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1. Introduction

Nanotechnology is an extensively developing field of interdisciplinary science that deals
with materials in the size range of 1e100 nm1 called nanomaterials (NMs). It includes nano-
particles (NP), quantum dots (QDs), carbon nanotubes (CNTs), graphene, and their compos-
ites. 2e4 Synthesis of NMs with different morphology, structure, size, and their application for
the welfare of humanity as a whole is the prime objective of the nanoscience and technology.
In the past decade, researchers have paid more attention to nanoparticles owing to their
unique attributes such as size, shape, and large surface to volume ratio among others.5,6

With these unique features, nanomaterials have shown better properties including chemical
stability, thermal conductivity, catalytic reactivity, nonlinear optical performance compared
to their bulk materials.7,8

Besides, NMs could be synthesized with adjustable characteristic properties according to
applications and needs.9 NMs were found to be relevant for a variety of applications in
various fields of science and technology but not limited to optical, biomedical, chemical,
and energy sciences.3,6,10e14 Among the various applications of NMs, their utilization in
the biomedical field is well established and much attention has been paid in all aspects of
their biological applications.15 NMs can be classified as carbon-based, metallic, metal oxides,
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ceramics, semiconductors, polymeric, and lipid-based NMs.16,17Among this classification,
metal and metal oxide nanoparticles (MO NPs) have been shown to have potential applica-
tions in engineering, agriculture, sensors, and medicine.18,19

In particular, metal and metal oxide NPs play a vital role in biomedical applications
including antimicrobial therapy, cancer therapy, and diagnostics of several diseases, as
well as biochemical sensors, bio-assay, tumor-imaging, drug delivery, and pharmaceutical
treatment procedures.20,21 Hence, various novel metal NMs such as gold, silver, zinc, copper,
iron, and their oxide NPs with different shapes and sizes have been synthesized for potential
application in therapeutic and diagnosis.2,6,20,22 Here, we discuss the biological syntheses of
some metal and metal oxide nanoparticles as well as polymeric and liposomal NMs and their
essential insights and limitations in diagnostic and therapeutic potential for antimicrobial,
targeted drug delivery, and immune therapy.

2. Biologically synthesized metal and metal oxide nanoparticles

MO NPs are synthesized by combining oxides of metals from groups 3e12 of the periodic
table.23,24 Generally, MO NPsare prepared via physical methods such as spray pyrolysis,25,26

ultra-sonication27 or chemical vaporization.28,29 Similarly, chemical methods such as sol-gel,30

hydrothermal,31 microwave assisted,32 solvothermal,33 oxidation-reduction, and chemical
precipitation17,34,35 can also be used to synthesis MO NPs.36 NPs synthesized via chemical
methods are relatively toxic and were found to have, consequently, limited biomedical appli-
cations.19,37 Besides, the solvents and other chemicals used for synthesis are hazardous to the
environment that profoundly affects the ecosystem.19,38 In addition, the yield of chemical
and physical methods is low, inhibits particle growth at some point, and generates unstable
NPs.39,40 Interestingly, green syntheses of metal and MO NPs has been recommended as
alternative routes to chemical syntheses and put into practice.39

Green synthesis refers to the eco-friendly synthesis of MO NPs using plants, microorgan-
isms, and or by their constituents such as lipids, enzymes, carbohydrates, and proteins.39,41 In
some cases, nontoxic, renewable materials, and biodegradable waste products have also been
used to synthesis MO NPs.42 The selection of the primary materials for green synthesis is
crucial for adequate stabilization, where natural compounds are desired to act as capping
agents to passivate the surface of MO NPs.6,37,41 Biologically assisted synthesis routes were
found to improve the biocompatibility of the synthesized MO NPs.3,43 Moreover, natural
compounds including proteins can serve as reducing, stabilizing, and capping agents thus
enhancing the physical and chemical properties and biocompatibility of MO NPs enables
for biomedical applications.44,45 MO NPs are synthesized in two steps referred to as nucle-
ation and growth. For the synthesis of NPs, their respective salts (e.g., Ag NPsdAgNO3,
Au NPsdHAuCl4) are added individually to the plant extract or biomass of microbes such
as bacteria, fungi, algae, plants (Fig. 27.1).37,41,46e48
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2.1 Microbial biosynthesis

Microbial synthesis of metal NPs may be intracellular or extracellular. In the case of extra-
cellular synthesis, the selected metal salts are reduced under the enzymatic action of extracel-
lular enzymes produced by the microbes. In the case of intracellular synthesis, the metallic
ions are transported inside the cell, engulfed and reduced to NP and finally excreted out
or stored inside the cells.20,48,49 The properties of the resulting NPs depend highly on the mi-
crobial species used during their synthesis.

2.1.1 Bacteria and actinomycetes

Due to their fast growth rate, simple handling and genetically modifiable feature for the
bio-mineralization of metals through genetic engineering, bacteria are highly preferable
over other methods for the synthesis of metal NPs.49,50 Bacteria can cope with stress condi-
tions by developing intracellular sequestration of metals, efflux pumps, change in metal
ion concentration, and extracellular precipitation.51 In 1980, Beveridge and Murray reported

FIGURE 27.1 Metal nanoparticle (NP) biological syntheses and their applications in biomedical and environ-
mental fields. Ag NPs have a wide spectrum of antimicrobial activities and are mostly used as biomedicine, whereas
Zn and Ti NPs as cosmetics. Similarly, Ag, Zn, and other metal NPs possess antimicrobial property and are utilized in
food packaging, wound dressings, catheters for drug delivery, and other products. In parallel, biological NPs are
used as biosensors to detect various biomolecules in environment and agriculture fields. NPs are also used in targeted
drug delivery, gene transport, and labelling plant and animals cells for diagnosis. Studies on the development of
various NPs for photothermal therapy, magnetically active drug delivery, and photoimaging are ongoing.
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the first extracellular bacterial synthesis of NPs by Bacillus subtilis that deposited gold NPs on
their cell wall. Since then, several studies have reported the ability of bacteria to synthesize
NPs as briefly discussed by.49 Srivastava and Constanti52 showed intracellular synthesis of
Pd, Ag, Rh, Ni, Fe, Co, Pt, and Li NPs by Pseudomonas aeruginosa, without addition of any
external substance for the formation of NPs.Bacterial strains including Escherichia coli, B. sub-
tilis, Bacillus megaterium, P. aeruginosa, Klebsiella pneumoniae, Bacillus cereus, Alteromonas, and
Ochrobactrum have been widely used and reported for the synthesis of NPs.49,51,53 Active bio-
films of Shewanella loihica PV-4 were found to be able to synthesize ultrasmall (from two up
to7 nm) palladium and platinum NPs.54 Bacillus brevis was found to synthesis spherical silver
NPs within the diameter size range of 41e62 nm.55 Recently, marine bacteria were also re-
ported for the synthesis of metal NPs such as silver and gold using Stenotrophomonas56 and
copper NPs using Kocuriaflava.57

Actinomycetes are the repository of novel secondary metabolites and extracellular en-
zymes.58 Actinomycetes were also evaluated to obtain NPs by extracellular or intracellular
synthesis. Successful synthesis of AgNPs was reported by Otari et al.59 using Rhodococcus
NCIM, which paved the way for the synthesis of NPs using actinomycetes. Since then, several
groups of researchers have been focusing on the use of acinomycetes for NPs synthesis.
AgNPs were synthesized by Streptomyces sp. LK-3,60 Streptacidiphilus durhamensis,61 whereas
Streptomyces griseoruber and Streptomyces capillispiralis Ca-1 were used, respectively, for the
synthesis of copper and gold NPs.62,63 Rajivgandhi et al.64 reported the synthesis of zinc oxide
nanosheets using Nocardiopsis sp. GRG1.

