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RESUMEN DE LA TESIS PARA OPTAR
AL GRADO DE DOCTOR EN SISTEMAS DE INGENIERÍA
POR: RICARDO LUIS MUÑOZ CANCINO
FECHA: 2023
PROF. GUÍA: SEBASTIÁN RÍOS PÉREZ

APRENDIZAJE DE REPRESENTACIONES EN REDES COMPLEJAS
PARA CLASIFICACIÓN CREDITICIA

El acceso al crédito juega un papel crucial en la sociedad y beneficia la economía. Permite a
las personas alcanzar sus metas como adquirir vivienda, acceder a atención médica y obtener
educación. Además, brinda a los emprendedores y empresas el capital necesario para iniciar o
expandir operaciones, creando empleos y fomentando el crecimiento económico. Es necesario
contar con mecanismos para medir el riesgo de incumplimiento crediticio, ya que ayudan
mantener a la estabilidad del sistema financiero y protegen a los prestatarios de préstamos
impagables, asegurando que no enfrenten riesgos financieros innecesarios. La investigación en
credit scoring busca mejorar la discriminación de los modelos mediante mejores algoritmos
e incorporando datos alternativos como redes o grafos. Estos datos capturan interacciones
familiares, sociales y económicas de los individuos y ha demostrado ser especialmente útil
con prestatarios con historial crediticio limitado o inexistente. Esta tesis explora el valor
de integrar datos de grafos en modelos de credit scoring, con tres objetivos específicos, cada
uno vinculado a una publicación diferente. El primer objetivo se centra en el uso de network
representation learning en modelos de credit scoring. Se presenta un framework que combina
atributos generados manualmente, graph embeddings y atributos obtenidos de redes neu-
ronales de grafos. El estudio valida el uso de datos de redes en préstamos corporativos y de
consumo, y revela que el impacto de la información de grafos varía según el prestatario, ya
sean personas o empresas. Este es el primer estudio que considera el comportamiento crediti-
cio de todo un país utilizando diversas relaciones sociales y económicas. Nuestros resultados
resaltan el valor de los datos de redes para abordar los desafíos que enfrentan particular-
mente para las empresas con historial crediticio limitado o nulo, facilitando su inclusión en
el sistema financiero. El segundo objetivo busca comprender el impacto de los datos de redes
en el desempeño de los modelos a medida que el comportamiento de pago adquiere relevan-
cia. Este trabajo desafía la división actual del proceso de gestión de riesgo de crédito al
examinar etapas intermedias entre application credit scoring y behavioral credit scoring. Al
centrarnos en el prestatario en lugar del proceso comercial, encontramos información valiosa
sobre la dinámica del desempeño de los modelos a medida que evoluciona el historial crediti-
cio. Además, investigamos la influencia de los atributos de redes y observamos que su valor
decrece en presencia de atributos de comportamiento. En nuestro tercer objetivo, presenta-
mos una metodología para entrenar un modelo en datos sintéticos y luego aplicarlo a datos
reales. Los resultados muestran que es posible entrenar un modelo con datos sintéticos que
funcione bien en situaciones reales. Sin embargo, observamos que al aumentar el número de
atributos, disminuye la calidad de los datos sintéticos. Además, identificamos un costo en el
desempeño asociado con trabajar en un entorno que preserva la privacidad. Este costo es una
reducción del poder predictivo, que en nuestro estudio fue de un 3% en el área bajo la curva
ROC y un 6% en el estadístico de Kolmogorov-Smirnov. Los hallazgos de esta tesis aportan
a una comprensión integral de los modelos de credit scoring, destacando la importancia de
considerar los datos de redes y las oportunidades para la investigación de behavioral credit
scoring mediante el aumento de datos de entrenamiento a partir de datos sintéticos.
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NETWORK REPRESENTATION LEARNING FOR CREDIT SCORING

Access to credit plays a vital role in society and significantly benefits the economy. It
enables individuals to fulfill essential life goals, including acquiring housing, obtaining health-
care, and pursuing education. Moreover, it gives entrepreneurs and businesses access to the
necessary capital to initiate or expand operations, create jobs, and promote the economy’s
growth. Considering its crucial role, it is important to have mechanisms to quantify the
risk of loan default. These mechanisms serve the dual purpose of maintaining the financial
system’s stability and protecting borrowers from being granted loans they cannot afford,
ensuring they are not exposed to unnecessary financial risks. Credit scoring research has
recently focused on enhancing model discriminatory power through improved assessment al-
gorithms and incorporating alternative data. Regarding the alternative data, we focus on
utilizing network or graph representations. This form of data captures the individual’s fa-
milial, social, and economic interactions. It has proven especially useful with borrowers with
limited or nonexistent credit history. This doctoral thesis explores the value of integrating
network data into credit scoring models. The research is driven by three specific aims, each
corresponding to a distinct publication. The first objective concerns network representation
learning, different methods to extract knowledge from networks, and their effect on credit
scoring models. This work introduces a framework that combines traditional hand-engineered
features with graph embeddings and graph neural network features for credit scoring. The
study validates the use of graph data in corporate and consumer lending, revealing that the
impact of graph information varies depending on the borrower being analyzed, whether indi-
viduals or companies. It is the first study to consider the credit behavior of an entire country
using various social and economic relationships such as parents, spouses, business owners,
employers, employees, and transactional services. Our results highlight the significant value
of graph data in addressing the credit scoring challenges faced by thin-file borrowers, par-
ticularly for companies with limited or no credit history. This valuable information can
facilitate such entities’ entry into the financial system. The second objective deepens the
previous results and seeks to understand the impact of graph data on performance as the
payment behavior gains relevance. This work challenges the current division of the credit
risk management process by examining the intermediate stage between application scoring
and behavioral scoring. By turning the focus onto the borrower instead the business process,
we found valuable insights into the performance dynamics of credit scoring models as the
borrower’s credit history evolves. Furthermore, we investigate the influence of graph-data
features and observe their diminishing value in the presence of behavioral attributes. Finally,
in our third aim, we introduce a framework that enables training a model on synthetic data
and then applying it to real-world data. Additionally, we investigate the model’s ability to
handle data drift by evaluating its performance on real-world data gathered one year later.
Our findings demonstrate that training a model on synthetic data that perform well in real-
world situations is possible. However, we observed that as the number of features increases,
the quality of the synthesized data decreases. Furthermore, we identified a performance cost
associated with working in a privacy-preserving environment. This cost corresponds to a
reduction in predictive power, which in our study was approximately 3% when measured
using the area under the curve and 6% in the Kolmogorov-Smirnov statistics. This thesis’s
findings contribute to a more comprehensive understanding of credit scoring, highlighting
the importance of considering graph data and the possibilities for behavioral scoring research
using data augmentation from synthetic data.
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Sé que desde el cielo
me observas con orgullo en este día.
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Chapter 1

Introduction

This introductory chapter presents the motivation to study network representation for credit
scoring. Section 1.1 starts with the research’s motivation and introduces the research area
addressed in this thesis. Section 1.2 presents the research problem and the thesis’s general and
specific objectives. Then, in Section 1.3, we show the research methodology to continue with
the contributions of this research in Section 1.4, and its results, in the form of publications,
are detailed in the Section 1.5. Finally, the structure of the thesis is presented in Section 1.6.

1.1. Motivation
Access to credit is widely regarded as one of the economy’s main engines, a key driver for
economic growth (Rajan & Zingales, 1996; Banu, 2013; Van, Vo, Nguyen, & Vo, 2021). Credit
enables individuals to fulfill their personal aspirations, life goals and achieve financial success.
Goals such as access to housing, healthcare, and education are often achievable only through
credit financing (Hurley & Adebayo, 2017; Aziz & Dowling, 2019). Additionally, it allows
people and companies to access the necessary capital to create or expand businesses, create
jobs, and contribute to the economy’s growth (Diallo & Al-Titi, 2017). The main players
in the lending ecosystem are banks and financial institutions, which provide credit access to
individuals and businesses. Lending money is not a risk-free act, which is why credit risk is
one of the primary sources of uncertainty faced by banks and financial institutions (Apostolik,
Donohue, & Went, 2009). This credit risk refers to the likelihood that a borrower will default
on a loan, which can result in economic losses for the lender (The Basel Committee on Banking
Supervision, 2000). For this reason, financial institutions have used techniques to estimate
and manage this risk since its beginning. Although these techniques are as old as the concept
of lending itself, it was only in the mid-20th century that these concepts gained relevance with
the advent of computing (Anderson, 2022). Banks and financial institutions use sophisticated
mathematical and statistical models to assess the borrower’s creditworthiness. These models
are applied throughout the credit life cycle, application, repayment, and collection. Among
these models, application scoring and behavioral scoring are particularly noteworthy.

Application scoring is part of the loan granting decision, and it is used to evaluate the
creditworthiness of loan applicants and assess the risk of lending them money (Anderson,
2022). With this information, lenders decide on loan approval, interest rate applied, and
other conditions based on the borrower’s risk level. On the other hand, behavioral scoring is
applied in the portfolio management process once the borrower is already part of the credit
portfolio of the financial institution (Paleologo, Elisseeff, & Antonini, 2010; Anderson, 2022).
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This scoring enables lenders to address borrowers with a high risk of default proactively. For
instance, lenders can help alleviate the financial burden of borrowers struggling to keep up
with payment schedules and other obligations by implementing payment arrangements or
loan term restructuring.

Application scoring and behavioral scoring are intensive in the use of borrower information.
Application scoring uses mainly the information provided in the application form, while
behavioral scoring incorporates the borrower’s past behavior, such as loan repayment history,
credit utilization, and borrower historical data. In both cases, borrower knowledge is essential
because the more information is provided, the more accurate the creditworthiness assessment
will be. It is due to the above that these scoring models have some limitations. For example,
it may not fully capture a borrower’s creditworthiness if they have a limited credit history and
borrower data (Cusmano, 2018; Hurley & Adebayo, 2017; Baidoo, 2020; Djeundje, Crook,
Calabrese, & Hamid, 2021). Moreover, behavioral scoring models require significant data for
effective training. Historical information from borrowers is crucial in this process. However,
the availability of such data poses a significant challenge, as it tends to be scarce and financial
institutions are often hesitant to share it (Liu, 2001; Goh & Lee, 2019). This data scarcity
frequently hampers research efforts focused on these models (Kennedy, Mac Namee, Delany,
O’Sullivan, & Watson, 2013).

Several methods have been developed to deal with these problems when the borrower’s
information is scarce, their credit behavior is insufficient, or they do not have it. On the one
hand, the business model based on microcredits, where the borrower’s payment behavior is
observed from a limited initial exposure. Moreover, in the presence of good behavior, the
lender is willing to increase the credit limits granted to that borrower. However, this model is
neither cost-effective nor matches borrowers’ needs (Hurley & Adebayo, 2017; Baidoo, 2020).
In contrast, there is widespread consensus that enhancing the efficacy and effectiveness of
credit scoring models is a feasible strategy, which can be achieved by improving the credit-
worthiness prediction algorithms, integrating alternative data, or utilizing a hybrid approach
that combines both methods. The use cases of alternative data are varied, telephone call data
(Óskarsdóttir et al., 2017; Óskarsdóttir, Bravo, Vanathien, & Baesens, 2018a; Óskarsdóttir,
Bravo, Sarraute, Vanthienen, & Baesens, 2019), written risk assessments (Stevenson, Mues,
& Bravo, 2021), data generated by an app-based marketplace (Roa, Correa-Bahnsen, et al.,
2021; Roa, Rodríguez-Rey, Correa-Bahnsen, & Valencia, 2021), social media data (Tan &
Phan, 2018; Cnudde et al., 2019; Putra, Joshi, Redi, & Bozzon, 2020), network informa-
tion (Ruiz, Gomes, Rodrigues, & Gama, 2017), behavioral and psychological surveys (Goel
& Rastogi, 2021), fund transfers datasets (Shumovskaia, Fedyanin, Sukharev, Berestnev,
& Panov, 2020; Sukharev, Shumovskaia, Fedyanin, Panov, & Berestnev, 2020), and psy-
chometric data (Rabecca, Atmaja, & Safitri, 2018; Djeundje, Crook, Calabrese, & Hamid,
2021; Rathi, Verma, Jain, Nayyar, & Thakur, 2022). These sources share the common use
of social-interaction information gathered from the graph formed by the interactions among
individuals recorded in alternative data sources. This is why social relationships also play an
important role in determining a borrower’s creditworthiness. In particular, family, friends,
and financial relationships can affect an individual’s credit risk by shaping their behavior and
financial decisions. In addition, family and friends can provide financial assistance in times
of financial need. Similarly, economic relationships such as business partnerships or financial
transactions can significantly impact the credit risk of individuals. Sometimes, it is difficult
to differentiate the financial management of a small business from the personal finances of
its owner, or many times the business partner’s financial difficulties can threaten the sol-
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vency of the company or its other owners. The study of how these relationships influence
the evaluation of creditworthiness has gained strength in recent years thanks to advances
in graph analysis, deep learning, and graph convolutional networks. The most significant
advances in this area have been in showing the value of incorporating this alternative data
in the credit scoring problem and testing different methods to incorporate the information
from the graphs into the traditional credit scoring problem.

Despite extensive research on credit scoring, remaining challenges need to be tackled. This
thesis aims to investigate and analyze various strategies for integrating graph information
into conventional credit scoring problems. Furthermore, it seeks to identify the stages in
the credit life cycle where incorporating such alternative information proves most valuable.
Lastly, this study aims to explore methods for facilitating research in behavioral credit scoring
models. The following section will outline this thesis’s objectives and describe how we intend
to address the points mentioned earlier. The related research questions and publications will
be presented.

1.2. Research Problem
1.2.1. General Objective
The main objective of this thesis is to extend the general knowledge of how to build and train
credit scoring models by incorporating network data.

1.2.2. Specific Aims
The idea is to investigate the value of incorporating network data in credit risk management.
The research will be structured with three specific aims to achieve this goal. Each specific aim
in this thesis is driven by its own research questions, which have been thoroughly investigated
and documented in their corresponding articles. These articles have been published in peer-
reviewed journals and conferences, providing insights and findings for further research.

1.2.2.1. Aim 1: On the combination of graph data

Context:

This specific aim seeks to address two gaps in the literature regarding using graph data
in credit scoring. The first gap is related to the data sources utilized. Many studies have
used partial social networks that fail to capture the overall picture of the borrower’s social
interactions. Secondly, the network knowledge extraction has mainly relied on both hand-
made feature engineering (Freedman & Jin, 2017; Ruiz, Gomes, Rodrigues, & Gama, 2017;
Óskarsdóttir, Bravo, Sarraute, Vanthienen, & Baesens, 2019; Niu, Ren, & Li, 2019) and,
in recent years, through graph neural networks (Roa, Rodríguez-Rey, Correa-Bahnsen, &
Valencia, 2021) that are no improvement over the traditional feature-engineering approach.
This specific aim will investigate combining different representation learning techniques with
complex graph structures instead of observing them in isolation.

Research Questions:
• When combining different graph representation learning (GRL) techniques over complex

graph structures, is there a performance improvement compared to merely applying
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hand-crafted feature engineering or graph neural networks?

• What insights are obtained into the combined network features, and what value do these
insights add to credit risk assessment?

• Where does social information help the most? Is the most significant performance
enhancement obtained in personal credit scoring or business credit scoring? What can
we gather from this information? Does it influence which network and which features
are the most relevant?

1.2.2.2. Aim 2: On the dynamics of graph data features and their impact on
performance

Context:

We know the impact of repayment behavior and social-interaction data on application and
behavioral scoring problems. The effect of repayment behavior is gaining relevance as the
borrower-lender relationship becomes entrenched: the more data on borrower’s behavior is
gathered, the more accurately borrower’s creditworthiness can be predicted. As for social
interaction data, at some point, its relevance decreases in the presence of the borrower’s be-
havior and repayment history. Both relationships require careful study. Research into credit
scoring has primarily focused on the initial stages (application scoring) and at some point
during the loan payment schedule (behavioral scoring). Therefore, examining these dynamics
enhances our understanding of credit scoring.

Research Questions:

• Knowing that borrowers’ repayment history increases creditworthiness assessment per-
formance, at which point in time since the loan is granted, does this information become
meaningful? For how long do we need to observe borrowers’ repayment history to assess
their creditworthiness accurately?

• Knowing that social-interaction data contributes more value to application scoring, that
is when behavioral information is scarce. For how long is it beneficial to rely on these
sources of information?

• What insights and benefits to credit risk management are obtained from studying the
dynamics of both the creditworthiness assessment performance and the value of alter-
native data sources?

1.2.2.3. Aim 3: On the training of credit scoring models using synthetic data

Context:

Despite all the years of research on credit scoring, behavioral scoring models have received rel-
atively less attention because it requires large volumes of data and a relevant historical depth
(Goh & Lee, 2019; Kennedy et al., 2013). In addition, financial institutions are often hesitant
to collaborate in this type of research due to worries about data security and individuals’
privacy protection. Currently, the use of synthetic data in credit scoring is mainly restricted
to balancing the minority class using the traditional SMOTE (Gicić & Subasi, 2019) or vari-
ational autoencoders (Wan, Zhang, & He, 2017), and lately, generative adversarial networks

4



(Fiore, De Santis, Perla, Zanetti, & Palmieri, 2019; Lei et al., 2020; Ngwenduna & Mbuvha,
2021). Therefore, we want to study if it is possible to train a model on synthetic data and
then apply it to real-world data, achieving performance as good as a model trained on real-
world data.

Research Questions:
• Can a model trained on synthetic data perform well in real-world scenarios?
• How does increasing the features impact synthetic data quality?
• Is there a performance cost for working in a privacy-preserving environment?

