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POR:MATÍAS IGNACIO GUTIÉRREZ ESCOBARI
FECHA:2023
PROF. GUÍA:HUGO ARELLANO SEPÚLVEDA

ESTUDIO DE MATERIA DE NEUTRONES A TEMPERATURA CERO
DENTRO DE LA TEORÍA DE FUNCIONES DE GREEN

AUTOCONSISTENTES

Las propiedades de materia de neutrones en estado normal a temperatura cero son investiga-
das dentro de la teoría de funciones de Green autoconsistentes (SCGF, por sus siglas en
inglés) en la aproximación escalera utilizando la interacción nucleón-nucleón realista Argonne
V18. Dentro de este marco de trabajo, la dinámica intermedia de dos cuerpos viene dada
por la propagación partícula-partícula (p-p) y agujero-agujero (a-a), en contraste con la
aproximación de Brueckner-Hartree-Fock (BHF), que solo tiene en cuenta la propagación
p-p. Se revisa la aparición de estados ligados en el medio dentro de BHF y se explora
la formación de estos estados en el contexto de la teoría SCGF. Para obtener soluciones
estables y autoconsistentes, se implementa una descomposición de las funciones espectrales
para controlar simultáneamente las excitaciones de las cuasipartículas y la dispersión de las
partículas sobre las energías. Obtenemos la estructura off-shell de las funciones espectrales y
de la autoenergía, junto con otras cantidades relevantes, como las distribuciones de momento,
la energía del sistema y el camino libre medio de neutrones en el medio. La dependencia en la
densidad de las cantidades mencionadas anteriormente es estudiada. Los valores on-shell de
la autoenergía se comparan con los resultados del esquema de BHF. Finalmente, se aborda
la aparición de estados ligados en el medio en el plano de energías complejo y se propone una
conexión con el estado superfluído. En comparación con resultados dentro de BHF, el efecto
general de la inclusión de la propagación a-a es de naturaleza repulsiva. Esto es observado
tanto en los valores on-shell de la autoenergía, como en la ecuación de estado para neutrones
a altas densidades. Adicionalmente, la inclusión de la propagación a-a inhibe la posibilidad
de estados ligados en el medio de la manera descrita dentro de BHF. A pesar de esto, hemos
encontrado la aparición de autoenergías complejas para el problema de estados ligados para
densidades menores que 0.08 fm−3. Una característica interesante de estas autoenergías es el
comportamiento cualitativo de su parte imaginaria como función de la densidad, el cual se
asemeja al comportamiento del gap de energía en la superficie de Fermi en materia neutrónica
superfluída.
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STUDY OF ZERO-TEMPERATURE NEUTRON MATTER WITHIN
SELF-CONSISTENT GREEN’S FUNCTION THEORY

The properties of zero-temperature normal neutron matter are investigated within the self-
consistent Green’s function theory (SCGF) in the ladder approximation using the realistic
Argonne V18 nucleon-nucleon interaction. Within this framework, the intermediate two-
body dynamics is given by both particle-particle (p-p) and hole-hole (h-h) propagation, in
contrast to the Brueckner-Hartree-Fock (BHF) approximation, which only accounts for p - p
propagation. The appearance of in-medium bound states within BHF is reviewed and the
formation of these states is explored in the context of SCGF theory. To obtain fully self-
consistent stable solutions, we implement a decomposition for the spectral functions to control
simultaneously quasi-particle excitations and the dispersion of the particles over energies. We
obtain the off-shell structure of the self-energy and spectral functions, together with other
relevant quantities, such as momentum distributions, the energy of the system and the in-
medium neutron mean-free path. The density dependence of the quantities mentioned before
is studied. The on-shell values of the self-energy are compared to BHF results. Also, the
appearance of in-medium bound states in the complex energy plane is addressed and its
connection to the superfluid state is proposed. In comparison with BHF results, the overall
effect of the inclusion of h-h propagation is of repulsive nature. This is observed both in
the on-shell self-energy and in the neutron equation state for higher densities. Moreover, the
inclusion of h-h propagation inhibits the possibility of in-medium bound states in the way
described within BHF. Despite this, we have found the appearance of complex eigenenergies
for the bound state problem for densities below 0.08 fm−3. An interesting feature of these
eigenergies is the qualitative behavior of their imaginary part as function of the density, which
resembles the behavior of the energy gap at the Fermi surface in superfluid neutron matter.
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Chapter 1

Introduction

A major thrust to nuclear physics has been to account for the properties of interacting
nucleons starting from their basic forces. This includes the study of finite nuclei as well as
infinite nuclear matter. The former systems consists of a fixed number of nucleons bound
in space, while the latter is an hypothetical infinite and homogeneous system. Over the last
years, an increasing interest has been given to the study of infinite neutron matter, due to
its connections to astrophysics and condensed matter physics [48].

In astrophysics, the outer core of neutron stars is formed mostly by neutron matter
[83]. Consequently, the study of the equation of state of neutron matter becomes crucial to
understand the structure and evolution of neutron stars. Ongoing astrophysical observations
continue to provide new constraints on the mass-radius relation, which in turn gives additional
restrictions to the equation of state of dense neutron matter [65, 90, 91]. With the first
observation of GW170817 by LIGO and Virgo [1, 2], neutron star mergers have gained
prominence in the understanding of heavy-element synthesis and neutron-rich matter [52]. In
a future, measurements of gravitational waves coming from neutron star mergers will provide
new data to understand the structure of neutron matter [13].

In condensed matter physics, low-density neutron matter is connected to ultracold atoms
experiments [11]. If these strong-interacting fermionic systems are diluted with large scattering
lengths, one says that the system lies in a unitary regime. In such a limit, if effects of finite
range in the interaction are neglected, strong-interacting ultracold atoms and neutron matter
exhibit a “universal” behaviour in their dynamics. In this limit the properties of the system
would depend only on the product of the Fermi momentum and the scattering length [49].
These properties result proportional to the ones of the free fermionic system [25]. In this
way, experiments provide tests for quantum many-body theories.
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For microscopic or ab-initio studies of nuclear systems, we require the knowledge of
the bare interaction. Several nucleon-nucleon (NN) potential models have been developed
over the years, where masses and coupling constants are adjusted in order to provide best
fits to phase-shifts from scattering data, in addition to properties of the deuteron. Some
examples of these models are the Paris [58] , Nijmegen [92], Argonne V18 [100] and a group
of chiral effective-field-theory potentials. In the case of chiral potentials, different orders in
the expansion parameter have been reported, such as next-to-next-to-next-to-leading order
(N3LO) [41] and next-to-next-to-next-to-next-to-leading order (N4LO) [40, 42]. In all these
constructions, the NN interaction shows a repulsive short-range and attractive long range
part, accounted by meson exchange processes.

To obtain properties of complex nuclear systems requires a plausible many-body approach
which, under reasonable approximations, provides the best possible description of the system.
To this purpose we quote variational techniques [27], Monte Carlo calculations [59], the
Coupled Cluster [17] method and diagrammatic approaches. The last ones are based on
graphical expansions of the physical quantities that encode the different interactions processes
between the system constituents. Some examples are the Brueckner-Hartree-Fock (BHF) [22,
23] approximation and self-consistent Green’s function (SCGF) theory approaches [73, 88].

The BHF approximation is based on the Goldstone hole-line expansion for the ground
state energy, where only two-hole line diagrams are added up. This framework has been
extensively used to study saturation properties of nuclear matter [12, 61, 62, 89], in addition
to the construction of effective interactions for microscopic calculations of optical models
potentials for nucleon-nucleus scattering [8, 64]. Additionally, a relativistic version of this
approximation has been developed, known as the Dirac-Brueckner-Hartree-Fock approxi-
mation [6, 21], where the relativistic scattering amplitudes are corrected to account for in-
medium effects.

Within the BHF approximation, one can also study the formation of in-medium structures.
In this line, after a careful account for in-medium di-nucleons, Arellano et al. [10, 54] have
reported coexisting single-particle solutions in zero-temperature isospin-symmetric nuclear
matter at low densities. In the same way, studies pursued in the case of pure neutron
matter lead to neutron-neutron bound states. In general, these bound states exhibit large
coherence lengths and their features appear to be robust under the bare NN interaction
in use. Additionally, a resemblance is found between the in-medium bound states and the
Cooper pairs within the Bardeen-Cooper-Schrieffer theory.
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In SCGF theory, the one-particle propagator is expanded in terms of diagrams. In
contrast with the BHF approximation, where the hole-hole propagation is neglected, forward
and backward propagation in time are treated symmetrically. Moreover, within this theory,
particles with a given momentum are dispersed over a range of energies (they do not fulfill
an energy-momentum relation) but they peak at the position of the quasi-particle energy.
Self-consistency arises by considering the propagation of a nucleon interacting with the
surrounding nucleons. The last ones are also dispersed over a wide range of energies and
are described with the same Green’s function. The equations and diagrams that describe the
theory are relatively simple to derive, although the implementation of a numerical iterative
procedure is a complex task requiring some approximations. To account for correlations in the
nuclear medium, the T matrix is introduced. This matrix includes multiple particle-particle
and hole-hole scattering processes. This treatment of the in-medium effective interaction is
known as the ladder approximation. A sustained improvement in the calculation of the full
off-shell self-energy within SCGF theory in the ladder approximation has been achieved over
the last three decades. This mainly includes the work done by the Barcelona, St. Louis,
Rostock, Tübingen, Ghent, and Krakow groups [5, 18–20, 24, 26, 31, 33, 35, 37, 44–46, 53,
66, 67, 70–72, 76, 77, 82, 84–86, 95], among others.

In this work, we will study microscopic properties of zero-temperature neutron matter
within SCGF theory, using the realistic Argonne V18 [100] interaction. Approximations
and numerical routines have been developed to solve the associated equations. The main
motivation is to quantify the effect of the inclusion of h-h propagation in the self-energy and
in the appearance of in-medium bound states.

The thesis is organized as follows. In Chap. 2 the nuclear-many body problem is introduced,
describing the main properties of nucleons and their interaction. Afterwards, a detailed
derivation of the equations involved in the SCGF theory at zero-temperature is presented.
Additionally, a short derivation of the BHF approximation is obtained, starting from the
SCGF equations. In Chap. 3 we review the main features of in-medium bound states in
both isospin-symmetric nuclear matter and neutron matter. Later on, the manifestation of
these states is discussed within SCGF theory. Results are presented in Chap. 4, where we
give qualitative and quantitative descriptions of the main microscopic properties of neutron
matter, such as the self-energy, spectral functions, momentum distributions, equation of state
and in-medium mean-free path. Also, the appearance of in-medium bound states is discussed.
A summary and conclusions of the results obtained from this study are outlined in Chap. 5.
Additionally, an annex is included at the end of the thesis, containing some of the equations
of the SCGF scheme that are modified when an approximation for the spectral functions is
introduced.
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Chapter 2

The nuclear many-body problem

One of the main challenges in quantum many-body physics is that of accounting for empirical
information of the system, such as the saturation point of isospin-symmetric nuclear matter,
starting from the underlying fundamental interaction. We have access to physical properties
by extrapolating nuclear data from finite nuclei to infinite matter. The behaviour of the
binding energy of a finite nuclei can be represented by the Bethe–Weizsäcker semi-empirical
mass formula [14, 15]

B(N,Z) = aVA− aSA
2/3 − aA

(N − Z)2

A
− aC

Z2

A1/3
− δP (A) , (2.1)

where N is the neutron number, Z the proton number and A the mass number of the nucleus.
The first term accounts for the bulk binding energy characterized by the parameter aV , the
second one corresponds to the surface correction (aS), the asymmetry (or Pauli) contribution
is given by the third term, the fourth term accounts for the Couloumb energy (aC) and the
last term for pairing energy, which can be either zero or ±δ0(A), depending on the parity
of N and Z. In most models, δ0(A) takes the form δ0(A) = aPA

kP with kP some negative
exponent.

Considering isospin-symmetric nuclei (N = Z) and neglecting the Couloumb energy, one
obtains for the binding energy per nucleon

B(N,Z)

A
= aV − aSA

−1/3 . (2.2)

In the limit of an infinite system (A→ ∞) only the first term remains, leading to

lim
A→∞

B(N,Z)

A
= aV . (2.3)
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By fitting the measured masses of nuclei, the coefficient aV is calculated leading to aV =

16± 1 MeV [50].

On the other hand, electron scattering experiments are useful to obtain the charge
distribution of nuclei, which in the case of heavy nuclei, it is proportional to the total density.
The main result from the experiment is that the charge density inside heavy nuclei is roughly
constant throughout the nuclear mass table, resulting in a value of ρ0 = 0.16 ± 0.01 fm−3.
This is known as the saturation density of nuclear matter. Thus, any realistic calculation of
nuclear matter properties is expected to account for a minimum of energy [50]

E

A
= −16.0± 1.0 MeV , (2.4)

at the saturation density
ρ0 = 0.16± 0.01 fm−3 . (2.5)

2.1 The nucleon-nucleon interaction

In the nuclear many-body problem, protons and neutrons are the main constituents of the
system. In Tab. 2.1 we show the mass, charge and quark composition of protons and neutrons.
Note the small difference, up to about 0.1%, between proton and neutron masses. Considering
that electromagnetic interactions are week relative to nuclear strong interactions, protons and
neutrons can be conceived as two different states of a same particle, the nucleon (N). This
is known as isospin symmetry, where the interaction between pairs of nucleons is described
as that for two isospin states.

proton neutron
Mass (MeV) 938.27 939.56
Electric charge (e) +1 0
Quark composition uud udd

Table 2.1: Physical properties of the proton and neutron.

Most of the information on the NN interaction is obtained from NN collisions, together
with properties of the deuteron, the only NN bound state in free space. Through the analysis
of phase shifts, one can infer some properties of the bare NN interaction. At large distance,
above 2 fm, the interaction is exponentially attractive. At intermediate distances, between
1 and 2 fm, the interaction becomes stronger. At short distance, below 1 fm, a very strong
repulsive core is present. These features are illustrated in Fig. 2.1.
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V (r)

Figure 2.1: Attractive and repulsive features of the NN interaction.

Theoretically, NN potentials are constructed within the framework of meson exchange
models. As in quantum electrodynamics, where the photon-exchange process accounts for the
Couloumb interaction, the pion-exchange process is responsible for the long range interaction
between nucleons. The intermediate range part of the nuclear interaction is explained through
the exchange of heavier mesons such as scalar mesons σ, with suitable mass and coupling
to reproduce the scattering data. The repulsive core require the exchange of heavy vector
mesons, like the ρ and ω mesons [55].

Current approaches to NN interactions are based on chiral effective-field-theory (χEFT)
potentials, initially introduced by Weinberg in the early 1990’s [97–99]. This theory relies
on the chiral symmetry of quantum chromodynamics (QCD) that governs low-energy hadron
dynamics. The potentials are constructed by considering nucleons and pions as the relevant
degrees of freedom at low-energy scales. A perturbative expansion is made, in powers of
(Q/ΛQCD), where Q is the energy of the process and ΛQCD is the QCD scale parameter. This
leads to different classes of potentials according to the order in the chiral expansion. Some
examples are the N3LO [41] and N4LO [40, 42] potentials. Additionally, sub-hadronic physics
can be incorporated by means of the low-energy constants (LECs).

NN potential models designed to reproduce the scattering data are called realistic. Some
modern realistic NN interaction models are the Paris [58], Nijmegen [92] and Argonne [100]
potentials. Also, some χEFT can be considered realistic when the LECs are adjusted to
reproduce the NN data. These models are typically constructed to provide the best fit to
scattering data below 300 MeV in the laboratory frame system, in addition to the properties
of the deuteron.

