-

Tabla A.20: Caracterización del catálogo de eventos (Parte 20).

NIO	ID	Taska	II.ama	Mamitud	Latitud	Longitud	Profundidad	T :no
IN ²	ID	геспа	пога	Magintud	[°]	[°]	[km]	тро
886	1603161927	16-03-2016	19:27	4.2	-24,055	-67,523	212,5	-
887	1603191850	19-03-2016	18:50	4	-33,169	-71,818	31,3	-
888	1603231314	23-03-2016	13:14	4.5	-30,392	-71,637	$29,\!6$	-
889	1603242214	24-03-2016	22:14	4.2	-30,417	-71,670	34,1	-
890	1603250803	25-03-2016	8:03	4.8	-30,688	-71,430	50,7	-
891	1603260856	26-03-2016	8:56	4.5	-30,735	-71,454	50,8	-
892	1603270027	27-03-2016	0:27	4.5	-30,429	$-71,\!645$	24,7	-
893	1603310753	31-03-2016	7:53	5	$-22,\!625$	-68,749	125,2	-
894	1604021513	02-04-2016	15:13	4.1	-29,853	-71,267	$45,\!4$	-
895	1604041232	04-04-2016	12:32	5.2	-31,250	-71,844	35,5	-
896	1604061735	06-04-2016	17:35	5.2	-31,512	$-71,\!675$	36,4	-
897	1604140938	14-04-2016	9:38	5.3	-33,860	-70,445	117,9	-
898	1604141744	14-04-2016	17:44	4.5	-32,170	-71,832	39,1	-
899	1604150427	15-04-2016	4:27	4.6	-32,176	-71,842	$32,\!3$	-
900	1604180701	18-04-2016	7:01	4.1	-32,426	-71,430	40,9	-
901	1604181138	18-04-2016	11:38	5.5	-31,771	-71,307	51,2	-
902	1604251401	25-04-2016	14:01	4.7	-32,140	-71,822	$27,\!6$	-
903	1605081033	08-05-2016	10:33	4.6	-32,769	-71,531	$38,\!8$	-
904	1605091118	09-05-2016	11:18	4	-32,583	-71,847	24,0	-
905	1605100016	10-05-2016	0:16	4.3	-32,338	$-71,\!666$	57,0	-
906	1605111311	11-05-2016	13:11	5.6	-30,664	-71,888	$37,\!3$	-
907	1605221147	22-05-2016	11:47	5.1	-30,630	$-71,\!645$	32,3	-
908	0106232033	23-06-2001	20:33	8.4	-16,380	-73,500	32,0	Or
909	0604301917	30-04-2006	19:17	6.6	-27,070	-71,220	12,0	Т
910	0604302140	30-04-2006	21:40	6.5	-27,180	-71,050	12,0	Т
911	1002281125	28-02-2010	11:25	6.2	-35,003	-71,596	$41,\!6$	Т
912	9711031917	03 - 11 - 1997	19:17	6.2	-30,800	-71,260	52,0	Ι
913	0404301003	30-04-2004	10:03	5	$-33,\!549$	-70,551	100,7	Ι
914	9507300511	30-07-1995	5:11	8	-23,336	-70,265	40,5	Т
915	8503032247	03-03-1985	22:47	8	-33,139	-71,761	35,0	Т
916	8503032338	03-03-1985	23:38	6.4	-32,955	-71,142	17,8	Т
917	8111111737	11 - 11 - 1981	17:37	6.7	-32,240	-71,470	56,1	Ι
918	8504090157	09-04-1985	1:57	7.1	-34,116	-71,513	49,4	Т
919	8503040032	04-03-1985	0:32	7.4	-33,236	-71,740	40,0	Т
920	8503250514	25-03-1985	5:14	6.5	-34,265	-72,173	37,5	Т
921	1009231636	23-09-2010	16:36	5.4	-34,972	-71,887	47,7	Т
922	1107230256	23-07-2011	2:56	5.5	-29,318	-70,465	135,7	Ι
923	1010220138	22-10-2010	1:38	5.6	-29,594	-71,112	44,0	Т
924	1101042259	04-01-2011	22:59	5.3	-29,175	-69,788	128,0	Ι

Tabla A.21: Caracterización del catálogo de eventos (Parte 21).

Anexo B. Catálogo de Estaciones

				Referencia		
Nº	Estación	Vs_{30}	Instrumento	(Localidad o punto de interés	Tipo Suelo	Tipo Suelo
				cercano a la ubicación de la estación)	433	Genérico
1	ANTO	0	ETNA 2803	Antofagasta UCN	A*	Rock
2	ARIC	0	ETNA 815	Arica	C^*	Soil
3	ACRU	1132	ETNA 2796	Arica Cerro la Cruz	А	Rock
4	ACHA	0	ETNA 2797	Arica Chacalluta	F^*	Soil
5	CALA	0	ETNA 2804	Calama Hospital	E^*	Soil
6	IQUI	0	ETNA 2800	Iquique Hospital	D^*	Soil
7	IQEC	0	ETNA 6151	Iquique Escuela Chipana	\mathbf{D}^*	Soil
8	MEJI	0	ETNA 2794	Mejillones Hospital	D^*	Soil
9	MJCE	0	ETNA 6154	Mejillones Central	D^*	Soil
10	MJPU	0	ETNA 6156	Mejillones Puerto	A^*	Rock
11	MICH	0	ETNA 6150	Michilla	\mathbf{F}^*	Soil
12	PICA	0	ETNA 2799	Pica Hospital	B*	Rock
13	PIS	0	ETNA 2795. SMA-1 4573	Pisagua		Rock
14	POCO	511	ETNA 2798. SMA-1	Poconchile	В	Rock
15	PAMO	0	K2 1784	Puente Amolanas	C^*	Soil
16	SPAT	0 0	ETNA 6153	San Pedro de Atacama	$\tilde{\mathbf{E}}^*$	Soil
17	SANT	0	SSA-2 935	Santiago Conjunto Villa Andalucía	D*	Soil
11	5711(1	0	5511 2 555	La Florida Metro Línea 5	D	Son
18	MET	685	K2 958	Estación Mirador	В	Rock
19	TOCP	0	ETNA 6152	Tocopilla Puerto	$\Delta *$	Bock
20	MAR	0	ETNA 1215 ODR SMA-1	Viña del Mar Puente Marga Marga	F*	Soil
20	PB01	0	FBA ES-T	Hustscondo	Δ*	Bock
21	PB04	0	FBA ES-T	Mantos de La Luna	Δ*	Bock
22	PB05	0	FBA ES-T	Mantos de La Luna	Δ*	Rock
20	PB06	0	FBA FS T	Podro do Valdivia	Λ*	Rock
24 25	PB07	0	FBA ES-1	Corro Tatas	Λ \ \ \	Rock
20 26	PB08	0	FBA ES-1	Macaya	Λ *	Rock
20 27	1 D03	0	FDA ES-1 FDA ES T	FI Tigro	A A*	Poek
21	A NTU	550	FBA ES-I FBA ES T	La Pintana Antumanu	B	Rock
20	POPI	000	FDA ES-1 FDA ES T	Corre El Poble Pocieto SUOA	D Г*	Soil
29 20	SLUC	0	FDA ES-I	Sentiago Como Sente Lucía	Г А *	Book
-00 -91	LACH	0	FDA ES-I EDA ES T	Colorio Los Américos	A E*	Coil
31 20	LACH	570	FBA ES-1 EDA ES T	Colegio Las Americas	F ·	Dool
52	53011	570	F DA ES-1	Cancon sián Colorio Son	Б	HOCK
33	CCSP	390	FBA ES-T	Dadra da la Dar	\mathbf{C}	Soil
24	A D01	0	FBI	redro de la raz	D *	Soil
94 95	TA01	0		-	F D*	Book
35 26	TA01 TA02	0		-	D C*	Coil
30 27	TA02 MNMCY	0	CMC5	- Miži Miži	D*	Doole
31 20	DATCY	0	CMG5	Niilii Miilii Dunta Datacha	D C*	Coil
- 20 - 20	PAICA	1550	CMG5 CMC5	Piga mia	<u> </u>	Deals
- 39 - 40	PBGCA	1558		r isagua	A A *	Dool
40	F D09 DD10	0	FBA ES-I EDA ES T	Quinagua	A *	Dool
41	FDIU DD11	0	FBA ES-I	Juan Lopez	A ·	C - :1
42	PB11 DD19	0	FBA ES-1	Quebrada Aricida	D'	Dl-
43	PBI2	0	FBA ES-1	Arica Cerro Macarana	A' D*	ROCK
44	PB15	0	FBA ES-1	Sierra Gorda	D.	Soll
45	HMBUX	077	UMG5	Humberstone	V ↓ R	KOCK
46	PB16	0	FBA ES-T	Cerro Chapiquina	A ⁺	Kock
47	107A	344	EP1	Pozo Almonte	D	Soil
48	T08A	084	EPI	Alto Hospicio ciudad	R R	Rock
49	T09A	0	EPI	-	A* C	Kock
50	110A	417	EPI	Huara	C	Soil

Tabla B.1: Caracterización del catálogo de estaciones (Parte 1).