2.1.2 Fungi and yeast

Recently, fungal- and yeast-mediated synthesis of metal NPs have been reported as prom-
ising approaches for synthesizing NPs since they tolerate, accumulate metals, and their mass
cultivation is possible at low cost. Similar to bacterial biosynthesis of metal NPs, fungal medi-
ated synthesis can be either intracellular or extracellular.65 In addition, size and shape of NPs
depend on whether biomass or cell free extract is used for the synthesis.66 Several reports are
available for the synthesis of AgNPs using fungal strains such as Fusarium oxysporum, Schiz-
ophyllum radiatum, Penicillium diversum, and Trichoderma harzianum.67e70 Similarly, yeast
strains such as Yarrowia lipolytica NCYC789, Candida utilis NCIM 3469, Saccharomyces cerevi-
siae, were also used for AgNPs synthesis.71e73 Next to AgNPs, AuNPs were prominently syn-
thesized using fungal (e.g., Rhizopusoryzae, Aspergillus niger, Fusarium oxysporum)74e76 and
yeast strains (Candida utilis, Yarrowia lipolytica NCIM3589)77e79,80 used Aspergillus flavus to
synthesis TiO2 NPs. Aspergillus fumigatus were used for the extracellular synthesis of ZnO
NPs.81 Detailed information on the synthesis of metal and MONPs and the factors affecting
the synthesis using fungal and yeast strains and their applications were described by Borou-
mand Moghaddam et al.65,82 Gajendran et al.83, Chhipa, H.84 and Parkash et al.85

2.2 Protein or enzyme-based biosynthesis

Microbial enzyme-based NPs synthesis has also been investigated. This method delivers
NPs with various size and shape, and usage of different enzyme resulted in different NPs
and reaction rate. Besides, during microbial-based synthesis, NPs are bound with the micro-
bial biomass, which requires laborious separation and high cost purification steps.86,87 The
positively charged metal ions (e.g., Agþ) are able to adsorb onto the negatively charged

27. Nano-biomaterials for therapeutic and diagnostic applications620

IV. Biomedical applications of nanomaterials



surface of the protein through electrostatic interaction. Electron transfer between the metal
ion and the protein proceeds and induces the formation of metal NPs.87,88 In the same
way, peptides were also used as reducing and capping agent for the synthesis of metal
NPs87,89,90 and in some cases peptides served as template for the crystal growth of metal
NPs.91

2.3 Algal-based biosynthesis

According to Fawcett et al.,92 algae could hyperaccumulate heavy metals and modify them
into simple forms and represent a potential source of bioactive compounds such as antioxi-
dants and pigments including carotenoids, chlorophylls, and phycobilins. The presence of
carbohydrates, proteins, minerals, oil, fats, and polyunsaturated fatty acids93 makes them a
vital source for the synthesis of NPs. These active compounds both act as reducing and sta-
bilizing agents. The synthesis of NPs may be done by using actively growing cells or dead
cells as well as residual biomass or cell free extracts.94,95 Chlorella vulgaris has shown good
ability to synthesis Ag and AuNPs using growing and dead cells, respectively.96,97 Several
mechanisms of synthesis have been proposed but the exact mechanism is still elusive. Dahou-
mane et al.80 proposed NADH-mediated synthesis of NPs, where electrons from NADH can
reduce metal ions. The presence of monosaccharides and polysaccharides, that are present in
algae, possess functional groups such as aldehyde, ketone, and hydroxyl groups that act as
reducing agents.98,99 Pigments, such as chlorophyll, fucoxanthin, and riboflavin, act as reac-
tive molecules and trap light; electrons from H2O that are produced during photosynthesis
act as electron donor that can reduce metals.100,101

Polysaccharides were extracted from the marine algal biomass and used for the synthesis
of metal NPs. Several marine algae including Pterocladia capillacea, Jania rubens, Ulva faciata,
and Colpomenia sinuosa were used for the synthesis of NPs.102 Extracts of Sargassum ilicifolium
were used for the synthesis of AgNPs.103 The synthesis of NPs based on algae was reviewed
briefly by Khanna et al.102 and Bao and Lan.94 Arsiya et al.,104 used crude extract of Chlorella
vulgaris and Sayadi et al.105 used Spirulina platensis to synthesis Pd NPs. MO NPs such as iron
oxide, copper oxide and zinc oxide have been extensively synthesized by using macroalgae.
Zinc oxide (ZnO) nanoflowers and cadmium sulfide NPs were prepared from cell free ex-
tracts of Chlamydomonas reinhardtii by Rao and Gautam106 and Rao, and Pennathur107 ZnO
NPs were synthesized using S. muticum.30,108 Momeni and Nabipour109 used S. bovinum for
the synthesis of octahedral palladium NPs having diameter size between 5 and 10 nm.

2.4 Plant-based biosynthesis

As reported by Mittal et al.,110 plant-based syntheses of NPs are typically carried out at
room temperature and can be accomplished within minutes or can last for a few hours.
The compounds present in the extract first reduce the metal salt, which leads to the synthesis
of NPs. In addition, these compounds adsorbed onto the surface of the NPs and ensured their
stability.111e114 By following color changes of the reaction media, the successful formation of
the respective NPs could be confirmed. Theoretical simulations (e.g., density functional the-
ory (DFT) and molecular dynamics (MD) simulations) have predicted the special binding of a
particular phytochemical on metal oxide facets and as a result, the morphology of MONPs
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was predicted.4 Due to the numerous phytochemicals present in plant-extracts, it is difficult
to find the exact mechanism of formation using phytochemicals.115,116

Several preparation methods can be adopted for the synthesis of single, multimetal NPs
and MONPs. Leaf extracts of Polyalthia longifolia, Catharanthus roseus, Azadirachta indica,
Aloe vera, and Nerium oleander were used for the synthesis of AgNPs.112,117e120 Huang
et al.121 reported the synthesis of Ag and AuNPs using leaf extracts of Cinnamomum camphora.
Elia et al.122 used extracts of Salvia officinalis, Lippia citriodora, Pelargonium graveolens, and Pun-
ica granatum for the synthesis of AuNPs. Similarly, leaf extracts of Evolvulus alsinoides, bark
extracts of Eucommia ulmoides and root extracts of Salvadora persicawere used for synthesizing
PdNPs as reported by Gurunathan et al.77, Duan et al.123 and Khan et al.124, respectively.
Recently, detailed plant mediated synthesis of nanomaterials was published else-
where.115,125,126 CuO NPs were synthesized by using gum obtained from Sterculia tree.127

