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UN OBJETIVO DE RESILIENCIA OPERACIONAL PARA INTEGRAR EN
PROBLEMAS DE EXPANSIÓN DE CAPACIDAD EN PRODUCCIÓN DE

HIDRÓGENO VERDE A TRAVÉS DE HRES

El hidrógeno verde (H2V) es un atractivo vector energético producto de su nula emisión
de carbono en su proceso de producción y uso, ayudando al sector de transporte y potencia
en la transición a energías límpias. El H2V presenta un desafío respecto a resiliencia, ya que
su producción depende de energías renovables (ER), las cuales están sujetas a variabilidad.

Chile posee una ventaja para la producción de H2V debido a sus favorables condiciones
climáticas, con energía solar y eólica dominantes en el norte y sur del país respectivamente.
Se ha desarrollado una estrategia nacional de producción de hidrógeno, la cual contempla
convertir a Chile en un productor de H2V a nivel mundial, pero producto del incierto compor-
tamiento de las fuentes de ER, la variabilidad del sistema debe ser abordada, especialmente
en redes sin conexión a la red central.

La presente tesis desarrolla una nueva función objectivo de resiliencia operacional para ser
incluída en modelos de expansión de capacidad de plantas de H2V. Esta función es construida
a partir de las fluctuaciones externas de las fuentes de ER, fallas internas de conversores de
corriente, y la capacidad de almacenamiento de masa y energía para otorgar una operación
flexible y confiable. La función propuesta captura los detalles de la variabilidad climática
en la decisión de instalación de plantas, y compensa la variabilidad del sistema a través de
baterías y tanques de hidrógeno.

A través de un caso de estudio en la región del biobío se corrobora el uso de la función
objetivo, obteniendo un un diseño de planta más robusto que un modelo puramente econó-
mico al mismo precio de equilibrio de hidrógeno, implementando perfiles de expansión que
consideran almacenamientos de mayor capacidad. El sistema considera la variabilidad espe-
cífica de diversas zonas geográficas, implementando capacidad de producción solar y eólica
differentes en cada localidad. Comparado el modelo económico, el multi-objetivo reduce la
energía eólica en hasta un 51 % producto de su variable naturaleza, compensando con un
incremento de las fuentes solares de hasta un 23 % dependiendo de la localidad. El constraste
en la capacidad de almacenamiento es notable entre ambos modelos, donde el multi-objetivo
presenta un aumento de un orden de magnitud para la capacidad de tanques de hidrógeno
y baterías en comparación al modelo económico. En este caso de estudio, los cambios en el
diseño requieren una inversión de 0,37 [USD] por kilogramo de hidrógeno producido para
lograr un sistema menos variable y más robusto.

i



RESUMEN DE LA TESIS PARA OPTAR AL GRADO DE:
MAGISTER EN CIENCIAS DE LA INGENIERÍA, MENCIÓN QUÍMICA
RESUMEN DE LA MEMORIA PARA OPTAR AL TÍTULO DE:
INGENIERO CIVIL QUÍMICO
POR: ANDRÉS IGNACIO CÁRDENAS OYARZÚN
FECHA: 2023
PROF. GUÍA: FELIPE DÍAZ ALVARADO

AN OPERATIONAL RESILIENCE OBJECTIVE TO INTEGRATE IN
CAPACITY EXPANSION MODELS FOR GREEN HYDROGEN

PRODUCTION THROUGH HRES

Green hydrogen is an attractive energy vector due to its zero carbon emission in produc-
tion and use, supporting transportation and power systems in a transition to cleaner energy
worldwide. The production of green hydrogen has a fundamental challenge in resilience since
renewable energy (RE) systems are subject to variability.

Chile presents an important advantage for producing green hydrogen due to its favorable
weather conditions, with solar and wind energy being dominant in the north and south of the
country respectively. The nation has developed a hydrogen strategy that strives to convert
Chile into a major global producer of green hydrogen worldwide, but due to the uncertain
nature of RE systems, the variability of the energy supply must be dealt with, especially in
off-grid systems.

The present thesis develops a novel operational resilience objective function to be inclu-
ded in green hydrogen capacity expansion models. This function is constructed from external
source fluctuations, internal converter failures, and the capacity of a dual storage system to
provide a more reliable and flexible system. The novel objective functions capture the nuan-
ce of variability in the allocation of hydrogen production facilities in different geographical
locations and mitigate the expected variability of the system through the storage capacity
design in each plant.

An illustrative case study in the Biobío region corroborates the objective function use,
obtaining a more robust plant design with the same hydrogen equilibrium price as a pu-
rely economic model, implementing higher storage capacities and different expansion profiles
that account for storage in a more strategic manner. The systems design also considers the
specific variability present in each location, where different wind and solar energy sources
capacities are established accordingly. Compared to the economic model, the multi-objective
approach reduces the wind power installations by up to 51 % due to their more unstable
nature, compensating with the more stable solar source with an increased capacity of up
to 23 % depending on the location. The contrast of storage capacities is notable when the
proposed objective function is incorporated, resulting in an increase of an order of magnitude
in the hydrogen and battery storage capacity. In this case study, the design changes require
an investment of $0.37 [USD] per kilogram of produced hydrogen to achieve a less variable
and more robust system.
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La medicina, leyes, administración, ingenierías son muy nobles y necesarias para sostener
la vida, pero la poesía, belleza, romance, amor. . . Es por eso que vivimos

Sociedad de los Poetas Muertos

iii



Agradecimientos

Agradezco infinitamente a mi familia, a mis padres, Jorge, Kattia, quienes desde pequeño
me enseñaron el valor del esfuerzo, el conocimiento y el trabajo. Quienes siempre me apoya-
ron, me amaron, me cuidaron y educaron. Me siento afortunado y profundamente agradecido
de poder decir que ustedes dos son mis padres. Quiero agradecer a mi hermano y mis herma-
nas, Marcos, Debora, Bárbara, gracias por siempre estar ahí. Gracias por darme la posibilidad
de tener hermanos a los que siempre puedo recurrir para cualquier cosa, y de los cuales estoy
orgulloso a más no poder.

A mis amigas y amigos de la universidad, Camilo, Blanca, Mati, Cid, Basadita, Pancho,
Javo, Mery, Mamanda, gracias por todo el apoyo, las risas, los carretes y la buena amistad
que me dieron. Muchas gracias a ti también, Almendra, gracias por acompañarme durante
tantos años, y ayudarme a lograr ser el hombre que soy hoy. A mis amigos de la vida, Tomás,
Luciano, gracias por ser un hombro en el cual reír y llorar. Claudia, gracias por estar aquí,
gracias por tu ternura y tu bella compañia en los últimos momentos de este escrito. Gracias
a los cabros, a los que siempre han estado y siempre estarán, no alcanzo a mencionarlos a
todos pero ustedes saben quiénes son. No podría soñar con tener mejores amigos que todos
ustedes, y no me alcanzan las palabras para todo lo que les quiero agradecer.

Muchas gracias a todas y todos los profesores que dentro de la universidad han forjado mi
forma de pensar, de aprender, de enseñar y de ver la vida. Mil gracias a ti, Felipe, gracias
por la mentoria y la tremenda capacidad de encaminarme a mis propios intereses. Muchas
gracias por la confianza y el apoyo en todo este tiempo. Muchas gracias Ana, por confiar en
este proyecto y darme la oportunidad de trabajar contigo.

Gracias a mis profesores de composición, Sebastián, Andrés, muchas gracias por acompa-
ñarme y guiarme en el camino de mi propio arte. Por apoyarme en no rendirme a la idea
de que uno es una sola cosa, solo un ingeniero, solo un estudiante. Nunca dejaré de vivir
la música como ustedes dos me lo enseñaron, sin importar quién piense lo contrario. Pablo,
gracias por ayudarme en el gran paso de dejar los males del pasado atrás. Gracias por sanar
mi cuerpo y alma a través del arte que hoy llevo orgullasamente conmigo a todos lados.

