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DINAMICA DE KINKS PARA CAMPOS DE YANG-MILLS SOBRE
ESPACIO-TIEMPOS HIPERBOLICOS

Comprender la estructura de la naturaleza desde la fisica a menudo plantea problemas
profundos que desafian las capacidades de las matematicas. Dos ejemplos embleméaticos son
la formulacion de la relatividad general y la busqueda de una teoria cuantica de campos
para explicar las interacciones entre particulas. En este contexto, la teoria de Yang-Mills se
erige como una formulacién pionera para una teoria de gauge no-abeliana, con un fructifero
desarrollo y estudio en ambas areas.

El objetivo principal de esta tesis es estudiar la estabilidad asintotica de ciertas soluciones
para un modelo de campo de Yang-Mills sobre SU(2), bajo una geometria determinada por
el exterior de un agujero negro tipo Reissner-Nordstrom.

La tesis estd compuesta por 3 capitulos. FEl primero consiste en una breve y concisa
introduccion a los tépicos generales en que se enmarca el trabajo realizado, sirviendo para
presentar el contexto fisico donde surge el problema a estudiar.

En el Capitulo 2 consideramos el modelo de Yang-Mills SU(2) sobre el exterior de un
agujero negro extremal Reissner-Nordstrom, empleando un ansatz de un campo esféricamente
simétrico puramente magnético, originalmente propuesto por Bizon y Kahl [8]. Estudiamos
en mayor detalle la dindmica del kink H(x) = tanh(z/2), siendo la primera solucién estatica
no trivial del modelo. El operador lineal asociado posee un unico valor propio negativo,
sugiriendo una alta inestabilidad de H. Mediante el uso de identidades viriales siguiendo el
espiritu de Kowalczyk, Martel, Munoz, y Van Den Bosch, probamos estabilidad asintotica
condicional para perturbaciones en el espacio de energias Egy. En la seccion 4 realizamos
una primera estimaciéon con un virial a gran escala. Necesitando un mayor control, en la
seccion H estudiamos un segundo virial empleando una dualizaciéon del problema, en las
secciones 6 y 7 demostramos unas estimaciones técnicas y controlamos terminos no lineales
del segundo virial. En la seccién 8 obtenemos una estimacion del problema dual y por tltimo,
en la seccion 9 concluimos el teorema principal. A diferencia de trabajos anteriores, nuestro
resultado se basa en un estudio detallado del operador L, desarrolado en las secciones 10 y 11,
modificaciones a estimaciones técnicas desrrolladas en la seccion 6, ademas de modificaciones
de viriales ampliamente empleado en la literatura.

Concluimos en el Capitulo 3 con un repaso del trabajo desarrollado y mencién a posibles
trabajos futuros.
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KINK DYNAMICS FOR YANG-MILLS FIELDS ON HYPERBOLIC
SPACETIMES

Comprehending the structure of nature from physics often raises deep problems that
challenge the capabilities of mathematics. Two emblematic examples are the formulation of
general relativity and the research for a quantum field theory to explain particle interactions.
In this context, the Yang-Mills theory stands as a pioneer formulation for a non-Abelian
gauge theory, with fruitful development in both areas.

The main objective of this thesis is to study the asymptotic stability of particular solutions
for a Yang-Mills field model on SU(2), under a geometry determined by the exterior of an
extremal Reissner-Nordstrém black hole.

This thesis is composed of 3 chapters. The first consists of a brief and concise introduc-
tion to the general topics related to the research, presenting the physical context where the
problem to be studied arises.

In Chapter 2, we consider the SU(2) Yang-Mills model on the exterior of a Reissner-
Nordstrom extremal black hole, employing an ansatz of a purely magnetic spherically sym-
metric field, proposed initially by Bizon and Kahl [8]. We study in detail the dynamics of the
kink H(z) = tanh(z/2), being the first non-trivial static solution of the model. The associ-
ated linear operator has a unique negative eigenvalue, suggesting a high instability of H. In
section 4 we perform a first estimation with a large-scale virial. Requiring more control, in
section 5 we study a second virial using a dualization of the problem, in sections 6 and 7 we
demonstrate some technical estimates and control for non-linear terms of the second virial.
In section 8 we obtain an estimate of the dual problem, and finally, in section 9 we conclude
the main theorem. In contrast to previous works, our result is based on a detailed study of
the linear operator L, developed in sections 10 and 11, modifications to technical estimates
developed in section 6, and modifications of virials widely used in the literature to capture
the specific features of the model.

We conclude in Chapter 3 with a review of the thesis and a mention of possible future
works.
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La pensée n’est qu’un écliar au milieu d’une longue nuit.
Mais c’est cet éclair qui est tout.
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Chapter 1

Introduction

1. Preliminaries

Physics has had great success in explaining various natural phenomena through mathematical
formulations. On the one hand, thanks to the appearance of the theory of general relativity
at the beginning of the last century, low-energy phenomena have been predicted with great
accuracy, and on the other, the appearance of quantum mechanics later achieved a satisfac-
tory description of phenomena at high energy scales. Subsequently, since the mid-twentieth
century, with the introduction of the notion of fields, a successful formulation of a quantum
field theory for particles at relativistic levels was achieved, such as quantum electrodynamics
(QED) or quantum chromodynamics (QCD), establishing the foundations of what is known
today as the Standard Model of particles, whose initial predictions have been verified over
the decades, the latest achievement being the discovery of the Higgs boson, whose mechanism
is responsible for giving particles a certain mass.

An essential component of the Standard Model is the Yang-Mills Theory, conceived by
Yang and Mills in the 1950s. This field theory describes the strong nuclear fundamental forces
and their interactions. There is great interest in the scientific community in studying this
field coupled with other fields of matter [1, 18, 41, 43|, more specifically, considering a Yang-
Mills-Higgs theory, as well as studying it over a curved spacetime due to gravity [6, 7, §].
Due to the complexity of these phenomena, it is necessary to use advanced techniques in
mathematics.

In this context, the first aim of this thesis is to study a Yang-Mills field on a given geometry
in the vicinity of an extremal Reissner-Nordstrom black hole. In particular, we study a non-
trivial solution known as kink, recently found by Bizon and Kahl. These types of solutions are
of great physical and mathematical relevance and have been extensively studied for various
[29, 35] models. Given the dispersive nature of the Yang-Mills equations, we employ virial
techniques to study the asymptotic behavior of these solutions, inspired by a wide range of
recent works employing similar techniques, but due to the nature of the problem, it will be
necessary to apply a series of modifications.

Before describing the Yang-Mills equations for a geometry close to an extremal Reisssner-
Nordstrom black hole considered in this thesis, we shortly recall some important notions to be
accounted. We concentrate on giving a description of what are dispersive equations, elements
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of general relativity, and the main technique employed in this thesis: virial identities.

1.1. Dispersive Equations

In this section, we introduce the study of constant-coefficient linear dispersive PDE, which
are the simplest example of dispersive equations. It is essential to have a satisfactory theory
of the linear equation before proceeding to the nonlinear because much of the theory of
nonlinear PDE, especially for short times or small data, is obtained by perturbation of the
linear theory. To simplify the discussion, we consider the spatial domain R? and PDE which
are first-order in time.

A constant-coefficient linear dispersive PDE first-order in time is an equation of the form
Owu(t,z) = Lu(t,z), u(0,z) = up(z), (1.1)

where the field v : R x RY — V takes values in a finite-dimensional Hilbert space V', and L
is a skew-adjoint constant coefficient differential operator in space, taking the form

Lu(z) = > c 00u(x),

o] <k

where k > 1 is an integer (the order of the differential operator), o = (a,...,aq) € Z%
ranges over all multi-indices with |a| := aq + ... + ay less than or equal to k, 02 is the partial

derivative N N
o (DN (2™
©\0xy ) T\ Oy

and ¢, € End(V) are coefficients that do not depend on x, where End(V') is the set of
linear transformations from V to itself. This operator is classically only defined on k-times
continuously differentiable functions, but we may extend it to distributions or functions
in other function spaces in the usual manner; thus we can talk about classical and weak
(distributional) solutions to the equation (1.1).

In order to give a complete notion of what a dispersive partial differential equation is, we
consider the one-dimensional case and look for plane wave solutions of the form

u(t,z) = Agilthz=wt),

where A,k and w are constants representing the amplitude, wavenumber, and frequency
respectively. Hence u will be a solution of (1.1) if and only if

w(k) + Y cai® k> = 0.

a<k

This equation for w is called the dispersion relation, and determines how time oscillations
e™* are linked to spatial oscillations €*** of wave number k. In other words, the dispersion
ikz=w(k)) golve the equation.

relation is the function for which the plane waves e

One frequently used criterion for defining dispersive equations is that w(k) is a real-valued
function of k£ and 227‘;’ =% 0. In the physical context, this means that different frequencies in

the equation will tend to propagate at different velocities, thus dispersing the solution over
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time.

An interesting notion to describe the phenomena is the phase velocity of the plane waves,
which is defined by

With this definition, one can re-write the solution as:
u(t, x) = @M — (0, 2 — v, (k)t),

and conclude that plane waves travel with velocity v,(k). In particular, large-frequency data
travel faster than smaller ones. Another related definition is the group velocity,

Vg(k) = —VW(]C),

which describes how a frequency-localized bump function around £ moves. The group velocity
is the more important of the two velocities, as it controls the motion of frequency envelopes
and thus of energy and mass, whereas the phase velocity merely controls the apparent motion
of crests and troughs, which are of little physical significance.

Under this notion, the transport equation
Oru=—v-Vu. u(0,x)=up(x)
and the wave equation
Otu—Pu=0, u(0,7)=ug(z), Ou(0,z)=1u(r)

are not dispersive. The first one has a dispersion equation of w(k) = —v-k, which means that
all frequencies move at the same velocity (a degenerate case of dispersion). The second one
has a dispersion equation of w(k) = 4|k|, which means that only the direction of propagation
is determined by frequency, but not its group velocity.

More interesting examples (many of which arise from physics) can be constructed if one
either raises the order of L or makes u vector-valued instead of scalar. Examples include the
free Schréodinger equation

, h
10 + %Au =0, u(0,z)=wuy(z)
where v : R x R? — V is a complex field and Planck’s constant h > 0 and the mass m > 0

are fixed scalars, as well as the second-order in time Klein-Gordon equation

m2c?

h?

Ou — u=0, u0,x)=u(x), Ou(0,x)=u(x)

where u : R x R? — V is a real field, the mass m > 0 and speed of light ¢ > 0 are fixed, and
O is the d’Alembertian operator

1
0=0%.=—50; +A.
C



If we consider m = ¢ = h = 1, the dispersion relations here are w(k) = —|k|* and w(k) = £(k)
respectively.

In this thesis, we consider a specific model of dispersive equations, known as the Yang-Mills
equations. They arise as the Euler-Lagrange equations of the Yang-Mills action functional,
having a linear component of wave type. Now we start by describing this model.

2.  SU(N) Yang-Mills Models

In the 50s, R. Mills and C. N. Yang developed (essentially independent of the mathematical
literature) a theory of principal bundles and connections to explain the concept of gauge
symmetry and gauge invariance as it applies to physical theories [45]. The gauge theories
Yang and Mills discovered, now called Yang-Mills theories, generalized the classical work of
James Maxwell on Maxwell’s equations, which can be understood in the language of a U(1)
Lie group gauge theory [40]. The novelty of the work of Yang and Mills was to define gauge
theories for an arbitrary choice of Lie group G, called the gauge group. This group could be
non-Abelian instead of the case G = U(1) corresponding to electromagnetism.

We show a classical formulation of these equations for a G = SU(N) Lie group in the
following. We recommend [18] for an introduction to Lie groups, Lie algebras and gauge
theory, and [37] for explicit computations of Yang-Mills equations in curved space-time.

Let (M, g) be a n—dimensional pseudo-Riemannian manifold. In physics, M is spacetime
and ¢ usually has Lorentzian signature. We start establishing some necessary definitions
before formulating the Yang-Mills theory.

Definition 2.1 (Canonical volume form). The metric g together with the orientation of the
manifold M define a canonical volume form dvol, on M. If (U, ¢) is an oriented chart
for M with local coordinates x*, then

dvol, = \/|det(g,)|dx* A ... A dz™, (1.2)

where g, = g(0,,0,) are the components of the 2-form metric.

If Oy, ..., Oy, s an oriented, orthonormal basis of T,M, the dvol, is characterized by

dvoly(0yy s ..., Op,) = +1.

We denote by ¢g"” the entries of the inverse of g. We can raise indices of tensors in the
standard way using g"”. For example,

v vo
T = gupg Tpaa
where the Einstein summation convention is assumed.

Definition 2.2. We define the scalar product of k-forms

(-, QF (M) x QF (M) — C*°(M)



as follows. For real-valued k — forms w,n € Q¥(M) on M we set

1

— § Hi-ppg M-k

<(,d, 77>k - Wul...mﬂ? - k,,“’m...um )
p1<...<pp ’

where wy, ., = W(Opuy s -, Oy ) in a local chart (U, ¢) of M.

Definition 2.3. If we denote Q*(M) the space of k—forms, we define the Hodge star operator
x: QF(M) — Q" F(M)
as the linear map defined for real-valued forms by
(w,n)pdvoly = w A *n

for all w,n € Q¥(M). Choosing a local frame, it can be shown that this uniquely defines *.

We can obtain an explicit form of the Hodge operator as follows. Suppose {0,,,...,0,, }
is an oriented, orthonormal basis of tangent vectors with ¢(d,,0,) = g, = g"* = 1. Let
{d",...,d""} be the dual basis of 1-forms with d*(9,) = §*. Then, from (1.2)

dvol, = d" A ... A dH'"
and we have:
Lemma 2.4. The Hodge star operator is given by

f(d™ A AT = g g e A AT

We will use the usual exterior differential, wich is represented by d : QF(M) —s QFF1(M)
given by d = 0,dz".

Let A be a connection 1-form in the gauge group SU(N), defined by
A= Audat = At da".

where the Af are the non-abelian fields associated to SU(N), t, the generators of SU(N),
with a = 1,..., N? — 1.

2.1. SU(N) Yang-Mills equations

Formally, the connection A is said to obey the Yang-Mills equation if it is a critical point for
the Yang-Mills action

1
Syu(4) =3 /M<FA, FA)ydvol, = /M Lyv[Aldz",

where F'4 € Q(M) is the 2-form curvature of the connection A, defined via the structure
equation

FA=dA+ AN A, (1.3)

5



and Lyy[A] : M — R is the Yang-Mills lagrangian density for the fixed connection A,
defined by
1 a v 1 a (0% v
LymlA] = JF W = S FlFipg™g™. (1.4)

Expressing the curvature using the generators of SU(N) we have that the Yang-Mills
action has the following equivalent form

1 1
Syul(A) = 7 [ FaFYdvol, = 1 [ Fipdvol,,

where we have expressed the curvature as
A A v A v
F* = F, da" Ndx” = F).dat A dx”, (1.5)
with FJj, representing the non-abelian stress tensor associated to the gauge group SU (N).

Theorem 2.5. A connection A is a critical point of the Yang-Mills action Sy if and only
if A satisfies the Yang-Mills equation

dx FA 4+ ANF —xF ANA=0. (1.6)

Proor. We refer to [18][5] for a proof of this theorem. O

Remark 2.6. Recall that any connection A must satisfy the Biachi identity
dF*+ ANF —FANA=0.

Atiyah and Bott [{] proved that the curvature F2 of a connection A that satisfies in addition
to the Bianchi identity the Yang-Mills equation (1.6) can thus be considered as a harmonic
form (in a non-linear sense if the Lie group is non-abelian) in Q*(M). Thus, the Yang-Mills
equation corresponds to a second-order partial differential equation for the connection A.

For M = R*! with minkowski metric g, the equations (1.6) has the explicit form [}4]
OA+V(0,A") =[A, VA + [A, [A, A}, (1.7)
where the equation is under-determined because of the gauge invariance

A= U U+ UTAU
F S U'FU

in the equation, where U is an arbitrary function taking values in G. To solve this problem,
typically one has to impose a further constraint on the gauge. For example, A° = 0 (temporal
gauge) or 9;A" = 0 (coulomb gauge). We can see from (1.7) that Yang-Mills equations on
flat space correspond to wave-type equations.

Remark 2.7. Note that the Yang-Mills equation depends through the Hodge star operator
on the pseudo-Riemannian metric g on M. If the equation holds for one metric, it does not
necessarily hold for another metric.



2.2.  SU(2) Yang-Mills Model on the Extremal Reissner-Nordstrom
Black Hole

Let us consider the Reissner-Nordstrom metric [11, 26]

oM Q? + P? oM Q>+ P2\ !
§:_<1_ _|_Q + >dt2+<1— —|—Q i > dr® +r*(d6* +sin® 0d¢?), (1.8)

r 72 r 72

for r > 0, (0, ¢) € S?, which describe a charged black hole of mass M, total electric charge
@, and total magnetic charge P in the Schwarzchild spherical coordinates.

If we consider the case where M? = Q? 4+ P?, the metric (1.8) assumes the form

7a2

(r— M)

— M)?
ﬁz—(r 5 )dt2+
r

2 20102 | s 2072 2
5dr® +1°(d0° +sin” 0d¢”), forr >0,(0,¢) € S%,  (1.9)

known as the extremal Reissner-Nordstrom black hole metric, with event horizon at r = M.

The exterior of the extremal Reisser-Nordstrom black hole is a globally hyperbolic static
space-time (M, §), where M is defined by the condition r > M.

