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SELF-ORGANIZATION INDUCED BY NONRECIPROCAL COUPLING IN
NONLINEAR SYSTEMS

Autoorganización inducida por acoplamiento no
recíproco en sistemas no lineales

La autoorganización es una propiedad exhibida por la materia viva y no viva, un fenó-
meno emergente del comportamiento colectivo y las interacciones de sistemas de muchos
cuerpos. Las interacciones (o acoplamientos) entre los cuerpos pueden ser no recíprocas, lo
que significa que en las interacciones por pares, el efecto de uno sobre el otro es diferente
al inverso. En esta disertación, nos dedicamos a estudiar sistemas no lineales que exhiben
acoplamiento no recíproco, particularmente las propiedades macroscópicas que podría inducir
la no reciprocidad en el acoplamiento. Aprendimos que la heterogeneidad en los parámetros
del sistema dinámico es relevante; por ello, también les dedicamos parte de esta tesis. Este
documento está escrito en tres partes, cada una de las cuales consta de dos publicaciones en
revistas revisadas por pares. La Parte I analiza un modelo prototípico en física no lineal,
la ecuación de Frenkel-Kontorova cuando se somete a un acoplamiento no recíproco. Los
frentes en estado inestable, las capas límite, los patrones autoensamblados y los frentes en
estado estable se caracterizan por la no reciprocidad en el acoplamiento. Además, se brin-
dan perspectivas experimentales y resultados preliminares, allanando el camino para otros
estudios sobre acoplamiento no recíproco. La Parte II aborda la nucleación de diferentes es-
tructuras no lineales (como defectos e interfaces) y cómo se ven afectadas por el acoplamiento
no recíproco. La nucleación de vórtices se devela analizando cristales líquidos nemáticos y
los defectos umbilicales que generan; estos vórtices también son equivalentes a dislocaciones
en patrones. Los modelos de dinámica poblacional incorporan fácilmente acoplamiento no
recíproco, y probamos nuestras predicciones en patrones de cobertura vegetal del norte de
Chile, mostrando una distribución espacial de los defectos. Se emplean ideas similares para
la dinámica de frentes hacia el estado estable nucleados a partir del ruido. Finalmente, en la
parte III, exploramos el papel de la heterogeneidad en los parámetros, enfatizando los mode-
los de dinámica poblacional. En estos sistemas, la heterogeneidad tiene un origen ineludible.
Incluyéndolo en los modelos, teóricamente podemos predecir el comportamiento de diferentes
medidas realizadas sobre imágenes satelitales de patrones de cobertura vegetal. Se tienen en
cuenta los diferentes modelos de evolución espaciotemporal de la biomasa presentes en la
literatura, y el cálculo de las formas normales de la dinámica de la variedad central cerca
de los puntos de bifurcación sirve como punto unificador para avanzar en la comprensión de
estos sistemas complejos.
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Self-organization is a property exhibited by living and nonliving matter, an emerging phe-
nomenon of the collective behavior and interactions of many-body systems. The interactions
(or couplings) between the bodies can be nonreciprocal, meaning that in pairwise interac-
tions, the effect of one over the other is different than the reverse one. In this dissertation,
we are devoted to studying nonlinear systems exhibiting nonreciprocal coupling, particularly
the macroscopic properties nonreciprocity in the coupling could induce. We learned that
heterogeneity in the dynamical system parameters is relevant; thus, we also dedicate part of
this dissertation to them. This document is written in three parts, each one consisting of
two publications in peer-reviewed journals. Part I analyzes a prototypical model in nonlinear
physics, the Frenkel-Kontorova equation when subjected to nonreciprocal coupling. Fronts
into the unstable state, boundary layers, self-assembled patterns, and fronts into the stable
state are characterized against the nonreciprocity in the coupling. Moreover, experimental
perspectives and preliminary results are given, paving the way for other studies in nonre-
ciprocal coupling. Part II addresses the nucleation of different nonlinear structures (such as
defects and interfaces) and how they are affected by nonreciprocal coupling. Vortex nucle-
ation is unveiled by analyzing nematic liquid crystals and the umbilical defects they generate;
these vortices are also equivalent to dislocations in patterns. Population dynamics models
easily incorporate nonreciprocal coupling, and we test our predictions in vegetation cover
patterns from the north of Chile, showing a spatial distribution for the defects. Similar ideas
are employed for the dynamics of fronts into the stable state nucleated from noise. Finally,
in part III, we explore the role of heterogeneity in the parameters, emphasizing the popula-
tion dynamics models. In these systems, the heterogeneity has an unavoidable origin. By
including it in the models, we can theoretically predict the behavior of different measures
performed on satellite images of vegetation cover patterns. The different biomass spatiotem-
poral evolution models present in the literature are taken into account, and the computation
of the normal forms of the center manifold dynamic near the bifurcation points serves as a
unifying point for advancing in understanding these complex systems.
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The scientist does not study nature because it is useful;
he studies it because he delights in it, and he delights in it because it is beautiful.

Henri Poincaré
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Introduction

The analysis of nonlinear systems is at the heart of Classical Mechanics, a discipline where
Poincaré opened a whole new realm of physics while studying the motion of the Sun, the
Earth, and the Moon: nonlinear physics and chaos. This discipline, whose challenge lies
in the impossibility to solve mathematically the dynamical system equations, saw its spring
after the invention of computers that allowed scientists to observe and analyze the solutions of
the system through numerical integration. The striking emergent phenomena nature exhibits
could now be studied despite their complexity.

Not all natural systems, however, are well described by the Hamilton equations describing
the motion of all particles. An effective description, including the dissipation and injection
of energy processes that take place in the human timescale, is often more enlightening. In
this limit, one can better understand the self-organized states that natural systems show.
Phenomenon such as spatial-patterned states in skin fur coating [1], fluid dynamics convection
[2], patterns and fronts in liquid crystal devices [3, 4], patterns in sand forced by wind in
dunes and other localized structures in forced grains [5], and even large scale vegetation cover
complex spatial structures [6], are well understood under the veil of nonlinear physics.

The emergent self-organized states these systems exhibit can have a multitude of micro-
scopic origins; however, the relevant physical quantities behave with similar scalings near
the birth of these states, the so-called critical exponents characterize each type of dynamical
transition or bifurcation. In this dissertation, we analyze the bifurcations and self-organized
states induced by nonreciprocal coupling among the participants of the dynamical systems.
Nonreciprocal coupling occurs when the feedback an element imposes on its neighbor is not
equivalent to the feedback the neighbor imposes on it. This type of coupling needs to be
engineered, as the time-reversal symmetry of physics constrains interactions to be reciprocal.
Nonreciprocity has been achieved in mechanic metamaterials using high nonlinearity [7] and
robotic control [8]; in electric systems it can be achieved thanks to the operational amplifier
couplers [9]; and in optics it could be observed when using translational optical feedback [10].
Linear systems with nonreciprocal coupling could display asymmetric standing wave modes,
conducted amplification of perturbations, and even boundary or skin modes [11].

In this work, we will study the behavior that emerges from nonreciprocal coupling in non-
linear systems, extending what is known for the phenomenology observed in linear systems.
To accomplish this, we consider the dynamics of an overdamped chain of coupled pendu-
lums as our prototypical model, the Frenkel-Kontorova model. This model is sufficiently
general, appearing in various physical contexts such as crystal dislocation motion, nonlinear
oscillators, coupled short Josephson junctions, or electric circuits [12, 13]. Nonreciprocity
is introduced in the couplers, breaking the space-reflection symmetry of the chain at mini-

1



mal order [8]. Nonlinear wave and boundary phenomena are characterized as a function of
nonreciprocity, and we provide some perspectives on the effects of noise, which could induce
the spontaneous creation of nonlinear structures such as fronts or defects. The concept of
nonreciprocity can be extended further to continuous systems subjected to global or nonlocal
coupling. With nonreciprocity and nonlinearity naturally arising in the dynamics of popu-
lations, we apply our ideas to patterns of vegetation cover in the north of Chile, confirming
the predictions of the nonlinear theory in this context. Finally, we give our perspective on
the effects the environmental heterogeneities, such as the topography (which modifies the
coupling between the population), could have on these complex nonlinear systems.

This monograph describes the theoretical and numerical tools in the Frame-
work chapter, which are used in the following six chapters, each consisting of
an article or book chapter published under peer review. A brief introduction
and future perspectives are given for these works. The final, general conclusions
of the thesis work are found in the Conclusions chapter. The first two chapters
are concentrated on the front propagation into the unstable state in nonreciprocally cou-
pled systems. Chapter 1 introduces the chain of nonreciprocally coupled pendulums, and
the bifurcations of fronts into the unstable state are characterized, emphasizing a periodic
self-assembled array of nonlinear structures. Chapter 2 explores the effects of boundary
conditions on the previously studied fronts, unveiling the formation of giant boundary layers.
The following two chapters focus on the formation of nonlinear structures through noise or
instabilities. Chapter 3 Unveils the formation of vortices or domain walls under the effect
of stochastic fluctuations, revealing the laws for their created number versus parameters.
Chapter 4 Applies the ideas of spontaneous formation of nonlinear structures, this time
topological defects in patterns created through deterministic fluctuations of unstable modes,
and the nonreciprocity in vegetation patterns interactions, to unveil a law for their number
distribution in space. In the last part, the following two chapters focus on the heterogeneity
affecting these nonlinear systems; they are similar to stochastic fluctuations but static in time.
Chapter 5 Introduces the heterogeneity of the environment in a general model of vegetation
population evolution, which is derived from two different modeling perspectives available in
the literature. Chapter 6 Extends the previous study to patterns of the labyrinth type. In
it, we show how heterogeneity can disarm the patterns in well-defined stages.

Objectives
The general objective of this thesis is to understand analytically and numerically the self-
organized states and instabilities emerging from nonreciprocal coupling in nonlinear systems
and to uncover the macroscopic variables that scale with the nonreciprocity parameters in
damped oscillator chains and pattern-forming systems.

Specific Objectives
1. Perform extensive numerical simulations of the damped Frenkel-Kontorova chain under

nonreciprocal coupling, making a sweep of the parameter space.

2. Create algorithms to capture the nucleus dynamics of the fronts into the unstable state
observed under varying regimes of motion.
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3. Analytically understand the different instabilities observed for the fronts into the un-
stable state occurring in the damped Frenkel-Kontorova chain emerging from the non-
reciprocal coupling.

4. Test the robustness of the nonreciprocal coupling-induced phenomena in the Frenkel-
Kontorova chain against boundary conditions and fluctuating forces.

5. Describe analytically the boundary layers arising for Dirichlet boundary conditions,
employing techniques of difference equations (or maps).

6. Unveil how domain walls (or fronts into the stable state) nucleate due to fluctuations.

7. Analyze population dynamics models under nonlocal nonreciprocal coupling, corre-
sponding to integrodifferential equations. Employing methods of linearization and weak
nonlinear analysis.

8. Perform extensive numerical simulations of the population dynamic with nonreciprocal
coupling models. Uncover the pattern formation regime and the emergent dynamical
behaviors arising from nonreciprocity in the coupling.

9. Compare satellite images of pattern formations in tillandsia landbeckii species (prolifer-
ating in Chile’s Atacama desert) with the predicted patterns in different regimes. Assess
the status of the vegetation pattern and others.

10. Understand the origin of disorder in the vegetation patterns and amorphous cover,
employing the idea of heterogeneities in the environment.

3



Framework

Dynamical systems
Throughout the text, we will be dealing with different types of dynamical systems. They
correspond to abstract objects evolving in time; in physics, they often correspond to parti-
cles, molecules, rigid objects, and ensembles of any described by variables depending on time.
A set of rules will dictate the variables’ evolution. Generally, we encounter the dynamical
systems classified according to the domains of the independent (often time) and dependent
variable. They could be either discrete or continuous. Continuous time and variable dynam-
ical systems are described by sets of ordinary differential equations (ODEs). A discrete-time
evolution for a continuous variable is described by a difference equation (DE). Furthermore,
we will refer to them as finite dimensional systems when the number of independent variables
(the number of equations) is countable. The number of variables can become dense, describ-
ing a field, in which case we are addressing an infinite dimensional system; of this type, we
will encounter partial differential equations (PDEs) and integro-differential equations (IDEs)
[14]. It is important to keep in mind that infinite dimensional systems are often used as
an approximation of our natural world (often a really good one), as ultimately, matter is
made out of countable entities. Then, a mathematical relation between a finite and infinite
dimensional system can be drawn: the continuum limit. However, one must take care, as
not all the phenomena are translated from one system to another, and some can be lost. An
example corresponds to the dynamics of a large number of identical masses arranged in a
line, coupled with identical springs; the continuum limit allows us to quickly compute solu-
tions employing a wave equation (PDE), giving waves satisfying a linear dispersion relation.
Nevertheless, calculating with care in the original equations (the finite dimensional system)
reveals a nonlinear dispersion relation [15]; a completely different curve.

Finite dimensional systems

Let us start by describing finite dimensional systems evolving according to the generalized
time t (it can represent other independent variables, such as space, depending on the context).
If the time changes continuously, we will deal with an ODE system; if it evolves at intervals,
we will have a DE system. Denote the independent variables by yi(t), or use a vector notation
y(t).

Difference equations

If time evolves at fixed intervals, then the dynamical system is described by the rules deter-
mining the next value (at the next time step) in terms of the information of the actual time
step (and possibly the previous ones). They are often called maps, and the evolution rule
has the form of a recurrence relation. Calling the time steps τ , they write
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y(t+ τ) = F (y(t),y(t− τ),y(t− 2τ), ..., t; c) , (0.1)

where c is a vector containing fixed control parameters (for example, the mass of particles,
the resistance of electrical elements, the intensity of an incoming light beam, etc.). A simple
example would be the total population N of a species that produces offspring at precise
intervals τ , assuming an offspring proportional to the population having it (rN) that adds
to the actual population, the equation for the total population would be

N(t+ τ) = N(t) + rN(t).

If the recurrence relation is linear, we can find an analytic solution, in this case, replace
N(t) = N0a

t (where N0 represents the initial population) and one is left with aτ = (1 + r).
Finally

N(t) = (1 + r)t/τN0.

If the offspring is less than the population producing it, then the population will go to
zero at large times. Otherwise, it will increase. Note that the prediction is an unbounded
increment of N over time; this is not physical. Obviously, we missed important aspects, such
as an offspring that is a nonlinear function of the population producing it. Nonlinearities will
render the problem non-solvable, but one will obtain phenomena not described otherwise [14].

Ordinary differential equations

A first order, first degree differential equation describes the rate of change of a variable in
time according to a given function. The changes of each variable with respect to time are
the components of the field vector f(y, t); the system is said to be autonomous if it does
not depend explicitly on time, otherwise it is nonautonomous. Then, the equation for the
evolution of y(t) is

dy
dt

= f(y, t; c). (0.2)

This may be seen as a particular type of ODE. However, it covers most of the models found
in the literature. Additionally, various natural systems can be described by the pondered
balance between the n-th order derivatives of a variable, say, u

P(u, du
dt
,
d2u

dt2
, ...,

dnu

dtn
; c) = 0. (0.3)

If P is of first degree in the higher order derivative, one can always transform Eq. 0.3
to Eq. 0.2 by the changes of variables dku/dtk = yk+1 for k = {0, 1, 2, ..., n − 1}. In the
following, unless otherwise stated, we will assume y ∈ Rn and consider the canonical inner
product ⟨x|y⟩ ≡ x · y = ∑n

i=1 xiyi.

An example familiar to the reader is the Newton equation of motion, written explicitly
for the position vector r of a particle with mass m, subjected to a force F
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m
d2r
dt2

− F(r, dr
dt
, t) = 0.

Let dr/dt = v, then dv/dt = F/m, and the dynamical system is written explicitly as a
first order one as

d

dt

(
r
v

)
=
(

v
F(r,v, t)/m

)
.

Linear ODEs can be solved by analyzing the matrix describing the linear equations, which
we call the Jacobian matrix J

dy
dt

= J(t; c)y. (0.4)

The previous equations are not easy to solve, particularly when the Jacobian depends on
time. In the simplified case of a constant Jacobian, a general solution could be drawn by
inspection as

y(t) = a1e1e
λ1t + a2e2e

λ2t + ...+ aneneλnt, (0.5)

where the constants {ak} are determined by the initial condition of y. The constants {λk}
are the eigenvalues of the Jacobian matrix, and {ek} their corresponding eigenvectors; n is
the dimension of y. Special care must be taken when eigenvalues repeat or vanish, as these
cases are not contained in Eq. 0.5. Note that, similar to the difference equations, we obtain
indefinite growth or vanishing of variables for linear homogeneous (constant parameters)
dynamics. This may or may not be a good model for the system we are describing. Again,
nonlinearities would produce other behaviors at the cost of losing analytical solutions such
as Eq. 0.5. An important question to ask oneself is whether solutions such as Eq. 0.5 exist
and are unique; fortunately, under somewhat general conditions, they are. This is known as
the Picard-Lindelöf-Cauchy-Lipchitz theorem; for it to hold, the vector field f(y, t) must be
continuous in t, and Lipchitz continuous in y [16, 17] (intuitively, it must be continuous and
have bounded distances between any pair of points). In general physical situations, problems
are well defined and satisfy these conditions; however, tricky situations might hold for some
interesting dynamical systems, see [17].

Solutions that can be reduced to explicit functions of time in terms of elementary func-
tions, such as Eq. 0.5, are not general. The vector field will, in general, be nonlinear. Thus,
general solutions do not exist. However, one may still obtain valuable information about the
dynamical system without requiring the analytic solution. All the dynamics can be repre-
sented in the phase space, which is the space in which y(t) is represented as an n−dimensional
vector. This position vector, parameterized on time, traces a trajectory in phase space for
every initial condition given. Obtaining the form of the trajectory in phase space is a differ-
ent problem than obtaining the analytical solution of the dynamical system (the trajectory
parameterized on time), offering an alternative to analyze the dynamics. Sometimes, getting
this trajectory in phase space (or at least some properties) can be enough for our purposes,
as it describes the qualitative behavior of the solution.
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In the rest of the section, we will focus on finite dimensional systems described
by autonomous ODEs, as they are far more developed and familiar. Comments
will be made on the difference equations, or nonautonomous counterparts when-
ever needed.

Fixed points and stability

One may ask if there exists a point in phase space for which, when reached, the dynamical
system stops evolving. Such a point is called a fixed point. The condition for the system
to stop evolving is dy/dt = 0; thus, a fixed point is also called an equilibrium point. The
equation determining the fixed point y0 is

0 = f(y0; c). (0.6)

Trajectories in phase space can not merge in finite time due to the existence and uniqueness
theorem, and fixed points are for sure part of some solutions. Thus, fixed points are accessed
on the limits t → ±∞. Their presence or absence in phase space changes the orbits of
dynamical systems. Not only points are limit solutions, cycles also exist. They correspond
to closed curves in phase space fulfilling the property y(t+ T ) = y(t) for all t and certain T
called the period. Considering these trajectories reaching limit solutions and those generated
by neighboring initial conditions, we gain insight into their stability depending on whether
they move into or away from that limit solution.

Stability in the sense of Lyapunov. Given dy/dt = f(y). A solution y(t) is said to be
uniformly stable if there exists a δ(ϵ) > 0 for every ϵ > 0, such that any other solution u(t)
for which |y(t0) − u(t0)| < δ(ϵ), satisfies |y(t) − u(t)| < ϵ for all t > t0. If no such δ(ϵ) exists,
then y(t) is said to be unstable [14].

This only means that nearby solutions remain arbitrarily close to the tested trajectory.
Given this definition of stability, one can start to analyze the dynamics around fixed points
and asses their type. Note that we can consider y(t) = y0 a solution on the previous definition
and classify fixed points into stable and unstable ones. Before we do so, it can be helpful to
have the following theorem in mind

Lyapunov theorem of stability. Given dy/dt = f(y) and y0 a fixed point. If there exist
a function L(y) in the neighborhood of y0 such that: i) L(y0) = 0, L(y ̸= y0) > 0, and ii)
f · ∇L ≤ 0. Then y0 is stable [14].

Functions L(y) are called Lyapunov’s functions. Intuitively, note that L̇ = ∇L·dy
dt

= ∇L·f .
Thus, L̇ ≤ 0, and the system evolves such that L does not increase in value. In fact, we will
reach the minimum of L. Note that a simple way to create a system with these characteristics
is to pick an L function, say L = y · y, and consider f = −∇L. Such a system is said to be
a gradient system or a variational system and is characterized by minimizing L; in such a
system, we can learn everything about the fixed points by analyzing the Lyapunov’s function
landscape.

In a general problem, one could asses the stability of fixed points by finding the Lyapunovs’
functions; however, this may not be easy. We can further analyze the fixed points and
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determine their stability by linearization. Let us expand around the fixed point y0, that is,
consider y = u + y0 in equation 0.2

du
dt

=


∂f1/∂y1 ∂f1/∂y2 ...

∂f2/∂y1 ∂f2/∂y2 ...

... ... ...


∣∣∣∣∣∣∣∣
y0

u + ...

equivalently one writes
du
dt

= ∇yf(y0; c)u + ... (0.7)

Where we have omitted the next terms in the Taylor expansion. We recognize that if
u ≪ 1, linear dynamics should describe the system fairly well around the fixed point. The
linear equation will have a general solution similar to Eq. 0.5, and its behavior will be
qualitatively determined by the sign of the Jacobian’s (∇yf(y0; c)) eigenvalues. Whenever
the real part of the eigenvalues are negative Re λi < 0 (for i ∈ {1, 2, 3, ..., n}), an arbitrary
initial condition close to the fixed point would converge to it; thus the point is stable. If some
are positive, the fixed point would be unstable. This seems a reasonable approach; however,
How is one sure that the remaining terms ignored on Eq. 0.7 are not relevant? This can be
answered with the following theorem

Grobman-Hartman theorem. A hyperbolic fixed point is one whose Jacobian eigenval-
ues have nonvanishing real parts. Given dy/dt = f(y) a continuous and at least one time
differentiable vector field, namely, the nonlinear system. y0 an hyperbolic fixed point; and
du/dt = ∇yf(y0)u the corresponding linear part of the system. Then, in a neighborhood of
y0, the nonlinear system is topologically equivalent to its linear part [17].

Topological equivalence of flows. Let two vector fields f and g producing the flows yf (t; yi)
and yg(t; yi) (in other words, the collection of solutions for every initial condition yi). They
are said to be equivalent if there exists a one-to-one mapping h(x) carrying the flow yf to yg
such that h (yf (t; yi)) = yg (t; h (yi)) . Moreover, they are said to be topologically equivalent
if, in addition, the map h and its inverse are continuous (h is an homeomorphism) [16].

The theorem means that solutions on the linear part of the system can be continuously
deformed to the actual solutions of the nonlinear system, preserving the direction (at least
in a neighborhood around the fixed point). Thus, the linear analysis near a hyperbolic fixed
point is enough to establish its stability type [17].

For example, consider a one dimensional damped linear oscillator satisfying Newton’s
equation with F = −µv − ω2

0x. Clearly a fixed point corresponds to (x0, v0) = (0, 0).
Dynamics are already linear, so it is direct to write the eigenvalue equation∣∣∣∣∣

(
−λ 1
−ω2

0 −µ− λ

)∣∣∣∣∣ = λ(λ+ µ) + ω2
0 = 0.

Then,
2λ = −µ±

√
µ2 − 4ω2

0.

We can see that for any value of ω2
0, if µ > 0, both eigenvalues are negative, and the point
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(x0, v0) = (0, 0) is a stable fixed point. If µ < 0, both eigenvalues are positive, and the fixed
point would be unstable. One can note that the case µ = 0 remains special; it is the point
for which Reλi = 0 for some i ∈ {1, 2, 3, ..., n}. At the same time, it defines a threshold in
a control parameter for which a qualitative change in the phase space has occurred. Note
that the Jacobian becomes singular at this threshold (at least one of its eigenvalues vanishes,
then it becomes noninvertible). These singular properties define what is called a bifurcation
point.

Bifurcations

The control space plays a major role in the theory of dynamical systems. It composes the
space where the vector c in Eq. 0.2 lays. We will refer to the dimension of the control space
as the codimension c of our dynamical system. The reason is that, when computing fixed
points, we have n equations corresponding to the dimension of the vector field. However,
if one considers the control parameters variables, we have n + c unknowns; the solutions
are degenerated and parameterized by a vector of dimension c. As we saw in our previous
example, changes may occur in the system when varying the control parameters. The term
bifurcation was first employed by Poincaré [14, 18] when the number of fixed points changes
in a system; one could generally say that

A bifurcation occurs any time the phase portrait is changed to a topologically nonequivalent
portrait by a change of the control parameters [14].

When the number of fixed points changes, the previous condition holds. Whenever a fixed
point changes stability, it continues to hold. Then, one has two clear approaches to studying
bifurcations. Let us start analyzing fixed points. The equation for a fixed point y0 reads

0 = f(y0; c).

By solving this system, one could obtain the solutions y0(c). Then, we may change the
parameters in c and analyze how the equilibrium changes. An important question is whether
the solution exists and if it is continuous or not. If a discontinuity happens, a bifurcation
may have occurred. To answer this, the implicit function theorem becomes useful, which we
remember here

Implicit function theorem. Let f(y, c) = 0 a system of n equations. Let A ∈ Rn and
B ∈ Rc be regions that, for y ∈ A and c ∈ B the system has a solution, and the Jacobian in
the first variable determinant does not vanish∣∣∣∣∣∣∣∣


∂f1/∂y1 ∂f1/∂y2 ...

∂f2/∂y1 ∂f2/∂y2 ...

... ... ...


∣∣∣∣∣∣∣∣ ̸= 0.

Then, there is a region C inside B such that for c ∈ C there is a unique solution

y = g(c),

which is continuous in c and satisfies f(g(c), c) = 0 [14].
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This theorem warrants a local unique inversion of the problem (that is, find the fixed
points in terms of the control parameters). However, it may hold in different regions; thus,
multiple solutions are not forbidden. The solutions are continuous in c; then we refer to them
as branches of solutions, as they draw a continuous path when moving the control parameters.
From the point of view of the fixed points, a bifurcation may occur whenever these branches
collide. If the continuous paths are still defined in the neighborhood of the bifurcation, the
only condition that could be broken is the nonvanishing determinant of the Jacobian. Thus,
at points for which |∇f(y0; cb)| = 0, a bifurcation may have occurred at parameters cb;
verification by computing the higher order derivatives is needed for its assertion [14].

Now, let us return to the stability change of a fixed point past a bifurcation. As we
mentioned earlier, considering initially a stable point, this would mean at least one eigenvalue
crosses the imaginary axis as the parameters change. One can employ the implicit function
theorem and convince oneself that eigenvalues λi(c) vary continuously as c changes (at least
locally). Thus, at some critical value named the bifurcation point (y0(cb), cb), one or various
of the λi have vanishing real part. This is crucial, as, in this critical condition, the fixed
point becomes nonhyperbolic. This means that the dynamics of a subspace of variables are
determined by nonlinear terms, as well as the stability type of the fixed point. Considering the
rest of the eigenvalues would have negative real parts, we expect that in the long time limit,
only the dynamics of the zero eigenvalue subspace would be relevant. It is reasonable to ask
oneself whenever the dynamics of the reduced subspace are general and describe bifurcations
universally. One important mathematical result that moves in that direction corresponds to
the center manifold theorem.

Center manifold theorem

For our purposes, a manifold corresponds to a space where one can locally define coordinates
smoothly connected to their neighboring ones. For example, surfaces are submanifolds in R3,
as well as curves (sub- due to them having less dimension than the space containing them).
Informally, any object for which you can impose a grid over it would be a manifold in our
sense.

We mentioned that hyperbolic fixed points have neighboring dynamics topologically equiv-
alent to the linear part of their dynamics. That is, the eigenvalues and eigenvectors play a
crucial role in determining the flow. Eigenvectors, in particular, are tangent in the fixed
point to a more general manifold, which we call the unstable and stable manifolds of the fixed
point [17, 18] defined as follows

Wu(y0) = {all points traced by y(t) such that y(t → −∞) → y0} (0.8)

Ws(y0) = {all points traced by y(t) such that y(t → ∞) → y0} (0.9)

In our previous example of an oscillator subjected to the force F = −µv − ω2
0x, we found

that for µ > 0, the fixed point at the origin of the phase space (x, v) is stable; in this case,
Ws(y0) corresponds to the whole plane (x, v) and Wu(y0) does not exist.
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Now, at a nonhyperbolic fixed point, the system’s flow has directions in phase space with
nonexponential behavior (as the real part of some eigenvalue vanishes). This is predicted in
the linear approximation. Moreover, the eigenvector corresponding to the eigenvalue with
vanishing real part is tangent at the fixed point to a center manifold Wc(y0), and the behavior
of the flow in the center manifold is solely determined by the nonlinear terms; this is known
as the center manifold theorem [17, 18]. Then, each subspace spanned by the eigenvectors
associated with negative, positive, and vanishing eigenvalue real parts is tangent to the
stable Ws, unstable Wu, and center Wc manifolds, respectively. The idea is to obtain an
approximation of the dynamics at the center manifold thanks to changes of variables that
produce the simplest possible equations. This procedure reveals the normal form of the
instability, a unique equation (or set of equations) whose form depends on the Jacobian
number of vanishing eigenvalues and symmetries of the system.

Normal forms of the center manifold dynamics

As mentioned earlier, the idea is to create a change of variables starting from the tangent
eigenvectors as the initial term; then, one tries to obtain the center manifold coordinates
systematically in a neighborhood of the fixed point. Different approaches can be found to
obtain the change of variables; for example, see the summaries presented by Guckenheimer
[18], or Arnold [17]. To be a normal form, the resulting equation should not be able to be
simplified anymore by further changes or variables. In the following, we present a technique
by Tirapegui et al. [19].

Let us start with the dynamical system dy/dt = f(y; c) whose linear part at the fixed point
y0, du/dt = ∇yf(y0; c)u is characterized by m eigenvalues with vanishing real part (and the
rest negative, otherwise the unstable manifold would dominate) at the bifurcation point
c = cb. For simplicity we will describe the system with y0 at the origin, such that the system
can be written as du/dt = ∇yf(y0; c)u + fN.L.(u) (remember that u = y − y0); then fN.L.(u)
represents the nonlinear part of the dynamical system (which will have typically a polynomial
form after we have made the origin shift). Suppose one has written the system equations at
the instability (or bifurcation) in the basis of (generalized) eigenvectors Q = (e1, e2, ..., en)
(ordered by decreasing real part of their eigenvalue), that is, A = Qy; Then, as we have
vanishing real part of some eigenvalues, the equations will take the form of

dA
dt

= JA + fN.L.(A), (0.10)

where J is a block diagonal matrix formed by Jordan blocks. Each type of instability
produces a unique Jordan block (for example, a single eigenvalue vanishes, a pair of complex
eigenvalues with vanishing real part, two single eigenvalues, two pairs of different complex
eigenvalues, etc.); this is what allows the universal classification of instabilities according to
normal forms. Of course, we will be interested in the first m equations. Moreover, we will
be interested in the case for which we perturb the critical parameters such that c = cb + ϵ.
This produces slight changes in the equation for A that we generally write as

dA
dt

= JA + fN.L.(A) + LϵA + fN.L.ϵ(A) + bϵ. (0.11)

With the equation in this form, we will seek for a polynomial expansion of the first m
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components of A such that Ai = ∑
k

∑k
l=0 A

[k−l]
i ϵ

[l]
i ≡ ∑

k

∑k
l=0 A

[k−l,l]
i for i = (1, 2, ...,m);

where A[k,l] means any monomial term composed of (A1, A2, ..., Am, ϵ1, ϵ2, ...) of order k + l,
for example

√
2A1A2 is a term belonging to A[2,0], and A1A2ϵ1 cos 1 belongs to terms A[2,1].

This is motivated due to the fact that close to the instability and close to the fixed point,
these variables should remain small.

Then, we have

dAi
dt

= Ȧ
[1,0]
i + Ȧ

[0,1]
i + Ȧ

[2,0]
i + ... =

∑
j

(Jij + Lϵij)
∑
k

k∑
l=0

A
[k−l,l]
j + fN.L.(A)i + fN.L.ϵ(A)i + bϵi.

Seeking to solve for A[k,l]
i . The change of variables proposed and the structure of the operators

form a hierarchy of equations where each subsequent term of the Ai series can be obtained
from the previous ones by solving a linear problem. Note that one could separate

Lϵ = L[0,1]
ϵ + L[0,2]

ϵ + ...,

fN.L. + fN.L.ϵ = f [2,0]
N.L.(A[1]) + f [2,1]

N.L.(A[1], ϵ[1]) + f [3,0]
N.L.(A[1], A[2]) + ...,

and similarly for the rest of the terms. Then

∑
j

(Jij)A[k+1,l]
j = −Ȧ[k+1,l]

i +
l∑
p

∑
j

L[0,p]
ϵij A

[k+1,l−p]
j + f [k+1,l]

N.L. (A[1], ..., A[k], ϵ[1], ..., ϵ[l−1]) + b[k+1,l]
ϵ .

As bϵ = b[0,1]
ϵ + b[0,2]

ϵ + ... is a constant perturbation it only affects initial equations with
k + 1 = 0 (for which f [k+1,l]

N.L. = 0). The first step corresponds to the linearized equations and
the first-order parameter perturbations alone (these starting cases allow the iteration of the
previous equation), reading

JA[0,1] = −Ȧ[0,1] + b[0,1]
ϵ . (0.12)

Note that the problems we are solving are of the type Ax = z. If the operator A : L1 → L2
(L1, L2 subspaces of Rm), then, one must ensure that z is in the image of A. Imposing this
condition will give an additional equation at each order of the hierarchy of equations; finally,
the two unknowns Ȧ[k,l]

i and A
[k,l]
i can be unveiled systematically at each order. Finally, a

scaling of the coefficients is proposed; the idea is that as the deviations from the bifurcation
parameters remain small (at least O(ϵ)), one has natural timescales which are used to con-
struct a normal form independent of ϵ. We highlight that the method of Tirapegui et al. is
characterized by providing a systematic approach to compute normal forms. This is because
the linear problem to be solved at each order is the same (the operator does not change with
subsequent orders of the hierarchy) and has the form 0.12. Tirapegui et al. provided the
general solution of such a linear equation in [19], solving the problem of the computation of
normal forms in any system.

The method is best illustrated with examples. Let us exhibit the calculations in two
cases: a single vanishing eigenvalue and a pair of complex eigenvalues; they give rise to the
imperfect pitchfork and Andronov-Hopf normal forms, respectively. To accomplish this, let
us consider the physically relevant example of a one-dimensional generalized Van der Pol
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oscillator described by

ẍ− µ(1 − x2)ẋ− [(ϵ− 1)x+ sin(x− ϕ)] = 0,

where we have included the additional term sin(x− ϕ) to play with an arbitrary nonlinearity
in the equation. Note that c = (µ, ϵ, ϕ). The equation defining the equilibria is

(ϵ− 1)x+ sin(x− ϕ) = 0,

and is easy to see that for ϕ = 0, (ẋ, x) = (0, 0) is an equilibrium of the system. Let us write
v = ẋ and we can write the system as

d

dt

(
x

v

)
=
(

0 1
ϵ µ

)(
x

v

)
+
 0

−µx2v + (−ϕ− (x−ϕ)3

3! + ...)

 . (0.13)

Analyzing the linear part, one finds eigenvalues

λ± = µ±
√
µ2 + 4ϵ
2 .

One realizes two separate things may occur. i) for any given µ < 0 not necessarily small, we
have a real eigenvalue (λ+) which crosses the imaginary axis when ϵ = 0. ii) for any given
ϵ < 0 not necessarily small, a pair of complex eigenvalues crosses the imaginary axis at µ = 0.
Note that both instabilities require fine-tuning only one parameter ( ϵ in the first case and µ
in the second case); thus, they are codimension one instabilities.

Let us first analyze the case i). Note that µ will be an arbitrary negative number, so let
us employ dimensionless units τ = |µ|t and v = |µ|v such that in equation µ = −1. Then,
we first separate the linear part as(

0 1
ϵ −1

)
=
(

0 1
0 −1

)
+
(

0 0
ϵ 0

)
≡ Jc + Lϵ.

We compute the eigenvectors at the instability (ϵ = 0), reading

v+ =
(

1
0

)
, v− =

(
1

−1

)
.

Finally, we construct the matrix of basis change Q = (v+,v−), and compute the matrices

J = QJcQ−1 =
(

0 0
0 −1

)

and
Lϵ = QLϵQ−1 =

(
ϵ ϵ

−ϵ −ϵ

)
.
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Also, the new variables

A = Q
(
x

v

)
=
(
x+ v

−v

)
≡
(
A1

A2

)
,

and the constant perturbation

bϵ = Q
(

0
−ϕ+ ϕ3/3! + ...

)
.

Finally, the problem we want to solve reads

Ȧ =
(

0 0
0 −1

)
A +

 −A2(A1 + A2)2 + (A1+A2)2ϕ+(A1+A2)ϕ2

2 − (A1+A2)2

6! + ...

−(−A2(A1 + A2)2 + (A1+A2)2ϕ+(A1+A2)ϕ2

2 − (A1+A2)2

6! + ...)


+
(
ϵ ϵ

−ϵ −ϵ

)
A +

(
−ϕ+ ϕ3/3! + ...

−(−ϕ+ ϕ3/3! + ...)

)
. (0.14)

We start with the eigenvector associated with the vanishing eigenvalue as our initial guess
(we denote its magnitude with A)

A = A

(
1
0

)
+ A[0,1] + A[1,1] + A[2,0] + A[2,1] + A[3,0] + ... (0.15)

and the time derivative of this variable describing the central manifold (A), which we assume
of the form

Ȧ = Ȧ[0,1] + Ȧ[1,1] + Ȧ[2,0] + Ȧ[2,1] + Ȧ[3,1] + ... (0.16)

Replacing the previous ansatz in equation 0.14 results in a hierarchy of equations that we
explicitly solve.

O(A[0,1]):

Ȧ[0,1]
(

1
0

)
= JA[0,1] +

(
−ϕ
ϕ

)

Note that the image of J corresponds to the vector e2 = (0, 1)T (where T denotes the
transpose). Then, for the equation to have a solution, forcefully it is required that

Ȧ[0,1] = −ϕ.

Then, the system has a solution given by

A[0,1] =
(

0
ϕ

)
.

O(A[1,1]):
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Ȧ[1,1]
(

1
0

)
= JA[1,1] +

(
ϵ ϵ

−ϵ −ϵ

)
A

(
1
0

)
.

The solutions are given by

Ȧ[1,1] = ϵA, A[1,1] =
(

0
−ϵA

)
.

O(A[0,2]):

Ȧ[0,2]
(

1
0

)
= JA[0,2] +

(
ϵ ϵ

−ϵ −ϵ

)
A

(
0
ϕ

)
.

The solutions are given by

Ȧ[0,2] = ϵϕ, A[0,2] =
(

0
−ϵϕ

)
.

O(A[1,2]):

Ȧ[1,2]
(

1
0

)
= JA[1,2] +

(
ϵ2A+ 1

2Aϕ
2 − 2Aϵϕ

−(ϵ2A+ 1
2Aϕ

2 − 2Aϵϕ)

)
.

The solutions are given by

Ȧ[1,2] = ϵ2A+ 1
2Aϕ

2 − 2Aϵϕ, A[1,2] =
(

0
−(ϵ2A+ 1

2Aϕ
2 − 2Aϵϕ)

)
.

O(A[2,0]): At this order everything vanishes identically
O(A[2,1]):

Ȧ[2,1]
(

1
0

)
= JA[2,1] +

(
A2ϕ/2

−A2ϕ/2

)
.

The solutions are given by

Ȧ[2,1] = A2ϕ/2, A[2,1] =
(

0
−A2ϕ/2

)
.

O(A[3,0]):

Ȧ[3,0]
(

1
0

)
= JA[3,0] +

(
−A3/6
−A3/6

)
.

The solutions are given by

Ȧ[3,0] = −A3/6, A[3,0] =
(

0
A3/6

)
.
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We stop here due to A3/6 being the first term free of a parameter. We write the equation
for A derived

Ȧ = ϵϕ− ϕ+ (ϵ+ ϕ2

2 − 2ϵϕ+ ϵ2)A+ ϕ

2A
2 − A3/6 +O(A[2,2], A[3,1], A[4,0], ...).

Now, we apply the idea of scaling. Remember that we are close to the critical condition of
bifurcation of the fixed point (x, v) = (0, 0) of our original problem. Then, the parameters ϵ
and ϕ are small (otherwise, our initial step has to be modified). Now, analyze the contribution
of each term in the equation. The lowest contributions correspond to −ϕ+ϵA+ϕA2/2−A3/6,
if all these terms were significant, it would indicate that A3 ∼ ϕ ∼ ϵA ∼ ϕA2; but if ϕ ∼ A3,
then ϕA2 ∼ A[5], which is a much higher order contribution. Finally, the scaling corresponds
to ϵ ∼ ϕ3/2. We can formally provide an equation free of small parameters as follows. First,
write ϵ = δϵ̃ and ϕ = δ

3
2 ϕ̃

√
6, with δ ≪ 1; then, A ≡ δ

1
2 Ã

√
6 ∼ δ

1
2 . The linear term dictates

the temporal evolution scale; we choose τ = δt, and one has

δ
3
2
dÃ

dτ
= δ

3
2
(
−ϕ̃+ ϵ̃Ã− Ã3

)
+O(δ4). (0.17)

In the limit δ → 0 the equation is quantitatively correct. Let us write the equation with no
tildes as follows

Ȧ = −ϕ+ ϵA− A3. (0.18)

The previous equation is known as the imperfect pitchfork normal form. It is a codimension
two equation, including a condition for instability and a condition for the birth of a hysteresis
loop (known also as the birth of bistability) between asymmetric states. Equation 0.18
contains all the codimension one instabilities (except the Hopf instability), that is, it contains
the saddle node, the transcritical, and pitchfork bifurcations. This equation describes the
typical dynamics at the center manifold when a single eigenvalue crosses the imaginary axis.
With a simple linear change of variables A = A−A0(ϵ, ϕ) it can be written in the equivalent
form

Ȧ = ηA+ κA2 − A3,

which will appear continuously throughout chapters 4, 5, and 6 of this dissertation. It is
much easier to see all the codimension one bifurcations in this form. Take κ = 0 and one
recovers the pitchfork bifurcation. Consider only the neighborhood of A = 0 and one recovers
the transcritical bifurcation. Simplify the equation for the equilibria by A and one is left
with η + κA−A2 = 0, which exhibits a saddle node bifurcation at parameters κ2 + 4η = 0.