Agradezco también a todos esos desconocidos, a quienes uno nunca contempla, los que
trabajan día a día en crear y mantener una sociedad donde podemos realizarnos como persona.
El resultado que hoy presento es fruto de mi esfuerzo, sin duda, pero es también el resultado
del esfuerzo y trabajo de muchos héroes anónimos gracias a los cuales puedo ser hoy quien
redacta este escrito. A todos ustedes, muchas gracias.

iv



TABLE OF CONTENT

1. Introduction 1
1.1. Renewable energy systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. HRES modelling literature review . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1. Classical optimization techniques . . . . . . . . . . . . . . . . . . . . 2
1.2.2. Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.3. Hybrid methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Resilience in power systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4. Aim of this study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Problem statement 6
2.1. System modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1. Problem super-structure . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2. Representative days approach . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3. Generation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4. Battery storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.5. Alkaline electrolysis model . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.6. Hydrogen Compressor . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.7. Hydrogen tank storage . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.8. Capacity expansion modelling . . . . . . . . . . . . . . . . . . . . . . 10

2.2. Economic objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1. Terrain investment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2. CAPEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3. OPEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4. H2 storage opportunity cost . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5. Discount factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3. Objective function development . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1. Resilience in this context . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2. Indicator constituents . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3. External variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.4. Internal variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.5. Proposed objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3. Case study 16
3.1. Locations and climate data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2. Projected demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1. Computation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

v



3.3.2. Solution multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3. Pareto front and equilibrium prices . . . . . . . . . . . . . . . . . . . 18
3.3.4. Capacity expansion: single and multi objective comparison . . . . . . 19
3.3.5. The role of storage: Single and multi objective comparison . . . . . . 21
3.3.6. Results remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4. Conclusion 25
4.1. Summary of the Thesis and Key Contributions . . . . . . . . . . . . . . . . . 25
4.2. Future Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

BIBLIOGRAPHY 26

ANNEXES 32
A. Alternative designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
B. Hydrogen demand projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
C. Electrolysis technologies cost comparison . . . . . . . . . . . . . . . . . . . . 33
D. Condensed model formulation and nomenclature . . . . . . . . . . . . . . . . 35
E. Parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vi



List of Tables

3.1. Optimal value for the objective functions in each single-objective model. Alter-
nate solutions’ values are presented as a difference from the optimal solution
objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2. Results overview for the economic and MO models. Capacities are presented as
intervals of the minimal and maximum values in the time horizon, expresses as
[Min - Max]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

B.1. Parameters for the demand projection through a learning curve behavior. . . . 33
E.1. Parameters for the case study . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



List of Figures

2.1. Graphical representation of the regional production problem. . . . . . . . . . . 6
2.2. Superstructure for a generic solar/wind green hydrogen production plant. Solar

and wind generators can supply power directly to the electrolyzer and com-
pressor; a battery system can be placed to balance the intermittencies of the
generators. The demand for hydrogen can be directly satisfied from production
or from intermediate storage tanks. . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3. Architecture of the hydrogen production plant with relevant converters. . . . . 14
3.1. Averages climate statistics of solar radiation (a) and wind speed (b) for each

location at each trimester. (Own elaboration with the data provided by the
wind and solar explorers [56, 57]) . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2. Hydrogen equilibrium price for each Pareto point. . . . . . . . . . . . . . . . . 18
3.3. Expansion profiles of the economic model for Negrete (a) and Aguapie (b) res-

pectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4. Expansion profiles of the heteronomy model for Negrete (a) and Aguapie (b)

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5. Expansion profiles of the multi objective model for Negrete (a) and Aguapie (b)

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6. Mass storage per location profile for the single and multi objective models. . . 21
3.7. Heteronomy objective function behavior. . . . . . . . . . . . . . . . . . . . . . 22
3.8. Equilibrium price of hydrogen in each Pareto optimal solution. . . . . . . . . . 24
A.1. Alternative designs for the Aguapie expansion. Obtained through the ”No good”

integer cut. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
B.1. Global hydrogen demand projection through a learning curve for pessimistic,

normal and optimistic scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

viii



Chapter 1

Introduction

1.1. Renewable energy systems
Fossil fuels and their greenhouse gas emissions have considerably impacted the environ-

ment, specifically on climate change [1]. Renewable energies (REs) are proposed to mitigate
this problem; however, REs present technical challenges in contrast to fossil resources. Rene-
wable sources are susceptible to exogenous effects such as weather conditions, and in some
RE systems, the offer of primary energy is not predictable (e.g., tidal and wind energy). As
a consequence, the supply has to deal with uncertainty [2].

The Hybrid Renewable Energy System (HRES) is a methodology developed to withstand
this deficiency. This proposes that a system composed of coupled RE sources can complement
each other’s deficiencies and produce a more stable energy output. In addition, these systems
consider various types of energy storage technologies to further improve the stability [3].

Green hydrogen has been studied extensively as an energy carrier with no direct carbon
emissions at the production phase [4]. This attractive property has led to international inter-
est in developing hydrogen production based on hybrid renewable energy systems. Mainly,
Chile is known as one of the countries with a significant capacity to produce clean energy,
specifically from solar and wind sources, and has the opportunity to become a global leader
in green hydrogen production [5].

However, dealing with the variability of RE sources is still a pending question in the design
phase of regional or national-scale HRES. There is a lack of resilience metrics integration at
the design phase of long-term energy systems [6]. This paper provides a quantitative approach
to HRES resilience by considering the resource variability and the intrinsic failure rate of
physical components in the system. This quantitative approach is expressed as an objective
function in a MILP model to decide the capacity expansion of regional-scale HRES.

1.2. HRES modelling literature review
Mathematical programming in HRES design is used to achieve a specified goal (such

as minimal cost or emissions) while considering pertinent constraints associated with the
system and its parts [7]. Different optimization techniques, such as classical techniques, meta-
heuristics, and hybrid methods, can be employed to find optimal solutions successfully.
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1.2.1. Classical optimization techniques
Linear programming approaches to HRES design have been applied extensively. Nonethe-

less, linear formulations cannot accurately represent the complexities of HRES systems, such
as non-linear physical constraints or binary choices of expansion or investment.

Considering logical decisions and integer values, mixed integer programming has been
implemented to assess for more realistic models. Ferrer-Martí et al. (2013) demonstrated the
performance of an integer based model to determine size an locations of an HRES design,
based on the minimization of the investment cost [8]; Ahadi et al. (2016) developed a novel
approach for optimal wind/PV and battery storage islanded system design, considering the
range of battery storage dependent on the capacity of the sources to satisfy a fixed demand
[9]; Lara et al. (2018) proposed a deterministic multi-scale formulation for electric power
infrastructure planning, considering annual generation, investment and hourly operational
decisions [10]; Yu et al. (2019) studied the design and operation of HRES through a two-
stage stochastic MILP model, resulting in a lower total cost than deterministic models [11];
Alberizzi et al. (2020) developed a model that considers type of energy generation, optimal
number of equipment’s, storage technologies and optimal management strategies, to minimize
the systems dependence on fossil fuels while supplying a fixed demand for a case study [12];
Vera (2020) proposed a resilience indicator based on the health overtime curve of a power
system, and analyzed its effectiveness through an integer programming approach [13]; Pan
et al. (2020) developed a bi-level mixed-integer model to improve the systems economy and
minimize the levelized cost of hydrogen with the use of solar, wind and geothermal sources
[14]; Lim et al. (2021) modelled the transition of localized HRES produced energy to hydrogen
and other potential carriers. The authors developed a MILP in a P-graph superstructure
setting, considering a petrochemical industrial complex in South Korea as the case study
[15]; Weimann et al. (2021) studied hydrogen production through HRES considering dual
storage technologies. Through a MILP approach, a zero-emissions wind-dominated system
was developed, and how hydrogen demand affects the use of it as storage instead of as a
commodity [16]; Corengia et al. (2022) formulated a model that considers the selection of
energy sources, type of electrolyzer, its capacity and energy storage devices, concluding that
hydrogen has a prospect that outreaches energy surplus storage only [17]; Li et al. (2022)
proposed simplifications for MILP models of generation and transmission expansion planning
of power systems [18].

Implementing nonlinear programming (NLP) and mixed integer nonlinear programming
(MINLP) methods is less abundant than other classical optimization techniques. El-Zeftawy
et al. (1991) determined a cost-effective optimal configuration for a wind-diesel and wind-
battery hybrid for the seasons of the year; Ashok (2007) discussed different system compo-
nents and solved an NLP formulation to attain minimal life cycle cost for a typical rural
community [19]; Obaro et al. (2018) developed and optimal control and management system
for hybrid energy systems through an MINLP objective function. The proposed system sig-
nificantly minimizes the cost and improves the supply reliability compared to a single system
[20]; Gutiérrez et al. (2022) determined the optimal PV solar kit grid-connected sizing with
battery storage that minimizes the average energy cost in a finite time horizon [21].

1.2.2. Metaheuristics
Metaheuristic search techniques are nature-inspired algorithms that achieve optimal so-

lutions to optimization problems [22]. Some examples are genetic algorithms (GA), particle
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swarm optimization (PSO), and ant colony (AC) algorithms.
Lee et al. (2009) proposed a multi-pass dynamic programming to determine the optimal

size of a battery energy storage system and contact capacities of customers at the Taiwan
Power Company [23]; Hakimi et al. (2009) proposed two hybrid system configurations con-
templating fuel cells, wind units, an electrolyzer, a reformer, a compressor, an anaerobic
reactor, and a hydrogen tank, and applied a PSO method to determine the sizing of the sys-
tem under a fixed demand [24]; Koutroulis et al. (2010) implemented genetic algorithms on an
HRES design model consisting of PV and wind energy for water desalinization energy supply,
effectively supplying water demand and minimizing economical cost [25]; Zhao et al. (2013)
optimized an HRES design on a recently developed standalone microgrid on Dongfushan,
maximizing the useful life of lead-acid batteries and minimizing power generation cost via
the nondominated sorting genetic algorithm NSGA-II [26]. The results show how the pro-
posed solving method can effectively optimize the systems operations in different scenarios;
Fetanat et al. (2015) applied an ant colony optimization on an HRES sizing problem con-
sisting of PV and wind energy systems. The mathematical model considered continuous and
integer variables, and minimizing the total cost of the system considering maintenance [27];
González et al. (2015) used a genetic algorithm to design a minimal cost HRES to supply
a fixed electrical demand, and through a sensitivity analysis determined that the systems
optimal solution design was economically robust [28].

