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Stroke is a neurological condition that impacts activity performance and quality of life
for survivors. While neurological impairments after the event explain the performance
of patients in specific activities, the origin of such impairments has traditionally been
explained as a consequence of structural and functional damage to the nervous
system. However, there are important mechanisms related to energy efficiency (trade-
off between biological functions and energy consumption) at different levels that can
be related to these impairments and restrictions: first, at the neuronal level, where the
availability of energy resources is the initial cause of the event, as well as determines the
possibilities of spontaneous recovery. Second, at the level of neural networks, where
the “small world” operation of the network is compromised after the stroke, implicating
a high energetic cost and inefficiency in the information transfer, which is related to the
neurological recovery and clinical status. Finally, at the behavioral level, the performance
limitations are related to the highest cost of energy or augmented energy expenditure
during the tasks to maintain the stability of the segment, system, body, and finally, the
behavior of the patients. In other words, the postural homeostasis. In this way, we intend
to provide a synthetic vision of the energy impact of stroke, from the particularities of
the operation of the nervous system, its implications, as one of the determinant factors
in the possibilities of neurological, functional, and behavioral recovery of our patients.

Keywords: energy, cell damage, locomotion (MeSH), postural control (MeSH), small-world network, stroke
(MeSH)

INTRODUCTION

Stroke is a leading cause of death and disability in many Western nations (Coupland et al., 2017).
The main alteration after stroke is motor impairment, which affects the control of face, arm, and
leg movements and is present in about 80% of patients (Walker et al., 2017). More than 30%
of survivors still cannot walk independently at 6 months (Corbetta et al., 2015). These deficits
are associated with specific impairments in the upper (UL) and lower limb (LL). It is estimated
that alterations of UL function occur in 85% of patients during the first days after the stroke
(Koh et al., 2015), and the sequelae, after 6 months, persist between 55 and 75% (Buma et al., 2013).
Similar figures were reported for LL (Aqueveque et al., 2017).
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Motor impairments of LL and UL cause limited use or
non-use in activities of daily living (ADL), such as dressing,
cooking, or bathing (Nichols-Larsen et al., 2005; Price and
Choy, 2019). Therefore improving UL functions for reaching
and manipulating objects is a central element in post-stroke
rehabilitation, which requires the complex integration of
neuromuscular activity from the trunk to the fingers (Dobkin,
2005). Complementarily, improving the postural control and LL
functions during gaits is crucial for performing functional and
social activities (Pollock et al., 2007).

Studies have shown that there is an early window of cerebral
plasticity post-stroke given by the injury physiopathology (Ng
et al., 2015; Chippala and Sharma, 2016; Zeiler et al., 2016).
One question regarding this early window is how to perform
rehabilitation to achieve the greatest functionality with the
least compensation. Such a challenge requires a broad and
multisystemic view of the impairment associated with the stroke
that must cover from cellular to behavioral level. Current
theoretical approaches have highlighted the role of energy
homeostasis as a constraint for the operation of the nervous
system. From this point of view, we will summarize the current
evidence at three levels of nervous system organization to
describe the energy implication of their functioning, both in
healthy and after a stroke (Figure 1).

ENERGY AND CELL DAMAGE

Generally, when we talk about energy processes in mammalian
cells, we refer to the metabolic pathways associated with ATP
production linked to the cyclization of NADH (Rigoulet et al.,
2020). Our cells use bioenergetic molecules to carry out processes
such as metabolism regulation, transport across membranes,
biosynthesis of new molecules, and mechanical energy generation
(Atkinson, 1977; Suarez, 2012). However, these processes depend
directly on two fundamental factors: (1) mitochondrial integrity
and (2) oxygen availability (Nunnari and Suomalainen, 2012;
Rigoulet et al., 2020). These factors are fundamental in that
they can promote neuronal processes such as synaptic plasticity
in mature and aging nervous systems (Todorova and Blokland,
2016). Therefore, if we consider the stroke as an event in which
the blood flow to specific regions of our brain is interrupted
(Sacco et al., 2013; Campbell et al., 2019), it is logical to bear
in mind that the energy metabolism of the affected areas has
significant alterations.

General mechanisms in cell damage are characterized by
multiple physiological responses that involve increased energy
expenditure, increased lipid and protein catabolism, nitrogen
imbalance, hyperglycemia, among others (Kinney, 1995; Chioléro
et al., 1997). It has been determined that the basal metabolic rate
of subjects who have undergone a surgical procedure or who have
suffered brain trauma, increases between 20 and 50% (Weissman
and Kemper, 1992; Petersen et al., 1993; Chioléro et al., 1997).
Likewise, during cerebral ischemia, glucose metabolism changes
significantly, passing from aerobic metabolism to anaerobic one
(Schurr, 2002) and activating the pentose phosphate cycle, which

increases the ratio between NADPH/NAD+ (Sahni et al., 2018)
and therefore, an increase in metabolic rate.