				Referencia	Tino Suele	Tine Suele
$\mathbf{N}^{\mathbf{o}}$	Estación	Vs_{30}	Instrumento	(Localidad o punto de interés	1 ipo Sueio	Conómico
				cercano a la ubicación de la estación)	400	Generico
51	T03A	809	EPI	Regimiento Granaderos	В	Rock
52	T06A	0	БЫ	Iquique Hospital Regional Dr.	C^*	Soil
02	10011	0		Ernesto Torres Galdames	0	501
53	T13A	357	EPI	Tenencia de Pica	\mathbf{C}	Soil
54	AC05	0	-	-	-	-
55	CO01	0	-	-	-	-
56	CO04	0	EPI	-	B^*	Rock
57	FAR1	0	CMG-40T	Farellones	B^*	Rock
58	GO01	0	FBA ES-T	Chusmiza	B^*	Rock
59	GO02	0	FBA ES-T	Mina El Guanaco	A^*	Rock
60	GO03	0	GBV316	Copiapó	A^*	Rock
61	GO04	0	FBA ES-T	Tololo - Vicuña	D^*	Soil
62	LMEL	0	FBA ES-T	Las Melosas	C^*	Soil
63	LSCH	0	FBA ES-T	La Serena	D^*	Soil
64	ME03	0	EPI	-	F^*	Soil
65	ME05	0	EPI	-	D^*	Soil
66	MT01	0	EPI	Daracena	\mathbf{F}^*	Soil
67	MT02	0	EPI	-	-	-
68	PB13	0	EPI	-	D^*	Soil
69	T01A	0	EPI	-	E^*	Soil
70	T02A	277	EPI	Alto Hospicio Cerro	D	Soil
71	T04A	0	EPI	-	A^*	Rock
72	T11A	0	EPI	-	E^*	Soil
73	T12A	0	EPI	-	D^*	Soil
74	VA03	0	EPI	San Esteban	\mathbf{F}^*	Soil
75	CONC2	0	ETNA 2802	Concepción Plaza	D	Soil
76	CO03	0	EPI	-	B^*	Rock
77	MT05	0	EPI	Cerro Colorado	D^*	Soil
78	MT09	0	EPI	Talagante	A^*	Rock
79	VA01	0	EPI	Torpederas	B^*	Rock
80	VA05	0	EPI	Santo Domingo	D^*	Soil
81	AC04	0	EPI	-	A^*	Rock
82	BI03	0	EPI	-	-	-
83	BO01	0	EPI	-	-	-
84	C01O	0	EPI	-	\mathbf{F}^*	Soil
85	C07O	0	EPI	-	\mathbf{F}^*	Soil
86	C09O	0	EPI	-	B^*	Rock
87	C110	0	EPI	-	C^*	Soil
88	C12O	0	EPI	-	\mathbf{F}^*	Soil
89	CO02	0	EPI	-	D^*	Soil
90	M09L	0	EPI	-	-	-
91	M10L	0	EPI	-	-	-
92	M11L	0	EPI	-	-	-
93	R08M	0	EPI	-	B^*	Rock
94	V01A	0	EPI	-	F^*	Soil
95	V02A	0	EPI	-	B^*	Rock
96	V03A	0	EPI	-	A^*	Rock
97	V04A	0	EPI	-	D^*	Soil
98	V09A	0	EPI	-	E^*	Soil
99	V11A	0	EPI	-	A^*	Rock
100	TLL	-	digital	-	-	-

Tabla B.2: Caracterización del catálogo de estaciones (Parte 2).

				Referencia	m • a 1	m • a 1
$\mathbf{N}^{\mathbf{o}}$	Estación	Vs_{30}	Instrumento	(Localidad o punto de interés	Tipo Suelo	Tipo Suelo
				cercano a la ubicación de la estación)	433	Genérico
101	A20F	-	digital	-	-	-
102	PB02	-	digital	-	-	-
103	ROC1	-	digital	-	-	-
104	GO05	-	digital	-	-	-
105	V08A	-	digital	-	-	-
106	C06O	-	digital	-	-	-
107	BI04	-	digital	-	-	-
108	C05O	-	digital	-	-	-
109	C13O	-	digital	-	-	-
110	C10O	-	digital	-	-	-
111	C04O	-	digital	-	-	-
112	C03O	-	digital	-	-	-
113	A10F	-	digital	-	-	-
114	V15A	-	digital	-	-	-
115	R07M	-	digital	-	-	-
116	R12M	-	digital	-	-	-
117	R18M	_	digital	_	_	-
118	V14A	-	digital	-	-	-
119	T05A	811	-	Iquique Serviu	В	Rock
120	A08F	-	digital	-	-	-
121	V18A	_	digital	_	_	_
122	V16A	_	digital	_	_	_
122	V17A	_	digital	_	_	_
120	M04L	_	digital	_	_	_
121	M02L	_	digital	_	_	_
126	BO02	_	digital		_	_
120	A02F	-	digital	-	-	-
127	R021 R02M	_	digital		-	_
120	A05P	-	digital	-	-	-
120	A03F	-	digital	-	-	-
130	R13M	-	digital	-	-	-
131	R15M	-	digital	-	-	-
192	DIEM	-	digital	-	-	-
194	POEM	-	digital	-	-	-
194	D16M	-	digital	-	-	-
100	DO4M	-	digital	-	-	-
130	R04M D10M	-	digital	-	-	-
137	R10M D14M	-	digital	-	-	-
130	R14M D02M	-	digital	-	-	-
139	KU3M MTO2	-		-	-	-
140	M103	-	digital	-	-	-
141	AUIF	-	digital	-	-	-
142	V U5A	-	digital	-	-	-
143	LIZL	-	digital	-	-	-
144	LUZL	-	digital	-	-	-
145	L05L	-	digital	-	-	-
146	L11L	-	digital	-	-	-
147	L07L	-	digital	-	-	-
148	L14L	-	digital	-	-	-
149	A12F	-	digital	-	-	-
150	A09F	-	digital	-	-	-

Tabla B.3: Caracterización del catálogo de estaciones (Parte 3).

				Referencia	T : C1-	T :
$\mathbf{N}^{\mathbf{o}}$	Estación	Vs_{30}	Instrumento	(Localidad o punto de interés	1 ipo Sueio	
				cercano a la ubicación de la estación)	433	Generico
151	A04F	-	digital	-	-	-
152	A15F	-	digital	-	-	-
153	V07A	-	digital	-	-	-
154	L16L	-	digital	-	-	-
155	C14O	-	digital	-	-	-
156	C18O	-	digital	-	-	-
157	L04L	-	digital	-	-	-
158	R20M	-	digital	-	-	-
159	C16O	-	digital	-	-	-
160	R21M	-	digital	-	-	-
161	R19M	-	digital	-	-	-
162	C28O	-	digital	-	-	-
163	C33O	-	digital	-	-	-
164	C15O	-	digital	-	-	-
165	C20O	-	digital	-	-	-
166	C22O	-	digital	-	-	-
167	C26O	-	digital	-	-	-
168	C27O	-	digital	-	-	-
169	C19O	-	digital	-	-	-
170	T20A	-	digital	-	-	-
171	T15A	-	digital	-	-	-
172	A21F	-	digital	-	-	-
173	R22M	-	digital	-	-	-
174	A24F	-	digital	-	-	-
175	A23F	-	digital	_	_	-
176	A18F	-	digital	_	_	-
177	A05C	-	digital	_	_	_
178	A19F	-	digital	_	_	-
179	B06I	-	digital	_	_	_
180	A17C	-	digital	_	_	_
181	B01I	-	digital	_	_	_
182	B051	_	digital	_	_	_
183	A27C	_	digital	_	_	_
184	A30C	_	digital	_	_	_
185	A24C	_	digital	_	_	_
186	A 23C	_	digital	_	_	_
187	A22C	_	digital	_	_	_
188	L01B	_	digital	_	_	-
180	LO3R	_	digital		_	_
100	B111	_	digital	-	_	_
101	L01C	-	digital	-	-	-
102	102B	-	digital	-	-	-
192	$\Delta F01$	-	digital	-	-	-
190 104	LUCD	-	digital	-	-	-
194 105	VAOG	-	digital	-	-	-
190	VAUD	-		-	-	-
107	A20U	-		-	-	-
197 100	CO05	-	digital	-	-	-
198	A 11C	-	digital	-	-	-
199	ALLOC	-	digital	-	-	-
200	A12U	-	aigital	-	-	-

Tabla B.4:	$Caracterizaci\acute{o}n$	del	${\rm cat}{\rm \acute{a}logo}$	de	estaciones	(Parte 4).	

