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ÉRIC TANTER

PROFESORA CO-GUÍA:
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Resumen
Una formalización en Coq de RDF y sus aplicaciones

El Marco de Descripción de Recursos (del inglés Resource Description Framework, RDF) es
un modelo de datos basado en grafos que enriquece los documentos de la World Wide Web
con datos entendibles por máquinas. Durante sus más de dos décadas de desarrollo, RDF
se ha adaptado a los nuevos desaf́ıos tecnológicos. Esta adaptación de RDF ha permitido
su aplicación en contextos cŕıticos donde se necesitan garant́ıas de seguridad, como calcular
sumas de verificación o firmar digitalmente grafos RDF.

Los asistentes de prueba son herramientas de verificación formal capaces de proveer cer-
tificaciones de software sólidas, proporcionando un puente entre la programación y la lógica.
En particular, Coq ha influido en los métodos formales, la verificación de programas, y
matemáticas formales mediante el desarrollo de software confiable utilizando argumentos
lógicos rigurosos. Visualizamos un estándar RDF con software certificado siguiendo un en-
foque mecanizado mediante el uso de asistentes de prueba.

En este trabajo presentamos CoqRDF: una libreŕıa mecanizada que especifica formalmente
el modelo RDF, proveyendo una base de datos de lemas formalmente mecanizados sobre
RDF. CoqRDF nos permite definir operaciones como el re-etiquetado de nodos en blanco e iso-
morfismo RDF y razonar sobre ellos mecánicamente. Yendo más lejos, utilizamos la libreŕıa
para implementar el algoritmo κ-mapping, un algoritmo para detectar grafos RDF que son
isomorfos. Desarrollamos una técnica de prueba para trazabilizar el re-etiquetado de nodos en
blanco durante la computación. Usando esta técnica y CoqRDF demostramos dos propiedades
sobre κ-mapping : que para cualquier grafo, κ-mapping retorna un grafo isomorfo al grafo de
entrada; y que dos grafos resultan en conjuntos iguales al aplicarles κ-mapping , si y solo si, los
grafos de entrada son isomorfos. Estas pruebas nos permiten concluir que κ-mapping es un
algoritmo iso-canonico con una prueba completamente mecanizada. Una perspectiva posible
para CoqRDF seŕıa mecanizar otros estándares construidos sobre RDF. Creemos haber con-
tribuido con una primera piedra hacia una cadena de herramientas mecanizada de estándares
web basada en RDF.
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Abstract

The Resource Description Framework (RDF) is a graph data model enriching the documents
of the World Wide Web with machine-readable data. For over two decades of development,
RDF has been adapted to the new technological challenges. This adaptation of RDF has
enabled its application in critical contexts where security guarantees are needed, such as
computing checksums or digitally signing RDF graphs.

Proof assistants are formal verification tools allowing a robust certification of software,
providing a bridge between programming and logic. In particular, Coq has influenced formal
methods, program verification, and formal mathematics through the development of reliable
software using rigorous logical arguments. We envision an RDF standard with certified
software by following a mechanized approach using proof assistants.

In this work we present CoqRDF: a mechanized library formally specifying the RDF model,
with a database of formally mechanized lemmas about RDF. CoqRDF allows us to define
operations such as blank node relabeling, and RDF isomorphism and reason about them
mechanically. Going further, we use the library to implement κ-mapping, an algorithm for
detecting isomorphic RDF graphs. We develop a proof technique to keep track of blank node
relabeling through computation. Using this technique and CoqRDF we prove two properties
of κ-mapping: that κ-mapping returns a graph, which is isomorphic to input; and that
two graphs give a set-equal result under κ-mapping, if and only if, the input graphs are
isomorphic. These two properties allows us to conclude that κ-mapping is an iso-canonical
algorithm, with a fully mechanized proof. A possible perspective for CoqRDF would be to
mechanize standards built on top of RDF. We believe that we have contributed with a first
stone towards a mechanized toolchain of web standards based on RDF.
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Chapter 1

Introduction

The current Web has its foundations in documents as every website on the Web has a docu-
ment as its core. This approach is friendly to humans, but not to machines that process this
data. Search engines retrieve documents that match keyword queries, but data is not struc-
tured. Also, the amount of data available over time increases, with some of them describing
the same resource. The Web, with a document centric organization, makes it difficult to
query data spread over different documents. If someone needs to relate data within two or
more sources, they will have to search for it and integrate it manually.

It is not difficult to think of scenarios where this challenge is met. For example: where was
the X concept coined? One would have to look into the bibliography, and then, for every
reference, look up if the concept was introduced before, or if the reference being checked
introduces new references to check. Luckily, this data can be modeled as knowledge graphs,
and queried with an expressive language, which can retrieve data spread over different sources
without manual interaction. The information is on the Web, yet not on a single webpage
where we could answer our question quickly. A lot of information is available on the Web,
but finding answers to questions involving multiple web pages or websites requires a lot of
work.

Besides that, on the Web, one can find data in various structured formats, each with
their particular pros and cons. Depending on the format of a particular dataset, we may
use different tools. Then, if we have to combine the results of multiple datasets, we have to
transform the data from one representation to another. Such problems could be avoided by
selecting one standard format for publishing and exchanging data on the Web [35].

The Web of Data aims to address this problem by enriching the Web with more and
more content in increasingly machine-readable formats. The World Wide Web Consortium
(W3C) thus proposed the Resource Description Framework (RDF) in 1999 [44]. RDF is the
recommendation from the W3C to standardize the problem of publishing data of the World
Wide Web. The Resource Description Framework (RDF) is widely used: 38 – 45% of websites
are using RDF syntaxes such as JSON-LD or RDFa. Other formats based on RDFa such as
Open Graph are used in 64% of known websites [69].

The broad use of RDF pushes researchers to study its properties formally. With over two
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decades of RDF design, RDF has adapted to the newer technology challenges, modifying its
specification [44, 11, 18]. Some of these decisions were never completely summarized in the
RDF standards [71].

Proof assistants, such as Coq or Agda, are software tools that allow programmers to
develop programs and state mathematical theorems about them. One can also develop formal
proofs of these theorems and in that way certify program properties [70]. To enhance the
verification of RDF we propose the first mechanized definition of the RDF 1.1 standard named
CoqRDF. We define CoqRDF in the Coq proof assistant using the Mathematical Components
libraries. CoqRDF allows any user to reason about the abstract syntax of RDF 1.1 and its
operations.

At the time of this writing, a W3C working group is developing an extension of RDF 1.1
[31]. This working group has the mission to define a standard to uniquely and deterministi-
cally calculate a hash of RDF Datasets. Hence, we extend CoqRDF with formal specification of
the canonicalization terminology [18, 34]. Notions such as RDF equality, RDF isomorphism,
and iso-canonical algorithms are mechanically implemented in the CoqRDF library. We prove
important properties of these relations, e.g. RDF isomorphism is an equivalence relation. We
implement the κ-mapping algorithm, a base instance of an iso-canonical algorithm; and we
then develop a technique to keep track of isomorphism through computation. This technique
allows us to mechanically verify that κ-mapping is an iso-canonical algorithm. The use of
RDF canonicalization involves critical applications, such as, the decentralized verification of
authorship of data in the RDF format. We hope that CoqRDF serves as a baseline to keep
developing results around RDF and its applications.

1.1 Goal

The goal of this thesis is to develop a library to reason formally about the RDF data model
and its operations. This library has to:

• Adopt RDF 1.1 abstract syntax.

• Be mechanically implemented.

• Provide enough expressiveness to reason about complex RDF operations.

Some target operations to specify are blank node relabeling and RDF isomorphism [18],
and also the notion of iso-canonical algorithms [34]. Another goal is to provide an infrastruc-
ture that allows us to prove that an implementation can meet and be correct with respect to
such specifications.

1.2 Results

This thesis is in the formalization domain and addresses the RDF data model [18]. We design
and develop a novel mechanized library: CoqRDF, to allow formal analysis and definitions on
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top of it. The formalization is implemented through the use of the Coq proof assistant [70, 17],
and the ssreflect tactic language and methodology [26]. Throughout the formalization we use
the Mathematical components’ library [51].

CoqRDF accounts for the definitions of the W3C specification of the RDF model in its
version 1.1 [18]. CoqRDF allows any user to reason about the RDF model with respect
to terms, blank nodes, triples, and RDF graphs. For every RDF component we define
a specification of its well-formedness, which we then prove that each component meets.
We implement core RDF operations in the library such as comparison under set equality,
relabeling, membership and isomorphism testing. We also prove that set-equality for RDF
graphs and RDF isomorphism are an equivalence relation.

We then propose an application for the CoqRDF library. We use CoqRDF to formally spec-
ify the notion of iso-canonical algorithms, followed by an implementation of the κ-mapping
algorithm [34], where we explain how to define the algorithm using functional programming.
Subsequently, we develop a methodology to keep trace of isomorphism throughout computa-
tion, which allows us to prove that κ-mapping returns well-formed graphs; that κ-mapping
returns graphs that are isomorphic to the input; and that two graphs give a set-equal re-
sult under κ-mapping, if and only if, the input graphs are isomorphic. The thesis ends
with a discussion about the design choices we made, and summary of our contributions and
perspectives for CoqRDF.

1.3 Overview

The document is structured to allow its gradual reading. Each part has a chapter about the
theoretical background of the object under study, followed by the mechanized implementation
of the CoqRDF library. Each chapter ends with a brief summary of the topics of the chapter.
The structure of the remaining chapters is the following:

Part I: Introduction

Chapter 2: Background Presents the tools being used in this document. In particu-
lar: introduces the notion of interactive theorem provers; Coq the proof assistant;
the ssreflect methodology and tactic language; and the Mathematical Components
library. The background is presented as a tutorial.

Part II: Formalizing the RDF model

Chapter 3: The Resource Description Framework Presents the RDF data model,
its abstract syntax, and how it has evolved over decades of development. It intro-
duces the notion of terms, triples, RDF graphs, and operations over RDF graphs.

Chapter 4: CoqRDF : a mechanized definition of RDF Presents CoqRDF, a library
we have developed to formally reason about the RDF model. Exposes how to
model terms, triples, RDF graphs, and how these objects behave under relabel-
ing.
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Part III: An application: Reasoning about iso-canonical algorithms

Chapter 5: Isomorphism Presents a definition of graphs, and a notion of isomor-
phism. It extends this notion to introduce RDF isomorphism and its properties.
It follows by extending CoqRDF with a formal definition of RDF isomorphism,
by decomposing the relation in smaller components, which can be independently
studied. Finally, it presents how to model RDF isomorphism in Coq, through the
use of these smaller components.

Chapter 6: Iso-canonical algorithms Presents the notion of canonical instances,
and iso-canonical algorithms, which then are formally mechanized in CoqRDF.
Afterwards an implementation of the κ-mapping algorithm is provided. Subse-
quently, a technique is provided to keep track of isomorphism through computa-
tion, which enables a proof verifing that κ-mapping is an iso-canonical algorithm,
first, that κ-mapping returns a graph, which is isomorphic to the input; and sec-
ond, and that two graphs give a set-equal result under κ-mapping, if and only if,
the input graphs are isomorphic.

Part IV: Discussion and conclusion

Chapter 7: Discussion Gives an overview of the process of mechanically formaliz-
ing the RDF model. It compares the different design choices made during the
development, and evaluates the impact of using math-comp and ssreflect to define
CoqRDF.

Chapter 8: Conclusion It summarizes the contributions of this thesis, and discusses
the future work and perspectives for CoqRDF.
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Chapter 2

Background

In this chapter we introduce background concepts for the work of this thesis. In Section 2.1
we explain the concept of interactive theorem provers. This is followed by a description of
their features, properties and foundations as programming languages and logic systems. We
also explain the decision to use the proof assistant Coq to implement our library.

Later, in Section 2.2, we present formalization projects using Coq about mathematics,
and software verification. In Section 2.3, we describe some mechanically formalized projects
related to data. We follow this with a very brief introduction to Coq’s syntax. In the
introduction we use the ssreflect tactic language and the Mathematical Components libraries
in Section 2.4. We introduce the unary, sum and product types in Subsection 2.4.1, then, we
follow the introduction presenting properties for natural numbers. Through these examples
we then present how to adopt the small scale reflection methodology, and how to use the
math-comp libraries in Subsections 2.4.3, 2.4.5, and 2.4.4.

2.1 Interactive Theorem Provers

When a human user interacts together with software to produce a formal proof we call
that software an Interactive Theorem Prover (ITP). Although initially the work focused on
automatic theorem proving, research has actively improved the support for human-guided
proofs in formal systems [29].

Many ITPs encode their proofs exploiting the Curry-Howard isomorphism [38]. The
Curry-Howard isomorphism establishes a correspondence between a given logic and a given
programming language. This correspondence assigns: a type in the programming language
for every proposition in the logic; a program with that type in the programming language for
every proof of a proposition in the logic. Also, the Curry-Howard isomorphism links proof
simplification with the evaluation of the related program [73].

There are different logic and programming language flavors when choosing an ITP. Some
of them are: Isabelle, an ITP based on higher order logic; Agda, a dependently typed language
that can be used as an ITP, based on Martin-Löf’s intuitionistic type theory [53]; Lean [57]
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and Coq [70], based on the Calculus of Inductive Constructions [17]; and many others.

Throughout this thesis we use Coq the Proof Assistant. The reasons to choose it are
multiple. For example, Coq was awarded the ACM Software System Award in 2013 [23]
in recognition for its lasting influence in formal methods, programming languages, program
verification, and formal mathematics. ACM highlighted its key enabling technology for cer-
tified software. Coq enables the extraction of the implementation to external programming
languages like OCaml, Haskell or Scheme [46, 47].

Coq has one more big advantage. Using ITPs eases the trust process. We move the
verification effort from humans to machines. We trust on a human check of the kernel, where
all the verification effort goes, and to the theory behind the logic of the ITP. But, it does not
stop there, Coq has managed to move its trusted-base from the code (trusted code base) to
the meta-theory of the CIC (trusted theory base) by formalizing the kernel of Coq, in Coq.
This was achieved by the MetaCoq project [65, 64], which built an implementation of the
type checker of Coq’s kernel, and proved it correct with respect to its formal specification.
This does not contradict Gödel’s second incompleteness theorem since part of the meta-
theory was axiomatized. Hence, assuming the correctness of the specification they proved a
correct implementation of Coq’s kernel, making Coq to rely on its meta-theory rather than
the code-base.

Comparatively, Coq has a long history as a proof assistant, being developed since the early
90’s [17, 16, 58]. Coq has been used for a series of reliable software foundations [61, 60, 1],
covering basic logic tools; the use of proof assistants to construct rigorous logical arguments,
how to use functional programming as a bridge between programming and logic; the use of
type systems for defining well-behavedness of programs in a given programming language,
etc. Besides, Coq has proven to scale to projects with challenging architectures and software
of great size [26, 45, 39]. All these reasons make us choose Coq to develop a library to
formally reason about RDF.

2.2 Coq the Proof Assistant

As explained, Coq is an interactive theorem prover (ITP). It lets its users specify mathe-
matical objects within a programming language called Gallina. Then, one can interactively
generate machine checked proofs of mathematical statements. The proof checker is Coq’s
kernel; it validates that the user reasoned with correct arguments.

Coq is the option of choice when formally verifying software. Several areas have verified
their results using it. Some of the most significant ones include a formally verified Proof of the
Four Color Theorem by Georges Gonthier [24], a machine-checked constructive proof of the
odd order theorem [25], and the Compcert project, a verified C compiler, which formalized
almost all the C language (ISO C99) [45, 39].

As we introduced in the previous section, Coq’s logic evolved from the Calculus of induc-
tive constructions (CIC) [17]. As per many other proof assistants, it is based on the notion of
propositions as types [38, 73]. This notion refers to a correspondence between mathematical
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propositions and types in programming languages. Therefore, one can use Coq for developing
mathematical facts over programs. One can express the property “program p is correct” as
a mathematical statement in Coq and then prove the statement.

Correctness is especially important in critical contexts, where the presence of bugs may
have high impact consequences. In these scenarios confidence in programs has to be strong.
ITPs can offer a great amount of confidence that a particular resource is bug free, or in other
words, that the resource is correct with respect to its specification. Indeed, ITPs have been
used in the past to formalize security properties. The first Common Criteria Evaluation
Assurance Level 7 (cc EAL 7) certification in the world [13] used an ITP to develop their
formal model and proofs.

2.3 Mechanized formalization of Data

Formal semantics are important when trying to reason about programs. Therefore, mech-
anized formalization efforts have started to emerge in other fields such as Databases. It is
common to find natural language specifications defining the behavior of data management
systems and languages, but the pursuit of more complex and robust results has led to a
demand for higher level guarantees. In general, mechanized approaches are a method to
provide a faithful reference implementation and provide a basis for further investigation with
interactive mathematical tools.

Let us review some examples of formal verification relating to data.

Chu et al. [14], developed a machine-checkable denotational semantics for an SQL frag-
ment in the Coq proof assistant. The fragment includes, select from where with aggrega-
tion, but without having. Afterwards they use it to formally validate SQL rewrite rules, and
to implement an automated procedure for deciding the equivalence of conjunctive queries.
Later, Chu et al. [15] propose the U-semiring structure to model a fragment of SQL semantics,
which they defined using the Lean proof assistant. They define an axiomatic interpretation of
key constraints and axiomatize the operations of U-semiring to prove equivalence of queries
in the presence of integrity constraints. They describe how to encode SQL queries into
the U-semiring structure, and give a sound definition of SQL expressions equivalence under
U-semiring semantics. Then, they develop a decision procedure to test the equivalence of
queries of a fragment of SQL, and use it to automatically prove the correctness of rewrite
rules from the literature.

Benzaken et al. [8], used the Coq proof assistant to specify the low level layer of SQL’s
execution engines. They design a high-level specification for data-centric operators and pro-
vide two implementations: one for physical algebra and another for SQL algebra. They
formally prove that these two algebras implement the same semantics, relating the semantics
of the query execution plan and the algebraic expression resulting from the query’s semantic
analysis. Contributing towards a mechanized SQL compilation chain.

There are more works on SQL relational algebra, for example, the work of Benzaken
and Contejean [7], which presented a mechanized definition of a realistic fragment of SQL;
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consisting of select [distinct] from where group by having queries with null values,
functions, aggregates, quantifiers and nested potentially correlated sub-queries. They used
this definition to build a certified semantic analyzer for an SQL compiler using Coq’s ex-
traction mechanism. Afterwards, the semantic analyzer was related to a formalization of an
extended relational algebra, proving equivalences upon which most compilation optimizations
are based, yielding the first formal mechanized proof of the equivalence of SQL and extended
relational algebra.

There are works regarding data provenance as well. Benzaken et al. [9] proposed a for-
malized provenance-aware extended relational algebra for a subset of database queries. They
validate the formalization with an adequacy proof with respect to standard evaluation of
queries. Leading towards a posteriori certification of provenance for data manipulation,
which is formally verified. Such a guarantee is crucial in domains such as medicine, to pre-
scribe treatments. Opening the door to the development of certified data provenance in
scientific workflows with guaranteed reproducibility.

In 2020, Lai et al. [41] showed how standardized semantic web technologies can be re-
produced in a unified manner. This manner was achieved by using Coq and dependent type
theory. The result was a system to build and query dependently typed knowledge graphs.
Another example of formal verification is the mechanized formalization of GraphQL pre-
sented in 2020 [20]. The formalization of GraphQL contributed with a baseline for proving
robust formal results.

Other works have focused on practical issues, such as a better representation of temporal
data [48]. In addition, works have applied type theory for representing ontological structures
in Coq [19], while some have built a graph library covering various notions of graphs and
properties, implemented in Coq using ssreflect [22]. In all the cited efforts Coq has been the
preferred proof assistant.

2.4 The Mathematical Components Library

Mathematical Components [51] is a library for the Coq proof assistant. It comprises several
topics including numbers, lists, algebra, fields, etc. This library was first developed as the
machinery for the verification of the proof of the Four Colors theorem [24], and then it was
reused to verify the proof of the Odd Order Theorem [25].

For the reader not too familiar with Coq, we are presenting a (very) brief introduction to
its syntax and features. For a more in depth explanation we refer the reader to the ssreflect
user manual [26] and Coq manual [70]. In this tutorial we are using Coq version 8.17 and
mathcomp version 1.6. Whenever the reader sees a comment in a code section, it should be
understood as Coq’s output after executing the line before the comment.
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2.4.1 Polymorphic Finite Data Types

To model complex structures in the functional programming paradigm, we require Data
Types that allow us to mix the different components of such a structure. The base types
that allow this are the unary type, the sum type and the product type. The unary type
represents a type with a single inhabitant. The sum of types corresponds to the different
alternatives to build a certain structure, and the product of types corresponds to an ordered
pair, which allows us to pair terms of different types. We now present how to model them
using inductive types. We choose this presentation just to illustrate the notions of the unit
type, sum type, and product type. However, it is usually these base types the ones which
are used to model the inductive types. An explanation of the fundamental principles of
these base types is beyond the scope of this thesis, but can be found in books; for example
in “Types and Programming Languages” by Pierce [59], and in “Practical Foundations for
Programming Languages” by Harper [27]. We will limit ourselves to showing how the basic
applications are used and how they can be defined. The way of modeling data in Coq is with
inductive types. These types are defined with the homonymous keyword Inductive; using
it, we can define the unary type in the following way:

Inductive unit : Type :=

| tt.