1.3. Proposed Methodology
The proposed methodology to address the specific aims outlined in this doctoral thesis is
thoroughly explained in each of the corresponding articles. However, several common key
elements are applied across all the proposed methodologies that we can summarize as shown
in Figure 1.1. This methodology is an adaptation of traditional data mining approaches, such
as the Knowledge Discovery in Databases (KDD) methodology (Fayyad, Piatetsky-Shapiro,
& Smyth, 1996) and CRISP-DM Cross-Industry Standard Process for Data Mining (Wirth
& Hipp, 2000), but with specific modifications and adjustments to address the challenges
and objectives raised in this research.
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Figure 1.1: Proposed methodology

The first step in the methodology involves a broad exploration of the real-world context,
where individuals, including borrowers, interact with each other. These interactions are re-
flected through multiple relationships recorded in numerous computer systems. We carefully
select specific records from these systems that can influence the problem of predicting cred-
itworthiness. We have chosen those observed relationships that allow us to build social and
economic networks to study how they affect creditworthiness assessment. In particular, in
all three studies, we hold information regarding the credit behavior of an entire country, as
well as data pertaining to familial relationships, corporate structures, and networks between
employers and workers. By leveraging these specific data sources, we can gain a more com-
plete and accurate view of borrowers’ financial situation, thus enhancing the creditworthiness
assessment.

Once the data has been collected, it is necessary to define how this information is struc-
tured in the form of graphs in the network construction stage. Subsequently, several network
representation learning methods, the ways of extracting knowledge from the graph data,
are studied to include this knowledge within the problem of traditional credit scoring prob-
lem. Although the experimental configuration depends on each study in the modeling stage,
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the process is structured based on K-fold cross-validation and bootstrap sampling to ob-
tain conclusions supported by statistical tests. These conclusions are obtained by comparing
state-of-the-art models with the particular proposed models.

Regarding validation metrics, standard industry metrics are also used, such as the area
under the ROC curve and the Kolmogorov-Smirnov statistic. In the last stage, the results
are analyzed, and relevant knowledge is obtained about each research question presented.
In summary, this methodology runs from the conceptualization, collection, and structure of
data in the form of graphs to its representation in tabular format, modeling, and statistical
validation.

1.4. Contributions and outline
Our research extends the understanding of credit scoring by examining the use of social net-
work data. Firstly, we proposed a framework that combines traditional hand-engineered fea-
tures, graph embeddings, and graph neural network features to generate a single credit score,
enabling a simpler decision-making process in credit approval. Furthermore, our research
challenges the conventional division between application and behavioral scoring, focusing
on the borrower’s credit history evolution and investigating the contribution of graph data
features. Our massive dataset enables us to extend the behavioral credit scoring research
by characterizing individuals and companies from granting their first loan and capturing
subsequent credit history, repayment behavior, and social network data. It enables a com-
prehensive study of credit assessment performance dynamics and the value of graph data
throughout the study period of each borrower. Moreover, we present a framework that uses
synthetic data to train credit scoring models. We evaluated their performance on real-world
data and examined their stability to data drift. Our findings show the feasibility of achiev-
ing good model performance using synthetic data, although the quality of synthesized data
decreases when the number of synthesized features increase. We also observe a performance
cost associated with these privacy-preserving practices, which reduces predictive power when
synthetic data is used to train models. Finally, we validate and test the efficacy of graph
data in both corporate and consumer lending contexts, highlighting its varying impact on
different borrower types and the predictive power enhancement this alternative data offers.
Our study pioneers the analysis of the credit behavior of an entire country, incorporating
diverse social and economic relationships such as parental, marital, business ownership, and
employment networks, thereby expanding the understanding of credit scoring with extensive
social interaction data.

Our research contributes to credit risk management by proposing an integrated frame-
work and analyzing the impact of credit history, repayment behavior, and social network
features on the dynamics of creditworthiness assessment performance. It also incorporates
social network data comprehensively and demonstrates the viability of training credit scoring
models using synthetic data. These contributions enhance our understanding of credit risk
assessment and improve credit decision-making processes.

This thesis consists of five chapters. Chapter 2 presents the publication "On the com-
bination of graph data for assessing thin-file borrowers’ creditworthiness," where the use of
graph data for the credit scoring problem is investigated. In particular, it seeks to identify
the most appropriate way to incorporate this information into the traditional credit scoring
problem. In order to meet this objective, three ways are studied to convert social network
data in the form of graphs into tabular data. This work is published in the Expert Systems
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with Applications journal.
Chapter 3 presents the publication "On the dynamics of credit history and social inter-

action features, and their impact on creditworthiness assessment performance". This study
focuses on understanding the dynamics of creditworthiness assessment performance and its
relationship with credit history, repayment behavior, and social network features. The find-
ings indicate that including social network features significantly impacts loan application
scoring, lasting for approximately six months in individual scoring and persisting throughout
the study period in business scoring. This work is published in the Expert Systems with
Applications journal.

Chapter 4 presents the conference paper "Assessment of creditworthiness models privacy-
preserving training with synthetic data". Where the problem of low data availability for
training behavioral credit scoring models is addressed, this article shows that it is possible
to train behavior models using synthetic data and thus preserve clients’ privacy. The results
show that models trained with synthetic data lose predictive power compared to models
trained with real data. However, these losses of predictive power are 3% of AUC and 6% of
KS. Thus there is a trade-off between accessing more significant volumes of information and
the predictive power of the associated models. This work is published in the Hybrid Artificial
Intelligent Systems 2022 conference.

Finally, a general conclusion regarding all the work developed is presented in Chapter 5.

1.5. Publications
These articles are a direct outcome of the research conducted in this thesis and were produced
and published as part of the Ph.D. program.

• Ricardo Muñoz-Cancino, Cristián Bravo, Sebastián A. Ríos, Manuel Graña, On the
combination of graph data for assessing thin-file borrowers’ creditworthiness, Expert
Systems with Applications, Volume 213, Part A, 2023, 118809, ISSN 0957-4174 (Muñoz-
Cancino, Bravo, Ríos, & Graña, 2023a)

• Ricardo Muñoz-Cancino, Cristián Bravo, Sebastián A. Ríos, Manuel Graña, On the
dynamics of credit history and social interaction features, and their impact on cred-
itworthiness assessment performance, Expert Systems with Applications, Volume 218,
2023, 119599, ISSN 0957-4174 (Muñoz-Cancino, Bravo, Ríos, & Graña, 2023b)

• Ricardo Muñoz-Cancino, Cristián Bravo, Sebastián A. Ríos, Manuel Graña (2022). As-
sessment of Creditworthiness Models Privacy-Preserving Training with Synthetic Data.
In: , et al. Hybrid Artificial Intelligent Systems. HAIS 2022. Lecture Notes in Com-
puter Science(), vol 13469. Springer, Cham. (Muñoz-Cancino, Bravo, Ríos, & Graña,
2022)

Other articles were developed during the doctoral studies; however, they do not pertain
to the subject matter of this research.

• Muñoz-Cancino, R., Rios, S. A., Goic, M., & Graña, M. (2021). Non-Intrusive As-
sessment of COVID-19 Lockdown Follow-Up and Impact Using Credit Card Informa-
tion: Case Study in Chile. International Journal of Environmental Research and Public
Health, 18(11), 5507. (Muñoz-Cancino, Rios, Goic, & Graña, 2021)
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• Muñoz-Cancino, R., Rios, S. A., & Graña, M. (2023). Clustering Cities over Features
Extracted from Multiple Virtual Sensors Measuring Micro-Level Activity Patterns Al-
lows One to Discriminate Large-Scale City Characteristics. Sensors. 2023; 23(11):5165.
(Muñoz-Cancino, Ríos, & Graña, 2023)

• Ricardo Muñoz-Cancino, Sebastián A. Ríos, Manuel Graña. Predicting innovative cities
using spatio-temporal activity pattern. Hybrid Artificial Intelligent Systems. HAIS
2023. Under Review.

1.6. Structure of the thesis
This work is structured in chapters, which are detailed below:

• Chapter 2: presents the publication "On the combination of graph data for assessing
thin-file borrowers’ creditworthiness,"

• Chapter 3: presents the publication "On the dynamics of credit history and social
interaction features, and their impact on creditworthiness assessment performance"

• Chapter 4: presents the publication "Assessment of creditworthiness models privacy-
preserving training with synthetic data"

• Chapter 5: Summarizes the main conclusions and findings from the three studies
presented in this doctoral thesis.
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Chapter 2

On the combination of graph data for
assessing thin-file borrowers’
creditworthiness1

Abstract

Thin-file borrowers are customers for whom a creditworthiness assessment is uncer-
tain due to their lack of credit history. To address missing credit information, many
researchers have used borrowers’ social interactions as an alternative data source. Ex-
ploiting social networking data has traditionally been achieved by hand-crafted feature
engineering, but lately, graph neural networks have emerged as a promising alterna-
tive. Here we introduce an information-processing framework to improve credit scoring
models by blending several methods of graph representation learning: feature engineer-
ing, graph embeddings, and graph neural networks. In this approach, we aggregate the
methods’ outputs to be fed to a gradient boosting classifier to produce a final credit-
worthiness score. We have validated this framework over a unique multi-source dataset
that characterizes the relationships, interactions, and credit history for the entire pop-
ulation of a Latin American country, applying it to credit risk models, application, and
behavior. It also allows us to study both individuals and companies. Our results show
that the methods of graph representation learning should be used as complements; they
should not be seen as self-sufficient methods, as it is currently done. We improve the
creditworthiness assessment performance in terms of the measures of Area Under the
ROC Curve (AUC) and Kolmogorov-Smirnov (KS), outperforming traditional meth-
ods of exploiting social interaction data. In the area of corporate lending, where the
potential gain is much higher, our results confirm that the evaluation of a thin-file com-
pany cannot solely consider the company’s own characteristics. The business ecosystem
in which these companies interact with their owners, suppliers, customers, and other
companies provides novel knowledge that enables financial institutions to enhance their
creditworthiness assessment. Our results let us know when and on which population to
use graph data and the expected effects on performance. They also show the enormous
value of graph data on the credit scoring problem for thin-file borrowers, mainly to help
companies with thin or no credit history to enter the financial system.

Keywords: credit scoring; machine learning; social network analysis; network data; graph
1 The following is a copy of the paper published at the Expert Systems with Applications Journal. Please

cite this paper as follows: Ricardo Muñoz-Cancino, Cristián Bravo, Sebastián A. Ríos, Manuel Graña,
On the combination of graph data for assessing thin-file borrowers’ creditworthiness, Expert Systems with
Applications, Volume 213, Part A, 2023, 118809, ISSN 0957-4174
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neural networks

2.1. Introduction
A large part of the population requires access to credit to achieve their life goals: social
mobility, owning a home, and financial success. Moreover, access to financial services and a
proper credit evaluation can facilitate and are often necessary to obtain a job, rent a home,
buy a car, start a new business, or pursue a college education (Hurley & Adebayo, 2017;
Aziz & Dowling, 2019). At the macroeconomic level, access to credit is a major driver for
local economic growth, especially in developing economies (Diallo & Al-Titi, 2017). Finan-
cial institutions play a significant social role in facilitating access to credit and facing the
entailed risks of lending money. To manage this credit risk, financial institutions have applied
credit scoring models to assess the creditworthiness of their borrowers, that is, to distinguish
between good and bad payers and delivering loans to those who are most likely to repay.
To build a credit scoring model, financial institutions often use personal information, bank-
ing data, and payment history to estimate creditworthiness and the probability of default.
Despite being the standard mechanism in the industry for credit-granting decisions and the
management of the loan’s life cycle (L. Thomas, Crook, & Edelman, 2017), this ubiquitous
tool still does not ensure adequate access to credit and to the financial system.

The World Bank estimates that more than 1.4 billion adults remain unbanked, without
access to the financial system (The Global Financial Index, 2022). This number only considers
those who do not have a bank account through either a financial institution or mobile banking.
If we included underbanked people, that is, those who have an account but cannot apply for a
loan, this number would be much larger. Being unbanked or underbanked raises the issue of
those who lack a credit history, also known as thin-file borrowers: people who have no access
to a loan not because they are bad payers but because they lack the attributes evaluated by
traditional credit scoring models (Cusmano, 2018; Hurley & Adebayo, 2017; Baidoo, 2020;
Djeundje, Crook, Calabrese, & Hamid, 2021).

In this scenario, lenders have tried different ways to reach this population; we highlight
two business models here. In the traditional business model, the higher risk assumed due
to the lack of information is compensated by applying higher interest rates. Alternatively,
granting microcredits has been used as a strategy to assess the client’s payment behavior
under limited exposure. However, neither of these solutions has proven to be cost-effective
in addressing the credit needs of this population (Hurley & Adebayo, 2017; Baidoo, 2020).

For this reason, financial institutions, fintech, and researchers have looked in recent years
for business-model innovations and better decision-making with the available information.
This search is done via developing better scoring algorithms and using alternative data sources
to improve credit scoring models. Regarding the use of alternative information, graph data
has gained high visibility because it allows an improvement of credit scoring models’ perfor-
mance (Óskarsdóttir, Bravo, Sarraute, Vanthienen, & Baesens, 2019; Roa, Rodríguez-Rey,
Correa-Bahnsen, & Valencia, 2021).

We have identified two main gaps, which are addressed in this work. The first gap is
the data sources employed. Most of the studies are carried out with partial social networks
that fail to capture the overall picture of the client’s social interactions. These networks
are limited by the data provider. Our study uses social networking data to characterize the
interactions of the country’s entire population, encompassing the complete financial system.
Secondly, the network knowledge extraction is mainly done both through hand-made feature
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engineering (Freedman & Jin, 2017; Ruiz, Gomes, Rodrigues, & Gama, 2017; Óskarsdóttir,
Bravo, Sarraute, Vanthienen, & Baesens, 2019; Niu, Ren, & Li, 2019) and, in recent years,
through graph neural networks (Roa, Rodríguez-Rey, Correa-Bahnsen, & Valencia, 2021)
that do are no improvement over the traditional feature-engineering approach.

Our work will investigate the combination of different representation learning techniques
with complex graph structures instead of observing them in isolation. Hence, we formulate
the following research questions:

1. When combining different graph representation learning (GRL) techniques over complex
graph structures, is there a performance improvement compared to merely applying
hand-crafted feature engineering or graph neural networks?

2. What insights are obtained into the combined network features, and what value do these
insights add to credit risk assessment?

3. Where does social information help the most? Is the most significant performance
enhancement obtained in personal credit scoring or business credit scoring? What can
we gather from this information? Does it influence which network and which features
are the most relevant?

This study challenges traditional hand-crafted feature engineering and the novel approach
of graph neural networks (GNNs) by combining multiple GRL methods. In particular, our
work contributes to the following aspects.

• We introduce a framework to combine traditional hand-engineered features with graph
embeddings and GNN features. This framework produces a single score, helping its
users decide whether to approve or reject a credit.

• Our results are the first to validate and test graph data regarding both corporate and
consumer lending, showing that the information from graphs has a different effect de-
pending on the analyzed borrower, people, or companies. These effects are reflected
both in the predictive power enhancement and in the features relevant in each problem,
letting us know not only when and on which population to use social-interaction data
but also which effects on creditworthiness prediction performance to expect.

• To the best of our knowledge, this is the first study that considers the credit behavior
of an entire country, together with social networks that allow the characterizing of its
entire population and consolidate multiple types of social and economic relationships, for
example, parental, spouses, business owners, employers and employees, or transactional
services.

• This paper also contributes to the growing literature in credit scoring and network data,
proposing a mechanism to achieve better results than the popular hand-crafted feature
engineering and the novel GNN approach.

This paper is structured as follows. Section 2.2 presents a review of credit risk man-
agement, credit scoring and social networks. The GRL methods are presented in Section
2.3. Section 2.4 describes the data sources and features extracted for classification. Section
2.5 shows the proposed information-processing methodology and the adopted experimental
design. Section 2.6 presents the results obtained. The conclusions and future work that
originated from this research are presented in Section 2.7.
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2.2. Background and Related Work

2.2.1. Credit Risk Management

Banks’ core business is granting loans to individuals and companies. Granting a loan is not
risk-free; in fact, banks are heavily exposed to credit risk (Anderson, 2022), originating from
the potential loss due to the debtors’ default or their inability to comply with the agreed
conditions (The Basel Committee on Banking Supervision, 2000). Banking risk management
focuses on detecting, measuring, reporting, and managing all sources of risk. Banks define
strategies, policies, and procedures to limit the assumed risk. These strategies encourage and
integrate the use of mathematical models for the early detection of potential risks. Credit
scoring is widely used for managing credit risk, handling large volumes of data, and capturing
complex patterns that are difficult to express as simple business rules. This instrument
became popular and ubiquitous in the 1980s, mainly due to advances in computing power
and to the growth of financial markets, which made it almost impossible to manage large
credit portfolios without this kind of tool (L. Thomas, Crook, & Edelman, 2017).

The regulatory framework also endorses the use of credit scoring models; in fact, the
Basel Accords allow banks to manage credit risk with internal ratings. Specifically, banks
develop internal models for assessing the expected loss. This assessment can be divided into
three components: the probability of default (PD), the loss given default (LGD), and the
exposure at default (EAD). The PD is a key component, because it is used to define the
credit granting policies and for portfolio management. The general approach to estimating
the PD and assessing the borrower’s creditworthiness is through classification techniques
using demographic features and payment history as explanatory variables.