1.2.3. Hybrid methods
Combining two or more optimization techniques can overcome the limitations of the indi-

vidual techniques. This combination is referred to as hybrid methods [22].
Katsigiannis et al. (2012) proposed and hybrid simulated annealing (SA) and tabu search

(TS) hybrid algorithm for the solution of sizing a small autonomous power system, improving
the convergence and quality of the solution to each algorithm separately [29]; Khatib et al.
(2012) solved an optimization problem for hybrid PV/wind system based on loss of load
probability (LLP) and system cost through a hybrid iterative/genetic algorithm [30]; Sinha
et al. (2015) reviewed recent trends in HRES optimization techniques, and stated that hybrid
techniques of two or more algorithms could overcome limitations of the traditional single
optimization methods [31]; Wang et al. (2015) developed a receding horizon strategy to
account for demand response and operational optimization of an HRES while considering
real-time predictions and a demand-responsive scheme. The effectiveness of the strategy is
analyzed through a residential case study [32]; Kavadias et al. (2018) created an algorithm
to asses for hydrogen-based storage system in an autonomous electrical network, providing
optimal sizing of the hydrogen storage system to maximize the recovered energy that would
otherwise be curtailed [33].

1.3. Resilience in power systems
Resilience can be understood as the capacity to withstand misfortune and recover from

undesirable events. Applied to any specific fields such as energy systems, infrastructure,
material science, and others; this definition needs to be more specific in order to propose
a resilience indicator. This specificity depends on the studied system. The most common
approach to define resilience in an energy system is through the systems health-overtime-
curve, representing the transient state of specific properties over time after an incident that

3



disrupts a stable state. As exposed by Gasser et al. [34], a multiplicity of resilience definitions
and measures are defined through this curve. They are clustered in two groups: draw-down,
which represents the system’s loss due to an undesired event, and draw-up, as the system’s
ability to recover from said adverse event. Some examples of the draw-down section of the
curve are:

• Robustness: referring to a system’s capacity to withstand a given level of stress or
demand without any loss of function [35].

• Absorptive: as the degree to which a system can absorb the impacts of a perturbation
and minimize consequences with minimal effort [36].

• Resist: referring to the capacity of the system to stay within acceptable ranges of
functionality after a negative event [37].

The draw-up section is associated with recovery behaviors. Some examples are:

• Recover: capacity to recover quickly and at low cost from potentially disruptive events
[37, 38].

• Adapt: how the system adapts to the newly introduced conditions [39].

• Rebuild: capacity to rebuild all the functions and establish normalcy [40].

Vera [13] studied the resilience of an HRES design through a novel resilience indicator
and its solution employing MILP optimization. Resilience is considered a system’s capacity
to recover from catastrophic events, such as earthquakes, and conducted a comprehensive
review of resilience indicators based on the system health over time curve. This approach
is innovative in considering resilience as an objective function in HRES design. Nonetheless,
the multiplicity of ways one can define resilience means that the author’s approach does not
encompass some important nuances, such as energy supply stability in normal conditions.

Cho et al. [41] reflect on the simultaneous consideration of reliability (withstanding com-
ponent failure), flexibility (achieving feasible operation under uncertain conditions), and re-
silience (capacity to withstand catastrophic events) in power systems planning as a necessity
for future advanced optimization, defining and differentiating this three terms and their ap-
plications.

1.4. Aim of this study
Most of the studied resilience metrics in section 1.3 are based on the system’s health-over-

time curve. Because of this, resilience metrics can be used in dynamic models for planning
energy systems. Consequently, the proposed indicators require information on how much sys-
tem loss occurred at a specific time, how much it lasted, and how fast the system dropped
quality and recovered functionality. When design considers long-term planning, such as ca-
pacity expansion models, it is not possible to assess with confidence what disruptive events
will occur and their magnitude. According to Hammer and Veith [6], a research gap exists in
optimizing HRES with respect to robustness and resilience. Because of this, an alternative
indicator to measure resilience is needed for a yearly planning model.
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The novelty of this paper is a multidimensional design of a regional green hydrogen produc-
tion system through a novel objective function for HRES operational resilience. Accounting
for the primary power sources variability, the internal physical components failure rate, and
the mitigation through a dual storage system of batteries and H2 storage tanks. The trade-off
between an increased storage capacity, renewable energy variability, plant allocation, and the
cost of the system is analyzed through a multi objective optimization of present cost and the
proposed operational resilience function through a regional capacity expansion case study in
Chile.
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Chapter 2

Problem statement

This work focuses on the allocation and capacity expansion of off-grid green hydrogen
production facilities within a delimited geographical region subject to a given hydrogen de-
mand. Each location in the region needs to define whether or not to install renewable energy
(RE, solar, or wind) generators, a bank of batteries to store that energy, an electrolyzer, the
associated hydrogen compression stage, and tanks for storage. In addition, it’s required that
these designs be resilient. Figure 2.1 depicts a representation of the problem.

Figure 2.1: Graphical representation of the regional production problem.

Due to the intermittency of the RE sources, variability in the energy output is expected.
Said variability may result in a hydrogen production deficit if the system cannot overcome
the energy shortfall. Storage capacity, either in batteries or in hydrogen tanks, provides the
system with flexibility in operation, reducing the effects of an energy deficit but incurring
a trade-off of higher capital and operational cost. The main objective of the allocation and
subsequent capacity expansion is to determine the optimal sizing and investment plan for
each location each year, thriving for an economical and flexible regional hydrogen production
system.
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2.1. System modelling
The proposed model is a Mixed Integer Linear Programming superstructure-based pro-

blem, and in the following subsections, a summary of the model will be stated. The model is
composed of r locations in the considered geographical region, d representative days hourly
discretized by the index t. A complete formulation is available at Appendix D. A MILP ap-
proach is considered over LP or MINLP for this problem to provide sufficient mathematical
tools to model decisions of investment and design while maintaining a trackable computation
time.

2.1.1. Problem super-structure
The superstructure of the problem is a simplified representation of a solar/wind green

hydrogen production plant with integrated energy and mass storage. Since the model does
not encompass interactions between each plant, a process diagram for a generic plant can
be defined for each location. This is shown in Figure 2.2, where mass and energy flows
are presented as dashed and filled arrow lines along with equipment capacity variables as
bold text. Each piece of equipment can vary its capacity in the time horizon according
to the constraints presented in section 2.1.8. The nomenclature associated with the model
superstructure is presented in Annex D.

Figure 2.2: Superstructure for a generic solar/wind green hydrogen pro-
duction plant. Solar and wind generators can supply power directly to the
electrolyzer and compressor; a battery system can be placed to balance the
intermittencies of the generators. The demand for hydrogen can be directly
satisfied from production or from intermediate storage tanks.

The superstructure contemplates that renewable sources can directly supply the electroly-
zer with power for hydrogen production or feed a battery system to store energy. The battery
system can also accumulate energy and discharge power to the electrolyzer. Only Alkaline
electrolysis is considered in this study since, at the present date, it is the most cost/efficient
technology at the moment (see Annex C). The electrolyzer supplies a compressor that raises
hydrogen pressure to 300 [Bar] for subsequent storage at high-pressure tanks or its departure
for demand. The high-pressure tank can also discharge to supply demand when needed. In
this case, no transportation methods for the demanded hydrogen are analyzed since it falls
outside the studies battery limit.
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2.1.2. Representative days approach
Capacity expansion of power systems based entirely on renewable energy faces several

complications when trying to capture all the nuances and details of climatic conditions for
a rigorous plant design, mainly when relying on historical data to make future predictions.
Furthermore, modeling hourly operations of said systems through a decade-long time horizon
would turn the optimization of the system into a problem that might be untractable [42]. To
withstand this complication, a representative days approach is considered for the case study.
This method is based on selecting specific periods of a historical year; each period is then
represented by a characteristic day, which encompasses the overall behavior of the property
being analyzed [43]. In this case, said properties are solar radiation and wind speed.