As in [8], we use the change of variables

Replacing in (1.9), we obtain
§ = Qz)(—dt* + C*(x)(dx? + db? + sin”® 0d¢?) =: Q(x)g, (1.10)

where L6

M T
Q = =cosh | = ).
() (14e)%’ Clz) = cos (2)

Thus, we see that the exterior region in terms of the new variable x € (—o0, +00) is charac-
terized by a spatial origin x = 0 where C(x) is minimized, and corresponding to the classical
Schwarzschild radius r¢ = 2M. In addition, contrary to (M, g), the spacetime (M, g) is
geodesically complete.

As remarked in [8], (M, g) has two asymptotically flat ends at x = +oo (see Fig. 1.1).
This is evident when we apply a second change of variable p = C?(z) for which we have

-1
1

g = —dt® + (1 — ) dp? + p*(d6* + sin” 0d¢?).
P
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Figure 1.1: Penrose diagram for (M, g).

We consider an SU(2) Yang-Mills field over the spacetime (M, g). Using o, witha =1,2,3
to denote the Pauli matrices and setting the generators of su(2),

g
ta: - - 1,2,3.
21 “

In addition, {t,} satisfies the commutator relation [t,, tp] = €apcte-

We define the connection or gauge potential A = A, dz", taking values in the Lie algebra
su(2). Analogously to [8], we choose the connection to be the 1-form spherically symmetric
purely magnetic ansatz

A = p(t,r)w + t3 cos Odo, with w = t;df + to sin 0do, (1.11)

where ¢ : R, X R — R is a scalar field. Employing the structure equation (1.3), we compute
the Yang-Mills curvature field for (1.11) obtaining

F = t,(0ypdt + Opipdz) A dO + to sin 0(Oppdt + Oppdx) A do + t3(¢® — 1) sin 0dO A d.

Identifying 2° = ¢, 2! = x, 22 = 0, 2° = ¢ and using (1.5), we obtain the nonzero and
independent components of the curvature field

1 1 1 1 1
Fol2 = 5@90, Fll2 = 581,90, F023 = §8tgosin(9, F123 = §8$gosin9, F233 = 5(@02 —1)sin6.

Thus, replacing into (1.4), and using that in 4 dimensions, the quantity g**¢"”y/|g| is
invariant under a conformal transformation (1.10), the Yang-Mills lagrangian density for the



ansatz corresponds to

S(000)? +

L= (—iCQ(a;)(atcp)Q + 40;) (1— ¢2)2> sin 6. (1.12)

1
8C?(x)

We notice that the expression in parenthesis in (1.12) has no dependence on the variables
(0, ®). Then, using (1.4), we can define the reduced lagrangian density

1
20 (z)?

1
2C%(x)

Lo = —5CH@) O + 55 (0u0) + 5 (1= ) (1.13)

and so, the Yang-Mills equations (1.6) for A are equivalent to the Euler-Lagrange equation
of (1.13)
02— C3(2)0,(C20,0) — C~Hz)p(1 — ¢?) = 0. (1.14)

In this thesis, we are interested in the long-time asymptotic stability of solutions of the
Yang-Mills field given by (1.14). This model exhibits time translation invariance, is Hamil-
tonian, and has the following conserved quantity

Blo.od(t) = [ (@i + 2@ (@ur + “75) o g

Respecting to the Cauchy problem, (1.14) is globally well-posed for initial data in HF (%),
where ¥ correspond to the Cauchy surface (see [14]).

3. The Virial Technique

We briefly describe one of the main techniques we will use in this thesis, based on Virial
identities [34]. In Physics, the well-known Virial Theorem gives a relation between the
average total kinetic energy and the total potential energy of the system. Moreover, in elliptic
PDEs and mathematical physics, there exists an equivalent identity known as Pokhozhaev’s
identity, which is applicable to localized solutions to the stationary nonlinear Schrédinger
equation or the stationary nonlinear Klein-Gordon equation.

The Virial identities in their modern mathematical form were introduced by Glassey [17]
to show blow-up for certain focusing nonlinear Schrédinger equations (NLS). In general, these
identities are used to show that a positive quantity involving the solution u has a monotonic
behavior in time, and at the same time, they are bounded uniformly in time (e.g., by using
conservation laws). Thus, from the fundamental theorem of calculus, we conclude that its
time derivative decays to zero as t — +00, at least in some averaged or weighted sense. This
type of long-time decay is especially useful for understanding the asymptotic behavior of the
solution.

Monotonic quantities have recently been used in a wide and powerful way in the context
of dispersive equations, se [19, 20, 21, 23, 24, 27, 30, 31, 32, 33, 38]. It has allowed describing
the behavior of several equations in a wide range of properties, such as the decay of solutions,
the existence of blow-ups, and asymptotic stability.

We describe in simple words how Virial works. Unlike conservation laws, which can be

9



systematically generated from symmetries via Noether’s theorem, we do not have a fully
automated way of producing monotone quantities other than trial and error. The base of
the argument is the election of a conserved quantity and modifying it, losing conservation
but expecting to obtain monotonicity. This monotonicity relation is narrowly related to the
dynamic in time of some particular norm of the solution.

For example, for the following class of non-linear wave equations,
O*u— Pu=u—|ulP, (t,v)€RxR, (1.16)

if we denote v = O,u, one has the equivalent system of first order

{ u = v (1.17)

v = 02u + u + [ul?.

which is Hamiltonian. Its Hamiltonian character leads to the conservation of energy and
momentum, given by

H(u,v) = ;/(U2 + (0,u)? — u?) — zHl—l / |,
P(u,v) = /uy.

which, are well defined in H! x L?. Now, let’s define the following functional

Tlul(t) := /w(axu)v + ;/w'uv

where 1 is a smooth, bounded function. In [22], they prove that for a weight function ¢ and
odd function u solution of (1.16), the following relation is satisfied:

d
%I < - /(\&Eu\z + u?) sech(z).

This identity has the good sign property (for small solutions) and is used to prove the decay
of solutions to 0 in [22].

4. Result in this thesis: Asymptotic Stability of a
Yang-Mills Kink

In chapter 2, we are motivated by the long time behavior problem for the kink of (1.14). To
our knowledge, this is the first result on the asymptotic stability of the kink for the model
considered.

In this Chapter, we will prove that any small perturbation of the static solution in the
energy space, under certain orthogonality conditions, is (locally) asymptotically stable. Con-

10



sidering the change of variables z — a~!(z), where
L .
a(z) = g(smhx + ),

and defining ¢ = g o', H = H oo™ !, this can be summarized in the following statement.

Theorem 4.1 (Main theorem). There exists § > 0 such that if a global solution (¢, 0yp) of
(2.4) satisfies for allt >0,

1(6, 249)(8) = (H, 0)| 1y 12®) < 6, (1.18)
then for any I compact interval in R,

(6, 0:0)(t) — (H,0) || 111 (ryx 22wy = 0. (1.19)

As far as we understand, this is the first description of the standing wave dynamics in the
SU(2) Yang-Mills model over the exterior of a Reissner-Nordsrom black hole, which seems
unstable by nature. Clearly, the data under which (1.18) us satisfied is not empty, the kink
(H,0) being its most important representative.
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Chapter 2

Dynamics of a Yang-Mills field in
extremal Reissner-Nordstrom black

holes and conditional asymptotic
stability of kinks

1. Introduction

In 1954 Chen Ning Yang and Robert Mills presented the first concepts of a gauge theory for
non-abelian groups that could give an explanation for strong interactions in physics [45]. This
constituted the beginning of the Yang-Mills theory, nowadays present in the foundations of
the Standard Model, that attempt to describe the interactions between elementary particles.
For our context in the classical Yang-Mills field, there have been several results from a
mathematical formalism related to. The global dynamics of a Yang-Mills field propagating
in a 4-dimensional Minkowski spacetime is well understood for a smooth initial data [16, 13]
as well as the global in time regularity in any globally hyperbolic 4-dimensional curved
spacetime [14], however the phase portrait can be richer due to the existence of nontrivial
stationary solutions which play the role of unstable attractors.

In this work we are interested in analyzing the evolution and stability of the field for a
certain hyperbolic geometry. In a recent paper [8] Bizon and Kahl studied the static solutions
of a Yang-Mills field on the exterior of an extremal Reissner-Nordstrom black hole (see also
[7] for previous work on other black holes). Considering a dimensionless change of variables
for the metric of the globally hyperbolic static spacetime, it is obtained the geodesically
complete spacetime (M, g) where the metric ¢ is defined in the following way:

g = —dt* + C*(z)(dz?® 4 df* + sin® 0dp?),

where C'(x) = cosh(z/2). Proposing a spherically symmetric and purely magnetic SU(2)
Yang-Mills field propagating in (M, g) given by

A(t,z) = o(t, x)w(T, 2) + T3 cos Odp,
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where w(7y,72) = 11df 4+ T2 sin fdp and ¢ is a real scalar field, Bizon and Kahl obtained the
reduced Lagrangian density

e, 0ip, D, 9] =~ CA@0) + 300 + (DI, @D

and the associated Euler-Lagrange equation, equivalent to the Yang-Mills equation, for the
field

0 — ;l |Q0:(Qdup) + Q*(1 = p*)p| =0, (2-2)
where we have denoted 5
Qz) = isech2 (;) . (2.3)

In order to simplify the computations, we re-scale (2.2) in time @(¢,2) = ¢(2t, z), obtaining
the expression

0} p — Q0:(Q0xp) + Q*(¢* — 1) = 0. (24)
This model enjoys time translation invariance, is Hamiltonian, and will be the exact model

worked in this paper. Another important property derived from the Lagrangian density (2.1)
is the fact that the energy

Blpol = [ (307002 + 50 (@) + 50— 2) ) o

is formally conserved along the flow, with the associated continuity equation

Q00 + Q0 (Bh + 51— ¢ ) + 20 (@ 0p0u) =

while since there is no space translation invariance over the system, there is a lack of conser-
vation for the natural physical momentum

Ple, O] = /Q‘lc‘?tsoé?xsodas, (2.5)

however, a particular version of this quantity will be essential for the proof of asymptotic
stability.

2. Kinks

For the case of a static solution, it is direct that the equation (2.4) is reduced to the expression
H” — tanh (“";) H + H(1 - H?) =0, (2.6)
whose well-known [8] first non-trivial solution is given by

H(z) = tanh (”2”) . (2.7)

13



We call H = (H,0) the kink associated with the model. In order to apply virial-type argu-
ments, it is necessary to reformulate the model in the following way.

Following Bizon and Kahl [8], we introduce the change of variables given by the function
1 .
alx) = g(smhx + z), (2.8)

which is strictly monotone and bijective in R (see Section 10). With this, if ¢ is a solution
of the equation (2.4), then ¢ = p o a™! is a solution for

076 — 020 — Q* (¢ — ¢*) = 0. (2.9)
Define now the functions

Q(z) =Q(a ' (z)),  H(x)=H(a '(2)), (2.10)
with @ and H as in (2.3) and (2.7), respectively.

If we formally consider ¢ = (¢, i) = (@1, ¥2), then (2.4) has the following representation
as a 2 X 2 system:

Orp1 = 2
Orpa = Qaﬂc(QaﬂOl) + Q2(1 - 90%)901-

It turns out that this model presents many complications that are difficult to solve. Still fol-
lowing Bizon and Kahl [8], one can transform the system (2.11) into a new simpler model, but
with non exponential decay potentials. Indeed, equivalently to (2.11), and in the framework
of the nonlinear equation (2.9), if we formally consider the solution ¢ = (¢, 9;) = (¢1, ¢2),
it defines the following system of equations:

(2.11)

Q1 = ¢2

B (2.12)
Oy = 021 + Q*(x)(1 — ¢7) 1.

This will be the exact model worked in this paper. An important point to be considered
here is that the term Q%(z) destroys any possible shift or scaling symmetry. Nevertheless,
the system (2.12) is Hamiltonian, and has the conserved quantity

Bligr o = [ (363 + 50607 + 1@°0 - 87 do. (2.13)

This law defines the set of functions ¢ € Li (R) x Li

loc loc

(R) for which the energy is finite
E—{¢ = (61,00 € LL(B®) x L (R) : 0,01 € L(R), QL—6}) € L*(R) , 6> € L(R) .
Note that the kink now is given by H = (H,0), its energy is finite and thus H'(R) x L(R)
perturbations of the kink are referred as perturbations in the energy space. By standard

fixed-point arguments, the system (2.12) is locally well-posed for arbitrary finite energy data;
however, the global existence of solutions for initial data with small energy is not obvious
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but it can be deduced using the conservation of energy.

Due to the dissipation of energy by dispersion, solutions of the system (2.12) are expected
to settle down to critical points of the potential energy. This is why the relevance of studying
the stability under the static solutions for the field.

To study the stability of H, we define H = (ﬁ ,0) and the subset Eg of E
Ey={¢pcE:¢-Hec H'(R) x [*R)}.

Following the standard procedure, let us consider a perturbation in (2.12) over H of the form
¢ = H + w. Explicitly

o1t x) = H(x) +wi(t,2), alt,z) = ws(t, ).

Then one see that this perturbation satisfies the following system:

(kp) {0 . (2.14)
Opwy = —L[w1] — Q*(BHwi + wy),
where we have defined the linear operator
Liw] = —0*w + V(z)w, with V(z) =2Q*(1 - Q). (2.15)

This is a Schrodinger operator associated with @, and from the system (2.14) one has that
02wy = —L[w| + O(|w;]?). We observe that this operator over D(L) := H'(R) with the
associated inner product in L?(R) denoted by (-, -) is self adjoint. Consequently, for the well-
understanding of the problem we require to study the second order operator L. In Chapter
10 we will give the properties of this Schrodinger operator. In particular, we will show that L
has a unique even eigenfunction ¢q(z) associated with the first simple and negative eigenvalue
—p2 < 0 of L (found numerically by Bizén and Kahl in [8]), satisfying

(bosdo) =1, Lldo) = =200, |oo(x)| S e o, (2.16)

By the spectral theorem, the operator L is non-negative if ¢ is orthogonal in L?(R) to ¢.
See Section 10 for more details and full proofs of all the previous statements.

The negative eigenvalue of the linearized operator L introduces exponentially stable and
unstable modes for the dynamics in the neighborhood of the kink. Indeed, the linear subsys-
tem of (2.14) is given by

{@twl = W2 (2 17)

6tw2 = —L[wl],

which has the exponentially decreasing and growing solution w. (¢, r) = e**!Y_ (x), where

([ %o
Y, = (iuod)o) . (2.18)

This is an even-even function. i.e., the first and second coordinates are even (see Section 10).
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In view of the critical properties of the linearized system (2.17), and in the line of previous
results [20, 32|, one may therefore only hope to establish a conditional asymptotic stability
result for the kink H under the unstable linear manifold. In what follows, we refers to global
solution of (2.14) to a function C([0, 00); Ex) that satisfies (2.14) for all ¢ > 0.

2.1. Main result

Our main result establishes for perturbations of the kink H under certain orthogonality
condition, that stability in the energy space Eyx implies asymptotic stability in a spatially
localized energy norm:

Theorem 2.1 (Main theorem). There exists 6 > 0 such that if a global solution (¢, 0,p) of
(2.4) satisfies for all t > 0,

(¢, D) (t) — (H, O)|| 711 ®)yx L2 () < 6, (2.19)

then for any I compact interval in R,

lim 1(6,240)() — (. 0) [ i1 1yzey = 0. (2.20)

The previous result shows that, even if the dynamics is highly unstable, there is room for
the existence of a stable dynamics.

2.2. Previous results

The study of the mathematical structure of kink solutions have achieved an impressive ad-
vance during the past years. The physical meaning of kinks and their key importance in high
energy physics and general relativity is out of the scope of this paper, the interested reader
can consult the monographs [29, 42, 39]. See [23] for a detailed survey on the long-time
behavior of waves.

The case of kinks in variable coefficients field models was first studied by Snelson in the
¢ case [38], see also the recent results by Alammari and Snelson [2, 3] for general scalar
field models. Compared to their results, the model treated here has additional difficulties
appearing from the unstable character of the dynamics, and the slow decay of solutions. In
particular, in our case the spectral theory has not been taken front grant, being proved in
Section 10, and in contrast to previous studies, we consider a non-linearity with variable
coefficients.

3. Preliminaries

We shall start with some basic properties about the function a defined in (2.8), and the
modified soliton @ in (2.10), deeply involved in the spectral analysis of L.

Lemma 3.1. The function o(x) is strictly monotone, bijective. Moreover, if a~t denotes
the inverse of «,

Opa(z) = Q1 (z), 0O.a ' (x)=Q(). (2.21)



Proor. By direct computation one has

o (x) = ;(cosh:v +1) = zcosh2 <;C) = Q(lsc)’

proving that a(x) is strictly monotone and bijective, since o/ (z) grows with z. For the inverse
of a we have

1 ~
-1 _ _ -1 _
(@) (2) = m =Q(a () = Q(x).
This ends the proof of (2.21) and the lemma. O
The standard < symbol means that there exists C' > 0 such that a(z) < Cb(z), C

independent of x.

Lemma 3.2. The functions a~(x) and @(;E) are odd and even, respectively, and they have
the following asymptotic descriptions.

For |z] < 1,
al(z) = ;)x + O(2?), Qz) = 2 — ;;xQ +O(z*). (2.22)
For |z| > 1, we have the limit
T G 1, lim (1+ |z]))Q(z) = 1. (2.23)

z—£00 ln(‘xD z—+o0

FEven more, the integral f@1+€dx is finite for any € > 0.

