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Abstract Isotropic Gaussian random fields on the sphere are used in astronomy,
geophysics, oceanography, climatology and remote sensing applications. However,
to date, there is a lack of simulation algorithms that reproduce the spatial covariance
structure without any approximation and, at the same time, are parsimonious in
terms of computation time and memory storage requirements. This work presents
two such algorithms that rely on the spectral representation of isotropic covariances
on the sphere. Both algorithms are illustrated with synthetic examples.

Keywords Isotropic random fields · Spherical harmonics · Legendre
polynomials · Schoenberg sequence

1 Introduction

Random fields defined on the unit sphere S2 = {s ∈ R
3 : |s| = 1} are used in astron-

omy, geophysics, geotechnics, oceanography, climatology and remote sensing appli-
cations, where it is frequent to deal with multivariate data. Under an assumption of
isotropy and multivariate normality, the only parameters to infer are the first-order
moment (expectation vector), constant over the sphere and hereafter assumed to be
zero, and the second-order moment (scalar or matrix-valued covariance function),
which only depends on the geodesic distance δ between any two points on the sphere.
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Regrettably, although many computationally efficient algorithms are available to
accurately simulate Gaussian random fields in Euclidean spaces, the same does not
occur with randomfields defined on the sphere. Simulation achieved through approx-
imations into cosine waves or into spherical harmonics often reproduce the spatial
correlation structure approximately. The objective of this work is to present two algo-
rithms to simulate isotropic Gaussian random fields on S2 that exactly reproduce the
target covariance and are efficient from a computational standpoint. Both algorithms
rely on the spectral representation of isotropic covariances on the sphere, which is
reminded in the next section.

2 Mathematical Background

According to Yaglom in [1], the covariance function of an isotropic vector random
field on the sphere can be expanded as follows:

C
(
δ(s, s ′)

) =
+∞∑

k=0

Bk Pk(s · s ′), s, s ′ ∈ S
2, (1)

where · is the usual scalar product in R
3, Pk is the Legendre polynomial of degree

k and (Bk : k ∈ N) is a sequence of real-valued, symmetric, positive semidefinite
matrices, called Schoenberg matrices, that are componentwise summable, i.e., such
that C(0) = ∑+∞

k=0 Bk exists.
For any s ∈ S

2 with colatitude θ ∈ [0, π ] and longitude φ ∈ [0, 2π ], the spherical
harmonics of degree k ∈ N and order m ∈ {−k, . . . , k} is defined as:

Yk,m(s) = (−1)m

√
(2k + 1)(k−)

4π(k+)
Pk(cos θ) ×

⎧
⎪⎨

⎪⎩

√
2 sin(φ) if m < 0

1 if m = 0√
2 cos(φ) if m > 0

(2)

where Pm
k is the associated Legendre function of degree k and orderm. The spherical

harmonics satisfy the following two properties.

(1) Addition theorem:

4π

2k + 1

+k∑

m=−k

Yk,m(s)Yk,m(s ′) = Pk(s · s ′), k ∈ N. (3)

(2) Orthogonality:

4π
∫

S2
Yk,m(s)Yk ′,m ′(s)U (ds) =

{
1 if k = k ′ and m = m ′

0 otherwise,
(4)
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where k, k ′ ∈ N,m ∈ {−k, . . . ,+k},m ′ ∈ {−k ′, . . . ,+k ′}, andU is the uniform
distribution on S

2.

3 Simulation Algorithms

3.1 Random Mixture of Spherical Harmonics (RMSH)

Let f be a probability mass function on N such that f (k) > 0 whenever Bk is not a
zero matrix. If K ∼ f , then Schoenberg’s formula (1) becomes

C
(
δ(s, s ′)

) = E

{ BK

f (K )
PK (s · s ′)

}
. (5)

Moreover, if M is uniform over {−K , . . . ,+K }, then the addition formula (3) gives

PK (s · s ′) = 4π E
{
YK ,M(s) YK ,M(s ′)

∣∣ K
}
. (6)

Then, combining Eqs. (5) and (6), one obtains

C
(
δ(s, s ′)

) = 4π E

{ BK

f (K )
YK ,M(s) YK ,M (s ′)

}
.