Now, let us examine case ii), which produces the Andronov-Hopf normal form. Note that
we will have oscillations in the center manifold whose frequency is arbitrary. In the case of
complex eigenvalues crossing the imaginary axis, one needs to solve a slightly different linear
problem at each order compared to the previous case; this is due to the arbitrary frequency
of the linear solution appearing at each order, modifying the linear operator acting on the
unknown function to be solved. Let us illustrate this by computing the normal form. First,
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write the linear part as (
0 1
ϵ µ

)
=
(

0 1
ϵ 0

)
+
(

0 0
0 µ

)
≡ Jc + Lµ.

For negative epsilon we have the eigenvalues λ± = ±i
√

|ϵ|. It will be convenient to write
ϵ = −|ϵ| = −ω2

0 and rescale v =
√

|ϵ|v. The problem reads

d

dt

(
x

v

)
=
(

0 ω0

−ω0 0

)(
x

v

)
+
 0
µω0v − µω0x

2v + (−ϕ− (x−ϕ)3

3! + ...)

 . (0.19)

The linear operator of the previous equation is the canonical block when a pair of eigenvalues
crosses the imaginary axis. One can see that solutions x = Aeiω0t + c.c., v = iAeiω0t + c.c.
satisfy the linear part. Then, it is proposed that

(
x

v

)
=
(

1
i

)
A+

(
1

−i

)
Ā+

(
x

v

)[0,1]

+
(
x

v

)[1,1]

+ ...

and
Ȧ = iω0A+ Ȧ[0,1] + Ȧ[1,1] + Ȧ[2,0] + ...

The equation for ˙̄A is obtaining by conjugation of the previous expression. Inserting this
expansions for the variables in the equations of motion yields a hierarchy of equations just as
case i). However, the linear operator is a little different; the imaginary part of the eigenvalue
ω0 is not necessarily small, unlike the real part µ ≪ 1. Let us write the problem at the initial
step O[0,1]

(
1
i

)
Ȧ[0,1] + c.c. =

[(
0 ω0

−ω0 0

)
− I

(
iω0A

∂

∂A
− iω0Ā

∂

∂Ā

)](
x

v

)[0,1]

+
(

0
−ϕ

)
.

One can note a contribution I
(
iω0A

∂
∂A

− iω0Ā
∂
∂Ā

)
acting on the elements of the vectors

(x v)[i,j]T (A, Ā) (it repeats in all the equations of the hierarchy). We remind that A and Ā
are the vector amplitudes corresponding to each eigenvalue ±ω0; that they are the conjugate
one of the other (to ensure that the variables are real) is an additional constraint.

The action of the operation A ∂
∂A

is better understood when introducing the inner product,
considering A = aA + ibA

⟨f(A)|g(A)⟩ =
∫ ∫

e−a2
A−b2

A f̄(A)g(A)daAdbA.
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Then, one can compute the following

⟨f(A)| ∂
∂A

g(A)⟩ =
∫ ∫

e−AĀf(Ā) ∂
∂A

g(A)daAdbA,

=
∫ ∫ ∂

∂A

[
e−AĀf(Ā)g(A)

]
− ∂

∂A

[
e−AĀf(Ā)

]
g(A)daAdbA,

=
∫ ∫

e−AĀĀf(Ā)g(A)daAdbA,

= ⟨Af(A)|g(A)⟩.

To obtain the third line we used the fact that ∂/∂A = ∂/∂aA−i∂/∂bA and integrated directly.

We have obtained that A = ( ∂
∂A

)† ≡ â†
A. The same can be formulated for the variable

Ā, obtaining Ā = ( ∂
∂Ā

)† ≡ â†
Ā

. As the image of the operator acting over (x v)[i,j]T is not
straightforward, we employ the Fredholm alternative; for a linear problem of the form Ax = z,
we can find a solution if z is in the image of A, or alternatively, if z is perpendicular to the
kernel of A†. In our case, the linear operator is

A =
[(

0 ω0

−ω0 0

)
− I

(
iω0A

∂

∂A
− iω0Ā

∂

∂Ā

)]
.

Then, using that (â†
AâA)† = (â†

AâA) one finds

A† =
[(

0 −ω0

ω0 0

)
+ I

(
iω0A

∂

∂A
− iω0Ā

∂

∂Ā

)]
.

One notes that (
iω0A

∂

∂A
− iω0Ā

∂

∂Ā

)
AmĀn = iω0(m− n)AmĀn,

and [(
0 −ω0

ω0 0

)
+ I

(
iω0A

∂

∂A
− iω0Ā

∂

∂Ā

)](
k1

k2

)
AmĀn =

(
k1iω0(m− n) − k2ω0

k1ω0 + k2iω0(m− n)

)
.

One easily finds the elements of the kernel by inspection. If m−n = 1, then k2 = ik1 and k1
is free. If m− n = −1, then k2 = −ik1; no more solutions exist, and we considered the most
general nonlinear term formed by A and Ā. Finally,

Ker(A†) =
{(

1
i

)
A|A|m,

(
1

−i

)
Ā|A|m

}
.

In our initial step of the normal form computation, we find no elements in the kernel of A†.
One solves explicitly finding

Ȧ[0,1] = 0,
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and (
x

v

)[0,1]

=
− ϕ

ω0

0

 .
After straightforward calculations one finds the general normal form for an oscillatory insta-
bility, the Andronov-Hopf normal form

Ȧ = ϵA− cA|A|2 +O(A4),
˙̄A = ϵ̄Ā− c̄Ā|A|2 +O(A4).

In our worked example, ϵ = µ/2 + iω0 and c = i/4. Note that c is purely imaginary, thus
solutions explode. This is due to the saturation mechanism of the equation −µx2v being
small, and thus negligible in the normal form computation. In reality, this term saturates the
growing oscillations; if one wants to capture saturation, one should change −µx2v → −x2v,
then, c → 1 + i/4 and solutions are well-behaved.

Infinite dimensional systems

When describing the dynamics of a continuous field, we will face infinite dimensional sys-
tems. This is due to the field being specified at each point of space; as space is dense, a
dynamical system with a noncountable number of elements describes the field. Some entities
are intrinsically a field, for example, electromagnetic fields. However, one can often think
of infinite dimensional systems as idealizations of finite dimensional systems. This is the
approach in this dissertation, constrained by the fact that infinite dimensional systems are
not accessible in numerical studies (due to the finite information computers can process); we
will always approximate fields by a discrete set of points. In other words, no matter if we are
studying finite or infinite dimensional systems, numerical algorithms always correspond to
finite dimensional ones; thus, they must be studied as such. A mathematical procedure that
relates an infinite dimensional system with a finite counterpart is known as the continuum
limit.

The continuum limit

Consider a finite dimensional system of a few variables describing the behavior of an individual
object. For example, an oscillator. Imagine now that we have several of these objects, which
may be identical or not (but generally described by the same set of variables), and they can
interact. That is, we have a large collection of identical variables yi(t) that we enumerate
with i, an extended system. From here, we can construct several equations for a continuous
variable yi(t) → y(r, t) depending mainly on: i) how do we arrange the identical objects, for
example, we can arrange them in a line, in a square lattice, on a sphere, etc. ii) what is the
form of the interactions.

One of the simplest choices is to consider linear interactions, arranging the objects in a
regular grid. If the grid is one-dimensional, we refer to it as a chain. Then, the system would
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read

ẏi = fi + A



y1

y2

.

.

.

 ,

where A is called the adjacency matrix. The element Aij dictates how the object in position
i is affected by the object in position j. For a chain of nearest neighbor coupled objects,
the matrix A will be tri-diagonal. The diagonal is a term of self-interaction that normal-
izes the linear individual dynamics. The coupling is then characterized by the off-diagonal
terms. Depending on whether the off-diagonal terms are symmetric, we classify the system
as reciprocally or nonreciprocally coupled.

A continuum limit can be constructed by noting that the index of the individual objects
can serve as a position. Then, let us say that the objects are separated by distances a in
a regular grid (for simplicity). The grid will have a dimension depending on how many
indexes are needed to map each point in it to three-dimensional space. This mapping takes
the indexes i, j, ... and constructs a position for each point r = r(i, j, ...). In the simplest
case of a regular one-dimensional grid. x = ia. Thus, the continuous variable would be
yi(t) → y(x = ia, t). Finally, the coupling is approximated by operators on the continuous
variable y; one possibility is noticing that∑

Aikyk(t) =
∑

Aiky(ak, t) = Aiiy(ia, t) + Aii+1y(ia+ a, t) + Aii−1y(ia− a, t) + ...(0.20)

And perform the approximations

y(ia+ ka) ≡ y(x+ ka) = y(x) + ka
∂

∂x
y(x) + k2a2

2!
∂2

∂x2 y(x) + ...

A continuum equation is formally defined whenever in the limit of a/a0 → 0, equation
0.20 converges to something different than y(x)∑k Aik; that is, some constants multiplying
differential operators ∂k/∂xk survive the limiting process. a0 is a characteristic distance
to compare with the grid separation. This process is more straightforward whenever the
adjacency matrix is sparse; then, operators have approximations in terms of a few points in
the grid, such as

∂

∂x
z(x = ia) = zi+1 − zi−1

2a +O(a2),

∂2

∂x2 z(x = ia) = zi+1 − 2zi + zi−1

a2 +O(a2),

and other expressions which can be straightforwardly derived up to a desired accuracy in a.

Another convenient approximation whenever the adjacency matrix is not sparse corre-
sponds to

∑
Aikyk(t) =

∑
Aiky(ak, t) ≈ 1

a

∫
dx′A(x, x′)y(x′). (0.21)
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The adjacency matrix has been promoted to a continuous function of its indexes. When
written in this form, we will refer to the coupling as nonlocal; this is due to Eq. 0.21
involving the whole field y, the dynamic of a point of the field would depend on all the
points. Compared to terms with differential operators, which are local.

Reciprocal and nonreciprocal coupling

We mentioned that depending on the properties of A, we could call systems reciprocally or
nonreciprocally coupled. The definition based on A corresponds to the linear, one-dimensional
(a chain) case. It is easy to note that in the chain, a stimulus (change of the variables)
of the rightmost neighbors of an individual in position l has an effect that is equivalent
(nonequivalent) to the effect produced by the same stimuli coming from the leftmost neighbors
if the coupling is reciprocal (nonreciprocal).

This could be generalized to nonlinear interactions such that

ẏi = fi +
∑
j

fij(yi,yj),

where we still have restricted ourselves to only pair-wise interactions. However, this will be
enough for the purposes of the dissertation. Again, whenever fij(yi,yj) ̸= fji(yj,yi), the
interaction will be said to be nonreciprocal. This time, the response to each stimulus can be
nonlinear.

Considering the linear case (because of analytical solutions), one can readily see the enor-
mous difference it yields when the adjacency matrix is symmetric or not. Symmetry warrants
a complete set of eigenvectors spanning phase space and real eigenvalues, contrary to the case
of an arbitrary matrix. Then, one could separate the adjacency matrix into a symmetric and
anti-symmetric part. During this dissertation, we will refer to the symmetric part as the
reciprocal coupling part and the anti-symmetric part as the nonreciprocal coupling part.

Nonreciprocal coupling is not natural at the fundamental level, as the time-reversal sym-
metry of the microscopic world restricts it. One is easily convinced by imagining a spring
with markers at its two ends; a nonreciprocal spring (also called an odd spring [20, 21]) would
show a displacement d12(x12) in the right end when displaced from the left a distance x12,
which will be different to a displacement d21(x21) on the left end when displaced from the
right a distance x21; now, the time-reversed evolution of the process of applying x12 would
require that d21(x21 = d12) = x12, which is valid only if the spring answers reciprocally to
stimuli. Passive mechanical elements that respond nonreciprocally have been obtained in a
quasi-static regime [7], and nonreciprocal coupling in a dynamic regime has been constructed
with active elements (robots) [8], which monitor the behavior of their neighbors and react pri-
oritizing left (or right)-handed neighbors. Systems that actively consume energy and interact
with their environments can be described with nonreciprocal couplings [11, 20].

Partial differential equations

If the adjacency matrix is sparse, that is, each element interacts with few others, it is probably
that in the continuum limit, we will reach a partial differential equation for the field y(x, t),
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where x ∈ Rd, reading

Ppde(y,
∂

∂t
y,

∂

∂x1
y, ...,

∂

∂xd
y, ...,

∂2

∂x12 y, ...,
∂2

∂xd2 y, ...) = 0.

Such equations appear naturally in the standard descriptions of electromagnetic fields, the
velocity fields of fluids, or the displacement fields of solids, to mention a few. Solution
methods for these equations are scarce and situational. Linear equations can be solved by
standard methods of separation of variables or basis decomposition. Nonlinear equations
usually do not have solutions, and numerical methods are employed. In these numerical
methods, a finite dimensional system (or a discretized equation) can be related to the partial
differential equation, as mentioned earlier. Then, standard temporal solvers, such as the
Runge-Kutta of fourth order algorithm, can be employed.

Integro-differential equations

A dense adjacency matrix would be best described by a kernel (or influence function, or pound
function) over which we need to integrate to obtain the coupling. Previously, we illustrated
the case of an adjacency matrix with constant coefficients, yielding a kernel A(x, x′) indepen-
dent of time. More general equations would also allow kernels to depend on space and time
and include local operators (such as partial derivatives). Then, a general integro-differential
equation would read

Pide(y,
∂

∂t
y,

∂

∂x1
y, ...,

∂

∂xd
y, ...,

∂2

∂x12 y, ...,
∂2

∂xd2 y, ...,
∫

A(x,x′, t, t′)P (y(x′, t′)) dx′dt′, ...) = 0.

Where P (y(x′, t′)) can be any function non necessarily linear. Such equations appear nat-
urally in complex problems such as plasma physics and in general particle systems that can
be described by Boltzmann equations for the phase space density; other physical examples
include the Raman scattering effect in optical resonators [22].

Variational and non variational systems

The type of equations described previously have a structure that is not easy to address
generally. Indeed, spatially extended systems (infinite dimensional systems) have much more
richness of dynamical behaviors compared to the finite dimensional ones. Finite dimensional
systems exhibit limit solutions, quasi-periodic orbits, and chaos. On the other hand, extended
systems have qualitatively different complex states apart from chaos, such as turbulence,
spatiotemporal intermittency, and spatiotemporal chaos (or extensive chaos), to mention a
few.

Nevertheless, as in finite dimensional systems, there exists a variety of extended systems
that asymptotically evolve to their fixed solutions (which can now be inhomogeneous in
space), so-called variational systems. Consider an infinite dimensional dynamical system (for
simplicity, consider a one-component field)

∂

∂t
y = f(y, ∂

∂x
y, ...).

If f can be obtained from a free energy functional (with suitable boundary conditions), the
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system is said to be variational; then

f = −δG

δy
= −

∑
k

(−1)k d
k

dxk

 ∂g

∂(∂ky
∂xk )

 , G =
∫
g(y, ∂

∂x
y, ...)dx.

And the Free energy G is always reduced by temporal evolution

dG

dt
=
∫ δG

δy

∂y

∂t
dx = −

∫ (
∂y

∂t

)2

dx.

Such a system will evolve to the minimum of the G functional, obtaining a stationary solution
(independent of t). Differently, nonvariational systems do not have such a feature, and their
dynamics could be permanent in time. Note that computing variational systems’ equilibria
is analogous to solving mechanical problems with an action function S = G using the space
variable instead of time. This applies to both partial differential and integro-differential
equations; however, the formula of the functional derivative (δG/δy) in the latter case is
not as simple as the one shown here (it can be computed with the standard methods of the
calculus of variations).

Spatial instability

As in finite dimensional systems, branches of equilibrium solutions exist as a function of
the control parameters. These branches suffer bifurcations in similar forms; now, spatially
inhomogeneous profiles can unstabilize, too, giving rise to what is called spatial instabilities.
Inhomogeneous solutions in equations governed by homogeneous drivings are intriguing, and
the process of their formation is often referred to as spontaneous symmetry breaking [2].

A pioneer in studying patterns in dynamical systems is Alan Turing. Intrigued by the
formation of forms, the morphogenesis, he established how two diffusing chemical reactants
could generate periodic structures with an intrinsic wavelength depending on the reaction
parameters. Spatial instabilities giving rise to intrinsic periodic patterns are often called Tur-
ing instabilities, and their theory is well developed in systems with homogeneous parameters
(parameters that do not depend on space) [2, 23]. Consider a general system with general
linear and nonlinear parts, replicate them N times in a regular grid, and couple them to
their nearest neighbors linearly and reciprocally. In the continuum limit, that process leads
to diffusive transport; that is, in the expansion of the adjacency matrix summation, only the
second derivative term survives the limiting process. Such a general system would read (here
we explicitly write a two-species system to maintain affordable calculations)

∂

∂t

(
u

v

)
=
(
ϵ 1
ν −1

)(
u

v

)
+
(
fN.L.u(u, v)
fN.L.v(u, v)

)
+
(
Du∇2u

Dv∇2v

)
,

where we are employing time and variable units such that we can choose two coefficients of
the linear part as one and minus one (we are assuming v linearly dissipates, without loss
of generality). Now, this system has a right-hand side independent of the space variable r
explicitly. Ignoring the nonlinear terms, using the Fourier basis for the space dependence
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representation seems useful. Indeed, one proposes that linearly

u(r, t) =
∫

û(k, t)eik·rdk,

where k is known as the wavevector. Then, it follows from the equations of motion that
∫ ∂

∂t
ûeik·rdk =

∫ [(
ϵ 1
ν −1

)
− k2

(
Du

Dv

)]
ûeik·rdk.

We have a linear equation for each Fourier mode; this is the usefulness of the Fourier base in
this type of problem. Whenever the linear part has inhomogeneous coefficients (they depend
explicitly on the space coordinate), another base of space could be useful. Now, our linear
problem has eigenvalues satisfying the equation

(ϵ−Duk2 − λk)(−1 −Dvk2 − λk) = ν.

A Turing instability may occur whenever the real part of an eigenvalue (or pair of complex
eigenvalues) with a nonvanishing wavevector crosses the imaginary axis. If this happens, the
amplitude of the critical wavevector (kc) and its neighbors start to grow exponentially, and
the solution behaves as

u(r, t) =
∫

û(k, t)eik·rdk → û(kc, t0)eikc·r+λkc t,

which is a spatially periodic solution (period, or wavelength, equal to 2π/|kc|) with an am-
plitude varying exponentially in time. To obtain the critical wavevector and the parameter
conditions for a Turing instability, first, we look for local maxima of the Re (λk) ≡ λ(k) sur-
face; then, we evaluate at such local maxima and require that the real part of the eigenvalue
vanishes, reading

∇kλ|kc = 0, λ(kc) = 0.

We can apply these conditions to our example, giving the equation for the critical wavevector

kc(k2
c − ϵDv −Du

2DvDu

) = 0,

from where we can solve for kc(Du, Dv, ϵ). The condition λ(kc) = 0 reads finally

k4
c(Du, Dv, ϵ) = −ν − ϵ,

defining the parameter values (Du, Dv, ϵ, ν) for which the instability occurs.

Normal forms of homogeneous solutions corrected by spatial coupling

From our previous discussion, one could ask oneself if there is a universal equation describing
how the amplitude of the spatially periodic solution evolves; in principle, if one can restrict
the spatial dynamics to only the critical mode, then we recover a finite-dimensional system,
but what happens if a continuum of modes surges? In addition, one could ask which is
the simplest infinite dimensional equation containing a Turing instability. To answer these
questions, we need to modify the computation of normal forms to include spatially coupling
terms.
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First, note that k = 0 corresponds to homogeneous perturbations; that is, for k = 0,
we recover a finite-dimensional system, and the application of the normal form calculation
is straightforward. Then, spatial perturbations could be included by perturbatively moving
away from this limit. Formally, consider that

u =
∫

û(k, t)eik·rdk.

Then, the spatial derivatives become

∂n

∂xnp
u =

∫
(ikp)nû(k, t)eik·rdk.

The spatial derivative of each Fourier mode drops a (ik)n factor. Varying the control param-
eters in an extended system, when linearized and written in an adequate spatial basis, allows
for a great number of eigenvalues crossing the imaginary axis past a bifurcation; these are
the spatial modes. If only a numerable number of eigenvalues is relevant, dynamics could
be discretized to such few modes in a sort of tight binding-like procedure. Differently, if an
infinite number of eigenvalues crosses the imaginary axis when moving the parameters, the
system could be approximated by a partial differential equation; this is the case adopted from
now as we are considering the Fourier basis in an infinite domain (in principle, after, we will
impose boundary conditions).

We have our linearized problem giving the eigenvalues λ = λ(k, c), and there exist values
for which ∇λ|kc = 0 (is a maximum) and λ(kc, cc) = 0. If c = cc + δc we will have that
λ(k) > 0 for a narrow band of k modes, informally, kc− δk < k < kc+ δk will be the relevant
modes at infinite time observations. The closer to the instability point, the narrower the
band of unstable modes will be. This motivates the inclusion of δk as a small parameter in
our expansions. Of course, this only makes sense when we explicitly write equations in the
Fourier representation, but we will omit them, as they are not enlightening to write down;
instead, it is natural to work in real space.

Let us derive the most general equation for a system exhibiting a Turing instability. Note
that the intrinsic wavelength in our worked example corresponds to

k2
c = ϵDv −Du

2DvDu

.

Note that for any values of Du, Dv, and ϵ, one can fine-tune ν to have a vanishing real part
of the corresponding eigenvalue λ(kc). In such a case, the Turing instability occurs at finite
wavelength, and an equation for the critical Fourier mode’s amplitude can be obtained; the
resulting equations will be of the Hopf normal form type corrected with the spatial coupling
leading to the so-called Ginzburg-Landau or Newell-Whitehead-Segel equation depending if
we are under isotropic or anisotropic coupling [2, 23]. These equations will be addressed in
the next section of this framework.

A different situation arises when the condition ϵDv−Du = 0 meets. The instability in this
case occurs at infinite wavelength, that is, homogeneous solutions are perturbed by slowly
varying functions of space (infinite wavelength) if c = cc+ δc. Explicitly computing cb yields
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the equations ϵcDv = Du and νc = −ϵc for an infinite wavelength Turing instability (in our
example with diffusive transport), note that we need to fine-tune at least two parameters
to meet the two equations. Let ϵ = ϵc + ϵ1 and ν = −ϵc + ν1 with |ϵ1| ≪ ϵc and |ν1| ≪ ϵc
(ϵc = Du/Dv is an arbitrary positive number depending on the spatial coupling strength).
Then, the system would read

∂

∂t

(
u

v

)
=
(
ϵc 1

−ϵc −1

)(
u

v

)
+
(
fN.L.u(u, v)
fN.L.v(u, v)

)
+
(
Du∇2u

Dv∇2v

)
+
(
ϵ1 0
ν1 0

)(
u

v

)
.

Fourier transforming the previous equation would yield

∂

∂t

(
û

v̂

)
=
(
ϵc 1

−ϵc −1

)(
û

v̂

)
+ 1

2π

(∫
fN.L.u(u, v)e−ik·rdr∫
fN.L.v(u, v)e−ik·rdr

)
+
(

−k2û

−k2v̂

)
+
(
ϵ1 0
ν1 0

)(
û

v̂

)
.(0.22)

Equivalently, one could write (u, v) as their Fourier representation and replace them in the
equations of motion; one can note that nonlinearities in real space translate into convolutions
in Fourier space, they remain nonlinear in the transformed fields û and v̂ but nonlocal.
Explicitly, for example in one dimension,

u2 =
∫
û(k)eikxdk

∫
û(q)eiqxdq =

∫
eikx

[∫
û(q)û(k − q)dq

]
dk.

Now that we have our equivalent problem in Fourier space, we can start computing the
normal form. In addition to the small variables (A1, A2, ...) (the magnitude of the variables
describing the center manifold around the bifurcation point) and δc (the deviation of the
critical parameters), we include the characteristic spatial variations |k| ≡ k as small. The
ansatz needs to be modified by including an additional index describing the order of the
solutions; that is, we use the notation A[j,l,m] for terms which are of order j in (A1, A2, ...),
order l in δc, and order m in k (the Fourier wavenumber). For example, a term of the form
ϵ1A

2∇2A would correspond to a O[2,1,2] term. Indeed, its Fourier representation reads (in one
dimension for simplicity)

ϵ1A
2∇2A = ϵ1

∫
û(k)eikxdk

∫
û(q)eiqxdq(−p2)

∫
û(p)eipxdp,

ϵ1A
2∇2A = ϵ1

∫
eikx

∫
û(p)û(q)û(k − q − p)(−q2)dqdpdk.

One can note that writing it explicitly on the Fourier basis is cumbersome. Considering this,
we start solving the problem 0.22. The linear order is easy to solve, proposing the expansions

A = Avc + A[1,1,0] + A[1,0,2] + A[2,0,0] + A[2,1,0] + A[3,0,0] + ...

where vc is obtained from the linear problem, and

Ȧ = Ȧ[1,0,2] + Ȧ[1,1,0] + Ȧ[2,0,0] + Ȧ[2,1,0] + Ȧ[3,0,0] + ...

Remember that the last index in A[j,l,m] is formally defined only in the Fourier representation.
Then, we will need the Fourier transforms of our new variables

Â = Âvc + Â[1,1,0] + Â[1,0,2] + Â[2,0,0] + Â[2,1,0] + Â[3,0,0] + ...
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Terms Â[j,l,0] do not depend on the wavenumber and thus represent the homogeneous con-
tributions. At the linear order, O[1,0,0], one has

0 =
(
ϵc 1

−ϵc −1

)
Avc.

Which is solved for vc = (1 − ϵc)T . At O[1,1,0] the equation reads

Ȧ[1,1,0]vc =
(
ϵc 1

−ϵc −1

)
A[1,1,0] +

(
ϵ1 0
ν1 0

)
vcA.

We apply the condition for the previous linear equation to have a solution. It is clear that
the image of the linear operator are the vectors vI = (1 − 1)T . One imposes that

Ȧ[1,1,0]vc −
(
ϵ1 0
ν1 0

)
vcA ∝

(
1

−1

)
.

Then, Ȧ[1,1,0] −ϵ1A ∝ 1 and −ϵcȦ[1,1,0] −ν1A ∝ −1. Equivalently, Ȧ[1,1,0] = (ϵ1 +ν1)A/(1−ϵc)
and

A[1,1,0] =
(

0
ϵcϵ1+ν1

1−ϵc

)
.

From now, we will write only the terms relevant after the scaling. At order O[1,0,2] one has

˙̂
A[1,0,2]vc =

(
ϵc 1

−ϵc −1

)
Â[1,0,2] +

(
−k2Du 0

0 −k2Dv

)
vcA.

With solutions
˙̂
A = Du − ϵcDv

1 − ϵc
(−k2)Â = 0,

which vanishes due to the condition kc = 0, and

Â[1,0,2] =
(

0
k2DuÂ

)
, A[1,0,2] =

(
0

−Du∇2A

)
.

To continue computing explicitly, we choose the nonlinear terms fN.L.u(u, v) = αu2 − u3 and
fN.L.v(u, v) = −uv. At O[2,0,0] one finds

Ȧ[2,0,0]vc =
(
ϵc 1

−ϵc −1

)
A[2,0,0] +

(
αA2

ϵcA
2

)
.

With solutions
Ȧ[2,0,0] = α + ϵc

1 − ϵc
A2,

and
A[2,0,0] =

(
0

ϵc(1+α)
1−ϵc

)
A2.
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Similarly at O[3,0,0]

Ȧ[3,0,0]vc =
(
ϵc 1

−ϵc −1

)
A[3,0,0] +

(
α

ϵcA
2

)
,

one finds the solution
Ȧ[3,0,0] = A3

[
−1

1 − ϵc
− ϵc(1 + α)

(1 − ϵc)2

]
.

After straightforward calculations one finds

Ȧ[1,1,2] = Dv(ϵcϵ1 + ν1)
(1 − ϵc)2 ∇2A,

Ȧ[2,0,2] = Du

1 − ϵc
A∇2A+ Dvϵc(1 + α)

(1 − ϵc)2 ∇2(A2),

Ȧ[1,0,4] = −DvDu

1 − ϵc
∇4A.

Note that we have the equation

Ȧ = ϵ1 + ν1

1 − ϵc
A+ α + ϵc

1 − ϵc
A2 −

[
1

1 − ϵc
+ ϵc(1 + α)

(1 − ϵc)2

]
A3 + Dv(ϵcϵ1 + ν1)

(1 − ϵc)2 ∇2A

+ Du

1 − ϵc
A∇2A+ Dvϵc(1 + α)

(1 − ϵc)2 ∇2(A2) − DuDv

1 − ϵc
∇4A+ h.o.t.

It is possible to find an scaling using the dummy parameter δ ≪ 1. Let ϵ1 = −ν1+δ2ϵ2(1−ϵc),
ν1 = δν1(1 − ϵc)/Dv, α = −ϵc + δα1(1 − ϵc), A ∼ δ, ∇ ∼ k ∼ δ, ∂t ∼ δ2. With this, the
equation reads

Ȧ = ϵ2A+ α1A
2 − 1 + ϵc

1 − ϵc
A3 + ν1∇2A+ Du

1 − ϵc
A∇2A+ Dvϵc

1 − ϵc
∇2(A2) − DuDv

1 − ϵ
∇4A+O(δ).

The previous equation is known as the Lifshitz normal form [24], and it is the simplest pattern
forming equation for an scalar field. This model is of codimension 3, as three parameters are
fine-tuned to meet the critical conditions.

Defects, patterns, and interfaces
Extended nonlinear systems display a variety of behaviors. They are essential to understand-
ing complex phenomena, such as the turbulent motion of fluid flows, which is captured by the
Navier-Stokes equations, at least numerically. Thanks to the mapping of the dynamic phase
diagrams classifying the behaviors of systems according to the parameter regions in which
they are observed, one can make extended systems to operate in the regimes desired by the
performer. The normal forms of the bifurcations provide great insight into the dynamics in
the neighborhood of the critical points of parameter space, and the different regions of the
phase diagram can be approximated analytically, thanks to them. Moreover, some normal
forms are simple enough to allow the analytical computation of the solution of the nonlin-
ear extended system, at least close to critical values from which one could use perturbation
theory to explore the vicinity of parameters. These tools allow the description of several non-
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linear phenomena under the same veil. In the following, we will describe the main nonlinear
solutions of extended systems that will be researched throughout this dissertation: fronts
and patterns.

Fronts

Fronts are solutions of an extended system (an infinite dimensional system) or arrays of
coupled finite dimensional systems, that spatially connect two equilibria. For this reason,
fronts are also called, depending on the context, phase walls, domain walls, propagation
wave, or simply front into the stable (or unstable) state. The last name originates because
fronts are solutions for which a position (or curve in higher dimensions) in space can be
defined; therefore, they have a velocity. Fronts move, and as a consequence, they propagate
an equilibrium state over the system. The equilibria connected through the front may not
be spatially homogeneous; fronts between pattern solutions and even chaotic states can be
defined [25]. In this dissertation, we will describe the effect nonreciprocal coupling has on
fronts during chapters 1 and 2, but first, we need to understand the basic concepts of fronts.
Depending on whether fronts propagate a stable state over a less stable state or over an
unstable state, we classify them as fronts into the stable state or fronts into the unstable state,
respectively. We will be able to analyze front dynamics employing the imperfect pitchfork
normal form with diffusive transport (minimal reciprocal coupling with neighbors), reading

∂

∂t
A = −ηA+ κA2 − A3 +D∇2A. (0.23)

This equation is generally obtained for coupled systems that suffer an instability of the ho-
mogeneous state, it is also known as the Landau-de Gennes equation. In our example leading
to the Lifshitz normal form of the preceding section, we can obtain Eq. 0.23 if we do not
ask the Turing instability at infinite wavenumber condition (which explicitly writes in the
example ν = νc = −Du/Dv), and instead let ν be an arbitrary number.

The difference between the two main types of front propagation relies on the properties of
their velocity. Fronts into the unstable state are characterized by propagating over a region
where the system is homogeneously in an unstable equilibrium; the perturbation of this
unstable state due to the front profile is what drives the motion. Fronts into the stable state
propagate over a region of homogeneous stable state variables; necessarily, the equilibrium
being imposed after the front passes must be more stable than the previous state; this is what
intuition dictates, but one must be able to define what is more stable, which is a difficult
question for non-variational systems. Note that equation 0.23 is a variational system, for
which

G =
∫ (

η

2A
2 − κ

3A
3 + 1

4A
4 + D

2 (∇A)2
)
dr.

Interestingly, if one includes a simple nonreciprocal coupling in the chain (for example, includ-
ing a tridiagonal anti-symmetric matrix part in the adjacency matrix of the corresponding
discrete system), G can cease to be a Lyapunov functional. We analyze this and its ef-
fects on the velocity propagation of fronts in the initial chapters and the perspectives of this
dissertation.
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Fronts into the unstable state

Let us start with equation 0.23 with parameters η < 0. This ensures that the equilibrium
state A0 = 0 is unstable against perturbations of any wavevector. Fronts into the unstable
state are classified into two major types: pulled and pushed fronts [25]. Pulled fronts are
characterized by a velocity determined by the linear dynamics around the unstable state;
thus, they are pulled by the linear dynamics (from the state to be propagated). Pushed
fronts have a velocity that is determined by the whole nonlinear system; thus, the parts
where the front has already passed have an effect on the velocity; then, one says that the
motion is pushed by the nonlinear dynamics (from the state propagated over the system).
The one-dimensional problem ∂A/∂t = f(A) + ∂2A/∂x2 (with f(0) = 0 and f(1) = 0 with
f ′(0) > 0 and f ′(1) < 0) has been rigorously studied by Aronson and Weinberger [26], where
they demonstrated that a rigid translating front profile has a speed v constrained by the
limits

2
√
f ′(0) ≤ v < 2

√
sup{f(A)/A},

where f ′(x) denotes the derivative of f(x). The result can be obtained after lengthy calcu-
lations starting with the ansatz A = u(x − vt) and the change of variables p(u) = −∂u/∂z
(z = x−vt). The lower bound for the velocity was found independently by Fisher [27] and Kol-
mogorov et al.[28] in 1937, studying the same model in different contexts (f(A) = A(1−A)),
in their case, the lower limit was exactly the velocity of the fronts propagating.

The lower limit is known as the linear spreading velocity and corresponds to the velocity of
pulled fronts. The velocity of pushed fronts lies anywhere between the limits. It is interesting
to note that a great variety of functions f(A) with the boundary conditions mentioned have
the property sup{f(A)/A} = f ′(0), in that case, it is direct to establish the pulled nature of
the front. Benguria and Depassier proposed a variational scheme to provide better bounds for
the front speed [29–31] in the same problem studied by Aronson and Weinberger; essentially,
one provides test functions that are operated and the result is after minimized with respect
to some free parameter. The technique can help determine the exact or approximated speed
of pushed fronts.

The equation studied by Aronson and Weinberger seems limiting at first glance, as more
complex systems could also exhibit fronts, and the theory should be further developed in
those cases. One answer lies in the normal form calculations, as any instability of the ho-
mogeneous state can be described by such equations. Similarly, patterns and oscillations
have envelopes described by Andronov-Hopf normal forms corrected with diffusive coupling;
thus, fronts between patterns can be similarly described with that equation. However, more
complex situations might require the full set of equations far from the validity of the normal
form computation. Indeed, one may be interested in the corrections to the front speed arising
from non-diffusive transport mechanisms. A similar ansatz of a rigid moving front does not
warrant the mathematical simplicity that the equation studied by Aronson and Weinberger
offers; thus, the front speed computation for pushed fronts remains an open question. An
extensive review of the pulled front speed properties and the experimental efforts to observe
them is found in [25].

In chapters 1 and 2, we will encounter fronts into the unstable state of the pulled type.
We present here the basics of the method for the computation of pulled front speed in PDE

30



models following [25]. First, consider a system described by

∂

∂t
A = f(A, ∂

∂x
A,

∂2

∂x2 A, ...).

Let us assume that A = 0 is an unstable equilibrium and corresponds to the initial state.
One linearizes around the unstable equilibrium A = 0+u, and the system will read generally

∂

∂t
u = f0u +

∑
k

f1k
∂

∂xk
u + f2k

∂2

∂x2
k

u + ...

where f0 = ∂f/∂A|A=0, f1k = ∂f/∂(∂A/∂xk)|A=0, etc. are matrix coefficients computed after
making a simple Taylor expansion. Then, we analyze the problem after a Fourier transform,
define

u =
∫

û(k, t)eik·rdk.

Then, the spatial part of the linear problem is transformed easily in an algebraic equation
according to ∂/∂xl = ikl, explicitly

∂

∂t
û = f0û +

∑
l

f1liklû + f2li
2k2
l û + ... ≡ J(k)û

The solution to such an equation was discussed earlier in this Framework chapter and is
obtained by computing the eigenvalues and eigenvectors of the matrix J(k). Let Ψl(k) be
the eigenvectors associated with the eigenvalues λl(k), and û(k, t = 0) = ∑

l û0lΨl(k) the
initial condition. Then, û(k, t) = ∑

l û0l(k)Ψl(k)eλl(k)t. Finally, our linearized solution in
real space is

u =
∫ ∑

l

û0lΨl(k)eλl(k)teik·rdk.

Now, to have a front, we need to have a rigid-like movement of a profile connecting two
different states. To obtain the equations for the velocity, let us transform to a coordinate
system fixed with the front movement. Define ξ = r − vt. The phase factors in the last
integral will read λl(k)t + ik · ξ + ik · vt. Interested in the long time limits, one employs
a stationary phase approximation to obtain the leading contribution to the integral, that is
∇k (λl(k) + ik · v) = 0, or

v = i∇kλl(k).

If the solution is stationary in the co-moving reference frame, then exponential growth is
forbidden. This gives the condition that

Re (λl(k) + ik · v) = 0.

These two equations determine both the complex wavenumber characterizing the front (its
steepness and frequency of oscillations) and the propagation velocity. One can note that for
more than one dimension, the notion of a front is diffused, as fronts are not characterized
by a single point anymore, and thus the definition of velocity becomes an issue. The pre-
vious formulas need to be used with care only in quasi-one-dimensional dynamics of front
propagation (fronts described by a single degree of freedom in space). For details on fronts
in more than one dimension, see [23]. Another important aspect is which of the branches
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of λl to use (for more than one field, we have more branches of eigenvalues); the answer
lies in the stationary phase approximation, as we are looking at the infinite time limit, the
biggest eigenvalue dominates. Thus, the highest linear spreading speed vl = v(λl) is the one
selected [25].

Let us determine the linear spreading velocity of fronts in our general equation. Assume,
for simplicity, that we are working in two spatial dimensions. The linearized dynamics around
the unstable state A = 0 read

∂

∂t
Â = (−η −Dk2)Â.

Then, λ(k) = (−η −Dk2), and the formulas for the velocity give

v = −2Di
(
kx
ky

)
, −η −Dk2 − Imkxvx − Imkyvy = 0.

Clearly, k ∈ C for the velocity to be real. Moreover, its real part is zero. Then, k =
(ikx, iky)T . Write kx = k cos θ and ky = k sin θ. Then, we have the equation

−η +Dk2 − (k2)2D = 0.

Giving k =
√

−η/D. Finally, the velocity of fronts propagating in the direction r̂ =
(cos θ, sin θ)T corresponds to

v = 2
√

−ηDr̂.

The speed is v = 2
√

−ηD = 2
√
f ′(A = 0)D, which is the lower bound to the propagation

speed of fronts in the problem of Aronson and Weinberger (note that they use dimensionless
space units such that D = 1).

As a final remark, we note that the procedure is developed for PDEs, but is equally valid
for coupled finite dimensional systems. One must take care that the wavenumber in Fourier
space does not take values higher than the Nyquist frequency corresponding to kNyquist = π/a,
with a the grid separation between the individual elements of the coupled system [25]. This
technique is employed to compute the velocity of fronts into the unstable state affected by
nonreciprocal coupling in the chain they exist during chapters 1 and 2.

Fronts into the stable state

These fronts result when two regions with different homogeneous stable states are connected
through space in the dynamical system. The reaction and the transport will balance such that
the front will move, propagating, typically, the most energetically favorable state. For this,
we analyze our prototypical imperfect pitchfork normal form model before the saddle-node
bifurcation that annihilates two equilibria, that is, we work for η < κ2/4 in Eq 0.23. In this
way, we have two homogeneous solutions, each one with its corresponding energy level given
by the Lyapunov functional G[A], giving the energies G1 = G[A1] and G2 = G[A2] (with A1
and A2 the respective homogeneous stable states). The equation used is intimately related
to the ϕ4 model in field theories [32]; this is due to the Lyapunov functional being analogous
to the potential energy of a Lagrangian when promoting the first time derivative to a second
one in the equations of motion (instead of overdamped dynamics, one considers conservative
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dynamics). Thus, determining the ground and first excited states is a well-known problem
and corresponds to the case of stationary fronts.

The problem of translating fronts between two stable states was first rigorously studied by
Fife and McLeod [33] for the problem ∂A/∂t = f(A)+∂2A/∂x2 (with f(0) = 0 and f(1) = 0
with f ′(0) < 0 and f ′(1) < 0). Note that both states are stable, different from the problem
Aronson and Weinberger studied. There, it was established that the direction of movement
could be analyzed in terms of f(A). First, consider a uniformly translating solution with
velocity v writing A = u(x− vt) ≡ u(z). The system transforms to −vu′(z) = f(u) + u′′(z),
and one can multiply both sides by u′(z) and integrate over all the domain. Considering that
the front solution has a vanishing derivative at its ends (by definition, in the ends resides the
homogeneous state), the velocity follows the expression

−v =
∫
f(u)u′(z)dz∫
(u′(z))2dz

.

This has a slight difference with the procedure of Fife and McLeod, who directly integrate
−vu′(z) = f(u) + u′′(z); their procedure is valid for monotonous fronts. Instead, we followed
Pismen and Pomeau [23]. One notes that the sign of v is determined solely by the integral∫
f(u(z))u′(z)dz. Moreover, if f(u) = −dV/du with V a potential (or Lyapunov function for

the local part), the expression is reduced further to

v ∝
∫
dV

dz
dz = V (z → ∞) − V (z → −∞).

Note that V acts as a free energy density. One says, then, that the front motion has a velocity
proportional to the free energy density difference of the states it connects (say, the stable
states 1 and 2 obtained by our imperfect pitchfork normal form). If the free energy density
of both states is the same, we get v = 0. This situation is called the Maxwell construction,
and we will refer as the Maxwell point to the point in parameter space for which it occurs.

An important problem is noted: the velocity is not explicitly obtained with this method.
It corresponds to an implicit solution, as it depends at the same time on the front profile
u(z) via the integral

∫
(u′(z))2dz. One seeks a method to decouple the dynamics of the

front evolution and the velocity. A perturbative scheme has been proposed to predict the
relaxation dynamics of fronts connecting symmetric stable states in any dimension in [34, 35]
and references therein. An extension of the method to predict the motion of the fronts due
to an energy difference of the states is found in [23]; the technique is based on a perturbative
approach close to the Maxwell point of some control parameter. In our model, the two
equilibria become symmetric for κ = 0; in this case, the front is static, and we solve 0 =
−ηA − A3 + D∇2A. Again, we restrict the analysis to planar fronts, and it is easy to find
that a solution corresponds to

Akink =
√

−η tanh
(

ĉ · (r − c0)
√

−η/D/2
)
.