Proor. Let us first prove (2.23). Recall that Q(z) = Q(a'(z)). Employing the fact that
x = a(y) is continuous bijective, and goes to 00 when y — +o00, as well as (2.8), we have
that

. ~ B 1sinhy +y
Jim 2Q(x) = lim a(y)Qy) = lim gw
1 h 1 1
B + = — lim coth (y)
y—=+o0 4 cosh (%) sinh (%) 2 y=teo
1
= 4=
27

where in the second line we have used a simple L’Hdopital’s rule. On the other hand, using
(2.21),

a”'(z)

. , - 1
L m(jz]) S [#lQ(@) = £5.

This proves the first limit of (2.23) , and Q < |=|~".

Now we restrict our analysis of @, by parity, to the positive real numbers. From definition
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(2.8) we obtain for z > 0,
e’ =e " — 2z + 6a(z).

Employing this,

9 (a:) 1 4 4
sech” (= | = = = :
cosh? (%) e*+2+e 7  3e?+2— 2+ 6a(x)

Replacing in (2.10), and using that [a~!| ~ 1 In(]z|), we have for any € > 0

Q) ¥ T
x) = :
3e=a @) +2 - 20 (z)+ 62 ~ 1—al(z)+3x
Analogously,
Q)2 T 2
T :
“l—al(z)+3x ~ 1+ 3z
Therefore, ~
Jim (14 2)Q(2) = 1.

The case x — —oo is obtained by parity, which proves (2.23).

Now we prove (2.22). The proof is based in a simple Taylor expansion in second and
fourth order around x = 0.

o7 () = a ' (0) + Ba (0) + O(?) = 2o+ O(?).

Q) = Q0) + @ O)r + 500" + (@ (O0) + O
27

_7_72 4
=5~ 3t O,

w

where we have used that Q'(z) = —Q%(2)H(z), Q"(z) = Q*)(1 — Q(z)) and Q is even.
Finally, by (2.21) we have

/@HE(%‘)dl‘ = /Qg(s)ds < +00.

4.  Virial estimate at large scale

The first step is to consider a small perturbation of the modified kink (ﬁ ,0). In what follows
we describe this decomposition, introduce some notation, and develop a first virial estimate.
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4.1. Decomposition of the solution in a vicinity of the kink

Let (¢, 0;¢) be a solution of (2.9) satisfying (2.19) for some 6 > 0. Let (0, ¢) be given in
(2.16). Using Y from (2.18), we decompose (¢, 0;¢) as follows

Ot x) — H = a1 (1) do(x) + ua(t, x)
{ 0:6(1,) = poas(t)oo() + us(t,), 221
where we define (see (2.16))
r(t) = (9(8) = Hooh) = == (0(0) = H. Llou).
as(t) =~ (D40(0). ) = —— (D40(0), L[oa])
20t) = 7 (0P(L), Po) = 3 \oetd), 0l)5
such that
(ui(t), ¢o) = 0 = (ua(t), ¢o), (2.25)
or equivalently,
(u1(t), Lldo]) = 0 = (u2(t), L¢o])-
Setting the variables . .
b+ = 5(@1 + CZQ), b_ = 5(&1 — CLQ), (226)

from the stability hypothesis (2.19) and the decomposition (2.24), we have for all ¢t € R,
100ur (D)2 + Nl 22 + [lua(®) ]|z + lar ()] + [az(®)] + (b4 (O] + [0- ()] < C6. - (2.27)

Moreover, using (2.14), (2.16) and (2.24), we obtain that (a, as) satisfies the following dif-
ferential system

: N,
a1 (t) = poaz(t) b (t) = pob(t) — 270
() 0 N, or equivalently H ]0\7 (2.28)
az(t) = poa1{t) — —, ' - _ -0
o(f) = poan () = b-(0) = =pab (1) + 5.2
where o
N = Q2 (3H(CL1¢0 + U1)2 + (alqbo + Ul)g) y (229)
and
Nt =N — Nygo, and Ny = (N, ¢y). (2.30)

Then, (u1,us) satisfies the following system
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4.2. Notation for virial argument

In this paper, the notation F' < G means that F' < C'G for some constant C' > 0 independent
of F and G. Unless otherwise indicated, the implicit constant C' > 0 is supposed to be
independent of the parameters A, B, v and § introduced below. As in [27, 19], it is convenient
to define a modified space Y of smooth functions f : R — R with the property that for any
k > 0, there exists a constant C) > 0 such that

1f®(2)| < CLQ(x)®  for all € R.

It is important to stress that Q and V in (2.15) have only polynomial decay, consequently
the definitions of J and the virial type functions ¢ need some care in our case. Note for
example that Q, hy, V € V.
Let x € C(R) be a smooth even function satisfying
x(z)=1for x| <1, x(z)=0for |z] >2, x'(z)<0forz>0. (2.32)

For A > 0, we define the function (4 and ¢4 as follows

G = (~ o @I - X)), patr) = [ Oy, s (239

Moreover, we introduce the weight function

oa(x) = sech (;(xl(x)) : (2.34)

Notice that (4 S o4 < Ca.

For B > 0, we also define

Gla) = e (— 5o @I - x(2)), wu(e) = [ QGw)dy, » < R,
(2.35)

p(@) = al@)en(a), Tal@) = x (ﬁ”) |

These functions will be used in two distinct virial arguments to prove Proposition 4.1 and
Proposition 5.1 with different scales

1< B« A. (2.36)

The choice of the switch function ¢4 is specifically adapted to the decay rate of the potential
of the linear operator in (2.14) and (2.60). We denote by ~ the composition with o~ (i.e.,

fl@) = (foa™")(x)).
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4.3. Virial estimate at large scale

Following [20], and having in mind (2.5) in our new coordinates, we introduce the time
dependent virial functional Z(t) defined by

1
1= /(@Aazul + §<P,AU1)U2, (2.37)
and introduce the variables
w; = Caws, i =1,2. (2.38)
Here, as in [20], (wy,ws) represent a localized version of (uq,us) at scale A.

Proposition 4.1. There exist Cy,C > 0 and 6; > 0 such that for any 0 < § < 0y, the
following holds. Fix
A=5"11 (2.39)

Assume that for allt > 0, (2.27) holds. Then for allt > 0, the functional Z in (2.37) satisfies
the estimate J

i —;OO / Q[(dyun)? + Q*w?] + 0/@%3 + Clay|*. (2.40)

Remark 4.2. Estimate (2.40) does not involve any type of spectral analysis. Its purpose is
to give a weighted control of (u1,dyu1) on a large scale A in terms of a weighted L* norm of
uy with faster decay.

The rest of this section is devoted to the proof of Proposition 4.1. We start with the
following intermediate lemma.

Lemma 4.3. Let (u1,us) € HY(R) x L*(R) be a solution of (2.31). Consider px = pa(x) a
smooth bounded function to be chosen later. Then

1 1 1
—I— /g&A (Opup)? + Z/gp%uf i/goAV'u% - / (goAarul + 2gof4u1> N*. (2.41)
Proor. We define the integrals

1
T, = /‘;OAUZaxula Ir(t) = §/¢Q,u1u2.

Taking time derivative over Z; and using (2.31),

d

ZT() = / (a1 + 120,711

= —/(PA (L[Ul] + NJ_) 8mu1 + / SOAUQazUQ

— _/@AL[ul]ﬁxul —/QOAG uy N+ — */SDAUQ

_/SOAL[Ul]axUl —/ﬁpAaazulNL - 5/90,4“2-
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For the first integral just defined in the RHS,
/@AL[ul]axul = /@A(—aiul + Vuy)0uy
1 1
= —5/%48 (8u1)2+§/g0AV0u?

= /SDA (Our)? /@Avul /@AV’uf

Then, replacing we obtain

1 1
/apA (Opup)? 2/ A Vui + §/<,pAV’u% — i/go'Au% —/goAameL- (2.42)

Now for the second virial term Z, analogously we take time derivative and use (2.31):

d

a 1, = /SDA Uy s + uyta)

25/90,4“2_5/90.4“1 L[u1]+NL)

2 /@Auz 2/90AU1 Ul /@AulN

For the integral I defined above
I, = /gp%ul(—agul + V)uy)
= / (@lati1)aOati + / PaVuy
= /(pfﬁ‘ulﬁxul +/<pf4(8xu1)2 —l—/gO’AVuf
= —;/wﬁ{iﬁ +/90’A(6’xul)2+/sowu?
Then replacing we obtain
O / i+ / i — / ¥4 (0rur)? / ¢uVui — / Phu Nt (2:43)
dt 2 4 2 2 2
Finally, adding (2.42) and (2.43) we arrive to the equation,
/@A (Opur)? /90% 4= /SDAV/% /(@Aaxul + ;SD/AW) N*,
which is nothing but (2.41). O

Now we rewrite the linear part of the virial identity using the new variables (wy, ws).
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Lemma 4.4. It holds

1 1
—/sO’A(@xul)z + E/QOXU%_'_ §/¢AV’U?

. 1 " C/ 1
2 A A I 2 1,2
(2.44)
where
" C/ 2 1 _ e
b (C) = L 0+ 2 Gsmla ) + (1 - 0@ Hsgm(a ). (245)
and there exist T > 0, C' > 0 independent of A such that
1~ 1 -
ZQ”(x) + E@A(x)V’(x) < —CQ*zx)  for all |z| > 7. (2.46)
Finally, one has
1,4 1@1 >1 é - (Cq)2 < lQQ]. >11. (247)
Cal ™A {l=|=1}> Ca Ca) |~ {lz[>1}

Remark 4.5. Unlike previous works using this type of virial functzon we obtain an expression
in terms of wy with a weight function Q, and an extra term X n f@” This is due to the
particular definition of C4 and @4 in (2.33) to deal with the specific polynomial decay of the
linearized potential. Another relevant feature is the loss of a compact support for the second
expression in (2.47), which will have to be controlled by the specific decay from (2.46).

Proor. Considering w; = (quy, and ¢y = @Cf‘, we have,
¢\
/@A(@xul /Q <8 wy — CAw1>
— [ 600 A%a AN
= /Q(axwl) —2/Q w10, w1 +/ Quy
- Q¢ Ca
=[G+ [ ( ) (g)]%
- /Q T 1 +/ QCA 1

and

/ 90/” 2

Ca Ca Ca

YAV 1\ 2
Q//+2Q (CA) (QCA) wf—l—Q@ <<A> ]w%
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Then,

~ [ h@u+ g [ttt = - [ Q@+ [ @l

+/ < _;(@éﬁ;)/ 2 Q(gj)] 2
-~ Jowuy} foute] fol- (2] ]

By elementary computations of (2.33), we have

" A
Q+Q C)

A
@//w

4 = Wl —sga(a) (@ - x)]
Ci - <§2) A { lo” 42X/ (o™ )'sen(a™) — (1 - X)(Ofl)"sgn(a*l)} :

Hence, replacing with (2.21), we get (2.45) and the first inequality of (2.47).

Now we describe in more detail the behavior of (2.45), which will differ from previous
works on the subject. First, for 1 < |z| < 2, we can see that

G (Q)
Ca Ca
G (C,’4>2
Ca Ca
i (3]
Ca Ca

which proves the second estimate of (2.47).

A

For |z| > 2, using (2.21)

= QN < @),

Then one can see that
< Py
A

Finally, we focus on proving (2.46). By parity we can restrict our analysis to the positive
axis. Using the definition of @ and V, in addition to (2.21), we have for all x > 0,

107+ seaV' = [5 - 50— (2-30) wall] @ (2.48)

Since by definition Q : Ry — [0, ] is bijective, there exist z; > 0 such that Q(z1) = L. Even
more, since Q is a decreasing function in the positive axis, we have that

2-3Q(z) > 1
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for all x > 1. In addition, by definition we have that

walx)H(z) > 0,

for all z > 0.

Now, if we apply a change of variable in the integral definition of ¢4 in (2.33) and prop-
erties of y in (2.32), we have

a~x) 2. 1 a"(z) 2
o4 = / o 2s( x(a(S)))dSZ/ d3+/ e~ A%ds
0 0 1

=1+ 21 (e_% - 6_%071(@) > 1.

for all z > «a(1).
Collecting these estimates and replacing in (2.48) we obtain for all x > max{z;, a(2)}

1, 1 L 55 _ . A< (l_265_7\5 9,
19 gV s <2 T soAH) Q' < (2 Y- H) Q= R(a™'(2))Q",

where we have defined the auxiliary function R : R, — R as

—Q(s) — H(s).

From the bijectivity of «a, proving that there exist s; > 0 such that R(s) < 0 for s > s; is
equivalent to prove (2.46), but this is direct using that H is an increasing positive function,
and H(2) ~ 0.76,

5 5
R(s) < 5 = Q(s) = H(2) ~ =026 — =Q(s) <0

for all s > 2.

Taking & = max{z1,a(2)} we conclude that there exists some positive constant C' > 0
such that

i@”(x) + ;%1(95)‘/'(37) < —CQ*(w)

for all > x,. By parity we conclude (2.46). This ends the proof of Lemma 4.4. [

Corollary 4.6. Let (uy,uy) € HY(R) x L3(R) be a solution of (2.31). Then, for A large
enough, there exist positive constants Cy, C' > 0 such that

/ 1 i 1 / 2 2 l )
~ [@a@un)? + 7 [ + 5 [eaviud < = Co [ QUowwn) + Qi)+ ¢ [ Qouk
(2.49)

Remark 4.7. From (2.44) and (2.49) we see that the objective must focus on controlling
Ik @%%. This term comes from the compact interval where the term associated with the
potential is positive. For this purpose we will define a dualized or supersymmetric problem
in Section 5. In Section 9 we will show that split the term if@”u% + 3 [paV'u? into these
two positive and negatives regimes will be essential to have enough decay and apply transfer
estimates to control it.
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Proor. From (2.44), (2.46) and (2.47) we have that there exist a positive real number T and
constants C, C’ > 0 such that

/maul 1 Paul + = /soAV’

—/@(azwouc Qui-cf Quivc| @t
A Jjz>1 ||

where we have used that |Q”] + |paV’| < Q2. Even more, using 1 < Q for € [—7, 7],

redefining certain constants and taking A large enough, we conclude that there exist Cy, C' > 0
such that

~ [ + ¢ [+ [ eaviid < ~Co [ QU@ + Qi)+ C [ @0,
obtaining (2.49). O

Now, we deal with the nonlinear terms N and N7 introduced in (2.29)-(2.30) with the
following result.

Lemma 4.8.

‘/ (@Aaxul + ;SOIAUl> (@2(3E(01¢0 +up)? 4 (a1do + wr)?) — No%)
< Jaa]* + /QGU% + A% [lur]| o </Q|8xw1’2dﬂf + /@3|w1|2dm) :

(2.50)

Proor. We decompose the first integral of (2.50) into several parts and write

/ (¢A5xu1 + ;@;m) Q’ (35(&1% +up)® + (ar¢o + Ul)g)
= a%/@2(3ﬁ+ a1 o) by (@Aazul + ;SOIAU1>

. 1
+ 3aq /QZ(QH + a1¢0) ot (@Aaxul + 29014U1)

1
+ 3/@ (H + a1¢0)u? <90A3 up + @Aul) /Q <90A5 ur + 290,4“1)
211+IQ+I3+I4.

For the first term, using integration by parts, the Cauchy-Schwarz inequality, the decay
estimates on Q and ¢y, noticing that for all = € R, |¢/y(z)| < Q and |pa(z)| < |a(z)],

1] < a} [ 0@ BH + aéo)@)eam| + yat [ 10°GH + moo)digtuu]

calfaanc) (o) a(fa) (o) e

4 6.2
g%"‘/@“l

For the second integral, by integration by parts, using the exponential decay (2.16),
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da(z) < la~t()], and in addition |a;| < 1 (see (2.27)), we obtain

~Y

[Io] = *|a1|

/3 2(2H + ay¢o)do)patis
= ra1|/|a Y@l + e)Q%E S [ QP

(2.52)

We need a modification of the claim proved in [20] for the non linear terms in wu;.

Claim 4.9. It holds
[ @G = [ QG S Al ([ Q@)+ [GPut).  (253)

Proor oF Cram 4.9. The first equality in (2.53) corresponds to the definition of w; in (2.38).
Next, by integration by parts and standard estimates, we have

/OO Q% exp (22704_1(@) Jwy PP da
0 A

A e, 2p 2p+2
= 2p/ Q (x)@xexp(Aa (x)) |w | dx

— % 2p+2 é > 2£ -1 ) A2 2p+2
= 5, P = 2 [T e (o (@) (@2 )

1
< <Pt A/ Q?|ur | (Dpwy ) wyda + — / Q% |ur|Pw?da

+1 ~ ~ o
< 27 Ay |2 (/ Qo e+ [ Q3w%dx)+uu1uiﬁo [ @uiae
P 0 0 p 0

00 __ 2 2 oo 0o __
|7 @ e (Fam @) e < P E A2 ([T Q@ e+ [T Q).
0 D 0 0
which implies (2.53). O

Using this claim, integrating by parts, employing ¢4 < A and the decay estimate (2.16)
we have

1) < 5 [1GH + argo)duad] + [ 10.(GHE + arg))paud
= / Gl +A [ @l + Alaal [ Qbllun’
S 1+ Ala)) [ @GNl + 4 [ Q¢
S Al ([ @Owwn e + [ GPutir).

