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DETECCIÓN DE ANOMALÍAS EN ELECCIONES CON MÚLTIPLES

CANDIDATOS Y GRUPOS DEMOGRÁFICOS

La inferencia ecológica es una técnica para estimar el comportamiento individual uti-

lizando datos agregados. Un caso particular se encuentra en las elecciones políticas, donde

en cada mesa electoral conocemos los votos de los candidatos y el número de votantes de

distintos grupos demográficos (como la edad, el sexo y la nacionalidad). En este trabajo,

aplicamos el algoritmo EM para estimar las probabilidades de voto de los grupos demográ-

ficos para cada candidato en un distrito determinado. Desafortunadamente, el E-step escala

exponencialmente en el número de candidatos.

En este estudio proponemos cuatro métodos polinomiales alternativos para estimar las

probabilidades del paso E-step: (1) simulación de escenarios utilizando un método de hit-

and-run, (2) aproximación utilizando una distribución normal multivariada con integración

de Monte Carlo o (3) una distribución normal multivariada utilizando su FDP, y (4) aprox-

imación mediante una única multinomial. Mostramos a partir de experimentos numéricos

que el método de aproximación multinomial es el más rápido, ejecutándose en menos de

una centésima de segundo. Además, el error absoluto promedio de la probabilidad estimada

con este método es muy similar al obtenido al realizar el algoritmo EM con la probabilidad

exacta.

Implementamos los métodos propuestos en la primera vuelta de la elección presidencial

de Chile de 2021. Presentamos una metodología que utiliza programación entera mixta para

agregar grupos y estimar intervalos de confianza en las probabilidades estimadas mediante

el uso de bootstraping, de modo que el modelo pueda identificar correctamente las probabili-

dades de voto. Observamos que los distritos con más mesas electorales se benefician de con-

juntos de grupos menos agregados en contraste con los distritos con menos mesas electorales.

Finalmente, calculamos p-valores utilizando simulación con la aproximación multinomial,

obteniendo 27 urnas electorales con un p-valor menor o igual a 10−8.
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OUTLIER DETECTION FOR MULTICANDIDATE ELECTIONS WITH

DEMOGRAPHIC GROUPS

Ecological inference is a technique to estimate individual behaviour by using aggregated

data. A particular case is found in political elections where in each ballot box we know the

candidates’ votes and the number of voters for different demographic group (like age, sex and

nationality). In this work, we apply the EM-algorithm to estimate the voting probabilities

of demographic groups for each candidate at a particular district. Unfortunately, the E-Step

scales exponentially in the number of candidates.

We propose four alternative polynomial methods to estimate the E-Step probabilities: (1)

sample scenarios using hit-and-run, (2) approximate using a multivariate normal with Monte

Carlo integration or (3) a multivariate normal using its PDF, and (4) approximate by a single

multinomial. We show from numerical computations that the multinomial approximation

method is the fastest, running in less than a hundredth of a second. In addition, the mean

absolute error of the estimated probability with this method is very similar to the one obtained

when performing the EM-algorithm with the exact probability.

We run the proposed methods in the first round Chilean Presidential Election of 2021.

We present a methodology that uses mixed integer programming to aggregate groups, and

estimate confidence intervals on the estimated probabilities by using bootstrapping, so that

the model can correctly identify the voting probabilities. We observe that districts with more

ballot boxes benefit from less aggregated group sets in contrast to districts with less ballot

boxes. Finally, we compute p-values using simulation with the multinomial approximation,

obtaining 27 ballot-boxes with a p-value lower or equal than 10−8.
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Chapter 1

Introduction

Election processes are a key part of the political systems in most countries. They are used to

determine presidents, senators, mayors; to approve new laws or to make new constitutions. It

is necessary that transparency and impartiality are upheld to ensure the seamless execution

of these procedures and to ensure outcomes that most faithfully approximate the true will of

the electorate.

Elections that are apparently clean may not be absent of unintended errors or fraudulent

acts in low scale (Leemann & Bochsler, 2014). These cases may not be detected since they

are not necessarily systematic or produced on a large scale. It is still an important task to

detect such acts for various reasons: in close elections they could alter the final outcome,

these actions could damage the trust in the democratic institutions, and prompt detection

can improve the voting process for future elections (Fortin-Rittberger, Harfst, & Dingler,

2017).

In this study we will propose methods to determine how likely the results of an election

are, thus, assessing its transparency. We will construct our models using the Chilean election

system as a reference, however, these models could be applied to different scenarios with

slight modifications.

In most Chilean election processes, voters are assigned to specific ballot-boxes in the area

they live in. Ballot-boxes are located in what are call mesas (tables in Spanish), where a

group of randomly selected citizens are in charge of assisting the voters, registering election

attendance and counting the votes at the end of the election. These randomly selected citizens

are called vocales de mesa (ballot-box committee), and their labour is fundamental in order
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to have an honest procedure.

The demographic composition of voters between ballot-boxes may greatly differ. For

example, there could be a ballot-box where mostly young people vote and another where is

mostly old people. These differences between ballot-box composition could make the election

results in each ballot-box completely different. If we chose to omit this difference between

ballot-boxes we would make wrong estimations of how likely the results are in each. This is

why our model that should take into account the possibility of having different demographic

group composition for each ballot-box.

The number of candidates is also an important factor, and it may scale in some elections.

In Chile (and the rest of the world) there are many election processes that have multiple-

candidates, for example the election of councilors, senators and deputies. In a two-candidate

election it is easier to compute probabilities associated with the voting distribution. However,

when the number of candidates increases, it also increases the number of different combination

outcomes. When we also consider demographic groups the number of different combination

outcomes also increases.

Considering that we will have two sets of aggregate data: ballot-box voter composition

and ballot-box outcome, we will be working with ecological inference, where one would like

to estimate individual behavior by using aggregate data. There has been some applications

of ecological inference to elections in other contexts like voting migration (Antweiler, 2007)

and political studies (King, Tanner, & Rosen, 2004). Ecological inference also arises in

different fields such as sociology (Duncan & Davis, 1953; Goodman, 1953, 1959; Glynn &

Wakefield, 2010), geography (Cleave, Brown, & Payne, 1995; Withers, 2001; Anselin & Cho,

2002), epidemiology (Morgenstern, 1995; Jackson, Best, & Richardson, 2006; Wakefield,

2008). Most models in the literature focus on the 2 × 2 case, where for both classes of

aggregate data there are only 2 categories. The R × C case has gained more attention due

to its wide applications to different fields, being a more general case. Some of the studies

have approached the R × C case with parametric approaches, where prior distributions are

assumed.

The complexity of the general case is its main challenge, meaning that approximate so-

lutions could be a promising approach to this problem. In this study we will focus on the

general case with an arbitrary number of demographic groups and an arbitrary number of

candidates, estimating a non-parametric distribution.

2



Chapter 2

Model

Consider an election process with candidates from a set C, where |C| = C. Voters belong

to a set I, where |I| = I. Each voter belongs to a group from a set G and is assigned to a

designated ballot-box from a set B, where |G| = G and |B| = B. In this context, Ig represents

the subset of individuals belonging to group g, while Ib represents the subset of individuals

assigned to ballot-box b, where |Ib| = Ib and |Ig| = Ig.

The groups delineated by G could encompass demographic attributes of the voters, such

as age brackets and gender. The amount of voters from group g ∈ G that vote in ballot-box

b ∈ B is known and is denoted by wbg. The amount of votes to candidate c in each ballot-box

b is also known and is denoted by xbc.

We define the probability that a voter from group g ∈ G votes for candidate c ∈ C as pgc.

Notably, this probability remains latent due to our access solely to the aggregate election

outcome for each candidate. Our aim is to obtain an estimator p̂gc that maximizes the

likelihood of the election result given the known data.

Let us consider X to be the observed data: X = {Xbc = xbc}b∈B,c∈C. We may also define

the unobserved data as Y = {Ybic}b∈B,i∈Ib,c∈C, where Ybic is a binary random variable that

indicates if the i-th person from ballot-box b did vote for candidate c. We will also define

Zbgc = ∑
i∈Ig∪Ib

Ybic, this is the total votes that candidate c received from group g in ballot-

box b. We may also use Xb, Y b and Zb to refer to the respective multidimensional random

variables of ballot-box b.

3



2.1. E-Step

Let p = {pgc}g∈G,c∈C. We may write the likelihood function and derive the log-likelihood

function as follows:

l(p;X ,Y) =
∑

b∈B,i∈Ib,c∈C
Ybic ln(pg(i)c)

=
∑

b∈B,g∈G,c∈C
Zbgc ln(pgc)

We would like to know the distribution of Ybic conditional to the result in ballot-box b. We

will define qbgc as the probability that someone from ballot-box b and group g did vote for

candidate c, conditional to the result in that ballot-box. We will use use the notation Ybi(g)c

to indicate any voter i in ballot-box b that belongs to group g. This probability may be

calculated with Bayes’ Theorem.

qbgc := P (Ybi(g)c = 1|Xb1 = xb1, . . . , XbC = xbC ; p)

= P (Xb1 = xb1, . . . , XbC = xbC |Ybi(g)c = 1; p)P (Ybi(g)c = 1; p)
P (Xb1 = xb1, . . . , XbC = xbC ; p)

= P (Xb1 = xb1, . . . , XbC = xbC |Ybi(g)c = 1; p) · pgc

P (Xb1 = xb1, . . . , XbC = xbC ; p)

(2.1)

For some purposes in following methods we could also write the denominator using the law

of total probabilities:

qbgc = P (Xb1 = xb1, . . . , XbC = xbC |Ybi(g)c = 1; p) · pgc∑
c′∈C P (Xb1 = xb1, . . . , XbC = xbC |Ybi(g)c = 1; p) · pgc′

Once we calculate qbgc, we can do the E-step, considering Q(p; p(old)) := E
[
l(p;X ,Y)|X , p(old)

]
.

Q(p; p(old)) = E

 ∑
b∈B,i∈Ib,c∈C

Ybic ln
(
pg(i)c

)
|X , p(old)


=

∑
b∈B,g∈G,c∈C

qbgc ln (pgc)

=
∑

b∈B,g∈G
wbg

∑
c∈C

qbgc ln (pgc)

In this case p(old) will be a prior probability we assume for the distribution.
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2.2. M-Step

In the M-Step we maximize Q(p; p(old)) on p. We have to add a constraint so that the

probabilities add up to 1 and are non-negative. We can see that p(old) (the probability we

consider as a prior) is expressed using q.

max
p

∑
b∈B,g∈G

wbg

∑
c∈C

qbgc ln (pgc)

subject to:
∑
c∈C

pgc = 1 ∀g ∈ G

pgc ≥ 0 ∀g ∈ G,∀c ∈ C

To solve this optimization we can use the Lagrangian:

L(p, λ) =
∑

b∈B,g∈G
wbg

∑
c∈C

qbgc ln (pgc)−
∑
g∈G

λg

∑
c∈C

(pgc − 1)

We state the first order conditions:

∂L
∂pgc

= 0⇔ 1
pgc

∑
b∈B

wbgqbgc = λg (2.2)

⇔ pgc = 1
λg

∑
b∈B

wbgqbgc

⇔
∑
c∈C

1
λg

∑
b∈B

wbgqbgc = 1

⇔ λg =
∑

b∈B,c∈C
wbgqbgc

⇔ λg =
∑
b∈B

wbg (2.3)

Replacing 2.3 in 2.2 we obtain:

pgc =
∑

b∈B wbgqbgc∑
b∈B wbg

∀g ∈ G,∀c ∈ C (2.4)

2.3. EM-algorithm

The EM-algorithm consists of an iterative alternation between the E-step and the M-step.

The formulation for this model goes as follows:

5



Algorithm 1 EM-algorithm
Input: I, G, C, B, x, w, ϵ
Output: p̂

Initialize: p(old)
gc =

∑
b∈B wbg ·xbc

Ig

converge = False
while not converge do

E-step: Compute qbgc using p(old)
gc as described in 2.1.

M-step: Compute p̂ as described in 2.4
if maxg∈G,c∈C{p̂gc − p(old)

gc } ≤ ϵ then
converge = True

p(old) = p̂

2.4. Log-likelihood

We can work the following expression for the log-likelihood.

l(p;X ) =
∑
b∈B

ln P (Xb = xb|p) (2.5)

=
∑
b∈B

ln
 ∑

i∈Ib,c∈C
P (Xb = xb, Ybg(i)c = 1|p)


=
∑
b∈B

ln
 ∑

i∈Ib,c∈C
P (Ybg(i)c = 1|Xb = xb; p(old)) · P (Xb = xb, Ybg(i)c = 1|p)

P (Ybg(i)c = 1|Xb = xb; p(old))


= lnE

[(
P (X ,Y|p)

P (Y|X , p(old))

)
|X , p(old)

]

≥ E
[
ln
(

P (X ,Y|p)
P (Y|X , p(old))

)
|X , p(old)

]
(Jansen’s Inequality)

= E
[
l(p;X ,Y)|X , p(old)

]
− E

[
ln P (Y|X ; p(old))|X , p(old)

]
= Q(p; p(old))− E

[
ln P (Y|X ; p(old))|X , p(old)

]
(2.6)

=
∑

b∈B,g∈G
wbg

∑
c∈C

qbgc ln (pgc)−
∑

b∈B,g∈G
wbg

∑
c∈C

qbgc ln (qbgc)

=
∑

b∈B,g∈G
wbg

∑
c∈C

qbgc ln
(

pgc

qbgc

)

We can see that 2.6 works as a lower bound for the log-likelihood. As in each iteration we

are maximizing over p, we only focus in Q(p; p(old)), thus, increasing the lower bound for

each iteration. This process is repeated until we get close enough to convergence (p = p(old)),

where 2.5 inequality becomes an equality.
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Chapter 3

Computing the Conditional

Probability

In order to perform the EM-algorithm we will need to compute the conditional probability

qbgc described in 2.1. In this chapter we will present an algorithm to compute this probability

exactly and approximate methods that reduce its complexity.

3.1. Exact Method (EXACT)

A naive approach to calculate qbgc would be to just consider each possible scenario that

satisfies the observed data and compute using the law of total probabilities.

P (Ybi(g)c = 1|Xb = xb) =
∑

zb∈Ωb

P (Ybic|Zb = zb)P (Zb = zb)

=
∑

zb∈Ωb

zbgc

Ib

P (Zb = zb)

7



Where Ωb is the set of all possible outcomes of Zb given the election result in that ballot-box.

This can be represented by the following restrictions.

∑
g∈G

zbgc = xbc ∀c ∈ C

∑
c∈C

zbgc = wbg ∀g ∈ G

zbgc ≥ 0 ∀c ∈ C ∀g ∈ G

zbgc ∈ Z ∀c ∈ C ∀g ∈ G

(3.1)

This method presents two complications: first, the occurrence of redundant calculations due

to overlapping probabilities, and second, the lack of a straightforward means to acquire all

feasible outcomes from Ωb. To address these challenges, we introduce a recursive strategy.

This methodology centers on tracking the aggregate election result up to a fixed group f ∈ G.

For this purpose, we introduce the notation Tbf (k), which denotes the probability of

observing the aggregate result k = (k1, ..., kC) within ballot-box b up to the inclusion of

group f . By using this concept and applying the law of total probabilities, we arrive at the

following derivation:

Tbf (k) =
∑

h∈Hbf :h≤k

Tb,f−1(k − h) ·
(

wbf

h1, ..., hC

)∏
c∈C

phc
fc

Tb0(k) = 1{k = 0}
(3.2)

Where Hbf is the set of all possible voting outcomes for group f . We will also define Kbf

as the set of all possible voting aggregated outcomes of what has happened until group f .