With this declaration we define a type, which has only one possible way to construct it:
tt. A binary sum takes two types and has two constructors, representing the alternative of
generating a term from the first type, or the second one. We define it inductively as follows:

Inductive sum (T1 T2 : Type) : Type :=

| Left : T1 -> (sum T1 T2)

| Right : T2 -> (sum T1 T2)

We note the sum of the types A and B with A + B. With sum types we can model the
type of the booleans: bool. We can represent it with the sum of unit and unit, thus, we say
that the value constructed with Left represents true, and the one constructed with Right

represents false. In Coq every constructor of an inductive type is disjoint from the other
ones; for example, every sum built with Left will be different to any sum built with Right.
We introduce definitions into Coq using the keyword Definition. We generate definitions
for true and false, with their respective constructors.

Definition bool : Type := sum unit unit.

Definition true : bool := Left tt.

Definition false : bool := Right tt.

As an example we will use booleans to define the logical and for booleans: andb. We
proceed by case analysis using the match keyword, which allows us to compare b1 with true

and false. If b1 matches any of those patterns, then Coq evaluates the expression at the
right-hand of the arrow: =>.
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Definition andb (b1 b2 : bool) : bool :=

match b1 with

| true => b2

| false => false

end.

We have defined the bool type using a sum of unit and unit, and an operation using
them: andb. Now we define products. A product receives two types and two terms of these
types. We can define it in the following way:

Inductive prod (T1 T2 : Type) : Type :=

| Pair : T1 -> T2 -> (prod T1 T2).

We note the product of the types A and B with A * B. With prod we can define bool
pairs, for example.

Definition pair_of_bool : Type :=

Pair bool bool : bool -> bool -> (prod bool bool).

Sometimes, to specify that we are referring to the product or sum of types, we do so by
adding the postfix %type, With this we syntactically instruct Coq that the symbols * and +

have to be interpreted in the scope of the types, and not in any other way. Other inductive
types, such as natural numbers, also note operations with _ + _ and _ * _.

Having defined the basis for modeling structures in functional programming, we now
present how to define propositions about inductively defined types.

2.4.2 Defining properties on the natural numbers

One may inductively define the natural numbers as follows:

Inductive nat : Type :=

| O : nat

| S : nat -> nat.

The definition of nat encodes the unary representation of natural numbers. The inductive
nat is a Type with two constructors: O representing the zero, and S, which takes a natural
number and returns its successor. Many operations can be defined recursively on the natural
numbers, for example, addition. In Coq, recursive functions are declared using the Fixpoint
keyword. But, as Coq is a proof assistant every function has to terminate. If divergent
functions were allowed, we could easily break Coq’s logic consistency; for example, by defining
the following program:
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Fixpoint contra (b : bool) : False := contra b.

To prevent the introduction of logical inconsistency, Coq restricts recursive definitions.
Recursive functions may only be applied to structurally smaller arguments. This restriction
is a syntactic sound approximation to prevent divergence. There are more ways to convince
Coq that a function does well-founded recursion, but they will not be covered in this tutorial.

Let us now define the addition of two natural numbers: add.

Fixpoint add n m :=

match n with

| O => m

| S n' => add n' (S m)

end.

The add function recurses over n. Since the recursive call is applied to the predecessor
of n in the recursive case, Coq’s type system figures this out, so we do not have to annotate
explicitly on which argument the function is decreasing. The add definition performs a case
analysis on its first argument. If it is zero, as there is nothing more to add, the function
returns the second argument. If it is the successor of a number, we perform the addition of
the predecessor of the first argument, and the successor of the second argument. Thus, add
subtracts one unit to the first argument and adds one unit to the second argument, until the
first argument is zero.

Coq makes available the keywords Theorem, Lemma, Remark and Corollary to state
propositions. It also has the forall construction, which lets users generalize over an object.
To prove properties Coq provides different tactic languages, in this document we use ssreflect.
As an example property, we can state and prove that zero is the neutral additive on the left.

Theorem addO_n : forall (n : nat), add O n = n.

Proof. by []. Qed.

With the statement of the first line on the program above, we are instructing Coq to de-
clare a Theorem under the name addO_n, holding a proof that forall n : nat, add O n = n.
Then Coq opens a goal with that type, and we use the Proof keyword to start the proof,
and enter in proof mode. In this mode the user may apply tactics and modify the state of the
goal until there is nothing else to prove. This proof only requires unfolding the definition of
add, which is done using the tactic by. The by [] tactic unfolds definitions and computes
in the goal until reaching the state of n = n. When the tactic is executed Coq computes on
the left side of the equation. During the computation add matches on the first argument,
it finds O and returns the second argument. This leaves the goal as n = n, which is true by
reflexivity.

In Coq’s setting, one says that “p is a proof of P” when p is a term of type P. In this
context, addO_n is a proof stating that O is the left neutral additive for the natural numbers.
The Coq tactic Check allows the user to query addO_n’s type.
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Check addO_n.

(* addO_n : forall n : nat, add O n = n *)

In Coq every term has a type, and every type has a type as well. Above we see the type
of addO_n, but what is the type of forall n : nat, add 0 n = n? If we query Coq for it
the answer will be that it has type Prop, the type of propositions.

Coq provides different types of reasoning, for example the user is allowed to reason by in-
duction. For any property P on the natural numbers it suffices to show two proofs. First, that
the property holds for zero (i.e. P O); and second, that for every natural number n satisfying
the property (P n), its successor also satisfies it P (S n) (i.e. forall n, P n -> P (S n)).
We present just below an example of a proof by induction.

Theorem addn_Sm : forall n m, add n (S m) = S (add n m).

Proof.

move=> n.

elim: n.

+ by [].

+ by move=> n' IHn m; rewrite -IHn.

Qed.

The theorem above is stating that for every two numbers n and m, adding n with the
successor of m is equal to the successor of the addition of the two numbers. From now on we
will display the proof state with the structure presented in Listing 1.

X goal

c_i : T_i

...

==================

forall (t : T),

P0 -> ... ->

C

Listing 1: Structure of a proof state.

In Listing 1, X stands for the number of goals. The section above the line is going to be
called the context. In the context, c_i : T_i is a constant named c_i with type T_i. The
section below the line is going to be called the goal. Finally, the C located at the end of the
goal stands for the conclusion: what needs to be proved.

When opening the proof mode we have the following state of the proof:

1 goal

==================

forall n m : nat, add n (S m) = S (add n m)
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Then, with the move tactic, we introduce the top term of the goal to the context.

1 goal

n nat

==================

forall m : nat, add n (S m) = S (add n m)

Now we have a particular n in context, and the goal generalizes over a natural number
m. Having n in the context allows us to reason about n inductively with the elim tactic.
After applying that tactic, Coq creates two subgoals ruled by the induction principle. The
subgoals are presented below.

2 goals

==================

forall m : nat, add O (S m) = S (add O m)

subgoal 2 is:

forall n : nat,

(forall m : nat, add n (S m) = S (add n m)) →
forall m : nat, add (S n) (S m) = S (add (S n) m)

When there is more than one goal, bullet symbols (like +) indicate we are solving one of
the subgoals. In the proof we are indicating that the first subgoal is solved with by [], and
the second subgoal is solved with by move=> n' IHn m; rewrite -IHn. The first goal proof
indicates that it can be solved by computation as we saw in our first example. The second
subgoal is solved by introducing to the context n' : nat; IHn, referring to the induction
hypothesis of type forall m : nat, add n (S m) = S (add n m); and m : nat. This
sequence of tactics leave the proof state as presented below.

1 goal

n' : nat

IHn forall m : nat, add n' (S m) = S (add n' m)

m : nat

==================

add (S n') (S m) = S (add (S n') m)

We figure that the right-hand side of the inductive hypothesis IHn appears on the right-
hand side of the goal (after computation). With the rewrite tactic we can transform the
goal rewriting under the equation IHn. This rewriting leaves the goal in a state that Coq can
solve by computation: add (S n') (S m) = (add n' (S (S m))).

Finally, we can prove zero is the additive neutral on the right, presented formally just
below.
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Theorem addn_O : forall n, add n O = n.

Proof.

move=> n. elim: n.

+ by [].

+ by move=> n' IHn /=; rewrite addn_Sm IHn.

Qed.

The base case of the proof follows by computation. The proof for the successor is satisfied
by a rewriting under our theorem addn_Sm and the inductive hypothesis. The /= symbol
instructs Coq to compute after introducing n' and IHn.

2.4.3 Small Scale Reflection

We have been using ssreflect during the course of this introduction. SSReflect is a set of
tactics developed to support the Small Scale Reflection methodology [26], which is a formal
proof methodology based on the use of computation with symbolic representations. This
methodology goes back and forth between the user and the prover. The prover provides
computation, and the user guides step by step the execution.

The Calculus of Inductive Constructions distinguishes between logical propositions living
in Prop, and boolean values living in the bool datatype. Prop supports natural deduction
and bool allows case analysis. For cases in which the law of the excluded middle applies,
there is a proof technique that allows the user to switch interchangeably between the two
proof modes. Thus, the user can take advantage of both tools when appropriate, case analysis
and reduction on the one hand, and natural deduction on the other. We show how to do
this, first by defining a decidable predicate, such as equality between natural numbers, and
then establishing a connection between that predicate and propositional equality.

We define the predicate eqb_nat to decide if two numbers are equal.

Fixpoint eqb_nat n m :=

match n,m with

| O, O => true

| S n', S m' => eqb_nat n' m'

| _,_ => false

end.

The eqb_nat fixpoint performs an equality test for two input numbers n and m. If
both numbers match with O they are equal. If both numbers match with the succes-
sor of a number, eqb_nat compares the numbers recursively. In the two remaining cases
(O,S m' and S n', O) the numbers are different, this fact is indicated by the wildcard _

placed on the last case, which matches with any pattern.
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To establish the relation between _ = _ and eqb_nat _ _ we must use a special inductive
named reflect, which we define below.

Inductive reflect (P : Prop) (b : bool) : Prop :=

| ReflectT (p : P) (bT : b = true)

| ReflectF (np : ~ P) (bF : b = false).

The reflect type receives a proposition P, and b a bool; with them, it establishes two
connections: first that when P holds, the b is true, and vice versa; and second, that when P

does not hold (i.e., ~ P), then the boolean b is false, and vice versa. The proofs formalizing
the relation between a proposition P and a predicate p through reflect, usually receive
the name of views. The type reflect has three lemmas which we will use to link the
propositional equality of natural numbers with eqb_nat. The lemmas are: Bool.ReflectT,
stating that: for establishing the connection between any proposition P and the boolean
value true, it suffices to show that P holds; Bool.ReflectF, stating that: for connecting any
proposition P with the boolean value false, it suffices to show that the negation of P holds;
and equivP, which establishes the connection of any two equivalent propositions yielding the
same boolean.

Check Bool.ReflectT : forall (P : Prop), P -> reflect P true.

Check Bool.ReflectF : forall (P : Prop), ~ P -> reflect P false.

Check EquivP : forall (P Q : Prop) (b : bool),

reflect P b -> P <-> Q -> reflect Q b.

With these lemmas we prove that for every natural number n and m, the propositional
equality between n and m reflects to eqb_nat n m, that is reflect (n = m) (eqb_nat n m).
The proof goes by induction on n the first argument, and then by case analysis on m, the
second argument. This opens four goals, corresponding to the four inductive cases. In the
first case, when both numbers are zero, the goal reduces to reflect (O = O) true. The
conclusion matches the conclusion of Bool.ReflectT, when we instantiate the proposition P

with O = O. The tactic apply compares the lemma with the current goal and as it matches,
Coq replaces the goal with the hypothesis of the lemma. In this particular case, it means
that we now have to show that O = O holds, which is solved automatically prepending the
tactic by. The second and third case, corresponds to when one of the numbers is zero and
the other one is the successor of a number. The predicate is false by the definition of
eqb_nat, and the propositional equality does not hold as well, because nat constructors are
disjoint. Hence, we apply the lemma Bool.ReflectF, whose hypothesis also happens to be
automatically provable in these cases. In the last case, Coq reduces eqb_nat (S n') (S m')

to eqb_nat n' m', which can be solved by applying the inductive hypothesis and the use of
equivP.
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Lemma nat_eqb_eq : forall (n m : nat), reflect (n = m) (eqb_nat n m).

Proof. move=> n. elim: n=> [| n' IHn] [| m'].

+ by apply Bool.ReflectT.

+ by apply Bool.ReflectF.

+ by apply Bool.ReflectF.

+ by move=> /=; apply: (equivP (IHn m') _); split=> [->|[->]].

Qed.

The lemma nat_eqb_eq allows us to interchange between the propositional equality of
natural numbers, and the predicate that decides their equality, indistinctly. We have already
seen that for every natural number n, the proposition n = n can be solved automatically. This
does not happen with our predicate, if we try to prove that eqb_nat is a reflexive predicate
(i.e., eqb_nat n n always reduces to true) automatically, we would not be able to. Of the
natural number n we only know its type, we do not know if it is zero or a successor. Therefore,
Coq cannot determine which case of match should apply. If we wanted to prove eqb_nat n n

then, we would have to reason inductively about n, but since we have the connection through
reflect, we just need to exchange the predicate eqb_nat for the proposition of equality.
Now we show how to use that in a proof, by proving that eqb_nat is a reflexive predicate by
using the fact that n = n holds trivially. Now that we have proven the lemma nat_eqb_eq

we can exchange the value of eqb_nat n n for its propositional equivalent n = n. To do so,
we use the lemma introT, which indicates that for every proposition P and boolean value b,
we can conclude that b is true by providing a proof of P and that P and b are related through
reflect. This is precisely our case, we want to prove that eqb_nat n n is true, and we
have already proven the connection through reflect. If we apply the lemma introT with
the proof nat_eqb_eq as an argument, it suffices to show that n = n, which can be solved
automatically.

Check introT : forall (P : Prop) (b : bool), reflect P b -> P -> b.

Lemma eqb_nat_refl (n : nat) : eqb_nat n n.

Proof. by apply (introT (nat_eqb_eq n n)). Qed.

This proof technique is used very frequently, so mechanisms have been developed to use it
in a less verbose way. These mechanisms work through canonical structures [50], structures
that allow type inference to be able to interchange propositions and predicates related through
reflect.

2.4.4 Canonical structures

The Mathematical Components library makes available different interfaces with useful lem-
mas and notations about the objects. Making an instance of these interfaces transfers all
notations and lemmas to the target type. This is enabled through a type inference mechanism
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called Canonical Structures [50]. For example, there is the eqType interface for objects with
decidable equality. This interface gives the user access to notations like _ == _ notation; lem-
mas about equality, like the lemma contraNneq b x y: (x = y -> b) -> ~~ b -> x != y

and views like eqP, which allows the user to go from x = y to x == y and vice versa. If one
would like to make a type, let say nat, an instance of eqType one has to provide two things.
First, an equality operator eq_op : nat -> nat -> bool, and second, a proof stating that
eq_op corresponds with the propositional equality (i.e., that the propositional equality, and
eq_op are in relation through reflect). We have already declared both requirements; they
correspond to the predicate eqb_nat and the lemma nat_eqb_eq, which were defined and
proved in the previous subsection. With this, we can declare natural numbers to be an
instance of eqType.

Definition nat_eqType := EqType nat (EqMixin nat_eqb_eq).

Canonical nat_eqType.

Variables n m : nat.

Check n == m.

(* n == m : bool *)

The canonical definition we made declares nat to be an instance of eqType. By defining
this instance we are instructing Coq to implicitly go through the eqType interface when-
ever it sees a proposition holding for eqTypes applied to a natural number. Through this
definition we make all lemmas and notations available for eqType to also be available for
natural numbers. As an example, we declare two natural numbers n and m, and compare
them using eqType’s notation for equality (_ == _). It is worth mentioning that Coq’s type
system notes that nat_eqb_eq has type forall x y, reflect (x = y) (eqb_nat x y),
and hence, nat_eqType is completely specified without having to give eqb_nat as an argu-
ment. We now provide an example using the math-comp interface for eqTypes. We prove
the transitivity of the eqb_nat predicate.

Lemma eqb_nat_trans (n m l : nat) : eqb_nat n m -> eqb_nat m l -> eqb_nat n l.

Proof.

move/eqP=> eqnm.

by rewrite eqnm.

Qed.

The tactic move under the view /eqP reflects the boolean equality eqb_nat into the propo-
sitional equality =. Leaving the goal like this: n = m -> eqb_nat m l -> eqb_nat n l.
After that => let us introduce a hypothesis from the goal to the context. We introduce the
equation n = m with the name eqnm, and right after we rewrite the goal under that equation.
This leaves the goal as follows: eqb_nat m l -> eqb_nat m l. This is trivially solved by
Coq as the conclusion is within the hypothesis.

The pattern of applying a view, obtaining an equation, and immediately using it to
rewrite is a common pattern in the methodology. If the hypothesis at the top of the goal is
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an equation, instead of naming the hypothesis the user may use the -> symbol. This instructs
Coq to rewrite the goal under the top equation of the goal. Using that pattern would leave
the proof script as: by move/eqP ->, which is a more succinct and elegant solution.

2.4.5 Records and hierarchies

Records are a data structure. They are composed of named fields. In the dependently typed
setting one may let fields depend on the value of other fields. Let us make it clear with an
example; consider a primality test is_prime : nat -> bool. We may define the types of
natural numbers, which are primes.

Record prime : Type := mkPrime {

p :> nat;

p_prime : is_prime p

}.

The record prime is a Type with only one constructor mkPrime, which requires a natural
number p, and a proof stating that p is prime (is_prime p). When a specific term requires a
proof to be built, we say that term is a proof carrier, for example, since to build a prime we
need a proof of is_prime p, we say primes are proof carriers. Considering that is_prime
p is a bool, this should not type-check. But, Coq figures this out and transports the value
into Prop by silently inserting the function is_true: bool -> Prop. The symbol :> after p
instructs Coq to silently project p if Coq expects a natural number, but receives a prime. A
function that Coq silently and automatically inserts in order to transport terms over types
receives the name of coercion.

Part of the ssreflect methodology is to take advantage of the canonical structures to
define hierarchies. This way, particular instances of the objects also inherit the benefits of
the interface. As a term of type prime can be coerced to the natural numbers, we would like
primes to also enjoy the benefits of eqType through its connections with natural numbers.
To do that we will define a way to encode and decode natural numbers into primes, and also
primes into natural numbers in a way that the decoding cancels the encoding. For doing
this, we must show that a prime p is equal to decode (code p). The equality of records is
defined as the equality of each of their fields. In the case of primes, this is the equality of the
underlying natural number, and the equality of the proof stating that the number is prime.
But indeed the equality of the underlying numbers suffices to show that the primes are equal,
we prove it below. We will use this lemma to prove that the encoding and decoding cancels
out.
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Lemma prime_inj (p1 p2 : prime) :

p p1 = p p2 ->

p1 = p2.

Proof.

case p1; case p2=> prime1 prime1P prime2 prime2P /= eq.

subst; congr mkPrime.

by apply eq_irrelevance.

Qed.

The proof starts by reasoning by case analysis over the two primes p1 and p2 and intro-
ducing the resulting subterms to the context: two natural numbers prime1 and prime2, a
proof that prime1 is prime prime1P, a proof that prime2 is prime prime2P, and the equation
eq : prime1 = prime2. We then perform a substitution using the equation eq. We cannot
perform a rewrite because the conclusion would be thus ill-typed. The interested reader can
look up for rewriting in dependent contexts. It is then left to prove that the two proofs
of is_prime prime1 are equal, i.e. to prove that the equality prime1P = prime2P holds.
This is always the case when the proofs are in bool. The equality comes from the coercion
is_true, which after computation ends with is_prime prime1 = true. This interesting
property stating that: for any two proofs of an equality, the two proofs are equal; holds for
any eqType. This is why equality on eqType is said to be proof irrelevant . That property
is formalized by the Mathematical Components library with the lemma eq_irrelevance,
whose type is displayed below.

Check eq_irrelevance.

(* eq_irrelevance : forall (T : eqType) (x y : T) (e1 e2 : x = y), e1 = e2 *)

The type of eq_irrelevance states that: for any two terms x and y of type T : eqType,
for any two proofs stating x and y are equal, the proofs are equal. Now that we have proven
the injection lemma, we can provide the code and decode functions to map primes to natural
numbers, and vice versa.

Definition code (p : prime) : nat :=

p.

Definition decode (n : nat) : option prime :=

if insub n : {? x | is_prime x} is Some nn

then Some (mkPrime (valP nn))

else None.

To code the prime type to the nat type, there is nothing to be done. Remember that
when defining the record we instructed Coq to insert a coercion to nat. From the type of
the code function Coq expects the output to be a nat, but a prime is returned instead. Coq
realizes this and projects the natural number from the record.
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When decoding a natural number there is a (high) chance it does not satisfy the primality
test. If the decode function was total we need to return a nat even when it is not the
case. But, if we choose a default result there will be no guarantee that the decoded prime
corresponds to the natural. We can implement such a behavior with a partial function.
Partial functions in Coq are modeled using the option type.