(2.54)
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Additionally,
17~ 1 [ o~y e -
1l = |5 [ @t + 5 [ @Heaid] S [@GRui+ A [ Qul
S / Q*CPwi+ A / Q*C Tpwt (2.55)
S Al ([ Qswnir + [ @Put).

The last term we treat is — Ny [ ¢g (@Aamul + %gp%ud. By a point-wise estimate in (2.29),
[N S Q*(aidg + ui),

and thus, by decay estimates on Q and ¢, and by (2.27), |a1| < 1, |Juy |z < |lwa|lmr S 1,
A > 2, it holds

Vol S + [ Qgut S o+ [ Qut
Using integration by parts

1 1
—/cbo (soAaxul + ng;m) = /ul <s0A¢6 + 29@2@0) -

Note that from the exponential decay of ¢y, ¢}, and from the polynomial decay of Q, Ca we
have

padh + Padol S a7 (@) + Qg S Q"
Thus, using the Cauchy-Schwarz inequality and Lemma 3.2,

< (a4 [@%) [ @
(e Jer) (f ) (@) e

4 ~6, 2
§a1+/Qu1.

1
‘No/% (SOAaaﬂh + 280:4U1>

A

Finally, collecting the estimates (2.51), (2.52), (2.54), (2.55) and (2.56), we obtain precisely
(2.50).

‘/ <90A5a:ul + ;‘P/AUI> (@2(3ﬁ(a1¢0 + ) + (a1 + wp)?) — N0¢0>

Slarf'+ [ Q% + A%uslle ( [ QlowwnPdo + [ QunfPde).

This ends the proof of Lemma 4.8. O
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4.4. End of Proposition 4.1

Applying Lemmas 4.3 and 4.8 with Corollary 4.6, there exist constants Cy, C' > 0 such that

d ~ 1 " r\2] 1 N
s~ fewr= [[ G- (&)@t ford foar
- / (@A&rul + ;‘P;xul) Nt
< = Co [ Qo) + @t +C [ Qut + Clarf!

+ A2 |fuy | (/@(amwlf + /@3\w1|2) |

Using A = 077 (from (2.39)) and |juy|z~ < & (from (2.27)), for &; small enough, we obtain
(2.40).

5. Transformed problem and second virial estimates

5.1. Transformed problem

We refer to [12, Section 3] for more details about factorizations of Schrédinger operators and
to [19, 20, 27] for other uses in similar contexts. Recall L from (2.122), and let Ly be defined
as follows: B B

L= —-924+V, with V:=2Q*1-0Q),
(2.57)

2
Ly= —(95—1—‘/0, with %:-2(62(?0) —2/13—‘/,

and
U:¢0'6x'¢617 U*:_¢alax¢0
An important point to remark here is the unknown character of the terms forming Lq in

(2.57).

Then, the operators L and Lgy rewrite as L = U*U — p3, Ly = UU* — p and it follows
that
UL = LyU.

Let (u1,us) be a solution of the linear part of 2.31, and set v; = Uuy, vg = Uugy. Then,

{7:“ - (2.58)

Vg = _LO [’Ul] .

Our analysis relies in the crucial fact that the potential of Ly is positive and repulsive. These
properties happens to be the only spectral information needed for the proof of Theorem 2.1.
See Appendix 11 for more details and the prove of these statements.

With respect to the above heuristic, we must take care of the loss of one derivative due
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to the operator U, without destroying the spetial algebra described heuristically. Therefore
we need a regularization procedure of the functions involved, as in [20]. For this purpose
we define the operator X, : L*(R) — H?*(R), X, = (1 — ~v92)~! via its Fourier transform
representation. For h € L2,

I
o) = 11

For v > 0 small to be defined later, set

=(1— 2\—1
v = (1=98,)" Uy, (2.59)
vy = (1 — 02 Uus.

From the system (2.31) for (uy,us), follows that (vi,v) € H*(R) x H'(R), and satisfies
the system

?.}1 = V2
Vg = —(1 —v0?) "YU Luy + (1 —v0?)"1U(N?).
Second, we note that UL = LyU, then

—(1 —~40?) U Luy = —(1 —40%) ' LoUuy
= —(1=70;) "' Lo[(1 — 70;)vi]
= —(1 =907 (=0; + Vo) (1 — 7)1
= d;v1 — (1= 997) ' [Vo(1 = 19;)1].

Since
(1 =03)[Voun] = Vour — v(Vg'vr + 2V58,01 + Vodvr)
= Vo(1 —702)v1 — v(Vy'vr + 2V 0,01),

we obtain
—(1 —~0*) 'ULuy = —Lov; — (1 — 7(93)_1(‘/0”211 + 2V, 0,01).

Therefore, we have obtained the following system for (vy,vs) (compare with (2.58)):

U1 =0 (2.60)
Uy = —Lovi — v(1 = 702) " (Vg'vr + 2V50pv1) + (1 = 702) 'UN-. '

An important point to be stressed now is that system (2.60), unlike previous systems obtained
recently in the field, has unknown function V. We do not assume any specific spectral
property on Vp, but we will succeed to show the required repulsivity conditions on (2.60) by
making interesting computations on its local and global behavior.
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5.2.  Virial functional for the transformed problem

Recall (v1,v9) from (2.59). Set

70 = [ (van@den(t2) + 560 p@ot,)) oot 2)ds (2.61)

where we recall that ¢4 p = Y4B, and define the localized version of the function vy at scale
B as follows

2z = xalpv1. (2.62)

Here z; represents a localized version of the variable w; at the scale B. This scale is inter-
mediate, and J involves a cut-off at scale A, which will allow us to obtain an estimate in
the same scale than the information obtained in Proposition 4.1, needed to bound some bad
error and nonlinear terms; see [20, 24, 33| for similar procedure.

Proposition 5.1. There exist Co > 0 and oo > 0 such that for v small enough and for any
0 < < dg, the following holds. Fix
B =618, (2.63)

and assume that for all t > 0, (2.27) holds. Then, for allt >0, J in (2.61) satisfies
d . _ L _ )
ST < =Cy [ QUO + Q2+ 6t [ Qlown ) + QPul] + ot (2.64)

The rest of this section is devoted to the proof of Proposition 5.1, which has been divided
in several subsections.

5.3. Proof of Proposition 5.1: first computations

Analogously to the computation of Z in the proof of Proposition 4.1, we have from (2.60),

d LN
@\7 = / (#M,Baﬁﬂl + 2¢A,B7Jl> Uy
1
= —/ (@Z)A,B&;vl + 2¢IA,BU1> Lovy
1
= [ ($amdavs + 50k pon) (1= 2027 (V'vn + 2V50,01)

1
+ / <¢A738$U1 + 277014,31)1) (1 — *}/83)_1U]\/vL
=J1+ o+ Js.

First, using the definition of Ly and integrating by parts such as in the proof of Lemma 4.3,
we have

1 1
Jp=— /?/11473@55211)2 + 1 /@/)/X,BU% - / <7/)A,B8xvl + 2¢f4,BU1> Vour.
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By definition of ¥4 p (see (2.35)), it follows that

Yyp = @56,24(123 + (X% ¢s
5= Q) + QAR +2Q(2) ¢ + (¥3)"es
W= Q"XACh +3Q'(X3)'Ch +2Q'YA(CR) +3Q(X3) (¢B)
+ 3Q(XA)”C123 + @)2,24((1%)” (XA)WSDB-

Thus,
/¢A30v1 /%’{3 v = /QXAC38711 /Q” B%+1/©~2

4/QXACB1+4/Q )'(CB)vi + 4/Q
by [ @RUGE ~ [ (om0 + [ ent

For the first term of this integral, by the definition of z in (2.62) and proceeding as in the
proof of Lemma 4.3, we have

QRO = [ Q02 + [(Qato)) kot
= /Q(azz)2+/© 22+/Q~N>~(ACBU1 2/@ ) %
2/@ X4)'Col + /Q )'vi,

1 A .~ "
Z/QX%(C?B) U1 2/@ <<B CB >22

and

Thus,

- ¢AB8U1 @D/XB vy = — Q(0,2)° Q"= 2+ Q 225+,
2 CB CB

where we have set
4/Q CB/ 2+ 4/Q BU1 2/@ XA +>~<ZO~<A]C1§U%

—/ Y4 v5(0,01)? 4/ 2)" ppvi.

Recalling (2.62), (2.33), (2.35) and integrating by parts,

1 1 1
/ <¢A,Bax711 + 225273711) Vour = 5/‘/0390(@/&1,31}%) = fBVb/ 22
B

Therefore, setting the potential

" /1 \2
7@/1_‘_ Q (CB (CCB%) > _ l@% (265)
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For convenience, we split this potential into two main parts, given by
L~ (¢ (CB)? 1 ¢p 1~, 2¢p
VB — [Q ( . B o 77‘// S " 77‘//
27\ G /) 10¢G° 47 5¢ "
=: Vé + Vél .

(2.66)

Thus, the main part of the virial term can be written as
Jy = _/ (Q(0:2)? + ViE22 + V2] + T,

with Vi, VA in (2.66). The following result simplifies the use of V£ in some extent.

Lemma 5.2. There exists By > 0 such that for all B > By, VL >0 on R. More precisely,
there exists C{ > 0 such that

VA>Vi where Vi = CiQ% ()11 (2), (2.67)

forall x € R.

Proor. First, from (2.47) (with A replaced by B), it holds
%_<Gv2
s \Cn

Second, since for z € [0, +00) — (p(x) is non-increasing, applying a change of variables,
we have for x > 0,

C -
< Q@) (@),

for some C > 0.

1 a2
‘gg -3 /0 ¢2(als))ds > a~(z). (2.68)

Now we will need some technical results about decay, positivity and repulsivity of Vj that
will be proved in Section 11. From Lemma 11.13 we have that Vj < 0 for all z > 0. Using
the above inequalities and decomposing,

1 / ¢ 3
o @IV @)] — S0 o)

1 -1 / C~3
> (ggo @I = Q@) Lissen @)
1 -1 / C~3
+ (o @@ = HO@) Lizana(@)

1 —1 /
T g0 @IV (@),

Vi(z) >

(2.69)

where x99 > 1 is the second positive root of V” (see Lemma 11.4).

For x € (1,292), since by Lemma 11.13 we know |V (z)| > 0, we have that there exist

C > 0 such that )

oo @) = €.
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Then, taking B, = 272 we obtain

C~3_ ~ 21C _ 14
-1 / et >
o (@) Vi(z)| — =@ > C 3 C

20
for all B > B;.

For z € (292, 00), using Lemma 11.14, the definition of V and Lemma 3.2, we have that
@ sl 5@
In particular, there exists C" > 0 such that C'Q* < [V{(x)| for all 2 > xy,. Using this, we
obtain

L / 3 ¢ ¢\ A3
g @) - 5@ > (e - 5) @

Thus, since by (2.8) for = € [z92, +00) — a () is increasing, we have

1 / A3 S N G
s @) - S0 > (Gae) - 5) @
Taking By = %Cg it holds

1 -1 / C~3 1 13

il _ 203> =

for all B > Bs.
Defining By = max{Bj, By} and collecting the previous estimates in (2.69),

1~ 1~ 1 ,
V(@) > SClpceca (o) + 50 Q" sy () + 20 Ha)|Vg ()]

2
> 1a ; L Lo1@) 001,
Z 5 Ti<e<sy () + 5 5 1+ 0 (7)) C'Q°1p>5 (),

for all B > By. Again, using that a=! : R — R is an increasing positive function, we conclude
that there exists C] > 0 such that

VEIg(Z') > C{C}Slzzl(x)v

for all x > 0, B > By. By parity, this estimate holds for any x € R, obtaining (2.67). O]

Now, we have to obtain some estimate for the potential VA!. For this, we prove the
following result.

Lemma 5.3. The potential VA is strictly positive on R. Even more, there exists C{ > 0
such that B
VA >V, where Vy = ClQ3(x), (2.70)

for all x € R.
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Proor. By parity we restrict to # > 0. First, using (2.21) and the definition of @, we have
1

-t ey

We notice that (2.71) is positive for Q > g. If we denote & the unique positive root of (2.71),
from the definition of () we have

T=a« (2 arcosh (\/g)) ~ 0.576,

and we notice, recalling that Q is a decreasing function on R, that (2.71) is positive for
|z| < 7. Using this, the repulsivity of ¥, and the definition of V!, we have that

Vil(z) >0,

for any x € [0,T).

For © > w59, where x5 is the second positive root of V" (see Lemma 11.4), using (2.68),
the decay estimate for V{ from Lemma 11.14, and replacing (2.21) we obtain

Vi) >~ Q" - sa )V ()
1, /5~ 2 SO
=@ (50— 1)+ Za (@) - 3Q@H

(- 1) 0+ (S = Sarom) 0
= k(o' (2))Q?,

where we have defined the auxiliary function k£ : Ry — R as

k(s) = ‘ésH(s) - ; + (152 - gsH(s)> Qls).

This is an explicit function with two positive roots s; ~ 0.47 and sy ~ 2.21. Even more,
from the asymptotic behavior of k(s) for s — oo we have that

k(s) >0,

for all s > s5. Using the bijectivity of «, that @({EQ’Q) ~ 0.49, Q(s2) ~ 0.54, this implies that
a(s2) < xgs, and we conclude that

Vi'(z) 2 Q%(x)
for all x > 4.

For © € (T, z22), computing we have that

VA (z) > 0.
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Considering the above cases and by parity, there exist C, C > 0 such that
Vi () 2 Clipjcay, () + CQ*Ljayza, (),
for all z € R. To sum up, we have that there exists C > 0 where it holds
Vi () > C1Q%(x),

for all x € R. This ends the proof of (2.70). O

Using Lemmas 5.2 and 5.3, the definition of V in (2.65) and considering C, = min{C7, C{'},
we obtain

cij < - / Q(0:2)" + C1Q%2% + Jy + Ja + Js. (2.72)

To control the terms Ji, Jo, J5 and Jy, we need some technical estimates.

6. Technical estimates.

The following estimates are already classical, but in our context, since the decay is only
algebraic, we need some particular care. We start out with estimates necessary to treat
regularized functions. The proof of these are different from previous work due to the slow
decay of the potential ;. We first recall the following well-known result.

Lemma 6.1 (See [20]). For any v € (0,1) and f € L?,

I =70 fllee < fllees (1 =027 0 fllaz < 7771 f e,

! ) (2.73)
11 =73 02 f Nl < 71 Nle-

Our second result uses the fact that, even if the decay is only polynomial, it is strong
enough to perform commutator estimates.

Lemma 6.2. Let af-) be the function defined in (2.8). For any 0 < K < 3, v > 0 small
enough, and f € L*(R) one has

Isech(Ka ™ (x))(1 = 402) " fllz> S (1 = 702) " [sech (Ko™ (2)) f]] 2, (2.74)
and
lcosh(Ka™(2)) (1 = 702) 7" fllz S 111 = 702) " [cosh (Ko™ (2)) f]]| - (2.75)

where the implicit constant is independent of v and K.

Let us recall that in view of (2.23), the term sech(Ka~'(z)) has only polynomial decay.
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Proor. We set g = sech(Ka™!)(1 —~9%)7' f and k = (1 — v02) " ![sech(Ka™')f]. We have

f= Cosh(Ka_1>(1 — Ok = (1 — yai)[cosh(Kofl)g]
= cosh(Kofl>g — ’y[cosh(Ka’lyg +2 cosh(Kofl)/@xg + cosh(Ka’l)aig]
= cosh(Ka_1>(1 — 702 g — VK cosh(Kofl)@2 [K - Etanh(Koﬁl)} g
— 29K cosh(Kofl)@tanh(Kofl)ﬁxg.