Ellagic acid extracted from Korean rambutan peel was used for the synthesis of chain-like
ZnO.14 Flower extracts of Cassia auriculate128 and Vitex negundo129 were used for the synthesis
of ZnO NPs. Several NMs such as iron, iron oxide, copper, copper oxide, gold, silver, zinc,
and zinc oxide were synthesized widely for numerous applications discussed briefly
elsewhere.12,16,130e135 Sometimes, the synthesized NPs are impure, and purification is neces-
sary by either filtration or dialysis. In a study, metal NPs were converted to MONPs after pu-
rification by decomposing the NPs (prepared from the sources as described in Sections
2.1e2.4) at relatively high temperature.136

Biosynthesis of NPs depends on the solvent used for extraction, reaction temperature,
pressure, mixing ratio of the reactants, and pH of the reaction medium. The presence of
several chemical moieties in the molecular structure of phytochemicals such as ketones, alde-
hydes, flavones, amides, terpenoids, carboxylic acids, phenols, and ascorbic acids makes
plants excellent choices to synthesis NPs.137 With respect to microbial synthesis, the selected
microbes have to be maintained in the culture media, which is costly and more laborious
compared to plant-based synthesis. Also, it is possible to synthesis NPs of small sizes (be-
tween 1 and 100 nm)138 by using plants and sometimes NPs having larger sizes
(100e500 nm) were also obtained.120,139,140 In addition, chemical substances derived from
plants are easily available, which promotes rapid synthesis. Finally, the use of plant extracts
results in more stable NPs and is suitable for environmentally friendly large-scale
synthesis.141

3. Polymeric and liposomal nanocarriers

Most of the drugs showing in vitro potency are poorly soluble or insoluble in water, which
restricts their usage in clinical applications.142 These drugs can be conjugated onto surfaces or
encapsulated inside the carrier’s system to improve their solubility, bioavailability, and bio-
distribution.143 The development of nanotechnology offers a wide range of applications in
medicine not limited to several diseases including cancer. In this context, NPs have been
used as carriers for therapeutic substances such as small drugs, genes, protein-peptides,
and imaging contrast agent in diagnosis.144 Controlled release of these substances is achieved
by adequate formulation of the matrix or external stimuli such as pH and/or temperature.145

Nano-carriers ensure high bioavailability of the drug by evading reticulo endothelial sys-
tem. Their small size guarantees high therapeutic efficacy by means of site targeted
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delivery.124,146,147 Properties including circulating durability and stability, targeting capacity,
response to stimuli, and diagnostic ability can be improved by surface modification or conju-
gation with antibodies.148 For instance, the bioavailability and site specificity of NPs
improved while NPs maintained their ability to deliver specific antibody aptamer with
improved cancer activity.147 Nanocarriers are broadly classified as polymer-based or lipid-
based systems according to the material used for their preparation. Generally, polymeric
nanoparticles, polymeric micelles, dendrimers (polymers), liposomes, solid lipid nanopar-
ticles (lipids), and metal (gold, silver) NPs have shown ability for use as nanocarriers.147

3.1 Polymeric nanocarriers

Polymer-based NPs can be made of biodegradable polymers and have been widely evalu-
ated as carriers of drugs, proteins, and DNA to target cells and tissues. These are highly pref-
erable owing to their structural and long-term storage stability, long half-life in blood stream,
and high controllable release capability.149 The use of polymeric nanoparticles (PNPs) as drug
carriers has been studied since 1980s. Since then, several PNPs have been developed and
mostly used for delivering low molecular weight drugs, proteins, plasmid, and antisense
DNA as well as short interfering RNA.150,151 The preparation of PNPs and their application
has been reviewed in detail by Sawdon et al.152, Kreuter153 and Amoabediny et al.154

PNPs can be prepared using biodegradable, amphiphilic, biocompatible copolymers
approved by the Food and Drug Administration. The polymers may be natural (e.g., chito-
san, gelatin, sodium alginate and albumin155 or synthetic (e.g., polylactides (PLA), polygly-
colides poly(vinyl alcohol), poly(acrylic acid), polyacrylamide, and polyethylene glycol
(PEG)).155e157 For improving their stability and ability to control the release of drugs,
PNPs can be mixed with ligands and antigens.157 For instance, PEG can be conjugated
with polymers for enhancing its immune-compatibility, bioavailability.158 PNPs can be syn-
thesized using the preformed polymer or synthesized directly during the process of polymer-
ization. Direct polymerization is achieved by microemulsion, mini-emulsion, surfactant free
emulsion, and interfacial polymerization. PNPs can be prepared with preformed polymer
and dispersed with drugs to avoid toxic, unreactive residues, and unreacted monomers dur-
ing the polymerization.159 Solvent evaporation, nanoprecipitation, emulsification/solvent
diffusion (ESD), high-pressure homogenization, salting out, dialysis, and spray drying are
some of the methods used for the synthesis of PNPs from preformed polymers. Detailed
preparation of PNPs and their functionalities can be found elsewhere.147,156,160,161

3.2 Liposomal nanocarriers

Liposomes are biocompatible vesicles, hydrophobic and hydrophilic in nature, usually
spherical (�30 nm to micrometers) in shape and typically prepared from cholesterol and nat-
ural phospholipids used carriers of drugs.162 Lipid-based colloidal carriers are nontoxic and
used as an alternative to toxic polymeric systems. They are made of one or more lipid bila-
yers, in which the polar groups are arranged inside or outside of the adjacent aqueous phase.
They can be used to encapsulate both hydrophilic and hydrophobic drugs.163 Lipid compo-
sition, surface charge size, and the method of preparation determine the characteristic
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features of liposomes. Moreover, the rigidity and charge of the bilayer depends on the com-
ponents forming the bilayer. For example, unsaturated phosphatidylcholine from egg or soy-
bean phosphatidylcholine (natural origin) is highly permeable and less stable compared with
saturated phospholipids with long acyl chains that are rigid and impermeable in nature.162,164