The kink solution corresponds to a planar front in the direction ĉ and is a solution of the
system for κ = 0. Note that the solution reflects the translation invariance of the system
through the free parameter c0, indicating the position of the front that can take any real
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value and depends on the initial conditions. This solution offers a natural generalization
for the case in which ∂A/∂t ̸= 0 (for parameters κ ̸= 0), one promotes the position of the
front c0 to be a function of time c0 → c0(t). Additionally, a correction to Akink needs to be
included; we intend to solve the problem

A = Akink(r − c0(t)) + A[1] + ...

ċ0 · ĉ = v[1] + v[2] + ...

∂

∂t
A = −ηA+ κA2 − A3 +D∇2A.

We assume we can write a series expansion for the profile and velocity, with the smallness
defined by the closeness to the Maxwell point. Then, |κ| ≪ 1 will be used as the parameter
to define the hierarchy of equations. Replacing our ansatz in the equations of motion yields

−(v[1] + v[2] + ...)(∂Akink + A[1] + ...

∂z
) = −η(Akink + A[1] + ...) + κ(Akink + A[1] + ...)2 −

(Akink + A[1] + ...)3 +D∇2(Akink + A[1] + ...).

The terms κ[0] satisfy the equation automatically. Terms κ[1] yield

−v[1]∂Akink

∂z
= (−η − 3A2

kink +D∇2)A[1] + κA2
kink.

Where we have defined z = ĉ · (r − c0). The last equation is linear; thus, to have a solution,
we require that

−v[1]∂Akink

∂z
− κA2

kink ∈ Image of L = (−η − 3A2
kink +D∇2).

The image of the previous linear operator is not easy to obtain generally. Let us consider the
inner product ⟨f(x)|g(x)⟩ =

∫
f ∗gdx; then, our previous statement is equivalent to

−v[1]∂Akink

∂z
− κA2

kink ⊥ Ker(L†),

known as the Fredholm alternative. The kernel is easily found to be ∂Akink/∂z, then one
finds

−v[1]
∫ (

∂Akink

∂z

)2

dz = κ
∫ ∂Akink

∂z
A2

kinkdz.

Finally, one can compute the corrections to the speed up to the desired order. We note here
that in our example

v[1] = −κ
∫
(∂Akink/∂z)A2

kinkdz∫
(∂Akink/∂z)2dz

= −κ
√

−η3
/(

√
−η2

√
−η/D) = −κ

√
D.

Notably, the free energy or the Lyapunov functional initially appeared fundamental to under-
standing the front motion. However, the procedure only requires an analytical solution for
some particular parameters. Indeed, this method has been applied both to variational and
nonvariational systems with perturbation techniques around an analytically obtained state
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[36–38]. Fronts into the stable state and their properties are explored when the system is
subjected to nonreciprocal coupling at the end of chapters 1 and 2, and their interaction with
a heterogeneous environment (space-varying parameters) is analyzed in chapter five.

Discreteness effects and the Peierls Navarro potential

Until now, we have discussed the dynamics of fronts using PDEs, that is, infinite dimensional
systems. One may ask if there are significant differences if one tries to make a similar analysis
in the discrete counterpart of the equations. Let us continue to discuss our imperfect Pitchfork
normal form, and write the corresponding discrete equation as

Ȧi = −ηAi + κA2
i − A3

i + D

a2 (Ai+1 − 2Ai + Ai−1).

If Ai+1 = A(x+a) = A(x)+aA′(x)+a2A′′(x)/2+ ..., then the equation may be approximated
by

Ȧ = −ηA+ κA2 − A3 + D

a2 (a2∂
2A

∂x2 + 2a4

4!
∂4A

∂x4 + ...).

a is the grid separation, and we have assumed a chain for simplicity. Written in this form,
we could use the parameter a as a control parameter; for a ∼ 1, we see that all terms in
the series are relevant and a continuum limit description is not appropriate. If a ≪ 1, then
the discrete equation has a simple PDE as a limit, corresponding to the diffusion equation
we have used. Note that this limit is equivalent to having high coupling constants in the
discrete system (D/a2 → ∞). Normalizing the distance to a = 1, we know that the PDE
will approximate the discrete equation for D → ∞.

Several systems are fundamentally discrete. However, a continuum limit approximation
is often performed to obtain better analytical results. In doing so, some aspects of the
dynamics can be lost. Particularly speaking of fronts, the major effect of the discrete grid
is to induce hopping dynamics in the front position. That is, fronts move in an oscillatory
fashion. Interestingly, the force inducing the oscillation is capable of stopping the front motion
for a range of parameters around the Maxwell point, the pinning region [36], a phenomenon
occurring in fronts into the stable state. The force inducing the oscillations supposes a
potential wall the front position needs to overcome to propagate; this ’energy’ is known as
the Peirels Navarro potential studied in the dislocations of crystals (see [12] and references
therein). Fronts into the unstable state show hopping dynamics also [39, 40], but pinning
has not been reported. Explicitly, the velocity of fronts can be approximated by

v ≈ v0 + Γ cos 2πx+ ...

v0 is the average front speed, and Γ measures the intensity of the periodic force in the
first harmonic approximation. This formula has been predicted approximating the grid with
space-varying parameters and was fitted to numerical simulations of front motion into the
unstable state with good results by Alfaro-Bittner et al. [39, 40]. In addition to the velocity,
the front profile is also modified by the effect of the grid compared to fronts in the continuum
limit. The problem of computing the analytical front shape has been addressed by Flach and
Kladko [41] for stationary fronts, and the scaling behavior of the Peierls Navarro potential
with parameters revisited in this perspective by Kladko et al. [12, 42]. At the end of chapters
1 and 2, we analyze the velocity of fronts into the stable state in a system under nonreciprocal
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coupling; expressions for v0, Γ, and the rest of the series in terms of the original parameters
are analyzed under a novel perspective.

Patterns

As we introduced earlier, two species interacting and being subjected to diffusive transport
have a space-periodic solution with an intrinsic wavelength; the amplitude of this oscillation
grows in time, according to the linear theory. This heterogeneous, space-periodic solution
to the linearized equations can have an equilibrium amplitude thanks to nonlinear terms
saturating the growth [2]. We showed how a general system could be reduced to the Lif-
shitz normal form for parameters close to an infinite wavelength Turing instability and an
instability of the homogeneous state simultaneously. Then, without loss of generality, we can
analyze patterns employing the equation

∂A

∂t
= −ηA+ κA2 − A3 − ν∇2A− ∇4A+ bA∇2A+ c(∇A)2. (0.24)

For κ = b = c = 0, the equation is known as the Swift-Hohenberg equation. Turing also
discovered the equation independently, so it is fair to call it Turing-Swift-Hohenberg equa-
tion in general. Partially derived in describing the convection rolls in the Raileigh-Benard
experiment by Swift and Hohenberg [43], it has become one of the most important equations
in the study of nonlinear physics.

The stripe pattern

The Raileigh-Benard experiment consists of a heated plate covered with fluid and a second
plate; for enough temperature difference between the plate and the upper boundary condition,
the fluid starts to move, and one observes rolls in the surface; this is a consequence of the
velocity field acquired past the instability. The word roll, or stripe, has an intuitive meaning
only when speaking of scalar fields in two dimensions (such as the height of the fluid in
the Raileigh-Benard experiment). We will generally call a pattern a stripe pattern if the
periodic modulation occurs in a single, well-defined direction. This can be easily checked
by analyzing the spatial Fourier transform of the system; if a single pair of wavevectors kc
and −kc dominate the spectrum, then one has a stripe structure in the pattern. This is
not always the case, and will depend on the governing equation if the critical wavevectors
(the wavevectors for which the eigenvalue crosses the imaginary axis) have some form of
degeneration. For example, an isotropic system should be able to support any wavevector
in the circle defined by λ(kc) = 0 (in other words, only the magnitude of kc is fixed, and its
orientation is free); thus, a general initial condition would evolve to a solution consisting of a
combination of a great number of wavevectors in the circle λ(kc) = 0. This situation leads to
the observation of hexagons [2] and labyrinths [44], depending on the control parameters. In
such an isotropic system, to observe a stripe pattern, one must start with an initial condition
close to a stripe pattern. This is different in an anisotropic system, where it is possible that
the condition λ(kc) = 0 is satisfied for just a few points kc; then, pattern in such predisposed
directions will form for any initial condition (at least containing the marginally unstable
Fourier mode kc).
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Isotropic environment

Equation 0.24 describes a variable in which the spatial coupling is isotropic. Any spatial
rotation of the system leaves the equation invariant; equivalently, any system solution can
be arbitrarily rotated and will still be a solution. Due to this property, when analyzing the
linearized dynamics around A = 0, one gets

λ(k) = −η + νk2 − k4.

The condition λ(kc) = 0 holds for a whole d-dimensional sphere shell in the space of wavevec-
tors if η = ηc = ν/4. All these eigenvalues with vanishing real parts should be considered
when trying to reduce the dynamics to their central manifold. Writing

A =
∫

|k|=kc

Bke
ik·rdk,

one wishes to compute whenever |η − ηc| ̸= 0, thus, a thin d-dimensional spherical shell of
wavevectors within a distance |k − kc| < δ(η − ηc) interacts with the critical mode. The
procedure becomes untraceable due to several resonances occurring (whenever the sum of
different eigenvalues pondered with non-zero integer numbers equals zero [17]); these reso-
nances are responsible for stabilizing hexagonal patterns (in two spatial dimensions), and
quasi-crystals [2, 4]. Instead of the general case, it is easier to consider either η = ηc only
(thus, only obtaining the nonlinear part of the dynamics [17, 18]), or to reduce the relevant
wavevectors considered in the expansion of the variable A. These procedures are depicted in
[23] and references therein. Considering only a stripe pattern in the expansion for A in two
dimensions gives the Newell-Whitehead-Segel equation, which can be used to further analyze
the nonlinear behavior of the Raileigh-Benard convection rolls (most fluids are isotropic), for
example, or other isotropic systems. In this dissertation, we will rather deal with anisotropic
systems detailed below.

Anisotropic environment

The inclusion of nonreciprocal coupling will generally induce an imaginary part in the eigen-
values of the linearized dynamics; any spatial instability will have an oscillatory term, and
the system evolves into nonlinear waves. If the nonreciprocal coupling is present, it could
render an isotropic system to be anisotropic (the equations are not invariant to a simul-
taneous rotation of the coordinates and the nonreciprocity direction) [10, 45, 46]. In an
anisotropic system, patterns and nonlinear structures will have preferred directions to form.
For example, a linearized system with eigenvalues (in two dimensions)

λ(k) = −η + ν(kx2 − k2
y) − k4

has only critical wavevectors kc = ±(
√
ν/2 0)T for η = ηc = ν/4. One can readily see that

such a system will try to form a stripe pattern in the x direction with wavenumber
√
ν/2,

reducing the dynamic to the center manifold of λ(kc) = 0 and computing the normal form
will dictate if the pattern is stable or unstable, and how robust is against perturbations. To
illustrate this procedure, consider a slight modification of our prototypical isotropic pattern
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forming system 0.24 reading

∂A

∂t
= −ηA− A3 − ν(∂

2A

∂x2 − ∂2A

∂y2 ) − ∇4A.

It is important to note that the previous equation is merely of theoretical interest and used
to illustrate the explicit computation of the normal form. A similar procedure in an applied
problem of vegetation population dynamics in the north of Chile is developed in Chapter 4
of this dissertation.

Let η = ηc + η1. One proposes

A = Beikcx + B̄e−ikcx + A[1,1,0] + A[2,0,0] + ...,

and
Ḃ = Ḃ[1,1,0] + Ḃ[2,0,0] + Ḃ[1,0,2] + ...

At linear order one recovers

0 = (−η − ν
∂2

∂x2 + ν
∂2

∂y2 − ∇4)Beikcx + c.c.

We analyze the linear operator. Introducing the canonical inner product between functions

⟨f(x)|g(x)⟩ =
∫
f̄ gdx,

one easily sees that the linear operator is self-adjoint. Then, the kernel of the linear operator
correspond to the functions e±ikcx. One can solve the hierarchy of equations giving

Ḃ[1,1,0] = −η1B,

Ḃ[3,0,0] = −3B|B|2,

Ḃ[1,0,2] = ν(2∂
2B

∂x2 + ∂2B

∂y2 ).

After rescaling the spatial coordinates, the resulting equation reads

∂B

∂t
= −η1B − 3B|B|2 + ν∇2B + h.o.t.

The equation has a scaling near the Turing bifurcation point similar to the previous normal
forms derived; the scaling reveals the slow time and spatial scales in which B evolves. In a
more general pattern forming system (when including non variational terms) one generally
arrives at the complex Ginzburg-Landau equation for the slowly varying complex amplitude
of the pattern (it is the same equation, but with the parameters promoted to be complex
numbers)

∂A

∂t
= (µ+ iω)A− (1 + iβ)|A|2A+ (1 + iα)∇2A. (0.25)

This equation corresponds to a Hopf normal form when including spatial coupling. It de-
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scribes a great variety of natural phenomena such as superconductors (when coupled to a
vector potential), the dynamics of nematic liquid crystals, coupled oscillators such as hearth
tissue, some fluid flows, and pattern envelopes, to mention a few [47].

The instabilities of the Ginzburg-Landau equation

How robust is a perfect pattern? Perfect patterns correspond to homogeneous solutions of
the Ginzburg-Landau equation; in other systems, the ’translation’ of the solutions of 0.25 to
observable quantities depends on the original system from which one derives it. We analyze
the instability of the homogeneous solutions, similar to what we did in the original set of
equations; this procedure will reveal the secondary instabilities in the reduced equations.
These secondary instabilities reveal the full behavior of the system in a small neighborhood
of the critical point defined by λ(cb) = 0 (of the original system).

The Ginzburg-Landau equation in one and two dimensions displays a high variety of
phenomena when β ̸= α ̸= 0 [47]. This is due to the terms proportional to β and α being
responsible to couple the phase and amplitude of the complex variable A = |A|eiϕ. The
simplest homogeneous solutions satisfy 0 = µ− |A0|2 and ϕ̇0 = ω− β|A0|2, it displays steady
oscillations which frequency depends on the amplitude. Moreover, slow spatial modulations
of these oscillations are also solutions; let |A| = |A0|eik·r + c.c. and one finds |A0|2 = µ− k2,
ϕ̇0 = ω − β|A0|2 − αk2. Analyzing perturbations around this state with |A| = |A0|eik·r +
|A1|eip·r + c.c. and ϕ = ϕ̇0t + ϕ1e

ip·r + c.c. reveals that a band of wavevectors around the
homogeneous state k2 < kE

2 = (1+βα)/(3+2β2 +βα) is stable provided that the Benjamin-
Feir criterion 1 + βα > 0 is satisfied [47]. Solutions with wavevectors such that k2 ≥ kE

2

are unstable. If 1 + βα < 0, all the solutions described until then are unstable. This curve
divides the parameter space with a simple criterion, and much more others can be found in
the literature; for a thorought review see [47]. Mostly all of the instability curves delimiting
interesting phenomena such as defect turbulence, spatiotemporal intermitency, and others
have been determined numerically due to their complexity [47]. We put emphasis on the
defect turbulence state, which is characterized by constantly and homogeneously generating
defects that are shortly anihilated [48]. Defects in the Ginzburg-Landau equation correspond
to localized structures described in the next subsection.

Dislocation defect and its vortex structure in the phase

When describing a pattern via a complex amplitude, for example, u = Aei(kx+ϕ) + c.c., we
need to consider that the amplitude A and the phase ϕ will not be homogeneous all the time.
The pattern will not be a perfect periodic function in reality, and in general the functions
A and ϕ will vary in space and time. One may ask, what happens when two patterns
with a different value of ϕ encounter? Two patterns with different phase have stripes that
does not match when concatenated side by side, inserting this as an initial condition to the
governing equations will force the system to find a solution. In general, defects will form,
and will patch the regions where the pattern can not be homogeneous. Stripes in a single
direction display only one type of defect, dislocations. A dislocation occurs when, if following
a stripe, one finds that the stripe divides in two, or merges with another stripe; they are
very common to observe in the sand dunes. This situation described qualitatively has a very
precise meaning for the fields A and ϕ. Circling a dislocation, the phase adds up ±2π (due
to one stripe, equivalently one wavelength, being inserted past the dislocation event); the
phase is undefined at the core of the dislocation, and then, the amplitude vanishes. General
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defects in the Ginzburg-Landau equation have the form (in polar coordinates) [47]

A(r, θ, t) = R(r)ei(mθ+ωt+ψ(r)).

R is the radial form of the defect, ψ their phase, and m their winding number. Extensive
numerical observations reveal that only defects with winding number, or charge, equal to
|m| = 1 are stable; defects with greater charge disarm into defects of |m| = 1 charge [47].
One can readily see that the phase ϕ = mθ+ ωt+ ψ changes by 2π whenever we enclose the
defect moving from θ = 0 to θ = 2π. This property of the phase gives the name vortex to
these solutions when ω = 0, and spirals when ω ̸= 0.

Interaction between vortices

Whenever two defects coexist in two different regions of space, one expects them to interact.
That is, the presence of one defect will affect the dynamic of the other. The interaction of
two defects have been addressed by various authors, with a good summary of the attempts
given in [47]. Some limits have been taken to simplify the calculations. Vortex solutions exist
when ω = 0, occurring in the limit β = α = 0; their interaction is given by v log(v/v0) ∝
±1/r, where v is their radial velocity and r their separation distance. The case of spirals
gives an weak exponential interaction whenever they have a well-developed regions of radial
waves around them. Matsuoka and Nozaki [49] provide an interaction law for ’perturbed’
vortices whenever the complex terms remain small β ∼ α ≪ 1, which gives expressions
similar to the interaction of vortices v log(v/v0) ∝ ±1/r with an additional tangential velocity
component. Vortices of opposing charge attract (they interact with the minus sign of the
previous equation), and annihilate if they come sufficiently close. For this reason, the behavior
of an initial number of vortices as a function of time has been studied extensively, employing
the interaction law and the simple argument that N ∝ Volume/ < r12 >

d (the number of
vortices should scale with the total d-dimensional volume divided by the average volume
a pair of vortices occupies), several authors have found behaviors N ∼ log(t)/t in the two
dimensional case [50–52], which is of crucial relevance to the case of stripe patterns and will
be employed in chapter 4.
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Part I: Front-type nonlinear waves
under nonreciprocal coupling

Nonlinear wave phenomena are theoretically appealing. The break of the superposition prin-
ciple that has allowed us to solve Mechanics and Electrodynamics superposing forces and
fields to create new ones opens several questions about the dynamic of waves. Nonlinearity
does not allow for superposition of solutions and creates unique ones; many of them have
been studied employing a prototypical model: a chain of linearly coupled pendulums.

The chain of linearly coupled pendulums is described by an equation named the Frenkel
Kontorova model. It does not only appear in coupled oscillators but also in the dynamics of
crystal lattice atoms, coupled short Josephson junctions, and others [12]. This model also
carries theoretical interest, particularly in the study of nonlinear waves. In the continuum
limit, the Frenkel Kontorova model is called the sine Gordon equation, which allows for
an impressive nonlinear superposition principle and is one of the few nonlinear extended
equations for which all its solutions are known [53]; this is due to it being an integrable
dynamical system. Breathers, kinks, and interactions between them represent nontrivial
states in the sine Gordon model, and such solutions persist far from the continuum limit
when the Frenkel Kontorova model has greater validity.

In the following two chapters, we will focus on the nonlinear wave of the dissipative
kink type. Note that depending on the context, the same kind of nonlinear wave can have
different names, such as phase wall, front, domain wall, kink, or interface, to mention a
few. Its most important characteristic is that it corresponds to a solution connecting two
different equilibrium states. In general, the region of transition between states occupies little
space and can be described by position and velocity vectors; the same applies to systems
in higher dimensions, and the dimension of the front increases accordingly. When subjected
to nonreciprocal coupling between the elements of the chain, it is unknown what the result
will be for these nonlinear waves. The continuum theory gives us some insight, and the
phenomenon of nonlinear absolute-convective instability is expected; however, the effects of
discreteness are to be unveiled when mixed with nonreciprocal coupling.
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Chapter 1

Nonreciprocal Coupling Induced
Self-Assembled Localized Structures
(Physical Review Letters 126 (19),
194102)

Nonreciprocal coupling between elements of a chain is not trivial to obtain. Depending on the
physical quantity that is coupled, one needs to engineer the system such that nonreciprocity
arises in the equations describing the motion of such elements. Nonreciprocal coupling refers
to the property that an element’s effects on one neighbor are not equivalent to the effects that
neighbor has on the element. Thus, if we are analyzing a system of oscillators, nonreciprocity
appears if the mass matrix or the potential matrix of the dynamical system are non-symmetric
[54]; when coupling electrical circuits, one would ask for a non-symmetric inductance matrix
for nonreciprocal coupling to exist; in the realm of quantum mechanics, nonreciprocity would
appear for non-symmetric Hamiltonians [8]. In all of these examples, for nonreciprocity to
appear, it looks as if we are required to break the laws of physics. However, physics has
effectively reproduced systems described by equations with nonreciprocal coupling employing
techniques such as robotic control [8], high nonlinearity [7], chirality [21, 55], operational
amplifiers in electrical circuits [9, 56], or spatiotemporal modulation [57], to mention a few.
These generally require constant injection and energy dissipation for nonreciprocity to appear
in a non quasi-static regime.

In the following article, we analyze further the dynamics of elastic nonreciprocal coupling,
which has been achieved with robotic control [8] in the linear regime. We add a periodic on-
site potential to each element, apart from the existing nonreciprocal elastic coupling reported
there. The resulting system corresponds to a variation of the Frenkel Kontorova model,
including now a nonreciprocal linear coupling between nearest neighbors. This allows us to
explore the effect of nonreciprocal coupling on nonlinear waves using a prototypical model
of nonlinear physics. We analyze the overdamped regime to avoid any divergence due to the
permanent injection of energy nonreciprocal coupling drives into the system. In this regime,
the front type of wave dominates the dynamics. We fully characterize the dynamics of the
chain, describing the different instabilities fronts undergo due to nonreciprocal coupling.
Strikingly, pattern formation is observed for enough nonreciprocity; the pattern is not of the
Turing type and is self-assembled from alternating fronts into the stable state.
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Chains of coupled oscillators exhibit energy propagation by means of waves, pulses, and fronts.
Nonreciprocal coupling radically modifies the wave dynamics of chains. Based on a prototype model of
nonlinear chains with nonreciprocal coupling to nearest neighbors, we study nonlinear wave dynamics.
Nonreciprocal coupling induces a convective instability between unstable and stable equilibrium.
Increasing the coupling level, the chain presents a propagative pattern, a traveling wave. This emergent
phenomenon corresponds to the self-assembly of localized structures. The pattern wavelength is
characterized as a function of the coupling. Analytically, the phase diagram is determined and agrees
with numerical simulations.
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The dynamics of coupled oscillators have attracted the
attention of physics since its dawn. Phenomena like
synchronization [1], energy transfers from one oscillator
to another [2], or wave propagation [3] are paradigmatic
dynamical behaviors of coupled oscillators. In all the
above examples, the oscillators are usually coupled with
reciprocal elastic media. Namely, the elastic media are
characterized by applying a force of equal magnitude and
opposite direction to each of the coupled oscillators. Such
dynamical behavior is known as Maxwell-Betti reciproc-
ity [4–6]. Nonreciprocal behavior has been studied in
diverse physical fields considering asymmetric, nonlinear,
and/or nonreversible features in time. In optics, nonre-
ciprocal responses have been observed in birefringent
prisms [7], optomechanical resonators [8], and asymmet-
ric cavities [9]. In acoustics, an emitter and a receiver can
exhibit nonreciprocal behaviors in a resonant ring cavity
biased by a circulating fluid [10]. A similar phenomenon
is achieved for electrically driven nonreciprocity on a
silicon chip [11]. Nonreciprocal behaviors for the propa-
gation of electromagnetic waves have been accomplished
through the application of magnetic fields [12,13], angular
momentum [14], nonlinear coupling [15], and moving
photonic crystals [16]. In active matter, nonreciprocal
couplings are a rule rather than an exception [17,18].
Recently, through the use of mechanical metamaterials
[19,20], nonreciprocal coupling elements have been built
up. Namely, couplers that induce a force of different
magnitude to the coupled elements. Chains with nonre-
ciprocal couplings exhibit spatially asymmetric standing
[21] and nonlinear waves [20]; likewise, localized dis-
turbances tend to propagate more in one direction than
another [6–19,21].

In this Letter, we investigate the nonreciprocal coupling
effect on nonlinear waves. Based on a prototype model of a
nonlinear chain, the dissipative Frenkel-Kontorova model with
nonreciprocal coupling to nearest neighbors, a convective
instability between unstable and stable steady state is observed.
By increasing the level of nonreciprocity, the fronts between
these states change frommonotonous to nonmonotonous ones.
Unexpectedly, beyond a certain nonreciprocity level, fronts
become unstable and give rise to propagative patterns (traveling
waves), which corresponds to the self-assembly of localized
structures. The pattern wavelength is characterized as a
function of the couplings. A similar phenomenon is observed
in continuous models that include higher spatial derivatives
(order four) [22], which accounts for the larger-range coupling
and includes a characteristic length. This intrinsic length is the
main ingredient of the Turing mechanism of patterns [23,24].
The extension of this phenomenon to discrete systems
corresponds to a system coupled to first and second neigh-
bors. It is expected to observe patterns as a result of the
intrinsic length provided by more distant neighbors [23,24].
However, the presented pattern mechanism here with nonre-
ciprocal coupling only includes interaction to nearest neigh-
bors. Analytically, the phase diagram of the system is revealed,
which shows an excellent agreement with numerical
simulations.
Let us consider a dimensionless chain of N þ 1 dis-

sipative coupled pendulums (the dissipative Frenkel-
Kontorova model with nonreciprocal coupling [25]):

θ̈i ¼ ω2 sin θi − μ_θi þ ðD − αÞðθiþ1 − θiÞ
− ðDþ αÞðθi − θi−1Þ; ð1Þ
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where θiðtÞ is the angle formed by the pendulum and the
vertical axis in the i position at time t [cf. Fig. 1(a)]. ω and
μ are the natural frequency and the damping coefficient of
pendulums. D and α account for coupling elements
that have different left-to-right and right-to-left linear
responses. α accounts for the nonreciprocal coupling;
when α ¼ 0, the chain has a reciprocal coupling. D stands
for the linear deformation of an elastic material. α could
account for the linear deformations of a rubber nonrecip-
rocal torsion metamaterial [19] or a nonreciprocal robotic
coupling [21]. Figure 1 shows a schematic representation
of a chain of dissipative coupled pendulums. Note that
θi ¼ 0 and θi ¼ π describe the upside-down and upright
pendulum, respectively. Equation (1) is of Lagrangian
nature, which has the form

L ¼
X
i

�
_θ2i
2
− ω2 cos θi −

D − α

2
ðθiþ1 − θiÞ2

�
eμtΛi;

where Λ≡ ðD − αÞ=ðDþ αÞ. Thereby, the dynamics of
Eq. (1) is steered by a principle of least action. To figure
out the nonreciprocal chain dynamics, we consider the
overdamped limit of the dissipative Frenkel-Kontorova

model (see the Supplemental Material [26]). Then Eq. (1)
can be approximated by

_θi ¼ ω2 sin θi þ ðD − αÞðθiþ1 − θiÞ − ðDþ αÞðθi − θi−1Þ:
ð2Þ

A similar model was proposed to study coupled
Josephson junctions [29]. Two evident extended steady
states correspond to the uniform upside-down and upright
pendulums. To study the dynamics of nonlinear waves
between these two states, we consider the boundary
conditions being Dirichlet [θ0ðtÞ ¼ 0] and Neumann
[θNðtÞ ¼ θN−1ðtÞ] on the left and right flank of the chain,
respectively.
In the reciprocal limit α ¼ 0, considering all upside-

down pendulums as an initial condition, slightly tilting a
pendulum generates a nonlinear wave that propagates
from the upright to the upside-down pendulums with a
well-defined speed. This nonlinear wave is known as π
kink [30]. The front speed is characterized by exhibiting
a weakly oscillatory behavior [30,31]. π kinks are
persistent in the presence of nonreciprocal coupling.
Figure 1 shows the profile of a π kink wave and its
respective spatiotemporal diagram. These diagrams were
obtained by means of numerical simulations. All the
numerical simulations presented were conducted by a
fourth-order Runge-Kutta integration method. As a
result of nonreciprocal coupling, the speed of the π kink
decreases when α is increased. π kinks that invade the
upside-down pendulums are observed in zone I of Fig. 2.
The previous dynamical behaviors change when consid-
ering large enough α through an absolute convective
instability [32]; the upside-down pendulums invade
upright ones [see Fig. 1(c)]. These fronts are observed
in zone II on the bifurcation diagram in Fig. 2.
To characterize the absolute convective instability, we

use the same strategy presented in [30]. Let us introduce the
ansatz θiðtÞ ¼ AekðiþhvitÞ for the tail of the front to
determine the average front speed hvi, where k accounts
for the front steepness. The average front speed hvi satisfies
(see the Supplemental Material [26] for details)

hvðkÞi ¼ ω2 − 2D
k

þ 2

�
D coshðkÞ − α sinhðkÞ

k

�
: ð3Þ

Bounded disturbances induce fronts propagation into the
unstable state with the minimum front speed vmin as a
function of the steepness, i.e., vmin ¼ hvðk ¼ kcÞi,∂khvðk ¼ kcÞi ¼ 0, and ∂kkhvðk ¼ kcÞi > 0 [22]. The
absolute convective instability corresponds when the
minimum speed is zero [32]. Using this condition, we get

D ¼ α2

ω2
þ ω2

4
: ð4Þ

(a)

(b) (c)

FIG. 1. Nonreciprocal coupled chain of pendulums and front
propagation. (a) Schematic representation of a chain of pendulums
coupledwith a nonreciprocal material. θiðtÞ is the angle formed by the
pendulum and the vertical axis in the i position at time t. Yellow
cylinder accounts for a nonreciprocal metamaterial. Instantaneous
profile and spatiotemporal evolution of π kink obtained for Eq. (2)
with ω ¼ 1, D ¼ 4, α ¼ 1 (b), and α ¼ 2.5 (c).
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Figure 2 shows the bifurcation diagram of the overdamped
Frenkel-Kontorova model, Eq. (2). The dashed blue curve
accounts for the previous expression. Notice that for largeD
coupling, the system is adequately described by the con-
tinuous limit, the dissipative sine-Gordon equation with
advection, where the dynamic behaviors described above are
expected. Surprisingly, as α increases further, the fronts
exhibit a transition from monotonous to nonmonotonous
fronts. Figure 3 shows the typical nonmonotonous front
observed and its propagation. These fronts are observed in
zones III and IV of the phase diagram shown in Fig. 2. In
zone III (IV), the upside-down (upright) state propagates into
the upright (upside-down) one. The transition of monoto-
nous to nonmonotonous front is characterized by the fact that
the speed curve hvðkÞi, Eq. (3), ceases to have a minimum,
which becomes an inflection point. Indeed, the minimum is
now in the complex plane of k, where the imaginary part
corresponds to the spatial oscillations observed in the front
profile (cf. Fig. 3). By imposing that hvðk ¼ kcÞi stops
having a minimum, we obtain

2D − ω2

arctanhðDαÞ
¼ 2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
D
α

�
2

s
: ð5Þ

ForD < ω2=2, an explicit solution of the above transcendent
equation is D ¼ α. Notice that this relationship corresponds

to each oscillator being only coupled to its left neighbor.
Furthermore, when D < α, springs toward the right side are
not of restoring nature, that is, their elastic constant is
negative. The above is unacceptable for mechanical springs.
However, this type of coupling can be achieved through the
use of nonreciprocal robotic metamaterials [21]. For
D > ω2=2, an explicit analytic expression is not accessible.
Note that the curve obtained parametrically, Eq. (5), is
slightly below the straight line D ¼ α. Figure 2 illustrates
these curves by means of the purple and orange dashed lines,
respectively. D ¼ α ¼ ω2=2 is a critical point where the
different transition curves converge, which is represented by
a star in the phase diagram of Fig. 2. From nonmonotonous
fronts where the upside-down pendulum state invades
upright ones, unexpectedly, as D decreases, the emergence
of a traveling wave is observed (see Fig. 4). Note that these
patterns are characterized by connecting the vertical pendu-
lum to itself. These propagative waves are observed in zone
Von the phase diagram of Fig. 2. As α is increased or D is
decreased, the wavelength of the propagative pattern λ
decreases as illustrated in Fig. 4(c). To characterize the
pattern emergence instability curve, we consider nonmonot-
onous fronts where upside-down pendulums invade upright
ones. The average front speed hvðkcÞi is the global minimum
as a function of steepness. Using the previous conditions in
Eq. (3) after straightforward calculations (for details, see
the Supplemental Material [26]), we obtain the relation
D ¼ ω2=2. The red dashed horizontal line in Fig. 2 outlines
the wave instability curve. Increasing the number of

FIG. 2. Phase diagram of the overdamped Frenkel-Kontorova
Eq. (2) with ω ¼ 1. In zone I, the upright pendulums invade the
upside-down ones. This process is reversed in zone II. The blue
curve, Eq. (4), is the analytical absolute convective instability
between the upright and upside-down pendulums. The purple
(D ¼ α) and orange curves account for the monotonous to
nonmonotonous front transition, using Eq. (3). The star symbol
(☆) accounts for the critical point ðα ¼ 1=2; D ¼ 1=2Þ where the
critical curves converge. Red and green curves separate the
localized structures’ self-assembly region. The red curve was
obtained using formula D ¼ 1=2. The green curve is achieved
through divergence of the self-assembly wavelength. All circles
are obtained by means of numerical simulations.

(a) (c)

(b) (d)

FIG. 3. Nonmonotonous fronts of the overdamped Frenkel-
Kontorova Eq. (2) with ω ¼ 1. Profile (a) and spatiotemporal
evolution (b) of a nonmonotonous front propagates from upside-
down pendulums into upright ones for D ¼ 1 and α ¼ 1.25. v
and v0 account for the speeds of different fronts. Profile (c) and
spatiotemporal evolution (d) of a nonmonotonous front propagate
from upright pendulums into upside-down pendulums for
D ¼ 0.25 and α ¼ 0.325.
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oscillators N close to the horizontal line, numerically, we
observe that the wave exhibits a complex spatiotemporal
dynamics. The origin and the characterization of the com-
plex spatiotemporal behavior is in progress.
The transition between fronts and large wavelength

waves (zones IV and V) cannot be obtained employing
asymptotic analytical calculations due to its nonlinear
nature. To determine this bifurcation, we numerically
compute the curve of divergence of the pattern wavelength.
Figure 2 illustrates this curve by means of green dots. Video
in the Supplemental Material [26] illustrates the different
observed nonlinear waves [33]. To shed light on the nature
of the observed patterns, we perturb the periodic solution in
a localized manner. The spatial oscillations with a length
small enough compared to the pattern shrink and disappear,
generating a hole in the pattern that propagates without
deformation. In contrast, oscillations with a wavelength
longer than the pattern, even several wavelengths, propa-
gate as a localized state, a pulse. Figure 5 illustrates the
scenario described above. A pattern made up of an
extended periodic state is characterized by healing the
disturbances and recovers the pattern characteristic wave-
length [23,24]. However, patterns composed by the
assembly of localized structures are characterized by
exhibiting various wavelengths and configurations,
depending on the initial condition [33]. When one regards
a localized solution as an initial condition, it is propagated
and advected. Because of the fixed boundary condition,

localized structures of equal size begin to be emitted from
the left flank, forming the propagative pattern. Therefore,
the observed propagative pattern corresponds to a self-
assembly of propagative localized structures (cf. Fig. 5).
The origin of the emergence of the observed pattern is

that the front between the upright and upside-down pen-
dulums has a well-defined periodic length when it tends to
the fixed edge, left flank. This front profile engenders
alternation of domains of the π and −π states. Indeed, it
locally generates a 2π kink gas. The interaction between
these particle-type solutions is responsible for localized
states [34]. Moreover, their interaction is characterized by
exhibiting a family of localized solutions displaying a
complex bifurcation diagram, a collapsed snaking bifurca-
tion. Spontaneously from the left edge, there is an emission
of localized solutions of one width. However, all localized
solutions with greater width are observed (stable) when
adequate initial conditions are considered.
When inertia is included, i.e., in the underdamped

regime, the phenomena presented above persist. In fact,
the phase diagram presented in Fig. 2 is slightly modified
(for more details, see the Supplemental Material [26]).
In conclusion, based on a prototype model of a non-

linear oscillator chain with a nonreciprocal coupling to
nearest neighbors, a convective instability between unsta-
ble and stable equilibrium is studied. By increasing the
level of nonreciprocity coupling, fronts between these
states exhibit a transition from monotonous to nonmo-
notonous fronts. Unexpectedly, as the level of nonreci-
procity increases, fronts become unstable and give rise to
propagative patterns with a wavelength controllable by
coupling, which corresponds to self-assembly of localized
structures. Analytically, the phase diagram of the system
is revealed.

(b)

(a)

FIG. 4. Self-assembly of localized structures and the wave-
length surface map for the overdamped Frenkel-Kontorova
Eq. (2) with D ¼ 0.4, α ¼ 0.5, and ω ¼ 1. (a) Spatiotemporal
evolution and respective profiles in two instants of time, t1 ¼ 120
and t2 ¼ 395. v accounts for the traveling wave velocity.
(b) Wavelength surface map for the D and α parameter space.

(a)

(b)

(c)

FIG. 5. Self-assembly of localized structures obtained for the
overdamped Frenkel-Kontorova Eq. (2) with D ¼ 0.25, ω ¼ 1,
and α ¼ 0.425. (b) Spatiotemporal evolution of Eq. (2) with
initial condition top panel (a) and final state bottom panel (c). v
stands for the speed of the ensemble of localized structures.
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Because of the universal nature of the model under study,
we expect that the presented findings are generic. Namely,
we expect to observe the self-assembled localized struc-
tures in various nonlinear oscillators with nonreciprocal
coupling. Josephson junctions, coupled with nonreciprocal
robotic elements or computer-assisted coupling, are pos-
sible experiments that could display the proposed phenom-
ena. In the case of considering large deformations of rubber
nonreciprocal metamaterial, one would expect a nonrecip-
rocal nonlinear coupling. The study of this type of coupling
on the dynamics of waves is a work still in progress. In the
continuous limit, the nonreciprocal coupling is only
responsible for the absolute convective instability between
fronts. Instead, the emergence of self-assembly of localized
structures is a peculiar phenomenon of nonreciprocally
coupled to nearest neighbor systems.
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1.1. Supplementary materials
The supplementary material of the article Nonreciprocal Coupling Induced Self-Assembled
Localized Structures (Art. 1) includes the calculations of the Euler-Lagrange equations from
the Lagrangian proposed to describe the chain under nonreciprocal coupling. The condition
for the overdamped regime to be valid is discussed by employing an adimensionalization of
the independent and dependent variables. Explicit computation of the phase diagram curves
and the critical conditions using the linear spreading velocity theory [25] are presented. These
critical conditions are recognized as points at which the derivatives of n−th order with respect
to the front steepness vanish. Finally, an analysis of the effects the small terms neglected
theoretically have on the phase diagram is given.
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1 The non-reciprocal Frenkel-Kontorova model

Non-linear waves are typical phenomena for coupled oscillators and coupled extended systems. The sine-Gordon
equation and its discrete counterpart, the Frenkel-Kontorova model, play a relevant role in the understanding of these
waves. These equations can model a coupled chain of pendula or coupled Josephson junctions, among others. The
new physical metamaterials bring new horizons to coupled systems, since the coupling between the basic elements
can now be non-reciprocal. Studies of waves have been done considering only the elastic non-reciprocal coupling
between the basic elements (with no in-site potential) [1,2]. We propose studying the front waves considering a
common in-site potential, modeling soft oscillators with non-reciprocal coupling. We refer to this model as the
non-reciprocal Frenkel-Kontorova model, and it reads

θ̈i = ω2 sin θi − µθ̇i + (D − α)(θi+1 − θi)− (D + α)(θi − θi−1), (1)

where ω is the natural frequency, µ is the dissipation coefficient, D is the elastic constant, and α measures the
deviation from the reciprocal behavior. Note that in the limit α → 0, we recover the Frenkel-Kontorova equation.
Likewise, in the continuous limit, α can be understood as a linear advection term. Note that the variable θi is
measured with respect to the upside-down pendulum position.

1.1 A Lagrangian description

Let us consider the following Lagrangian

L(θi) =
∑

i

(
θ̇i

2

2
− ω2 cos θi −

D − α
2

(θi+1 − θi)2
)
eµt
(
D − α
D + α

)i
. (2)

Using the principle of least action, the Euler-Lagrange equations read

d

dt

(
∂L

∂θ̇k

)
− ∂L

∂θk
= 0. (3)

To obtain this equation, one must determine

∂L

∂θk
=

(
ω2 sin θk + (D − α)(θk+1 − θk)

(
D − α
D + α

)k
− (D − α)(θk − θk−1)

(
D − α
D + α

)k−1)
eµt, (4)

and
d

dt

(
∂L

∂θ̇k

)
=
(
θ̈k + µθ̇k

)(D − α
D + α

)k
eµt. (5)

Equating both terms, factoring eµt and
(
D−α
D+α

)k
, the Euler-Lagrange equation reads (equation (1) of the main text)

θ̈k = ω2 sin θk − µθ̇k + (D − α)(θk+1 − θk)− (D + α)(θk − θk−1). (6)
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Figure 1: Hopping dynamics of a front. Temporal evolution of the front position x0(t) obtaining form Eq. (6) with
ω = 1, µ = 2, D = 0.04, and α = 0.

1.2 The overdamped limit

When the damping coefficient is large enough, one can rescale time to neglect the inertial term. Introducing
t→ µτ equation (3) reads

1

µ2
θ̈i = ω2 sin θi − θ̇i + (D − α)(θi+1 − θi)− (D + α)(θi − θi−1).

Note that τ has units of seconds squared. If µ is large enough (ω2/µ2 → 0) [3], one can neglect the inertial term in the
previous equation. Then, the system is described by the equation (Overdamped non-reciprocal Frenkel-Kontorova,
equation (2) of the main text)

θ̇i(τ) = ω2 sin θi + (D − α)(θi+1 − θi)− (D + α)(θi − θi−1). (7)

In this equation, the analytical study is accessible. It is worth stressing that the phenomena reported are also
present in the underdamped case.