Strokes are characterized by an impairment of the blood,
nutrients, and oxygen supply, to brain tissue (Campbell et al.,
2019). Likewise, stroke areas were classified into: (1) the part
of the brain with blood hypoperfusion, changes in metabolism,
and electrical hypoactivity were called the ischemic core, and
(2) the region with progressive loss of functional tissue was
called the penumbra zone (Astrup et al., 1981; Campbell et al.,
2019). In the ischemic core, blood flow is less than 20%
compared to basal flow (Lo, 2008), which results in immediate
oxygen and glucose deprivation, causing neurons to be unable
to produce electrochemical gradients, in addition to increasing
the intracellular calcium concentration, which is cytotoxic in
large quantities (Iadecola and Anrather, 2011; Marlier et al.,
2015). Otherwise, the region of the ischemic penumbra has a
partially compensated blood flow, so it is not exposed to energetic
disorders related to the ischemic core, however, these neurons are
exposed to glutamate accumulates in the affected region (Iadecola
and Anrather, 2011; Marlier et al., 2015).

Mitochondrial dysfunction after a stroke contributes to an
increase in reactive oxygen substances and a depletion in
ATP production (Semple, 2014). Furthermore, the alteration of
mitochondrial metabolism will result in the activation of cellular
pathways that promote cell death processes (Kasahara and
Scorrano, 2014; Datta et al., 2020). Likewise, oxygen metabolism
is significantly reduced, considering that factors such as blood
perfusion, cerebral blood flow, and cerebrovascular resistance are
in homeostatic unstable states, directly affecting mitochondrial
integrity (Lin and Powers, 2018). Consequently, alterations in
brain metabolism mediated by stroke result in a significant
energy depletion in the affected tissue, which contributes to
the loss of functional cells, the decrease of the molecules that
participate in the basal metabolic processes, and global alterations
in mitochondrial and oxygen metabolism.

The metabolic alterations caused by the stroke not only bring
consequences to the regions directly involved but also affect other
organism processes, such as abnormal activation of the muscles
(Macko et al., 1997; Hunnicutt and Gregory, 2017), changes in
the metabolism of amino acids and lipids (Wang et al., 2020),
elimination of reactive substances oxygen and DNA damage
(Li P. et al., 2018), among others. For example, some compilation
studies have identified many metabolites involved in multiple
metabolic pathways that change their levels significantly around
the stroke episode (Au, 2018; Shin et al., 2020).

The progressive loss of functional brain tissue due to ischemia
leads to alterations in the general functionality of the neuronal
networks and changes in the basal metabolism of the affected
people. However, the endogenous mechanisms of tissue repair
and the initiation of neurogenesis are significantly impaired
(Toman et al., 2019) by ongoing inflammatory processes and
DNA damage (Li P. et al., 2018). Until now, few studies have
conclusive results related to the recovery of damaged tissue,
however, some approaches shed light on which guidelines to
follow to promote the recovery of metabolism after a stroke
(Kuriakose and Xiao, 2020). It has been observed that HIF-1α,
a protein that participates as an intermediary in cell adaptation
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FIGURE 1 | Energy implications at different levels of functioning as a consequence of stroke. Schematic synthesis of the main implications of stroke in energetic
functioning at the cellular, network, and behavioral levels. Every level impacts reciprocally in the following, as indicated by bidirectional arrows.

in response to hypoxia, could be an excellent therapeutic target
in stroke since it favors the reactivation of neural stem and
progenitor cells and local angiogenesis (Cunningham et al.,
2012). This is how new pharmacological targets have been
explored to promote neuronal repair (Wu et al., 2017) and
re-stabilize the lost energy metabolism.

ENERGY AND NEURAL NETWORKS

Neural communication is the most expensive operation in the
nervous system. Due to the high flow of information, energetic
consumption of the nervous system reaches ∼20% of the total
energy consumption of the body at resting state, even though
it only represents 2% of the body mass (Shulman et al., 2004).
This consumption increases in regions identified as hubs for the
network, as proved by correlation studies between functional
connectivity and cerebral blood flow, a surrogate of cerebral
metabolism. The majority of energetic expenditure is associated
with signal transmission, which depends on active processes
for maintaining several events, including the ionic gradient for
action potential propagation and pre and postsynaptic events
for network communication (Yu and Yu, 2017). Consequently,
a decrease in the energetic supply interrupts the operation of
neural networks. A paradigmatic case is a stroke, where a drop
in blood flow by an arterial conflict (thrombosis, embolism,
or hemorrhage) provokes a deterioration of the functioning