The deuteron constitutes the only two-nucleon bound state of a proton-neutron pair
with a binding energy of −2.22 MeV, isospin T = 0 and parity Jπ = 1+. Experiments in
molecular spectroscopy show that the deuteron has a total angular momentum J = 1 [63].
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For two spin-1/2 nucleons, only total spin S = 0 and 1 are allowed. Therefore, the orbital
angular momentum is restricted by J − 1 < L < J + 1, so L = 0, 1, 2 are allowed. Since
the parity π is given by (−1)L =+1, then only L= 0 and L= 2 are allowed. Experiments
also measure a certain quadrupole moment for the deuteron. This tells us that the deuteron
eigenfunction is a 3S1-3D1 partial waves mixture, because the wave function can not be a
spherically symmetric S-wave. The mixture of these channels can be explained theoretically
by including a tensor component in the NN interaction. We have obtained the wavefunctions
of the deuteron for the AV18 interaction. The probability densities for M=0, 1 total angular
momentum ẑ components are shown in Fig. 2.2, together with the radial wave functions for
S and D channels.
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Figure 2.2: Deuteron probability densities for M = 0 (a) and M = ±1 (b) total
angular momentum Jz component, together with the radial wave functions (c). In
(a) and (b), the red spots correspond to the maximal probability densities, while the
blue spots correspond to lower densities. In (c), u and w are the standard reduced
radial wavefunctions [80]. The interaction is AV18.
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Finally, because of the nucleon is not an elementary particle, it is not guaranteed that
the nuclear interaction is described only by two body forces. In general one can expect that
the interaction in a system of many nucleons is the sum of the interaction between pairs of
nucleons and three nucleons or more nucleon forces. However, it is reasonable to assume, as
starting point, that two-body forces (2BF) are dominant.

2.2 Green’s functions at zero-temperature

In this section, we review some key elements for the description of many-fermion systems
within the real time formalism at zero-temperature. This will help to establish the notation
and highlight some analytical results that will be used throughout this Thesis.

2.2.1 Green’s Functions

The state of a quantum mechanical system composed of many identical particles can be
described in terms of field operators ψ̂†(ξ) and ψ̂(ξ)

ψ̂(ξ) =
∑
i

ϕi(ξ)ai ,

ψ̂†(ξ) =
∑
i

ϕ∗
i (ξ)a

†
i ,

(2.6)

with a†i and ai creation and annihilation operators, respectively. Here, ϕi(ξ) represents the
wave function of the particle in state i. The sum is done over a complete set of single particle
quantum numbers. These operators are interpreted as the operators for annihilation or
creation of a particle at a given point in ξ-space, whereξ stands for coordinate or momentum.
In the case of identical fermions, they obey the anti-commutation relations

{ψ̂(ξ), ψ̂†(ξ′)} = δ(ξ − ξ′) ,

{ψ̂(ξ), ψ̂(ξ′)} = 0 ,

{ψ̂†(ξ), ψ̂†(ξ′)} = 0 .

(2.7)

In this representation, the Hamiltonian takes the form (~ = 1)

Ĥ =

∫ [
1

2m
∇ψ̂†(r) · ∇ψ̂(r) + U(r)ψ̂†(r)ψ̂(r)

]
dr

+
1

2

∫ ∫
ψ̂†(r)ψ̂†(r ′)V (r, r ′)ψ̂(r ′)ψ̂(r)drdr′ ,

(2.8)
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where a time-independent external field U(r) and a two-body interaction V (r, r′) was assumed.

In one-body quantum mechanics, the propagator or Green’s function gives information of
the time evolution of the system. In the case of a many-body quantum system one can define
a one-particle Green’s function in terms of field operators in the Heisenberg representation
ÔH(t) = eiĤtÔe−iĤt, as follows [3, 56]

G(1, 1′) = −i
〈
T̂ [ψ̂H(1)ψ̂

†
H(1

′)]
〉
, (2.9)

where 1 and 1′ stand for points in the space of interest, e.g., 1 and 1′ can mean r1, t1 and
r1′ , t1′ respectively. In this construction, T̂ represents the time-ordering operation, defined as

T̂ [A(t)B(t′)] = A(t)B(t′)θ(t− t′)∓B(t′)A(t)θ(t′ − t) , (2.10)

where the upper(lower) sign corresponds to fermions(bosons). The average is taken over the
ground state of the N particle system.

A two-particle Green’s function is defined by

G2(12, 1
′2′) = (−i)2

〈
T̂ [ψ̂H(1)ψ̂H(2)ψ̂

†
H(1

′)ψ̂†
H(2

′)]
〉
. (2.11)

In general, one can define an n-particle Green’s function as

Gn(12 . . . n, 1
′2′ . . . n′) = (−i)n

〈
T̂ [ψ̂H(1)ψ̂H(2) · · · ψ̂H(n)ψ̂

†
H(1

′)ψ̂†
H(2

′) · · · ψ̂†
H(n

′)]
〉
. (2.12)

The Green’s function G(1, 1′) describes the propagation of disturbances in which a single
particle is added or removed from the many-particle system. Similarly, the two-particle
Green’s function describes disturbances produced by the removal or addition of two particles.

From the equation of motion for an operator in the Heisenberg representation, one can
obtain the equation of motion for the one-body Green’s function. Indeed, starting from

i
∂ψ̂H

∂t
= [ψ̂H , ĤH ] , (2.13)

considering only two-particle interactions

Ĥ =−
∫

1

2m
ψ̂†
H(r, t)∇

2ψ̂H(r, t)dr

+
1

2

∫∫
ψ̂†
H(r, t)ψ̂

†
H(r

′, t)V (r, r′)ψ̂H(r
′, t)ψ̂H(r, t)drdr

′ ,

(2.14)
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then

i
∂ψ̂H

∂t
(r, t) = −

∫
1

2m
[ψ̂H(r, t) , ψ̂

†
H(r

′, t)∇2ψ̂H(r
′, t)]dr′

+
1

2

∫∫
[ψ̂H(r, t) , ψ̂

†
H(r

′, t)ψ̂†
H(r

′′, t)V (r′, r′′)ψ̂H(r
′′, t)ψ̂H(r

′, t)]dr′dr′′ .

(2.15)

The anti-conmutation rules in Eq. (2.7) are also valid for the operators in the Heisenberg
representation at equal times. Then, using [A,BC] = {A,B}C −B{A,C}, we obtain

[ψ̂H(r, t), ψ̂
†
H(r

′, t)∇2ψ̂H(r
′, t)] = δ(r− r′)∇2ψ̂H(r

′, t) , (2.16)

and

[ψ̂H(r, t) , ψ̂
†
H(r

′, t)ψ̂†
H(r

′′, t)ψ̂H(r
′′, t)ψ̂H(r

′, t)]

=δ(r− r′)ψ̂†
H(r

′′, t)ψ̂H(r
′′, t)ψ̂H(r

′, t)− δ(r− r′′)ψ̂†
H(r

′, t)ψ̂H(r
′′, t)ψ̂H(r

′, t) .
(2.17)

Thus, the equation of motion becomes

i
∂ψ̂H

∂t
(r, t) = − 1

2m
∇2ψ̂H(r, t)−

∫
V (r, r′)ψ̂†

H(r
′, t)ψ̂H(r

′, t)ψ̂H(r, t)dr
′ , (2.18)

or (
i
∂

∂t
+

1

2m
∇2

)
ψ̂H(r, t) =

∫
V (r, r′)ψ̂†

H(r
′, t)ψ̂H(r

′, t)ψ̂H(r, t)dr
′ . (2.19)

Here, we have assumed V (r, r′)=V (r′, r). A similar procedure yields(
−i ∂
∂t

+
1

2m
∇2

)
ψ̂†
H(r, t) = ψ̂†

H(r, t)

∫
V (r, r′)ψ̂H(r

′, t)ψ̂†
H(r

′, t)dr′ . (2.20)

By differentiating the Green’s function with respect to its first time argument

i
∂

∂t1
G(1, 1′) =

∂

∂t1

〈
T̂ [ψ̂H(1)ψ̂

†
H(1

′)]
〉
, (2.21)

we get

∂

∂t1

〈
T̂ [ψ̂H(1)ψ̂

†
H(1

′)]
〉
= δ(t1 − t1′) 〈{ψ̂H(1), ψ̂

†
H(1

′)}〉+

〈
T̂

[
∂ψ̂H(1)

∂t1
ψ̂†
H(1

′)

]〉

= δ(1− 1′) +

〈
T̂

[
∂ψ̂H(1)

∂t1
ψ̂†
H(1

′)

]〉
.

(2.22)
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We now replace Eq. (2.19) for ∂ψ̂H(1)/∂t1 to obtain(
i
∂

∂t1
+

1

2m
∇2

1

)
G(1, 1′) = δ(1− 1′)

− i

∫
V (r1, r2)

〈
T̂
[
ψ̂†
H(r2, t1)ψ̂H(r2, t1)ψ̂H(1)ψ̂

†
H(1

′)
]〉
dr2 .

(2.23)

Here we recognize the two-particle Green’s function〈
T̂
[
ψ̂†
H(r2, t1)ψ̂H(r2, t1)ψ̂H(1)ψ̂

†
H(1

′)
]〉

= −
〈
T̂
[
ψ̂H(1)ψ̂H(2)ψ̂

†
H(1

′)ψ̂†
H(2

+)
]〉∣∣∣

t2=t1

= G2(12, 1
′2+)|t2=t1 ,

(2.24)

so that the equation of motion for the one-particle Green’s function reads(
i
∂

∂t1
+

1

2m
∇2

1

)
G(1, 1′) = δ(1− 1′)− i

∫
V (1, 2) G2(12, 1

′2+)
∣∣
t2=t1

d2 . (2.25)

Here V (1, 2) = δ(t1−t2)V (r1, r2), and 2+ stands for → t+2 . As we see, the one-particle Green’s
function for interacting identical particles depends on the two-particle Green’s function.
In analogous way the two-particle Green’s function depends on the three-particle Green’s
function and so on. This is known as the Martin-Schwinger hierarchy [94].

2.2.2 Lehmann representation and spectral functions

Let us consider the one-particle Green’s function in Eq. (2.9) for t1 > t′1

G(1, 1′) = G(r1, r
′
1, t1 − t′1) = −i 〈eiĤt1ψ̂(r1)e

−iĤ(t1−t′1)ψ̂†(r1
′)e−iĤt′1〉 . (2.26)

Inserting a complete set of eigenstates of Ĥ and omiting the subscripts 1, 1’ we obtain

G(r, r′, t− t′) = −i
∑
n,N ′

〈Φ0
N |ψ̂(r)|ΦN ′

n 〉 〈ΦN ′

n |ψ̂†(r′)|Φ0
N〉 e−i(EN′

n −EN
0 )(t−t′) , (2.27)

where
∣∣Φn

N
〉

is the n-th state of the N particle system in the Heisenberg picture, which
corresponds to an energy EN

n . In the same way, for t < t′ we have

G(r, r′, t− t′) = i
∑
n,N ′

〈Φ0
N |ψ̂†(r′)|ΦN ′

n 〉 〈ΦN ′

n |ψ̂(r)|Φ0
N〉 ei(EN′

n −EN
0 )(t−t′) . (2.28)
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Since the operator ψ̂(r) decreases the number of particles by one unit and ψ̂(r)† increases the
number of particles by one unit, then in Eq. (2.27) only the terms with N ′ = N + 1 remain.
Similarly, in Eq. (2.28) only the terms with N ′ = N − 1 remain. Therefore

G(r, r′, t− t′) =− iθ(t− t′)
∑
n

〈Φ0
N |ψ̂(r)|ΦN+1

n 〉 〈ΦN+1
n |ψ̂†(r′)|Φ0

N〉 e−i(EN+1
n −EN

0 )(t−t′)

+ iθ(t′ − t)
∑
n

〈Φ0
N |ψ̂†(r′)|ΦN−1

n 〉 〈ΦN−1
n |ψ̂(r)|Φ0

N〉 ei(E
N−1
n −EN

0 )(t−t′) .

(2.29)

As a means to quantify the change of energy of the system under the addition or removal of
a particle, the chemical potentials are introduced as

µ+ = EN+1
0 − EN

0 , (2.30a)

µ− = EN
0 − EN−1

0 . (2.30b)

Here µ+ corresponds to the energy absorbed by the system when a particle is added to the N -
particle system, while µ− corresponds to the energy released from the system when a particle
is removed from the N -particle system. Additionally, one defines the excitation energy of the
(N + 1)-particle system as

ε+n = EN+1
n − EN+1

0 . (2.31)

In the same way one defines the excitation energy of the (N − 1)-particle system as

ε−n = EN−1
n − EN−1

0 . (2.32)

With these definitions we obtain

EN+1
n = EN

0 + µ+ + ε+n , (2.33a)

EN−1
n = EN

0 + ε−n − µ− . (2.33b)

By assuming

ε+n = ε−n , (2.34a)

µ+ = µ− ≡ µ , (2.34b)

one introduces an error of order 1/N [3, 43]. At zero temperature, µ corresponds to the
Fermi energy of the system denoted as εF .
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To evaluate the Fourier transform of G(r, r′, t − t′) in Eq. (2.29) in the time difference
t− t′, one needs to evaluate the Fourier transform of the Heaviside step function. An integral
of this type is defined as the limit,∫ ∞

−∞
dt θ(t)eiαt = lim

δ→0+

∫ ∞

0

dt eiαt−δt = lim
δ→0+

i

α + iδ
. (2.35)

In the same way ∫ ∞

−∞
dt θ(−t)eiαt = − lim

δ→0+

i

α− iδ
. (2.36)

With these considerations, the Fourier transform of the one-particle Green’s function reads

G(r, r′, ω) =
∑
n

〈Φ0
N |ψ̂(r)|ΦN+1

n 〉 〈ΦN+1
n |ψ̂†(r′)|Φ0

N〉
ω − εn − εF + iη

+
∑
n

〈Φ0
N |ψ̂†(r′)|ΦN−1

n 〉 〈ΦN−1
n |ψ̂(r)|Φ0

N〉
ω + εn − εF − iη

,

(2.37)

where η → 0+ is understood. Eq. (2.37) is known as the Lehmann representation of the
one-particle Green’s function.

Considering invariance of nuclear matter under translations and rotations in space, then
the one-particle Green’s function depends on the difference r−r′. Additionally, it is convenient
to work with momentum or k-space representation. Thus, ψ̂(r) = e−iP̂·rψ̂(0)eiP̂·r, where P̂

is the momentum operator given by

P̂ =

∫
ψ̂(r)†(−i∇)ψ̂(r)dr . (2.38)

Since P̂ is a constant of motion, the complete set of states can also be taken to be eigenstates
of the momentum operator, that is P̂ |ΦN+1

n 〉 = Pn |ΦN+1
n 〉. Setting P0 = 0, the Lehmann

representation for the propagator reads

G(r− r′, ω) =
∑
n

| 〈Φ0
N |ψ̂(0)|ΦN+1

n 〉 |2eiPn·(r−r′)

ω − εn − εF + iη

+
∑
n

| 〈ΦN−1
n |ψ̂(0)|Φ0

N〉 |2e−iPn·(r−r′)

ω + εn − εF − iη
.

(2.39)
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Fourier transforming Eq. (2.39) in the difference (r− r′) yields

G(p, ω) =(2π)3
∑
n

| 〈Φ0
N |ψ̂(0)|ΦN+1

n 〉 |2

ω − εn − εF + iη
δ(p+Pn)

+ (2π)3
∑
n

| 〈ΦN−1
n |ψ̂(0)|Φ0

N〉 |2

ω + εn − εF − iη
δ(p−Pn) .

(2.40)

The first term vanishes unless |ΦN+1
n 〉 is an state with momentum −p. In the same way the

second term vanishes unless |ΦN−1
n 〉 is an state with momentum p. Therefore

G(p, ω) =(2π)3
∑

Pn=−p

| 〈Φ0
N |ψ̂(0)|ΦN+1

n 〉 |2

ω − εn − εF + iη

+ (2π)3
∑
Pn=p

| 〈ΦN−1
n |ψ̂(0)|Φ0

N〉 |2

ω + εn − εF − iη
.