The time horizon of this study will span 15 years, from 2025 to 2040 where each year
is subdivided into three representative days, grouping January to April, May to August,
and September to December. Each day presents an hourly subdivision of time, from 1 to 24
hours. It is important to note that since the scope of this publication aims to develop an
objective function for resilience, more rigorous methods to evaluate climatic conditions and
the statistical analysis of such for the selection of representative days are not considered.
Furthermore, no forecast prediction of how climatic conditions will vary due to natural or
anthropocentric causes are implemented for the same reason.

2.1.3. Generation models
Renewable energy sources are modeled according to the installed equipment area in each

location on a corresponding representative day. The variables associated with the installed
PV panel area and wind turbine swipe area are AP V

d,r and AW ind
d,r . The generation model for

solar energy is presented in equation 2.1, where power is dependent on installed area, solar
radiation, and panel efficiency as a linear equation [44].

ĖDirect
P V,t,d,r + ĖStorage

P V,t,d,r = ηP V · AP V
d,r · GSun

t,d,r (2.1)

The generation model for wind turbines is developed through an energy balance, where
the total power output of the turbine is dependent on the installed swipe area, the turbine’s
capacity factor, average wind speed, and air density [45]. Equation 2.2 presents the generation
model for wind turbines. In this study, the height of the turbines is assumed to be 80 [m]
since the in-depth design of equipment is not considered in the scope of the research.

ĖDirect
W ind,t,d,r + ĖStorage

W ind,t,d,r = 1
2 · CW ind

p · AW ind
d,r · ρAir · (vW ind

t,d,r )3 (2.2)

A specific factor is extracted from the literature to relate the swipe area with the used
terrain. Afsharian et al. [46] provides a systematic approach to determine said factor based on
a previously developed method [47], and in this study, its value is set to 1.7 · 10−3

[
m2 swipe
m2 terrain

]
.

2.1.4. Battery storage
Battery systems present two relevant modeling requirements, the energy balance that

contemplate inputs, outputs, and accumulated energy and the minimal and maximal states
of charge (SOC) required to preserve the battery system’s correct operation and lifetime. The
energy balance of the battery system is presented in equation 2.3, where charge, discharge,
and passive losses are considered.
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EsAcc
t,d,r =

[
1 − LBattery

]
· EsAcc

t−1,d,r + ∆t ·

ηCharge · Ės
in

t−1,d,r −
Ės

out

t−1,d,r

ηDischarge

 (2.3)

To equate for a linear constraint for the battery systems SOC nominal battery capa-
city constraints the stored energy according to the minimal and maximal SOC presented in
equation 2.4.

SOCmin · CapBattery,d,r ≤ EAcc
t,d,r ≤ SOCmax · CapBattery,d,r (2.4)

2.1.5. Alkaline electrolysis model
Water electrolysis is the chemical reaction used to produce hydrogen from renewable

energy sources. The hydrogen production is considered to be linearly dependent on the sup-
plied power to the electrolyzer according to equation 2.5.

Ėin
AEt,d,r = ṁout

AEt,d,r · ∆H

ηAE

(2.5)

Where ηAE and ∆H are the electrolyzer’s power to hydrogen efficiency and the reaction
enthalpy respectively. The ∆H

ηAE
factor is equal to 57.3 kWh/kg for the alkaline electrolysis

[48, 49].
An essential characteristic of AE technologies is that at small/medium capacities, a mi-

nimum load factor is required to avoid persistent shutdown periods in the electrolyzer ope-
ration, which can be incorporated through binary variables in a mixed integer programming
approach [17]. However, since this study deals with large-scale hydrogen production, the
number of required stacks is sufficient to render the minimum load factor negligible, denying
the need for more binary variables and a more complex model formulation.

2.1.6. Hydrogen Compressor
The compression stage for hydrogen can be considered as a classical polytropic compres-

sion according to Martin et al. [50]. Equation 2.6 characterizes the power consumption for
hydrogen compression.

P Comp =
ṁin

Comp · RkT

MW · (k − 1) · ηComp

(PH2

Pel

) k−1
k

− 1
 (2.6)

Where the compressors power requirement is dependent on the hydrogen mass flow (ṁin
Comp),

the compressor efficiency (ηComp), the polytropic coefficient (k), the molecular weight of hy-
drogen (MW ), and the ratio of out/in pressure (PH2

Pel
) inside the vessel.

To represent the compression model in a linear setting, the pressure inside the vessel is
considered constant and equal to the maximum pressure of the vessel. This consideration
allows a linear representation of the compression model, shown in equation 2.7.

PowerComp
t,d,r = kCompressor · ṁout

AEt,d,r (2.7)

Where k encompasses the constant values of parameters in equation 2.6 and is set to 4
[ kW h

kg H2
] according to Corengia and Torres [17].
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2.1.7. Hydrogen tank storage
Analogous to battery storage, hydrogen storage presents two crucial considerations, mass

balance for the storage system and maximal hydrogen level (HL) as a security factor. Equation
2.8 presents the mass balance associated with the pressurized tank system hourly, where a
discharge efficiency of 95 % is applied to account for pumping or leakage losses [51].

msAcc
t,d,r = msAcc

t−1,d,r + ∆t ·
(

ṁsin
t−1,d,r −

ṁsout
t−1,d,r

ηT ank

)
(2.8)

As a safety measure, the maximum hydrogen level for the pressurized tank is considered
as 95 % of the nominal capacity. Equation 2.9 presents the constraint for the stored hydrogen
mass.

0 ≤ msAcc
t,d,r ≤ HTLmax · CapT ank,d,r (2.9)

2.1.8. Capacity expansion modelling
Each technology from any location can augment or diminish its capacity within certain

restrictions. It is considered that any expansion project, no matter its magnitude, requires
a year-long development, and the augmentation of the capacity becomes available gradually
at each trimester. A decrease in technology is considered to take one trimester of the year.
Equation 2.10 presents the characterization of a technology capacity through the time horizon
as a stock constraint. As a safety measure, the maximum hydrogen level for the pressurized
tank is considered as 95 % of the nominal capacity. Equation 2.9 presents the constraint for
the stored hydrogen mass.

Capi,d,r = Capi,d−1,r +
d+2∑
d̂=d

(1
3CapEi,d̂

)
− CapDi,d−2,r (2.10)

Where ∑d+2
d̂=d

(
1
3CapEi,d̂

)
corresponds to the gradual augmentation of capacity by trimes-

ters.
The system’s expansion and decrease are associated with binary variables, defined in

equations 2.11 and 2.12 respectively.

Yi,r,d =
1 i starts an expansion at day d in location r

0 ¬
(2.11)

Xi,r,d =
1 i starts a downgrade at day d in location r

0 ¬
(2.12)

With the binary variables for increase and decrease projects, logical relations arise. If an
expansion project is being developed for a technology at a specific location, no other expansion
or decrease project can be started for said technology at that location. This is presented in
equation 2.13, where no simultaneous expansion and downgrade is allowed; equation 2.14,
which states that while an expansion project is being developed, no subsequent expansions
can be started; and equation 2.15, where no decrease project is allowed while an expansion
is taking place.
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Yi,d,r + Xi,d,r ≤ 1 (2.13)

d+2∑
d̂=d+1

Yi,d̂,r ≤ 2 · (1 − Yi,d,r) (2.14)

d+2∑
d̂=d+1

Xi,d̂,r ≤ 2 · (1 − Yi,d,r) (2.15)

Big-M constraints are implemented to associate the existence of capacity-altering projects
with the corresponding magnitude of the capacity augmentation/decrease. Equations 2.16
and 2.17 show said constraints.

CapEi,d,r ≤ M · Yi,d,r (2.16)

CapDi,d,r ≤ M · Xi,d,r (2.17)

Annex E exhibits the selected values for the M parameter at each Big-M constraint.

2.2. Economic objective function
The economic objective function is presented in equation 2.18. Terrain acquisition, CA-

PEX, OPEX, H2 opportunity cost, and a discount factor are considered to account for the
system’s economy and not only for its monetary cost.

Min: Terrain +
∑
d∈D

DFd · (CAPEXd + OPEXd + CH2
Opd) (2.18)

The subsequent subsections present the definition of the terms implemented in the econo-
mic function and its corresponding equations.

2.2.1. Terrain investment
According to the SII database, each location has its own cost and available area [52]. The

terrain is acquired the first year for each location, and the total cost is linearly dependent on
the bought area as stated in equation 2.19.

Terrain =
∑
r∈R

Cr
Area · Ar (2.19)

2.2.2. CAPEX
CAPEX considers the installation cost of a certain capacity for a specific technology.

Equation 2.20 presents the implementation cost at the beginning of the time horizon, where
the installed capacity of day 0 is related to implementation cost. Meanwhile, equation 2.21
defines the cost of subsequent capacity expansion, where the implementation cost is related
to the expansion of capacity, not to the current installed capacity at said representative day.
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CAPEX0 =
∑

i∈I, r∈R

Ci
Impl · Capi,0,r (2.20)

CAPEXd ̸=0 =
∑

i∈I, r∈R

Ci
Impl · CapEi,d,r (2.21)

2.2.3. OPEX
OPEX is defined as operational and maintenance cost (O&M) and is considered a per-

centage of installed capacity. Equation 2.22 exhibits the OPEX associated with a particular
representative day.