Over the years, lenders have explored multiple ways to improve creditworthiness assess-
ment, novel machine learning techniques (Moscato, Picariello, & Sperlí, 2021), and non-
traditional data sources (Aziz & Dowling, 2019). Multiple lines of research have been estab-
lished; some of them attempt to understand the characteristics of defaulters (Bravo, Thomas,
& Weber, 2015), the feature selection process (Kozodoi, Lessmann, Papakonstantinou, Gat-
soulis, & Baesens, 2019; Maldonado, Pérez, & Bravo, 2017), or the transformation of the
feature space (Carta, Ferreira, Reforgiato Recupero, & Saia, 2021). However, the most sig-
nificant improvements have been obtained by the exploitation of alternative data sources
such as telephone call data (Óskarsdóttir et al., 2017; Óskarsdóttir, Bravo, Vanathien, &
Baesens, 2018a; Óskarsdóttir, Bravo, Sarraute, Vanthienen, & Baesens, 2019), written risk
assessments (Stevenson, Mues, & Bravo, 2021), data generated by an app-based market-
place (Roa, Correa-Bahnsen, et al., 2021; Roa, Rodríguez-Rey, Correa-Bahnsen, & Valencia,
2021), social media data (Tan & Phan, 2018; Cnudde et al., 2019; Putra, Joshi, Redi, &
Bozzon, 2020), network information (Ruiz, Gomes, Rodrigues, & Gama, 2017), behavioral
and psychological surveys (Goel & Rastogi, 2021), fund transfers datasets (Shumovskaia,
Fedyanin, Sukharev, Berestnev, & Panov, 2020; Sukharev, Shumovskaia, Fedyanin, Panov,
& Berestnev, 2020), and psychometric data (Rabecca, Atmaja, & Safitri, 2018; Djeundje,
Crook, Calabrese, & Hamid, 2021; Rathi, Verma, Jain, Nayyar, & Thakur, 2022). All these
studies have in common the use of social-interaction information, the graph formed of the
interactions among individuals recorded in alternative data sources.

There are multiple taxonomies of credit scoring problems. One that has been widely
adopted by academics and practitioners distinguishes between application scoring and be-
havior scoring. On the one hand, application scoring corresponds to a credit scoring system
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for new customers, where the available information is often scarce and limited. On the other
hand, behavioral scoring is a credit scoring system for borrowers with available credit and re-
payment history. In the current study, both of these credit scoring types and their differences
between personal and business clients are explored.

2.2.2. Credit Risk and Social Networks
The inclusion of alternative data in the credit scoring problem has gained relevance in recent
years. We define graph data as any information that records the relationships or interactions
among entities that can be represented by a set of nodes in which edges connect pairs of nodes.
We refer to a network as a Social Network when nodes are people or companies, and edges
denote any social interaction, such as among friends, acquaintances, neighbors, colleagues,
or affiliations with the same group (Romero, Uzzi, & Kleinberg, 2019). Mathematically, we
describe a network through a graph G(V, E, A), where V is the set of nodes, and E is the set
of edges. Let V = {v1, . . . , vN} where |V | = N is the number of nodes, and the adjacency
matrix A ∈ R|V |×|V | with Aij = 1 if there is an edge eij from vi to vj, Aij = 0 otherwise.
Additionally, the graph can be associated with a matrix of node attributes X ∈ RN×F , where
Xi ∈ RF represents the feature vector of node vi.

The emerging literature on credit scoring and network data has focused on incorporating
hand-crafted features into a traditional credit scoring problem (Óskarsdóttir et al., 2017;
Óskarsdóttir, Bravo, Verbeke, Baesens, & Vanthienen, 2018). The authors incorporate net-
work information into the formulation of the customer churn problem, using eight telco
datasets originating from around the world. This series of studies outlines the foundations
for the incorporation of network data in credit scoring. This framework is applied to the
credit scoring problem by (Óskarsdóttir et al., 2018a, 2018b; Óskarsdóttir et al., 2019),
where the authors introduce a methodology to enhance smartphone-based credit scoring
models’ predictive power through feature engineering from a pseudo-social network, com-
bining social-network analysis and representation learning. According to this research, it is
feasible to increase the performance of micro-lending smartphone applications, generating
high helping potential for financial inclusion.

An extension of this work is to measure the temporal and topological dynamics of credit
risk, that is, how it evolves and spreads over the graph representation of the social network.
For instance, (Bravo & Óskarsdóttir, 2020) implemented modifications to the PageRank
algorithm to quantify this phenomenon. This methodology allows them to quantify the risk
of the different entities in a multilayer network. Their results show how the risk of default
spreads and evolves over a network of agricultural loans. Then, (Óskarsdóttir & Bravo,
2021) analyzed how to build the multilayer network, interpret the variables derived from it,
and incorporate this knowledge into credit risk management. Their results reveal that the
default risk increases as a debtor presents links with many defaulters; however, this effect is
mitigated by the size of each individual’s neighborhood. These results are significant because
they indicate that default and financial-stability risk spread through the network.

Other works have used an approach based on a graph convolutional network (GCN) for this
purpose. (Shumovskaia et al., 2020) present one of the first empirical works with massive
graphs created from transactions between clients of a large Russian bank. They propose
a framework to estimate links using SEAL (Zhang & Chen, 2018) and recurrent neural
networks, the SEAL-RNN framework. One of the advantages of using SEAL is that it
focuses only on the link’s neighborhood to be predicted, and it does not use the entire
graph as in GCN. This framework permits the analysis to be scaled to massive graphs of

13



86 million nodes and 4 billion edges. Although the framework is not a methodology for
default prediction, Shumovskaia et al. extend the scope of their research and apply it to
a credit scoring problem. (Sukharev et al., 2020) propose a method to predict the default
from a money transfer network and the historical information of transactions. To work with
both datasets, they propose a methodology based on GCN and recurrent neural networks to
handle network data and transactional data, respectively. As baseline models, they train a
model with 7000 features; however, they achieve an increase of 0.4% AUC when comparing
the proposed model with the best baseline model. Finally, (Roa, Correa-Bahnsen, et al.,
2021) present a methodology for using alternative information in a credit scoring model.
Models are estimated using data generated by an app-based marketplace. This information
is precious for low-income segments and young individuals, who are often not assessed well by
traditional credit scoring models. The authors compare a model with hand-crafted features
versus models from GCNs. However, GCNs do not achieve better results than do hand-crafted
features in terms of predictive power.

2.3. Representation Learning on Networks
The machine learning subfield that works on graph-structured data is known as graph rep-
resentation learning or GRL (Hamilton, Ying, & Leskovec, 2017). Unlike the traditional
tabular data, network data imposes a challenge to conventional machine learning algorithms
because it is not possible to use them directly, forcing changes either on the algorithms or on
the data representation. These challenges are required because the network information is,
in essence, unstructured. In fact, operations that are easy to calculate on other data types,
such as convolutions on images, cannot be applied directly to graphs because each node has
a variable number of neighbors. Researchers have proposed many methodologies to extract
knowledge for networks; here, we present a nomenclature and the characteristics of the most
popular methods.

2.3.1. Feature Engineering
Data preparation is one of the most critical steps in any analytical project before training any
machine learning model. Formulating accurate and relevant features is critical to improving
model performance (Nargesian, Samulowitz, Khurana, Khalil, & Turaga, 2017). Regarding
the use of graph data, the traditional feature engineering approach consists of characteriz-
ing each node either based on the aggregation of its neighborhood’s features or the node’s
statistics within the network.

2.3.2. Network Embeddings
Network embedding methods are unsupervised learning techniques aiming to learn a Eu-
clidean representation of networks in a much lower dimension. Each node is mapped into
a Euclidean space through the optimization of similarity functions. The distance between
network nodes in the new space is a surrogate for the node’s closeness within the network
structure. Node embedding techniques often replace feature engineering processes.

Formally, a network is represented by a graph G(V, E, A) defined by a set of nodes V , a
set of edges E, and an adjacency matrix A ∈ R|V |×|V |. The embedding of a node is a function
f : G(V, E, A) → Rd that maps each node v ∈ V to an embedding vector {Zv}v∈V ∈ Rd

(Arsov & Mirceva, 2019), preserving the adjacency in the graph. The embedding vectors of
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pairs of nodes that are connected by an edge are closer than those that are disconnected. Let
Z ∈ R|V |×d denote the node-embedding matrix, where d ≪ |V | for scalability purposes. The
most popular network embedding method is Node2vec (Grover & Leskovec, 2016), which is an
algorithmic framework for learning low-dimensional network representation. This algorithm
maximizes the probability of preserving the neighborhood of the nodes in the embedding sub-
space. The algorithm optimizes using stochastic gradient descent, a network-based objective
function, and produces samples for neighborhoods of nodes through second-order random
walks. The key feature of Node2vec is the use of biased-random walks, providing a trade-
off among two network search methods: breadth-first search (BFS) and depth-first search
(DFS). This trade-off creates more informative network embeddings than other competing
methods.

2.3.3. Graph Neural Networks (GNN)

Graph-structured data has arbitrary structures that can vary significantly between networks
or within different nodes of the same network. Their support domain is not a uniformly
discretized Euclidean space. For this reason, the convolution operator that is often used
for signal processing cannot be directly applied to graph-structured data. Geometric deep
learning (GDL) and graph neural networks (GNN) aim to modify, adapt and create deep
learning techniques for non-Euclidean data. The proposed GDL computational schemes are
an adaptation of deep autoencoders, convolutional networks, and recurrent networks to this
particular data domain. In this study, we will be applying graph convolutional networks
(GCN) and graph autoencoders (GAE).

2.3.3.1. Graph Convolutional Networks

The Graph convolutional networks generalize the convolution operation to networks formal-
ized as graphs. The GCNs aim to produce a node’s representation Zv by adding its attributes
or feature vector Xv and neighbors {Xu}u∈N(v), where N(v) is the ego network of node n,
that is, the subgraph composed of the nodes to whom node n is connected. This study
uses the spectral-based GCN, also known as the Chebyshev spectral convolutional neural
network, proposed by (Defferrard et al., 2016), which defines the graph convolution operator
as a filter from graph signal processing. In particular, we use the specific GCN proposed by
(Kipf & Welling, 2016a), which uses as a filter a first-order approximation of the Chebyshev
polynomial of the eigenvalues’ diagonal matrix. This graph convolution operator follows the
expression:

Xi ∗ gθ = θ0Xi − θ1D
− 1

2 AD− 1
2 Xi, (2.1)

where Xi is the feature vector, gθ is a function of the eigenvalues of the normalized graph,
Laplacian matrix L = In − D− 1

2 AD− 1
2 , A is the adjacency matrix, Dij = ∑

j Ai,j, ∀i, j ∈
V : i = j, and θ is the vector of the Chebyshev coefficients. In the following, section we
summarize the derivation of this first-order approximation (Kipf & Welling, 2016a).

2.3.3.2. Derivation of GCN from Spectral Methods

Spectral methods are founded on a solid theoretical basis defined for methods of graph signal
processing developed essentially from the Laplacian matrix properties. To build up the graph
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convolution operator, we start from the normalized graph Laplacian matrix defined as follows:

L = In − D− 1
2 AD− 1

2 , (2.2)

where A is the adjacency matrix, and Dij = ∑
j Ai,j, ∀i, j ∈ V : i = j. Because L is

a real, symmetric, and positive semi-defined matrix, we can rewrite L as a function of its
eigenvector matrix U and its eigenvalues λi, that is, L = UΛUT , where U ∈ RN×N , and
Λij = λi, ∀i, j ∈ V : i = j.

The next step is to define the graph Fourier transform and its inverse. The graph Fourier
transform F of the feature vector Xi ∈ X is defined as follows:

F(Xi) = UT Xi, (2.3)

where X is the matrix of node attributes, and the inverse Fourier transform of a graph is
defined as follows:

F−1(X̂i) = UX̂i, (2.4)

where X̂i are the coordinates of the nodes in the new space. Therefore, the feature vector
can be written as Xi = ∑

jinV X̂iuj. Finally, the graph convolution of feature vector Xi with
filter g ∈ RN , using the element-wise product ⊙, is defined as follows:

Xi ∗ g = F−1(F(Xi) ⊙ F(g)) (2.5)

One of the most popular filters is the Chebyshev polynomial of the eigenvalues’ diagonal
matrix, that is, gθ = diag(UT g) = ∑

K θkTk(Λ̂), where Λ̂ = 2λ/λmax − I and the polynomials
Tk are defined as Tk(x) = 2xTk−1 − Tk−2(x), with T0(x) = 1 and T1(x) = x. Therefore,
the GCN, defined as the Chebyshev Spectral CNN (Defferrard, Bresson, & Vandergheynst,
2016), takes the following form:

Xi ∗ gθ =
∑
K

θkTk(L̂)Xi, (2.6)

where L̂ = 2L/λmax −I. Despite being a graph convolution simplification, this convolution is
computationally expensive for large graphs. To solve this problem, (Kipf & Welling, 2016a)
present a first-order approximation of the Chebyshev Spectral CNN. Assuming K = 1 and
λmax = 2 , the Equation 2.5 takes the following form:

Xi ∗ gθ = θ0Xi − θ1D
− 1

2 AD− 1
2 Xi (2.7)

2.3.3.3. Graph Autoencoders (GAEs)

Graph autoencoders (GAEs) are an unsupervised method to obtain a low-dimensional rep-
resentation of the network. The objective of the GAE is to reconstruct the original network
using the same network for this task but encoding it, reducing its dimensionality, and then
decoding it to reconstruct the network. The encoded representation is used as the network
embedding. (Wu et al., 2020) distinguish two main uses of GAEs, namely graph generation
and network embedding. This research will use GAEs to obtain a lower-dimensional vector,
preserving the network topology (network embedding).

The previously defined GCN is the building block of the GAE architecture and allows the
simultaneous encoding of the network topology and the attributes of the nodes. The GAE
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(Kipf & Welling, 2016b) calculates the network embedding matrix Z and the reconstruction
of the original network adjacency matrix Â as follows:

Â = σ(ZZT ), with Z = GCN(X, A), (2.8)

where X is the matrix of node attributes, and A is the network’s adjacency matrix.

2.4. Data Description
The data used in this paper encompasses several datasets provided by a large Latin American
bank. Some datasets contain information from their customers, while others concern the
entire population of the country.

2.4.1. Ethical and Privacy Protection Considerations
The datasets contain anonymized information and do not compromise the identity of any
customer or their personal information in any way. The datasets share an anonymized cus-
tomer’s ID allowing us to merge multiple sources. Regarding the value, importance, and
sensitivity of the data, we have applied multiple actions to ensure its security, integrity, and
confidentiality. Customer identifiers and any personal data were removed before starting the
analysis, and there is no possibility that this investigation can leak any personal private infor-
mation. In addition, any final data produced as a result of this research does not compromise
customers’ privacy.

2.4.2. Social-Interaction Data
The information collected by the financial institution to construct the social network back-
ground information of the thin file borrower originates from varied sources and can be cata-
loged as follows:

• [WeddNet] Network of marriages: This network is built from the information of
marriages recorded by the bureau of vital statistics from 1938 to December 2015. It
includes the anonymized identifiers of the husband and the wife and the wedding date.

• [TrxSNet] Transactional services network: The primary source of this network
comes from transactional services data, primarily payroll services and the transfers of
funds between two entities. We have access to monthly data from January 2017 to
December 2019.

• [EnOwNet] Enterprise’s ownership network: This network is built from the in-
formation on companies’ ownership structure. For each firm, we have information con-
cerning their owners, be they individuals or other firms. We have quarterly information
from January 2017 to November 2019.

• [PChNet] Parents and children network: This network corresponds to parental
relationships. For every person born between January 1930 and June 2018, we have the
anonymized identifiers of their parents.

• [EmpNet] Employment network: This network is built from multiple sources and
connects people with their employers. We have monthly data from January 2017 to
December 2019.
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2.4.3. Financial Data
The node dataset contains information on the consolidated indebtedness of each debtor in
the financial system from January 2018 until March 2020, reporting monthly the debt decom-
position from 7.65 million people and 245,000 firms. We refer to the features extracted from
this dataset as node features. Additionally, for every person and firm in the previous dataset,
we have access to the BenchScore, which corresponds to the probability of default for the
coming 12 months. This probability was assessed and provided by the financial institution,
and it is our benchmark to contrast the performance of our models.

2.4.4. Network Construction
It is possible to build a network from each of the data sources indicated in Section 2.4.2.
However, they share characteristics that allow them to be grouped. For this reason, we
combine the networks into two primary data sources, from which we construct networks that
characterize people and businesses.

[FamilyNet] Family network: This network is formed through the combination of the
network of marriages (WeddNet) and the parent and children network (PChNet). For the
construction of this network, we use the historical information available until the beginning
of the analysis period; no further information is included. In this way, the network remains
unvarying throughout the study. We call this type of network a static network.

[EOWNet] Enterprise’s ownership Network and Workers: This network is com-
posed of the fusion of the transactional services network (TrxSNet), the enterprise’s ownership
network (EnOwNet), and the employment network (EmpNet). This network attempts to rep-
resent the business ecosystem in which companies, business owners, and employees interact.
Based on these data sources, a series of 24 networks are generated, one for each of the 24
months available, including the information collected up to the last day of the corresponding
month. We call this type of network a temporal network, because nodes and edges change
over time.

2.5. Experimental Design and Methodology
2.5.1. Datasets
The credit scoring models are built with information about the financial system for 24 months.
However, the models are trained over 23 months because the first month is left out for the fea-
ture extraction process (presented in Section 2.5.3) in order to avoid target leakage (Kaufman,
Rosset, Perlich, & Stitelman, 2012). For the unbanked application scoring model, individuals
and companies are considered only in the month that they enter the financial system. In con-
trast, for the behavioral scoring model individuals and companies are considered six or more
months after entering the financial system. Table 2.1 summarizes the scoring application,
the model trained and the size of the dataset used.