(2.41)

The particle Ap(p, E) and hole Ah(p, E) spectral functions are defined

G(p, ω) =

∫ ∞

0

[
Ap(p, εF + E)

ω − εF − E + iη
+

Ah(p, εF − E)

ω − εF + E − iη

]
dE

=

∫ εF

−∞

Ah(p, E)

ω − E − iη
dE +

∫ ∞

εF

Ap(p, E)

ω − E + iη
dE .

(2.42)

Taking the imaginary part of G(p, ω) yields

Ap(p, E) = − 1

π
Im[G(p, E)] = (2π)3

∑
Pn=−p

| 〈Φ0
N |ψ̂(0)|ΦN+1

n 〉 |2δ[E − (εF + εn)], E > εF

Ah(p, E) =
1

π
Im[G(p, E)] = (2π)3

∑
Pn=p

| 〈ΦN−1
n |ψ̂(0)|Φ0

N〉 |2δ[E − (εF − εn)], E < εF

(2.43)

In obtaining the imaginary part we have used the Sokhotski-Plemelj formula

1

E ± iη
= P 1

E
∓ iπδ(E) . (2.44)

These functions are related to the probability distribution for the transition from the ground
state of N particles to the (N ± 1)-particle excited states.

The anticonmutator rules for fermionic fields embody important restrictions to spectral
functions. Starting from

δ(r− r′) =
〈
{ψ̂(r)ψ̂†(r′)}

〉
= 〈ψ̂(r)ψ̂†(r′)〉+ 〈ψ̂†(r′)ψ̂(r)〉 , (2.45)
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we can insert a complete set of eigenstates as done for the one-particle Green’s function. In
this way one obtains

δ(r− r′) =
∑
n

| 〈ΦN
0 |ψ̂(0)|ΦN+1

n 〉 |2eiPn·(r−r′) +
∑
n

| 〈ΦN−1
n |ψ̂(0)|ΦN

0 〉 |2e−iPn·(r−r′) . (2.46)

Multiplying by eip·(r−r′) and integrating over (r− r′) we obtain

1 = (2π)3

( ∑
Pn=−p

| 〈ΦN
0 |ψ̂(0)|ΦN+1

n 〉 |2 +
∑
Pn=p

| 〈ΦN−1
n |ψ̂(0)|ΦN

0 〉 |2
)
. (2.47)

Combining with Eq. (2.43) we get

1 =

∫ εF

−∞
Ah(p, E)dE +

∫ ∞

εF

Ap(p, E)dE , (2.48)

result known as the sum rule for spectral functions.

2.2.3 Free Green’s function

In the context of this formalism let us examine the case of uncorrelated particles, where we
set V = 0 in Eq. (2.25). Then(

i
∂

∂t1
+

1

2m
∇2

1

)
G0(1, 1

′) = δ(1− 1′) , (2.49)

whereG0 denotes the free one-particle Green’s function. By Fourier transforming the equation
of motion in both space and time, we get(

ω − k2

2m

)
G0(k, ω) = 1 , (2.50)

where we have defined

G0(k, ω) =

∫
d(t− t′)

∫
d(r− r′)ei[k·(r−r′)−ω(t−t′)]G0(r− r′, t− t′) . (2.51)

Therefore
G0(k, ω) =

1

ω − k2

2m

, (2.52)

which combined with Eq. (2.42) yields for the spectral functions

Ap(k, E) = Ah(k, E) = δ

(
E − k2

2m

)
. (2.53)
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The inverse of the G0(k, ω) operator is defined such that∫
dr2G

−1
0 (1, 2)G0(2, 1

′) = δ(1− 1′) , (2.54)

so that
G−1

0 (1, 1′) =

(
i
∂

∂t1
+

1

2m
∇2

1

)
δ(1− 1′) . (2.55)

Consequently

G−1
0 (k, ω) = ω − k2

2m
. (2.56)

As we will see, the free one-particle Green’s function and it’s inverse appear recurrently in
many expressions.

2.2.4 Self-energy and Dyson equation

The equation of motion for the one-particle Green’s function, as in Eq. (2.25), can be rewritten
by removing the two-particle Green’s function. This is achieved with the introduction of a
one-body operator Σ(1, 1′) called the self-energy and defined as∫

dr2Σ(1, 2)G(2, 1
′) = −i

∫
V (1, 2)G2(12, 1

′2+)
∣∣
t2=t1

d2 . (2.57)

In this way, Eq. (2.25) becomes(
i
∂

∂t1
+

1

2m
∇2

1

)
G(1, 1′) = δ(1− 1′) +

∫
d2 Σ(1, 2)G(2, 1′) . (2.58)

This equation is known as the Dyson equation in differential form. In order to obtain its
associated integral equation, we rewrite the above equation as∫

d2

(
i
∂

∂t1
+

1

2m
∇2

1

)
δ(1−2)G(2, 1′) =

∫
d2 G−1

0 (1, 2)G(2, 1′) = δ11′+

∫
d2 Σ(1, 2)G(2, 1′) .

(2.59)
Multiplying by G0(1

′′, 1) and integrating over 1 we obtain

G(1′′, 1′) = G0(1
′′, 1′) +

∫
d2

∫
d1G0(1

′′, 1)Σ(1, 2)G(2, 1′) . (2.60)

In operator form this becomes
G = G0 +G0ΣG . (2.61)
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In this way, one can solve for the exact one-particle propagator

G = (G−1
0 − Σ)−1 , (2.62)

which projected in k space yields

G(k, ω) =
1

ω − k2

2m
− Σ(k, ω)

. (2.63)

Taking the imaginary part to Eq. (2.63), one finds the spectral function in terms of the
self-energy

A(k, ω) = −sign(ω − εF )

π

ImΣ(k, ω)(
ω − k2

2m
− ReΣ(k, ω)

)2
+ (ImΣ(k, ω))2

. (2.64)

This result is very useful in the self-consistent scheme that we will introduce as it establishes a
direct link between the one-particle Green’s function and the self-energy through the spectral
function.

2.2.5 Diagrammatic methods

If the Hamiltonian of the system is decomposed as H = H0 +H1, with H0 the Hamiltonian
of free fermions and H1 the interaction term, it is possible to expand the Green’s function
in a perturbation series, in terms of free one-particle Green’s functions G0 and the two-
body interaction V . A full derivation can be found in literature [3, 34, 43]. In summary, a
time dependent perturbation theory is applied. Using the differential equation for the time
evolution operator Û in the interaction picture, namely

i
∂

∂t
Û(t, t0) = Ĥ1Û(t, t0) , (2.65)

after integrating and iterating, one obtains

Û(t, t0) =
∞∑
n=0

(−i)n

n!

∫ t

t0

dt1 · · ·
∫ t

t0

dtnT̂ [Ĥ1(t1) · · · Ĥ1(tn)] .

Here, the time ordering operator T̂ introduced in Eq. (2.10) is generalized to include more
than two operators. It arranges the operators in such a way that the time arguments decrease
from left to right, including a minus sign for each required interchange between two fermion
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operators. In the end, the propagator in any one-particle basis becomes

G(α, β; t, t0) = −i
∞∑
n=0

(−i)n

n!

∫ t

t0

dt1 · · ·
∫ t

t0

dtn
〈
ΨN

0

∣∣ T̂ [Ĥ1(t1) · · · Ĥ1(tn)]aIα(t)α
†
Iβ(t0)

∣∣ΨN
0

〉
C
,

(2.66)
where the subscript I in the operators stands for the interaction picture, with C indicating
that only connected contributions are considered. Wick’s theorem simplifies this expansion
leting the time ordered product of field operators be written as products of free Green’s
functions. In this way, each term in the sum can be represented by a Feynman diagram.
Each diagram of order n contains a different arrangement of n interactions. In order to
establish a correspondence between each term in the perturbation expansion and a Feynman
diagram, a set of rules are introduced.

In this work the free propagator is represented by a single line (−), the full propagator
is represented by a double fermion line (=) and the interaction V is represented by a wavy
line (∼). In simple words, each diagram can be understood as an incoming fermion line
with momentum k and energy ω that scatters a given number of times to finally become
an outgoing line with the same initial momentum and energy. For example, the Feynman
diagrams that contribute to the Green’s function up to first order are shown in Fig. 2.3.

= + +~k, ω ~k, ω

~k, ω

~k, ω
~k ′, ω′

~k, ω

~k, ω

~k ′, ω′

Figure 2.3: Green’s function Feynman diagrams up to first order.

In Fig. 2.4 we show all the terms that contribute up to second order to the one-particle
Green’s function. We note that diagrams (a)-(d) are composed by the repetition of first order
diagrams in a sequential way. The diagrams (c)-(h) are also formed by a repetition of two
first order diagrams, but one of them is inserted in an intermediate line in another. The only
diagrams of second order that cannot be conceived as repetition of first order diagrams are
(i) and (j), which are entirely new second order diagrams.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.4: Second order diagrams that contribute to the one-particle Green’s
function.

As expected, the third order diagrams can be obtained by the sequential inclusion of one
first order diagram and one second order diagram, or by the insertion of a first order diagram
into an intermediate line of a second order diagram and vice versa. There will be, of course,
entirely new third order diagrams. This self-contained structure can be studied in detail
introducing the reducible and irreducible self-energies, which we discuss below.

The one-particle Green’s function contains, at zeroth order the free Green’s function
G0 with all remaining terms contained in the reducible self-energy ΣR. This is graphically
represented in Fig. 2.5. A first reorganization of all contributions in the reducible self-energy
is obtained by considering only irreducible terms. This means that such diagrams do not
contain two or more parts that are only connected by an unperturbed single particle Green’s
function G0. The sum of all irreducible terms is known as the irreducible self-energy Σ. The
reducible self-energy diagrams can be obtained at all orders by the insertion of irreducible
self-energy diagrams, as it is shown in Fig. 2.6. This automatically includes the self contained
structure mentioned before.
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It can be easily seen from the diagrams that the irreducible self-energy contains the
one-particle Green’s function. This is represented in Fig. 2.7, corresponding to the Dyson
equation (2.61).

= + ΣR

Figure 2.5: Diagrammatic representation of the one-particle propagator.

ΣR = + + + . . .Σ

Σ

Σ

Σ

Σ

Σ

Figure 2.6: Decomposition of the reducible self-energy in terms of irreducible self-
energy insertions.

= + Σ

Figure 2.7: Diagrammatic representation of the Dyson equation.

The diagrammatic series expansion discussed here makes it clear that only one-particle
irreducible self-energy diagrams need to be considered. However, if one increases the order of
the diagrams their structure become more and more complicated. In fact, an exact calculation
of all irreducible self-energy diagrams is currently unfeasible, being more convenient to select
some dominant diagrams based on physical arguments.

As it was mentioned above, only one-particle irreducible self-energy diagrams need to be
considered. Thus, for the rest of this thesis the word self-energy shall refer to the irreducible
self-energy Σ, unless stated otherwise.
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2.3 The ladder approximation

It is useful at this point to recall that the interaction between two nucleons features a short-
range repulsion and long range attraction. When the interparticle separation is much greater
than the interaction short-range part, one is dealing with a low-density interacting Fermi gas.
In nuclear matter one can consider a saturation density of about ρ = 0.16 fm−3, corresponding
to an interparticle separation of r0 ' 1.8 fm. This interparticle separation compared to the
short-range repulsion of the core, of about 0.5 fm, tells us that the nuclear matter can be
approximately considered as an interacting low-density Fermi gas. With this in mind, one
may expect that two-body collisions in a low-density medium can be related to two-body
scattering in free space. Motivated by this, one proceeds in the same way as in free space,
summing all ladder diagrams.

2.3.1 Ladder approximation for G2

The ladder approximation can be expressed in terms of the two-particle Green’s function.
Starting from the Martin-Schwinger hierarchy for G2 we have(

i
∂

∂t1
+

1

2m
∇2

1

)
G2(12, 1

′2′) = δ(1− 1′)G(2, 2′)− δ(1− 2′)G(2, 1′)

− i

∫
V (1, 3)G3(123, 1

′2′3+)d3 .

(2.67)

This hierarchy is truncated by approximating the three-particle Green’s function G3 in terms
of products of one and two-particles Green’s functions G and G2. In this way one expresses
G3 as [53]

G3(123, 1
′2′3′) ' G2(13, 1

′3′)G(2, 2′) +G2(13, 2
′1′)G(2, 3′) +G2(13, 3

′2′)G(2, 1′) , (2.68)

leaving the third particle as spectator of the other two interacting particles. Replacing this
approximation in Eq. (2.67) and using the equation of motion for the one-particle Green’s
function [Eq. (2.25)] one gets(

i
∂

∂t1
+

1

2m
∇2

1

)
{G2(12, 1

′2′) +G(1, 2′)G(2, 1′)−G(1, 1′)G(2, 2′)} =

i

∫
G(2, 3+)V (1, 3)G2(13, 1

′2′)d3 .

(2.69)
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Its associated integral equation becomes

G2(1
′′2, 1′2′) =G(1′′, 1′)G(2, 2′)−G(1′′, 2′)G(2, 1′)

+ i

∫
d1

∫
d3G0(1

′′, 1)G(2, 3+)V (1, 3)G2(13, 1
′2′) .

(2.70)

The diagrammatic representation of this equation is shown in Fig. 2.8.

= + +G2

G2

Figure 2.8: Diagrammatic representation of the two-particle Green’s function by
approximating the three-particle Green’s function.

Strictly speaking, Eq. (2.70) does not treat the ladder approximation in a self-consistent
way, because of the free one-particle Green’s function that appears in the top left vertex of
G2. The ladder structure appears when the free one-particle Green’s function is replaced by
a full or “dressed” one-particle Green’s function [53], as shown in Fig. 2.9 and expressed by

G2(12, 1
′2′) =G(1, 1′)G(2, 2′)−G(1, 2′)G(2, 1′)

+ i

∫
d1′′

∫
d3G(1, 1′′)G(2, 3+)V (1′′, 3)G2(1

′′3, 1′2′) .
(2.71)

= + +G2

G2

Figure 2.9: Diagrammatic representation of the two-particle Green’s function in
the ladder approximation.

The iteration of Eq. (2.71) is shown in Fig. 2.10, when one recognizes the ladder structure.
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= + + +

+ + + + + · · ·

G2

Figure 2.10: Diagrammatic expansion of the two-particle Green’s function in the
ladder approximation.

2.3.2 Effective interaction or T−matrix

In order to solve the equation for the two-particle Green’s function within the ladder approximation,
one introduces the so-called in-medium or effective interaction T matrix [56]

T (12, 1′2′) =δ(1− 1′)δ(2− 2′)V (1, 2)

+ i

∫
d1′′

∫
d2′′T (12, 1′′2′′)G(1′′, 1′)G(2′′, 2′)V (1′, 2′) .

(2.72)

Diagrammatically the T matrix can be expressed as in Figs. 2.11 and 2.12. In the low density
limit, this matrix reduces to the scattering T matrix.

= +T

T

Figure 2.11: Diagrammatic representation of the effective interaction.

= + + + + · · ·T

Figure 2.12: Diagrammatic expansion of the effective interaction.
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Note that in the definition of the T matrix, the product GG appears. This product is
similar to the first term of the expansion for G2 within the ladder approximation. This term
will be denoted G0

2, as shown in Fig. 2.13 corresponding to

G0
2(12, 1

′2′) = iG(1, 1′)G(2, 2′) . (2.73)

=G0
2

Figure 2.13: Diagrammatic representation of G0
2.

To obtain a relationship between G2 and T we write Eqs. (2.71) and (2.72) in matrix
form

G2 = GG−GG+ iGGV G2 , (2.74a)

T = V + iTGGV , (2.74b)

or equivalently

(1− iGGV )G2 = GG−GG , (2.75a)

T (1− iGGV ) = V . (2.75b)

Therefore
V G2 = T (GG−GG) . (2.76)

More explicitly

V (1, 2)G2(12, 1
′2′) =

∫
d1′′

∫
d2′′T (12, 1′′2′′) {G(1′′, 1′)G(2′′, 2′)−G(1′′, 2′)G(2′′, 1′)} .