OPEXd =
∑

i∈I, r∈R

Ci
Op · Ci

Impl · Capi,d,r (2.22)

The parameter Ci
Op corresponds to the O&M costs of each trimester associated with the

installed capacity.

2.2.4. H2 storage opportunity cost
In this study, an opportunity cost for stored hydrogen is considered. Since the supplied

demand is less than the overall national/international demand, the stored hydrogen is in
direct capacity to be sold. However, if used as storage, a potential economic gain is lost.
Equation 2.23 shows the stored H2 opportunity cost directly related to stored H2 mass.

CH2
Op

d = PH2
Sale

∑
t∈T, r∈R

msAcc
t,d,r (2.23)

It is important to note that stored energy does not have an opportunity cost. Since the
proposed plants present off-grid power systems, it is not possible to directly sell the stored
energy, hence not providing any opportunity cost for storage.

2.2.5. Discount factor
A discount factor is considered for the CAPEX, OPEX, and H2 opportunity cost to

account for the time value of money. Equation 2.24 exhibits the discount factor for an interest
rate r.

DFd = 1
(1 + r)d

(2.24)

To account for end-of-time effects, the discount factor of the last representative day is
modified as shown in equation 2.25. Here a perpetuity consideration is taken in place for any
remnants of capacity installed at the end of the time horizon. This is implemented to ensure
that the model would not spike the system’s capacity near the end of the time horizon due
to less relevant present cost values.

DFdf
= 1

(1 + r)df
+ 1

(1 + r)df +1 · 1(
1 − 1

(1+r)

) (2.25)
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2.3. Objective function development
2.3.1. Resilience in this context

In this study, a system will be considered operationally resilient if it has sufficient auto-
nomy to withstand non-catastrophic unfortunate events. Such events are variations of RE
sources and internal plant losses. Due to the many interpretations of the resilient concept in
literature, a different epithet is used. This study will refer to the term heteronomy, defined
as the lack of autonomy of a system due to its dependence on non-manageable conditions.

2.3.2. Indicator constituents
As indicated in section 2.3.1, the proposed objective function must characterize a sys-

tem’s heteronomy, equivalent to a lack of autonomy. In this study, we consider two essential
distinctions of unfortunate events that an autonomous system must endure: external events
associated with the intrinsic unpredictable behavior that REs have and its effect on the ope-
ration of a plant designed through statistical averages of representative days; and internal
events, specific failures in the plant normal operations and its corresponding decrease in pro-
duction. Both of these events could be interpreted as stochastic. However, this study aims
to capture these incidental effects without leaving a deterministic programming approach,
striving for simplicity and a reasonable computation time.

2.3.3. External variability
The model must acknowledge the fact that the parameters of solar radiation and wind

speed used for the sizing of renewable sources are averages, and for each hour in a represen-
tative day there is a historical variance present. In this sense, some locations with a favorable
average solar radiation or wind speed might have a high variance, which is not a desired
attribute for an off-grid hydrogen plant.

To consider this possible variance, the sizing equations (2.1,2.2) for the renewable sources
are used in conjunction with the standard deviation for solar radiation and wind speed to give
an estimation of the possible variability in the energy output. This variability is dependent
on the installed area of renewable sources at each location, the day and hour of said day (see
equations 2.26 and 2.27).

˙V arP V,t,d,r = ηP V · AP V
d,r · σP V,t,d,r (2.26)

˙V arW ind,t,d,r = 1
2 · CpW ind · AW ind

d,r · ρAir · (σW ind,t,d,r)3 (2.27)

Where σP V,t,d,r and σW ind,t,d,r correspond to the historical deviation of solar radiation and
wind speed in an hourly basis for each trimester and each location. The overall variability
will be the sum of both sources. Defined as shown in equation 2.28

extδE−
t,d,r =

∑
e∈RE

· ˙V are,t,d,r (2.28)

The system can compensate for this variability with storage. A lack of energy from re-
newable sources is ultimately perceived as a lack of hydrogen production since not all the
necessary power will be supplied to the electrolyzer. Because of this, either the battery sys-
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tem can supply power or the tank storage supply mass to withstand this deficiency. The
availability of storage that can be used is depicted in equation 2.29.

Storaget,d,r = ηDischarge · EsAcc
t,d,r + msAcc

t,d,r

ηAE

(2.29)

The net loss due to external variance can be defined as the difference between the expected
source-induced variability and the compensation of the storage systems. Equation 2.30 defines
said term as:

ext∆E−
t,d,r =ext δE−

t,d,r − Storaget,d,r (2.30)

If the net externally induced variability ext∆E−
t,d,r is greater than zero, the system does

not have sufficient storage to withstand the variance that the renewable sources provide.

2.3.4. Internal variability

Figure 2.3: Architecture of the hydrogen production plant with relevant
converters.

Since unexpected failures in any equipment may occur, plant operation does not work at
100 % of the designed capacity. According to industrial experience, one of the most sensitive
pieces of equipment prone to fail in a power system are converters, including DC boosters and
rectifiers [53]. Their reliability is heavily dependent on the architecture and control of said
component. Figure 2.3 exhibits where said converters are located in the architecture of the
plant’s electrical system. Internal variability will consider the availability of renewable sources
and the electrolyzer based on their associated converters. Since the availability parameter will
vary with the converters circuit architecture [53], this study will refer to accepted literature
values for solar PV panels and wind turbines of 96 % [54]. DC boosters for alkaline electrolysis
circuit designs are still being developed [55], and a 90 % availability is assumed.

As depicted in Figure 2.3, failure in renewable sources will provide a lack of energy (δE−).
Meanwhile, failure in the electrolyzer will have a lack of mass associated (δM−). Equations
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2.31 and 2.32 characterize said energy and mass lack respectively as:

intδE−
d,r =

∑
e∈RE

(1 − Λe) · Cape,d,r (2.31)

intδM−
d,r = (1 − ΛAE) · CapAE,d,r (2.32)

As stated in section 2.3.3, the storage system compensates for said variability. In this
case, the battery system can compensate for the renewable sources diminished production
and mass storage for the electrolyzers. This provides a net internally induced mass and energy
variability, which is defined as follows:

int∆E−
t,d,r =int δE−

d,r − ηDisch · EsAcc
t,d,r (2.33)

int∆M−
t,d,r =int δM−

d,r − msAcc
t,d,r (2.34)

2.3.5. Proposed objective
Coupling the externally and internally induced net variability of mass and energy defined

in sections 2.3.3 and 2.3.4, the objective function of minimizing the net variability in the
system can be defined through equation 2.35.

Min
∑
t,d,r

ηAE · (int∆E−
t,d,r +ext ∆E−

t,d,r) +int ∆M−
t,d,r (2.35)

This expression can be interpreted as the systems heteronomy since its value will deter-
mine if the design can overcome the external and internal variance with the storage systems
capacity. A negative value indicates that storage is more than sufficient; a positive value
stipulates that storage is insufficient. In this sense, an optimal system can be defined as one
with minimal heteronomy.
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Chapter 3

Case study

3.1. Locations and climate data
The main objective of this study is to evaluate a proposed resilience objective function to

complement the design of HRES for green hydrogen production. This requires that the geo-
graphical location of the model presents a mixture of solar radiation and wind speed available
so that the combination of solar and wind sources for a hybrid system is considered. Here 5
locations are chosen based on area and climatic conditions data availability: Negrete, Agua-
pie, Lavapie, Rumena, and Colhue. The Bio-bio region is chosen since it presents favorable
sun radiation and wind speed at the 5 locations mentioned, according to the data provided
by the national wind [56] and solar observatories [57]. Figure 3.1 provides an overview of the
behavior of solar radiation and wind speed in each location, extracted from the used data
that considers the historical hourly profiles as well.

(a) Solar radiation as 3 representative days. (b) Wind speed as 3 representative days.

Figure 3.1: Averages climate statistics of solar radiation (a) and wind speed
(b) for each location at each trimester. (Own elaboration with the data
provided by the wind and solar explorers [56, 57])
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3.2. Projected demand
Hydrogen is a developing market, and because of this, a forecasting model must be imple-

mented to assess the change in demand through time. Lane et al. (2021) provided a forecast
of renewable hydrogen demand at a global scale, implementing a novel method of estimation
using Montecarlo simulations to incorporate uncertainty and a learning curve approach con-
sidering market growth factor [58]. This study will implement the demand behavior stated
by said author, assuming that Chile plans to take 20 % of the demand and the Biobio regions
are considered to accomplish 1 % of the total Chilean production for the case study. Annex B
presents the values for the learning curve extracted from Lane et al. [58] and the subsequent
demand associated with the case study.