This last set determines all the values of k that we will need to compute with this recursive

approach, starting from f = 0 until f = G. The formulation for these sets is as follows:

Hbf = {h ∈ ZC
+ :

∑
c∈C

hc = wbf ∀c ∈ C}

Kbf = {k ∈ ZC
+ :

∑
c∈C

kc =
∑

f ′≤f

wbf ′ ; kc ≤ xbc ∀c ∈ C}
(3.3)

We can see that calculating P (Xb = xb) is equivalent to calculating TbG(xb).

Furthermore, it will be necessary to compute the conditional probabilities for the case

where an individual from group g has already voted for candidate c. Employing analogous

8



notation, we introduce Ubfgc(k) to represent the probability of observing the partial result

k = (k1, ..., kC) within ballot-box b up to the inclusion of group f , conditional to Ybi(g)c = 1.

This can be expressed as follows:

Ubfgc(k) =
∑

h∈Hbf :h≤k

Ub,f−1,gc(k − h) ·
(

wbf

h1, ..., hC

)
·

∏
c′∈C

p
h′

c
fc′

 · ( hc

pfcwbf

)
1{f=g}

Ub0gc(k) = 1{k = 0}

To determine the probability of the complete conditional outcome, it suffices to compute

UbGgc(xb) for each group and candidate. By incorporating both discussed components, we

arrive at an expression for qbgc.

qbgc = UbGgc(xb) · pgc

TbG(xb)

We can compute the conditional probability for the last candidate (or an alternative candi-

date) using the complement probability: UbGgC(xb) = 1−∑c<C UbGgc(xb).

To calculate qb, we propose the following algorithm employing dynamic programming.

Algorithm 2 Exact qb computation with dynamic programming.
Initialize Hbf ,Kbf as in 3.3
Tbf (k) = 0 ; Ubfgc(k) = 0 ; ∀k ∈ Kbf

for f = 1 to G do
for k ∈ Kbf do

for h ∈ Hbf do
if hc ≤ kc ∀c ∈ C then

a =
(

wbf

h1,...,hC

)∏
c∈C phc

fc

Tbf (k) = Tbf (k) + Tbf (k − h) · a
for c ∈ C do

for g = 1 to f − 1 do
Ubfgc(k) = Ubfgc(k) + Ub,f−1,gc(k − h) · a

Ubggc(k) = Ubggc(k) + Ub,g−1,gc(k − h) · a ·
(

hc

pfcwbf

)
Output qbgc = UbGgc(xb)·pgc

TbG(xb)

We can see that for each group f ∈ G we are doing C · |Kbf | · |Hbf | operations, thinking of

a worst case scenario this could be C · (IB)2C operations. We conclude that the complexity

of the algorithm is O(B ·G · C · (IB)2C).
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3.2. Hit-and-Run Method (H&R)

Given the complexity of the EXACT method to compute qbgc we may use an approach using

simulation so that we do not need to consider each possible outcome of the election.

We shall further examine Ωb, the set of all possible outcomes for Zb = zb, as previously

defined in 3.1. The depiction of an outcome within ballot-box b can be illustrated using

matrix representation.

Candidate
1 · · · C

Group
1 zb11 · · · zb1C wb1
... ... . . . ... ...
G zbG1 · · · zbGC wbG

xb1 · · · xbC

Where the sum of row g is set to wbg and the sum of column c is set to xbc.

Our objective is to generate sample values for zb while adhering to the conditions outlined

in the matrix. One approach to achieve this is by iteratively updating the values within the

matrix using a stochastic process. This process should ensures that we end up in a point

that is independent of the initial position.

We may note that shifting two components of zb that are neither in the same row nor

column results in the alteration of two other components of zb. To illustrate, consider the

scenario where we move zbgc and zbg′c′ downward by one unit; to maintain feasibility within

the polytope, it necessitates moving zbgc′ and zbg′c upward by one unit. Additionally, when

opting to reduce a component of zb, we should verify that this modification does not infringe

upon the non-negativity constraints.

We propose the following algorithm to sample values for zb.
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Algorithm 3 Hit and Run
Input: wb, xb, M, S
Initialize zb = α(wb, xb), Sb = ϕ
for s = 1 to S do

for m = 1 to M do
Sample without replacement {g, g′} ← G and {c, c′} ← C
if zbgc > 0 and zbg′c′ > 0 then

zbgc ← zbgc − 1
zbg′c′ ← zbg′c′ − 1
zbgc′ ← zbgc′ + 1
zbg′c ← zbg′c + 1

Sb = Sb ∪ {zb}
Output: Sb

Where S is the number of samples, M is the step size and α is any function that gives a

starting point for zb (see Annex A.1). In Annex A.2 we discuss the election of M .

The complexity of the Hit and Run algorithm is O(M ·S), as the size of the instance does

not affect the number of operations (we always change 4 components when moving).

We could also consider methods of sampling that use polytopes defined with inequalities,

where there are hit and run approaches that guarantee a uniform distribution (Mete &

Zabinsky, 2012). The formulation for this approach is described in Annex A.3. It should

be noted that this algorithm was not chosen as the number of iterations to get uncorrelated

points was noticeably higher in this context.

As we sample we obtain a subset Sb ⊆ Ωb. It is now possible to condition the event

Ybi(g)c = 1 to both Sb and Xb. We may note that P (Xb = xb|Sb) = 1, since we built Sb so

that all its element satisfy the given outcome of the ballot-box. Considering this method we

would get the following approximation.

qbgc = P (Ybi(g)c = 1|Xb = xb,Sb; p)

= P (Ybi(g)c = 1|Sb; p)

=
∑

zb∈Sb

P (Ybi(g)c = 1|Zb = zb)P (Zb = zb)

=
∑

zb∈Sb

zbgc

wbg

·
∏

g′∈G

(
wbg′

zbg′1, ..., zbg′C

) ∏
c′∈C

p
zbg′c′
g′c′

The complexity of this calculation is: O(S · B · G · C). It should be noted that the term
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P (Zb = zb) can be precomputed for each ballot-box and does need to be calculated in each

combination.

3.3. Multivariate-Normal Approximation Method Us-

ing the CDF (MVN-CDF)

In this section we will consider a method based on the Normal-Approximation proposed by

Zhengzhi Lin (Lin, Wang, & Hong, 2022). Lin’s application is done for a more general case,

where each component of a matrix has a distinct categorical probability, described as the

Poisson Multinomial Distribution. We adapted this implementation to the case of having

groups.

Since the last component of Xb is determined by the rest, we will consider X∗
b as the

reduced version where we omit the last component: XbC .

We will consider the following asymptotic distribution:

X∗
b ∼ N (µb, Σb)

Consider p∗ as the reduced version of p. In order to obtain the mean of the distribution we

just consider that the expected voting outcome for one person of group g is the vector p∗
g

(we are not considering the last candidate).

µb = p∗T wb

Σb = diag(µb)− p∗T diag(wb)p∗
(3.4)

We can also get the asymptotic distribution to the conditional random variable. Using the

same notation for reduced variables we get:

X∗
b |Ybj(g)c = 1 ∼ N (µg

b , Σg
b) + ec

µg
b = µb − p∗T

g

Σg
b = Σb − diag(p∗T

g )− p∗T
g p∗

g

(3.5)

We can use a continuous approximation to compute the desired probability. Let us consider

Fbg to be the cumulative density function of the multivariate normal approximation just
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described (note that it does not depend on c, since it is only added as a constant). Consider

the following hypercube:

Abc := [xb1 − 0.5, xb1 + 0.5]× ...× [xbc − 1.5, xbc − 0.5]× ...× [xbC−1 − 0.5, xbC−1 + 0.5]

Then we have the following approximation.

P (Xb = xb|Ybi(g)c = 1) ≈ PNA(xb − 0.5 ≤Xb ≤ xb + 0.5|Ybi(g)c = 1)

=: Fbg(Abc)

Using this method we will need to compute the integral Fbg(Abc) for all combinations of

b, g, c. This integral can be computed using Monte Carlo integration methods such as the

one proposed by (Genz, 1992). Using this approximation we would end up with the following

result for the conditional probabilities.

qbgc = Fbg(Abc) · pgc∑
c′∈C Fbg(Abc′) · pgc′

The complexity of this algorithm is as described in Monte Carlo integration, where we con-

sider an error parameter ϵ, obtaining a complexity of O(B · G · C2 · ϵ−1
2 ) for running each

integral. We also get a complexity of O(B ·G ·C3) for doing the Cholesky decomposition for

each group. Then the complexity of the method is O(B · G · C2 · [ϵ−1
2 + C]). It should be

noted that the number of iterations needed to compute the integral may depend on the size

of the instance. We are considering a scale of C2 for the integrals as for each combination of

C the integration method considers a simulation of C − 1 random uniform variables.

3.4. Multivariate-Normal Approximation Method Us-

ing the PDF (MVN-PDF)

We may note that in order to calculate P (Xb = xb|Ybi(g)c = 1), we do not necessarily need to

calculate P (Ybi(g)c = 1|Xb = xb), but we may calculate something proportional to it. What

we are really interested in is the ratio between P (Ybi(g)c = 1|Xb = xb) for the different values

of c for a fixed g.
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Using this idea we may choose to calculate something that is easier to compute than the

actual probability. Based on the approximation in 3.4, we may use the probability density

function instead of the cumulative density function. This can be done as we are only interested

in the ratios between values to calculate the probability, and we do not need this quantity

to represent a probability on itself. We could also interpret it as taking the limit where we

make the hypercube as small as possible.

Using the same notation as the previous method, let us consider fbg as the probability

density function for the random variable described in 3.5. Using this notion we can get this

simple approximation.

qbgc = fbg(xb1, ..., xbc − 1, ..., xbC) · pgc∑
c′∈C fbg(xb1, ..., xbc′ − 1, ..., xbC) · pgc′

=

√
(2π)C−1|Σg

b | · e− 1
2 (xb−ec−µg

b
)⊤(Σg

b
)−1(xb−ec−µg

b
) · pgc∑

c′∈C

√
(2π)C−1|Σg

b | · e− 1
2 (xb−ec′ −µg

b
)⊤(Σg

b
)−1(xb−ec′ −µg

b
) · pgc′

= e− 1
2 (xb−ec−µg

b
)⊤(Σg

b
)−1(xb−ec−µg

b
) · pgc∑

c′∈C e− 1
2 (xb−ec′ −µg

b
)⊤(Σg

b
)−1(xb−ec′ −µg

b
) · pgc′

Computing the inverse covariance matrix for each combination of g and c has a complexity

of O(B ·G · C3), as inversing a matrix has a cubic order in its dimension. Then, computing

qbgc considering the inverse covariance matrix as a precomputed parameter has a complexity

of O(B ·G · C). We see that the complexity of the entire computation is O(B ·G · C3).

3.5. Multinomial Approximation Method (MULT)

Considering that Xb is a sum of multinomial random variables, we may consider an approx-

imation so that Xb distributes multinomial. To get this approximation we observe that each

group g has a probability of voting for candidate c, so we can weight the contribution of each

group with the number of voters in that group wbg. We will consider rbc to be the weighted

probability for candidate c in ballot-box b.

rbc =
∑

g∈G wbgpbg∑
g∈G wbg

=
∑

g∈G wbgpbg

Ib

Xb ∼ Multinomial(Ib, rb)
(3.6)

14



We can also get approximations for the conditional probabilities. If we consider that someone

from group g already voted for candidate c, then its weight in the probability is decreased

by one unit. Considering rbgc to be the weighted probability for candidate c in ballot-box b,

when someone from group g already voted for c:

rbgc =
∑

g′∈G wbg′pg′c − pgc∑
g′∈G wbg′ − 1 =

∑
g′∈G wbg′pg′c − pgc

Ib − 1

Xb|Ybi(g)c=1 ∼ Multinomial(Ib − 1, r
(g)
b ) + ec

Using these approximations we can work out an expression for qbgc.

qbgc = P (Xb = xb|Ybj(g)c = 1) · pgc∑
c′∈C P (Xb = xb|Ybj(g)c′ = 1) · pgc′

=

(
Ib−1

xb1,...,xbc−1,...,xbC

)
·∏d∈C rxbd

bgd · r−1
bgc · pgc∑

c′∈C

(
Ib−1

xb1,...,xbc′ −1,...,xbC

)
·∏d∈C rxbd

bgd · r−1
bgc · pgc′

=
(Ib−1)!

xb1!·...(xbc−1)!·...xbC ! ·
∏

d∈C rxbd
bgd · r−1

bgc · pgc∑
c′∈C

(Ib−1)!
xb1!·...(xbc′ −1)!·...xbC ! ·

∏
d∈C rxbd

bgd · r−1
bgc · pgc′

=
xbc ·

∏
d∈C rxbd

bgd · r−1
bgc · pgc∑

c′∈C xbc′ ·∏d∈C rxbd
bgd · r−1

bgc′ · pgc′

=
xbc·pgc

rbgc∑
c′∈C

xbc′ ·pgc′

rbgc′

= (xbc · pgc)/rbgc∑
c′∈C(xbc′ · pgc′)/rbgc′

=
xbc · pgc · r−1

bgc∑
c′∈C xbc′ · pgc′ · r−1

bgc′

This complexity of this algorithm is straightforward as it relies on basic operations, scaling

as: O(B ·G · C).
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Chapter 4

Computing the p-value

4.1. Exact Computation

Once we have our estimate for p it is in our interest to determine how likely the result of each

ballot-box is. Given the result xb, we can determine P (Xb = xb) using algorithm 2. Since

we want to know how likely is this result we would also need to compute the probability for

all other possible outcomes xb ∈ RXb
, which can be done using the same set of recursive

equations.

We will consider the p-value of ballot-box b as the probability of obtaining something as

or less probable than xb. It can be computed as follows:

p-val(xb) =
∑

x′
b
∈RXb

|P (x′
b
)≤P (xb)

P (x′
b)

=
∑

x′
b
∈RXb

P (x′
b) · 1{P (x′

b
)≤P (xb)}

=
∑

x′
b
∈RXb

TbG(x′
b) · 1{TbG(x′

b
)≤TbG(xb)}

(4.1)

Where TbG(x′
b) is as described in 3.2.
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4.2. Simulation Using the Multinomial Approxima-

tion

We could approximate the p-value using simulation and the approximation proposed in 3.6.

We may simulate H identical, independent and identically distributed random variables fol-

lowing a Multinomial(Ib, rb), obtaining: x
(1)
b , ..., x

(H)
b .Using these simulations we may calcu-

late the p-value by counting how many of this outcomes were less probable than xb:

p-val(xb) = 1
H

H∑
h=1

1{P (x(h)
b

)≤P (xb)} (4.2)

Where we we can compute the comparison as follows.

P (x(h)
b ) ≤ P (xb)(

Ib

x
(h)
b1 , . . . , x

(h)
bC

)∏
c∈C

(rbc)x
(h)
bc ≤

(
Ib

xb1, . . . , xbC

)∏
c∈C

(rbc)xbc
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Chapter 5

Numerical Results

In this chapter we will compare the 5 methods studied for the EM-algorithm in Chapter 3:

EXACT, H&R, MVN-CDF, MVN-PDF and MULT. We will also compare both methods for

computing the p-values as described in Chapter 4.

We will describe the methodology for generating instances that represent the model

described in Chapter 2. We will use instances with varying value of G ∈ {2, 3, 4} and

C ∈ {2, 3, 5, 10}, keeping fixed values of B = 50 and Ib = 100. We assume that all ballot-

boxes will have the same amount of voters. For each instance we will run 20 scenarios.

5.1. Numerical Instances

In Algorithm 4 we describe the methodology to generate a scenario from an instance with

parameters (I, G, C, B). We also include a mixing parameter λ that will be discussed further.