of brain regions dependent on such a source of energy. The
extreme energy dependence of brain tissue is manifested by
the fact that initial neurologic impairments could be reverted
if reperfusion strategies restitute the blood flow (Imran et al.,
2021). This brain pathophysiology supports current theoretical
proposals that highlight the role of energy homeostasis as a
constraint for neuronal processes at the molecular, network,
and behavioral levels (Vergara et al., 2019). At the network
level, the energy homeostasis principle sets that individual
neuron activity influences the network activity to reach a
homeostatic state between production and energy consumption.
Such interdependency for the network components exhibits an
optimal topology that can be described by theoretical graph
analysis. Thus, complex networks are characterized by an optimal
configuration where every component or “node” is connected
with their neighbor by the shortest connection, forming local
clusters but including few long connections for distant nodes
(Watts and Strogatz, 1998). This configuration, named “small-
world,” guarantees a shorter path between nodes, optimizing
the connectivity, leading to an optimal timing for signal
transmission with a reduction in wiring (axons), minimizing
the energy cost (Bassett and Bullmore, 2006). Long brain
connections impose a high energy cost associated with sodium
conductance (Yu and Yu, 2017). Therefore, a small-world setting
is an appropriate tradeoff between optimal communication
and energy consumption, reaching a homeostatic state. This
feature is especially relevant to maintain a large-scale distributed
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information processing, which has been proposed as the brain’s
functional organization that supports sensorimotor and cognitive
control of behavior (Varela et al., 2001).

What happens in stroke, where network components are
dysfunctioning (penumbra region) or lost (core region)?
Neuroimaging technics allow the description of network
reorganización after a stroke. The majority of recent studies
report the conservation of small-world definition for the network
state, but with a deterioration of specific small-world indices
in acute (Caliandro et al., 2017; Shi et al., 2021) and subacute
stages of the stroke (Wang et al., 2010; Zhang et al., 2017; Li
et al., 2021). Interestingly, the preservation (Bonilha et al., 2016)
and recovery (Caliandro et al., 2017; Li et al., 2021) of optimal
small-world properties of the network correlate positively with
the improvement of cognitive and motor functions, suggesting
that small-world indices restoration could be a proxy for
predicting neurological recovery (Vecchio et al., 2019). Studies
in animal models (van Meer et al., 2012) have complemented
these findings, showing that the initial small-worldness (an
excessive clustering and wiring of the network) evolves to
an optimal small-world topology in the chronic stage. Such
network remodeling is accompanied by a recovery of the
disrupted corticospinal system in parallel to the improvement
in sensorimotor performance, which is similar to the association
between corticospinal excitability and hand motor recovery
described in humans (Veldema et al., 2018). As discussed
previously, a small-world configuration is an energy-efficient
communication model compared to random networks (Zhang
et al., 2013); therefore, stroke initially leads to a loss of optimal
network configuration, with a consequent energy inefficiency
neuronal functioning. Consistently, neurological recovery is
associated with a network reorganization that shows better
small-world indices, and therefore, energy optimization. This
optimization at the network level impacts behavior, where the
recruitment of the corticospinal descending system allows an
efficient and effortless upper limb performance (representing an
optimal network functioning). In comparison, the compensatory
use of alternative descending systems (as the rubro and reticular
spinal tract or the ipsilesional corticospinal tract, all suboptimal
networks) provoke effortful and inaccurate hand control with
a high energy cost for movement (Takenobu et al., 2014;
Jones, 2017). Future research incorporating energetic measures
associated with network analysis could give us a complete
description of network dynamics behind stroke recovery.

ENERGY AND MOTOR BEHAVIOR

Implications for Postural Control
Movement is probably one of the principal manifestations of the
nervous system, with three principal characteristics: coordinated,
propositive, and adaptative to the ambient’s demands. In this
specific scenario, postural control (PC) arises as a fundamental
behavior. In a daily living scenario, the system has to deal with
these conditions to maintain the adaptability of posture with
the variability good enough to be stable against any demands
(task and ambient). The expertise in the perception-action

couple would influence the person’s performance (Seifert et al.,
2014). In pathological conditions, postural homeostasis might be
disrupted. After a stroke, the patients have deficits in PC (Tasseel-
Ponche et al., 2015) and a sensory reweighting to maintain their
standing posture (Bonan et al., 2013).

With the help of posturography, has been reported a decrease
in PC when it is evaluated in eyes close condition and a dual-task
condition, and an altered bodyweight distribution compared with
healthy individuals (Bensoussan et al., 2007).

Stroke causes several physical impairments, that limit the
functionality of the patients. Fatigue is one of them and is
related to an elevated metabolic load due to higher mechanical
demands during daily living activities. Houdijk et al. (2010)
reported no differences in basal metabolism compared with
healthy subjects, but when the comparison is made during
upright position, the differences are significant, where the net
average energy expenditure was 125% higher for patients with
stroke (Houdijk et al., 2010).