Thus,
(1 =70k = (1 —~d)g — yKQ? [K - ﬁtanh(Koﬁl)] g—29KQ tanh(Kofl>8xg.
Applying the operator (1 —~9?)~! to this identity, we obtain
g=k+vK(1 —~02)"" {@2 [K - ﬁtanh(Ka_l)} g} + 29K (1 —~02)7! [Q tanh(Koz_l)aa;g} :
We have from (2.73) that for y < 3,
11 =7 ey ST 10— 900 Bulleonny S 7% (2.76)
Thus, for 0 < K <3

(=202 {2 [K — Htanb(Ka")] g}

L2 < H@z [K — ﬁtanh(Ka_l)} g

12 Sk llgllez,

and

H(l — 703! {@ tanh(Kofl)amg]

L2 < H(l — 783)_10;3 {Qtanh(Koﬁl)g] L
+ (1 = 402)7'[0:(Q tanh(Ka ™" ))g] 2
<7 K| Qtanh(a") g 2
+ K||Q* (K sech?(Ka™') — ﬁtanh(Ka”» |l

_1 _1
S 7 2 Kllgllee + K gllze < 972 gl e

We deduce that there exists a constant C' > 0, independent of v small and 0 < K < 3, such
that

1
lgllz2 < [[Ell2 + Cy2 gz,
which implies (2.74) for v small enough.
We prove (2.75) similarly. Setting

g= cosh(KOz_1>(1 B vai)_lf and K =(1-— 783)—1[cosh<Kor1>f]a
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we compute

f= sech(Koz_l)(l — 02k = (1 — vai)[sech(Kofl)g]
= SGCh(Koz_l)g - y[sech(Koz_1>//g +2 sech(Kofl)/&Eg + sech(Koz_l)azg]

x

= sech(Koz_l)(l —70%)g — vKQ Sech(Koz_1> [KQ(1 — 2sech?(Ka™'))g — 2tanh<Koz_1>8x .
Thus, applying the operator (1 —~v9%)~! as before, we have
g=k+~vK*1—~49*)1Q*1 — 2sech*(Ka™))g] — 27K (1 —~v9%)7Y[Q tanh(Ka’1>(9I ].
Using 0 < K < 3 and (2.76), it follows that
1(1 =027 Q*(1 = 2sech®(Ka™))g]l|r2 S 1Q%(1 — 2sech?®(Ka™))gll 2 < llgll12
and

1(1 = 02)7'[Q tanh (K a™")d,]|| 12
S =792)710,[Q tanh (Ka™") g]|[ 2 + [|(1 — 702) 7' [0.(Q tanh (Ko™ ))g] 2
<v7z|Q tanh(Ka_l)g||Lz + ||Q?[K sech*(Ka™!) — Etanh(Ka_l)]gHLg

_1
S 2 lgll e

It follows that there exist C' > 0 independent of 4 such that

gl < [|K]lz2 + Cy2 gl 2.
Considering v small enough we obtain (2.75). O

Remark 6.3. There are some interesting consequences of the previous results. Indeed, using
(2.74) and (2.75) for K = 2 + 2 with A > 2, (2.73) and n = 1,3 implies the following
inequalities

. (2.77)

sech (5 +5) o) (=087 5 | =902 fsech (5 +5) o) /]

and

sech ((; + il) Oél> (1—n0)~'f

Besides, we recall that

‘ S H(l —70;)" [sech ((; —~ ;) al) f} ’ . (2.78)

~ 1 2-A
1< h(
c4Q"2 < cos 54

|3

o) Sou@ 7, (2.79)
for any A > 2, so using (2.75) for K = LA with A > 4, and (2.79) implies

2A

l0AQ 2 (1 = 402) ' 0ufIl S 7 2 loaQ 2 f|. (2.80)
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The following result is a @ localized version of the radiation term.

Lemma 6.4. For any A > 1 large, any v > 0 small and any v € H*(R), if we define v

related with u by
= (1 - ’}/83)71[]“7

then

oAQ7ul (2.81)

|oa@o] <72

and

‘ 1

"O-AQ%@CCU ,S 7_5

. (2.82)

Remark 6.5. Estimates in (2.80) and Lemma 6.4 require the additional terms @%, Q
order to control some nonstandard terms appearing in below estimates.

[N

m

Proor. By direct computations, we have U = 9, — hg, where the function hg is bounded (see
Appendix Lemma 11.6). In addition, using that

o4Q> < sech <(Z + ;) oz_1> <0aQ2 (2.83)

with n = 3, the first estimate is a consequence of (2.77) and (2.73),

Ha %U‘SJ sech<3A+2oz_1)vH
2A
3A+2 3A+2
< -1 N 2\—1 -1 _ 2\—1
< sech( oA @ )(1 703) &ru’+ sech( 54 @ )(1 ~05) [hou]H
A+2 A+2
< (1 =037t {sech(3 2;1— a_1>8:,;um+H(l—v@i)‘%secb(3 i _1) hou]
[ oo, oo (P43 20|

+ 3A 2 H (1—~oH)™! {Qsech (3A LA 2a1> u} H + ||sech (3A i 2041) hou

2A 2A
N ”Y_% sech (312;: 2a_1> H HQ sech (311— 2 _1> UH + HUAQ%hoUH
S O e
< 'y_% UAQ%U ‘ .

This proves (2.81).

For the second estimate, we have
0,U = 9% — hod, — hy,.

Using (2.83) with n = 1 and (2.78), plus the fact that hg is bounded and |h)| < |V| < Q2

39



(see Lemma 11.1, (2.128)), analogously to the previous estimate we have

sech <A+2 _1) Oy v

20,0 <

A+2 A+2
< h 1) 1 — ~92)-152 ‘ h( 1) 1 — ~82) " [hd, H
< sec<2Aa (1 —~05)  Osu| + ||sec 5 (1 —~05)" " [hoOyul]
+ Sech< a >(1 782 [hju)
A+ A+2 '
< 92 ol a2yl o-!
S H (1 —~05) 0, [sec ( 54 )8 u]H H 1 —~0;) [sech( 54 > 0 u]
=02 o (S noa |+ =08 oo (0 ]|
1 +2 A+2 ~
< 1 o-! -1\ A2
Sy Sech< 54 >8u’ sech( 54 @ )Qu’
<772 |ouQ20,u ‘ + HUAQgU 7
which proves (2.82). O
Lemma 6.6. One has
(1) Estimates on w;.
[ra@ionm]| < |@tom | + ¢ [@hm] (284
(2) Estimates on v.
HUA@%M 2 <7z Q3w (2.85)
|oa@3 001 £ 773 (@200 + @) (286)

Remark 6.7. Compared with previous results in [20, 24], Lemma 6.6 contains new weighted
estimates because of the variable coefficients in the model and the emergence of new weighted
terms as well.

Proor. Proof of (6.6). Using that 04 < (4, and that from definition (2.33) ¢/, < A7'QC,
we have

|oa@30m| 5 [aQ0m] < Q30w + @3
S [@bon |+ @bw.
Proof of (6.6). Estimate (2.85) is direct from (2.81), using o4 < (4 and (2.38).
Now, using (2.82) and (2.84) we have

| <y

~1
HUAQEGZU

v Q%le + HUAQ%U

(1 1) b

1, ~1 1
S 12llQ2 0vunl +
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obtaining (2.86).

7. Controlling error and nonlinear terms.

Now we have in a position to control the error and nonlinear terms in (2.72). By the definition
of (g and x4 in (2.35), it holds that

Lia1(z 1~ e o
Calw) S B (@) € Qe HO oy S B,

S50 1S40 RS 3@ 1)1 5 50 -
XAl S AY X4 ~ A XAl S A ’ XA ~ A :
Even more, from the definition of x in (2.32) we have

Xa(w) = Xa(z) = X4(z) = 0, (2.88)

if a7 (z)| < Aorif |a~!(z)| > 2A.
7.1. Control of J.

Let us now recall the definition of jl:
~ 1 1~ 1~ 1~ . o
Ji=1 [QRAY(@Yvi+ [ QG + 5 [ QBRA? + XaralGhe?
L7, . . 2.
4 [ et = [ (@) (2:89)
=Jii+Jig+Jig+Jia+ Jis.

For the first four terms, using that o4 2 1 on [—2a(A), 2a(A)], (2.87) and (2.88), we have

~ 1 _9A ~ - 1 _5A ~
RG] S e B 1AGIS 5o *hi,
_o4

- . 1 ~
(X0’ + IVARaIGE S e Ho3 Q) (2.90)
. B ,~ y B , ~
()"0l £ D30 |(Eesl o2
Thus, using the above estimates and (2.85), we have for the terms in (2.89),

B ~3
[Tl + il + [Tl + [l € FloaQz o

B

_ ~3 _ ~3
S 7oA m|P ST Q2w

|
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In the case of J 5, using (2.90) and (2.86), we obtain

B ~1 1B/~ ~3
15l £ Fl0aQ20:0n | £ 771 (192 00w + Q3w ).

Therefore, we conclude for this term
T < —1B A 2 A3, 2
[Nl S A </Q(aarw1) + /Q w1> . (2.91)

7.2. Control of Js.

First, by the Cauchy-Schwarz inequality,

~ 1
| Jo| S HQ(l — 077! (W,Bamvl + 2¢’A,B“l>

1@ (e + Vydsen)l.

Using the commutativity estimate (2.74), (2.73) and Q< sech(a™) < Q,

1Q( = 132) 7 (Vapdavn) || S [Isech(a™ ) (1 =182) ™ (ta,p0a01)|
S = 702) (sech (™) apdovy)|
< | sech(a_l)wAB@xle
< || Qb p0svr .

From the definition of z in (2.62), we have
0pz = XaC0wv1 + (Xalp)'vi = XaCE(0:01)* S (0:2)” + [(Xalp) w1 [”.
Using (2.87) and again the definition of z

. . 1 1\% ~, _ 1 ~
GaGo)ul R S (5 + 5) @RacE S 5@

and so ]
XaCh(001)? S X4(002)° + ﬁQZZQ-
Thus, using [¢4 p| < |a™(2)|¥4,
~ . - _ 1 -
Q[apdui* S a7 (2)PQ°X4(001)" S QXaCB(9at1)” S Q(0:2)” + 53Q°2".
So, it follows that
~ ~ 1~y 5\2
Qua sl S (QD2) + Q') (292)
Proceeding as before and using (2.74), (2.73), for the other term we obtain

1Q(L =482 (W pon) | S 1QU poall-
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Now, we claim N
(Wap) S Q*X5 (2.93)
Indeed, using (2.87), the definition of ¥4 p in (2.35) and that x4 = 0 for |a~!(z)| > 2A,

(WA,B)Q = [(?2,24)/4PB + )2?4@4%‘]2 S ()ZA>~C24903> + Q2XA<B
< @ @P + @ S O
Using (2.93), we have that
|@2(¢f4,3)2 1S Q4 AU1 N Q3 2

and so

1Q¥asv1]* S / Q2. (2.94)
Collecting (2.92) and (2.94) we have

H@m._mﬁy4<¢AB@my+;¢;Bm>‘5;Q/@«%zf-yéiﬁ)é. (2.95)

Now we estimate the term related with the potential V5. By Lemma 11.14 we have
Vi < @2, and using that

|ho W= —VI+ V'), Rl =V'—2hohl,

| ~y

4h0

with
Vo' = 4(hg)? + 4hohy — V",

one has [VJ/| < @®. Combining the above estimates,
Vo] + [Videun| S Qfor| + Q*|0,unl,

SO
1Q™ (V'vr + Vidwun)I| S 11Q%01 ]| + [|Q*0z 1 -

From the definition of z in (2.62) and the particular polynomial decay of (5 and Q, we have

Q2 ¥hvi S Xachet = 2. (2.96)
Thus, using the above and from the definition of Y 4,
Q'vt = QINA+QUi(1 - X3) S Q27 + Q.
From this, and using that @i < 04 for A large enough, it follows that

Z ~3 _A ~
1@l S Q%2 + e 2 [ Qv ]| S Q22| + e loaQ3wi].
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By estimate (2.85) we obtain

~3
2

~3 L _A. =
1Q%01 | S 1Q%2l + 772 2 [loaQ3ul S 11Q22] + 7 2e % | Q3. (2.97)

For the other term [|Q29,v,||, differentiating z = Y4Cpv1 we obtain

CACsOhtn — Oz — Eﬁz — Ylar.

Thus, from the properties of (g and x4 in (2.47) and (2.87) we get

1 ~
[XaCaOrin| S Oz + Q2. (2.98)
Replacing and using the polynomial decay of (5, we have

Q(0:01)* = Q*(9:01)* T4 + Q' (0e0)*(1 — X2)

1 - _
< Q2(0,2)* + EQ%zQ + e 2Q3(0,0)%
Integrating over R and using (2.85), we obtain

~ ~7
1Q%0zv1 || S 1Q% 02| + 2] 4 e 1| Q 0,

fn@
S Q20,2 + f||@22||+e T1Q2 0, (2.99)

5||@%axz||+f||@2zu+v 27 (Q2 duwn| + |Q%w ) -

It follows using (2.97) and (2.99) that

_1

14 ok
1Q%vall + |Q*0vnl| S 1Q20,2]l + Q2 2l + 772~ ([|Q2 0wy || + Q2w ). (2.100)
Therefore, collecting the estimates (2.95) and (2.100) we conclude

PARE (/(Z)(agcz)2 + @3z2> fAyze T (/@(axwl)Q + Q%f) . (2.101)

7.3. Control of Js5.

Using the Cauchy-Schwarz inequality and (2.73), we have

15| S (1Q2¢a p0unl| + 1Q2¢ porl) @2 %a(1 = 702) 'UNY|. (2.102)
For the first term, using (2.35), |¢g| < B, estimate (2.86) and that (4 2 1 on [—2a(A), 2a(A)],

1Q2¢a p00n || S BIQ? Cadevnl| £ 772 B(IQ7wn| + Q7w ).
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On the other hand, using (2.87),

W sl < (X2 es] + Q*X4CE S AQXA+Q2X

Using (2.85), it follows

~1 é
1@ puill S *HQ Xav ]| +1Q%] S v Z*H 2| + (@22
Collecting these estimates, we obtain

1Q2 ¢ pdevnl| + 1Q2 ¢ por || S 772 B (1Q2dutn ]| + [Q2wn]) + [|Q2]. (2.103)

It remains to bound the second term in (2.102). Using that Nt = N — Ny, we split it
in two parts as follows

Q74 xa(t = 702) N < [@E R =98 TUN| - INGI Q7 ERa(1 — 20) U]

Now, we recall the pointwise estimate for the non-linear term (2.29) and its projection over

¢U) ~
IN| S Q*(aiey + ui)

Vol S a3 + [ Qoo S @+ e | Q|

Thus, using 1 < o4 < (4 on [—2a(A),2a(A)], U = 0, — ho with hy < 1 and estimate (2.80),

(2.104)

Q72 %a(1 =702 'UN|| S lloaQ (1 = 102)'UN|| S v 2 oaQ 2 N|.

Inserting the pointwise estimate (2.104) into this, it follows that

[ #%a(1 — 20 UN| £ 77 (adloa@3 Gl + loa@edl)

. o (2.105)
<3 (@ + =GR ])

For the remaining term, using the exponential decay of ¢g, (2.80) and (2.104) we have

Q72 Xa(L =18 Ueo| S |04Q 2(1 —~8) ' Ugo|
S HloaQ 2ol SR

(2.106)

Now combining the preceding estimates (2.103), (2.105), (2.106) and (2.104) with (2.102)
yields
- ~1 ~3 ok
sl S 971 B (1Q20unll + 1 QFwnll) (4 + lfur o< [ Q% wn )

1 ~a 3 (2.107)
+772 Q22| (af + [fusfl = Q2 wrll) -
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8. End of Proposition 5.1

Gathering (2.72), (2.91), (2.101) and (2.107), it follows that there exist Cy > 0 and C' > 0
such that

d ~ ~ B [~ ~ ~ ~

ST < —4Cy [ QUOw + @ + fﬂ [ QU@ + Q2 +9C [ Ql0u2)* + Q22
+hcet [ QUoww)? + G2l + 77 CB (1030wl + Q% wn]l) (a3 + fun 1< 1O
+9732C(1Q2 2| (aF + [fua| < | Q7w ) -

3
2

w1||)

We fix 7 > 0 such that vC' < 2C5 and also small enough to satisfy Lemma 6.2 and Lemma
6.4.

The value of v being now fixed, we do not mention anymore dependency of . Via standard
inequalities and for A large enough, we obtain, for a possibly large constant C' > 0,

;ij < -Gy / Ql(0:2)" + Q> + C (i + e‘f) / Ql(0rw1)* + Q*w?]

+CB ([Q20,un| + |Q2wnll) (af + uall o |Q7wr]]) + C (af + unl| oo [|Q7wn )

2

Since A = 07 and B = 675 (sce (2.39), (2.63)), using assumption (2.27) and standard
inequalities, we have

B (1@ 0wl + Q¥ wi ) (a3 + llurll o<1 Q¥wnl) < 6¥|af? + 6% [ QU(son)? + Q2]
Therefore, using again (2.27), for § small enough (to absorb some constants), we obtain
d ~ ~ 1~ ~ 7
37 <~ [ QU+ @)+ 0ot [ Qloaw) + Quf] + Co¥asf?

< -G [ QUOA + Q2+ 6t [ QlGwun) + QPul] + o jar

This ends the proof of (2.64).

9. Proof of Theorem 2.1

sec:proof theorem 1, sec:end virial II, sec:second virial estimate, Sect:3

Before starting the proof of Theorem 2.1, we need a coercivity result to deal with the term

[ @

that appears in the virial estimate of Z(t) (see (2.40)), being a term with enough decay to
be controlled by the variables (vy,vs) and (21, 22). In this section, the constant + is fixed as
in Proposition 5.1.
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9.1. Coercivity

We prove a coercivity result adapted to the orthogonality condition (u,¢o) = 0 in (2.25),
where ¢y was introduced in (2.16). The idea is to follow the strategy used in [20], where the
linearized operator has an explicit unique negative single eigenvalue 7y associated with an
explicit L? eigenfunction denoted Y. Despite our system we only have the existence of such
negative eigenvalue —pu? associated with ¢g, we still have this control given by orthogonality.