A scenario is completely described by the observed information x and w. We also output

the real probability p, used only to test estimations.
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Algorithm 4 Election Outcome Generation

Input: I, G, C, B, λ
Output: w ∈ RB×G, x ∈ RB×C , p ∈ RG×C

Initialize: ω0 : ω0
i = ⌈ i·G

I
⌉, ω = ω0, N = I

B
, I = {1, ..., I}

Sample a vector v ∈ N⌊λ·I⌋ where each component is drawn without replacement from I.
Generate v′ = sort(v)
for i = 1 to ⌊λ · I⌋ do

ωvi
= ω0

v′
i

wbg = ∑b·N
i=(b−1)·N+1 1{ωi=g}

Simulate pg from Dirichlet(1C)
Simulate zbgc from Multinomial(wbg, pg)
xbc = ∑

g∈G zbgc

Note that we choose to simulate pg from a Dirichlet distribution with parameter 1 on all

its components. This is done so that we obtain different real probabilities for each scenario

and better represent the set of different elections that may occur.

We include the λ factor as a mixing parameter that controls how groups are sorted through

the ballot-boxes For the EM-algorithm to get to a good estimator of the desired probabilities

we would like the groups to have a heterogeneous distribution through the ballot-boxes.

The intuition behind lies in how changes in the number of voters from a group in different

ballot-boxes are affecting the outcome of votes.

We will test how the distribution of groups affects the mean absolute error (MAE) of the

estimated probabilities. We calculate the MAE metric considering the absolute error of all

components of the probability.

∑
g∈G;c∈C |pgc − p̂gc|

G · C
(5.1)

Figure 5.1 shows how the value of λ affects the estimation of the probability p using the

EM-algorithm in different instances.
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Figure 5.1: Mean absolute error over 20 scenarios for varying values of mix
λ in different instances. Ib = 100, B = 50

We can observe that as the mixing parameter λ increases we get worse estimated prob-

abilities. When we have small values of λ, ballot-boxes are more heterogeneous, thus, it is

more apparent how the different composition in groups is affecting the outcome in votes.

According to these results we will consider that a mixing parameter of λ = 50% is suffi-

ciently good for obtaining an estimator. We do not choose a lower value of λ since it may

not be representative of what is really happening in the group assignation process of real

Chilean elections.

5.2. EM-Algorithm Probability Estimation

In Annex B we present the results for the same instances considering Ib = 200.

5.2.1. Time Results

In Table 5.1 we present the average times that it takes the EM-algorithm to run. We set a

time limit of 1 hour to each run, so we do not show results for those that did not converge. It

should be noted that the number of iteration it takes the algorithm to converge varies across

different methods, so the time presented takes into account how fast it converges and how

fast the conditional probabilities are computed for each iteration.
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Table 5.1: Mean running time over 20 scenarios in seconds for the EM-
algorithm for varying instances, with fixed values of Ib = 100 and B = 50.

Instance Method

C G
EXACT H&R H&R MVN MVN MULT

S = 103 S = 102 CDF PDF

2 2 14.510 719.939 72.335 0.851 0.140 0.003
3 34.235 720.107 73.224 1.990 0.208 0.004
4 51.563 723.778 72.621 3.421 0.233 0.003

3 2 549.902 709.502 71.909 3.604 0.217 0.003
3 2,115.500 708.062 68.265 11.373 0.265 0.004
4 2,808.304 676.996 67.471 15.927 0.320 0.005

5 2 - 683.890 67.924 12.315 0.173 0.003
3 - 637.631 60.941 41.609 0.279 0.005
4 - 603.475 59.644 47.176 0.281 0.004

10 2 - 594.104 60.332 61.702 0.181 0.003
3 - 553.448 54.908 210.639 0.221 0.004
4 - 514.156 50.178 355.949 0.308 0.004

The MULT method is the fastest and it is not highly impacted by C and G, as it is

polynomial. We have a similar behavior for the MVN-PDF method. The EXACT method

shows a clear exponential increase through C that makes it impossible to compute in the

time limit for C = 5 and C = 10. Both H&R methods are not highly impacted by C and

G, as the main time limitation is in the simulation, which will be discussed later on. The

MVN-CDF method is also noticeably impacted by C but it was computable in the time limit.

We also show separate time results between simulation and EM-algorithm for the H&R

methods in Table 5.2. It is clear that the bottle-neck of this algorithm comes in the simulation,

as we will later show how the amount of samples affects the accuracy of the method. We can

also observe that bigger instances tend to have lower simulation times due to the fact that

the polytope is more restricted and it is more probable to hit the non-negativity constraints

(thus, making less operations).
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Table 5.2: Comparison of mean simulation time and mean EM running
time in seconds over 20 scenarios for varying instances, with fixed values of
Ib = 100 and B = 50.

Instance Method

C G
H&R (S = 102) H&R (S = 103)

Sim-time EM-time Sim-time EM-time

2 2 71.869 0.466 719.469 0.471
3 71.324 1.900 713.681 6.427
4 70.213 2.408 702.951 20.827

3 2 70.307 1.603 704.637 4.865
3 66.246 2.019 683.981 24.081
4 64.956 2.515 651.587 25.409

5 2 66.042 1.882 666.138 17.752
3 59.140 1.801 614.540 23.091
4 57.597 2.047 581.373 22.102

10 2 58.708 1.624 578.243 15.861
3 53.296 1.612 534.916 18.532
4 48.476 1.701 492.142 22.014

5.2.2. Error Results

In Table 5.3 we show the MAE metric as described in 5.1. These results show that both

MVN methods and the MULT method have similar MAE when compared to the EXACT

method. Regarding the H&R method the magnitude of the error depends on the amount

of points simulated. It is clear that bigger instances should require a bigger S, making the

H&R method more demanding.
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Table 5.3: Mean absolute prediction error over 20 scenarios for varying
instances, with fixed values of Ib = 100 and B = 50.

Instance Method

C G
EXACT H&R H&R MVN MVN MULT

S = 103 S = 102 CDF PDF

2 2 0.011 0.011 0.011 0.011 0.011 0.011
3 0.014 0.014 0.016 0.014 0.014 0.015
4 0.017 0.018 0.025 0.017 0.017 0.018

3 2 0.010 0.010 0.011 0.010 0.010 0.010
3 0.014 0.015 0.025 0.014 0.014 0.015
4 0.017 0.020 0.034 0.017 0.017 0.017

5 2 - 0.009 0.012 0.008 0.009 0.009
3 - 0.016 0.025 0.013 0.013 0.013
4 - 0.022 0.032 0.014 0.014 0.014

10 2 - 0.007 0.012 0.006 0.007 0.006
3 - 0.015 0.020 0.009 0.009 0.009
4 - 0.020 0.024 0.012 0.012 0.012

As we obtained similar MAE metrics for the MVN methods and the MULT method, we

would recommend using the latter as it was shown to be the fastest.

5.3. p-value Estimation

In this section we will use a subset of the computed instances, considering C = {2, 3}

and G = {2, 3, 4}. We choose these ones as we need the EXACT method in order to do

comparisons, where it is only reliable to run it until C = 3.

5.3.1. Probability Gap

It is in our interest to observe how the estimated probability p̂ changes the p-values obtained

for each ballot-box compared to the original probability p. In this case we will be comparing

using the estimated p̂ that comes from the exact EM-method, we will call it p̂(EXACT).

In Figure 5.2 we are showing the mean p-value absolute error and the mean absolute error

between p and p̂(EXACT).
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Figure 5.2: Correlation between p-values mean absolute error and estimated
probability mean absolute error.

There is a clear correlation between both errors, which is the expected behavior.

We show a different approach in Figure 5.3 where we compare the p-values obtained using

both probabilities p and p̂(EXACT). The color grading is now showing the magnitude of the

MAE between both probabilities. We observe that the points with a smaller mean absolute

error tend to be close to the middle, where both p-values are the same. We also observe

that the p-values estimated with p̂(EXACT) are overestimated and underestimated in similar

amounts.
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Figure 5.3: Comparison between p-values computed with real probability
and p-values computed estimated probability.

5.3.2. Method Gap

We are also interested in studying how the simulation method using the multinomial approxi-

mation changes the computed p-values. For this comparison we will use the same probability

p and we will only change the method used to compute the p-value in each ballot-box.

It is intuitive to think that as we do the multinomial approximation of the distribution we

are altering the variance of the original distribution. To test this hypothesis we will calculate

the covariance matrix for both distributions.

The covariance matrix of the original distribution was already explained in Section 3.3

and displayed in 3.4. The covariance matrix of the multinomial approximation can be easily

obtained using the parameters of the approximation as follows.

Σ(Mult)
b = Ib ·

(
diag(rb)− rbr

⊤
b

)

To study how the variance changes in a ballot-box when using the multinomial approximation
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we consider the ratio:
|Σ(Mult)

b |
|Σb|

In Figure 5.4 we show how this ratio affects the absolute error for different p-values. We also

show in color grading the magnitude of the original p-value.

Figure 5.4: Effect of covariance determinant increase in the mean absolute
error in the p-values.

We can observe that as the ratio between determinants increases we obtain higher mean

absolute errors. We can also see that the error is more notable for p-values that are around the

middle. This means that the main change in probability occurs to outcomes that are in the

middle between the most probable and least probable outcome. The increase in variance we

get through the multinomial approximation should increase the probability of this outcomes

that are in the middle of the distribution.

In Figure 5.5 we show a different approach where we compare the p-value obtained with

exact computation and the p-value obtained with simulation through the multinomial ap-

proximation.
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Figure 5.5: Comparison between p-values computed with the exact method
and p-values simulated with the multinomial approximation.

It is clear that there is a bias that tends to increase the magnitude of the p-values com-

puted with the approximation. We show in color grading the magnitude of the covariance

determinant ratio. We can observe that those points with the biggest change in variance are

the ones where the bias is more noticeable.
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Chapter 6

Case Study: a Real Election

We will apply the EM-algorithm to the first round of the 2021 Chilean Presidential Election

(2021-CPE) using the MULT method. This election adheres to the two-round system (TRS),

which necessitates a subsequent round of voting featuring the two leading candidates if no

single candidate secures an outright majority exceeding 50% during the first round.

6.1. Historical Data

The 2021-CPE election featured 7 candidates: Gabriel Boric, José Atonio Kast, Yasna

Provoste, Sebastián Sichel, Eduardo Artés, Marco Enríquez-Ominami and Franco Parisi.

Besides these 7 options, votes could be classified as blank votes (the ballot has no marking

in it) or null votes (the ballot was filled out incorrectly). We will treat blank and null votes

as a single category since different ballot-box committees may have applied varying criteria

when labeling them.

Circunscripciones electorales are the territorial divisions used to assign voters to ballot-

boxes. We will refer to them as districts. Across each district, there are distinct polling places,

each of them with a fixed number of ballot-boxes. We will assume that two voters belonging

to the same group within a district are considered comparable in terms of probability within

that specific district. It is noteworthy that, in this election, the allocation of voters to ballot

boxes did not consider geographical distance, a factor that was considered in subsequent

elections starting from 2022.

In Figure 6.1 we show how the number of ballot-boxes varies across districts. We can

observe that most districts have less than 50 ballot-boxes, which could make the estimation
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of probabilities harder, as we have less information. We would expect that those districts with

over a 100 ballot-boxes give us enough information for computing the estimating probabilities.
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Figure 6.1: District count for ranges of length 25 for number of ballot-boxes.

The official website of the Electoral Service of Chile (SERVEL) offers detailed data of

the election results (SERVEL, 2023). The detailed dataset for the votes emitted in Chile

registers 7,080,276 votes emitted across 681 districts with a total of 46,639 ballot-boxes. We

should note that this number may vary slightly after processing the data due to incomplete

information in some ballot-boxes.

Additionally, SERVEL offers information about the aggregated demographic data of the

voters in each ballot-box. There are three categorical features: sex, age range and nationality.

There are 8 possible options for age range: 18-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79,

80+. For this application, we will only consider age ranges as possible groups, as there is

evidence to suggest a correlation between age and political ideology (Leigh, 2005; Peterson,

Smith, & Hibbing, 2020). We will not consider nationality or gender as it would further

increase the number of possible groups.

In Figure 6.2 we show an example that illustrates how the group age distribution in

different polling places at the district of Puente Alto would look. This shows at first glance

that there is heterogeneity in both: districts and polling places.
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Figure 6.2: Proportions for different age ranges in polling places from the
district of Puente Alto.

6.2. Group Aggregation

In order to run the EM-algorithm in the 2021-CPE we need to choose which groups to

use. This is important because as we saw in Figure 5.1 the distribution of groups through

ballot-boxes has an effect on the probability estimation.

The first group set that we could consider would be to use the full data available from age

ranges, giving us the following:

G = {18-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80+}

However, we could aggregate some age ranges into one group aggregation a. This could

be useful if the probabilities of that age range are difficult to identify given its distribution

through the ballot-boxes. We may consider a group aggregation a as a set of groups form G

where we aggregate all voters from that group. Then, a group set A is a set formed of group

aggregations from G.

For example, we could aggregate age ranges into 2 categories: voters up to 39 years old,

and voter from 40 years old. This could be expressed as a set A = {18-39, 40+}. In Figure

6.3 we show how the distribution varies using this aggregation in the district of Río Negro.
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Figure 6.3: Proportions for different group aggregations in the district of
Río Negro.

We can notice that when adding groups we may obtain distributions that are completely

different. For example, we can observe that the extreme age ranges of 18-19 and 80+ have

few voters per ballot-box and show little variance accross the district. We can note that when

we aggregate into 2 groups we obtain very identifiable categories, which we could expect to

result in better estimations. It is not clear which aggregation is best, as we would like the

estimated probabilities to better represent the reality of the district but we would not want

them to be far off from the real latent probabilities.

To show an example of how the group aggregation affects the model, we will consider the

original set G and another set A = {18-29, 30-59, 60+}. We could run the EM-algorithm

using both sets G and A to compare the estimated probabilities. In Figure 6.4 we show

results for two different districts that noticeably vary in the number of ballot-boxes.
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Figure 6.4: Estimated probabilities for different group aggregations.

The bottom of Figure 6.4 shows the estimated probabilities for the district Saltos del

Laja. We observe from the bottom left panel that the estimated voting probabilities have

big variations among different age ranges, specially for candidates A and B. For example, the

estimated voting probability for candidate A is 1 for voters in the 18-19 age range, whereas

the estimate goes to 0 for voters in the 20-29 age range. In the bottom right panel we

observe the estimated voting probabilities when considering 3 aggregated age groups. In

this case, the estimated probabilities among the aggregated age groups show a more regular

pattern. The district of Saltos del Laja has only 5 ballot-boxes; as a result, it overfits the

estimated probabilities when using eight demographic groups. Indeed, the log-likelihood of

the bottom left case is considerably higher than the one of the bottom right panel. Note that

the overfitting phenomenon, when using 8 age groups, does not occur in the district of El

Golf (top left panel) since this district has a considerable amount of ballot boxes (B = 318).

We observe that in the district of El Golf we get a similar probability in both the top left

and top right panels, meaning that we should probably stay with the 8 age groups as they

increase the log-likelihood.

These results show once again that is not clear which group aggregation is better, as it may

depend in the group distribution and number of ballot-boxes in the district. Indeed, there
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are several other possible group aggregations we could have done.. In order to approach this

issue we will introduce a metric of reliability which could be obtain through bootstrapping.

Besides, we could use the log-likelihood to measure how the probability is fitting to the

distribution of the district.

6.2.1. Log-Likelihood

As we ran the EM-algorithm in a district, we obtain an estimated probability matrix p̂.

We are not able to use the MAE metric anymore as we do not know the real probability.

However, we are able to calculate the log-likelihood of the estimation using equation 2.6.

This log-likelihood will not necessarily have an interpretation of how good the estimator is,

but it could be useful to study how the estimation changes as we add more groups.