				Referencia	Tipo Suelo	Tipo Suelo
$\mathbf{N}^{\mathbf{o}}$	Estación	Vs_{30}	Instrumento	(Localidad o punto de interés	1 Ipo Sueio 433	Conórico
				cercano a la ubicación de la estación)	455	Generico
201	A09C	-	digital	-	-	-
202	A13C	-	digital	-	-	-
203	A28C	-	digital	-	-	-
204	A04C	-	digital	-	-	-
205	A06C	-	digital	-	-	-
206	A14C	-	digital	-	-	-
207	A15C	-	digital	-	-	-
208	A16C	-	digital	-	-	-
209	L03L	-	digital	-	-	-
210	LL05	-	digital	-	-	-
211	L09R	-	digital	-	-	-
212	ALHO	0	QDR 673	Alto Hospicio	-	-
213	ANGO	315	QDR 760	Angol Hospital	D	Soil
214	ACEM	432	SMA-1 5015	Arica Cementerio	\mathbf{C}	Soil
215	ACO	389	SMA-1 5004	Arica Costanera	\mathbf{C}	Soil
216	CONC	230	-	Concepción Colegio Inmaculada Concepción	D	Soil
217	CONT	343	SMA-1 4598	Constitución Hospital	D	Soil
218	COPI	0	QDR 672	Copiapó Hospital	-	-
219	CURI	673	QDR 499	Curicó Hospital	В	Rock
220	CUY	0	SMA-1 4561	Cuya	-	-
221	LOA	0	SMA-1 4564	El Loa	-	-
222	FUBA	0	QDR 674	Fuerte Baquedano	-	-
223	HUAL	560	SMA-1 4564	Hualañe Hospital	В	Rock
224	HUAR	0	SMA-1 6975	Huara	-	-
225	ILLA	613	SMA-1 4565	Illapel	В	Rock
226	IQID	0	SMA-1 7051	Iquique IDIEM	-	-
227	IQPZ	0	SMA-1 7050	Iquique Plaza	-	-
228	LSER	0	SMA-1 5016	La Serena	-	-
229	LLO	305	SMA-1 4566	Llolleo	D	Soil
230	MAT	380	-	Matanzas	С	Soil
231	PAP	517	SMA-1 5014	Papudo	В	Rock
232	PPAT	0	CUSP 3A 40021	Puerto Patache	-	-
233	PUTR	0	SMA-1 7098	Putre	-	-
234	CRMA	450	QDR 663	Maipú Centro de Referencia de Salud	С	Soil
235	HTIS	276	QDR 670	Peñalolén Hospital Luis Tisné	D	Soil
236	HSOR	0	QDR 671	Puente Alto Hospital Sótero del Río	-	-
237	TALA	0	QDR 670	Talagante	-	-
238	TAL	648	SMA-1 4568	Talca Colegio Integrado San Pío X	В	Rock
239	TOCO	0	SMA-1 6736	Tocopilla	-	-
240	VALD	274	QDR 761	Valdivia Hospital	D	Soil
241	VALLE	0	QDR	Vallenar Liceo Santa Marta	-	-
242	VALU	1421	SMA-1 6976	Valparaíso UTFSM	А	Rock
243	VAL	360	SMA-1 4567	Valparaíso Almendral	\mathbf{C}	Soil
244	VINA	273	QDR 675	Viña del Mar Centro	D	Soil
245	LLAY	613	-	Llav Llav	В	Rock
246	TOR	0	-	Las Tórtolas	-	-
247	ISI	789	-	San Isidro	В	Rock
248	SFER	543	-	San Fernando	В	Rock
249	SFEL	502	-	San Felipe	В	Rock
250	END	513	-	Santiago Endesa	В	Rock

Tabla B.5: Caracterización del catálogo de estaciones (Parte 5).

				Referencia		Tine Suele
$\mathbf{N}^{\mathbf{o}}$	Estación	Vs_{30}	Instrumento	(Localidad o punto de interés	1 Ipo Sueio	
				cercano a la ubicación de la estación)	400	Generico
251	CAU	388	-	Cauquebes	С	Soil
252	CHIL	568	-	Chillán Viejo	В	Rock
253	CON85	0	-	Constitución 1985	-	-
254	HUA85	0	-	Hualañe 1985	-	-
255	ILO	555	-	Iloca	В	Rock
256	MELP	0	QDR	Melipilla	-	-
257	PICH	623	QDR	Pichilemu	В	Rock
258	QUIN	595	-	Quintay	В	Rock
259	RAP	3010	-	Rapel	А	Rock
260	VEN	331	-	Ventanas	D	Soil
261	VICH	1215	-	Los Vilos	А	Rock
262	ZACH	605	QDR	Zapallar	В	Rock
263	LIG	620	-	La Ligua	В	Rock
264	DGF	0	-	Geofísica Uchile	-	-
265	CBCH	397	QDR	Cabildo	\mathbf{C}	Soil
266	CSCH	332	QDR	Casablanca Teatro Municipal	D	Soil
267	COLB	0	-	Colbún	-	-
268	CVCH	0	-	Convento Viejo	-	-
269	MOCH	300	QDR	Los Molles	D	Soil
270	OLMU	391	-	Olmué	\mathbf{C}	Soil
271	FCFM	0	-	Civil Uchile	-	-
272	LCO	620	-	Las Campanas Observatorio	В	Rock

Tabla B.6: Caracterización del catálogo de estaciones (Parte 6).

Anexo C. Intensidad de Arias y duración significativa

• Clasificación 1: Distancia 0 [km] $\leq d < 100$ [km]

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 1 de la clasificación 1:

ID	Intensidad de	Intensidad de Intensidad de Arias	Tiempo t _e [s]	Intensidad de Arias	Tiompo t. [s]
ID	Arias $[m/s]$	$\mathrm{acumulada}_{5\%}[\mathrm{m/s}]$		$\mathrm{acumulada}_{95\%}\mathrm{[m/s]}$	$1 \text{ lempo } \mathfrak{l}_{95} \text{ [s]}$
57	0.135	0.007	54.645	0.128	63.375
354	0.194	0.009	14.630	0.184	165.490
369	0.031	0.002	14.400	0.029	165.460
673	0.086	0.004	65.430	0.082	76.780
745	0.054	0.003	67.215	0.052	81.260
762	0.004	0.000	50.470	0.004	81.135
1318	0.028	0.001	60.660	0.027	77.265
3972	0.072	0.004	0.335	0.068	9.975

Tabla C.1: Intensidad de Arias y duración significativa clasificación 1 (canal 1).

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 2 de la clasificación 1:

ID	Intensidad de	$\begin{array}{llllllllllllllllllllllllllllllllllll$		Intensidad de Arias	Tiompo t [a]
ID	Arias $[m/s]$			$\mathrm{acumulada}_{95\%}[\mathrm{m/s}]$	Tiempo ι_{95} [S]
57	0.151	0.007	54.570	0.144	63.665
354	6.705	0.335	9.150	6.369	170.840
369	3.668	0.183	9.030	3.485	170.930
673	0.065	0.003	65.065	0.062	79.315
745	0.045	0.002	65.380	0.042	84.510
762	0.006	0.000	48.640	0.006	82.075
1318	0.019	0.001	63.825	0.019	82.285
3972	0.034	0.002	0.395	0.033	12.520

Tabla C.2: Intensidad de Arias y duración significativa clasificación 1 (canal 2).

• Clasificación 2: Distancia 100 $[\text{km}] \leq d < 150 [\text{km}]$

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 1 de la clasificación 2:

Tabla C.3: Intensidad de Arias y duración significativa clasificación 2 (canal 1).

