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Abstract

Let W be an affine Weyl group with corresponding finite Weyl group Wf . For each

λ, a dominant coweight, corresponds an element θ(λ) ∈ W . With N. Libedinsky and D.

Plaza, we produce a conjecture called the Geometric Formula predicting the following:

the cardinality of the set of elements in W that are lesser or equal to θ(λ) in the Bruhat

order, is a linear combination (with coefficients not depending on λ) of the volumes of

the faces of the polytope Conv(λ), constructed as the convex hull of the set Wf · λ.

We prove the geometric formula for type Ã3, by giving general algebraic and geometric

constructions for the set ≤ θ(λ). We study the polytope Conv(λ), its faces, and give

some formulas to compute their volumes of the corresponding dimension.
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Global conventions and notations

For n ∈ N, let In denote the finite set {1, . . . , n}. Let W be a Coxeter group with

simple reflections S = {s1, . . . , sn}. The set S is indexed by In, so the subsets of In

are in bijection with the subsets of S. If W has rank n ≥ 4 and J = {1, 2, 4} ⊂ In,

then WJ denotes the parabolic subgroup of W generated by s1, s2 and s4. If W is an

affine Weyl group, regarded as a Coxeter group its simple reflections are be denoted by

{s0, s1, . . . , sn}, which we identify with In ∪ {0}.

The identity element of a group W will be denoted by id. If W acts on a set A,

and B ⊂ A, W ·B denotes the collection of sets wB such that w ∈ W , unless explicitly

stated otherwise. The cardinality of A will be denoted by |A|, and its topological closure

(when there is an underlying topology) by A.
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Introduction

Bruhat Intervals on affine Weyl groups are widely studied objects, however, there still

are some basic questions that remain unanswered. In this thesis we study the cardinality

of these intervals by observing the underlying relationship between the alcovic geometry

of the interval, given by the Coxeter complex of the affine Weyl group, and the Euclidean

geometry of the interval, as the alcoves define a set in some Euclidean space. The main

result of this thesis is the Geometric Formula which computes the cardinality of some

of these intervals as a linear combination of volumes of faces of a permutahedron.

We will go quickly trough some notation and definitions. For more details, see Chap-

ter 1. Let Φ be an irreducible (reduced, crystallographic) root system of rank n, and let

V be the ambient (real) Euclidean space spanned by Φ, with positive definite symmetric

bilinear form (−,−). Fix a set ∆ = {α1, . . . , αn} of simple roots and a set Φ+ ⊃ ∆

of positive roots. Denote by α̃ the highest root. Let α∨ = 2α/(α, α) be the coroot

corresponding to α ∈ Φ. The fundamental coweights ϖ∨
i are defined by the equations

(ϖ∨
i , αj) = δij . They form a basis of V . A coweight is an integeral linear combination

of the fundamental coweights, and a dominant coweight is a coweight whose coordinates

in this basis are non-negative. For αi ∈ ∆, let Hαi
be the hyperplane of V orthogonal

to αi and let si be the (simple) reflection through Hαi
. Let Sf = {s1, . . . , sn} be the

collection of simple reflections. The subgroup Wf of the orthogonal transformations

of V generated by Sf , is the finite Weyl group. The pair (Wf , Sf ) is a Coxeter system.
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Denote by w0 the longest element of Wf in the Bruhat order.

The affine Weyl group W is the subgroup of affine transformations of V generated

by Wf and translation by elements of L∨ = ZΦ∨, where Φ∨ is the coroot system. We

have W ∼= Wf ⋉ L∨. For α ∈ Φ and k ∈ Z, let

Hα,k = {λ ∈ V | (λ, α) = k}.

The group W can also be realized as the group generated by the affine reflections sα,k

along the hyperplanes Hα,k, for all α ∈ Φ and k ∈ Z. Remove all these hyperplanes

from V . The connected components of the resulting set are called alcoves; they are in

bijection with W . We will take

Aid = {λ ∈ V | −1 < (λ, α) < 0 ∀α ∈ Φ+}

to be the fundamental alcove. Let s0 := sα̃,−1 and S := {s0, s1, . . . , sn}, then (W,S) is

a Coxeter system. Let ≤ correspond to the Bruhat order and let l(−) be the length

funciton. For x, y ∈ W , denote by [x, y] the Bruhat interval consisting of the elements

z ∈ W such that x ≤ z ≤ y.

We want to study the intervals [x, y]. We are particularly interested in giving an

Euclidean geometric interpretation of the cardinality of those sets. Computing the

cardinality of these intervals is by no means an easy task. For example, the main result

in [BE09] by Anders Björner and Torsten Ekedahl, published in 2009 in Annals of

Mathematics, is that if fi denotes the number of elements of length i in ≤ w := [id, w],

then

0 ≤ i < j ≤ l(w)− i implies fi ≤ fj.

There is a way to associate to each dominant coweight λ, an element θ(λ) ∈ W .

These elements can be determined by checking their respective alcoves. They lie in the
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dominant cone and are a translation by λ of the alcove corresponding to w0. These

are very important elements for representation theory. The intervals ≤ θ(λ) will be the

main focus of the present thesis. At the time of writing this thesis, to the knowledge

of the author, there is only one result involving the cardinality of these intervals. In

2012, Waldeck Schützer gave a general formula for | ≤ θ(λ)|. We will briefly explain his

result. Define the kth Todd polynomial Tk in the variables x1, x2, . . . as the coefficient

of tk in
n∏

i=1

txi

1− e−txi
=

n∏
i=1

∞∑
j=0

Bj

j!
(txi)

j,

where

Bj =

j∑
s=0

s∑
l=0

(−1)l
(
s

l

)
(l + 1)j

s+ 1

are the Bernoulli numbers. In [Sch12], Schützer proved that

| ≤ θ(λ)| = |Wf |
n∑

j=0

∑
w∈Wf

(ρ, wλ)j Tn−j ((ρ, wα1), . . . , (ρ, wαn))

j!
∏n

i=1(ρ, wαi)
.

Furthermore, if λ = (m1, . . . ,mn) is expressed in the fundamental coweight basis, then

| ≤ θ(λ)| is a polynomial of degree n in m1, . . . ,mn. Fixing j in the first sum, gives the

homogeneous part of degree j of the polynomial.

Although this achievement is remarkable (and underrated), it still leaves a bitter

taste. The formula seems extremely complicated and does not provide much insight

on what is going on. As a matter of fact, the author of this thesis wrote a program in

SageMath for the Schützer formula, and the case of type Ã7 takes about 7-9 hours to

run.

There is a more recent paper [LP20] by Leonardo Patimo and Nicolás Libedinsky, in

which | ≤ θ(λ)| is computed for type Ã2. What is interesting about this, is the way the

formula is computed. Among other things, it relies on a geometric construction of the

3



set ≤ θ(λ) as a union of suited hexagons (see figure 2.3). The main result of this thesis

is the Geometric Formula, that is a joint work with my master’s thesis advisor and David

Plaza, which computes | ≤ θ(λ)| for any type. In the way of proving it, we generalize

the geometric construction mentioned above. At present, we haven’t yet been able to

prove the geometric formula in full generality, but we are confident that we will provide

an answer in the near future. Therefore, we will prove it for type Ã3, in a generalizable

way. Before we can properly state the formula, we first need to introduce some notation.

Let λ be a dominant coweight, corresponding to the irreducible root system Φ of

rank n, and let Xn be the type of (Wf , Sf ). For any J ⊂ In, let WJ be the parabolic

subgroup generated by {sj | j ∈ J}. Note that since 0 /∈ In, WJ is a subgroup of Wf .

We define V Xn
J (λ) as the |J |-dimensional volume of Conv(WJ · λ), the convex hull of

the WJ -orbit of λ. For example, there is a volume V A7

{1,2,4}(λ). There are some results

involving these volumes (see [Pos05]). Among other things, these are homogeneous

polynomials fairly easy to compute.

The geometric formula for type X̃n, conjectures that there exists (unique) ϑJ ∈ R

such that for any dominant coweight λ,

| ≤ θ(λ)| =
∑
J⊂In

ϑJV
Xn
J (λ). (1)

This implies the result mentioned above, that if λ = (mi)i∈In in the coweight basis, then

| ≤ θ(λ)| is a polynomial of degree n in the m1, . . . ,mn. Taking the sum over a fixed

rank |J | = d gives the degree part d of the polynomial. We call the coefficients ϑJ the

geometric coefficients.

It is very important that the reader keeps in mind throughout the present thesis,

that the geometric coefficients do not depend on the choice of the dominant coweight

λ. If they did, the geometric formula would be trivial. The geometric coefficients only

depend on J ⊂ In and, of course, the type of Φ. If one removes the Xn from the
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volume V Xn
J , one can be misled to think that these do not depend on the type, hence

the emphasis. In Chapter 4 it will be explained that they in fact do not have the same

“degree of dependence”. For example, fix any J ⊂ I3 ⊂ I4. The geometric coefficients

corresponding to J in types Ã3 and Ã4 are not equal. However, V A3
J = V A4

J . This is

why, later on, this notation will be slightly modified.

Not only this formula looks nice and compact, it also establishes a bridge between

Euclidean and alcovic geometry. The polytope Conv(λ) whose vertex set is the Wf -

orbit of λ has volume V Xn
In

(λ), and an i-face of this polytope has volume V Xn
J (λ) for

some J ⊂ In with |J | = i. Thus, the geometric formula conjectures that | ≤ θ(λ)| can

be computed as a linear combination of the volumes (in their respective dimensions) of

the faces of this polytope. In type An, Conv(λ) defines a permutahedron.

Let A(≤ θ(λ)) be the closure of the alcoves corresponding to ≤ θ(λ). To prove

the geometric formula, we will show two ways to construct the set ≤ θ(λ). One is an

algebraic construction which uses various nice properties of θ(λ), and the other one is

a geometric partition of A(≤ θ(λ)), starting from the polytope Conv(λ). The proof is

focused on studying in-depth their properties. The former construction, which we call

the Polytope Construction, will be done in full generality, that is, with no restrictions

on the root system Φ. The latter, called the Geometric Partition, will only be illustrated

in type Ã3.

The reason for this, is that it uses that the polytope Conv(λ) is completely contained

in A(≤ θ(λ)). We were strongly convinced that this was a general fact. Unfortunately,

in the way of trying to prove it, we found a counterexample. The containment is still

true in type Ã3, and the counterexample was found in type Ã4. This terrible, cold and

dark day for mathematics, was very recent. However, hope still remains. With the help

of SageMath, besides computing Schützer formula, the author of this thesis was able to

compute the volumes V An
J (see appendix A). Using these tools, we have been able to

compute the geometric coefficients in types Ã1, . . . , Ã7 so that the geometric formula
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holds in all of these cases (and no counterexample has been found). Thus, although

the containment does not hold in Ã4, the geometric formula does. With this in mind,

recent work suggests that we can “fix” the geometric partition, so that the proof of the

geometric formula given in this thesis can still be extended to full generality, with some

adjustments. This is currently an on-going work.

As for the geometric coefficients, at the time of writing this thesis, we have not

yet been able to compute them in a satisfying way. We will provide tables with these

coefficients for the cases mentioned above (see appendix B). We have nice conjectures

that would make their computation extremely easy. Let PWf
be the closure of the set of

alcoves corresponding to the subgroup Wf of W . Roughly speaking, we believe that ϑJ

is completely determined by computing the volume of a certain section of PWf
. This

section is determined by a finite collection of hyperplanes slicing through PWf
. In turn,

this collection is given by J (see the numbers defined in Corollary 5.5). We are currently

working on computing the volumes of these sections.

Finally, we give some results on the volumes V Xn
J , and other objects, that were not

needed to prove the geometric formula.
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Structure of the thesis

This work is partitioned in two parts. Part I establishes the conventions and nota-

tions that we will use throughout this thesis. In this part we will also give some insights

on the geometric formula, in a small case. Part II is where we will lay the groundwork

and prove the geometric formula. This is the most important and extensive part of this

thesis. At the end of this part, there are appendices with some volumes V An
J (λ) and

tables showing the geometric coefficients in type Ãn, for the first few cases.

Part I consists of two chapters.

• Chapter 1 contains all the necessary background, conventions and notations that

we will use in this thesis. The experienced reader can skip until Section 1.3.

• In Chapter 2 we will “prove” -without much rigor- the geometric formula in type

Ã2, since most of the ideas arose from this case. This example will be constantly

referenced to -for geometric intuition- in the subsequent chapters, but this chapter

can be skipped without any loss of generality.

Part II has three chapters in it.

• In Chapter 3 we define and generalize the two geometric constructions that ap-

peared in Chapter 2. We will discuss its properties and lay the groundwork for

the proof of the geometric formula.

• Since the volumes V Xn
J (λ) are a big part of the geometric formula, in Chapter 4

we will give some insights on them. To prove the geometric formula, we will not

make use of the results in this chapter.

• In Chapter 5 we give a proof of the geometric formula.

7



Part I

Preliminaries and the geometric

formula in a baby example
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1. Background and notations

The main purposes of this chapter are to briefly establish the necessary background,

conventions and notations for the upcoming chapters, as well as to explain some known

facts of particular interest to us. The elements θ(λ), which play an important role in

this thesis, will be defined in Section 1.3, so the experienced reader can skip to that

section.

1.1 Coxeter systems

Most of the definitions concerning Coxeter systems1 can be found on [Bou02], [BB05]

or [EMTW20].

A Coxeter system (W,S) is a group W , which we call Coxeter group together with a

finite set S ⊂ W of generators, such that W admits the presentation

W = ⟨s ∈ S | (st)mst = id ∀ s, t ∈ S, with mst < ∞⟩,

where mss = 1 and mst = mts ∈ {2, 3, . . .∞} if s ̸= t ∈ S. The rank of (W,S) is |S|

and the elements of S are called simple reflections. One can prove that the order of st

is exactly mst (if mst = ∞ then there is no corresponding relation between s and t).

Given a Coxeter system (W,S) and an element w ∈ W , we can write w = s1 · · · sk

1A Coxeter group can often be equipped with the structure of a Coxeter system in multiple different
ways. There are examples of Coxeter groups that can be described as two different Coxeter systems with
different ranks (see [MR07], for example). For this reason, we focus our attention on the pair (W,S)
rather than on the group W .
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with si ∈ S. We say that (s1, . . . , sk) is an expression of w of length k. The length l(w) of

an element (not an expression) w ∈ W , is defined as the minimal k such that w has an

expression of length k. A reduced expression of w is an expression of w of length l(w). For

a simple reflection s ∈ S, the numbers l(sw) and l(ws) are either l(w) + 1 or l(w)− 1.

The left descent set L(w) of w is defined as the simple reflections s ∈ S such that

l(sw) < l(w). Similarly, the right descent set of w is R(w) := {s ∈ S | l(ws) < l(w)}.

One can prove that W is finite if and only if there exist w0 ∈ W such that R(w0) = S.

Such an element (if it exists) is unique and satisfies l(w) < l(w0) for all w ̸= w0 ∈ W .