6.2.2. Bootstrapping: Estimated Probability Standard Deviation

As we ran the EM-algorithm in a district, we obtain an estimated probability matrix p̂. It is

our objective to determine how reliable this estimation is. We could consider a bootstrapping

approach to see how this estimated probability changes as we change the subset of ballot-

boxes that are considered for running the EM-algorithm.

We can formulate a very simple algorithm as follows.

Algorithm 5 Bootstrapping for estimated probabilities

Input: I, G, C, B, x, w
Output: p(1), ..., p(S) ∈ [0, 1]G×C

for s = 1 to S do
Sample: a1, a2..., aB from U{1, B} (with replacement)
Create matrices: x′ ∈ ZB×C

+ , w′ ∈ ZB×G
+

Assign: x′
b = xab

, w′
b = wab

∀b ∈ B
Estimate p(s) using x′ and w′ with Algorithm 1.

As we get a collection of estimated probabilities p(1), ..., p(S) we may use it to estimate

a metric of standard deviation. This could be done for the probabilities estimated for an

arbitrary group, as we are interested on observing if we should include that group or not.
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The standard deviation of the estimated probability pgc can be expressed as follows:

std(pgc) :=

√√√√ 1
S − 1 ·

S∑
s=1

(p(s)
gc − µgc)2

std(p) :=
∑

g∈G,c∈C std(pg)
G · C

Where µgc := 1
S

∑S
s=1 p(s)

gc .

This metric will give us an insight on how reliable the EM-algorithm is for estimating the

probabilities associated for each combination of group g and candidate c.

6.2.3. Adding More Groups: Trade-off

We will study how considering more groups affects the estimation through the log-likelihood

and the standard deviation. We will consider the following sets of aggregated groups.

• 1 Group: A = {18+}

• 2 Groups: A = {18-49, 50+}

• 4 Groups: A = {18-29, 30-49, 50-69, 70+}

• 8 Groups: A = {18-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80+}

We will select districts with varying number of ballot-boxes through Chile. For each selected

district we are going to run the EM-algorithm with the 4 different group aggregations. For

each group aggregation we will compute both the log-likelihood and the standard deviation,

obtaining the result displayed in Figure 6.5.

6.2.4. Best Group Aggregation

Given the results in Figure 6.5, we would like to choose the best group combination for each

district. We know that we would like to maximize the log-likelihood but without sacrificing

so much standard deviation in the estimator. In this particular application we will consider

a threshold (γ) for the standard deviation each group voting probability must satisfy given

a group set. We will choose this threshold to be γ = 0.05.

We would like to try each possible group set for each district, however, this is not possibly

as the number of different group combinations scale exponentially. Consider we have G
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Figure 6.5: Standard deviation of estimated probability vs log-likelihood
over districts of different ballot-boxes number.

possible age ranges and we can only merge neighbor age ranges, the total number of group

sets of size A we can make are: (
G− 1
A− 1

)

As trying each feasible group set is not a reliable option. We will propose an iterative

approach to obtain a good group set for a given district. Firstly, we will determine a way to

choose a group set given its size: A.

We know that we would like groups to be heterogeneous accross ballot-boxes in order

to make good estimators, so we will choose the group set that maximizes the sum of the

standard deviation of groups distribution in that set. This would be done through mixed-

integer programming, where we set the number of groups as a constraint.

max
a

∑
m∈M

am · σm

subject to :
∑

m∈M|g∈m

am = 1 ∀g ∈ G

∑
m∈M

am = A

am ∈ {0, 1} ∀m ∈M

(6.1)
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The decision variable a represents the following:

am =


1 Group combination m is included in the set

0 Otherwise

We are considering σm to be the standard deviation of group combination m. Then, M is

the set of all possible group combinations given the full set G. For the particular structure

of this application we can define it as follows:

M = {m ∈ P(G) | ∀g1, g2 ∈ m, {g ∈ G | g1 ≤ g ≤ g2} ⊆ m} (6.2)

We are considering the power set of G but only taking those subsets that satisfy that each

element has at least one neighbor in the set. Let us note that we are considering G =

{1, 2, ..., G} so that each index corresponds to an age range in ascending order.

Let us take into account that the cardinality: |M| = ∑G
k=1 = G·(G+1)

2 , scales as O(G2).

For the application in the 2021-CPE we have |M| = 36 which is a reasonable instance of the

problem.

Now that we have a way of choosing a group set given a size A, we will propose an iterative

approach to get the final set for each district. The idea is that we would like to have as much

groups as possible, as it is shown to improve the log-likelihood. This way we will start with

the biggest set possible G (as it is the original set) and observe how the standard deviation

of the estimation is using Algorithm 5. If the standard deviation is below the threshold then

we choose that set, else we try with a smaller set of size G− 1. As we have different choices

for a set of this size we solve the optimization problem described in 6.1. If this new solution

does not satisfy the threshold we keep decreasing the set size. If no group set satisfies the

threshold we just use the group set of size 1 where we merge all age ranges into one.
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Algorithm 6 Choosing a group set
Input: I, G, C, B, x, w, γ
Output: A
for A = G to 1 do

Solve the optimization problem described in 6.1, input G, A
A = {m ∈M|am = 1}
w′

ba = ∑
g∈a wbg,∀a ∈ A

Apply bootstrapping using Algorithm 5, input I, A, C, B, x, w′

if std(pac) ≤ γ,∀a ∈ A,∀c ∈ C then
Stop

6.3. Results

We will evaluate the discussed models and methodology for each district of the 2021-PGE.

We will first choose aggregated group sets according to algorithm 6, then we will perform the

EM-algorithm according to 1 and finally we will compute the p-values for each ballot-box

using the multinomial approximation as described in 4.2 using a precision up to 109 samples.

We should take into account that these p-values may have biases according to the discussion

in Section 5.3.

6.3.1. Group Aggregation Sets

As we run the methodology established in 6 we obtained a group set A for each district in

the election. We can study some statistics related to the chosen sets.

In Figure 6.6 we observe the fraction of districts where the original age range is selected as

a single group. We can notice that the age ranges of 70-79 and 80+ are almost never selected

as a single group, as their probabilities must be hard to identify. A similar phenomenon

occurs with the younger age ranges of 18-19 and 20-29, but they do get selected as a single

groups in some more instances. We observe that those age ranges in the middle: 30-39, 40-49

and 50-59; are the age ranges that tend to be selected as a single group, as they probably are

well represented through the district and the estimated probability does not radically change

when doing bootstrapping.
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Figure 6.6: Fraction of districts where the age-range is included as a single
group.

We can also study the size of the chosen group sets. In Figure 6.7 we display some

statistics of the sets over the districts. In Figure 6.7.a we can observe how the number of

ballot-boxes in a district affects the number of aggregated groups selected. We can observe

that when there are more ballot-boxes the methodology tends to result in bigger sets, meaning

that it is feasible to identify the probability of more age-ranges. In Figure 6.7.b we observe

the proportion of districts that had each aggregated group size. We can observe that most

districts get a set with a single group, this is most likely due to many districts containing

few ballot-boxes, meaning that a lot of groups would be hard to identify. We can see that in

general there are less districts as we increase the aggregated group set size. This indicates

that there are few districts where the distribution of groups among the ballot-box is reliable

enough to identify multiple age-range probabilities. We should also note that no district

satisfied the threshold when trying the original group set where every age range is treated

individually.
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Figure 6.7: Statistics for aggregated group sets

6.3.2. Probabilities

As we run the EM-algorithm in each district we will obtain a probability matrix estimation

p̂. We would like this estimator to be a good representation of how voters actually vote in

the given district.

In Figure 6.8 we observe a graded representation of how the estimated probabilities would

look for the districts of Calama, Maipú and Villarrica. We can first notice that this districts

vary in the number of selected age ranges. We can note that Maipú is the district with

the higher number of ballot-boxes in 6.8, however we should note it was in the higher end

of the distribution for districts with 6 age ranges according to Figure 6.7.a. Regarding the

probabilities, we can observe decently regular patterns accross different candidates. We can

see that Candidate 1 and Candidate 8 have low probabilities for all age groups accross

all age ranges. Regarding Candidate 2 we can observe higher voting probabilities in the

district of Calama where there is quadratic correlation with age, in constrast with the other

districts of Maipu and Villarrica where Candidate 2 is less voted and it shows a decreasing

correlation with age. In regards to Candidate 3 we see a common decreasing correlation

between probabilities and age in all districts, where the voting probabilities are higher in the

district of Maipú. An opposite pattern is find in Candidate 4 where there is an increase in

the probabilities with age, with the higher probabilities found on the district of Villarrica.
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Figure 6.8: Probability estimation for the districts of Calama, Maipú and
Villarrica

6.3.3. p-values and Outliers

We present some general results for the p-values obtained. We should note that obtaining a

low p-value is an indicator that a ballot-box is an outlier but it does not states what happened

in that ballot-box. Some reasons a ballot-box could show a low p-value are the following:

1. There were errors in the data, this may include: vote count, group count or ballot-box

number mislabeling.

2. There was relevant information about the voter assignation of that ballot-box that was

not considered in the model. This could happen if a particular set of voters (particularly

different from the rest of the district) where assigned to a specific ballot-box or to a

specific polling place due to some arbitrary criteria.

3. The vote count was altered and does not reflect the actual results of that ballot-box.

To visualize how a ballot-box with a low p-value looks, we present the scheme displayed

in Figure 6.9. We show statistics for all ballot-boxes in the polling place in order to identify

patterns related to the low p-values. The matrices displayed in Figure 6.9 represent the

following from left to right: the vote count for each candidate, the vote difference to the

expected value (rounded for visualization), the number of voters for each selected age range

and the p-values. The difference to the expected value for a candidate c in ballot-box b,

considering a estimated matrix probability p̂ and an aggregated group setA can be calculated
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as follows:

xbc − E(Xbc) = xbc −
∑
a∈A

wba · p̂ac

In Figure 6.9 we can observe that all ballot-boxes, besides those labeled 142 and 144, show

normal p-values of at least 1 in a hundred. The ballot-box labeled 144 shows a p-value of less

than 10−9 (less than 1 in a billion), meaning that the computed value with simulation was

0. In this ballot-box we can see an important deviation from the expected value in the votes

for candidates 3, 6 and 8. We can also observe that this ballot-box was primarily composed

by voters in the 18-29 range.

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

137

138

139

140

141

142

143

144

145

146

147

148

149

Ba
llo

t-b
ox

 id

0 10 86 28 5 21 13 2

3 7 96 37 7 19 23 1

4 8 106 48 14 21 10 2

6 13 93 35 3 27 17 1

3 7 74 25 7 29 16 2

1 3 13 33 0 17 5 1

1 5 51 29 9 19 13 4

2 3 27 13 2 22 7 14

3 3 47 38 8 17 7 0

3 9 60 33 7 14 19 1

3 6 35 22 7 19 5 0

5 2 62 29 6 26 4 2

5 3 40 34 4 16 7 1

Votes

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

-4 3 7 -6 -1 -1 1 1

-1 -1 5 -4 0 -8 9 0

0 -1 5 2 7 -9 -5 1

1 4 -10 1 -3 3 5 -1

0 0 -3 -9 1 6 4 1

0 0 -20 17 -3 7 -1 0

-2 0 -9 0 4 1 3 3

0 -1 -17 -5 -1 11 0 13

0 -2 -10 11 4 0 -2 -1

0 3 -13 4 2 -6 10 0

1 2 -13 3 4 6 -2 -1

2 -4 -9 4 2 9 -5 1

3 -1 -12 10 0 1 -1 0

Votes minus Expected Votes

18
-2

9

30
-3

9

40
-4

9

50
+

Age Ranges

39 65 31 30

30 95 36 32

32 108 34 38

74 73 23 25

32 67 41 23

9 33 19 12

25 52 25 29

35 18 20 16

19 56 28 20

33 70 23 20

25 40 21 11

46 52 25 13

22 46 19 22

Voters

2.9e-01

2.6e-01

1.8e-01

3.7e-01

3.1e-01

2.2e-06

3.0e-02

<1.0e09

1.3e-01

2.0e-02

2.0e-02

2.0e-02

9.0e-02

p-value

REGION METROPOLITANA DE SANTIAGO - PARQUE ALMAGRO - COLEGIO FILIPENSE

Figure 6.9: Results in the polling place of: Colegio Filipense

In Annex C we show a detailed result for the polling places containing the lowest encoun-

tered p-values in the range ≤ 10−8.

In Table 6.1 we present the p-value count for different ranges and in Figure 6.10 we present

a scatter plot for the p-value and number of votes of each ballot-box. .

We should note that by construction, p-values should approximate to a Uniform(0, 1)

distribution. We observe a big concentration of p-values in the interval [0.1, 1], at around

80%. We can note that the percentages do not match the expected quantity of each range.

This could be attributed to different reasons: there is not enough information to get to good

41



estimators in some polling places, and the present outliers could alter both the probability

distribution (specially in small polling places) and the interval count. We can observe that

the count until 10−2 matches relatively well the expected results, however, from 10−3 we

observe that the count does not decrease as it should.

We also observe that there are 15 ballot-boxes that have a p-value of less or equal than

10−9. For those values that are strictly less than 10−9 it could be possible to further simulate

samples in order to get an estimation to the order of magnitude. To further estimate, we

would need to increase the sample size by 10 every time, making it computationally expensive.

Even though we are not able to exactly compute these p-values, the chosen sample size is

enough to determine those ballot-boxes as outliers.

Table 6.1: p-value count in the 2021-GCE.

By Intervals

Range Total %

(10−1 , 100] 36584 78.50
(10−2 , 10−1] 7471 16.03
(10−3 , 10−2] 2055 4.41
(10−4 , 10−3] 259 0.56
(10−5 , 10−4] 111 0.24
(10−6 , 10−5] 54 0.12
(10−7 , 10−6] 28 0.06
(10−8 , 10−7] 16 0.03
(10−9 , 10−8] 12 0.03

(10−∞ , 10−9] 15 0.03

Cumulative

Range Total %

≤ 100 46605 100.00
≤ 10−1 10021 21.50
≤ 10−2 2550 5.47
≤ 10−3 495 1.06
≤ 10−4 236 0.51
≤ 10−5 125 0.27
≤ 10−6 71 0.15
≤ 10−7 43 0.09
≤ 10−8 27 0.06
≤ 10−9 15 0.03
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Figure 6.10: Estimated p-value accross all ballot-boxes.
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6.4. General Recommendations

Identifying and addressing outlier ballot-boxes in future elections in Chile could help improve

the overall integrity and transparency of the electoral process. Here are some actions that

SERVEL could take in the short and medium term with the information the methods provide:

1. Hold the publication of official results for that ballot-box .

2. Verify that protocols where followed in that ballot-box and in the polling place containing

that ballot-box.

3. Verify that the results in that ballot-box matches the official record.

4. Change the ballot-box committee for future elections.

5. Assign watchmen from the main parties to guard the counting of that ballot-box for

future elections.

If these methods were to be put into practice, it would be beneficial to incorporate the voter

assignation method directly into the model. This would assist in improving the identification

of the territorial units for conducting the probability estimation and would also consider any

arbitrary decisions that could have done in the allocation of voters.
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Chapter 7

Conclusions

Through this study we analyzed different methods for computing the EM-algorithm in order

to do ecological inference in the context of Chilean elections. It was shown that the EXACT

method fails to compute medium and large instances, meaning it would be advisible to

utilize approximated methods from C = 3 onwards. The amount of groups G does not affect

the EXACT method exponentially, as the number of different combinations does not increase

monotonically with G, so it could be possible to compute instances with a lot of demographic

groups if the number of candidates is small. The MULT method was shown to be the fastest

so it would be recommended to use it in most instances, specially if C is high. The MVN-PDF

method is not as fast, but it is still polynomial and not highly impacted by the size of the

instance, so it would also be a advisible to use it. The MVN-CDF gets similar estimations

compared to the MULT and MVN-PDF methods, but is also highly impacted by the size of

the instance so it would not be a good choice. The H&R method needs a lot of samples in

order to have a good estimation in big instances meaning it is not reliable. It should be noted

that these methods could be used for other applications where the distribution corresponds

to a sum of multinomial random variable.