Lemma 9.1. Let u and v be L*(R) functions related by
=(1-~0*)"Wu (2.108)
and such that (v, o) = 0, the following estimate holds

[ s [ QH@a0) 407, (2.109)

Proor. Using that U = ¢ - 0, - ¢y ', we rewrite (2.108) as

v — Y020 = 0, <¢0>

and thus, after some algebra

U Oy
(935 <¢0+7¢0> gbo (v—7h08 ’U)

where hg = ¢} /¢ (see (2.125)). Integrating between 0 and = > 0, it follows

u 0y x

—+7—=a+ v — vhoOyv

1 =0 [ g 0=
for some constant a. If we rewrite this last expression, multiplying by ¢y, it follows

u = apg — y0,v + 4, (2.110)
where .
U= ¢g (v — YhoO,v) .
0 Cbo

Let us now estimate 4. First, using the Cauchy-Schwarz inequality, a change of variables,
and recalling that ¢ is even and decreasing for x > 0, we have

o[ sa(fae) ([ @;1%)% sibl ([ ng)é $oH ok,

Similarly, using that |ho| < 1,

oo [ 12 < 00 (f @ hoav>)1</j@§¢>é G |@ian]|

2
0
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Collecting these estimates, we obtain the uniform bound
Qb 5 [ Q@) + 7]
for all x > 0. The same result holds for x < 0. Therefore, multiplying by Q% and integrating
we obtain
k= (/ Q§> (/@E[(aﬂ;f +u2]) S [ Q30 + 7.
Using that (u, ¢g) = 0 and (2.16), we have

= (00, o) — (T, Po)-

Thus, using the Cauchy-Schwarz inequality we estimate the constant a in (2.110) as follows,

a* < (/ %@v)? + (/ ¢oa)2 < /@%(aw + /@%2 < /Q%[(azvf + 7.

We conclude (2.109) using again (2.110). O

As result of the previous lemma, we have the following transfer estimate from the variable
uy to the transformed and localized variable z introduced in (2.62).

Lemma 9.2. Let (uy,uy) be solution of (2.31) satisfying (2.25), (wy,ws) be as in (2.38), and
z as in (2.62). Then, for any A large enough, it holds

[ @ s [ QU2+ Q% + et [ Qlonwn)? +Qud) (2.111)
Proor. Since u, satisfies the orthogonality condition (2.25), applying (2.109)
[ @ s [ Q@) + o3
Now, using that Q1 < (%, (2.96) and(2.98), it follows
Q3 [(01)” + 7] S /Q?’CB Opv1) +/Q3CBU1
/Q3 [(0:2)* + Q227 +/Q3Z +e 2A/@C129(1—>~<31)(3xvl)2
+et [0 -
and since (g < (4 < 04, using (2.85) and (2.86),
Qi@ +01) S [ Qa2 + Q%+ [ ahQ(O.m) + et [ Q0
< [ QU@+ @2+ e [ QUoawn)? + Q.

and the asserted estimate (2.111) follows.
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9.2. Proof of Theorem 2.1.

Recall that the constants v > 0, d1, 09 > 0 were defined and fixed in Propositions 4.1 and 5.1.

In this section we prove Theorem 2.1, in particular the conditional asymptotic stability
property (2.20). In this case, the orthogonality conditions (2.25) and the dynamical equations
satisfied by (a1, as) in (2.28) will be of key importance. It turns out that (b1, bs) as in (2.26)
are better suited variables to fully catch the exponential unstable behavior of the full system.

Proposition 9.3. There ezist C3 > 0 and 0 < d3 < min(dq, d9) such that for any 0 < 6 < d3,
the following holds. Fix A = 671 and B = §~5. Assume that forallt >0, (2.27) holds.

Let
H=J+8C,'B'Z, (2.112)

where Cy > 0 is the constant from Proposition 4.1.

Then, for allt > 0,

d -1 ~ 2 N2, 2 3 2
SH < B /Q [(90w1)? + Q%3] +25% |y . (2.113)

Proor. In the context of Propositions 4.1 and 5.1, observe that fixing A = §~iand B=§"%s
, for § > 0 small is consistent with the requirement of scales in (2.36).

First, combining (2.44) with (2.111), for d5 > 0 small enough and 0 < § < 3, we obtain
for some constants Cy, C' > 0 fixed, and possibly choosing a smaller d3,

d 1 ~ ~ ~ -
ST < = 5Co [ QUowwn) + Q] +C [ Qlow) + @
+Ce [ Qoan)? + Qui) + Oyl
1 - _ - _
< — G [ QL) + Q2] + C [ Q0.2 + Q%% + "

Secondly, for %J, using (2.64) and 0 < § < d3, we get for some constant Cy > 0 fixed,

d A A =~ ~ 3

%‘7 < =y / Q[(0,2)* + Q*2*] + B~* /Q[(@xw1)2 + Q*w?] + 61 |ay .
Therefore, defining H as in (2.112) and by combining the above estimates, it follows that
d _ _ _ _
%H < - CQ/Q[(@xZ>2 + Q*2%) + B_I/Q[((?mwl)2 + Q*wi]

+ 8CBl/@[(aIz)? + Q%2 + (1 + 853) 57 ay)?.
C() CO

Thus, possible choosing a smaller 3, we obtain

j{” = —C; [ Q@22+ Q22 = B~ [ QUUaww)? + Qi + 26 fau .

49



We have that (2.113) follows directly from the above estimate. O

We define now
B=1b> -1, (2.114)

where by, b_ are given in (2.26).

Lemma 9.4. There exist Cy > 0 and 0 < 04 < 03 such that for any 0 < § < 04, the following
holds. Fiz A= §~1. Assume that for all t > 0, (2.27) holds. Then, for allt >0,

oy = pioby |+ b=+ prob-| < Cy (1 +82 + [ QPt), (2.115)
and ,
d d ~ 3
a(bi) — 2upb? | + |dt(b2_) + 2upb? | < Cy (bi + 0% + / Q%f) : (2.116)
In particular,
d - N
B2 (b +2) - 04/Q3w§ - %(a% +a?)— 04/Q3w§. (2.117)

Proor. From (2.104) and (2.26), it holds
Nol a3+ [QPud S8+ + [ QPud,

From (2.28) we conclude the estimates (2.115) and (2.116). Finally, estimate (2.117) is a
consequence of (2.116) taking d4 > 0 small enough. [

Combining (2.113) and (2.117), it holds

d ~ ~ 5
7 (B—2CyBH) > %(a% +a2) + 04/62[(81,101)2 + Qwa] - 4C4c5§|a1]2,

and thus, for possibly smaller § > 0,

;i (B—20,BH) > %(af +a3) + Cy / Ql(Dpwr)? + Q*w?). (2.118)

By the choice of A = 671, the bound |p4| < A, and (2.27), we have for all ¢ > 0,
T 5 Allnllm|luzl2 < 0.

Similarly, using that U = 0, — hy and (2.73), it holds
J S Blloalla[lvall 2 S 6.

Then, we have

M S0
Estimate |B| < 62 is also clear from (2.27).
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Therefore, integrating estimate (2.118) on [0,¢] and passing to the limit as ¢ — +o0, it
follows that

/0 {a% +a+ /@[(azwlf + @zwf]} dt <.
Since B B B B
[ Q0w + @il 5 [ Qldwwn)? + Q2w
this implies
/OO {a% + a3 + /@2[(&%)2 + @%ﬁ]} dt < 6. (2.119)
0 Y
Using the above equation, we will conclude the proof of Theorem 2.1. Let
- 1
K= /u1u2Q2 and G = ) /[(@Cul) + Q%2 + v Q.
Using (2.31), we have
EIC— /[uu + Uy ti9] Q?
T 1U2 + U Uz
— / u% — U (Lu1 + Nlﬂ Q?
. U R .
= [l = (@ou)? —20°(1 - QIR + 5 (@'} — [ N-Qu,
From (2.104) and the exponential decay of ¢y we can check that

/NLcyul <a? +/@4u%

In particular, collecting the above estimates and using that (Q2)” < Q*, it follows that there
exists some C' > 0 such that

/Q2u2<le+Ca1+C/Q [(0pu1)? + Q%u?].

From this, the bound |K| < §2 and (2.119), we deduce

/[ﬁ+@+ﬂﬁ§d (2.120)
0
Analogously, we compute

06 = [1(0.)@0m) + Qi + 5]
— / [(axug)(&vul) + Q%usuy — (Lu1 + Nl> uQ} Q?
= - 2/@@’“2@;% + /(Q - 1)@4%“2 - /QQNlub
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and so, using (2.104) as before, we obtain

d
dtg’ <al+G. (2.121)

By (2.120), there exists an increasing sequence t,, — +o00 such that
Tim [a2(t) + a3(t) + G(t)] = 0.

For ¢ > 0, integrating (2.121) on [, t,], and passing to the limit as n — 0o, we obtain

G(t) 5 [ lad + Gt

¢
Using (2.120), we deduce that lim;_, G(t) = 0.
Finally, by (2.31) and (2.104), we get

d, o d, 4
%(al) + | (a3)

S| Sai+ a3+ [ Q.

Similarly as before, by integration on [t,t,] and taking n — oo,
At +a3(t) S [ laf+ a3+ dlat,
t

which proves limy_, |a1(t)| + |a2(t)] = 0. By the decomposition of solution the (2.24), this
clearly implies (2.20). The proof of Theorem 2.1 is complete.

10. Linear Spectral Theory for L

In this section, we describe the spectral properties of the operator L introduced in equation
(2.15). Being a variable coefficients operator with no explicit eigenfunctions, the under-
standing here becomes more subtle, and some interesting new features appear in the spectral
analysis.

 Notice that L correspond to a Schrédinger operator with potential V(x) = 2Q%(z)(1 —
Q(x)), where we have defined the function

O(z) = Q(a~'(z)) with a(z) = ;)(smhx +a).

Unlike standard operators [28], L has a complicated structure with slow decay, essentially
just enough to run suitable estimates.

Remark 10.1. A direct analysis shows that the null space of Py = —0? is spanned by
functions of the type 1,x as x — oo. Note that this set is linearly independent and there are
no L*(R) integrable functions in the semi-infinite line [0, +00). Therefore, the analysis of V
becomes essential to understand the set of possible solutions in L*(R) for the operator L.
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Lemma 10.2. The linear operator L defined by
Llg] = =02 + V(2)¢, with V(z) =2Q*(2)(1 - Q(x)), (2.122)
with dense domain D(L) = H?(R), satisfies the following properties.

1. The essential spectrum of L is [0, +00).
2. 0gise(L) NR_ is not empty.

3. The operator L has a first simple eigenvalue \g = — 2, with associated eigenfunction ¢
that satisfies
Lo = —pido,  ¢o € H*(R). (2.123)

Proor. Proof of (1). Clearly L is self-adjoint on H?*(R), so the whole spectrum of L is
contained on the real axis. Even more, since a(x) is strictly monotone, positive and a~!(z) —
+oo as x — £o0, we can see from Lemma 3.2 that the associated potential V' (z) goes to 0
when © — £oo. This imply by standard arguments (see [15], chapter XIII, section 6) that
the essential spectrum of L is [0, +00).

Proof of (2). First note that by choosing ¢ = @ we obtain
LQ=—0;Q +2Q°(1 - Q) = 8.(Q*H) +2Q°(1 - Q)
= QU+ QN2 - Q) = G,
e (10.Q) =~ [@war =2 [Q'wy <o,
’ 3 3
This conclude that ogs.(L) NR_ # @.

Proof of (3). First, since L is bounded from below we consider the operator L. = L + ¢
for a large enough constant ¢ > 0 such that the associated potential is strictly positive. Since
for any f € Cj(R) the problem

—Lo(y) = fly), yeR
v € H*(R),

has a unique solution satisfying ||v||22 < || f]]1.2, it follows that L_! : CH(R) — C!(R) is linear
compact. From the strong maximum principle theorem if f > 0 then v = L;'f > 0 in R.
This implies that L' is a strongly positive operator over the set of nonnegative functions.
Now it follows from the Krein-Rutman theorem (see [10] [25]) that the radius of the operator
r(L;') is a positive simple eigenvalue, and the associated eigenfunction f is nonnegative.
Thus ¢y = L. f satisfies

—L¢0($) = A0¢0(I), reR

with ¢9 > 0 in R, and \g = r(L;!) — ¢ a simple eigenvalue. ]

Eigenvalues embedded in the continuous spectrum of L depend directly on the decay and
oscillation of the potential V. As emphasized in [36, chapter XIII, section 13|, the existence
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of embedded eigenvalues in the continuous spectrum of L depends on detailed assumptions
over the decay, symmetry and oscillation of the potential V.

Proposition 10.3. The operator L has no strictly positive eigenvalues.

Proor. By Lemma 3.2 we have a polynomial decrease of V' ~ |z|72, and even more

/OOOI |da:—2/Q L —Q |dx—2/ $)1—0Q )|ds</ooQ(s)ds<+oo.

This, and the fact that V is a symmetric function on R, allows us apply a particular case
of the Kato-Argmon-Simon Theorem (see [36, Theorem XIII.56]), where we conclude that L
has no strictly positive eigenvalues. O]

Lemma 10.4. We have the following bounds for the first negative eigenvalue.

0.808 < pp < 0.883.

Proor. Recall that

Ao = IIfﬁIlef:I (L. £).

We introduce now the following test function:
f(z) = coe” 2% <a4:1:4 + asx® + ao) ,

with
ays = —0.0574167, ao :=0.115416, aq:= —0.761391.

Here, ¢ is an explicit normalizing constant, obtained from
— /f2 =ct / e (aixg + 2a4a97° + (a3 + 2a4a0) 7" + 2aa07% + a%) :

and the fact that from Wolfram Mathematica,
/ _Jr / 22 _ VT /x46_x2:3ﬁ,

and

/.1‘66712 _ 15\/%7 x867x2 _ 105ﬁ
8 16

One can easily see that ¢y ~ 1.0000005590505727. Then, since a(y) = #(y + sinhy) is

bijection,

(Lrh) = [ 1242 [ PQP0-Q
= [ 1Ay +2 [ ) - Q)y)dy ~ —0.652.
and therefore pg > 0.652 and 0.808 < pp. In the other sense, if

1 /(p—1)

p

Qp = , p=9/2,
b 2 cosh? (Ex) /

2
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we have L > —02 — 0.845Q7/2, with explicit first eigenfunction QI', m = (=35 + 1/4943) ~
0.88 and first eigenvalue —m? ~ —0.7791, from which o < 0.883. m

Lemma 10.5. For the operator L, the associated eigenfunction ¢q of the first simple eigen-
value —p3 satisfies, along with its derivatives, an exponential decay given by

[60(2)], 1Dab0()], 020 ()] S e~ F o (2.124)

Proor. This result follows from a standard argument of ODE (see e.g. [9]) adapted for the
particular variable coefficient problem analyzed in this article. For the sake of completeness,
we show it here.

By Lemma 10.2 ¢y is a normalized even solution of class H'(R) associated with the
principal eigenvalue \g = —p2 satisfying the equation

8;3(150 = Q(l‘)%

where ¢(z) = p¢ + V(z). In the following we restrict our analysis in the semi-infinite line

[0,+00) due to the parity of ¢o. Since V' > 0 for x > x,., with z, = «(2arcosh(1/3/2)), one
has the bound by below

q(x) > g,
for any x > x,.

We define v = ¢2 > 0, which verifies

;851)(:5) = (Opu)*(2) + g(2)u*(x) > pgv*(w),

for any = > x,.

Now let define the auxiliary function z = e*ﬁ’m”((%v +/2410v) to compare the decreasing
rate of ¢g with respect to an exponential. We have

Oz = e VT (20 — 2p2v) > 0,

hence z is non-decreasing on [x,., +00).

Next, we prove that z < 0 for x > x,. by contradiction: If there exists a xy > x,. such that
z(zg) > 0, then
Z(l’) > Z(x[)) > 07

for all # > zy. This implies that
0,0 + V2400 > 2 (g )eVHo,

then 0,v + v2uov is not integrable on (z¢,+00). But ¢yd,¢p and ¢? are integrable on
(20, +00), so that d,v and v are integrable. This is a contradiction, hence we conclude that
z(z) <0 for x > x,.

In particular, we have the inequality
(91(6\/5“0%) — 2V2u0z <0 forx>ux,,
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This implies that v(z) < e~V2m0r  Replacing the definition of v, we obtain the decay estimate
for the first eigenvalue given by

v
[Go(x)] S €2,
To obtain the exponential decay of d,¢g, we use the trivial bound

g < qla) < pg+1,

for all x > z,. Hence, integrating over (xy, z5)

e [ o0 < Oudulea) = dunlen) < (13 +1) |

x

Z2
%o,
1

and from the exponential decay of ¢q, letting 1, x5 — +00 proves that 0,¢¢ has a limit at
infinity. From the exponential decay of ¢q, this limit must be zero. Therefore

00 E,
|81’¢0<x)| < (,U(2) + 1)/ |¢0| 5 e~ "2 HoT

T

Finally, the exponential decay for 92¢, follows directly from the decay of ¢y.
O

Corollary 10.6. If ¢ : R — R is a positive function, then ¢jy(z) is non-positive for all
x >0, and has a unique root at 0.

Proor. First, we denote as zg > 0 the point where V(zq) = —pu3.

If 0 < z < xg, then integrating equation (2.16) between 0 and z, and by Corollary 11.12
we have

o(@) = [ (i +Ve)oo(y)dy < 0.

If x > xo, we integrate (2.16) and by the decay estimate over ¢, we obtain that

oh@) = = [+ V)ouly)dy < 0.

since ¢o and p2 + V(y) are positive for y > .

11. Positivity and repulsivity of the potential

Now, we focus on proving some results related to the transformed problem for the Schrédinger
equation for Ly, see subsection 5.2 for details. In particular, the objective of this section is to
prove the repulsivity of the potential V{ (in the sense that 2V < 0 for any z), and its strict
repulsivity in a particular subregion of space. Recall that this is one of the most relevant
facts needed to apply a virial argument to describe the stability of the kink [36, Theorem
XIII1.60]. This result becomes subtle due to the lack of an explicit form for the eigenvalue,
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in contrast to other recent works. See also the cubic-quintic NLS case by Martel [30] and
the works [32, 33] for problems in some sense similar to ours. Hence, we must establish some
results with an auxiliary function that determines the transformed problem.

