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RESUMEN DE LA TESIS PARA OPTAR AL GRADO
DE MAGÍSTER EN CIENCIAS DE LA INGENIERÍA,
MENCIÓN MATEMÁTICAS APLICADAS
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INGENIERO CIVIL MATEMÁTICO
POR: MATÍAS BENJAMÍN MORALES SALINAS
FECHA: 2023
PROF. GUÍA: CLAUDIO MUÑOZ CERÓN

UNA DEMOSTRACIÓN DE DECAIMIENTO LOCAL DE CAMPOS DE
INFLACIÓN EN COSMOLOGÍA Y CAMPOS DE AXION EN MODELOS DE

MATERIA OSCURA FRÍA

Este trabajo está basado en el estudio de las propiedades de decaimiento de campos prove-
nientes de la teoría de inflación cósmica y la teoría de axiones en materia oscura fría (CDM).
El problema concreto a estudiar se presenta en el Capítulo 1, donde además se dan las mo-
tivaciones de este, presentando una breve introducción a la teoría de inflación cósmica y de
los modelos a considerar. Así mismo se presentan los resultados principales de esta tesis, los
cuales consisten en el decaimiento local de soluciones en el espacio de energía bajo ciertas
suposiciones que dependerán de la naturaleza de la no linealidad trabajada y de si es consid-
erada o no la constante cosmológica.

En el Capítulo 2 se introduce la herramienta principal para el estudio de ecuaciones de
onda, los espacios de Sobolev, así como también sus propiedades básicas y algunas desigual-
dades clásicas que serán útiles en el desarrollo de este trabajo. Se presentan también los
resultados básicos de existencia y unicidad de soluciones para ecuaciones de onda lineales y
semilineales, tanto si se considera o no la constante cosmológica.

En el Capítulo 3 se presentan algunas identidades viriales, las cuales son el punto clave
en la demostración de los teoremas presentados en el Capítulo 1. Luego, en el Capítulo 4 se
finaliza la demostración de estos resultados.

En el Capítulo 5 se estudian en detalle los modelos presentados en la Introducción, donde se
ve que no pueden poseer soluciones estacionarias de energía finita y se muestran los distintos
tipos de decaimiento que estos satisfacen.

Finalmente, en el Capítuo 6 se discute sobre los resultados obtenidos, así como las límita-
ciones de estos y proyecciones de trabajos futuros en esta línea.
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A PROOF OF SLOW-ROLL LOCAL DECAY OF INFLATON FIELDS IN
COSMOLOGY AND AXION FIELDS IN COLD DARK MATTER MODELS

This work is based on the study of the decay properties of fields from the cosmic inflation
theory and the axion theory in cold dark matter (CDM). The specific problem to be studied
is presented in Chapter 1, where the motivations for it are also given, presenting a brief
introduction to the theory of cosmic inflation and the models to be considered. Likewise, the
main results of this thesis are presented, which consist of the local decay of solutions in the
energy space under certain assumptions that will depend on the nature of the nonlinearity
worked and if it is considered or not the cosmological constant.

In Chapter 2, the main tool for the study of wave equations, Sobolev spaces, are intro-
duced, as well as its basic properties and some classical inequalities that will be useful in the
development of this work. The basic results of existence and uniqueness of solutions for linear
and semilinear wave equations are also presented, whether or not the cosmological constant
is considered.

In Chapter 3 some virial identities are presented, which are the key point in the proof of
the theorems presented in Chapter 1. Then, in Chapter 4 the proofs of these results is fin-
ished.

In Chapter 5 the models presented in the Introduction are studied in detail, where it is
seen that they cannot have stationary solutions of finite energy and the different types of
decay that they satisfy are shown.

Finally, in Chapter 6 the results obtained are discussed, as well as their limitations and
projections of future work on this line.
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Debemos saber,
sabremos.

David Hilbert
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Chapter 1

Introduction

1.1. FLRW Cosmology
The theory of General Relativity has been one of the most successful theories of modern
physics, giving an exceptionally elegant framework where understand the electromagnetism
and describe the behavior of our universe at large scales, providing many important predic-
tions which includes the existences of black holes or gravitational waves, objects that continue
to be one of the most important topics on the current research lines.

The main concept in the theory, and the one that makes it revolutionary, is the notion
of space-time, which is a four dimensional, oriented and time-oriented Lorentzian manifold
(M, g) [22]. The metric g must satisfies the Einstein’s equations:

Rµν −
1
2gµνR = 8πG

c4 Tµν

where Rµν is the Ricci tensor, R the Ricci scalar, Tµν the energy-momentum tensor and G is
the Einstein’s gravitational constant. The main assumption when we use Einstein’s equations
to study our large-scale universe is that it is homogeneous and isotropic, that is, the metric
gµν has the form

ds2 = −dt2 + a(t)2
(

dr2

1− kr2 + r2dΩ2
)

where
dΩ2 = dθ2 + sin2 θdφ2

This hypothesis is known as cosmological principle, and the corresponding metric as the
Friedman-Lemaitre-Robertson-Walker (FLRW) metric. The parameter k ∈ {−1, 0, 1} is re-
lated to the spatial curvature of the space time (being k = 0 the case of a flat space)
meanwhile the scale factor a(t) corresponds to a measure of the expansion or contraction of
the universe with respect to time.

As we are assuming the cosmological principle, we can approximate galaxies as points and the
universe’s contents can be described as a perfect fluid. Consequently, the energy-momentum
tensor is given by

Tµν = (ρ+ p)uµuν + pgµν
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where (uµ) is the relativistic velocity of the fluid, ρ its density and p its preasure. This
assumptions leads us to the following simplified version of Einstein’s equations

H2 =1
3ρ−

k

a2

ä

a
=− 1

6(ρ+ 3p)

where H = ȧ
a
is the Hubble parameter. The first equations is known as Friedmann equation,

and the second is the acceleration equation. The pressure and the density are related through
the equation of state

p = wρ

where w is a constant known as state parameter. Notice that when w < −1
3 we have ä > 0,

i.e. an accelerated expansion, but on the other side, ordinary matter satisfies the condition
ρ+ 3p > 0, that is, generates deceleration.

1.2. Cosmological Inflation
The above description of our universe, although it looks reasonable, induces some theoretical
problems such that the horizon problem or the flatness problem. To solve them the idea is
make decrease the comoving Hubble radio, i.e.

d

dt

( 1
Ha

)
< 0

In virtue of the Friedmann and acceleration equations this condition is equivalent to ä > 0 or
to ρ+3p < 0. To do this a new field was introduced: the inflaton. This was done for the first
time by Starovinski [25] and Guth [9] independently. The first aiming to obtain a model of the
universe that avoid singularities, meanwhile the second as a way to solve the horizon problem.

Since then many authors have proposed new models to describe the mechanism of the in-
flation, but the basic idea is the following. Inflaton’s dynamics is given by the following
action

S =
∫
R1+3

√
−g

(1
2R + 1

2g
µν∂µφ∂νφ− F (φ)

)
,

From now on, we will work on a spatially flat space-time, i.e., with k = 0. Varying this action
with respect to the inflaton we obtain the equation of motion

∂2
t φ+ 3H∂tφ−

∆φ
a2 + f(φ) = 0 (1.1)

where f = F ′. The energy-momentum tensor for this action is

Tµν = ∂µφ∂νφ− gµν
(1

2∂
λφ∂λφ+ F (φ)

)

2



If we assume that the metric is FLRW for all times and that φ depends only on time we have
that the energy-momentum tensor takes the form of a perfect fluid where

ρφ =1
2φ

2
t + F (φ)

pφ =1
2φ

2
t − F (φ)

Using this we can write the Friedmann and acceleration equations in terms of the inflaton
field, obtaining

H2 =1
2φ

2
t + F (φ)

ä

a
=− (φ2

t − F (φ))

and we see that if the potential energy F (φ) dominates the kinetic energy φ2
t , that is

φ2
t − F (φ) < 0

we have the condition to inflation. These equations, together to the equation of motion of
the inflaton

∂2
t φ+ 3H∂tφ+ f(φ) = 0

determine the dynamics of the FLRW metric and the scalar field. Since the inflation must
occur in the period of the primordial universe, perturbations of the inflaton must consider
quantum effects. Such perturbations must satisfy equation (1.1), and the precisely potential
f is not known today.

It is important to mention that, between the lots of models proposed to describe inflation,
some of them have better opportunities to describe the actual behavior of our universe. This
type of classification for inflation models is based on an statistical analysis of the Cosmic Mi-
crowave Backgroud (CMB) [20], a vestige of the decoupling between matter and radiation.
Some of these models are going to be considered in the next chapter.

1.3. Slow roll and Cold Dark Matter Models
In this section we describe briefly the models considered in this work.

1.3.1. E and T models
From Planck [20, Table 5] one can access to a selection of slow-roll inflationary models of
high interest in order to explain cosmological inflation. Among the most favorable models
we highlight the Starobinsky R2, f(R) modified gravity or E1 model, represented by the
potential

F1,1(φ) := (1− e−φ)2. (1.2)

Notice that F1,1 is a potential exponentially unbounded as φ → −∞ (see Fig. 1.1), with
some very unpleasant features. Among them, we can find

F1,1(0) = F ′1,1(0) = 0, but F ′′1,1(0) = 2 > 0.

3



This last positive sign makes mathematical treatment of the small data theory not easy.
Cosmological theory supposes that the initial configuration starts with φ � 1, and slowly
decays in time towards the zero field value. This process is called the “slow-roll” dynamics,
and the exponential growth of the scaling parameter of the universe (a(t) ∼ eHt) is described
as the “e-fold” procedure.
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Figure 1.1: The potentials F1,1 (1.2), F1,2 and F1,3 in (1.3).