ID	Intensidad de	Intensidad de Intensidad de Arias		Intensidad de Arias	Tiempe t [a]
ID	Arias $[m/s]$	$\mathrm{acumulada}_{5\%}[\mathrm{m/s}]$	1 lempo \mathbf{t}_5 [S]	$\mathrm{acumulada}_{95\%} \mathrm{[m/s]}$	$1 \text{ lempo } \mathfrak{l}_{95} [\mathbf{s}]$
320	0.138	0.007	10.180	0.132	170.480
335	0.040	0.002	12.680	0.038	165.910
356	11.226	0.561	9.120	10.665	170.86
973	0.039	0.002	59.195	0.038	89.925
1051	0.023	0.001	23.430	0.022	59.010
1052	0.037	0.002	39.270	0.036	69.250
1056	0.019	0.001	39.520	0.019	66.390
2861	0.063	0.003	70.185	0.060	100.160

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 2 de la clasificación 2:

ID	Intensidad de	Intensidad de Intensidad de Arias		Intensidad de Arias	Tiompo tu [s]
	Arias $[m/s]$	${ m acumulada}_5 { m \%}[{ m m/s}]$	Tiempo t ₅ [s]	$\mathrm{acumulada}_{95\%}\mathrm{[m/s]}$	Tiempo t ₉₅ [s]
320	6.704	0.335	9.040	6.369	171.010
335	3.668	0.183	9.040	3.484	171.010
356	16.674	0.834	9.100	15.839	170.820
973	0.042	0.002	62.010	0.039	74.085
1051	0.022	0.001	18.660	0.021	57.180
1052	0.029	0.001	38.020	0.028	66.090
1056	0.014	0.001	39.960	0.013	64.650
2861	0.051	0.003	70.175	0.049	105.570

Tabla C.4: Intensidad de Arias y duración significativa clasificación 2 (canal 2).

• Clasificación 3: Distancia 150 [km] $\leq d < 200$ [km]

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 1 de la clasificación 3:

ID	Intensidad de	Intensidad de Arias	Tiompo t. [c]	Intensidad de Arias	Tiompo t. [c]
ID	Arias $[m/s]$	$\mathrm{acumulada}_{5\%}[\mathrm{m/s}]$	$1 \text{ lempo } \mathbf{t}_5 \text{ [s]}$	$\mathrm{acumulada}_{95\%} \mathrm{[m/s]}$	
321	0.334	0.017	10.160	0.318	170.740
332	0.0354	0.002	23.540	0.034	170.440
355	0.346	0.017	10.280	0.329	169.780
361	41.053	2.053	9.01	39.001	171.070
362	0.904	0.045	9.260	0.859	170.820
366	0.022	0.001	31.890	0.021	151.040
2641	0.012	0.001	65.23	0.011	103.375
2662	0.046	0.002	67.005	0.043	108.965

Tabla C.5: Intensidad de Arias y duración significativa clasificación 3 (canal 1).

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 2 de la clasificación 3:

Tabla C.6: Intensidad de Arias y duración significativa clasificación 3 (canal 2).

ID	Intensidad de	Intensidad de Arias	Tiompo t [a]	Intensidad de Arias	Tiompo t [a]
	Arias $[m/s]$	${ m Arias} [{ m m/s}] \qquad { m acumulada}_{5\%}[{ m m/s}]$		$\mathrm{acumulada}_{95\%}[\mathrm{m/s}]$	$1 \text{ lempo } \mathfrak{l}_{95} [\mathbf{s}]$
321	4.302	0.215	9.080	4.087	170.960
332	0.048	0.002	13.74	0.045	166.780
355	4.314	0.216	9.110	4.099	170.770
361	3.829	0.191	9.070	3.638	170.810
362	0.043	0.002	21.850	0.041	162.750
366	0.027	0.001	15.280	0.026	162.86
2641	0.015	0.001	61.330	0.015	102.800
2662	0.045	0.002	66.890	0.043	113.985

• Clasificación 4: Distancia 200 [km] $\leq d < 250$ [km]

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 1 de la clasificación 4:

ID	Intensidad de	Intensidad de Arias	Tiompo t. [a]	Intensidad de Arias	Tiompo tu [a]
	Arias $[m/s]$	$\mathrm{acumulada}_{5\%}\mathrm{[m/s]}$	Tiempo t ₅ [s]	$\mathrm{acumulada}_{95\%}[\mathrm{m/s}]$	Tiempo t ₉₅ [S]
322	11.099	0.555	8.980	10.545	171.030
327	40.965	2.048	8.990	38.917	170.990
328	0.909	0.045	9.110	0.864	171.190
334	0.120	0.006	9.430	0.114	172.020
357	0.312	0.016	9.750	0.296	170.340
358	22.448	1.122	9.00	21.326	170.480
363	1.938	0.097	9.330	1.841	170.740
368	0.121	0.006	9.380	0.115	170.950
2650	0.006	0.000	41.220	0.005	86.055
2678	0.006	0.000	47.005	0.006	95.155

Tabla C.7: Intensidad de Arias y duración significativa clasificación 4 (canal 1).

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 2 de la clasificación 4:

ID	Intensidad de Arias [m/s]	Intensidad de Arias acumulada $_5\%$ [m/s]	${\rm Tiempo} \ {\bf t}_5 \ [{\rm s}]$	$\begin{array}{c} {\rm Intensidad \ de \ Arias} \\ {\rm acumulada}_{95\%} [{\rm m/s}] \end{array}$	${\bf Tiempo} ~ {\bf t}_{95} ~ [{\bf s}]$
322	16.538	0.827	6.720	15.711	171.030
327	3.818	0.191	9.010	3.628	170.98
328	0.022	0.001	20.720	0.021	174.980
334	2.734	0.137	9.080	2.597	171.140
357	0.022	0.001	19.250	0.021	160.700
358	15.350	0.768	8.990	14.583	171.050
363	0.455	0.023	10.090	0.432	170.540
368	2.739	0.137	9.050	2.602	171.010
2650	0.007	0.000	43.585	0.006	83.635
2678	0.007	0.000	47.515	0.007	93.910

Tabla C.8: Intensidad de Arias y duración significativa clasificación 4 (canal 2).

• Clasificación 5: Distancia 100 [km] $\leq d < 200$ [km]

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 1 de la clasificación 5:

ID	Intensidad de	Intensidad de Intensidad de Arias		Intensidad de Arias	Tiempe t. [d]
ID	Arias $[m/s]$	$\mathrm{acumulada}_{5\%}\mathrm{[m/s]}$	Tiempo t ₅ [s]	$\mathrm{acumulada}_{95\%}\mathrm{[m/s]}$	Tiempo t ₉₅ [S]
1049	0.150	0.008	42.140	0.143	69.030
1112	0.025	0.001	43.860	0.024	84.710
2551	0.189	0.009	71.090	0.180	111.690
3949	0.305	0.015	9.245	0.289	23.040
3950	0.006	0.000	6.225	0.006	16.360
3953	0.013	0.001	14.360	0.012	40.655
3969	0.052	0.003	3.550	0.049	13.065
3970	0.162	0.008	10.755	0.154	16.210

Tabla C.9: Intensidad de Arias y duración significativa clasificación 5 (canal 1).

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 2 de la clasificación 5:

Tabla C.10: Intensidad de Arias y duración significativa clasificación 5 (canal 2).

ID	Intensidad de Arias [m/s]	Intensidad de Arias acumulada _{5 %} [m/s]	${\bf Tiempo} \ {\bf t}_5 \ [{\bf s}]$	$\begin{array}{c} {\rm Intensidad \ de \ Arias} \\ {\rm acumulada}_{95\%}[{\rm m/s}] \end{array}$	${\bf Tiempo} \ {\bf t}_{95} \ [{\bf s}]$
1049	0.117	0.006	42.360	0.111	69.030
1112	0.026	0.001	39.930	0.024	83.080
2551	0.263	0.013	72.015	0.250	107.990
3949	0.364	0.018	9.675	0.346	21.190
3950	0.008	0.000	5.725	0.007	15.405
3953	0.012	0.001	14.115	0.011	45.990
3969	0.034	0.002	0.490	0.033	13.375
3970	0.146	0.007	10.905	0.139	17.190

• Clasificación 6: Distancia 0 [km] $\leq d < 50$ [km]

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 1 de la clasificación 6:

Tabla C.11: Intensidad de Arias y duración significativa clasificación 6 (canal 1).