11.1. Key properties and positivity

We start out with a fundamental lemma. For this, let ¢y be the positive, even and exponen-
tially decaying eigenfunction satisfying (2.123), and define hg : R, — R as

ho(z) = ;’Zggg (2.125)

Finally, recall L and V' from (2.122).

Lemma 11.1. Let hy be as in (2.125). Then one has the following:

1. The function hq is well defined over R,. It is non-positive and one can write the principal
eigenfunction ¢y of the operator L as follows

¢o(z) = ¢o(0) exp ( /0 ' ho(y)dy> : (2.126)

2. The function hg is the unique solution of the initial value problem

! 2 — 4,2 >
3. We have the integral formulation
1 00
hy(z) = — / V'(y) 5 (y)d 2.128
o(7) 200 Js (v)¢o(y)dy (2.128)

for all x > 0.

Proor. Proof of (1). By (2.123), the first eigenvalue — 2 associated with L obey the equation
o(@) = (1o + V(2))do. (2.129)

From Lemma 10.2, ¢y is the unique positive and even eigenfunction, and it has no roots.
From Corollary 10.6 we have that ¢f(z) is negative for x > 0. This proves that hg is well
defined over R, , and even more, by direct integration we have that the identity

do(a) = do0) exp [ ho(y)dy).

is well defined over all x € [0,400). The extension to any x € R is direct.

Proof of (2). This is a direct fact from the parity of hy and the eigenvalue equation (2.123)
that obeys ¢y.

57



Proof of (3). From (2.129) and the decay estimates (2.124) we have

(h@)? == [+ V)R (w)dy
= (B + V)@ + [ Vs,

Dividing by ¢2 and by definition of hg, we obtain
ho(x) = pio + V(@) + 55

Replacing in (2.127) we have (2.128).

]

Remark 11.2. The function hg is primordial to understand the Darboux transformation
applied in Subsection 5.1, since we can write the operators Lo, U, U* as follows

Ly = =0; + 2(hg — ng) =V,
U=08,—hy, U"=-8,—ho

Remark 11.3. Lemma 11.1 also suggests a growing dependence of the sign of hy, with respect
to the potential V'. This fact and the convexity of hy will allow us to obtain useful bounds to
control the derivative of the transformed potential V.

Lemma 11.4. There exist only a unique positive root xo of V(x), a unique positive root
of V'(x), and two positive roots {xa1,x21} of V"(x). Moreover, 0 < x91 < zg < 1 < T22
(see also Figure 2.1).

Remark 11.5. FEaplicitly, one has

V(z) <0 for0 <z < x, Vi(z) >0 for0 <z <ux,
V(z) >0 forax > x. V') <0 foraz> ;.

V' (z) >0  for0 <z <uxy;,

Vi x) <0 forzgy <o < 29y,

V" (z) >0  forx > x9s.

ProOF oF LEMMA 11.4. Since Q(z) is positive, even, decreasing for > 0, and has range (0, %),

we easily see that for V(z) = 2Q*(x)(1 — Q(x)), its root zo > 0 is unique. From (2.10) and
(2.21), V' satisfies

V() = 4Q(2)Q (z) — 6Q*(2)Q'(x)
= 2Q°(2)Q' (™} (2))(2 - 3Q(x)).
By the same arguments as before, x; > 0 is unique. Moreover, V/ > 0 in (0, z;) and negative
in (z1,00). Notice that V(z0) = 2Q%(z0)(1 — Q(z0)) = 0, and since o > 0,
V/(wg) = 2Q*(20)Q' (™ (20))(2 = 3Q(0)) = —2Q"(20)Q' (™ (o)) > 0.
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Therefore, by uniqueness zy < x;. Since also V/(0) = 0, one has 0 < x9; < 1, where 253 > 0
is a root of V. Finally,

V'(2) = 8Q*(x)Q% (! (2)) +4Q°(2)Q" (™! (2)) = 18Q*(2)Q"*(a ™} (2)) — 6Q* (z)Q" (a ! (x)).
Since Q" = Q — @Q? and Q”? = Q* — 2Q?, we obtain

V() =20 (6 - 200 +90%w) ). (2131)

Notice that Q € (0, %) in z > 0. The equation 9m? — ?m+6 = 0 has two positive real roots:
my = 5=(25 +v/139), m_ ~ 0.49 and m.. ~ 1.36, both below 2. Since ! is a bijection this
implies that V" has only two positive roots, x; and x95. Let us check that o7 < x¢ and
Too > T7. Indeed,

VI(0) = 2 (2’)4 <6 - 530 (Z) +9 (;’)2> 12,65, V"(z0) = —g <0,

therefore x5 first root of V" must satisfy z5; < z¢. Finally, since @(a:l) = % and V'(z1) =0
as unique root, we have

=2 2) (52 2) 10 2)) o

implying that x5, > 21. The proof is complete. Il
4 T
| — Via(x))
34 i V' (a(x))
| — V{alx))
2 i al(xy3)
: al(xy)
14 : -=- alxg)
i alxy )
01 :
1
1
1 0.4
=17 T
i 021
-2 4 1 0.0 T
1 : ‘_—-—’-_______——___
3 i 0.2
1 -0.4
]
- i 0.6
s | | ! | | 18 19 2:‘0 21 2:2‘ 23 2.4
0.0 05 10 15 2.0 2.5 3.0 35 4.0

X

Figure 2.1: Numerical computation of V(a(z)), V'(a(z)), V"(a(x)) where
their roots are explicitly plotted in dashed vertical lines. In particular we
observe that 0 < z21 < xp < 21 < 2.

Recall that ho(z) < 0if 2 > 0 (Lemma 11.1).
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Lemma 11.6. If we define

8
~ . 2 _°
fio := \/ﬂo +maxV(y), maxV(y) =, (2.132)
the following upper and lower bounds for hy are satisfied:
1. For all xz > 0,
—fin < ho(x). (2.133)
2. For all x > x,
In addition, we have the limit
lim ho(x) = —po. (2.135)

r—r—+00

Proor. Proof of (1). By Lemma 11.4 we know that V’(x) has a unique positive root x.
Then, by (2.128) and Remark 11.5 we conclude that h{ is positive for large = and it has at
most one positive root. Now, from Lemma 10.4, (2.127), Q(0) = Q(0) = 3 and (2.122), hy
satisfies 9

ho(0) = pg + V(0) = pg — 1~ L.

Also, by Remark 11.5, and (2.128) we obtain h{(z;) > 0. Therefore there exists a unique
positive root of hy, that we denote z, with 0 < z < x;. Moreover, h; < 0 in (0,z) and
positive in (Z,00). Due to the sign of hy, Z must correspond to the global minimum for hg
in the positive line. With this result, hy < 0 and using (2.127) and (2.132),

ho(x) < hG(@) = g + V(@) < g + max V(y) = g,

This concludes (2.133).

Proof of (2). First, from Remark 11.5, if x > x; then V(z) > 0, V'(z) < 0, ¢)(x) < 0,
and by (2.127) and (2.128) we have

2 320\ _ 1 N 42
= W) = = s [V )y - V)

< - /:o V(y)dy — V(z) = 0.

Since ho(z) < 0, we conclude that ho(z) < —pp.
Similarly, from Remark 11.5, if o < = < z; we have that V(z),V'(z) > 0, ¢((x) < 0.
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Then

py — hi(x) =

o 1 < 2
Fa ) Vskw e [V - Vi)

) / o ¢g($1>
< - %()L Vs =g

o, dia) .
(1 ¢am>v()§0

We conclude that hg(x) < —pp for all x > xq.

1
R
¢ (x

|V wdy - V(@)

If we consider x > x; we have V'(z) > 0, and using (2.127) and (2.128) and by triangle
inequality we have

[h(x) — | <

¢%tx) /:o V'(y)g(y)dy + |V ()] < 2|V (z)].

Taking z to infinity in this last inequality, we obtain (2.135). O

We will need a refined version of the previous result. The next lemma will be used to
obtain better bounds for hy in the interval (0, zg).

Lemma 11.7. For all x > 0, one has

(12— 2 — 20(2) H(z) < ho(z) < pdx — 20(x) H(x), (2.136)

where [ip s defined in (2.132), and H is the modified version by a1 of the kink H satisfying
(2.6). Even more,
par — R(z) < hyg for all x > 0, (2.137)

where we define the auxiliary function
3 - ~N
R(z) = 2In () —2m(Q) + 208 + 10 Mo~ 1 o
2 2
Proor. First, we consider the initial value problem:

/2
M=+ V (2.138)

Using (2.21), and a change of variables, we have

/Ov dy:2/ Q2 (1-0 y—2/ —Q(s))ds
—2/ (s)ds = 2Q'(a ™" (x))
= —2Q(z)H(x).
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Then, the explicit solution for (2.138) problem is given by

(@) = [+ Vi)dy = e+ [ V()dy = s - 20 H@)

Notice that hy(0) = ho(0) = 0, and from (2.138) one has hy(z) < h)(z) for all > 0. Thus,
the inequality o
ho(@) < moz — 2Q(x) H(z),

holds for all > 0. This proves the upper bound in (2.136).

Second, we consider the initial value problem:

hy = pg — g +V

The explicit solution for this problem is given by

ho(a) = [ = i+ V)dy = (i~ i)+ [ Vindy
= (i}~ i) — 2Q() H ().

Using (2.133), one has
hy(x) < g+ V(x) = hi(w) = hy(x),

for all x > 0. Since hy(0) = ho(0) = 0, this implies that hy < hy. Hence,
(15— fig)r —2Q(x) H(z) < ho(x)
for all x > 0, obtaining the lower bound in (2.136).

We notice that we can improve this bound analogously. If we consider the initial value
problem

hy=pui—h3+V
hg(O):O,

the explicit solution is given by
3 _ o 2 ~2
hy(7) = piz — 21In <2> + 2ln(Q) —2QH — wxz.

Since hj(x) < hy(z) for all z > 0, and h3(0) = ho(0) = 0, we conclude that hs < hg, and this
proves (2.137). O

Now, we are in condition to obtain estimates for hy in the interval (0,z() in the next
lemma, useful for the proof of repulsivity in the transformed potential.

Lemma 11.8. One has the following properties:

1. For 0 < x < x9; we have
9
(1= ) (@) < hofa). (2.139)



2. For all x such that xo3 < x < 20,

(1§ = )& = o) = fio < o) <~ (2.140)

Proor. Proof of (1). We define the auxiliary function

o) = hoe) = 5 (4~ 7 ) F@) (2.141)

By direct calculation, we obtain g(0) = ¢’(0) = 0, and by the mean value theorem,

g(z) =g'(&)z, (2.142)

for some £ € (0,x). Thus, to prove the positivity of g for 0 < x < x4, it is enough to study
the sign of ¢’. Deriving g, and using (2.127), (2.10), (2.21), one has that proving ¢’ > 0 is
equivalent to prove

4 9\ ~
hy < pg+V =g (uﬁ - 4> Q. (2.143)
for 0 <z < y;.
Using (2.137) and Lemma 10.4 we have that
he < pga® — 2udrR(z) + R2(z). (2.144)

The RHS of this last equation is explicit except for g, so comparing both RHSs of (2.143)
and (2.144), one wants to prove the following,

4 9\ ~
et — 2o R(@) + R¥(@) < i+ V — (u% - 4) 02,

equivalent to prove
4 ~ ~
por? + (9Q2 — 22 R(7) — 1) pe <V +Q* - R? (2.145)
forall 0 <z <uxg;.

Now, applying Lemma 10.4, one has

uia? + (3@2 — %R(z) - 1) 12 < Gla~\(2), (2.146)

where

G(s) == (0.883)%(s)? + (3@2 —2a(s)R(a(s)) — 1) (0.808)?
is given by explicit functions. Combining these last inequalities, we obtain
G(s) < V(a(s)) + Q*(s) — R*(a(s)), (2.147)
for 0 < s < a '(zy,) (see Figure 2.2).

Replacing (2.147) into (2.146) we obtain (2.145), and we conclude via (2.144) that ¢'(z) >

63



V+Q2—R?
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atixy 1)

~1.0

—1.2

—1.4
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0.0 0.2 0.4 0.6 0.8 10 12
s

Figure 2.2: Numerical computation of auxiliary functions G(s) and
V(a(s)) + Q%*(s) — R*(a(s). In particular we observe that G <V + Q>+ R
for x € (0,221).

0. This proves that g is a positive function for 0 < 2 < z5;. Hence, by (2.141) (2.142) we
conclude (2.133).

Proof of (2). We claim that hg is a convex function for x € (0, x¢). First, from the proof
of Lemma 11.6 we know that A{ has a unique root denoted by z, with hy(z) < 0 in (0, Z)
and negative sign in (7, 00). Now using that V(z¢) = 0, (2.134), and (2.127), we have

ho(2o) = pg — hg(xo) < pg — pig = 0.

This implies that hy, is negative in (0, o).

In addition, if x € (z21,%0) we know from (2.133) that —fiy < hg. Hence, replacing in
(2.127), we obtain
pE — 24+ V(r) < pd —hi+V = hj(z) <0. (2.148)

Taking derivative in (2.127), using that h{, hy < 0, the lower bounds from (2.133) (2.137)
and (2.148),

h! =V'—2hohl, > V' =2 uzx—Rx h!
0 0 0 0
> V' = 2(ugw — R()) (kg — fig + V)

8
> V' —2(0.808%x — R(x)) (—27 + V)
=t ji(a”!(2)).

where j; is obtained employing Lemma 10.4. Computing this function, we have that j;(s) > 0
for all s € (™ (z21),a (z0)) (see Fig. 2.3). Hence, by bijectivity of o : R — R, we conclude

hg(z) = ji(a™(z)) > 0,

for all z € (221, ). This proves the convexity of ho(z) over (xq1, o). Using (2.127), (2.133),
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if x91 < < 2, by definition of convexity,

ho(z) > hy(zo)(x — 1) + ho(o)
= (g — hi(x0))(x — xo) + ho(xo) > (1 — A3)(x — o) — flo.

This proves the lower bound in (2.140).

If now 0 < o < x93, using that h{,hy < 0, V' > 0, (2.139) and (2.127) we have the
following set of inequalities

h = V' — 2hoh),

A2 — A2 —9\2% .\ —
> v’-2< “03 9) (u3+V— (“039> H2)H
4(0.808)2 — 9 4(0.808 9 ~
>V -2 <(3)> ((0.808)2 +V - <(3)> HQ) H
= Jo(a™! (7).
Replacing directly V, V' and considering the variable s = a~1(x), we obtain

Ja(s) = 2Q°H(3Q — 2)

—2 <4(0'8038)2_9> ((0.808)2 - (W)z + z (W)Q Q+2Q%(1 - Q))

., (4(0.80;%)2 - 9) (u% - (4(0.80;;)2 - 9)2 - ;1 (4(0.80?2 - 9))3 0

_4(4(0'8()8>2_9> Q2+4<4(0'808)2_9—H> Q3+6HQ4~

3 3

This last expression is bounded employing Lemma 10.4. Computing (see Fig. 2.3), we have
that ja(s) > 0 for all s € (0, (221)). Hence, by bijectivity of o, we conclude hf(z) > 0 for
all x € (0,[)3211).

This proves the convexity of hy over (0, xg), and it is enough to conclude (2.140). Indeed,
using convexity between (0, ho(0)) and (xg, ho(zo)), and (2.134), we have

ho(ﬂfo) Ho

< ——z.
Zo Zo

h() (ZE) S

This proves the upper bound in (2.137), where g < z < x; and we conclude the proof of
Lemma 11.6. O
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Figure 2.3: Numerical computation of j;(s), lower bound for hj for s in
(x2,1,%0), and ja(s), lower bound for s in (0,z2,).

11.2.  Positivity

Now, employing the estimates over hy in the previous subsection and the integral form of hy,
we are in position to deal with the sign of V4.

Lemma 11.9. The potential Vi is non-negative over the real line. In particular Lo has a

positive first eigenvalue and positive spectrum.

Proor. To prove the positivity of Vj, first we will obtain a convenient formulation of the
potential in terms of an integral. By definition of V{ and (2.128) we have

Vola) = Vi) + s [ Vi

Integrating by parts to eliminate the potential V' on the right hand side, and using (2.126),
we obtain

1 R 2 1 o 2 /
V(o) = s [ V@ — s V)6
- [ V) = 2V W)
Thus, we have the integral formulation of V),
1 o 2
V(o) = s [ K@)y

where we have defined
K(y) = V'(y) = 2ho(y)V (y)-
We will prove the positivity of K(y) for all y > 0.
For y > x, this is straightforward, since we know that V(y),V’(y) > 0 and ho(y) < 0,
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then K (y) must be non-negative.

For z91 < y < zg, we know that V(y), ho(y) < 0. Using the bound (2.137) for ho(y),
using Lemma 10.4, and replacing directly V', V', we have

K(y)=V'=2hV >V —2(udx — R)V >V’ —2(0.808°z — R)V
= 2Q%[2(0.808%x — R) — 2((0.808%z — R) + H)Q + 3HQ?| =: 2Q%k1 (o ().

We recall that the function k; is explicitly known employing Lemma 10.4. Computing this,
we have that k1(s) > 0 for all s € (o '(z21),a ! (xg)) (see Fig. 2.4). Hence, by bijectivity of
a, we conclude K (y) > 0 for all y € (221, o).