2.5.2. Target
The target event was "becoming a defaulter during the period of observation". Therefore,
we only took into account individuals or businesses that were non-defaulters at the start of
the period of observation; we dismissed entities that were defaulters at the very beginning of
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Tabla 2.1: Description of dataset

Scoring application Model Observations # Features
Unbanked Application

Scoring
Business Credit Score 29,044 687
Personal Credit Score 192,942 1,283

Behavioral Scoring Business Credit Score 931,910 687
Personal Credit Score 1,978,664 1,283

the observation. In the current study, a person or company was considered a defaulter when
they had payments past the due date for 90 or more days within 12 months starting from
the observation point. Otherwise, they were considered non-defaulters. The target vector,
denoted by ydef , contained the actual information about the target event.

2.5.3. Traditional and Graph Representation Learning Features

Combining the node information from Section 2.4.3 and the network data from Section 2.4.2
makes it possible to generate a set of new characteristics through a feature extraction process.
The sets of characteristics generated are detailed below:

• [NodeStats] Node Statistics: This dataset collects node centrality statistics, namely,
its degree, degree centrality, number of triads, PageRank score, authority and hub score
given by the Hits algorithm (Kleinberg, 1999), and an indicator of whether the node is
an articulation point.

• [EgoNet] EgoNetwork Agreggation: In this dataset, each node is characterized by
the information of other nodes connected to it (ego network). We refer to the dataset as
egoNet aggregation features when we apply some aggregation function to the char-
acteristics of the nodes included in the ego network. Specifically, for each attribute in
the NodeStats feature set we apply the mean and SD in this study as in (Nargesian et
al., 2017; Roa, Correa-Bahnsen, et al., 2021). Figure 2.1 shows how this process would
be within the network; the black node corresponds to the target node, and the gray
nodes belong to its Ego Network. Computing the egoNet aggregation features assumes
that each connection in the ego network has the same importance; however, connections
in ego networks can be weighted. For this reason, we compute the egoNet weighted
aggregation features where the features of the neighboring nodes are weighted ac-
cording to a measure of the relationship intensity measured by the weighted average
and SD of the NodeStats attributes.
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Figure 2.1: Example of Network Features
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Figure 2.2: Node2Vec to Features

• [N2V] Node2Vec Features: Node2Vec is an unsupervised method that only uses the
network structure to generate the graph embedding. For the static network FamilyNet,
Node2Vec is applied only once. A node is characterized by this embedding regardless
of the moment it was sampled in the dataset. For temporal networks (EOWNet),
Node2Vec has to be recomputed every period because of the network changes. Each
node is characterized by the embedding corresponding to the month in which it was
sampled in the dataset. Figure 2.2 shows the process through which to obtain the
embedding features by applying Node2Vec. Each period, a new model is trained, and
the resulting embedding is consolidated to characterize the sample dataset that will
allow us to train the final credit scoring models.
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Figure 2.3: Graph Convolutional Networks and Graph Autoencoders to
Features

• [GNN] Graph Neural Network Features: We used either GCN or GAE for the
extraction of GNN features. These methods carry out the graph convolution of the
network structure through a node feature vector in order to generate as output the
feature vector for ensuing classification by machine learning approaches. In this study,
GNN input feature vectors are in the Node feature dataset. Regardless of whether the
network is static or temporal, the feature vector is dynamic and changes during each
observation period, that is, each month. To avoid target leakage (Kaufman, Rosset,
Perlich, & Stitelman, 2012), we train the GCNs with the first available data period; these
models are applied in the subsequent months while the network or the feature vectors
change. This approach does not handle new entrants to the social interaction networks;
however, due to the sources of social interaction information employed in this study,
most thin-file borrowers are taken into account in the training dataset, despite having
temporal networks. Therefore, new entrants do not affect our results. Under other
circumstances, for instance when working with a partial network, our recommendation
is to train a new model for every period, taking precautions not to incur in target
leakage on the population of the credit scoring model. Depending on the dynamism
of the network, one solution is to calculate local connection updates as suggested in
(Vlasselaer et al., 2015) in the interim between model training phases. The GCNs are
trained on the entire network (either FamilyNet or EOWNet) regardless of whether the
nodes belong to our training dataset or not. The output of the GCN is the label of
the nodes in the network, which can be either defaulter, non-defaulter, or unbanked;
therefore, each GCN solves a multi-classification problem by providing the a posteriori
probabilities of each label for each node. Finally, each node is characterized by the
GCN Features resulting from the application of the GCN on the network and on the
feature vector of the month in which the node was sampled, that is, in which it entered
the banking system. Figure 2.3 illustrates the feature-engineering process to extract
the GCN features. Regarding GAE, the feature engineering process is similar. In this
case, the embedding corresponds to the bottleneck hidden layer representing the encoder
section’s output. For consistency, we apply the same data selection applied for the GCN
to the training of the GAE models, although their training is unsupervised.
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2.5.4. Feature Subsets

The datasets for machine learning training and validation experiments are composed of the
following subsets of features.

• Subset A : XNode is the dataset of node characteristics.

• Subset B : XBenchScore is the benchmark score; this attribute is also used as a benchmark
to quantify the performance of our proposed approach.

• Subset C : XNodeStats is composed of the statistics obtained from the position of the
node within the network.

• Subset D : XEgoNet includes the egoNet aggregation and the egoNet weighted aggre-
gation features that are calculated in three scenarios, considering the entire network,
considering only those edges that are bridges, and considering those edges that are not
bridges2.

• Subset E : XGNN,N2V corresponds to the features created by applying GNNs and
Node2Vec. People are characterized by features from both networks (EOWNet and
FamilyNet), while companies are characterized only by EOWNet.

For this study, we aggregated these feature subsets into eight increasingly larger datasets
for training and validation, each defining a different experimental setting. The details of the
feature sets are presented below in Table 2.2.

Tabla 2.2: Experiments Setup

Experiment Id Feature Group

A X = {XNode}
A+B X = {XNode + XBenchScore}
A+B+C X = {XNode + XBenchScore + XNodeStats}
A+B+D X = {XNode + XBenchScore + XEgoNet}
A+B+E X = {XNode + XBenchScore + XGNN,N2V }
A+B+C+D X = {XNode + XBenchScore + XNodeStats + XEgoNet}
A+B+C+E X = {XNode + XBenchScore + XNodeStats + XGNN,N2V }
A+B+C+D+E X = {XNode + XBenchScore + XNodeStats + XEgoNet + XGNN,N2V }

2.5.5. Evaluation Metrics

The AUC is a popular metric used to evaluate the model performance in classification prob-
lems (Zeng & Zeng, 2019). It ranges between 0.5 and 1. Values closer to 1 indicate a better
discriminatory capacity, while a value of 0.5 indicates a performance equivalent to a chance
decision. In the context of credit scoring, the AUC can be easily interpreted as follows: For a
randomly selected defaulter and non-defaulter pair, the AUC corresponds to the probability
that the classification model assigns a higher score to the defaulter.

2 An edge connecting the nodes u and v is called a bridge; if removing this edge, there is no longer a path
connecting u and v
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Another extensively utilized performance measure is the Kolmogorov-Smirnov (KS) statis-
tic, which measures the distance separating the cumulative distributions of defaulters (PD(t))
and non-defaulters (PND(t)) (Fang & Chen, 2019). The KS statistic is defined as:

KS = max
t

|PD(t) − PND(t)| (2.9)

and KS ranges between 0 and 1, and a higher KS indicates a higher prediction performance.

2.5.6. Methodology

First, we carry out a feature engineering process that seeks to create attributes to characterize
the nodes from the network. Then, in the train-test split step, the available dataset is divided
into a training dataset of which 30% consists of the samples used to estimate the model’s
hyper-parameters, and the remaining 70% consists of the samples used to train and validate
models according to an N-Fold Cross-Validation scheme.

Before estimating the best hyper-parameters, we apply a feature selection process. In
this step, the intention is to choose a low-correlated subset of features with high predictive
power. Three selection levels are formulated. The first is a bivariate selection that only
considers one feature at a time and the target vector to build a prediction model, evaluating
its performance. The selection process applies a threshold to this feature’s predictive power.
Only those variables are selected such that KS > KSmin and AUC > AUCmin, where KSmin

and AUCmin are threshold parameters.
Next, a multivariate selection is applied following a simple but effective method to drop

correlated features that we have developed. This algorithm starts with an empty list S. We
iterate over a set of features P in decreasing order of predictive power and append to S
those features whose absolute value of the correlation with each and all the features in S is
less than a threshold ρ set to avoid high correlated features (Akoglu, 2018). The algorithm
stops when all the features have been visited. The first feature in P is added to S without
correlation comparison.

For this study, the multivariate selection process is applied twice. In the first applica-
tion, the process selects low-correlated features for each group of attributes P ∈ {XNode ∪
XBenchScore, XNodeStats, XEgoNet, XGNN,N2V }. Secondly, it is applied globally to all the remain-
ing features P = {XNode ∪ XBenchScore ∪ XNodeStats ∪ XEgoNet ∪ XGNN,N2V }. In both cases, a
threshold ρ is used, and the features are ordered by the features’ AUC, from higher to lower.

Finally, at the N-Fold Cross-Validation stage, the dataset is partitioned into N subsets of
equal size. Each subset is used alternatively as the test dataset, while the remaining folds are
used to train the classification model. The hyper-parameters used in each iteration are those
estimated in the previous stage. Additionally, in each of these iterations, multiple models
are trained with different feature sets and stored to be used later to compare the models.

2.5.7. Experimental Setup

The parameters of the univariate selection are set at KSmin = 0.01 and AUCmin = 0.53; for
the multivariate selection process, ρ = 0.7 in both processes to avoid high correlated features
(Akoglu, 2018). The N-Fold Cross-Validation stage is carried out considering N = 10, and in
each iteration, the results of gradient boosting (Friedman, 2001) models are displayed. Other
classification models such as regularized logistic regression and Random Forest (Breiman,
2001) were trained. However, gradient boosting consistently delivered better results.

23



2.6. Results and Discussion
In this section, we present the results obtained. We begin with the technical implementation
details; then, we analyze the execution times. Subsequently, we display the model’s perfor-
mance in three scenarios: the impact on performance using traditional features, the impact
on performance using the different graph representation methods, and the advantages of
combining these methods. Finally, an analysis is presented of the main features, traditional
and network-based, for the creditworthiness assessment.

2.6.1. Implementation Details
In this work, we used the Python implementations Networkx v2.6.3 (Hagberg, Swart, &
SChult, 2008) and Stanford Network Analysis Platform (SNAP) v5.0.0 (Leskovec & Sosič,
2016) in the hand-crafted feature engineering process (XNodeStats, XEgoNet); for Node2Vec,
GCN and GAE (XGNN,N2V ) we used PyTorch v1.6.0 (Paszke et al., 2019) and PyTorch
Geometric v2.0.1 (Fey & Lenssen, 2019).

To conduct the experiments, we used a laptop with an Intel 8-Core i7 CPU and 32 GB
of RAM for network construction and hand-crafted feature engineering. For the Node2Vec,
GCN, GAE, and model training phases, we used a server with a driver node with 140 GB of
RAM and 20 CPU cores and between two and eight auto-scaling worker nodes with 112GB
of RAM and 16 CPU cores.

2.6.2. Execution Time
Below we detail the execution time of the most critical stages of our work, the implementation
of the GRL methods, and the models’ training.

• [NodeStats] Node Statistics: This process corresponds to the computation of the
metrics defined in Section 2.5.3. This process is carried out only once for the static
network FamilyNet, and it is calculated for all the available periods (24) of the EOWNet.
The computation of all the metrics for a network takes, on average, 25 minutes. The
total execution time of this stage was 625 minutes.

• [EgoNet] EgoNetwork Aggregation: This process is calculated once per network
type (FamilyNet and EOWNet). The total execution time of this stage was 300 minutes.

• [N2V] Node2Vec Features: This process is carried out only once for the static net-
work FamilyNet, and it is calculated for all the available periods (24) of the EOWNet.
The Node2Vec training for a network takes, on average, 300 minutes. The total execu-
tion time of this stage was 7,500 minutes.

• [GNN] Graph Neural Network Features: In this stage, eight models are trained
using each network and eight different feature vectors. The training of each model is
carried out over the first available period data; afterward, the trained model is applied
to the data of the remaining periods. Table 2.3 shows the execution time by GNN type
and by network type. The total execution time of this stage was 6,920 minutes.

• Gradient boosting training: Four models were trained using the methodology de-
scribed in Section 2.5.6 for the scenarios defined in Section 2.4, predicting application
and behavioral scoring for individuals and companies. The complete training for each
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Tabla 2.3: GCN and GAE Execution Time

GNN Type Network Type Unit Train
Time (min)

Total
Training

Time (min)

Total
Apply

Time (min)

GCN EOWNet 25 200 600
FamilyNet 60 480 600

GAE EOWNet 140 1,120 1,200
FamilyNet 190 1.520 1.200

Total Execution Time (min) 3,320 3,600

scenario takes, on average, 40 minutes. The total execution time of this step was 160
minutes.

The total execution time of the application of the proposed methodology to the datasets
is 15,500 minutes. Although a large part of these executions was parallelized using the server
described in Section 2.6.1, the high computational cost is mainly due to two factors, the
volume of data and the complexity of the algorithms. Regarding the large volume of data,
the FamilyNet has 20 million nodes and 30 million edges, and the EOWNet has 8.6 million
nodes and 26 million edges. These massive dataset sizes directly impact the algorithms used,
because the complexity depends on the nodes |V |, edges |E| and the embedding dimension
d; the algorithmic complexity for this particular case is the following: Node2Vec: O(|V |d)
(Grover & Leskovec, 2016), Graph Convolutional Networks: O(|E|d) (Kipf & Welling, 2016a)
and Graph Autoencoder: O(|V |2d) (Kipf & Welling, 2016b).

2.6.3. Model Performance Results
The model training process was conducted for each Experiment ID using different Feature
Set combinations as specified in Section 2.5.1. The results are presented in Tables 2.4 and 2.5.
These tables show the relative improvement in AUC and KS achieved by each model over the
baseline BenchScore, measured as rowAUC−BenchScoreAUC

BenchScoreAUC
and rowKS−BenchScoreKS

BenchScoreKS
, respectively.

Each row corresponds to an experiment defined in Section 2.5.4, and each column displays
the four credit scoring scenarios illustrated in Section 2.5.1.

The reported results correspond to the average of 10-fold cross-validation, as indicated in
Section 2.5. A t-test is applied to establish the statistical significance of the performance
differences obtained using the different feature sets, according to the suggestions proposed
by (Flach, 2012).

2.6.3.1. Model Performance Using Traditional Features

The first step toward reaching a conclusion on the contribution of network data is to under-
stand whether our methodology enables us to obtain equal or better results than the current
decision-making scheme in the financial institution. For this, we compare the BenchScore
with the results obtained by the feature set A+B. A comparison with only the feature set
A is not entirely accurate, considering that we do not have access to all the features used in
the BenchScore training.

The results show that our methodology obtains equal or greater performance, measured
in terms of AUC and KS statistics, in all four scenarios; three of them are greater, with
statistically significant differences.

The performance enhancements in Behavioral Business Credit Scoring are 0.58% and
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Tabla 2.4: Improvement in AUC relative to the benchmark model (mean
and std). We only report results when the equal performance hypothesis is
rejected, with a confidence level of 95%; otherwise, we display *. The best
performance in each column is shown in bold; more than one bold value
indicates that the hypothesis of equal performance between those models
cannot be rejected.

Feature
Set

Business Credit Score Personal Credit Score
Application Behavioral Application Behavioral

A -3.52% ± 2.87% -0.90% ± 0.21% -0.74% ± 0.63% -0.63% ± 0.09%
A+B * 0.58% ± 0.06% 1.45% ± 0.39% 0.95% ± 0.06%
A+B+C * 1.13% ± 0.12% 2.02% ± 0.49% 1.07% ± 0.06%
A+B+D 8.96% ± 3.37% 2.33% ± 0.15% 2.31% ± 0.64% 1.25% ± 0.08%
A+B+E 3.92% ± 2.03% 1.77% ± 0.13% 3.17% ± 0.55% 1.96% ± 0.04%
A+B+C+D 9.00% ± 3.47% 2.37% ± 0.16% 2.39% ± 0.60% 1.32% ± 0.08%
A+B+C+E 4.25% ± 1.84% 1.94% ± 0.16% 3.26% ± 0.48% 2.03% ± 0.05%
A+B+C+D+E 8.43% ± 2.83% 2.80% ± 0.16% 3.58% ± 0.61% 2.18% ± 0.04%

Tabla 2.5: Improvement in KS relative to the benchmark model (mean
and std). We only report results when the equal performance hypothesis is
rejected, with a confidence level of 95%; otherwise, we display *. The best
performance in each column is shown in bold; more than one bold value
indicates that the hypothesis of equal performance between those models
cannot be rejected.

Feature
Set

Business Credit Score Personal Credit Score
Application Behavioral Application Behavioral

A * -4.15% ± 0.94% -5.25% ± 2.40% -2.39% ± 0.46%
A+B * 1.56% ± 0.40% 4.38% ± 1.19% 1.95% ± 0.35%
A+B+C * 3.21% ± 0.71% 6.27% ± 1.02% 2.23% ± 0.39%
A+B+D 20.69% ± 16.73% 7.69% ± 0.92% 6.79% ± 1.36% 2.69% ± 0.47%
A+B+E 12.22% ± 10.89% 5.83% ± 0.74% 8.64% ± 2.13% 4.68% ± 0.28%
A+B+C+D 21.28% ± 17.10% 8.09% ± 0.95% 7.12% ± 1.52% 2.83% ± 0.52%
A+B+C+E 12.88% ± 10.11% 6.33% ± 0.70% 8.93% ± 1.98% 4.93% ± 0.26%
A+B+C+D+E 19.32% ± 14.77% 9.45% ± 0.85% 10.83% ± 1.98% 5.15% ± 0.42%

1.56% for AUC and KS, respectively. In terms of Personal Credit Scoring, the performance
enhancements are AUC: 1.45%, KS: 4.38% for Application Scoring and AUC: 0.95%, KS:
1.95% for Behavioral Scoring. These results indicate that using our methodology and training
a model with similar features to the benchmark model can obtain better results than the
current decision scheme applied by the financial institution.