The F1,1 model is part of a family of inflationary potentials that gives rise to the so-called
En theories:

F1,n(φ) := (1− e−φ)2n, n ≥ 1, (1.3)

see Fig. 1.1. For us the most interesting cases are the ones with n = 1, 2. Additionally to
the En models, one has the Tn ones, which are also highly relevant in Planck data analysis.
These are given by

F2,n(φ) := tanh2n(φ), n ≥ 1, (1.4)

see Fig. 1.2. The case n = 1 is highly favorable in our setting, producing the best result of
this work, but n = 2 has some drawbacks due to the lack of a sign condition. Only small
data will be suitable to prove decay.
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Figure 1.2: The potentials F2,n in (1.4).

1.3.2. Natural Inflation and Axion potentials
There are other models of equal interest and high importance in the quest for the inflaton
potential. These are the so-called Natural inflation (+ sign) [20] and Axion potential (- sign)
[4, p. 4] (see Fig. 1.3)

F3,±(φ) := 1± cosφ. (1.5)

In both cases it is assumed that the field φ is no larger than π
2 in absolute value. The

potential F3,± is the classical appearing in 1D sine-Gordon models, making the scalar field
model integrable. In 3D the situation is different, and in radial symmetry integrability seem
lost. In both cases we are able to give answers to the decay problem.
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Figure 1.3: Left: The potential F3,− from (1.5). Right: The potentials F4,n,
n = 1 in (1.6). Note that the last potential is singular at φ = 0.

1.3.3. The D-brane and Hilltop models
In addition to the sine-Gordon models, another important model is given by the singular
D-brane (Fig. 1.3):

F4,n(φ) := 1− 1
φ2n , n = 1, 2, φ 6= 0. (1.6)

Notice that the physical problem here is the perturbation of a φ large initial state. In this
case we shall assume

φ = 1 + v, |v| � 1,

so that after renormalization (to have finite energy) we will work with the modified potential

F̃4,n(v) := 1− 1
(1 + v)2n − 2nv = (1 + v)2n − 1− 2nv(1 + v)2n

(1 + v)2n . (1.7)

Also considered in this work will be the Hilltop models (Fig. 1.4):

F5,n(φ) := −φ2n, n = 1, 2. (1.8)

The case n = 1 is exactly linear Klein-Gordon and will not be studied in this work. However,
the case n = 2 is highly interesting because it behaves as one of the most promising potentials
to describe inflation. A closely related model is the so-called Non-minimal coupling model,
whose potential is given by

F (φ) = λ2φ4 + β2φ2

We will see in Chapter 5 that, despite the difference of these models, both have a similar
asymptotic behavior, at least for small solutions.

1.3.4. Axion-Monodromy and log potentials
The last two examples that we will study here also appear when studying CDM. These are
the axion monodromy potential [29]

F6,q(φ) := 1
q

(
(1 + φ2)q/2 − 1

)
, q ∈ [−1, 1], q 6= 0, (1.9)

and the logarithm potential (Fig. 1.4):

F7(φ) := 1
2 log

(
1 + φ2

)
. (1.10)

5



The potential F6,q formally converges to F7 as q → 0.
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Figure 1.4: The potentials F5,n , n = 1, 2 in (1.8) and F7 from (1.10).

These families have their own properties, usually not being part of the standard local
and global well-posedness theory appearing in the literature. For each of these models, we
will prove local and/or global well-posedness, and provide a proof of decay under suitable
assumptions on the initial data.

1.4. Setting the problem
Consider now a perturbation φ(t, x) of the inflaton field. It must satisfies the equation (1.1).
To simplify, we shall assume that the space time is de Sitter for all times, that is, the metric
g takes the form

ds2 = −dt2 + e2Ht(dx2 + dy2 + dz2)

for a constant H ≥ 0. Thus, the equation (1.1) becomes

∂2
t φ+ 3H∂tφ−

∆φ
e2Ht + f(φ) = 0 (1.11)

Notice that when H = 0 we recover the classical wave equation. As we have seen in the
previous section, this equation appears not only in the theory of inflation, but also in the
theory of Axions as a model of cold dark matter [4], [11],[12], [26]. This is the reason why we
are interested in understand the well posedness theory for this type of equations and study
their decay properties. Our main objective will be obtain decay results for radial solutions
to these equations, under assumptions on the nonlinearity that fit on the inflationary and
Axion models.

1.5. Main results
The results presented in this thesis are separated between the case H = 0 and the case H > 0.
This is because the term 3H∂tφ in (1.11) plays a very important role in the dynamics of the
solution. Before to enunciate the main theorems we need to assume some hypothesis:

• f : R→ R is a C1 function, such that f(0) = 0.

• The initial data (φ0, φ1) ∈ H1 × L2 is radial.

Note that from the well posedness theory we have that our second hypothesis implies that
the solution is radial for all time whenever it is well defined.

6



With this we can enunciate the main results proved in this work. The first theorem gives us
a sufficient condition for local decay in the energy space.

Theorem 1.1 Let f be globally Lipschitz and satisfying the sign conditions F (φ) ≥ 0 and
2F (φ)− φf(φ) ≥ 0. Then the solution (φ, ∂tφ) of (1.11) with H = 0 is defined for all times
and

lim
t→∞
‖(φ, ∂tφ)(t)‖H1×L2(B(0,R)) = 0, (1.12)

for any R > 0.
Note that Theorem 1.1 is valid for any size of the initial data.

The second result concerns the case where the condition 2F (φ) − φf(φ) is not satisfied,
still in the case H = 0. Several cosmological models are in this class. Our result is now local
decay under smallness assumption and growth below a critical power.

Theorem 1.2 If f : R→ R is of class C1 and satisfies that for some C, δ > 0

0 ≤ φf(φ) ≤ Cφ4, ∀φ ∈ (−δ, δ), (1.13)

or

2F (φ)− φf(φ) ≥ 0, ∀φ ∈ (−δ, δ), (1.14)

then any global solution φ ∈ C([0,∞);H1 × L2) of (1.11) with H = 0 such that

sup
t≥0
‖φ(t)‖H1∩L∞ ≤ ε, (1.15)

satisfies
lim
t→∞
‖(φ, φt)(t)‖H1×L2(B(0,R)) = 0, (1.16)

for any R > 0 provided that ε > 0 is small enough.

Remark Note that the condition φf(φ) ≥ 0 ensures that F (φ) ≥ 0, and the model has
defocusing character. Condition (1.13) describes that the model has sufficient flatness at the
origin to allow decay, and finally condition (1.14) it is just an application of Theorem 1.1 to
the case of small data and needs no proof.

Now we turn into the case of our current universe, assuming H > 0. Here we have the
following results:

Theorem 1.3 Consider equation (1.11) with initial data (u0, u1) = (εg, εh), g, h ∈ C∞0 (R3).
If H > 0, F (x) ≥ 0 for all x ∈ R and there exist δ,M > 0 such that

|f ′(φ)| ≤Mφ2, ∀φ ∈ (−δ, δ),

then there exist ε > 0 such that the solution to (1.11) is global in time. Moreover,

1. The energy of any global solution decays to zero outside of the forward light cone, that

7



is
lim
t→∞

∫
R(t)

(
φ2
t

2 + |∇φ|
2

2e2Ht + F (φ)
)

= 0, (1.17)

where R(t) = {x ∈ R3 | |x| > (1 + b)t} for any b > 1.

2. If R > 0 is fixed,

lim
t→∞

∫
B(0,R)

(
φ2
t

2 + |∇φ|
2

2e2Ht + F (φ)
)

= 0. (1.18)

Estimate (1.18) shows that locally the energy must converge to zero, however, the global
energy, although decreasing, may not converge to zero in general. Their main outcome should
depend on the existence of moving solitary waves. In the case of radial data, this is strongly
unlikely, but solitary rings of finite energy might exists.
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Chapter 2

Theory of wave equations

This chapter is devoted to present the main tools needed to prove the results presented in
the previous chapter. We begin giving some elementary properties of Sobolev spaces, to then
present the basic results about existence and uniqueness for linear wave equations, most of
them based on some type of energy estimates. Finally, we will use those estimates to prove
existence and uniqueness for the nonlinear case.

2.1. Notation
Along this work Ω ⊆ Rn will be an open set. We will use the following notations:

• Lp(Ω), for 1 ≤ p ≤ ∞, is the space of measurable functions f : Ω → R such that
‖f‖p <∞ where

‖f‖p =


(∫

Ω
|f(x)|pdx

)1/p
if 1 ≤ p <∞

ess supx∈Ω|f(x)| if p =∞

• Lploc(Ω), is the space of measurable functions such that f |K ∈ Lp(K) for every K ⊆ Ω
compact.

• C∞0 (Ω) is the set of smooth functions with compact support contained in Ω.

• For α ∈ Nn and f : Ω→ R smooth enough we denote

∂αf = ∂|α|f

∂xα1
1 · · · ∂xαn

n

where |α| = α1 + · · ·+ αn

• If (X, ‖ · ‖) is a Banach space and T > 0, we denote Lp([0, T ];X) the Banach space of
measurable functions f : [0, T ]→ X such that the following norm

‖f‖p =


(∫ T

0
‖f(t)‖pdt

)1/p

if 1 ≤ p <∞

ess supt∈[0,T ]‖f(t)‖ if p =∞

is finite.

9



2.2. Sobolev Spaces
Definition 2.1 Let f ∈ L1

loc(Ω) and α ∈ Nn. We say that g ∈ L1
loc(Ω) is the weak derivative

of order α of f and we denote it as ∂αf = g if∫
Ω
f∂αϕ = (−1)|α|

∫
Ω
gϕ, ∀ϕ ∈ C∞0 (Ω)

Definition 2.2 For 1 ≤ p ≤ ∞ and m ∈ N we define the Sobolev space Wm,p(Ω) as

Wm,p(Ω) = {f ∈ Lp(Ω) | ∂αf ∈ Lp(Ω) ∀|α| ≤ m}

with the norm
‖f‖m,p =

∑
|α|≤m

‖∂αf‖p

When p = 2 we denote Wm,p(Ω) = Hm(Ω).
The following results are classic, and can be found in [5] and [1].