(2.77)
This equation is interesting as it shows that even if the potential is infinite, T can be finite
provided G2 vanishes at small distances. This may occur in the case of a hard-core potential,
where correlations between particles ensure that there can not be particles closer than a
distance. The equation is also useful because the product of V G2 appears explicitly in the
equation of motion for the one-particle Green’s function G. An equivalent definition of T
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can be made if one expands Eq. (2.74b) for T

T = V + TG0
2V = V + V G0

2V + V G0
2V G

0
2V + V G0

2V G
0
2V G

0
2V + . . .

= V + V G0
2(V + V G0

2V + V G0
2V G

0
2V + . . .)

= V + V G0
2T .

(2.78)

In terms of matrix elements this is expressed as

T (12, 1′2′) =δ(1− 1′)δ(2− 2′)V (1, 2)

+

∫
d1′′

∫
d2′′V (1, 2)G0

2(12, 1
′′2′′)T (1′′2′′, 1′2′) .

(2.79)

Note the similarity with a Lippmann-Schwinger with a dressed two-body propagator G0
2.

Standard numerical techniques to solve integral equations will allow the calculation of the
effective interaction by means of Eq. 2.78.

Considering instantaneous interactions, V (1, 2) carries a factor δ(t1′ − t2′). This enables
to express the matrix elements of T as

T (12, 1′2′) = δ(t1 − t2)δ(t1′ − t2′) 〈r1r2 |T (t1 − t1′) | r1′r2′〉 . (2.80)

As a result, the temporal Fourier transform of Eq. (2.79) depends only on one energy known
as the starting energy. For this reason, G0

2 is evaluated at t1 = t2, and t1′ = t2′ , so that

G0
2(r1t1, r2t1; r1′t1′ , r2′t1′) = iG(r1 − r1′ , t1 − t1′)G(r2 − r2′ , t1 − t1′)

=
〈
r1r2

∣∣G0
2(t1 − t1′)

∣∣ r1′r2′〉 . (2.81)

Note that G2 becomes a function of the difference t1 − t1′ .

Applying a Fourier transform in time to Eq. (2.79) yields

〈r1r2 |T (ω) | r1′r2′〉 = δ(r1 − r1′)δ(r2 − r2′)V (r1 − r2)

+

∫
dr1′′

∫
dr2′′V (r1 − r2)

〈
r1r2

∣∣G0
2(ω)

∣∣ r1′′r2′′〉 〈r1′′r2′′ |T (ω) | r1′r2′〉 , (2.82)

which transformed to momentum variables yields

〈k1k2 |T (ω) |k1′k2′〉 = 〈k1k2 |V |k1′k2′〉

+

∫
dk3

(2π)3

∫
dk4

(2π)3

∫
dk3′

(2π)3

∫
dk4′

(2π)3
〈k1k2 |V |k3k4〉

〈
k3k4

∣∣G0
2(ω)

∣∣k3′k4′
〉
〈k3′k4′ |T (ω) |k1′k2′〉 .

(2.83)
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By applying the convolution theorem to Eq. (2.81) for G2 we have

〈
r1r2

∣∣G0
2(ω)

∣∣ r1′r2′〉 = i

∫ ∞

−∞

dE

2π
G(r1 − r1′ , E)G(r2 − r2′ , ω − E) , (2.84)

leading to

〈
k1k2

∣∣G0
2(ω)

∣∣k1′k2′
〉
= i(2π)6δ(k1 − k1′)δ(k2 − k2′)

∫ ∞

−∞
G (k1E)G (k2, ω − E) dE .

(2.85)

We replace this result in Eq. (2.83) to obtain

〈k1k2 |T (ω) |k1′k2′〉 = 〈k1k2 |V |k1′k2′〉

+

∫
dk3

(2π)3

∫
dk4

(2π)3
〈k1k2 |V |k3k4〉

〈
k3k4

∣∣G0
2(ω)

∣∣k3k4

〉
〈k3k4 |T (ω) |k1′k2′〉 .

(2.86)

It is convenient at this point to define the center of mass and relative momenta

K = k1 + k2 (2.87)

and
k =

k1 − k2

2
, (2.88)

respectively. Thus, 〈k1k2 |V |k1′k2′〉 = δ(K−K′) 〈k |V |k′〉. Additionally,

〈
k1k2

∣∣G0
2(K, ω)

∣∣k1k2

〉
=i(2π)6

∫ ∞

−∞

dE

2π
G

(
K

2
+ k, E

)
G

(
K

2
− k, ω − E

)
, (2.89)

so that

〈k |T (K, ω) |k′〉 = 〈k |V |k′〉+
∫
dp 〈k |V |p〉G0

2(K,p, ω) 〈p |T (K, ω) |k〉 . (2.90)

Here we have defined

G0
2(K,k, ω) = i

∫ ∞

−∞

dE

2π
G

(
K

2
+ k, E

)
G

(
K

2
− k, ω − E

)
. (2.91)

Eq. (2.90), in principle, allows to solve for the effective interaction or T matrix in momentum
space. The challenge here is to compute the function G0

2(K,k, ω), the non-interacting two-
body dressed propagator.
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2.3.3 The non-interacting two-particle dressed propagator

The non-interacting two-particle dressed Green’s function G0
2 can be obtained using the

spectral representation of the one-particle propagator in Eq. (2.42). Denoting k± = K
2
± k,

after replacing in Eq. (2.91) we get

G0
2(K,k, ω) = i

∫ ∞

−∞

(∫ εF

−∞

∫ εF

−∞

Ah(k+, E
′)Ah(k−, E

′′)

(E − E ′ − iη)(ω − E − E ′′ − iη)
dE ′dE ′′

+

∫ εF

−∞

∫ ∞

εF

Ah(k+, E
′)Ap(k−, E

′′)

(E − E ′ − iη)(ω − E − E ′′ + iη)
dE ′dE ′′

+

∫ ∞

εF

∫ εF

−∞

Ap(k+, E
′)Ah(k−, E

′′)

(E − E ′ + iη)(ω − E − E ′′ − iη)
dE ′dE ′′

+

∫ ∞

εF

∫ ∞

εF

Ap(k+, E
′)Ap(k−, E

′′)

(E − E ′ + iη)(ω − E − E ′′ + iη)
dE ′dE ′′

)
dE

2π
.

(2.92)

By contour integration in the complex energy plane we have∫ ∞

−∞

1

(E − E ′ ± iη)(ω − E − E ′′ ± iη)
dE = ∓ 2πi

ω − E ′ − E ′′ ± iη
,∫ ∞

−∞

1

(E − E ′ ± iη)(ω − E − E ′′ ∓ iη)
dE = 0 ,

(2.93)

which used in Eq. 2.92 for G0
2(K,k, ω) we obtain

G0
2(K,k, ω) =

∫ ∞

εF

∫ ∞

εF

Ap(k+, E)Ap(k−, E
′)

ω − E − E ′ + iη
dEdE ′

−
∫ εF

−∞

∫ εF

−∞

Ah(k+, E)Ah(k−, E
′)

ω − E − E ′ − iη
dEdE ′ .

(2.94)

As one can see, it is composed by two terms. The first term contains a particle-particle (p-p)
propagation, while the second term contains a hole-hole (h-h) propagation. The terms will
be denoted G0

2pp and G0
2hh, respectively. Therefore

G0
2(K,k, ω) = G0

2pp(K,k, ω)−G0
2hh(K,k, ω) . (2.95)

It will be useful to compute the imaginary part of G0
2. From Eq. (2.94) we obtain

Im G0
2(K,k, ω) =− θ(ω − 2εF )π

∫ ω−εF

εF

Ap(k+, E)Ap(k−, ω − E)dE

− θ(2εF − ω)π

∫ εF

ω−εF

Ah(k+, E)Ah(k−, ω − E)dE .

(2.96)
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Its real part can be obtained by a dispersion relation

ReG0
2(K,k, ω) =

1

π
P
∫ 2εF

−∞

ImG0
2(K,k, E)

ω − E
dE − 1

π
P
∫ ∞

2εF

ImG0
2(K,k, E)

ω − E
dE , (2.97)

as may be readily verified from the real part of equation (2.94). The dispersion relation can
be expressed in a single formula as

G0
2(K,k, ω) =

1

π

∫ 2εF

−∞

Im G0
2(K,k, E)

ω − E − iη
dE − 1

π

∫ ∞

2εF

Im G0
2(K,k, E)

ω − E + iη
dE . (2.98)

This relation is very useful since it enables us to calculate the real part of a complicated
function from its imaginary part. As observed in Eq. (2.96), the calculation of Im G0

2 requires
the evaluation of a single energy integral.

2.3.4 The ladder self-energy

As discussed above, the T matrix is directly related to the two-particle Green’s function G2 in
the ladder approximation. The equations presented on this section will become very useful
to obtain the self-energy within this approximation, hereafter denoted as ΣL. Replacing
Eq. (2.77) in Eq. (2.57) yields ∫

ΣL(1, 2)G(2, 1
′)d2

= −i
∫
d2

∫
d1′′

∫
d2′′T (12, 1′′2′′)

{
G(1′′, 1′)G(2′′, 2+)−G(1′′, 2+)G(2′′, 1′)

}
|t2=t1 .

(2.99)

After some manipulation, this equation can be rewritten as∫
ΣL(1, 2)G(2, 1

′)d2 = −i
∫
d2

∫
d1′′

∫
d2′′

{
T (12′′, 21′′)− T (12′′, 1′′2)

}
G(1′′, 2′′+)G(2, 1′)|t2′′=t1 .

(2.100)

Therefore
ΣL(1, 2) = −i

∫
d1′′

∫
d2′′ 〈12′′|T |21′′〉AG(1

′′, 2′′+)|t2′′=t1 , (2.101)

where the subscript A stands for antisymmetrization, namely

〈12|T |1′2′〉A = T (12, 1′2′)− T (12, 2′1′) . (2.102)

The self-energy within the ladder approximation is represented diagrammatically in Fig. 2.14.
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=

=

+ + + + · · ·

ΣL T

Figure 2.14: Diagrammatic representation of the ladder self-energy ΣL.

From Eq. (2.101) one has

〈r1 |ΣL(t1 − t2) | r2〉 = −i
∫
dr1′

∫
dr2′ 〈r1r2′|T (t1 − t2)|r2r1′〉AG(r1′−r2′ , t2−t+1 ) . (2.103)

By Fourier transforming in time and space we obtain

〈k1 |ΣL(ω) |k2〉 = −i
∫

dk′

(2π)3

∫
dE

2π
eiEδ 〈k1k

′|T (ω + E)|k2k
′〉AG(k

′, E) , (2.104)

where δ → 0+. Making use of momentum conservation in the T matrix and expressing it in
terms of the center-of-mass and relative momenta, we obtain

ΣL(k, ω) = −i
∫

dk′

(2π)3

∫
dE

2π
eiEδ

〈
k− k′

2

∣∣∣∣Tk+k′(ω + E)

∣∣∣∣k− k′

2

〉
A

G(k′, E) . (2.105)

In order to compute ΣL as in Eq. (2.105) it is convenient to keep in mind the analytic structure
of the T matrix. A dispersion relation holds as a result of the Lehmann representation of the
two-time two-particle propagator [34]

T (ω) = V +
1

π

∫ 2εF

−∞

Im T (E)

ω − E − iη
dE − 1

π

∫ ∞

2εF

Im T (E)

ω − E + iη
dE . (2.106)

Replacing this in Eq. (2.105) together with the Lehmann representation of G [Eq. (2.42)] we
find for the first energy-independent (Hartree-Fock) term

ΣHF (k) =

∫
dk′

(2π)3

〈
k− k′

2

∣∣∣∣V ∣∣∣∣k− k′

2

〉
A

n(k′) . (2.107)

In the above we have used

− i

2π

∫
eiEδG(k, E)dE =

∫ εF

−∞
Ah(k, E)dE ≡ n(k) , (2.108)
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where we have introduced the momentum occupation number

n(k) =

∫ εF

−∞
Ah(k, ω)dω . (2.109)

The next term in Eq. (2.105) is given by

Σ↑(k, ω) = − i

2π2

∫
eiEδdE

∫ 2εF

−∞
dE′

∫
dk′

(2π)3

〈
k− k′

2

∣∣∣∣ ImTk+k′(E′)

∣∣∣∣k− k′

2

〉
A

G(k′, E)

ω + E − E′ − iη
.

(2.110)

Considering that∫
G(k′, E)eiEδ

ω + E − E ′ − iη
dE = −2πi

∫ ∞

εF

dE ′′ Ap(k
′, E ′′)

ω + E ′′ − E ′ − iη
, (2.111)

then

Σ↑(k, ω) = − 1

π

∫ 2εF

−∞
dE ′

∫ ∞

εF

dE ′′
∫

dk′

(2π)3

〈
k− k′

2

∣∣∣∣ ImTk+k′(E ′)

∣∣∣∣k− k′

2

〉
A

Ap(k
′, E ′′)

ω + E ′′ − E ′ − iη
.

(2.112)

Here the up arrow (↑) indicates that the function has a pole in the upper-half complex-energy
plane. From this equation we also notice that the pole exists for energies below the Fermi
energy. Analogously, the last term in Eq. (2.105) yields

Σ↓(k, ω) = − 1

π

∫ ∞

2εF

dE ′
∫ εF

−∞
dE ′′

∫
dk′

(2π)3

〈
k− k′

2

∣∣∣∣ ImTk+k′(E ′)

∣∣∣∣k− k′

2

〉
A

Ah(k
′, E ′′)

ω + E ′′ − E ′ + iη
,

(2.113)

with poles in the lower-half complex-energy plane, indicated by the down arrow (↓), at
energies above the Fermi-energy. This self-energy also fulfills a dispersion relation [34] given
by

ΣL(ω) = ΣHF +
1

π

∫ εF

−∞

Im ΣL(E)

ω − E − iη
dE − 1

π

∫ ∞

εF

Im ΣL(E)

ω − E + iη
dE . (2.114)

The imaginary part of Σ↑ and Σ↓ are given by

Im Σ↓(k, ω) =θ(ω − εF )

∫ εF

2εF−ω
dE′′

∫
dk′

(2π)3

〈
k− k′

2

∣∣∣∣ Im Tk+k′(ω + E′′)

∣∣∣∣k− k′

2

〉
A

Ah(k
′, E′′) ,

Im Σ↑(k, ω) =− θ(εF − ω)

∫ 2εF−ω

εF

dE′′
∫

dk′

(2π)3

〈
k− k′

2

∣∣∣∣ Im Tk+k′(ω + E′′)

∣∣∣∣k− k′

2

〉
A

Ap(k
′, E′′) .

(2.115)
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These relations enable us to calculate the imaginary part of ΣL(ω) from

Im ΣL(ω) = Im Σ↓(k, ω) + Im Σ↑(k, ω) , (2.116)

and the real part can be evaluated using the dispersion relation from Eq. (2.114), namely

Re ΣL(ω) = ΣHF +
1

π
P
∫ εF

−∞

Im ΣL(E)

ω − E
dE − 1

π
P
∫ ∞

εF

Im ΣL(E)

ω − E
dE . (2.117)

For our purposes we have found an expedite way to compute the self-energy. First, the
Hartree-Fock term is calculated, together with the imaginary part of the energy-dependent
term. Then, the dispersion relation is used to obatin the real part of ΣL.

2.4 Brueckner-Hartree-Fock approximation

The BHF approximation was developed in the 50’s by Brueckner and collaborators [22, 23].
This was one of the first successful theories in describing nuclear matter properties starting
from microscopic NN interactions.