Inductive option (A : Type) := None | Some : A -> option A.

Option is a type constructor, meaning that it builds new types from previously defined
ones. It is also polymorphic, i.e. option is parameterized by a type A, which can be instan-
tiated with any type. The instantiated type enjoys all the lemmas and operations defined
for option. Given a type A, the type option A has two constructors, None and Some. We
can use the option type to model partial functions in Coq. In particular, we can use it to
model our decode function with the type nat -> option prime. This is the idea: if decode
receives a natural number, which satisfies the primality test; we can return a prime wrapped
with the Some constructor, and if the input does not satisfy the primality test we return None.
Now we can prove code and decode cancel each other out, whenever the decoding returns a
Some value.

Lemma pcancel_code_decode : pcancel code decode.

Proof.

case=> p pP /=; rewrite /decode.

case: insubP => [? ? ?|].

by congr Some; apply prime_inj.

by rewrite pP.

Qed.

The proof goes by case analysis on the result of the primality test. If the test passes we
can apply the injection lemma we proved before. If it does not pass, we have a contradiction.

Finally, we can derive the canonical instance for primes.

Definition prime_canEqMixin := PcanEqMixin pcancel_code_decode.

Canonical prime_eqType :=

Eval hnf in EqType prime prime_canEqMixin.

Variables p1 p2 : prime.

Check p1 == p2.

When the type we want to code does not have an obvious target type there is still a
solution. The Mathematical Components library defines the GenTree inductive. GenTree

inherits several interfaces, therefore, if a programmer manages to encode and decode their
type into the GenTree type, they can follow the same methodology to derive the canonical
instance.
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2.4.6 Math-comp notation

Coq enables the definition of notations. With these notations, a user can extend Coq’s syntax
for an alternative way of entering or displaying a term. During the development of this work
we will use some notations defined by Coq and math-comp; here we indicate the meaning of
these notations. Consider that P1 is convertible to forall x, Qx, and that P2 is convertible
to forall x y, Qxy. Then, we use the following notations.

• [seq x <- s | C] := filter (fun x => C) s.

• [seq E | x <- s] := map (fun x => E) s.

• (x \in P) := P x.

• {in A, P1} := forall x, x \in A -> Qx.

• {in A &, P2} := forall x y, x \in A -> y \in A -> Qxy.

• A =i B := := forall x, x \in A = x \in B.

• f1 =1 f2 := forall x, f1 x = f2 x.

2.5 Summary

In this chapter we have introduced the notions of ITPs. We have chosen to work with the
Coq proof assistant using the Mathematical Components libraries, and hence adopting the
ssreflect methodology. Examples of mechanically formalized projects were presented. The
chapter presented a tutorial exposing some features of the Coq proof assistant by example.
We also exemplified the use of the ssreflect methodology using the Mathematical Components
interface infrastructure. The tutorial goes from the definition of inductives and functions to
the proof of theorems, and different approaches to transferring canonical structures.

In the next part, RDF, the object of study, is going to be presented in detail, followed in
the subsequent chapter by a mechanized implementation of its components.
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Part II

Formalizing the RDF model
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This part covers the presentation of the Resource Description Framework (RDF) and our
mechanized implementation of the RDF model using the Coq proof assistant. In Chapter 3
we introduce RDF’s background. An historical context and motivation of RDF is described in
Section 3.1. We then point out how the RDF model has changed during the last few decades
in Section 3.2. Subsequently, we present RDF’s definition and abstract representation in
Section 3.3 with a gradual introduction of RDF’s core components: RDF terms, triples and
graphs. We explain how these components interact, and how they are used to describe
resources. Afterwards we highlight the complexity of blank nodes, and RDF’s operations
using them in Section 3.4.

In chapter 4 we introduce CoqRDF, a library we have developed, which defines the RDF
model. We implement CoqRDF in the proof assistant Coq using the ssreflect tactic language
and methodology, and the Mathematical Components libraries of formalized mathematics.
CoqRDF gives a mechanized implementation of the RDF model. We present a well-formedness
specification of every RDF component, and then prove our definitions satisfies them. Within
CoqRDF we define RDF’s terms, triples and graphs as Coq mathematical objects in Sections
4.1, 4.2 and 4.3 respectively. These definitions allow users to define RDF operations on top
of it, and to pose correctness specifications of their definitions. We define the notion of blank
node mappings, which we specify in Coq, and then we provide an implementation meeting
that specification.
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Chapter 3

The Resource Description Framework

In this chapter we cover the Resource Description Framework (RDF). In Section 3.1 we
present the context, problems and motivations encouraging the rise of RDF. Time makes
things change, and we follow how RDF has evolved through its different versions in Section
3.2, we highlight some changes during the history of RDF’s development, and how it was
proposed as a W3C standard which contributes to the stability and accessibility of the World
Wide Web. We then continue with an introduction to RDF’s model in Section 3.3 where
we address RDF’s abstract syntax representation by explaining its structural composition.
We present RDF terms, triples and graphs, and how to use them for describing resources.
In Section 3.4 we problematize the definition of blank nodes. We present how blank nodes
interact within the RDF model as per RDF graph isomorphism, and also with other standards
relying on RDF as in RDF’s test suites and serializations.

3.1 RDF evolution

The World Wide Web (WWW) has been growing since its creation in 1989. Although
every document in the WWW is machine-readable, back then, they were not machine-
understandable, meaning that the documents were difficult to process. The problem was
that every document had to be processed manually, and because of that, it was unachievable
to automatically process the amount of documents available on the WWW. To address this
problem, Lassila and Swick [44] proposed RDF to describe the data contained on the Web
using metadata, i.e., data about data.

The RDF model was initially proposed in 1997 [43] as a foundation for processing meta-
data. After two years of discussion, RDF was recommended by the World Wide Web Con-
sortium (W3C) [44] in 1999, meaning that RDF was being considered to become a standard
for processing metadata on the WWW. As per W3C’s recommendation, RDF’s goal is to
provide interoperability between applications that exchange information on the web. Particu-
larly, RDF’s design allows us to understand a document’s structure and logical content, which
improves a search engine’s opportunities to provide better results. It also allows us to join
collections of web pages representing a single logical document, and to describe intellectual
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property rights of Web pages, etc.

RDF is a model intended to be used in situations where data is going to be processed,
not just displayed. As it is critical when publishing and interlinking data on the Web, RDF
provides exchange between applications without loss of meaning. Its name already tells us
its function: RDF is a framework for describing resources, where resources can be anything
such as documents, people, abstract concepts, etc.

3.2 RDF history

RDF was defined more than 25 years ago. Throughout the decades of its development
RDF has extended its definition for two main reasons: to improve logical reasoning about
the RDF model, and to improve its usage by taking into account new technologies. Let
us review how RDF has dealt with these challenges. The original 1999 proposal provided
RDF syntax, serialization, and its formal model and grammar [44]. The recommendation
document was oriented to define how to specify data semantics using the Extensible Markup
Language (XML). This design choice tied RDF to XML. RDF’s goal was to design a domain
neutral mechanism to model data, that is RDF would not make particular assumptions of its
application domain, nor define the semantics of any application domain, but RDF should be
able to describe any domain. Because of RDF’s definition universality, its use was explained
with examples in different domains.

RDF was born as a device to add machine-readable metadata to the Web, with the
goal of providing a lingua franca for the automated processing of Web information. This
was achieved in 2004, then RDF 1.0 [11] was formalized as a standard recommendation by
the World Wide Web Consortium (W3C). The W3C standards are Open Web Platforms
for application development with technical specifications. RDF took the opportunity to go
one step further: it provided a basis for well-founded deductions about RDF data. In its
version 1.0 RDF introduced its formal semantics, and abstract syntax to link the concrete
syntax with the formal semantics. These additions provided support for two things: first, to
formally reason about the meaning of an RDF expression, and to define inference rules about
RDF data. For example, by adding URIs, RDF improved its clarity in the cases where the
described resource lived in the real world, instead of living as a document on the Web, as how
it was thought when RDF was originally designed. The use of URIs provides identifiers to
reference resources in the real world, which helps users distinguish the resource of a website
from the resource which a website makes reference to.

RDF’s specification stood stable for a decade, until 2014 when it was updated to version
1.1 [18]. The new version was designed to be compatible with RDF 1.0 while generalizing over
its own definitions. For example, RDF 1.1 introduced a new encoding to globally identify
variables: the International Resource Identifier (IRI). This change, among others, improved
RDF’s support for internationalization by adding support for a broader range of Unicode
characters. Regarding semantics, RDF 1.1 included an updated semantics description. This
updated semantics defined new entailment regimes [18] to infer the meaning of RDF data.
Additionally, RDF introduced user-friendly syntaxes and new serialization formats like Tur-
tle, JSON-LD, N-Triples, TriG, etc.
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Over the two decades of RDF design many trade-offs were made; and some of these
decisions were never completely summarized in the RDF standards [71]. However, RDF
keeps gaining popularity. Its adoption has been increasing: 38%-45% of websites are using
RDF syntaxes such as JSON-LD or RDFa [69], and 64% of the websites are using structured
data based on RDFa.

3.3 The RDF 1.1 model

The RDF 1.1 model, from now on just RDF, is a graph-based data model, using nodes and
edges to describe resources. Let us gradually introduce RDF’s components and present how
they are used to describe a resource. In RDF, nodes and edge labels (known as properties)
can be of three types: IRIs globally identifying an entity, such as a university, for example
the University of Chile; literals of various datatypes such as numbers, dates or strings; and
blank nodes, which represent existing variables with an unknown value. The set formed by
the union of these types is the set of RDF terms, and they are used to express information
by making statements. Statements are three-element tuples with the following structure:

< subject > < predicate > < object > | The subject is an IRI or a blank node,

the predicate is an IRI ,

the object is an IRI , a literal or a blank node.

Statements are collectively known as RDF triples, and are conventionally written in the
order: subject, predicate, object. Given three RDF terms a, b, and, c we note a triple with
a as subject, b as predicate, and c as object, as (a, b, c). RDF triples allow us to relate
two resources. The subject and the object represent the two resources being related; and the
predicate represents the nature of their relationship. In RDF, relationships are phrased from
subject to object and the kind of relation is indicated by the IRI placed in the predicate
position.

For example, if Alice is friend of Bob we can model that with the following RDF triple:
(:Alice, :isFriendOf, :Bob)1, given two IRIs :Alice and :Bob for identifying our indi-
viduals, and an IRI for identifying the friendship relation :isFriendOf. Within that triple
:Alice would be the subject ; :isFriendOf the predicate and :Bob the object. That triple
can be drawn as a labeled graph as shown in Figure 3.1. In this graph abstraction, subject
and object terms refer to nodes, predicate terms to edge labels, and a triple to a directed
labeled edge. From now on, whenever we draw an RDF triple IRIs are going to be colored in
purple and prefixed with “:”, blank nodes in light blue and prefixed with “ :”, and literals
in yellow and without prefix.

1In order to assist readability some serialization formats allow prefixes definition. For example, defining
the prefix : to be http://ex.org, then :Alice is a shortcut for http://ex.org/Alice. However, these prefixes
are not a formal part of the RDF data model, just a syntactic convenience. We use the default prefix : in
our examples where unimportant.
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:Alice :Bob:isFriendOf

Figure 3.1: A statement describing Alice
and Bob’s friendship.

:Bob :Someone:loves

Figure 3.2: A statement claiming that
Bob is in love with someone.

Similarly, if we know that Bob is in love with someone, but we do not know specifically
with whom he is in love, we may state this relation using the IRI :loves as predicate and
a blank node :Someone as the object. The RDF triple (:Bob, :loves, :Someone) uses a
blank node to represent this fact for which we know the data only partially. When we have
a set of RDF triples we refer to it as an RDF graph, and a collection of RDF graphs is called
an RDF dataset. Let us have a look at an RDF graph in Figure 3.3.

:WAMozart

:unk

:causeOfDeath

‘‘Wolfgang Amadeus Mozart’’

:name

:Symphony

1783:s

:composed :genreCategory

:year

:k

:key

1788:j

:composed :genreCategory

:year

‘‘Jupiter Symphony’’

:key

:Composer :occupation

:FXMozart

:father
:occupation

:LMozart

:occupation :father

Figure 3.3: An RDF graph describing Wolfgang A. Mozart.

In Figure 3.3 :s, :j, :k, and :unk are blank nodes. The graph states a family of
composers. :LMozart is the father of :WAMozart, who is father of :FXMozart. It also
presents two works of :WAMozart, :s and :j, which are unidentified. But, we do know
certain properties about these works. Both are symphonies, composed in different years. We
also know :s was composed before :j, and that :j’s nickname is ‘‘Jupiter Symphony’’.

3.4 RDF isomorphism

Blank nodes give rise to a binary operation to test for structural equality between two graphs,
which the RDF 1.1 recommendation [18] defines as RDF graph isomorphism.
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Definition 3.1 (RDF graph isomorphism) Two RDF graphs G and G′ are isomorphic (that
is, they have an identical form) if and only if there exists a bijection M between the sets of
nodes of the two graphs, such that:

• M maps blank nodes to blank nodes.

• M(lit) = lit for all RDF literals lit which are nodes of G.

• M(iri) = iri for all IRIs iri which are nodes of G.

• The triple (s, p, o) is in G if and only if the triple (M(s), p, M(o)) is in G′.

With this definition, M shows how each blank node in G can be replaced with a new blank
node to give G′.

Testing isomorphism between two graphs is not an easily solved problem, but let us
illustrate with an easy example in Figure 3.4.

:1 :2

:p

:3

:p
:p

:a :b

:p

:c

:p
:p

Figure 3.4: Two isomorphic RDF graphs. The bijection M is M(1) := a, M(2) := b, and
M(3) := c.

As we can see, besides the fact that the two graphs on Figure 3.4 are drawn differently and
have different blank nodes, the two graphs are structurally identical. The presence of blank
nodes complicates things. Let us recapitulate its definition, the RDF standard defines blank
nodes as existential variables, but RDF’s specification makes no reference to any internal
structure of blank nodes; besides that it states that blank nodes do not have identifiers in
the RDF abstract syntax, but that they are distinguishable. Furthermore, the specification
about blank nodes has been pointed out to be unclear since RDF’s version 1.0 [52], and
then during the discussion of the W3C working group in charge of defining RDF’s version
1.1 [36]. In the analysis of blank nodes made by Mallea et al. [52], and its extended version
by Hogan et al. [36], they found that blank nodes are treated differently (and sometimes
incompatibly) across other standards built on top, or related to RDF. For example, when
serializing an RDF graph, any of RDF’s syntaxes allows to explicitly label blank nodes, such
that they can be referred to at any point within the document [36]. These syntaxes include
RDF/XML [6], N-Triples [63], turtle [10], RDFa [30] and JSON-LD [66]. This is an issue,
because syntaxes allow syntactic sugar, which for some constructions introduce implicit blank
nodes (as it is the case when using RDF lists), and RDF parsers can arbitrarily assign blank
node identifiers. This condition forces that tests suits have to check their results modulo
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isomorphism [42], but the declarative style of the RDF’s isomorphism definition does not
leave an obvious implementation algorithm to test it.

3.5 Summary

In this chapter, we presented RDF, a graph data model for enriching the documents of the
WWW with machine-readable data. We give historical context to understand the state of
the Web, and people’s issues and goals when processing web documents at the time of RDF’s
proposal. We described RDF’s different versions, where it was originally recommended by
the W3C in 1999, a standard that was replaced with the release of RDF 1.0 in 2004, and later
upgraded with the recommendation of RDF 1.1 in 2014, its current version. We pointed out
the main reasons for updating the RDF standard and how these reasons have been handled
by RDF’s different versions.

We then introduce RDF’s abstract syntax and its core components: RDF terms, triples,
and graphs. Later, we explain how to use these components to describe resources, which leads
us to some problems regarding the blank node’s definition. The presence of blank nodes gives
birth to the notion of RDF graph isomorphism, a key operation to define RDF’s behavior,
but with an unclear operational definition.

In the next chapter we present CoqRDF: the first mechanized implementation of the RDF
data model. We define CoqRDF within the Coq proof assistant using the Mathematical Com-
ponents library. We declare RDF well-formedness specification, which our components sat-
isfy by construction. Our implementation allows us to reason about RDF terms, triples and
graphs. These definitions are then used to define mappings between blank nodes. We study
the behavior of these mappings and formalize identities around the structure of RDF graphs
in the presence of blank nodes. This effort is directed towards an operational definition of
isomorphism, which is addressed in part III.
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Chapter 4

CoqRDF : a mechanized definition of
RDF

In chapter 3 we described the RDF model and its main components: terms, which are its
core bricks; triples, which are terms triples, with specific restrictions about their possible
combinations; and RDF graphs, which are sets of triples. We also presented the notion of
RDF isomorphism, a binary relation denoting structural equality between graphs.

In this chapter we cover mechanical definitions of every component of the RDF model,
as well as a few abstractions surrounding these components. We incrementally tackle the
modeling of RDF’s abstract representation. In parallel, we define the notion of blank node
relabeling, and explore how this notion interacts with our definitions. In each section in this
chapter we implement an RDF component, define how to relabel blank nodes within that
scope, and end with an example using CoqRDF. We mainly study the action of blank node
replacement under different assumptions, but we also explore identities of other abstractions
less important to this work. RDF terms, triples, and graphs are addressed in Sections 4.1, 4.2,
and 4.3 respectively. We implement these mechanical definitions using Coq and the library of
Mathematical Components. We implement an encoding for each RDF component in order to
transfer different math-comp’s theories to our definitions. Our development, called CoqRDF,
is available in a GitHub repository at https://github.com/Tvallejos/CoqRDF.

4.1 CoqRDF Terms

In this section we define RDF terms. We declare an inductive type characterizing the different
kinds of nodes in Subsection 4.1.1. We then study the requirements for equipping this
inductive type with: equality, countability, choice and order operations in Subsection 4.1.2.
Afterwards we make remarks about what can (or cannot) be expected from terms’ equality
in Subsection 4.1.3. Finally, we model the relabeling of blank nodes at the scope of terms in
Subsection 4.1.4, present an illustrative example in CoqRDF, and study its properties under
different assumptions of terms’ structure in Subsection 4.1.5.
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4.1.1 Terms definition

We begin by defining the core of the RDF model: terms. As discussed in Section 3.3, terms
can be of three kinds: Iris, Literals and Blank nodes. To reflect this in our representation we
model terms as an inductive type whose definition is presented in Listing 2.

Inductive term (I B L: Type) :=

| Iri (i : I)

| Bnode (b : B)

| Lit (l : L).

Listing 2: RDF terms defined as an inductive type.

Term’s inductive has three constructors, one for every kind of term. This inductive is
parameterized by three types I, B, and L, which represent the set of IRIs, blank nodes and
literals, respectively. These parameters make every terms’ constructor parameterized by those
same parameters. Every constructor requests an inhabitant of the respective parameter as
an argument in order to return it as a term. A direct consequence of our characterization
is that every constructor returns a uniform type, i.e. every term’s constructor returns a
term instantiated with its type parameters. Let us illustrate. When a term’s constructor is
instantiated with the types I B L, and an inhabitant of one of these types, the constructor
produces a term I B L. Thus, the inductive term brings us a uniform interface to deal with
terms: term I B L. This interface, has as drawback that we cannot define a literal (or any
other kind of term) if we have not specified every type parameter, i.e. for defining any kind
of term, we need to know which are types of the IRIs’ and blank nodes’ and literals, as can
be seen in Listing 3 where we query every constructor’s type.

Check @Iri.

(* Iri : forall I B L : Type, I -> term I B L *)

Check @Bnode.

(* Bnode : forall I B L : Type, B -> term I B L *)

Check @Lit.

(* Lit : forall I B L : Type, L -> term I B L *)

Listing 3: Queries to every term’s constructor type.

4.1.2 Terms encoding

We now transfer some of math-comp’s theories to our term inductive. To achieve that we start
by defining an encoding from term I B L to GenTree.tree. The GenTree.tree defines once
and for all how math-comp’s theories behave, and by defining an encoding to this type we can
transfer the different theories to the type term. For example, assuming that the set of IRIs,
blank nodes, and literals can be compared with equality, can be counted, have a canonical
choice and have a partial order, we may extend these operators to the term’s inductive
through the encoding to GenTree.tree. As a result, we can define terms as an instance
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of eqType, countType, choiceType and POrderType. For all these mentioned instances all
we need is the encoding, and that the term’s type parameters are already equipped with
the instance we are trying to declare. We choose to define the encoding of terms as a sum
of the three type parameters: I + B + L, which gives us a direct way to decode encoded
terms back to a term I B L. First, when encoding a term, whichever the kind of node it
is, let us say it is an Iri i: we create a GenTree.Leaf with the only possible injection we
can build from an i : I to I + B + L, i.e. inl (inl i). Then, when decoding a GenTree

back to a term; we can recover the type parameters of the term we want to return from
the GenTree’s type, mapping back every injection to its original constructor. In the case of
IRIs we map GenTree.Leaf (inl (inl i)) : GenTree.tree (I + B + L) back into an
@Iri I B L i. Finally, we prove a lemma that decoding after encoding a term cancels the
encoding out; since not every GenTree can be decoded into a term (because GenTree has
more constructors) the cancellation is only partial. The complete encoding is presented in
Listing 4.