ID	Intensidad de	Intensidad de Arias	${\bf Tiempo} \ {\bf t}_5 \ [{\bf s}]$	Intensidad de Arias	Tiompo t [a]
	Arias $[m/s]$	$\mathrm{acumulada}_{5\%}\mathrm{[m/s]}$		$\mathrm{acumulada}_{95\%} \mathrm{[m/s]}$	$1 \text{ lempo } \mathfrak{l}_{95} [\mathbf{s}]$
77	3.238	0.162	48.175	3.076	82.510
87	4.521	0.226	82.410	4.294	134.700
88	3.081	0.154	71.970	2.927	101.200
371	0.704	0.035	17.280	0.668	51.760

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 2 de la clasificación 6:

Tabla C.12: Intensidad de Arias y duración significativa clasificación 6 (canal 2).

ID	Intensidad de	Intensidad de Arias	${\bf Tiempo} \ {\bf t}_5 \ [{\bf s}]$	Intensidad de Arias	Tiompo t. [s]
	Arias $[m/s]$	${ m acumulada}_{5\%}[{ m m/s}]$		$\mathrm{acumulada}_{95\%}\mathrm{[m/s]}$	1 lempo 195 [5]
77	3.095	0.155	48.260	2.939	82.060
87	4.916	0.246	85.820	4.669	126.54
88	2.947	0.147	69.060	2.799	90.690
371	0.473	0.024	17.170	0.449	53.370

• Clasificación 7: Distancia 50 [km] $\leq d < 100$ [km]

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 1 de la clasificación 7:

Tabla C.13: Intensidad de Arias y duración significativa clasificación 7 (canal 1).

ID	Intensidad de Arias [m/s]	Intensidad de Arias acumulada _{5 %} [m/s]	${\bf Tiempo} \ {\bf t}_5 \ [{\bf s}]$	Intensidad de Arias acumulada $_{95\%}[{ m m/s}]$	${\bf Tiempo} ~ {\bf t}_{95} ~ [{\bf s}]$
2	0.267	0.013	63.580	0.254	79.495
89	2.119	0.106	72.070	2.013	123.250
90	2.961	0.148	43.540	2.813	157.730
372	0.912	0.046	29.940	0.867	49.470
520	1.907	0.095	70.985	1.812	96.500
746	2.547	0.127	73.575	2.419	94.415
1319	0.969	0.048	71.940	0.921	100.195

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 2 de la clasificación 7:

Tabla C.14: Intensidad de Arias y duración significativa clasificación 7 (canal 2).

ID	Intensidad de Arias [m/s]	Intensidad de Arias acumulada $_5\%$ [m/s]	${\bf Tiempo} \ {\bf t}_5 \ [{\bf s}]$	$\begin{array}{c} {\rm Intensidad} de Arias \\ {\rm acumulada}_{95\%}[{\rm m/s}] \end{array}$	Tiempo \mathbf{t}_{95} [s]
2	0.264	0.013	62.585	0.250	79.950
89	2.137	0.107	69.800	2.029	104.890
90	2.798	0.139	73.410	2.658	114.360
372	0.805	0.040	29.150	0.765	51.050
520	1.561	0.079	70.510	1.483	99.985
746	3.221	0.161	71.600	3.060	94.525
1319	0.996	0.049	71.345	0.947	100.240

• Clasificación 8: Distancia 100 [km] $\leq d < 150$ [km]

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 1 de la clasificación 8:

ID	Intensidad de	Intensidad de Arias	Tiompo t [a]	Intensidad de Arias	Tiompo t [a]
ID	Arias $[m/s]$	${ m acumulada}_{5\%}[{ m m/s}]$	Thempo t_5 [S]	$\mathrm{acumulada}_{95\%} \mathrm{[m/s]}$	r_{95} [S]
86	1.205	0.060	43.420	1.145	159.940
374	0.313	0.016	41.710	0.297	67.320
379	0.067	0.003	44.840	0.064	90.370
380	0.063	0.003	41.160	0.059	77.120
387	0.159	0.008	40.940	0.151	64.900
763	0.621	0.019	68.260	0.352	89.960
974	2.273	0.114	67.940	2.159	93.600

Tabla C.15: Intensidad de Arias y duración significativa clasificación 8 (canal 1).

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 2 de la clasificación 8:

Tabla C.16: Intensidad de Arias y duración significativa clasificación 8 (canal 2).

ID	Intensidad de Arias [m/s]	Intensidad de Arias acumulada _{5%} [m/s]	${\bf Tiempo} \; {\bf t}_5 \; [{\bf s}]$	Intensidad de Arias acumulada $_{95\%}[{ m m/s}]$	${\bf Tiempo} ~ {\bf t}_{95} ~ [{\bf s}]$
86	0.908	0.045	17.190	0.862	182.990
374	0.270	0.014	41.230	0.257	63.030
379	0.044	0.002	44.830	0.042	93.090
380	0.059	0.003	43.360	0.056	78.330
387	0.151	0.008	39.250	0.144	66.200
763	0.566	0.028	65.855	0.538	90.900
974	2.458	0.123	68.825	2.335	91.430

• Clasificación 9: Distancia 150 [km] $\leq \, d < 200$ [km]

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo $5\text{-}95\,\%$ para el canal horizontal 1 de la clasificación 9:

Tabla C.17: Intensidad de Arias y duración significativa clasificación 9 (canal 1).

ID	Intensidad de Arias [m/s]	Intensidad de Arias acumulada _{5%} [m/s]	${\bf Tiempo} \ {\bf t}_5 \ [{\bf s}]$	Intensidad de Arias acumulada $_{95\%}$ [m/s]	${\bf Tiempo} \ {\bf t}_{95} \ [{\bf s}]$
48	1.042	0.052	74.645	0.991	121.925
373	0.413	0.021	58.500	0.393	79.040
375	0.028	0.001	55.680	0.026	97.030
381	0.079	0.004	57.330	0.076	90.980
570	0.654	0.033	42.240	0.621	76.120

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 2 de la clasificación 9:

Tabla C.18: Intensidad de Arias y duración significativa clasificación 9 (canal 2).

ID	Intensidad de	Intensidad de Arias	Tiompo t [a]	Intensidad de Arias	Tiompo t [a]
	Arias $[m/s]$	${ m acumulada_{5\%}[m/s]}$	Thempo t_5 [S]	$\mathrm{acumulada}_{95\%} \mathrm{[m/s]}$	$1 \text{ lempo } \mathfrak{l}_{95} \text{ [s]}$
48	0.888	0.044	73.870	0.843	122.390
373	0.283	0.014	57.380	0.269	84.400
375	0.018	0.001	49.820	0.018	113.310
381	0.045	0.002	57.970	0.043	100.470
570	0.631	0.032	44.960	0.599	74.190

• Clasificación 10: Distancia 200 [km] $\leq d < 250$ [km]

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 1 de la clasificación 10:

Tabla C.19: Intensidad de Arias y duración significativa clasificación 10 (canal 1).

ID	Intensidad de	Intensidad de Arias	Tiompo t [a]	Intensidad de Arias	Tiompo t [a]
	Arias $[m/s]$	${ m acumulada}_{5\%}[{ m m/s}]$	r_{1} [s]	$\mathrm{acumulada}_{95\%} \mathrm{[m/s]}$	r_{95} [s]
91	0.119	0.006	103.250	0.113	187.120
376	0.035	0.002	59.740	0.033	108.450
384	0.057	0.003	69.850	0.054	93.590
837	0.040	0.002	48.990	0.038	78.015
993	0.127	0.006	68.955	0.121	102.490

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo $5\text{-}95\,\%$ para el canal horizontal 2 de la clasificación 10

Tabla C.20: Intensidad de Arias y duración significativa clasificación 10 (canal 2).