Theorem 2.1 For every m ∈ N, 1 ≤ p ≤ ∞, Wm,p(Ω) is a Banach space, and it is separable
when 1 ≤ p <∞. If 1 < p <∞ it is reflexive and if p = 2 it is a Hilbert space with the inner
product

〈f, g〉Hm =
∑
|α|≤m

∫
Ω
∂αf(x)∂αg(x)dx

The corresponding induced norm is equivalent to the one defined in Definition 2.2

Theorem 2.2 If 1 ≤ p < ∞ then the set {f |Ω | f ∈ C∞0 (Rn)} is dense in Wm,p(Ω). In
particular, C∞0 (Rn) is dense in Wm,p(Rn).

Theorem 2.3 (Sobolev’s embedding) For any integer m ≥ 1 and p ∈ [1,∞] we have the
following continuous injections:

Wm,p(Rn) ⊆ Lq(Rn) where 1
q

= 1
p
− m

n
if 1
p
− m

n
> 0

Wm,p(Rn) ⊆ Lq(Rn) ∀q ∈ [p,∞) if 1
p
− m

n
= 0

Wm,p(Rn) ⊆ L∞(Rn) if 1
p
− m

n
< 0

Moreover, when 1
p
− m

n
< 0 we define k = [m− n/p] and we have that

‖∂αf‖∞ ≤ C‖f‖m,p, ∀|α| ≤ k, f ∈ Wm,p(Rn)

In particular, Wm,p(Rn) ⊆ Ck(Rn).
Now, we prove some lemmas that will be useful in the following chapters. The first of

them concerned with a dense subset of H1(Rn), n ≥ 3, meanwhile the second provides an
estimate in the particular case of n = 3.
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Lemma 2.1 If n ≥ 3 then C∞0 (Rn \ {0}) is dense in H1(Rn). Moreover, if u ∈ H1(Rn) is
radial and uk ∈ C∞0 (Rn \ {0}) is such that uk → u in H1(Rn), then we can choose (uk)k also
radial.

Proof. Since C∞0 (Rn) is dense in H1(Rn) is enough to prove that

C∞0 (Rn) ⊆ C∞0 (Rn \ {0})‖‖H1
.

Let u ∈ C∞0 (Rn) and θ ∈ C∞(Rn) such that

θ(x) =

0 if |x| < 1
1 if |x| > 2.

Since θ(kx) → 1 a.e. we have that uk(x) = u(x)θ(kx) → u(x) in L2(Rn) by dominated
convergence theorem. For the derivative we have that

∂i(u(x)θ(kx)) = ∂iu(x)θ(kx) + ku(x)∂iθ(kx)

and the first term converges to ∂iu(x) by the same argument as above. For the second term
notice that ∂iθ(kx) converges to 0 a.e. and

supp(ku(x)∂iθ(kx)) ⊆ B
(

0, 2
k

)
∩B

(
0, 1
k

)c
.

This implies that
|ku(x)∂iθ(kx)| ≤ 2|u(x)∂iθ(kx)|

|x|
,

and thus ku(x)∂iθ(kx)→ 0 a.e.. In addition, we have that

|ku(x)∂iθ(kx)| ≤ 2‖u‖∞‖∂iθ‖∞
|x|

1B(0,1) ∈ L2(Rn),

and we conclude by dominated convergence theorem.
When u is radial we can take

ϕ(x) =


1

|x|2 − 1 if |x| < 1

0 if |x| ≥ 1,

and define ϕk(x) = Cknϕ(kx), where C > 0 is a normalization constant. It’s well known that
(ϕk?u)→ u in H1(Rn), and the convolution of radial functions is also radial. Thus, is enough
to apply the previous part of the lemma to the sequence uk = (ϕk ? u) to conclude.

Lemma 2.2 Suppose that u ∈ H1(R3) is radial; with abuse of notation we write u(x) = u(r).
Then u(r) ∈ L2(0,∞) and ru(r) ∈ Lp(0,∞) for all p ∈ [2,∞]. Moreover, we have the
estimate

sup
r≥0
|ru(r)| ≤ C‖u‖H1(R3).
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Proof. Since u ∈ H1, from Hardy’s inequality [21] we have

4π
∫ ∞

0
u2(r)dr =

∥∥∥∥∥ u|x|
∥∥∥∥∥

2

L2(R3)
≤ 4‖∇u‖2

L2(R3) = 16π
∫ ∞

0
r2u2

r(r)dr.

Hence u(r) ∈ L2(0,∞) and one has the inequality∫ ∞
0

u2(r)dr ≤ 4
∫ ∞

0
r2u2

r(r)dr.

In order to prove that ru(r) ∈ L∞(0,∞), notice first that (ru(r))′ = u(r) + rur(r) and
since u ∈ H1(R3) from the previous part we have that ru(r) ∈ H1(0,∞). By the Sobolev’s
embedding we conclude that ru(r) is continuous and bounded. Using interpolation between
L2 and L∞, we conclude ru(r) ∈ Lp(0,∞) for all p ∈ [2,∞]. Moreover, we have from
Sobolev’s embedding that

sup
r≥0
|ru(r)| ≤ C‖ru(r)‖H1(0,∞)

≤ C(‖ru(r)‖L2(0,∞) + ‖u+ rur‖L2(0,∞))
≤ C(‖u‖L2(R3) + 2‖ur‖L2(R3)) ≤ 2C‖u‖H1(R3),

proving the desired estimate.

2.3. Linear wave equations
This section is concerned with basic properties of wave equations that will be extensively
used through this work. Consider the linear wave equation on Rn

∂2
t φ−∆φ =f(t, x)
(φ, φt)(0) =(g, h)

(2.1)

We have the following result

Theorem 2.4 Let T > 0 and m ∈ N. Suppose that f ∈ L1([0, T ];Hm) and (g, h) ∈ Hm+1 ×
Hm. Then the equation (2.1) has an unique solution φ ∈ C([0, T ];Hm+1) ∩ C1([0, T ];Hm).
This solution satisfies the estimate

‖φ(t)‖Hm+1 + ‖φt(t)‖Hm ≤ C(1 + t)
(
‖g‖Hm+1 + ‖h‖Hm +

∫ t

0
‖f(s)‖Hmds

)
(2.2)

for all t ∈ [0, T ].
The factor (1 + t) is necessary, taking in mind the norms involved in the above estimate.

This is due to the fact that the natural energy space is not H1 ×L2, but Ḣ1 ×L2, where we
can define Ḣ1 as the completion of the Schwartz space under the norm

‖f‖Ḣ1 = ‖∇f‖L2

However, we choose to work on Hm+1 ×Hm because in order to get decay properties of the
solutions we shall need to have some control on the L2 norm of those solutions.

12



Another important point is that in the linear case we are able to find an explicit formula for
the solution, which is given in terms of its Fourier transform by

φ̂(t, ξ) = cos(|ξ|t)ĝ + sin(|ξ|t)
|ξ|

ĥ+
∫ t

0

sin(|ξ|(t− τ))
|ξ|

f̂(τ, ξ)dτ

In fact, this formula is crucial to prove the existence and uniqueness of the solution, and
using the characterization via Fourier transform of Sobolev spaces (see for example [16]) it
also gives us its regularity. In the folowing section we also use the estimate (2.2) to prove
existence for semilinear wave equations.

Now we consider the general wave equation on Rn

n∑
i,j=0

gij(t, x)∂i∂jφ+
n∑
i=0

bi(t, x)∂iφ+ a(t, x)φ =f(t, x)

(φ, φt)(0) = (g, h)
(2.3)

where all the coefficients are C2([0, T ] × Rn) and gij is symmetric. Here we denote ∂0 = ∂t
and

g0
ij =


1 0 · · · 0
0 −1 · · · 0
... ... . . . ...
0 0 · · · −1


the coefficients of the D’Alembertian. With this we have the following theorem:

Theorem 2.5 Let T > 0 and m ∈ N. Set rij(t, x) = gij(t, x)− g0
ij. Suppose that

n∑
i,j=0
|ri,j(t, x)| ≤ 1

2 , ∀(t, x) ∈ [0, T ]× Rn

and f ∈ L1([0, T ];Hm). Then for (g, h) ∈ Hm+1 × Hm the equation (2.3) has an unique
solution φ ∈ C([0, T ];Hm+1) ∩ C1([0, T ];Hm). This solution satisfies the estimate

‖φ(t)‖Hm+1 + ‖φt(t)‖Hm ≤ CT

(
‖g‖Hm+1 + ‖h‖Hm +

∫ t

0
‖f(s)‖Hmds

)
(2.4)

for a constant C ≥ 0 that only depends on n and T .
Note that the constant CT is non decreasing on T . We shall use this fact in the proof

of Theorem 2.6. The proof of this theorem is much more delicate than the case of the
D’Alembertian (see for example [24]). This is due in part because we have no longer an
explicit formula for the solution, and we need another tools to prove its existence. As in
the previous theorem, this estimate will be very important to prove local existence for the
semilinear equation associated with equation (2.3).

Notice that the hypothesis on rij is not sharp in the case that gij is diagonal and depends
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only on t. From the proof of Sogge, we see that this hypothesis is used only to ensure that

e(φ) =
n∑
j=0

g0j∂0φ∂jφ−
1
2

n∑
i,j=0

gij∂iφ∂jφ

satisfies that
1
4(|φt|2 + |∇φ|2) ≤ e(φ) ≤ |φt|2 + |∇φ|2

that is, that e(φ) and |φt|2 + |∇φ|2 define equivalent norms, but when gij is diagonal we have
that e(φ) simplifies to

e(φ) = 1
2g00(∂tφ)2 − 1

2

n∑
j=1

gjj(∂jφ)2

and in the case which we are interested, which corresponds to g00 = 1, gjj = −e−2Ht, for
H ≥ 0 ,the last conditions is satisfied, so we can apply the theorem.