Section CodeTerm.

Variables (I B L : Type).

Implicit Type trm : term I B L.

Definition code_term trm : GenTree.tree (I + B + L)%type :=

match trm with

| Iri i => GenTree.Leaf (inl (inl i))

| Lit l => GenTree.Leaf (inr l)

| Bnode name => GenTree.Leaf (inl (inr name))

end.

Definition decode_term (x : GenTree.tree (I + B + L)) : option (term I B L) :=

match x with

| GenTree.Leaf (inl (inl i)) => Some (Iri i)

| GenTree.Leaf (inr l) => Some (Lit l)

| GenTree.Leaf (inl (inr name)) => Some (Bnode name)

| _ => None

end.

Lemma pcancel_code_decode : pcancel code_term decode_term.

Proof. by case => [i | l | name]. Qed.

End CodeTerm.

Listing 4: Term’s encoding to GenTree.

4.1.3 Terms equality

We now cover what we can expect from the term’s equality operator. Because we are im-
mersed in a strongly typed environment, Coq’s type checker prevents us, statically, from
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Fail (@Lit bool nat nat 3) == (@Lit nat nat nat 3).

(* indeed fails with type error ... *)

Compute (@Iri nat nat nat 1) == (@Lit nat nat nat 1).

(* = false : bool *)

Compute (@Iri nat nat nat 5) == (@Bnode nat nat nat 5).

(* = false : bool *)

Compute (@Lit nat nat nat 0) == (@Lit nat nat nat 0).

(* = true : bool *)

Listing 5: Examples using term’s equality.

performing certain comparisons. For example, it does not type check to compare two terms,
which are parameterized with different types. We present this in Listing 5, where the first
line fails because Coq expects a term of type term bool nat nat on the right side of the
equality (==). This happens even though we are comparing a literal representing the same
number: 3. When comparing terms parameterized with the same types, equality behaves as
specified in RDF’s recommendation [18]. We have, for example, that the literal 1 is different
from the IRI 1, and that the IRI 5 is different from the blank node 5 whereas the literal 0 is
equal to itself. All these examples are presented as well in Listing 5.

However, because of the encoding we defined for declaring the term’s eqType instance,
Coq has to go through that encoding to compute equality. This may add some noise when
proving properties involving term’s equality. To circumvent this issue we define an equivalent
function: eqb_term, which performs equality without going through the encoding. We define
it as follows: two terms of different kinds are different, and if both terms are of the same
kind, and they represent the same literal, IRI or blank node, those terms are equal. We
prove under the lemma eqb_eq that for every two terms the equality under == and eqb_term

are equivalent. When proving the identity of the equivalences, the proof from left to right
is followed by case analysis after rewriting under trm1 = trm2. From right to left after case
analysis for both terms, and after computation, we have the conclusion as an assumption.
We present the lemma eqb_eq and symbolic equality function eqb_term in Listing 6.
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Section EqTerm.

Variables I B L : eqType.

Definition eqb_term (t1 t2: term I B L) : bool :=

match t1, t2 with

| Lit l1,Lit l2 => l1 == l2

| Bnode b1, Bnode b2=> b1 == b2

| Iri i1, Iri i2 => i1 == i2

| _,_ => false

end.

Lemma eqb_eq trm1 trm2 : (trm1 == trm2) = eqb_term trm1 trm2.

Proof.

apply /idP/idP.

+ by move=> /eqP ->; case: trm2=> ? /=; rewrite eqxx.

+ by case: trm1; case:trm2 => //= t1 t2 /eqP ->; rewrite eqxx.

Qed.

End EqTerm.

Listing 6: Definition of term’s symbolic equality (eqb_term) and a proof of its equivalence
with ==.

4.1.4 Terms relabeling

We have equipped terms with equality, countability, choice and order operations in Subsec-
tion 4.1.2. Now, towards defining RDF isomorphism we define blank node mappings, cap-
turing the notion of blank node relabeling, the action of replacing a blank node with another
one.

Definition 4.1 (Blank node mapping) Given a function µ from RDF terms to RDF terms,
we say it is a blank node mapping if and only if:

• µ maps blank nodes to blank nodes.

• µ(lit) = lit for any literal lit.

• µ(iri) = iri for any IRI iri.

Definition 4.1 captures the first three clauses of RDF isomorphism (3.1). However, a
blank node mapping is a relaxed version of an RDF isomorphism: the function µ does not
have to be bijective nor preserve membership when applying µ to a graph, as is the case
for RDF isomorphism. Note that every RDF isomorphism is a blank node mapping. In
Listing 7 we define a blank node mapping builder: relabeling_term, a function lifting a
map between two types of blank nodes to a map between terms parameterized with different
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types of blank nodes. We define relabeling in such a way that for every function mu : B1

-> B2 then relabeling a term under mu meets the conditions of a blank node mapping. The
function relabeling_term receives four types: the type of IRIs (I) and literals (L), and the
type of the domain (B1) and codomain (B2) of the relabeling. Then relabeling_term asks
for a function mu going from the domain to the codomain, and returns a function which takes
a term trm of type term I B1 L and returns a term I B2 L. If trm is an IRI or a literal,
then relabeling_term mu returns the same value, and if trm is a blank node it applies mu
and wraps the result in a Bnode.

Definition relabeling_term (I B1 B2 L : Type) (mu : B1 -> B2)

(trm : term I B1 L) : term I B2 L :=

match trm with

| Bnode b => Bnode (mu b)

| Iri i => Iri i

| Lit l => Lit l

end.

Listing 7: A function lifting mappings between two types to mappings between two types of
terms.

We now verify that for every function mu, then it holds that relabeling_term mu is a
blank node mapping. Nonetheless, the definition of relabeling_term is too general for the
property we want to verify. As the type of the domain and codomain of mu can be different,
the type of the resulting term can be different as well, and as discussed in Listing 5 we cannot
compare with equality two terms that are parameterized by different types. However, we can
restrict B1 and B2 to be the same type B and prove that for every mu : B -> B, it follows
that relabeling mu satisfies the blank node mapping specification.

We formalize in Coq the blank node mapping’s definition (4.1). We indicate the abstrac-
tions we need to state the proposition of every item in the definition. The first clause requires
a predicate is_bnode, which decides if a term is a blank node. With this predicate we have
to prove that is_bnode returns true whenever we relabel a term which was a blank node. In
the case of the second and third clauses we have everything we need to translate them into
Coq. In Listing 8 we prove that for every function mu : B -> B then relabeling mu is a
blank node mapping. The function relabeling_term was defined aiming to meet the blank
node mapping’s specification. This is why almost every proof in Listing 8 can be proved
by computation. The exception is bnode_to_bnode, for which we need to proceed by case
analysis.

To reason about blank nodes we define get_b_term and get_bs in Listing 9. These two
functions together allow us to project the blank nodes wrapped with a term’s constructor.
When we apply get_bs to a sequence of terms the result is a filtered sequence that contains
all the blank nodes b : B, which were a Bnode b in the input list. Moreover, if we apply
get_bs to a set of terms we get as result the set of blank nodes of that set. This will help us
to define a restricted domain where the RDF isomorphism would have to be bijective (more
on this in part III). In this chapter we are just defining the foundation that will allow us to
reason about the RDF model.

36



Section blank_node_mapping.

Variables (I B L : Type).

Variables (mu : B -> B).

Definition is_bnode (t : term I B L) :=

match t with | Bnode _ => true | _ => false end.

Lemma bnodes_to_bnodes (t : term I B L) :

is_bnode t -> is_bnode (relabeling_term mu t).

Proof. by case t. Qed.

Lemma relabeling_lit l : (relabeling_term mu (Lit l)) = Lit l.

Proof. by []. Qed.

Lemma relabeling_iri l : (relabeling_term mu (Iri i)) = Iri i.

Proof. by []. Qed.

End blank_node_mapping.

Listing 8: For every function mu, relabeling_term mu is a blank node mapping.

Definition get_b_term (t : (term I B L)) : option B :=

if t is Bnode b then Some b else None.

Definition get_bs (ts : seq (term I B L)) : seq B :=

pmap get_b_term ts.

Listing 9: Functions to project blank nodes from a list of terms.
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4.1.5 Illustrating terms

To better illustrate we instantiate our model with example types. In Listing 10 we define the
type of IRIs to be strings, the type of blank nodes to be the natural numbers, and the type of
literals as pairs of strings, where the first component refers to the datatype of the literal, and
the second one refers to the literal value. The postfix %type indicates Coq to interpret the
definition as the product of types, instead of the natural numbers multiplication. Note that
this instantiation of term’s type allows the construction of ill-formed terms; for example, it
is possible to construct a literal whose datatype is "hello". We could be more precise about
the structure of literals at the cost of additional definitions and complexity. However, the
choice of these types for IRIs, blank nodes, and literals, allows us to illustrate naturally, and
closer to a standard RDF setting. The last definition in Listing 10 is mu, a mapping from
blank nodes to blank nodes; if mu receives 0 it assigns it to the blank node 1, otherwise it
assigns it to the same blank node mu received as input1. The reader can assume that the types
iri_t, bn_t, and lit_t, have a declared instance of an eqType. We omit the transferring of
eqType to these types for brevity.

Definition iri_t := string.

Definition bn_t := nat.

Definition lit_t := (string * string)%type.

Definition mu (b : bn_t) : bn_t :=

match b with

| 0 => 1

| _ => b

end.

Listing 10: Definition of an example types of IRIs, blank nodes, and literals, and an example
mapping.

With the definitions in Listing 10 we explain how to define some terms, how to compare
them, and relabel them using CoqRDF. We will keep using these definitions as we progress
in the chapter. In Listing 11 we start by defining some aliases for our term constructors,
which helps us improve the readability of the example. We define I, Bn and L, aliases for the
constructors of IRIs, blank nodes and literals, respectively; these aliases yield terms of type
term iri_t bn_t lit_t. Next, we present three examples using equality and relabeling. In
the first one, we compare an IRI I "isA" against the relabeling of that same IRI. Coq is
enabled to compute through the relabeling and recognize the results are equal. In the second
example we compare the relabeling of a literal against an IRI representing the same value,
proving that they are different. In the last example we show how the relabeling of the blank
node Bn 0 under mu yields the blank node Bn 1.

We explore the interaction between the components we have defined so far. As a result
of that we obtain a library of term’s identities. The library is divided in sections, which are
organized by theories depending on the assumptions we make about the structure of the set
of IRIs, blank nodes and literals. In Listing 12 we display a few lemmas from the library. The

1Indicated with an underscore in the second branch of the match.
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Definition I := @Iri iri_t bn_t lit_t.

Definition Bn := @Bnode iri_t bn_t lit_t.

Definition L := @Lit iri_t bn_t lit_t.

Example relabeling_an_iri :

(relabeling_term mu (I "isA")) == (I "isA") = true. by []. Qed.

Example relabeling_a_literal :

(relabeling_term mu (L ("number","1781"))) == (I "1781") = false. by []. Qed.

Example relabeling_a_blank_node :

(relabeling_term mu (Bn 0)) == (Bn 1) = true. by []. Qed.

Listing 11: Examples of equality and relabeling at the level of terms.

interested reader can find all the available lemmas in the file Term.v from our GitHub repos-
itory. The polymorphic properties we formalize describe how relabeling_term behaves as
a function. We present how relabeling_term interacts with the identity map, composition,
and term’s kind preservation. We find that for every injective map mu : B1 -> B2, then
relabeling mu is also injective, and that it computes in an extensional manner, meaning
that if two maps mu1 mu2 : B1 -> B2 give the same blank nodes, then relabeling mu1

and relabeling mu2 will yield the same terms. Regarding the properties about terms with
equality, we formalize identities about membership to sequences of terms, and properties,
which are preserved under relabeling such as being a blank node or the count of blank nodes
in sequences.
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Section PolyTerm.

Variables I B B1 B2 B3 L : Type.

Lemma relabeling_term_id (trm : term I B L) :

relabeling_term id trm = trm.

Lemma relabeling_term_comp trm (mu1: B1 -> B2) (mu2 : B2 -> B3) :

relabeling_term (mu2 \o mu1) trm =

relabeling_term mu2 (relabeling_term mu1 trm).

Lemma relabeling_term_ext (mu1 mu2 : B1 -> B2) :

mu1 =1 mu2 -> relabeling_term mu1 =1 relabeling_term mu2.

Lemma relabeling_term_inj (mu: B1 -> B2) (inj_mu : injective mu) :

injective (relabeling_term mu).

End PolyTerm.

Section EqTerm.

Variables I B L : eqType.

Lemma bnode_memP (b : B) trms : Bnode b \in trms = (b \in get_bs trms).

Lemma get_bs_map s mu: all (@is_bnode I B L) s ->

(get_bs (map (relabeling_term mu) s)) = map mu (get_bs s).

Lemma all_bnodes_uniq_bs s : all (@is_bnode I B L) s ->

uniq (get_bs s) = uniq s.

Lemma undup_get_bs (s : seq (term I B L)) :

(undup (get_bs s)) = (get_bs (undup s)).

Lemma mem_get_bs_undup (s: seq (term I B L)) :

get_bs (undup s) =i get_bs s.

Lemma get_bs_nil_all_not_b ts :

reflect (get_bs ts = [::]) (all (fun t=> negb (is_bnode t)) ts).

End EqTerm.

Listing 12: A few lemmas for terms with relabeling from the CoqRDF library.

4.1.6 Summary

We have presented a mechanized definition of RDF terms in Coq. We described this com-
ponent with the inductive type term, for which we derived math-comp’s structures that
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allow us to deal with equality, choice, countability and partial order. Aiming towards for-
malizing RDF isomorphism we defined the notion of blank node mappings. We then define
relabeling_term, to adapt the interface of a function between blank nodes to a function be-
tween terms. Afterwards, we specified the conditions for a map mu in which relabeling_term

mu meets the blank node mapping’s specification. Subsequently, we developed abstractions
to reason about sequences of blank nodes. Next, we present an example defining concrete
types of IRIs, blank nodes, literals, and mappings, which we use to instantiate, relabel, and
pose propositions about CoqRDF terms. We end the term’s subsection by developing a library
covering the term’s polymorphic identities, as well as properties which can be derived when
terms are equipped with equality.

In the next section we define RDF triples, and describe some properties of our definition
of triples that have an impact when reasoning about triple’s equality. Subsequently, we
define an encoding for equipping triples with math-comp’s structures. We extend the notion
of relabeling to triples, and also define abstractions to reason about the triple’s terms and
blank nodes set. At the end we develop a library for reasoning about RDF triples. We
extend the term’s polymorphic identities, and add lemmas about the interaction between
our previously defined concepts and the new abstractions. Furthermore, we explore these
interactions in contexts with different assumptions about terms, but mainly when they have
an equality operator.

4.2 CoqRDF Triples

In this section we present an implementation of RDF triples in Coq. We model them to be
well-formed by construction. Following the structure of the previous chapter, we start by
giving an encoding for triples and equipping them with math-comp’s canonical structures;
we provide some details about equality, and then we extend previously defined notions up to
the scope of triples. We also give mechanical specifications to characterize our definitions.
Next, we continue illustrating how to define concrete triples, and propositions about them,
using CoqRDF. We end by exploring how these notions interact together, leaving as a result a
mechanized library to reason about RDF triples.

4.2.1 Triples definition

RDF triples were introduced in Section 3.3 as 3-tuples of RDF terms. The triple’s terms have
to satisfy the following properties: the subject has to be an IRI or a blank node; the predicate
an IRI; and the object an IRI, blank node or literal. We reflect this in our triple’s definition,
which is presented in Listing 13. We define RDF triples as a record. As per terms, triples
are parameterized by three types: the type of IRIs, blank nodes and literals. Triples have
five fields: three terms and two proofs. The three terms account for the subject, predicate
and object, and the propositions require that the subject is an IRI or a blank node, and that
the predicate is an IRI. Note that there is no need to add a proposition for the object, as
terms are always an IRI, blank node or literal, by definition, as we illustrate in Listing 14.
The way we define triples makes checking its well-formedness trivial. Every triple carries the
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Record triple (I B L : Type) :=

mkTriple

{ subject : (term I B L)

; predicate : (term I B L)

; object: (term I B L)

; subject_in_IB: is_in_ib subject

; predicate_in_I: is_in_i predicate

}.

Listing 13: RDF triples defined as a record.

Remark term_def (I B L : Type) (t : term I B L) :

is_iri t || is_bnode t || is_lit t.

Proof. by case t. Qed.

Remark triple_spec_wf t :

is_in_ib (subject t) && is_in_i (predicate t) && is_in_ibl (object t).

Proof. by case t=> ? ? []? /= -> ->. Qed.

Listing 14: A term is either an IRI, a blank node, or a literal; and a proof that the triples
are well-formed.

proofs accounting for its own well-formedness; therefore to check that a triple is well-formed
it suffices just to project the proofs carried by every triple; we do so in Listing 14.

4.2.2 Triples equality

Our well-formed by construction design comes with a cost. To show that two records are
propositionally equal, one has to show the equality of each of its fields. Triples, as we defined
them, carry proofs. It would become technical if we had to show equality of proofs. Luckily
as explained in Subsection 2.4.5, when a proof comes from a decision procedure, then two
proofs of the same proposition are always equal. Then, to conclude that two triples are the
same, it suffices to show just that their subjects, predicates and objects are equal. We need
this property formalized in order to define triples’ encoding. We do so in Listing 15, where
we deal with the proof’s equality using proof irrelevance.

4.2.3 Triples encoding

With the purpose of equipping our triples with math-comp’s infrastructure we define an
encoding for triples. In Listing 16 we define how to encode a triple tr : triple I B L

into the term I B L * term I B L * term I B L type. Similarly, we define a decoding
to restore such a triple, as well as a lemma stating that the encoding and decoding cancels
out. An important remark about these definitions is how we handle the carried proofs.
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Lemma triple_inj (I B L : Type) (t1 t2 : triple I B L) :

subject t1 = subject t2 ->

predicate t1 = predicate t2 ->

object t1 = object t2 ->

t1 = t2.

Proof.

case: t1 t2 => [s1 p1 o1 sin1 pin1] [s2 p2 o2 sin2 pin2] /= seq peq oeq.

subst; congr mkTriple; exact: eq_irrelevance.

Qed.

Listing 15: To conclude triples’ equality it suffices to show the equality of its subjects,
predicates and objects.

When encoding the triple we forget the proofs, and when decoding, since not every 3-tuple
of terms is a triple, we have to check whether the triple’s conditions are satisfied. Then,
when proving that these definitions cancel out we take advantage of a property of functions.
The predicate behind triple’s proofs is decided with a function, and thus, it gives the same
result when applied to the same arguments. As we encoded a triple whose terms satisfied
the well-formedness conditions, when we decode it back to a triple, its terms will also satisfy
those conditions. We then use those definitions to transfer math-comp’s structures.

Having the triples defined and equipped with math-comp structures, we proceed to de-
clare how to extract triple’s terms and blank nodes. A triple’s terms are the set of terms used
in a statement. Therefore, being a member of a triple means to belong to that set of terms.
We formalize those notions in Listing 17. We define the triple’s terms set (terms_triple) as
the duplicate-free sequence of the subject, predicate and object. We extend that definition
to reason about blank nodes (bnodes_triple); we filter the terms set using the is_bnode

predicate. Math-comp defines abstractions to work with membership, which can be trans-
ferred to triple by declaring the predicate which corresponds to membership. We declare
that predicate to be sequences’ membership of the triple’s terms set. This also allows us to
access math-comp’s _ \in _ notation. For stating that “a term trm is in the set of terms of
the triple t”, we write trm \in t. It is worth mentioning that trm \in t works because the
inductive term is already equipped with an eqType. Coq’s type inference system is able to
use the term’s equality predicate to decide membership. Having the _ \in _ notation gives
us infrastructure to work with membership and a concise syntax to express it. If a term
belongs to a triple, it can bring us useful equations to work with; for example let us say we
have trm \in t, then trm is either the subject, predicate or object of the triple as we present
in Listing 18.

4.2.4 Relabeling triples

To formalize the isomorphism relation we need to extend our notion of relabeling for triples,
and eventually, when defining graphs, extend the notion for them as well. We define the
relabeling of a triple under a map as the triple resulting after relabeling every term under
that map; the mechanized implementation is presented in Listing 20. As every triple is well-
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Section CodeTriple.

Variables (I B L : Type).

Implicit Type tr : triple I B L.

Definition code_triple tr : (term I B L * term I B L * term I B L)%type :=

let: mkTriple s p o _ _ := tr in (s, p, o).

Definition decode_triple (t : (term I B L * term I B L * term I B L)%type) :=

let: (s, p, o) := t in

if insub s : {? x | is_in_ib x} is Some ss then

if insub p : {? x | is_in_i x} is Some pp then

Some (mkTriple o (valP ss) (valP pp))

else None

else None.

Lemma pcancel_code_decode : pcancel code_triple decode_triple.

Proof.

case=> s p o ibs ip /=.

case: insubP=> [u uP us |]; last by rewrite ibs.

case: insubP=> [v vP vs |]; last by rewrite ip.

by congr Some; apply: triple_inj.