We observed that the methodology proposed for the EM-algorithm works best in heteroge-

neous ballot-boxes, so a previous assessment of the group distribution should be considered.

This can be analyzed through the standard deviation and correlation of different groups in

a ballot-box. It should be noted that in the case of having different amounts of voters per

ballot-box, this analysis should be done through the proportion of voters from the group

instead of the quantity, so that ballot-boxes are comparable.
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In regards to the p-values, we showed that there is an important gap in the calculation

when using the estimated probabilities from the EM-algorithm. This means that even though

the MAE of the estimated probability obtained could be small, the error when computing

the p-value could be amplified, as we are considering a sum of probabilities from a slightly

different distribution. We also showed that there is a gap when using the multinomial approx-

imation, specially when the variance of the original distribution is amplified. This shows that

p-values should be carefully computed as there are errors attributed to both the estimated

probability and the method used to compute the p-values.

We finally showed a methodology for aggregating groups in order to get reliable estima-

tions. We used the 2021-PGE as a case study to test the proposed methods in this work. We

showed that as there were more ballot-boxes in a district it was convenient to consider bigger

sets (less aggregated). Using these group sets we computed estimated probabilities for each

district and p-values for each ballot-box. We obtain 27 ballot-boxes with a p-value lower

or equal than 10−8. We discussed possible explanations to such low p-values: mislabeling,

unmatched data, manipulation, among others. We stressed the fact that these models do not

give an explanation to the low p-values, but they can work as an indicator to better improve

the election process.

7.1. Future Work

This study leaves some open questions that would be interesting to address in the future.

• Consider different simulation approaches for the H&R method. As we have shown,

there is an increase in the MAE of the estimation as we consider less samples, meaning

it would be necessary to find a faster sampling method. It would be interesting to study

how important the correlation between obtained points affects the estimation, so that

we could allow a smaller step-size in some situations. It may even be possible to study

a deterministic approach to come up with a subset of Ωb that is representative of the

aggregate outcome. It could also be interesting to study sampling approaches that take

into account the original probability distribution and how it affects the final estimation.

• Consider different methods to approximate the p-values. As we have shown, the multi-

nomial approximation has a bias estimating the p-values when there are big changes in
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the original variance. We could study how simulations coming from the multivariate

normal approximation compute the p-value, as it maintains the original covariance ma-

trix. However, it should be noted that this method is considerably slower, and as we

are interested in studying the presence of outliers, we do need a big sample size.

• Address special cases for elections in the Chilean context. The methods studied assume

that voters from the same group are comparable within a district. This assumption may

not be true for recent elections where the ballot-box assignation is based on distance.

This factor could be taken into account in the probability distribution. It could also

be interesting to study a model that uses different districts for the same ecological

inference process. This would be particularly useful for small districts with a small

number of ballot-boxes, where the estimation is less reliable. A general method could

take into account both: aggregate demographic information from voters within a district

(as shown in the application of this study) and aggregate demographic information from

districts (such as average salary, unemployment rates and geographic location).
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Annex A

Hit and Run Method

A.1. Starting Point for the Hit-and-Run Algorithm

Algorithm 7 Starting Point for Hit and Run
Input: wb ∈ ZG

+, xb ∈ ZC
+

Initialize zb = 0 ∈ ZG×C
+

for g = 1 to G do
for c = 1 to C do

zbgc = min{wbg, xbc}
wbg = wbg − zbgc

xbc = xbc − zbgc

A.2. Choosing the Step-Size

For algorithm 3 to work properly we would like to choose a step-size M so that the sampled

points are independent from each other (in other words, we would like the starting point of

each iteration not to determine the outcome).

For this study we will do an empiric evaluation on the effect of the step-size. We will

evaluate 4 instances with varying values of G and C. For each instance we will simulate 20

scenarios containing 50 ballot-boxes with 100 voters each.

We will apply the algorithm using a step-size of M = 100 and S = 10000 for each ballot-

box. Let us consider S⃗(b) as the ordered array containing all the points sampled in the

algorithm (even if repeated). We will evaluate how correlated sampled points are using the

following.
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ρm·M(b) = corr(S⃗m→S(b), S⃗1→S−m(b))

What we are doing is looking how one point correlates to the point obtained m iterations

after, this allows us to evaluation the correlation for step-sizes in multiples of M .

Using this procedure we obtain the following average result for varying step-sizes over the

different instances.

0 2000 4000 6000 8000 10000
Step size

1

0.5

0.2

0.1

0.05

0.02

0.01

0.005

0.002

Co
rre

la
tio

n

G = 2, C = 2
G = 2, C = 10
G = 4, C = 2
G = 4, C = 10

Figure A.1: Mean correlation for various step-sizes over different instances.
The graph is log-scaled.

We observe a notable decrease for all instances when augmenting the step-size from 100 to

1000. Then we observe small decreases for some instances until they all hit a plateau around

a step-size of 3000. This last value will be used as the step-size when running this method

through this study
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A.3. Another Formulation for the Discrete Polytope

G−1∑
g=1

zbgc ≤ xbc ∀c ∈ {1, ..., C − 1}

C−1∑
c=1

zbgc ≤ wbg ∀g ∈ {1, ..., G− 1}

G−1∑
g=1

C−1∑
c=1

zbgc ≥ Ib − xbC − wbG

zbgc ≥ 0 ∀c ∈ {1, ..., C − 1} ∀g ∈ {1, ..., G− 1}

zbgc ∈ Z ∀c ∈ {1, ..., C − 1} ∀g ∈ {1, ..., G− 1}
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Annex B

EM-algorithm Probability Estimation

with 200 Voters per Ballot-Box

B.1. Time results

Table B.1: Mean running time over 20 scenarios in seconds for the EM-
algorithm for varying instances, with fixed values of Ib = 200 and B = 50.

Instance Method

C G
EXACT H&R H&R MVN MVN MULT

S = 103 S = 102 CDF PDF

2 2 59.634 740.965 74.230 1.385 0.176 0.003
3 100.076 736.357 75.210 2.469 0.242 0.004
4 188.472 698.575 75.254 3.620 0.250 0.005

3 2 - 745.531 72.961 6.076 0.220 0.003
3 - 718.089 70.551 12.326 0.249 0.004
4 - 727.985 72.246 17.310 0.318 0.005

5 2 - 711.375 71.098 19.955 0.208 0.003
3 - 576.660 67.952 42.570 0.265 0.003
4 - 676.125 65.974 58.629 0.303 0.005

10 2 - 670.993 66.676 111.144 0.233 0.002
3 - 534.038 61.340 204.632 0.266 0.003
4 - 596.844 58.734 327.127 0.334 0.004
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Table B.2: Comparison of mean simulation time and mean EM running
time in seconds over 20 scenarios for varying instances, with fixed values of
Ib = 200 and B = 50.

Instance Method

C G
H&R (S = 102) H&R (S = 103)

Sim-time EM-time Sim-time EM-time

2 2 73.409 0.820 740.046 0.919
3 72.915 2.295 722.202 14.155
4 72.732 2.522 686.560 12.015

3 2 71.105 1.855 733.173 12.359
3 68.670 1.881 699.799 18.290
4 69.916 2.331 703.638 24.347

5 2 69.471 1.627 693.218 18.157
3 65.756 2.196 567.549 9.111
4 64.044 1.929 652.590 23.535

10 2 65.161 1.515 655.398 15.595
3 59.866 1.474 525.634 8.404
4 57.256 1.479 578.101 18.743
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B.2. Error results

Table B.3: Mean absolute prediction error over 20 scenarios for varying
instances, with fixed values of Ib = 200 and B = 50.

Instance Method

C G
EXACT H&R H&R MVN MVN MULT

S = 103 S = 102 CDF PDF

2 2 0.009 0.009 0.009 0.009 0.009 0.009
3 0.011 0.011 0.013 0.011 0.011 0.011
4 0.012 0.013 0.024 0.012 0.012 0.013

3 2 - 0.009 0.010 0.009 0.009 0.009
3 - 0.013 0.027 0.011 0.011 0.012
4 - 0.022 0.040 0.013 0.013 0.013

5 2 - 0.008 0.013 0.007 0.007 0.007
3 - 0.016 0.028 0.009 0.009 0.009
4 - 0.025 0.036 0.011 0.011 0.011

10 2 - 0.008 0.013 0.005 0.005 0.005
3 - 0.017 0.021 0.007 0.007 0.007
4 - 0.022 0.026 0.008 0.008 0.008
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Annex C

Detailed Results for Polling Places

with Low p-value Ballot-Boxes

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

100V

101V

81V

82V

83V

84V

85V

86V

87V

88V

89V

90V

91V

92V

93V

94V

95V

96V

97V

98V

99V

Ba
llo

t-b
ox

 id

1 40 49 42 7 15 14 2

3 43 30 31 12 16 8 1

1 39 38 35 7 12 9 0

2 42 28 37 12 9 13 1

8 15 40 45 34 1 15 1

2 34 43 36 10 15 15 2

3 31 32 38 9 17 11 2

1 39 44 42 13 12 16 3

0 37 41 27 5 8 15 2

4 42 37 20 11 5 12 8

3 42 36 36 20 18 11 2

1 27 33 34 14 12 13 3

1 31 40 35 15 13 15 3

2 25 33 52 11 12 14 1

1 34 39 21 15 17 17 0

4 49 36 32 9 6 13 0

3 39 31 36 13 18 9 0

2 48 46 27 5 7 6 0

0 28 39 24 12 15 14 0

1 36 37 32 10 18 10 2

0 25 39 47 11 12 18 1

Votes

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

-1 2 8 -2 -4 -2 -1 0

1 9 -7 -5 3 2 -3 0

-1 7 2 0 -2 -1 -3 -2

0 7 -10 2 3 -4 2 0

6 -23 -2 6 25 -14 3 -1

0 -3 3 -3 0 0 3 0

1 0 -3 1 0 3 -2 0

-1 2 3 -2 2 -5 0 1

-2 8 9 -8 -4 -6 3 0

2 10 2 -15 2 -8 1 6

1 5 -6 -7 9 1 -3 0

-1 -3 0 -1 5 -2 1 1

-1 -3 2 -4 5 -2 2 1

0 -8 -4 13 1 -3 1 0

-1 1 3 -15 6 3 5 -2

2 17 0 -7 -1 -9 0 -2

1 4 -7 -1 4 4 -3 -2

0 13 8 -7 -3 -6 -4 -1

-2 -3 5 -9 4 3 4 -2

-1 1 -1 -4 1 4 -1 1

-2 -9 1 8 1 -3 5 -1

Votes minus Expected Votes

18
-2

9

30
-3

9

40
-4

9

50
+

Age Ranges

19 53 9 88

18 59 10 58

17 53 4 67

18 65 3 58

16 78 7 58

17 65 11 64

12 46 12 73

16 50 5 99

13 40 6 78

17 54 4 64

13 61 15 79

14 41 9 74

13 55 6 79

6 61 10 74

21 51 7 65

7 56 4 83

17 59 4 69

15 75 3 48

22 49 4 57

21 59 7 59

15 58 3 77

Voters

8.2e-01

3.0e-01

8.8e-01

3.2e-01

1.0e-09

9.9e-01

9.0e-01

8.8e-01

8.0e-02

1.2e-05

1.2e-01

6.8e-01

5.7e-01

3.0e-01

3.0e-02

4.0e-03

3.9e-01

4.0e-02

1.7e-01

9.3e-01

2.1e-01

p-value

REGION DE ANTOFAGASTA - ANTOFAGASTA SUR - LICEO DE HOMBRES DE ANTOFAGASTA MARIO BAHAMONDE SILVA

Figure C.1: Results in the polling place of: Liceo de Hombres de Antofagasta
Mario Bahamonde Silva
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c1 c2 c3 c4 c5 c6 c7 c8
Candidates

37V

38V

39V

40V

41V

42V

43V

44V

45V

46V

47V

48V

49V

50V

51V

52V

Ba
llo

t-b
ox

 id

2 19 24 78 8 20 19 3

2 22 40 70 8 22 15 0

1 21 32 69 10 19 11 3

0 27 37 67 14 15 11 4

1 19 28 60 9 18 14 1

2 24 44 71 1 15 15 1

0 17 28 80 13 14 11 2

2 16 32 76 11 13 15 2

1 26 30 15 4 17 15 6

2 15 37 77 7 21 18 1

2 25 34 67 7 18 17 0

1 20 32 80 9 12 18 5

1 16 49 69 7 21 20 2

4 13 57 83 8 22 18 1

4 20 39 84 4 15 16 0

1 22 31 85 11 28 18 0

Votes

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

0 -2 -12 10 0 0 3 1

0 1 2 0 -1 2 -2 -2

-1 1 -3 4 2 0 -4 1

-2 7 1 -2 6 -6 -6 2

-1 -1 -5 3 2 1 1 0

0 4 8 3 -7 -5 -2 -1

-2 -3 -7 16 5 -5 -4 0

0 -4 -3 11 3 -6 -1 0

0 13 7 -30 -2 4 3 5

0 -6 -1 8 -2 1 1 -1

0 3 -4 2 -1 0 2 -2

-1 -2 -7 12 0 -7 2 3

-1 -7 8 -2 -2 1 3 0

2 -12 13 3 -2 -1 -2 -1

2 -2 0 13 -5 -5 -1 -2

-1 -1 -10 9 2 6 -2 -3

Votes minus Expected Votes

18
-2

9

30
-3

9

40
-4

9

50
+

Age Ranges

8 51 55 59

18 52 43 66

14 46 54 52

16 35 64 60

15 45 53 37

23 38 48 64

15 43 58 49

23 37 46 61

14 37 53 70

16 49 51 62

25 53 37 55

20 64 31 63

23 64 29 69

20 61 50 75

21 54 40 67

35 41 38 82

Voters

2.8e-01

9.7e-01

7.8e-01

5.0e-02

9.5e-01

7.0e-02

8.0e-02

4.3e-01

4.0e-09

8.8e-01

9.1e-01

1.1e-01

6.9e-01

7.0e-02

1.0e-01

3.4e-01

p-value

REGION DE LA ARAUCANIA - VILLARRICA - ESCUELA MARIANO LATORRE

Figure C.2: Results in the polling place of: Escuela Mariano Latorre
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c1 c2 c3 c4 c5 c6 c7 c8
Candidates