2 Phase diagram

As α > 0 (< 0), the solutions are advected towards the right (left) flank. Namely, π-kinks and 2π-kinks propagate
with a speed that depends on the parameters. A disturbance of the unstable solution, θi = 0, generates a π-kink,
which propagates with the minimum speed determined by the asymptotic criterion [4]. Following the strategy
presented in reference [4], as shown in Fig. 1, the fronts speed is not a constant. Rather it is oscillatory, with a
characteristic period. Averaging the front speed during this period, one can find an average speed 〈v〉.

Let us consider the following ansatz for the asymptotic left tail of the front

θ(i, t) ∼ ek(i+vt)(1 + fTk,i),

where fTk,i(t) is a small oscillatory function, fTk,i(t) � 1, with period T and zero mean value. Inserting this ansatz
in Eq. (7), we get

kv(1 + fTk,i) + ˙fTk,i = (ω2 − 2D + 2D cosh k − 2α sinh k)(1 + fTk,i)

+D(fTk,i+1 − 2fTk,i + fTk,i−1)− α(fTk,i+1 − fTk,i−1). (8)

Averaging over the period T , we obtain (equation (3) of the main text)

〈v〉 =
ω2 − 2D + 2g(k)

k
, (9)
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where 〈v〉 ≡
∫ t+T
t

v(t′)dt′/T is the average speed and g(k) ≡ D cosh k − α sinh k. Note that this is equivalent to

propose the following ansatz for the asymptotic left tail of the front θ(i, t) ∼ ek(i+〈v〉t).

The minimal criterium of the speed asserts that the asymptotic speed of the front v is obtained when v(k) is a
minimum [5], so (from now we will drop the brackets)

∂v

∂k

∣∣∣∣
k∗

= 0,

vmin = v(k∗). (10)

2.1 I-II transitions

The curve that separates zone I from II corresponds to an absolute-convective instability. Hence, one can impose
that v = 0 at this bifurcation. Using the relation

∂k(kv) = v + k∂kv = 2∂kg(k),

and imposing the conditions ∂kv = v = 0, we get

∂kg(k)|k∗= 0.

From this expression, it is obtained k∗ = arctanh(α/D). Replacing k∗ in formula (9), we obtain

0 = ω2 − 2D + 2g
(

arctanh
α

D

)
.

Using cosh(arctanhx) = 1/
√

1− x2 and sinh(arctanhx) = x/
√

1− x2, the following expression describes the
absolute-convective instability in the (D,α) plane

0 = ω2 − 2D +
2D√

1−
(
α
D

)2 −
2α2/D√
1−

(
α
D

)2 = ω2 − 2D +
2D√

1−
(
α
D

)2

(
1−

( α
D

)2)
. (11)

Simplifying this expression
ω2(ω2 − 4D) = −4α2,

and finally solving for D, it reduces to equation (4) of the main text

D =
ω2

4
+
α2

ω2
. (12)

2.2 II-III and I-IV transitions

The transitions between these zones are characterized by the fact that the front changes from monotonous to
non-monotonous, thus one study the threshold in which a real k can not satisfy ∂kv = 0. This condition translates

into looking for the point in which ∂2v
∂k2

∣∣∣
k∗

= 0 and simultaneously ∂v
∂k

∣∣
k∗

= 0. Differentiating two times one has

∂2k(kv) = 2∂kv + k∂2kv = 2g(k).

Imposing the conditions described above, one has g(k∗) = 0, this gives k∗ = arctanh(D/α). Using that also
∂2kv = v/k2 − ∂kv/k − 2∂kg(k)/k2 + 2g(k)/k, replacing formula (9) for v, and ∂2kv = ∂kv = g(k∗) = 0, we obtain
the expression in the (D,α) plane

0 =
ω2 − 2D

k∗
− 2(D sinh k∗ − α cosh k∗). (13)

Making use of cosh(arctanhx) = 1/
√

1− x2, and sinh(arctanhx) = x/
√

1− x2, after straightforward calculations
this reduces to equation (5) of the main text.

2D − ω2

arctanh
(
D
α

) = 2α

√
1−

(
D

α

)2

. (14)

3



π

-π

𝜃i

π

-π
π

-π
π

-π
π

-π
0 500i

(a) t=0 s

π

-π

𝜃i

π

-π
π

-π
π

-π
π

-π
0 500i

(b) t=16 s

π

-π

𝜃i

π

-π
π

-π
π

-π
π

-π
0 500i

(c) t= 124 s

π

-π

𝜃i

π

-π
π

-π
π

-π
π

-π
0 500i

(d) t=358 s

π

-π

𝜃i

π

-π
π

-π
π

-π
π

-π
0 500i

(e) t=790 s

π

-π

𝜃i

π

-π
π

-π
π

-π
π

-π
0 500i

(f) t=1082 s

Figure 2: Nonlinear wave propagation of the overdamped Frenkel-Kontorova model with non-reciprocal coupling.
Temporal evolution of different typical waves of the different zones of the phase diagram.

2.3 III-V transition

In this transition non-monotonous fronts present an absolute-convective instability, in which the front velocity
changes its sign, so one can impose the same conditions as in the I-II transition. To obtain the relation, one must
impose Im v = 0 for stability reasons. Then, one can obtain vmin with respect to kr, proposing the ansatz for the
asymptotic left tail of the front θi ∼ ek(i+〈v〉t)+jωkt, where j ≡

√
−1, k = kr + jkj is a complex parameter, and ωk

accounts for the oscillatory nature of the solution. The front speed satisfies

vkr = ω2 − 2D + 2g(kr) cos kj .

Imposing the condition of absolute-convective instability, v = 0 and ∂krv = 0, we get

2∂kg(kr) cos kj = 0.

Due to ∂kg(kr) = 0 is not satisfied in this region of the (D,α) plane, the only solution is cos kj = 0. Finally,
imposing that the velocity vanishes and injecting cos kj = 0, the following relation is obtained

D =
ω2

2
. (15)

2.4 IV-V transition

This transition curve could not be obtained by means of the asymptotic criterium. Therefore, we have numerically
studied this transition. The instability emerges from the left flank and generates the propagative pattern.
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Figure 3: Bifurcation curves of the dissipative Frenkel-Kontorova model with non-reciprocal coupling for the un-
derdamped case, for µ = 5 and ω = 1. The dashed lines are the bifurcation curves calculated on the overdamped
case, dots represent numerical simulations in the underdamped case.

3 The phase diagram in the underdamped limit

3.1 Overdamped case

For the sake of simplicity of analytical analysis, in the main text, we have considered the overdamping limit
of equation (1) and have determined its phase diagram depicted in figure 2 of the main text. The evolution of a
perturbation, in each zone, is represented by the temporal sequence shown in Fig. 2. Likewise, we have added the
supplemental video 1 showing an animation for the evolution of the different nonlinear waves.

3.2 Underdamped case

If the inertial term is not neglected in equation (1) of the main text, similar dynamic behaviors can be observed
when the damping term is not small. When the damping is small, linear waves and interaction with nonlinear
waves can change the dynamics presented. Taking µ = 5 and ω = 1, we obtain that the bifurcation curves shift
slightly from their overdamped relative curves (see figure 3). It is important to note that using the same techniques
presented above, the curve separating zones I and II is unchanged. The other instability curves have cumbersome
mathematical expressions. Figure 3 shows the phase diagram of the dissipative Frenkel-Kontorova model with
non-reciprocal coupling. The dashed curves account for the instabilities calculated on the overdamped case; dots
stand for instability curves obtained by numerical simulations in the underdamped case. A slight shift is evident in
the transition III-V curve.
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Chapter 2

Giant boundary layer induced by
nonreciprocal coupling in discrete
systems (Communications in
Nonlinear Science and Numerical
Simulation 125, 107391)

Front solutions spatially connect two equilibrium states of the local entities forming the
chain. Thus, these solutions break the homogeneity of space and usually acquire dynamics;
for example, in variational systems, the front will move in a direction that reduces the system’s
free energy, ultimately leading to a homogeneous solution. However, one aspect to consider is
the boundary conditions to which our system is subjected. If boundaries do not match with
the equilibrium solution of the dynamical system at its bulk, they drive an inhomogeneous
solution localized at the border connecting the bulk solution with the boundary condition
constraint; namely, a boundary layer arises [58, 59].

In the previous chapter, we employed boundary conditions favorable for forming fronts
into the unstable state; at least one boundary was fixed at the unstable value of the variable
under study, and the other is a free boundary. This particular choice (the fixed boundary)
can be difficult to handle in experimental environments, as one usually has accuracy ranges
for the tools. Even numerically, one is restricted by the finite memory of the computer trying
to store the infinite information of the many real numbers describing the variables under
study.

In this chapter, we analyze boundary layers arising when imposing fixed boundary condi-
tions that have a mismatch with respect to the unstable homogeneous equilibrium value of
the system. For exponentially small mismatch values, the apparent propagation of a front
into the unstable state is observed; however, for systems with enough elements, one will
observe the sudden detention of the front propagation, forming a giant boundary layer. The
properties of these solutions as a function of the parameters are characterized, employing an-
alytical expressions for the velocity of fronts to understand the phenomenon. The boundary
layer size is analytically approximated employing map iteration techniques.
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a b s t r a c t

Nonreciprocally coupled systems present rich dynamical behavior such as unidirectional
amplification, fronts, localized states, pattern formation, and chaotic dynamics. Fronts
are nonlinear waves that may connect an unstable equilibrium with a stable one and
can suffer a convective instability when the coupling is nonreciprocal. Namely, a state
invades the other one, and due to boundary conditions, the front stops and creates a
boundary layer. Unexpectedly, in nonreciprocal coupled systems, we observe arbitrarily
large boundary layers in the convective regime when the condition at the fixed edge
does not match the equilibrium value. We analytically determine the boundary layer size
using map iterations; these results agree with numerical simulations. On the other hand,
if one of the boundary conditions matches the unstable equilibrium state, the boundary
layer size diverges; however, due to the computer numerical truncation, it is finite in
numerical simulations. Our result shows that, in nonreciprocally coupled systems, this
mismatch in the boundary condition is relevant in controlling the boundary layer size,
which exhibits a logarithm scaling with the mismatch value.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

It is a known matter that extended systems exhibit a boundary layer when two or more phases compete to
dominate the system dynamics; they can originate from geometrical or topological aspects [1–3], forces driving different
phases [1,3], or the boundary conditions [2,4], to mention a few. One example is nematic liquid crystal layers subjected to
strong anchoring and electric fields. The elastic forces try to balance with the electrical ones leaving the mean orientation
of molecules with a profile that connects two different states. A common example is the boundary layer of viscous flows
passing through an obstacle or inside a pipe. The velocity profile needs to satisfy the no-slip condition and has to connect
with the asymptotic flow far from the obstacle [4,5]. Both examples exhibit a thin (compared with the system size)
boundary layer, in which the profile of the field has sharp changes near the edges of the respective system. Hence, the
boundary layers are produced by imposing ‘‘uncomfortable’’ conditions at the boundaries. Note that boundary layers have
different physical properties in comparison to the system bulk [4–6], such as the one exhibited by obstacles immersed
in a flow, see Ref. [5]. In general, analytical solutions of boundary layers are not accessible, making therefore numerical
simulations a useful tool to characterize them.
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Fig. 1. Absolute-convective threshold. Panel (a) depicts the u = 0 as absolutely unstable; that is, perturbations propagate in both directions. Panel
(b) shows the system in the absolute-convective instability threshold, where the left flank of the perturbation has exactly zero speed. Panel (c)
illustrates the u = 0 state as convective unstable, where perturbations grow up and propagate towards the right flank.

A simple 1D scalar model to study the boundary layer is population propagation (when a fixed boundary condition
is considered), particularly motivated by the spread of genes and diseases. This type of system is modeled by a simple
reaction–diffusion equation known as the Fisher–Kolmogorov–Petrovskii–Piskunov equation (FKPP equation) [7,8]. This
model is characterized by including the nonlinear response of the logistic model plus a diffusive transport process. Then,
the system is characterized by having two equilibria, one stable (u = 1) and the other unstable (u = 0), where u accounts
for the scalar field. In order to obtain a boundary layer, a fixed (Dirichlet) boundary condition must be considered. Note
that the other flank boundary does not affect the above-mentioned boundary layer and, for example, can be considered
as zero flow (Neumann). The edge with the fixed condition is settled to the unstable equilibrium value. When the system
starts in the unstable state u = 0 and is locally disturbed, the emergence of two counterpropagating fronts moving towards
the system edges are observed so that the stable state, u = 1, invades almost the entire system. These nonlinear waves
are known as Fisher–Kolmogorov–Petrovskii–Piskunov fronts (FKPP fronts) [7–11]. Due to the fixed boundary condition
at the border, a boundary layer is established between the unstable and stable state, and its size is proportional to the
square root of the diffusion coefficient. The above scenario changes radically when one considers a drift or advection
term in the direction towards the flank with zero flow. When the drift coefficient is small, the boundary layer is slightly
modified; however, when this coefficient overcomes a critical value, the system exhibits an absolute–convective instability
(triggered by the advection), and therefore the u = 0 state invades the system. In the latter case, the system does not
present a boundary layer. Fixing a reference frame to the edges, for zero advection, the u = 0 state is said to be absolute
unstable, meaning that perturbations over this state will propagate to the whole system, as seen in Fig. 1(a). On the other
hand, for high enough advection, the u = 0 state will transit to be convective unstable at the absolute-convective instability
threshold as seen in Fig. 1(b). Increasing further the advection, the propagation grows in a co-mobile frame, but in the
edges reference frame, perturbations decay for infinite time, see Fig. 1(c).

The above-mentioned physical systems are described by continuous equations. However, this description fails to cap-
ture some phenomena observed in real systems. Note that real macroscopic systems can be approximated by continuous
equations; nevertheless, they are intrinsically discrete. This means they are composed of a large – but finite – number
of elements that can interact with each other. Likewise, numerical simulations of continuous descriptions are performed
in discrete lattices. Surprisingly, the discrete nature of systems has measurable consequences on the macroscopic world,
such as the dislocation dynamics observed in crystals that can only be explained by the Peierls-Nabarro potential [12], the
front propagation in discrete systems presenting hopping dynamics [9,10,13], the dispersion of propagating waves [14],
or the induction of localized structures [14], to mention a few. In the above examples, the physical principle of reciprocity
governs the coupling between the elements, that is, each element that constitutes the system under study is symmetrically
coupled to its neighbors [15]. Recently, different experiments have implemented nonreciprocal coupling, generally by
breaking the spatial-reflection symmetry. As a consequence of the loss of this symmetry, in extended systems, one expects
the perturbations to generate waves that favor specific directions of propagation. More precisely, nonreciprocal couplings
are achieved by using rotating fluids [16], temporally modulated coupling elements [17,18], elastic metamaterials [19],
or active robotic metamaterials [20].

The study of boundary layers has focused on continuous systems with various boundary conditions. To our knowledge,
few systematic studies have been performed on boundary layers in discrete and nonreciprocal nonlinear systems.
Moreover, recently it has been shown how nonreciprocal coupling in nonlinear coupled damped oscillators is responsible
for convective instabilities, front modulation, and even pattern formation [21]. Our work aims to unveil the boundary
layer formation on discrete systems and the nonreciprocal coupling effect on them based on two prototypical models. In
the continuous limit, this kind of coupling is responsible for advection and may induce an absolute–convective instability
[20,21]. Theoretically, we derive the condition for the convective instability of solutions connecting an unstable with a
stable equilibrium in nonreciprocally coupled nonlinear systems. When the fixed boundary condition value mismatches
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Fig. 2. Nonreciprocal Frenkel-Kontorova system. (a) Schematic representation of a chain of pendula with nonreciprocal coupling. The cylinder
illustrates a nonreciprocal torsion spring. ui accounts for the ith pendulum angle. This variable has its origin in the upside-down position. v stands for
the speed of wavefront propagation. (b), (c), (d), and (e) illustrate the angle profile as a function of their index i and the effect of the nonreciprocal
elastic coupling α on FKPP fronts. αc accounts for the nonreciprocal critical elastic coupling that gives rise to absolute–convective instability.

with the unstable equilibrium, a boundary layer arises; otherwise, systems exhibit an absolute–convective instability.
Unexpectedly, we observe arbitrarily large boundary layers; thus, we call them giant boundary layers. We propose a
method to predict the boundary layer size based on a recurrence relation describing the equilibrium state that shows
excellent agreement with the numerical findings. Our analysis illustrates the importance of the convective instability in
FKPP fronts in determining the boundary layer size, where an abrupt shift of its size is observed at the instability. This
instability creates two regimes, one where the boundary layer does not depend on the mismatch between the boundary
condition and the unstable equilibrium value, and the other where a logarithmic law is obtained for the boundary layer
size as a function of the boundary condition value.

2. Systems with nonreciprocal coupling

Two prototypical models that exhibit front propagation into an unstable state, FKPP fronts, are the Frenkel-Kontorova
[12] and the Fisher–Kolmogorov–Petrovskii–Piskunov model [7,8]. The FKPP equation was proposed to model the spread
of genes mutations and populations (see the textbook [22] and reference therein). The Frenkel-Kontorova model has
been derived from several physical situations, including, for example, crystal lattices, torsion chain of pendula (cf.
Fig. 2), coupled Josephson junctions, and coupled nonlinear oscillators [12]. In the previous examples, the coupling
mechanism usually preserves the space reflection symmetry of the system; namely, they exhibit a reciprocal coupling [15].
Recently, several techniques, methods, and experiments have been developed to break the reciprocity and study the
effect of nonreciprocal coupling [16,19,20,23]. Particularly, robotic metamaterials have been employed to explore energy
propagation when space reflection symmetry is absent in linear oscillator chains. In these systems, it was shown that
perturbations propagate asymmetrically [20], that is, waves are amplified in a preferred direction. Indeed, nonreciprocal
coupling allows conducting of the energy in a desired direction. Furthermore, it led to the study of nonreciprocally coupled
chains of nonlinear oscillators and front solutions in them [21]. To extend the understanding of nonreciprocal coupling
and its effects, we analyze the overdamped discrete extended one-dimensional model given by

u̇i = f (ui) + (D − α)(ui+1 − ui) − (D + α)(ui − ui−1), (1)

where ui(t) describes the variable under study for the ith element of the system, for example, the displacement of
the ith oscillator with respect to its equilibrium, the population of a given specie in a specified region, or the phase
of a given superconductor, to mention a few. α and D account for the nonreciprocal and reciprocal coupling strength,
respectively. The chain consists of (N+1) basic elements, which local dynamics is described by the nonlinear function or
reaction term f (ui), and each element interacts with its nearest neighbors. The nonlinear functions that are considered
in this work are f (ui) = sin(ui) (Frenkel-Kontorova nonlinearity) and f (ui) = ui(1 − ui) (Fisher–Kolmogorov–Petrovskii–
Piskunov nonlinearity). Boundary conditions u0 = ϵ (Dirichlet) and uN+1 = uN−1 (zero flow) are imposed. Note that the
transformation symmetry i ↔ N− i is absent as a consequence of boundary conditions. Likewise, the reflection symmetry
i ± 1 → i ∓ 1 is absent when α ̸= 0.

It is worth noting that in Eq. (1), if one defines the coordinate x = il0, where l0 is the distance between the basic
elements, the continuous limit appears as D and α go to infinity at the same time as l0 vanishes, such that Ddiff ≡ Dl20 and
αadv ≡ 2αlo remain finite. With these assumptions, the coupling terms become a diffusive transport and a linear advection.
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Fig. 3. Schematic representation of the local dynamics. Example of a reaction term f (u) appearing in Eq. (1) as a function of u.

Note that the linear advection can be eliminated using a co-mobile reference frame for infinite systems. Despite the
usefulness of the continuous limit to approximate the system solutions [20], we have recently proven that nonreciprocal
coupling in discrete systems induces instabilities that are not present in their continuous limit [21].

Without loss of generality, one can choose two reference states such that f (0) = 0, f ′(0) > 0, f (a) = 0, and f ′(a) < 0,
where ui = 0 and ui = a are equilibria (i = 0, 1, 2, . . . ,N). Fig. 3 depicts the typical reaction term under consideration.
We assume that there exists a solution connecting both equilibria – a FKPP front – where ui = 0 and ui = a are unstable
and stable states, respectively. Fronts are particle-type solutions characterized by a position and core. In particular, the
position is defined as the coordinate or index with the greatest spatial variation.

2.1. The overdamped Nonreciprocal Frenkel-Kontorova model

When f (ui) = sin ui and α = 0 in Eq. (1), the model is known as the overdamped Frenkel-Kontorova model [12]. When
inertia is not neglected, the Frenkel-Kontorova model naturally arises in a variety of systems such as crystal lattices,
nonlinear oscillators, and Josephson junctions [12]. For large enough dissipation, a first-order equation can be written.
Thus, the generalized overdamped Frenkel-Kontorova model with nonreciprocal coupling reads

u̇i = sin ui + (D − α)(ui+1 − ui) − (D + α)(ui − ui−1). (2)

A physical example is depicted in Fig. 2(a), which represents a chain of pendula where the upside-down and upright
position corresponds to ui = 0 and ui = π , respectively. Note that the small cylinder illustrates a nonreciprocal
coupling element and, at the border of the chain, the colored pendulum has a fixed position slightly different from
zero. Moreover, note that we have swapped the usual equilibria for numerical convenience (commonly one finds in
the literature f (ui) = − sin ui, which is recovered with a linear transformation). Then, the mismatch boundary condition
can read u0 = ϵ, with ϵ the deviation from the unstable equilibrium value. Fig. 2(b) and 2(c) show the typical FKPP front
profile propagating to the left (into the unstable state) with speed v(D, α), corresponding to the absolute regime. Panel 2(d)
shows a critical situation when the speed of the front is zero, i.e., the system exhibits an absolute convective–instability
for a critical value of the nonreciprocal coupling parameter. Finally, panel 2(e) depicts the front in the convective regime,
i.e., when the front propagation direction is reversed, spreading the zero equilibrium into the non-null state. Similar
models to Eq. (2) can be found in the literature [21,24].

2.2. Nonreciprocal Fisher–Kolmogorov–Petrovskii–Piskunov model

When one considers f (ui) = ui(1 − ui) and α = 0, Eq. (1) is known as the Fisher–Kolmogorov–Petrovskii–Piskunov
model, originally written to describe combustion processes or the growth of a mutation in a population. It serves as
a general model for population growth and saturation, being capable of describing the number of animals, bacteria,
vegetation, and humans [22]. The generalization of the FKPP model that includes the nonreciprocal coupling is

u̇i = ui(1 − ui) + (D − α)(ui+1 − ui) − (D + α)(ui − ui−1). (3)

Similar equations can be found in [25–27], where nonreciprocal terms account for inhomogeneous food supply or
external flows driving population movements, such as tides or winds.

3. Mean velocity of FKPP fronts

The calculation of the front propagation speed has been addressed in several continuous or discrete physical examples
with various techniques [10,11]. The main difference between front propagation in continuous and discrete media is that
in the former, the front speed is constant, whereas, in the latter, it is characterized by having hopping dynamics [28]. Here,
we employ a similar method to determine the front mean velocity in discrete media following Refs. [10,21]. Considering
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Fig. 4. Giant boundary layers in discrete systems. Examples of giant boundary layers of non-reciprocally coupled discrete systems, parameters
D = 1.5 and α = 1.4 for both the overdamped Nonreciprocal Frenkel-Kontorova model Eq. (2) and the Fisher–Kolmogorov–Petrovskii–Piskunov
model Eq. (3). Panels (a) and (c) show the initial and final state of ui . Panels (b) illustrate the spatiotemporal evolution of the system. (d) Phase
portrait representation of the initial and final front profile.

Fig. 5. Giant Boundary layer size characterization. (a) Boundary layer size Nc as a function of the parameters (D, α) and the boundary condition
value ϵ for model Eq. (2). (b) and (c) show the dependence of Nc in different planes of constant ϵ value, corresponding to log10 ϵ = −20 and
log10 ϵ = −300, respectively.

the ansatz un ∼ ek(n+⟨v⟩t) in Eq. (1)—where k and ⟨v⟩ correspond to the front steepness and mean velocity—after
straightforward calculations, one obtains

⟨v(k)⟩ =
f ′(0) − 2D

k
+ 2

(
D cosh k − α sinh k

k

)
, (4)

where f ′ accounts for the derivative of the f function. For bounded perturbations, the front velocity ⟨v(k)⟩ tends to its
minimum with respect to k, ⟨v⟩min [11]. Considering this ⟨v⟩min, one can determine the critical parameter αc for which
the front changes its propagation direction. Namely, it suffers an absolute-convective instability at [21]

D =
f ′(0)
4

+
α2
c

f ′(0)
. (5)

Note that for the models considered here, f ′(0) = 1. Additionally, replacing the continuous limit approximations D =

Ddiff/l20 and α = αadv/2l0 in the previous formula, one recovers the usual absolute–convective instability threshold in the
continuous limit αadv = 2

√
Ddifff ′(0) [29], corresponding exactly to the speed of FKPP fronts in the continuum limit [30].

4. Numerical observations

Numerical simulations of Eqs. (2) and (3) were conducted using a Runge–Kutta of fourth order algorithm, with the
aforementioned boundary conditions (u0 = ϵ and uN+1 = uN−1). Simulations are initialized with the initial condition
ui = 0 for i = (2, 3, . . . ,N) and u1 = 0.1, corresponding to a small bounded perturbation near the left flank edge of
the system. Surprisingly, the FKPP fronts propagation is frustrated due to the left boundary condition and the discrete
nature of the system. Fig. 4 shows the failure for models Eqs. (2) and (3). We can see that the front propagates with a
constant average speed and abruptly stops, frustrating its propagation. Let us denote the position where the front stops as
Nc (the equilibrium front position), which corresponds to the boundary layer size. Note that the final profile of the front,
i.e., its profile when the propagation stops, is different from the one it has while is propagating, see Figs. 4(d). A similar
phenomenon is observed in the phase propagation of parametrically driven systems [31].

For N > Nc , the boundary layer size Nc is determined numerically by direct simulation of the dynamical system.
Fig. 5(a) shows the boundary layer size in the parameter space (D, α, ϵ). Panels 5(b) and 5(c) show the (D, α) dependence
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Fig. 6. Convective instability of FKPP fronts and boundary layer size. (a) and (b) exhibit the Nc dependence on parameters close to the convective
instability of FKPP fronts characterized by D = 1/4+ α2

c . Insets show a horizontal cut where a change in behavior is observed at the instability. For
(a), log10 ϵ = −10. For (b), log10 ϵ = −320.

for fixed values of ϵ corresponding to log10 ϵ = −20 and log10 ϵ = −300. Note that the phenomenon cannot be observed
if N < Nc because the boundary layer size would be greater than the system size, remaining unnoticeable.

We further study the region near the absolute-convective instability curve given by Eq. (5). One can observe that this
bifurcation separates regions of small and large boundary layers depending on the boundary condition value, as seen in
Fig. 6. The effect of the absolute-convective instability on boundary layer size is amplified when the boundary condition
value ϵ goes to zero approaching the equilibrium value, as seen when comparing the insets of Figs. 6(a) and 6(b).

5. Equilibrium position of front-like solutions

To shed light on the steady states of the model Eq. (1), we use a method similar to the one used in Ref. [32]. This
corresponds to solving the recurrence relation or map when one imposes the equilibrium condition u̇i = 0 and the
boundary conditions. In our case, u0 = ϵ is the initial condition for the map, and its recurrence relation reads

0 = f (ui) + (D − α)(ui+1 − ui) − (D + α)(ui − ui−1). (6)

Note that the above equation corresponds to a bi-dimensional map [33]. In the case of D = α, the map simplifies because
equation (6) becomes a one-dimensional map. This corresponds to a unidirectional type of coupling, with only backward
feedback being applied in the chain. Despite the particular parameter values, this limit illustrates in a simple way the
equilibrium front position calculation Nc . In the unidirectional coupling limit, the map recurrence reads

ui = ui+1 −
f (ui+1)
2D

≡ g(ui+1),

u0 = ϵ. (7)

The value of Nc can be found iterating the map (7), and seeking the iteration step i∗ in which the function |ui∗ | − a/2
changes its sign, where a corresponds to the non zero equilibrium value (cf. Section 2). As Nc rarely coincides with an
element position of the discrete chain; we interpolate linearly |ui∗ | − a/2 between i∗ and i∗ + 1, then, one can find a
continuous value of Nc looking for the zero of the interpolated function.

To iterate map (7) from an initial condition, one generally needs to numerically invert the relation to obtain the map
ui+1 = g−1(ui). To illustrate the method, we use the nonreciprocal FKPP model Eq. (3). In this case, one can obtain the
recurrence relation analytically

ui+1 =
1 − 2D +

√
(1 − 2D)2 + 8Dui

2
. (8)
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Fig. 7. Map iteration representation. Iterations of the resulting recurrence relation for the stationary solutions of the Nonreciprocal Fisher–
Kolmogorov–Petrovski–Piskunov model (3). (a) Bi-dimensional map for D = 0.6 and α = 2. (b) Unidirectional coupling case for D = α = 0.6.
u0 value is the initial condition of the map, which corresponds to the boundary condition of the discrete equation. (c) Boundary layer size as a
function of the mismatch ϵ for the unidirectional coupling case D = α for different values of D. Dots are the boundary layer size after equilibrium
is reached in the numerical simulation of Eq. (3). Dashed lines are obtained from iterating map (8).

Fig. 7 shows the iteration of map (6) for the FKPP model, that is, f (ui) = ui(1 − ui). In particular, Fig. 7(a) shows the
case when α ̸= D, corresponding to the bi-dimensional map where the dots exemplify a starting point (uk, uk−1) and
its resulting value uk+1. Fig. 7(b) illustrates the map iteration when α = D. The unidirectional coupling case perfectly
illustrates the fact that the heteroclinic orbit requires an infinite number of iterations, as predicted for ϵ = 0 and,
therefore, in agreement with the convective regime. For any other value of ϵ, the number of iterations to reach ui = 0.5
(a/2 = 0.5 for FKPP model Eq. (3)) is finite, and can be determined numerically avoiding the singularity in the number of
steps as one approaches fixed points. Finally, one can compare the results obtained for the boundary layer size Nc using
direct numerical integration of the motion equations versus the map iteration approach, showing a perfect agreement as
illustrated in Fig. 7(c).

6. Analytical approximation for Nc

A naive treatment of the problem suggests that (supported by its local linear dynamics and dimensional analysis) the
time in which a perturbation u = ϵ reaches a O(1) value corresponds to τ ∼ − log(ϵ). This, together with a characteristic
speed v(D, α) gives a characteristic length Lc ∼ −v(D, α) log(ϵ). Indeed, for α > αc one can fit the boundary layer size
obtained by direct numerical simulations with the formula

Nc(D, α, ϵ) = c(D, α) − K (D, α) log(ϵ). (9)

The previous Eq. (9) is found by solving the linear dynamics of the map Eq. (6). To achieve this, one can define pi = ui−ui−1
and solve equation (6) for ui+1. Remind that most steps of the iteration occur around the fixed point u = 0 and, for this
reason, we linearize the dynamics around this point, obtaining

pi = ui − ui−1, (10)

ui+1 =
−f ′(0)ui + (D + α)pi

D − α
+ ui. (11)

Replacing pi = Abi, ui = Aqbi, and imposing u0 = ϵ, one finds

ui = ϵbi ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϵ

(
D−1/2
D−α

−

√(
D−1/2
D−α

)2
−

D+α
D−α

)i

if αc < α < D,

ϵ

(
D−1/2
D−α

+

√(
D−1/2
D−α

)2
−

D+α
D−α

)i

if α > D.

(12)

Then, replacing i = Nc and uNc = 1 in Eq. (12) and solving for Nc (taking into account both signs of the different intervals),
one obtains

Nc = −
log ϵ

log b
≡ −K (D, α) log ϵ. (13)

The previous relation allows obtaining the main features of Nc , that is, the logarithmic relation with ϵ and the constant
of proportionality K (D, α). From here, one can deduce that the constant c(D, α) of Eq. (9) accounts for corrections to the
linearized map approximation and the election of uNc . One can see from Fig. 8 that for α > αc the value of c(D, α) is a
small constant. A perfect agreement between the predicted and numerically obtained values for K (D, α) is also seen.
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Fig. 8. Giant boundary layer analytic characterization. Values of the fitting constants K and c for the boundary layer size Nc from formula (9).
Panels (a) and (b) show K and c as a function of α, respectively. Dots correspond to the numerically obtained values. Dashed lines are the analytical
prediction of Eq. (13). The vertical gray lines highlight the value of αc (D).

7. Contrast with boundary layers in reciprocally coupled systems

The theory developed in the previous sections predicts the boundary layer size of nonreciprocally coupled nonlinear
systems for α > αc =

√
f ′(0)D − f ′2(0)/4. Moreover, it is depicted how these boundary layers diverge in size in the limit

as ϵ → 0, a phenomenon not observed in systems with reciprocal coupling. These systems exhibit boundary layers of
finite size independently of the mismatch value ϵ. For ϵ ≪ 1, the effect of the mismatch is negligible, and the boundary
layer size is mainly determined by the reciprocal coupling coefficient D. As mentioned earlier, in the continuum limit,
the dependence of the boundary layer size on Ddiff is a square root function, that is, Lc ∼

√
Ddiff. Then, considering that

Lc = Nc l0 and Ddiff = Dl20, it is straightforward to obtain that N reciprocal
c ∼

√
D. To deduce the previous relationship

analytically, we consider the continuum limit of Eq. (2) in the steady-state regime

0 = sin u + Ddiff∂xxu, (14)

which is a Newton-type equation for a fictitious particle of equivalent mass Ddiff, and it has a closed-form solution u(x)
even if we change the force-like term, sin u, by another well-behaved function. Imposing the boundary condition u(0) = ϵ
and, after straightforward calculations, the solution to Eq. (14) is

Λ(u) − Λ(ϵ) =

√
2

Ddiff
x, (15)

where Λ(u) =
√
2arctanh [sin(u/2)]. Defining the position of the boundary layer following the previous section,

i.e., u(Lc) = 1 and replacing it in Eq. (15), one immediately obtains Lc =
√
Ddiff[Λ(1)−Λ(ϵ)]/

√
2. Note that this expression

describes fairly well the boundary layer size Nc , despite it was calculated in the continuum limit. Hence, the ratio between
the size of the boundary layers when α > αc and α = 0 is

S ≡
Nc(α,D, ϵ)

N reciprocal
c (D, ϵ)

=
√
2

K (α,D) log ϵ−1

√
D[Λ(1) − Λ(ϵ)]

. (16)

Note that Λ(1) is a constant of order one that changes for each model (different reaction functions f ). It is easy to check
that as ϵ → 0, then S → ∞, i.e., there is a giant boundary layer. Additionally, S only grows with α because K (α,D)
monotonically increases as function of it, see Fig. 8(a). Fig. 9 illustrates the dependence of N reciprocal

c (D, ϵ) obtained by
direct numerical simulations of Eq. (2). In particular, panel (a) shows the dependence N reciprocal

c ∼
√
D and panel (b)

exhibits that the dependence on ϵ is negligible. Additionally, panels (c), (d), and (e) show boundary layers, with α = 0,
α < αc , and α > αc , respectively, in a chain of coupled pendula obtained numerically from Eq. (2). From this chart, one
can see that for α < αc , the boundary layer is composed of a few pendulums, contrasted with the case α > αc in which
a counter-intuitively large number of pendulums form a giant boundary layer.

8. Discussion and perspectives

The results obtained in this work describe a phenomenon that is unavoidable numerically and experimentally. The
observation of giant boundary layers arises when a system has the following three ingredients: individual (local) nonlinear

8
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Fig. 9. Characterization of boundary layers in the reciprocal case and visual comparison with giant boundary layers. (a) and (b) illustrate the
dependence of the boundary layer size in the reciprocal case on the parameters, Nc (α = 0,D, ϵ) ≡ N reciprocal

c (D, ϵ). (c), (d), and (e) show a visual
representation of the boundary layers in a chain of pendulums with data obtained from direct numerical integration of Eq. (2) with D = 1, ϵ = 10−3 .
α values are α = 0, α = 0.5, and α = 2, respectively.

dynamics, nonreciprocal coupling, and boundary conditions. In particular, nonlinear dynamics and nonreciprocal coupling
allow for front propagation and the absolute-convective instability. The latter generates counter-intuitive dynamics when
α > αc , allowing the propagation of upside-down pendulums over their intuitively rest state due to gravity. Moreover, if
one considers particular boundary conditions, the giant boundary layer naturally arises.

Boundary conditions may be hard to handle in real-life situations. Furthermore, experiments are generally subjected to
fluctuating drivers that may be stochastic or deterministic. These fluctuations can also be responsible for the formation of
giant boundary layers even if a perfect match at the boundary is considered (ϵ = 0). In this case, the boundary layer size
is dynamic, i.e., it fluctuates around a mean value. The characterization of giant boundary layers subjected to fluctuations
is a work in progress. Boundary layers are affected by the fluctuations, and also other downstream states generated by
the nonreciprocal coupling, such as patterns [21].

Another aspect to have in mind is that, similar to what happens in experiments, boundary conditions can be challenging
to handle in numerical simulations. Both experiments and simulations have finite accuracy in the relevant variables of
the problem under study. Throughout this work, we highlight the numerical difficulties that can arise when handling
arbitrarily small numbers (due to the finite representation of real numbers in computers). Moreover, the limit ϵ → 0
is not accessible, and its application to numerical simulation leads to wrong results (a finite-size giant boundary layer),
where only the analytical theory enlightens the correct solution (an infinite-size boundary layer, or equivalently, the
observation of the convective instability).

Finally, the implications that giant boundary layers could have in real systems are variable and difficult to visualize. The
giant boundary layer composes a region in which the equilibrium states of the nonlinear systems are virtually swapped.
The true equilibrium of the system is reached for the individual elements ui only for i > Nc . For example, in the chain of
pendulums, inside the giant boundary layer, there is stored potential energy that would release once the nonreciprocity is
turned off; in the case of arrays of coupled Josephson junctions, the giant boundary layer would produce a steady current
peaking at the boundary layer position. Finally, in the propagation of populations, the giant boundary layer connects
large regions of negligible population with regions at full capacity. If the population modeled is a disease, a large portion
of healthy individuals could be held inside the giant boundary layer thanks to nonreciprocity. Further development of
nonreciprocal elements will unveil the impact of the naturally arising giant boundary layers.

9. Conclusions

Based on a theoretical and numerical study, we predict how ‘‘imperfections" in the value of boundary conditions induce
the frustration of absolute-convective instability. This establishes a boundary layer whose size is determined with the map

9
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iteration of the resulting equation for the equilibrium. These boundary layers are observed to use almost all of the space,
even for small imperfections; thus, we call them giant boundary layers. The method proposed allows us to determine
the giant boundary layer size or the mismatch in the boundary condition. Our findings show that this mismatch in the
boundary condition for nonreciprocally coupled systems is relevant in controlling the boundary layer size. Moreover, the
results are expected to hold for a great variety of discrete systems exhibiting FKPP fronts with broken spatial reflection
symmetry.

We highlight that the difficulty of using computers to perform a numerical calculation is the finite resolution. The
maps describing the equilibria of the systems cannot reach all the values in the real axis, making truncation errors. In
other words, even if one initializes the system without mismatch at the boundary, in a finite number of steps, a boundary
layer will appear in numerical simulations.
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Complements and perspectives on
Part I

1. Nonreciprocal coupling effects on fronts into the
stable state

Having analyzed fronts into the unstable state, we proceed to provide some perspectives in
the case of fronts into the stable state. Consider our nonreciprocal Frenkel-Kontorova model
discussed in part I, including a homogeneous forcing so the homogeneous states have different
energies. Equivalently, restricting only to two stable equilibria (instead of the infinite ones
of the Frenkel-Kontorova model), one can employ without loss of generality the imperfect
pitchfork normal form coupled to nearest neighbors nonreciprocally, reading

Ȧk = η + ϵAk − A3
k + (D − α)(Ak+1 − Ak) − (D + α)(Ak − Ak−1). (2.1)

Similar to the methods in the continuum limit, one would like to find traveling solutions of
the form Ak(t) = A(k − x0(t)); but, as we already know, different to the continuum limit
fronts solutions in a discrete grid will exhibit hopping dynamics. We make the surprising
remark that the front shape Ak(t) can be obtained from a continuous profile A(z = k−x0(t)),
provided its position is known. For different definitions of the position, a continuous profile
A(z) from which the state of the system cells Ak(t) is obtained at all times. This will allow us
to deduce an implicit formula for the velocity, which considers the hopping dynamics of the
front, getting an expression for the velocity free of fitting parameters (implicitly depending
on the front solution and the system parameters).

The front position

First, we define the position of the front. A straightforward definition is to set a threshold
value AT such that if Ai0(t) < AT < Ai0+1(t), then we define

x0 = i0 + AT − Ai0(t)
Ai0+1(t) − Ai0(t) . (2.2)

This is just the continuous value x0 at which the linear interpolated profile Ai(t) reaches AT .
The front profile at different times as a function of z = k − x0(t) is seen in figure 2.1. One
notices that the fronts do not translate as a rigid object. One can choose any value of AT
between the values of the equilibria. We selected AT = 0 for simplicity.
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Figure 2.1: Fronts into the stable state obtained from numerical integration
of Eq. 2.1. The three panels show the solutions Ak(t) as a function of z =
k − x0(t) at 20 seconds (simulation time) intervals. Parameters correspond
to η = 0.2, ϵ = 1, D = 0.1, α = −0.05.

The continuous profile characterizing the discrete front

Surprisingly, if one collects several time snapshots of the points (z, Ak(t)), we notice that the
cloud of points collected converges to a continuous function, as illustrated in figure 2.2. This
fact allows for a formal change of variables in equation 2.1

Ȧk(t) = −ẋ0A
′(z).

We can convert the N equations (N is the number of cells composing the system) to the
following expression

−ẋ0A
′(z) = (η + ϵA(z) − A3(z)) + (D − α)(A(z + 1) − A(z)) − (D + α)(A(z) − A(z − 1)),

= f (A(z)) + (D − α) (A(z + 1) − A(z)) − (D + α) (A(z) − A(z − 1)) .

It is important to note that the previous expression still composes N equations, as z =
k − x0(t). We eliminate the spatial dependence multiplying by A′(z) and summing over the
N elements, then

−ẋ0 =
∑
k(f (A(z)) + (D − α)(A(z + 1) − A(z)) − (D + α)(A(z) − A(z − 1)))A′(z)∑

k (A′(z))2 . (2.3)

Since the profile A(z) can be extracted from the numerical simulations, we can use the
formula 2.3 to obtain the velocity exactly. To close the problem and obtain an explicit
solution for ẋ0(t), we need to provide an analytical solution A(z) for the continuous front
profile. Solutions A(z) are currently being explored, following methods similar to the ones
proposed by Flach and Kladko [41].