This important element w0 is called the longest element of W and it also satisfies (and

is determined by) L(w0) = S.

Let u,w ∈ W and let (s1, . . . , sk) be a reduced expression of w. We write u ≤ w

if there exists a reduced expression (si1 , . . . , sil) of u such that 1 ≤ i1 < . . . < il ≤ k.

This gives a partial order on W called the Bruhat order. For x, y ∈ W we define the

Bruhat interval [x, y] as the set of w ∈ W such that x ≤ w ≤ y.

For J ⊂ S, the parabolic subgroupWJ ofW is the subgroup generated by J . The pair

(WJ , J) is a Coxeter system. Let I ⊂ S, it is not hard to check that WJ ∩WI = WJ∩I

and ⟨WJ ∪WI⟩ = WJ∪I . We say that WJ is a maximal parabolic subgroup of W , if

|J | = |S| − 1. Each left coset wWJ of the (not necessarily maximal) parabolic subgroup

WJ has a unique representative of minimal length, and the set of all such minimal coset

representatives is denoted by W J . Similarly, we denote by JW the set of minimal coset

representatives with respect to the parabolic WJ on the left. If WJ is finite, each left

and right coset has a unique representative of maximal length.

For each J ⊂ S there is an important decomposition of W . Every w ∈ W has

a unique factorization w = wJ · wJ such that wJ ∈ W J and wJ ∈ WJ . Also, for this

factorization, l(w) = l(wJ) + l(wJ). Similarly, for each u ∈ W there exists unique

uJ ∈ WJ , Ju ∈ JW such that u = uJ · Ju, and l(u) = l(uJ) + l(Ju) also holds. Fur-

thermore, u ≤ w implies both uJ ≤ wJ and Ju ≤ Jw.
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There is a way to encode the presentation of (W,S) with a labeled graph. Its vertex

set is S and the vertices s and t are joined with an edge if mst > 2. The edges are

labeled by mst, if mst > 3. Thus, mst = 2 means that s, t are not connected by an edge,

and mst = 3 implies that there is an unlabeled edge joining s and t. This labeled graph

is called the Coxeter graph.

1.2 Root systems and affine Weyl groups

The main references for the material covered in this section are [Bou02], [Hum90].

Let Φ be an irreducible reduced (crystallographic) root system in a (real) Euclidean

space V , equipped whit a positive definite symmetric bilinear form (−,−). Let Φ+ ⊂ Φ

be the positive roots and ∆ = {α1, . . . , αn} ⊂ Φ+ the simple roots. The set ∆ is a

basis for the vector space V . The rank of Φ is |∆| = n. Given α ∈ Φ, Let Hα be the

hyperplane of V orthogonal to α. The reflection sα on V whose fixed hyperplane is

Hα, is given by the formula

sα(λ) = λ− 2
(λ, α)

(α, α)
α.

Let O(V ) be the orthogonal group of V and let

Sf = {sα | α ∈ ∆}.

The subgroup Wf of O(V ) generated by Sf is finite. The finite reflection group Wf is

called the Weyl group attached to Φ. To emphasize its finitude, we may call it the finite

Weyl group. The pair (Wf , Sf ) is a Coxeter system. For αi ∈ ∆ we write si instead of

sαi
. Every root α ∈ Φ has a corresponding coroot and it is defined by α∨ = 2α/(α, α)2.

2Sometimes it is easier to define α∨ in the dual space V ∗ of V , by α∨(λ) = 2(α, λ)/(α, α). Identi-
fying V with V ∗ gives the equivalence between these two definitions.
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The set of all the coroots is denoted by Φ∨, and the simple coroots by ∆∨, which consists

of the α∨ with α ∈ ∆. Note that (Φ∨)∨ = Φ. The set Φ∨ is a root system itself with

simple roots ∆∨.

Removing all the (finite) hyperplanes Hα from V , with α ∈ Φ, leaves an open set

whose |Wf | connected components are called Weyl chambers. We denote by C+ the

dominant Weyl chamber which consists of the λ ∈ V such that (λ, α) > 0 for all α ∈ ∆.

This chamber is also called the dominant cone. The closure of the dominant cone will

still be denoted by C+. It will be explicitly stated whenever we use this notation.

A similar construction can be done using affine reflections. V has an underlying

affine space, which we still denote by V as no confusion is possible. For α ∈ Φ and

k ∈ Z, let Hα,k be the affine hyperplane consisting of those λ ∈ V such that (λ, α) = k.

The affine reflection sα,k whose fixed hyperplane is Hα,k, is given by the formula

sα,k(λ) = λ− ((λ, α)− k)α∨.

Consider the affine group Aff(V ), which is the semidirect product of GL(V ) and the

group of translations by elements of V . The subgroup W of Aff(V ) generated by all the

sα,k with α ∈ Φ and k ∈ Z is called the affine Weyl group attached to Φ. It is clear that

Wf is the subgroup of W generated by the sα := sα,0. Although some authors write Wa

or Waff instead of W , as we will always write Wf for the finite Weyl group, there should

be no confusion.

The root lattice L is the subgroup of V generated by Φ, that is, L = ZΦ. Similarly,

the coroot lattice is L∨ = ZΦ∨. Since Wf normalizes L∨, one way to understand the

affine Weyl group is as a semidirect product W = L∨ ⋊Wf . The fundamental weights

are defined to be the dual basis of the simple coroot basis, that is, the fundamental

weight ϖi is determined by the equations (ϖi, α
∨
j ) = δij , where αj ∈ ∆ and δij is the

Kronecker delta. One can check that the R≥0-span of the fundamental weights is the

12



closure of the dominant cone. Likewise, the fundamental coweights ϖ∨
i are defined by

the formulas: (ϖ∨
i , αj) = δij (they are the fundamental weights of Φ∨). Define ρ as the

sum of the fundamental weights, and ρ∨ as the sum of the fundamental coweights. The

weight lattice Λ is the Z-span of the fundamental weights, and the coweight lattice Λ∨ is

the Z-span of the fundamental coweights. The elements of Λ and Λ∨ are called weights

and coweights, respectively. The sets obtained by taking the non-negative integer span,

instead of the whole Z-span, are called the dominant weights Λ+ and the dominant

coweights (Λ∨)+. Note that Wf also normalizes Λ∨, and we can form their semidirect

product We which we call extended affine Weyl group. The group We contains W as a

normal subgroup of finite index and We/W is isomorphic to Λ∨/L∨. In general, We is

not a Coxeter group, but one can still define the length l(w) of w ∈ We by counting the

hyperplanes separating Aid and wAid.

For λ, µ ∈ V , write µ ≤ λ if λ− µ can be written as a Z≥0-linear combination of

∆. This is called the dominance order. There exists a unique maximal root with respect

to the dominance order, called the highest root which we denote by α̃ ∈ Φ.

Remove all the hyperplanes Hα,k from V . The connected components A of the

resulting set are called alcoves. Fix an alcove (it does not matter the choice) Aid and call

it the fundamental alcove. The affine Weyl group W acts simply transitively on A so we

can identify each element w of W with its respective alcove w · Aid. It is also worth

noticing that if A = {A | A ∈ A}, then W also acts simply transitively on A. For the

rest of this thesis, our choice of fundamental alcove is

Aid := {λ ∈ V | −1 < (λ, α) < 0 ∀α ∈ Φ+}.

One can prove that w0Aid lies in the dominant cone, where w0 is the longest element of

Wf . The walls of Aid are the hyperplanes Hα, with α ∈ ∆, together with Hα̃,−1 and the

walls of an alcove A = wAid ∈ A, with w ∈ W (recall that each alcove is of this form)
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are the image of those hyperplanes under w. Let

S = {sα | α ∈ ∆} ∪ {sα̃,−1},

then (W,S) is a Coxeter system. The extra generator sα̃,−1 will be denoted by s0 so that

if (Wf , Sf ) has rank n, then S = Sf ∪ {s0} = {s0, s1, . . . , sn} and therefore (W,S) has

rank n+ 1.

Recall that we started with an irreducible (reduced, crystallographic) root system.

Those types of root systems can be classified, and belong to a finite collection of fam-

ilies. These families are named with a letter and a natural number. If a root system

belongs to one of these families, for example A2, we say that it is of type A2. Every

reducible root system is the direct sum of root systems belonging to these families. This

classification agrees with the classification of finite crystallographic Coxeter groups,

hence it can be stated in terms of the Coxeter graphs. These are called the Dynkin

diagrams. When we consider the corresponding affine Weyl group, as it still is a Cox-

eter group with one extra generator s0, we can form its Coxeter graph by adding an

extra vertex. These are called completed Dynkin diagrams, which classify the affine Weyl

groups. The families in the affine classification are denoted by adding a ˜ on top of the

finite one, for example, there is an affine Weyl group of type Ã2.

Let n ∈ N. One of the most important families in the finite (non-affine) classifica-

tion, and of particular interest to us, is the family of type An. The Dynkin diagram

corresponding to this type is

Thus, if a Coxeter system is of this type, it has generating set Sf = {s1, . . . , sn} and
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relations

s2i = id, sisi±1si = si±1sisi±1, sisj = sjsi if |i− j| > 1.

Let Φ be the root system of type An and let Wf be the corresponding finite Weyl

group with simple reflections Sf . We also say that the Coxeter system (Wf , Sf ) has

type An. As a group, Wf is isomorphic to the symmetric group Sn+1, and as a

Weyl group, it is self-dual, that is, α∨ = α for every root α. This means that, in

this type, the distinction between roots and coroots, as well as weights and coweights,

is non-existent. The ambient space V spanned by the simple roots ∆, is the hy-

perplane of Rn+1 of vectors whose coordinate sum is zero. Let ε1, . . . , εn+1 be the

canonical basis of Rn+1. The simple roots αi are εi − εi+1 with 1 ≤ i ≤ n. The pos-

itive roots are of the form εi − εj ∈ Φ+, with 1 ≤ i < j ≤ n+ 1. The highest root is

α̃ = ε1 − εn+1 = α1 + · · ·+ αn. The Cartan matrix is the matrix whose jth column is

the coordinate vector of αj in the fundamental weight basis. This n × n matrix is, in

this case, 

2 −1 0 · · · 0

−1 2 −1
...

0 −1 2
. . . 0

...
. . . . . . −1

0 · · · 0 −1 2


It is known that the inverse of the Cartan matrix has positive entries. Let W be the cor-

responding affine Weyl group and s0 the extra generator. As before, put S = {s0} ∪ Sf .

The Coxeter system (W,S) has type Ãn. If n ≥ 2, the corresponding completed Dynkin

diagram is
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s0

s1 s2 sn−1 sn

We have labeled and colored its vertices according to S, for emphasis. The completed

Dynkin diagram of Ã1 is

∞

s0 s1

1.3 The elements θ(λ) and the group Ω

The purpose of this section is to explain some not so well-known facts about affine

Weyl groups.

For the rest of this section, fix an irreducible root system Φ of rank n, let Wf be the

finite Weyl group, and W the affine Weyl group, as in last section.

The subgroup of We of length 0 elements is denoted by Ω. This is the same as

the subgroup consisting of the σ ∈ We such that σAid = Aid. Thus, conjugation by Ω

permutes the simple reflections3. We define Wσ := σWfσ
−1, which is isomorphic to

Wf . Let sσ := σs0σ
−1, so that Wσ is the maximal (finite) parabolic subgroup of W ,

generated by S \ {sσ}. Other equivalent realization is as a quotient (see [LPP21]4)

Λ∨/L∨ ∼= Ω

Now we will define a specific system of representatives of Λ∨/L∨. Write the highest

root as a combination of simple roots:

α̃ = η1α1 + · · ·+ ηnαn.

3In this way, Ω can be sen as a group of automorphisms of the completed Dynkin diagram.
4As one can check from their definitions, they are working with the dual root system so the result

has been translated to our conventions.
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One has that ηi ∈ N. For each maximal (finite) parabolic subgroup of W , consider its

generating set S \ {si}. It is not hard to check that the intersection of the corresponding

reflecting hyperplanes is vi = −ϖ∨
i /ηi, for i ̸= 0, and v0 = O. The set {O,−ϖ∨

i /ηi} is

precisely the set of vertices of the fundamental alcove Aid. A fundamental coweight ϖ∨
i

is called minuscule if (ϖ∨
i , α̃) = 1. This is equivalent to saying that ηi = 1. Let M ⊂ In

be the index set of the minuscule fundamental coweights. Both {O,−ϖ∨
i | i ∈ M} and

{O,ϖ∨
i | i ∈ M} are complete systems of representatives of Λ∨/L∨.

It is known that for every σ ∈ Ω \ {id}, −σ(O) is a minuscule fundamental coweight.

Furthermore, σ 7→ σ(O) is a bijection from Ω to the representatives {O,−ϖ∨
i | i ∈ M}

of Λ∨/L∨ (see [Bou02, Prop VI.2.3.6]). We will use this identification and put σ instead

of σ(O), by abuse of notation.

Let λ be a dominant coweight. We define θ(λ) ∈ W as the only element in the affine

Weyl group such that θ(λ)Aid = w0Aid + λ. These special elements can equivalently be

described as the maximal length coset representatives of

⊔
σ∈Ω

Wf\W/Wσ.

An important property of θ(λ) is that it is maximal in its double coset, in the following

sense. Let σ ∈ Ω such that λ ∈ σ + L∨, under the identification we just described. Then

θ(λ) is the maximal element of its double coset Wf θ(λ)Wσ.

Finally, let λ ∈ Λ∨. It is easy to check that W · λ = λ+ L∨. If A is any alcove

then A+ λ is also an alcove, as one can easily see (we already used this in the def-

inition of θ(λ)). A direct computation shows that if λ = m1ϖ
∨
1 + · · ·+mnϖ

∨
n , then

λ− si(λ) = miα
∨
i , where si is a simple reflection with i > 0.
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2. The baby example, type Ã2

The vast majority of the results presented in this thesis, arose from furiously ob-

serving the situation occurring in type Ã2. In this chapter, we will illustrate this case

-in a non-rigorous way- so that the generalizations in the upcoming chapters become

more transparent. This particular case is interesting since it is small enough to be easy

to handle, but large enough so that one can actually visualize what is going on. In type

Ã1 the geometric formula is extremely easy to prove, but provides little insight.

Let Φ be the root system of type Ã2, and let Wf , W be the finite and affine Weyl

groups attached to Φ. Recall that this type is self-dual, i.e. Φ = Φ∨. We identify the

groupW with its alcoves, which are equilateral triangles. Pick a color for each generator

s0, s1, s2 of W , for example, blue, red and green, respectively. Let A = wAid be any

alcove, with w ∈ W . Note that each alcove having a common edge with A is of the

form wsiAid. Color that edge of A according to the simple reflection si. By doing this

to all the edges of all the alcoves, one gets what is called the Coxeter complex of W . Put

(a, b) = aϖ1 + bϖ2 ∈ Λ+ (a, b ∈ Z≥0). In the following figure, we illustrate the Coxeter

complex together with some key objects. The triangle with the big black dot is the

identity triangle, its upper vertex O is the origin of the ambient space, the black arrows

are the simple roots and the pink arrows are the fundamental weights. The triangle

with the orange dot corresponds to the longest element w0 = θ(0, 0) of Wf , and the

triangles with the turquoise dots correspond to all the θ(a, b) (for (a, b) ̸= (0, 0)) that fit

in the figure. The special elements θ were defined in Section 1.3, but in this case, θ(a, b)

is the triangle “pointing down” with lower vertex aϖ1 + bϖ2.
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Figure 2.1: Coxeter complex of W

The subgroup Wf of W , generated by {s1, s2}, is isomorphic to the symmetric

group S3. The longest element w0 of Wf has the reduced expressions

w0 = s1s2s1 = s2s1s2.