3.3. Results
3.3.1. Computation time

The model for the case study in the previous section was implemented in PyOMO [59, 60]
and solved using the Gurobi MILP solver [61]. The model constitutes a total of 82,811
variables, where 2,705 variables are binary, and 80,106 are continuous; related through 50,025
equality and 51,745 inequality constraints. The MIP gap terminal condition is maintained at
its default value of 1e-4.

3.3.2. Solution multiplicity
Being a MILP problem, it is possible to achieve the same value of the objective function

with different values for the arguments, and due to the MIP gap termination condition,
better solutions might be obtained by a more thorough search. To evaluate the optimal
design, successive integer cuts were implemented to obtain 3 alternate solutions. Equation
3.1 shows the “No good cut” [62], where the variable zi,d,r represents the expansion (Xi,d,r)
and decrease (Yi,d,r) binary choices of section 2.1.8, B and NB are the set of basic and
non-basic solutions respectively.

∑
i,d,r∈NB

zi,d,r +
∑

i,d,r∈B

(1 − zi,d,r) ≥ 1 (3.1)

Table 3.1: Optimal value for the objective functions in each single-objective
model. Alternate solutions’ values are presented as a difference from the
optimal solution objective.

Model
Solution Economic [USD] Heteronomic [kg]

Optimal value 1.5996 E+9 -9.4439 E+9
Objective value difference

Alternative #1 0 +2.61 E+3
Alternative #2 0 -2.31 E+4
Alternative #3 4510 -2.10 E+4
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Table 3.1 shows the results for the single-objective models, i.e., those solutions in which
the weights for combining the economic and heteronomy objective functions were either
zero (purely resilient objective) or one (purely economic objective). The purely economic
single-objective model presents 2 alternative solutions with the same value for the objective
function. Meanwhile, no equivalent solutions were found for the pure heteronomy single-
objective model, but 2 better and 1 worse solutions were found. The difference in the value
of the objective functions between the solutions is negligible and the design of the system
(i.e. the arguments) does not vary considerably between each solution. As shown in Annex A,
only a difference in the stored hydrogen at the end of the time horizon and in some expansion
rates is observed. For the rest of the discussion, the results labeled as Optimal value in Table
3.1 are considered.

3.3.3. Pareto front and equilibrium prices
The multi-objective model provides a Pareto front containing all the optimal solutions to

the weights considered. An important metric required to asses each Pareto optimal solution
is the equilibrium price of hydrogen. This is the price required to achieve a zero Net Present
Value (NPV) for the plant investment and production costs. Figure 3.2.a exhibits the Pareto
front and the equilibrium price of hydrogen as well.

(a) Pareto front and equilibrium price of hydrogen. (b) Hydrogen equilibrium price for each Pareto point.

Figure 3.2: Hydrogen equilibrium price for each Pareto point.

The trade-off between both objective functions relates to the fact that designing a more
resilient system requires more investment in storage technologies, directly raising the total
cost and the equilibrium price for hydrogen. It is important to note that the heteronomy
objective function has, for almost all points, a negative value. This implies that in those
solutions the network has enough storage to withstand the expected external and internal
losses. Figure 3.2.b shows the equilibrium price for hydrogen vs the weight values for each
point in the Pareto curve. The green region above the curve corresponds to the hydrogen
prices that provide an economically feasible result (positive NPV). Inversely, the red region
corresponds to hydrogen prices that make the system economically unfeasible. A weight of
0.6, associated with a hydrogen equilibrium price of 2.3 [ USD

kgH2
] is selected as the desired multi-

objective solution. This equilibrium price is lower than the 2.6 [USD
kg H2] benchmark established

by the Chilean national hydrogen plan for the Biobio region [63], in addition to presenting a
negative heteronomy value. A similar analysis for other weights could be performed if desired.
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3.3.4. Capacity expansion: single and multi objective comparison
In this section the different system designs are compared for the single and multi objective

models. The capacities of each technology are analyzed for the locations of Negrete and
Aguapie, exposing the effects of the proposed heteronomy objective function in the design of
the system.

(a) Negrete economic expansion profile (b) Aguapie economic expansion profile

Figure 3.3: Expansion profiles of the economic model for Negrete (a) and
Aguapie (b) respectively.

Figure 3.3 shows the expansion profiles for the economic single objective model in Negrete
and Aguapie respectively. Both locations consider hydrogen storage and a hybrid power
system of solar and wind for the complete time horizon, where wind is the dominant energy
source. In Negrete the installation of energy sources and mass storage is completed by the
first year, and an expansion of the electrolyzer capacity is implemented in the 9th year of
operation. Meanwhile, Aguapie completes the installation of hydrogen mass storage and solar
energy source in the first year of implementation, and an expansion between the 9th and 11th
year for the wind source, electrolyzer, and battery system is considered.

Neither location considers a battery system for the first 9 years of operation, and Negrete
does not implement a battery system at all. The preference for a hydrogen storage system
is related to the more cost/efficient hydrogen mass storage over the lithium-ion batteries for
long time periods since the latter have passive losses and present a higher maintenance cost.
Because of this, mass storage is preferred over energy storage even when an opportunity cost
for hydrogen is implemented.

In both locations a decrease in the hydrogen storage capacity starts from the 13th year
until the end of the time horizon to avoid the perpetuity cost effects (see section 2.2.5), where
it is cheaper to diminish hydrogen storage and fulfill demand with production and dispatch
the already available stored hydrogen.

Figure 3.4 shows the expansion profiles for the heteronomy single objective model in
Negrete and Aguapie respectively. Both locations present similar profiles, with the installation
of both mass and energy storage systems at maximum capacity for the complete time horizon.
a hybrid power system dominated by wind energy is present for each location as well, with
a decreasing capacity of the RE sources and electrolyzer until the 3rd and 4th year, when a
subsequent expansion is implemented.

The maximization of the storage technologies is associated with the objective function
formulation in section 2.3.5, more storage of mass and energy implies a lesser dependence on

19



(a) Negrete heteronomy expansion profile (b) Aguapie heteronomy expansion profile

Figure 3.4: Expansion profiles of the heteronomy model for Negrete (a) and
Aguapie (b) respectively.

external and internal variability. The decreasing capacity in the RE sources and electroly-
zer technology is related to minimizing the variability of the system (as defined in sections
2.3.3 and 2.3.4), since a bigger installed capacity implies higher internal and external expec-
ted variability. Therefore, the heteronomy model tends to maximize storage capacity while
maintaining a minimum required energy source and electrolyzer capacity.

Figure 3.5 shows the expansion profiles for the multi objective model. A wind-dominated
hybrid power system with dual storage technologies is implemented in both locations. In
Negrete, the installation of the power sources, the battery system, and the hydrogen storage
are complete in the first year. Aguapie’s battery system, hydrogen mass storage, and solar
source are fully implemented by the first year, whereas wind power and the electrolyzer have
an expansion in the 9th year of operation. Both locations have a decrease in capacity in
the last 2 years of the time horizon, associated with the perpetuity effects of the economic
objective function. It is important to note that wind turbine capacity in Negrete reached
the upper bound established by the Big-M constraint; this could imply that, if technically
feasible, a more prominent wind energy source could be preferred at said location.

(a) Negrete multi objective expansion profile (b) Aguapie multi objective expansion profile

Figure 3.5: Expansion profiles of the multi objective model for Negrete (a)
and Aguapie (b) respectively.
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As exposed in the expansion profiles, the addition of the heteronomy function in a multi
objective approach impacts the system design, promoting dual storage throughout the com-
plete time horizon as the key difference to the economic model. In addition, the magnitude
of the storage technologies and the power sources also vary. Hydrogen storage increased its
maximum value from 50 [ton] in the economic model to 100 [ton] in the multi objective model
in Negrete, and 21 [ton] to 100 [ton] in Aguapie. Energy storage also increased compared to
the economic model, from 800 [kWh] to 4,600 [kWh] in Aguapie, and from 0 [kWh] to 5,900
[kWh] in Negrete. A slight increase in solar power capacity is also perceived in Aguapie.

3.3.5. The role of storage: Single and multi objective comparison
Here, the use of storage and its effects on the system design are discussed in relation to the

capacity expansion profiles and the proposed heteronomy objective function behavior. Figure
3.6 shows the mass stored in each location through the years for the economic, heteronomy,
and multi objective models respectively.

(a) Economic model. (b) Heteronomy model. (c) Multi objective model.

Figure 3.6: Mass storage per location profile for the single and multi objec-
tive models.

As seen in Figure 3.6, the economic model has a null storage of H2 mass the first six years,
presenting peaks before and after the 10 years of operation. The first peak (8th year) is
related to the capacity expansion profiles present in Figures 3.3.a and 3.3.b. The 10th year of
the horizon is when most of the system increases its capacity, and since this requires a year to
accomplish, the network must have enough storage to fulfill the increase in demand associated
with that year beforehand. The second peak after the 10th year relates to the end-of-time
effects in the economic objective function since the system stores hydrogen mass to fulfill
demand at the closing year of operation. The heteronomy model increases storage rapidly
reaching a constant value by the 3rd year (see Figure 3.6.b), since the purely heteronomy-
based model prefers to maximize storage as mentioned in section 3.3.4. The multi-objective
model encompasses characteristics of the heteronomy model conservatively, increasing the
stored mass by the 3rd year of implementation with a less steep tendency.