2.6.3.2. Model Performance Using Graph Representation Learning Features

In Application Business Credit Scoring, a nearly 9% AUC increase over the BenchScore
is achieved. These results are obtained by a model that incorporates three feature sets:
A+B+D, A+B+C+D, and A+B+C+D+E. Note that in these three sets, the common at-
tributes correspond to the traditional features A+B : XNode∪XBenchScore and EgoNet Aggre-
gation Features D : XEgoNet. The performance comparison between all feature sets is shown
in Table 2.6; we marked as * those comparisons with no statistically significant differences.

When performance is measured in terms of KS, the maximum is obtained with five feature
sets, with GRL features, but no method for feature extraction predominates. Although
differences are observed in the values presented, these are not statistically significant. From
these results, it is necessary to highlight at least one GRL method in the best feature sets.
The complete comparison is presented in Table 2.7
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Tabla 2.6: Performance comparison of Business Application Scoring. Per-
formance is measured by the relative increase in AUC ( rowAUC−columnAUC

columnAUC
).

BENCH A A+B A+B+C A+B+D A+B+E A+B+C+D A+B+C+E A+B+C+D+E

BENCH * 3.65% * * -8.23% -3.77% -8.26% -4.08% -7.77%
A -3.52% * -2.92% -4.55% -11.45% -7.16% -11.49% -7.45% -11.01%
A+B * 3.01% * -1.68% -8.79% -4.37% -8.83% -4.67% -8.34%
A+B+C * 4.77% 1.71% * -7.23% -2.73% -7.26% -3.04% -6.77%
A+B+D 8.96% 12.94% 9.64% 7.79% * 4.85% * 4.52% *
A+B+E 3.92% 7.71% 4.57% 2.81% -4.63% * -4.66% * -4.15%
A+B+C+D 9.00% 12.98% 9.68% 7.83% 4.89% * 4.56% *
A+B+C+E 4.25% 8.05% 4.90% 3.13% -4.32% * -4.36% * -3.85%
A+B+C+D+E 8.43% 12.38% 9.10% 7.26% * 4.33% * 4.00% *

Tabla 2.7: Performance comparison of Business Application Scoring. Per-
formance is measured by the relative increase in KS ( rowKS−columnKS

columnKS
).

BENCH A A+B A+B+C A+B+D A+B+E A+B+C+D A+B+C+E A+B+C+D+E

BENCH * * * * -17.14% -10.89% -17.55% -11.41% -16.19%
A * * * * -19.94% -13.90% -20.34% -14.40% -19.02%
A+B * * * * -16.16% -9.83% -16.57% -10.36% -15.20%
A+B+C * * * * -16.02% -9.68% -16.43% -10.21% -15.06%
A+B+D 20.69% 24.91% 19.28% 19.08% * * * * *
A+B+E 12.22% 16.14% 10.90% 10.72% * * * * *
A+B+C+D 21.28% 25.53% 19.86% 19.67% * * * * *
A+B+C+E 12.88% 16.83% 11.56% 11.37% * * * * *
A+B+C+D+E 19.32% 23.49% 17.92% 17.73% * * * * *

The best performance is observed in other scenarios when combining traditional features
and all the GRL features; this corresponds to the Feature Set A+B+C+D+E. The best
performance is achieved in AUC (see Table 2.4) and KS (see Table 2.5).

These results are of great importance because they indicate that the methods combined by
our methodology are complementary, and none is significantly better than the others. Both
methods, namely hand-crafted feature engineering and GNNs, have until now been treated
in the literature as independent in addressing the credit scoring problem.

When comparing the results of Application and Behavioral Credit Scoring, it is observed
that the most significant increase in performance, regardless of the metric, is achieved in
Application Credit Scoring. Network-related features complement the least availability of
information, such that the relationships that a person or company has are relevant when
predicting their creditworthiness. These results are of high interest for lenders and in terms
of their strategies for the unbanked. The improvement in predictive performance implies that
more borrowers can be serviced without increasing the portfolio default rate.

Regarding Behavioral Credit Scoring, traditional attributes are already good predictors
of creditworthiness; the borrower’s credit behavior is a good indicator of default. For this
reason, the increase in predictive performance is more limited, although still significant.

2.6.3.3. The Advantages of Blending Graph Representation Learning

The previous sections have shown that our approach allows us to enhance the discrimination
power of our benchmark in terms of AUC and KS. Through the incorporation of the graph
data by means of the GRL methods, this increase is even more significant. Now, we are inter-
ested in discovering the contribution of each of these methods. The performance comparison
between the A+B+C+D+E feature set and each method by itself is shown in Tables 2.8 and
2.9, for AUC and KS respectively; we marked as * those comparisons with no statistically
significant differences. In each table, the results are presented for each credit scoring scenario
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and the comparison using the XEgoNet (A + B + D) and XGNN,N2V (A + B + E) features;
In both cases, the models trained with the XNodeStats features are also included.

Tabla 2.8: Blended Graph Representation Learning performance. The
performance enhancement of training a model using all GRL methods
(A+B+C+D+E) is measured as the relative increase in AUC given by
( [A+B+C+D+E]AUC−columnAUC

columnAUC
).

Scoring Model
Feature Set

A+B+D A+B+C+D A+B+E A+B+C+E
Application

Scoring
Business Credit Score * * 4.33% 4.00%
Personal Credit Score 1.23% 1.16% 0.39% 0.31%

Behavioral
Scoring

Business Credit Score 0.47% 0.43% 1.02% 0.85%
Personal Credit Score 0.92% 0.84% 0.22% 0.15%

Tabla 2.9: Blended Graph Representation Learning performance. The
performance enhancement of training a model using all GRL meth-
ods (A+B+C+D+E) is measured as the relative increase in KS
( [A+B+C+D+E]KS−columnKS

columnKS
).

Scoring Model
Feature Set

A+B+D A+B+C+D A+B+E A+B+C+E
Application

Scoring
Business Credit Score * * * *
Personal Credit Score 3.79% 3.47% 2.02% 1.75%

Behavioral
Scoring

Business Credit Score 1.68% 1.31% 3.47% 2.99%
Personal Credit Score 2.40% 2.26% 0.45% 0.21%

The results show that combining the GRL methods always generates better or similar
results than using each method independently. An equal performance is only obtained for
the Business Application Credit Score, where the only statistically significant increase, in
AUC terms, occurs when using the XGNN,N2V features. However, this feature subset does
not produce an increment compared to using only the XEgoNet features. On the other hand,
in all other scenarios, the GRL combination generates statistically significant increments,
independent of the method used and whether or not the XNodeStats features are incorporated.
In this way, our approach allows us to increase discriminatory power in assessing creditwor-
thiness, generate more accurate models, and use graph data better through a framework that
combines multiple methods of GRL.

2.6.4. Feature Importance Analysis

To determine the importance of each feature, we utilize SHAP: SHapley Additive exPla-
nations (Lundberg & Lee, 2017), an approach based on game theory that calculates each
attribute’s importance by comparing the model predictions with and without the attribute.
The global feature importance is examined with regard to the four scenarios described earlier,
that is, the prediction of Application or Behavioral Scoring for individuals or for businesses.
All analyses are conducted with the feature set A+B+C+D+E, which incorporates all the
features and is the one that reports the best results.
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2.6.4.1. Business Credit Scoring

In Figure 2.4, the importance of the attributes incorporated into the model is presented.
Figures 2.4(a) and 2.4(c) show each attribute’s importance for Application and Behavioral
Scoring, respectively; we define it as the average of the absolute values of the SHAP values.
Figures 2.4(b) and 2.4(d) show each feature’s impact on the model output; only the 15
most relevant attributes are displayed in both figures. Figures 2.4(b) and 2.4(d) allow us to
understand how the value of a particular feature affects the probability of default.

(a) Application: Average impact on mode (b) Application: Impact on model output

(c) Behavioral: Average impact on mode (d) Behavioral: Impact on model output

Figure 2.4: Business Credit Scoring: Feature Importance

As expected, the most significant contribution to the model is the BenchScore, which
already summarizes valuable information about each company that allows the estimation of
its creditworthiness. This influence occurs in both scenarios, Application, and Behavioral.
However, its importance is more significant in Behavioral Scoring.

Among these 15 relevant attributes in both scenarios, only the BenchScore, commercial
debt amount (NODEATT_08), and unused revolving credit amount (NODEATT_05) cor-
respond to the business-related characteristics. The remaining top features correspond to
Network-related features.

An additional relevant feature is the average BenchScore of the company’s ego network,
including only the non-bridge edges. This result indicates the creditworthiness of the com-
pany’s neighborhood is also highly predictive of the company’s creditworthiness. In Applica-
tion Scoring, this feature is practically as relevant as the BenchScore. See Table 2.10 for more
detail on the description of the most relevant variables. This table presents the taxonomy
of the features used in the current study, giving the necessary specifications for the correct
interpretation of the feature attributes and the nomenclature used for the management of
the datasets.
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Further, we find attributes whose influence corresponds to people related to the company,
including its owners, for instance, the attribute generated from a Graph Autoencoder trained
with the consumer debt of the EOWNet Network. The consumer-debt effect of the ego
network is also observed in the attribute corresponding to the consumer debt weighted by
the PageRank of the node’s neighborhood. The presence of consumer debt as a relevant
network-related feature in Business Scoring is highly significant, especially in SMEs. The
EgoNet’s short-term personal debt, mainly on the part of the owners, accounts for the often
blurred separation between personal finances and company finances. The owner’s default can
affect the company and vice versa. This hypothesis requires a more detailed investigation
and will be addressed for future work.

To quantify the usefulness, impact and importance of the different feature sets on the
output model, Figure 2.5 presents a Treemap based on the average of the absolute values
of the SHAP values; the complete list of the model features is displayed, and the different
colors indicate that they belong to different feature sets.

(a) Application Scoring

(b) Behavioral Scoring

Figure 2.5: Business Credit Scoring: Treemap of Feature Importance, the
Average Impact on Model Output

In Figure 2.5(a), it is shown that the feature set XEgoNet (D) contributes, in Application
Scoring, 60% of the model’s overall impact. The feature set XGNN,N2V (E) contributes 21%,
of which 19% correspond to GNN features, while 2% correspond to Node2Vec. The low
importance of Node2Vec features is likely the reason for the limited research on Node2Vec
to enhance the prediction of creditworthiness.

However, in Business Behavioral Scoring, the traditional characteristics now represent
48 % of the total impact of the model. In contrast, in Business Application Scoring, they
represent only 16% (See Figure 2.5(b)). Indeed, the BenchScore attribute alone represents
29% of the total impact. The feature set XEgoNet (D) represents 30% of the total impact,
the average BenchScore of the ego network being the most relevant attribute.
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2.6.4.2. Personal Credit Scoring

In Personal Scoring, the person’s characteristics (XNode +XBenchScore) produce a more mean-
ingful impact than the business score. The person’s attributes represent 37% and 47% of the
total impact for Application and Behavioral Scoring, respectively.

Besides the BenchScore, other relevant features are the amount of consumer debt (NODEATT_07)
and amount of unused revolving credit, and total debt amount (NODEATT_01) (see Figures
2.6(a) and 2.6(c)).

(a) Application: Average impact on model output (b) Application: Average impact on model out-
put

(c) Behavioral: Average impact on model output (d) Behavioral: Average impact on model output

Figure 2.6: Personal Credit Scoring: Feature Importance

The combined network features also play an essential role in the final score; the feature
sets XEgoNet (D) and XGNN,N2V (E) represent 25% and 33.4% in Application Scoring (See
Figure 2.7(a)), while the impact in Behavioral Scoring (See Figure 2.7(b)) are 18% and 28.3%
respectively. In both cases, the contribution of Node2Vec features is negligible. The network
feature with the highest impact is, as the average neighborhood’s amount, the network’s
amount of unused revolving credit.

Personal Credit Scoring includes attributes generated with both FamilyNet and EOWNet
networks. When analyzing the network-related features, almost all of them, in both scenarios,
are FamilyNet features. These results show us both the suitability of the network used to
characterize borrowers and the importance of the type of relationship used to build the
network. In this study, family ties are the most appropriate to characterize borrowers as
regards the problem of individual credit scoring.
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(a) Application Scoring

(b) Behavioral Scoring

Figure 2.7: Personal Credit Scoring: Treemap of Feature Importance, the
average impact on model output

2.7. Conclusions
This study presents an information processing methodology that allows us to assess the ad-
ditional value of social-interaction data to approach the credit scoring problem for thin-file
clients. This framework is applied in four scenarios arising from the consideration of all
combinations of Application and Behavioral Scoring of individual and business lending. Ad-
ditionally, this methodology allows the evaluation of different GRL approaches to feature
extraction from social networks: hand-crafted feature engineering, Node2Vec, and Graph
Neural Networks. The results show an improvement in creditworthiness assessment perfor-
mance when different GRL approaches are combined. Specifically, two of the three GRL
methods significantly enhance credit scoring models, namely the Hand-crafted Feature En-
gineering and Graph Neural Networks, which have the greatest impact when used together.
We believe this to be very relevant to the community because, until now, these two methods
have been used independently. On the other hand, we have found that the contribution
of Node2Vec is negligible. This result seems to justify the limited research conducted on
Node2Vec as a feature-engineering method for credit scoring.

As a baseline, we use a credit scoring model developed by a financial institution. This
model, the BenchScore, already outperforms the credit bureau model they obtain from the
credit bureau offices, and our methodology allows us to obtain better results in each of the
four scenarios.

The highest value of the proposed approach is found in Unbanked Application Scoring.
The unbanked applicants, individuals, and companies, lack behavioral information, which,
as it turns out, is one of the best predictors of creditworthiness. Our approach overcomes
the lack of behavioral information and delivers a proper credit risk assessment using graph
data. In this way, applicants have greater access to the financial system. In the case of the
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Behavior Scoring models, our methodology also improves performance. In both cases, the
maximum improvement in predictive performance is achieved when these GRL methods are
used together.

Explanatory measures, such as SHAP values, allow us to understand each attribute’s con-
tribution. If the impact on the output model is measured in this way, the baseline model
(BenchScore), although it continues to be an essential attribute, has a diminished effect be-
cause it is in the presence of other good predictors. This feature importance analysis allows
us to understand that we cannot solely examine a company’s characteristics to evaluate the
company, especially if it is unbanked. We also have to understand that they are part of an
ecosystem in which the owners, suppliers, clients, and related companies are essential. The
business ecosystem information allows us to improve the creditworthiness assessment perfor-
mance. A similar situation occurs in Personal Credit Scoring, although with less intensity.
The network data allows us to address the scarcity of information and achieve a better credit
risk assessment.

Our research shows that there is still room for improvement in incorporating network
information into the credit scoring problem. This methodology goes in the right direction,
improving the performance of creditworthiness assessment, and it has great value for un-
banked and under-banked people and even in the management of portfolio’s credit risk.
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Appendix A

A1 Feature Description

Tabla 2.10: Taxonomy of features used in the experiments and nomenclature
that we used for the management of the data in the experiments.

Feature Set Nomenclature Prefix/suffix Description

Node
Features
(XNode)

Identifier NODEATT Feature subset identifier

Borrower feature
identifier

ATT01, · · · , ATT04 The debt situation characterized by the
delinquency level

ATT05, · · · , ATT08 The debt type: revolving, consumer,
commercial, or mortgage

ATT09, · · · , ATT13
Other aspects of the customer’s debt,
payments in arrears, and the time in
the financial system

Bench_Score The benchmark score

Node
Statistics

(XNodeStats)

Identifier NodeStats Feature subset identifier

Statistic identifier

DegreeCentr Degree centrality
Triads Number of triads

PageRank PageRank Algorithm
ArtPoint Articulation point

Hits_Auth Hits algorithm Authority score
Hits_Hub Hits algorithm Hub score

Network identifier
EOWNET EOWNet Network
FamilyNet Family Network

EgoNetwork
Agreggation

Features
(XEgoNet)

Borrower feature
identifier

ATT01, · · · , ATT13 Borrower Feature

Network identifier
EOWNET EOWNet Network
FamilyNet Family Network

Aggregation
Function

MEAN Mean
STD Standard Deviation

Edges
Full All edges

NotBridge Edges that are not bridges
IsBridge Edges that are bridges

Weighted
Aggregations

Wby + Feature Suffix for weighted aggregations

Node2Vec
Features
(XEgoNet)

Identifier N2V Feature subset identifier
Embedding
Identifier

EMB_01, · · · , EMB_08 The embedding number

Network identifier
EOWNET EOWNet Network
FamilyNet Family Network

Graph Neural
Network
Features
(XGNN )

GNN Identifier
CHEB Graph Convolutional Network (GCN)
GAE Graph Autoencoder

Borrower feature
identifier

01, · · · , 13 Borrower Feature

Embedding
Identifier

EMB_01, · · · , EMB_n
The embedding number, where n = 3
for CHEB and n = 8 for GAE

Network identifier
EOWNET EOWNet Network
FAMNET Family Network
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Chapter 3

On the dynamics of credit history and
social interaction features, and their
impact on creditworthiness assessment
performance3

Abstract

For more than a half-century, credit risk management has used credit scoring models
at each of the well-defined stages of credit risk management. Application scoring is
used to decide whether to grant a loan or not, while behavioral scoring is used mainly
for portfolio management and to take preventive actions in case of default signals. In
both cases, social network data has recently been shown to be valuable to increase
the predictive power of these models, especially when the borrower’s historical data is
scarce or not available. This study aims to understand the dynamics of creditworthiness
assessment performance and how it is influenced by credit history, repayment behav-
ior, and social network features. To accomplish this, we build up a machine learning
classification framework demonstrating its value analyzing 97,000 individuals and com-
panies from the moment they obtained their first loan up to 12 months afterward. Our
original and massive dataset allowed us to characterize each borrower according to its
credit behavior, and socioeconomic relationships. Our study finds that credit scoring
based on borrowers’ history improves performance at a decreasing rate during the first
six months and then stabilizes. The most notable effect on the performance of credit
scoring based on social network features occurs in loan applications; for personal scor-
ing, this effect prevails for approximately six months, while for business scoring, social
network features add value throughout the entire study period. These findings are of
great value to improve credit risk management and optimize the combined use of both
the traditionally exploited information and new alternative data sources.