Liposomes are smaller (0.025 mm) to larger (2.5 mm) with one or more bilayers. The size af-
fects the circulation half-life of liposome and the amount of drugs encapsulated inside the
liposome affected by the size and number of layers. Liposomes are categorized based on their
size and number of bilayers as unilamellar (one bilayer) and multilamellar vesicles (more
than one bilayer).165,166 The preparation of liposomes is typically done in following stages:
(1) drying down lipids from organic solvent, (2) dispersing the lipid in aqueous media, (3)
purifying the resultant liposome, and (4) analyzing the final product.165,167 Recently,165

have extensively reviewed the preparation methods of liposomes. Composite liposomes
and their drug delivery were published elsewhere168 for more detailed information about li-
posomes and their types. Drugs can be loaded into liposomes either passively or actively. In
passive loading, the drug is encapsulated along with liposome formation, whereas in active
loading, drugs are loaded after liposome formation. The loading efficiency of hydrophobic
drugs depends on the solubility of the drug in the liposome membrane. Water-soluble drugs
can be effectively loaded by changing pH.168,169

More recently, niosomes made of nonionic or amphiphilic surfactants were developed.
These are more stable than liposomes and have shown to possess increased transdermal
drug delivery ability and were successful used as targeted drug delivery system. Niosomes
can be made with or without cholesterol or other lipids.170 Both liposomes and niosomes pro-
vide similar benefits. Niosomes, however, are cheaper and highly stable compared to lipo-
somes.170 By combining niosome and liposome, biocompatible liponiosome (<150 nm) was
developed having the advantages of both carriers. These were found to possess the ability
to deliver high amount of both hydrophilic and/or hydrophobic drugs.171

4. Metal and metal oxide nanoparticles for antimicrobial therapy

Antibiotics are widely used to combat microbial infections and are considered as one of the
major inventions in pharmaceuticals. Recently, however, multidrug resistance (MDR) among
the pathogens is considered as common phenomenon and most pathogens have been devel-
oping resistance against almost all the available antibiotics. The prevalence of drug resistance
threatens the life of humans and become one of the major health or economic issues of the
globe in the 21st century.172 The unique nature of nanomaterials could be potentially utilized
to limit and manage the global crisis of emerging microbial pathogens and could contribute
to the development of efficient therapeutic solutions. Hence, researches have been focusing
on nanomaterials to treat these MDR pathogens and more particularly metal or MO NPs. Re-
searchers involved in the evaluation of nanoparticle as antibiotic have reported that the engi-
neered NPs could efficiently combat MDR strains.173,174 These NPs are highly stable, durable,
and some of them possess low toxicity to mammalian cell lines.175 By targeting multiple bio-
logical molecules including protein and DNA, metal, and MO NPs can act as antimicrobial
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agent against MDR pathogens. According to Baptista et al.,176 and Naveed et al.,177 MDR
pathogens inactivate antibiotics by enzyme, decrease cell permeability, modify target sites/
enzymes, and increase efflux via overexpression of efflux pumps for the development of
resistance. NPs have the ability to overcome these mechanisms and eliminate the bacterial in-
fections and also inhibit the evolution of resistance.178 Furthermore, they can improve the ac-
tivity of several antibiotics by having synergism. For instance, the functionalization of
fluoroquinolone with Au NPs was found to improve their efficiency against MDR Escherichia
coli infections.174

Several mechanisms of action have been proposed including biofilm inhibition, activation
of host immune system, ROS generation, lipid peroxidation, cell wall/cell membrane dam-
age, inhibition of enzymes, RNA, protein synthesis and proteolysis.179e181 Also, antituber-
cular drugs encapsulated by PLG NPs have completely cleared infectious bacteria from the
organs of mice. Moreover, the expressions of spaP, gbpB, gtfB, gtfC, ldh, comD, comE, and
luxS of S. mutans were remarkably downregulated when treated with Ag/ZnO.182 Similarly,
chitosan and chitosan/ZnO nanocomposites have altered the gene expression of quorum-
sensing-dependent-virulence factors by repressing LasI and RhlI gene of multidrug resistant
P. aeruginosa.183 The chemical moieties present onto bacterial cell wall such as carboxyl,
amide, phosphate, and hydroxyl groups act as anchoring sites where the oxide NPs interact,
generating ROS and, as a result, induce bacterial death.180,184 The antibacterial activity is
highly depending on the size of the NPs where the activity increases upon decreasing NPs
size due to the increasing specific surface area. The importance of shape in the antimicrobial
activity, however, cannot be predicted, although limited reports are available. In addition, the
mechanism of action is dependent of surface chemistry of NPs.185 The combined effect of size,
shape, z-potential, ligands, and material on the mechanism of action of NPs against bacteria is
still elusive.180,186 Singh et al.37 have reviewed in detail the antimicrobial activity of biologi-
cally synthesized metal NPs (Fig. 27.2).

The biological synthesis of these important NPs derived from different natural and renew-
able resources is discussed in the previous Sections 2.1e2.4. Silver, gold, zinc, copper, silver
oxide (Ag2O), copper oxide (CuO), iron oxide (Fe2O3), magnesium oxide (MgO), titanium ox-
ide (Ti2O), and ZnO are some of the extensively studied metal and MO NPs for their antimi-
crobial activity.37,185 Among these metals and MO NPs, silver or its ionic forms have shown
the greatest effect on bacteria killing187 with multiple modes of actions; hence, it was exten-
sively studied and used to treat MDR pathogens.188 Silver NPs have been used as nanocar-
riers as well as for the administration of drugs and antibiotics along with silver, showing
enhanced effect against MDR pathogens.189,190 AgNPs possess antibacterial activity against
pathogens such as Methicillin resistant Staphylococcus aureus (MRSA), Erythromycin resistant
Streptococcus pyogens, Ampicillin resistant Escherichia coli, Vancomycin resistant Staphylococcus
aureus.191

Ag NPs are highly reactive and show high affinity with sulfur group of proteins, enzymes
that collapse bacterial cell structure, increase cell permeability and inactivate enzymes. It also
binds with DNA and denatures DNA, thereby interrupting replication that leads to cell
death.192e194 Ag NPs have been used as antibacterial, antiviral, and antimycotic agents195

and coated onto the blades, needles and also on venal, urinary, and drainage catheters.54Ag
NPs synthesized using fungal strains such as Fusarium oxysporum, Macrophomina phaseolina
and bacterial strains such as Xanthomonas spp, Sinomonas mesophila MPKL 26 showed activity
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against MRSA and beta-lactamase producing strains, ampicillin, and chloramphenicol resis-
tant E. coli, P. aeruginosa, and S. aureus, respectively.196e199 Cubic, triangular, spherical, and
fiber-like shaped AgNPs synthesized by using leaf extract of Solanum nigrum and other plant
species showed antibacterial activity against six MDR bacterial strains and antibiofilm activ-
ity against P. aeruginosa and S. epidermidis.200e202 According to Das et al.39 and Dash et al.200;
AgNPs synthesized using leaf extract of Ocimum gratissimum, Cinnamomum tamala generated
intercellular ROS that effectively kills MDR E. coli and S. aureus cells. Alavi et al.203 showed
that Ag NPs synthesized using Protoparmeliopsis muralis was highly effective against plank-
tonic and biofilms of S. aureus ATCC 43,300 (MDR), E. coli ATCC 25,922 and P. aeruginosa
ATCC 27,853 than Cu, TiO2, ZnO, and Fe3O4 MO NPs.