Qed.

End CodeTriple.

Listing 16: Triples encoding.
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Definition terms_triple (I B L: eqType) (t : triple I B L) : seq (term I B L) :=

let (s,p,o,_,_) := t in undup [:: s ; p ; o].

Definition bnodes_triple (t : triple I B L) : seq (term I B L) :=

filter (@is_bnode I B L) (terms_triple t).

Canonical triple_predType (I B L : eqType):=

PredType (pred_of_seq \o (@terms_triple I B L)).

Listing 17: Functions to extract terms and blank nodes from a triple, and a predicate type
declaration.

Lemma mem_triple_terms (I B L : eqType) (trm : term I B L) (t : triple I B L) :

trm \in t = [|| (trm == (subject t)),

(trm == (predicate t)) |

(trm == (object t))].

Listing 18: The specification of term’s membership to a triple.

formed by construction, we must prove that the resulting triple preserves its well-formedness.
It is then left to prove that the subject remains as an IRI or blank node, which we do by
applying the lemma relabeling_term_preserves_is_in_ib; and that the predicate is still
an IRI, which we prove by applying the lemma relabeling_term_preserves_is_in_i; both
lemmas are available in our GitHub repository. The notion of relabeling we have just defined
differs a bit from the last clause of the RDF isomorphism (3.1), the latter does not relabel the
predicate: The triple (s, p, o) is in G if and only if the triple (M(s), p, M(o)) is in G′. As
relabeling does not change the IRI contained by the term, we consider that it is reasonable to
relabel the predicate as well; it will only update the term’s blank node type. That decision
forces triples to remain homogeneous with respect to the IRIs’, blank nodes’ and literals’
type, which gives rise to a question: when modeling resources, do the terms used within an
RDF graph come from the same set of IRIs, blank nodes and literals? The sets of IRIs, and
literals can be considered universal since they are defined extensionally by the standard, but
for the case of blank nodes this is not specified. Since we can not compare terms indexed
by different blank nodes because of type constraints, we will consider that the set of blank
nodes is also universal.

4.2.5 Illustrating triples

Continuing with the example terms that we defined in the previous section, we define example
triples using such terms. In Listing 19 we define an alias for the constructor of triples mkT,
which instantiate the type of IRIs, blank nodes, and literals with the types iri_t, bn_t, and
lit_t, respectively (see Listing 10). We also define an alias for the type of triples instantiated
with iri_t, bn_t, and lit_t. Next, we declare three triples, each named with the statement
it represents; for example, the triple z_isA_sonata represents the triple with the blank node
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:0 :Sonata:isA

:1 :Sonata:isA

:1 :1781:year

Figure 4.1: Visual representation of the triples defined in Listing 19.

Bn 0 as the subject, the IRI I "isA" as the predicate, and the IRI I "sonata" as the object.
The tactic refine generates one subgoal for every underscore in its argument, where the type
of the generated subgoal is the type of the argument where the underscore is placed. In the
case of z_isA_sonata, refine opens two goals, one of type is_in_ib (Bn 0) and the other
one of type is_in_i (I "isA"). Both subgoals are solved by computation by prepending
by. Finally, we present an example exhibiting the equality between o_is_a_sonata, and the
relabeling of z_isA_sonata under mu. In Figure 4.1 we visually display the triples defined in
Listing 19.

Definition mkT := @mkTriple iri_t bn_t lit_t.

Definition tr_t := triple iri_t bn_t lit_t.

Definition z_isA_sonata : tr_t.

by refine (@mkT (Bn 0) (I "isA") (I "sonata") _ _). Defined.

Definition o_isA_sonata : tr_t.

by refine (@mkT (Bn 1) (I "isA") (I "sonata") _ _). Defined.

Definition o_year_1781 : tr_t.

by refine (@mkT (Bn 1) (I "year") (L ("number","1781")) _ _). Defined.

Example relabeling_a_triple_eq :

relabeling_triple mu z_isA_sonata == o_isA_sonata = true. by []. Qed.

Listing 19: Examples of equality and relabeling at the level of triples.

Before defining RDF graphs we explore how triple’s relabeling interacts with triple’s
terms and blank nodes. We extend the term’s identities to triples, under polymorphism and
equality. We define the notion of ground triples : triples that do not contain blank nodes.
For example, two lemmas we prove are: that relabeling_triple distributes with respect to
function composition; and that if a map is injective, then the terms of a relabeled triple are
the same as relabeling the terms of a triple. We present a few more lemmas of our library in
Listing 21. The complete list can be found in the file Triples.v of our GitHub repository.
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Definition relabeling_triple B1 B2 (mu : B1 -> B2) (t : triple I B1 L)

: triple I B2 L :=

let (s, p, o, sin, pin) := t in

mkTriple (relabeling_term mu o)

((iffLR (relabeling_term_preserves_is_in_ib mu s)) sin)

((iffLR (relabeling_term_preserves_is_in_i mu p)) pin).

Listing 20: The relabeling of a triple under a map.

Section PolyTriple.

Variables I B B1 B2 L : Type.

Implicit Type t : triple I B L.

Definition is_ground_triple t : bool :=

let (s,p,o,_,_) := t in

~~ (is_bnode s || is_bnode p || is_bnode o).

Lemma relabeling_triple_comp (mu1 : B -> B1) (mu2 : B1 -> B2) t :

relabeling_triple (mu2 \o mu1) t =

relabeling_triple mu2 (relabeling_triple mu1 t).

Lemma relabeling_triple_ext mu1 mu2:

mu1 =1 mu2 -> relabeling_triple mu1 =1 relabeling_triple mu2.

Lemma ground_triple_relabeling t (mu : B -> B) :

is_ground_triple t -> relabeling_triple mu t = t.

Lemma relabeling_triple_inj (mu : B -> B1) (mu_inj : injective mu) :

injective (@relabeling_triple B B1 mu).

End PolyTriple.

Section EqTriple.

Variables I B L : eqType.

Implicit Type t : triple I B L

Lemma tripleE t1 t2 : t1 == t2 = [&& (subject t1) == (subject t2),

(predicate t1) == (predicate t2) &

(object t1) == (object t2)].

Lemma terms_relabeled_triple (B1 B2: eqType) (t : triple I B1 L)

(mu: B1 -> B2) (inj_mu: injective mu) :

terms_triple (relabeling_triple mu t) =

map (relabeling_term mu) (terms_triple t).

End EqTriple.

Listing 21: A few lemmas for triples with relabeling from the CoqRDF library.
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4.2.6 Summary

We have presented a definition of RDF triples in Coq. We equipped them with math-comp’s
structures, thanks to an encoding of triples. Targeting the formalization of isomorphism, we
extended the notion of relabeling to triples, and also defined abstractions to reason about
the triple’s terms and blank nodes set. With those definitions we declare triples as a pred-
icate type, providing infrastructure to reason about triple’s membership. Using CoqRDF we
illustrate how to define triples and state propositions about them. Next, we explored the
interactions of triples with relabeling and our newly defined abstractions. These interactions
were studied under different assumptions about the term’s structure. As a result we obtain
a library which allows us to reason formally about triples.

In the next section we present a definition of RDF graphs in Coq. We make a decision on
how to model sets, and discuss the implications of our decision with respect to equality. We
derive math-comp’s canonical structures for RDF graphs and define abstractions to reason
about graph projections, such as their sets of terms and blank nodes. The notion of relabeling
is extended for graphs, and we develop a library which allows us to reason formally about
the RDF model.

4.3 CoqRDF Graphs

In this section we present a definition of well-formed RDF graphs. We persevere in our
design of making definitions well-formed by construction. This means that every operation
with an RDF graph as output is going to require a proof witnessing the output’s well-
formedness. We include additional lemmas to tackle the challenge posed by well-formed by
construction designs. We equip graphs with different math-comp’s structures, which allows
us to provide the implementation of more graph operations. In particular, we define a set-
equality relation for identifying graphs, and explore how this notion interacts with the rest of
the RDF’s components and abstractions. We illustrate with examples defining RDF graphs,
and declaring propositions about them using CoqRDF.

4.3.1 RDF graphs definition

RDF graphs were presented in Section 3.3 as sets of RDF triples. We then have to make a
choice on how to model them. There are mainly two options to model sets: to work with
finite types or to work with duplicate-free sequences; both options are already supported
by the math-comp library. The two options demand a different structure from its type pa-
rameters, on the one hand, fintype would require the type parameters to be equipped with
equality, canonical choice and countablilty. On the other hand, duplicate-free sequences only
require its type parameters to be equipped with equality. Demanding more structure from
the type parameters means the structure has more restrictions when applying our model to
concrete types, as in examples in Listings 11 and 19. As discussed in Sections 4.1 and 4.2,
the RDF model has a part of its theory that only relies on equality, this is also the case for
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RDF graphs. Finite types are capable of modeling sets, but the infrastructure they provide
is too low level for our requirements. The use of finite types often introduce unwanted inter-
dependencies, and hence, difficulties when thinking of long term support. On the other hand,
sequences are easy to use, and as they are a common and popular choice they enjoy a vast
amount of infrastructure, which we can easily transfer to our definition of graphs. Modeling
sets with duplicate-free sequences has the downside of having to make definitions and results
order-agnostic. Besides that, fintypes introduce unwanted interdependencies, and that are
internally with duplicate-free sequences; we chose the second option: the duplicate-free se-
quences, and deal with the theory of permutations when it becomes necessary. Sequences
have to deal explicitly with permutations, but it allows us to keep RDF theory within its
necessary requirements, instead of adding conditions that are sufficient but not necessary.
We model RDF graphs with a record, which we present in Listing 22. RDF graphs are pa-
rameterized by three types: I, B and L, as in term and triple. We declare two fields for
the record: graph, a sequence of triples; and ugraph, a proof stating that the field graph

is duplicate-free, which we can formalize using the predicate uniq from the math-comp’s
sequences library. Note that I, B and L are required to be eqType. Otherwise, we would not
be able to decide if an element is duplicated, and hence, as our definitions are well-formed
by construction, a graph definition parameterized by mere types would not suffice to enforce
the graph’s well-formedness notion.

Record rdf_graph (I B L : eqType) :=

mkRdfGraph {

graph :> seq (triple I B L) ;

ugraph : uniq graph

}.

Listing 22: RDF graphs definition in Coq.

4.3.2 RDF graphs encoding

RDF graphs are proof carriers (see 2.4.5), but proof irrelevance (see 2.4.5) also applies in this
context because uniq is a boolean predicate. We apply the same strategy used for triples
to encode graphs, proving graph_inj, a lemma stating that two RDF graphs are equal if
their sequences are equal. In Listing 23 we define our encoding as projecting the sequence
from the graph. The decoding consists in checking that the sequence is duplicate free. As we
have been doing in this chapter, we use these functions to transfer math-comp’s structures
to graphs.

4.3.3 RDF graphs equality

We have declared RDF graphs as an eqType, meaning we have an equality operator for our
structure. However, this operator does not match the notion of equality we want to capture.
Let us explain with an example. Let us have two different triples t1 t2: triple I B L,
and two RDF graphs G and H defined as follows G := mkRdfGraph [:: t1; t2] _., and
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Section CodeRdf.

Variables I B L : eqType.

Definition code_rdf g : (seq (triple I B L))%type :=

graph g.

Definition decode_rdf (s: seq (triple I B L)) : option (rdf_graph I B L) :=

if insub s : {? x | uniq x} is Some us

then Some (mkRdfGraph (valP us))

else None.

Lemma pcancel_code_decode : pcancel code_rdf decode_rdf.

Proof. case=> g ug=> /= ; rewrite /decode_rdf.

case: insubP=> [? _ ?|]; last by rewrite ug.

by congr Some; apply: rdf_inj.

Qed.

End CodeRdf.

Listing 23: Graph’s encoding and decoding definition.

H := mkRdfGraph [:: t2; t1] _. The graphs G and H are built with the same pair of
triples, they are placed in a different order on the graph’s sequences. Testing for equality
between these two graphs (G == H) would result to be false, even if G and H are the same
graph; remember that they are defined as sets. The way we have defined them, RDF graphs
are using sequence equality as their equality operator, that is, pointwise equality. This is
indeed the predicate that matches our graph’s propositional equality, but does not coincide
with the structure we are trying to model. Having this mismatch between propositional
equality and RDF graph’s equality poses a challenge. We will have to define an internal
operation to reason about RDF graphs which are same. This operation corresponds to
set equality, since RDF graphs are defined as triples set. We are looking for a predicate
eqb_rdf, which relaxes sequence’s equality by accepting sequences with the same items, that
would be, sequence equality up to permutation, which math-comp defines as perm_eq. Math-
comp’s definition has an additional restriction; perm_eq is sensitive to the repetition of items.
However, because of ugraph we already know that every item in a graph appears just once.
i.e. we do not have to worry about this additional requirement, so perm_eq fits perfectly
for modeling RDF graphs’ equality. Indeed, in Listing 24 we prove that two graphs have
the same elements if and only if they are sequence-equal up to permutation. Math-comp’s
definition of equality up to permutation provides us with good infrastructure to reason about
the permutation theory of sequences. In particular, perm_eq is proved to be an equivalence
relation, i.e. reflexive, symmetric and transitive, which give us a good starting point for our
graph’s notion of equality.

50



Fact rdf_perm_mem_eq {I B L : eqType} (g1 g2 :rdf_graph I B L) :

(perm_eq g1 g2) <-> (g1 =i g2).

Listing 24: Two graphs have the same elements if and only if their sequences are equal up
to permutation.

4.3.4 RDF projections

We now define the abstractions to reason about graph’s terms and blank nodes. A design
issue arises from our intentions. Depending on the level we choose to define these abstractions
we are going to have different amounts of technical difficulties when stating lemmas about
them. Let us explain with an example. In Listing 25 we present two ways of extracting
graph’s terms: the first one defined at the level of sequences of triples, and the second one
defined at the level of graphs. On whichever level we decide to define it, the abstraction can
be implemented similarly: by extracting the terms of every triple in the graph, and then
merging the results while removing the duplicated terms. Both implementations terms_ts
and terms look very similar, and indeed they compute the same results. However, let us
compare visually how formalizing a property looks for these two definitions. For our example
we are using a property stating how to deal with terms when the underlying sequence of
our graph is a cons. The two lemmas terms_ts_cons and terms_cons state the same
property: they state how the abstraction of graph’s terms interacts with cons and sequences
concatenation. The lemma terms_ts_cons expresses information about how terms, cons,
and concatenation interact. The lemma terms_cons also accounts for that, and, although
irrelevant for the operation, also introduces information that graphs are duplicate free. As
can be appreciated in Listing 25, terms_cons requires the proof us, which we need to handle
along the statement; for example, since RDF graphs require a proof of its well-formedness,
we have to use uniq_tail : (uniq (a :: t)) -> uniq t to define a proper RDF graph
on the right-hand side of the equation. As a result, the formal statement of terms_cons gets
polluted with unnecessary details about RDF graphs; and worse, the effort of handling the
graph well-formedness proof is needless, as we do not use it in the proof when extracting the
terms, and the proof is just dropped in the end. To use this operation with graphs, we have to
define a coercion from RDF graphs to sequences of triples, which we declare as the projection
of the graph field. By dropping the ugraph proof we allow the operation to compute further,
and to ease the context during proofs. This same reasoning applies to the abstractions of
the graph’s set of blank nodes, which we define in Listing 26 under the name bnodes_ts.
We also define get_bts, a version of bnodes_ts which removes the term’s abstraction and
allows us to reason about blank nodes directly. We link the two versions with the lemma
bnodes_map_get_bts, which states that the sequences produced by bnodes_ts and get_bts

are equal, modulo the blank node’s constructor Bnode.
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Section terms_cons.

Variables I B L : eqType.

Definition terms_ts (ts : seq (triple I B L)) : seq (term I B L) :=

undup (flatten (map (@terms_triple I B L) ts)).

Definition terms (g : rdf_graph I B L) : seq (term I B L) :=

undup (flatten (map (@terms_triple I B L) (graph g))).

Lemma terms_ts_cons (trpl : triple I B L) (ts : seq (triple I B L)) :

terms_ts (trpl :: ts) = undup (terms_triple trpl ++ (terms_ts ts)).

Lemma terms_cons (trpl : triple I B L)

(ts : seq (triple I B L)) (us : uniq (trpl :: ts)) :

terms (mkRdfGraph us) =

undup (terms_triple trpl ++ (terms (mkRdfGraph (uniq_tail us)))).

End terms_cons.

Listing 25: Comparing the definition terms projection defined at two different levels of ab-
straction.

Section bnodes_cons.

Variables I B L : eqType.

Definition bnodes_ts (ts : seq (triple i b l)) : seq (term i b l) :=

undup (filter (@is_bnode i b l) (terms_ts ts)).

Lemma bnodes_ts_cons (trpl : triple I B L) (ts : seq (triple I B L)) :

bnodes_ts (trpl :: ts) = undup ((bnodes_triple trpl) ++ (bnodes_ts ts)).

Definition get_bts (ts : seq (triple i b l)) : seq b :=

get_bs (bnodes_ts ts).

Lemma bnodes_map_get_bts ts : bnodes_ts ts = map (fun b=> Bnode b) (get_bts ts).

End bnodes_cons.

Listing 26: Abstraction to reason about graph’s set of blank nodes.

4.3.5 RDF graph relabeling

There are properties, especially when thinking about relabeling graphs, that do need graph’s
well-formedness proof. However, when that is the case, it is also convenient to show those
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Definition relabeling_seq_triple

(I B1 B2 L: Type) (mu : B1 -> B2)

(ts : seq (triple I B1 L)) : seq (triple I B2 L) :=

map (relabeling_triple mu) ts.

Definition relabeling

(I B1 B2 L: eqType) (mu : B1 -> B2)

(g : rdf_graph I B1 L) (urel : uniq (relabeling_seq_triple mu (graph g)))

: rdf_graph I B2 L :=

@mkRdfGraph I B2 L (relabeling_seq_triple mu (graph g)) urel.

Listing 27: Graph’s relabeling definition

things separately, meaning that we can separate the two things: the property we want to
prove, and that making use of such property preserves the graph’s well-formedness. By
composing those two requirements we then define RDF graph relabeling. We first define how
to operationally perform a relabeling; presented under the name relabeling_seq_triple in
Listing 27, and ask for a proof witnessing that well-formedness is preserved, as we do in the
definition relabeling. Note that in the definition of relabeling we parameterize the proof
of the graph well-formedness. We cannot know beforehand which argument is supporting the
proof. Indeed, depending on the mapping used to relabel a graph the proof can vary. For
example, if the mapping is injective the result would preserve the lack of duplicates because
of that fact. Another example is the case of mapping two different blank nodes to the same
blank node, which may generate a duplicated triple. This is completely fine if we remove
one of the duplicates; then the argument would be that we took care of the duplication
we created by removing it afterwards. These two examples provide a well-formed graph as
a result. Moreover, although removing duplicates would always serve as an argument, it
does not serve our purpose of formalizing isomorphism, because an isomorphism maps blank
nodes in a bijective manner, and hence they do not create duplicates. As it can be useful
for other applications we define a constructor for RDF graphs where duplicates are removed
automatically, which we name mkRdf.

4.3.6 Illustrating RDF graphs

Continuing with the examples we defined in the previous sections, we now define a few RDF
graphs using the mkRdf graph constructor. In Listing 28 we define four RDF graphs, each
one with two triples. First, we declare two graphs OSonataG and OSonataG_perm whose
underlying sequence are set-equal. Both OSonataG and OSonataG_perm state that :1 is a
sonata composed in 1781. These two graphs are compared in the example graph_eq stating
that they are set-equal, a proof which is followed by computation. We declare two more
graphs ZSonataG and relabeled_Z, the former states that :O is a sonata, and :1 was
composed in 1781, and the latter is the graph ZSonataG relabeled under mu. The two final
examples prove that relabeled_Z and OSonataG are set-equal, and that ZSonataG is different
from the empty graph. In Figure 28 we present the visual representation of the graphs we
defined in Listing 28. On the left side are OSonataG at the top and OSonataG_perm at the
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bottom. At the right side we display ZSonataG and relabeled_Z, the former at the top, and
the latter at the bottom.

:1 1781:year

:Sonata

:isA

:1 :Sonata:isA

1781

:year

:(mu 0) :Sonata:isA

:(mu 1) 1781:year

:0 :Sonata:isA

:1 1781:year

Figure 4.2: Visual representation of the graphs defined in Listing 28

Definition OSonataG := mkRdf [:: o_isA_sonata; o_year_1781].

Definition OSonataG_perm := mkRdf [:: o_year_1781 ; o_isA_sonata ].

Definition ZSonataG := mkRdf [:: z_isA_sonata; o_year_1781].

Definition relabeled_Z := (relabeling_undup mu ZSonataG).

Example graphs_eq :

eqb_rdf OSonataG OSonataG_perm = true. by []. Qed.

Example graphs_relabel_eq :

eqb_rdf relabeled_Z OSonataG = true. by []. Qed.

Example graphs_prop_neq :

eqb_rdf ZSonataG (mkRdf [::]) = false. by []. Qed.

Listing 28: Examples of equality and relabeling at the level of RDF graphs.