Finally, we close this section giving an energy estimate for the linear equation associated
with (1.11)

∂2
t φ+ 3H∂tφ−

∆φ
e2Ht = f(t, x) (2.5)

For this equation, we define its energy as

EL(t) =
∫
R3

φ2
t

2 + |∇φ|2e2Htdx (2.6)

With this, we have the following lemma

Lemma 2.3 Let T > 0. If f ∈ L1([0, T ], L2(R3)) then every solution (φ, φt) ∈ H1 × L2 to
(2.5) satisfies

EL(t) ≤ e−HtEL(0) +
∫ t

0
e−H(t−s)‖f(s)‖2

L2ds

Proof. Notice that multiplying the equation (2.5) by φt we obtain that

∂t

(
φ2
t

2 + |∇φ|
2

2e2Ht

)
− div

(
φt∇φ
e2Ht

)
+ 3Hφ2

t +H
|∇φ|2

e2Ht = f(t, x)φt

Integrating on R3 we get

∂tEL(t) =−H
∫

3φ2
t + |∇φ|

2

e2Ht +
∫
f(t, x)φt

≤−H
∫

3φ2
t + |∇φ|

2

e2Ht +
∫ βφ2

t

2 +
∫ f(t, x)2

2β

≤−
∫ (

3H − β

2

)
φ2
t −

∫
H
|∇φ|2

e2Ht + ‖f(t)‖2
L2

2β

where in the second line we have applied Cauchy Schwarz inequality to f(t, x)φt = f(t,x)√
β

√
βφt.

Taking β = 4H and applying Gronwall’s inequality we finish the proof.
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2.4. Semilinear wave equations
In this sections we present some basic results on existence of solution for semilinear wave
equations. This results are strongly based on the estimates presented on the previous section,
and are obtained via an application of Banach fixed point theorem. We start showing an
energy estimates that will be useful to prove global existence in Chapter 4. First, for a
solution φ of (1.11) we define the energy density as

e(t, x) =
(
φ2
t

2 + |∇φ|2e2Ht + F (φ)
)

(t, x) (2.7)

and its energy
E(t) =

∫
R3
e(t, x)dx (2.8)

With this, we have the following elementary result.

Lemma 2.4 Let φ ∈ C([0, T ];H1) ∩ C1([0, T ];L2) be a solution of (1.11). Then we have
that

d

dt
E(t) = −H

∫
R3

3φ2
t + |∇φ|

2

e2Ht (2.9)

Now we will show some existence theorems for equation (1.11). We start with the most
basic result on this line, where we make the strong assumption that the nonlinearity is globally
Lipschitz. Despite this restrictive hypothesis, the proof of this theorem will serve as a model
for more complex results.

Theorem 2.6 If f : R → R is Lipschitz continuous and f(0) = 0 then for initial data in
H1(Rn)× L2(Rn) equation (1.11) has a unique global solution such that

1. φ ∈ C([0,∞);H1(Rn)) ∩ C1([0,∞);L2(Rn)).

2. If the initial datum (φ0, φ1) ∈ H1 × L2 is radial, then (φ, ∂tφ) is radial for all times.

3. Equation (2.9) is satisfied for all times t ≥ 0.

Proof. Consider the Banach space

X = C([0, T ];H1) ∩ C1([0, T ], L2),

with norm
‖φ‖X = sup

t∈[0,T ]
(‖φ(t)‖H1 + ‖φt‖L2),

for some T > 0 to be chosen later. We define the operator A : X → X by Av = φ, where φ
is the unique solution to

∂2
t φ+ 3H∂tφ−

∆φ
e2Ht =f(v),

(φ(0), φt(0)) =(h, g).

Note that A is well defined because, since f is globally Lipschitz and f(0) = 0, we have
that |f(v)| ≤ M |v| and hence f(v) ∈ L1([0, T ], L2). Thus, given v1, v2 ∈ X we have that
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w = Av1 − Av2 satisfies

∂2
tw + 3H∂tw −

∆w
e2Ht = f(v1)− f(v2)

(w(0), wt(0)) = (0, 0),

and so we can use the estimate (2.4), obtaining

‖w(t)‖H1 + ‖wt(t)‖L2 ≤ CT

∫ t

0
‖f(v1(s))− f(v2(s))‖L2ds

≤ CTMt sup
s∈[0,T ]

‖v1(s)− v2(s)‖L2 ,

where M > 0 is the Lipschitz constant of f . Thus we have

‖w‖X = ‖Av1 − Av2‖X ≤ CTMT‖v1 − v2‖X ,

and taking T small enough such that CTMT < 1 by Banach’s fixed point theorem there exist
φ ∈ X such that

∂2
t φ+ 3H∂tφ−

∆φ
e2Ht = f(φ),

(φ(0), φt(0)) = (h, g).
Since T does not depend on h, g we can extend this solution for all times, concluding the
proof.

Now we make a weaker assumption on the nonlinearity and suppose only that it is of class
C2. This gives us less control on the nonlinear term, and consequently is expected to obtain
weaker results. To control the nonlinear term we shall need to suppose more regularity on
the initial data. Specifically, we have the following.

Theorem 2.7 If f : R→ R is of class C2 and f(0) = f ′(0) = 0, then equation (1.11) has a
unique maximal solution provided that the initial data (φ0, φ1) ∈ H2 × H1 is small enough.
This solution satisfies

1. φ ∈ C([0, T );H2(R3)) ∩ C1([0, T );H1(R3)).

2. If the initial datum (φ0, φ1) ∈ H2 ×H1 is radial, then (φ, ∂tφ) is radial for all times.

3. Equation (2.9) is satisfied along 0 ≤ t < T .

Proof. Proceeding as in the previous theorem, consider the Banach space

X = C([0, T ];H2) ∩ C1([0, T ];H1),

with norm
‖φ‖X = sup

t∈[0,T ]
(‖φ(t)‖H2 + ‖φt(t)‖H1),

and consider the subset Y = {φ ∈ X | ‖φ‖X ≤ R} with the metric induced by the norm of
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X. Define the operator A : Y → X by Av = φ, where φ is the unique solution to

∂2
t φ+ 3H∂tφ−

∆φ
e2Ht = f(v)

(φ(0), φt(0)) = (h, g),

where (h, g) ∈ H2 × H1(R3). In order to see that f(v) ∈ H1 notice that from Sobolev’s
embedding we have that H2(R3) ↪→ C(R3) ∩ L∞(R3), and then |v(t, x)| ≤ M for all (t, x) ∈
[0, T ] × R3. Note that this constant is independent of v, because ‖v‖X ≤ R. Since f is of
class C2 (and in particular locally Lipschitz continuous) we have

|f(v)| . |v|,

and f(v) ∈ L2. The same argument allows us to prove that

|∇f(v)| = |f ′(v)∇v| . |∇v|,

and thus f(v) ∈ L1([0, T ];H1) and A is well defined. Using (2.4) for n = 1 we see that

‖w‖X ≤ CT

(
‖h‖H2 + ‖g‖H1 +

∫ T

0
‖f(v(s))‖H1ds

)
≤ CT (‖h‖H2 + ‖g‖H1 + TM‖v‖X) ,

where M > 0 depends only on f and R. Thus, taking R ≥ C(1 +T )‖(h, g)‖H2×H1 and T > 0
small enough we have that ‖w‖X ≤ R. Now, for v1, v2 ∈ Y we have that w = Av1 − Av2
satisfies

∂2
tw −∆w = f(v1)− f(v2)

(w(0), wt(0)) = (0, 0),

and using (2.4) again we have that

‖w(t)‖H2 + ‖wt(t)‖H1 ≤ CT

∫ t

0
‖f(v1(s))− f(v2(s))‖H1ds

≤ CT

∫ t

0
(‖f(v1)− f(v2)‖L2 + ‖f ′(v1)∇v1 − f ′(v2)∇v2‖L2)ds.

Since both f and f ′ are locally Lipschitz continuous we have that

‖f(v1)− f(v2)‖L2 . ‖v1 − v2‖L2 ,

and

‖f ′(v1)∇v1 − f ′(v2)∇v2‖L2 ≤ ‖f ′(v1)∇v1 − f ′(v1)∇v2‖L2 + ‖(f ′(v1)− f ′(v2))∇v2‖L2

. ‖∇v1 −∇v2‖L2 + ‖v1 − v2‖L2 .

This implies that
‖w‖X ≤ CTNT‖v1 − v2‖X .

and taking T small enough we have that A : Y → Y is a contraction, and we conclude as
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in the proof of Theorem 2.6. By standard arguments this solution can be extended to a
maximal interval [0, T ).

To finish this chapter, we recall a classical existence theorem for the classical semilinear
wave equation (i.e. with H = 0). The proof of this result is long and uses many lemmas that
we will not use in the following chapters, so for simplicity we only enunciate this theorem.
For a detailed proof see for example [24].

Theorem 2.8 Suppose that f : R → R is of class C2, f(0) = f ′(0) = 0 and there exists
C > 0 such that

|f ′′(s)| ≤ C|s|p, |s| ≤ 1

for p ≥ 1. Then for initial data of the form (φ0, φ1) = ε(g, h), where g, h are smooth compactly
supported functions, the equation (1.11) for H = 0 has a unique global solution φ ∈ C2(R1+3)
provided that ε > 0 is small enough.
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Chapter 3

Virial Identities

This chapter is devoted to prove virial estimates, which are the base point to prove decay
properties for the equations considered in Chapter 1. This approach is very common in
the study of nonlinear dispersive equations and one can see it in works of Merle, Martel,
Kowalczyk, Alejo and Maulen for example [2], [13], [14]. This chapter is divided into two
sections, the first concerned with estimates for the case H = 0, while the second with an
estimate for the case H > 0. This because those cases are enough different qualitatively
speaking, and therefore need separate treatment.