Similar to Ag NPs, Au NPs have also been widely used as antibacterial agent against clin-
ical pathogens due to their high biocompatibility. Au NPs can be used alone or incorporated
with biomolecules such as collagen, chitosan, or with antibiotics or antibodies.37,204 For
instance, the incorporation of ampicillin was found to increase the antibacterial effect of
AuNPs against ampicillin bacteria.205 Au NPs enters the cell, destabilize ATP synthase as
well as cell membrane potential that results in cell death. Furthermore, the multivalence of
ligand functionality of AuNPs efficiently makes them interact with cell surface of the bacte-
ria.206 AuNPs synthesized using the methanolic leaf extract of Clitoria ternatea showed strong
activity against MDR gram-positive (S. aureus, S. epidermidis) and gram-negative bacteria

FIGURE 27.2 Plausible mechanism of actions of nanoparticles (NPs) in bacterial cells. The synchronized action of
various mechanisms of nanoparticles that exert antibacterial activity may have a significant influence in combatting
MDR bacteria.
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(E. coli, P. aeruginosa) and showed QS-based antibiofilm activity.207 Nontoxic and biocompat-
ible AuNPs prepared from aqueous peel extract of Musa paradisiaca showed antibiofilm activ-
ity against antibiotic resistant (MARS) gram-positive Enterococcus faecalis.208 Boda et al.209

utilized Au nanoclusters against planktonic and biofilm forming MDR pathogenic Staphylo-
cocci. Au NPs possess synergism when loaded along with antibiotics. For instance,
lysozyme-capped Au NCs (Lys-Au NCs) with b-lactam antibiotic ampicillin (Lys-Au NCs-
Amp) revert the MRSA resistance and also kills the nonresistant bacterial strains.210 Gandhi
and Khan211 developed bacitracin-templated Au nanoclusters to combat MDR pathogens.
Mohamed212 synthesized ampicillin-loaded AuNPs that showed potential activity against
ampicillin-resistant bacterial strains including MRSA, P. aeruginosa, Enterobacter aerogenes
by reducing the level of beta-lactamase and inhibiting transmembrane pump that catalyzes
drug efflux.

Zinc and zinc oxide NPs (ZnO NPs) have been used as antibacterial and antifungal agents.
Several studies demonstrated their good biocompatibility and low toxicity.37,213 The bacterial
surface possesses proteins, and the cell walls are composed of polysaccharides and tiechoic
acid, which helps bacteria to thrive in host defense and harsh environmental conditions.
These are charged molecules and surface modified ZnO NPs specifically elicit damage on
the cell wall of the bacteria.214 ZnONPs showed antibacterial activity against E. coli, Listeria
monocytogenes, Salmonella, and S. aureus.213,215 ZnO NPs are highly conductive and hence ab-
sorbs more UV light, which causes desorption of oxygen from its surfaces that enhances the
interaction of ZnO with bacteria. The level of ROS was found to be higher when ZnO NPs
were illuminated with UV light and showed efficient antibacterial activity.216,217 UV light illu-
minated ZnO NPs were found to show increased oxidative stress against cells by producing
superoxide, hydroxyl, and singlet oxygen radicals. Extracellularly synthesized ZnONPs by
using the supernatant of Escherichia hermannii showed antibacterial activity against urinary
tract infective MDR pathogenic strains of E. coli and K. pneumoniae. The authors showed
that the ZnONPs interacted with the cell wall of the bacteria and destabilized it by ROS pro-
duction, leading to cell death.218 Similarly, Maruthupandy et al.203 synthesized ZnO NPs us-
ing Camellia japonica leaf extract, which showed inhibitory effect against extended spectrum b
lactamases (ESBLs) producing clinical strains of E. coli and P. mirabilis with minimal inhibi-
tory concentration (MIC) percentages of 83% and 81% at 100 mg/mL, respectively. Likewise,
ZnO NPs synthesized using root extract of Raphanussativus showed higher antimicrobial ac-
tivity against Escherichia fergusonii (MDR) and Escherichia coli strains than chemically synthe-
sized ZnO NPs.154 Most of the virulence genes are down regulated in the presence of ZnO
NPs, which confirms the effective treatment of ZnO NPs.118

Likewise, iron oxide (FeO) NPs showed activity against human pathogens such as
S. aureus, S. enterica, P. mirabilis, E. coli, P. aeruginosa, Pasteurella multocida, P. aeruginosa and
S. typhi and plant pathogen Ralstoniasolanacearum synthesized using plants G. jasminoides,
L. inermis, Skimmia laureola, andM. oleifera.219e221 Fe-based NPs were also used as coating ma-
terials for medical devices and textiles against bacterial and fungal infections. Furthermore,
they possess similar advantages compared to other metal NPs and in addition they can be
recovered from the environment using magnets owing to their magnetic properties.222,223

In the same way, Muthukumar et al.224 synthesized FeO NPs using Azadirachta indica leaf
extract and tested their antibacterial and antibiofilm activity against P. aeruginosa, S. aureus,
K. pneumoniae L. sphaericus, and B. safensis. The study showed that these FeO NPs were

4. Metal and metal oxide nanoparticles for antimicrobial therapy 627

IV. Biomedical applications of nanomaterials



more active against gram-positive than gram-negative bacteria due to the presence of thick
peptidoglycan layer onto the surface of gram-positive bacteria. FeO NPs were also found
to inhibit more efficiently the biofilm formation of gram-negative bacteria than gram-
positive bacteria since the NPs could efficiently diffuse when the hydrophilic bacterial surface
turned into hydrophobic surface that attracts the NPs.225 Very recently, FeONPs synthesized
using R. tuberosa leaf extract were coated onto cotton fabric and were found to be active
against K. pneumoniae, E. coli and S. aureus bacterial strains. They suggested that the synthe-
sized FeO NPs could be used as coating materials onto the readymade fabrics, uniforms, and
laboratory coats used in hospitals.226 The positively charged FeO NPs tend to attach onto the
surface of the negatively charged cell wall of the bacteria, resulting in increased attachment of
NPs and destabilization of cell wall inducing bacterial death.227

Copper-based NPs are semiconductors that have a narrow band gap; Cu and copper oxide
(CuO) NPs have been shown to have antimicrobial activity toward wide ranges of bacterial
and fungal pathogens via ROS mediated mechanism.228 Rajivgandhi et al.229 successfully
used CuO NPs synthesized using leaf extract of Camilla japonica against ESBL producing uri-
nary tract infecting pathogens such as P. aeruginosa and K. pneumoniae. CuO NPs act on the
bacterial cells and alters the intracellular signaling pathways that controls the oxidative stress,
leading to cell lysis.230 Ashajyothi et al.231 synthesized Cu and ZnONPs extracellularly using
Enterococcus faecalis and tested antibiotic activity against clinical pathogens E. coli, K. Pneu-
monia, methicillin-resistant S. aureus (MRSA)and non-clinical strainsP. aeruginosa MTCC 741,
S. flexneri MTCC 1457, and E. faecalis NCIM 5025. They found that both NPs were active
against both gram-positive and gram-negative pathogens and also inhibited the biofilm for-
mation of all pathogens except P. aeruginosa. They concluded that Cu NPs are more effective
than ZnO NPs. Studies from several researchers suggested that Cu NPs were highly active
against MDRP. aeruginosa and MRSA pathogenic strains, similarly to the activity of
AgNPs.232,233 According to Meghana et al.234; CuO NPs always generate ROS that specifically
affects the chromosomal DNA rather than other molecules that highlighted the particle spe-
cific activity of CuO.