The Peierls-Navarro potential revisited

We can explore the expression 2.3 further. One can note that the front profile A(z = k−x0(t))
gives the same value if we consider the transformation k → k + 1 and x0(t) → x0(t + τ) =
x0(t) + 1 for some τ . τ is the time the front position takes to advance one cell. Now, we
need to consider expressions of the type ∑N

k A
m(z = k − x0(t)); for a fixed time t, we are
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Figure 2.2: The continuous front profile obtained by collecting the solution
points (z, Ak(t)). The left panel shows the profile around the position of the
front, and the right insets show more detail up to the points forming the
continuous function; 500 time snapshots were used to construct this figure.
Parameters correspond to η = 0.2, ϵ = 1, D = 0.1, α = −0.05.

choosing N points from the continuous profile A(z) and summing them. These N points will
repeat (except by the two at the ends of the chain) again after the time τ , or equivalently,
when a shift in one cell occurs. Then, the expression 2.3 can be either considered a periodic
function of t (of period τ) or a periodic function of x0 (of period one). This allows writing
ẋ0 in a Fourier series representation; moreover, the numerator and denominator in Eq. 2.3
can be expressed in Fourier series separately. The denominator reads(∑

k

A′(z)2
)

(x0) = A0
[
A′(z)2

]
+

∞∑
n=1

(
An

[
A′(z)2

]
cos(2πnx0) +Bn

[
A′(z)2

]
sin(2πnx0)

)
.(2.4)

Which we compactly write (∑
k

A′(z)2
)

(x0) = M0 +
∑
n

Mn. (2.5)
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The Fourier coefficients have interesting formulas reading

An
[
A′(z)2

]
=

∫ 1

0

(
N∑
k=1

A′(z)2
)

cos(2πkx0)dx0

=
N∑
k=1

∫ 1

0
A′(z)2 cos(2πnx0)dx0

=
N∑
k=1

∫ i

i−1
A′(z)2 cos(2πn(i− z))dz

=
∫ N

0
A′(z)2 cos(2πnz)dz, (2.6)

and

Bn

[
A′(z)2

]
=

∫ 1

0

(
N∑
k=1

A′(z)2
)

sin(2πnx0)dx0

= −
∫ N

0
A′(z)2 sin(2πnz)dz. (2.7)

They could be reduced to integrals of the continuous profile characterizing the front dynamic.
Similar expressions follow for the numerator terms. The local term f(A) contributes(∑

k

f(A)A′(z)
)

(x0) = A0 [f(A)A′(z)] +
∞∑
n=1

(An [f(A)A′(z)] cos(2πnx0)+ (2.8)

Bn [f(A)A′(z)] sin(2πnx0)) . (2.9)

Note thatA0 [f(A)A′(z)] = −(V (z → ∞)−V (z → −∞)) = −∆V , with V (A) = −
∫ A f(x)dx.

The front speed has a contribution proportional to the free energy density, similar to fronts
in the continuum limit; however, due to the grid, it has periodic contributions. Then, we
compactly write (∑

k

f(A)A′(z)
)

(x0) = −∆V +
∑
n

Fn(x0). (2.10)

One can compute the rest of the terms as follows

D
∫

[A(z + 1) + A(z − 1) − 2A(z)]A′(z)dz = 2D
∫

[(cosh ∂z − 1)A(z)]A′(z)dz

= 2D
∫ ([ 1

2!∂
2
z + 1

4!∂
4
z + ...

]
A(z)

)
A′(z)dz

= 2D
[ 1
2! (A′(z))2

∣∣∣N
0

− 1
4!2 (A′′(z))2

∣∣∣N
0

+ ...
]

= 0. (2.11)
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To obtain the last line, one uses the fact that the profile A′(z) and its derivatives vanish at
the ends of the front. Similarly

α
∫

[A(z + 1) − A(z − 1)]A′(z)dz = 2α
∫

([sinh ∂z]A(z))A′(z)dz

= 2α
∫ [

A′(z) + 1
3!A

′′′(z) + ...
]
∂zuF (z)dz

= 2α
∫ [

(A′(z))2 − 1
3!(A

′′(z))2 + 1
5!(A

′′′(z))2 − ...
]
dz

≡ 2α(M0 +Mα), (2.12)

where M0 =
∫
(A′(z))2dz repeats in the denominator of equation 2.3. Then, we can write for

equation 2.3 the following

−ẋ0 = −∆V − 2α(M0 +Mα) +∑
n=1 Fn(x0)

M0 +∑
n=1 Mn(x0)

. (2.13)

We can compare what is obtained using implicit formula 2.13 using four terms in each sum-
mation with the plain truth of computing ẋ0(t) numerically in figure 2.3. What remains
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Figure 2.3: Velocity of the front as a function of the position ẋ0(x0). The
graph shows the plain truth, the implicit formula 2.13 using four terms, the
average velocity, and the approximation to the average velocity from the
continuum limit (corresponding to just the first term in each series of 2.13).
Parameters correspond to η = 0.2, ϵ = 1, D = 0.1, α = −0.05.

an open question is to obtain an approximation or explicit solution to the continuous front
profile A(z) characterizing the discrete cells at all times. If that is possible, then the formula
2.13 would become explicit, and the velocity would be written as a function of the system
parameters only (in this case η, ϵ, D, and α).
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2. The effect of fluctuations
Up to now, we have studied deterministic systems. However, it is often realistic to include
fluctuations that are approximately random. The idea that a fluctuating force acts on a
particle is not new and comes down to Brown (who observed such a phenomenon on suspended
particles) and Einstein (who revealed an explanation using statistical mechanics); see [60]
and references therein. It models the several degrees of freedom we ignore when writing
effective equations for the macroscopic world.

In general dynamical systems, the fluctuating terms do not necessarily refer to the ignored
motion of microscopic particles, but can model other complex processes that produce small
perturbations in timescales that are not relevant. To the terms that we allow to fluctuate
randomly, we call them noise (in reality, the random process is an idealization, as a real
random process would generate a discontinuous forcing and the dynamical system would not
be well defined anymore). For example, noise terms are used to model the current fluctuations
in several electrical components.

Noise effects in a chain

We analyze the effect of including noise terms in the dynamics of front propagation into
the unstable state. For this, we propose the inclusion of additive noise to the overdamped
nonreciprocal Frenkel Kontorova model introduced in chapter 1, reading

Ȧk = sinAk + (D − α)(Ak+1 − Ak) − (D + α)(Ak − Ak−1) +
√

Γξk(t). (2.14)

The terms ξk(t) are fluctuating functions that drive each cell independently and Γ is the
noise intensity level. In our idealization of these random forces, we assume they have a
Gaussian distribution and are delta-correlated in time, a white noise [60]. This means that
there are not memory effects in the fluctuations. The same analysis could be performed
with analogous models such as the imperfect pitchfork normal form nonreciprocally coupled
2.1. One readily notes that a fluctuating force driving each cell will rapidly put them out of
their unstable equilibrium value, destroying the mechanism for propagating fronts into the
unstable state. Indeed, fronts into the unstable state collapse; the dynamic is controlled by
fronts into the stable state and the self-assembled pattern states already reported. The phase
diagram is shown in figure 2.4, which can be compared to the one in the deterministic case
reported in chapter 1. The phenomena displayed are types of noise sustained structures; they
occur whenever an unstable state can be stabilized in the laboratory reference frame due to
to advective transport [61]. This condition coincides with the absolute-convective thresh-
old; then, noise will constantly drive the system out of the convective unstable equilibrium,
releasing different structures. At the same time, the fixed boundaries sustain that process
permanently [61].

3. Experimental perspectives
A system available in the laboratory of robust phenomena at the physics department of the
University of Chile can exhibit nonreciprocal coupling. There, coherent light from a laser
interacts with a nematic liquid crystal in a planar cell (the x−y plane) with planar boundary
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Figure 2.4: Phase diagram of Eq. (2.14). Four regions could be differentiated
by analyzing the order parameters corresponding to the domain walls’ total
and boundary layer sizes. Region I corresponds to the homogeneous, stable
state. II shows permanent domain wall dynamics with thin boundary layers.
In region III, the boundary layer enlarges drastically before the permanent
domain wall dynamics. In region IV, stable self-assembled patterns can be
observed. Continuous lines are a guide to the eye for the bifurcation places.
Dashed lines correspond to analytical curves obtained from using the front
into the unstable state velocity expression.

conditions. The reflected light having a phase modulation due to the orientation of the liquid
crystal molecules θ(x, y) is subjected to an optical path with different operations and later
returned to force the liquid crystal cell, which we call the feedback beam. If the feedback
beam suffers a translation or rotation δr in the transverse coordinates (x, y) to propagation,
then, points (x, y) of the device will be coupled with points (x, y) + δr of the feedback beam,
which is just a nonlinear transformation of the orientation field θ(x, y). When discretized,
such a coupling is described by an adjacency matrix with a nonvanishing anti-symmetric
part; thus, it corresponds to a nonreciprocal coupling.

The liquid crystal light valve

A scheme of the liquid crystal cell subjected to the laser beam and the feedback beam, called
liquid crystal light valve (LCLV), is given in figure 2.5. A HeNe laser beam is collimated
and passed through a spatial light modulator (SLM). This allows us to have the desired
wavefront E ≈ E(x, y)ei(kz−ωt) dictated by what we program in the SLM. A polarizer beam
splitter (PBS) selects a polarization direction for the reading light incoming from the left
to the liquid crystal light valve (LCLV) device. At this stage, the device is subjected to a
sinusoidal voltage difference V0 between the plates. The effective electric field will realign
the molecules of the liquid crystal in an average direction that we call the device axis (which
at rest corresponds to the x direction). The nematic molecules correspond to a birefringent
medium and is characterized by its ordinary and extraordinary refractive indexes no and ne.
The device axis is, on average (across the light propagation direction) tilted at an angle θ
with respect to the axis x, which we let also vary in the transversal direction θ(x, y). At
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Figure 2.5: Experimental setup in which nonreciprocal coupling is possible.

the left end of the LCLV, the laser beam is divided into the ordinary and extraordinary
beams, having different phase velocities; once crossing two times the device thickness d, they
recombine and interfere according to the accumulated phase difference inside the birefringent
medium. If we let

E(x, y) =
(

cosψ1

sinψ1

)

describe the polarized beam (with a polarizer making an angle ψ1 with x) coming at the
left of the LCLV. Then, the beam will cross two times the thickness d of the LCLV, and
the components will obtain a phase difference of β = 2dk(n(θ) − no). n(θ) is the effective
refractive index reading [62, 63]

n(θ) = cos2 θ

ne
+ sin2 θ

no
.

For small difference of the refraction indexes ∆n = ne − no, n(θ) ≈ no + ∆n cos2 θ. Then,
β = 2dk∆n cos2 θ and

Eref.(x, y) =
(
e−iβ cosψ1

sinψ1

)

is the reflected beam that will enter again at the PBS. A portion of the reflected beam can
pass the PBS up to the second beam splitter (BS), which continues through a lens and allows
to image the light electric field at the LCLV in the plane marked with a dashed line. Lastly,
it enters the feedback loop closed by the high-resolution optical fiber bundle (FB). This light
corresponds to Eref. passing through a second polarizer with angle ψ2 = ψ1 − π/2. The light
in the image plane (dashed line in figure 2.5) has the form

Eim.(x, y) =
(

cos2 ψ2 cosψ2 sinψ2

cosψ2 sinψ2 sin2 ψ2

)(
e−iβ cosψ1

sinψ1

)
.
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The field Eim.(x, y) reaches the FB, which is translated with respect to the propagation axis
a distance δ in the x direction. The FB may not necessarily be placed in the image plane;
therefore, there is a distance L in which the beam is subjected to free propagation in space.
Therefore, the electric field reaching the photoconductor, which we call the feedback field, is

Efeedback(x, y) = e−i L
2k

∇2Eim.(x+ δ, y).

It is important to mention that we neglect all the retardation effects due to the negligible
length of the total optical path.

The dynamics of the orientation field

One can see that the orientation field θ is related to the feedback field Efeedback via a complex
transformation. We remind that θ is affected by the effective electric field inside the LCLV.
When the feedback beam reaches the photoconductor (PC), the potential difference between
the plates is modified, and the effective electric field the molecules perceive is

Eeff = ΓV0

d
+ α

d
|Efeedback|2,

where α is a phenomenological constant describing the PC effect and Γ the impedance of the
LCLV. We have assumed that the voltage frequency is much faster than the characteristic
frequency response of the LCLV reorientation. A model for the orientation angle θ considering
these arguments has been proposed [4, 24], we modify it to include the translation of the FB
yielding a nonreciprocal coupling for the orientation field θ as follows

τ
∂θ

∂t
= l2∇2θ − θ + π

2

1 −
√√√√ ΓVFT

ΓV0 + α|eδ ∂
∂x e−i L

2k
∇2Eim.|2

 . (2.15)

τ and l are characteristic time and length scales to be experimentally determined [4, 24, 64].
This equation is valid if the effective electric field inside the cell Eeff exceeds the Fréedericksz
threshold EFT . Otherwise the equation reads τ∂tθ = l2∇2θ − θ.

Building a discrete grid of dynamical systems

Employing the SLM, it is possible to shape the amplitude of the feedback beam (and the
reading one). For example, one can create a circular mask to force only a small region of the
LCLV to be illuminated. This can represent our singular cell, which exhibits bistability and
thus fronts into the stable state can be analyzed. Then, we create an array of individual cells
separated by enough distance such that perturbations can propagate between cells. Figure 2.6
illustrates this behavior. Panel a) shows the single cells created thanks to the SLM exhibiting
bistability for the output light intensity versus the applied voltage, which show a controllable
propagation velocity. Panel b) corresponds to the numerical propagation velocity of the
stable state for the right and left ends using a prototypical model; nonreciprocal coupling
becomes evident as the speeds of counter-propagating fronts are not equivalent. Work is
being developed in deriving an effective discretized equation that accounts for the dynamics
of the ’light cells’ induced, see figure 2.6 a). Preliminary results show that a method similar
to a tight binding reduction could be useful when considering the modulation produced by
the SLM in the governing equations for θ. Then, applying the formulas derived for fronts
into the stable state, we can gain insight into the result shown in figure 2.6 b); indeed, linear
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Figure 2.6: Preliminar experimental results. a) shows the single cells in-
duced. b) shows measures of the propagation velocity against the non-
reciprocity parameter in a numerical prototypical model. Experimental
measures are thanks to Manuel Díaz, Amaru Moya, and Pedro Aguilera,
collaborators in this work.

nonreciprocal coupling (δ) will produce a term ẋ0 ∝ −∆V + δ + ..., that would explain the
linear behavior of the velocity. Efforts are being directed to develop the experiment.
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Part II: Nucleation of defects and
interfaces

The front solutions discussed until now break the homogeneity of space; thus, they are called
defects in various contexts involving many particle or field theories. Defects are robust and
require considerable energy (or effort) to destroy; however, they easily interact and annihilate
with other appropriate defects in order to recover the homogeneity of space in the system.
In one dimensional scalar fields, these defects are topological as they can not be destroyed
with smooth transformations of the variable.

Think for example, in the fronts into the stable state we analyzed in the previous chapters.
Forgetting about the boundary effects, in principle one can arrange the front in two ways: I)
From left to right, we could connect the stable state, say u1, with the other stable state u2.
II) From left to right, we could do the opposite and connect from u2 to u1 through space.
These two fronts are equally valid, however they can be characterized by a special number
which we call the charge. When analyzing the spatial variations of our order parameter (in
the example we are talking about, u), we see that we can attribute a charge to each one
according to Q =

∫∞
−∞ ∂xudx/|u2 − u1| = ±1. The sign depends on which front we insert in

the formula for Q, option I, or II.

The idea is simple, charge will be conserved. Starting with an homogeneous order param-
eter Q = 0; we can not create a front with charge Q = 1 without at the same time inducing
the front with charge Q = −1. This simple idea has been widely generalized to higher di-
mensions and even defined in other parameter spaces apart from the configuration one [65].
Interestingly, in more than one dimension, this notion persists. To define the topological
defect charge, we usually encircle the defect with an adequate surface, summing the order
parameter variations [23].

Defects in general can be nucleated when quenching the system such that strong enough
variations in the parameters could induce the formation of defect pairs. In the following
chapters, we will analyze the formation of defects due to stochastic fluctuations in chains of
bistable unit cells, as well as topological defects of the vortex type appearing in the description
of the liquid crystal director tilt and the envelope function of patterns of vegetation biomass.
In the latter example we develop a mathematical model including the natural nonreciprocal
coupling among the vegetation biomass field participants and examine the response of vortices
to this form of nonreciprocity in the coupling.

76



Chapter 3

Thermal Fluctuations Induced
Emergence of Umbilical Defects in
Nematic Liquid Crystal Cells
(Nonequilibrium Thermodynamics
and Fluctuation Kinetics. vol 208. pp
303-312)

Umbilical defects in nematic liquid crystals (NLC) correspond to singularities in the orien-
tation of the nematic order director. They correspond to a natural system in which the
topological defects of the vortex type arise. The system can be easily quenched thanks
to a voltage applied across the NLC cell, an vortices are easily nucleated due to thermal
fluctuations.

In this chapter, we study theoretically, numerically, and experimentally the nucleation of
vortices in NLC cells. We compute the average number of vortices created as a function of the
control parameters, experimentally corresponding to the voltage applied and the temperature
of the cell. These trends are analytically deduced based on a linear theory around the post-
quench unstable stable. Finally, a similar analysis is performed for defects in one dimensional
systems; a prototypical bistable chain analog to the previously introduced Frenkel Kontorova
model is used for its generality and the presence of defects in it. The linear theory based on
the quench of parameters produces fair results both for defects described by a one-dimensional
scalar field, and a two-dimensional complex field.
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Thermal Fluctuations Induced
Emergence of Umbilical Defects in
Nematic Liquid Crystal Cells

Esteban Aguilera, Marcel G. Clerc, David Pinto-Ramos, and Valeska Zambra

Abstract Optical vortices are equally relevant for their fundamental features as
beams with topological properties and applications in image processing, telecom-
munications, optical tweezers, and quantum information. The interaction of light
beams with umbilical defects in liquid crystal cells is a natural source of optical
vortices. Here we investigate, experimentally and theoretically, the mechanisms of
the matter vortices that appear in liquid crystal cells and establish statistical laws
that govern them. Based on an adequate stochastic equation, the law for the number
of nucleated vortices as a function of anisotropy, bifurcation parameter, and noise
level intensity is set. Experimental results show a fair agreement with the theoretical
findings.

1 Introduction

In the last decades, a great effort has been developed to understand spiral output light
beams about their axis of propagation, orbital angular momentum of light or optical
vortex [1–5]. These beams have a donut-like structure, that is, the beam intensity
cancels out into the center, generating a phase singularity into the envelope. Around
the point of zero intensity, the phase distribution forms an N -armed spiral, with N
being the topological charge [2–6]. These optical vortices have aroused interest from
both the fundamental and applied point of view. The photonic applications ranging
from optical tweezers [7–9], enhancement of astronomical images [10], quantum
computation [11], wavefront sensors [12], and data transmission [13]. From a fun-
damental point of view, the interchange of angular momentum between light and
matter has attracted attention (see the collected articles [5] and references therein).
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Fig. 1 Vortex nucleation in a nematic liquid crystal cell with homeotropic anchoring and negative
dielectric anisotropic constant. a Schematic representation of the experimental setup. The rods are
a schematic representation of the average orientations of molecules. b Snapshot of a vortex gas
obtained in the nematic liquid crystal (NLC) cell. The lower inset is a schematic representation of
the director and complex amplitude

Different methods have been used to generate optical vortices based on diffractive
elements [14], deformable mirrors [15], holograms [16], spiral phase plates [17],
nanostructured glass plates [18], and helical structures of liquid crystals [19–22]. In
most of these methods, the light beam interacts with a material object which has a
helicity. Hence, to control the optical vortex, it is important to have an adequate align-
ment between the light beam, the target, and the geometry of it. In the case of liquid
crystals with photosensitive walls, the light induces a vortex in the matter (umbilical
defect), with which interacts, generating an optical vortex [22–24]. These matter vor-
tices are described by a nonlinear amplitude equation, the Ginzburg-Landau equation
with real coefficients [24–26]. When a sufficiently large electric field is applied to
a nematic liquid crystal cell with homeotropic anchoring and negative anisotropic
dielectric constant, a gas of umbilical defects emerge (see Fig. 1). These defects later
begin to be annihilated by pairs with opposite charges [27]. The emergence process
and statistical rules that this phase singularity gas followed have not been established.

Using a liquid crystal cell with homeotropic anchoring and negative dielectric
anisotropic constant under the effect of a transverse voltage allows us to study
the statistical laws that govern the nucleation of vortices. Theoretically, based on
a stochastic amplitude equation, the Ginzburg Landau equation with additive noise,
we establish the law for the number of nucleated vortices as a function of anisotropy,
bifurcation parameter, and intensity of the noise level. Experimental results show a
qualitative agreement with the theoretical findings.
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2 Experimental Setup

Nematic liquid crystals are nonlinear optical media [27, 28], composed by rod-like
molecules that have a preferential orientational order but not a positional one. This
state of matter shares features of solids and liquids, such as fluidity and birefrin-
gence. Introducing a liquid crystal inside a cell, that is, it is sandwiched between
two confining layers, the molecules oriented according to anchoring conditions.
Homeotropic anchoring is characterized by molecules that are oriented orthogo-
nal to cell walls, as illustrated in Fig. 1. If the dielectric anisotropic constant of the
liquid crystal is negative, when applying a vertical electric field, the molecules tend
to orient orthogonal to it. This generates different domains connected by orienta-
tion defects or phase singularities, matter vortices [27]. Let us consider a 15 µm
thick cell, (SB100A150uT180 manufactured by Instec), filled with nematic liquid
crystal LC BYVA- 01 (Instec) with dielectric anisotropy εa = −4.89, birefringence
�n = ne − no = 0.1, rotation viscosity γ = 204 mPas, splay and bend elastic con-
stant, respectively, K1 = 17.65 pN and K3 = 21.39 pN. This sample is placed inside
a thermal control chamber (Linkam LTS420), which in turn is inserted inside a
microscope (Leica DM2700P), in between the crossed linear polarizers. The thermal
control chamber allows precise control of the temperature of the liquid crystal cell.
Likewise, cross-polarizer microscopy enables an efficient vortex detection method-
ology. Figure1a shows a schematic representation of the experimental setup. To
monitor the images a CMOS camera is connected to the microscope. A sinusoidal
voltage with a frequency 100Hz is applied to the sample.

Maintaining the temperature at 26 ◦C, the voltage is turned on, the dynamics of
vortex nucleation and annihilation are recorded. Figure2a depicts the temporal evo-
lution of the observed umbilical defects. To figure out vortex evolution, we have
considered a voltage sweep between 9.0 Vpp and 30.0 Vpp. Likewise, keeping the
voltage at 15 Vpp it is switched on and sweeping the temperature between 25 and
80 ◦C, the dynamics of vortex nucleation is analyzed. From the chart in Fig. 2a, we
infer that there is an abrupt process of vortex nucleation. The vortices are subse-
quently annihilated by pairs of opposite charges, generating a coarsening process
characterized by a power law [29].

3 Theoretical Description

To shed light on the vortex nucleationmechanisms, theoretically, we consider the liq-
uid crystal cell close to orientational instability, which is described by the stochastic
Ginzburg-Landau equation [24–26]

∂t A = μA − |A|2A + ∇2A + δ∂η,η Ā + √
T ζ(r, t), (1)
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Fig. 2 Nucleation and evolution of umbilical defects in a liquid crystal cell driven by an electric
field.aExperimental temporal evolutionof the number of vortices as a functionof time at fixeddriven
voltage of 15 Vpp, 100 Hz, and 26 ◦C. Right panel account for a temporal sequence of snapshots
of the liquid crystal cell driven by an electric field and constant temperature (t1 < t2 < t3 < t4 <

t5 < t6). b Numerical temporal sequence of polarized field 	(r, t) = Re(A)Im(A) obtained by
the numerical simulations of the stochastic Ginzburg-Landau equation (1) with μ = 1.0, δ = 0.0,
and T = 0.01

where the complex field A(r, t) accounts for the amplitude of the critical mode
that describes the deviation of the molecular director with respect to the verti-
cal direction. Ā accounts for the complex conjugate of A. μ is the bifurcation
parameter that is proportional to the voltage minus the critical Fréederickz volt-
age [24–26]. For a planar anchoring cell, the Fréederickz voltage has the analyti-
cal expression VFT ≡ 2π

√
K3/εa . δ = K1 − K2/(K1 + K2) is the parameter that

accounts for the anisotropy of the liquid crystal elastic constants. ∂η ≡ ∂x + i∂y
is a differential operator, note that the Laplacian operator satisfies ∇2 = ∂η,η̄.
ζ(r, t) is a Gaussian white noise with zero mean value 〈ζ 〉 = 0 and correlation
〈ζ(r, t)ζ̄ (r′, t ′)〉 = δ(t − t ′)δ(r − r′) and T accounts for the noise intensity level.
The main sources of noise are inherent thermal fluctuations and electrical fluctua-
tions on the applied voltage.

For μ � 0, the Ginzburg-Landau Eq. (1) has a null solution A = 0 as a stable
equilibrium, which corresponds to molecules that are not reoriented, homeotropic
state. For μ > 0, this state becomes unstable by means of a degenerate pitchfork
bifurcation, giving rise to the appearance of vortices [26]. Figure2b illustrates the
emergence of vortices in model Eq. (1) as a result of stochastic fluctuations. As in
the experiment, the uncontrollable fluctuations, noise, nucleates a large number of
vortices that are subsequently annihilated by opposite pairs. Numerical simulations
were implemented using a finite differences scheme in space that uses a centered
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stencil of five grid points with Runge-Kutta order-4 algorithm, with a 500 × 500
points grid temporal step dt = 0.0004, and Neumann boundary conditions.

4 Vortices Nucleation Law

Numerically, we have monitored the number of vortices at a given instant as a func-
tion of the bifurcation parameter μ. Figure3a summarizes the results found. From
these charts, we infer that the number of vortices grows linearly with the bifurcation
parameter. Likewise, we note that this behavior is not modified when we change
the anisotropy δ. Experimentally, we have studied the number of umbilical defects
in a given instant as a function of the voltage applied to the sample. We found that
the number of defects grows with the voltage, which shows a qualitative agreement
with the numerical results (cf. Fig. 3b). The defects emerge from the homeotropic
state, due to the inherent fluctuations of the system. Hence, to understand the nucle-
ation process, we approximate Eq. (1) by its deterministic linear part and consider
the Fourier mode decomposition A = Akeσ t+i(kx x+ky y), after straightforward calcu-
lations we get

σ = μ − k2x (1 + δ) − k2y(1 − δ) ± 2iδkxky, (2)

where Re(σ ) is the growth rate mode, kx and ky are wavenumber modes in the hor-
izontal directions. σ(kx , ky) > 0 corresponds to unstable modes. Notice that white
noise is characterized by excited in the samemanner all modes. The boundary condi-
tions and geometric dimensions of the system determine the wavenumbers of modes.
For simplicity, if we consider periodic boundary conditions and a square domain
wavenumbers take the form kx = 2πn/L and ky = 2πm/L , where L is the size of
the box and {n,m} are integer numbers. The nodes of the spatial modes correspond
to zeros of the amplitude; that is, these nodes correspond to phase singularities (vor-
tex germ) for the modes. The mode with the maximum number of vortices (nodes)
corresponds to σ = 0. To calculate this maximum number of vortices, we proceed
by calculating the number of modes in one direction [σ(nc, ky = 0) = 0], then in
the other [σ(kx = 0,mc) = 0], and finally we determine the maximum number of
vortices (nodes) by

N = ncmc =
(

L

2π

)2
μ√

(1 − δ2)
. (3)

Note that all other unstable modes have a similar expression (3) multiplied by
a proper fraction. Hence, the number of vortices is proportional to the previous
expression, in particular to the bifurcation parameter, which is consistent with what
is observed numerically and experimentally (see Fig. 3). Likewise, we note that this
result predicts that the number of vortices diverges when δ2 tends to 1. This limit
physically corresponds when one of the elastic constants diverges. This phenomenon
is observed when there is a nematic-smectic transition (K2 → ∞) when the temper-



308 E. Aguilera et al.

2200

1400

600
400 800 2000Voltage [mVpp]0 2 10

80

40

0

Experimental Data

x15

a) b) 

400 800 2000Voltage [mVpp]
0

400

1200

0 2 6 100

20

40

60

N

N N

6

T

T

N

Experimental Data

T

T

T

0.4 0.8

102

100

101

0.0

N

100

101

10
2

103

0.0 0.4 0.8

A= 208.3  b= 0.53  
R= 0.99

A= 472.8  b= 0.47  
R= 0.95

a) b)

N

T

T

T

T

A= 17.52  b= 0.93  
R = 0.99

A= 7.31  b= 1.37  
R= 0.96

10

40

10-3 10
-1

10
2

20

N

T 20 40 60 80

2600

1800

1000
 [ºC]

N

d)

C= -6.4

C= 21.38

C= -183.3

C= -429.6

100

101

10
2

103

0.0 0.4 0.8

b)

N

T

T

A= 17.52  b= 0.93  
R = 0.99

A= 7.31  b= 1.37  
R= 0.96

20 40 60 80

2600

1800

1000
 [ºC]

N

d)

C= -6.4

C= 21.38

a)

b) d)

e)

f)

g)

h)

x15

Fig. 3 The number of defects in a given instant as a function of the bifurcation parameter and noise
level intensity. The number of defects obtained from numerical simulations of Eq. (1) with μ = 1.0
at t = 12 (a) and t = 60 (b). The points with a bar account for mean value and standard deviation
obtained after carrying out for each parameter 30 realizations. Number of umbilical defects as a
function of the driven voltage at t = 0.5 s (c) and t = 1.0 s (d). The points with a bar account
for mean value and standard deviation obtained after five experimental realizations. The number
of defects in a given instant as a function of the anisotropic parameter δ. obtained from numerical
simulations of Eq. (1) at t = 12 (e) and t = 60 (g). The points with a bar account for mean value and
standard deviation obtained after carrying out for each parameter 20 realizations. The continuous
curves were obtained using the fitting function N = A/(1 − δ2)b + C . The simulations and fitting
parameters are specified in insets. (f) The number of defects in a given moment as a function of
the noise intensity level T . (h) Umbilical defects number as a function of the temperature after 1 s
of applying voltage 15 Vpp. The points with a bar account for mean value and standard deviation
obtained after carrying out 5 experimental realizations
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ature is modified [30]. However, the liquid crystal under our study does not present
this type of transition. The study of vortex nucleation near the nematic-smectic tran-
sition is in progress. Figure3 shows the number of vortices at a given moment as a
function of the anisotropy parameter δ. This result shows an excellent agreement with
expression (3). To study its trend, we have used a more general fitting function of the
form N = A/(1 − δ2)b + C , which can take into account the nonlinear effects and
errors of the vortex measurement method. From charts, Fig. 3e and g, note that the
critical exponent b evaluated at higher times is dissimilar that predicted theoretically.
This effect is due to the fact that nonlinear terms begin to play a non-negligible role.
Experimentally, we cannot carry out a similar analysis since elastic anisotropy δ is
determined by intermolecular interactions that we cannot control.

Formula (3) does not depend on the noise intensity level T . Indeed, the number
of vortices (nodes) does not depend on the intensity of the noise, however, their
presence is essential to stimulate unstable modes. Figure3f shows that effectively
the noise intensity level does not affect the number of vortices created. When the
noise intensity is very large the linear theory is no longer valid and the vortices
are no longer related to the linear modes (see Fig. 3f). To investigate experimentally
fluctuations that are inherent to our system, we have estimated the number of vortices
in a given moment as a function of temperature. Figure3h summarizes the results
found. We deduce that there is a tendency to increase the number of vortices with
temperature. The increase in temperature has a double effect; on the one hand, it
increases the thermal fluctuations and, in turn, modifies the elastic constants [30].
This last effect is responsible for the increase found in the number of vortices.

5 Noise Induced Emergence of One-Dimensional Defect

The above vortex creationmechanism should be a general defect creationmechanism
not only valid in two dimensions. A simple dimensionless model of one-dimensional
topological defects is the dissipative bistable model, which has the form [31, 32]

∂t u = εu − u3 + ∂xxu + √
Tχ(t, x), (4)

where u(x, t) is a one-dimensional order parameter, ε is a bifurcation parameter,
χ(x, t) is a Gaussian white noise with zero mean value 〈χ〉 = 0 and correlation
〈χ(x, t)χ(x ′, t ′)〉 = δ(t − t ′)δ(x − x ′) and T accounts for the noise intensity level.

The bistable model Eq. (4) is monostable for negative ε, where the equilibrium is
u = 0. When the bifurcation parameter changes sign and becomes positive, the sys-
tem exhibits a pitchfork bifurcation, giving rise to two equilibria u = ±√

ε, bistable
regime. In the latter regime,when inhomogeneous initial conditions are considered, it
exhibits domain walls between these two equilibria. These domain walls are usually
called kinks (uk) or anti-kinks. Analytically these solutions have the form
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Fig. 4 Number of kinks in a given instant as a function of the bifurcation parameter ε obtained from
numerical simulations of Eq. (5) with T = 0.1 at t = 20. The points with a bar account for mean
value and standard deviation obtained after carrying out for each parameter 80 realizations. The
continuous curves were obtained using the fitting function N = nε0.41. The right panels account
for a single kink and a kink gas, respectively

uk(x) = ±√
ε tanh

(√
ε

2
(x − x0)

)
, (5)

where x0 accounts for the position of thewall, that is, uk(x = x0) = 0. Figure4 shows
a single kink and several kink-antikink interacting solutions obtained from numerical
simulations of Eq. (4). These solutions are topological since the destruction of a kink
employing continuous deformations can only be carried out through collision with
an anti-kink.

When one starts from the null state, the fluctuations induce the emergence of
kink and anti-kink solutions. Figure4 shows how the number of kinks changes as
a function of the bifurcation parameter. This chart shows that the number of kinks
grows with the bifurcation parameter and has a power law. To understand this law,
we use the same strategy used to understand vortex emergence. Then we linearize
the dynamics around the zero value u = 0, which takes the form

∂t u = εu + ∂xxu + √
Tχ(t, x) (6)

Introducing the ansatz u = u0eikx+σ t , in the above equation, one get σ = ε − k2.
Hence, all unstable modes are in range {−√

ε,
√

ε}. The unstable mode with the
most spatial oscillations corresponds to k = √

ε = 2πN/L , where N is the number
of domains or zeros of the critical mode. Then the number of domains satisfies the
relation

N = L
√

ε

2π
. (7)

Therefore, the number of defects or kinks grows with the square root of the
bifurcation parameter. Figure4 shows a good qualitative agreement. However, the



Thermal Fluctuations Induced Emergence of Umbilical … 311

exponent is different. The possible origin of the difference between the exponent of
analytical expression (7) and the numerical one (see Fig. 4) are nonlinearities and
interactions of kinks and anti-kink that are neglected in the analytical expressions.

6 Conclusion and Remarks

Despite many studies of vortices for their fundamental properties associated with
particles with topological properties and their interest in various technological appli-
cations such as telecommunications, image processing, and optical tweezers, the
study of vortex nucleation in real physical systems had not been addressed to our
knowledge. Based on linear theory and stochastic fluctuations, we can establish that
the matter vortices are a consequence of the different excited unstable spatial modes.
The above is summarized by formula (3) multiplied by a constant that accounts for
the effect of all unstable modes. Therefore, we can establish that the number of vor-
tices grows proportionally to the bifurcation parameter; it is inverse to the square
of the elastic anisotropy and does not depend on the level of the noise intensity.
Experimental observations show a qualitative agreement with theoretical findings.
Vortices are an intrinsically nonlinear nature phenomenon; however, we show that
the generic mechanism for creating vortices in nature is based on a simple linear
theory of critical spatial modes.

Experimental imperfections, which give rise to heterogeneous parameters, can be
a source of vortices. To understand the effect of heterogeneities is by modifying the
linear problem to non-constant coefficients, which generates that the modes depend
on these coefficients. The inclusion of this type of effect is in progress. Likewise,
in the developed theory, we have considered no spatial and temporal correlation,
white noise; however, the system may exhibit spatial correlations, which may be a
consequence of the anisotropic elastic coupling of the liquid crystal. This type of cor-
relation may be responsible for exciting some privileged unstable nodes, stochastic
resonance. The inclusion of these phenomena can improve the simplified description
presented.
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Chapter 4

Topological defects law for migrating
banded vegetation patterns in arid
climates (Science Advances 9 (31),
eadf6620)

Once we have studied the topological defect of the vortex type regarding their nucleation,
that is, how they born, we are left with the question of what happens with them later. The
idea of the charge solves this problem quite easily. Since vortices are created from a solution
with zero charge, once created defects of opposite charge will annihilate in pairs over time.
This is a well studied problem [23], and interesting coarsening laws have been derived for the
average length between defects over time [51, 52]. However, what happens with these defects
if the elements forming them are subjected to nonreciprocal coupling is not entirely clear.

The following chapter explores migrating banded vegetation patterns, a system that can be
described with equations where nonreciprocity in the interactions naturally arises. Oriented
patterns are an alternative setup to study the dynamics of topological defects, since the
dislocation type of defect corresponds to a phase singularity in the amplitude of the pattern
envelope. The macroscopic effect of the modeled nonreciprocity among interactions is to
produce the pattern to drift, or migrate in the context of living entities (however, we are not
refering to moving plants, but a moving biomass field composed of plants of several ages).
Thus, any topological defect in the pattern would move in the drift direction and directed out
of the system. Interestingly, when considering appropriate boundary conditions, dynamical
regimes in which topological defects are constantly created at the upstream boundary is
observed. The constant creation on the boundary, followed by the anihilation dynamics on
the comobile reference frame moving with the drift velocity, creates a unique imprint on the
pattern, where the defects distribution in space is unveiled. This property is measured in
three different vegetation patterns fulfilling the required constraints showing good agreement
with the theory. Additionally, regimes for which defects create anywhere in the system are
numerically predicted. These regimes act as different stages, possibly warning about the
pattern condition when the biomass mortality increases due to environmental factors.
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APPL I ED PHYS ICS

Topological defects law for migrating banded
vegetation patterns in arid climates
D. Pinto-Ramos1*, M. G. Clerc1, M. Tlidi2

Self-organization and pattern formation are ubiquitous processes in nature. We study the properties of migrat-
ing banded vegetation patterns in arid landscapes, usually presenting dislocation topological defects. Vegeta-
tion patterns with dislocations are investigated in three different ecosystems. We show through remote sensing
data analysis and theoretical modeling that the number of dislocations N(x) decreases in space according to the
law N ∼ log(x/B)/x, where x is the coordinate in the opposite direction to the water flow and B is a suitable cons-
tant. A sloped topography explains the origin of banded vegetation patterns with permanent dislocations. The-
oretically, we considered well-established approaches to describe vegetation patterns. All the models support
the law. This contrasts with the common belief that the dynamics of dislocations are transient. In addition,
regimes with a constant distribution of defects in space are predicted. We analyze the different regimes depend-
ing on the aridity level and water flow speed. The reported decay law of defects can warn of imminent ecosystem
collapse.
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INTRODUCTION
Self-organization phenomena leading to spatially periodic patterns
are observed in complex or nonlinear systems (1–5). Vegetation
population dynamics provide puzzling and notable examples of
spatially periodic structures, generically called vegetation patterns,
formed by large-scale botanical organizations controlled by a non-
equilibrium symmetry-breaking instability (6–13). The banded pat-
terns, often called tiger bush (14), consist of dense vegetation bands
alternating with sparsely covered or even bare soil, their wavelength
ranges from decimeters to hundreds of meters. Banded vegetation
patterns have probably been first reported by Macfadyen in the
earlier fiftieth (15, 16). The spontaneous symmetry-breaking insta-
bility causes their formation even when the topography is flat (6).
The presence of the slope causes the migrating banded patterns (6,
8, 12). They grow by a few decimeters each year in the opposite di-
rection of the water flow (8, 12). Besides, a bibliography of empirical
and scientific studies devoted to the origin of their formation and
maintenance can be found in (6, 12, 17–20).

Most of the banded vegetation patterns observed in nature are
disordered and present topological defects such as dislocations, as
can be seen in Fig. 1. Dislocations in the banded vegetation patterns
are indicated by red rings in the aerial photographs of Fig. 1. When
two stripes join and transform into a single one, they form a defect
called dislocation. Observations across large areas of numerous arid
and semi-arid regions of Africa, Australia, America, and the Middle
East show that topological defects are abundant. Banded vegetation
is a well-documented issue that has been abundantly discussed and
is by now fairly well understood. So far, however, the law governing
the formation of such defects has neither been experimentally de-
termined nor theoretically predicted.

Here, we establish a law governing the organization of disloca-
tions. By analyzing satellite images taken from vast territories of the
African and American continent, we show that the number of

dislocations obeys the formula N ∼ log(x/B)/x, where x is the coor-
dinate in the opposite direction of water flow and B is a suitable
constant. Theoretically, we have considered three different ecolog-
ical approaches describing the dynamics of topological defects. All
these models quantitatively support this deterministic law. Further-
more, these ecological models predict an additional dynamical
regime where the number of dislocations remains constant. In ad-
dition to the slope, which is the source of dislocation propagation,
we show that boundary conditions play an essential role in their per-
manent creation; defect generation from boundaries is a document-
ed phenomenon in nonlinear physics that appears in several
situations, the most common being the dynamics of viscous flows
(21). Therefore, with a source of dislocations through the boundar-
ies, the dynamics of these topological defects can be permanent
rather than transient. This fact strongly contrasts with previous
work where dislocation formation is considered a transient
dynamic due to their mutual annihilation interaction, leading at
long times to a perfectly ordered banded pattern free of defects
(8). The permanent dynamics of defects is the process of pairs of
dislocations being created at the boundary with opposite topologi-
cal charges, and then they move with the pattern migration velocity
(toward x) at the same time they interact, approaching each other
until annihilation; the process is repeated in time in an unpredict-
able way. This complex permanent dynamic leaves an imprint in the
dislocation number as a function of the x direction.We demonstrate
how a decaying number of dislocations in space may be used as an
early indicator of an ecosystem’s potential collapse under harsh en-
vironmental conditions. We conclude by showing how the measure
of the dislocation distribution in space can be used as a noninvasive
tool for diagnosing ecosystem health. The ecosystem transition to
bare soil is a much-studied issue in which spatial vegetation
models play a crucial role (22–24). Our theory complements the un-
derstanding of ecosystem adaptability and resilience until now, as
we consider the role of sloped topography and boundary conditions
in the dynamics. The predicted law is supported by field observa-
tions and can be crucial for identifying and comprehending the
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different spatiotemporal behaviors seen in complex systems other
than ecological ones.