Goldstone showed that one can make an expansion of the ground state energy of the
system in terms of time ordered diagrams. Then, wherever there is a hole line in a diagram,
there is an integral in an internal variable p, over p < kF . At low densities, as n ∼ k3F ,
then kF is small and contributions from hole-lines are assumed to be very small compared to
contributions from particle lines. Therefore, the dominant diagrams will be those with the
least number of hole diagrams.

In order to sum these diagrams one introduces the Brueckner reaction matrix or g matrix,
similar to the T matrix discussed before. This g matrix also fulfills a Lippmann-Schwinger-
type equation. It is convenient for the aim of this Thesis to modify the equations seen above
to obtain the BHF scheme. This can be done neglecting the hole-hole propagation in G0

2

together with a quasi-particle approximation for the spectral functions, given by

A(k, ω) = δ[ω − e(k)] , (2.118)

where the quasi-particle spectrum e(k) is obtained by solving

e(k) =
k2

2m
+ Re Σ[k, e(k)] . (2.119)
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This approximation is equivalent to neglecting the imaginary part of the self-energy. The
above leads to the following two-particle Green’s function

λ(K,k, ω) =
θ[e(k+)− εF ]θ[e(k−)− εF ]

ω − e(k+)− e(k−) + iη
, (2.120)

which is used to solve for the g-matrix through the equation

g = V + V λg . (2.121)

Then the single-particle energy (sp) is determined by Eq. (2.119), but only for hole states
(k < kF ) [16]. For sp momenta k above kF one can choose a suitable sp energy to improve the
convergence of the series. One possible choice emerges naturally from the Green’s function
prescription and consist in considering Eq. (2.119) both for particles and holes. With this
choice one obtains a continuous spectrum, which is why it is called “continuous choice”.

For the self-energy, if the hole-hole propagation is neglected, then Im g(ω)=0, for ω < 2εF

(Eq. (2.96)), and the g matrix reads

g(ω) = V − 1

π

∫ ∞

2εF

Im g(E)

ω − E + iη
dE . (2.122)

The term Σ↑(k, ω) vanishes so that the BHF self-energy ΣBHF becomes

ΣBHF (k, ω) = ΣHF (k) + Σ↓(k, ω) . (2.123)

Therefore

ΣBHF (k, ω) =

∫ εF

−∞

∫
dk′
〈
k− k′

2

∣∣∣∣V ∣∣∣∣k− k′

2

〉
A

Ah(k
′, E′′)dE′′

− 1

π

∫ ∞

2εF

dE′
∫ εF

−∞
dE′′

∫
dk′
〈
k− k′

2

∣∣∣∣ Imgk+k′(E′)

∣∣∣∣k− k′

2

〉
A

Ah(k
′, E′′)

ω + E′′ − E′ + iη

=

∫ εF

−∞
dE′′

∫
dk′
〈
k− k′

2

∣∣∣∣ gk+k′(ω + E′′)

∣∣∣∣k− k′

2

〉
A

Ah(k
′, E′′) .

(2.124)

Since we are considering quasi-particle spectral functions, Ah(k, ω) = δ[ω − e(k)]. With this
the BHF self-energy becomes

ΣBHF (k, ω) =

∫
e(k′)<eF

dk′
〈
k− k′

2

∣∣∣∣ gk+k′ [ω + e(k′)]

∣∣∣∣k− k′

2

〉
A

. (2.125)
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In this scheme, self-consistency is achieved in terms of the quasi-particle energy spectrum
e(k), so it is sufficient to compute the on-shell self-energy

U(k) = Re ΣBHF [k, e(k)] , (2.126)

usually called the sp potential.

The theoretical framework presented in the preceding sections allow us to depart from
the BHF approach in the continuous choice, with the inclusion of the imaginary part of the
self-energy in the spectral functions.

2.5 Energy of the system

The energy of the system, as given by the energy per nucleon, as a function of the density
of the system is known as the equation of state. In the case of symmetric nuclear matter, it
allows to predict the saturation point of the system, therefore it is used to asses many-body
theories and calculations. On the other hand, the equation of state of pure neutron matter
has important implications for the description of the mass-radius relation in neutron stars in
hydrostatic equilibrium.

The energy of the system can be expressed as

〈Ĥ〉 =
∫

dp

(2π)3
p2

2m

〈
ψ†(p, t)ψ(p, t)

〉
+
1

2

∫∫
dp

(2π)3
dp′

(2π)3
V (p,p′)

〈
ψ†(p, t)ψ†(p′, t)ψ(p′, t)ψ(p, t)

〉
.

(2.127)

The one- and two-particle Green’s functions can be identified as

〈
ψ†(p, t)ψ(p, t)

〉
= −i lim

t′→t+
G(pt,pt′) , (2.128)

and 〈
ψ†(p, t)ψ†(p′, t)ψ(p′, t)ψ(p, t)

〉
= lim

t′→t+
G2(p

′t,pt;pt′,p′t′) . (2.129)

From the equation of motion for G in momentum space (Eq. (2.25)), it can be obtained that

lim
t′→t+

∫
dp′

(2π)3
V (p,p′)G2(p

′t,pt;pt′,p′t+) =
∂

∂t
G(pt,pt+) + i

p2

2m
G(pt,pt+) . (2.130)

Therefore
〈Ĥ〉 = 1

2

∫
dp

(2π)3

[
−i p

2

2m
G(pt,pt+) +

∂

∂t
G(pt,pt+)

]
.
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The one-time one-particle Green’s function is evaluated as

G(pt,pt+) =

∫
dω

2π
G(p, ω)e−ω(t−t+)i = i

∫ εF

−∞
Ah(p, ω)dω , (2.131)

so that

∂

∂t
G(pt,pt+) = −i

∫
dω

2π
ωG(p, ω)e−ω(t−t+)i =

∫ εF

−∞
ωAh(p, ω)dω . (2.132)

Here the Lehmann representation [Eq. (2.42)] for the one-particle Green’s function was used.
The energy per particle is obtained by dividing the energy by the density of the system.
Additionally, the spin and isospin quantum numbers must be accounted for, therefore a
degeneracy factor ν appears in the formula, where ν = 2 (4), for neutron (isospin-symmetric
nuclear) matter. With this the Galistkii-Midgal-Koltun [47, 57] sum rule is obtained,

ESCGF

N
=
ν

ρ

∫
dp

(2π)3

∫ εF

−∞
dω

1

2

(
p2

2m
+ ω

)
Ah(p, ω) . (2.133)

The BHF internal energy is recovered by introducing the quasi-particle approximation for
the spectral function, resulting in

EBHF

N
=
ν

ρ

∫
e(p)<εF

dp

(2π)3
1

2

[
p2

2m
+ e(p)

]
=
ν

ρ

∫
e(p)<εF

dp

(2π)3

[
p2

2m
+

1

2
U(p)

]
.

(2.134)
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Chapter 3

In-medium bound states in nuclear
matter

It is a well known fact that there is a single two-nucleon bound state between a proton and a
neutron in vacuum: the deuteron. In principle, deuterons could also exist in an infinite nuclear
system. Actually, in-medium deuterons are found within BHF in low-density symmetrical
nuclear matter [10]. In the case of neutrons the situation is drastically different. There is no
bound state of two neutrons in free space, despite the attractive interaction between them.
However, it is possible that they bound together when they are in the nuclear medium, as it
is also found for low density neutron and symmetrical nuclear matter within BHF [10, 54].

In this section, we review aspects of di-nucleons within BHF approximation. Along the
same line we investigate the possible occurrence of these bound states in the context of SCGF
theory.

3.1 Di-nucleons within BHF

Results presented in this section are based on Refs. [10, 54]. The starting point of these
studies is the appeareance of singularities in the g matrix at low densities. According to
Eq. (2.125), these singularities make the evaluation of the self-energy difficult. However,
Arellano showed that the BHF self-energy is finite, therefore the integral of Eq. (2.125)
should be feasible.

Theoretically, the g matrix is related to the in-medium scattering between two-nucleons.
The relevant two-body propagator within BHF is given by Eq. (2.120), which can be expressed
as

λ(ω) = Q(ω − h1 − h2 + iη)−1 , (3.1)

35



where Q is the Pauli blocking, which acts in the following way over momentum states

Q |k1,k2〉 = θ(k1 − kF )θ(k2 − kF ) |k1,k2〉 . (3.2)

Furthermore, h1 and h2 are the single particle effective Hamiltonians for particles with
momenta k1 and k2, respectively. In momentum representation one has

h1,2 =
k21,2
2m

+ U(k1,2) . (3.3)

On the other hand, the equation for the g matrix reads

g = V + gλV . (3.4)

One can rewrite this equation in the following way

g = V + V GIIV , (3.5)

where the operator GII has been introduced, which should satisfy the equation

GII = λ+ λV GII = (λ(ω)−1 − V )−1 . (3.6)

In this way, the relation V GII = gλ is fulfilled. The two-particle Green’s function within the
ladder approximation is related to this operator as follows

iG2(12, 1
′2′) = GII(12, 1

′2′)−GII(12, 2
′1′) . (3.7)

From Eq. (3.1) one finds
GII(ω) = Q(ω −H + iη)−1 , (3.8)

where H = h1 + h2 + V , is the effective Hamiltonian for two particles in the medium.
Consequently, in order to solve for in-medium bound states, one should find the eigenvalues
Eb and eigenstates |ψb〉 of

H |ψb〉 = (h1 + h2 + V ) |ψb〉 = Eb |ψb〉 . (3.9)

Following Eq. (3.5), the spectral contribution of this bound state to the g matrix near Eb is
given by

g(ω) ' V Q |ψb〉 〈ψb|QV
ω − Eb

, (3.10)

which evidences the singular behaviour of the g matrix near an eigenvalue of H.
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One way to find these eigenvalues can be obtained from the formal solution of equation
(3.4)

g(ω) = [1− λ(ω)V ]−1V , (3.11)

where it is assumed that the inverse of (1 − λV ) exists. As the inverse of a matrix is
proportional to the inverse of its determinant, when det(1− λV ) → 0, the g matrix becomes
singular. Therefore the criterion used to determine the eigenvalues is

det[1− λ(Eb)V ] = 0 . (3.12)

Moreover, the eigenstates can be found. Near the real axis one has

g(Eb + iη) ' V Q |ψb〉 〈ψb|QV
iη

, (3.13)

taking the limit η → 0 we obtain

lim
η→0

iηg(Eb + iη) = V Q |ψb〉 〈ψb|QV . (3.14)

On the other hand, from equation (3.9) in momentum space, the wave function can be inferred
for a total momentum of the pair K and a relative momentum k as

Qψb,K(k) =
〈k|V Q |ψb〉

Eb − e(k+)− e(k−)
, (3.15)

where the numerator can be obtained from the diagonal matrix elements of Eq. (3.14).

Finally, the coordinate-space representation is given by a Fourier transform, which for a
bound state with orbital momentum L reads

Ψb,K(r) =

√
2

π

∫ ∞

q̄

ψb,K(k)jL(kr)k
2dk . (3.16)

In this equation, q̄ is the lowest value of momentum allowed by the Pauli blocking.

In practice, for stability in self-consistent calculations of the self-energy at low-densities,
the occurrence of singularities in the g matrix is controlled by making [10]

g(ω) → g(ω)
ω − Eb

(ω − Eb)2 + ε2
. (3.17)

In actual calculations ε ' 1 keV is used. Some of the results obtained with this theoretical
framework will be given in the following subsections.
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3.1.1 Binding energies

The in-medium bound state energies (if any) are obtained from Eq. (3.12). The di-nucleon
binding energy is defined as [10]

bnn = Eb − Eth ,

where Eth is the p-p energy at the Fermi surface given by Eth = e(k+) + e(k−)|k=kF
.

Fig. 3.1 shows the magnitude of the binding energies of di-neutrons in the 1S0 channel in
neutronic matter (nM), while Fig. 3.2 illustrates these energies in symmetric nuclear matter
(SNM) for the 1S0 and 3SD1 channels. The results are presented relative to the magnitude of
the vacuum deuteron energy ED = 2.224 MeV. Zero values of the plot signal the nonexistence
of di-nucleons.
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Figure 3.1: 1S0 di-neutron binding energies in neutron matter, relative to the
deuteron energy in vacuum, as a function of the Fermi momentum kF and the pair
momentum K. The interaction is AV18.
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Figure 3.2: Di-nucleon binding energies in isospin-symmetric nuclear matter for
(a) 1S0 and (b) 3SD1 channels, relative to the deuteron energy in vacuum, as a
function of the Fermi momentum kF and the pair momentum K. The interaction
is AV18.
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In general, it can be observed that the binding becomes weaker as the momentum of the
pair K increases. In fact, no di-nucleons are found above a certain value of K. Conversely,
in all cases, as function of kF , the binding energies describe a maximum absolute value at
nearly kF ' 0.6 fm−1. Particularly, for the K = 0 case, in neutron matter this maximum
binding is about 35% the vacuum deuteron energy, meanwhile in symmetric nuclear matter,
the maximum value is 0.25 and 1.2 times the vacuum deuteron energy for the 1S0 and 3SD1

channels, respectively. It is worth mentioning that the in-medium deuteron is more bound
than in vacuum, for some range of densities.

3.1.2 Eigenfunctions and spatial characterization

Wavefunctions Ψ(r) in coordinate space are obtained from Eq. (3.16). The radial probabilities
r2|Ψ(r)| for pairs without translational motion are shown in Fig. 3.3 for neutron matter and
symmetrical nuclear matter. For S waves, one can see that the probability densities describe
an oscillatory behaviour which extends to high distances, with a spatial period around ∼ 5
fm. The 3D1 also behaves in this way, though not seen properly in Fig. 3.3 since the radial
probability is considerably smaller than the S waves probabilities.
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Figure 3.3: Radial probability densities for in-medium di-nucleon solutions in
neutron and symmetric nuclear matter, as functions of the relative distance r. The
interaction is AV18.
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To characterize the spatial extension of the radial probabilities, the mean and mean
squared radius can be found (〈r〉 and 〈r2〉, respectively). Due to the slowly decrease of the
oscillatory behaviour in the functions, a straightforward integration is not reliable to obtain
these quantities. Therefore, the Laplace transform of the function is considered [10]

F (s) =

∫ ∞

0

e−srr2|Ψ(r)|2dr .

In this way, for small values of s one has F (s) ' F (0) (1− 〈r〉 s+ 〈r2〉 s2/2− . . .) and 〈r〉,
〈r2〉 are obtaind by a linear fit of the function

f(s) =
1

s

(
1− F (s)

F (0)

)
= 〈r〉 − 〈r2〉

2
s+ . . . .

The mean and root-mean-squared radii obtained with this technique are shown in Fig.
3.4 for neutron and symmetric nuclear matter, for K = 0 fm−1. They are given in units of the
mean internucleon separation L = ρ−1/3 for a given density ρ. As it can be seen, except for the
3D1 channel in SNM at low densities, these quantities are greater than L. For some densities,
they reach values greater than 102L. These long-range correlated wave functions are similar
to the ones obtained in superfluid nuclear matter within Bardeen-Cooper-Schrieffer (BCS)
theory [54].
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Figure 3.4: Mean radii, relative to the inter-nucleon distance, for in-medium bound
states in neutron and symmetrical nuclear matter as function of kF . The interaction
is AV18.
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3.2 Quest for di-nucleons within SCGF

The search for bound states within SCGF theory can be pursued in analogous way to that
applied in the BHF approximation. Starting from the equation for the in-medium T -matrix

T = V + TG0
2V , (3.18)

one can introduce the operator GII related to G2 by

iG2(12, 1
′2′) = GII(12, 1

′2′)−GII(12, 2
′1′) , (3.19)

which satisfies
GII = G0

2 +G0
2V GII = (G0

2(ω)
−1 − V )−1 . (3.20)

In this way we obtain V GII = TG0
2, leading to

T = V + V GIIV . (3.21)

On the other hand, the eigenvalue problem in equation (3.9) can be recast as

GII(Eb)
−1 |ψb〉 = 0 . (3.22)

Taking inspiration from this, the eigenvalue problem of the two in-medium particles is
generalized with Eq. (3.22). In fact, this is sustained by the spectral decomposition of the
two-time two-particle propagator [34]

−iG2(r1r2, r1′r2′ ;ω) =
∑
n

〈ΦN
0 | ψ̂(r1)ψ̂(r2) |ΦN+2

n 〉 〈ΦN+2
n | ψ̂†(r1′)ψ̂

†(r2′) |ΦN
0 〉

ω − (EN+2
n − EN

0 ) + iη

−
∑
n

〈ΦN
0 | ψ̂†(r1′)ψ̂

†(r2′) |ΦN−2
n 〉 〈ΦN−2

n | ψ̂(r1)ψ̂(r2) |ΦN
0 〉

ω − (EN
0 − EN−2

n )− iη
.