Titanium dioxide (TiO2) NPs are chemically stable, nontoxic, and possess wide applica-
tions. They are more particularly used in the formulation of cosmetics owing to their UV ra-
diation absorption ability.235 TiO2 NPshave shown to have antibacterial activity against most
bacteria.63 Similar to previously discussed metals and MO NPs,TiO2NPs also generate ROS
and kill bacteria by adhering onto the surface of the bacterial cell wall and produce ROS
that act on phospholipids present on the cell wall of the bacteria by lipid peroxidation.236

This destabilizes cell membrane and causes damage to the cellular components, particularly
on DNA and is followed by cell death.237e239 Very few reports are available on the prepara-
tion of TiO2 NPs using biological materials for antimicrobial applications. TiO2 NPs prepared
from Psidium guajava, Prunus yedoensis showed bactericidal property against E. coli and S.
aureus.240,241 TiO2 NPs synthesized using Aloe barbadensis mill were active against P. aerugi-
nosa PAO1.242 Likewise, Subhapriya et al.243 synthesized TiO2 NPs using T. foenum-graecum
leaf and showed effective activity against Y. enterocolitica, P. vulgaris, E. faecalis, P. aeruginosa,
S. faecalis, S. aureus, B. subtilis, E. coli and fungus C. albicans. TiO2 NPs also synthesized using
Streptomyces sp. HC1 showed antimicrobial activity toward several pathogens such as E. coli,
S. aureus, C. albicans, and A. niger and antibiofilm activity against P. aeruginosa.244
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Other than these metals, several metals NPs such as aluminum, palladium (Pd), selenium
(Se), and cerium were also evaluated as antimicrobial agents. PdNPs245 and cerium NPs246

synthesized using peel extract of M. oleifera showed antibacterial activity against E. coli and
S. aureus. Pd NPs synthesized using F. decipiens leaf extract and C. guianensis fruit extract
were effective against several human pathogens and the effect was found to be oxidative
stress mediated.247,248 Se NPs synthesized using bacterial sources such as B. licheniformis
JS2,249 S. maltophilia, B. mycoide,250 S. aureus, P. aeruginosa, and E. coli251 showed potential ac-
tivity against bacteria and fungus, and on their biofilm formation. Even if antibacterial effects
have been proven in preclinical studies, evaluation of therapeutic efficacy in clinical trials and
the safety of NP systems is essential.186 The economic impact of clinical translation of NPs
must be addressed with regard to their therapeutic efficacy.186,252

5. Targeted drug delivery and disease diagnosis

Recent researchers have been mainly focusing on developing compounds from natural re-
sources to find novel drugs for treating major diseases such as cancer, diabetes, heart dis-
eases, inflammatory, and microbial diseases due to their least toxicity, side effects, cost,
and higher efficiency.253 These active materials often delivered with larger delivery systems,
which have several limitations such as low biocompatible, toxic, poorly soluble, unstable,
poor bioavailable, targeted delivery issue, and tone effect, and side effects of medicines. To
overcome these pitfalls, NPs have been developed as delivery systems and offer time-
controlled or targeted-delivery of drugs.137 NPs increase the bioavailability and stability of
the drug as well as the delivery drugs at specific sites and consequently increases the effi-
ciency of delivery systems.129 Furthermore, NPs are smaller in size and it could deliver
various genes, vaccines, proteins, hydrophobic and hydrophilic drugs to the different part
of the body including brain, arterial walls, lymphatic system, liver, spleen, lungs.254,255 The
rate of degradation and drug release could be easily adjusted by using polymers.256 Poly-
meric and liposomal NPs-based delivery systems are briefly discussed in Section 3.

Liposomes were the first developed and approved nano-carrier based on lipids that can
deliver inorganic NPs such as gold and iron NPs, which increases their used for drug deliv-
ery, imaging and other treatments.129,205,257 Also, the addition of NPs could increase the
bioavailability and control the release of drugs. For site specific drug delivery applications,
metal as well as organic, inorganic, and polymeric nanomaterials were used particularly
for delivering poorly soluble and least absorption drugs.258,259 These systems were designed
to deliver the drugs at specific place or for controlled release of the drug at specific sites and
to overcome the opsonization/sequestration of phagocytosis.260 Nanostructures convey
drugs either by self-delivery or passive delivery. In self-delivery, the drugs are directly linked
with the carrier to facilitate the delivery whereas in passive delivery the drugs are loaded
hydrophobically in the inner cavity of the nanostructure. These were found to encounter
the specific site and release the planned amount of drug since lower amount of drug was
encapsulated in hydrophobic environment.162 It is possible to deliver drugs using NPs and
the loading of drugs into the NPs are classified as active or passive targeting. In active target-
ing, the drugs are loaded with the delivery system that carry site-specific antibodies or
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peptides, which could bind onto the receptors of the particular site. The drugs delivery sys-
tem circulates in the blood stream and delivers the drug in a particular site due to changes in
pH, temperature, molecular site or/and shape.41,261 Mostly, these drug delivery systems are
used for treating cancer.

Drug, gene and protein delivery of Au NPs have been reviewed by researchers.41,262,263

Similar to liposomes, Au NPs can deliver several recombinant proteins, DNA, vaccines,
and antibiotics. AuNPs have been used for treatment of cancer therapy and successfully
crossed the blood brain barrier when loaded with human serum albumin. In addition, this
was achieved due to the lower surface charge, albumin layer, and the capacity to absorb
huge amount of creatine.264 Antibiotics are typically loaded onto AuNPs via ionic or covalent
bond, and the ampicillin functionalized AuNPs were found to be able to revert the drug resis-
tance of the MDR pathogens.265 Also, functionalization of Au NPs with ampicillin, strepto-
mycin, and kanamycin demonstrated efficient antibacterial activity.244,266 AuNPs provide
uniform size, similar surface properties, and increased biocompatibility when encapsulated
in alginic acid-poly[2-(diethylamino)ethyl methacrylate] monodisperse hybrid nanospheres.
Human colorectal LoVo cancer cells uptake more these negatively charged nanospheres
and hence were used as optical sensor for tumor imaging along with inhibition.267