The alcoves corresponding to Wf are

Figure 2.2: Alcoves of Wf
∼= S3

Write ≤ θ(a, b) = [id, θ(a, b)]. Figure 2.3 illustrates the set ≤ θ(a, b). The yellow
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dots, from bottom to top, correspond to the elements θ(3, 0) and θ(4, 1) of W . The

light grey area is the set ≤ θ(3, 0) and the darker area -together with the light grey area-

corresponds to ≤ θ(4, 1).

The following general construction for the set ≤ θ(a, b)1 is proven in [LP20]. The

set ≤ θ(a, 0) (resp. ≤ θ(0, b)) is the “equilateral triangle” (with zigzag sides instead of

straight lines) whose center is the origin O, its three medians are the three reflecting

hyperplanes passing through O and it is the minimal triangle containing θ(a, 0) (resp.

θ(0, b)) that also satisfies these two properties. The set ≤ θ(a+ 1, b+ 1) is obtained

from ≤ θ(a, b) by adding the corresponding surrounding hexagons.

Figure 2.3: Alcoves of ≤ θ(4, 1)

For instance, ≤ θ(4, 1) is the union of ≤ θ(3, 0), the light grey area, together with

all the hexagons surrounding it, which are the ones painted in dark grey. These are the

1As we said, we are identifying W with its alcoves so by the set ≤ θ(a, b) we actually mean the
(topological) closure of the alcoves corresponding to ≤ θ(a, b).
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blue hexagons having a common blue edge with ≤ θ(3, 0).

Now, for J ⊂ I2, and λ = (a, b) ∈ Λ+, we will compute the volumes VJ(λ) = V A2
J (λ)

geometrically (for a rigorous computation, see Chapter 4). By definition,

V∅(λ) = 1.

For J = {1}, V{1}(λ) is just the 1-dimensional volume of Conv(W{1} · λ) which is

∥λ− s1 · λ∥ = ∥aα1∥. The case J = {2} is analogous. We have

V{1}(λ) = a
√
2, V{2}(λ) = b

√
2.

Finally, we compute the (2-dimensional) volume V{1,2}(λ). By definition, this is the

volume of the convex hull of Wf · λ, which is an hexagon (that may be degenerated if

at least one of a, b are zero). By drawing lines from O to each w · λ with w ∈ Wf , we

compute this volume as the area of 6 triangles (some of them will be degenerated if the

hexagon is), three of which have base V{1}(λ). The height of these triangles is easy to

determine by noticing that ϖ2 must be orthogonal to the line containing W{1} · λ. The

remaining 3 triangles all have base V{2}(λ) and the height can be computed similarly.

We get

V{1,2}(λ) =

√
3

2

(
a2 + b2 + 4ab

)
.

In [LP20], by using the general construction of the set ≤ θ(λ) explained above, the

authors were able to show that

| ≤ θ(λ)| = 3a2 + 3b2 + 12ab+ 9a+ 9b+ 6. (2.1)

It follows that the Geometric Formula (1) is satisfied with ϑ∅ = 6, ϑ{1} = ϑ{2} = 9
√
2/2

and ϑ{1,2} = 2
√
3.
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Now let us look at this situation from another angle. Let X be the closure of

the alcoves corresponding to ≤ θ(λ). Note that the hexagon P 2 = Conv(Wf · λ) is

completely contained in X . We can construct X starting from P 2. For each edge E

of P 2 take the infinite rectangle with base E, in the opposite direction of P 2. Let P 1

be the intersection of these rectangles with X and let P 0 be what is left of X . We

have just constructed a partition2 X = P 0 ⊔ P 1 ⊔ P 2. Figure 2.4 shows this partition

for ≤ θ(4, 1). The big turquoise hexagon is P 2, P 1 is the orange region, and P 0 is

the union of the magenta triangles. The yellow big dot is λ = (4, 1) and the magenta

triangle containing the small yellow dot is θ(4, 1).

Figure 2.4: Partition of ≤ θ(4, 1)

Let Vol(Aid) be the 2-dimensional volume of the fundamental alcove (or any alcove).

2Actually, P 1 still intersects the boundary of P 2 but this is not important as the intersection has
volume zero. This can be easily fixed by removing the base E of the rectangles in the definition of P 1.
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It follows that

Vol(Aid) | ≤ θ(λ)| = Vol(P 0) + Vol(P 1) + Vol(P 2).

In type Ã2 one can easily check that Vol(Aid) =
√
3/6. Hence,

Vol(P 0)

Vol(Aid)
= 6.

Note that Vol(P 2) = V{1,2}(λ), so that

Vol(P 2)

Vol(Aid)
= 3a2 + 3b2 + 12ab.

Looking at equation (2.1) we notice that, for i = 0, 2, Vol(P i)/Vol(Aid) is the ho-

mogeneous part of degree i of the polynomial | ≤ θ(λ)|. Therefore, it must be that

Vol(P 1)/Vol(Aid) is the homogeneous part of degree 1, so that the number of triangles

(including fractions of triangles) contained in each color, in figure 2.4, is the corre-

sponding homogeneous part of the polynomial | ≤ θ(λ)|.

Observe that P 1 still contains a lot of information about | ≤ θ(λ)|. For instance,

from figure 2.4 one can guess that Vol(P 1)/Vol(Aid) is a linear combination of V{1}(λ)

and V{2}(λ), in fact,

Vol(P 1)

Vol(Aid)
=

9
√
2

2

(
V{1}(λ) + V{2}(λ)

)
.

This suggests another way to prove the geometric formula...
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Part II

The general case
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3. Geometric constructions

In this chapter we will generalize and study the geometric constructions shown in

Chapter 2 of the Bruhat interval ≤ θ(λ) = [id, θ(λ)] for a dominant coweight λ. We will

go from full generality, to the particular case of type Ã3.

Let Φ be the an irreducible root system of rank n ∈ N, let Wf be the corresponding

Weyl group and W the affine Weyl group. Let V be the Euclidean space spanned by Φ.

For a subset X ⊂ W , let A(X) be the closure (in V ) of the alcoves corresponding to X ,

that is,

A(X) =
⊔
x∈X

xAid.

Although the union is not disjoint, the intersection of the alcoves occurs in their walls

which is a set of (n-dimensional) volume zero. Whenever the objects of any union are

either disjoint or intersect each other in their boundaries, by abuse of notation we will

write it as a disjoint union regardless. The reason for this, is that we only care about

the volume of the involved objects (see Chapter 5).

By geometric constructions we mean the two constructions given for the set

A(≤ θ(a, b)) (in type Ã2) in Chapter 2. One is the partition {P 0, P 1, P 2}, shown in

figure 2.4, and the other one is the general construction given in [LP20]. We will call

the former the Geometric Partition, and the latter the Polytope Construction. The polytope

construction can be generalized in a bigger picture and is mostly algebraic, whereas the

geometric partition is purely geometric and depends completely on the polytope con-

struction.
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3.1 Polytope construction

Consider the set A(Wf ) = A(≤ θ(0)) consisting of the closure of |Wf | alcoves inter-

secting in the common point O, the origin of V . Note that every alcove whose closure

contains this point, is contained in A(Wf ). This set defines a polytope1 which we call

the Wf -polytope and denote by PWf
.

Remark 3.1. By PWf
we mean both the polytope, as a geometric object, and the set

A(Wf ) defined by this polytope on V . With this in mind, for t ∈ V , the set PWf
+ t ⊂ V

is a Wf -polytope whose center is t, and if t ∈ Λ∨ then PWf
is composed by a set of

alcoves (since the translation by a coweight of an alcove is still an alcove). Also, a nice

description for the Wf -polytope centered at the origin (see [LP12]) is

PWf
= {v ∈ V | −1 ≤ (v, α) ≤ 1, for all α ∈ Φ+}. (3.1)

Using this formula, it is not difficult to check that

sα,k
(
PWf

+ t
)
= PWf

+ sα,k(t).

This implies that the alcoves corresponding to each coset wWf define a Wf -polytope

whose center is the image of O under w, in formulae, A(wWf ) = PWf
+ w(O). It is

readily seen that PWf
tessellates V , as

V = A(W ) =
⊔

w∈W f

A(wWf ) =
⊔

w∈W f

PWf
+ w(O), (3.2)

where W f is the minimal length coset representatives of W/Wf (it does not matter the

choice of representatives).

1In the literature, convex polytopes defined by the closure of a set of alcoves are called alcoved
polytopes.
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Example 3.2. Consider PWf
centered at O. The alcove corresponding to θ(0) = w0

is contained in this this polytope. In type Ãn, the vertices of this alcove are precisely

O together with the fundamental weights ϖi. Recall that this type is self-dual and

that the finite Weyl group (of type An) is isomorphic to the symmetric group Sn+1. The

following figure contains the S3-polytope (also shown in figure 2.2) and the S4-polytope.

The blue arrows are the fundamental weights and the red arrows the simple roots. The

(very small) pink dot is the origin.

S3-polytope S4-polytope

Figure 3.1: Wf -polytope for types Ã2 and Ã3

There are distinct ways to tessellate V with PWf
without slicing any alcove. Recall

the group Ω of length 0 elements of the extended affine Weyl group We. The clo-

sure of the alcoves contained in A(Wσ) intersect each other in a common point. The

identification discussed in Section 1.3, allows us to identify σ with that point. Thus,

A(Wσ) = PWf
+ σ is another Wf -polytope and so is every coset wWσ. Thus, every

σ ∈ Ω gives an alcovic tessellation of V

V =
⊔

w∈Wσ

PWf
+ w(σ), (3.3)
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where W σ is the minimal length coset representatives of W/Wσ. The identity element

in Ω, gives the tessellation described in (3.2).

In type Ã2, the Wf -polytope is an hexagon (see example 3.2) and the group Ω is

isomorphic to Z/3Z, so there are exactly three σ-tessellations of V . These are the blue,

red and green tessellations by hexagons shown in figure 2.1, corresponding to O,−ϖ1

and −ϖ2, respectively. The following lemma should further clarify the geometric role

played by the group Ω.

Lemma 3.3. For λ ∈ (Λ∨)+, let σ ∈ Ω be such that λ ∈ σ + L∨. Then, in the σ-tessellation

of V , the Wf -polytope containing the alcove of θ(λ), has center λ.

Proof. Write λ = σ + x, and denote by tx ∈ W the translation by x. Note that the

closure of the alcove corresponding to t−1
x θ(λ), is

t−1
x

(
w0Aid + λ

)
=
(
w0Aid + λ

)
− x = w0Aid + σ,

which obviously has σ as one of its vertices. Thus, we have that t−1
x θ(λ) ∈ Wσ, so that

txWσ = θ(λ)Wσ. Equivalently, the Wf -polytope corresponding to θ(λ)Wσ is

A(θ(λ)Wσ) = A(txWσ)

= txA(Wσ)

=
(
PWf

+ σ
)
+ x

= PWf
+ λ.

In the notation of equation (3.3), θ(λ)(σ) = λ.

For λ ∈ (Λ∨)+, define Conv(λ) as the convex hull of the orbit Wf · λ. The following

theorem generalizes the polytope construction shown in Chapter 2 for type Ã2.
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Theorem 3.4 (Polytope construction theorem). Let λ be a dominant coweight. The set

A(≤ θ(λ)) is tessellated by PWf
. Furthermore, let Cλ be the set consisting of the centers of

the Wf -polytopes involved in the tessellation. Then Cλ = Conv(λ) ∩ (λ+ L∨).

Remark 3.5. This result is implicit in the literature, although we did not find it explic-

itly. It is the first emergence of the relationship between the alcovic geometry and the

Euclidean geometry.

It is important to note that, as a consequence of the theorem, all of theWf -polytopes

that compose A(≤ θ(λ)), must have their centers lying in Conv(λ). Also, we can write

A(≤ θ(λ)) =
⊔
t∈Cλ

PWf
+ t.

In fact, the formula Schützer provided in [Sch12] is for |Cλ|. From this equation, it

follows that

| ≤ θ(λ)| = Vol(A(≤ θ(λ)))

Vol(Aid)
= |Wf ||Cλ|,

since the volume of PWf
is |Wf |Vol(Aid).

For type Ã2, the tessellation part is readily seen in figure 2.3 since, in this figure,

A(≤ θ(a, b)) is completely composed by “blue” Wf -polytopes (the color blue corre-

sponds to the identity in Ω). The rest of the statement can be visualized in figure

2.4.

Proof of Theorem 3.4. Let σ ∈ Ω be such that λ ∈ σ + L∨. Let w0, w
σ
0 be the longest

elements of the maximal parabolic subgroups Wf ,Wσ of W , respectively.

Claim 3.4.1. There exists x ∈ W such that θ(λ) = w0x. Similarly, there exists y ∈ W such

that θ(λ) = ywσ
0 .

Proof of Claim 3.4.1. There is a unique factorization θ(λ) = wx, such that w ∈ Wf ,

x ∈ fW := InW and l(θ(λ)) = l(w) + l(x). It suffices to show that w = w0, or equiva-
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lently, that the left descent set of w is Sf . Let s ∈ Sf and note that sw ∈ Wf so that the

unique factorization sθ(λ) = swx = (sw)x implies l(sθ(λ)) = l(sw) + l(x). Since θ(λ)

is maximal in its coset Wf θ(λ), we have that l(sθ(λ)) < l(θ(λ)). It follows l(sx) < l(x)

and thus x = w0. Similarly, decompose θ(λ) in W σ ·Wσ and use the maximality of

θ(λ) in θ(λ)Wσ to get the desired claim. ■

Let x, y be the elements of W in the claim. Note that ≤ θ(λ) = (≤ w0) · (≤ x).

Indeed ⊃ is clear, and for the inclusion ⊂ let u ≤ θ(λ). Consider the factorization

u = uf · fu. It is clear that uf ≤ w0, and that fu ≤ fθ(λ) since this projection is

order-preserving. In the proof of the claim we saw that fθ(λ) = x. Analogously,

≤ θ(λ) = (≤ y) · (≤ wσ
0 ). Therefore, the set ≤ θ(λ) is Wf -invariant on the left and

Wσ-invariant on the right, as ≤ w0 = Wf and ≤ wσ
0 = Wσ.

The following beautiful fact is in [LPP21]. For every σ′ ∈ Ω, the map θ defines a

bijection

θ : (σ′ + L∨) ∩ (Λ∨)+
∼−→ Wf\W/Wσ′ ,

which intertwines the dominance order2 on the left with the Bruhat order on the right.