For 0 <y < x5, we just consider the bound (2.139) for hy instead of (2.133). Then we
proceed analogously:
K(y) > V’+§<M3—Z> HV
=20Q°H [z(% —9) +2 (1 - §M3> Q-+ 3@2}
> 4Q*°H [?1)(4(0.808)2 —9)+ (1 - ;1(0.883)2) Q-+ ‘;’Q?] = 4Q*Hks(a (),
where ky is explicitly known employing Lemma 10.4. Computing, we have that ky(s) > 0 for

all s € (0,a ' (z21)) (see Fig. 2.4). Hence, by bijectivity of o, we conclude K (y) > 0 for all
Yy € (0, 1’2,1). ]

One of the most crucial properties about L for our analysis of the stability of the kink is
that it possesses only one negative eigenvalue.

Corollary 11.10. The operator L has a unique negative eigenvalue —u3 < 0 of multiplicity
one.

Remark 11.11. Corollary 11.10 shows the unstable character of the kink solution H, under
which the asymptotic stability could only hold if one already has orbital stability.

Proor. This is just a consequence of removing the first eigenvalue once we obtain the trans-
formed super-symmetric partner operator Ly. We recall the following decomposition

L= (=0, — ho)(0y + ho) — pg = U*U — g,
and changing the order of the operators U and U*, we define
Lo = (05 + ho)(=0x — ho) — pg = UU* — i, (2.149)
obtaining the super-symmetric relation
UL = LyU (2.150)
which is, by construction, isospectral to L except for A = —p. This is, we claim

0p(Lo) = 0p(L) \ {—g}-
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Let A # —pu2 be an eigenvalue of L, with the corresponding eigenfunction ¢. Then, by equa-
tion (2.150) we get Lo(U¢) = AU¢. Since by Lemma 10.2 \y = —pu? is a simple eigenvalue,
we have that U¢ # 0. This proves that o,(L) \ {—u2} C 0,(Lo). For the reversed inclusion,
we only need to prove that —u3 ¢ 0,(Lg), since for the rest we could repeat the same proce-
dure as above, but relative to the eigenvalues of Ly. By contradiction, we assume that there
exists some ¢ € L?(R) such that Loy = —uie. Then, by (2.149), we obtain UU*p = 0, and
using that ran(U*) L ker(U) we have that U*p = 0, which implies that ¢ = ¢, which is a
contradiction since g € L*(R).

By Lemma 11.9 we conclude that L has no negative eigenvalues, and from the above we
conclude that —p2 is the unique negative eigenvalue associated with the operator L. O]

Corollary 11.12. Given ¢g eigenfunction associated with the unique negative eigenvalue
—ui, then ¢y is an even function and d,¢q is odd.

Proor. The parity follows from the fact that L is invariant over the reflection x — —zx, so
the eigenfunctions are even or odd, and since ¢, is positive in the real line we conclude it is

even. Since ) is the unique negative eigenvalue of multiplicity one, ¢( is unique, even, and
0o is odd. O

2.0

1.5 A

1.0 A
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Figure 2.4: Numerical computation of k;(s), lower bound for K(a™!(s))
with s in (22,1, %0), and ka(s), lower bound for K(a~!(s)) with s in (0, z21).

11.3. Repulsivity.

Lemma 11.13. The derivative of the transformed potential Vi(x) is odd and negative for
any x # 0. In particular, Ly is repulsive.

The rest of this section is devoted to prove Lemma 11.13.
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11.3.1. An integral formula.

By (2.126) we have that (¢3) = 2ho¢3. Using this, the definition of Vj in (2.57) and hy,
(2.128), and integration by parts, we get

Vo(x) = 4ho(z)ho(z) — V'(x)

__QhO(x) © 2 _h0<x) Oovl(y) 2 ! "1
=~y L Vs - s [T @iy - Vi)
C 2ho(@) (<, ho(x) = (V'w)\"
= [ v g [T (7)) s
@)V ()i y)|T
Gk |,
_ (@) = (V'(y) e
g3 L (g ) i
_ho(@) o (V'y)  V'holy) o 5
~ i L (e~ @) i
thL' o " / / / 2 ¢0 ?
= [ (v )~ V) - 2V wiw) () wa
Thus, we have the equivalent formulation
/ _ hO(x) o (b() 2
Vi) = S8 [ 100 (32) i 2151
where, using equation (2.127), we have
I(y) = V" (y)holy) — V'(y)(h5(y) + 15 + V(1)) (2.152)

Due to the dependence of this expression on the sign of the potential and its derivatives, we
will divide the proof depending on the roots {xg, x1,x21, 222} (see Lemma 11.4).

To prove that Vj is non positive, we restrict our analysis to the interval (0, 00) by parity.
We will prove the positivity of I(y) for all y > 0 by separate cases.

11.3.2.  Positivity for z; <y < oo.

Firstly, we consider the case y > x25. Then Remark 11.5 ensures that V(y),V"(y) > 0,
V'(y) < 0. We apply in (2.152) the bounds (2.133) and (2.134) for hy:

Ity) = = V")) + [V'()I(R5(y) + g + V(y))
> — V" (y) + V()| (205 +V(9))
> — 1.038V"(y) + (2 0.8082 + V(y))|V'(v)].
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Replacing directly V, V', V" and considering the variable s = a~!(y), we obtain
g y

I(a(s)) > —2.075Q* <6 - 53[)@ + 9Q2> +4(2 - 3Q)(0.652 + Q* — Q*)Q*H
— 20? [2.611 — 6(1.038 + 0.652H)Q + <5301.O38 + 4H> Q% — (9.342 + 20H)Q® + 6Q*H
=: 2Q%i1(s).

By the exponential decay of @), we obtain explicitly via computation that i;(s) > 0 for all
s > a (x22) (see Fig. 2.5). Hence, we conclude I(y) > 0 for all y > 55 by the bijection of
a:R—R.

If now zy <y < @99, then V(y) > 0, V'(y),V"(y) < 0, applying (2.133), (2.134), and
Lemma 10.4, replacing V, V' and V",

I(y) = [V"(hol + V') (A3 (w) + 15 + V(1)) = pol V') + V') (2015 + V (1)
> 0.808|V" ()] + [V'(y)| (2-0.808* + V(1))

Again, replacing V, V', V" and considering the variable s = a~!(y), we obtain
I(a(s)) = — 2ueQ* <6 — 530@2 + 9@2) +4(2 - 3Q)(0.808° + Q* — Q*)Q*H
=2Q°H [4 -0.808%H — 6 - 0.808(1 + 0.808H)Q + (5; - 0.808 + 4H> Q?
— (10H +9-0.808)Q* + 6HQ4]
=: 2Q°Hiy(s),
where ]%(S) is explicitly known employing Lemma 10.4. Computing this function, we have

that iz(s) > 0 for all s € (a'(z1),a " (722)) (see Fig. 2.5). Hence, by bijectivity of a, we
conclude I(y) > 0 for all y € (z1,x92).

11.3.3.  Positivity for zo <y < z;.

In this case V(y),V'(y) > 0, and V"(y) < 0. This, combined with inequalities (2.134),
(2.133) gives us that [ satisfies the following inequality for all y € [z, x1]:

I(y) = V" ho(w)| = V'(v) (h§(w) + 1 + V()

> o V" (y) = V'(y) (i + 1§+ V()
> 0.808|V" ()| — V'(y) (1.959 + V(y)) .
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Replacing V, V', V" and considering the variable s = a~*(y), we obtain
I(a(s)) > —2-0.808Q" <6 - 530Q + 9Q2> +2(2 - 3Q)(1.959 + 2Q* — 2Q*)Q*H
= 20° [3.842H —3(1.959 + 1.616 H)Q + (530 - 0.808 + 4H> Q?
— (7.272 + 10H)Q* + 6HQ41

= QQSig(S),

where i3(s) is explicitly known employing Lemma 10.4. Computing this function, we have
that i3(s) > 0 for all s € (o™ (zo),a ' (x1)) (see Fig. 2.5). Hence, by bijectivity of o, we
conclude I(y) > 0 for all y € (zg,x1).

T T T T T
0 1 2 3 4
s

Figure 2.5: Numerical computation of the bounds for I(a(z)) in the intervals
(@™ (x0), 07 (21)), (@™ H(z1), a7 (222)), and (o (22,2), 00).
11.3.4. Positivity for z,; <y < .

If y is a positive real number such that xo; <y < x¢, then V(y), V"(y) <0, V'(y) > 0. We
separate the study in two cases.

Case 1. If hZ(y) + p2 + V(y) <0, directly by the sign of the expression in (2.152)

I(y) = V" (ho(y)] + V' () (hs(y) + o + V()| > 0.

Case 2. On the other hand, if h2(y) + p2 + V(y) > 0, by (2.140) and Lemma 10.4 we
know

8 \2 8 2
ha(y)+us+V (y) > <27(x—x0)+uo) +us+V(y) > <27(:L‘—x0)+0.974> +0.652+V (y).
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Hence, using (2.140) and the above estimate to bound by below (2.152),

I(y) > —'Zzy\/"(y) —V'(y) ((287@ o) + ().974)2 10652 + V(y)) .

Replacing V, V', V" and considering the variable s = a~!(y), we obtain

Ia(s) > =22 Ra(5)Q" (6- 20+ 9?)

Zo
8

27

122 - 30)0°H ((

=:m(s),

(cus) — o) + 0.974)2 +0.652 + 2Q%(1 — Q))

where m(s) is explicitly known employing Lemma 10.4. Computing this function, we have
that m(s) > 0 for all s € (a7 (z9,1), @ (z0)) (see Fig. 2.6). Hence, by bijectivity of «, we
conclude I(y) > 0 for all y € (za,1, zo).
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Figure 2.6: Numerical computation of the bounds for I(a(z)) in the intervals
(0,07 (22,1)) and (a™!(w21), o~ (x0))-

11.3.5.  Positivity for 0 <y < z3;.

Finally, for this case V(y) <0, V'(y),V"(y) > 0, and using (2.139) we obtain

9\ 2 9\ 2
h(y) + pg + V(y) < (MS - 4) v+ g+ Vi(y) < (0-652 - 4> y* 4+ 0.78 4+ V(y) <0,

where the last inequality was obtained using the bounds for o of Lemma 10.4. Hence, this
combined with inequalities (2.134), (2.133) gives us that [ satisfies for all y € (0, z21):

I(y) = V") ho()| + V() |h(w) + 15§ + V()| -
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Bounding by below, we have

9 9\ 2
I(y) > (0.652 - 4> V' (y) — V' (y) <(0.652 - 4) W +0.652 + V(y)>
Replacing V, V', V" and considering the variable s = a~*(y), we obtain
9 L. 50 ,
I(a(s) > 2 (0.652 - 4) o(5)Q (6 - 2Q+9Q )
2
+2Q°H(2 - 3Q) ((0.652 - Z) a(s)? +0.652 + 2Q*(1 — Q)>
=: 1(s).
where 71(s) is explicitly known employing Lemma 10.4. Computing this function, we have

that m(s) > 0 for all s € (0,a(z21)) (see Fig. 2.6). Hence, by bijectivity of , we conclude
I(y) > 0 for all y € (0,x2,1).

This proves that I(y) > 0 for all y > 0.
11.3.6.  Proof of Lemma 11.13.
Since ho(z) < 0 for all x > 0, we conclude by (2.151)

ho(ﬂ?)
#(x)

Vo) = S0 [ (vl = Vi) - 2V ) (1) iy <0

for x > 0.

11.4. Decay of Vj.

In order to prove the positivity of the transformed problem, we need an upper bound for V.
We state the following lemma.

Lemma 11.14. For |x| > 1 we have that Vj is strictly negative, and decay as V'(x). Fven
more, the following bound

3V'(2) < Vi(z) < ;V’(:c), (2.153)

is satisfied for all x > g 5.

Proor. Due to the parity we restrict our analysis to the positive axis, and we can assume
that © > xq.

First, we prove the lower bound using that from Lemma 11.5 |V/(x)| decrease for © > x4,
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and in addition employing equations (2.126), (2.128), (2.134), we have that

/ 4h0($>
Vi)l < |
aho(a) [ V() ,
-y 0<y>< <>>dy|+|v<>|

o) |

2419 ho

[ v + v

OO

<

]+ V(@)
< 3\V/<r>|,

for all x > x4 .

Second, analogously to the proof of Lemma 11.13 we use the integral formula for hg
and apply specific bounds. Using the definition of Vj, Lemma 11.1, equation (2.127), and
integration by parts,

V(@) = dho()hi(a) — SV(@) + 2 V'(2)
— ho(2)B)(x) + Sho(x)hh (z) — 2V’($) + ;V’(x)
Z‘)(? fV/ 2 o [ Sy - 51w+ 5Ve)
5 [ (i)
;h«;%gghgy; >x Sy >+; o

¢5(x) (y)

_1ho<x> (V') V()W)
‘2¢3<x>/x <3ho<y> TR
()

- s /;o (3V"(y)ho(y) — 3V ()hi(y) — 2V (y)hi(v)) <¢0> )y + 5V (2).

e /:O (;V’ 2 V(y)>/¢3(y)dy+;1/’(x)

- 2V’(y)> o5 (y)dy + ;V/(x)

B 5Gb(QJ(QC) ho 2

Thus, we define the integral form for V| given by

Vi) = 528 [ () v+ 37 2150

where we have denoted J(y) as the term in parenthesis in the penultimate equation. Using
equation (2.128) we have

J(y) = 3V"(y)holy) — V'(y) (B — hi(y) + 3V (y))- (2.155)

Thus, we only have to prove the positivity of J(y) to obtain (2.153). Applying the bound
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(2.134), and the fact that V(y) > 0,
g — hi(y) + 3V (y) > 3y — fig + 3V (y) = 2u5 — o= > 0.
Bounding by below (2.155) and using Lemma 10.4, since V'(y) < 0,
J(y) > =3V"(y) — (35 — g +3V(y)) V'(y) > =3V"(y) — (1.3 +3V(y))V'(y) > 0,

for all y > x99, where we obtain the last inequality via the explicit expressions using (2.15),
(2.130) and (2.131). Hence, recalling (2.154), we obtain that

Vi) = 5 i) [0 (1) 4510 < ) <o

2 ¢5(x) ho
——
<0 >0
This ends the proof of Lemma 11.14. Il
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Chapter 3

Conclusion

1. Conclusions

This work focused on the study of long-time asymptotic kink solutions for a SU(2) Yang-Mills
model over a curved spacetime background.

In the first chapter of this thesis, we made a general introduction to the problem from
a mathematical and physical perspective. In Chapter 2, we have extensively analyzed the
asymptotic stability dynamics for a kink H, employing interesting variations of virial tech-
niques substantially developed in recent years. The results obtained consist of a deep analysis
of the asymptotic stability of standing waves of the SU(2) Yang-Mills model on the exterior
of the extremal Reissner-Nordstréom black hole,

at2<10 - an(an90> + QQ(@Q - 1)90 = Oa (ta 1’) e R x R? (31)

where we proved conditional asymptotic stability for perturbations in the energy space around
the kink H. This work is the first of his type for a Yang-Mills model over black hole geometries
and opens a new area of research for the next years.

2. Future Work

It is proposed in the future to work in the following directions:

1. Construction of a stable manifold, where one has the asymptotic stability of the kink for
perturbations in the energy space. This construction is currently under work by Munoz
and myself. The key idea is that, even in the absence of a spectral gap for L, we can
employ the above results developed in Section 10 to obtain a coercivity result related
to a small perturbation operator of L. Using standard energy estimates (see Annex),
we can construct a Lipschitz graph of initial data leading to stable and asymptotically
stable trajectories following the spirit of [20].

2. Using the developed spectral method, study similar models from general relativity under
different geometries, such as Kerr black holes, or high energy physics couplings models,
such as the Yang-Mills-Higgs theory.
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Annex

Conservation of energy

Performing a standard computation using (2.15) and (2.16), we expand the conservation of
energy (2.13) for a solution (¢1,0i¢p1) = (¢1, ¢2) written under the preservative form (2.24)

with the orthogonality conditions (2.25), to obtain for all ¢ > 0,
2{E(¢1,¢2) — E(H,0)}
e 1 /-~
= /wg + /(—inl + Vwy)w, — 2/Q2Hwi’ + Z/szil
= /(Moaz% + U2)2 + (L(a1¢0 + u1), a1 0 + wy)

= ppa + 2fi0a2 (o, uz) + [[uzl3 + ai{Leo, ¢o) + ar(Lui, do)
+ a1 (Lo, ur) + (Luy, uy) — /@2]7(@?@53 +ub + 3aippuy + 3aipoul)

1 ~
+ 7 [ Gateh + 4adgbur + 6a3ghed + dangoud + ul)
= (@3 — @) + ol + (Lur,w) = [ QUH = argo)ud

~ 3 ~ —~ ~ —~
b3 [ @ut+ T [ @~ 4E6+ 0} [ G lardo — 3

3a ~ —~
+ 20 [ QHargo — 2t
If we define by = $(a1 + a2), b— = 3(a1 — a2), we obtain:

2{E(¢1,¢2) — E(H,0)} = —4ughsb- + [uz]|5 + (Lur, w)
— [ @~ apoyd + [ @ut+ Ol +10u13)
Let 99 > 0 be defined by
05 = b1(0) + b-(0) + [fuz(0) 13 + [[8zu1 ()3 + [|Qua 3.
Then, (.1) applied at t = 0 gives
[2{E (1, ¢2) — E(H,0)}| < &.
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