Letting Ak be a symmetric square root of Bk (k ∈ N) and Ak(·, J ) be the J -th column
of Ak , with J an integer uniform over {1, . . . , p}, one furthermore has:

E

{
Ak(·, J )Ak(·, J )�

}
= 1

p

p∑

j=1

Ak(·, j)Ak(·, j)� = 1

p
Bk .

The previous equations suggest the following construction for simulating a ran-
dom field on S2 with covariance C :

Z̃(s) = ε

√
4π p

f (K )
AK (·, J ) YK ,M (s), s ∈ S

2, (7)

with ε a random variable with zero mean and unit variance independent of (K , M)

and J an integer uniform over {1, . . . , p} and independent of (ε, K , M).
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3.2 Random Mixture of Legendre Waves (RMLW)

The second simulation algorithm rests on the following identity:

∫

S2
Pk(ω · s) Pk(ω · s ′)U (dω) = 1

2k + 1
Pk(s · s ′), k ∈ N, (8)

which can be derived from the addition theorem (3) and the orthogonality of spherical
harmonics (4). Equation (8) can be rewritten in probabilistic terms:

1

2k + 1
Pk(s · s ′) = E

{
Pk(Ω · s) Pk(Ω · s ′)

}
, k ∈ N, (9)

where Ω is a random point (pole) uniformly distributed on S2. The covariance func-
tion (5) of an isotropic vector random field Z becomes:

C
(
δ(s, s ′)

) = E

{2 K + 1

f (K )
BK PK (Ω · s)PK (Ω · s ′)

}
, s, s ′ ∈ S

2,

where K is a random integer with probability mass function f , independent of Ω .
Following the same reasoning as in the previous section, a random field Z̃ sharing
the same first two moments as Z is obtained by putting

Z̃(s) = ε

√
(2 K + 1)p

f (K )
AK (·, J ) PK (Ω · s), s ∈ S

2, (10)

with ε a random variable with zero mean and unit variance independent of (K ,Ω),
J an integer uniform in {1, . . . , p} and independent of (ε, K ,Ω), and AK (·, J ) the
J -th column of a symmetric square root AK of the Schoenberg matrix BK . The
construction (10) has been named “turning arcs” by Alegría et al. in [2], as it is the
exact analogue of the turning bands method in which a random field defined along
a straight line is spread to the multidimensional Euclidean space; here, a Legendre
wave PK (Ω · s) that is constant over the arcs perpendicular to Ω is spread to the
sphere.

3.3 Discussion

The two previous proposals can be classified as continuous spectral algorithms, in
which the simulated field is a basic random field (harmonic) defined continuously
on the sphere, consisting of a spherical harmonic with random degree and order or a
Legendre wave with random degree and pole. This basic harmonic is weighted by a
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random vector that ensures the reproduction of the target spatial correlation structure,
which reminds of importance sampling techniques.

Both algorithms provide continuous representations of isotropic random fields on
S
2 with finite-dimensional distributions that are not multivariate Gaussian. A central

limit approximation can be used to obtain a Gaussian random field, based on L inde-
pendent copies of Z̃ defined either by (7) or (10). The computational complexity is
proportional to the number L and the number n of locations targeted for simulation,
i.e., O(n × L); this compares favorably with the covariance matrix decomposition
algorithm,whose numerical complexity is proportional ton3. Interestingly, both algo-
rithms can be adapted to the simulation of isotropic random fields on the d-sphere,
with d > 2, by replacing the spherical harmonics by hyperspherical harmonics in the
RMSH algorithm, or the Legendre polynomial by a Gegenbauer polynomial in the
RMLW algorithm. The validity of these adapted algorithms stems from the addition
theorem and the orthogonality of hyperspherical harmonics.