Moreover, its image is the set of maximal length representatives of Wf\W/Wσ′ .

For brevity, put Xλ = {µ ∈ (Λ∨)+ | µ ≤ λ}. The bijection shows that θ(µ) ≤ θ(λ)

if and only if µ ∈ Xλ. By the invariance of ≤ θ(λ) mentioned above, we have that

Wf θ(µ)Wσ is contained in the set ≤ θ(λ), for every µ ∈ Xλ. Conversely, let u ≤ θ(λ).

The maximal element of Wf uWσ is θ(µ) for some µ. Again, the double coset Wf uWσ

is contained in ≤ θ(λ), so that θ(µ) ≤ θ(λ) and thus µ ∈ Xλ. It follows that

≤ θ(λ) =
⊔

µ∈Xλ

Wfθ(µ)Wσ

= Wf ·

( ⊔
µ∈Xλ

θ(µ)Wσ

)
.

2Here, the dominance order is taken with the coroot lattice instead of the root lattice.
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Looking at the corresponding alcoves and using Lemma 3.3, we get

A(≤ θ(λ)) = Wf · A

( ⊔
µ∈Xλ

θ(µ)Wσ

)

= Wf ·

( ⊔
µ∈Xλ

PWf
+ µ

)

=
⊔

µ∈Wf ·Xλ

PWf
+ µ,

which establishes the tessellation part of the theorem.

Now let C+ be the closure of the dominant Weyl chamber. Note that Conv(λ)∩C+

consists precisely of the elements λ− (x1α
∨
1 + · · ·+ xnα

∨
n) ∈ C+ with all the xi ≥ 0. It

follows that Xλ = Conv(λ) ∩ (λ+ L∨) ∩ C+. Since Conv(λ), λ+ L∨ are Wf -invariant

and V = Wf · C+, we obtain

Cλ := Wf ·Xλ = Conv(λ) ∩ (λ+ L∨),

where the action is point-wise.

3.2 Geometric partition

In this section, we will do some general work concerning the polytope Conv(λ) and

then we will illustrate the geometric partition in type Ã3. The reason for this, is that

some recent work shows that Conv(λ) ⊂ A(≤ θ(λ)) does not hold in general. It is true

in type Ã2 (see figure 2.4) and we strongly believed this was a general fact -and easy to

prove, using the polytope construction theorem 3.4-. The inclusion is still true in type

Ã3 and the geometric partition can be replied whenever Conv(λ) ⊂ A(≤ θ(λ)) (but

some minor details will need to be addressed).

For the moment, Φ still is any irreducible root system of rank n. The set Conv(λ)
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defines a polytope, whose vertex set is Wf · λ. In order for this polytope to be non-

degenerated, it must be that λ is not on a wall of the dominant chamber C+. That

is, if λ = m1ϖ
∨
1 + · · ·mnϖ

∨
n = (m1, . . . ,mn), with mi ∈ Z≥0, then it is necessary (and

sufficient) that mi > 0 for all i. When this is the case, we say that λ is generic. This

implies that for any w ∈ Wf , wλ lies in the dominant cone if and only if w = id.

For example, in type Ã2, Conv(4, 1) is an hexagon -and so is every Conv(a, b) with

a, b > 0-, but Conv(3, 0) is a triangle (see figure 2.3 and draw the corresponding convex

hull).

Let λ be a generic dominant coweight. We will describe the faces -of any dimension-

of this polytope. Let J ⊂ In such that |J | = n− 1, and consider the hyperplane HJ of

V , generated by {αj | j ∈ J}. Let t ∈ In \ J and define the closed half-space

H−
J := {v ∈ V | (v,ϖt) ≤ 0}.

It is not hard to prove that

Conv(λ) =
⋂
J⊂In

|J |=n−1

Wf ·
(
λ+H−

J

)
,

where the action is point-wise. For 0 ≤ i ≤ n, let Fi(λ) be the collection of i-faces of

Conv(λ). For J ⊂ In, define FJ(λ) = Conv(WJ · λ) (WJ is a subgroup of Wf since

0 /∈ J ) and let i = |J |. The equation above implies that FJ(λ) ∈ Fi(λ) is a face with

vertices WJ · λ. In the dominant cone,

FJ(λ)
⋂

C+ =
(
λ− ⟨αj | j ∈ J⟩≥0

)⋂
C+, (3.4)

where ⟨ · ⟩≥0 means the R≥0-span (see [Hal15]). We say that a face F of Conv(λ) is a

J -face, if F ∈ Wf · FJ(λ). All the J-faces are i-faces, but the converse is not true in
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general. It is important to keep in mind that the face FJ(λ) is the J-face that touches

the vertex λ, for example, F∅(λ) = {λ}. One can prove that all the i-faces that contain

the vertex λ are FK(λ) for some K ⊂ In with |K| = i. Similarly, for an i-face F , there

exists w ∈ Wf such that λ is a vertex of wF . Hence,

Fi(λ) = {Wf · FJ(λ) | |J | = i}.

It is natural to ask oneself about the stabilizer of FJ(λ) as a set. By definition of this

J-face, it is clear that

StabWf
(FJ(λ)) = WJ , (3.5)

since wConv(WJ · λ) = Conv(wWJ · λ). In particular, Conv(λ) is Wf -invariant (on the

left). If λ is not generic, only ⊃ holds in general.

Regarding the intersection of faces of Conv(λ), the common vertices of FJ(λ) and

FK(λ) are WJ∩K · λ. Hence, the face obtained from their intersection is

FJ(λ)
⋂

FK(λ) = FJ∩K(λ). (3.6)

To describe the intersection of two arbitrary faces of Conv(λ), it suffices to understand

the face FJ(λ) ∩ wFK(λ)
3 for any w ∈ Wf . This comes from

xFJ(λ)
⋂

yFK(λ) = x
(
FJ(λ)

⋂
x−1yFK(λ)

)
,

with x, y ∈ Wf . A common vertex of FJ(λ) and wFK(λ), if it exists, is of the form

wJλ = wwKλ, with wJ ∈ WJ , wK ∈ WK . Since λ is generic, it follows that w = wJw
−1
K .

3The empty set is considered a face of dimension −1, by convention.
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This assures that FJ(λ) ∩ wFK(λ) ̸= ∅ if and only if w ∈ WJWK . Hence,

FJ(λ)
⋂

wFK(λ) =

xFJ∩K(λ) if w ∈ WJWK

∅ if w /∈ WJWK

(3.7)

for some x ∈ WJ .

Now let us work in type Ã3, which is self-dual. Some general facts concerning this

type can be found at the end of Section 1.2. First, we will establish a geometric relation

between the polytope Conv(λ) and the set A(≤ θ(λ)), which will let us dive into the

geometric partition. Fix a generic dominant weight λ.

Proposition 3.6. In type Ã3, Conv(λ) ⊂ A(≤ θ(λ)) holds. Furthermore, let µ ∈ λ + L.

If the interior of PWf
+ µ intersects some face F (of any dimension) of the polytope Conv(λ),

then µ ∈ F .

This proposition, together with the polytope construction theorem, tells us that

Conv(λ) is covered by the Wf -polytopes with centers in Cλ. Furthermore, let F be an

i-face and define CF
λ := Cλ ∩ F . The proposition can be restated as

F ⊂ ⊔
µ∈CF

λ

PWf
+ µ, (3.8)

for every face F of Conv(λ). We write CJ
λ = CFJ (λ)

λ . Note that if J = I3, by Theo-

rem 3.4 equation (3.8) becomes Conv(λ) ⊂ A(≤ θ(λ)), since FI3(λ) = Conv(λ), so that

CI3
λ = Cλ.

Before going into the proof, let us briefly show some basic properties of CJ
λ . Define

L+
J as the non-negative Z-span of the simple roots αj , with j ∈ J . By equation (3.4),

CJ
λ ∩ C+ =

(
λ− L+

J

)
∩ C+.
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Finally, suppose that there is some w ∈ Wf such that CJ
λ = wCJ

λ . By definition, this

implies that λ ∈ CJ
λ ⊂ FJ(λ) ∩ wFJ(λ). By (3.7), we have that w ∈ WJ . Therefore,

StabWf
(CJ

λ ) = WJ , (3.9)

since the inclusion ⊃ is clear.

Proof of Proposition 3.6. Since λ is generic, we know that the i-faces of Conv(λ) in-

tersecting this chamber are of the form FJ(λ), with J ⊂ I3 and |J | = i. It suffices to

show that

FJ(λ)⊂
⊔
µ∈CJ

λ

PWf
+ µ, (3.10)

for every J ⊂ I3.

The only vertex of Conv(λ) in this chamber is λ. It is clear that this vertex is

covered by PWf
+ λ, and that λ ∈ Cλ. Therefore, equation (3.10) holds for J = ∅. We

will now consider the case |J | = 1.

Claim 3.6.1. We claim that if α is a simple root and µ is a weight, then the segment joining

µ and µ+ α is covered by

(
PWf

+ µ
)⋃(

PWf
+ µ+ α

)
.

Proof of Claim 3.6.1. This segment is Conv(µ, µ+ α). It is a consequence of formula

(3.1) that α/2 and −α/2 belong to PWf
. As PWf

is convex, it follows that

Conv
(
µ, µ+

α

2

)
⊂ PWf

+ µ,

and

Conv
(
µ+

α

2
, µ+ α

)
⊂ PWf

+ µ+ α,
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which proves our claim. ■

Now, the elements of F{i}(λ) are of the form λ− xiαi, with xi ∈ R≥0. Also, the

elements of C{i}
λ = Cλ ∩ F{i}(λ) are of the form λ−miαi, with mi ∈ Z≥0. By the claim

above, we see that the Wf -polytopes corresponding to C{i}
λ cover the edge F{i}(λ),

which establishes (3.10) for |J | = 1.

We will prove (3.10) for |J | = 3. Let µ ∈ (λ+ L) ∩ C+ \ Cλ. Write λ − µ in the

simple root basis: λ− µ = aα1 + bα2 + cα3. Then a, b, c ∈ Z and one of them must

be negative. On the other hand, let νid be the set of vertices of the fundamental alcove

minus the origin. Let νP = Wf · νid. We can think of PWf
as the convex hull of νP . In

this type, νid = {−ϖ1,−ϖ2,−ϖ3} and νP consists of ±ϖi with 1 ≤ i ≤ 3, ϖi − ϖj

with i ̸= j, and ±(ϖ2 −ϖ1 −ϖ3). Use the inverse of the Cartan matrix



3

4

1

2

1

4

1

2
1

1

2

1

4

1

2

3

4


to write the vertices νP of PWf

in the simple root basis. For example, taking the vertex

v = ϖ1 −ϖ2 +ϖ3 ∈ νP gives v = α1/2 + α3/2. Note that

λ− µ− v =

(
a− 1

2

)
α1 + bα2 +

(
c− 1

2

)
α3.

Going through all the cases, shows that for all v ∈ νP , the coordinates of λ− µ− v -in

the simple root basis- can not be all ≥ 0. This tells us that the vertices of PWf
+ µ,

which are νP + µ, do not belong to Conv(λ). We lied a bit, since there is an exception

when v = −ϖ2. The vertex v + µ can lie in the face F{1,3}(λ) (but not in an edge), for

a suitable µ. This comes from the 1 in the inverse of the Cartan matrix. Regardless,
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the interior of PWf
+ µ can not intersect an edge (touching λ) of Conv(λ), since we

already covered them with the Wf -polytopes corresponding to C{i}
λ . Thus, the interior

of PWf
+ µ can not intersect Conv(λ) ∩ C+. By the polytope construction theorem, we

conclude that Conv(λ) ∩ C+ ⊂ A(≤ θ(λ)). This proves (3.10) for J = I3, since ≤ θ(λ)

is Wf -invariant.

Finally, let FJ(λ) be a 2-face. If a Wf -polytope with center µ ∈ (λ+ L) ∩ C+

intersects this face, then µ is either on the face itself or it is in the interior of Conv(λ).

With a similar reasoning as in the case |J | = 3, it is easy to check that the latter does

not occur, as the interior of PWf
+ µ is also contained in the interior of Conv(λ), since

νP + µ is contained in it as well (with the possible exception of the vertex ϖ2 + µ). It

follows that (3.10) holds for |J | = 2.

Using this proposition, we will construct a “partition” P := {P 0(λ), . . . , P 3(λ)} of

A(≤ θ(λ)), which we call the Geometric Partition. The sets in P will not be disjoint, but

their intersection will be a set of zero-volume in V . For J ⊂ I3, let us define

PJ(λ) =
(
FJ(λ) + ⟨ϖi | i /∈ J⟩≥0

)⋂
A(≤ θ(λ)).

By Proposition 3.6, we have that PI3(λ) = Conv(λ). Also, P∅(λ) = θ(λ)Aid, as one

can check. Let H be the subspace of V obtained from translating the affine subspace

generated by FJ(λ), to the origin. Note that every ϖi with i /∈ J is orthogonal to H . In

fact they generate its orthogonal complement, since H is generated by αj with j ∈ J .

Therefore, if FJ(λ) is a face of codimension 1, FJ(λ) + ⟨ϖi | i /∈ J⟩≥0 is a “half infinite

cylinder” starting from its base FJ(λ) and “growing orthogonally away” from Conv(λ).

Using these definitions in type Ã2, the infinite rectangles mentioned in Chapter 2 -in

the construction shown in figure 2.4- are Wf ·
(
F{i}(4, 1) + ⟨ϖj⟩≥0

)
, with i ̸= j.

It is clear that WJ fixes ⟨ϖi | i /∈ J⟩≥0 point-wise. Since WJ is a subgroup of Wf ,

37



its elements are orthogonal transformations of V . By equation (3.5), it follows that, as a

set,

StabWf
(PJ(λ)) = WJ . (3.11)

Again, if λ is not generic, only ⊃ holds.

Let 0 ≤ i ≤ 3. Define

P i(λ) =
⊔
J⊂I3

|J |=i

Wf · PJ(λ).

In this definition, the action is understood point-wise, that is, the elements ofWf · PJ(λ)

are w(x), with w ∈ Wf and x ∈ PJ(λ). As explained in the description of the faces

of Conv(λ), we take the Wf -orbit so we can reach all its faces and not just the ones

intersecting the dominant cone. To see that the union of P 0(λ), . . . , P 3(λ) actually

gives A(≤ θ(λ)), it suffices to check it in the dominant cone. That is,

Lemma 3.7. Let J ⊂ I3 and define YJ(λ) := FJ(λ) + ⟨ϖi | i /∈ J⟩≥0. Then

C+⊂ ⋃
J⊂I3

YJ(λ).

Proof. Define

YJ := ⟨αi | i ∈ J⟩≤0 + ⟨ϖi | i /∈ J⟩≥0 .

We have that

YJ(λ)⊂ YJ + λ and YJ(λ) ∩ C+ = (YJ + λ) ∩ C+.

The inclusion is clear and the equality requires a bit of work, but is not hard to prove.