Finally, we explore the interaction between relabeling and blank nodes. Particularly, we
study how membership and mapping’s properties behave around bnodes_ts and relabeling.
We list a few lemmas about these interactions in Listing 29. For a complete view of the
lemmas we proved we refer the reader to the file Rdf.v from the repository.

4.4 Summary

In this section we presented a characterization of well-formed RDF graphs defined in Coq.
Following math-comp’s workflow, we derive canonical structures for RDF graphs. We point
out the difference between the propositional equality of our definition and the one expected
for RDF graphs. We then propose a predicate to decide graph equality which satisfies RDF’s
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specification. We also propose abstractions to project graph’s terms and blank nodes. Subse-
quently, the relabeling notion is extended to RDF graphs. Next, we illustrate using CoqRDF to
define graphs, and declare propositions about them. Finally, we explore the interaction be-
tween the abstractions and definitions we have declared.

In the chapter we defined RDF terms, triples and graphs following a well-formed by con-
struction design. We equipped each RDF component with several of math-comp’s canonical
instances. Towards formalizing the notion of isomorphism we defined the notion of a blank
node mapping, and developed, in Coq, a mechanized definition meeting that specification,
which we named relabeling. We extended the notion of relabeling to provide an interface
for every component in the RDF model. For every abstraction we define, we make sure
to preserve well-formedness. We illustrated with examples using CoqRDF, where we declare
concrete terms, triples, and RDF graphs, and made propositions about them. With our
implementation we have covered a mechanized definition of the RDF model, and its core
abstractions, which can be used to reason about its components.

In the next part we dive into the notion of isomorphism, presenting how this notion be-
haves within a simpler structure, namely directed graphs. That gives us a clear understanding
of what to expect from isomorphism at the level of RDF. We then tackle the formalization
of RDF isomorphism by identifying how the different aspects of isomorphism are composed.
This approach allows us to gradually reach a mechanical formalization of RDF isomorphism.
We then apply our implementation to a special kind of algorithm for RDF graphs: iso-
canonical mappings. These algorithms decide which graph represents all the other graphs
within the same isomorphism class. We provide an implementation of an iso-canonical map,
and study the structural assumptions that suffice to prove the iso-canonical mapping’s spec-
ification.
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Variables I B B1 B2 : eqType.

Implicit Type g : rdf_graph I B L.

Lemma terms_ts_relabeled_mem (ts : seq (triple I B1 L)) (mu: B1 -> B2) :

(terms_ts (relabeling_seq_triple mu ts)) =i

(map (relabeling_term mu) (terms_ts ts)).

Lemma bnodes_ts_relabel_inj (ts: seq (triple I B1 L)) (mu: B1 -> B2)

(mu_inj : injective mu):

bnodes_ts (relabeling_seq_triple mu ts) =

(map (relabeling_term mu) (bnodes_ts ts)).

Lemma bijective_eqb_rdf mu nu g1 g2 : forall us1 us2,

cancel mu nu ->

eqb_rdf (@relabeling _ _ mu g2 us1) g1 ->

eqb_rdf g2 (@relabeling _ _ nu g1 us2).

Lemma bnodes_map_get_bs ts :

bnodes_ts ts = map (fun b=> Bnode b) (get_bs (bnodes_ts ts)).

Lemma perm_eq_bnodes_relabel ts1 ts2 mu :

perm_eq (get_bs (bnodes_ts (relabeling_seq_triple mu ts1)))

(get_bs (bnodes_ts ts2)) ->

perm_eq (undup [seq mu i | i <- get_bs (bnodes_ts ts1)])

(get_bs (bnodes_ts ts2)).

Lemma perm_eq_bnodes_relabel_inj_in ts1 ts2 mu :

{in (get_bs (bnodes_ts ts1))&, injective mu} ->

perm_eq (get_bs (bnodes_ts (relabeling_seq_triple mu ts1)))

(get_bs (bnodes_ts ts2)) ->

perm_eq [seq mu i | i <- get_bs (bnodes_ts ts1)]

(get_bs (bnodes_ts ts2)).

Lemma can_bs_can_rtbs ts (mu nu: B -> B) :

{in get_bs (bnodes_ts ts), nu \o mu =1 id} ->

{in ts, [eta relabeling_triple (nu \o mu)] =1 id}.

Lemma get_bs_map s mu : all (@is_bnode I B L) s ->

(@get_bs I B L (map (relabeling_term mu) s)) = map mu (get_bs s).

Lemma can_bs_can_rtbs ts (mu nu: B -> B) :

{in get_bs (bnodes_ts ts), nu \o mu =1 id} ->

{in ts, [eta relabeling_triple (nu \o mu)] =1 id}.

Listing 29: A few lemmas for graphs with relabeling from the CoqRDF library.
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Part III

An application: Reasoning about
iso-canonical algorithms
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In this part we dive into isomorphism. In Chapter 5, we start by presenting how isomor-
phism behaves on a simple structure: undirected graphs. This allows us to extrapolate what
to expect from isomorphism with respect to RDF graphs. We continue by decomposing RDF
isomorphism components and studying them, which leads us to extend CoqRDF with a for-
mal and operational definition of RDF isomorphism. We prove that RDF isomorphism is an
equivalence relation. First we give a pen and paper proof, which we then formalize in CoqRDF.
We remark on the proof’s similarities, and the challenges of the mechanized formalization of
this property.

Going further with isomorphism, we present the notion of iso-canonical mappings, and
formalize their specification in Coq, in Chapter 6. Afterwards, we present κ-mapping , an
instance of an iso-canonical mapping, which we then implement. Subsequently, we study what
suffices to prove that κ-mapping is correct with respect to our specification of iso-canonical
mappings.
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Chapter 5

Isomorphism

In this chapter we cover the notion of isomorphism. We present the background of iso-
morphism in the graph theory field, in Section 5.1, bringing us a better understanding of
isomorphism’s roots, which subsequently leads us to describe precisely what properties to
expect from RDF isomorphism in Section 5.2. We then decompose RDF isomorphism, mod-
ularize the study of its conditions, and formalize them in Coq in Section 5.3. Next, we
propose a boolean predicate, deciding whether a particular mapping is an isomorphism be-
tween two given RDF graphs. This predicate allows us, first, to study the properties of RDF
isomorphism, such as that it is an equivalence relation; and second, it allows us to explore the
interaction between isomorphism and graph relabeling. As a result we obtain a mechanically
formalized relation of isomorphism for RDF graphs, which we prove to be an equivalence
relation, and a formalized library of lemmas about RDF graphs and isomorphisms.

5.1 Graph isomorphism

In this section we introduce basic notions of graph theory. The literature has plenty of graph
theory definitions, that in general do not differ much, apart from subtleties. Most of the
definitions we use come from Diestel’s graph theory book [21].

Definition 5.1 A directed graph is a pair of sets (V,E), such that E ⊆ V × V .

We denote the number of vertices of a graph G with |G|. The usual way to draw a graph
is to display the |V | vertices, and to connect every pair (v, u) ∈ E with an arrow from v to u.
When the two edges (v, u) and (u, v) are present we draw a line connecting v and u, instead
of an arrow. We illustrate with a graph drawing in Figure 5.1a.

Definition 5.2 (Adjacency) Two vertices x, y of G are adjacent, or neighbors, if and only
if (x, y) or (y, x) are an edge of G.

In the graph in Figure 5.1a, the vertices A and B are adjacent, and the vertex E has no
neighbors. Many properties and definitions depend on specific characteristics of the vertices’
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A

B

C

D

E

(a) Graph on V := {A,B,C,D,E} and edge
set E := {(A,B), (A,C), (B,A), (C,D)}.

A

B

C

(b) Graph on V := {A,B,C} and edge set
E := {(A,B), (A,C), (B,A), (C,B)}.

Figure 5.1: Two graphs with different structure.

adjacency. For example, checking structure preservation depends on the preservation of
adjacency, and a map that preserves structure is called an isomorphism; we formalize this
notion in Definition 5.3.

Definition 5.3 (Graph isomorphism) Let G := (VG, EG) and H := (VH , EH) be two graphs.
A map φ is an isomorphism from G to H, if and only if, φ is bijective, and φ and φ−1 preserve
the adjacency of vertices, that is, (x, y) ∈ EG ⇐⇒ (φ(x), φ(y)) ∈ EH for all x, y ∈ VG. Two
graphs G and G′ are isomorphic, noted as G ≃ G′, if there exists an isomorphism from G to
G′.

Note that an isomorphism may not assign two, or more, vertices to the same result, e.g.,
the following would not be an isomorphism:

φ(x) =

{
B x is E or D

x otherwise

If we apply the map φ above to the graph in Figure 5.1a, we collapse the vertices B, D
and E into the vertex B, while preserving adjacency with respect to the result. However,
φ is not injective and therefore it cannot be an isomorphism. An isomorphism between two
graphs may sometimes be easy to guess, but sometimes it is not. In Figure 5.3 we present
an example of the latter. In this example, the isomorphism connecting the graph on the left
with the graph on the right is not evident, however these graphs are isomorphic under the
identity map. Taking the green vertex for example, we see that on the left side it has three
edges, one towards the blue vertex, another towards the pink one and another towards the
yellow one, which also happens in the graph on the right. This reasoning can be applied
to all nodes exposing the bijective map connecting the two graphs, and which also preserve
adjacency, thus the graphs are isomorphic, despite drawing them differently. Note the way
structure is preserved with an isomorphism. Vertices and edges are preserved. The first is
achieved because the mapping must be bijective, thus the number of nodes is maintained.
The second is achieved because the mapping and its inverse must preserve adjacency.
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Figure 5.3: Two isomorphic graphs drawn in different ways1.

Again, many notions arise from isomorphism. For example, there are classes of graphs
sharing properties with their isomorphic versions. Also, there are maps that output the
same results for isomorphic graphs. We describe these two notions in Definitions 5.4 and
5.5, respectively. An example of a graph property is to contain a triangle. If a graph G
contains three pairwise adjacent vertices, then so does every graph isomorphic to G. A graph
invariant could be, for example, the number of vertices of a graph. If the number of vertices
of a graph G is n, then for every graph G′ such that G ≃ G′ it holds that |VG′ | = n.

Definition 5.4 (Graph property) A class of graphs that is closed under isomorphism is
called a graph property.

Definition 5.5 (Graph invariant) A map taking graphs as arguments is called a graph in-
variant if it assigns equal values to isomorphic graphs.

In this section we have defined basic notions about graphs. These notions are useful to
us to understand RDF isomorphism, which we address in the next section. Afterwards, in
Chapter 6, we formalize the notion of iso-canonical algorithms, i.e., maps that are graph
invariant and return graphs that are isomorphic to the input.

5.2 RDF isomorphism

Since RDF is a graph based data model, we may look at RDF definitions through the lense
of graphs. Definitions would not fit directly, as RDF has more structure, but they can be
adapted. Let us have another look at the definition of RDF isomorphism (Def 3.1). We show
again the RDF isomorphism specification in Definition 5.6.

1Drawing from the graph isomorphism’s Wikipedia article.
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Definition 5.6 Two RDF graphs G and G′ are isomorphic (that is, they have an identical
form) if and only if there exists a bijection M between the sets of nodes of the two graphs,
such that:

• M maps blank nodes to blank nodes.

• M(lit) = lit for all RDF literals lit which are nodes of G.

• M(iri) = iri for all IRIs iri which are nodes of G.

• The triple (s, p, o) is in G if and only if the triple (M(s), p, M(o)) is in G′.

With this definition, M shows how each blank node in G can be replaced with a new blank
node to give G′.

We notice some similarities with respect to the definition of graph isomorphism (Def
5.3), for example, that the mapping must be bijective. At the same time, the fourth clause
defines how to check that the adjacency is preserved, and the first three clauses define a
particular way of preserving adjacency. This particular manner of preserving adjacency tells
us that literals and IRIs are a structural part of RDF, while the blank nodes may vary. As
blank nodes represent the existence of a value, changing the blank node does not change the
meaning of the term, whereas if we change a literal for another one, it certainly modifies the
resource being described.

Having pointed out a few similarities between graph isomorphism and RDF isomorphism,
we explore the properties of RDF isomorphism. We focus particularly on proving that it is an
equivalence relation (Prop 5.7), i.e. RDF isomorphism is reflexive, symmetric and transitive.
We prove these properties in Lemmas 5.8, 5.9 and 5.10, respectively.

Proposition 5.7 RDF isomorphism is an equivalence relation.

Lemma 5.8 (RDF isomorphism is reflexive)
For any RDF graph G, G ≃ G.

Proof. By the existence of the identity map id, which is bijective. The id map assigns any
term to itself, moreover: it maps blank nodes to blank nodes. In the case of literals, the
proof is followed by the definition of id. The equation id(lit) = lit holds for all the nodes,
hence particularly for the nodes of G. Idem for IRIs. Finally, for any triple (s, p, o) in G,
then the triple (id(s), p, id(o)) = (s, p, o) is also in G and vice versa.
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Lemma 5.9 (RDF isomorphism is symmetric)
For all RDF graphs G and H, G ≃ H ⇐⇒ H ≃ G.

Proof. (if) As G ≃ H, there exists a bijection M satisfying the four requirements of RDF
isomorphism. Since M is bijective, there is M−1 canceling the action of M . Then, for every
triple (s, p, o) in H it follows that the triple (M−1(s), p, M−1(o)) is in G, and since G and
H are isomorphic, then every triple in H can be pictured as (M(s), p, M(o)); next as M is
bijective and M−1 cancels M , it holds that (M−1 ◦M(s), p, M−1 ◦M(o)) = (s, p, o) is in
G. The remaining conditions hold by contradiction. If M−1 does not map blank nodes to
blank nodes, then M did not as well, because M is a bijection. Similarly, if M−1 does not
map literals and IRIs to themselves, M did not as well. (only if) Idem.

Lemma 5.10 (RDF isomorphism is transitive)
For all RDF graphs G,H, I, if G ≃ H and H ≃ I, then G ≃ I.

Proof. Since G is isomorphic to H, and H is isomorphic to I, there exists two maps MGH ,
andMHI . Then, there existsMHI◦MGH , which is bijective because of composition of bijective
functions. It maps the blank nodes of G to blank nodes of I by the definition of composition.
The composition of functions mapping blank nodes to blank nodes also map blank nodes to
blank nodes, then MHI ◦MGH maps blank nodes to blank nodes. Similarly, for literals and
IRIs, as composition of functions mapping literals and IRIs to themselves, then MHI ◦MGH

maps literals and IRIs to themselves.

We have presented what we can expect from RDF isomorphism. We did this by extending
the notions of graphs to interpret them from an RDF perspective. Finally, we proved that
RDF isomorphism is an equivalence relation. In the next section, we mechanize a formal
definition of RDF isomorphism in Coq, and afterwards, we mechanize the proofs of Lemmas
5.8, 5.9, and 5.10.

5.3 CoqRDF isomorphism

In this section we mechanize, in Coq, the notion of RDF isomorphism. To do so, we decom-
pose RDF isomorphism by first defining the notion of pre-isomorphism, which we study, and
note its correspondence with specific aspects of RDF isomorphism. We develop a definition
of RDF isomorphism matching the specification of the W3C [18]. We prove that our mecha-
nized definition is an equivalence relation; we study RDF isomorphism further, which results
in a library of mechanized lemmas about RDF isomorphism.
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Section pre_isomorphism.

Variables I B L : eqType.

Definition is_pre_iso_ts (ts1 ts2 : seq (triple I B L)) (mu : B -> B) :=

perm_eq (map mu (get_bts ts1)) (get_bts ts2).

Definition pre_iso_ts (ts1 ts2 : seq (triple I B L)) :=

exists (mu : B -> B), is_pre_iso_ts ts1 ts2 mu.

End pre_isomorphism.

Listing 30: Pre-isomorphism definition.

5.3.1 Pre-isomorphism

First, note that the definition of RDF isomorphism (Def 5.6) asks for a bijection M between
two sets of nodes. Now, remember that if we have a graph (g : rdf_graph I B L), then its
blank nodes are projected with (get_bts g). With the abstractions provided by CoqRDF, we
are aiming to represent the image of a map for a certain finite-set of inputs. One possibility
is to explicitly enumerate the image of the map for the input set that is of our interest. To
do that, we make a correspondence between two sequences. The first sequence would be an
enumeration of the input set, and the second one the image of the input set under the map.
In Coq, we would state this as follows: given two sequences of triples ts1 ts2 and a map
of blank nodes mu : B -> B, if map mu (get_bts ts1) == (get_bts ts2), then mu maps
every element of get_bts ts1 in a bijective manner. We can establish the bijection locally,
because we have a one to one correspondence between two duplicate-free sequences. This
models our requirements, but as we are dealing with sets, if the correspondence matched a
different permutation of the sequence, the predicate would return an incorrect answer. We
correct that by building a predicate which considers the possibility of matching a permutation.
We formalize such a predicate in Listing 30 under the name is_pre_iso_ts; we also define its
propositional version as pre_iso_ts. Note that is_pre_iso_ts silently captures important
properties. For example, it captures that mu is injective in the ts1’s blank nodes set (i.e.
{in ts1&, injective mu}); and that ts1 and ts2 have the same number of blank nodes.
Another benefit of this definition is that it can be used on RDF graphs, because of the
coercion we defined from RDF graphs to sequences of triples.

Pre-isomorphism is a relation between two sequences of triples establishing a one-to-one
correspondence between its sets of blank nodes. We also say that a map witnessing that
relation is a pre-isomorphism. Note that all isomorphisms are pre-isomorphisms. Thus, to
prove that isomorphism is an equivalence relation, we prove that pre_iso_ts is an equivalence
relation as well. In Listing 31 we present the formal statements, whose proofs are available
in the CoqRDF repository. The proposition pre_iso_ts requires an explicit witness certifying
that the proposition holds. For reflexivity, we expose the identity. For transitivity, we expose
the composition of the given isomorphisms. Hence, these two proofs resemble mostly the pen
and paper ones in Lemmas 5.8 and 5.10. For the proof symmetry, it is also the case that it
resembles the pen and paper proof, but the challenge posed by its mechanical formalization
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Lemma pre_iso_ts_refl ts : pre_iso_ts ts ts.

Lemma pre_iso_ts_sym ts1 ts2 : pre_iso_ts ts1 ts2 <-> pre_iso_ts ts2 ts1.

Lemma pre_iso_ts_trans ts1 ts2 ts3 :

pre_iso_ts ts1 ts2 -> pre_iso_ts ts2 ts3 -> pre_iso_ts ts1 ts3.

Listing 31: Pre-isomorphism is an equivalence relation.

is bigger. The issue is that even if there is a map mu, such that the sets of blank nodes
are in correspondence through mu, and that this correspondence is modulo permutation, we
cannot extract the inverse directly. This context does not tell us which of the permutations
establishes the equality between the two sequences. So, we devise a mechanism to invert
a map mu modulo permutation. To do that, first, we generate an equality between the
two sequences, to be able to invert the map connecting them. Then, we reason without
loss of generality. We assume an equality, which we use to prove symmetry, and next, we
prove that such equality is true. Thus, given any function f, if we assume the equality
between map f (get_bts ts1) and get_bts ts2, we can extract the inverse of f through
the specification of map. Then, we expose a function g, such that map g (get_bts ts1) and
get_bts ts2 are equal. This function g is justified by the existence of the pre-isomorphism
between ts1 and ts2, and that both sequences get_bts ts1, and get_bts ts2 are duplicate-
free, and have the same size.

Finally, for every map mu which is a pre-isomorphism, then relabeling_term mu is a
blank node mapping, locally bijective in the set of blank nodes of the graph, and meeting the
first three clauses of being an RDF isomorphism (because it is a blank node mapping). It is
left to formalize a relation which adds the notion of preserving RDF adjacency. In the next
section, we extend the notion of pre-isomorphism to give a mechanized formal definition of
RDF isomorphism.

5.3.2 Characterizing RDF isomorphism

In this subsection we study adjacency preservation, the last missing piece to mechanize
a definition of RDF isomorphism. As we have done through the chapters, we make our
definitions on sequences of triples, and then we apply them on RDF graphs, taking advantage
of the coercion from RDF graphs to sequences of triples that we have defined. In Listing 32,
following the RDF specification [18], we define a predicate to check if a certain map satisfies
the conditions of RDF isomorphism. Given two sequences of triples ts1 and ts2, and a map
of blank nodes mu: if mu is a pre-isomorphism between ts1 and ts2, there are two conditions
left for mu to become an isomorphism. First, that the sequence resulting from the relabeling
of ts1 under mu is duplicate-free, this guarantees the well-formedness of the resulting graph;
and second, that the result of relabeling ts1 under mu is set-equal to ts2, the preservation
of adjacency. We present such a predicate in Listing 32, along with its propositional version.
Also, note that the appearance of uniq (relabeling_seq_triple mu ts1) in the middle
clause of is_iso_ts, is only required because we are using sequences of triples to define the
predicate. When we apply the predicate is_iso_ts with RDF graphs as arguments, the
clause of well-formedness preservation is subsumed by the preservation of adjacency, as we
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Section isomorphism.

Variables I B L : eqType.

Implicit Type ts : seq (triple I B L).