Conjugating AuNPs with 2,5-diphenyltetrazole and methacrylic acid, shifted AuNPs plas-
mon resonance to near infrared (NIR), which increases the photothermal efficiency of breast
cancer treatment.268 Recently, 58 showed the delivery of small molecules for targeting lym-
phocytes and Dhanya et al.269 observed better transfection efficiency when arginine conju-
gated AuNPs were caped with starch and polyethyleneimine. Munsell et al.270 developed
efficient histone-inspired scaffolds using AuNPs adorned with histone motifs for delivering
genes and chromatin analysis. In another study, noncovalently conjugated AuNPs-siRNA
covered with a lipid layer efficiently delivered siRNA into cell, followed by specific gene
silencing.271 In MCF-7 cells, lipid-coated AuNPs showed nearly 85% of gene transfection ef-
ficiency facilitated by folic acid (FA) based ligands.272 Iron oxide NPs have been extensively
used as cancer therapeutic agent with high degree of specificity. It is possible to control the
particle through external magnetic field that improves the release of dexamethasone acetate
in vivo.43 A study by Jain et al.273 clearly demonstrated the biosafety of these magnetic NPs
while testing them intravenously. These were found mostly in the liver and spleen rather
than in other organs. Similarly, long-term exposure of magnetic NPs did not exert oxidative
stress in the cell or change liver enzyme levels suggesting good biocompatibility. Paclitaxel-
loaded chitosan oligosaccharide (PTX-COS) stabilized AuNPs could deliver and release drug
by pH dependent manner. The synthesized PTX-COS AuNPs showed strong cytotoxicity
against MDA-MB-231 cells by means apoptosis. The increased ROS generation and altered
mitochondrial membrane potential (MMP) level caused cell death (Fig. 27.3).274

Nanoscaled diagnostics offer new alternatives for portable and sensitive health monitoring
that can guide the use of nanoscale immunotherapies. As metal-based nanoparticles (gold,
silver and silica) and polymer-based nanoparticles (chitosan, dextran, polyethylene glycol
(PEG) and polylactic-co-glycolic acid (PLGA)) possess photo-based imaging ability. These
can act as nanocarriers to deliver various fluorescent dyes or photosensitizers for photoimag-
ing and therapeutic applications including magnetic resonance imaging (MRI) and optical
imaging to photothermal therapy (PTT) and chemotherapy.2 In early 90s0, iron oxide
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nanoparticles with magnetic properties have been used as vascular contrast agent for MRI.275

AuNPs have been functionalized for the detection of biological molecules (DNA and pro-
teins), heavy metals, and glucose as well as microbes.276e278 In 2008, Huang et al. developed
optically responsive gold nanorod (GNR)-elastin-like polypeptide (ELP) nanoassemblies that
showed phase transition and aggregation of NPs upon NIR irradiation, which could be used
for drug sensor and drug delivery.

FIGURE 27.3 A general strategy for the biosynthesis of gold nanoparticles (Au NPs) using chitosan oligosac-
charide, followed by loading of paclitaxel (PTX) on stabilized Au NPs made of chitosan oligosaccharide (COS Au
NPs), and a potential mechanism for cellular uptake and mode of action of paclitaxel-loaded COS Au NPs in MDA-
MB-231 cancer cells.
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PEGylated AuNPs showed Raman scattering efficiency increased by 14e15 orders of
magnitude, which could be applied for detecting cancer cells in animals.279 Similarly, PEGy-
lated AuNPs demonstrated ability for imaging tumor and blood cells since they can be easily
distributed and stabilized in aqueous solutions.280 It was shown that size, shape, and struc-
ture of Au NPs affect their scattering property. Very recently, biocompatible deferrioxamine
conjugated to PEGylated Mn(II) complex gold nanoparticles could be used as dual imaging
system in MRI and CT scan and also effective against 4T1 breast tumor-bearing BALB/c
mice.281 Similarly, AuNPs in the size range of 30e100 nm were found to scatter light strongly,
which can be detected using dark-field microscopy imaging.282 Huang and El-Sayed282 pre-
pared spherical AuNPs (40 nm) conjugated with epidemic growth factor (EFGR). After 4 min
of exposure to laser light, head and neck cancers could be detected. Tabrizi et al.283,284 devel-
oped inexpensive and highly selective electrochemical aptasensors based on MWCNTS-
PdNano/Ptca and Au@AgNPs for counting leukemic lymphoblast and adenocarcinoma
gastric cancer cells. AuNPs modified with PEG and polyethylmethacrylate (PEMA) showed
efficient tumor detection when used along with antitumor drug daunorubicin.285 Recently, a
brief review on application of gold NPs in cancer therapy and diagnosis is published
elsewhere.286

6. Nano-vaccination and immunotherapy

Vaccination is an important achievement of medical science that helps human beings to
survive against several epidemics and pandemics. Vaccines induce immune response and
provide lifelong protection and it may contain inactivated, killed, or attenuated microbes.
The main objectives of effective vaccines design are successful presentation of antigens to an-
tigen presenting cells (APC), the ability of APCs to process antigens287,288 and present them to
T-cells along with MHC and other costimulatory cells.289 APC internalize and process anti-
gens and hence matures and migrates to lymph nodes and present the antigen to T-Cells.
Development of new vaccines for emerging infectious diseases and improvement of existing
vaccines against specific diseases is the major concern of pharmaceutical industries.290 Vac-
cines failed, however, to protect some patients and also pose health risk due to reversal of
virulence.291 In addition, vaccines should also induce immune response to cancer, HIV, ma-
laria, and tuberculosis. Nanotechnology has been recently involved into vaccine development
to overcome the drawbacks of conventional vaccination progress by developing nanocarrier-
based delivery systems to increase cellular and humoral immune responses and slow release
of targeted delivery. Scientists believed that nanovaccines could overcome pathogen-
mediated evasion of the immune response and induce specific cytotoxic T-lymphocyte
(CTL; activated CD8þ T cell).292,293 Nanoparticles used as adjuvants can facilitate the uptake
of vaccine antigen by APCs and achieve efficient antigen recognition and presentation to
target specific receptors onto the cell surface to stimulate selective and specific immune
responses.294

In the last 2 decades, several particles with different physicochemical characteristics have
been evaluated for delivering antigens, such as (co)polymers, liposomes, mesoporous silica,
chitosan, and particle size and found to control the immunological fate of their bio-
distribution, pharmacokinetics, efficacy, and cellular internalization.295e299 Usually, NP
based vaccines target Dendritic Cells (DC) and sometimes targets lymph nodes with APCs
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that eliminates premature antigen presentation.300 Nanovaccines itself elicit themselves im-
mune response however the immune response is not enough to maintain its activity and
also tumor- or tissue-infiltrating ability of T cells. Hence, combination of nanovaccines and
immune modulators could be used as a therapeutic agent. For example, combination of
nano disc vaccine and anti-PD-1, anti-CTLA-4 can destroy cancer cells.301 Similarly, antigens
were combined with several Inorganic NMs such as gold NPs, quantum dots, silica NPs, car-
bon nanotubes, and iron oxide NPs and subsequently used as vaccines to stimulate immune
response against infectious disease.302e307