We will describe YJ for all J . Let M be the Cartan matrix, and Id the 3× 3 identity

matrix. Denote by Xj the jth column of the matrix X . Consider the 3 × 3 matrix MJ

defined by (MJ)j = Mj if j ∈J , and (MJ)j = Idj if j /∈ J . Let BJ = {b1, b2, b3}, where

38



bj = αj , if j ∈ J , and bj = ϖj otherwise. The column (MJ)j is the coordinate vector

of bj in the fundamental weight basis. It is easy to check that MJ is invertible4, so that

BJ = {αj, ϖi | j ∈ J, i /∈ J}

is a basis of V , for every J ⊂ I3. We call this basis the mixed basis corresponding to J .

Let (x, y, z) := xϖ1 + yϖ2 + zϖ3. The matrix M−1
J is the change of basis matrix from

the fundamental weight basis to BJ , so M−1
J determines exactly when (x, y, z) ∈ YJ .

For example,

M−1
{1,2} =

1

3


2 1 0

1 2 0

1 2 3


implies that (x, y, z) ∈ Y{1,2} if and only if 2x+ y ≤ 0, x+2y ≤ 0 and x+2y+3z ≥ 0.

In general,

• J = ∅ : x, y, z ≥ 0.

• J = {1} : x ≤ 0, x+ 2y ≥ 0, z ≥ 0.

• J = {2} : 2x+ y ≥ 0, y ≤ 0, y + 2z ≥0.

• J = {3} : x ≥ 0, 2y + z ≥ 0, z ≤ 0.

• J = {1, 2} : 2x+ y ≤ 0, x+ 2y ≤ 0, x+ 2y + 3z ≥ 0.

• J = {1, 3} : x ≤ 0, x+ 2y + z ≥ 0, z ≤ 0.

• J = {2, 3} : 3x+ 2y + z ≥ 0, 2y + z ≤ 0, y + 2z ≤ 0.

• J = {1, 2, 3} : 3x+ 2y + z ≤ 0, x+ 2y + z ≤ 0, x+ 2y + 3z ≤ 0.

4We have a solid idea for a general proof of this fact (in any type). For the moment, it can be checked
case by case.

39



One can check that this exhausts all of the options for (x, y, z)5. Therefore, V =
⋃
J⊂I3

YJ .

This is the same as V =
⋃
J⊂I3

YJ + λ. It follows

C+ =
⋃
J⊂I3

(YJ + λ) ∩ C+

=
⋃
J⊂I3

(
YJ(λ) ∩ C+

)
.

Using the inequalities presented in the proof above, the following result can be

concluded case by case.

Corollary 3.8. Let J,K ⊂ I3, then

YJ(λ)
⋂

YK(λ) = FJ∩K(λ) + ⟨ϖi | i /∈ J ∪K⟩≥0

Let J,K ⊂ I3. Using the notation of Lemma 3.7, PJ(λ) = YJ(λ) ∩ A(≤ θ(λ)). On

the one hand, Corollary 3.8 tells us that if J ̸= K , then the affine space of V generated

by PJ(λ) ∩ PK(λ) has codimension

3− |J ∩K| − |(J ∪K)c| = |J ∪K| − |J ∩K| ≥ 1.

Thus, the intersection has volume zero in V . In turn, this implies that P i(λ) ∩ P j(λ)

5We did this with the help of SageMath (and professor A. Behn).
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also has volume zero, for i ̸= j. On the other hand, Lemma 3.7 implies

C+
⋂

A(≤ θ(λ)) =

(⋃
J⊂I3

YJ(λ)

)⋂
C+
⋂

A(≤ θ(λ))

=

(⊔
J⊂I3

PJ(λ)

)⋂
C+.

Taking the Wf -orbit, we get

A(≤ θ(λ)) =
3⊔

i=0

P i(λ).

As mentioned before, P 0(λ) is the union of |Wf | = 24 alcoves (which are non-

regular tetrahedra) and P 3(λ) is the permutahedron Conv(λ).

For |J | = 2, FJ(λ) is either a rectangle or a hexagon, and PJ(λ) is a region con-

tained in the “half infinite cylinder” YJ(λ) with base FJ(λ). In fact, it is delimited by

this cylinder (except “on the top”). The set PJ(λ) looks like small spikes growing from

FJ(λ). Thus, P 2(λ) is the union of those spiked regions (under the image of Wf ).

For |J | = 1, YJ(λ) is an infinite triangular prism which has one of its rectangular 2-

faces removed, so it grows infinitely in that direction. The only remaining finite edge of

this prism is the face FJ(λ) of Conv(λ), so the set PJ(λ) resembles a (finite) triangular

prism which has small spikes growing from one of its rectangular faces. Reflecting these

sets under Wf , gives P 1(λ) (it is the union of those).

It is much easier to check that the geometric partition can be done in type Ã2. Let

us briefly see how the geometric partition looks like. Recall figure 2.4, in Chapter 2:

41



This figure illustrates the geometric partition of A(≤ θ(λ)). The turquoise hexagon

is the set F2(λ) = Conv(λ), and the face F∅(λ) is the vertex λ represented by the big

yellow dot. As for the edges F{i}(λ) of Conv(λ), these are the ones touching the big

yellow dot; F{1}(λ) is the left one, and F{2}(λ) the right one.

The set P 2(λ) is the whole hexagon Conv(λ). The triangle with a small yellow dot

is P∅(λ) = θ(λ)Aid, so that P 0(λ) = Wf · P∅(λ) is the union of the |Wf | = 6 magenta

triangles.

The set P{1}(λ) is the larger orange “crown” above the edge F{1}(λ) and P{2}(λ) is

the shorter crown touching the big yellow dot. Hence, P 1(λ) is the orange region and

it is composed by larger and shorter crowns. There are exactly

[
Wf : StabWf

(P{i}(λ))
]
=

Wf

W{i}
= 3

crowns of each type, as we can see in the figure.
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4. On the Volumes V Xn
J

In this chapter, we show some properties of these volumes, and give formulas to

compute them. In the literature, there are some results for V An
J , however most of them

are computed by considering the action of Sn+1 on Rn+1 (see [Pos05] for example),

which is not the ambient space we are considering1.

Let Φ be an irreducible root system of type Xn (of rank n), let λ be a dominant

coweight and J ⊂ In. In the introduction we defined V Xn
J (λ) as the |J |-dimensional

volume of Conv(WJ · λ). Recall that this convex hull is the face FJ(λ) of the polytope

Conv(λ). For J ⊂ In, consider the connected components Jc of J , in the obvious way.

For instance, {1, 2, 4}c = {{1, 2}, {4}}. Here are some basic properties of V Xn
J .

Lemma 4.1. Let λ = (mi)i∈In = m1ϖ
∨
1 + . . .+mnϖ

∨
n be a dominant coweight and let

J ⊂ In. Define λJ := (mj)j∈J =
∑
j∈J

mjϖ
∨
j .

(i) The function V Xn
J only depends on the coordinates of ϖ∨

j , with j ∈ J . That is,

V Xn
J (λ) = V Xn

J (λJ).

(ii) For types X = A,B,C, F , the volume V Xn
J (λ) can be computed as the product of the

volumes corresponding to the connected components of J . That is,

V Xn
J (λ) =

∏
K∈Jc

V Xn
K (λ).

1One can still translate the results to our conventions, but it is not as easy -or satisfying- as it seems.
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Proof.

(i) Note that λ = λJ + λJc , where J c it the complement of J in In. Let w ∈ WJ and

write w = sj1 . . . sjk , for some ji ∈ J . It is easy to see that sjiλJc = λJc , so that

wλ = wλJ + λJc . Hence, WJ · λ = WJ · λJ + λJc . It follows that

Conv(WJ · λ) = Conv(WJ · λJ) + λJc .

(ii) Similar to the equations above, one can check that

Conv(WJ · λ)− λ =
∑
K∈Jc

(Conv(WK · λ)− λ) .

The hypothesis on the types implies that for any i, j, |i− j| > 1 implies that

αi, αj are orthogonal. That is, if i, j ∈ J , two simple roots αi, αj are orthogo-

nal if both i, j do not belong to the same connected component of J2. Thus, the

sets (Conv(WK · λ)− λ) are pairwise orthogonal and their sum can be thought as

a Cartesian product. It follows that

V X
J (λ) = Vol|J |

(
λ+

∑
K∈Jc

(Conv(WK · λ)− λ)

)

= Vol|J |

(∑
K∈Jc

(Conv(WK · λ)− λ)

)

=
∏
K∈Jc

Vol|K| (Conv(WK · λ)− λ)

=
∏
K∈Jc

V Xn
K (λ),

2In other types. this does not hold for some J .
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where Voli denotes the i-dimensional volume.

From now on, we will use the convention that the “weird simple root” is always

denoted by α1. In most types, it is standard to call it αn. Since we do not want to

re-label the corresponding Dynkin diagram, we are forced to put α2 instead of αn−1

and so on, as we will explain. This is not an issue for types F4 and G2. Let us see some

examples.

There are no weird roots in type An, and types E6, E7, E8 are already in the desired

form. In type Bn, n ≥ 2, the standard root system is the following. The ambient space

is V = Rn, with standard basis εni . The roots are ±εni for 1 ≤ i ≤ n, together with

±εni ± εnj for 1 ≤ i < j ≤ n. The simple roots are αn
i = εni − εni+1 for 1 ≤ i < n, and

αn
n = εnn. Note that

1 = (αn
n, α

n
n) ̸= (αn+1

n , αn+1
n ) = 2.

Consider a dominant coweight λn = (mi)i∈In in the fundamental coweight basis of Bn.

If mn ̸= 0, the bad thing about this convention is that V Bn

{n}(λ
n) ̸= V

Bn+1

{n} (λn+1) (we only

care about the nth coordinate, by Lemma 4.1).

To fix this, we put αn
i = εnn−i − εnn−i+1, for 1 < i ≤ n, and αn

1 = εnn, so that

(αn
i , α

n
j ) = (αn+1

i , αn+1
j ),

for all i, j ∈ In.

One consequence is that some Dynkin diagrams are flipped. For example in type

Cn, n ≥ 3, the standard corresponding Dynkin diagram

α1 α2 αn−2 αn−1 αn

becomes
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αnαn−1α3α2α1

Thus, another way to state our convention is that we flip Dykin diagrams of types

Bn, Cn and Dn, while keeping the other ones unchanged3. Using this convention,

Lemma 4.2. Let Φn be a root system of type Xn, αn
i the simple roots, W

n
f the finite Weyl

group, and so on. Let λn = m1(ϖ
∨
1 )

n + · · ·+mn(ϖ
∨
n)

n be a dominant coweight. Then, for

any J ⊂ In,

V Xn
J (λn) = V

Xn+1

J (λn+1).

This formula only makes sense if Xn+1 actually exists. This might not be the case

if X = E.

Proof. For brevity, put On = W n
J · λn. We will construct a function that maps

Conv(On) to Conv(On+1), while preserving the |J |-dimensional volume.

Define Hn
J as the subspace (of the ambient space of Φn) generated by {αn

j | j ∈ J}.

It is easy to see that On ⊂ Hn
J + λn, so that Conv(On) ⊂ Hn

J + λn as well. Consider

the isomorphism

T : Hn
J Hn+1

J

αn
j αn+1

j

By our convention, T is an inner product preserving map. Let wn = snj1 . . . s
n
jk
∈ W n

J .

Note that

T (snjiλ
n − λn) = T (−mji(α

∨
ji
)n)

= −mji(α
∨
ji
)n+1

= sn+1
ji

λn+1 − λn+1.

3A third way to put it, is that we demand that the Dynkin diagrams “grow to the right”.
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It is not difficult to check that T (wnλn − λn) = wn+1λn+1 − λn+1 also holds. This

implies that T (On − λn) = On+1 − λn+1. Denote by tx the translation by x. We have

Hn
J + λn Hn

J Hn+1
J Hn+1

J + λn+1

On On − λn On+1 − λn+1 On+1

t−1
λn T tλn+1

It is easy to check that the above also holds for the corresponding convex hulls and that

the volume is preserved.

As a consequence of this lemma, it is natural to slightly modify the notation from

V Xn
J to V X

J . Furthermore, let m = (mi)i∈N be a sequence of positive integers, then

V X
J (m) = V X

J ((mi)i∈J) is well-defined, for any finite J ⊂ N4, by Lemma 4.1. For exam-

ple volume V A7

{1,2,4} becomes V A
{1,2,4}. Let λ = m1ϖ1 +m2ϖ2 +m4ϖ4 where ϖi are the

fundamental (co)weights of type A4 (or An, for n ≥ 4). Then V A
{1,2,4}(m) is V A

{1,2,4}(λ).

Now we give an inductive formula for V X
In
. Let Φ be of type Xn and λ = (mi)i∈In a

generic dominant coweight.

Lemma 4.3. For J ⊂ In with |J | = n− 1, let t ∈ In \ J and define ϖ∨
J := ϖ∨

t . Then

V X
In (λ) =

1

n

∑
J⊂In

|J |=n−1

[Wf : WJ ]
(λ,ϖ∨

J )

∥ϖ∨
J ∥

V X
J (λ)

Proof. By definition, V X
In

is the n-dimensional volume of Conv(λ) = Conv(Wf · λ).

Draw segments from the origin O to every vertex of Conv(λ). This partitions Conv(λ)

into several hyperpyramids, each one of them with an (n − 1)-face of Conv(λ) as its

base and O as its cusp. Recall that the (n− 1)-faces of Conv(λ) are given by

{wFJ(λ) | |J | = n− 1, w ∈ Wf}.

4This is only for infinite families, that is, for types A,B,C,D.
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For brevity, let △ be the hyperpyramid with base FJ(λ). Since StabWf
(FJ(λ)) = WJ ,

it follows that there are exactly [Wf : WJ ] hyperpyramids having a J-face as its base.

It is clear that all of these hyperpyramids have the same n-dimensional volume as △.

The result follows from

Voln(△) =
(λ,ϖ∨

J )

n ∥ϖ∨
J ∥

V X
J (λ).

This is easy to check. The (n − 1)-dimensional volume of the base FJ(λ) of △, is

V X
J (λ). Let H be the affine hyperplane of V generated by FJ(λ). The height of △ is

the distance from O to H , which is given by

(λ,ϖ∨
J )

∥ϖ∨
J ∥

,

since ϖ∨
J is normal to H , and λ ∈ FJ(λ) ⊂ H .

We can go a little bit further by giving a recursive formula for V X
J , for connected J

(recall part (ii) of Lemma 4.1). We will do this for type An, in which all the simple roots

have the same length (independently of n). Let J ⊂ In be connected, with |J | = ℓ.

There is a unique non-negative integer u such that J = Iℓ + u. We can obtain V A
J from

V A
Iℓ

in the following way.

Lemma 4.4. Let J = Iℓ + u ⊂ N and let λ = (mi)i∈Iℓ+u
be a dominant (co)weight of type

Aℓ+u. Define

λ+u := (mi+u)i∈Iℓ = m1+uϖ
ℓ
1 + · · ·+mℓ+uϖ

ℓ
ℓ,

where ϖℓ
i is the i

th fundamental weight of Aℓ. Then, V A
J (λ) = V A

Iℓ
(λ+u).