Implications for Locomotion
Locomotion is a complex motor function controlled by
a Central Pattern Generator (CPG) located in the spinal
cord (Guertin, 2009). The modular organization of muscle
synergies, the source of the basic rhythmic limbs movements,
is “embedded” in the CPG (Tresch et al., 1999), goal-directed
locomotion needs posture and steering control systems, which
are scattered in different CNS areas, like the cortex, basal
ganglia, cerebellum, brainstem (Grillner et al., 2008; Guertin,
2009). Therefore, locomotion relies on efficient communications
through ascending and descending pathways, to assure sensory-
motor integration.

As we have reviewed previously, neural network dynamic
is altered from energy failure associated with stroke. In the
case of locomotion, damage of the motor cortex and its
output, the corticospinal tract, translates into deregulation of
the locomotion network at the level of descending subcortical
pathways and spinal circuits, giving rise to weakness, spasticity,
and spastic synergistic patterns of muscular activation (Li S. et al.,
2018). These impairments explain the stereotypical hemiplegic
gait, which has a poor biomechanical performance despite its
elevated energy cost.

Lower limb muscles during walking are organized in four
synergy modules, corresponding to specific parts of the stance
(weight acceptance, midstance, and toe-off) and swing phases
(Pequera et al., 2021). However, in post-stroke patients, a
reduction of the number of synergy modules in the paretic limb
has been observed, and most of them only require two or three
modules (Clark et al., 2010). Such reduction, a consequence of
changes in the neural communication pathways (Clark et al.,
2010), leads to a higher level of co-contractions and slower and
less fluid movements, which results in a reduced self-selected
walking speed (SSWS) (Detrembleur et al., 2003).

Therefore, the stroke would cause a cascade of events, started
in the CNS, which affect the motor coordination and the
mechanics of the paretic limb. Its poor contribution to the push-
off would determine a compensatory action of the non-paretic
limb (Chen et al., 2005; Farris et al., 2015). This includes an
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increased circumduction of the paretic leg during the swing,
also resulting in a counteracting higher torque of the other leg
(Shorter et al., 2017). Despite such asymmetries, the pendular
mechanism of walking is maintained (Zamparo et al., 1995),
but with limited potential and kinetic energy interchanges, due
to reduced amplitude of the kinetic energy. This would reduce
the energy recovery and increase the external mechanical work
(Detrembleur et al., 2003).

The motor coordination and mechanical impairments
determine, in post-stroke patients, a high metabolic cost
of walking per unit distance (C) (Zamparo et al., 1995).
When provided with handrail supports, patients improve
both their SSWS and the C, suggesting that their extra
cost is partially due to enhanced efforts for balance control
(Ijmker et al., 2013). The low SSWS itself contributes to
increasing the C, being located within the left rising branch
of the “U” shaped C versus speed relationship, as frequently
observed in pathological walking gaits (Bona et al., 2017,
2020).

Implications for the Upper Limb Control
After a stroke, the damage of neuronal and glial tissue produces
a loss of selectivity and efficiency of the control of the
upper limb (Murphy and Corbett, 2009). Usually, this damage
is compensated with alternative neural networks, alternative
kinematic patterns, and greater cognitive control which at the
brain and body level implies a greater energy expenditure (Cirstea
and Levin, 2000; Levin et al., 2002, 2009; Jones, 2017; Balbinot
et al., 2022).

This damage to the cortical control network could disrupt
a small-world organization, which has an impact on energy
efficiency and the selective and flexible control (Gerloff and
Hallett, 2010; Rehme and Grefkes, 2013; Li et al., 2021).

CONCLUSION

Based on the literature available, we have discussed the effect of
stroke, going from cellular to behavioral levels.

In stroke patients the cellular mechanisms are disrupted,
affecting not only the neural network functioning but also
postural and locomotion control. The impairment of blood,
nutrients, and oxygen generates a chain reaction, conducting to
a hyper-reactive state and mitochondrial dysfunctions, leading to
metabolic dysfunction, causing an energetic lack. At the network
level, stroke leads to a loss of small-world topology, which
compromises the information processing and leaves the brain
network in an energy inefficient operating state. Fortunately,
post-stroke recovery is accompanied by a variable degree
of restoration of small-world properties, which is associated
with neurological recovery. Thus, the stroke compromises the
energy homeostasis of the network. At a behavioral level,
upper limb, posture and gait are frequently affected, provoking
several dysfunctions and functional limitations. Such motor
impairments could be classified into the category of stability
problems, causing poor control of the inherent variability of the
motor behavior. These stability problems lead to over-expanding
energy to compensate for the reduction of synergies involved in
the motor control.

Finally, recent changes in the paradigms of studying the
nervous systems that incorporate the energy in the formula,
represent a big step forward to a multifactorial and integrative
comprehension of the functioning of the nervous system in
healthy and impaired conditions.
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