ID	Intensidad de	Intensidad de Arias	Tiompo t [a]	Intensidad de Arias	Tiompo t. [a]
	Arias $[m/s]$	${ m acumulada}_{5\%}[{ m m/s}]$	Tiempo t ₅ [s]	$\mathrm{acumulada}_{95\%} \mathrm{[m/s]}$	Tiempo t ₉₅ [S]
91	0.043	0.002	100.770	0.040	171.290
376	0.036	0.002	58.790	0.034	106.740
384	0.037	0.002	65.540	0.035	96.220
837	0.041	0.002	44.230	0.039	75.475
993	0.133	0.007	68.095	0.126	103.100

• Clasificación 11: Distancia 100 [km] $\leq d < 200$ [km]

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 1 de la clasificación 11:

ID	Intensidad de	Intensidad de Arias	${\bf Tiempo} \ {\bf t}_5 \ [{\bf s}]$	Intensidad de Arias	Tiompo t [a]
	Arias $[m/s]$	$acumulada_{5\%}[m/s]$		$\rm acumulada_{95\%}[m/s]$	Tiempo t ₉₅ [S]
3919	2.038	0.102	17.630	1.936	44.050
3921	0.474	0.024	20.425	0.449	56.275
3926	0.301	0.015	5.355	0.286	48.815
3932	0.807	0.040	15.545	0.767	45.640

Tabla C.21: Intensidad de Arias y duración significativa clasificación 11 (canal 1).

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 2 de la clasificación 11:

Tabla C.22: Intensidad de Arias y duración significativa clasificación 11 (canal 2).

ID	Intensidad de	Intensidad de Arias	${\rm Tiempo} \ {\bf t}_5 \ [{\bf s}]$	Intensidad de Arias	Tiompot [a]
	Arias $[m/s]$	$acumulada_{5\%}[m/s]$		$\rm acumulada_{95\%}[m/s]$	$1 \text{ lempo } \mathfrak{l}_{95} [\mathbf{s}]$
3919	1.862	0.093	19.495	1.769	44.060
3921	0.506	0.025	20.155	0.481	58.575
3926	0.238	0.012	4.650	0.226	48.510
3932	0.819	0.041	17.490	0.778	42.845

• Clasificación 12: Distancia 0 $[\text{km}] \leq d < 50 \ [\text{km}]$

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 1 de la clasificación 12:

Tabla C.23: Intensidad de Arias y duración significativa clasificación 12 (canal 1).

ID	Intensidad de	Intensidad de Arias	Tiompo t. [s] Inte	Intensidad de Arias	Tiompo t [a]
	Arias $[m/s]$	$\mathrm{acumulada}_{5\%}\mathrm{[m/s]}$	Thempo t_5 [S]	$\mathrm{acumulada}_{95\%}[\mathrm{m/s}]$	Tiempo t_{95} [s]
318	0.838	0.042	37.620	0.796	82.020
514	3.505	0.175	80.930	3.329	213.850
515	6.549	0.327	76.690	6.222	120.500
517	5.636	0.282	79.945	5.355	209.545
1235	2.439	0.122	73.450	2.317	204.380

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 2 de la clasificación 12:

Tabla C.24: Intensidad de Arias y duración significativa clasificación 12 (canal 2).

ID	Intensidad de Arias [m/s]	Intensidad de Arias acumulada $_{5\%}$ [m/s]	${\rm Tiempo} \ {\bf t}_5 \ [{\rm s}]$	Intensidad de Arias acumulada $_{95\%}[{ m m/s}]$	${\bf Tiempo} ~ {\bf t}_{95} ~ [{\bf s}]$
318	0.784	0.039	35.720	0.745	83.860
514	4.061	0.203	79.845	3.858	213.795
515	12.421	0.621	76.530	11.800	120.520
517	6.731	0.337	76.880	6.394	211.020
1235	2.526	0.126	74.115	2.399	204.220

• Clasificación 13: Distancia 50 [km] $\leq d < 100$ [km]

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 1 de la clasificación 13:

	Tabla 1).	C.25:	Intensidad	de Arias	y duraci	ón signif	icativa	clasificación	13	(canal	
]	Intensida	ad de	Intensidad	d de Arias	s Tiemı	o \mathbf{t}_5 [s]	Inten	sidad de Ari	as	Tiempo	o t ₉₅

ID	intensidad de	monsidud de mias	Tiomno t [a]	monsidud de mias	Tiomno t [a]
ID	Arias $[m/s]$	${ m acumulada_5\%[m/s]}$	Thempo t_5 [S]	$\mathrm{acumulada}_{95\%} \mathrm{[m/s]}$	Tiempo ι_{95} [s]
301	0.837	0.042	50.730	0.795	178.800
302	1.178	0.059	46.800	1.119	115.440
303	2.217	0.111	53.030	2.106	101.980
315	0.367	0.018	54.020	0.348	105.720
836	0.477	0.024	66.615	0.453	118.090
992	1.942	0.097	81.200	1.845	127.945

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 2 de la clasificación 13:

Tabla C.26: Intensidad de Arias y duración significativa clasificación 13 (canal 2).

ID		chistata ac mitas	Tiompot [a]	Intensidad de Arias	
Aria	as $[m/s]$ ac	${ m cumulada_{5\%}[m/s]}$	1 lempo \mathbf{t}_5 [s]	${ m acumulada}_{95\%}[{ m m/s}]$	Tiempo ι_{95} [s]
301 ().579	0.029	49.490	0.549	179.540
302	1.212	0.061	45.840	1.152	114.730
303 2	2.653	0.133	54.150	2.520	100.180
315 ().347	0.017	52.280	0.329	106.730
836 (0.570	0.029	66.665	0.542	117.115
992	1.724	0.086	77.205	1.638	128.465

• Clasificación 14: Distancia 100 [km] $\leq d < 200$ [km]

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 1 de la clasificación 14:

ID	Intensidad de Arias [m/s]	Intensidad de Arias acumulada _{5 %} [m/s]	${\bf Tiempo} \; {\bf t}_5 \; [{\bf s}]$	Intensidad de Arias acumulada $_{95\%}[{ m m/s}]$	${\bf Tiempo} ~ {\bf t}_{95} ~ [{\bf s}]$
305	0.293	0.015	70.870	0.279	203.130
310	0.112	0.006	82.500	0.106	216.160
311	0.150	0.008	53.870	0.143	117.340
317	0.049	0.002	66.870	0.047	128.800
569	1.574	0.079	52.020	1.495	110.560
971	2.443	0.122	71.920	2.321	205.495

Tabla C.27: Intensidad de Arias y duración significativa clasificación 14 (canal 1).

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 2 de la clasificación 14:

ID	Intensidad de	Intensidad de Arias	Tiompo t [a]	Intensidad de Arias	Tiompo t [a]
ID	Arias $[m/s]$	${ m acumulada}_{5\%}[{ m m/s}]$	riempo t ₅ [s]	${ m acumulada}_{95\%}[{ m m/s}]$	$1 \text{ lempo } \mathfrak{l}_{95} \text{ [S]}$
305	0.272	0.014	71.270	0.259	203.040
310	0.067	0.003	71.890	0.064	217.770
311	0.198	0.009	56.550	0.188	113.110
317	0.062	0.003	66.590	0.059	125.900
569	2.379	0.119	55.310	2.261	104.560
971	2.518	0.126	72.410	2.392	204.635

Tabla C.28: Intensidad de Arias y duración significativa clasificación 14 (canal 2).

• Clasificación 15: Distancia 200 [km] $\leq d < 250$ [km]

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 1 de la clasificación 15:

Tabla C.29: Intensidad de Arias y duración significativa clasificación 15 (canal 1).

ID	Intensidad de Arias [m/s]	Intensidad de Arias $acumulada_5\%[m/s]$	${\rm Tiempo} \; {\bf t}_5 \; [{\bf s}]$	Intensidad de Arias $\operatorname{acumulada}_{95\%}[\mathrm{m/s}]$	${\bf Tiempo} ~ {\bf t}_{95} ~ [{\bf s}]$
306	0.043	0.002	89.130	0.041	226.530
307	0.045	0.002	95.100	0.042	232.980
312	0.197	0.009	93.220	0.187	222.410

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 2 de la clasificación 15:

Tabla C.30: Intensidad de Arias y duración significativa clasificación 15 (canal 2).

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Intensidad de	Intensidad de Arias	Tiompo t. [a]	Intensidad de Arias	Tiompo tu [g]
306 0.029 0.001 73.350 0.028 228.500 307 0.022 0.002 0.02	ID	Arias $[m/s]$	${ m acumulada}_{5\%}[{ m m/s}]$	Tiempo t ₅ [s]	$\mathrm{acumulada}_{95\%}\mathrm{[m/s]}$	
	306	0.029	0.001	73.350	0.028	228.500
307 0.063 0.003 95.720 0.060 233.930	307	0.063	0.003	95.720	0.060	233.930
312 0.156 0.007 94.040 0.148 223.580	312	0.156	0.007	94.040	0.148	223.580

• Clasificación 16: Distancia 100 [km] $\leq d < 200$ [km]

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo $5\text{-}95\,\%$ para el canal horizontal 1 de la clasificación 16:

Tabla C.31: Intensidad de Arias y duración significativa clasificación 16 (canal 1).