Proof. We know that V A
J (λ) = V

Aℓ+u

J (λJ). Our aim is to map the set Conv(W ℓ+u
J · λJ)

to Conv(W ℓ
f · λ+u), while preserving the ℓ-dimensional volume. Replicate the proof of
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Lemma 4.2, by considering the isomorphism

T̃ : Hℓ+u
J Hℓ

Iℓ

αℓ+u
j αℓ

j−u

which preserves inner product (here we are using type A).

Hence, to compute V A
J (λ), with J = Iℓ + u, we just need to compute V A

Iℓ
(λ) and

then shift by u the variables mi. Explicitly, Lemma 4.3 gives

V A
J (λ) =

1

ℓ

∑
K⊂J

|K|=ℓ−1

[
W ℓ

f : WK−u

] (λ+u, ϖ
ℓ
K−u

)∥∥ϖℓ
K−u

∥∥ V A
K (λ), (4.1)

for generic λ+u. Note that K ⊂ J is the same as K − u ⊂ Iℓ.

Remark 4.5. Consider a sequence of positive integers m = (mi)i∈N. Equation (4.1)

shows that V A
J (m) is a homogeneous polynomial of degree ℓ = |J | in the variables mj ,

j ∈ J . Indeed, it is clear that
(
λ+u, ϖ

ℓ
K−u

)
is a homogeneous linear polynomial for

every K ⊂ J with |K| = ℓ− 1. The result follows by a straightforward induction on ℓ,

and by Lemma 4.1.

One can still do this for other types than A, but is not as easy. Lemma 4.4 greatly

simplified the computation. Equation (4.1) implies the linear independence of the poly-

nomials V A
J , as we will see.

Lemma 4.6. Consider the polynomial ring R[m1,m2, . . .]. For any finite J ⊂ N, let

mJ :=
∏
j∈J

mj . Then, the coefficient cJ of the monomial mJ in the polynomial V A
J (m), is

non-zero. Furthermore, let K ⊂ N be finite such that K ̸= J . Then the coefficient of mJ in

V A
K (m) is zero.
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Proof. On the one hand, we have that c∅ = 1. Suppose J is connected, put J = Iℓ + u

and let K ′ ⊂ J with |K ′| = ℓ− 1. Denote by t the unique element of J \K ′, and let

λ = (mj)j∈J . Note that the coefficient ofmJ in (λ+u, ϖ
ℓ
K′−u)V

A
K′(m) is (ϖℓ

t−u, ϖ
ℓ
t−u)cK′ .

Therefore, equation (4.1) shows that

cJ =
1

ℓ

∑
K⊂J

|K′|=ℓ−1

[
W ℓ

f : WK′−u

] ∥∥ϖℓ
t−u

∥∥ cK′ .

If J is not connected, Lemma 4.1 gives

cJ =
∏

K∗∈Jc

cK∗ .

The first part of the lemma follows by induction on |J |. On the other hand, let Υ be

the coefficient of mJ in V A
K (m). Since V A

K (m) is a polynomial in the variables mk,

with k ∈ K , and mJ is a polynomial in the variables mj , with j ∈ J , Υ ̸= 0 implies

that J ⊂ K . However, mJ has degree |J | and V A
K (m) is a homogeneous polynomial of

degree |K|, so that |J | = |K|. This would imply that J = K , a contradiction.

Corollary 4.7. The polynomials V A
J (m), with finite J ⊂ N are linearly independent.

Proof. Take any finite sum of these polynomials and equate it to zero. Look at the

coefficient of mJ in the sum.
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5. Proof of the geometric formula

In this chapter, we will prove the geometric formula conjecture for type Ã3, using

the geometric constructions of Chapter 3. That is, let Φ be the root system of type A3.

We will show

Theorem 5.1 (Geometric formula for type Ã3). There exists ϑJ ∈ R such that, for any

dominant (co)weight λ,

| ≤ θ(λ)| =
∑
J⊂I3

ϑJV
A
J (λ). (5.1)

The importance of the partition P = {P 0(λ), . . . , P 3(λ)} of A(≤ θ(λ)) is that we

now can compute

| ≤ θ(λ)| = 1

Vol(Aid)

3∑
i=0

Vol(P i(λ)),

where Vol stands for the 3-dimensional volume. Before going into the proof of Theorem

5.1, we will prove some lemmas that will allow us to handle Vol(P i(λ)).

Let λ be a dominant generic weight. Recall the set Cλ from Theorem 3.4 and the

set CF
λ = Cλ ∩ F , with F a face of Conv(λ). If K ⊂ J and w ∈ WJ , then wWK ⊂ WJ .

This implies that F ′ = wFK(λ) ⊂ FJ(λ), so that wCK
λ = CF ′

λ ⊂ CJ
λ . Let us define

C̃J
λ := CJ

λ \
⋃
K⊊J

WJ · CK
λ = WJ ·

(
CJ
λ \

⋃
K⊊J

CK
λ

)
,

where the action is understood point-wise (the equality comes from equation (3.9)). That

is, C̃J
λ is the set of centers of the Wf -polytopes that compose A(≤ θ(λ)), that belong to

the face FJ(λ) but are not contained in any K-face, for K ⊊ J .
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Remark 5.2. Note that C∅
λ = {λ}. For J ̸= ∅, it is important to observe that C̃J

λ can be

empty, even assuming that λ is generic. The following figure illustrates these sets in type

Ã2 for λ = (4, 1), which is generic. The grey area is the set A(≤ θ(λ)). The triangle

with the small yellow dot is θ(λ)Aid. The set C̃{1,2}
λ is the collection of orange dots, C̃{1}

λ

corresponds to the magenta dots, and C̃∅
λ is the cyan dot (as a singleton), which is λ.

The cyan asterisk ∗ is s2λ, so that s2C̃∅
λ = {∗}. The set C{2}

λ is the union of the cyan

dot and ∗. That is, C{2}
λ = C̃∅

λ ⊔ s2C̃∅
λ. Thus, there are no colored dots corresponding to

C̃{2}
λ = ∅. Note that if we were to take λ = (4, 2), then we would have C̃{2}

λ ̸= ∅.

One can prove that for “dominant enough” λ, all the sets C̃J
λ are non-empty. In type

Ã2, this is the case for λ = (a, b) with a, b ≥ 2. In type Ã3, the sets C̃J
λ are non-empty

whenever λ = (a, b, c) with a, b, c ≥ 2.
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Lemma 5.3. The following propositions hold, for any generic dominant weight λ.

(i) (Stabilizer of C̃J
λ ) For every J ⊂ I3,

StabWf

(
C̃J
λ

)
= WJ .

(ii) (Disjointness) Let x, y ∈ Wf and J ̸= K ⊂ I3. Then

xC̃J
λ

⋂
yC̃K

λ = ∅.

(iii) (Partition of Cλ)

⊔
J⊂I3

Wf · C̃J
λ = Cλ.

(iv) (Partition of CJ
λ ) For every J ⊂ I3,

⊔
K⊂J

WJ · C̃K
λ = CJ

λ .

Proof.

(i) The inclusion ⊃ is clear. If C̃J
λ is empty, there is nothing to prove. Suppose

wC̃J
λ = C̃J

λ , for some w ∈ Wf , and let x = wy, for x, y ∈ C̃J
λ . Note that both x, y

belong to the face FJ(λ) so that x ∈ FJ(λ) ∩ wFJ(λ). Using (3.7), we have that

x ∈ WJ .

(ii) It suffices to check that C̃J
λ

⋂
wC̃K

λ = ∅, for all w ∈ Wf . Suppose not. Note that

C̃J
λ

⋂
wC̃K

λ ⊂ FJ(λ)
⋂

wFK(λ). (5.2)
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By (3.7), w = w1w2, with w1 ∈ WJ and w2 ∈ WK . Therefore, using (i),

C̃J
λ

⋂
wC̃K

λ = w1

(
C̃J
λ

⋂
C̃K
λ

)
.

Let µ′ ∈ C̃J
λ

⋂
C̃K
λ . Then, µ′ ∈ FJ∩K(λ) and µ′ ∈ Cλ. That is, µ′ ∈ CJ∩K

λ . Since

J ̸= K , we have that at least one of J ∩K ⊊ J or J ∩K ⊊ K holds. The former

implies that µ′ /∈ C̃J
λ , and the latter gives µ′ /∈ C̃K

λ , a contradiction.

(iii) The union is disjoint by (ii). The containment ⊂ is easy to see. We will show that

C+ ∩ Cλ ⊂
⊔
J⊂I3

(
CJ
λ \

⋃
K⊊J

CK
λ

)
.

Taking the Wf -orbit would give the desired result. Let µ ∈ C+ ∩ Cλ. The above

equation is equivalent to the existence of some J ⊂ I3 such that µ ∈ CJ
λ and

µ /∈ CK
λ , for every K ⊊ J . Suppose the negation of this proposition, that is, for

every J ⊂ I3,

(
µ /∈ CJ

λ

)
or

(
∃K ⊊ J such that µ ∈ CK

λ

)
.

Since µ ∈ Cλ = CI3
λ , it follows that there is K ⊊ J such that µ ∈ CK

λ , so that there

is some K ′ ⊊ K such that µ ∈ CK′

λ , and so on. Eventually, we get that µ ∈ CK∗

λ

with K∗ ⊊ ∅.

(iv) Let J,K ⊂ I3 and w ∈ Wf . Suppose FJ(λ)
⋂

wC̃K
λ ̸= ∅, then

FJ(λ)
⋂

wC̃K
λ ⊂ FJ(λ)

⋂
wFK(λ) ̸= ∅.

54



By (3.7), we get w ∈ WJWK . That is,

w /∈ WJWK =⇒ FJ(λ)
⋂

wC̃K
λ = ∅.

Next, suppose K ̸⊂ J . Note that FJ(λ) ∩ C̃K
λ = ∅. Indeed, if x ∈ FJ(λ) ∩ C̃K

λ , then

x ∈ FJ(λ) ∩ CK
λ = CJ∩K

λ . This is a contradiction, since x ∈ C̃K
λ and J ∩K ⊊ K .

Finally, using (i) and (iii),

CJ
λ =

⊔
K⊂I3

(
FJ(λ)

⋂
Wf · C̃K

λ

)
=
⊔

K⊂I3

(
FJ(λ)

⋂
WJWK · C̃K

λ

)
=
⊔

K⊂I3

WJ ·
(
FJ(λ)

⋂
C̃K
λ

)
=
⊔
K⊂J

WJ · C̃K
λ ,

since C̃K
λ ⊂ FK(λ) ⊂ FJ(λ), for K ⊂ J .

Let K ⊂ J ⊂ I3. Note that WJ · C̃K
λ ⊂ FJ(λ) ⊂ YJ(λ). It follows that if there exists

µ ∈ WJ · C̃K
λ (see remark 5.2), then the sets (PWf

+ µ) ∩ YJ(λ) and (PWf
+ µ) ∩ FJ(λ)

are not empty. The following lemma is the key ingredient to handle the “any dominant

(co)weight” of the geometric formula.

Lemma 5.4. Fix K ⊂ J ⊂ I3 and let λ be a generic dominant weight. Pick µ ∈ WJ · C̃K
λ .

Then, the numbers

Vol
(
(PWf

+ µ) ∩ YJ(λ)
)

and Vol|J |
(
(PWf

+ µ) ∩ FJ(λ)
)
,

do not depend on the choice of λ nor on the choice of µ, as long as C̃K
λ is not empty.
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Proof. Write µ = wµ′, with w ∈ WJ and µ′ ∈ C̃K
λ . Then,

(PWf
+ µ) ∩ YJ(λ) = w

(
(PWf

+ µ′) ∩ YJ(λ)
)
.

As w is an orthogonal transformation, we can assume that µ ∈ C̃K
λ . Recall Lemma 3.7

and note that

(PWf
+ µ) ∩ YJ(λ) = (PWf

+ µ) ∩ (YJ + λ).

Let BJ = {b1, b2, b3} be the mixed basis, that is, bj = αj if j ∈ J , and bj = ϖj oth-

erwise. For t ∈ I3, let H(J, t) be the hyperplane spanned by BJ \ {bt}. Consider the

vectors uJ
i defined by the equations (uJ

i , bj) = δij and consider the (closed) half-spaces

H(J, t)+ = {v ∈ V | (v, uJ
t ) ≥ 0},

H(J, t)− = {v ∈ V | (v, uJ
t ) ≤ 0}.

We have that

⋂
t∈I3

H(J, t)sgn(J,t) = ⟨αj | j ∈ J⟩≤0 + ⟨ϖi | i /∈ J⟩≥0 = YJ ,

where sgn(J, t) is + if t /∈ J , and − if t ∈ J .

Note that µ ∈ C̃K
λ implies that µ− λ = −

∑
j∈K

ajαj , with aj positive integers, since

µ lies exclusively in the face FK(λ). That is,

(µ− λ, uJ
t )

∈ Z− if t ∈ K

= 0 if t /∈ K

(5.3)

Similar to the proof of Proposition 3.6, let νP be the vertices of the PWf
and let

v ∈ νP . Use the matrix M−1
J to get the coordinates of v in the mixed basis BJ . One
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can check that (v, uJ
t )− 1 ≤ 0, for each t ∈ J 1. This tells us that

µ+ νP ⊂λ+H(J, t)sgn(J,t),

for all t ∈ K , so that none of the affine hyperplanes H(J, t) + λ, with t ∈ K , slices

through PWf
+ µ. It follows that

Vol
(
(PWf

+ µ) ∩ YJ(λ)
)
= Vol

(PWf
+ µ)

⋂ ⋂
t∈I3\K

H(J, t)sgn(J,t) + λ


= Vol

PWf

⋂ ⋂
t∈I3\K

H(J, t)sgn(J,t) + λ− µ


= Vol

PWf

⋂ ⋂
t∈I3\K

H(J, t)sgn(J,t)

 ,

since we know that λ− µ ∈ H(J, t), for all t /∈ K , by (5.3).

Similarly, let HJ be the subspace generated by {αj | j ∈ J}. Then,

Vol|J |
(
(PWf

+ µ) ∩ FJ(λ)
)
= Vol|J |

PWf

⋂
HJ

⋂ ⋂
t∈J\K

H(J, t)sgn(J,t)

 ,

since HJ =
⋂
t/∈J

H(J, t)sgn(J,t).

The following corollary follows directly from the proof above.

1In fact, (v, uJ
t )− 1 = 0 only for J = I3, t = 2, and v = ϖ2. Geometrically, as explained in Propo-

sition 3.6, this means that for suitable λ and µ ∈ C̃I3
λ , PWf

+ µ is completely contained in Conv(λ), but
its vertex ϖ2 + µ lies in the face F{1,3}(λ).
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Corollary 5.5. Let K ⊂ J ⊂ I3. Define

ΓJ(K) := Vol

PWf

⋂ ⋂
t∈I3\K

H(J, t)sgn(J,t)

 ,

γJ(K) := Vol|J |

PWf

⋂
HJ

⋂ ⋂
t∈J\K

H(J, t)sgn(J,t)

 .