3.1. The case H = 0
3.1.1. First calculations
For a locally integrable function ψ : R → R to be chosen later we define the following
functionals

P(φ)(t) =
∫ ∞

0
ψ(r)φr(t, r)φt(t, r)dr, (3.1)

R(φ)(t) =
∫ ∞

0
ψ′(r)φ(t, r)φt(t, r)dr, (3.2)

I(φ)(t) = P(φ)(t) + 1
2R(φ)(t), (3.3)

Our first result is concerned with the behavior of the time derivative of these functionals.

Lemma 3.1 If φ ∈ C([0,∞);H1) ∩C1([0,∞);L2) is a radial solution of (1.11) with H = 0
then

dP(φ)
dt

=
∫ ∞

0

2ψ
r
φ2
r −

∫ ∞
0

ψ′
(
φ2
t

2 + φ2
r

2 − F (φ)
)
, (3.4)

dR(φ)
dt

=
∫ ∞

0
ψ′
(
φ2
t − φ2

r − φf(φ)
)

+
∫ ∞

0

(
ψ′

r2 −
ψ′′

r
+ ψ′′′

2

)
φ2, (3.5)

and

dI(φ)
dt

=
∫ ∞

0

((
ψ′

r2 −
ψ′′

r
+ ψ′′′

2

)
φ2

2 +
(

2ψ
r
− ψ′

)
φ2
r + ψ′

2 (2F (φ)− φf(φ))
)
. (3.6)
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Proof. Thanks to Lemma 2.1, it is enough to compute all derivatives assuming data in
C∞0 (R3\{0}).

Using equation (1.11) and the definition of F (s) =
∫ s

0 f(σ)dσ, we have in (3.1):

dP(φ)
dt

=
∫ ∞

0
ψ
(
φrtφt + φrφrr + 2

r
φ2
r − φrf(φ)

)
dr

=
∫ ∞

0
ψ∂r

(
φ2
t

2 + φ2
r

2 − F (φ)
)

+ 2ψ
r
φ2
r

=ψ
(
φ2
t

2 + φ2
r

2 − F (φ)
) ∣∣∣∣∣
∞

0
+
∫ ∞

0

2ψ
r
φ2
r − ψ′

(
φ2
t

2 + φ2
r

2 − F (φ)
)
.

Thanks to Lemma 2.1, every boundary term at zero and infinity disappear. We get (3.4).

We compute now dR(φ)
dt

. We have from (3.2):

dR(φ)
dt

=
∫ ∞

0
ψ′
(
φ2
t + φφrr + 2

r
φφr − φf(φ)

)
=
∫ ∞

0
ψ′(φ2

t − φf(φ)) +
∫ ∞

0
ψ′φφrr +

∫ ∞
0

ψ′
2
r
φφr =: K1 +K2 +K3.

K1 is left as it is. We compute K2 first saving every boundary term:

K2 =ψ′φφr
∣∣∣∣∣
∞

0
−
∫ ∞

0
φr(ψ′′φ+ ψ′φr)

=ψ′φφr
∣∣∣∣∣
∞

0
−
∫ ∞

0
ψ′φ2

r −
∫ ∞

0
ψ′′∂r

(
φ2

2

)

=ψ′φφr
∣∣∣∣∣
∞

0
−
∫ ∞

0
ψ′φ2

r −
(
ψ′′φ2

2

∣∣∣∣∣
∞

0
−
∫ ∞

0
ψ′′′

φ2

2

)

=ψ′φφr
∣∣∣∣∣
∞

0
− ψ′′φ2

2

∣∣∣∣∣
∞

0
+
∫ ∞

0
ψ′′′

φ2

2 −
∫ ∞

0
ψ′φ2

r.

Similarly,

K3 =
∫ ∞

0

ψ′

r
∂r(φ2) = ψ′

r
φ2
∣∣∣∣∣
∞

0
−
∫ ∞

0
∂r

(
ψ′

r

)
φ2

=ψ
′

r
φ2
∣∣∣∣∣
∞

0
−
∫ ∞

0

(
ψ′′

r
− ψ′

r2

)
φ2.

Arranging all previous computations, we conclude that R(φ) =
∫∞
0 ψ′φφtdr satisfies:

dR(φ)
dt

=
∫ ∞

0
ψ′(φ2

t − φf(φ))

+ ψ′φφr

∣∣∣∣∣
∞

0
− ψ′′φ2

2

∣∣∣∣∣
∞

0
+
∫ ∞

0
ψ′′′

φ2

2 −
∫ ∞

0
ψ′φ2

r + ψ′

r
φ2
∣∣∣∣∣
∞

0
−
∫ ∞

0

(
ψ′′

r
− ψ′

r2

)
φ2.
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Again thanks to Lemma 2.1, every boundary term disappears. We obtain

dR(φ)
dt

=
∫ ∞

0
ψ′(φ2

t − φf(φ)) +
∫ ∞

0
ψ′′′

φ2

2 −
∫ ∞

0
ψ′φ2

r −
∫ ∞

0

(
ψ′′

r
− ψ′

r2

)
φ2

=
∫ ∞

0
ψ′
(
φ2
t − φ2

r − φf(φ)
)

+
∫ ∞

0

(
ψ′

r2 −
ψ′′

r
+ ψ′′′

2

)
φ2.

This proves (3.5). Finally, gathering (3.4) and the previous identity in the definition of I(t)
(3.3), we arrive to (3.6).

3.1.2. Choice of weight function
Here we will use Lemma 3.1 with a particular choice of ψ.

Corollary 3.1 Consider the weight

ψ(r) := r2

1 + r
. (3.7)

Then the following are satisfied:

1. One has that

I(φ) =
∫ ∞

0

r2

1 + r
φrφt + r(r + 2)

2(1 + r)2φφt (3.8)

is well-defined and bounded uniformly in time by the energy of the solution:

sup
t≥0
|I(φ)(t)| . E[φ, ∂tφ](t = 0).

2. Also,

dP(φ)
dt

=
∫ ∞

0

r(2 + 3r)
2(1 + r)2 φ

2
r −

r(r + 2)
(1 + r)2

(
φ2
t

2 − F (φ)
)

(3.9)

dR(φ)
dt

=
∫ ∞

0

r(r + 2)
(1 + r)2 (φ2

t − φf(φ)) + r(r + 4)
(1 + r)4 φ

2 − r(r + 2)
(1 + r)2 φ

2
r (3.10)

dI(φ)
dt

=
∫ ∞

0
r2
(

1
(1 + r)2φ

2
r + r + 4

2r(1 + r)4φ
2
)

+ r(r + 2)
2(1 + r)2 (2F (φ)− φf(φ)). (3.11)

Proof. The proof of (3.8), (3.9), (3.10) and (3.11) are direct from Lemma 3.1 and (3.7). We
check now that I(φ) is well-defined. Indeed,∣∣∣∣∣

∫ ∞
0

r2

(1 + r)φrφt
∣∣∣∣∣ ≤

∫ ∞
0

r2 |φtφr| ≤ E(φ, φt).

Additionally, ∣∣∣∣∣
∫ ∞

0

r(r + 2)
2(1 + r)2φφt

∣∣∣∣∣ ≤
∫ ∞

0
r|φφt| ≤ E(φ, φt)1/2

(∫ ∞
0

φ2dr
)1/2

.
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Finally, Lemma 2.2 gives the desired uniform in time proof.

If we define the weighted norms

‖φ‖2
H1

w
=
∫ ∞

0

r2

(1 + r)4 (φ2 + φ2
r), ‖φ‖2

L2
w

=
∫ ∞

0

r2

(1 + r)4φ
2

we can see that
dI(φ)
dt

≥ ‖φ‖2
H1

w
+
∫ ∞

0

r(r + 2)
2(1 + r)2 (2F (φ)− φf(φ))

On the other hand, if we choose ψ(r) = −3r2 + 3r + 1
3(1 + r)3 we have

R̃ =
∫ ∞

0

r2

(1 + r)4φφt,

and
dR̃
dt

(φ) =
∫ ∞

0

r2

(1 + r)4 (φ2
t − φ2

r − φf(φ)) + 2r(3r − 2)
(1 + r)6 φ2.

This allows us to prove the following propositions:

Proposition 3.1 Under the hypothesis of Theorem 1.1 the solution (φ, φt) of (1.11) satisfies∫ ∞
0

(‖φ‖2
H1

w
+ ‖φt‖2

L2
w
)dt < +∞.

Proof. From Corollary 3.1 and the previous calculations we see that

dI(φ)
dt

≥ ‖φ‖2
H1

w
,

and then ∫ ∞
0
‖φ‖2

H1
w
dt ≤ lim

t→∞
I(φ(t))− I(φ(0))

. E(φ, φt) + |I(φ(0))|.
On the other hand, since

dR̃
dt

(φ) =
∫ ∞

0

(
r2

(1 + r)4 (φ2
t − φ2

r − φf(φ)) + 2r(3r − 2)
(1 + r)6 φ2

)
,

we have
‖φt‖2

L2
w

= dR̃
dt

+ ‖φr‖2
L2

w
+
∫ ∞

0

(
r2

(1 + r)4φf(φ) + 2r(2− 3r)
(1 + r)6 φ2

)

≤ dR̃
dt

+ ‖φr‖2
L2

w
+
∫ ∞

0

(
Mr2

(1 + r)4 + 2r(2− 3r)
(1 + r)6

)
φ2

≤ dR̃
dt

+ ‖φr‖2
L2

w
+ C(M)

∫ ∞
0

r(4 + r)
(1 + r)4 φ

2

≤ dR̃
dt

+ ‖φr‖2
L2

w
+ C(M)dI

dt
,
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whereM is the Lipschitz constant of f , and we have used (3.11) and the previous observations.
We note that

|R̃(φ)| ≤
∫ ∞

0

r2

1 + r
|φφt| ≤

∫ ∞
0

r|φφt|,

and from the proof of Corollary 3.1 we see that R̃(φ) is uniformly bounded in time by the
energy of the solution. Integrating the last inequality the result follows.