	Intensidad de	Intensidad de Arias	Tiompo t [a]	Intensidad de Arias	Tiompo t [a]
ID	Arias $[m/s]$	$\mathrm{acumulada}_{5\%}\mathrm{[m/s]}$	Thempo t_5 [S]	$\mathrm{acumulada}_{95\%} \mathrm{[m/s]}$	Thempo t_{95} [S]
1020	3.618	0.181	57.920	3.437	104.960
1024	0.062	0.003	87.920	0.059	167.860
1040	0.916	0.046	86.340	0.870	142.575

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 2 de la clasificación 16:

ID	Intensidad de	Intensidad de Arias	Tiompo t [a]	Intensidad de Arias	${\bf Tiempo} ~ {\bf t}_{95} ~ [{\bf s}]$
	Arias $[m/s]$	${ m acumulada_{5\%}[m/s]}$	Thempo t_5 [S]	$\mathrm{acumulada}_{95\%} \mathrm{[m/s]}$	
1020	3.306	0.165	58.080	3.141	100.090
1024	0.069	0.003	85.040	0.066	163.800
1040	1.163	0.058	85.735	1.105	141.740

Tabla C.32: Intensidad de Arias y duración significativa clasificación 16 (canal 2).

• Clasificación 17: Distancia 100 [km] $\leq d < 200$ [km]

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 1 de la clasificación 17:

Tabla C.33: Intensidad de Arias y duración significativa clasificación 17 (canal 1).

ID	Intensidad de	Intensidad de Arias	Tiompo t. [a]	Intensidad de Arias	Tiompo t. [a]
	Arias $[m/s]$	$\rm acumulada_{5\%}[m/s]$	Tiempo t ₅ [s]	$\rm acumulada_{95\%}[m/s]$	Tiempo t ₉₅ [S]
75	1.055	0.053	65.210	1.003	105.410
98	1.639	0.082	53.190	1.557	72.530
100	0.743	0.037	106.810	0.706	291.290
102	7.812	0.391	89.290	7.421	128.290
3876	10.647	0.532	43.480	10.114	93.680
3896	2.927	0.146	26.375	2.781	55.870
3909	0.286	0.014	23.540	0.272	48.655
3966	0.330	0.017	4.290	0.314	19.835

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 2 de la clasificación 17:

Tabla C.34: Intensidad de Arias y duración significativa clasificación 17 (canal 2).

ID	Intensidad de Arias [m/s]	Intensidad de Arias acumulada _{5%} [m/s]	${\bf Tiempo} \ {\bf t}_5 \ [{\bf s}]$	Intensidad de Arias acumulada $_{95\%}[{ m m/s}]$	${\rm Tiempo} \ {\rm t}_{95} \ [{\rm s}]$
75	1.001	0.050	63.240	0.950	104.810
98	1.656	0.083	51.330	1.573	127.27
100	0.996	0.049	105.590	0.946	2074.75
102	6.872	0.344	90.180	6.529	129.140
3876	2.877	0.144	38.480	2.733	92.480
3896	4.059	0.203	27.380	3.856	55.995
3909	0.519	0.026	25.420	0.494	47.390
3966	0.286	0.014	4.150	0.272	19.375

• Clasificación 18: Distancia 0 [km] $\leq d < 100$ [km]

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo $5-95\,\%$ para el canal horizontal 1 de la clasificación 18:

ID	Intensidad de	Intensidad de Arias	Tiempo \mathbf{t}_5 [s]	Intensidad de Arias	Tiompo tu [a]
	Arias $[m/s]$	$\mathrm{acumulada}_{5\%}[\mathrm{m/s}]$		$\rm acumulada_{95\%}[m/s]$	Tiempo t ₉₅ [S]
37	1.027	0.051	47.230	0.975	57.920
93	1.722	0.086	8.510	1.636	91.550
94	1.053	0.053	16.550	1.000	74.640
95	0.928	0.046	10.620	0.882	89.540
3945	2.584	0.129	7.090	2.455	16.905
3946	2.104	0.105	7.255	1.999	20.365

Tabla C.35: Intensidad de Arias y duración significativa clasificación 18 (canal 1).

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 2 de la clasificación 18:

Tabla C.36: Intensidad de Arias y duración significativa clasificación 18 (canal 2).

ID	Intensidad de Arias [m/s]	Intensidad de Arias acumulada _{5 %} [m/s]	${\bf Tiempo} \ {\bf t}_5 \ [{\bf s}]$	Intensidad de Arias acumulada _{95 %} [m/s]	${\bf Tiempo} \ {\bf t}_{95} \ [{\bf s}]$
37	1.316	0.066	47.420	1.251	56.225
93	1.190	0.059	12.200	1.131	88.020
94	0.901	0.045	18.930	0.855	34.070
95	0.704	0.035	20.440	0.669	65.180
3945	2.956	0.148	6.735	2.808	21.545
3946	4.317	0.216	7.205	4.101	19.065

• Clasificación 19: Distancia 100 [km] $\leq d < 200$ [km]

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 1 de la clasificación 19:

Tabla C.37: Intensidad de Arias y duración significativa clasificación 19 (canal 1).

ID	Intensidad de Arias [m/s]	Intensidad de Arias acumulada _{5 %} [m/s]	${\bf Tiempo} \ {\bf t}_5 \ [{\bf s}]$	Intensidad de Arias acumulada $_{95\%}[{ m m/s}]$	Tiempo \mathbf{t}_{95} [s]
78	0.089	0.004	46.270	0.085	66.74
92	0.287	0.014	26.990	0.273	75.730
96	1.535	0.077	5.580	1.459	94.490
574	0.409	0.020	30.050	0.389	43.390
1192	0.017	0.001	60.010	0.017	96.740

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 2 de la clasificación 19:

ID	Intensidad de	Intensidad de Arias	${\bf Tiempo} \ {\bf t}_5 \ [{\bf s}]$	Intensidad de Arias	${\bf Tiempo} \ {\bf t}_{95} \ [{\bf s}]$
	Arias $[m/s]$	$\mathrm{acumulada}_{5\%}[\mathrm{m/s}]$		$\rm acumulada_{95\%}[m/s]$	
78	0.037	0.002	47.420	0.035	68.295
92	0.189	0.009	31.140	0.180	62.890
96	0.136	0.007	33.600	0.129	71.010
574	0.564	0.028	29.800	0.536	41.130
1192	0.018	0.001	57.420	0.017	90.165

Tabla C.38: Intensidad de Arias y duración significativa clasificación 19 (canal 2).

• Clasificación 20: Distancia 200 [km] $\leq d < 250$ [km]

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 1 de la clasificación 20:

Tabla C.39: Intensidad de Arias y duración significativa clasificación 20 (canal 1).

ID	Intensidad de Arias [m/s]	Intensidad de Arias acumulada _{5%} [m/s]	${\bf Tiempo} \ {\bf t}_5 \ [{\bf s}]$	Intensidad de Arias acumulada $_{95\%}[{ m m/s}]$	${\bf Tiempo} ~ {\bf t}_{95} ~ [{\bf s}]$
9	0.647	0.032	63.320	0.615	95.545
60	2.114	0.106	66.965	2.008	95.840

Se ilustra la Intensidad de Arias y la duración significativa, correspondiente al intervalo 5-95% para el canal horizontal 2 de la clasificación 20:

Tabla C.40: Intensidad de Arias y duración significativa clasificación 20 (canal 2).