RESULTS
Remote sensing data analysis and the dislocation
distribution decay law
To establish through field observation that the number of disloca-
tions in the banded vegetation follows a logarithmic law, we
perform an image analysis. Three regions of the world are consid-
ered: Chile, Sudan, and the United States. To do that, we use high-
resolution satellite images obtained from the Google Earth software
(https://earth.google.com/web), together with the elevation data-
base SRTM (Shuttle Radar TopographyMission) with 1–arc sec res-
olution (25). First, we select and create an adequate mask of the
region where banded vegetation patterns are settled on sloppy land-
scape as shown in the satellite images of Fig. 2 (A to C). Second, we
extract the mean orientation of the elevation gradient 〈θ〉 over the
selected region as illustrated by Fig. 2 (D to F). We assume that the
mean orientation of the elevation gradient is parallel to x. In the case
of the banded vegetation pattern in hyper-arid landscapes of Chile,
the x variable decreases with height, as water comes from the East-
to-West traveling fog (26, 27). This means that the water bubbles
move uphill, and therefore, the vegetation pattern migrates

downhill. However, in arid landscapes of North America and
Sudan, water is supplied by rainfall, and the x variable grows
with height.

Once the x direction is defined, dislocation positions aremarked.
For the satellite images, because of the intrinsic fluctuations, the
high anharmonicity, and the high variations in the wavelength in
the banded vegetation, the dislocations could not be recognized
with standard methods. To detect dislocations, we construct a skel-
eton of the banded vegetation pattern using the software for scien-
tific image analysis Fiji (28) (see Materials and Methods section).
This method allows us to identify the branch split points and the
branch ends as points representing dislocations of the local
pattern. The results are summarized in Fig. 2 (G to I).

Last, we select an area within the banded vegetation pattern in
the plane (x, y), and we define the dislocation number N(x, y)
over tiles of one wavelength side. Then, we average along the y di-
rection. The obtained dislocation number N(x) is plotted as a func-
tion of x/λ where λ is the wavelength of the banded vegetation
pattern. Note that N is the expected number of dislocations in a
λ2 surface tile centered on the (x, y) plane. The results are shown
in Fig. 3. In the hyper-arid landscape of Chile and Sudan and the
United States arid landscapes, the number of dislocations N(x) de-
creases with the x direction. From these results obtained from
remote sensing observations, we can see that the spatial distribution

Fig. 1. Migrating banded vegetation patterns with dislocations observed in arid and semi-arid ecosystems on different continents. (A) Sudan 11° 90 N, 28° 16.50

E. (B) Somalia 8° 6.90 N, 47° 26.50 E. (C) United States 31° 2.50 N, 103° 5.50 W. (D) Mexico 28° 8.50 N, 104° 280 W. (E) Australia 23° 230 S, 133° 23.20 E. (F) Chile 20° 29.50 S, 70° 3.50

W. (G) Saudi Arabia 24° 19.80 N, 42° 55.20 E. Insets show dislocations indicated with red rings.
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Fig. 2. Remote sensing analysis: Determination of the x direction and defect recognition with remote sensing data. (A to C) show the vegetation patterns in Chile
20 β 29.50 S, 70° 3.50 W, Sudan 11° 90 N, 28° 16.50 E, and the United States 31° 2.50 N, 103° 5.50 W, respectively. (D to F) exhibit the direction of the steepest variation in the
altitude over the region of interest. (G to I) illustrate the pattern’s skeletons, and insets show the patterns dislocations highlighted.
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of defects is not uniform. Their distribution depends on the sloped
direction along which the water flows. The fit of the observations is
indicated by continuous orange curves in Fig. 3. Unexpectedly, the
N(x) ∼ log(x/B)/x decay law fits well with the data obtained from
Chile and Sudan. For the U.S. landscapes, the fit is excellent.

To understand the complex ecological phenomenon reported
above and the role of the law dictating the number density of dislo-
cations in space, mathematical modeling is indispensable. In the fol-
lowing subsections, we investigate the origin of the logarithm decay
law through theoretical investigation and numerical simulations of
three ecological models.

Theoretical modeling
To shed light on the observations of the previous section, we con-
sider different standard approaches to explain biomass evolution.
The dynamics of ecological systems are often described by either
reaction-diffusion models that explicitly incorporate water trans-
port or integrodifferential equations. The latter approach is ground-
ed on nonlocal interactions associated with facilitative and
competitive feedback and seed dispersion. Other models based on
cellular automata have been first proposed (14) and also models
based on environmental randomness (3, 29).

We consider the reaction-diffusion (8–11) and the integrodiffer-
ential approaches (6, 30). The later can be seen as a logistic equation
with the abovementioned nonlocal interactions, i.e., the spatiotem-
poral evolution of the normalized biomass b(r, t), reads (30).

∂tb ¼ mf ð1 � bÞb � μmcbþ dr2b ð1Þ

where r = (x, y) and t are the spatial coordinates and time,
respectively. mf and mc account for facilitation and competition
plant-to-plant feedbacks. The nonlocal contributions read
mf,c = exp [χf,c ∫ ϕf,c(r0)b(r + r0, t)dr0], where ϕf ;cðx; yÞ ¼
exp½� ðx � x0f ;0cÞ2=2l2fx;cx � y2=2l2fy;cy� are ellipsoidal coupling
kernels with a shift in x with respect to the origin of magnitude
x0f,0c. The facilitative and the competitive ranges are lfx,cx and lfy,cy
for the x and y direction, and the feedback strengths are measured
by χf,c. The Kernels ϕf,c introduce an anisotropy and break the
reflection symmetry x ↔ −x. The last term of the right-hand side
of Eq. 2 models the seed dispersion with diffusive coefficient d.

In the weak gradient approximation, one can derive from model
Eq. 1 a simpler partial differential equation (see Materials and
Methods for details) of the form

∂tb ¼ � ηþ κb �
b2

2

� �

bþ pr2b � bðα∂x þ γ∂2x þ ∂4xÞb ð2Þ

where α accounts for the translation parameter of the ellipsoidal
kernel. The parameter η measures the decrease–to–growth rate
ratio, called the aridity parameter. κ is the facilitation-to-competi-
tion strength difference, called the cooperativity parameter. γ is pro-
portional to the difference of the squared competition-to-
facilitation lengths and p plays the same role as d.

In addition to the integrodifferential and the weak-gradient
models, we consider the water-biomass model describing the
space-time evolution of the biomass (b) and water (w) density.

Fig. 3. Dislocation number decay law obtained from remote sensing analysis
in Chile, Sudan, and U.S. landscapes. Circles account for observed data, and the
orange curves represent the fits. (A to C) correspond to a N(x) ∼ log(x/B)/x fit for
patterns in Chile, Sudan, and the United States, respectively. Fit parameters in λ
units are (A) x0 = −2.9, B = 1.2, and A = 2.7; (B) x0 = −2, B = 1.5, and A = 10.6; (C)
x0 = −2.4, B = 1.3, and A = 5. R2 is the coefficient of determination of the fits.
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This model reads (10)

∂tb ¼
γw

1þσw � μ
� �

b � b2 þ dr2b

∂tw ¼ p � ð1 � ρbÞw � w2bþ
r2ðw � βbÞ � α∂xðw � vbÞ

ð3Þ

The slope effect is accounted for in the term α∂x(w − vb), where
α is the water speed, which flows opposite (in favor) to the x direc-
tion for α < 0 (α > 0). Because of the water absorption by plants, the
biomass reduces the water advective transport mediated by the pa-
rameter v. The parameters γ and σ model the biomass production
increase with water considering a saturable function, d models the
seed dispersion, and μ accounts for mortality. The parameter pmea-
sures water input, ρ reduces the transpiration rate linearly with the
biomass, and β models how plants affect water absorption by
the soil.

Numerical simulations of the nonlocal model Eq. 1 with ellipsoi-
dal translated kernels (lfx,cx ≠ lfy,cy) display propagative banded pat-
terns for small x0f,0c values as shown in Fig. 4A. These results are
obtained using Dirichlet boundary conditions with zero value in
the flow direction edges (b = 0 for x = 0 and x = s, where s is the
system size). Periodic boundary conditions are used in the y direc-
tion. Numerical simulations of all the models presented were con-
ducted with a Runge-Kutta algorithm of fourth order for time
integration and a finite difference scheme for space discretization.

As the translation parameter increases, the uniform banded pat-
terns become unstable and the system generates permanent disloca-
tions from the fixed edge x = 0, see Fig. 4B. Similarly, a permanent
emission of defects can be sustained by environmental stochastic
fluctuations (31).

The permanent dislocation dynamics are also obtained from the
reduced model Eq. 2 (cf. Fig. 4, C and D) and the reaction-diffusion
Eq. 3 (cf. Fig. 4, E and F). All models display a transition from a
perfect traveling banded vegetation to a regime where dislocations
are permanently emitted, as shown in Fig. 4. This transition occurs
for α* < α, the system asymptotically tends to a regular banded
pattern as x → ∞, cf. Fig. 5A(i), but with dislocations being
created in the upstream boundary. The critical value α* is the
threshold for the boundary layer instability, and below this value,
the number of dislocations is zero. The α* parameter has no analyt-
ical expression and depends on the model considered. Hence, this
parameter only is determined numerically. When dislocations are
only created on the edge, numerical data follows

NðxÞ ¼
Alog½ðx � x0Þ=B�
ðx � x0Þ

ð4Þ

where A, B, and x0 are the fit parameters. The number of disloca-
tionsN(x) as a function of xis plotted in Fig. 5A(iii). This numerical
result agrees with field observations using remote sensing image
data analysis, as shown in the panels of Fig. 3. Table 1 summarizes
the results of fitting law (4) to both observational and numeri-
cal data.

To understand analytically the origin of the logarithmic law, we
perform a normal form analysis, which leads to the derivation of the
well-known Ginzburg-Landau Eq. 9 (see Materials and Methods).
Dislocations correspond to topological singularities in the phase
of the Ginzburg-Landau equation (32–34). This reduction shows
that in defect interaction, when the nonlinear phase correction β

is small, the length l between the defects decays according to the
law l2 = t/log(t) (35–37). Then if the system is advected with
speed α, one can interchange the role of time for space using the
relation t = x/α. Hence, this characteristic length changes with dis-
tance as l2 = x/αlog(x/α). Likewise, the average number of defects in
a given area Π is N(x) = Π/l2 = Παlog(x/α)/x. Again, the normal
form analysis confirms the logarithmic law.

When, however, the advection parameter increases, i.e., large α,
we identify a second transition where a permanent creation of dis-
locations occurs not only from the edge but also in the bulk, as
shown in Fig. 5A(iv). This regime is well-known in nonlinear
systems in general, and it is referred to as defects turbulence (32,
38). In this regime, the averaged dislocation number is constant
N(x) = c as a result of the continuous creation of defects in the
bulk, see Fig. 5A(vi). This figure is obtained from numerical simu-
lations of Eq. 2. The transition from nonturbulent to turbulent
regime is also obtained from the Ginzburg-Landau Eq. 9, as
shown in Fig. 5B.

The numerical analysis of ecological models indicates that by
only measuring the number of dislocations in the pattern, one
can infer if the semi-arid and arid ecosystems operate in the turbu-
lent regime where N(x) = c or in the nonturbulent regime where
N(x) obeys a logarithmic decay law. This law obtained from numer-
ical simulations of the three models considered here is in good
agreement with observations using remote sensing image analysis,
as shown in the panels of Fig. 3. Therefore, the measure of the
number of dislocations in the vegetation patterns and their spatial
distribution can be used as a noninvasive tool for diagnosing the
degree of complexity of arid landscapes and for identifying unex-
pected dynamical phenomena in ecological systems.

DISCUSSION
The transition between different regimes is investigated in terms of
the speed of the water flows. We have shown that for a large speed,
the ecosystem presents a turbulent behavior where the number of
topological defects is constant. For a small value of the water flow
speed, the number of defects decreases according to the logarithmic
law. In what follows, we discuss the effect of the aridity level on dis-
location formation. For this purpose, we fix the speed of the water
flow and vary the aridity level. Figure 6 summarizes the different
ecosystem operating regimes. For small aridity parameters, the
system develops migrating banded pattern devoid of defects (cf.
red curve). For a moderate level of aridity, the system exhibits a tran-
sition toward a turbulent regime where the number of dislocations
is constant (see blue curve). However, for extreme aridity condi-
tions, the system reaches a regime where the system undergoes
self-organized dislocations with a logarithmic decay law (see
yellow curve). Further increasing the aridity, the banded patterns
exhibit a transition toward a state totally devoid of vegetation.
Thus, for a given landscape with a homogeneous slope, the presence
of a decaying number of dislocations can be an ecological indicator
of imminent transition toward a bare state. This complements what
is known about the catastrophic shift of ecosystems in flat topogra-
phy, where different types of stationary patterns exist and where
multistability of patterns with different wavelengths can be ob-
served. The existence of many pattern branches permits the ecosys-
tem to adapt to environmental changes, which allows a patterned
ecosystem to survive past the tipping point compared to a
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homogeneous ecosystem (22). However, once a gentle slope is intro-
duced into the system, the advective effects of water flow must be
taken into account for the stability analysis of patterns and other
solutions of the system (39). This changes the stable pattern branch-
es compared to a flat territory case. In addition, complex and tur-
bulent-like dynamics can emerge as a consequence of the slope.
These complex dynamical regimes have their own relative stability

compared to the different perfect migrating pattern regimes and ho-
mogeneous states. Multistability of the complex dynamical regimes
and the perfect patterns can occur, as observed in Fig. 6, suggesting
that in adaptation to change, ecosystems could transit to these
complex regimes if in the presence of a slopped territory. Numeri-
cally, only the most stable branch of perfect patterns is accessible.

Fig. 4. Theoretical modeling of the dislocation decay law: Numerical simulations for three models of migrating banded vegetation patterns with different
advection parameters. (A and B) correspond to the integrodifferential model Eq. 1. Parameters are lfx = lfy = 0.5, lcx = 2.2, lcy = 0.3, μ = 0.95, χf = 2.8, χc = 2.0, d =
0.01, for (A) x0f = −0.2 and x0c = 0.1, for (B) x0f = −0.4 and x0c = 0.8. (C and D) show the weak gradient model Eq. 2, parameters are η = −0.04, κ = 0.3, p = 0.05, γ =
1.9, for (C) α = 0.4, for (D) α = 1.0. (E and F) represent the water-biomass model (3), parameters are γ = 2.0, σ = 1.5, d = 0.1, μ = 0.1, w0 = 0.3, ρ = 0, β = 0, v = 4.0, for (E) α =
−1.4, for (F) α = −2.0. The right panels correspond to the respective number of dislocations N(x) as a function of the propagation coordinate (x/λ) for each model in the
regime of asymptotic uniform stripe patterns. Fit parameters in λ units are (G) x0 = 27.2, B= 4.1, and A = 0.2 (R

2 = 0.99); (H) x0 =−7, B= 3.8, and A = 0.5 (R2 = 1.0); (I) x0 = 14.3,
B = 0.7, and A = 0.06 (R2 = 0.99).
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Fig. 5. Transition from nonturbulent to turbulent regime. (A) Numerical simulations of the weak gradient vegetation model Eq. 2. The real field, the amplitude of the
banded pattern, and the defect number distribution. Parameters are η = −0.04, κ = 0.3, p = 0.05, γ = 1.9, for (i) and (ii) α = 1.0, for (iv) and (v) α = 2.0. (iii) and (vi) show the
number of dislocations N(x). (B) Numerical simulations of the complex Ginzburg-Landau Eq. 9. Parameters μ(x) = 1 − e−x/10, ν(x) = 10e−x/10, ~α ¼ 1:0, for (i) and (ii) β = 0.1,
for (iv) and (v) β = 3.0. (iii) and (vi) show the number of dislocations. Fit parameters in λ units are (A, iii) x0 = 2.7, B = 0.9, and A = 0.1 (R

2 = 0.99); (B, iii) x0 = 13, B = 0.7, and A =
0.1 (R2 = 0.98). (A, vi) c = 0.16; (B, vi) c = 0.21
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Different stable branches of perfect patterns could be obtained from
Eq. 9 analytically at the onset of pattern formation.

To summarize, we have investigated different transitions of mi-
grating vegetation banded patterns: from zero defects, to constant,
and to a decaying number of dislocations. We have shown analyti-
cally that the number of dislocations in space N(x) obeys a N(x) ∼
log(x/B)/x law. This formula is in good agreement with numerical
simulations of the three ecological models and with remote sensing
image data taken from three arid ecosystems of different continents.
Furthermore, the dislocation law allows us to determinewhether the
self-organized response to the water scarcity of arid and semi-arid
ecosystems favors uniform bands or ecological spatio-temporal
complexity.

A usual approach to characterize the response of plants to
changes in their environment is through studies of the plants them-
selves (local analysis). Characterizing dislocation distributions of
migrating banded vegetation patterns (macroscopic analysis)
opens a noninvasive diagnostic tool for determining the degree of
aridity mediated by desertification and global warming processes.
Likewise, a full characterization of the bifurcation diagram for
models including reflection symmetry rupture and dislocations
self-organization becomes relevant in designing conservation
guidelines, preventing the further degradation of migrating pat-
terned vegetation cover.

Last, the spatial distribution of defects is a consequence of their
creation induced by the boundary condition and their annihilation
through mutual interaction. The boundary induces inhomogenei-
ties in the system. The inhomogeneous Ginzburg-Landau equation
constitutes an ideal framework for investigating the dynamics of
defects in banded vegetation patterns. It provides a unified and
simple description containing the dynamics discussed. Thus, the
analytical results can be easily extended to describe similar laws
in other complex nonlinear spatially extended systems present
in nature.

MATERIALS AND METHODS
Detailed derivation of the weak gradient model with
advection
We look for an approximation to Eq. 1 of the main text, in the form
of a partial differential Eq. 2. To account for anisotropy, we consider
that the interaction ranges associated with facilitation and the com-
petition lcx,fx and lcy,fy are different.We seek corrections to the steady
states close to μ = 1 and b = 0 that depend on time and space through
the slow variables T = ϵt, X = ϵ1/8x, and Y = ϵ1/8y. We expand the
parameters μ, χf,c, lfx,fy, x0c,0f, d, and the biomass b in terms of a small
parameter ϵ (ϵ ≪ 1) that measures the distance from μ = 1 as follows

μ ¼ 1þ ϵηþ . . .;

χf ¼ 1þ χc þ ϵ1=2κþ . . .;

χc ¼
l2fx

l2cx� l
2
fx
þ ϵ1=4χ1 þ . . .;

x0f ¼ ϵ3=8αf þ . . .; x0c ¼ ϵ3=8αc þ . . .;

l2fy ¼ ϵ1=4σ2fy þ . . .; l2cy ¼ ϵ1=4σ2cy þ . . .;

d ¼ ϵ3=4pþ . . .; bðt; x; yÞ ¼ ϵbðT;X;YÞ þ . . .

Introducing these scalings and the above expansions in Eq. 1, we
then obtain a sequence of linear problems for unknown functions.

Table 1. Summary of the best fit for the decaying spatial distribution
of dislocations for mathematical models and remote sensing image
analysis. A, B, and x0 are the fit parameters of Eq. 4, and R2 is the coefficient
of determination for the respective fits.

Mathematical models A/λ B/λ x0/λ R2

Eq. 1 0.2 4.1 27.2 0.99

Eq. 2 0.5 3.8 −7.0 1.0

Eq. 3 0.06 0.7 14.3 0.99

Remote sensing image analysis

Chile 2.7 1.2 −2.9 0.92

Sudan 10.6 1.5 −2 0.91

United States 5 1.3 −2.4 0.96

Fig. 6. Diagram of migrating banded vegetation pattern biomass as a func-
tion of the aridity parameter η. For Eq. 2, parameters κ = 0.3, p = 0.05, γ = 2, and α
= 1. (A) illustrates the mean biomass 〈b〉 at the steady states of the model when
changing the aridity. (B) corresponds to the branch of perfect patterns N(x) = 0. (C)
shows the turbulent-like behavior where N(x) = c. (D) represents the branch of as-
ymptotic patterns, where N(x) ∼ log(x/B)/x.
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We analyze each problem and apply the solvability condition at each
order. These conditions are automatically fulfilled at the orders ϵ1/2
and ϵ. By applying the solvability condition at the higher order in-
homogeneous problem (ϵ3/2), we obtain the following partial differ-
ential equation for the biomass

∂Tb ¼ ð� ηþ κb � b2=2Þbþ pr2b
� bðα∂X þ γx ∂2X � γy ∂

2
Y þ Λ∂

4
XÞb

ð5Þ

where the coefficients are χ0 ¼ l2fx=ðl
2
cx � l2fxÞ, α = αcχ0 − αf(1 + χ0),

γx ¼ χ1ðl2cx � l2fxÞ, γy ¼ σ2fyð1þ χ0Þ � σ
2
cyχ0, and Λ ¼ 3l2fxl

2
cx.

Model Eq. 5 has different homogeneous steady states which are b
= 0 and b0 = κ ± (κ2 −2η)1/2. Note that the upper branch of b0 is
stable when lcx > lfx and γy > 0. Otherwise, we need to consider
higher ϵ orders in the equation. The condition γy = 0 will be used
throughout the work, as it does not change the qualitative behavior
of the system.

Introducing the scaling X ¼ 1=Λ1
4X and Y ¼ 1=Λ1=4Yand re-

defining α → α/Λ1/4, γx → γ/Λ1/2, and p → p/Λ1/2, we get Eq. 2.

Detailed derivation of the Ginzburg-Landau equation
Derivation of amplitude equation in the bulk
The amplitude equation obtained using a normal form analysis
constitutes an adequate tool for understanding pattern formation.
For the boundary conditions considered, the system creates a thin
boundary layer next to the upstream edge of the system. The effect
of this boundary layer can be neglected when focusing on regions
far from the edges. Let us consider first the linear problem for a per-
turbation of the homogeneous stable state u≪ 1 as b = b0 + u, where
b0 ¼ κþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 � 2η

p
is the homogeneous cover. Introducing this

ansatz in Eq. 2 of the main text for the field b yields the linear
problem

ð∂t � LÞu ¼ 0

where the linear operator is defined as
L ; � ηþ 2κb0 � 3b20=2þ pr2 � b0ðα∂x þ γ∂2x þ ∂4xÞ. Linear
stability analysis for finite wavenumber k perturbations leads to
the growth rate of modes λ(k)

λðkÞ ¼ ReλðkÞ þ iΩðkÞ

¼ � ηþ 2κb0 �
3b20
2 � pk2 � b0ðiαk � γk2 þ k4Þ

The conditions ∂kReλ∣kc = 0 and Reλ(kc) = 0 determine the crit-
ical wavenumber k2c ¼ ðbcγ � pÞ=2bc and the critical aridity param-
eter, which satisfies � ηc þ 2κbc � 3b2c=2þ bck4c ¼ 0, where
bc ¼ κþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 � 2ηc

p
. To obtain the amplitude equation for the crit-

ical mode, let us move slightly from the instability condition, using
as the bifurcation parameter η, as η = ηc + ϵ. Introducing the follow-
ing expansion

b ¼ b0 þ ϵ1=2AeikcxþiΩct þ ϵA½2� þ ϵ3=2A½3� þ :. . .þ c:c:

where A ≡ A(X, Y, T ) is the slowly varying envelope, with the scal-
ings X = ϵ1/2x, Y = ϵ1/2y, T = ϵt, and the parameter Ωc ≡ −bcαkc. A[n]
accounts for the terms of order n in the amplitudeA. At order (ϵ1/2),
we obtain

ð∂t � LcÞAeikcxþiΩctþλðkcÞt ¼ 0

where

Lc ¼ � ηc þ 2κbc �
3b2c
2
þ pr2 � bcðα∂x þ γ∂2x þ ∂4xÞ

At this order, the solvability condition is automatically satisfied.
For the sake of simplicity, let us define d̂ ; α∂x þ γ∂2x þ ∂4x, and
d(k) ≡ iαk − γk2 + k4. Then, performing expansions, up to order
ϵ, limiting to the case of small group velocities vg = ∂kΩ∣kc ∼
O(ϵ1/2), we get

ð∂t � LcÞA½2� ¼ κ � 3
2 bc

� �
ðA2e2ikcxþ2iΩct þ jA j2 þ c:c:Þ

� ðAeikcxþiΩct þ c:c:Þ ½AdðkcÞeikcxþiΩct þ c:c:�
ð6Þ

To solve the linear problem, the following inner product is intro-
duced

hf jgi ¼
ðXþ2πkc

X
dx
ðTþ2π

Ωc

T
dtf �g

valid over the periodic functions in space and time of period 2π/kc
and 2π/Ωc. The kernel of the operator (∂t − Lc)†, defined as the sol-
ution of (∂t − Lc)†ψ = 0, corresponds to ψ = e±i(kcx+Ωct). Then, apply-
ing the solvability condition, we find

A½2� ¼ a2A2e2ikcx þ b2jA j2 þ a2A
2e� 2ikcx

where

a2 ¼
κ � 3=2bc � dðkcÞ
2iΩc � λð2kcÞ

b2 ¼
2κ � 3bc � dðkcÞ � dð� kcÞ

� λð0Þ

Last, at order ϵ3/2, the solvability condition yields

∂TA ¼ μAþ ðaþ iβÞjA j2A
þ Dx ∂XXAþ Dy ∂YYA � αbc ∂XA

ð7Þ

with μ ¼ ð� 1þ 2κ∂ηb0 � 3=2∂ηb20 þ ð∂ηb0Þk
4
c þ bc∂ηk4c Þ jηc , (a +

iβ) = (2ηc − 3bc)(b2 + a2) − 3/2 − a2d(2kc) − a2d(−kc) − b2d(kc),
Dx ¼ 4bck2c , and Dy = p. This equation is the well-known Ginz-
burg-Landau equation with advection.
Boundary layer effect
To figure out the emission of dislocations from the boundary of the
system in the regime of decaying number of dislocations, we need to
consider the boundary layer effect arising from the Dirichlet boun-
dary conditions. We use the method suggested in (40). For this
purpose, we suppose that sufficiently near to the upstream edge,
one can write

b ¼ b0 þ ϵMðXÞ

whereM(X ) is a function that helps to connect the population state
b = b0 with the nonpopulation state b = 0 at the boundary and sat-
isfiesM(X ) → 0 when X → ∞. The analytical solution close to the
boundary is not known. Qualitatively, b(X) is a Monod function.
On the basis of this nonuniform b, a modified amplitude equation
is derived. Making straightforward calculations, one finds a similar
amplitude equation compared to Eq. 7 but with inhomogeneous
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linear terms

∂TA ¼ ½μþ μ1 ðXÞ þ iνðXÞ� Aþ ðaþ iβÞjA j2 A
þ Dx ∂XXAþ Dy ∂YYA � αbc ∂XA

ð8Þ

where the parameters depend on M(X ) as

μ1ðXÞ ¼ ð2κ � 3bc þ γk2c � k4c ÞMðXÞ

νðXÞ ¼ αkcMðXÞ

Both terms are proportional to the slow inhomogeneity M(X ),
so they asymptotically go to 0 as X → ∞. Hence, one recovers the
homogeneous Ginzburg-Landau Eq. 7. With the change of param-
eters and variables as X ¼

ffiffiffiffiffiffi
Dx
p

X, Y ¼
ffiffiffiffiffiffi
Dy

p
Y , A ¼ 1=

ffiffiffiffiffiffiffi
� a
p

A, β =
β/a, and ~α ¼ bcα=

ffiffiffiffiffiffi
Dx
p

, we get Eq. 9.

Amplitude equation description
The amplitude of migrating patterns A satisfies the complex Ginz-
burg-Landau equation with advection

∂tA ¼ ½μðxÞ þ iνðxÞ�A � ð1þ iβÞjA j2Aþr2A � ~α∂xA ð9Þ

The bifurcation parameter μ = μ(x) and detuning ν = ν(x) are
inhomogeneous as a consequence of the boundary layer. For the
sake of simplicity, we choose M(x) ∼ e−x, where x = 0 accounts
for the position of the upstream edge, cf. Fig. 5B.

Note that similarly to ecological models described above, the
amplitude Eq. 9 supports a permanent emission of dislocations
from the upstream edge caused by the inhomogeneous character
of μ and ν. The modulus, the phase field, and the dislocation distri-
bution for the nonturbulent and turbulent regimes are shown in
Fig. 5B. Both defect number laws N(x) are consistent with vegeta-
tion models’ predictions.

Defect counting in numerical simulations
Reconstructing the analytical signal of the migrating vegetation pat-
terns presented, dislocations are recognized as zeros of the ampli-
tude field. This is achieved by the binarization process of the
amplitude field and a particle detection algorithm, both available
in the Fiji software (28). This software gives the position of all the
particles (closed regions of zero amplitude) from whichN(x) is con-
structed. The permanent emission of dislocations enables us to
computeN(x). Using several snapshots of the time evolution for dif-
ferent initial conditions, the mean value of N(x) is obtained. Note
that dislocations start to be counted after the boundary layer region
where they are created.

Remote sensing data analysis
Image treatment
Satellite images are processed with Fiji (28). Grayscale images are
treated with a one-pixel width Gaussian blur to reduce inhomoge-
neities. Then, the subtract background algorithm with a rolling ball
of a radius of 10 pixels is applied. Last, the image is binarized and a
skeleton is constructed. Note that all the procedure is easily imple-
mented with prebuilt Fiji functions.
SRTM data analysis
SRTM data are obtained from the public database (25). The
netCDF4 files are analyzed in Python with the netCDF4 module.
The height maps are given with one–arc sec resolution in both

the azimuthal and polar angles; thus, localizing the bounding coor-
dinates of the regions of interest (with Google Earth software)
allows obtaining the topography of the desired regions. Then, the
gradient of the height map is calculated numerically to obtain the
steepest direction at each point. Last, this direction is averaged over
the region of interest, and the mean orientation 〈θ〉 is obtained. This
angle is used to rotate the previously obtained skeletons, aligning
the x direction (the steepest descent) with the horizontal or vertical
axis. This allows for an efficient way to count dislocations.
Defect counting
One needs to consider that the region of interest to analyze is not
rectangular as the ones obtained from numerical simulations. Thus,
a density of defects is computed to consider irregularities in the
region of interest boundaries. For example, consider that x and y
are aligned with the i and j indices of the matrix representing the
image, and then, for each j, we swept the i index in search of
defects to construct a density n(x, y). This is a binary function of
(x, y), with zero value if no dislocation is found and one if there
is a dislocation. Their distance is measured from the boundary of
the column analyzed, which is given by the mask of the region of
interest. Note that for a single column j, there can exist several
boundaries due to complex topography, if this is the case, subse-
quent intervals are treated as new columns. Last, we coarse grain
the density in tiles of one wavelength sides and average over the y
direction, obtaining N(x).
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Complements and perspectives on
Part II

1. Distribution of interface length in a nonreciprocally
coupled Frenkel Kontorova lattice

Several solutions of nonlinear systems can be understood as localized structures, characterized
by a position. These structures can coexist over a homogeneous solution and interact. We
have devoted our attention to the vortex type of localized structure, which can be observed
in homeotropic anchored nematic liquid crystal or any stripped pattern. The initial number
of vortices created in a region starts to decrease according to a coarsening law; this may
happen in the whole system, or in a co-mobile reference frame (in a system with advection,
or equivalently, some form of nonreciprocal coupling).

We can develop similar analysis to front-type localized structures. We reported how one
dimensional fronts into the stable state (or phase walls) are created from random initial
conditions, unveiling the nucleated number of defects as a function of parameters in chapter
3. Here, we extend the study to fronts into the stable state in a discrete lattice; for this, we
extend our prototypical overdamped nonreciprocal Frenkel Kontorova model to two spatial
dimensions.

The case of a lattice

Instead of a chain, we analyze a lattice. The generalization to a lattice is direct and reads

Ȧij = sinAij + (D − α)(Ai+1j − Aij) − (D + α)(Aij − Ai−1j)
+D⊥(Aij+1 − Aij) −D⊥(Aij − Aij−1) +

√
Γξij(t), (4.1)

where we have promoted Ai → Aij. D⊥ represents the transversal coupling to the chain
(in the new direction introduced), and in principle, it could be a nonlinear function of Aij.
For simplicity we take D⊥ = D. Now, the solutions connecting the equilibrium states are
curved fronts, and the front position is characterized by a curve instead of a single point.
Interestingly, we can measure the average length of these fronts (or domain walls) L ∝
⟨θ2⟩ ≡ ⟨A2

ij⟩ as a function of space or time, and find that it exhibits coarsening dynamics as
illustrated in figure 4.1.

Coarsening dynamics

We find characteristic exponents for the average front length as a function of space. This
is due to their continuous emission at the boundaries and subsequent relaxation dynamics
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Figure 4.1: Dynamics of the nonreciprocally coupled Frenkel-Kontorova lat-
tice. a) shows a snapshot of the dynamics in the absence of nonreciprocity.
b) depicts how the phase wall size obeys a coarsening law in time for α = 0.
c) and d) exemplify values of intermediate nonreciprocity level α, where
patterns can be observed despite fluctuations; here, the phase wall size is
constant due to the periodicity of the self-assembled pattern. e) and f) illus-
trate how fluctuations can destabilize the pattern when high nonreciprocity
creates permanent advected phase wall dynamics. The coarsening law of
the α = 0 case is observed with the change of variables t → i.

while being drifted due to the nonreciprocity coupling effect. Panels a) and b) of figure 4.1
illustrate the case in the absence of nonreciprocal coupling, where one observes the relaxation
dynamics of the front length evolving in time as L ∝ t−0.5; panels c) and d) show a state in
which the self-assembled pattern dominates, and the front length remains constant both in
time and in space; panels e) and f) show the general case, in which fronts will have a velocity
proportional to the nonreciprocal coupling α (see the velocity of fronts into the stable state
formulas) and continuously form at the boundaries, the almost linear relationship between
each front point coordinate and time allows to understand the coarsening law exhibited this
time in space L ∝ i−0.56 (which is obtained by replacing ifronts ≈ ⟨vfronts⟩t in the relaxation
dynamics previously discussed). The work to analytically predict these behaviors is under
development, employing ideas for the motion of curved fronts found in [23] together with the
inclusion of nonreciprocal coupling in the dynamic.
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2. Traveling patterns in liquid crystals
The distribution in space for dislocations in patterns reported in chapter 4 has strong nu-
merical and theoretical evidence; however, the observations are available only for patterns
virtually static in our timescale. To have a real-time observation of the dislocation dynam-
ics, we employ the LCLV experiment described in part I of this dissertation. There, patterns
can be easily observed. We can theoretically support this claim employing equation 2.15;
linearizing around an homogeneous equilibrium state θ0 and proposing a Fourier mode as an
ansatz θ = θ0 + θke

iq·r+λt gives

λ(q) = −1 − q2l2 + π

4
(ΓVFT )1/2iβ sin[2θ0]

[ΓV0 + 2α (1 + cos[β cos2 θ0])]3/2

[(
e−iβ cos2 θ0 − 1

)
ei(δqx+Lq2/2k)−(

eiβ cos2 θ0 − 1
)
ei(δqx−Lq2/2k)

]
.

It is easy to see that the previous equation has a preference in the x direction (the direction of
nonreciprocity); it is in this direction that patterns with nonvanishing wavenumber will form.
In reducing the dynamics to a center manifold to understand the development of the pattern,
we note that the symmetries lead us to a Ginzburg-Landau type of equation. The situation
is analogous to the one studied in chapter 4, and we can compare how defects distribute in
space. Figure 4.2 exhibits the preliminary results.
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Figure 4.2: Traveling patterns and dislocation dynamics in the LCLV. The
upper panels show the numerical simulation results employing Eq. 2.15
with parameters V0/VFT = 1.05, I0 = 1, α/ΓVFT = 2.6, L = −1.5, δ =
0.3 (space and time units are such that τ = l = 1). The bottom panels
show the preliminary experimental measures courtesy of Pedro Aguilera, a
collaborator in this part of the work.
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3. Non-oriented traveling patterns: traveling labyrinth
The question of the coarsening dynamics of defects can be extended even more. Having
analyzed the phase wall dynamics and the dynamics of vortices when dynamical systems
are subjected to nonreciprocal coupling, we ask which could be the effect in more complex
nonlinear structures.

An interesting pattern exhibiting several defects is the labyrinthine pattern, rigorously
described for the first time by Echeverria-Alar and Clerc [44]. Labyrinthine patterns exhibit
dislocations, like stripped patterns, but they also host disclinations, amplitude walls, and
phase walls [23, 66]. All of them connect different stripe orientations. Due to them, the
labyrinthine pattern is a rich place to analyze the dynamics of defects.

Unfortunately, a traveling labyrinth may be difficult to observe due to the fragility of the
degeneracy of critical wavevectors, which is easily destroyed when including any nonreciprocal
coupling. Numerical simulations of the integrodifferential model described in chapter 4 show
a traveling labyrinth depicted in figure 4.3
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Figure 4.3: Traveling labyrinthine patterns in the integrodifferential model
for population dynamics.
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Part III: The effects of heterogeneity.

Heterogeneity in the parameters of systems can be unavoidable up to some threshold. Nothing
is perfect, even in controlled environments. The vegetation patterns presented in the previous
chapter are one system we analyzed in which heterogeneities are prominent. Plants are
fundamentally different from each other in complex ways through genetics, with variety being
favorable for plant development [67]; the soil is highly heterogeneous in density and nutrients,
with topography playing a fundamental role [68–70]; soil moisture islands [71] provoke certain
spatial regions to be favorable. One can readily see the effects of heterogeneity in patterns,
such as the variations in wavelength inside single pattern patches, irregular boundaries of
spots of vegetation, and high density variability.

Heterogeneities in the parameters can have various origins, as mentioned above. How
to model them is another problem to tackle; one would need to consider other variables
coupling to the biomass that evolve on timescales orders of magnitude slower; thus, they
are virtually fixed variables varying in space only. However, the initial condition for such
variables (that could or could not play a crucial role in determining the heterogeneity field)
is unknown. Then, one needs to model them up to some degree. Imagine one starts with a
random spatial distribution of a slow variable coupling to biomass, say, the soil infiltration
rate of water; clearly, in real life, spatial correlations exist; thus, we implement simple rules to
generate correlated distributions. One interesting question is whether these short-correlated
heterogeneities can produce changes at the community level or not.

Here, we try to answer whether short-correlated random heterogeneities significantly affect
the biomass density distribution predicted at equilibrium. We emphasize a reduced model
covering two approaches proposed for biomass spatiotemporal evolution. The reduced equa-
tion derived is valid near a critical point of the corresponding dynamical systems, and it is
obtained employing nonlinear changes of variables together with scale separation expansions.
First, a regime of dissipative phase separation is studied, discerning the coarsening laws for
the average biomass in time and the avoiding of catastrophic shifts. Second, the effects of
heterogeneities on a pattern formation regime are analyzed, emphasizing the labyrinthine
patterns observed in nature.
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Chapter 5

Vegetation covers phase separation in
inhomogeneous environments (Chaos,
Solitons & Fractals 163, 112518)

The dynamic of population models is often described by logistic equations, which can be
considered an empirical law capable of describing all sorts of populations over time [72]. The
observation of spatial patterns in the distribution of vegetation biomass motivated the pro-
posal of more involved mathematical models. Cellular automata models were first proposed
[73]. Later, a mean-field theory defining a biomass density was proposed by Lefever and
Lejeune in 1997 [74]; the model features nonlocal interactions of the density field modeling
cooperative and competitive feedback. Similarly, a continuous theory based on reaction-
diffusion equations coupling the biomass density field with the soil water density field was
proposed by Klausmeier in 1999 [75] considering the advective transport of water in a single
direction. Meron et al. proposed in 2001 [76] a more involved model considering diffusive
transport in water as a first approximation and providing more realistic terms modeling the
interaction. Later, in 2004, Gilad and Meron et al. [77] incorporated nonlocal interactions in
reaction-diffusion models of water and biomass density. These pioneer works have motivated
various models to be presented later, taking the perspective of nonlocal coupling, water-
biomass coupling, or both [6, 78]. These models could display patterns. However, their high
nonlinearities also allow for a bistability regime. A finite biomass density could coexist with
the bare soil solution in these models, with interfaces mediating the spatial extent of these
equilibria.

In this chapter, based on the observation of diverse heterogeneous distributions of biomass
fields in satellite images, we develop a model from both a nonlocal and a reaction-diffusion
system to describe the phenomenon of phase separation observed, where regions of homoge-
neous density arrange with the bare soil solution in various shapes. The usual theory of phase
separation has well-studied asymptotic states which are not observed in this natural system.
To reproduce the natural observations, we propose including heterogeneities in the system’s
parameters. This simple ingredient is capable of inducing in the mathematical model solu-
tions various of the properties observed in actual observations. We also numerically analyze
the coarsening dynamics of the average biomass density and how it could be affected by
heterogeneities.
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A B S T R A C T

Vegetation patterns in arid and semi-arid ecosystems as a self-organized response to resource scarcity is a well-documented issue. Their formation is often
attributed to the symmetry-breaking type of instability. In this contribution, we focus on a regime far from any symmetry-breaking instability and consider a
bistable regime involving uniformly vegetated covers and a bare state. We show that vegetation populations exhibit non-random two-phase structures where high
biomass density regions are separated by sparsely covered areas or even bare soil. These structures are referred to as phase separation vegetation covers. We
provide observations of this phenomenon in Gabon, Angola, Argentina, and Mexico. The inhomogeneities in environmental conditions are crucial to explain the
origin of phase separation vegetation covers. We derive a simple equation from ecologically relevant models to explain various field observations. The bifurcation
diagrams obtained from this model allow us to prove that inhomogeneity in the aridity parameter is a source of resilience for vegetation covers, avoiding collapsing
towards a bare state. We characterize the natural observations and the equilibria from the model by using Fourier transform technique, spatial autocorrelation
analysis, and size distribution of patches analysis.

1. Introduction

The fragmentation of landscapes and loss of biological produc-
tion in drylands, which leads to desertification as a result of cli-
mate change and longer drought periods, is one of the world’s most
pressing environmental challenges. This fragmentation is typically ac-
companied by a non-equilibrium symmetry breaking instability, even
when the topology of the landscapes is flat [1,2]. The patterns that
emerge from the symmetry-breaking instability is generically called
vegetation patterns. The ‘tiger bush’ is a well-known example that
was first seen in the early 1940s thanks to the development of aerial
photography [3]. Since this discovery, several modeling approaches
have been proposed to explain the origin of these patterns, ranging
from cellular-automata models [4], integrodifferential equations [1],
reaction–diffusion equations [5–8], to spatially stochastic models [9,
10]. The later approach focuses on how environmental randomness can
be used to create symmetry-breaking transitions that lead to the forma-
tion of vegetation patterns. Besides tiger bush other spatially periodic
vegetation patterns have been reported such as hexagons [1,2,11,12],
and labyrinths [2,12].