Keywords: behavioral credit scoring; application credit scoring; machine learning; social
network data

3 The following is a copy of the paper published at the Expert Systems with Applications Journal. Please
cite this paper as follows: Ricardo Muñoz-Cancino, Cristián Bravo, Sebastián A. Ríos, Manuel Graña,
On the dynamics of credit history and social interaction features, and their impact on creditworthiness
assessment performance, Expert Systems with Applications, Volume 218, 2023, 119599, ISSN 0957-4174
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3.1. Introduction
Financial institutions operate in a complex and dynamic environment, in which they are ex-
posed to multiple risk sources, with credit risk being the most significant (Apostolik, Dono-
hue, & Went, 2009). Credit risk management is vital and should be part of each lending
decision; adequate risk management helps avoid financial losses and is a crucial element for
the profitability and well-being of the financial institution and its borrowers (Brown & Moles,
2014). One of the main objectives of credit risk management is to predict whether the bor-
rower will repay a loan meeting the agreed-upon terms (The Basel Committee on Banking
Supervision, 2000). It requires policies, procedures, experience, and the expertise to extract
knowledge from massive data sources (Brown & Moles, 2014). Researchers and practitioners
have defined various types of credit scoring problems to manage credit risk, depending on
the circumstances and background of each borrower (Paleologo, Elisseeff, & Antonini, 2010;
L. Thomas, Crook, & Edelman, 2017). In this research, we are interested in both applica-
tion and behavioral scoring models and procedures. Application scoring supports the loan
granting decision. Its objective is to assess the creditworthiness of new applicants combining
the applicant’s demographic information, loan repayment history, borrower historical data,
and credit bureau data, along with data collected in the application form (Anderson, 2022).
Credit risk management in application scoring tries to grant loans to those borrowers who
will be able to pay and avoid granting credit to those who will not. Similarly, behavioral
scoring models are used in credit risk management, but they are applied only to existing
customers (Paleologo, Elisseeff, & Antonini, 2010; Anderson, 2022) for whom all of their loan
payment behavior is available. This enables lenders to develop an active portfolio manage-
ment process and to take preventive actions on borrowers with high default likelihood, such
as reducing the financial burden of those borrowers who have difficulties complying with the
payment schedule and established obligations.

Research on credit scoring is extensive but mainly focused on application scoring. Some
researchers describe behavioral scoring knowledge as limited and scarce (Liu, 2001; Kennedy,
Mac Namee, Delany, O’Sullivan, & Watson, 2013; Goh & Lee, 2019). We are interested in
delving into what we already understand about application scoring and behavioral scoring.
First, both strategies combine borrower demographic data, historical information, and fea-
tures obtained from multiple data sources. Repayment history emerges as one of the main
creditworthiness predictors. The effect of this feature set is seen mainly in behavioral scoring;
in application scoring, the payment behavior often is not available, or the applicant does not
have it (Muñoz-Cancino, Rios, Goic, & Graña, 2021).The payment history features are built
by observing the borrower’s payment behavior during a specific period; some authors suggest
that this period should be 12 months (Kennedy, Mac Namee, Delany, O’Sullivan, & Watson,
2013; Nikolaidis, Doumpos, & Zopounidis, 2017), while most assume its duration as a given.
Second, better performance of credit scoring models leads to more accurate decision-making
and allows more efficient and profitable credit risk management (Verbraken, Bravo, Weber,
& Baesens, 2014; Djeundje, Crook, Calabrese, & Hamid, 2021). To increase the prediction
power of these models, financial institutions have used alternative data, especially informa-
tion from borrowers’ relationships and interactions (Ruiz, Gomes, Rodrigues, & Gama, 2017;
Óskarsdóttir, Bravo, Sarraute, Vanthienen, & Baesens, 2019; Roa, Correa-Bahnsen, et al.,
2021; Muñoz-Cancino, Rios, Goic, & Graña, 2021). This type of information adds value to
both types of credit scoring. However, it is in application scoring that it achieves the most
significant performance enhancement, especially with applicants whose repayment history is
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not available.
We know the effect of repayment behavior and social-interaction data on application and

behavioral scoring problems based on the above. The effect of repayment behavior, is gain-
ing relevance as the relationship between borrower and lender becomes entrenched: the more
information on borrower’s behavior is collected, the more accurately borrower’s creditwor-
thiness can be predicted. In the case of social interaction data, at some point, it becomes
irrelevant given the borrower’s behavior and repayment history. Both relationships require
carefull study. However, to date, we are not aware of any studies on the dynamics of this
phenomenon. Research into credit scoring has only examined what occurs at the begin-
ning (application scoring) and at some point during the loan payment schedule (behavioral
scoring).

Consequently, this work endeavors to answer the following research questions:

1. Knowing that borrowers’ repayment history increases creditworthiness assessment per-
formance, at which point in time since the loan is granted, does this information become
meaningful? For how long do we need to observe borrowers’ repayment history to assess
their creditworthiness accurately?

2. Knowing that social-interaction data contributes more value to application scoring, that
is when behavioral information is scarce. For how long is it beneficial to rely on these
sources of information?

3. What insights and benefits to credit risk management are obtained from studying the
dynamics of both the creditworthiness assessment performance and the value of alter-
native data sources?

To this end, we gathered and curated a massive multi-source credit dataset containing
borrower information and social interaction data in the form of graphs. Then, we conducted
a computational experiment in which we selected individuals and companies when they ob-
tained their first loan. And then observed their financial behavior for the first 24 months of
those loans. The results were analyzed by considering credit history, repayment behavior,
and alternative data and their impact on the creditworthiness assessment performance.

This work contributes to the growing knowledge on credit scoring and the use of social
network data. Through our analysis, we challenge the current division of the credit risk man-
agement process by investigating what happens between application scoring and behavioral
scoring. Focusing the analysis on the borrower rather than on the business process lets us
discover how the credit scoring models’ performance varies as the borrower credit history is
growing. Additionally, we analyzed the contribution of social-interaction features and how
their value decreases in the presence of behavioral attributes.

Furthermore, our dataset is novel because it characterizes individuals and companies using
information from the moment they obtain their first loan, their subsequent credit history and
repayment behavior, and social network data. It overcomes the low availability of data for
behavioral models research noted by (Kennedy et al., 2013) and (Goh & Lee, 2019). It allows
us to carry out what we believe is the first study on credit assessment performance dynamics.

This paper is structured as follows. Section 3.2 presents a review of the literature on
application and behavioral scoring models. The proposed methodology is presented in Section
3.3. Section 3.4 describes the experimental design and datasets. Section 3.5 discusses the
results and their implications. The last section provides the conclusions, research findings,
and suggestions for future work.
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3.2. Background and Related Work
Credit scoring models enable and support credit risk management in financial institutions.
For more than half a century, they have been part of decisions throughout the credit risk
management cycle (L. Thomas, Crook, & Edelman, 2017). Today, no decisions about whom
to grant a loan to, portfolio management, preventive collection actions, or even pricing are
made without the support of credit scoring models (Ntwiga, 2016; Anderson, 2022). Aca-
demics and practitioners have developed different credit scoring tools to support the different
decisions at each stage of the credit risk management cycle. Application scoring is used to
decide whether to grant a loan to a new applicant entering the financial system. In contrast,
behavioral scoring allows lenders to characterize those borrowers who have already been
granted a loan, and it is used mainly for portfolio management. Finally, collection scoring
allows optimizing policies and strategies for the collection and recovery (Paleologo, Elisseeff,
& Antonini, 2010).

Application scoring models are used to decide whether to grant a loan. In this way, they
are understood as the gateway to the lending institution and the financial system. Their
correct usage allows the implementation of risk policies and defines the applicant population
within which to operate. Therefore, it is important to develop models that allow lenders
to correctly quantify the borrower’s risk level, predicting with high certainty whether the
applicant will default. One of the most commonly used approaches to enhance creditwor-
thiness assessment performance is to improve the modeling techniques, from the traditional
logistic regression to other computational intelligence techniques, such as support vector ma-
chines (Huang, Chen, & Wang, 2007), Bayesian models (Kao, Lin, & Yu, 2021), genetic
algorithms (Kozeny, 2015), ensemble classifiers (García, Marqués, & Sánchez, 2019; Radović,
Marinković, & Radojičić, 2021; Moscato, Picariello, & Sperlí, 2021), and deep learning mod-
els (West, 2000; Gunnarsson, vanden Broucke, Baesens, óskarsdóttir, & Lemahieu, 2021)
including deep belief networks (Luo, Wu, & Wu, 2017; Gunnarsson, vanden Broucke, Bae-
sens, óskarsdóttir, & Lemahieu, 2021). Another approach to improving the creditworthiness
assessment is the inclusion of alternative data sources. More and better data leads to better
decisions, and in the case of application scoring, there is an increasing body of knowledge
analyzing the contribution of alternative data sources such as satellite and geospatial data
(Simumba, Okami, Kodaka, & Kohtake, 2021), psychometric data (Rabecca, Atmaja, &
Safitri, 2018; Djeundje, Crook, Calabrese, & Hamid, 2021), mobile phone data and commu-
nication networks (Óskarsdóttir, Bravo, Vanathien, & Baesens, 2018a; Óskarsdóttir, Bravo,
Sarraute, Vanthienen, & Baesens, 2019), network data (Wei, Yildirim, Van den Bulte, &
Dellarocas, 2016; Masyutin, 2015; Freedman & Jin, 2017; Cnudde et al., 2019; Giudici,
Hadji-Misheva, & Spelta, 2020), and written risk assessments (Stevenson, Mues, & Bravo,
2021). The common grounds of all these studies are that most of the increase in creditwor-
thiness assessment performance occurs when an applicant’s traditional information is scarce
or unavailable.

Behavioral scoring is used mainly for risk management — that is, understanding what
happens after credit has been granted. These models assess actual customers’ creditwor-
thiness and enable lenders to take preventive actions with borrowers with a high default
likelihood. Unlike the application models, there is no extended research about behavioral
scoring (Liu, 2001; Goh & Lee, 2019). (Kennedy et al., 2013) suggest that the reason for the
scarcity of research on behavioral scoring is the large volume of data required and the diffi-
culty of accessing the data. However, the lines of research into increasing the performance
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of these models are the same as for application scoring. (Putra et al., 2020) investigated
the value of social network data for predicting bankruptcy, and (Letizia & Lillo, 2019) ex-
amined a corporate payments network to assess an internal rating provided by a financial
institution. Our previous research (Muñoz-Cancino, Rios, Goic, & Graña, 2021) shows that
use of social network data produces a much more significant performance enhancement in
application scoring than in behavioral scoring when considering the same population and
features. Moreover, this result is consistent when the credit scoring model is applied to both
individuals (personal scoring) and companies (business scoring).

Among other studies that address the behavioral scoring problem, the work of (Hsieh,
2004) developed a behavioral scoring model to manage credit card customers using an RFM-
based segmentation model and then defined marketing strategies for each group using as-
sociation rules. (Biron & Bravo, 2014) studied what happens when the logistic regression
independence assumptions in behavioral scoring are violated. (Kao et al., 2021) concluded
that increasing the APR (annual percentage rate) significantly increases the probability of
default using a credit cardholder database from Taiwan.

Behavioral scoring models include information such as repayment behavior, and credit
history (L. C. Thomas, 2000) that is not necessarily available in application scoring. The
time span in which repayment behavior and banking data are observed is defined as the per-
formance period (L. C. Thomas, 2000). Aspects of the behavior during this period are added
as features-for instance, number of missed payments and average balance. There is still no
consensus on the optimal performance period length. (L. C. Thomas, 2000; Liu, 2001) used
12 months as an example, and (Djeundje et al., 2021) stated “Behavioral scoring models are
applied to accounts that have been open for a sufficient period” (p.2), but without provid-
ing details of the sufficient period. (Kennedy et al., 2013) analyzed the performance period
length by comparing windows of six months, 12 months, and 18 months. They concluded
that the best performance is achieved using a 12-month performance window but limited to
shorter outcome windows; in longer outcome windows, it is harder to find optimum perfor-
mance windows. Therefore, the selection of performance window only affects the short-term
creditworthiness assessment.

In Table 3.1, we present a literature review of previous studies dealing with the setting
of to the performance period (or observation window). Due to the scarcity of articles that
explicitly study this topic, we include articles, books, or reviews that indicate what its length
should be as well as those that incorporate features aggregating the borrower’s behavior dur-
ing a specific period. In the table, we list the authors, the entry type, the length of the
performance period, and the conclusions obtained in the study. Additionally, we show the
details of the experiment carried out: the dataset, algorithms, methodology, and whether
the researchers used alternative data. When the performance period is commented upon but
was not specifically studied, we display only the comment without the details related to the
experiment. Regarding the algorithms, we use the following abbreviations: LR, logistic re-
gression; DT, decision tree; RF, random forest; SVM, support vector machines; GB, gradient
boosting; KNN, K-nearest neighbor; ANN, artificial neural networks; and MLP, multi-layer
perceptron.

Despite all of this, we do not fully understand how long the performance period should
be and how the predictive power varies as more knowledge on repayment behavior becomes
available. Additionally, the role and contribution of network data in the shift from application
to behavioral scoring remains an open question.
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Tabla 3.1: Literature review of performance window analysis for behavioral
credit scoring

Authors Entry
Performance

Period
(Months)

Conclusions on the Performance
Period Datasets Algorithms Methodology Alternative

Data

(Kennedy et al., 2013) Journal Article 6, 12, 18 The 12-month window achieved
the best performance but was
limited to some scenarios

2,500 customers from the Irish
Credit Bureau

LR Train Test Split
& Bootstrap-
ping

(Neto, Jorge Adeodato, & Carolina Salgado, 2017) Journal Article 6, 12, 24 Two datasets: 682 records from
the PKDD1999 Challenge and
30,000 customers from Brazilian
retail

MLP, ANN,
RF, KNN

K-Fold Cross
Validation

(Nikolaidis et al., 2017) Incollection 1, 3, 6, 12 The 12-month window achieved
the best performance but only
slightly better

20,000 borrowers and their
86,082 credit lines

LR, SVM K-Fold Cross
Validation

(Ruiz et al., 2017) Inproceedings 12 Two datasets: first loans and all
loans granted

LR, SVM K-Fold Cross
Validation

Mobile phone
network usage

(Óskarsdóttir et al., 2019) Journal Article 1, 3 22,000 observations. Customers
from a telecommunications oper-
ator and a commercial bank

LR, DT, RF Train Test Split Mobile phone
and graph data

(Djeundje et al., 2021) Journal Article 3,6 Two datasets: 1,826 records from
Mexico and 16,358 from Nigeria;
both were supplied by Lenddo

LR, ANN,
GB

Train Test Split Psychometric
data and cus-
tomer’s email
activity

(Kyeong, Kim, & Shin, 2022) Journal Article 6 200,000 records from KakaoBank
in Korea

LR Train Test Split
& Bootstrap-
ping

Log data
recorded by
the mobile ap-
plication

(L. C. Thomas, 2000) Journal Article 12 The 12-month window is used as an example
(Liu, 2001) Tech Report 12 The 12-month window is used as an example

(Siddiqi, 2012) Book 6, 12 (Siddiqi, 2012) stated, “For behavior scorecard development, accounts are chosen at one point in time, and their
behavior analyzed over, typically, a 6- or 12-month period.”

(Bhalla, 2016) Blog Entry 1 (Bhalla, 2016) stated that “No fixed window for all the models. Depends on the type of model.”
(Mashanovich, 2017) Blog Entry 12 (Mashanovich, 2017) stated that “The length of the observation and performance windows will depend on the

industry sector for which the model is being designed.”

3.3. Creditworthiness Assessment Methodology
We use an approach based on machine learning classification models to analyze the dynamics
of creditworthiness assessment performance and how performance is affected by credit history,
repayment history, and social network features.

The proposed methodology is presented in Figure 3.1. The diagram begins with a dataset
and a feature engineering process. However, because our study largely depends on how
datasets are built, these processes are explained in detail in Section 3.4. Specifically, Section
3.4.2 explains how datasets are built, and Section 3.4.4 explains the feature engineering
process. This section explains the model training process to assess creditworthiness given a
dataset. This process is applied 12 times, once for each dataset built. The first objective of
our proposed methodology for training a model is to maximize generalization capability and
avoid model overfitting. For this purpose, some authors use the traditional split train-test
validation scheme assessing generalization through bootstrapping (Kennedy, Mac Namee,
Delany, O’Sullivan, & Watson, 2013; Kyeong, Kim, & Shin, 2022), while others use K-fold
cross-validation (Neto, Jorge Adeodato, & Carolina Salgado, 2017; Nikolaidis, Doumpos, &
Zopounidis, 2017; Ruiz, Gomes, Rodrigues, & Gama, 2017). However, using the same K-fold
cross validation procedure for both hyperparameter optimization and model selection can
lead to a biased assessment of the model’s performance. For this reason, we apply a hold-out
validation methodology that partitions the dataset in two (see Train Split in Fig.3.1 trying
to avoid such bias. The first dataset, which contains 30% of the original dataset, is used
for feature selection and hyperparameter optimization. The remaining 70% of the dataset is
used to train and validate the final models, using the features and hyperparameters previously
selected. The results and conclusions are based on the average of 10-fold cross-validation (see
K-Fold Cross-Validation in Fig.3.1). The comparison between models’ performance results
is made using a t-test, according to the recommendations given in (Flach, 2012).