The effects of these different storage profiles can be addressed through the heteronomy
objective function value since it measures how much autonomy the designed system has.
Figure 3.7 exhibits the heteronomy of the single and multi-objective models respectively for
Aguapie.

Figure 3.7.a shows that the total heteronomy value of the economic model design is positive
throughout the complete time horizon. This is evidence that the designed system is lacking
autonomy and that it would be vulnerable in front of the exogenous variability of RE sources
and the endogenous component failure. Hence, the use of storage in the economic model is
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(a) Economic model. (b) Heteronomy model. (c) Multi objective model.

Figure 3.7: Heteronomy objective function behavior.

instrumental to the expansion and closing of the system and not to the operational resilience
of the design. Meanwhile, the heteronomy model has a negative heteronomy value for the
complete time horizon, over-compensating for the exogenous and endogenous effects. The
multi objective model presents a positive value of heteronomy for the first 5 years, reaching
a negative value for the rest of the evaluated horizon. This indicates that the multi objective
approach manages to design the storage capacity of the system as a way to improve its
performance in the face of adversity.

The higher installation of storage capacity discussed in section 2.1.8 and the increase of
total stored mass present in this section correlates to the behavior shown in Figure 3.7. The
addition of the heteronomy function succeeds in producing a system that manages to be more
operationally resilient in front of the considered exogenous and endogenous effects than the
purely economic model, without a relevant increase in the hydrogen equilibrium price.

3.3.6. Results remarks
The most relevant results of this study are related to how implementing the proposed

objective function complements the design of HRES systems for green hydrogen production.
Table 3.2 provides an overview of some of the changes in said design when the economic
model is enhanced with the consideration of heteronomy.

In comparison to the economic model, no relevant changes in the start years of each
location are seen, where Negrete and Aguapie start in 2025 and the rest in 2026. Meanwhile,
wind sources are implemented at a lower magnitude in Lavapie, Aguapie, and Colhue, followed
by an increase in solar capacity for said locations. The multi-objective model opts for a
hybrid power system, relegating some power capacity from turbines to solar panels. Battery
storage has no capacity installed at Negrete and Colhue when only the economic function is
considered; in contrast, the multi objective model increases the energy storage capacity of each
location. Mass storage also follows the tendency of higher capacities when the heteronomy
of the system is considered, increasing to 100 [ton] at each location. The implementation
of storage technologies and varied source capacities in the multi-objective approach comes
without a noticeable increase in the equilibrium price of hydrogen, and for the selected Pareto
solution an investment of 0.37 [USD] is required per kg of H2 mass variability reduction. It is
important to note that the shown values consider H2 opportunity cost, discount factor, and
perpetuity effects, which influence the equilibrium price reported.

Figure 3.2.a shows that each Pareto point has more than enough mass and energy storage
to withstand the accounted systems variance and that the spike in cost is associated with said
increase in storage capacity. Diminishing the value of the big M parameter in the constraint
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associated with storage technologies capacity, specifically mass storage, provides a system
design with less idle storage, reducing the overall cost of each point in the Pareto frontier
and managing a less considerable increase in cost compared to the economic model. The
effect of a 75 % reduction in the M constant is depicted by Figure 3.8.

(a) Mass storage M = 106 (b) Mass storage M = 2.5 · 105

Figure 3.8: Equilibrium price of hydrogen in each Pareto optimal solution.

The reduction provided a greater economically feasible region due to the lower prices
in the Pareto frontier. In consequence, said parameter must be chosen carefully to avoid
overestimating the maximum storage capacity of the desired system.
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Chapter 4

Conclusion

4.1. Summary of the Thesis and Key Contributions
A deterministic multi-objective mixed integer linear programming model was developed

as a decision-making tool to analyze green hydrogen production at a regional scale in Chile.
The proposed model considered a novel resilience objective function that encompasses how
the designed storage system is capable of mitigating the fluctuations of produced mass and
energy due to the intrinsic renewable energy sources uncertainty and probable internal plant
failures without leaving a deterministic programming approach, striving for simplicity and
reasonable computational resources use.

The proposed objective function complements an economical design incorporating storage
technologies with a major capacity that the one in single objective approaches, covering the
estimated deficit of mass and energy with sufficient surplus throughout the entire time hori-
zon with a cost of H2 mass variability reduction of 0.37 [ USD

kg H2
]. The mass surplus in storage

ought to be considered more than necessary by some investors or decision makers, to which
case is necessary to redefine the big M constraint associated with the system’s capacity for
more conservative mass storage, reducing the overall cost of the system. The hydrogen equi-
librium price for both the economic and multi objective model is 2.3 [USD/kg], lower than
the 2.6 [USD/kg] estimated by the Chilean hydrogen strategy.

4.2. Future Recommendations
A multi-stage stochastic programming approach could be incorporated to account for the

equipment failure in a more rigorous manner. Instead of a decreasing capacity factor, each
specific system failure can be taken into consideration simultaneously. It is key to note that
said approach would be computationally expensive, where each component failure must be
modeled in every location, at every hour, and on any day.

This study’s approach can be implemented in large-scale system designs for power-to-
H2 and other power-to-X technologies for a more diverse regional design, considering the
power system’s storage/cost trade-off in a manageable manner. The analysis of a national
green hydrogen production architecture can be designed through this thesis methodology.
However, due to the size of the problem decomposition strategies would be required.
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ANNEXES

ANNEX A. Alternative designs
Figure A.1 shows an example of the design variations found through the integer cuts for

Aguapie.

(a) Original expansion profile (b) Expansion profile of the first alternative

(c) Expansion profile of the second alternative (d) Expansion profile of the third alternative

Figure A.1: Alternative designs for the Aguapie expansion. Obtained th-
rough the ”No good” integer cut.

Only slight variations of design can be seen for the final hydrogen storage capacity, where
the alternative of Figure A.1.c decreases capacity more than the other solutions. Another
difference can be seen for the profile of the third alternative design in Figure A.1.d, where
the expansion of the 9th year is delayed one trimester, incurring in a step-wise increase before
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the maximum capacities for wind turbines, electrolyzer, and battery storage is achieved. None
of the found solutions differ from each other considerably, neither in the magnitude of the
installed capacities nor in the overall profile for the system expansion.

ANNEX B. Hydrogen demand projection
The global hydrogen demand behavior is modeled as a learning curve according to equation

B.1.

Dt = Df

1 + e−k·(t−t0) + D0 (B.1)

Where Dt is the global hydrogen demand at time t, DF is the final market production, D0
is the initial market production, k is the growth factor and t0 is the initial year of evaluation.
It’s assumed that Chile aims to reach 20 % of the market share, whereas the Biobio region is
contemplated to produce 1 % of the national hydrogen production. Figure B.1 presents the
global demand projection in the study’s time horizon, where the mean value of demand is
used for the Biobio share.

Table B.1: Parameters for the demand projection through a learning curve
behavior.

Parameter Value Unit Reference

Initial market Mean: 1.5 · 109 [kg/yr] [58]
SD: 0 [kg/yr]

Final market Mean: 1.66 · 1011 [kg/yr] [58]
SD: 2.4 · 1010 [kg/yr]

Growth 0.1 [-] [58]
Shift 4.5 [-] [58]

Biobio global
market share

0.1 % [-] Assumed

ANNEX C. Electrolysis technologies cost comparison
Schmidt et al. [48] and Proost et al. [49] provide the ∆H

ηElectr.
parameter for alkaline elec-

trolysis (AE) and proton exchange membrane electrolysis (PEME), meanwhile, Petipas et al.
[64] reports the value for solid oxide electrolysis (SOE). The levelized cost of each techno-
logy is reported by Christensen [65]. With the levelized cost and efficiency, the cost of mass
production can be calculated as depicted in equation C.1.

CostMass
Electr. = CImpl

Electr. · ∆H/ηElectr. (C.1)

Equations C.2, C.3, and C.4 show the cost for each electrolyzer technology.
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Figure B.1: Global hydrogen demand projection through a learning curve
for pessimistic, normal and optimistic scenarios.