Let λ be any generic dominant weight. Then, whenever µ ∈ WJ · C̃K
λ exists,

ΓJ(K) = Vol
(
(PWf

+ µ) ∩ YJ(λ)
)

and γJ(K) = Vol|J |
(
(PWf

+ µ) ∩ FJ(λ)
)
.

One can prove that the numbers ΓJ(K), γJ(K) are non-zero. At a first glance, these

numbers might not seem relevant. The following lemma tells us to glance twice.

Lemma 5.6. Let λ be a generic dominant weight and J ⊂ I3. Define qJ(λ) := |C̃J
λ |. Then

Vol (PJ(λ)) =
∑
K⊂J

[WJ : WK ] ΓJ(K) qK(λ),

V A
J (λ) =

∑
K⊂J

[WJ : WK ] γJ(K) qK(λ).

Proof. From the proof of Lemma 5.4, we get

PJ(λ) = YJ(λ)
⋂

A(≤ θ(λ))

= YJ(λ)
⋂(⊔

µ∈Cλ

PWf
+ µ

)

=
⊔
µ∈CJ

λ

(
PWf

+ µ
)
∩ YJ(λ).
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Using Lemmas 5.3 and 5.4, we obtain

Vol (PJ(λ)) =
∑
µ∈CJ

λ

Vol
(
(PWf

+ µ) ∩ YJ(λ)
)

=
∑
K⊂J

 ∑
µ∈WJ ·C̃K

λ

Vol
(
(PWf

+ µ) ∩ YJ(λ)
)

=
∑
K⊂J

|WJ · C̃K
λ |ΓJ(K)

=
∑
K⊂J

[WJ : WK ] ΓJ(K) qK(λ).

The equation for V A
J follows analogously from

FJ(λ) =
⊔
µ∈CJ

λ

(
PWf

+ µ
)
∩ FJ(λ),

which is implied by Proposition 3.6.

Think of qK(λ) as the “building blocks” of the volumes V A
J (λ) and Vol(PJ(λ)). The

following lemma is the last one we will need before the proof of the geometric formula.

Corollary 5.7. For any generic dominant weight λ, qJ(λ) is a linear combination (with

coefficients not depending on λ) of the volumes V A
K (λ) such that K ⊂ J .

Proof. Note that q∅(λ) = |{λ}| = 1. By Lemma 5.6, we have that

qJ(λ) =
1

γJ(J)

(
V A
J (λ)−

∑
K⊊J

[WJ : WK ] γJ(K) qK(λ)

)
.

The result follows by induction on |J |.

This implies that qJ(λ) is a polynomial of degree |J |. In general, these polynomials

are not homogeneous. In turn, this shows that Vol(PJ(λ)) is a polynomial of degree
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|J |. Now, we give the much-anticipated proof.

Proof of Theorem 5.1. Let λ be a generic dominant weight. By Lemma 5.6, we know

that for all J ⊂ I3,

Vol (PJ(λ)) =
∑
K⊂J

[WJ : WK ] ΓJ(K) qK(λ).

Therefore, Corollary 5.7 implies that there exists βJ,K ∈ R such that

Vol (PJ(λ)) =
∑
K⊂J

βJ,KV
A
K (λ).

The coefficients βJ,K do not depend on the choice of λ. For brevity, let △ = Vol(Aid).

Since

A(≤ θ(λ)) =
⊔
J⊂I3

Wf · PJ(λ),

equation (3.11) gives

| ≤ θ(λ)| = 1

△
∑
J⊂I3

[Wf : WJ ]Vol(PJ(λ))

=
∑
J⊂I3

(∑
K⊂J

[Wf : Wf ]

△
βJ,KV

A
K (λ)

)

=
∑
J⊂I3

ϑJV
A
J (λ),

with

ϑJ =
∑

J⊂K⊂I3

[Wf : WK ]

△
βK,J ,

where the sum is over K . This shows that the geometric formula holds in the generic

case.

We can extend the geometric formula for the non-generic (dominant) case. Since
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we have determined the polynomial | ≤ θ(a, b, c)| (Schützer proved that it is in fact a

polynomial) for a, b, c ∈ Z+, we have determined it everywhere. This comes from the

general fact that a polynomial h ∈ R[x1, . . . , xd] that vanishes on (Z+)d, must vanish

everywhere.2

Note that Chapter 4 was not needed at all. We can use Corollary 4.7 to deduce

the uniqueness of the geometric coefficients ϑJ . There is more to be said about the

polynomials qJ . Let m = (m1,m2,m3). Recall Lemma 4.6.

Lemma 5.8. Let J ⊂ I3 and define c∗J as the coefficient of mJ in the polynomial qJ(m).

Then c∗J is non-zero. Furthermore, the set {qJ(m) | J ⊂ I3} is linearly independent.

Proof. Lemma 5.6 shows that

cJ = [WJ : WK ] γJ(J) c
∗
J ,

since qJ(m) is a polynomial of degree |J |. By Lemma 4.6, it follows that c∗J ̸= 0.

The linear independence is a bit trickier to show than it was for V A
J , as qJ(m) is not

homogeneous in general. Let K ⊂ I3, and denote by c(K, J) the coefficient of mK in

qJ(m). Note that if K ̸⊂ J , then c(K, J) = 0, as qJ(m) is a polynomial in the variables

mj , j ∈ J and mK is not. Then for c(K, J) ̸= 0 to be true, it would be necessary that

K ⊂ J . Suppose there exists βJ ∈ R such that

∑
J⊂I3

βJqJ(m) = 0. (5.4)

We will show that βJ = 0 by induction on 3− |J | (J is not fixed anymore). If |J | = 3,

then J = I3. Looking at the coefficient of mI3 in both sides of (5.4) gives βI3c
∗
I3
= 0, by

the argument above. Since c∗I3 ̸= 0, we have that βI3 = 0. Now suppose βK = 0 for all

2This can be proven by induction. The case d = 1 is clear. The inductive step comes from noticing
that the univariate polynomial h(z1, . . . , zd−1, x) vanishes on Z+, for every zi ∈ Z+.

61



K ⊂ I3 such that |K| > 3− ℓ > 0, for some ℓ. Let J ⊂ I3 with |J | = 3− ℓ. Note that

c(J,K ′) can be nonzero only for J ⊂ K ′ ⊂ I3. Thus, the coefficient of mJ in equation

(5.4) gives ∑
J⊂K′⊂I3

βK′ c(J,K ′) = βJc
∗
J +

∑
J⊊K′⊂I3

βK′ c(J,K ′) = 0.

Therefore, βJc
∗
J = 0 by the inductive hypothesis, and hence βJ = 0, as c∗J ̸= 0.
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Appendices
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A. Some volumes V A
J

Let λ be any vector, instead of a (generic) dominant weight. Note that going back

trough the definitions, there is no problem when we are dealing with Conv(λ) or V X
J (λ).

The reason we work with dominant weights, is that our aim was to study the set ≤ θ(λ).

Thus, the following polynomials have a geometric meaning even if we evaluate them in

non-integers numbers.

Letm = (m1,m2, . . .) be a sequence of real numbers. Formula (4.1) is a powerful tool

to compute V A
J (m) for connected J . If J is not connected, we just take the product over

its connected components. By Lemma 4.4, we only need to know V A
In
(m) together with

some unconnected J . For example, V{1,3}(m) = 2m1m3 so that V{2,4}(m) = 2m2m4.

We show V A
In
(m) for n ≤ 4 (V A

I5
is already too big to fit in one page), together with

V A
J (m) for some unconnected J ⊂ I4.

V A
∅ (m) = 1,

V A
I1
(m) =

√
2m1,

V A
I2
(m) =

1

2

√
3m2

1 + 2
√
3m1m2 +

1

2

√
3m2

2,

V A
{1,3}(m) = 2m1m3,

V A
{1,2,4}(m) =

1

2

√
3
√
2m2

1m4 + 2
√
3
√
2m1m2m4 +

1

2

√
3
√
2m2

2m4,
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VI3(m) =
1

3
m3

1 + 2m2
1m2 + 4m1m

2
2 +

4

3
m3

2 + 3m2
1m3 + 12m1m2m3 + 4m2

2m3

+ 3m1m
2
3 + 2m2m

2
3 +

1

3
m3

3,

V A
{1,3,4}(m) =

1

2

√
3
√
2m1m

2
3 + 2

√
3
√
2m1m3m4 +

1

2

√
3
√
2m1m

2
4,

V A
I4
(m) =

1

24

√
5m4

1 +
1

3

√
5m3

1m2 +
√
5m2

1m
2
2 +

4

3

√
5m1m

3
2 +

11

24

√
5m4

2

+
1

2

√
5m3

1m3 + 3
√
5m2

1m2m3 + 6
√
5m1m

2
2m3 +

7

3

√
5m3

2m3

+
9

4

√
5m2

1m
2
3 + 9

√
5m1m2m

2
3 + 4

√
5m2

2m
2
3 +

17

6

√
5m1m

3
3

+
7

3

√
5m2m

3
3 +

11

24

√
5m4

3 +
2

3

√
5m3

1m4 + 4
√
5m2

1m2m4

+ 8
√
5m1m

2
2m4 +

17

6

√
5m3

2m4 + 6
√
5m2

1m3m4 + 24
√
5m1m2m3m4

+ 9
√
5m2

2m3m4 + 8
√
5m1m

2
3m4 + 6

√
5m2m

2
3m4 +

4

3

√
5m3

3m4

+
3

2

√
5m2

1m
2
4 + 6

√
5m1m2m

2
4 +

9

4

√
5m2

2m
2
4 + 4

√
5m1m3m

2
4

+ 3
√
5m2m3m

2
4 +

√
5m2

3m
2
4 +

2

3

√
5m1m

3
4 +

1

2

√
5m2m

3
4

+
1

3

√
5m3m

3
4 +

1

24

√
5m4

4.
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B. Geometric coefficients tables

The following tables show the geometric coefficients ϑJ of the geometric formula,

for types Ã1, . . . , Ã7. These have been computed using the Schützer formula for Cλ,

and using Lemma 4.6. The author of this thesis would be happy to share the codes to

anyone intereseted.

In order to simplify the geometric coefficients, we will show them in different ways

so that the numbers are more appealing. Let J ⊂ In and define

√
J :=

∏
K∈Jc

|K|+ 1,

where Jc are the connected components of J . Put ϑR
J = ϑJ

√
J . This will make the

coefficients to be integers (at least in these cases). Let A0 be the fundamental alcove (in

type Ãn). It is natural to look at the numbers

ϑ′
J =

Vol(A0)

[Wf : WJ ]
ϑJ ,

as we want to normalize by the volume of the fundamental alcove, and there are

[Wf : WJ ] J-faces. One can prove that

Vol(A0) =

√
n+ 1

(n+ 1)!
.
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Type Ã1

J ϑJ ϑR
J ϑ′

J

∅ 2 2 1
2

√
2

{1}
√
2 2 1

Type Ã2

J ϑJ ϑR
J ϑ′

J

∅ 6 6 1
6

√
3

{1} 9
2

√
2 9 1

4

√
3
√
2

{2} 9
2

√
2 9 1

4

√
3
√
2

{1, 2} 2
√
3 6 1
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Type Ã3

J ϑJ ϑR
J ϑ′

J

∅ 24 24 1
12

{1} 22
√
2 44 11

72

√
2

{2} 28
√
2 56 7

36

√
2

{3} 22
√
2 44 11

72

√
2

{1, 2} 16
√
3 48 1

3

√
3

{1, 3} 36 72 1
2

{2, 3} 16
√
3 48 1

3

√
3

{1, 2, 3} 12 24 1
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Type Ã4

J ϑJ ϑR
J ϑ′

J

∅ 120 120 1
120

√
5

{1} 125
√
2 250 5

288

√
5
√
2

{2} 175
√
2 350 7

288

√
5
√
2

{3} 175
√
2 350 7

288

√
5
√
2

{4} 125
√
2 250 5

288

√
5
√
2

{1, 2} 350
3

√
3 350 7

144

√
5
√
3

{1, 3} 325 650 13
144

√
5

{1, 4} 250 500 5
72

√
5

{2, 3} 500
3

√
3 500 5

72

√
5
√
3

{2, 4} 325 650 13
144

√
5

{3, 4} 350
3

√
3 350 7

144

√
5
√
3

{1, 2, 3} 150 300 1
4

√
5

{1, 2, 4} 100
√
3
√
2 600 1

12

√
5
√
3
√
2

{1, 3, 4} 100
√
3
√
2 600 1

12

√
5
√
3
√
2

{2, 3, 4} 150 300 1
4

√
5

69



{1, 2, 3, 4} 24
√
5 120 1
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Type Ã5

J ϑJ ϑR
J ϑ′

J

∅ 720 720 1
720

√
3
√
2

{1} 822
√
2 1644 137

21600

√
3

{2} 1212
√
2 2424 101

10800

√
3

{3} 1332
√
2 2664 37

3600

√
3

{4} 1212
√
2 2424 101

10800

√
3

{5} 822
√
2 1644 137

21600

√
3

{1, 2} 900
√
3 2700 1

32

√
2

{1, 3} 2700 5400 1
48

√
3
√
2

{1, 4} 2700 5400 1
48

√
3
√
2

{1, 5} 1800 3600 1
72

√
3
√
2

{2, 3} 1500
√
3 4500 5

96

√
2

{2, 4} 3600 7200 1
36

√
3
√
2

{2, 5} 2700 5400 1
48

√
3
√
2

{3, 4} 1500
√
3 4500 5

96

√
2

{3, 5} 2700 5400 1
48

√
3
√
2

71



{4, 5} 900
√
3 2700 1

32

√
2

{1, 2, 3} 1530 3060 17
240

√
3
√
2

{1, 2, 4} 1240
√
3
√
2 7440 31

180

{1, 2, 5} 950
√
3
√
2 5700 19

144

{1, 3, 4} 1410
√
3
√
2 8460 47

240

{1, 3, 5} 2700
√
2 10800 1

12

√
3

{1, 4, 5} 950
√
3
√
2 5700 19

144

{2, 3, 4} 2340 4680 13
120

√
3
√
2

{2, 3, 5} 1410
√
3
√
2 8460 47

240

{2, 4, 5} 1240
√
3
√
2 7440 31

180

{3, 4, 5} 1530 3060 17
240

√
3
√
2

{1, 2, 3, 4} 432
√
5 2160 1

10

√
5
√
3
√
2

{1, 2, 3, 5} 1350
√
2 5400 1

4

√
3

{1, 2, 4, 5} 2400 7200 1
6

√
3
√
2

{1, 3, 4, 5} 1350
√
2 5400 1

4

√
3

{2, 3, 4, 5} 432
√
5 2160 1

10

√
5
√
3
√
2

{1, 2, 3, 4, 5} 120
√
3
√
2 720 1
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Type Ã6