4 Examples

As a first example, consider the univariate multiquadric covariance on the sphere:

C
(
δ(s, s ′)

) = 1 − μ
√
1 − 2μ cos δ(s, s ′) + μ2

, s, s ′ ∈ S
2,

whose Schoenberg sequence is the geometric probability mass function (1 − μ)μk

(see [3]). In the following we set μ = 0.7 and discretize the sphere into 500 × 500
points with regularly-spaced colatitudes and longitudes. Both algorithms are applied
to generate one realization using L = 10 and 100 basic random fields, with ε follow-
ing a Rademacher distribution and K + 1 having a zeta distribution with parameter
2. The latter distribution is long tailed and allows sampling high degree harmonics
(K large) with a non-negligible probability. The realizations obtained by both algo-
rithms look the same when the number of basic random fields is high (L ≥ 100),
which suggests that the central limit approximation is acceptable for such a number
of basic random fields (Fig. 1).

The second example is the univariate Chentsov covariance:

C
(
δ(s, s ′)

) = 1 − 2δ(s, s ′)
π

, s, s ′ ∈ S
2.
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Fig. 1 Realizations of a scalar random field with a multiquadric covariance (parameter μ = 0.7),
constructed with the RMSH (left) and RMLW (right) algorithms, for L = 10 and 100 basic random
fields.

The associated Schoenberg sequence is (see [4]):

bk =
{
0 if k is even
2k+1
4π

	2(k/2)
	2((k+3)/2) if k is odd.

Again, the two algorithms are applied to generate one realization using L = 1000 and
10,000 basic random fields, and considering the same discretization of the sphere and
the same distributions for K and ε (Fig. 2). The convergence to normality turns out
to be slower here, which is explained because the Chentsov covariance corresponds
to a random field that is continuous but not differentiable, whereas the spherical
harmonics and Legendre waves are smooth functions: many such functions (L ≥
10,000) are necessary to sample the tail of the zeta distribution sufficiently to repro-
duce the short-scale behavior of the target random field. With fewer functions, a
striation effect is perceptible in the realizations.
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Fig. 2 Realizations of a scalar random field with a Chentsov covariance, constructed with the
RMSH (left) and RMLW (right) algorithms, for L = 1000 and 10,000 basic random fields.

The last example is a bivariate (p = 2) spectral Matérn covariance, defined
through its Schoenberg matrices (see [3]):

Bk =
[
S(v11)

−1(1 + k2)−v11−1/2 ρS(v12)
−1(1 + k2)−v12−1/2

ρS(v12)
−1(1 + k2)−v12−1/2 S(v22)

−1(1 + k2)−v22−1/2

]
, k ∈ N,

with v11 > 0, v22 > 0, v12 = v11+v22
2 , |ρ| ≤ 1 and S(v) = ∑+∞

k=0(1 + k2)−v−1/2.
We set ρ = −0.9, v11 = 0.75 < 1 and v22 = 1.25 > 1, so that the second ran-

dom field component is mean-square differentiable, while the first component is
not. Figure3 shows one realization obtained with the RMLW algorithm by using
a zeta distribution for K + 1 and a Rademacher distribution for ε, for L = 10,000
(similar results are obtained with the RMSH algorithm and are not displayed here).
As expected, the first component is irregular whereas the second is smooth, both
components being negatively correlated (ρ = −0.9). The striation effect is hardly
perceptible, suggesting that the chosen number of basic random fields is sufficient
for the central limit approximation to be acceptable.
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Fig. 3 One realization of a bivariate random field with a spectral Matérn covariance (parameters
v11 = 0.75 and v22 = 1.25), constructed with the RMLW algorithm and L = 10,000 basic random
fields.

5 Conclusions

Two algorithms have been proposed to simulate vector Gaussian randomfields on the
two-dimensional sphere. Both rest on the spectral decomposition of the covariance
function. They provide continuous simulations, in the sense that they start by building
basic ingredients that subsequently allow computing the value of the simulated field
at any point on the sphere. Moreover, they can be generalized to perform simulations
on hyperspheres. Convergence to multivariate normality is reached with fewer basic
random fields when using the RMSH algorithm in comparison with the RMLW
algorithm, because spherical harmonics are comparativelymoremultichromatic than
Legendrewaves.Compensatorily, it takes less time to computeLegendre polynomials
than spherical harmonics.
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