(3.23)

Consequently, a possible bound state appears as a discrete simple pole in equation (3.23),
which translates to a zero in G2(Eb)

−1. Moreover, G2 is proportional to the antisymmetrized
GII , so the pole would also be present in GII . Therefore the T -matrix is singular for an
energy equal to Eb and the (possible) eigenvalue can be found as that which satisfies

det[1−G0
2(Eb)V ] = 0 . (3.24)

However, as seen from the imaginary part of G0
2 (Eq. 2.96) as a function of energy, this

quantity never vanishes. Consequently, one does not expect in-medium bound states with
real eigenenergies. In contrast, within BHF, this is possible because the imaginary part of
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the propagator involved in the g matrix is zero for energies below 2εF , leaving room for real
eigenvalues in this range.

A way to obtain in-medium bound states within SCGF theory is by including a gap in
the spectrum, as in superfluid nuclear matter. This causes a discontinuity at kF leading to
two Fermi energies, ε−F and ε+F , for k−F and k+F , respectively. In this way, the equations are
modified, and the imaginary part of G0

2 vanishes for energies between 2ε−F and 2ε+F [36, 96].
With these considerations, in-medium bound state eigenenergies are not forbidden in this
range. A self-consistent treatment of superfluid nuclear matter is beyond the scope of this
work.

It is worth mentioning that complex energy solutions can be obtained for Eq. (3.24).
This can be achieved by extending G0

2 to complex energies. Particulary, complex conjugate
eigenvalues have been found using mean-field approximations and quasi-particle spectral
functions [78, 79]. In this case, these complex energies are used to obtain an accurate estimate
of the pairing gap in the superfluid state.
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Chapter 4

Neutron matter within SCGF theory

In this chapter, we present the results for infinite neutron matter within SCGF theory in the
ladder approximation. Particular attention is paid to the calculation of spectral functions
including the imaginary part of the self-energy. Numerical strategies are explained together
with numerical approximations. Results within SCGF theory are compared with those in the
BHF approximation.

4.1 Iterative scheme

In Tab. 4.1 we summarize the main equations we make use within the SCGF scheme. To
initialize the self-consistent calculations we need to specify a desired density ρ and bare NN
interaction, both fixed during the whole calculation. Every calculation starts with an initial
self-energy Σ(k, ω), which is guessed or loaded from a previous iteration. The initial Σ(k, ω)
allows to calculate the spectral functions A(k, ω), as indicated in the first step in Tab. 4.1.
Since the spectral functions are sharp near the quasi-particle energy, the calculation of the
quasi-particle spectrum e(k) is crucial to accurately evaluate integrals involving A(k, ω). This
is why we evaluate e(k) in the second step of our iterative scheme. The third step consists
of finding the Fermi energy εF by solving

ρ = ν

∫
dk

(2π)3
n(k) = ν

∫
dk

(2π)3

∫ eF

−∞
dω A(k, ω) , (4.1)

where ρ is already specified. The fourth step is to compute the imaginary part of the two-
particle Green’s function by making use of Eq. (2.96). This imaginary part is then used in
the fifth step, making use of the dispersion relation [Eq. (2.97)] to get the real part of G0

2.
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Step Equation Reference

1 A(k, ω) = −sign(ω − εF )

π

Im Σ(k, ω)(
ω − k2

2m
− Re Σ(k, ω)

)2
+ (Im Σ(k, ω))2

(2.64)

2 e(k) =
k2

2m
+ Re Σ(k, e(k)) (2.119)

3 ρ = ν

∫
dk

(2π)3

∫ eF

−∞
dω A(k, ω) (4.1)

4
ImG0

2(K,k, ω) =− θ(ω − 2εF )π

∫ ω−εF

εF

A(k+, E)A(k−, ω − E)dE

− θ(2εF − ω)π

∫ εF

ω−εF

A(k+, E)A(k−, ω − E)dE

(2.96)

5 ReG0
2(K,k, ω) =

1

π
P
∫ 2εF

−∞

ImG0
2(K,k, E)

ω − E
dE− 1

π
P
∫ ∞

2εF

ImG0
2(K,k, E)

ω − E
dE (2.97)

6 Ḡ0
2(K, k, ω) =

1

2

∫ 1

−1

d(cos θ)G0
2(K,k, ω) (4.6)

7 〈k |T (K, ω) |k′〉 = 〈k |V |k′〉+
∫
dp 〈k |V |p〉 Ḡ0

2(K, p, ω) 〈p |T (K, ω) |k〉 (2.90)

8

ImΣ(k, ω) =

θ(ω − εF )

∫ εF

2εF−ω
dE′′

∫
dk′

(2π)3

〈
k− k′

2

∣∣∣∣ ImTk+k′ (ω + E′′)

∣∣∣∣k− k′

2

〉
A

A(k′, E′′)

−θ(εF − ω)

∫ 2εF−ω

εF

dE′′
∫

dk′

(2π)3

〈
k− k′

2

∣∣∣∣ ImTk+k′ (ω + E′′)

∣∣∣∣k− k′

2

〉
A

A(k′, E′′)

(2.115)

9 ΣHF (k) =

∫
dk′

(2π)3

〈
k− k′

2

∣∣∣∣V ∣∣∣∣k− k′

2

〉
A

∫ εF

−∞
A(k′, E)dE (2.107)

10 ReΣ(ω) = ΣHF +
1

π
P
∫ εF

−∞

Im Σ(E)

ω − E
dE − 1

π
P
∫ ∞

εF

Im Σ(E)

ω − E
dE (2.117)

Table 4.1: Iterative scheme employed to solve the SCGF theory equations.
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The sixth step consists in calculating an angle-averaged propagator Ḡ0
2 (this will be clarified

later). In the seventh step, we use this angle-averaged propagator and the bare NN potential
V (k, k′) to solve for the in-medium T matrix, T (K,ω), for various energies ω and momenta of
the pair K, by means of Eq. (2.90). In the eighth step, this effective interaction is evaluated
in all the points needed to calculate the integrals in Eq. (2.115) to obtain the imaginary
part of the self-energy. In the ninth step, the imaginary part of the self-energy is used in the
dispersion relations of Eq. (2.117) to obtain the energy dependent contribution to Re Σ(k, ω).
The tenth step consists in calculating the Hartree-Fock or static contribution ΣHF (k) using
the spectral function A(k, ω) and the bare NN potential, by means of Eq. (2.107). With all
the steps described above, a new self-energy is obtained, which can be loaded again in the
iterative procedure. The scheme is repeated several times until self-consistency is achieved.

For a global view on how the quantities involved in the calculation are interrelated, in
Fig. 4.1 we show a flowchart illustrating their interdependence. An arrow from one frame to
another indicates that the quantity inside the first frame is required for the calculation of
the quantity encapsulated in the second one. Both ρ and V are the external inputs of the
program.

ρ

V

εF

Im G0
2

Re G0
2

G0
2

T

Im Σ

Re Σ

Σ

ΣHFA

Figure 4.1: Graphical representation of the interrelation between the quantities
involved in the SCGF iterative scheme.

A substantial part of this work has been devoted to the development of computational
programs that implement the iterative scheme described above. Numerical techniques and
details can be found in Refs. [44, 51, 53].
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4.2 Numerical implementation

The iterative procedure described has been implemented numerically within the use of
FORTRAN language, together with UNIX scripts. These programs are based on general
numerical considerations, such as the discretization of all the continuous integrals. Additionally,
numerical cuttoffs have been tested to ensure convergence of some of the infinite integrals
appearing in the scheme.

A crucial approximation was needed for the treatment of the sharpness of the spectral
function around the Fermi surface. As one can see from Eq. (2.64), the spectral function is
nearly a Lorentzian distribution centered at the quasi-particle energy e(k). Additionally, from
Eq. (2.43), the spectral function must be positive for all energies and momenta. Consequently,
ImΣ(k, ω) ≥ 0, for ω < eF , and ImΣ(k, ω) ≤ 0, for ω > eF . Assuming that the imaginary
part of the self-energy is a smooth continuous function, then it should have a zero at ω = eF .
Then, the spectral function tends to a delta function near the Fermi surface, feature difficult to
handle numerically. Different strategies have been proposed to address this issue [32, 60, 77].
In this work, we decompose the spectral function in a quasi-particle narrow peak superposed
to a soft background function [29], namely

A(k, ω) = Z(k)δ[ω − e(k)] +B(k, ω) , (4.2)

with
B(k, ω) = −sign(ω − eF )

π

ImΣ(k, ω)

λ(k, ω)
. (4.3)

Here

λ(k, ω) = max

{[
ω − k2

2m
− Re Σ(k, ω)

]2
+ [Im Σ(k, ω)]2 , λ0

}
. (4.4)

The λ0 parameter has been arbitrarily set to 16 MeV2. The strength of the quasi-particle
peak Z(k), is then adjusted to fulfill the sum rule for the spectral function [Eq. (2.48)]. In this
way the quasi-particle delta function contribution can be handled analytically (see Annex),
with the background contribution handled numerically.

On the other hand, to calculate the in-medium T matrix, as well as the Hartree-Fock
contribution to the self energy, the anti-symmetrized diagonal matrix elements are needed.
These are obtained making use of partial wave decompositions. For the bare potential, for
example,

〈k|V |k〉A =
∑
α

nα 〈k|V α|k〉 , (4.5)

where α denotes spin, isospin and angular momentum states. nα is a factor containing
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degeneracy and geometrical factors. More details on this partial wave decomposition can be
found in references [44] and [53]. A finite number of partial waves are considered to terminate
the sums. In this work, waves up to J = 9 are considered in the Hartree-Fock’s contribution
to the self-energy. For the energy dependent part we consider waves up to J = 2.

The in-medium T matrix must be calculated for each channel α needed for the partial wave
decomposition. This would be done by expanding the Lippmann-Schwinger-type equation
[Eq. (2.90)], however, the exact two-particle Green’s function G0

2 depends explicitly on the
angle between the center of mass momentum and the relative momentum. This leads to the
coupling of partial waves with different total angular momentum J [81], which means that
the total angular momentum of two nucleons in the medium is not conserved. To bypass this
difficulty, an angle-averaged propagator is introduced as

Ḡ0
2(K, k, ω) =

1

2

∫ 1

−1

d(cos θ)G0
2(K,k, ω) . (4.6)

In this way, the equation can be written as a one-dimensional integral equation for each
partial wave, namely

〈q|T JST
LL′ (K,ω) |q′〉 = 〈q|V JST

LL′ |q′〉+2

π

∑
`

∫ ∞

0

p2dp 〈q|V JST
L` |p〉 Ḡ0

2(K, p, ω) 〈p|T JST
`L′ (K,ω) |q′〉 ,

(4.7)
where the summation over ` takes place only for coupled partial waves. Some efforts have been
made to include the angular dependence of the two-body Green’s function into the effective
interaction, mostly in BHF calculations [9, 81, 93]. Small deviations from the angle-averaged
approach were found.

Eq. (4.7) for the T matrix is discretized in the relative momentum variable p. A pole
substraction in required for the quasi-particle contribution to the propagator, coming from
the decomposition of the spectral function [Eq. (4.2)]. The resulting matrix is solved by
means of standard inversion procedures [10, 44, 51, 53]

With all the considerations described above, stable self-consistent results are obtained.
About 6 to 13 iterations are needed to reach a numerical convergence of less or equal than
0.05%. The number of iterations depends on the initial loaded self-energy. In this work, the
first run was carried out with an initial guess constructed with a set of gaussian functions [77].
Afterwards, the converged self-energy was used as the starting point for other densities.
During the calculation, the real and imaginary parts of the on-shell self-energy at zero relative
momentum, together with the Fermi energy are monitored after each iteration to assess
whether numerical convergence is achieved.
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4.3 Neutron matter results

In this section, we focus on results for neutron matter. We pay attention to relevant
microscopic properties of the system and compare with similar results obtained by other
studies [24, 73, 76, 86]. The calculations were done using the Argonne V18 potential.

4.3.1 Self-energy

In Fig. 4.2, we show surface plots for the real and imaginary parts of the self-energy Σ(k, ω)

for neutron matter at density ρ =0.08 fm−3. The resulting Fermi energy is εF = 12.77

MeV and the corresponding Fermi momentum is kF = 1.34 fm−1. We observe that near the
Fermi energy and low momenta, the imaginary part of Σ has a maximum below εF , and a
smaller minimum above εF . This wavy structure near εF stems from the structure of Im Σ

in Eq. (2.115), specifically from the shape of the spectral function and Im T , as studied in
Ref. [44].

−500 −250 0 250 5000

1

2

3

4

−40
−30
−20
−10

0
10
20

ω − εF [MeV]

k [fm−1]

R
eΣ

(k
,ω

)
[M

eV
]

(a) Real part of Σ(k, ω).
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(b) Imaginary part of Σ(k, ω).

Figure 4.2: Energy and momentum dependence of the self-energy in neutron
matter at density ρ = 0.08 fm−3.

The behaviour of the peaks and minima of the self-energy at various densities, is shown
in Fig. 4.3, as a function of energy and for relative momenta k = 0 (a), k = kF (b) and
k = 2kF (c). We notice that the peak increases its maximum value with increasing density,
while the local minimum vanishes as the density increases.
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Figure 4.3: Imaginary part of the self-energy in neutron matter for different
densities and for relative momenta 0 (a), kF (b) and 2kF (c).

In Fig. 4.4, we show the tails of the imaginary part of the self-energy as function of the
energy ω − εF . Here we consider zero relative momentum at different densities. We observe
that both (positive- and negative-energy) tails decrease with decreasing densities. The same
trend was observed at higher relative momenta, but the energy structures were more spread.

0

5

10

15

20

−600 −400 −200 0 0 2000 4000 6000
−140

−120

−100

−80

−60

−40

−20

0

Im
Σ

(0
,ω

)
[M

eV
]

ω − εF [MeV] ω − εF [MeV]

ρ = 0.04 fm−3

ρ = 0.08 fm−3

ρ = 0.16 fm−3

ρ = 0.24 fm−3

Figure 4.4: Energy tails of the imaginary part of the self-energy in neutron matter
for different densities. The relative momentum is k = 0.
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The real part of the self-energy is calculated making use of the dispersion relation shown
in Eq. (2.97), combined with the Hartree-Fock contribution ΣHF . The energy dependence
of Re Σ is shown in Fig. 4.5, exhibiting qualitative resemblance to that for Im Σ, due to
the dispersion relation. However, it is less pronounced. This resemblance can be understood
by the non-dispersive Hartree-Fock contribution, which easily dominates the dispersive part.
The momentum dependence is also dominated by this contribution, which is an increasing
function with respect to momentum. This implies that Re Σ becomes repulsive at large
momenta, as observed in Fig. 4.5.
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Figure 4.5: Real part of the self-energy in neutron matter for different densities
and for relative momenta 0 (a), kF (b) and 2kF (c).