J ϑJ ϑR
J ϑ′

J

∅ 5040 5040 1
5040

√
7

{1} 6174
√
2 12348 7

14400

√
7
√
2

{2} 9408
√
2 18816 1

1350

√
7
√
2

{3} 10878
√
2 21756 37

43200

√
7
√
2

{4} 10878
√
2 21756 37

43200

√
7
√
2

{5} 9408
√
2 18816 1

1350

√
7
√
2

{6} 6174
√
2 12348 7

14400

√
7
√
2

{1, 2} 22736
3

√
3 22736 29

16200

√
7
√
3

{1, 3} 23520 47040 1
270

√
7

{1, 4} 26509 53018 541
129600

√
7

{1, 5} 21903 43806 149
43200

√
7

{1, 6} 14798 29596 151
64800

√
7

{2, 3} 41356
3

√
3 41356 211

64800

√
7
√
3

{2, 4} 35231 70462 719
129600

√
7

{2, 5} 35476 70952 181
32400

√
7
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{2, 6} 21903 43806 149
43200

√
7

{3, 4} 16072
√
3 48216 41

10800

√
7
√
3

{3, 5} 35231 70462 719
129600

√
7

{3, 6} 26509 53018 541
129600

√
7

{4, 5} 41356
3

√
3 41356 211

64800

√
7
√
3

{4, 6} 23520 47040 1
270

√
7

{5, 6} 22736
3

√
3 22736 29

16200

√
7
√
3

{1, 2, 3} 15435 30870 7
480

√
7

{1, 2, 4} 13230
√
3
√
2 79380 1

160

√
7
√
3
√
2

{1, 2, 5} 13475
√
3
√
2 80850 11

1728

√
7
√
3
√
2

{1, 2, 6} 8575
√
3
√
2 51450 7

1728

√
7
√
3
√
2

{1, 3, 4} 16170
√
3
√
2 97020 11

1440

√
7
√
3
√
2

{1, 3, 5} 77175
2

√
2 154350 7

576

√
7
√
2

{1, 3, 6} 55125
2

√
2 110250 5

576

√
7
√
2

{1, 4, 5} 15925
√
3
√
2 95550 13

1728

√
7
√
3
√
2

{1, 4, 6} 55125
2

√
2 110250 5

576

√
7
√
2

{1, 5, 6} 8575
√
3
√
2 51450 7

1728

√
7
√
3
√
2

{2, 3, 4} 28665 57330 13
480

√
7
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{2, 3, 5} 20825
√
3
√
2 124950 17

1728

√
7
√
3
√
2

{2, 3, 6} 15925
√
3
√
2 95550 13

1728

√
7
√
3
√
2

{2, 4, 5} 20825
√
3
√
2 124950 17

1728

√
7
√
3
√
2

{2, 4, 6} 77175
2

√
2 154350 7

576

√
7
√
2

{2, 5, 6} 13475
√
3
√
2 80850 11

1728

√
7
√
3
√
2

{3, 4, 5} 28665 57330 13
480

√
7

{3, 4, 6} 16170
√
3
√
2 97020 11

1440

√
7
√
3
√
2

{3, 5, 6} 13230
√
3
√
2 79380 1

160

√
7
√
3
√
2

{4, 5, 6} 15435 30870 7
480

√
7

{1, 2, 3, 4} 5880
√
5 29400 1

36

√
7
√
5

{1, 2, 3, 5} 22050
√
2 88200 1

24

√
7
√
2

{1, 2, 3, 6} 16905
√
2 67620 23

720

√
7
√
2

{1, 2, 4, 5} 44100 132300 1
16

√
7

{1, 2, 4, 6} 27930
√
3 167580 19

720

√
7
√
3

{1, 2, 5, 6} 29400 88200 1
24

√
7

{1, 3, 4, 5} 27195
√
2 108780 37

720

√
7
√
2

{1, 3, 4, 6} 32340
√
3 194040 11

360

√
7
√
3

{1, 3, 5, 6} 27930
√
3 167580 19

720

√
7
√
3
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{1, 4, 5, 6} 16905
√
2 67620 23

720

√
7
√
2

{2, 3, 4, 5} 9408
√
5 47040 2

45

√
7
√
5

{2, 3, 4, 6} 27195
√
2 108780 37

720

√
7
√
2

{2, 3, 5, 6} 44100 132300 1
16

√
7

{2, 4, 5, 6} 22050
√
2 88200 1

24

√
7
√
2

{3, 4, 5, 6} 5880
√
5 29400 1

36

√
7
√
5

{1, 2, 3, 4, 5} 2940
√
3
√
2 17640 1

12

√
7
√
3
√
2

{1, 2, 3, 4, 6} 5292
√
5
√
2 52920 1

20

√
7
√
5
√
2

{1, 2, 3, 5, 6} 14700
√
3 88200 1

12

√
7
√
3

{1, 2, 4, 5, 6} 14700
√
3 88200 1

12

√
7
√
3

{1, 3, 4, 5, 6} 5292
√
5
√
2 52920 1

20

√
7
√
5
√
2

{2, 3, 4, 5, 6} 2940
√
3
√
2 17640 1

12

√
7
√
3
√
2

{1, 2, 3, 4, 5, 6} 720
√
7 5040 1
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Type Ã7

J ϑJ ϑR
J ϑ′

J

∅ 40320 40320 1
20160

√
2

{1} 52272
√
2 104544 121

470400

{2} 81504
√
2 163008 283

705600

{3} 97296
√
2 194592 2027

4233600

{4} 102336
√
2 204672 533

1058400

{5} 97296
√
2 194592 2027

4233600

{6} 81504
√
2 163008 283

705600

{7} 52272
√
2 104544 121

470400

{1, 2} 210112
3

√
3 210112 67

129600

√
3
√
2

{1, 3} 221088 442176 47
43200

√
2

{1, 4} 269696 539392 43
32400

√
2

{1, 5} 235984 471968 301
259200

√
2

{1, 6} 208544 417088 133
129600

√
2

{1, 7} 132496 264992 169
259200

√
2

{2, 3} 134848
√
3 404544 43

43200

√
3
√
2
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{2, 4} 351232 702464 7
4050

√
2

{2, 5} 415520 831040 53
25920

√
2

{2, 6} 304192 608384 97
64800

√
2

{2, 7} 208544 417088 133
129600

√
2

{3, 4} 514304
3

√
3 514304 41

32400

√
3
√
2

{3, 5} 392784 785568 167
86400

√
2

{3, 6} 415520 831040 53
25920

√
2

{3, 7} 235984 471968 301
259200

√
2

{4, 5} 514304
3

√
3 514304 41

32400

√
3
√
2

{4, 6} 351232 702464 7
4050

√
2

{4, 7} 269696 539392 43
32400

√
2

{5, 6} 134848
√
3 404544 43

43200

√
3
√
2

{5, 7} 221088 442176 47
43200

√
2

{6, 7} 210112
3

√
3 210112 67

129600

√
3
√
2

{1, 2, 3} 162456 324912 967
201600

√
2

{1, 2, 4} 141344
√
3
√
2 848064 631

151200

√
3

{1, 2, 5} 167272
√
3
√
2 1003632 2987

604800

√
3

{1, 2, 6} 385168
3

√
3
√
2 770336 3439

907200

√
3
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{1, 2, 7} 260680
3

√
3
√
2 521360 133

51840

√
3

{1, 3, 4} 545104
3

√
3
√
2 1090208 4867

907200

√
3

{1, 3, 5} 468132
√
2 1872528 5573

604800

{1, 3, 6} 444472
√
2 1777888 7937

907200

{1, 3, 7} 267932
√
2 1071728 1367

259200

{1, 4, 5} 642992
3

√
3
√
2 1285984 5741

907200

√
3

{1, 4, 6} 444192
√
2 1776768 661

75600

{1, 4, 7} 339472
√
2 1357888 433

64800

{1, 5, 6} 479192
3

√
3
√
2 958384 8557

1814400

√
3

{1, 5, 7} 267932
√
2 1071728 1367

259200

{1, 6, 7} 260680
3

√
3
√
2 521360 133

51840

√
3

{2, 3, 4} 338016 676032 503
50400

√
2

{2, 3, 5} 255416
√
3
√
2 1532496 4561

604800

√
3

{2, 3, 6} 813232
3

√
3
√
2 1626464 7261

907200

√
3

{2, 3, 7} 479192
3

√
3
√
2 958384 8557

1814400

√
3

{2, 4, 5} 826336
3

√
3
√
2 1652672 527

64800

√
3

{2, 4, 6} 644672
√
2 2578688 1439

113400

{2, 4, 7} 444192
√
2 1776768 661

75600
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{2, 5, 6} 813232
3

√
3
√
2 1626464 7261

907200

√
3

{2, 5, 7} 444472
√
2 1777888 7937

907200

{2, 6, 7} 385168
3

√
3
√
2 770336 3439

907200

√
3

{3, 4, 5} 410256 820512 407
33600

√
2

{3, 4, 6} 826336
3

√
3
√
2 1652672 527

64800

√
3

{3, 4, 7} 642992
3

√
3
√
2 1285984 5741

907200

√
3

{3, 5, 6} 255416
√
3
√
2 1532496 4561

604800

√
3

{3, 5, 7} 468132
√
2 1872528 5573

604800

{3, 6, 7} 167272
√
3
√
2 1003632 2987

604800

√
3

{4, 5, 6} 338016 676032 503
50400

√
2

{4, 5, 7} 545104
3

√
3
√
2 1090208 4867

907200

√
3

{4, 6, 7} 141344
√
3
√
2 848064 631

151200

√
3

{5, 6, 7} 162456 324912 967
201600

√
2

{1, 2, 3, 4} 75264
√
5 376320 1

90

√
5
√
2

{1, 2, 3, 5} 294000
√
2 1176000 5

144

{1, 2, 3, 6} 305760
√
2 1223040 13

360

{1, 2, 3, 7} 188160
√
2 752640 1

45

{1, 2, 4, 5} 627200 1881600 1
36

√
2
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{1, 2, 4, 6} 501760
√
3 3010560 2

135

√
3
√
2

{1, 2, 4, 7} 344960
√
3 2069760 11

1080

√
3
√
2

{1, 2, 5, 6} 627200 1881600 1
36

√
2

{1, 2, 5, 7} 352800
√
3 2116800 1

96

√
3
√
2

{1, 2, 6, 7} 313600 940800 1
72

√
2

{1, 3, 4, 5} 411600
√
2 1646400 7

144

{1, 3, 4, 6} 595840
√
3 3575040 19

1080

√
3
√
2

{1, 3, 4, 7} 439040
√
3 2634240 7

540

√
3
√
2

{1, 3, 5, 6} 588000
√
3 3528000 5

288

√
3
√
2

{1, 3, 5, 7} 1058400 4233600 1
48

√
2

{1, 3, 6, 7} 352800
√
3 2116800 1

96

√
3
√
2

{1, 4, 5, 6} 399840
√
2 1599360 17

360

{1, 4, 5, 7} 439040
√
3 2634240 7

540

√
3
√
2

{1, 4, 6, 7} 344960
√
3 2069760 11

1080

√
3
√
2

{1, 5, 6, 7} 188160
√
2 752640 1

45

{2, 3, 4, 5} 150528
√
5 752640 1

45

√
5
√
2

{2, 3, 4, 6} 517440
√
2 2069760 11

180

{2, 3, 4, 7} 399840
√
2 1599360 17

360
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{2, 3, 5, 6} 940800 2822400 1
24

√
2

{2, 3, 5, 7} 588000
√
3 3528000 5

288

√
3
√
2

{2, 3, 6, 7} 627200 1881600 1
36

√
2

{2, 4, 5, 6} 517440
√
2 2069760 11

180

{2, 4, 5, 7} 595840
√
3 3575040 19

1080

√
3
√
2

{2, 4, 6, 7} 501760
√
3 3010560 2

135

√
3
√
2

{2, 5, 6, 7} 305760
√
2 1223040 13

360

{3, 4, 5, 6} 150528
√
5 752640 1

45

√
5
√
2

{3, 4, 5, 7} 411600
√
2 1646400 7

144

{3, 4, 6, 7} 627200 1881600 1
36

√
2

{3, 5, 6, 7} 294000
√
2 1176000 5

144

{4, 5, 6, 7} 75264
√
5 376320 1

90

√
5
√
2

{1, 2, 3, 4, 5} 51520
√
3
√
2 309120 23

252

√
3

{1, 2, 3, 4, 6} 110208
√
5
√
2 1102080 41

630

√
5

{1, 2, 3, 4, 7} 84672
√
5
√
2 846720 1

20

√
5

{1, 2, 3, 5, 6} 341600
√
3 2049600 61

1008

√
3
√
2

{1, 2, 3, 5, 7} 646800 2587200 11
144

√
2

{1, 2, 3, 6, 7} 227360
√
3 1364160 29

720

√
3
√
2
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{1, 2, 4, 5, 6} 371840
√
3 2231040 83

1260

√
3
√
2

{1, 2, 4, 5, 7} 658560
√
2 3951360 7

60

{1, 2, 4, 6, 7} 564480
√
2 3386880 1

10

{1, 2, 5, 6, 7} 227360
√
3 1364160 29

720

√
3
√
2

{1, 3, 4, 5, 6} 143808
√
5
√
2 1438080 107

1260

√
5

{1, 3, 4, 5, 7} 823200 3292800 7
72

√
2

{1, 3, 4, 6, 7} 658560
√
2 3951360 7

60

{1, 3, 5, 6, 7} 646800 2587200 11
144

√
2

{1, 4, 5, 6, 7} 84672
√
5
√
2 846720 1

20

√
5

{2, 3, 4, 5, 6} 85120
√
3
√
2 510720 19

126

√
3

{2, 3, 4, 5, 7} 143808
√
5
√
2 1438080 107

1260

√
5

{2, 3, 4, 6, 7} 371840
√
3 2231040 83

1260

√
3
√
2

{2, 3, 5, 6, 7} 341600
√
3 2049600 61

1008

√
3
√
2

{2, 4, 5, 6, 7} 110208
√
5
√
2 1102080 41

630

√
5

{3, 4, 5, 6, 7} 51520
√
3
√
2 309120 23

252

√
3

{1, 2, 3, 4, 5, 6} 23040
√
7 161280 1

7

√
7
√
2

{1, 2, 3, 4, 5, 7} 94080
√
3 564480 1

6

√
3
√
2

{1, 2, 3, 4, 6, 7} 75264
√
5
√
3 1128960 1

15

√
5
√
3
√
2
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{1, 2, 3, 5, 6, 7} 352800 1411200 1
4

√
2

{1, 2, 4, 5, 6, 7} 75264
√
5
√
3 1128960 1

15

√
5
√
3
√
2

{1, 3, 4, 5, 6, 7} 94080
√
3 564480 1

6

√
3
√
2

{2, 3, 4, 5, 6, 7} 23040
√
7 161280 1

7

√
7
√
2

{1, 2, 3, 4, 5, 6, 7} 10080
√
2 40320 1
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