Use of Poly (lactic-co-glycolic acid) (PLGA) as a nanocarrier for imaging, drug targeting
and therapy have gained more attention due to their biocompatibility and degradation poten-
tial. Cisplatin-loaded poly(L-glutamic acid)-g-methoxy poly(lactic-co-glycolic acid) nanopar-
ticles were developed for treating lung cancer308 and their recent advancement has been
reviewed by Farooq et al.309 Similarly, spherical PLGA-NPs were used to encapsulate an inac-
tivated Swine influenza virus (SwIV) H1N2 antigens and tested for treating swine flu.310

Several types of formulations have been recently developed for various diseases, suitable vac-
cine formulations, toxicity assessment, drug solubility rate, and saturation but storage seems
to be a challenge.164,311 Chitosan and pullulan (natural biopolymer-based nanodelivery sys-
tems) have been tested on animals as vaccine and adjuvant delivery systems and the results
revealed that vaccination doses of the antigen entrapped in nanoparticles via intranasal
induced higher systemic and mucosal antibody responses. Likewise, chitosan NPs loading
plasmid DNA encoding nucleocapsid protein of Severe Acute Respiratory Syndrome Corona-
virus (SARS-CoV) for nasal immunization in mice has been studied.312 Therefore,
nanocarrier-based delivery systems could provide a suitable route of administration of vac-
cine molecules and enhance cellular uptake thereby resulting in the induction of innate and
adaptive immune responses against infectious diseases.313 Development of multifunctional
nanovaccines significantly increased stability, sustained release of antigens, lowered immu-
notoxicity, increased target-specificity, facilitated modification of nanoparticle surfaces and
ability to codeliver antigens along with adjuvants that may potentially be used more broadly
for the prevention and treatment of infectious disease and cancer.314 For instance, GNPs con-
tains high-mannoside-type oligosaccharides (P1@HM) and HLA-A*0201-restricted HIV-
peptides showed increased DC activity that resulted in high level of HIV-specific CD4þ

and CD8þ T-cell proliferation and cytokine secretion. The results of the study would be prom-
ising approach for improving HIV vaccines (Fig. 27.4).315

In animal models, gold NPs are effective immunotherapeutic against several contagious
diseases including HIV, malaria, listeria, and parasitic diseases.302,316e319 Additionally, the
size-dependent effect of AuNP has been tested against its response on viral proteins (NP-
displayed foot-and-mouth disease related peptide).320 In a study, codelivery of AuNPs
with ovalbumin (OVA) was found to stimulate Toll-like receptor 9 (TLR9), in which the im-
munization with AuNps along with treated DCs showed reduced viral removal than mice
immunized with DC and control.307 AuNPs are considered as Class B Select Agent and
were found to protect the immunized animals against Burkholderia mallei when conjugated
with LPS and protein carrier.321

Cancer cells are surrounded by immunosuppressive microenvironment that restricts the
immune system to recognize and kill cancer cells. Hence, treating cancer even in the era of
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the advanced science is still a challenge. Further, the available methods including chemo-
therapy radiation have several side effects.302 Recently, researchers found that the delivery
of OVA and cytosine-phosphate-guanine (CpG) motif on polypropylene sulfide NPs delayed
tumor growth of thymoma cell line.322 Iron oxide NPs are superparamagnetic particles,
which could be used to target immune signals because it can evade biological barriers and
visualized using high-contrast MRI at cellular level.323,324 Being magnetic and owing to their
ability to imaging eliciting immune signal, iron oxide NPs can be used as immunotherapeutic
agents against several diseases particularly to cancer. For instance, dimercaptosuccinic acid
(DMSA)-coated magnetic NPs were found to possess ability for adsorbing the antitumori-
genic cytokine IFN.323 Similarly, iron oxideezinc oxide coreeshell NPs were used to target
DCs for cancer therapy and imaging applications (Fig. 27.5).325

7. Conclusions and future perspectives

The biologically synthesized metal and metal oxide NPs possess interesting advantages
compared to the chemically synthesized NPs, which include biocompatibility, low cost,
and environmental friendliness. As discussed above, metal and metal oxide NPs have poten-
tial biomedical applications in treating infections and targeted drug delivery systems. Also,
functionalization of these NPs could be used as nanovaccine and improved immunotherapy
cancers and diseases. However, knowledge on the bioactive material responsible for the for-
mation of NPs during biosynthesis is still limited since the biological molecules are respon-
sible for both biocompatibility and stability, and more information on this is needed for
the biofabrication of desired NPs. Several groups of researchers have been focusing on the
largescale production of biosynthesis of smaller sizes with reproducibility and commerciali-
zation. Large-scale production biosynthesized NPs are still at its infancy and still need
improvement and optimization. Though metal and MO NPs are effective against drug

FIGURE 27.4 (i) Representation of the development of GNP formulation conjugated with HLA-restricted HIV
peptides and mannosides, and loaded with dendritic cells for the enhancement of HIV-specific T-cell responses. (ii).
Response of cell in terms of T-cell proliferation in response to autologous MDDC pulsed with peptide@manno GNPs.
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resistant pathogens, information on their metabolism, clearance, toxicity, and in-depth
knowledge on the pharmacokinetics/pharmacodynamics is very limited. Further, the envi-
ronmental fate and behavior of the NPs is not yet fully understood.

Functionalization of NPs with ligands can be accomplished by means of surface modifica-
tions that enable them to interact with biological molecules and make them as important tool
in nanomedicine. These nanomedicines have several advantages not limited to site targeted
drug delivery, controlled drug release, stability, improved bioavailability, and biocompati-
bility compared to conventional medicines. They could be potentially used as vaccines immu-
notherapeutics and early diagnosis of diseases. Some are already available in the market and
in some in clinical trials. However, these are only efficient at preclinical stages. Only very few
of them successfully translated to clinics. Other ones are already available in the market, but
their clinical translation is a major hurdle. The clinical trial framework for the nanomedicine
must be improved to ensure quality and safety of nanomedicine. The encapsulated drugs
have higher half lives in the body, but their long-term side effect of the nanomedicine needs

FIGURE 27.5 a) Key features of gold nanoparticles (Au NPs). B) Various methods of detection and treatment of
cancer using Au NPs. C) Systemic administration of multifunctional Au NPs for photothermal therapy (PTT),
photodynamic therapy (PDT), and cancer bioimaging. NIR ¼ near infra-red, ROS¼ reactive oxygen species.
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to be deeply studied. Further, detailed toxicological profile of these nanomedicines is essen-
tial, and more research should focus on these aspects before clinical trials. Development of
nanocarriers is also an important factor for the translation of these medicines to clinics.
Collaborative interdisciplinary research all over the world is necessary for clinical use of these
NPs as therapeutics and diagnosis.
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