This study uses gradient boosted trees (GB) because they have consistently shown state-
of-the-art performance over different problems (Friedman, 2001; Chen & Guestrin, 2016;
Muñoz-Cancino, Rios, Goic, & Graña, 2021). Additionally, to quantify the performance,
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Figure 3.1: Proposed methodology

we use the area under the receiver operating characteristic curve (Bradley, 1997) and the
Kolmogorov-Smirnov statistic (Hodges, 1958) as performance measures.

Feature selection (see Feature Selection in Fig.3.1) and hyperparameter optimization (see
Hyperparameter Optimization in Fig.3.1) start by discarding those features with low or
almost null predictive power; to do so, we calculate the KS and AUC in a univariate (See in
Fig.3.1: Bivariate) way and discarded those attributes with a KS <= 0.01 or an AUC <=
0.53 and then apply a method to drop out highly correlated features. This method begins by
selecting the feature with the highest predictive power and then discards those for which the
absolute value of the correlation is greater than a parameter ρ = 0.7; this process is repeated
until all target features are evaluated. We use this method twice, first considering attributes
that belong only to the feature sets defined in Section 3.4.4 (shown in Fig.3.1 as Multivariate
A); thus, we ensure a representative mix of attributes for each dimension analyzed. Then,
we apply it again by considering all remaining features (shown in Fig.3.1 as Multivariate B).
Finally, to find the best hyperparameters, we apply an exhaustive search over three specific
parameters: first, the number of boosted trees to fit; second, their learning rate; and third,
the minimum data needed in leaves. The best combination of hyperparameters is obtained
by averaging the performance in a 5-fold cross-validation. The outputs from this stage are
a subset of features and a combination of hyperparameters that maximize gradient boosting
performance.

3.4. Experimental Setup

3.4.1. Dataset Overview

Experimental data was provided by a Latin American bank. The information was anonymized
to protect customer confidentiality and not compromise any customer’s identification or re-
lationships; we have taken all precautions to ensure that there is no possibility that this
study can leak private data. The experimental dataset includes 97,044 individuals and com-
panies who obtained their first loan between January 2018 and December 2018. The dataset
contained information about borrowers’ repayment behavior until December 2019.

The data sources used in this research have already been used to develop credit scoring
models (Muñoz-Cancino, Rios, Goic, & Graña, 2021). Application and behavioral scoring
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models were trained. In both cases, the use of borrower information and social interaction
data provided a statistically significant improvement to creditworthiness assessment perfor-
mance. Additionally, in this study, we are interested in analyzing credit scoring models
according to the type of borrower. We will refer to personal credit scoring when borrowers
are individuals and business credit scoring when borrowers are companies. This classification
is complementary to the one previously defined. In this way, it is possible to assess either
individuals’ or companies’ creditworthiness at the time application or afterwards (that is,
application or behavioral scoring, respectively).

3.4.1.1. Target

The borrower characteristic used as the target variable for the creditworthiness assessment
problem was the event of becoming a defaulter.

Each borrower in the dataset is labeled as a defaulter or non-defaulter. For a borrower to
be considered a defaulter, the loan must be more than 90 days past due within the subsequent
12 months from when the borrower was observed; borrowers who are never more than 90 days
past due during this period are considered non-defaulters.

3.4.1.2. Dataset Description

Table 3.2 describes the available information and summarizes the distribution of borrowers,
which is grouped into business credit scoring data and personal credit scoring data to distin-
guish between companies and individuals. It shows the number of borrowers of each type.
The number of features corresponds to those provided by the financial institution and those
built for this research.

Tabla 3.2: Dataset description. Borrowers correspond to the total number
of individuals and companies that are part of our analysis, which will be
observed from the moment they obtain a loan until 12 months later.

Model Borrowers Features
Business Credit Score 20,835 585
Personal Credit Score 76,209 936

Figure 3.2 shows the number of borrowers and the default rate for each month elapsed since
the first loan granting, grouped by business scoring and personal scoring. Both charts start
with borrowers at the moment of application: 20,835 and 76,209 borrowers for business and
personal scoring, respectively. The number of observations decreases for two reasons, either
the borrower is declared in default or the loan is paid in full. The information available
in each of the 12 months since the loan granting was used to generate 12 datasets. In
Section 3.4.2, we give the details of the construction of these 12 datasets. These datasets
are mutually dependent because they contain information on the same borrowers but with
diverse progress in repaying their loans. This allows us to gain insights into performance
dynamics from independently trained models.
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(a) Business Scoring (b) Personal Scoring

Figure 3.2: Dataset Statistics. The X-axis displays the number of months
elapsed since the first loan granting. The left Y-axis shows the observation
samples, and the right Y-axis the default rate.

Figure 3.2(a) shows a change in the slope of the decrease in the number of observations
in the business scoring problem after the seventh month since the loan granting. At the
same time, Fig. 3.2(b) shows an atypical movement of the default rate between the fifth
and eighth months since the loan was granted. Our hypothesis, which might be analyzed
in future work, is that this may be due to a change in the expected loss estimation model
for commercial loans. This change affected firms and individuals because student loans are
reported as commercial loans. We believe these changes were due to an adjustment in the
bank’s client portfolio originating from a change in the formula for calculating the expected
loss. This change was implemented in July 2019, seven months after the last record in our
sample. Therefore, although this change does not affect our study population, there is the
possibility that it could affect our target feature.

3.4.2. Dataset Engineering Pipeline
The original dataset is decomposed into 12 datasets for both companies and individuals. Each
one contains information about the borrowers when i months (i = 1, . . . , 12) have elapsed
since the granting of the loan. The i-th dataset contains the information of the borrowers
available at the i-th month after their first loan. The calendar date of the first loan is not
the same for all borrowers in the i-th dataset. The i-th dataset contains information on
borrowers whose first loan could have been granted between Jan-18 and Dec-18. Moreover,
although the date of granting could be in this period, the i-th dataset information reflects
the borrower’s financial situation after i months have elapsed since the granting of his first
credit.

An overview of the construction process of the datasets can be seen in Figure 3.3. The
lower timeline shows how many months have passed since the first credit was granted, in
other words it is a virtual timeline. The upper timeline corresponds to calendar line. Hence,
dataset1 contains the information relative to the first month of all borrowers who have ob-
tained their first loan between Jan-2018 and Dec-2018, regardless of the date of loan granting.
Similarly, dataset2 contains the information of the borrowers during the second month after
obtaining their first loan. An so on until month 12. As the months go by, borrowers can be
excluded from the ensuing datasets due to default or to full credit payment.

Additionally, to build the target variable, the behavior of each borrower is observed during
the 12 months following the moment it was sampled. This definition means the target variable
for borrowers in the i-dataset is built from observing these borrowers’ payment behavior
between the i + 1-month and the i + 12-month since the first loan was granted.
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Figure 3.3: Dataset construction. Upper timeline corresponds to calendar
dates. Lower timeline corresponds to the relative time from first loan grant-
ing.

It is necessary to point out that although the models will be trained independently over
each dataset, the datasets are not statistically independent between them. In this way, it is
possible to obtain insights into performance dynamics through multiple static models.

Borrowers are described using the same feature set in all datasets. However, these features
reflect diverse behaviors as the borrower repays the loan or shows signs of credit deterioration.

3.4.3. Data Sources

3.4.3.1. Traditional Data Sources: Borrower Data

To describe the borrowers, we have a massive background dataset with the financial in-
formation of 7.65 million people and almost a quarter-million companies from the period
between January 2018 and March 2020. The financial information provided in this dataset
corresponds to the monthly debt decomposition by type and by days-past-due grouped into
buckets. This particular dataset includes all of the study subjects described in Table 3.2.

3.4.3.2. Alternative Data Sources: Social Interaction Data

This study characterizes the companies using network data information originating from
their economic and social interactions. The network used for this purpose is composed
of transactional services, the enterprise’s ownership, and the company’s employees. This
network builds an ecosystem in which companies, business owners, and employees interact.
We call this network EOWNet. On the other hand, individuals are mainly characterized by
combining marriages, parents, and children. We call this network FamilyNet. The EOWNet
is also used in the personal scoring problem because many of these borrowers are part of the
EOWNet. However, due to the partial coverage of this dataset, it is expected to have limited
added value, as we observed in (Muñoz-Cancino et al., 2021). The EOWNet is a dynamic
network because the interactions that constitute it change monthly, while the FamilyNet is
a static network, fixed at the beginning of the study period.
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3.4.4. Borrower and Social Network Features
The people and companies whose data is used in this study are characterized by features
created through a feature engineering process. This process combines the borrower informa-
tion, the repayment history discussed in Section 3.4.3.1, and the network data discussed in
3.4.3.2. We classify these features into the following subsets:

• Borrower’s Financial Features: These correspond to borrower features based on
the information provided by the financial institution and allow us to characterize the
financial situation of each borrower. The data contains the debt decomposition by type
(consumer, commercial, and mortgage) and delinquency situation and the amount in
revolving loans. This feature set is called XF in. It exclusively represents the borrower’s
situation at the moment of observation. Additionally, we include a feature set with the
borrower’s historical information and their repayment history; we call this feature set
XF inHist. This borrower’s historical features include the mean and SD for each XF in

feature for the last three and six months. In this way, both XF in and XF inHist feature
sets describe the borrower’s financial situation. However, XF in describes the borrower’s
credit situation at the observation point, and XF inHist summarizes the borrower’s his-
torical financial situation for the last three and six months.

• Node Statistics: This feature set considers each borrower as a node within the network.
Therefore, these features correspond to nodes’ statistics based on their positions and
characteristics within the network. For each node in the network, we calculate the
degree, degree centrality, number of triads, PageRank score, authority and hub scores
from the Hyperlink-Induced Topic Search (HITS) algorithm and an indicator of whether
the node is an articulation point. We call this feature set XNodeStats, and it is one of the
features derived from alternative data sources.

• Social Interaction Features: We utilize the borrower’s social interactions to char-
acterize each borrower based on their neighborhood’s financial information-that is, the
individuals and companies to which they are connected. Formally, we use the borrower
ego network (egonet) to characterize a borrower using social network data correspond-
ing to all the nodes the borrower is connected to. We aggregate the egonet financial
features in the XSocInt feature set, calculating the mean and SD for the nodes’ features
in the borrower’s egonet (Nargesian, Samulowitz, Khurana, Khalil, & Turaga, 2017;
Roa, Correa-Bahnsen, et al., 2021). As we did with borrowers’ features, we aggregate
historical social interaction features by calculating the mean and SD of the last six and
three months. We call this additional feature set XSocIntHist.

In Table 3.3 we present examples of the definition of attributes constructed based on
the above definitions. These variables were constructed from the financial information of
each borrower, specifying the decomposition of their debt in the financial system by type
and delinquency status and attributes obtained from the borrower’s position in the network.
The companies in the business credit scoring problem were characterized only based on the
EOWNet, while the individuals were characterized based on both the FamilyNet and the
EOWNet; this explains why the dataset for personal scoring contains a greater number of
attributes. In this work, we are interested in the impact of each feature subset more than each
particular attribute and how these impact creditworthiness performance dynamics; therefore,
the results were analyzed at the level of each feature subset.
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Tabla 3.3: Feature description. Due to the large number of generated fea-
tures, we describe only three examples per feature subset.

Feature
Source

Feature
Subset

Feature Name Description

Borrower’s
Financial
Features

XF in

NODEATT ATT05 The total amount of revolving loans

NODEATT ATT07 The total amount of consumer debt

NODEATT ATT08 The total amount of commercial debt

XF inHist

NODEATT ATT05 MEAN3 The average amount of revolving loans in the last
three months

NODEATT ATT07 MEAN6 The average amount of consumer debt in the last six months

NODEATT ATT08 STD6 The standard deviation of the amount of commercial debt in the
last six months

Node
Statistics

XNodeStats

EOWNET NodeStats PageR-
ank

Borrower’s PageRank score in the EOWNet

FAMNET NodeStats Hits
Auth

Borrower’s authority score in the FamilyNet

FAMNET NodeStats ArtPoint Whether the borrower is an articulation point in the FamilyNet

Social
Interaction
Features

XSocInt

EOWNET EgoFull NET
MEAN ATT05

The average of the borrower’s ego network amount
of revolving loans using the complete EOWNet

EOWNET EgoFull NET
MEAN ATT05 Wby Hits
Auth

The dot product of the borrower’s ego network amount of revolv-
ing loans and their authority score using the complete EOWNet

FAMNET EgoFull NET
MEAN ATT07

The average of the borrower’s ego network amount of consumer
debt using the complete FamilyNet Network

XSocIntHist

EOWNET EgoFull NET
MEAN3 ATT05

The average of the borrower’s ego network amount of revolving
loans in the last three months using the complete EOWNet

EOWNET EgoFull NET
MEAN6 ATT05 Wby Hits
Auth

The dot product of the borrower’s ego network amount of revolv-
ing loans and their Authority Score in the last six months using
the complete EOWNet

FAMNET EgoFull NET
MEAN6 ATT07

The average of the borrower’s ego network amount of consumer
debt in the last six months using the complete FamilyNet

3.4.5. Experiments

We devised a series of experiments to analyze the effects on performance dynamics of credit
history, repayment history, and social network features. For this purpose, we generated
different sets of characteristics detailed in Table 3.4. With each of these feature sets trained
twelve independent 12 models, each model trained over one of the datasets described in
Section 3.4.2.

Tabla 3.4: Experiments setup

Experiment Id Feature Group

E1 X = {XF in}
E2 X = {XF in + XF inHist}
E3 X = {XF in + XF inHist + XNodeStats + XSocInt + XSocIntHist}

We trained a gradient boosting model for each of these experiments according to the
methodology outlined in Section 3.3. The optimization of hyperparameters chooses the best
model within all the combinations of the following parameters:
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• Number of boosting iterations: {50, 100, 250, 500}

• Learning rate: {0.01, 0.05, 0.1}

• Minimal amount of data in one leaf (as % of the training dataset): {2%, 4%, 6%}

For each hyperparameters combination, a gradient boosting model was trained using a
5-fold cross validation. According to the configuration defined in the Experimental Setup
section, 6,840 models were trained, of which, 6,480 corresponded to the hyperparameter op-
timization (36 combinations × 5 folds × 12 datasets × 3 experiments) and 360 corresponded
to the final models (10 folds × 12 datasets × 3 experiments). To carry out this study, we
used a server with the following specifications:

• Driver node: 140 GB of RAM and 20 CPU cores

• Auto-scaling worker nodes (between 2 and 8)

• Worker node: 112 GB of RAM and 16 CPU cores

3.5. Results and Discussion
This section presents the results obtained after applying our methodology to study the dy-
namics of creditworthiness assessment performance. First, we present the effect of the bor-
rower’s credit history on the model’s performance (experiment E1). Then we show how this
effect changes when the repayment features are incorporated into the analysis (experiment
E2). Finally, we study the effect on the model’s performance of incorporating the social
interaction features, the borrower’s credit history and repayment features (experiment E3).

A further relevant analysis is to understand how much the social interaction features
influence the creditworthiness assessment compared to the borrower’s features and how this
impact varies over time. The results of this analysis are presented in Section 3.5.4.

3.5.1. Experiment E1: Borrower Credit History

The first goal was to understand how the borrower’s credit history affects creditworthiness
assessment performance. To this end, we analyzed the behavior of the borrowers’ financial
features XF in over time. Figures 3.4(a) and 3.4(b) show this effect for the business scoring
problem, and Figures 3.4(c) and 3.4(d) for personal scoring. For each problem, performance
was evaluated using the KS and AUC scores.

For each elapsed month since the loan granting, the initial feature set at the beginning of
the training was the same. However, after applying the methodology defined in Section 3.3,
the final variables could vary between one period and another because we selected those that
produced more improvement in default assessment. The discriminatory power increased as
the borrower’s credit history increased, and the rate of the improvement decreased over time.
The increase ceased to be consistently statistically significant after six months, meaning that
the gains in discriminatory power were relevant in the first six months.
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(a) Business Scoring (KS) (b) Business Scoring (AUC)

(c) Personal Scoring (KS) (d) Personal Scoring (AUC)

Figure 3.4: KS and AUC scores for the business scoring and personal scoring
problems. The X-axis displays the number of months elapsed since the loan
granting. The blue line shows the creditworthiness assessment performance
(left Y-axis) for experiment E1, using only XF in: borrower features. The
dotted gray line (right Y-axis) shows the percentage increment between
consecutive periods; when this increment is statistically significant, the dots
are colored red. Otherwise, they are colored gray.

In business scoring, we observed a substantial increase in the second month, greater than
25% in KS and 10% in AUC. However, additional credit history produced relatively minor
increases. In personal scoring, on the other hand, the performance increases were smaller
but remained consistent in the first six months.