To compare the results presented above with those within the BHF approximation, we
need to calculate the quasi-particle energy and especially, the on-shell self-energy Σ(k, e(k)).
In Fig. 4.6 we plot the sp potential U(k) = ReΣ(k, e(k)) at three densities. Results based
on the SCGF theory and the BHF approximation are shown with red and black curves,
respectively. We observe that the SCGF results are more repulsive at lower momenta than
those from BHF. This difference depends on the density. For ρ = 0.08 fm−3, the sp potential
is about 8 MeV more repulsive in SCGF scheme than in BHF approximation. This difference
increases to 15 MeV at ρ = 0.16 fm−3, and to ∼25 MeV at ρ = 0.24 fm−3. Keep in mind
that the main differences between BHF and SCGF frameworks are the inclusion of hole-hole
propagation, in addition to the self-consistent dressing of the ladders. Effects of repulsive
nature have been reported with the inclusion of intermediate hole-hole propagation in a
quasi-particle level [5]. The findings reported in this work are in line with those reported in
Ref. [76].
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Figure 4.6: Real part of the on-shell self-energy in neutron matter within the
SCGF theory (red curves) and the BHF approximation (black curves) for densities
ρ = 0.08 (a), 0.16 (b) and 0.24 (c) fm−3.

The on-shell imaginary part of the self-energy is related to the energy-width of a particle or
hole state of momentum k. Moreover, when the quasi-particle spectral function is introduced
into the one-particle propagator, it can be demonstrated that for long times, the time
dependent one-particle Green’s function behaves as [39]

Gqp(k, t) ∝ exp [−i e(k)t− Γ(k)t] , (4.8)

where Γ(k) = |Im Σ(k, e(k))|. This represents a state with a defined energy e(k) that decays
with a rate given by τ(k) = Γ(k)−1. Consequently, the on-shell imaginary part of the self-
energy is also related to the inverse lifetime of a quasi-particle state decay. In Fig. 4.7,
the absolute values of Im Σ(k, e(k)) are shown as function of the relative momentum k, for
three different densities. An obvious difference with the BHF scheme is the non-vanishing
on-shell width for hole states, because, as it was mentioned before, the BHF framework does
not include hole-hole propagation, resulting in a zero imaginary part for k < kF . In general,
|Σ(k, e(k))| increases with the density for states far from kF . Near the Fermi momentum the
vanishing minimum signals infinite lifetimes of quasi-particle states at the Fermi surface. For
particle states, the on-shell SCGF imaginary part of Σ is slightly smaller in absolute value,
than the one obtained within BHF. Their differences fluctuate between 3 to 5 MeV.
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Figure 4.7: Absolute value of the imaginary part of the on-shell self-energy in
neutron matter within the SCGF theory (red curves) and the BHF approximation
(black curves) at densities ρ = 0.08 (a), 0.16 (b) and 0.24 (c) fm−3.

The on-shell self-energy at evenly-spaced densities is presented in Fig. 4.8. The densities
are ρ = 0.02(0.02)0.20 fm−3. It is worth mentioning that the zero momentum values of
the real part increase uniformly with decreasing density. In contrast, the imaginary part,
decreases with larger successive differences between consecutive curves. Additionally, both
real and imaginary parts, show a small valley, which becomes more pronounced at smaller
densities. This valley takes place at momentum slightly above kF .
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Figure 4.8: On-shell self-energy at various densities. The left(right) frame
shows the real(imaginary) part. The outmost purple(red) curves correspond to
ρ = 0.20(0.02) fm−3. The density difference between consecutive curves is 0.02
fm−3.
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In Tab. 4.2 we summarize the densities, Fermi momenta and Fermi energies corresponding
to the curves included in Fig. 4.8.

ρ [fm−3] kF [fm−1] εF [MeV]
0.02 0.84 6.36
0.04 1.06 8.81
0.06 1.21 11.22
0.08 1.34 12.77
0.10 1.44 15.78
0.12 1.53 18.41
0.14 1.61 21.64
0.16 1.69 25.81
0.18 1.76 29.86
0.20 1.82 35.14

Table 4.2: Densities ρ, Fermi momenta kF and Fermi energies εF corresponding
to the curves included in Fig. 4.8.

4.3.2 Spectral function and momentum distribution

Once the self-energy is determined, the spectral function can be evaluated using Eq. (2.64).
These functions give information about the correlations between particles in the system. In
Fig. 4.9 we show the spectral function A(k, ω) as function the energy. We consider different
densities and three momenta. In Fig. 4.10 we show the spectral function at ρ = 0.08 fm−3

in the energy-momentum plane for five momenta.
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Figure 4.9: Spectral function as a function of energy for different densities and for
momenta k = 0 (a), kF (b) and 2kF (c)
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Figure 4.10: Spectral function in the energy-momentum plane for momenta k = 0,
kF/2, kF , 3kF/2 and 2kF . The density is 0.08 fm−3.

In all cases, the global maxima signal the position of the quasi-particle peak, where in our
approximation, is given by a delta function. For simplicity, we omit these delta contributions
in the plots, but one should keep in mind their presence.

The zero-momentum spectral functions present a quasi-particle peak at ω < εF (hole
states), which is displaced to lower energies as the density increases. This reflects the fact
that for higher densities, the particles with lower momenta are more bound. Conversely, for
k=2kF , the spectral functions describe a quasi-particle peak at ω > εF (particle states) that
moves to higher energies with increasing density, reflecting repulsiveness at high momenta
states in higher density. At the Fermi surface (k = kF ) the quasi-particle peak remains
fixed at the Fermi energy, for all densities, becoming narrower with decreasing density. The
functions also present a dip at εF , caused by the vanishing value of Im Σ(k, εF ). Except for
this numerical valley, the functions show larger width at higher densities. This means that
the particles are more spread out over energies, that is to say, more correlated.

Another quantity that measures the correlation between particles is the momentum
distribution n(k). Once the spectral function is known, one can calculate this function from

n(k) =

∫ εF

−∞
A(k, ω)dω (4.9)

In Fig. 4.11, the momentum distribution is shown for different densities. For a non-correlated
system, this distribution becomes a Heaviside step function, n(k) = θ(kF − k). In contrast,
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for correlated infinite nuclear matter, the hole states suffer a depletion and higher momentum
states get populated. Microscopically, a pair of nucleons can reach high relative momentum
when they are at a small relative distances. Thus, the depletion is caused by the short-range
repulsive nature of the interaction. Quantitatively, this depletion is nearly constant for low
momentum states and is weakly dependent on the density. For the AV18 interaction studied
in this work, about 2.5-6 % of the hole states are depleted over a large range of densities.
For higher momenta, the occupation diminishes slowly. This can be observed in panel (b) of
Fig. 4.11, disclosing the way it diminishes with k/kF .
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Figure 4.11: Momentum distribution in neutron matter for three different densities
ρ = 0.04, 0.08, 0.16 and 0.24 fm−3. The distribution is shown on a linear (a) and a
logarithmic scale (b).

The momentum distribution also exhibits a discontinuity at the Fermi surface. Making
use of the decomposition of the spectral function given by Eq. (4.2), the discontinuity can be
expressed as

lim
η→0+

[n(kF − η)− n(kF + η)] = Z(kF ) . (4.10)

Thus, the discontinuity matches the quasi-particle strength at kF . We obtain Z(kF ) between
0.84 and 0.86.

In Fig. 4.12 we show the quasi-particle strength Z(k) as a function of the ratio k/kF .
We observe that Z(k) has a maximum at k = kF , directly related to the infinite lifetimes of
quasi-particles at the Fermi surface. For lower and higher momenta, the strength vanishes
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sharply. We also observe that Z(k) gets wider with decreasing density. This is in agreement
with the fact that the imaginary part of the self-energy diminishes in absolute value, at
smaller densities. Thus, to fulfill the sum rule the spectral strength gets distributed mostly
around the quasi-particle peak.
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Figure 4.12: Quasi-particle strength as a function of momentum, in neutron
matter at various densities.

4.3.3 Energy per nucleon

In order to characterize the energy of the neutron medium as a function of its density, we
proceed to calculate the energy per nucleon (E/N) in neutron matter. To do so we use
Eqs. (2.133) and (2.133). In Fig. 4.13 we plot E/N as a function of the density. Red and
black curves denotes results for SCGF and BHF, respectively. Small differences are observed
between both schemes at densities below 0.08 fm−3. This fact reinforces the validity of using
the BHF approximation at low densities to obtain properties of low density nuclear matter.
At higher densities, however, the SCGF results depart from the BHF ones. As observed,
their difference increase at higher densities, with the SCGF energies above the BHF results.
This overall trend can be explained by the repulsive effect introduced by h-h propagation,
which gets enhanced at higher densities.
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Figure 4.13: Energy per nucleon in neutron matter within the SCGF theory (red
curve) and the BHF approximation (black curve), as a function of density.

An interesting feature observed in Fig. 4.13 is steepest behaviour of E/N as a function
of ρ. Since the the pressure of the system is given by

P =
∂(E/N)

∂ρ
, (4.11)

its use in the study of hydrostatic equilibrium in neutron stars might allow for more massive
stars. On the other hand, astrophysical observations in the last decades have measured
neutron stars with masses greater than two solar masses [7, 28, 30]. Thus, it would be
interesting to construct an equation of state within SCGF to see whether it is feasible to
explain some of these observations. However, the results shown here are conditioned to the
bare interaction, which in our case (AV18) reproduces scattering data up to 300 MeV in
the laboratory system. Therefore, other NN interactions should be considered. A possible
candidate is the inversion potential above pion-production threshold, recently developed by
Adriazola et al. [4].
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4.3.4 Neutron mean-free path in the medium

An interesting transport property of nuclear matter is the in-medium mean-free path. This
quantity is defined as [75, 87]

λ(k) =
v(k)

|Γ(k)|
. (4.12)

Here, v(k) is the group velocity, given by v(k) = ∂ε/∂k, where ε(k) is the quasi-particle
spectrum, and Γ(k) is the quasi-particle inverse lifetime. An extension of the Green’s
functions techniques to the complex energy plane has been introduced by Rios and Somà
[75, 87] where the quasi-particle pole can be extracted from the one-body propagator.

The one-particle propagator can naturally be extended to the complex energy plane as

G(k, z) =

∫ εF

−∞

Ah(k,p)

z − E
dE +

∫ ∞

εF

Ap(k,p)

z − E
dE , (4.13)

being this a unique complex-variable function, analytic off the real axis. The real valued
propagator is recovered by evaluating the complex valued function near the real axis, as

G(ω) =

{
limη→0+ G(ω + iη) , ω > εF

limη→0+ G(ω − iη) , ω < εF
. (4.14)

This propagator also fulfills a Dyson equation, extended to complex energies by

G(k, z) =
1

z − k2

2m
− Σ(k, z)

. (4.15)

Thus, the complex-energy self-energy is given by

Σ(k, z) = ΣHF (k) +
1

π

∫ εF

−∞

Im Σ(k,E)

z − E
dE − 1

π

∫ ∞

εF

Im Σ(k,E)

z − E
dE .

What we are actually considering is the analytical continuation of the propagator G̃(k, ω),
computed from the Dyson equation using the analytical continuation of the self-energy. The
last one is given by Σ̃(k, z) = Σ(k, z), for Imz > 0, and Σ̃(k, z) = Σ∗(k, z), for Imz ≤ 0.

The main features of the propagators discussed above are shown in Fig. 4.14. In panels
(a) and (c) [(b) and (d)] we plot the real (imaginary) part of G(0, z) and G̃(0, z), respectively.
Although we observe in panel (a) that the real part of G is continuous in the complex energy
plane, from panel (b) we notice that the imaginary part is discontinuous across the real
axis and thus, non-analytic. The discontinuity is recognized by the abrupt change of color.
Conversely, we observe in panels (c) and (d) that both real and imaginary parts of G̃ are
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continuous functions across the real axis. but have a pole in the lower-half complex energy
plane. By the Dyson equation, the position of the pole of G̃(k, z) is obtained as

z(k) =
k2

2m
+ ReΣ̃(k, z(k)) + ImΣ̃(k, z(k))i = ε(k) + Γ(k)i . (4.16)
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Figure 4.14: Real (a) and imaginary (b) parts of the one-particle Green’s function
at zero momentum G(0, z), and real (c) and imaginary (d) parts of its analytical
continuation at zero momentum G̃(0, z) in the complex energy plane. The density
is ρ = 0.08 fm−3.

Thus, the pole in this propagator leads to an equation for the fully dressed quasi-particle
spectrum ε(k) and inverse lifetime Γ(k). This spectrum can be compared with the approxima-
tions usually employed. To lowest order, known as first renormalization, one neglects the
imaginary part in Σ. This leads to

ε1(k) =
k2

2m
+ Re Σ[k, ε1(k)]

Γ1(k) = Im Σ[k, ε1(k)] .

(4.17)
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Fig. 4.15 shows the absolute value of the analytically continued propagator for relative
momenta 0, kF and 2kF , in panels (a), (b) and (c), respectively. Also, we include the fully
dressed quasi-particle pole (crosses) and the first renormalization pole (red circles). A clear
difference between the fully dressed quasi-particle pole and the one obtained at the lowest
order of the approximation, is evidenced for k = 0. For k ≥ kF , differences between both
poles become negligible. To see this feature more clearly, the momentum dependence of
the fully dressed and first normalization quasi-particle spectra, together with the inverse
lifetimes, are shown in Fig. 4.16 for ρ = 0.08 fm −3. We observe that the difference between
both results diminishes gradually at higher momenta. These findings are consistent with
those reported by Rios and Somà in isospin-symmetric nuclear matter [75, 87].
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Figure 4.15: Modulus of G̃(k, ω) for k = 0 (a), kF (b) and 2kF (c) at ρ = 0.08
fm−3. Crosses indicate the fully dressed quasi-particle pole, while red circles denote
the first renormalization quasi-particle one.
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Figure 4.16: Fully dressed (solid red curves) and first renormalization (dashed
black curves) quasi-particle spectra (a), and inverse lifetimes (b), at ρ = 0.08 fm −3.

Once the quasi-particle spectrum is determined, we evaluate the group velocity, giving
access to the in-medium mean-free path [Eq. (4.12)]. Note that the quasi-particle spectrum
is a strictly increasing function of momentum, therefore it can be used unambiguously to
express the momentum in terms of the quasi-particle energy k(ε). Thus, we express the
mean-free path in terms of the energy as

λ(ε) =
[∂k(ε)/∂ε]−1

|Γ[k(ε)]|
. (4.18)

In Fig. 4.17 we show the neutron mean-free path λ relative to the mean internucleon
separation L = ρ−1/3, as function of the difference between the quasi-particle and Fermi
energies ε − εF , for different densities. These values have been obtained using the fully
dressed quasi-particle spectrum. However, since the first renormalization spectrum only
differs from the fully dressed one at low momenta, the only considerable differences take
place for hole energies (ε < εF ). Additionally, we observe that the mean-free path increases
with the energy for ε < εF . For ε > εF , instead, it decreases reaching a plateau. At the
Fermi energy, it becomes infinite, due to the infinite lifetimes of quasi-particles at the Fermi
surface. The asymptotic values at high energies are approximately λ/L=1.0, 0.4, 0.16 and
0.11, for densities 0.04, 0.08, 0.16 and 0.24 fm−3, respectively.
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Figure 4.17: In-medium neutron mean-free path relative to the mean internucleon
separation, as a function of energy at various densities. The results are shown on a
logarithmic scale.

An asymmetric dependence of λ/L on the density is observed. For energies below the
Fermi energy, the mean-free path increases with increasing the density. Conversely, for
energies much greater than εF , for example, above εF + 100 MeV, an increase in the density
yields a decrease of the mean-free path. Additionally, near the Fermi energy the mean-free
path increases with increasing density.