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Ba
llo

t-b
ox

 id

0 12 46 112 5 40 17 2

2 18 40 121 4 60 19 2

5 11 40 90 8 44 8 1

3 13 47 84 7 52 17 5

7 19 49 73 4 54 12 3

3 13 42 108 3 38 17 1

4 11 75 110 9 57 16 1

2 15 58 105 6 57 25 4

1 16 50 105 10 53 12 2

2 16 54 97 5 53 16 3

1 5 30 142 15 63 14 2

3 17 62 109 5 61 9 3

1 21 52 110 11 49 14 0

0 18 39 77 5 46 17 0

1 10 40 121 12 66 20 2

1 9 47 131 6 65 13 1

2 15 57 115 8 64 14 4

2 9 53 131 11 53 19 4

Votes

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

-2 -8 -1 23 -6 -5 -1 0

0 -5 -14 21 -9 10 -3 0

2 -9 -11 15 2 5 -3 -1

1 -7 -4 -1 -2 9 1 3

4 -2 -8 -6 -2 12 1 1

0 -7 -11 26 -5 -5 3 -1

1 -14 17 0 -2 2 -3 -1

0 -9 2 1 -6 5 5 2

-1 -6 -1 9 0 5 -6 0

0 -6 3 2 -5 6 -1 1

-1 -15 -20 43 -4 13 -15 -1

0 -12 -4 5 1 9 0 1

-2 -2 -8 14 2 -1 -1 -2

-2 -1 -5 2 -3 8 3 -2

-1 -14 -16 16 1 13 1 0

-2 -15 -9 26 -5 12 -6 -1

0 -9 0 7 -4 10 -6 2

0 -16 -5 22 -1 -1 -1 2

Votes minus Expected Votes

18
-2

9

30
-3

9

40
-4

9

50
+

Age Ranges

52 43 53 85

52 46 52 116

121 26 19 41

89 31 37 70

155 20 17 28

116 20 34 54

59 88 57 79

55 69 53 95

63 58 62 66

60 64 51 72

14 1 51 206

120 138 5 6

126 41 45 46

50 59 13 80

61 72 64 75

61 80 55 77

63 72 61 81

64 73 63 81

Voters

1.0e-02

7.0e-03

4.0e-02

2.0e-01

1.2e-01

1.2e-02

2.0e-02

1.3e-01

6.8e-01

4.8e-01

3.0e-09

1.2e-01

4.8e-01

4.5e-01

4.0e-03

2.9e-04

9.0e-02

4.0e-03

p-value

REGION DE VALPARAISO - CONCON - COLEGIO ALBORADA DEL MAR

Figure C.3: Results in the polling place of: Colegio Alborada del Mar
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c1 c2 c3 c4 c5 c6 c7 c8
Candidates

10

11

12

13

14

15

16

17

18

19

1M

20

21

22

2M

3M

4M

5M

6

7

8

9

Ba
llo

t-b
ox

 id

2 21 26 33 17 23 13 1

1 20 31 40 17 13 8 0

5 25 39 52 15 25 16 2

3 23 43 51 16 17 13 1

3 30 42 35 18 16 8 1

3 27 34 50 18 22 7 0

4 35 23 37 19 16 10 1

5 27 39 48 18 22 9 1

5 16 35 50 19 18 8 2

8 13 39 45 2 23 22 4

5 34 59 36 16 16 13 2

3 28 43 38 11 10 7 1

6 24 46 31 14 16 12 2

1 32 39 44 13 17 5 0

2 17 47 68 16 18 20 1

1 16 48 50 16 25 17 8

1 23 66 44 17 29 24 3

2 13 35 39 9 8 16 2

3 15 21 28 13 6 11 3

2 13 30 29 13 11 6 0

1 21 23 35 16 10 7 0

1 14 29 32 20 20 9 1

Votes

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

0 3 -6 -9 4 6 2 0

-2 0 1 3 3 -3 -1 -1

1 -3 -2 0 -4 3 4 1

-1 -2 6 2 -2 -4 1 0

-1 6 9 -10 1 -3 -2 0

-1 3 -4 4 1 2 -4 -1

1 13 -9 -6 3 -2 0 0

1 0 -2 1 0 2 -2 0

2 -7 0 5 3 -1 -3 1

5 -14 -3 4 -13 6 12 3

2 14 7 -19 2 -4 -2 0

0 -1 -2 7 0 -3 -1 0

3 -7 -2 -3 2 2 4 1

-2 2 -8 9 1 3 -4 -1

-1 -2 -4 8 1 -4 3 -1

-1 -2 -2 -7 1 4 1 6

-2 -4 8 -16 0 6 7 1

0 1 -1 1 0 -6 5 0

2 6 -6 -5 5 -6 2 2

1 3 3 -5 4 -1 -4 -1

-1 9 -5 -2 6 -3 -3 -1

-1 1 -3 -9 9 5 -2 0

Votes minus Expected Votes

18
-2

9

30
-3

9

40
-4

9

50
+

Age Ranges

10 4 78 44

15 3 101 11

15 7 142 15

13 2 138 14

12 0 133 8

23 3 120 15

10 6 118 11

20 19 118 12

16 3 113 21

14 57 66 19

37 16 21 107

14 104 13 10

20 99 18 14

11 108 8 24

26 16 23 124

28 11 22 120

30 44 31 102

27 7 7 83

11 7 10 72

9 6 16 73

8 4 37 64

12 2 35 77

Voters

2.7e-01

9.1e-01

7.2e-01

9.3e-01

3.6e-01

9.0e-01

1.3e-01

9.9e-01

4.7e-01

4.0e-09

5.0e-03

9.3e-01

2.3e-01

3.6e-01

9.0e-01

5.0e-02

3.0e-02

5.6e-01

1.0e-02

3.1e-01

9.0e-02

1.4e-01

p-value

REGION DE VALPARAISO - EL BELLOTO - COLEGIO D-417 GUARDIAMARINA GUILLERMO ZANARTU IRIGOYEN

Figure C.4: Results in the polling place of: Colegio D-417 Guardiamarina
Guillermo Zañartu Irigoyen
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c1 c2 c3 c4 c5 c6 c7 c8
Candidates

73M

74M

75M

76M

77M

78M

79M

80M

81M

82M

83M

84M

85M

86M

87M

88M

89M

90M

91M

92M

93M

94M

95M

Ba
llo

t-b
ox

 id

1 16 30 65 10 28 20 1

1 30 35 51 22 21 19 2

2 19 34 53 11 28 30 4

1 17 37 56 8 26 14 2

3 15 28 58 13 15 29 4

1 20 33 76 12 20 16 0

1 23 27 63 14 23 20 2

0 26 38 48 10 23 20 2

0 17 37 50 10 14 28 1

0 19 43 64 12 26 21 1

2 13 28 63 17 26 30 1

1 20 46 68 5 24 23 0

0 20 44 70 13 30 13 2

1 20 43 50 16 26 13 1

0 22 42 60 7 27 26 1

2 20 37 75 11 31 20 0

2 27 34 79 9 27 14 0

2 26 28 61 12 20 16 18

1 23 44 62 12 17 22 7

0 23 49 57 13 31 17 5

0 28 30 69 4 29 24 2

0 27 35 60 15 42 21 3

4 20 41 69 16 27 15 1

Votes

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

0 -3 -3 4 -2 6 -1 -1

0 9 0 -13 10 -3 -3 0

1 -1 0 -11 -2 4 7 2

0 -1 6 -1 -3 5 -6 0

2 -4 -5 0 2 -6 9 2

0 -1 -2 14 0 -4 -5 -2

0 3 -6 2 2 0 -1 0

-1 7 6 -11 -2 1 0 0

-1 -1 6 -6 -1 -6 10 -1

-1 -3 7 -2 -1 2 -1 -1

1 -7 -6 -1 4 2 8 -1

0 -3 9 2 -7 0 1 -2

-1 -2 7 2 0 5 -10 -1

0 -1 9 -10 5 4 -6 -1

-1 -3 3 -5 -5 5 7 -1

0 -7 -5 7 -1 8 0 -2

1 1 -8 12 -3 4 -5 -2

1 1 -11 -3 1 -2 -3 16

-1 -5 2 -3 1 -4 5 5

-2 -6 5 -10 2 9 -1 3

-1 3 -9 4 -8 7 4 0

-2 -1 -9 -10 3 18 1 0

2 -9 -3 4 5 5 -3 -1

Votes minus Expected Votes

18
-2

9

30
-3

9

40
-4

9

50
+

Age Ranges

8 29 64 70

10 28 86 57

15 15 88 62

14 17 76 54

15 24 67 59

20 17 82 59

12 20 91 50

16 18 92 41

8 29 75 45

15 26 78 67

15 18 91 56

10 39 77 61

14 23 89 67

13 33 73 51

12 57 51 65

19 58 50 69

11 67 59 55

9 63 49 62

9 82 44 53

17 80 33 65

15 54 53 64

16 68 62 57

25 74 37 57

Voters

8.4e-01

5.0e-02

2.2e-01

6.5e-01

5.0e-02

3.9e-01

9.2e-01

5.1e-01

1.7e-01

9.2e-01

1.5e-01

1.8e-01

3.4e-01

1.7e-01

4.3e-01

3.0e-01

2.4e-01

6.0e-09

9.0e-02

1.1e-01

8.0e-02

1.0e-02

1.3e-01

p-value

REGION DEL MAULE - LINARES - ESCUELA PRESIDENTE CARLOS IBANEZ DEL C.

Figure C.5: Results in the polling place of: Escuela Presidente Carlos Ibáñez
del C.

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

33M

34M

35M

36M

37M

38M

39M

40M

41M

42M

Ba
llo

t-b
ox

 id

2 21 29 58 12 13 22 0

2 1 35 55 7 14 22 1

11 4 32 49 15 17 24 8

0 16 28 35 9 20 28 3

2 29 32 55 9 19 28 0

1 18 31 50 12 16 32 1

1 21 25 52 14 21 33 3

1 31 34 47 11 27 31 2

1 30 31 50 22 29 28 2

0 28 17 24 6 11 11 1

Votes

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

0 0 2 9 2 -6 -4 -3

0 -18 12 13 -2 -2 -2 -1

9 -19 4 2 4 -2 -3 5

-1 -9 3 -6 0 5 7 1

0 0 1 4 -3 0 1 -3

-1 -11 3 2 1 -1 8 -1

-1 -9 -4 2 2 3 6 1

-1 -1 1 -8 -1 7 4 -1

-1 -6 -3 -8 9 9 1 -1

-1 4 -1 -5 0 2 1 0

Votes minus Expected Votes

18
-2

9

30
-3

9

40
-4

9

50
+

Age Ranges

18 11 77 51

11 25 62 64

19 21 50 66

18 45 30 46

24 46 44 60

12 61 35 53

10 68 24 68

24 58 44 57

24 72 42 55

12 72 5 9

Voters

2.7e-01

1.3e-06

2.0e-09

1.0e-01

8.0e-01

3.1e-01

5.1e-01

7.9e-01

5.0e-02

6.9e-01

p-value

REGION DEL MAULE - SAN CLEMENTE - COLEGIO CLEMENTINOS

Figure C.6: Results in the polling place of: Colegio Clementinos
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c1 c2 c3 c4 c5 c6 c7 c8
Candidates

43M

43V

44M

44V

45M

45V

46M

46V

47M

47V

48M

48V

49M

49V

50V

51V

52

53

54

55

56

57

58

Ba
llo

t-b
ox

 id

0 20 24 64 8 28 19 3

0 26 26 48 8 12 23 4

2 25 31 63 9 34 30 2

1 27 29 47 13 21 19 1

1 25 36 55 8 22 28 1

1 31 18 55 4 17 25 1

0 21 24 58 11 22 30 1

2 23 34 67 12 13 15 4

0 20 37 48 10 32 32 0

1 24 32 57 5 22 30 1

1 22 39 61 12 25 31 0

2 22 33 55 11 13 24 0

3 27 37 50 11 19 13 0

1 18 36 67 6 21 25 3

3 11 30 73 36 20 16 1

3 27 32 39 8 12 14 2

2 34 24 35 5 11 4 0

0 31 25 37 2 14 9 1

4 18 33 38 5 17 11 1

1 28 26 37 7 13 12 2

1 23 34 54 5 21 19 1

2 33 36 55 8 14 19 1

4 32 26 57 13 18 20 0

Votes

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

-2 -4 -6 9 -2 8 -4 1

-2 5 -1 1 0 -7 2 2

0 -2 -3 -2 -3 9 1 0

-1 4 0 -4 4 1 -3 -1

0 -1 4 -4 -3 1 4 -1

-1 8 -10 5 -5 -1 5 -1

-2 -2 -5 3 1 1 5 -1

0 -2 3 11 2 -8 -8 2

-1 -6 5 -12 -1 10 7 -2

-1 -1 1 0 -5 1 6 -1

-1 -6 5 -3 0 2 5 -2

1 0 5 3 1 -8 0 -2

1 -2 3 -1 2 2 -4 -1

-1 -7 5 8 -5 -1 0 1

1 -18 -5 9 24 -2 -9 0

1 2 3 -3 1 -4 -1 1

0 7 -6 1 1 0 -2 -1

-2 3 -6 2 -2 3 2 0

2 -7 4 -1 -1 4 -1 0

0 4 -2 -4 2 0 -1 1

0 -4 3 1 -3 4 -1 0

0 1 0 0 1 -3 1 0

2 5 -7 2 3 -2 -1 -2

Votes minus Expected Votes

18
-1

9

20
-2

9

30
-3

9

40
-4

9

50
+

Age Ranges

1 17 61 36 51

3 35 12 39 58

3 22 57 40 74

2 33 23 43 57

4 20 67 34 51

2 29 44 30 46

3 20 45 30 69

3 24 59 35 49

6 16 69 30 58

2 23 57 35 55

3 14 83 39 52

2 24 40 27 67

3 62 49 16 30

1 19 69 27 61

4 16 96 31 43

3 72 10 13 39

2 100 5 3 4

1 105 2 2 8

1 78 13 10 26

37 51 15 5 18

53 25 35 16 29

58 48 29 18 14

2 41 44 39 44

Voters

1.8e-01

3.3e-01

6.8e-01

7.9e-01

9.5e-01

4.0e-02

7.8e-01

8.0e-02

5.0e-02

6.9e-01

7.0e-01

3.9e-01

7.8e-01

3.1e-01

2.0e-09

8.1e-01

7.6e-01

4.2e-01

4.2e-01

8.5e-01

9.5e-01

1.0e+00

2.6e-01

p-value

REGION DEL MAULE - SAN JAVIER - ESCUELA GERONIMO LAGOS LISBOA

Figure C.7: Results in the polling place of: Escuela Gerónimo Lagos Lisboa
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c1 c2 c3 c4 c5 c6 c7 c8
Candidates

111V

112V

113V

114V

115V

116V

117V

118V

119V

120V

121V

122V

123V

124V

125V

126V

127V

128V

129V

Ba
llo

t-b
ox

 id

0 0 41 95 3 57 15 1

0 1 25 107 5 13 64 0

2 1 31 78 4 62 23 0

4 2 32 92 3 68 7 3

1 3 31 100 1 75 17 0

2 1 32 81 4 90 20 2

0 2 33 90 0 88 16 0

1 5 32 114 2 55 11 1

1 6 41 95 7 58 19 2

1 1 32 93 7 62 12 0

0 5 32 105 4 80 15 2

0 1 20 109 3 66 13 0

1 9 37 86 2 54 9 1

2 4 39 101 0 62 15 1

3 4 31 105 1 71 17 3

0 1 25 122 2 64 16 1

2 1 33 106 1 74 19 2

0 1 27 111 2 74 28 0

0 2 30 108 5 79 17 3

Votes

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

-1 -3 11 4 0 -11 0 0

-1 -2 -4 12 2 -54 48 -1

1 -2 2 -8 1 -1 9 -2

3 -1 2 2 0 1 -8 1

0 1 -1 1 -3 4 0 -2

1 -2 -1 -18 0 17 3 0

-1 -1 0 -7 -4 15 0 -2

0 2 2 17 -2 -13 -6 0

0 3 9 -3 3 -14 2 0

0 -1 2 4 4 -4 -3 -2

-1 2 -4 3 0 3 -3 0

-1 -2 -11 19 -1 0 -2 -2

0 7 9 0 -2 -7 -6 -1

1 1 8 3 -4 -6 -2 -1

2 1 -2 3 -3 -2 0 1

-1 -2 -7 22 -2 -8 -1 -1

1 -2 2 0 -3 2 0 0

-1 -2 -7 5 -2 -1 10 -2

-1 -1 -3 1 1 4 -2 1

Votes minus Expected Votes

18
-2

9

30
-3

9

40
-4

9

50
+

Age Ranges

52 48 48 64

43 40 55 77

61 31 41 68

79 10 54 68

78 6 67 77

90 8 67 68

94 9 66 60

58 15 57 91

77 18 57 76

81 8 61 58

102 9 53 79

82 12 41 77

68 7 44 80

68 7 52 97

74 19 59 83

75 10 55 90

62 5 57 114

75 10 63 94

72 9 62 101

Voters

2.4e-01

<1.0e09

1.4e-01

4.0e-02

8.4e-01

1.8e-01

2.3e-01

1.1e-01

5.0e-02

3.3e-01

8.9e-01

1.6e-01

6.0e-03

9.0e-02

2.6e-01

2.6e-01

5.5e-01

2.0e-01

9.2e-01

p-value

REGION METROPOLITANA DE SANTIAGO - APOQUINDO - LICEO JUAN PABLO II DE LAS CONDES LOCAL: 1

Figure C.8: Results in the polling place of: Liceo Juan Pablo II de Las
Condes Local: 1
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c1 c2 c3 c4 c5 c6 c7 c8
Candidates