Vegetation patterns are not always periodic. They can be localized
in space [13–17], found close to the symmetry-breaking instability.
In [18,19], it is established how two well separated isolated patches
interact in one- and two-dimensions. As one moves out from the
patch center, the patch tail monotonically decays, whereas localized
gaps have a damped oscillatory tail. Depending on how far apart the

∗ Corresponding author.
E-mail address: david.pinto@ug.uchile.cl (D. Pinto-Ramos).

1 David Pinto-Ramos, Sebastián Echeverría-Alar, Marcel G. Clerc, and Mustapha Tlidi contributed equally to the production of this work.

gaps are, the interaction can be either attractive or repulsive [20].
Localized patches may exhibit a curvature instability that causes the
self-replication phenomenon [21,22] or the emergence of arcs and
spirals [23].

Nonperiodic vegetation patterns in a regime far from any symmetry-
breaking instability can be observed in nature. These structures emerge
spontaneously from random perturbations of the unstable homoge-
neous steady state that separates the two stable states forming a bistable
system. This phenomenon is referred as phase separation. Growth of
spatial domains of different phases whose dynamics is governed by
power law in systems with conserved and nonconserved order param-
eters is a well documented issue [24–26]. This phenomenon has been
studied in a variety of out-of-equilibrium systems, including polymer
chemistry [27,28], material science [29], optical systems [30–33] and
cell biology [34]. However, the topic of phase separation in ecosystems
caused by environmental inhomogeneity has received little attention.

Examples of phase separation in ecosystems are shown in Fig. 1.
These are satellite photos, retrieved from Google Earth software, of
vegetation coverage in different regions. Near the African coast, the
landscapes of Gabon (see Fig. 1a) and Angola (see Fig. 1b) show distinct
patches of bare soil and planted areas of various sizes and forms. Scat-
tered vegetated and non-vegetated areas are seen in the hilly regions
of Argentina (see Fig. 1c) and Mexico (see Fig. 1d). It is seen that the
vegetation distribution in all these places is inhomogeneous. Modeling

https://doi.org/10.1016/j.chaos.2022.112518
Received 30 June 2022; Received in revised form 27 July 2022; Accepted 28 July 2022
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Fig. 1. Vegetation pattern phase separation. Top views of (a) Gabon, Africa (2◦ 44’
08.42" S, 10◦ 12’ 28.37" E), (b) Angola, Africa (6◦ 19’ 39.10" S, 12◦ 35’ 25.98" E), (c)
Argentina, South America (40◦ 58’ 17.21" S, 71◦16’ 03.76" O), and (d) Mexico, North
America (29◦ 04’ 25.99" N, 110◦ 11’ 19.27" O).

approaches in vegetation ecosystems do not exhibit heterogeneous non-
periodic self-organization as equilibrium. The spatial characterization
of such vegetation states and the transitions between them have not
been explored.

We propose a unified description for non-homogeneous and non-
periodic vegetation covers, vegetation pattern phase separation. We
show that the inhomogeneous vegetation covers are equilibrium states
of the ecosystem under inhomogeneous environment. We demonstrate
how the inclusion of inhomogeneities in the parameters plays a crucial
part in explaining the wide range of distinct observed equilibria. We
observe that the vegetation spatial organization is characterized by a
power-law distribution in Fourier space and an exponential decay in
the spatial correlation. Finally, a power law for the early temporal
evolution of the total biomass is numerically inferred .

Following an introduction, Section 2 shows the characterization
of the spatial self-organization of the satellite images in Fig. 1. In
Section 3, we present a straightforward Fisher–Kolmogorov–Petrovskii–
Piskunov (FKPP) type model with inhomogeneous environmental con-
ditions and explore the dynamics of phase separation vegetation covers.
The study of equilibria and the coarsening dynamics of homogeneous
states are discussed in Sections 4 and 5, respectively. In Section 5.2, we
examine how the coarsening dynamics are impacted by an inhomoge-
neous environment by avoiding collapse to the bare state. The paper is
concluded in Section 6. A detailed derivation of the FKPP equation from
the generic interaction redistribution model and the reaction–diffusion
water and biomass model is included in the Appendix section.

2. Spatial characterization of field observations

To characterize vegetation phase separation patterns shown in
Fig. 1, we evaluate their Fourier spectrum and their spatial autocor-
relation. The results are shown in Fig. 2, where the Fourier spectrum
|𝐹 (𝑞)|2, as a function of the radial wavevector 𝑞, is depicted in Fig. 2(𝑎1,
𝑏1, 𝑐1, 𝑑1). All satellite images taken from Gabon, Angola, Argentina,
and Mexico unexpectedly possess a power-law decaying tail connecting

Fig. 2. Fourier spectra and spatial autocorrelations. The blue dots and the blue lines
represent the real data from the vegetation images of Fig. 1. (𝑎1, 𝑏1, 𝑐1, and 𝑑1)
correspond to the Fourier spectrum of Gabon, Angola, Argentina, and Mexico vegetation
patterns, respectively. The red line in the Fourier space illustrates the power-law
behavior of the tail in the radial direction 𝑞. The exponents range from 2.0 to 3.4.
The 𝑅2 values of the linear fittings are (𝑎1) 0.79, (𝑏1) 0.77, (𝑐1) 0.69, and (𝑑1) 0.70,
respectively. (𝑎2, 𝑏2, 𝑐2, and 𝑑2) are autocorrelations corresponding to Gabon, Angola,
Argentina, and Mexico vegetation patterns, respectively. The characteristic correlation
lengths 𝑙 are (𝑎2) 𝑙 = 610.9 m, (𝑏2) 𝑙 = 20.6 m, (𝑐2) 𝑙 = 11.3 m, and (𝑑2) 𝑙 = 72.4 m. They
are obtained by fitting the exponential law 𝐵𝑒−𝑟∕𝑙 to the real data, where 𝐵 is a positive
constant. The 𝑅2 value of all the exponential fittings is 0.99. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

a range of spatial scales in the wavevector space. In this figure, the lin-
ear fitting is indicated by red line. At the very least, this eliminates the
possibility of a wavelength selection process leading to the formation
of periodic vegetation patterns. Besides, each vegetation photograph
of Fig. 1 is accompanied by spatial autocorrelation function 𝐶(𝑟) as
a function of a distance 𝑟 [see Fig. 2(𝑎2)]. The vegetation structures
have a spatial autocorrelation characterized by an exponential decay
behavior until an asymptotic value is reached. Up until great distances,
Gabon shown in Fig. 2(𝑎2) and Angola shown in Fig. 2 (𝑏2) exhibit
an exponential behavior. At small distances, the exponential decay is
truncated in Argentina and Mexico as shown in Fig. 2(𝑐2) and Fig. 2(𝑑2),
respectively. The exponential decay is represented by fitting curves of
the form ∼ 𝑒−𝑟∕𝑙 of the autocorrelation data [see brown dashed lines in
panels of Fig. 2(𝑎2, 𝑏2, 𝑐2, 𝑑2)]. The correlation length is denoted by 𝑙,
which describes the local vegetation pattern phase-separation of a well
defined mean patch size. In fact, a closer look at the vegetation covers
in Fig. 1 reveals nonperiodic behavior, leaving aside the explanation of
spontaneous symmetry-breaking mechanisms.

The Fourier spectra together with spatial autocorrelations indicated
that the vegetation patterns observed in Africa and America reported in
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Fig. 1 do not emerge spontaneously from symmetry-breaking instability
but rather from phase separation mechanism. Independent of the region
of the planet, and type of soil and vegetation (bushes, patches, shrubs,
trees), we observe a power-law in Fourier space and an exponential
decay of the autocorrelation function. In the next sections, we introduce
a model and provide an explanation to the field observations.

3. Phase separation dynamics for biomass

We adopt a continuous time and space description of the biomass
density 𝑏(𝑥, 𝑦, 𝑡) at space coordinates 𝐫 = (𝑥, 𝑦) and time 𝑡. Theory of
vegetation patterns based on the non-local FKPP equation has been
reported in [35–37]. In this contribution, we consider the paradigmatic
local FKPP [38,39] model equation describing the population dynamics
of individuals with the inclusion of small inhomogeneities in the growth
parameter

𝜕𝑡𝑏 = −
(
𝜂 +

√
𝛤𝜉(𝐫)

)
𝑏 + 𝜅𝑏2 − 𝑏3 +𝐷∇2𝑏. (1)

This simple model is derived from the nonlocal FKPP equation, and
from reaction–diffusion water biomass model (see the Appendix). The
parameter 𝜂 measures the linear growth (𝜂 < 0) or decay (𝜂 > 0) of
vegetation population. 𝜂 increases as the aridity of the environment
increases; 𝜅 measures the net effect of facilitative versus competi-
tive interactions, and 𝑏3 is the nonlinear saturation. The last term
describes diffusion with coefficient 𝐷 and ∇2 = 𝜕𝑥𝑥 + 𝜕𝑦𝑦 is the
bidimensional laplacian operator. The degree of aridity described by
the parameter 𝜂 of an environment is related with on-site evapotran-
spiration process [40]. A spatial distribution of this process can arise
naturally due to different type of soil, diverse plant groups, and topo-
graphic variations [41]. The function 𝜉(𝐫) models these environmental
inhomogeneities and 𝛤 measures the intensity of them.

Let us briefly recall that Eq. (1) can be stated in gradient form

𝜕𝑡𝑏 = − 𝛿𝐹
𝛿𝑏

,

𝐹 ≡ ∫ 𝑑𝐫
(
𝜂(𝐫) 𝑏

2

2
− 𝜅 𝑏

3

3
+ 𝑏4

4
+ 𝐷

2
(∇𝑏)2

)
, (2)

where 𝜂(𝐫) = 𝜂 +
√
𝛤𝜉(𝐫). Then, it is well-known that the system Eq. (1)

will reach an equilibrium minimizing the potential 𝐹 .
In what follows, we focus on the effects of independent inhomo-

geneities in space. In this case, the function 𝜉(𝐫) is generated by a
delta-correlated gaussian random process of zero mean. In the absence
of inhomogeneities, i.e., 𝛤 = 0, the model for vegetation Eq. (1)
was derived from ecologically relevant models (see the Appendix).
It has also been derived from a variety of physical systems, including
liquid crystals [42], flame combustion [43], fiber Kerr resonators [44],
passive Kerr cavity [45], and electrical circuits [46], to mention a few.

Eq. (1) for 𝛤 = 0 supports domain walls [47] (or bistable fronts)
separating the two stable equilibrium states 𝑏ℎ1 = (𝜅+

√
𝜅2 − 4𝜂)∕2 and

𝑏ℎ2 = 0. One important aspect of equilibria, is that for positive values
of 𝜅 there exist a tipping – or saddle node – point at 𝑏𝑠 = 𝜅∕2 and
𝜂𝑠 = 𝜅2∕4. As one crosses the critical aridity 𝜂 = 𝜂𝑠, this bifurcation,
which is defined by the annihilation of two equilibria, causes dramatic
changes in the system [48], well documented as catastrophic shift in
ecology.

The dynamics of Eq. (1) in the simple case of homogeneous environ-
mental conditions, is characterized by front propagation. Straightfor-
ward calculations lead to a propagation speed of the fronts proportional
to the difference of energy of the homogeneous states. Neglecting the
curvature effects for the domain propagation, the speed of walls reads
(see the textbook [47] and reference therein)

𝑣𝑤𝑎𝑙𝑙𝑠(𝑏ℎ1 → 𝑏ℎ2) ≡ 𝑣0 ∝ 𝐹 (𝑏ℎ2) − 𝐹 (𝑏ℎ1), (3)

𝐹 (𝑏) ≡ 𝜂 𝑏
2

2
− 𝜅 𝑏

3

3
+ 𝑏4

4
. (4)

In homogeneous environmental conditions where 𝜂 is a constant, the
dynamics leads to either a uniform vegetated cover or a state totally

Fig. 3. The bifurcation diagram of Eq. (1) for parameters 𝜅 = 0.6 and 𝐷 = 0.1,
showing the different behaviors for different 𝛤 values. (a) Bifurcation diagram for the
averaged biomass ⟨𝑏⟩. (b) Bifurcation diagram for the area fraction ⟨𝐴⟩. (c), (d) and
(e) show examples of the different equilibria exhibited in the bifurcation diagram. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

devoid of vegetation. This approximation cannot explain the wide range
of vegetation patterns depicted in Fig. 1. It is then necessary, to include
inhomogeneities in the environmental conditions, such as the aridity,
which will explain the field observation as we will see in the next
section.

4. Equilibrium states analysis

In this section, we discuss equilibria of Eq. (1) first in the homoge-
neous parameter 𝛤 = 0 case, and then when 𝛤 ≠ 0, considering both
delta-correlated and spatial correlated inhomogeneities.

4.1. Homogeneous case 𝛤 = 0

Starting from random initial conditions 𝑏𝑖(𝐫, 0) around the unsta-
ble vegetated state, one can introduce the averaged biomass ⟨𝑏⟩ ≡∑𝑁

𝑖=1 ∫ 𝑑𝐫𝑏𝑖(𝐫, 𝑇 )∕𝑁𝐿2, where 𝑁 is the number of realizations and 𝑇
is the time to reach equilibrium. ⟨𝑏⟩ exhibits an abrupt change when
increasing the aridity parameter 𝜂 as shown by the blue dotted curve
in Fig. 3(a). There exist a single point called the Maxwell point and
denoted by 𝜂 = 𝜂𝑚, where front solutions of Eq. (1) are stationary,
i.e., when the two stable homogeneous steady states have the same
energy. For 𝜂 < 𝜂𝑚, 𝑏ℎ1 has the lowest free energy density, whereas
for 𝜂 > 𝜂𝑚, 𝑏ℎ2 = 0 is the preferred state. Figs. 3(b) illustrates
the bifurcation diagram for the mean biomass ⟨𝑏⟩ and the biomass
area fraction ⟨𝐴⟩ ≡ ∑𝑁

𝑖=1 ∫ 𝑑𝐫𝐴𝑖(𝐫, 𝑇 )∕𝑁𝐿2, respectively. The latter
is defined using the binarized biomass field 𝐴𝑖 for different initial
conditions 𝑏𝑖 as

𝐴𝑖(𝐫, 𝑇 ) ≡
{

1 if 𝑏𝑖(𝐫, 𝑇 ) ≥ 𝑏𝑠 = 𝜅∕2,
0 if 𝑏𝑖(𝐫, 𝑇 ) < 𝑏𝑠 = 𝜅∕2. (5)

The biomass area fraction corresponding to the case 𝛤 = 0 is indicated
by the blue dotted curve in Fig. 3(b). Without inhomogeneities, nu-
merical simulations of Eq. (1) for a long time evolution, reach either
a uniform cover state or a state totally devoid of vegetation. These
equilibrium biomass covers correspond to an area fraction one or zero
in Fig. 3(b), respectively. Therefore, vegetation patterns and phase
separation vegetation covers are excluded in this case.
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Fig. 4. Statistical analysis of a low area fraction equilibrium for parameters 𝜅 = 0.6,
𝐷 = 0.1, 𝜂 = 0.95, and 𝛤 = 0.01. (a) Examples of equilibrium 𝐴 fields. (b) Probability
density of patch area 𝑃 (𝑎) with a power law fit and its logarithmic scale graph in
the inset. (c) Autocorrelation function of the 𝑏 field, showing an exponential fit and a
semi logarithmic scale graph in the inset. (d) Averaged absolute value of the Fourier
transform of 𝑏 in semi logarithmic scale (for contrast purposes). (e) Logarithmic scale
graph for the tail of the Fourier transform with power law fits for the 𝐴 and 𝑏 fields.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

4.2. Inhomogeneous 𝛤 ≠ 0 and non-correlated 𝜉(𝐫) case

When the aridity parameter is inhomogeneous 𝛤 ≠ 0, numerical
simulations of Eq. (1), using different random initial conditions and
different realizations of 𝜉(𝐫), show there is no abrupt change in the
mean biomass for large enough 𝛤 . Fig. 3(a) show this smooth transition
(see orange and green curves). In this case, the transition is rather
continuous avoiding a catastrophic shift in the ecosystem.

Contrarily to the homogeneous case, the system can reach phase
separation vegetation covers as shown in Figs. 3(c, d, e). Now, the
system is characterized by the coexistence of disordered patches of
vegetation and bare soil. According to the bifurcation diagram in
Fig. 3(b), equilibrium biomass covers can have an area fraction other
than zero or one. Note that states with low area fraction (⟨𝐴⟩ ≪ 1)
are found above the Maxwell point (𝜂 > 𝜂𝑚) (cf. Figs. 3(d) and 3(e)).
However, states with high area fraction (1 − ⟨𝐴⟩ ≪ 1) are only found
below the Maxwell point (𝜂 < 𝜂𝑚), as shown in Fig. 3(c).

Inhomogeneities can prevent plants from collapsing to bare ground.
It is important to notice that even for entirely uncorrelated inhomo-
geneities, one can recognize the spatial structures seen in vegetation
(see Fig. 1), and predicted by the FKPP Eq. (1). One can identify the
location and size of patches by using ImageJ software [49], which has
been applied to the field 𝐴. Fig. 4(a) shows examples of the field 𝐴 for
different realizations of the numerical simulations. It is interesting to
note that the probability distribution of patch sizes 𝑃 (𝑎), where 𝑎 is the
area of a biomass patch, follows a power law as shown in Fig. 4(b).
This 𝑃 (𝑎) behavior is in line with some measurement for small patch

Fig. 5. Steady state averaged biomass ⟨𝑏⟩ from Eq. (1) with spatially correlated
inhomogeneities. The surface-plot show the average biomass ⟨𝑏⟩ for different values
of the intensity

√
𝛤 and the degree of correlation 𝑑∕𝐿 of the inhomogeneities. 𝑑 is the

correlation length of the 𝜉(𝐫) function, obtained by fitting an exponential law to the
autocorrelation 𝐶(𝐫) of 𝜉(𝐫), and 𝐿 is the size of the simulation box. All the correlated
𝜉(𝐫) were created with the reaction–diffusion process (𝜖 = 0.1). (i) 𝑑∕𝐿 = 0 and

√
𝛤 = 0,

(ii) 𝑑∕𝐿 = 0.03 and
√
𝛤 = 0.08, and (iii) 𝑑∕𝐿 = 0.08 and

√
𝛤 = 0.07 correspond to

different equilibria obtained in Eq. (1). The biomass 𝑏 is normalized to 1 in the three
insets. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

sizes that have been documented in the literature [50]. In addition, as
shown in Figs. 4(d) and 4(e), the tails of the Fourier transform of the
𝑏𝑖(𝐫, 𝑇 ) and 𝐴𝑖(𝐫, 𝑇 ) fields both follow a power law, typical of complex
systems [51,52]. This Fourier space structure translates into a well-
defined correlation function with an exponential decay for equilibrium
states produced by the model Eq. (1), as shown in Fig. 4(c). We compare
the outcomes of numerical simulations of the model equation with
the satellite photos provided in Fig. 1 thanks to these straightforward
analysis tools.

4.3. Inhomogeneous 𝛤 ≠ 0 and correlated 𝜉(𝐫) case

In what follows, we address the problem of considering the effects
of inhomogeneities that are spatially correlated. To have spatially
correlated inhomogeneities, let us consider an initial delta correlated
function 𝜉(𝐫), to go through a simple reaction–diffusion process

𝜕𝑠𝜉(𝐫) = −𝜖𝜉(𝐫) + ∇2𝜉(𝐫), (6)

where 𝜖 is a positive relaxational constant, and 𝑠 parametrizes the
evolution of 𝜉(𝐫). We extract different temporal stages of this evolution.
In this way, we obtain inhomogeneity functions with a degree of spatial
correlation, which is characterized by the dimensionless parameter
𝑑∕𝐿. 𝑑 is the correlation length and 𝐿 is the system size. After, we
normalize the correlated functions 𝜉(𝐫, 𝑠) between [−1, 1] in order to
control the inhomogeneities in Eq. (1) with the inhomogeneity level
intensity 𝛤 . Fig. 5 shows the averaged biomass ⟨𝑏⟩ from Eq. (1) for
different values of the inhomogeneity intensities 𝛤 and correlation
lengths 𝑑 of the inhomogeneities 𝜉(𝐫). When increasing 𝑑, ⟨𝑏⟩ decreases
(see insets (ii) and (iii) in Fig. 5) in comparison to the homogeneous
case shown in the inset (i) of Fig. 5. This is related to the coherent
patches of bare soil that can coexist with the vegetated state thanks to
incorporating a correlated inhomogeneity function 𝜉(𝐫). The addition
of the spatial correlation can capture more smooth vegetation distri-
butions, which are comparable to the satellite images of Gabon and
Angola (cf. Figs. 1(a) and 1(b), respectively).
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Fig. 6. Biomass propagation in homogeneous landscape. (a) The blue dots are the
temporal evolution of the area cover for numerical simulations of Eq. (1), with
parameters 𝜅 = 0.6, 𝐷 = 0.1, 𝜂 = 0.02, and 𝛤 = 0. The orange indicates the theoretical
prediction from Eq. (9). (b), (c), and (d) are different stages of propagation, showing
that homogeneous conditions favor circular patches and full cover at equilibrium. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

5. Coarsening dynamics

In the last section, we analyze the early temporal evolution of
the biomass density field 𝑏(𝑥, 𝑦, 𝑡) that leads to the equilibrium states
discussed previously.

5.1. Coarsening in homogeneous environment

From the front or wall speed Eq. (3), one can infer the temporal
evolution for the total cover of the biomass 𝑏 as depicted in Fig. 6(a).
For this, consider that a localized portion of vegetation (patch) is placed
on bare ground 𝑏 = 0, as shown in Fig. 6(b). Then, the interface
propagates, as seen in Figs. 6(c) and 6(d), with an approximated speed
of 𝑣0 (see Section 3 and Eq. (3)). Thus, the characteristic size of the
patch increases linearly with time 𝑡 as

⟨𝐿𝑝𝑎𝑡𝑐ℎ⟩ ∼ 𝑣0𝑡. (7)

Then, it is straightforward to introduce the total biomass and the area
of a patch 𝐴𝑝𝑎𝑡𝑐ℎ by

𝑏𝑡𝑜𝑡𝑎𝑙 ∼ 𝑏ℎ1⟨𝐿𝑝𝑎𝑡𝑐ℎ⟩2 ≡ 𝑏ℎ1⟨𝐴𝑝𝑎𝑡𝑐ℎ⟩. (8)

From this, one can easily see that

⟨𝐴𝑝𝑎𝑡𝑐ℎ⟩ ∼ 𝑡𝑛, (9)

with 𝑛 = 2. The previous expression is valid for a single patch in
space neglecting curvature effects. Otherwise, front interactions and
curvature effects alter the simple dynamics of the front. Fig. 6 (a) shows
perfect agreement with this simple theory by fitting Eq. (9) to the
numerical data.

More interesting is the natural nucleation of multiple patches after
an initial perturbation. Initializing the system with random initial
conditions, small deviations from the critical exponent 𝑛 = 2 are
expected due to multiple patch nucleation, as seen in Figs. 7(a) and (b)
for early times. Figs. 7(c) to 7(f) show the temporal evolution of the
nucleation of patches. Note that as one gets closer to the Maxwell point,
the interaction between walls becomes stronger, and we expect larger
deviations from the naive exponent 𝑛 = 2. Unexpectedly, a crossover
between exponents 𝑛 = 2 and 𝑛 = 3 is observed for low area fractions
⟨𝐴⟩ with the former dominating the early time dynamics.

Fig. 7. Temporal dynamics of multiple patch growth in homogeneous landscape. (a)
and (b) exhibit the temporal dynamics following power laws in time for the vegetation
area cover, calculated from numerical simulation data of Eq. (1) with parameters
𝜅 = 0.6, 𝐷 = 0.1, and 𝛤 = 0. (c), (d), (e) and (f) show different stages of temporal
evolution with coarsening dynamics. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

5.2. Coarsening in an inhomogeneous environment

In the case 𝛤 ≠ 0, fronts can suffer from a pinning phenomenon [53],
explaining the amorphous shapes we can observe as equilibrium states.
Pinning phenomenon has been studied in several fields of physics,
appearing naturally in discrete systems such as crystal lattices [54],
and pattern forming systems [55]. Spatially modulated parameters
could also induce pinning phenomenon as observed in liquid crystal
devices [56] or granular media [57].

For the temporal dynamics, fronts will be highly coupled to the
external inhomogeneities imposed, putting in doubt the validity of
Eq. (7). Surprisingly, coarsening dynamics for low area fractions were
observed, although with a different exponent 𝑛 compared with the
homogeneous case, as seen in Fig. 8.

One can see that inhomogeneities increase the characteristic expo-
nent for the area cover growth, from 𝑛 = 2 to 𝑛 = 4. Indeed, it is ob-
served that inhomogeneities dramatically accelerate evolution towards
the equilibrium state, reaching an almost full cover approximately fifty
times faster compared to the homogeneous case 𝛤 = 0 case.

6. Conclusions

We have reported satellite photos showing phase separation vege-
tation covers, obtained from Google Earth software in different land-
scapes of Africa and America. We have characterized vegetation phase
separation patterns by establishing their Fourier spectra and spatial au-
tocorrelations. We have demonstrated that these patterns, independent
of the plant involved and the type of soil in which they are observed,
exhibit a generic power-law in Fourier space and exponential decay of
the autocorrelation function. Thanks to this investigation, we were able
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Fig. 8. Effect of inhomogeneities on early temporal evolution. The area cover of
vegetation shows a different exponent for its temporal dynamics, from numerical
simulations of Eq. (1) with delta correlated 𝜉(𝐫), parameters 𝜅 = 0.6, 𝐷 = 0.1, 𝜂 = 0.02.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

to rule out the symmetry-breaking mechanism caused by the formation
of periodic vegetation patterns.

We have derived a simple equation, the local FKPP, as a paradigm
for the studying of population dynamics, from the generic interaction
redistribution model, and the reaction–diffusion water and biomass
model. We have demonstrated that environmental inhomogeneities are
necessary to account for the phase separation patterns observed in
vegetation. Numerical simulations for a long time evolution showed
that the model Eq. (1) without inhomogeneities cannot support phase
separation vegetation covers.

Simple static indicators such as patch size distributions, spatial
Fourier transform analysis, and correlation functions analysis reveal
the presence of inhomogeneities. Additionally, we propose dynamical
indicators given by the coarsening power-law exponents for the early
time evolution of vegetation covers.

More importantly, inhomogeneities are shown to be a source of
resilience for vegetation covers. We demonstrated that enough inho-
mogeneities allowed to avoid collapsing towards a bare state, shed-
ding light on mechanisms to preserve arid ecosystems from the global
warming process and long drought periods.
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Appendix

A.1. Nonlocal FKPp model

The nonlocal FKPP model for vegetation population reads [20,35]

𝜕𝑡𝑏 = 𝑏(1 − 𝑏)𝑚𝑓 (𝐫) − 𝜇𝑏𝑚𝑐 (𝐫) +𝐷𝑚𝐷(𝐫), (10)

𝑚𝑓,𝑐 = exp(𝜒𝑓,𝑐 ∫ 𝑑𝐫′𝜙𝑓,𝑐 (𝐫′)𝑏(𝐫 + 𝐫′)), (11)

𝑚𝐷 = ∫ 𝑑𝐫′𝜙𝐷(𝐫′)
[
𝑏(𝐫 + 𝐫′) − 𝑏(𝐫)

]
, (12)

where 𝑏 corresponds to the biomass density field, following a logistic
growth depending on the neighboring biomass with 𝑚𝑓 . Mortality has
a base rate 𝜇 enhanced by competition feedback through 𝑚𝑐 . The seed
dispersion is described by the last term in the rhs of Eq. (10). The
nonlocal terms Eqs. (11) and (12) correspond to a weighted sum of the
biomass with kernels 𝜙𝑓,𝑐,𝐷(𝐫′). These kernels are decaying functions
of the distance between interacting plants, and are assumed to be
radially symmetric. They model facilitative (𝑓 ), competitive (𝑐), and
seed dispersion (𝐷) processes. The strength of the competitive and
facilitative interactions are 𝜒𝑓 and 𝜒𝑐 , respectively. Whereas 𝐷 is the
intensity of seed dispersion.

We perform a weak nonlinear analysis in Eq. (10). First, note the
critical parameter 𝜇 = 𝜇𝑐 = 1 at which the bare soil state 𝑏 = 0 changes
its stability. The curve defining the non-trivial homogeneous equilibria
is 0 = (1 − 𝑏) exp(𝜒𝑓 𝑏) − 𝜇 exp(𝜒𝑐𝑏), and has two positive solutions for
𝜒𝑓 − 𝜒𝑐 ≥ 1. These solutions collapse to the 𝑏 = 0 state at 𝜒𝑓 − 𝜒𝑐 = 1
and 𝜇 = 𝜇𝑐 . Let us explore the vicinity of the onset of bistability by
introducing a small parameter 𝜖 (𝜖 ≪ 1) that describes the distance
from criticality as

𝜇 = 𝜇𝑐 + 𝜖2𝜂, (13)
𝜒𝑓 − 𝜒𝑐 = 1 + 𝜖𝜅. (14)

A linear analysis of Eq. (10) around 𝑏 = 0 with finite wavevector
perturbation 𝑏 = 𝐴 exp(𝑖𝐪 ⋅ 𝐫 + 𝜆𝑡) leads to the characteristic equation
𝜆(𝐪) = 1 − 𝜇 + 𝐷(𝜙𝐷(𝐪) − 1), where 𝜙𝐷(𝐪) is the Fourier transform of
𝜙𝐷(𝐫). Remembering that the kernels are normalized, it follows that
�̂�𝑓,𝑐,𝐷(𝐪 = 0) = 1. Moreover, as the kernels are radially symmetric
the expansion for large wavelength perturbation reads 𝜙𝐷(𝐪) ≈ 1 +
𝜕𝑞𝑥𝑞𝑥𝜙𝐷(𝟎)𝐪2∕2 + ⋯, having at dominant order the band of unstable
modes 𝛥𝑞2 = (𝜇−1)∕(𝐷𝜕𝑞𝑥𝑞𝑥𝜙𝐷(𝟎)∕2) ∼ 𝜖2. Then, we propose the ansatz

𝑏 = 𝜖𝐴(𝑇 = 𝜖2𝑡,𝐑 = 𝜖𝐫) + 𝜖2𝑊 [2] + 𝜖3𝑊 [3] +⋯ , (15)

where 𝑊 [𝑛] correspond to nonlinear corrections of order 𝜖𝑛. Addi-
tionally, we expand the integral terms, provided that the kernels in
Eqs. (11) and (12) decay faster than an exponential, as

∫ 𝑑𝐫′𝜙𝑓,𝑐,𝐷(𝐫′)𝑏(𝐫 + 𝐫′) ≈ 𝑏(𝐫) + ∇2𝑏
4 ∫ 𝑑𝐫′𝜙𝑓,𝑐,𝐷(𝐫′)𝐫′2 +⋯

By replacing this expansion and Eqs. (13), (14), (15) in Eq. (10) a
hierarchy of equations at different orders in 𝜖 are found. Orders 𝜖 and
𝜖2 satisfy automatically the solvability condition, and at 𝜖3 order we
get the equation

𝜕𝑇𝐴 = −𝜂𝐴 + 𝜅𝐴2 − 𝐴3∕2 +𝐷𝑒∇2𝐴, (16)

where

𝐷𝑒 =
𝐷
4 ∫ 𝑑𝐫′𝜙𝐷(𝐫′)𝐫′2. (17)

In this way, with a renaming and scaling of variables and parameters
in Eq. (16), we recover the local FKPP Eq. (1).
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A.2. Water and biomass model

Another popular approach to explain the vegetation pattern forma-
tion proposed in the literature is based on water transport [5–8]. When
biomass and water interact, vegetation ecosystems can be modeled by a
pair of coupled reaction–diffusion equations. A general approach when
considering sloped territory was provided in [5]. A model considering
the possible bistability between bare soil and populated state reads [58]

𝜕𝑡𝑏 = 𝑏(1 − 𝑏)𝑤(1 + 𝛾𝑏)2 − 𝜇𝑏 +𝐷∇2𝑏,

𝜕𝑡𝑤 = 𝑝 −𝑤 − 𝜎𝑏𝑤(1 + 𝛾𝑏)2 + ∇2𝑤. (18)

Where 𝑏 and 𝑤 correspond to the biomass and ground water density
fields, respectively. 𝛾 characterizes the increase of biomass production
with water consumption. The parameter 𝜇 represents the mortality rate
and 𝐷 accounts for the dispersal by seeds. The parameter 𝑝 models
the mean water input to the system, and 𝜎 weights the water lost by
consumption of the biomass.

We can derive a normal form equation for long wavelength pertur-
bations near the onset of bistability. Let us consider the linear dynamics
around the bare soil state as (𝑏,𝑤) = (0, 𝑝) + 𝛿𝐴𝑣 exp(𝑖𝐪 ⋅ 𝐫 + 𝜆𝑡), with
𝛿𝐴 ≪ 0, the jacobian reads

𝐽 =
(
𝑝 − 𝜇 −𝐷𝑞2 0

−𝜎𝑝 −1 − 𝑞2

)
, (19)

which has eigenvalues 𝜆𝑠(𝑞) = −1 − 𝑞2 and 𝜆𝑢(𝑞) = 𝑝 − 𝜇 − 𝐷𝑞2.
The eigenvalue 𝜆𝑢 can change of sign at 𝜇𝑐 = 𝑝 and the equilibrium
point changes its stability. The corresponding band of unstable modes
is 𝛥𝑞2 = (𝑝−𝜇)∕𝐷. thus, close to the instability of the bare soil solution
𝑝 = 𝜇, slow spatial variations domain the dynamics (𝛥𝑞2 → 0). We
use a multiple time–space scale analysis to establish a simple normal
form model Eq. (1). We choose a small parameter 𝜖 which measure the
distance from the critical point 𝑝 = 𝜇 as

𝑝 = 𝜇 − 𝜖2𝜂, (20)

then, 𝛥𝑞2 ∼ 𝜖2. The non-trivial homogeneous equilibria read 𝑤1 =
𝜇∕

[
(1 − 𝑏)(1 + 𝛾𝑏)2

]
and 𝑤2 = 𝑝∕

[
1 + 𝜎𝑏(1 + 𝛾𝑏)2

]
. The onset of bista-

bility condition reads 𝜕𝑏𝑤1|𝑏=0 = 𝜕𝑏𝑤2|𝑏=0, giving the critical relation
𝜎𝑐 = 2𝛾 − 1. Thus, we perturb around this condition as

𝜎 = 2𝛾 − 1 − 𝜖𝜅. (21)

To perform a weak nonlinear analysis, we consider the ansatz
(
𝑏
𝑤

)
=
(
0
𝑝

)
+ 𝜖𝐴(𝑇 ,𝐑)𝑣𝟏 + 𝜖2�⃗� [2] + 𝜖3�⃗� [3] +⋯ (22)

where the slow time scale is 𝑇 = 𝜖2𝑡, and the space scale is 𝐑 =
𝜖𝐫. We insert the previous expressions for 𝑏 and 𝑤, and expansions
Eqs. (20), (21) in Eq. (18), and solve the linear problems for the
unknown functions �⃗� [𝑛] corresponding to nonlinear corrections of
order 𝜖𝑛.

At order 𝜖, one has

0 =
(

0 0
−𝜎𝑐𝑝 −1

)
𝐴𝑣𝟏, (23)

which gives the eigenvector at instability

𝑣𝟏 =
(

1
−𝜎𝑐𝑝

)
. (24)

At order 𝜖2, one finds

0 =
(

0 0
−𝜎𝑐𝑝 −1

)
�⃗� [2] + 𝐴2

(
0

−𝜎𝑐𝑝

)
, (25)

which is solved for

�⃗� [2] = 𝐴2
(

0
−𝜎𝑐𝑝

)
. (26)

Finally, at order 𝜖3, we get the following linear inhomogeneous
problem

𝑣𝟏𝜕𝑇𝐴 =
(

0 0
−𝜎𝑐𝑝 −1

)
�⃗� [3] + 𝐴

(
−𝜂
0

)
+ 𝑝𝐴2

(
𝜅
0

)
+

𝑝𝐴3
(

−3𝛾2
−𝜎𝑐 (𝛾2 − 2𝛾𝜎𝑐 − 𝜎𝑐 )

)
+ ∇2𝐴

(
𝐷

−𝜎𝑐𝑝

)
. (27)

Introducing the inner product ⟨𝑓 |𝑔⟩ ≡ ∑
𝑖 𝑓𝑖𝑔𝑖, we search for the kernel

of the adjoint of the linear operator acting on �⃗� [3], which is

𝑣∗ =
(
1
0

)
.

Then, for a linear problem of the form 𝐴𝑥 = 𝑏, solutions exist
whenever ⟨ker(𝐴†)|𝑏⟩ = 0. Applying the solvability condition to solve
Eq. (27), we get

𝜕𝑇𝐴 = −𝜂𝐴 + 𝑝𝜅𝐴2 − 3𝛾2𝑝𝐴3 +𝐷∇2𝐴. (28)

By a renaming and scaling of variables and parameters, we recover the
local FKPP Eq. (1).
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Chapter 6

Effect of heterogeneous environmental
conditions on labyrinthine vegetation
patterns (Physical Review E 107 (5),
054219)

Labyrinthine patterns are complex structures that show all the wavevectors of a given mod-
ulus in a non-coherent combination; this describes a disordered pattern in general. However,
they can be characterized as labyrinths in a strict sense provided that, locally (when look-
ing at windows with a size of the order of the pattern’s wavelength), the pattern observed
corresponds to the stripe type [44]. Focusing on models of vegetation pattern formation,
we try to extend the labyrinth definition and characteristics when it is subjected to hetero-
geneities, which could produce windows in the pattern not fulfilling the labyrinth criteria.
To perform this, we numerically analyze a reduced equation of pattern formation derived
from two different models of vegetation biomass spatiotemporal evolution. An extension to
define the labyrinthine pattern theoretically is proposed based on the structure factor of the
pattern. Depending on the intensity and correlation length of the parameters inhomogeneity,
the pattern could retain its structure or become either an imperfect labyrinth or a disordered
self-organized state.
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Effect of heterogeneous environmental conditions on labyrinthine vegetation patterns

S. Echeverría-Alar ,1 D. Pinto-Ramos ,1 M. Tlidi,2 and M. G. Clerc 1

1Departamento de Física and Millennium Institute for Research in Optics, FCFM, Universidad de Chile, Casilla 487-3, Santiago, Chile
2Faculté des Sciences, Université libre de Bruxelles (U.L.B), CP 231, 1050 Brussels, Belgium

(Received 31 August 2022; revised 4 April 2023; accepted 24 April 2023; published 23 May 2023)

Self-organization is a ubiquitous phenomenon in Nature due to the permanent balance between injection and
dissipation of energy. The wavelength selection process is the main issue of pattern formation. Stripe, hexagon,
square, and labyrinthine patterns are observed in homogeneous conditions. In systems with heterogeneous
conditions, a single wavelength is not the rule. Large-scale self-organization of vegetation in arid environments
can be affected by heterogeneities, such as interannual precipitation fluctuations, fire occurrences, topographic
variations, grazing, soil depth distribution, and soil-moisture islands. Here, we investigate theoretically the
emergence and persistence of vegetation labyrinthine patterns in ecosystems under deterministic heterogeneous
conditions. Based on a simple local vegetation model with a space-varying parameter, we show evidence of
perfect and imperfect labyrinthine patterns, as well as disordered vegetation self-organization. The intensity level
and the correlation of the heterogeneities control the regularity of the labyrinthine self-organization. The phase
diagram and the transitions of the labyrinthine morphologies are described with the aid of their global spatial
features. We also investigate the local spatial structure of labyrinths. Our theoretical findings qualitatively agree
with satellite images data of arid ecosystems that show labyrinthinelike textures without a single wavelength.

DOI: 10.1103/PhysRevE.107.054219

I. INTRODUCTION

Self-organization is a universal feature of out-of-
equilibrium systems and is of common occurrence in many
fields of nonlinear science [1–4]. The spontaneous emergence
of self-organized dissipative structures out of a homogeneous
state has been observed in many out-of-equilibrium systems,
including biology, chemical reaction-diffusion systems, fluid
mechanics, nonlinear optics, and laser physics [1–3]. On the
one hand, these systems are subjected to a balance between
a nonlinear effect and a transport or a spatial coupling pro-
cess. On the other hand, they are subjected to a continuous
injection and dissipation of energy. The balance between these
processes triggers the emergence of dissipative structures with
an intrinsic macroscopic scale [2,5,6], which corresponds to
a spontaneous symmetry-breaking instability. Over the past
decades, extensive research has been done to understand the
origins of simple patterns, such as stripes, hexagons, and
squares, from a theoretical point of view [2,7]. However,
nontrivial symmetry patterns, i.e., labyrinths, have gotten little
attention due to their complicated structure, rich in spatial
defects [8,9]. Recently, an attempt to characterize this ubiq-
uitous phenomenon has introduced a quantitative definition of
ideal labyrinthine patterns [10], which satisfy the following:
(i) the disordered patterns are characterized globally by a
powdered ring Fourier spectrum, and (ii) the spatial structures
are described locally by a single wave mode. The ideal adjec-
tive refers to labyrinths with a single dominant characteristic
wavelength, which are observed in controlled physical con-
texts, e.g., ferrofluids, chemical reactions, cholesteric liquid
crystals, block copolymers, metal nanosurfaces, and ferroelec-
tric thin films [11–16].

Self-organized structures arise in plant ecology, where
stressed vegetation biomass can self-organize when resources,
such as water or nutrients, are limited [17–24]. Under these
arid conditions, the plant community displays coherent distri-
butions, which are maintained by facilitative and competitive
processes involving plants and the environment [18]. These
distributions, whose wavelengths range from centimeter to
kilometer scales, are frequently referred to as vegetation pat-
terns. Starting from a uniform cover, as the aridity level is
increased, the first pattern that appears consists of a periodic
spatial distribution of gaps followed by labyrinths and then
spots. This generic sequence has been predicted using various
pattern-forming ecological models. The first paper that dis-
cusses the sequence was [19] in 1999. Later on, the sequence
was analyzed from reaction-diffusion models in 2001 [20] and
2002 [21]. The sequence gaps-stripes/labyrinths-spots as a
function of the aridity has been empirically studied in an arid
region of Sudan [24]. There, the term labyrinth was used to
describe disordered vegetation bands in a flat surface [20–25].
Besides periodic, other aperiodic and localized vegetation pat-
terns have been reported [26–31]. Well-documented localized
vegetation patterns are the fairy circles [32–39]. Localized
vegetation patterns can exhibit curvature instabilities leading
either to the self-replication phenomenon [40,41], or the for-
mation of arcs and spirals [42]. Other alternative hypotheses
for the spatial structure of vegetation self-organization have
been explored, such as random patterns and power-law distri-
butions of patch sizes [43,44].