Definition is_iso_ts ts1 ts2 mu :=

[&& is_pre_iso_ts ts1 ts2 mu,

uniq (relabeling_seq_triple mu ts1) &

perm_eq (relabeling_seq_triple mu ts1) ts2].

Definition iso_ts ts1 ts2 := exists mu, @is_iso_ts ts1 ts2 mu.

End isomorphism.

Listing 32: RDF isomorphism definition.

Lemma perm_eq_relab_uniq g1 g2 mu :

perm_eq (relabeling_seq_triple mu g1) g2 ->

uniq (relabeling_seq_triple mu g1).

Listing 33: RDF Graphs well-formedness is subsumed by adjacency preservation.

present in Listing 33.

We now prove in Coq that iso is an equivalence relation. We present the formal state-
ments in Listing 34, proving that iso is reflexive, symmetric, and transitive. Similarly
to pre-isomorphism, the proofs of reflexivity and transitivity resemble the pen and paper
proofs. For proving that iso is reflexive, we show a map satisfying the three conditions
of RDF isomorphism. By exposing the identity map as witness, the first clause is exactly
pre_iso_ts_refl from Listing 31. Then, by perm_eq_relab_uniq it suffices to show that
adjacency is preserved, which we can conclude, because relabeling a graph under the identity
is exactly the same graph, and hence has exactly the same adjacency. For proving transitivity,
the first clause is exactly pre_iso_ts_trans. To conclude, because of perm_eq_relab_uniq,
it suffices to show that adjacency is preserved under composition. Again, the proof of symme-
try presents a bigger challenge. We have to be cautious and pick the good inverse candidate;
not every pre-isomorphism from the blank nodes of an RDF graph G to blank nodes of an
RDF graph H is an isomorphism, we provide an example below.

Let us present a concrete example: consider an RDF graph G, composed of two triples:
( :a, :p, :b) and ( :c, :q, :c), where :a, :b and :c are different blank nodes, and :p

and :q are different IRIs; we illustrate G in Figure 5.4. Now, let us say we have a pre-

Lemma iso_refl g : iso g g.

Lemma iso_sym g1 g2 : iso g1 g2 <-> iso g2 g1.

Lemma iso_trans g1 g2 g3 : iso g1 g2 -> iso g2 g3 -> iso g1 g3.

Listing 34: RDF isomorphism is an equivalence relation.
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:a :b:p :c

:q

:c

Figure 5.4: RDF graph G with two triples ( :a, :p, :b) and ( :c, :q, :c).

:b :c:p :a

:q

:a

Figure 5.5: RDF graph G′ with two triples ( :b, :p, :c) and ( :a, :q, :a).

isomorphism mu from G to an RDF graph H, whose set of blank nodes has :d, :e and
:f. Next, we choose a particular behavior for mu, and with that behavior we define another
pre-isomorphism nu, going in the other direction, from H to G. We define the behaviors of
mu and nu in the two equations below.

mu(x) =


d x is a

e x is b

f x is c

x otherwise

nu(x) =


b x is d

c x is e

a x is f

x otherwise

Both maps, mu and nu satisfy the conditions of a pre-isomorphism, but considering their
particular behavior, when relabeling G under (nu ◦ mu), the maps do not cancel. We end
with a result which is different from G. Indeed, we obtain a graph G′ which has different
triples. The triples of G′, ( :b, :p, :c) and ( :a, :q, :a), describe the resources in the same
way as G, but with different blank nodes, as we illustrate in Figure 5.5. The graph G has
the blank node :c related to itself under the predicate :q, whereas in G′ the blank node
related to itself under the predicate :q is :a. Also, the triple connecting the two different
blank nodes also differs, on G, the blank nodes :a and :b are the ones connected by the
predicate :p, whereas on G′, the predicate :p connects :b and :c. The graphs G and G′

are isomorphic, but we need them to be equal to establish the symmetry of isomorphism.

We see that not every pre-isomorphism going in the opposite direction satisfies the sym-
metry. Rather, given a pre-isomorphism mu from the blank nodes of an RDF graph G to the
blank nodes of another RDF graph H, to prove the symmetry of isomorphism, it suffices to
show the existence of a pre-isomorphism nu, from the blank nodes of H to the blank nodes of
G, which cancels the action of mu on the blank nodes of G, while preserving adjacency. The
mechanized statement we need to satisfy is {in (get_bts G), nu \o mu =1 id}, which
reads: the composition of mu and nu assigns the same values as the identity, in the par-
ticular domain of the blank nodes of G. Using a similar argument as for pre-isomorphism
symmetry, we build a pre-isomorphism with such property. Subsequently, we extend the
cancelation property of the map nu to the level of triples, meaning that we prove that:
for all triples contained in G, relabeling that triple under the composition of mu and nu as-
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signs the same values as the identity, which in mechanized terms corresponds to the following
statement: {in G, [eta relabeling_triple (nu \o mu)] =1 id}. That extension of the
cancelation property allows us to prove the preservation of adjacency, which lets us conclude
that iso is symmetric.

We have thus provided a formal mechanized definition of RDF isomorphism using CoqRDF,
which we prove to be an equivalence relation.

5.4 Summary

In this chapter we presented basic notions of graph theory. We dived into the structure of
directed graphs, and graph isomorphism. We used these concepts to understand what prop-
erties to expect from RDF isomorphism, which we then proved to be an equivalence relation.
Afterwards, we mechanize the notion of RDF isomorphism in Coq, using the CoqRDF library.
We define it gradually, by decomposing the different conditions to satisfy RDF isomorphism.
Next, we mechanize our proof that RDF isomorphism is an equivalence relation. We compare
these proofs, and remark on the challenge posed by the symmetry of RDF isomorphism.

The possibility of reasoning about isomorphism opens the door to reasoning about no-
tions built on top of it, for example, reasoning about the concept of iso-canonical algorithms.
In the next chapter, we present the concept of iso-canonical algorithms, and formalize its
mechanized definition, and properties, in CoqRDF. After giving a mechanized formal specifi-
cation of iso-canonical algorithms we implement an instance of it, κ-mapping. We explain,
first, how to implement κ-mapping using functional programming; second, the techniques
we use to prove that κ-mapping returns graphs which are isomorphic to the input, and that
two graphs give a set-equal result under κ-mapping, if and only if, the input graphs are
isomorphic. These two properties allows us to conclude that κ-mapping is an iso-canonical
algorithm.
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Chapter 6

Iso-canonical algorithms

In the previous chapter we mechanized in Coq a formal definition of RDF isomorphism: iso.
Then, we proved that iso is an equivalence relation. In this chapter we mechanize a specifi-
cation built on top of RFD isomorphism, we present the notion of iso-canonical algorithms
and motivate its applications in Section 6.1. Afterwards we present κ-mapping : an instance
of an iso-canonical algorithm in Section 6.2. We define κ-mapping in a functional setting
with a dependent type system, in contrast to its usual imperative presentation in Section 6.3.
Subsequently, we study the requirements to certify the correctness of an iso-canonical algo-
rithm implementation. We prove in Coq that our implementation of κ-mapping returns a
proper well-formed graph in Section 6.4. We also prove that for any graph, κ-mapping re-
turns a graph which is isomorphic to the input graph in Section 6.5. Finally, we prove that
κ-mapping is a graph invariant, which returns a canonical instance of its input in Section 6.6.
With the latter two properties we provide a completely mechanized proof that κ-mapping is
an iso-canonical algorithm.

6.1 Canonical instances

In Section 3.4, we presented that because RDF syntax parsers can assign blank node identi-
fiers arbitrarily, RDF test suites must check their results modulo isomorphism, rather than
under RDF equality. However, the complexity of checking RDF isomorphism (3.1) between
two graphs is a GI-complete problem, a result proven by Hogan [34]. The complexity class
GI groups the algorithms solving graph isomorphism (5.3), being an intermediate class be-
tween the polynomial and NP-complete classes, that is, GI describes a problem in which a
solution in polynomial time is not known, nor is it NP-complete. The latest results about the
complexity of GI, proven by Babai [3], show that graph isomorphism can be solved in quasi-
polynomial time. Babai presented an algorithm solving the graph isomorphism problem in
exp((log n)O(1)) time, where n is the number of vertices of the graph. On the other hand,
to empirically analyze research results, the RDF community uses the latest Billion Triple
challenge (BTC) Dataset. BTC Datasets have been published since 2008 [56, 32], challeng-
ing research into improving how to analyze and extract value from RDF data, as well as
tracking the adoption of the Semantic Web. The latest BTC dataset that has been published
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at the time of writing this document corresponds to BTC 2019 [33], and the previous one is
BTC 2014 [5]. An analysis of BTC 2014 [34] indicates that the largest RDF document from
BTC 2014 has 7.3 million triples and 254,288 blank nodes. Additionally, the average size of
RDF documents has increased, the 2014 BTC dataset [5] has an average of 91 statements
per document, while the one from 2019 [33, 32] has 816. Due to the complexity of RDF
isomorphism, and the increasing size of RDF documents, it becomes necessary to find more
efficient ways to check isomorphism between RDF graphs.

When checking isomorphism periodically, there are solutions lowering the cost of con-
secutively checking isomorphism. These solutions are related to the canonical instance of a
graph. The canonical instance of a graph G is a graph Gcan that satisfies two properties:
first, that Gcan is a graph which represents the class of graphs isomorphic to G, and second,
that Gcan is isomorphic to G. Likewise, iso-canonical algorithms are maps assigning graphs
to their canonical instance; we formalize this notion in Definition 6.1.

Definition 6.1 (Iso-canonical algorithm) A map M from RDF graphs to RDF graphs is
iso-canonical if and only if:

1. For all RDF graph G, it holds that G ≃ M(G), and

2. For all RDF graphs G and H, it holds that G ≃ H ⇐⇒ M(G) = M(H).

Broadly speaking, iso-canonical algorithms design a way to assign blank node identifiers in
a deterministic way. Then, checking isomorphism between two canonical instances is solved
in polynomial time, with respect to the number of triples. Finding the canonical instance
of a graph has also been proven to belong to the quasi-polynomial complexity class. Babai
[4] developed an algorithm constructing a canonical form of a graph within the same time
bound, i.e., quasi-polynomial time. So far, the algorithms that construct canonical instances
have been built based on algorithms that verify isomorphism, while maintaining the time
complexity of the algorithm on which they were based.

Iso-canonical algorithms have many applications in the context of RDF, for example: the
development of digital signatures for RDF graphs [12, 72, 62]; or to skolemize blank nodes
consistently [18]; or for finding duplicate RDF graphs in large collections [34], such as the web.
Fortunately, the worst cases of isomorphism do not occur frequently in published RDF graphs
[34]. This induces two objectives for iso-canonical algorithms: on the one hand, to provide a
correct result, even in the worst case; and to efficiently solve the graphs that are commonly
encountered in practice, on the other hand. Examples of such algorithms are Nauty [55],
Blabel [34], and URDNA2015 [74]. At the time of writing this document there is a working
group in progress [49] to define, first, a standard to uniquely and deterministically calculate a
hash of RDF Datasets, and second, to specify RDF Dataset Canonicalization algorithms. The
Blabel and URDNA2015 algorithms are candidates to become a W3C standard to calculate
the canonical version of an RDF graph modulo isomorphism. A base instance of a correct iso-
canonical algorithm without optimizations is known as the κ-mapping [34]. In the following
section, we address how the κ-mapping computes the canonical version of an RDF graph,
and how to mechanically implement such an algorithm.
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6.2 The κ-mapping algorithm

In the previous section we introduced the notions of canonical instances, as well as iso-
canonical algorithms. We presented its theoretical status with respect to graphs, and how
it has evolved and been applied with respect to RDF graphs. We have also presented some
applications of iso-canonical algorithms, as well as the nascent interest of the W3C to specify
and define a standard for iso-canonical algorithms. In this section we present how the κ-
mapping algorithm operates, and we expose the main challenges for modeling iso-canonical
algorithms in a dependent functional programming setting. Finally, we present a mechanized
implementation of the κ-mapping algorithm.

The κ-mapping algorithm establishes the canonical graph in the following manner. The
algorithm tries all possible combinations of mappings to relabel a graph G with the blank
nodes of the set {b1, ..., bκ}, where κ is the number of blank nodes of G. Then, assuming
a total order over the RDF graphs, κ-mapping chooses the minimum1 graph from the ones
produced after relabeling G under each of the κ mappings. In Figure 6.1 we illustrate two
graphs: G and H, directed cycles of two blank nodes connected by the predicate :p, such
that the blank nodes of G are :a and :b, and the ones from H are :x and :y. Regarding
the graph G, there are two possible ways to map its blank nodes to { :0, :1}: κG1 and
κG2, which we define in the equations below. The same occurs for the graph H with two
mappings: κH1 and κH2, also defined below.

κG1(x) =

{
:0 x is :a

:1 x is :b

κG2(x) =

{
:1 x is :a

:0 x is :b

κH1(x) =

{
:0 x is :x

:1 x is :y

κH2(x) =

{
:1 x is :x

:0 x is :y

In this case, relabeling the graphs under the two mappings yields identical graphs, there-
fore both mapping minimize the candidate graphs for G and H. We illustrate the result of
κ-mapping for the graphs G and H in Figure 6.2.

:a :b

:p

:p

:x :y

:p

:p

Figure 6.1: Illustration of the graphs G and H.

:0 :1

:p

:p

Figure 6.2: Illustration of the graphs (κ-mapping G) and (κ-mapping H).

1We explain the notion of order later in Subsection 6.2.1
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The argument for certifying that κ-mapping is iso-canonical is based on its exhaustive
search. The result is isomorphic to the input because each mapping establishes a bijection
between the new set of blank nodes and the original one, that is, each possible mapping
is a pre-isomorphism. Then, adjacency is preserved with respect to the input, because the
result is definitionally the mapping of the pre-isomorphism onto the input graph. Given two
isomorphic inputs, then these inputs give a set-equal result under κ-mapping. This is due
to three observations, first, that the target set of blank nodes is independent of the input;
second, that since inputs are isomorphic, each triple has the same IRIs and literals; and third,
based on the first and the second argument, the resulting graph has identical triples. This
last observation is due the fact that the κ-mapping that results in the minimal graph cannot
map to different blank nodes. Finally, given two inputs that produce set-equal results under
κ-mapping, the inputs are isomorphic by transitivity of isomorphism.

Before implementing κ-mapping in Coq, we first mechanically formalize the notion of
an iso-canonical algorithm in Listing 35. The mechanized definition looks almost identi-
cal to Definition 6.1: given a function M, which takes as input an RDF graph parameter-
ized by I, B, and L, and returns an RDF graph parameterized by the same types, it is an
isocanonical_mapping if and only if, for any RDF graph g: g is isomorphic to M g, and, for
all pair of graphs g, and h: applying M to g and h yields the same graph under set equality, if
and only if, g and h are isomorphic. This is our target specification when defining κ-mapping
in Coq.

Definition isocanonical_mapping (M : rdf_graph I B L -> rdf_graph I B L) :=

forall g, iso g (M g) /\

(forall g h, eqb_rdf (M g) (M h) <-> iso g h).

Listing 35: A mechanized definition of iso-canonical algorithms.

We remark on a few things regarding a mechanized definition of κ-mapping. Defining
κ-mapping requires some aspects that we need to mechanize as well. We need, first, a total
order relation for RDF graphs; second, we need to be able to generate an arbitrarily large
target set of blank nodes in a deterministic manner; and third, we need a device keeping
track of the canonical value assigned to each blank node.

6.2.1 Total order relation

Assuming a total order for the types I, B and L, we define an order for RDF terms, triples
and sequence of triples. For terms, we implement an order le_term following the partial
order defined by the SPARQL recommendation by the W3C [28]. Thus, the ascending order
of the constructors declares the blank nodes to be the smaller kind of term, followed by
the IRIs, and then by the literals. In case that terms coincide in their constructor, then we
propagate the comparison to the corresponding parametric type’s order. For triples we define
le_triple by first comparing the subject, then the predicate, and finally the object. For
ordering sequences of triples we define le_st, which defines the lexicographical order with
respect to le_triple. Finally, applying le_st on sorted sequences corresponds to a relation
between graphs, in which given two graphs G and H, if G ⊊ H then le_st G H, otherwise
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the smaller graph is the one containing the smallest triple not contained in the other graph.
For each of the orders le_* we define:

• lt_* calculating less than.

• meet_* returning the minimum between the two inputs.

• join_* returning the maximum between the two inputs.

• Identities relating lt_* and le_*, meet_* and lt_*, and join_* and lt_*, such that
for all x and y, it holds that:

lt_* x y = (y != x) && (le_* x y) /\

meet_* x y = (if lt_* x y then x else y) /\

join_* x y = (if lt_* x y then y else x)

• And a proof that le_* is antisymmetric, transitive and total.

With these definitions we gain access to all the lemmas, notations and definitions from
the math-comp’s total order library. In particular, we gain access to the results about the
maximum and the minimum.

6.2.2 Target set of blank nodes

For a given graph G parameterized by I, B and L, we choose the target set of blank nodes to
be the first k natural numbers, meaning that the type of G’s blank nodes would go from B to
nat. However, we have defined the type of the mapping M in Listing 35 to preserve the type
of blank nodes. Thus, we assume an injective function nat_inj : nat -> B, which injects
natural numbers back to the type B. This function could be interpreted as a deserialization
function for numbers.

6.2.3 Keeping track of blank node assignment

To establish an isomorphism between two graphs, we need to explicitly state the function
linking them. Since iso-canonical algorithms produce results isomorphic to the input, we
must find a way to trace the blank nodes that we will relabel, so we can then prove that
adjacency is preserved. Also, since κ-mapping goes through all the possibilities, we have to
trace the result for each function. To trace that every relabeling is an isomorphism, we design
a structure HashedData based on the product types. The type HashedData is parameterized
by two types T and H, representing a pair of the data-term t : T, paired with its current
relabeling h : H. We illustrate its definition in Listing 36. The inductive type hash has a
single constructor, composed of a pair: a data-term and its relabeling. The function input

projects the data, while current_hash projects the current result to which an algorithm is
relabeling the data. The function mkHinput allows for creating an inhabitant of the type
hash by currying the argument that is a pair. In Listing 36 we provide two more definitions:
n0 as a default element, and lookup_hash_default to inspect the current hash of a given
term, if it is a blank node.
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Section HashedData.

Variables (H T : Type).

Inductive hash := Hash of T * H.

Definition input t := let: Hash th := t in th.1.

Definition current_hash h := let: Hash th := h in th.2.

Definition mkHinput (t : T) (h : H) := Hash (t, h).

End HashedData.

Definition n0 := 0.

Definition lookup_hash_default (hb : (term I (hash nat B) L) ) : nat :=

if hb is Bnode hin then current_hash hin else n0.

Listing 36: Definition of HashedData.

6.3 A mechanized definition of κ-mapping

With these definitions we can now define a κ-mapping. We insist on making the definition
with sequences of triples, and then extending it to RDF graphs. This makes it easier for us
to carry out the subsequent proofs on the definition. Assuming we have three orderTypes
: I, B, and L, we define κ-mapping progressively in Listing 37: given a sequence of triples
ts, we compute all the permutations of its blank nodes (identified by perms). We then
pair each permutation with the sequence of the first κ natural numbers as the target set
of blank nodes, creating all possible assignments for the blank nodes (perms_hash). Next,
we transform each pair in each permutation sequence into a hash nat B. Afterwards, we
transform each of the permutations of the hash sequences into a function mapping the data
to its current relabeling (mus). We explain how to construct such functions after finishing
the explanation of the algorithm. We use each function in mus to relabel the sequence ts

under them, obtaining all possible ways to label ts using the first κ natural numbers. All
of these relabels are candidates for being the canonical instance of the graph (cans). Then,
we sort every element in cans using le_triple as the order (isocans). Finally, we compute
the maximum over the sequences in isocans using the empty sequence as the default term,
which is the minimum sequence according to the order we defined. We make the observation
that using the infimum as default is for a specific purpose: so that the only way to obtain
the default as a result is if the input is also empty. Because of this, in order to avoid always
returning the default value, we have to choose the maximum as canonical instead of the
minimum. The maximum is computed using join_st according to our definitions.

To create the functions in mus, we develop build_kmapping_from_seq: a function con-
structor that generates a function dependent on a permutation of hashes. Given a sequence
of terms terms, build_kmapping_from_seq returns a function that, for each input b : B,
looks to see if b occurs as data in some hash in terms. In the case that this happens, it
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Section kmapping.

Variables I B L : orderType tt.

Definition build_kmapping_from_seq

(trms : seq (term I (hash nat B) L)) : B -> B :=

fun b =>

if has (eqb_b_hterm b) trms then

let the_bnode :=

nth (Bnode (mkHinput b n0)) trms (find (eqb_b_hterm b) trms) in

nat_inj (lookup_hash_default the_bnode)

else

b.

Definition k_mapping_ts (ts : seq (triple I B L)) : seq (triple I B L) :=

let perms := permutations (get_bts ts) in

let perms_hash := (map (fun s=> zip s (iota 0 (size s))) perms) in

let all_maps := map (map Hash) perms_hash in

let mus := map build_kmapping_from_seq all_maps in

let cans := map (fun mu => (relabeling_seq_triple mu ts)) mus in

let isocans := map (sort le_triple) cans

in

foldl join_st [::] isocans.