Proposition 3.2 Under the hypothesis of Theorem 1.2 the solution (φ, φt) of (1.11) satisfies∫ ∞
0

(‖φ‖2
H1

w
+ ‖φt‖2

L2
w
)dt < +∞.

Proof. From (1.13) we see that F (φ) ≥ 0 an using the inequality (1.13) we obtain that

dI(φ)
dt

≥
∫ ∞

0
r2
(

1
(1 + r)2φ

2
r + r + 4

2r(1 + r)4φ
2
)
− C r(r + 2)

2(1 + r)2φ
4.

Since we have supposed that supt≥0 ‖φ(t)‖H1∩L∞ ≤ ε we have

|φ(t, r)| ≤ ε ∀t, r ≥ 0,
‖φ(t)‖H1 ≤ ε ∀t ≥ 0,

and from Lemma 2.2 we have that

r|φ(r)| ≤ C‖φ‖H1 .

Gathering both inequalities we obtain

φ(r)2 ≤ (1 + C)ε2

(1 + r)2 ,

and hence

dI(φ)
dt

≥
∫ ∞

0
r2
(

1
(1 + r)2φ

2
r + r + 4

2r(1 + r)4φ
2
)
− (1 + C) r(r + 2)

2(1 + r)4 ε
2φ2

≥
∫ ∞

0

r2

(1 + r)2φ
2
r + r(r + 2)

2(1 + r)4 (1− (1 + C)ε2)φ2

≥ ‖φ‖2
H1

w
,

provided that ε is small enough. Notice that, since φ(t, r) is uniformly bounded and f is C1

there existe a constant M > 0 such that

|f(φ(t))| ≤M |φ(t)|, ∀t ≥ 0,

which implies that φf(φ) ≤Mφ2, and we conclude as in the previous proposition.
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3.2. The case H > 0
In this section we present virial identities for equation (1.11) with H > 0. As we mentioned
at the beginning of the chapter, this estimates are a bit different to the presented in the last
section. In fact, for a locally integrable function ϕ(t, r) we define

J (φ)(t) =
∫ ∞

0
r2ϕ(t, r)

(
φ2
t

2 + φ2
r

2e2Ht + F (φ)
)
. (3.12)

and analogously to the previous section we have the following lemma.

Lemma 3.2 If φ ∈ C([0,∞);H1) ∩ C1([0,∞);L2) is a globally defined radial solution of
(1.11), then

dJ (φ)
dt

=
∫ ∞

0
r2ϕt(t, r)

(
φ2
t

2 + φ2
r

2e2Ht + F (φ)
)

−H
∫ ∞

0
r2ϕ(t, r)

(
3φ2

t + φ2
r

e2Ht

)
−
∫ ∞

0
r2ϕr(t, r)

φtφr
e2Ht .

Proof. As in Lemma 3.1 we shall assume data in C∞0 (R3 \ {0}), and consequently, every
boundary term will disappear. Deriving (3.12) we have

dJ (φ)
dt

=
∫ ∞

0
r2ϕt(t, r)

(
φ2
t

2 + φ2
r

2e2Ht + F (φ)
)

+
∫ ∞

0
r2ϕ(t, r)

(
φttφt + φrφrt

e2Ht −H
φ2
r

e2Ht + f(φ)φt
)

= K1 +K2

For the second term, using (1.11) we get

K2 =
∫ ∞

0
r2ϕ(t, r)

(
−3Hφ2

t + φt∆φ
e2Ht − f(φ)φt + φrφrt

e2Ht −H
φ2
r

e2Ht + f(φ)φt
)

= −H
∫ ∞

0
r2ϕ(t, r)

(
3φ2

t + φ2
r

e2Ht

)
+
∫ ∞

0
r2ϕ

(
φrφrt
e2Ht + φt∆φ

e2Ht

)

= −H
∫ ∞

0
r2ϕ(t, r)

(
3φ2

t + φ2
r

e2Ht

)
−
∫ ∞

0
r2ϕr(t, r)

φrφt
e2Ht ,

where in the last equality we have used the Green identity on R3. Arranging the previous
calculations we got

dJ (φ)
dt

=
∫ ∞

0
r2ϕt(t, r)

(
φ2
t

2 + φ2
r

2e2Ht + F (φ)
)

−H
∫ ∞

0
r2ϕ(t, r)

(
3φ2

t + φ2
r

e2Ht

)
−
∫ ∞

0
r2ϕr(t, r)

φtφr
e2Ht .
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This allows us to prove the following corollary.

Corollary 3.2 For σ, b ∈ R consider the weight

ϕ(t, r) = 1 + tanh(r + σt+ b). (3.13)

Then if F (x) ≥ 0 for all x ∈ R we have the estimate

dJ (φ)
dt

≤ (1 + σ)
∫ ∞

0
r2 sech2(r + σt+ b)

(
φ2
t

2 + φ2
r

2e2Ht + F (φ)
)
. (3.14)

Proof. Replacing (3.13) in Lemma 3.2 we get

dJ (φ)
dt

= σ
∫ ∞

0
r2 sech2(r + σt+ b)

(
φ2
t

2 + φ2
r

2e2Ht + F (φ)
)

−H
∫ ∞

0
r2(1 + tanh(r + σt+ b))

(
3φ2

t + φ2
r

e2Ht

)
−
∫ ∞

0
r2 sech2(r + σt+ b)φtφr

e2Ht .

Noticing that the second term is strictly negative and

− sech2(r + σt+ b)φrφt
e2Ht ≤ sech2(r + σt+ b)

(
φ2
t

2 + φ2
r

2e2Ht

)
,

we have that

dJ (φ)
dt

≤ σ
∫ ∞

0
r2 sech2(r + σt+ b)

(
φ2
t

2 + φ2
r

2e2Ht + F (φ)
)

+
∫ ∞

0
r2 sech2(r + σt+ b)

(
φ2
t

2 + φ2
r

2e2Ht

)
.

Using that F (φ) ≥ 0 we obtain the desired estimate (3.14).
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Chapter 4

Proof of the main results

In this chapter we complete the proofs of Theorems 1.1, 1.2 and 1.3 using the identities
developed in Chapter 3, and we see that the decay properties are a direct consequence of
the integrability on time of the weighted norms of the solution. For the existence part of
Theorem 1.3 we shall need a different argument as the presented in Section 2.4. In this case
the proof will be based on a bootstrap argument to control the size of the solution. Once we
have controlled the norm of the solution we will use that to prove that we can extend the
local solution to a global one.

We start with Theorems 1.1 and 1.2

4.1. Proof of Theorems 1.1 and 1.2
For a locally integrable function ψ : R→ R let

H(t) =
∫ ∞

0
ψ(φ2 + φ2

r + φ2
t ),

then, we can see that

d

dt
H(t) =

∫ ∞
0

2ψ(φφt + φrφrt + φtφtt)

=
∫ ∞

0
2ψ

(
φφt + φrφrt + φtφrr + 2

r
φtφr − φtf(φ)

)
=
∫ ∞

0
2ψ

(
φφt + φrφrt + 2

r
φtφr − φtf(φ)

)
dr +

∫ ∞
0

2ψφtφrr.

Using Lemma 2.1 we have ∫ ∞
0

2ψφtφrr = −
∫ ∞

0
2φr(ψφtr + ψ′φt),

and hence
d

dt
H(t) = 2

∫ ∞
0

ψ(φφt − φtf(φ)) +
(

2ψ
r
− ψ′

)
φtφr
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Since ψ(r) = r2

(1 + r)4 , we have that

H(t) =
∫ ∞

0

r2

(1 + r)4 (φ2 + φ2
r + φ2

t ) = ‖φ‖2
H1

w
+ ‖φt‖2

L2
w
,

and
d

dt
H(t) = 2

∫ ∞
0

r2

(1 + r)4 (φφt − φtf(φ)) + 4r2

(1 + r)5φrφt.

As we see, whether f is globally Lipschitz or f is C1 and ‖φ(t)‖L∞ is uniformly bounded in
time then we have

|f(u)| . |u|.

Thus, we see that∣∣∣∣∣ ddtH(t)
∣∣∣∣∣ .

∫ ∞
0

r2

(1 + r)4 (|φ||φt|+ |φt||f(φ)|) + 4r2

(1 + r)5φrφt

.
∫ ∞

0

r2

(1 + r)4 (φ2 + φ2
t + φ2) + 4r2

(1 + r)4 (φ2
r + φ2

t )

. H(t).

From Proposition 3.1 and 3.2 there exists a sequence tn → ∞ such that H(tn) → 0. Inte-
grating the inequality above on [t, tn]we see that

|H(tn)−H(t)| =
∣∣∣∣∣
∫ tn

t

d

dt
H(s)ds

∣∣∣∣∣
≤
∫ tn

t

∣∣∣∣∣ ddtH(s)ds
∣∣∣∣∣ .