10

11

12

1M

1V

2M

2V

3M

3V

4M

4V

5M

5V

6M

6V

7M

8

9

Ba
llo

t-b
ox

 id

0 12 37 74 4 38 6 2

0 8 26 78 3 75 6 3

0 5 25 126 1 77 11 0

0 2 5 165 3 88 9 0

0 0 12 168 2 78 11 0

0 4 18 148 2 67 15 1

0 4 18 128 5 60 22 2

0 7 21 136 8 68 19 1

0 6 22 156 1 61 19 1

1 2 17 152 7 75 15 2

0 1 10 149 2 65 18 1

0 3 13 141 2 107 14 0

0 4 19 147 3 84 15 3

2 2 10 140 6 88 20 0

1 5 22 117 2 64 18 1

0 4 32 96 4 56 9 2

0 14 13 76 10 34 8 1

0 9 15 73 7 23 6 2

Votes

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

0 9 21 -15 2 -17 -1 1

-1 5 9 -26 1 12 -2 2

-1 2 5 -4 -2 3 -2 -1

0 0 -11 9 0 12 -9 -1

0 -2 -3 11 -1 3 -7 -1

0 1 2 4 -1 -5 -1 0

0 1 3 -6 2 -8 7 1

0 4 3 -8 5 -7 3 0

0 3 4 8 -2 -15 2 0

1 -1 -2 3 4 -4 -2 1

0 -2 -7 13 -1 -6 3 0

0 -1 -7 -11 -2 25 -3 -1

0 1 0 -5 0 4 -2 2

2 -2 -10 -4 2 9 4 -1

1 2 4 -6 -1 -5 5 0

0 1 16 -12 1 -4 -3 1

0 11 -1 -3 7 -14 0 0

0 6 2 6 5 -19 -1 1

Votes minus Expected Votes

18
-2

9

30
-4

9

50
+

Age Ranges

75 78 20

107 53 39

56 114 75

14 60 198

17 41 213

15 77 163

20 76 151

22 101 138

18 96 152

19 116 136

17 101 128

14 140 126

22 106 147

29 135 104

20 130 80

11 126 66

10 126 19

14 118 3

Voters

2.0e-09

1.6e-04

7.5e-01

1.5e-02

4.8e-01

9.0e-01

1.0e-01

2.0e-02

1.9e-01

3.0e-01

3.8e-01

7.0e-02

6.8e-01

2.0e-02

3.1e-01

1.0e-02

1.4e-07

2.6e-05

p-value

REGION METROPOLITANA DE SANTIAGO - CHICUREO - ESCUELA BASICA ALGARROBAL

Figure C.9: Results in the polling place of: Escuela Básica Algarrobal
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c1 c2 c3 c4 c5 c6 c7 c8
Candidates

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

Ba
llo

t-b
ox

 id

5 10 132 38 6 25 17 0

9 15 124 27 13 27 16 5

0 2 11 31 2 12 3 1

0 3 10 34 1 11 3 1

0 5 7 25 1 14 4 1

1 2 10 40 3 20 3 0

1 2 12 27 5 23 2 0

2 1 7 5 0 6 3 0

0 2 6 9 0 21 3 0

2 13 147 34 12 25 19 1

13 13 130 38 12 16 24 2

12 3 124 51 9 23 14 3

8 12 123 43 14 26 15 1

5 3 136 45 8 22 9 0

8 12 137 40 12 19 14 2

7 9 148 45 15 29 15 0

Votes

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

-2 -3 28 -13 -6 -2 0 -2

1 2 17 -23 1 0 -1 3

-2 -2 -19 19 -1 5 -1 1

-2 -1 -20 21 -2 4 -1 1

-2 2 -18 12 -2 7 0 1

-1 -2 -26 23 -1 11 -3 -1

-1 -2 -21 12 1 15 -3 -1

1 -1 -5 1 -1 3 2 0

-1 0 -11 -1 -2 16 -1 0

-6 0 37 -22 -1 -6 -1 -1

5 0 21 -16 -1 -14 5 0

5 -10 19 -2 -4 -5 -4 1

0 -1 15 -9 1 -2 -3 -1

-2 -9 37 -6 -4 -5 -9 -2

0 -1 29 -13 -1 -10 -4 0

-1 -6 30 -14 1 -3 -5 -2

Votes minus Expected Votes

18
-2

9

30
-3

9

40
-4

9

50
+

Age Ranges

48 102 39 44

68 91 38 38

10 40 8 5

15 36 6 6

11 27 7 12

12 39 18 10

13 33 17 9

12 7 4 1

2 19 10 10

63 86 46 57

64 86 47 51

60 86 42 51

63 92 43 45

50 85 41 52

69 87 40 48

70 98 44 56

Voters

4.0e-02

9.0e-03

1.4e-07

6.0e-09

6.9e-07

<1.0e09

2.3e-08

7.0e-02

2.2e-07

3.0e-04

5.0e-03

1.1e-02

6.8e-01

1.1e-04

3.0e-02

1.6e-02

p-value

REGION METROPOLITANA DE SANTIAGO - EL CENTRO - COLEGIO PARTICULAR OZANAM LOCAL: 2

Figure C.10: Results in the polling place of: Colegio Particular Ozanam
Local: 2

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

18M

19M

20M

21M

22M

23M

24M

25M

26M

27M

28M

29M

30M

31M

32M

33M

34M

Ba
llo

t-b
ox

 id

3 4 31 22 5 20 12 2

1 2 26 31 3 23 11 1

1 2 27 16 4 10 11 1

3 1 21 26 3 19 14 0

1 0 31 34 2 11 13 0

0 1 22 21 5 20 9 2

2 1 44 25 8 12 9 0

2 1 28 27 4 16 10 0

1 3 29 27 6 16 7 1

2 1 26 34 4 18 12 1

1 4 22 25 8 10 9 0

5 3 17 29 5 23 8 0

1 4 32 15 3 14 11 2

0 2 35 32 3 12 11 95

0 4 31 32 5 14 13 0

1 4 29 28 5 12 9 0

2 4 27 30 3 16 15 0

Votes

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

1 1 1 -9 0 5 0 1

-1 -1 -5 1 -2 8 0 0

-1 0 3 -5 0 0 3 0

1 -2 -6 0 -2 6 4 -1

-1 -3 3 6 -3 -3 2 -1

-2 -2 -5 -2 1 8 1 1

0 -2 12 -6 3 -3 -3 -1

0 -2 1 0 -1 3 0 -1

-1 0 0 0 1 3 -3 0

0 -2 -4 4 -1 3 0 0

-1 2 -1 0 4 -2 -1 -1

3 0 -11 1 1 9 -2 -1

-1 1 5 -9 -1 2 2 1

-4 -4 -23 -27 -7 -17 -11 93

-2 1 -2 3 0 -1 2 -1

-1 1 2 1 0 -1 -1 -1

0 1 -5 1 -2 2 4 -1

Votes minus Expected Votes
18

-2
9

30
-3

9

40
-4

9

50
+

Age Ranges

12 6 10 71

15 11 5 67

10 10 6 46

12 5 10 60

8 10 9 65

15 10 6 49

13 11 5 72

8 8 8 64

12 7 11 60

14 7 5 72

6 7 5 61

10 10 6 64

13 6 9 54

11 9 6 69

13 15 7 64

10 9 5 64

9 16 9 63

Voters

4.3e-01

4.8e-01

7.3e-01

2.5e-01

3.6e-01

5.0e-02

2.3e-01

9.5e-01

9.3e-01

9.3e-01

4.3e-01

2.0e-02

2.1e-01

<1.0e09

8.4e-01

9.5e-01

7.6e-01

p-value

REGION METROPOLITANA DE SANTIAGO - EL CENTRO - LICEO JAVIERA CARRERA LOCAL: 2

Figure C.11: Results in the polling place of: Liceo Javiera Carrera Local: 2

64



c1 c2 c3 c4 c5 c6 c7 c8
Candidates

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Ba
llo

t-b
ox

 id

1 19 31 65 14 65 5 0

0 4 12 106 1 107 11 1

1 18 29 74 11 49 10 0

1 15 41 61 7 45 7 0

0 0 7 143 0 102 5 2

0 1 21 134 1 86 8 0

2 17 35 52 9 50 7 0

1 17 27 81 5 64 6 2

0 0 15 126 1 108 5 0

0 2 12 143 1 111 4 1

0 14 33 56 6 56 3 2

1 10 36 80 6 55 5 0

0 1 9 131 0 114 7 0

2 8 32 68 7 40 5 0

Votes

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

0 16 17 -39 12 -7 2 -1

-1 -2 -11 -10 -3 24 3 0

0 13 12 -18 8 -19 5 -1

0 10 25 -23 5 -18 2 -1

-1 -7 -18 22 -4 11 -3 0

-1 -6 -3 17 -3 -2 0 -2

1 12 19 -29 7 -11 2 -1

0 12 8 -15 2 -9 1 1

-1 -7 -10 7 -3 19 -3 -2

-1 -6 -14 15 -3 14 -4 -1

-1 9 17 -24 4 -4 -2 1

0 5 18 -11 3 -13 -1 -1

-1 -6 -16 8 -4 21 0 -2

1 4 17 -11 4 -13 -1 -1

Votes minus Expected Votes

18
-1

9

20
-2

9

30
-3

9

40
-4

9

50
-5

9

60
+

Age Ranges

8 72 101 5 9 5

4 182 11 21 11 13

10 138 21 7 9 7

6 146 6 10 7 2

7 215 7 10 9 11

6 202 10 8 13 12

3 149 3 9 6 2

4 166 19 9 4 2

5 215 5 11 9 10

8 237 3 11 10 5

6 145 3 5 9 2

5 160 4 9 9 6

8 224 13 6 4 7

9 89 11 14 18 21

Voters

<1.0e09

2.0e-02

<1.0e09

<1.0e09

1.0e-06

7.0e-02

<1.0e09

1.5e-04

2.0e-03

2.0e-03

3.3e-07

5.0e-04

1.1e-04

5.0e-05

p-value

REGION METROPOLITANA DE SANTIAGO - LO BARNECHEA - COLEGIO DIFERENCIAL MADRE TIERRA

Figure C.12: Results in the polling place of: Colegio Diferencial Madre
Tierra

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

17M

18M

19M

20M

21M

22M

23M

24M

25M

26M

27M

28M

29M

30M

31M

32M

33M

Ba
llo

t-b
ox

 id

2 5 25 78 8 48 13 2

1 8 29 76 16 52 11 2

2 6 30 92 7 43 14 0

3 6 15 81 7 44 14 2

0 5 9 83 10 56 7 1

0 7 19 81 11 68 9 1

1 8 30 90 7 49 9 3

2 13 34 66 12 44 10 3

0 1 23 97 11 50 13 0

1 4 25 103 11 52 11 1

1 13 27 79 8 39 4 0

2 11 23 90 5 49 12 1

0 7 29 87 10 57 8 1

1 12 25 65 8 50 10 3

3 5 26 79 10 54 14 0

3 12 28 79 5 58 5 0

1 8 30 93 4 63 7 1

Votes

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

1 0 6 -11 1 2 0 1

0 3 10 -23 10 1 -2 1

1 1 11 -6 0 -7 1 -1

2 1 -4 -3 0 0 3 1

-1 0 -11 1 3 13 -5 0

-1 2 -1 -15 4 14 -3 0

0 3 11 -7 1 -7 -3 2

1 9 18 -27 7 -10 0 2

-1 -4 4 2 4 -5 1 -1

0 -1 5 -1 5 -8 0 0

0 9 12 -7 3 -11 -5 -1

1 7 5 -6 0 -9 2 0

-1 2 10 -11 4 -2 -2 0

0 8 9 -22 3 -1 1 2

2 1 10 -17 5 -4 4 -1

2 9 13 -19 1 -1 -4 -1

0 4 14 -18 -1 4 -3 0

Votes minus Expected Votes

18
-1

9

20
-2

9

30
-3

9

40
-4

9

50
-5

9

60
+

Age Ranges

3 21 5 31 41 80

4 18 4 44 54 71

2 16 7 44 48 77

6 28 2 34 27 75

8 14 13 20 28 88

2 21 44 16 35 78

6 21 39 11 50 69

5 19 51 13 41 55

10 25 37 8 43 72

4 26 56 16 36 70

9 25 36 13 39 49

5 29 51 9 42 57

2 35 55 7 39 62

6 20 52 7 36 53

5 28 48 9 55 46

8 28 55 16 48 35

4 25 37 65 27 49

Voters

4.0e-01

4.0e-04

1.8e-01

3.2e-01

4.0e-02

1.3e-01

8.0e-02

3.0e-09

3.0e-01

5.3e-01

2.6e-05

7.0e-02

1.0e-01

5.2e-05

2.0e-03

7.5e-06

2.0e-02

p-value

REGION METROPOLITANA DE SANTIAGO - LO BARNECHEA - COLEGIO LOS ALERCES LOCAL: 2

Figure C.13: Results in the polling place of: Colegio Los Alerces Local: 2
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c1 c2 c3 c4 c5 c6 c7 c8
Candidates

175

176

177

178

179

180

70M

71M

72M

73M

74M

75M

76M

77M

78M

79M

80M

81M

Ba
llo

t-b
ox

 id

0 3 14 141 1 90 16 0

0 2 13 161 3 75 12 1

0 1 13 139 2 103 7 3

0 3 11 156 0 85 9 1

0 3 7 146 3 102 12 1

1 2 14 146 3 97 9 1

0 3 15 140 1 99 6 0

1 2 9 161 1 85 7 0

0 0 11 153 4 100 4 0

0 1 14 141 6 105 8 2

1 1 14 135 2 99 10 0

1 2 11 130 4 112 6 2

0 2 16 143 4 89 7 1

1 1 8 170 8 74 4 1

0 2 17 148 1 88 11 0

0 1 18 133 0 83 11 1

1 5 28 119 5 75 13 1

1 12 33 59 8 46 9 3

Votes

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

-1 -2 -3 -4 -3 8 6 -1

-1 -3 -5 16 -1 -7 1 0

-1 -4 -5 -6 -2 20 -4 2

-1 -2 -7 12 -4 4 -2 0

-1 -2 -10 -4 -1 17 1 0

0 -3 -4 -2 -1 12 -2 0

-1 -2 -7 3 -5 19 -6 -1

0 -3 -11 21 -4 3 -5 -1

-1 -5 -9 10 -1 12 -5 -1

-1 -3 -3 -8 3 11 0 1

0 -4 -4 -4 -2 14 1 -1

0 -2 -7 -13 0 24 -3 1

-1 -2 -2 3 0 5 -3 0

0 -4 -10 27 4 -10 -7 0

-1 -2 -1 4 -3 3 1 -1

-1 -3 2 -1 -3 4 2 0

0 0 9 -10 1 -3 3 0

0 8 18 -24 5 -12 3 2

Votes minus Expected Votes

18
-1

9

20
-2

9

30
-3

9

40
-4

9

50
-5

9

60
+

Age Ranges

8 45 62 80 43 28

7 41 61 74 49 35

6 39 68 68 56 31

6 43 59 82 43 32

9 43 65 82 49 27

8 42 67 73 49 34

11 27 83 35 44 64

5 27 87 40 52 55

10 37 118 27 37 42

7 39 133 28 49 21

13 27 112 27 43 40

10 32 118 27 50 30

10 29 95 34 59 36

10 26 92 46 55 38

8 32 93 48 52 34

7 24 99 48 35 34

14 49 66 33 46 39

6 114 12 14 16 9

Voters

4.8e-01

5.3e-01

3.0e-02

2.1e-01

8.0e-02

5.3e-01

6.0e-02

1.0e-02

2.0e-02

1.5e-01

3.9e-01

5.0e-02

8.5e-01

9.0e-04

7.9e-01

2.8e-01

4.3e-01

2.0e-09

p-value

REGION METROPOLITANA DE SANTIAGO - LO BARNECHEA - THE MAYFLOWER SCHOOL LOCAL: 2

Figure C.14: Results in the polling place of: The Mayflower School Local:
2
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c1 c2 c3 c4 c5 c6 c7 c8
Candidates