End kmapping.

Listing 37: Definition of κ-mapping in Coq.

returns the nth element and injects it to the type B using nat_inj, such that n meets the
predicate of occurring as data. As a default element for nth we use the same blank node
that was received as an argument, paired with n0. We remark that we will never fall into
the default case of the nth function in build_kmapping_from_seq, because we make sure to
use an index within the size of the list, which is ensured by the conditioning of the predicate
has (eqb_b_hterm b) terms in the function build_kmapping_from_seq.

6.4 κ-mapping returns a well-formed graph

We defined κ-mapping in Coq for sequences of triples, but to extend the definition to apply
for RDF graphs, we must prove that the result of κ-mapping is a well-formed graph. In
other words, we must prove that for any graph g, it holds that uniq (k_mapping_ts g).
But before proving the lemma, we introduce a few notations to reduce the verbosity of the
proofs. We denote by hterm the terms that have hash nat B as their blank nodes’ type. We
write HBnode to refer to the constructor that receives a pair bn : (B * nat) and returns
a blank node of type hterm. A hashed permutation of p is the sequence formed by pairing
the sequence p with the sequence of the first n natural numbers, and then mapping HBnode
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Notation hn := (hash Order.NatOrder.orderType B).

Notation hterm := (term I hn L).

Definition HBnode p := @Bnode I hn L (mkHinput p.1 p.2).

Definition hash_kp p := [seq HBnode an | an <- zip p (iota 0 (size p))].

Definition build_map_k p := build_kmapping_from_seq (hash_kp p).

Listing 38: κ-mapping abstractions.

to the resulting sequence. For a permutation [:: p1; ...; pn] its hashed permutation
is [:: HBNode (p1,0); ... ; HBnode (pn,n)]. Finally, we use build_map_k p to refer
to the mapping resulting from applying build_kmapping_from_seq to the hashed perm of
p. We mechanize these definitions in Listing 38.

We present the result to be proven in Listing 39. We notice that the series of consecutive
let-in that we defined in k_mapping_ts, in Listing 37, disappears once we unfold the
definition of k_mapping_ts. The challenge to prove this result is how to decompose the goal
into smaller properties, tracking that the result is uniq. We approach the proof with a top-
down strategy, that is, we assume something to prove that we can remove as a layer from the
goal, and then we prove it, each time reducing the remaining goal to conclude. First we get
rid of the layer that computes the maximum: the result of folding the maximum in a sequence
can be the default element, or some element in the sequence. Our default term is trivially
uniq; now it is left to prove that all the elements of the sequence are uniq. The sequence
corresponds to the let-in identified by isocans in k_mapping_ts, that is, the relabeling
of the input under each of the functions generated with build_kmapping_from_seq, which
we then sort. As sorting does not interact with duplicates, it is enough to prove that every
element in cans is uniq, which we prove because relabeling under a pre-isomorphism preserves
well-formedness; then it suffices to prove that every function in mus is a pre-isomorphism.
In other words, it suffices to show that the function constructor build_kmapping_from_seq
builds pre-isomorphisms when its argument is a hash permutation. Since we want to prove
that a certain mapping mu is a pre-isomorphism between the input and the relabeling of the
input under mu, it is enough to prove that each function mu in mus is injective in the domain
of the blank nodes of the input, where the proof of injectivity is based on the fact that both
sequences paired with zip are duplicate-free, and therefore each hash is identified with a
unique relabeling. Thus, we prove that κ-mapping preserves the well-formedness of an RDF
graph. Such a proof, which we name as uniq_k_mapping in our project, allows us to define
the κ-mapping algorithm for RDF graphs in Coq. We present its definition in Listing 40.

In the next two sections we present our strategies to prove κ-mapping is an iso-canonical
algorithm, approaching first the proof stating that κ-mapping’s result is isomorphic to the
input, and then, that κ-mapping is a graph invariant whose result is a canonical instance of
the input.
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uniq

(foldl join_st [::]

[seq sort le_triple i

| i <- [seq relabeling_seq_triple mu ts

| mu <- [seq build_kmapping_from_seq i

| i <- [seq [seq HBnode i | i <- i]

| i <- [seq zip s (iota 0 (size s))

| s <- permutations (get_bts ts)]]]]])

Listing 39: The goal to prove that k_mapping_ts returns a well-formed RDF graph.

Definition k_mapping (g : rdf_graph I B L) : rdf_graph I B L :=

@mkRdfGraph I B L (k_mapping_ts (graph g)) (uniq_k_mapping g).

Listing 40: Definition of κ-mapping for RDF graphs.

6.5 κ-mapping returns a graph isomorphic to the input

In this section we cover the first goal to prove that κ-mapping is an iso-canonical algorithm.
Formally we prove that for any graph G, G is isomorphic to the graph that results from
applying κ-mapping to G, which in mechanized terms, corresponds to the following propo-
sition: forall g, iso g (k_mapping g). To achieve this, we use a few insights given by
the proof of uniq_k_mapping. We reason again using a top-down strategy, but now we have
many previous results. We start again by eliminating the layer computing the maximum. We
cover the two cases; first, we prove that we can establish an isomorphism when fold returns
the default value, and second, that we can also establish an isomorphism when the result of
the fold is within the sequence that we fold. For the first case, due to the characteristics of
our default value, it is enough to prove that if the result of κ-mapping is the default value,
then the input is also the default value. Therefore, this case follows by the reflexivity of iso-
morphism. For the second case, by the properties of map and sort, we can show that there is
a permutation of g’s blank nodes p, such that the result of κ-mapping is the relabeling of the
input build_map_k p. Then, it suffices to show that build_map_k p is an isomorphism. We
have already proven that for every permutation q of the blank nodes of g, build_map_k q

is a pre-isomorphism; and that relabeling under it preserves the well-formedness of a graph,
which leads us to conclude that it also preserves its adjacency. Therefore, the isomorphism
for the second case is exactly build_map_k p. Thus, we have formalized a mechanized proof
that the result of k_mapping is isomorphic to its input.

6.6 κ-mapping is an iso-canonical algorithm

In this section we prove the remaining goal of our application for CoqRDF, and conclude that
κ-mapping is an iso-canonical algorithm. The remaining goal states that κ-mapping is a
graph invariant, which returns the canonical instance of its input. In mechanized terms, we
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tackle the following formal statement:

forall g h, iso g h <-> eqb_rdf (k_mapping g) (k_mapping h).

(if) Given two RDF graphs g and h, which are isomorphic with mu as a witness. We
approach it again with a top-down strategy removing the layer that computes the maximum;
it is enough to prove that the sequence of sorted candidates of g has the same elements as
the sequence of sorted candidates of h. Then, since join_st is an associative and idempotent
operator, since k_mapping folds join_st using the neutral element of the operation, and since
the folded sequences of sorted candidates have the same elements, the result is equal. Now we
prove that the sequences of sorted candidates of g and h have the same elements. The proof
uses of the direction of the isomorphism to prove both sequences have the same elements, thus,
since isomorphism is symmetric, it suffices to show that given a member sc from g’s sequence
of sorted candidates, then sc is also a member of h’s sorted candidates. By the properties
of map, sc is the result of sorting a candidate c from the sequences of g’s candidates, which
was built with a permutation of g’s blank nodes p, such that c is equal to relabeling g under
build_map_k p. To prove that sorting the relabeling of g under build_map_k p is a member
of h’s sorted candidates, it suffices to explicitly provide a candidate, which after sort is equal
to sc, and a proof that this candidate is member of h’s candidates. We expose the relabeling
of h under build_map_k (map mu p), which is a member of the candidates of h, witnessed
by the permutation p and the pre-isomorphism between g and h. Now we have to prove that
sorting the relabeling of g under build_map_k p is equal to sorting the relabeling of h under
build_map_k (map mu p). We can remove the sorting layer showing that relabeling g under
build_map_k p, and relabeling h under build_map_k (map mu p) are set-equal. Because of
the isomorphism mu from g to h, for every triple t in g, relabeling_triple mu t is in h,
which allows us to remove h from the goal by replacing the members from h with the members
of the relabeling of g under mu. It remains to prove that relabeling g under build_map p is
set-equal to relabeling g under (build_map_k (map mu p)) \o mu, for which it suffices to
show that build_map_k p and (build_map_k (map mu p)) \o mu assign the same values
for every blank node in the permutation p, which follows from the injectivity of mu, because
it is a pre-isomorphism. Thus, we prove that for any pair of isomorphic graphs, they are
set-equal under k_mapping.

(only if) Given two RDF graphs g and h, which are set-equal under k_mapping, g and h

are isomorphic. Since g and h are set-equal under k_mapping, they are also isomorphic under
k_mapping with the identity map as witness. Also, since for any graph, k_mapping returns a
graph isomorphic to the input, then g is isomorphic to k_mapping g, idem for h. It follows
that g and h are isomorphic by transitivity of isomorphism.

We have provided a proof that k_mapping returns a graph, which is isomorphic to the
input; and that two graphs give a set-equal result under k_mapping, if and only if, the input
graphs are isomorphic. We conclude that k_mapping is an iso-canonical algorithm with a
fully mechanized proof. Finally, we generalize the application of HashedData which allows us
to keep track of the isomorphism. This technique can be used for other algorithms to trace
the mapping of a blank node throughout the computation. For this reason, we abstract the
framework used for this purpose, and make it available in the file Isocan.v of our GitHub
repository.
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6.7 Summary

In this chapter we have presented the notions of canonical graph instances, and iso-canonical
algorithms. We have introduced the theoretical notions regarding graphs, and their transfer
to RDF; we have also motivated applications of iso-canonical algorithms in the context of
RDF. Next, we presented a concrete instance of an iso-canonical algorithm: κ-mapping.
We explained the challenges and mechanisms necessary to define κ-mapping in a functional
programming paradigm. Afterwards, we mechanized a formal definition of iso-canonical
algorithms, and developed a methodology that allows traceability of the relabeling of blank
nodes. Subsequently, such a methodology allows us to prove, first, that κ-mapping returns
well-formed graphs; second, that κ-mapping returns a graph isomorphic to its input. A third
proof, stating that two graphs give a set-equal result under κ-mapping, if and only if, the
input graphs are isomorphic. These two properties allows us to conclude that κ-mapping is an
iso-canonical algorithm, with a fully mechanized proof. Finally, we abstract the framework
that we have designed to trace the blank nodes, and make it available in our repository.

In the next part we conclude and discuss: the process of mechanizing the RDF model;
the design choices posed by the formalization, which we then evaluate; the future work and
perspectives for CoqRDF; and a summary of our contributions.
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Part IV

Discussion and conclusion
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Chapter 7

Discussion

In this chapter we discuss the formalization process and the design decisions we have made
during development in Section 7.1. We evaluate the tools we used to implement CoqRDF and
summarize the lessons we have learned in the process during Section 7.2.

7.1 On the design choices in the process

During the development of the thesis we made many design decisions. We name some of
them, and the considerations we had to make them. Firstly, to model the RDF terms we had
three possible representations: sets, types and finite types. Due to the definitional restrictions
of the terms, types have turned out to be the sweet spot for modeling RDF terms, enforcing
their disjunction, and defining their operations smoothly. Sets, on the one hand, would
require us to define many external conditions to capture correct behaviors; and on the other
hand, finite types induce the handling of low-level structures that are not relevant to the
theory, and also worsening maintainability of the code.

Finding a comfortable structure for reasoning that enables the reusability of already for-
malized theories is not an easy task. Equivalence between representations does not guarantee
equivalence in the work necessary to prove properties about them. We have had to solve this
same dilemma when modeling RDF graphs where the problem of representing sets appears
again, in this case, between duplicate-free sequences free and finite types, as we presented
in Chapter 4. We mention that we also considered using the Doczkal and Pous [22] graph
library, which formalizes several standard results from the graph theory literature, however
we have discarded it for several reasons. The two most important are, first, that the repre-
sentation of RDF graphs using directed graphs is good for gaining intuitions, but it would
not be convenient for reasoning. Similar to finTypes, we would obtain a structure which
would have to track more things than those we care about with no relief in the proof effort:
the main complication comes from justifying the equality through a membership predicate,
which would also be present in a representation using directed graphs. The second reason is
that in order to inject a meta-theory developed in directed graphs back into RDF graphs, we
would need to decode directed graphs back to RDF graphs, a procedure involving identifying
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cliques in directed graphs and mapping them to an RDF term. As far as we know, the clique
theory provided by the graph library is not sufficient to decode graphs into RDF graphs.

Another case worth mentioning is that of isomorphism, and consequently also of pre-
isomorphism. During development, we tried several representations: using bijections and
functional extensionality; restricting the domain of bijections propositionally; and finally
correlating two sequences through map. The latter is the one that gave us results. Math-
Comp’s philosophy of finding a decomposition of a proposition into decidable predicates
systematically helped us to reduce the effort in proving properties of the proposition.

7.2 Evaluation

Through the development of CoqRDF I learned a lot of mathematics and concepts from the
Semantic Web. Both communities have been very kind to me and for that I am very grateful;
addressing the mechanization of a Semantic Web standard has been an entertaining and
challenging work. Despite the learning curve of the use of proof assistants and their formalized
libraries, their use is satisfactory. Math-comp provides a huge database for lemmas which
we used intensively. The library of mathematical components suggests a methodology which
I really enjoyed, having a good balance between abstraction and conciseness. By using it I
have learned valuable lessons, I present a few of them below.

• To build up composable proofs with constructive arguments. This was an important
lesson when tackling goals with many layers, as any proof involving the κ-mapping
algorithm.

• The value of proving with pen and paper before a mechanized attempt of the formal-
ization. A lot of time can be wasted by trying to mechanize results that are not true,
thinking that the reason lies in the representation.

• Many of the software design principles are applicable in mathematics. Refactoring what
we had already mechanized has constantly driven our progress, either by generalizing
lemmas, or by finding abstractions that we have not seen in the first instance.

• Intuitions and proofs in pen and paper have guided us to mechanize our library. How-
ever, we were surprised that most of the proof effort was in the details. Justifications
that fundamentally seem obvious usually are not.

We have presented some decisions we have made throughout this mechanization, as well
as an appraisal of our tools. With this we move on to the next chapter, where we present
our contributions, future work and perspectives, and our conclusions.
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Chapter 8

Conclusion

In this chapter we summarize our contributions in Section 8.1, and present future work and
perspectives for CoqRDF in Section 8.2.

8.1 Contributions

To the best of our knowledge, we have developed the first mechanized library to reason about
RDF graphs: CoqRDF. We used the Coq proof assistant and the library of mathematical
components using the ssreflect methodology. We provide modules to reason about RDF
terms, triples and RDF graphs. Each module provides operations for reasoning about RDF
operations at the level of its different components. We define operations mainly for reasoning
about the relabeling of blank nodes, and the projections of the terms and blank nodes of an
RDF graph. Subsequently, we mechanically define the notion of isomorphism using CoqRDF.
We provide mechanized results about RDF isomorphism, for example that it is an equivalence
relation. On top of RDF isomorphism we mechanize the definition of iso-canonical algorithms.
Then, using CoqRDF we implement the κ-mapping algorithm, and develop a methodology to
trace the mapping of a blank node throughout computation. This methodology allows us
to prove that κ-mapping returns well-formed graphs; that κ-mapping returns graphs that
are isomorphic to the input; and that two graphs give a set-equal result under κ-mapping,
if and only if, the input graphs are isomorphic. These properties mechanically verify that
κ-mapping is an iso-canonical algorithm. Finally, we modularized the methodology to trace
blank nodes, and make it available as a library allowing the methodology to be applied to
other mechanized algorithms in the future. The development we have presented is available
at https://github.com/Tvallejos/CoqRDF.

We address our perspectives for CoqRDF in the following section.
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8.2 Future work and perspectives

A mechanized proof that κ-mapping is an iso-canonical algorithm directly enables the mech-
anization of other iso-canonical algorithms, such as the candidates for the RDF canonization
standard. Other directions in the line of RDF isomorphism include: to explore the terrain
of graph pattern matching, and thereby mechanize other semantic web standards, such as
SHACL [40], which define how to validate that RDF graphs satisfy sets of structural con-
ditions. Another alternative would be the mechanization of compact structures on RDF,
such as the Ring [2], and enabling reasoning about RDF under different representations; an
approach which can be performed using univalent parametricity [67, 68], making available
the transferring of definitions and theorems between equivalent representations of a model.
Another possible path is to study the data models and semantics of RDF [18], or to mech-
anize other standards built on top of RDF, such as its query language, SPARQL [28]. We
believe that we have contributed with a first stone towards a mechanized toolchain of web
standards based on RDF.

84



Bibliography

[1] Andrew W. Appel. Verified Functional Algorithms, volume 3 of Software Foundations.
Electronic textbook, 2023. Version 1.5.4, http://softwarefoundations.cis.upenn.edu.

[2] Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, Juan L. Reutter, Javiel Rojas-
Ledesma, and Adrián Soto. Worst-Case Optimal Graph Joins in Almost No Space.
In Proceedings of the 2021 International Conference on Management of Data, SIGMOD
’21, page 102–114, New York, NY, USA, 2021. Association for Computing Machin-
ery. ISBN 9781450383431. doi: 10.1145/3448016.3457256. URL https://doi.org/10.

1145/3448016.3457256.
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and Grigori Mints, editors, COLOG-88, pages 50–66, Berlin, Heidelberg, 1990. Springer
Berlin Heidelberg. ISBN 978-3-540-46963-6.

[18] Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 con-
cepts and abstract syntax. W3C recommendation, W3C, February 2014.
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/.

86

https://doi.org/10.1145/3437992.3439920
https://doi.org/10.1145/3437992.3439920
https://doi.org/10.1007/978-3-540-39718-2_24
https://doi.org/10.1145/3062341.3062348
https://doi.org/10.1145/3062341.3062348
http://www.vldb.org/pvldb/vol11/p1482-chu.pdf
http://www.vldb.org/pvldb/vol11/p1482-chu.pdf
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/0890-5401(88)90005-3


[19] Richard Dapoigny and Patrick Barlatier. Modeling Ontological Structures with Type
Classes in Coq. In Heather D. Pfeiffer, Dmitry I. Ignatov, Jonas Poelmans, and
Nagarjuna Gadiraju, editors, Conceptual Structures for STEM Research and Educa-
tion, 20th International Conference on Conceptual Structures, ICCS 2013, Mumbai,
India, January 10-12, 2013. Proceedings, volume 7735 of Lecture Notes in Computer
Science, pages 135–152. Springer, 2013. doi: 10.1007/978-3-642-35786-2\ 11. URL
https://doi.org/10.1007/978-3-642-35786-2_11.

[20] Tomás Dı́az, Federico Olmedo, and Éric Tanter. A Mechanized Formalization of
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Checked Proof of the Odd Order Theorem. In Sandrine Blazy, Christine Paulin-Mohring,
and David Pichardie, editors, Interactive Theorem Proving - 4th International Con-
ference, ITP 2013, Rennes, France, July 22-26, 2013. Proceedings, volume 7998 of
Lecture Notes in Computer Science, pages 163–179. Springer, 2013. doi: 10.1007/
978-3-642-39634-2\ 14. URL https://doi.org/10.1007/978-3-642-39634-2_14.

[26] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A Small Scale Reflection Exten-
sion for the Coq system. Research Report RR-6455, Inria Saclay Ile de France, 2016.
URL https://inria.hal.science/inria-00258384.

[27] Robert Harper. Practical Foundations for Programming Languages. Cambridge Univer-
sity Press, USA, 2nd edition, 2016. ISBN 1107150302.

[28] Steven Harris and Andy Seaborne. SPARQL 1.1 Query Language. W3C recom-
mendation, W3C, March 2013. https://www.w3.org/TR/2013/REC-sparql11-query-
20130321/.

87

https://doi.org/10.1007/978-3-642-35786-2_11
https://doi.org/10.1145/3372885.3373822
https://doi.org/10.1007/s10817-020-09543-2
https://techpolicy.acm.org/2014/04/open-source-coq-wins-acm-software-system-award/
https://techpolicy.acm.org/2014/04/open-source-coq-wins-acm-software-system-award/
https://doi.org/10.1007/978-3-540-87827-8_28
https://doi.org/10.1007/978-3-642-39634-2_14
https://inria.hal.science/inria-00258384


[29] John Harrison, Josef Urban, and Freek Wiedijk. History of Interactive Theorem Prov-
ing. In Jörg H. Siekmann, editor, Computational Logic, volume 9 of Handbook of
the History of Logic, pages 135–214. North-Holland, 2014. doi: https://doi.org/10.
1016/B978-0-444-51624-4.50004-6. URL https://www.sciencedirect.com/science/

article/pii/B9780444516244500046.

[30] Ivan Heman, Ben Adida, Manu Sporny, and Mark Birbeck. RDFa 1.1 primer. Tech-
nical report, W3C, August 2013. https://www.w3.org/TR/2013/NOTE-rdfa-primer-
20130822/.

[31] Ivan Herman and Pierre-Antoine Champin. RDF Dataset Canonicalization and Hash
Working Group Charter, 2020. URL https://w3c.github.io/rch-wg-charter/.

[32] José-Miguel Herrera, Aidan Hogan, and Tobias Käfer. BTC-2019: The 2019 Billion
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