ID	Intensidad de Arias [m/s]	Intensidad de Arias acumulada _{5%} [m/s]	${\bf Tiempo} \ {\bf t}_5 \ [{\bf s}]$	Intensidad de Arias acumulada $_{95\%}$ [m/s]	${\bf Tiempo} ~ {\bf t}_{95} ~ [{\bf s}]$
9	0.627	0.031	56.535	0.596	96.285
60	2.205	0.110	63.900	2.094	95.655

Anexo D. Códigos utilizados en MATLAB

```
Código D.1: Cálculo de distancia a la fuente sísmica.
1 % Algoritmo que permite calcular la distancia hipocentral y distancia al área de ruptura.
      \hookrightarrow Desarollado con la ayuda de los códigos computacionales de Víctor Contreras (2009) y
      \hookrightarrow Benjamín Idini (2016).
2 clc
3 clear all;
4 close all;
5
   % El primer paso corresponde a cargar la base de datos
6
  load('Sismos.mat');
7
   % Aceleracion de gravedad
9
  g=9.81; % [m/s<sup>2</sup>]
10
11
   % Largo del registro
12
  N = length(Registros); \% En este caso, 4076
13
14
   % Creamos un vector vacío que guardará las distancias
15
16
  d = [];
17
18
  for i=1:N
19
      if( CatalogoEstaciones(Registros(i).estacion).latitud ~= 0 )
20
         if( CatalogoEstaciones(Registros(i).estacion).longitud ~= 0 )
21
            if isfield(CatalogoEventos(Registros(i).evento),'arup')
22
               if isempty(CatalogoEventos(Registros(i).evento).arup) == 1
23
                   % Distancia hipocentral
24
                  late=CatalogoEstaciones(Registros(i).estacion).latitud;
25
                  longe=CatalogoEstaciones(Registros(i).estacion).longitud;
26
27
                   % Ubicación del hipocentro
28
                  lath=CatalogoEventos(Registros(i).evento).latitud;
29
                  longh=CatalogoEventos(Registros(i).evento).longitud;
30
                   profh=CatalogoEventos(Registros(i).evento).profundidad;
31
                   dist(i) = distH(late,longe,lath,longh,profh);
32
                   d = [d,dist(i)];
33
               else
34
                   % Distancia área de ruptura
35
36
                   % Cálculo de la grilla que representa el área de ruptura.
37
                  L = CatalogoEventos(Registros(i).evento).arup(1);
38
                   B = CatalogoEventos(Registros(i).evento).arup(2);
39
                   m = ceil(L/1); \% 1 km de resolucion
40
                  n = ceil(B/1); \% 1 km de resolucion
41
                   dy = L/m;
42
                   dx = B/n;
43
44
45
```

```
% Calculo profundidad
46
47
                   Tr = load('PeCh-trench.txt'); \% Fosa
48
49
                   dlo_p = Tr(:,1)-CatalogoEventos(Registros(i).evento).izqinf(2);
50
                   dla_p = Tr(:,2)-CatalogoEventos(Registros(i).evento).izqinf(1);
51
52
                   ddy = dla_p.*111.1306;
53
                   ddx = dlo_p.*111.1306.*cosd(dla_p);
54
                   Dmin = min(sqrt(ddx.^2+ddy.^2));
                   p = Dmin*tand(CatalogoEventos(Registros(i).evento).manteo);
56
                   % Grilla
58
                   Y = 0:dy:L;
59
                   G=[];
60
61
                   manteo = CatalogoEventos(Registros(i).evento).manteo;
62
63
                   for j = 1:n
64
                      aux = [ones(length(Y),1)*(j-1)*dx Y' ones(length(Y),1)*(p+tand(manteo)))
65
       \hookrightarrow *(j-1))*dx];
                      G = [G;aux];
66
                   end
67
68
                   % Distancia
69
                   laizqinf = CatalogoEventos(Registros(i).evento).izqinf(1);
70
                   loizqinf = CatalogoEventos(Registros(i).evento).izqinf(2);
71
                   lasta = CatalogoEstaciones(Registros(i).estacion).latitud;
72
                   losta = CatalogoEstaciones(Registros(i).estacion).longitud;
73
74
                   % Distancia relativa entre la posicion de referencia de la grilla y estación
                   dla = lasta-laizqinf;
76
                   dlo = losta-loizqinf;
77
78
                   % Cooordenadas de la estacion relativas a la esquina izqinf del área ruptura.
79
                   ysta = dla*111.1306;
80
                   xsta = dlo*111.1306*cosd(dla);
81
                   psta = 0;
82
83
                   % Corrección por rumbo de la falla.
84
                   theta = CatalogoEventos(Registros(i).evento).rumbo;
85
                   xcsta = xsta*cosd(theta)-ysta*sind(theta);
86
                   ycsta = xsta*sind(theta)+ysta*cosd(theta);
87
88
                   rh = sqrt((xcsta-G(:,1)).^2+(ycsta-G(:,2)).^2);
89
                   D = \operatorname{sqrt}(\operatorname{rh.^2+(psta-G(:,3)).^2)};
90
                   disRuptura(i) = \min(D);
91
                   d = [d,disRuptura(i)];
92
                   format longG
93
               end
94
            else d = [d,0];
95
            end
96
```

```
      97
      else d = [d,0];

      98
      end

      99
      else d = [d,0];

      100
      end

      101
      end
```

1 function R=radio(lat)

Código D.2: Función distancia hipocentral

```
1 function d = distH(late,longe,lath,longh,profh)
<sup>2</sup> % Algoritmo que calcula la distancia hipocentral. Desarrollado con la ayuda del código
      \hookrightarrow computacional de Víctor Contreras (2009).
3
  %Transformación a coordenadas cartesianas
4
5 rh=radio(lath)'-profh;
<sup>6</sup> [xh,yh,zh]=cartesianas(rh,lath,longh); % Coordenadas cartesianas del hipocentro (evento)
8 re=radio(late); % Asumiendo su profundidad nula
9 [xe,ye,ze]=cartesianas(re,late,longe); % Coordenadas cartesianas de la estacion
10
  %Cálculo de la distancia
11
12 H=[xh;yh;zh];
13 E=[xe, ye, ze];
14 d=dist(E,H); % Distancia entre la estacion y el hipocentro (evento)
15
16 end
```

Código D.3: Radio terrestre

```
<sup>2</sup> % Autor: Victor Contreras - 2009
<sup>3</sup> % Función que entrega el radio terrestre de la Tierra (1980 Geodetic Reference System
       \hookrightarrow ellipsoid) correspondiente a una determinada latitud. Se retorna el vector R con el
       \hookrightarrow radio correspondiente a cada latitud en km.
4
5 % Input
6 % lat: latitud a convertir
7
8 % Se carga el elipsoide y las propiedades geométricas de la tierra
9 e=almanac('earth','ellipsoid','kilometers');
10 RM = e(1);
11 Rm=minaxis(e);
12
13 % Se calcula el radio terrestre correspondiente a cada latitud
14 n=length(lat);
15 for i=1:n
R(i) = sqrt((RM*cos(lat(i)*pi/180))^2 + (Rm*sin(lat(i)*pi/180))^2);
17
18 end
```

```
1 function [x,y,z]=cartesianas(r,lat,lon)
2 % Autor: Victor Contreras - 2009
3 % Funcion que calcula las coordenadas cartesianas
4
5 % Inputs
6 % r: radio
7 % lat: latitud
8 % lon: longitud
9
10 x=r.*cos(lat*pi/180).*cos(lon*pi/180);
11 y=r.*cos(lat*pi/180).*sin(lon*pi/180);
12 z=r.*sin(lat*pi/180);
13
14 end
```

Código D.5: Intensidad de Arias.

```
1 % Algoritmo que calcula la Intensidad de Arias. También grafica la
2 % Intensidad de Arias acumulada y normalizada
3
4 load('Sismos.mat')
5
6 % Aceleración de gravedad
_7 g = 9.81;
8
9 %% Intensidad de Arias acumulada
_{10} i = 1; % ID del registro, puede ir desde 1 a 4076
11
_{12} reg = Registros(i).canal1;
<sup>13</sup> Fs = Registros(i).muestreo;
_{14} reg = reg*g;
15
  % Vector de tiempo
16
  t = time(reg,Fs);
17
18
19 % Integracion
_{20} iA = cumtrapz(t,reg.*reg);
<sup>21</sup> iA = (pi/(2*g))*iA;
22
23 figure(1)
24 plot(t,iA)
<sup>25</sup> title('Intensidad de Arias en función del tiempo')
26 xlabel('Tiempo (s)')
27 ylabel('Intensidad de Arias')
28 grid on
29
30 iA(length(reg)); % Valor de IA
_{31} iA_5 = 0.05*iA(length(reg)); % 5 de IA
<sup>32</sup> iA_95 = 0.95*iA(length(reg)); % 95 de IA
```

33

- 34 %% Intensidad de Arias normalizada
- $_{35}$ iAn = iA/max(iA);
- 36
- 37 **figure(2)**
- 38 plot(t,iAn)
- 39 title('Intensidad de Arias en función del tiempo')
- 40 **xlabel('Tiempo (s)')**
- 41 ylabel('Intensidad de Arias')
- 42 grid on