In ecological systems, the presence of spatial and/or tem-
poral heterogeneities may influence the self-organization of
plant communities. The causes of heterogeneities are fre-
quently related to variations in interannual precipitation,

2470-0045/2023/107(5)/054219(9) 054219-1 ©2023 American Physical Society
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FIG. 1. Satellite images of vegetation labyrinths. Self-organization of vegetation observed in (a)(i) Niger (12◦27′50.58′′ N 3◦18′30.76′′E)
and (b)(i) Sudan (11◦18′26.07′′ N 27◦57′58.62′′E). The (ii) insets display a zoom of images in (i) and are characterized by their Fourier
transform |F (k)|2. The (iii) and (iv) insets are local regions of the images in (ii) accompanied by their local Fourier transforms |F (k̃)|2. The
(v) insets correspond to elevation profiles along the green dotted lines in (i). The value of � indicates the difference between the maximum
and the minimum height. The vegetation snapshots and elevation profiles were retrieved from Google Earth Pro software.

occurrences of fire, topographic changes, grazing, soil depth
distribution, and soil-moisture islands [22,45–49]. It makes
sense to infer that one or more of the aforementioned het-
erogeneities control the irregularities in vegetation patterns
(see the labyrinthinelike structures in Fig. 1). In the majority
of the ecological mathematical models, these heterogeneous
effects are not included, resulting in far too ideal vege-
tation patterns, or are approached by stochastic processes
in time [46,47,49,50] or space [51]. To our knowledge,
the role of deterministic heterogeneities in forming differ-
ent labyrinthinelike vegetation patterns and controlling their
possible transitions has not been addressed. Understanding
the conditions under which heterogeneous labyrinths arise is

relevant from an ecological perspective as it sheds light on the
self-organization of vegetation in isotropic real ecosystems
(Fig. 1). Furthermore, the study of these types of vegetation
self-organization can contribute to the discussion on how het-
erogeneities in arid or semiarid systems can avoid catastrophic
shifts [27,51,52], which corresponds to abrupt transitions
between a vegetated cover and bare soil, by establishing ir-
regular vegetation mosaics.

In this article, we investigate theoretically the role of deter-
ministic heterogeneities in shaping labyrinthinelike vegetation
patterns as equilibria in arid and semiarid landscapes. For
this purpose, we use a well-established model for vegetation
biomass, where the effects of heterogeneities are modeled
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as spatial variations around a mean aridity parameter. The
heterogeneities are controlled by their intensity and degree
of correlation. Different equilibria are numerically observed
after the temporal evolution of the biomass. These vegetation
patterns are characterized by their structure factor and their
spatial Fourier transform at a global and local scale. These
tools allow us to differentiate between perfect and imper-
fect labyrinths, and disordered self-organization. We construct
a phase diagram and show that a minimum intensity level
and/or degree of correlation are needed to observe imperfect
labyrinthine patterns. This equilibrium qualitatively resem-
bles the labyrinthinelike patterns observed in nature (Fig. 1).
Finally, we discuss a possible implementation of our classifi-
cation in natural landscapes.

II. LABYRINTHINELIKE PATTERNS IN ECOSYSTEMS

It is crucial to identify whether plants have structures
resembling labyrinths to assess if they fulfill the definition
of a labyrinth proposed recently [10]. Figures 1(a i) and
1(b i) show two examples of labyrinthinelike self-organized
structures in Niger and Sudan, respectively. These vegeta-
tion images can be characterized by their Fourier spectrum
at different scales as shown in insets (ii), (iii), and (iv) of
Fig. 1. The insets (ii) exhibit the disordered feature of the
self-organization at a global scale. The Fourier transform is
nearly isotropic and highly scattered, involving several wave
vectors (powderlike ring spectrum). The insets (iii) and (iv)
of Fig. 1 show the spatial behavior at a local scale. The local
Fourier transforms do not show a dominant single wave vector
pair structure. Specifically, two diametrally opposed peaks are
not visible in the local two-dimensional Fourier transform,
and more complex structures are exhibited. As a result, neither
the landscapes of Niger nor of Sudan meet the criteria for a
perfect labyrinthine pattern [10]. We attribute the departure
from the ideal pattern to the presence of heterogeneities in
the regions shown in Fig. 1. The insets (v) in Figs. 1(a) and
1(b) display the topographic variations of the terrain in Niger
and Sudan, respectively. Indeed, the topography is a source of
spatial heterogeneity for the vegetation local self-organization
[53–55]. In the following, we suppose that these topographic
fluctuations affect the resource distribution on the Niger and
Sudan landscapes.

III. THEORETICAL MODELING APPROACH

We choose to model the emergence of vegetation patterns
from the perspective of symmetry-breaking instabilities of
homogeneous covers in arid or semiarid environments [18].
Particularly, we use an interaction-redistribution approach for
plant community behavior, where the biomass density c =
c(r, t ) at space point r = (x, y) and time t evolves following
a logistic equation that includes nonlocal interactions of the
biomass [33]:

∂t c = c(1 − c)M f (r) − μcMc(r) + DMd (r). (1)

The first term on the right-hand side (rhs) of Eq. (1) models
the rate at which biomass increases and eventually saturates.
The nonlocal function M f (r) = exp[χ f

∫
dr′φ f (r′, L f )c(r +

r′)] accounts for interactions facilitating growth, regulated by

FIG. 2. Equilibrium patterns of Eq. (2) in a square domain of
size L = 240 (arb. units) with κ = 0.6, ν = 0.011, γ = 0.5, and α =
0.125. The temporal evolutions of the spatially averaged biomass
〈b〉 are displayed for the (a) homogeneous case 
 = 0, and the
inhomogeneous cases 
 �= 0 considering both (b) noncorrelated and
(c),(d) correlated heterogeneities. The insets show the respective
equilibria. (e) Bifurcation diagram of Eq. (2). The black lines cor-
respond to the bare state and the blue curves account for the uniform
vegetated state in the homogeneous case 
 = 0. The continuous
(broken) lines indicate that these analytical solutions are stable (un-
stable). In the shaded region, limited by ηl and ηr , the labyrinthine
patterns in homogeneous conditions are stable. In this subfigure, 〈b〉
is the mean value over 30 random initial conditions around b+.

an intensity χ f . These effects are controlled by the kernel
function φ f , whose range of influence is of the order of
the plant’s aerial structure L f . The second term on the rhs
of Eq. (1) represents the biomass death processes. Mc(r) =
exp[χc

∫
dr′φc(r′, Lc)c(r + r′)] accounts for interactions en-

hancing biomass decay with an intensity χc. The parameter
μ is a measure of the mortality-to-growth rate ratio of plants
in the absence of interaction with others, which can be seen
as resource scarcity or aridity [18,56]. This negative feed-
back acts over distances of the order of the root length Lc

with an intensity χc and is controlled by the kernel function
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φc. A cooperative measure of the ecological system can be
introduced as χ f − χc. The last term in Eq. (1) incorpo-
rates seeds dispersion with a diffusion parameter D, where
Md (r) = ∫

dr′φd (r′)[c(r + r′) − c(r)], and φd (r′) accounts
for the biomass transport between positions r and r′.

The integrodifferential equation (1), close to the double
limit of nascent bistability (between uniform vegetation cover
and bare soil) and the symmetry-breaking instability of the
uniform cover, can be reduced to a partial differential equa-
tion. The reduced model reads [19,33]

∂t b = −ηb + κb2 − b3 + (ν − γ b)∇2b − αb∇4b, (2)

where b = b(r, t ) is the state variable associated to the
biomass density close to nascent bistability. The parameters
η and κ are the deviations of the aridity and cooperativ-
ity critical parameters, respectively. ν and γ are linear and
nonlinear diffusion coefficients, respectively. The last term is
a nonlinear hyperdiffusion controlled by α. The parameters
{ν, γ , α} depend on the strength of the competitive feed-
back, the seed’s diffusion, and the shape of the kernels φ f ,
φc, and φd [30]. The model equation (2) has three homoge-
neous states: the bare state b = 0 [black line in Fig. 2(d)]
and b± = (κ ±

√
κ2 − 4η)/2 [blue line in Fig. 2(d)]. The

b± equilibria are connected by a saddle-node bifurcation at
ηsn = κ2/4 with κ positive. The uniform solution b− is always
unstable. For small aridity, the vegetated state b+ is stable.
When the aridity is increased the uniform cover suffers a
spatial instability. This spatial instability with critical wave-
length λc = 2π

√
2α/(γ − ν/bc) occurs at η ≡ ηc, where ηc

satisfies the implicit condition 4αb2
c(2bc − κ ) = (γ bc − ν)2

with bc ≡ b+(ηc). Hence, the homogeneous cover b+ is unsta-
ble to patterns within the range ηc � η � ηsn [see Fig. 2(d)].
By fixing the parameters {κ, ν, γ , α} in Eq. (2), labyrinthine
patterns are stable within the aridity range [ηl , ηr] as shown in
Fig. 2(d).

To model the effect of heterogeneities in the labyrinths
of Eq. (2), in principle, we must promote all parameters
to be spatially dependent; that is, one should consider five
functions [η(r), κ (r), α(r), ν(r), γ (r)], which makes the the-
oretical and numerical studies cumbersome. To shed light on
the effect of heterogeneities in the labyrinthine patterns, we
promote the aridity parameter to be spatially dependent η(r)
and keep the other parameters homogeneous. Hence, in the
following analysis, we focus on the model equation (2) with
heterogeneous aridity η(r) = η + √


ξ (r), where η accounts
for the mean aridity. This average value is inside the aridity
range [ηl , ηr]. ξ (r) models the spatial variations with zero
mean value 〈ξ (r)〉 = 0 and intensity level 
. The hetero-
geneities ξ (r) can be spatially independent (delta correlated)
or correlated. To obtain a spatially correlated function ξ (r)
characterized by a correlation length d , we consider a relax-
ation diffusive process with a random initial condition, which
evolves until a given time [57]. Note that the results presented
below are qualitatively similar if all parameters are spatially
dependent.

IV. RESULTS

Let us introduce the spatially averaged biomass 〈b〉 ≡∫ L
0

∫ L
0 b(r, t )dx dy/L2, where L2 is the system size. The charts

in the left panel of Fig. 2 show the temporal evolution to
equilibrium for 〈b〉 according to Eq. (2) starting from the vege-
tated state b+ in the symmetry-breaking regime ηc � η � ηsn.
Figure 2(a) corresponds to the homogeneous case, 
 = 0,
exhibiting an ideal labyrinthine pattern. Figure 2(b) represents
the noncorrelated spatial variations, while Figs. 2(c) and 2(d)
show the spatially correlated cases. In these cases, the striped
structure of the labyrinthine pattern becomes locally distorted.
Figure 2(e) shows the bifurcation diagram of Eq. (2). The
labyrinthinelike patterns (dotted plots) are characterized by
their averaged biomass 〈b〉. The green dotted curve indicates
a branch of an ideal labyrinthine pattern when 
 = 0, which
is stable in the range ηl � η � ηr . By increasing the aridity
level, the labyrinth exhibits a transition to a mosaic of local-
ized spots at η > ηr . When decreasing the aridity parameter,
the labyrinthine pattern becomes clusters of hexagonal gaps
at η < ηl [31]. The blue dotted curve represents the stable
branch of a vegetation pattern when 
 �= 0 and ξ is noncorre-
lated. The red and black dotted curves are the stable branches
of labyrinthinelike patterns under correlated heterogeneous
conditions. We note that the impact of heterogeneities in the
averaged biomass is not always strong [see red and blue dots
in Fig. 2(e)]. Thus, other types of spatial tools are needed to
understand and differentiate the labyrinthinelike equilibria of
Eq. (2).

To characterize labyrinthine equilibria under homogeneous
(
 = 0) and heterogeneous (
 �= 0) conditions, we consider
first the aridity distributions depicted in Fig. 3, and next
we concentrate on the biomass densities beq(r) shown in
Fig. 4. We analyze the spatial structure of these aridities
and biomass equilibria employing the Fourier transform am-
plitude |F (k)|2 = | ∫ g(r)eik·rdx dy|2 and the structure factor
S(k) = ∫ π

−π
|F (k)|k dθ , where k = (k cos θ, k sin θ ), and g(r)

can be either beq(r) or η(r). The homogeneous and noncorre-
lated heterogeneous aridity distributions are characterized by
a delta and a noisy flat |F (k)|2, respectively [see Figs. 3(a) and
3(b)]. The spatially correlated aridities have a nontrivial S(k)
shape associated with their coherent distribution [cf. Figs. 3(c)
and 3(d)].

Let us now have a look at the biomass densities beq(r)
displayed in the top panels of Fig. 4. These equilibria are
obtained by numerical simulations of the model equation (2)
in square boxes. The spatial profiles of the aridity η(r) used
in these numerical simulations are the same as those in Fig. 3.
Under homogeneous conditions, the biomass density exhibits
a perfect labyrinthine pattern. The corresponding spectrum
and the structure factor are shown in Fig. 4(a). From this
figure, we see that the spectrum has a powdered ringlike
shape and the structure factor presents a well-defined peak
at k = kc [see Fig. 4(a)]. The finite width in the structure
factor is attributed to the defects size and local variations of
the wavevector [9]. The powdered ringlike shape indicates
no preferred direction since the system is isotropic in the
(x, y) plane. The full width at half maximum of S(k) for the
labyrinth in Fig. 4(a) is w ≈ 0.15kc. It is obtained by fitting
a Lorentzian squared curve to the structure factor [58,59].
We define wh = kc ± w/2 as the characteristic wavevector
range of the perfect labyrinthine pattern, which emerges from
a symmetry-breaking instability in Eq. (2). Figure 4(b) shows
an equilibrium in the case of 
 �= 0 and delta-correlated ξ (r).
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FIG. 3. Spatial distributions of the aridity parameters η(r) = η +√

ξ (r) with η = 0.075. In the top panels, the aridity distributions

are shown. The insets correspond to an arbitrary one-directional
cut represented by dashed pink lines. The lower panels illustrate
the spatial structure of the distributions by their Fourier transform
amplitude |F (k)|2 or structure factor S(k). Other parameters are
(a) 
 = 0; (b)

√

 = 0.2, d/L = 0; (c)

√

 = 0.2, d/L = 0.08; and

(d)
√


 = 0.5, d/L = 0.1.

In this case, the labyrinth does not exhibit long fingers as in
the homogeneous case due to the proliferation of local spots.
Indeed, the heterogeneities introduce local disturbances in the
wavevector reflected in the widening of S(k) [cf. blue curve
and inset in the bottom panel of Fig. 4(b)]. When the hetero-
geneities are sufficiently intense (

√

 = 0.2) and correlated

(d/L = 0.08), the perfect labyrinthine pattern loses its struc-
ture and blobs of vegetation or bare soil emerge [see Fig. 4(c)].
In this aridity level, the maximum of the structure factor k̂ lies
outside wh [cf. blue curve in the bottom panel of Fig. 4(c)].
We define this shift in k̂ as a transition from perfect labyrinths
(|k̂ − kc| < wh) to imperfect labyrinthine patterns (|k̂ − kc| >

wh). When further increasing the correlation and the intensity
level of the heterogeneities (

√

 = 0.5 and d/L = 0.1), the

labyrinthine pattern is almost completely lost. A few vege-
tated fingers coexist with homogeneous islands of vegetation
and bare soil [see the top panel in Fig. 4(d)]. As seen in the
bottom panel of Fig. 4(d), the peak of the structure factor
exhibits a significant shift (from k̂ = 0.9kc to k̂ = 0.55kc) to-
ward the center of the spectrum. Moreover, the global Fourier
spectrum loses its powdered ring shape [see the inset in the
bottom panel of Fig. 4(d)]. In this regime, the spatial profiles

FIG. 4. Spatial characterization of the equilibria from Eq. (2)
with κ = 0.6, ν = 0.011, γ = 0.5, α = 0.125, and η = 0.075. The
top panels in each subfigure display the steady-state vegetated covers
from the model equation (2) considering the aridity profiles η(r)
depicted in Fig. 3, respectively. The blue and yellow curves of
the bottom panels indicate the normalized structure factor S̄(k) ≡
S(k)/Sh(kc ), and S̄h(k) ≡ Sh(k)/Sh(kc ), respectively. Sh(k) is the
structure factor in the homogeneous case. The insets in the bottom
panels correspond to the Fourier transform |F (k)|2 of the solutions
from Eq. (2). The wavevector k̂ illustrates the maximum of S̄(k) when
heterogeneities are present.

of the aridity and the biomass density are strongly correlated
[see the lower panels of Fig. 3(d) and Fig. 4(d), respec-
tively]. We have termed this spatial structure as disordered
self-organization.

A phase diagram is generated using numerical simulations
of Eq. (2), as shown in Fig. 5(a). The diagram depicts the
existence and stability domains of three types of vegetation
structures: perfect and imperfect labyrinths and disordered
self-organization. We can see that perfect labyrinthine patterns
can persist for different combinations of

√

 and d/L. Given

a minimum intensity level value
√


 or degree of correlation
d/L, the perfect labyrinths bifurcate to imperfect labyrinthine
patterns. When heterogeneities are strong enough, the sys-
tem exhibits disordered self-organization. We stress that the
transition between different labyrinthinelike textures can be
triggered solely by

√

 or d/L [cf. dashed arrows in Fig. 5(a)].

For example, Fig. 5(b) show the variation of k̂/kc by fixing
d/L = 0.08 and moving

√

. The insets (i)–(iii) along the

diagram illustrate the change in S̄(k) and k̂ as the biomass
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(i)

(ii)

(iii)

FIG. 5. Phase diagram of vegetation patterns in heterogeneous
environments. (a) Phase diagram of the global spatial structure of
Eq. (2) with κ = 0.6, ν = 0.011, γ = 0.5, α = 0.125, and η = 0.075
as a function of the intensity level

√

 and the degree of corre-

lation d/L. The different phases are perfect labyrinthine patterns
(k̂ ≈ kc), imperfect labyrinthine patterns (k̂ ≈ 0.9kc), and disordered
self-organizations (k̂ ≈ 0.55kc). The dashed gray arrows illustrate
possible transition paths between the equilibria. (b) Transition trig-
gered by changing the intensity of the heterogeneities

√

 given a

correlation d/L = 0.8 in the aridity distribution. The insets (i)–(iii)
show the normalized structure factor S̄(k) and its peak position k̂.
The yellow rectangle depicts the characteristic wavevector range wh

of the labyrinth with 
 = 0.

departures from the perfect labyrinths. The transition between
imperfect labyrinths and disordered self-organization [(ii) →
(iii)] resembles the disappearance of scurfy labyrinthine pat-
terns in a variational Swift-Hohenberg model [10].

In what follows, we further numerically characterize the
labyrinthinelike equilibria using local Fourier transforms.
This statistical tool allows us to investigate the self-
organization process at small spatial scales. Ideal labyrinthine
patterns, for instance, are characterized by their local striped
behavior. This feature can be extracted through the averaged

FIG. 6. Phase diagram of the local structure of labyrinthine pat-
terns from Eq. (2) with κ = 0.6, ν = 0.0113, γ = 0.5, α = 0.125,
and η = 0.075. (a) Colormap of the local two-mode fraction φ2 for
different intensity level 
 and correlation d/L of the heterogeneities
ξ (�r). The segmented yellow lines separate the three regions of Fig. 5:
(i) perfect labyrinthine patterns, (ii) imperfect labyrinthine patterns,
and (iii) disordered self-organization. (b) Spatial division of a steady-
state vegetation pattern, with

√

 = 0.4 and d/L = 0.04 ( ), in

windows of size 2.3λc. (c) Local Fourier transform |F (k̃)|2 of each
window. The orange borders in (b) and (c) indicate that the local
pattern fulfills the criteria of being dominantly a stripe.

windowed Fourier transform [10]. The procedure consists of
dividing the labyrinthine patterns into N windows of size s,
calculating each window’s Fourier transform, and then per-
forming a projective average in Fourier space. The result
is a single wave mode (stripe) local Fourier spectrum. The
critical step is to choose the adequate size s. It has to be small
enough to lose the pattern’s isotropy and sufficiently big to
account for the labyrinth wavelength. Then, the safe choice
is s ≈ 2λc. Here, we compute the local Fourier transform
of the patterns obtained from Eq. (2) in windows of size
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TABLE I. Summary of the sensitivity analysis. The sensitivity
indices Si(φ pi

2 ) and Si(φid
2 ) are associated to the transition fractions

φ
pi
2 and φid

2 , respectively.

η κ ν γ α s th

Original value 0.085 0.6 0.01 0.5 0.125 2.3λc 0.8
Si(φ pi

2 ) 0.10 0.09 0.11 0.07 0.14 0.16 0.26
Si(φid

2 ) 0.33 0.17 0.12 <0.01 0.23 0.11 0.21

s = 2.3λc because L/s is an integer number. As a consequence
of imperfect labyrinths and disordered self-organizations, the
projective average process is not a good approach. To amend
this, we introduce the three largest values of the local Fourier
transforms F1 � F2 � F3. We define a local window to be
dominantly a stripe if F1 = F2 (dominated by two peaks, i.e.,
a stripe) and F3 � 0.8F1. The threshold (th = 0.8), which
takes into account the defects of the labyrinths, is selected to
maximize the fraction φ2 = Ns/N of the labyrinthine pattern
under homogeneous conditions. Ns is the number of windows
exhibiting stripes.

Figure 6(a) shows the fraction φ2 for different combina-
tions of the intensity level 
 and degree of correlation d/L of
the heterogeneities. Additionally, the dashed yellow lines indi-
cate the transitions related to the global spatial structure of the
biomass density (see Fig. 5). We note that the transition from
perfect labyrinths to imperfect labyrinths is marked by φ

pi
2 =

0.61 ± 0.06. As well, imperfect labyrinths become disordered
self-organizations when φid

2 = 0.30 ± 0.02. Figures 6(b) and
6(c) illustrate the local structure and the windowed Fourier
transform of an imperfect labyrinthine pattern with Ns = 6 as
depicted by the orange squares. We note that the transitions
in the (

√

, d/L) parameter space depend on the choices

of [η, κ, γ , α, ν]. Hence, we highlight that a suitable model
parametrization is needed for extending our classifications to
natural landscapes.

To test the robustness of our predictions against modeling
decisions, we have performed a sensitivity analysis by chang-
ing in ±10% the original values of the parameters chosen
to observe labyrinths in Eq. (2), the window size s, and the
threshold th. When varying the window length, we use the
same number of windows N as in the original case by over-
lapping the windows or by not considering the boundaries of
the simulation boxes. To evaluate the sensitivity, the simple
sensitivity index Si(h) = |1 − hmin/hmax| is used, where hmin

and hmax are a model output when a parameter was decreased
or increased, respectively [60]. Values closer to 1 indicate
high sensitivity, while Si(h) < 0.01 means no sensitivity to
variations. We consider the averaged fractions φ

pi
2 and φid

2 as
model outputs with sensitivity indices Si(φpi

2 ) and Si(φid
2 ),

respectively (see Table I). The transitions from perfect to
imperfect labyrinths and imperfect labyrinths to disordered
self-organizations are always observed when varying the pa-
rameters in Table I.

The sensibility analysis shows that φid
2 is sensible to the

mean aridity parameter η, which is related to the system being
near the boundaries ηl and ηr (see Fig. 2). Additionally, this
transition is highly affected by the spatial coupling parameter
α and could be related to changes in λc. Table I suggests that

both φ
pi
2 and φid

2 are sensible to the threshold th, which can be
attributed to a wrong counting of the Ns values.

V. DISCUSSION AND CONCLUSIONS

We have investigated the effect of heterogeneous condi-
tions on a pattern-forming ecological model of semiarid and
arid landscapes. We have considered a well-known model
based on the relationship between the vegetation biomass
and the facilitation-competition interactions operating within
plants. We have further simplified the analysis by focusing on
a reduced model, Eq. (2), and we have restricted our study
to a single species that accounts for most of the biomass.
Motivated by topographic variations along labyrinthinelike
self-organization in Niger and Sudan, we have modeled the
heterogeneities as a spatial-dependent aridity parameter. The
spatial fluctuations act around a mean aridity value with a
certain intensity level. These variations can be correlated with
a given correlation length.

By increasing the intensity level and the correlation
length of the aridity heterogeneities, we have shown ev-
idence of imperfect labyrinthine patterns and disordered
self-organizations. These equilibria of Eq. (2) qualitatively re-
semble the real labyrinthinelike vegetation patterns observed
in satellite images of arid and semiarid landscapes. Further-
more, we have found that perfect labyrinthine patterns are
persistent until a critical degree of heterogeneity is reached,
where they become imperfect labyrinths. Further increas-
ing the heterogeneities, the spatial structure of the imperfect
labyrinth is eventually lost to a disordered self-organization,
which is governed by the spatial distribution of the aridity.
Based on the peak’s position and width of the global structure
factor, we have characterized the transitions between equilib-
ria and built a phase diagram. A windowed Fourier transform
is used to measure the departure from perfect labyrinthine
patterns as a function of heterogeneities.

An interesting future research is the identification of
perfect labyrinths, imperfect labyrinths, and disordered self-
organizations in real ecosystems by applying the tools and
modeling introduced here. To achieve this natural classifica-
tion, on-site measurements in arid environments populated by
labyrinthinelike vegetation patterns will be needed to validate
the application of the reduced model, Eq. (2), and to verify if
the model parameters are realistic or not. It will be crucial to
determine the parameters η and α, as they significantly impact
the transitions between labyrinthinelike vegetation patterns.
For example, if the labyrinthinelike landscapes of Niger and
Sudan (Fig. 1) are well described by model equation (2) and
the parameters chosen are characteristic of these particular
places, our classification could be applied by extending the
local analysis presented here. In fact, our modeling can be
used to identify the threshold th for the Sudan and Niger
regions in Fig. 1. We hypothesize that these labyrinths are
imperfect; that is, they are sustained by a minimum level of
spatially correlated heterogeneity, and are the consequence
of a combination of a symmetry-breaking instability and
heterogeneous environmental conditions. Moreover, in situ
observations of topography and resource distribution could
reveal if a more complex way to incorporate heterogeneities

054219-7



S. ECHEVERRÍA-ALAR et al. PHYSICAL REVIEW E 107, 054219 (2023)

is needed or if our straightforward approach, based on the
intensity level and degree of correlation, is sufficient and
reasonable.

Our theoretical findings can be used with other modeling
approaches to obtain more realistic labyrinthine patterns, such
as reaction-diffusion systems where water dynamics is in-
cluded explicitly [20,21]. Additionally, our classification can
also be applied in different scientific contexts where labyrinths
are experimentally observed. For example in fluid mechanics,
liquid crystals, optics, biology, and chemistry [61–65], where
the sources of heterogeneity are diverse (e.g., thermal fluc-
tuations, experimental imperfections, boundary conditions,
inhomogeneous forcing, material defects).
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Complements and perspectives on
Part III

1. Reduced equation from reaction-diffusion models
in the pattern forming regime

In chapter 5, we derived an imperfect pitchfork normal form with diffusive transport from
two modeling perspectives of the biomass spatiotemporal evolution, which satisfies a scaling
close to the critical point of a single eigenvalue crossing the imaginary axis. Differently, in
chapter 6, an equation in a pattern forming regime is used; that is, when a Turing instability
is possible at zero wavenumber. That is developed only from the integrodifferential types
of models, leaving out the case of reaction-diffusion models. Employing a similar set of
equations as Eqs. (18) of chapter 5, one can derive similar equations compared to Eq. (2) of
chapter 6, which we remind here

∂tb = −ηb+ κb2 − b3 + (d− γb)∇2b− αb∇4b. (6.1)

Derivation from integrodifferential models

We first give a short derivation from the integrodifferential models. The normalized biomass
b(r, t) considers nonlocal interactions, obeying the following interaction-redistribution model
[74, 79], sometimes called interaction-redistribution model [79]

∂tb = b(1 − b)Mf [b] − µbMc[b] +D∇2b, (6.2)

where µ corresponds to the mortality to the natality rate of vegetation in the absence of
interactions. The functions Mf [b] and Mc[b] model the facilitation and competition plant-
to-plant interactions, respectively. These are two distinct sets of processes since they are
influenced by various ecological factors, involve various functional structures, and take place
over different spatial scales. The facilitative interaction takes place on the aerial structures of
plants (Lf ) and corresponds to the natural growth of vegetation through mutual shelter, seed
production, dissemination, germination, and development of new shoots. On the other hand,
competitive interactions between plants favor vegetation biomass decay by natural death due
to resource competition and other effects. This interaction extends over a spatial range on the
order of the size of the plant’s roots (Lc). The third term corresponds to the seed dispersion
mechanisms described by a simple random walk associated with Brownian motion, D is a
phenomenological diffusion constant, and ∇2 ≡ ∂xx+∂yy is the Laplace operator acting on the
plane (x, y). However, plants and seeds do not diffuse randomly. We assume that a diffusion
process governs seed dispersion for mathematical simplicity. The nonlocal functions are
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equal to unity (Mf = Mc = 1) if plants have no facilitative and competitive interactions. In
this limit, one recovers the Fisher-Kolmogorov–Petrovsky–Piskunov (FKPP) equation when
µ < 1, a well-known paradigm model for studying population dynamics [1].

The homogeneous steady state of Eq. [6.2] admits a critical point where the homogeneous
solution b = 0 flips its stability as a function of µ. The nonlocal functions Mf and Mc are
Mf,c[b] = exp{[χf,c

∫
dr′ϕf,c(r′)b(r + r′)}] with general kernels ϕf,c. The onset of bistability

is given by χf − χc = 1. At this critical point, the coordinates of the biomass density and
mortality parameters are bc = 0 and µc = 1. We introduce a small parameter that measures
the distance to the critical point as µ = 1+ϵη; then, the biomass density is written in terms of
ϵ as b = ϵ1/2A(τ = ϵt,x = ϵ1/8r) + .... We select the Kernels such that Mf,c can be expanded
in series. We expand the integral terms as Mf = 1+χf (A+ϵ1/4C2f∇2

xA+ϵ1/2C4f∇4
xA+ ...)+

χ2
f (A+ ...)2/2 + ...), where 2C2f =

∫
drdθrϕf (r)r2 cos2 θ, 24C4f =

∫
drdθrϕf (r)r4 cos4 θ, and

the analogue follows for Mc. Assuming that both Kernels are isotropic and inserting these
expansions in Eq. [6.2], together with the conditions χf − χc = 1 + ϵ1/2κ, χc = C2f/(C2c −
C2f ) − ϵ1/4γ/(C2c − C2f ), D = ϵ3/4d, and defining α = (C2fC4c − C2cC4f )/(C2c − C2f ), one
obtains to dominant order (ϵ3/2) the equation

∂τA = −ηA+ κA2 − A3/2 + d∇2
xA− γA∇2

xA− αA∇4
xA,

Which corresponds to Eq. [6.1] up to a rescaling of A and the parameters. Note that the
derivation of the equation can be carried out without mentioning the kind of kernels utilized,
provided that it admits a series representation [80].

Derivation from reaction-diffusion models

Differently, other types of model consider a soil water density field w(r, t) that couples to
the biomass density b(r, t) [75, 76, 81–83]. An example from the literature that we simplify
reads [83] (note that corresponds to Eq. (18) of chapter 6 when the carrying capacity of the
logistic term is infinite)

∂tb = w(1 + bσ)2b− µb+D∇2b,

∂tw = p− lw − sw(1 + bσ)2b+ δ∇2w, (6.3)

where the source term p represents precipitation, a loss term −lw accounts for evaporation,
and µ models the biomass mortality rate. A water suction term by vegetation is modeled by
−sw(1+bσ)2b, where σ measures the shoot-to-root length ratio and the parameter s accounts
for the water-uptake rate. The biomass diffusion is described by D∇2b and the transport of
water is described by simple diffusion δ∇2w.

Linear analysis of equation [6.3] shows that the bare soil (full of water) state (b, w) =
(0, p/l) changes stability at the condition p/l − µ = 0, transitioning from an attractor point
to a hyperbolic point in the phase space of homogeneous states. The eigenvector of the slow
unstable mode corresponds to v = (v1, v2) ∝ (1,−sp/l2). The critical linear operator at
instability reads

Lc =
(

0 0
−sp/l −l

)
,

and the kernel of the adjoint of Lc considering the euclidean norm corresponds to Ker{Lc}={(1, 0)}.
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Similar to the previous section, we propose an ϵ parameter quantifying how far we are from
the instability as p/l − µ = −ϵη. Then we propose the expansions 2σp/l − sp/l2 = ϵ1/2κ/v1,
D = ϵ3/4d, δ = D + ϵ1/4γl3/(spv1), and (b, w) = (ϵ1/2Av1, p/l + ϵ1/2Av2 − ϵγ∇2

xA+ ϵ3/2(v2 +
sv1)(γ/l)A∇2

xA − ϵ5/4(γ/l)∇4
xA), where A = A(τ = ϵt,x = ϵ1/8r). Inserting this, one finds

at the dominant order plus the first stabilizing correction the following equation for A

∂τA = −ηA+ κA2 − 3σ2v2
1p

l
A3 + d∇2

xA− γA∇2
xA− ϵ1/4γ

l
A∇4

xA,

which, again, corresponds to Eq. [6.1] up to rescaling A and redefine the parameters. It is
important to note that it explicitly depends on ϵ in this case. Modifications of the model
to find a proper scaling (equation independent of ϵ) are possible and are currently being
proposed; our future objective is to unveil which class of equations can be generally reduced
to Eq. [6.1].

2. Exact equivalence of vegetation models in specific
cases

One motivation to derive the normal form of the instabilities occurring in different population
dynamics models is to have a framework to unify them despite all the different approaches in
the literature. Some equations exist for which there is an equivalence between an integrodif-
ferential and a reaction-diffusion model. Consider the set of equations

∂tb = γwb− b2 − µb+D∇2b,

ϵ∂tw = p− lw − b+ δ∇2w. (6.4)

This model is purely of theoretical interest and does not model actual physical processes
occurring in the interaction of water and biomass. The limit of ϵ → 0 in equations 6.4 is
called and adiabatic limit due to the variable w being instantly determined by the variable
b. Let w = p/l +W , then we can solve

1
δ
b = (∇2 − l

δ
)W.

It is similar to a Helmholtz equation, for which the Green function is widely known; then,
solving for W in terms of the inhomogeneity b is straightforward. For simplicity, consider a
single spatial dimension; the solution is then (assuming the appropriate boundary conditions)

W = −
√

1
4lδ

∫
e−

√
l
δ

|x−x′|b(x′, t)dx′.

Finally, replacing W in the equation for the biomass, one gets

∂tb = γb

p
l

−
√

1
4lδ

∫
e−

√
l
δ

|x−x′|b(x′, t)dx′

− b2 − µb+D∇2b.

We have found equivalence between an integrodifferential model and a reaction-diffusion set
of equations in an adiabatic limit. Other types of kernels different than the exponential one
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can be found with this method when modifying the water transport equation; it is important
to note that the dimension of space also modifies the kernel. A similar calculation can be
employed in a non-adiabatic case; then, the integral term will have both a spatial and a
temporal part, and the resulting equation for the biomass will be both nonlocal in space and
in time. This approach to compute reduced equations near critical points of the dynamics is
yet to be explored in the future.

3. Heterogeneities in the regime of spots of vegetation
We have explored the regime of diffusive transport and moved to a general model of pattern
formation. In chapter 6, we focused on studying the labyrinthine pattern and how it is
affected by heterogeneous parameters. In this perspective, we analyze patterns of the spot
type. Spotted patterns occur for higher mortality levels in the biomass field and correspond
to periodic hexagonal arrays of circular spots of biomass; these spots can survive as localized
structures [84] and create non-periodic structures according to their initial conditions and
interactions over time. We employ the general model Eq. 6.1 in the presence of heterogeneities
in the linear parameter as η = η +

√
Γξ(r), ξ is obtained in the same form as described in

chapters 5 and 6.

Numerical simulations of Eq. [6.1] with an inhomogeneous level of effective mortality η are
performed using periodic boundary conditions. Figure 6.1 summarizes the results. As the
mean η level is increased, a branch of vegetation patterns, symbolized by the orange color,
emerges from spatial instability of the homogeneous cover (dotted black curve) in Fig. 6.1a).
The average biomass density decreases as a function of η, reaching a state of patchy patterns.
An example of the obtained pattern with a high density of patches emerging from this
branch is shown in Fig. 6.1c). An entirely distinct branch of vegetation patterns with low
biomass density is observed. It emerges from covers with low density of patches when the η
parameter is decreased; we refer to the vegetation pattern in this branch as clustered patches
of vegetation, with the average biomass density shown in Fig. 6.1a). An example of a pattern
belonging to this branch is shown in Fig. 6.1d). The two branches form a hysteresis loop in
which both vegetation patterns with a large and a small number of patches coexist for the
same value η. Close to the point where the two branches with high and low biomass density
meet, patches die off one by one until the system shows a gradual transition towards the
bare state. Therefore, inhomogeneities can make vegetation cover more resilient to changes
in environmental conditions.

To better analyze the difference between the two branches forming a large hysteresis loop,
we use the Fourier transform to show whether both branches of solutions possess a charac-
teristic wavenumber. Patterns in the upper branch show a clear characteristic wavenumber.
Increasing the level of η to the point where the two branches of the solution meet leads to
a random spatial distribution of patches whose positions are essentially uncorrelated. Close
to this point, the characteristic wavenumber goes to zero, and the bare state becomes dom-
inant. It has been shown that vegetation patches could increase the system biomass by a
process called self-replication [84, 86], which activates depending on the η level and the patch
size. In the extreme condition of high mortality, the patch self-replication process is inactive,
and the patches can not invade the remaining space. However, by reversing the level of η,
favorable regions due to inhomogeneities will allow self-replication locally; different from the
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Figure 6.1: Numerical characterization of solution branches with heteroge-
neous parameters. Panel a) illustrates the bifurcation diagram for a path
in the mean aridity parameter depicted by the orange arrows, insets show
different examples of the vegetation mosaics in the diagram. Panels b) and
c) show the spatial characterization of the two branches of patchy patterns
for the upper branch, which transit from a labyrinthine pattern to a patchy
pattern. d) shows the lower branch that emerges as the aridity parameter
decreases. Parameters are κ = 0.6, d = 0.02, γ = 0.5, α = 0.125.

self-replication process in homogeneous conditions, the inhomogeneous environment will not
allow complete recovery. Indeed, in this regime, inhomogeneity has a twofold effect: I) the
patches that reach the critical size due to favorable local η value self-replicate, increasing the
biomass of their surroundings; II) the patches will reach spatial locations with unfavorable
local η, stopping the self-replicating process and pinning the colonization front. These effects,
when combined, lead to a clustering phenomenon of patches. By further decreasing the level
of mortality, more patches will be able to develop a process of self-replication, increasing the
pattern density until the two branches coincide again.

These characteristics of the equilibrium branches are being compared to actual spotted
patterns observed in different continents. In addition, as the observation of one spotted
pattern branch or the other depends on the history of parameters, we are analyzing the
temporal evolution of the aridity levels in the spotted vegetation patterns observed. This
would offer a possible explanation for the actual spatial distribution status of different spotted
patterns in arid climates.
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Conclusions

Our adventure analyzing the intriguing behaviors of nature, which could be described by
dynamical systems of several kinds, can meet no end. Nature is vast, and its complexity is
being slowly unveiled. In this dissertation, I tried to answer several questions which emerged
thanks to the interaction with my advisor and peers, most of the time, out of curiosity.

I devoted a part of my studies to the theory of mechanical nonreciprocally coupled sys-
tems, helping to generalize their behavior in the presence of simple nonlinearities in part I
of this dissertation. Nonreciprocal coupling in mechanical systems has direct implications
in the isolation and conduction of energy, and nonreciprocal response has been developed in
several metamaterials with unique properties; Our findings show that in nonlinear systems,
nonreciprocal coupling controls the relative stability of states through propagation mecha-
nisms, namely, fronts. The dynamic of a front into the unstable state was unveiled when
the system has a nonreciprocal coupling; convective instabilities could stabilize a high energy
state or a self-assembled pattern of fronts into the stable state. The velocity of fronts into
the unstable state and fronts into the stable state is theoretically obtained, unveiling the role
of nonreciprocal coupling in the propagation of states.

This dissertation proposes a experimental setup, the liquid crystal light valve with trans-
lational optical feedback, where the different behaviors observed are being contrasted with
the theoretical findings; this opens several avenues for future research to be developed. What
happens if we create a lattice of points in the LCLV instead of a chain? What is the result
of rotating the feedback loop instead of translating it? Those are some open questions that
encourage more theoretical and experimental efforts in the matter, with the basis for their
research found in this dissertation.

Nonreciprocal coupling could also be understood in the context of fields, or infinite dimen-
sional systems, as seen in part II of this dissertation. In the LCLV experiment, a translational
feedback mimics a nonreciprocal coupling; When writing the discretized equations one obtains
a non-symmetric adjacency matrix (and nonlinear coupling terms also). A field interacting
with itself at each point but shifted in space a fixed distance δr can be understood as a
nonlocal coupling, with a highly asymmetric kernel; we learned that a natural system that
could be modeled by a dynamical system with nonlocal coupling correspond to the distribu-
tion of a biomass population. We predicted that patterns in a system under nonreciprocal
coupling may display a decaying density of defects in the downstream direction, and large
scale vegetation patterns showed to be an interesting natural system exhibiting stripe pat-
terns with defects. Motivated by the challenges of our times, we dedicated good time to
investigate models of vegetation biomass spatiotemporal evolution, and how environmental
changes could drive different bifurcations in the biomass cover. In this context, we estab-
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lished how the distribution of defects in a pattern of vegetation biomass could warn of its
state; unfortunately, models suggest that the operating regime found in the communities of
Tillandsia Landbeckii, exhibiting stripe patterns in the north of Chile, is the last one before
an inminent collapse happens if the mortality rate of these plants increases (which may do if
environmental conditions change).

We adopted the idea that based on the spatial properties of the biomass cover, such as the
size of patches, the pattern wavelength, the defects, and more, one could deduce information
of the biomass status. To theoretically predict the different patterns of vegetation cover and
their properties, the heterogeneity in the dynamical system parameters is introduced as a
fundamental ingredient. The heterogeneity in the parameters is capable of generating new
type of patterns not predicted by the previous theories; these new patterns exhibit similar
properties as the ones observed in natural vegetation cover such as the patch size, the spatial
spectral power density, the dominant wavevector, and the pair correlation functions discussed
in part III of this dissertation. Moreover, we established how these properties will change
against environmental conditions affecting the biomass, particularly the mortality rate. The
different models present in the literature, such as two-variable (or more) reaction-diffusion
models, or integrodifferential equations of a single variable were addressed; we showed that
these different perspectives can be unified when analyzing close to bifurcation points. These
findings set ground for the development of more specialized theoretical tools that can be
used to monitor and predict the behavior of one of the most complex systems of nature,
numerous living beings interacting that form the vegetation biomass cover seen from planes
or the space.
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[13] Tamaševičiūtė, E., Tamaševičius, A. V., Mykolaitis, G., Bumelienė, S., y Lindberg, E.,
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