∫ tn

t
H(s)ds,

and passing to limit as n→∞ we have

H(t) ≤
∫ ∞
t
H(s)ds,

and hence lim
t→∞
H(t) = lim

t→∞

(
‖φ‖2

H1
w

+ ‖φt‖2
L2

w

)
= 0. To conclude the proof is enough to note

that for any R > 0 we have

‖(φ, φt)‖2
H1×L2(B(0,R)) =

∫
B(0,R)

(φ2 + φ2
r + φ2

t )dx

= 4π
∫ R

0
r2(φ2 + φ2

r + φ2
t )dr

≤ 4π(1 +R)4
∫ R

0

r2

(1 + r)4 (φ2 + φ2
r + φ2

t )dr

≤ 4π(1 +R)4H(t),

and the result follows.
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4.2. Proof of Theorem 1.3
4.2.1. Existence
Let φ(t, x) be the local solution to (1.11) on [0, T ) × R3 given by Theorem 2.7. We shall
prove that for ε > 0 small enough we can extend this solution smoothly to [0, T ]×R3. First
notice that we have the identity

∂t

(
φ2
t

2 + |∇φ|
2

2e2Ht + F (φ)
)
− div

(
φt∇φ
e2Ht

)
= −3Hφ2

t −H
|∇φ|2

e2Ht , (4.1)

where the divergence is taken in the spatial variables. We denote

K(t0, x0) = {(t, x) ∈ R4 | t ≤ t0, H|x− x0| ≤ e−Ht − e−Ht0},

the backward light cone and

M(t0, x0) = {(t, x) ∈ R4 | t ≤ t0, H|x− x0| = e−Ht − e−Ht0},

its lateral boundary. We want to integrate on

Kt
s(t0, x0) = {(t, x) ∈ R4 | H|x− x0| ≤ e−Ht − e−Ht0} ∩ [s, t]× R3;

To do this, we note that the normal to the lateral boundary of Kt
s(t0, x0) is

n̂ =
(
e−Ht,

x− x0

|x− x0|

)

If we define
G(t, x) =

(
φ2
t

2 + |∇φ|
2

2e2Ht + F (φ),−φt∇φ
e2Ht

)
we see that

n̂ ·G(t, x) = e−Ht
(
φ2
t

2 + |∇φ|
2

2e2Ht + F (φ)
)
− φt∇φ

e2Ht ·
x− x0

|x− x0|

= e−Ht
[
F (φ) + 1

2

(
φ2
t + |∇φ|

2

e2Ht − 2φt∇φ
eHt

· x− x0

|x− x0|

)]

= e−Ht

F (φ) +

∣∣∣φt x−x0
|x−x0| − e

−Ht∇φ
∣∣∣2

2


Noticing |n̂| =

√
1 + e−2Ht we have that, integrating (4.1) on Kt

s(t0, x0) and applying the
divergence theorem

∫
B(x0,R(t))

e(t)dx+
∫
Mt

s

1√
1 + e2Ht


∣∣∣φt x−x0
|x−x0| − e

−Ht∇φ
∣∣∣2

2 + F (φ)

 dS =

∫
B(x0,R(s))

e(s)dx−
∫
Kt

s

3Hφ2
t +H

|∇φ|2

e2Ht ,
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where R(t) = e−Ht−e−Ht0
H

, M t
s is the lateral boundary of the truncated cone Kt

s and

e(t) =
(
φ2
t

2 + |∇φ|
2

2e2Ht + F (φ)
)

(t, x)

is the energy density. Since F (x) ≥ 0, the last identity implies that if φ = 0 on B(x0, R(s))
then φ = 0 on B(x0, R(t)) for every t ∈ [s, t0], that is, φ have finite speed of propagation and
then, if the initial data have compact support then φ has it too for every time where it is
defined. From the well posedness theory we have in addition that the solution is smooth in
the spatial variables for every time. Note also that in the limit when H → 0 the backward
light cone K(t0, x0) coincide with the usual one for the wave equation, and we recover the
classical finite speed of propagation property.

Now we must to show that
sup
t∈[0,T )

‖φ(t)‖∞ <∞.

To do this we shall estimate the H2 norm of φ. Notice that from the hypothesis on the initial
data there exist some constant such that

‖(φ, φt)(0)‖H2×H1 ≤ C0ε

4 .

To estimate ‖φ(t)‖H2 suppose that

sup
t∈[0,T )

‖φ(t)‖H2 ≤ C0ε

for the same constant as above. We will show that we can improve this estimate to obtain
that

sup
t∈[0,T )

‖φ(t)‖H2 ≤ C0ε

2 .

For this we note that from (2.9) if ε > 0 is small enough we have that

‖φt‖2
L2

2 + ‖∇φ‖
2
L2

2e2Ht ≤ ε2
(
‖h‖2

L2

2 + ‖∇g‖
2
L2

2e2Ht

)
+ ε4

∫
g4,

and in consequence
sup
t∈[0,T )

‖φ(t)‖H1 ≤ (1 + T )C0(ε+ ε2)
4 .

To estimate the H2 norm note that ui = ∂xi
φ satisfies the equation

∂2
t ui + 3H∂tui −

∆ui
e2Ht + f ′(φ)ui = 0,
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and from Lemma 2.3 we have

‖uit‖2
L2

2 + ‖∇ui‖
2
L2

2e2Ht ≤ε
2e−Ht

(
‖∂xi

h‖2
L2

2 + ‖∂xi
∇g‖2

L2

2e2Ht

)
+
∫ t

0
e−H(t−s)‖f ′(φ)ui‖2

L2ds

≤ε2e−Ht
(
‖∂xi

h‖2
L2

2 + ‖∂xi
∇g‖2

L2

2e2Ht

)
+ ε4

∫ t

0
e−H(t−s)‖φ2ui‖2

L2ds,

and in the same way as before we obtain that

sup
t∈[0,T )

‖∂xi
φ(t)‖H1 ≤ C(T )C0(ε+ ε2)

4 .

This implies, for ε > 0 small enough, that

sup
t∈[0,T )

‖φ(t)‖H2 ≤ C0ε

2 ,

as we wanted. Note that applying the same argument as above, in addition to Lemma 2.3 we
obtain that all the spatial derivatives of φ are bounded in time. Additionally, since u = φt
satisfies

∂2
t u+ 3H∂tu−

∆u
e2Ht + 2H ∆φ

e2Ht + f ′(φ)u = 0

we can apply the same idea to prove that the H2 norm of φt is uniformly bounded in time,
because φ is uniformly bounded in H2, and then ∆φ ∈ L1([0, T ];L2). This allow us to extend
φ to a smooth function on [0, T ], and from the finite speed of propagation property we have
that φ(T, ·) is a smooth function with compact support. In consequence we can extend the
solution globally in time.

4.2.2. Decay
We first prove (1.17). For t0 > 0 σ < −1 and b = 1 + σ in Corollary 3.2, which yields

J (φ)(t) =
∫ ∞

0
r2(1 + tanh(r + σt+ (1 + σ)t0))

(
φ2
t

2 + φ2
r

2e2Ht + F (φ)
)
,

and
dJ (φ)
dt

(t) ≤ (1 + σ)
∫ ∞

0
r2 sech2(r + σt+ (1 + σ)t0)

(
φ2
t

2 + φ2
r

2e2Ht + F (φ)
)
.

Since σ < −1 we have that J (φ) is decreasing on [2, t0]. In particular
∫ ∞

0
r2(1 + tanh(r + (1 + 2σ)t0))

(
φ2
t

2 + φ2
r

2e2Ht + F (φ)
)

(t0, r)

≤
∫ ∞

0
r2(1 + tanh(r + 2σ + (1 + σ)t0))

(
φ2
t

2 + φ2
r

2e2Ht + F (φ)
)

(2, r).

Since 1 + σ < 0 we have that

lim
t0→∞

(1 + tanh(r + 2σ + (1 + σ)t0)) = 0.
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By dominated convergence theorem we have that the right hand side converges to 0 as
t0 →∞, and consequently we get

lim
t→∞

∫ ∞
0

r2(1 + tanh(r + (1 + 2σ)t))
(
φ2
t

2 + φ2
r

2e2Ht + F (φ)
)

(t, r) = 0.

To conclude it is enough to note that if r > −(1 + 2σ)t then

1 + tanh(r + (1 + 2σ)t) ≥ 1,

and then∫
R(t)

(
φ2
t

2 + φ2
r

2e2Ht + F (φ)
)
≤
∫ ∞
−(1+2σ)t

r2(1 + tanh(r + (1 + 2σ)t))
(
φ2
t

2 + φ2
r

2e2Ht + F (φ)
)

≤
∫ ∞

0
r2(1 + tanh(r + (1 + 2σ)t))

(
φ2
t

2 + φ2
r

2e2Ht + F (φ)
)
.

Since we have proved that the right hand side converges to 0 we got the desired decay (1.17).
Now we prove (1.18). Let R > 0 fixed. Lemma 3.2 with ϕ(t, r) = ϕ(r) ≥ 0 yields for some

C > 0

dJ (φ)
dt

= −H
∫ ∞

0
r2ϕ(r)

(
3φ2

t + φ2
r

e2Ht

)
−
∫ ∞

0
r2ϕ′(r)φtφr

e2Ht

≤ − 3H
∫ ∞

0
r2φ2

t

(
ϕ(r)− Ce−Htϕ′(r)

)
−H

∫ ∞
0

r2 φ2
r

e2Ht (ϕ(r)− ϕ′(r)) .

Choosing ϕ0(r), ϕ(r) satisfying

ϕ0(r) = 1, r ≤ 1, ϕ′0 ≤ 0, ϕ0(r) = e−r, r ≥ 2, ϕ(r) = ϕ0(r/R),

If R and t are large,

dJ (φ)
dt

≤ −3
2H

∫ ∞
0

r2ϕ(r)φ2
t −

1
2H

∫ ∞
0

r2ϕ(r) φ
2
r

e2Ht .

Consequently, for some t0 > 0 large,

H
∫ ∞
t0

∫ ∞
0

r2ϕ(r)
(
φ2
t + φ2

r

e2Ht

)
dt < +∞.