CostMass
AE = 1, 083

[
USD

kW

]
· 53.7

[
kW

kg/h

]

≈ 58, 157
[

USD

kg/h

]
(C.2)

CostMass
P EME = 1, 182

[
USD

kW

]
· 53.7

[
kW

kg/h

]

≈ 63, 473
[

USD

kg/h

]
(C.3)

CostMass
SOE = 2, 285

[
USD

kW

]
· 42.7

[
kW

kg/h

]

≈ 97, 570
[

USD

kg/h

]
(C.4)

The AE presents the lower cost of hydrogen production according to the parameters that
the formulated model uses. Since no difference in availability can be factually established,
the economic part of the multi-objective function will always choose AE technologies over
their counterparts.
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ANNEX D. Condensed model formulation and nomen-
clature

1. Sets

• Renewable energy sources:

e ∈ RE = {PV, Wind}

• Sized technologies:

i ∈ I = RE ∪ {AE, Compressor, Battery, Tank}

• Discrete time of day:

t ∈ T = {0, 1, 2, 3, ..., 23}

• Representative days (trimester) in a 15 year time horizon:

d ∈ D = {0, 1, 2, 3, ..., 44}

• Locations where plants can be installed:

r ∈ R = {Aguapie, Rumena, Lavapie, Colhue, Negrete}

2. Variables

• If location r is used in the regional production:

Hr ∈ {0, 1}

• If technology i starts a expansion project at day d in location r:

Yi,d,r ∈ {0, 1}

• If technology i starts a downgrade project at day d in location r:

Xi,d,r ∈ {0, 1}

• Amount of capacity expansion/downgrade for the project associated with technology
i at day d in location r:

CapEi,d,r CapDi,d,r ∈ R+

• Capacity of technology i at day d in location r:

Capi,d,r ∈ R+

• Bough terrain in location r:
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Ar ∈ R+

• Installed area of PV panels and wind turbine swipe area in location r:

AP V
d,r AW ind

d,r ∈ R+

• Compressor power consumption in time t at day d in location r:

PowerComp
t,d,r ∈ R+

• Energy flow directed to battery storage in time t at day d in location r:

Ėin
s t,d,r ∈ R+

• Energy flow directed to the AE from the battery system in time t at day d in location
r:

Ėout
s t,d,r ∈ R+

• Energy flow directed to the AE from the energy source e in time t at day d in
location r:

ĖDirect
e,t,d,r ∈ R+

• Energy flow directed to the battery system from the energy source e in time t at
day d in location r:

ĖStorage
e,t,d,r ∈ R+

• Energy flow supplied to the AE in time t at day d in location r:

Ėin
AEt,d,r ∈ R+

• Mass flow out from the AE in time t at day d in location r:

ṁout
t,d,r ∈ R+

• Mass flow supplied to the hydrogen tank in time t at day d in location r:

ṁin
s t,d,r ∈ R+

• Mass flow supplied to demand directly from the AE in time t at day d in location
r:

ṁd
t,d,r ∈ R+

• Mass flow supplied to demand from the hydrogen tank in time t at day d in location
r:
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ṁout
s t,d,r ∈ R+

• Energy stored in the battery system in time t at day d in location r:

EAcc
t,d,r ∈ R+

• Mass stored in the hydrogen tank in time t at day d in location r:

mAcc
t,d,r ∈ R+

3. Constraints

• If the location isn’t chosen, no capacity is allowed:

Capi,d,r ≤ M · Hr (D.1)

• Expansion and downgrade projects can’t start on the same day for technology i at
day d in location r:

Yi,d,r + Xi,d,r ≤ 1 (D.2)

• Expansion projects last for a year in implementation. Meanwhile, no expansion or
downgrade of the same technology can occur:

d+2∑
d̂=d+1

Yi,d̂,r ≤ 2 · (1 − Yi,d,r) (D.3)

d+2∑
d̂=d+1

Xi,d̂,r ≤ 2 · (1 − Yi,d,r) (D.4)

• The choice of expansion or downgrade bounds the augmentation or diminution of
capacity:

CapEi,d,r ≤ M · Yi,d,r (D.5)

CapDi,d,r ≤ M · Xi,d,r (D.6)

• Variation of capacity represented as a stock constraint. The implementation of up-
grades is achieved progressively through the year by trimester:

Capi,d,r = Capi,d−1,r +
d+2∑
d̂=d

(1
3CapEi,d̂

)
− CapDi,d−2,r (D.7)

• Total produced solar energy depends on installed area:

ĖDirect
P V,t,d,r + ĖStorage

P V,t,d,r = ηP V · AP V
d,r · GSun

t,d,r (D.8)
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• Total produced wind energy depends on installed swipe area:

ĖDirect
W ind,t,d,r + ĖStorage

W ind,t,d,r = 1
2CpW ind · AW ind

d,r · ρAir · (vW indt,d,r)3 (D.9)

• Renewable energy is bounded by installed capacity:

ĖDirect
e,t,d,r + ĖStorage

e,t,d,r ≤ Cape,d,r (D.10)
• Installed area of PV and wind cannot exceed bought terrain at each location:

AP V
d,r + AP V

d,r

λ
≤ Ar (D.11)

• Bought terrain cannot exceed the maximum available area:

Ar ≤ Hr · AMax
r (D.12)

• The battery system has to operate in between acceptable SOC values to preserve
functionality:

SOCmin · CapBattery,d,r ≤ EAcc
t,d,r (D.13)

EAcc
t,d,r ≤ SOCmax · CapBattery,d,r (D.14)

• Effective mass flow out of the electrolyzer:

ηAE

∆H
· Ėin

AEt,d,r = ṁout
t,d,r (D.15)

• Maximum capacity for the electrolyzer:

Ėin
AEt,d,r ≤ CapAE,d,r (D.16)

• Compressors capacity restricts outgoing mass flow:

ṁd
t,d,r + ṁout

s t,d,r ≤ CapCompressor,d,r (D.17)
• Compressor power consumption according to mass flow:

PowerComp
t,d,r = kCompressor · ṁout

AEt,d,r (D.18)
• Mass storage must respect a maximal hydrogen level as a safety measure:

0 ≤ msAcc
t,d,r ≤ HTLmax · CapT ank,d,r (D.19)

• Energy balance for the battery system:

EsAcc
t,d,r =

[
1 − LBattery

]
· EsAcc

t−1,d,r + ∆t ·

ηCharge · Ės
in

t−1,d,r −
Ės

out

t−1,d,r

ηDischarge


(D.20)
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• Energy balance for total energy entering the battery system:

∑
e∈RE

ĖStorage
e,t,d,r = Ės

in

t,d,r (D.21)

• Energy balance for total energy entering the electrolyzer:

∑
e∈RE

ĖDirect
e,t,d,r + Ės

in

t,d,r = Ėin
AEt,d,r + PowerComp

t,d,r (D.22)

• Compressor mass balance:

ṁout
AEt,d,r = ṁd

t,d,r + ṁin
s t,d,r (D.23)

• Hydrogen storage mass balance:

msAcc
t,d,r = msAcc

t−1,d,r + ∆t ·
(

ṁsin
t−1,d,r −

ṁsout
t−1,d,r

ηT ank

)
(D.24)

• Demand is associated to a complete trimester by the d index. Considering that a
trimester contains 120 representative days the demand fulfilment is characterized
as:

120 ·
( ∑

t∈T r∈R

ṁout
s t,d,r + ṁs

t,d,r

)
= Demandd (D.25)

4. Objective functions

• Minimize present cost:

Min: Terrain +
∑
d∈D

DFd · (CAPEXd + OPEXd + CH2
Opd) (D.26)

• Minimize heteronomy:

Min: int∆M−
t,d,r + ηAE · (int∆E−

t,d,r +ext ∆E−
t,d,r) (D.27)
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ANNEX E. Parameter values

Table E.1: Parameters for the case study

Parameter Value Unit Source
∆H
ηAE

53.7 [kWh/kg] [48], [49]
ηP V 20 % [kWout/kWin] [66]

ηCharge, Disch., T ank 95 % [-] [67]
λ 1.7 · 10−3 [m2 swipe/m2 terrain] [46][47]

CW ind
P 0.4 [-] [57]

HTLMax 95 % [-] Assumed
kCompressor 4 [kWh/kg] [17]

LBattery 0.02 % [-] [68]
P Sale

H2 2.6 [USD/kg] [63]

Λi
PV, Wind 96 % [-] [54]

Electrolyzer 90 % [-] Assumed

AMax
r

Aguapie 50.000 [ha] [52]
Rumena 2.000 [ha] [52]
Lavapie 850 [ha] [52]
Colhue 41.200 [ha] [52]
Negrete 20.000 [ha] [52]

CImpl
i

PV 970 [USD/kW] [69]
Wind 1.350 [USD/kW] [70]

Battery 350 [USD/kWh] [71]
AE 1.083 [USD/kW] [65]

Compressor 250 [USD/(kg/hr)] [17]
Tank 1.000 [USD/kg] [72]

COp
i (as trimester)

PV 0.55 % [-] [69]
Wind 0.6 % [-] [73]

Battery 2.5 % [-] [73]
AE 0.6 % [-] [74]

Compressor 0.24 % [-] [75]
Tank 0.24 % [-] [76]

M

Upgrade/Downgrade 105 [-] -
PV,Wind,Battery 106 [-] -

AE, Compressor, Tank 5 · 105 [-] -
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