4.4 In-medium bound states and pairing gap

Stable self-consistent solutions are obtained with the considerations outlined for the iterative
scheme, with no singularities in the T matrix for real energies. In fact, the determinant in
Eq. (3.24) never vanishes for real energies. This means that there are not di-neutrons in
normal neutron matter within SCGF, in contrast with findings reported by Arellano et al.
within BHF. As we mentioned in Chap. 3, this was expected because h-h (p-p) propagation
gives no room for discrete eigenstates below (above) 2εF .

On the other hand, if the non-interacting two-particle dressed propagator is extended to
complex energies as

G0
2(K,k, z) =

∫ ∞

εF

∫ ∞

εF

Ap(k+, E)Ap(k−, E
′)

z − E − E ′ dEdE ′

−
∫ εF

−∞

∫ εF

−∞

Ah(k+, E)Ah(k−, E
′)

z − E − E ′ dEdE ′ ,

(4.19)
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similarly as we did for the one-particle propagator, it results in a unique complex variable
function, analytic off the real axis. The real-valued propagator can be recovered from the
complex one near the real axis as

G0
2(ω) =

{
limη→0+ G

0
2(ω + iη) , ω > 2εF

limη→0+ G
0
2(ω − iη) , ω < 2εF

(4.20)

When we impose D(K, zb) = det[1−G0
2(K, zb)V ] = 0, two complex conjugate eigenvalues

z±b are found at a given density. In Fig. 4.18, we plot D(K, zb) in the complex plane. Here
we consider the 1S0 channel at ρ = 0.007 fm−3. In the left-hand side (LHS) we show a
colored level surface for the modulus |D(0, z)|. In the right-hand side (RHS) we plot D(0, z)

with the domain coloring technique, where the colors and saturation indicate the phase
and modulus, respectively. We observe two conjugate zeros of the determinant located at
(z±b − 2εF ) = −0.26± 2.44 MeV.
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Figure 4.18: |D1S0
(0, z)| (LHS) and domain coloring of D1S0

(0, z) (RHS) in the
complex plane for a density of 0.007 fm−3. In the LHS panel, the saturation indicates
the magnitude of the complex number.
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After a more thorough study we found that these complex eigenvalues take place at
densities below 0.08 fm−3, namely kF ≤ 1.33 fm−1. Under their presence, any time dependence
yields to an exponentially exploding solution in time and the system becomes unstable, effect
known as pairing instability [34]. Despite this feature, some properties of the superfluid state
can be explored for these eigenenergies and associated eigenfunctions.

The simplest theory that takes into account the condensation of Cooper pairs in fermionic
systems is the Bardeen-Cooper-Schrieffer (BCS) theory. Within this theory, the energy gap
∆(k) for states with orbital momentum L satisfies

∆L(k) = − 2

π

∑
L′

∫ ∞

0

VLL′(k, p)
∆L′(p)

2E(p)
p2dp , (4.21)

where
E(k)2 = (e(k)− εF )

2 +∆(k)2 . (4.22)

Here e(k) is the quasi-particle energy. The normal (n) and anomalous (χ) density are given
by

n(k) =
1

2

[
1− e(k)− εF

E(k)

]
, (4.23a)

χ(k) =
∆(k)

2E(k)
. (4.23b)

The Fermi energy is obtained from the condition ρ = ν
∫

dk
(2π)3

n(k), and the system of
equations can be solved self consistently. For uncoupled states, Eq. (4.21) can be written as

2
√

[e(k)− εF ]2 +∆(k)2 χ(k) = − 2

π

∫ ∞

0

V (k, p)χ(p)p2dp . (4.24)

Arellano and Isaule [10, 54] noticed that, if |∆(k)| � |e(k)−εF | this equation is quite similar
to the BHF equation for the wave function of two bound neutrons without translational
motion. In this case, Eq. (4.24) reads

2[e(k)− εF ]χ(k) = − 2

π

∫ ∞

0

V (k, p)χ(p)p2dp , (4.25)

for e(k) > εF . On the other hand, the equation for a bound state within BHF can be
expressed as

(h1 + h2 − Eb) |ψb〉 = −V |ψb〉 , (4.26)

in other words
[2e(k)− Eb]ψb(k) = − 2

π

∫ ∞

kF

V (k, p)ψb(p)p
2dp . (4.27)
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Comparing Eq. (4.27) for ψb with Eq. (4.25) for χ, we notice their resemblance. Note that if
we assume Eb = 2εF ± i Wb, the resemblance is even closer.

To explore these ideas, we consider the study of Ref. [79] on “In-medium bound states
and pairing gap”. There, the authors consider h-h propagation and quasi-particle spectral
functions, so that G0

2 is given by

[
G0

2(z)
]−1

= ξ(z − h1 − h2) , (4.28)

where the momentum representation of ξ is given by

ξ(k1, k2) = θ(k1 − kF )θ(k2 − kF )− θ(kF − k1)θ(kF − k2) (4.29)

On the other hand, Eq. (3.22) for the eigenvalue problem, can be written as

G0
2(Eb)V |ψb〉 = |ψb〉 . (4.30)

Therefore
−G0

2(Eb)
−1 |ψb〉 = −V |ψb〉 . (4.31)

Combining with Eq. (4.28) for G0
2 the above equation can be expressed as

ξ[2e(k)− 2εF ±Wbi]ψb(k) = − 2

π

∫ ∞

0

V (k, p)ψb(p)p
2dp , (4.32)

restricted to zero total momentum. By taking the absolute value we obtain

|ψb(k)| =
∣∣ 2
π

∫∞
0
V (k, p)ψb(p)p

2dp
∣∣√

[2e(k)− 2εF ]2 +Wb
2
. (4.33)

We now observe the close resemblance of this equation to the one for the absolute value of
the anomalous density, expressed as

|χ(k)| =
∣∣ 2
π

∫∞
0
V (k, p)χ(p)p2dp

∣∣
2
√

[e(k)− εF ]2 +∆(k)2
. (4.34)

Thus, if we use the constant gap approximation ∆(k) ' ∆(kF ), the absolute value of the wave
function is related to the absolute value of the anomalous density. Moreover, the maximum
gap is equal to the imaginary part of the complex eigenvalue ∆(kF ) ' Wb [69, 78, 79].

Particularly, we are considering the sp dispersion over energies. Thus, G0
2 does not have

a simple analytical expression. Moreover, our complex eigenenergies do not have an exact
2εF real part. Despite of this, a comparison with the pairing gap can be explored.
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In Fig. 4.19 we show the real and imaginary parts of the eigenvalue with positive
imaginary part z+b , as a function of the Fermi momentum kF . We also show the pairing
gap at kF obtained within BCS, by solving Eqs. (4.21) to (4.23) self-consistently, where e(k)
is the sp spectrum obtained from normal neutron matter within SCGF and BHF schemes.
Here, only the 1S0 channel is considered. We do not find solutions for the eigenvalue problem
and the BCS equations for kF above 1.34 fm−1.
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Figure 4.19: Real (orange circles) and imaginary (red squares) parts of the
complex eigenvalue with positive imaginary part z+b , together with the pairing gap
at k = kF within BCS, obtained with a SCGF (black dashed curve) and BHF (blue
dashed curve) sp spectrum. The channel is 1S0.

We observe that the gap estimated with the imaginary part of z+b , behaves in a similar
way than the gaps obtained within BCS, featuring a maximum around kF = 0.9 fm−1. All of
them deviate slightly for kF below 0.55 fm−1. For greater Fermi momenta, their differences
increase, specially around the maximum value, where Im(z+b − 2εF ) is about 0.8 MeV less
than the BCS gap obtained with a SCGF spectrum, and around 0.6 MeV less than the
BCS gap obtained with a BHF spectrum . These results differ from the ones reported in
Ref. [79], where they find an excellent agreement between the imaginary part of the complex
eigenenergies and the BCS gap at the Fermi surface, within mean-field and quasi-particle
approximations.

66



On the other hand, when short-range correlations (SRC) are included beyond BCS, such as
in Refs. [38, 74], the 1S0 overall gap is reduced with a maximum that sits at nearly 2.25 MeV
around kF = 0.8− 0.9 fm−1, for the AV18 potential. In those works, a generalization of the
BCS equation is introduced to include SRC. This is accomplished by making

E(k)2 = ξ(k)2 +∆2(k) , (4.35)

where in the zero-temperature case, ξ(k) is given by

1

2ξ(k)
=

∫ ∞

−∞
dE dE ′ [1− θ(εF − E)− θ(εF − E ′)]

E + E ′ A(k,E)A(k,E ′) . (4.36)

Our estimated gap with Im(z+b −2εF ), is in agreement with those findings, giving a maximum
of 2.69 MeV at kF = 0.84 fm−1. Therefore, within SCGF theory, the imaginary part of the in-
medium bound states energies, cannot be used to obtain the simplest BCS gap approximation,
but to estimate the gap beyond BCS with SRC.

In Fig. 4.19, we also observe a shift of the real part of the eigenvalues to the h-h
sector of the spectrum (energies below 2εF ) for kF below 0.8 fm−1, with a minimum of
Re(z+b − 2εF ) = −0.38 MeV at kF = 0.44 fm−1, and a deviation to the p-p sector of the
spectrum (energies above 2εF ) for kF above 0.8 fm−1, with a maximum of Re(z+b − 2εF ) =

0.15 MeV at kF = 1.01 fm−1. This deviation of the real part of the eigenvalues from 2εF is
related to the strength of the attraction in the NN channel [78].
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Chapter 5

Summary and conclusions

We have presented a microscopic study of normal neutron matter at zero-temperature within
the SCGF theory in the ladder approximation. The realistic Argonne V18 potential was used
as the bare NN interaction. Two approximations have been introduced to obtain fully self-
consistent stable solutions. The first one is the angle-average in the two-particle propagator
in the ladder equation, which allows to decouple partial waves with different total angular
momentum. The second one is the decomposition of the spectral functions into a delta
function and a soft background contribution, which was introduced to control the sharpness
of the functions near the quasi-particle peak and the dispersion of the particles over a wide
range of energies. With these approximations, the fully off-shell structure of the self-energy
and spectral functions has been obtained on an energy-momentum lattice. The energy,
momentum and density dependence of the relevant quantities have been discussed thoroughly.
In the following, we summarize some of these main features.

We have found that the real part of the self-energy is mainly dominated by an energy
independent or static contribution. In contrast, the imaginary part has an important energy
dependence, with density dependent low and high energy tails. These self-energies are then
used to evaluate the spectral functions. The width of these functions over energies near the
quasi-particle peak is dominated by the density, becoming narrower with decreasing density.
This dispersion of particles over energies causes a depletion of low-momentum states, which is
mainly explained by short-range correlations, and is reflected on the momentum distribution.

Special attention was paid to the differences between the BHF results, which only accounts
for p-p propagation, and the full solution, which includes both h-h and p-p propagation. We
have found an overall repulsive effect in SCGF results compared to the BHF ones, consistent
with results reported in Refs. [24, 44, 53, 76]. This was observed both on the on-shell values
of the self-energy, as well as in the equation of state at high densities. This difference can be
attributed to the backward propagation included in the T matrix.
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We have also determined the in-medium mean-free path in neutron matter with the
techniques proposed by Rios and Somà [75, 87], where the pole in the analytic continuation
of the one-particle Green’s function is considered. The quasi-particle spectra are similar to
the ones within the lowest-order approximation, except for low momentum values. Therefore,
for high energies, the mean-free paths provided with this method do not vary significantly if
we employ the first renormalization approximation. These high energy mean-free paths are
practically constant as a function of energy, and decrease with increasing density.

The formation of in-medium di-neutrons has been addressed within SCGF, where we
notice that the inclusion of h-h propagation automatically inhibits the possibility of these
bound states in the way described within BHF, that is, as singularities of the in-medium
effective interaction in the real energy axis. This proves that the findings by Arellano,
Delaroche and Isaule [10, 54] on di-nucleons, is a result of the BHF approximation only.
Within a full scheme, with a less number of approximations, the spectrum is fully occupied
by the continuum states and therefore, there is no room for discrete bound states. Despite
this, we have found the appearance of in-medium bound states in the complex energy plane
for the 1S0 channel, at densities below 0.08 fm−3, signaling a pairing instability. Based on
the ideas developed in Ref. [79], we have made contact between these complex eigenenergies
and the pairing gap in the superfluid state with the inclusion of short-range correlations.

An important result from this work is the non-existence of di-neutron bound states in
low-density neutron matter. This finding is in contrast with results obtained in the BHF
approach. As mentioned before, this is due to the full account of h-h propagation within
SCGF theory, which embodies as a particular case the BHF approximation. The study
presented here has been restricted to the use of AV18 NN bare potential and its extension to
include other potentials should be carried out, particularly with the use of chiral potentials.
This would help to elucidate whether the findings presented here remain robust under the
bare interaction considered. Another interesting issue, in the context of the SCGF theory
implemented in this work, would be to consider isospin-symmetric nuclear matter. This case
is of particular interest for two reasons. One is the presence and role of deuteron bound states,
which we know do take place at zero density, but we do not know at what densities they
get dissolved. The other reason is about the existence of two sp potentials that fulfill self-
consistency within BHF at subsaturation densities. The question here is whether solutions
within SCGF theory exhibit similar features. These issues constitute a natural extension of
this work.
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ANNEX

Approximation for the spectral
function

In this annex, some useful explicit expressions will be presented, following the decomposition
for the spectral function as

A(k, ω) = Z(k)δ(ω − e(k)) +B(k, ω) . (1)

If Z(k) is adjusted so that the sum rule is satisfied, then the momentum distribution n(k)

becomes expressed as

n(k) = θ[εF − e(k)]

{
1−

∫ ∞

εF

B(k, E)dE

}
+ θ[e(k)− εF ]

∫ εF

−∞
B(k, E)dE . (2)

For the energy of the system we get

ESCGF

N
=
ν

ρ

{∫
dp

(2π)3
1

2

[
p2

2m
n(k) + θ[εF − e(p)]Z(p)e(p) +

∫ εF

−∞
dω ωB(p, ω)

]}
. (3)
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For Im G0
2 we have

− 1

π
Im G0

2(K,k, ω) =[θ(e+ − εF )θ(e− − εF ) + θ(εF − e+)θ(εF − e−)]

· Z(k+)Z(k−)δ(ω − e+ − e−)

+ [θ(e+ − εF )θ(ω − εF − e+) + θ(εF − e+)θ(e+ + εF − ω)]

· Z(k+)B(k−, ω − e+)

+ [θ(e− − εF )θ(ω − εF − e−) + θ(εF − e−)θ(e− + εF − ω)]

· Z(k−)B(k+, ω − e−)

+ θ(ω − 2εF )

∫ ω−εF

εF

B(k+, E)B(k−, ω − E)dE

+ θ(2εF − ω)

∫ εF

ω−εF

B(k+, E)B(k−, ω − E)dE ,

(4)

and for Im Σ(k, ω) we obtain

Im Σ(k, ω) =θ(ω − εF )

{∫
2εF−ω<e(k′)<εF

dk′

(2π)3

〈
k− k′

2

∣∣∣∣ ImTk+k′ [ω + e(k′)]

∣∣∣∣k− k′

2

〉
A

Z(k′)

+

∫ εF

2εF−ω

dE ′′
∫

dk′

(2π)3

〈
k− k′

2

∣∣∣∣ ImTk+k′(ω + E ′′)

∣∣∣∣k− k′

2

〉
A

B(k′, E ′′)

}
−θ(εF − ω)

{∫
εF<e(k′)<2εF−ω

dk′

(2π)3

〈
k− k′

2

∣∣∣∣ ImTk+k′ [ω + e(k′)]

∣∣∣∣k− k′

2

〉
A

Z(k′)

+

∫ 2εF−ω

εF

dE ′′
∫

dk′

(2π)3

〈
k− k′

2

∣∣∣∣ ImTk+k′(ω + E ′′)

∣∣∣∣k− k′

2

〉
A

B(k′, E ′′)

}
.

(5)

These expressions have been implemented in the subroutines used in this work.
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