Again, we have now
dJ (φ)
dt

. H
∫ ∞

0
r2ϕ(r)

(
3φ2

t + φ2
r

e2Ht

)
,

following the same ideas as in previous proofs, we get the desired result.
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Chapter 5

Applications

In this chapter we shall see how the theorems proved in this work can be used to study
space-time dynamics of the models introduced in Chapter 1. Recall the notation introduced
in Section 1.3

F1,n(s) = (1− e−s)2n, n = 1, 2, 3, . . .
F2,1(s) = tanh2(s), s ∈ R,

F6,q(s) = 1
q

[(1 + s2)q/2 − 1], q ∈ [−1, 1], q 6= 0.

To simplify the exposition, we are going to prove the following lemma.

Lemma 5.1 There exists a constant C > 0 such that

sf1,n(s) ≤ Cs4, s ∈ [−1, 1], n ≥ 2,
2F2,1(s)− sf2,1(s) ≥ 0, s ∈ R,
2F6,q(s)− sf6,q(s) ≥ 0, q ∈ [−1, 1], s ∈ R.

Proof. For F2,1 by the symmetry of the function is enough to prove the inequality for s ≥ 0.
We have

2F2,1(s)− sf2,1(s) = 2 tanh2(s)− 2s tanh(s) sech2(s)
= 2 tanh(s)(tanh(s)− s sech2(s)),

and since | tanh(s)| ≤ |s| we have the inequality. For F1,n notice that for s ∈ [−1, 1]

sf1,n(s) = 2ns(1− e−s)2n−1e−s

≤
(

sup
y∈[−1,1]

2n(1− e−y)2n−4
)
s(1− e−s)3,

and therefore, from the classic inequality 1 + s ≤ es we see that for s ∈ [0, 1] we have

sf1,n(s) ≤
(

sup
y∈[−1,1]

2n(1− e−y)2n−4
)
s4.

For s ∈ [−1, 0] we define
ga(s) = s(1− e−s)3 − as4,
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and we prove that there exists some a > 0 such that this ga(s) ≤ 0 on [−1, 0]. Indeeed, a
straightforward calculation gives us that

ga(0) = g′a(0) = g′′a(0) = g′′′a (0) = 0,

and
g(iv)
a (s) = h(s)− 24a,

for some function h(s). We can take a > 0 as large as we need to guarantee that g(iv)(s) ≤ 0
on [−1, 0], and this implies that ga(s) ≤ 0 on [−1, 0], giving the desired inequality.

For F6,q we have that

g(s) = 2F6,q(s)− sf6,q(s) = (1 + s2)q/2−1
[

2
q

+ s2
(

2
q
− 1

)]
− 2
q
,

and we notice that g(0) = 0. By the symmetry of the function it is sufficient to prove that
g′(s) ≥ 0 for s ≥ 0

g′(s) =f6,q(s)− sf ′6,q(s)
= (2− q) s3(1 + s2)q/2−2,

and since q ∈ [−1, 1] we conclude.

We also recall the following classical result for elliptic equation, [28]

Theorem 5.1 (Pohozaev’s identity) Let f ∈ C1(R) be such that f(0) = 0 and let u ∈ H1(Rn)
be a finite energy solution of

−∆u = f(u)

Then we have
n− 2

2

∫
Rn
|∇u|2 = n

∫
Rn
F (u)

Note that this theorem assures us that there are not finite energy stationary solutions for
equation (1.11) when the potential is positive.

5.1. The E-model and T-model
For the T-models we have that, since

f2,n(φ) = 2n tanh2n−1(φ) sech2(φ)

is globally Lipschitz for any initial data in H1×L2 there exist a global solution. When n = 1
Theorem 1.1 gives us the local decay of such solution. For n ≥ 2 we have the following.

Lemma 5.2 We have sf2,n(s) ≤ 2ns4, s ∈ R.

Proof. We have

sf2,n(s) = 2ns tanh2n−1(s) sech2(s)
= 2ns tanh3(s) tanh2n−4(s) sech2(s) ≤ 2ns4.
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This allows us to apply Theorem 1.2 to conclude the same decay as long as the solution
satisfies (1.15). The case of E-models however is not so easy. For n ≥ 2 Lemma 5.1 allows
us to apply Theorem 1.2, but for n = 1 we cannot apply neither Theorem 1.1 nor 1.2 for
F1,1 because in this case we have no longer the required sign condition and f ′1,1 is not well
behaved near the origin.

However, note that for n ≥ 2 we can apply Theorem 2.8 to guarantee the existence of
global solutions for the E-model given smooth and small enough data. Both T-model and
E-model (for n ≥ 2) satisfy the hypothesis of Theorem 1.3, and consequently these fields
decay when H > 0.

5.2. The non-minimal coupling and Hilltop models
For the non-minimal coupling model

F (φ) = λ2φ4 + β2φ2

we give a slightly modified argument to the presented in Theorem 1.2 to conclude the decay
of small enough solutions. Since 2F (φ)− φf(φ) = −2λ2φ4 we have in (3.11) that

dI(φ)
dt

=
∫ ∞

0
r2
(

1
(1 + r)2φ

2
r + r + 4

2r(1 + r)4φ
2
)
− 2λ2 r(r + 2)

2(1 + r)2φ
4

Supposing that supt≥0 ‖φ(t)‖H1∩L∞ < ε and using that

φ(r)2 ≤ (1 + C)ε2

(1 + r)2 ,

we have

dI(φ)
dt

≥
∫ ∞

0
r2
(

1
(1 + r)2φ

2
r + r + 4

2r(1 + r)4φ
2
)
− (1 + C)λ2ε2 r(r + 2)

2(1 + r)4φ
2

≥
∫ ∞

0

(
r2

(1 + r)2φ
2
r + r(r + 2)

2(1 + r)4φ
2(1− (1 + C)λ2ε2)

)
≥ ‖φ‖2

H1
w
,

provided that ε is small enough. Thus, we can conclude as in Theorem 1.2. Notice that the
hypothesis (1.15) is also needed to prove that∫ ∞

0
‖φt‖L2

w
dt <∞
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as in Proposition 3.2. For the Hilltop model with n = 2 we have a simpler situation. We
have that 2F (φ)− φf(φ) = 2φ4 and therefore

dI(φ)
dt

=
∫ ∞

0
r2
(

1
(1 + r)2φ

2
r + r + 4

2r(1 + r)4φ
2
)

+ 2 r(r + 2)
2(1 + r)2φ

4

≥
∫ ∞

0
r2
(

1
(1 + r)2φ

2
r + r + 4

2r(1 + r)4φ
2
)

≥‖φ‖H1
w
.

Supposing (1.15) we can conclude as in Theorem 1.2.

5.3. The Natural Inflation and Axion potential
Assume small data φ. Observe that in this case F3,± ≥ 0 in (1.5), and

2F3,−(φ)− φf3,−(φ) = 1
12φ

4 +O(φ6).

In the other case, we must take out the nonzero value of the potential at infinity to get finite
energy, considering F3,+(φ) = cosφ− 1. We get

2F3,+(φ)− φf3,+(φ) = − 1
12φ

4 +O(φ6).

In the former case, natural inflation, by virtue of (3.11) we get the desired result applying the
same ideas as in the previous subsection. The case of Axion potential remains an interesting
open problem.

5.4. The D-brane model
For the D-brane model F4,n in (1.6), since the potential and his derivative are singular in the
origin we look for solutions of the form φ = 1 + v, where we suppose that v(t) ∈ H2 and

‖v(t)‖H2 < 1,

for all times. Notice that this bound ensures control of the L∞ norm of v. In this case we
have that the function v satisfies (see (1.7))

∂2
t v − ∂2

rv −
2
r
∂rv + 2n

(
1

(1 + v)2n+1 − 1
)

= 0.

We conclude that

2F̃4,n(v)− vf̃4,n(v) =


−2v3(v+2)

(1+v)3 n = 1
−2v3(10+15v+9v2+2v3)

(1+v)5 n = 2.

Consequently, Theorems 1.1 and 1.2 remain inconclusive in this setting.
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5.5. The Axion-Monodromy and Logarithmic poten-
tial

From Lemma 5.1 we have that the Axion-Monodromy potential satisfies 2F6,q(s)−sf6,q(s) ≥
0. For the Logarithmic potential we have that from the well known inequality

1− 1
x
≤ log(x)

that
2F7(s)− sf7(s) ≥ 0

Since in both cases the derivative of the potential is clearly Lipschitz continuous, we can
apply directly Theorem 1.1 and 1.3 to conclude that global solutions always exists and decay
locally in the energy space.
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Chapter 6

Conclusions

We finish this work we some brief remarks:

• First, we see in this work that local decay is a common denominator between cosmo-
logical models, mainly due to their defocusing character given by the positivity of the
potentials involved in the dynamics. When H = 0 it is not expected that the solutions
decay globally. This because of the conservation of energy of the solutions; under rea-
sonable hypothesis decay of the solutions would imply that the energy must be 0, and
then the solution is trivial. On the other hand, when H > 0 global decay is an expected
feature of these models, because the term ∂tφ acts as a friction for the dynamics as we
can see in equation (2.9). However, to be able to obtain a global decay of the solutions
we must get a finer control on the nonlinearity in terms of the field.

• The question of when there exist global solutions for the field equations considered in
this work, despite of being very natural, it is so far from being completely understood.
For the case H = 0 Theorem 2.8 gives a satisfactory answer. When H > 0 we have
a similar result; Theorem 1.3, which gives us global existence for small enough smooth
initial data, but given the good properties exhibited by these models (given again mainly
by its defocusing character) we would expect to be able to lift the regularity assumption
on the initial data and suppose, for example, data in H1 × L2. As far as we know, this
is an unsolved problem.

• General relativity from a mathematical point of view is a very active research topic
today, and there are many open questions in the subject. This work only consider the
dynamics of fields on a de Sitter space-time, but it would be interesting to consider
another type of space-times, as well as consider the full dynamic of the inflaton, that is,
allowing that the field modify the metric of the space-time along its evolution.
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