24V

25V

26V

27V

28V

29V

30V

31V

32V

33V

34V

35V

36V

37V

38V

39V

40V

41V

42V

43V

44V

45V

Ba
llo

t-b
ox

 id

3 6 29 54 11 37 19 0

0 3 15 81 7 55 10 0

2 9 25 72 9 37 13 0

0 6 36 82 7 34 11 1

1 14 25 78 6 39 16 1

3 4 27 94 9 67 11 0

1 8 31 101 7 60 18 1

1 4 19 110 7 66 13 1

1 6 31 104 13 57 12 0

3 6 27 109 10 41 12 1

0 9 24 107 6 69 17 2

2 8 29 97 6 62 11 1

0 2 32 100 9 59 10 0

0 5 26 102 8 57 7 5

1 16 21 108 10 67 10 1

1 7 22 116 7 48 15 1

2 6 17 121 4 71 12 2

2 2 24 123 5 55 10 0

0 10 28 129 9 60 12 1

0 6 23 141 5 57 9 1

0 4 8 170 0 63 9 1

1 3 8 144 2 65 6 0

Votes

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

2 3 14 -25 6 -10 11 -1

-1 0 2 -8 4 1 3 -1

1 5 9 -11 4 -11 4 -1

-1 2 19 -6 1 -16 1 0

0 11 12 -16 3 -17 7 0

3 0 12 -22 6 0 2 -1

0 4 14 -21 2 -6 7 0

0 -1 -1 -2 0 3 1 0

0 1 10 -10 6 -6 0 -1

2 2 10 -2 5 -19 2 0

-1 5 7 -20 2 0 6 1

1 4 12 -19 2 -1 1 0

-1 -3 14 -12 4 -1 0 -1

-1 0 7 -6 2 -3 -3 4

0 11 2 -17 4 1 -1 0

0 2 5 0 2 -14 5 0

1 0 -5 0 -3 7 -1 1

1 -2 7 3 0 -7 -1 -1

-1 5 9 -6 3 -10 0 0

-1 1 6 7 0 -10 -3 0

-1 -1 -10 27 -5 -7 -3 0

1 -1 -8 17 -2 -1 -5 -1

Votes minus Expected Votes

18
-1

9

20
-2

9

30
-3

9

40
-4

9

50
-5

9

60
+

Age Ranges

7 14 55 4 24 55

5 22 64 22 25 33

3 17 46 7 36 59

6 18 46 13 28 67

9 10 54 10 66 31

11 25 62 46 39 32

6 18 54 66 30 53

3 27 43 38 39 71

4 22 57 35 27 79

7 22 44 56 27 52

9 30 46 73 33 43

7 28 38 66 31 46

2 25 46 61 22 56

6 36 43 44 20 61

4 22 48 78 17 65

7 23 46 64 23 54

8 26 29 59 33 80

5 23 34 85 22 52

1 32 33 101 25 57

4 28 25 113 22 48

5 24 20 134 23 49

3 32 21 99 38 36

Voters

2.8e-08

4.0e-01

1.0e-02

1.1e-03

9.0e-09

2.9e-04

1.4e-03

9.9e-01

9.0e-02

1.1e-03

3.0e-02

1.0e-02

4.0e-02

6.0e-02

1.8e-03

1.1e-01

5.5e-01

3.7e-01

6.0e-02

5.6e-01

1.0e-02

1.1e-01

p-value

REGION METROPOLITANA DE SANTIAGO - LO BARNECHEA - THE NEWLAND SCHOOL LOCAL: 2

Figure C.15: Results in the polling place of: The Newland School Local: 2
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c1 c2 c3 c4 c5 c6 c7 c8
Candidates

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

Ba
llo

t-b
ox

 id

3 10 141 34 7 16 13 1

4 4 130 25 4 20 7 1

4 12 120 38 7 36 13 2

5 8 101 31 9 31 15 1

4 10 114 27 8 18 15 2

5 10 117 31 9 27 12 0

3 9 122 31 6 26 11 1

2 9 111 33 7 23 22 0

1 1 21 15 2 12 4 1

3 5 51 33 4 20 8 2

0 4 8 44 1 20 3 0

0 6 21 51 3 28 6 1

4 11 120 29 8 28 13 1

7 8 133 22 7 32 12 1

2 12 126 26 11 26 18 1

5 11 103 38 7 30 19 1

Votes

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

-2 0 25 -8 0 -14 -1 0

-1 -5 23 -7 -2 -4 -3 -1

0 2 8 -11 -1 4 -3 1

1 0 7 -13 2 3 0 0

0 2 23 -17 1 -10 0 1

1 1 18 -15 2 -3 -3 -1

-1 0 21 -13 -1 -3 -3 0

-2 1 14 -12 0 -7 7 -1

0 -2 -11 6 0 5 1 1

-1 -2 -26 17 1 7 3 1

-2 1 -32 28 -2 9 -2 0

-2 2 -26 21 -2 11 -4 0

-1 2 12 -12 1 -1 -1 0

2 -2 15 -17 0 4 -1 -1

-3 2 12 -16 4 -3 5 -1

0 2 -5 -4 0 2 5 0

Votes minus Expected Votes

18
-2

9

30
-3

9

40
-4

9

50
+

Age Ranges

57 107 45 15

68 91 29 7

32 125 42 32

27 100 40 34

23 95 46 34

30 108 33 40

29 113 39 28

21 113 42 31

26 23 5 3

78 38 9 1

9 52 12 7

7 51 19 39

53 95 45 21

73 99 27 23

62 103 29 27

53 96 41 24

Voters

7.0e-02

1.8e-01

6.3e-01

5.5e-01

6.0e-03

1.4e-01

2.0e-01

9.0e-02

2.0e-02

2.8e-05

<1.0e09

3.0e-07

5.4e-01

9.0e-02

4.0e-02

9.0e-01

p-value

REGION METROPOLITANA DE SANTIAGO - PARQUE ALMAGRO - COLEGIO EXCELSIOR LOCAL: 1

Figure C.16: Results in the polling place of: Colegio Excelsior Local: 1

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

Ba
llo

t-b
ox

 id

3 7 111 33 6 30 12 1

0 0 6 73 0 34 3 0

0 2 14 68 0 34 3 0

0 0 7 44 3 20 3 1

1 3 7 53 2 28 1 0

4 4 71 74 16 33 27 1

5 8 171 37 2 17 7 0

7 9 136 48 4 25 13 0

7 11 141 38 13 27 13 1

9 11 159 23 5 23 21 2

5 8 154 38 4 30 11 2

7 7 152 44 7 25 12 0

5 14 153 38 9 23 11 3

3 10 137 37 9 30 11 2

7 11 132 47 4 28 9 0

4 15 164 35 6 15 16 1

Votes

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

-1 -2 8 -6 -1 3 -1 0

-2 -5 -50 49 -4 17 -5 0

-2 -3 -47 44 -4 17 -4 -1

-2 -3 -30 27 0 9 -2 1

-1 -1 -39 33 -1 14 -5 0

1 -2 19 -9 1 -3 -5 -2

-1 -3 41 -7 -6 -14 -8 -2

1 -2 8 5 -3 -6 -1 -2

1 -1 7 -5 5 -4 -2 -1

3 -1 27 -23 -3 -9 6 0

-1 -3 20 -6 -4 -2 -4 0

1 -5 17 0 -1 -7 -3 -2

-1 2 18 -8 1 -9 -4 1

-3 -1 12 -6 1 0 -3 0

1 0 4 6 -3 -1 -5 -2

-2 3 26 -8 -2 -17 1 -1

Votes minus Expected Votes
18

-2
9

30
-3

9

40
-4

9

50
+

Age Ranges

53 89 39 22

8 72 26 10

16 77 19 9

8 43 19 8

8 58 23 6

2 6 9 213

89 93 38 27

83 98 37 24

90 102 38 21

80 108 39 26

89 104 43 21

90 104 38 23

88 104 36 27

81 96 37 25

94 87 33 24

99 93 46 18

Voters

9.4e-01

<1.0e09

<1.0e09

<1.0e09

<1.0e09

1.5e-01

3.7e-05

5.7e-01

5.9e-01

3.6e-04

4.0e-01

3.9e-01

2.4e-01

8.0e-01

4.6e-01

6.0e-03

p-value

REGION METROPOLITANA DE SANTIAGO - PARQUE ALMAGRO - COLEGIO EXCELSIOR LOCAL: 2

Figure C.17: Results in the polling place of: Colegio Excelsior Local: 2
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c1 c2 c3 c4 c5 c6 c7 c8
Candidates

39M

40M

41M

42M

43M

44M

45M

46M

47M

48M

49M

50M

51M

52M

53M

54M

Ba
llo

t-b
ox

 id

2 19 71 40 4 28 11 2

5 6 48 27 4 25 21 0

3 7 67 40 9 20 3 2

2 12 66 27 9 14 9 12

1 6 67 35 5 20 15 0

4 11 66 36 15 22 15 0

3 4 70 39 9 22 13 1

4 8 72 40 6 22 15 1

5 6 64 33 12 25 13 0

7 13 66 37 6 21 9 2

5 15 72 35 9 22 13 2

1 5 47 31 12 19 13 0

3 5 64 52 4 28 15 1

2 7 57 47 11 33 21 2

1 6 67 48 9 21 18 0

2 6 74 41 10 28 16 2

Votes

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

-1 12 -4 -4 -3 3 -4 1

3 1 -7 -8 -2 5 9 -1

0 1 3 3 3 -2 -9 1

-1 6 0 -9 3 -7 -3 11

-2 0 5 -3 -1 -1 3 -1

1 4 -5 -6 8 -2 1 -1

0 -2 6 -3 2 -1 -2 0

1 1 2 -1 -1 -1 0 -1

1 -1 -8 -1 6 5 0 -2

3 6 -10 3 0 1 -3 0

1 7 -13 1 2 2 0 0

-2 0 -5 -1 6 2 1 -1

0 -1 5 2 -5 2 -3 0

-1 1 5 -11 1 6 -1 0

-2 0 8 -1 1 -4 0 -2

-1 -1 0 -4 3 2 0 1

Votes minus Expected Votes

18
-2

9

30
-3

9

40
-4

9

50
+

Age Ranges

19 83 10 65

13 57 6 59

14 73 9 55

16 76 11 48

14 69 7 59

16 80 12 61

18 63 9 72

42 43 8 75

65 22 12 59

72 22 8 59

87 23 5 58

34 23 9 62

12 38 36 86

15 20 10 135

16 31 43 80

23 63 31 61

Voters

9.0e-03

5.0e-02

7.0e-02

9.0e-09

9.5e-01

4.0e-02

9.4e-01

9.8e-01

2.5e-01

1.4e-01

2.0e-01

3.4e-01

7.7e-01

6.6e-01

8.5e-01

9.5e-01

p-value

REGION METROPOLITANA DE SANTIAGO - PARQUE ALMAGRO - LICEO DARIO SALAS

Figure C.18: Results in the polling place of: Liceo Darío Salas
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c1 c2 c3 c4 c5 c6 c7 c8
Candidates

10M

11M

12M

13M

14M

15M

16M

17M

18M

19M

1M

20M

21M

22M

23M

24M

2M

3M

4M

5M

6M

7M

8M

9M

Ba
llo

t-b
ox

 id

3 8 38 22 17 18 16 1

2 9 28 20 17 13 14 2

0 14 47 23 17 13 16 2

3 3 32 19 24 18 16 2

5 9 27 32 19 17 17 2

1 9 30 19 17 10 17 3

3 13 32 28 21 8 24 1

5 12 33 32 20 21 18 3

2 10 40 28 19 19 21 1

3 13 29 24 12 19 17 1

5 5 38 24 16 16 15 2

3 4 30 21 24 14 13 2

4 12 40 26 10 18 13 1

1 12 32 27 28 13 16 1

5 5 24 22 16 14 20 1

7 9 35 25 21 21 11 3

3 8 26 16 16 22 14 3

4 10 37 26 17 17 11 1

4 6 31 20 17 17 20 3

6 10 38 20 21 21 17 1

20 6 27 28 2 23 17 1

4 12 46 20 18 14 12 2

5 6 32 25 20 22 21 3

3 8 26 25 22 19 10 5

Votes

c1 c2 c3 c4 c5 c6 c7 c8
Candidates

0 0 5 -1 -2 1 -2 -1

-1 1 -1 0 1 0 0 0

-3 4 11 -3 -3 -4 -2 0

0 -5 1 -4 6 3 -1 0

2 0 -7 7 -1 0 -1 0

-2 1 1 -1 1 -4 3 1

0 3 -4 3 1 -8 6 -1

1 2 -6 4 -3 3 -2 1

-1 -1 1 1 -3 2 2 -1

0 4 -4 1 -6 5 1 -1

1 -7 1 3 -1 2 1 0

0 -4 -1 0 7 0 -2 0

1 2 4 3 -9 3 -3 -1

-2 4 -3 0 7 -3 -2 -1

2 -2 -5 1 -1 1 5 -1

4 0 -1 -1 0 4 -7 1

0 -1 -4 -3 0 8 -1 1

1 1 3 3 -2 1 -6 -1

1 -4 -2 -2 -1 2 5 1

2 0 1 -5 1 3 -1 -1

17 -2 -4 4 -17 5 -2 -1

0 1 9 -3 -1 -2 -4 0

1 -4 -4 0 0 4 2 1

0 0 -4 2 4 3 -8 3

Votes minus Expected Votes

18
-2

9

30
-3

9

40
-4

9

50
-5

9

60
+

Age Ranges

17 4 1 30 71

20 3 4 23 55

18 5 13 33 63

16 3 7 29 62

13 5 6 36 69

17 4 6 27 52

18 7 5 41 59

20 2 10 48 63

21 6 15 38 61

15 5 13 41 44

41 3 2 18 57

17 4 6 34 49

28 5 1 40 49

8 5 4 66 47

11 3 0 48 45

15 3 8 52 55

25 3 3 10 66

24 3 5 16 75

26 4 4 25 60

29 2 1 25 77

13 3 1 22 85

32 6 3 22 66

25 1 1 22 85

15 0 5 21 77

Voters

9.6e-01

1.0e+00

1.5e-01

3.8e-01

6.6e-01

7.5e-01

2.0e-01

6.9e-01

9.9e-01

4.6e-01

5.2e-01

4.6e-01

3.3e-01

5.0e-01

5.3e-01

1.9e-01

5.3e-01

7.9e-01

6.5e-01

7.6e-01

<1.0e09

7.2e-01

7.1e-01

1.6e-01

p-value

REGION METROPOLITANA DE SANTIAGO - PUDAHUEL - ESCUELA MONSENOR CARLOS OVIEDO

Figure C.19: Results in the polling place of: Escuela Monseñor Carlos
Oviedo
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