These results confirm what academics and practitioners already know: the importance
of borrower credit history in the creditworthiness assessment. Furthermore, they allow us
to partially answer the first research question and understand how long we need to observe
the borrower’s credit history to improve the creditworthiness assessment performance. The
value of these results is that they reveal the discrimination power dynamics produced by the
availability of borrower history. The credit history produces increases in performance at a de-
creasing rate. After six months, the gains are marginal; this suggests that the transition from
an application scoring problem to a behavioral scoring problem, in terms of discriminatory
power, occurs in these six months. Our results challenge the previously proposed defini-
tions of the performance window in behavioral scoring from a “sufficient period” (Djeundje,
Crook, Calabrese, & Hamid, 2021) or 12 months (L. C. Thomas, 2000; Liu, 2001; Kennedy,
Mac Namee, Delany, O’Sullivan, & Watson, 2013) and instead suggest that the six-month
performance window observed in this study is ideal.

A smaller performance window allows reduction in the volume of information necessary
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to research behavioral scoring models, which, as we have seen, is a limitation in this area
(Kennedy, Mac Namee, Delany, O’Sullivan, & Watson, 2013; Goh & Lee, 2019). Further-
more, these results broaden the adequate target population to which these models can be
applied; borrowers with six months or more of credit history can now be evaluated rather
than only including, borrowers with 12 months or more. The third point favoring a six-month
performance window is that it allows faster recovery for defaulters. That is, the credit re-
evaluation for borrowers who had negative events in the past and now exhibit good payment
behavior can occur earlier, which can greatly help these borrowers in terms of financial inclu-
sion and access to lower interest rates. Finally, other benefits include more straightforward
technological implementations, reduction in storage costs, and generation of behavior models
that quickly capture the portfolio’s trends and shifts.

3.5.2. Experiment E2: Borrower Credit History and Repayment
Features

Another advantage of using the borrower’s credit history is that allows attributes to be built
that reflect the temporal evolution of its characteristics. To do so, we created a set of features
that summarized the credit information from the last three and six months. In the first period
of analysis, these attributes did not add value because there was no previous history; however,
these attributes contributed more as the months passed since loan granting.

We call the repayment history features XF inHist, as mentioned in Section 3.4.4. Figure
3.5, compares the results of experiments E2 and E1 to analyze the effect of incorporating
the attributes XF inHist into the creditworthiness assessment process.
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(a) Business Scoring (KS) (b) Business Scoring (AUC)

(c) Personal Scoring (KS) (d) Personal Scoring (AUC)

Figure 3.5: KS and AUC scores for the business scoring and personal scor-
ing problems. The X-axis displays the number of months elapsed since the
granting of the loan. The blue line and the green line show the creditwor-
thiness assessment performance (left Y-axis) for experiment E2 and E1,
respectively. The dotted gray line (right Y-axis) shows the percentage in-
crement between E2 and E1; when this increment is statistically significant,
the dots are colored red. Otherwise, they are colored gray.

The repayment history features affected creditworthiness assessment performance. Dis-
crimination power, measured as KS, increased as borrower history increased and repayment
features reflected the borrower’s payment behavior. The most meaningful improvements in
personal scoring and business scoring occurred six months after credit was initially granted.
When performance was measured based on AUC, the relationship between AUC and bor-
rower history was not clear, and the benefits of incorporating repayment history features
were observed from the second month onward. The preceding confirms the importance of
incorporating repayment history features. These results allow us to complement the answer
to the first research question and understand how the credit history and the repayment fea-
tures impact creditworthiness performance as time passes from the granting of credit. The
credit history adds the most significant increase in performance, and when this contribution
stabilizes after the first six months, the contribution of the repayment features begins to be
noticed. However, it does not change the conclusions obtained above and our suggestion
based on the results of the six-month performance window.
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3.5.3. Experiment E3: borrower credit history, repayment fea-
tures and social interaction features

The second research question that motivated this study this study was to determine the
value delivered by social interaction features and their impact on the dynamics of creditwor-
thiness assessment performance. Figure 3.6 compares the results of experiments E3 and E2;
this comparison allows us to analyze the added value of social interaction features as the
borrower’s credit history and repayment behavior become available.

(a) Business Scoring (KS) (b) Business Scoring (AUC)

(c) Personal Scoring (KS) (d) Personal Scoring (AUC)

Figure 3.6: KS and AUC scores for the business scoring and personal scor-
ing problems. The X-axis displays the number of months elapsed since the
granting of the loan. The blue line and the green line show the creditwor-
thiness assessment performance (left Y-axis) for experiment E3 and E2,
respectively. The dotted gray line (right Y-axis) shows the percentage in-
crement between E3 and E2; when this increment is statistically significant,
the dots are colored red. Otherwise, they are colored gray.

Incorporating alternative data also improves creditworthiness assessment performance.
The most significant improvement is observed in the first month, when lenders face an ap-
plication scoring problem and the borrower’s credit information is not available or does not
exist.

In personal scoring, social interaction features increased the discrimination power during
the 12 months of observation. However, their impact decreased as the borrower’s credit
history became available, and repayment features were a better predictor of the borrower’s
payment behavior. In business scoring, social interaction features increased performance by
approximately 8% and 10% for KS and AUC, respectively. This significant enhancement
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in discrimination power occurred in loan applications, a clear sign that the creditworthiness
assessment of a firm should not rely only on its features. The assessment should also consider
the behavior and attributes of the firm’s owners and analyze its supply chain with customers,
suppliers, and employees.

3.5.4. Importance of Social Interaction Features Over Time

This section analyzes the borrower’s ego network characteristics (that is social interaction
features) and how their impact varies as credit history and repayment behavior become
available. To do this, we considered the relative importance of each attribute to predict cred-
itworthiness. This relative importance was grouped into two categories: borrower features
(XF in +XF inHist) and the features obtained from social network data (that is, node statistics
and social interaction features) (XNodeStats + XSocInt + XSocIntHist). For each feature, the
importance was calculated as the average of the Shapley values from a subset of the dataset
and then aggregated according to the two categories previously defined. The Shapley values
were obtained using a tree-based SHAP explainer (Lundberg & Lee, 2017).

Figures 3.7(a) and (b) show feature importance using Shapley values for business and
personal scoring, respectively.

(a) Business Credit Scoring

(b) Personal Credit Scoring

Figure 3.7: Feature Importance Analysis using Shapley Values. Figure
(a) presents the Business Scoring problem and Figure (b) Personal Scoring
Problem, in both using the Experiment E3 feature set. The features are
grouped into two categories, the borrower’s features (XF in + XF inHist), and
the social interaction features (XNodeStats + XSocInt + XSocIntHist). The X-
axis displays the number of months elapsed since the loan granting. The
Y-axis shows the relative feature importance. The boxplots show the feature
importance in the 10-fold cross-validation, and the red line is a LOWESS
regression fitted using these results.

The importance of network features in business scoring was 63.8% in the first month, the
same month in which this information generated its maximum discrimination power enhance-
ment. A similar effect was observed in personal scoring; however, network information was
less important, and its increase in discrimination power was correspondingly smaller.
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Figure 3.7(a) shows the importance of social interaction features in the creditworthiness
assessment. When a company is applying for a loan, this alternative data contributed the
most to the credit evaluation. Its value decreased as the company’s information became
available during the following months; despite this decrease, the importance of social in-
teraction features stabilized around 40% after the first six months. This result confirms
what is already known by practitioners: the credit evaluation of a firm, especially in small
and medium companies, must consider its owners and the business ecosystem in which the
company interacts.

On the other hand, in personal scoring, the importance of social interaction features
diminished almost linearly as time passed, as illustrated in Fig. 3.7(b). These features were
most important at the time of application, but their importance was considerably smaller
than in business scoring, as was their increase in discrimination power. Parental relationships
and marriages did not have the same impact on creditworthiness assessment of individual
borrowers as transactional and economic relationships had on business scoring. Despite this,
social interaction features increase the power of discrimination. They provide fundamental
support in the financial inclusion of those people whom traditional credit scoring models
cannot evaluate since they do not have a credit history.

An interesting relationship to analyze is the one presented in Fig. 3.8. This figure shows
on the same scale the increase in discrimination power measured in KS and AUC and the im-
portance of social interaction features. A high correlation was observed between the increase
in discrimination power and the importance of social interaction features in both cases. In
business scoring, this correlation was almost perfect during the first six months of the study,
and in personal scoring, a strong pseudo-linear correlation was observed. This relationship
shows that the contribution of the social interaction features to the creditworthiness assess-
ment directly translated to an increase in discrimination power.

Figure 3.8: Feature importance and predictive power relationship. (Left)
Business scoring problem; (right) Personal scoring problem. Both using
the Experiment E3 feature set. The blue and green lines show the relative
increase between E3 and E2 experiments for the KS and the AUC. The
red line is the social interaction features’ importance in experiment E3. A
MinMaxScaler was applied to all series to limit the results between 0 and 1.
The X-axis corresponds to the months elapsed after the first loan granting.
The Y-axis shows the relative increment.
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3.6. Conclusions and Future Work
This study analyzed how credit history, loan repayment features, and social network data
influence the performance of credit scoring models. We used traditional financial data and
graph data originating from borrowers’ economic and social interactions. Additionally, our
novel dataset allowed us to analyze all of the financial behavior of individuals and companies
from the moment they obtained their first loan until 24 months afterward. Furthermore, we
analyzed performance dynamics based on the results of multiple independent creditworthi-
ness assessment models trained with time-dependent datasets. These models were trained
with features representing the borrower’s credit history, repayment behavior, and social in-
teractions. The performance of these models was measured in terms of AUC and KS; the
feature importance was quantified using Shapley values.

Our findings showed that as more borrowers’ credit history became available, creditwor-
thiness assessment performance increased at a decreasing rate. This effect was observed up to
six months from the loan granting, when it stabilized. This finding is meaningful because it
reduces the temporal extent of the datasets necessary to train and research behavioral credit
scoring models. It also increases the population that can be evaluated using these models
from borrowers with 12 months or more of credit history to those with only six months.
Furthermore, it enhances financial inclusion and leverages second-chance banking, allowing
those borrowers with good credit behavior but with a negative credit history to be reinte-
grated into the financial system sooner. An additional noteworthy finding is that the features
that summarize the borrower’s repayment behavior-the repayment history features XF inHist-
enhanced the creditworthiness assessment performance, especially after the first six months,
and they consequently increased performance when the contribution of credit history stabi-
lized. Finally, the social interaction features improved performance, and they added the most
value when the borrower was applying for the loan. In personal scoring, this effect decreased
to nearly zero as the customer’s history became more available. In business scoring, the
increment in discrimination power gained by incorporating social network features remained
stable, at least during the first year.

The results obtained allow us to analyze the dynamics of creditworthiness assessment
performance and how it is influenced by the borrower’s credit history, repayment behavior,
and social interaction features. These results are important since they provide support for a
six-month performance window, reducing it from the current recommendations of 12 months.
In addition, they show us how the importance and discrimination power enhancement of
social interaction features changes over time. Both insights allow us to improve credit risk
management by establishing when and for how long to use social network data; similar
conclusions are drawn about the performance windows and the contribution of repayment
features.

These results also help answer the third research question raised in this study. Our work
is beneficial and has implications to credit risk management in the academic field and real-
world applications. In the academic field, our work extends and deepens current knowledge
about the impact of credit history and repayment behavior. Furthermore, it also analyzed
when it is convenient to use alternative data and how it impacts the performance of credit
scoring models, whether applied to individuals or companies. In real-world applications, our
work impacts both lenders and borrowers. The lenders benefit from our study’s results be-
cause it allows them to optimize their risk management process. On the one hand, changing
the observation window from 12 to six months reduces management and data storage costs.
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This reduction also increases the population of behavior models by reducing the loan age
constraint. Additionally, it allows lenders to know for how long they should use social infor-
mation to improve their credit scoring models. This result also contributes to the efficiency
of their processes. Borrowers benefit from models with smaller observation windows since
the negative events they have had in the past are forgotten by the credit scoring models
more quickly. In this way, the borrowers can receive an accurate creditworthiness assessment
faster. Additionally, showing the value of the social-interaction data allows the borrowers to
complement their credit information when they do not have it. Therefore, it increases the
possibilities of financial inclusion, especially for those cases with little or no credit informa-
tion.

Our study suggests numerous lines of investigation. First, we would like to extend our re-
search period; our 24-month dataset only allowed us to gain insights from the first 12 months
of the borrowers’ behavior. Based on our results, it is feasible that the impact of social inter-
action networks stabilizes after 12 months in the business scoring problem. A more extended
observation period would also allow us to study mortgages that have a slower evolution than
consumer and commercial credits. Second, we would like to understand what happens in
other domains, either using other types of networks or studying microcredits or peer-to-peer
lending. Finally, in this work, we studied creditworthiness assessment performance dynamics
through multiple independent models trained with time-dependent datasets; we would like
to design a framework that inherently handles time dependency.
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Chapter 4

Assessment of creditworthiness
models privacy-preserving training
with synthetic data4

Abstract

Credit scoring models are the primary instrument used by financial institutions to man-
age credit risk. The scarcity of research on behavioral scoring is due to the difficult data
access. Financial institutions have to maintain the privacy and security of borrowers’
information refrain them from collaborating in research initiatives. In this work, we
present a methodology that allows us to evaluate the performance of models trained
with synthetic data when they are applied to real-world data. Our results show that
synthetic data quality is increasingly poor when the number of attributes increases.
However, creditworthiness assessment models trained with synthetic data show a reduc-
tion of 3% of AUC and 6% of KS when compared with models trained with real data.
These results have a significant impact since they encourage credit risk investigation
from synthetic data, making it possible to maintain borrowers’ privacy and to address
problems that until now have been hampered by the availability of information.

Keywords: credit scoring; synthetic data; generative adversarial networks; variational
autoencoders

4.1. Introduction
For decades financial institutions have used mathematical models to determine borrowers’
creditworthiness and consequently manage credit risk. The main objective of these models
is to characterize each borrower with the probability of not complying with their contractual
obligations (The Basel Committee on Banking Supervision, 2000), avoiding to give loans to
applicants that will not be able to pay them back. Despite all the years of research on credit
scoring, there is still little done on behavioral scoring models, which are the credit scoring
models used on those clients who have already been granted a loan, because it requires large
4 The following is a copy of the paper presented at the Hybrid Artificial Intelligent Systems Conference.

Please cite this paper as follows: Ricardo Muñoz-Cancino, Cristián Bravo, Sebastián A. Ríos, Manuel
Graña (2022). Assessment of Creditworthiness Models Privacy-Preserving Training with Synthetic Data.
In: , et al. Hybrid Artificial Intelligent Systems. HAIS 2022. Lecture Notes in Computer Science(), vol
13469. Springer, Cham.
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volumes of data and a relevant historical depth (Goh & Lee, 2019; Kennedy et al., 2013). In
addition, financial institutions are often reluctant to collaborate in this type of investigation
due to concerns about data security and personal privacy. Until now, the use of synthetic
data in credit scoring is mainly restricted to balancing the minority class in classification
problems using the traditional SMOTE (Gicić & Subasi, 2019), variational autoencoders
(Wan et al., 2017), and lately generative adversarial networks (Fiore et al., 2019; Lei et al.,
2020; Ngwenduna & Mbuvha, 2021). In these studies, synthetic records of the minority class
are generated, and the original data set is augmented. In this paper, we present a framework
that allows us to train a model on synthetic data and then apply it to real-world data. We
also analyze if the model copes with data drift by applying both models to real-world data
representing the same problem but obtaining the dataset one year later. The main findings
of our work are:

• It is possible to train a model on synthetic data that achieves good performance in real
situations.

• As the number of features increases, the synthesized data quality gets worse.
• There is a performance cost for working in a privacy-preserving environment. This cost

corresponds to a loss of predictive power of approximately 3% if measured in AUC and
6% in KS.

4.2. Related Work
4.2.1. Credit Scoring
Credit scoring aims to manage credit risk, defined as the potential for a borrower to de-
fault on established contractual obligations (The Basel Committee on Banking Supervision,
2000). These models intensively use borrower data, demographic information, payment be-
havior, and even alternative data sources such as social networks (Muñoz-Cancino et al., 2021;
Óskarsdóttir et al., 2019), psychometrics (Djeundje et al., 2021), and geolocation (Simumba
et al., 2021).

4.2.2. Generative models for synthetic data generation
Generative models are a subset of machine learning models whose main objective is to learn
the real-data distribution and then to generate consistent samples from the learned distribu-
tion. Working with synthetic data allows addressing problems where real-data is expensive
to obtain, where a large dataset is needed to train a model, or where the real-data is sensitive
or cannot be shared (Torres, 2018). For years, statistical methods were the most used ones to
estimate the real-world data joint distribution. In this group, Gaussian Mixture Models are
the most utilized for this task when there are fewer continuous variables. At the same time,
Bayesian Networks are commonly used for discrete variables. The main problem of these
methods is dealing with datasets containing numerical and categorical variables. They also
present problems when the continuous variables have more than one mode and the categorical
variables present small categories (Xu, 2020). During the last years, deep learning models
have gained popularity to generate synthetic data due to their performance and because they
allow us to deal with the problems mentioned above. The generative adversarial networks
and the variational autoencoders stand out within these models.
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4.2.2.1. Generative Adversarial Networks

Generative adversarial networks are a deep learning framework based on a game theory
scenario where a generator network G(·) must compete with a discriminator network D(·).
The generator network produces samples of synthetic data that attempt to emulate real data.
In contrast, the discriminator network aims to differentiate between real examples from the
training dataset and synthetic samples obtained from the generator (Goodfellow, Bengio, &
Courville, 2016). Its most basic form, vanilla GAN, G(·) maps a vector z from a multivariate
Gaussian distribution N (0, I) to a vector x̂ in the data domain X. While D(·) outputs a
probability that indicates whether x̂ is a real training samples or a fake sample drawn from
G(·) (Xu, 2020). The generator G(·) and the discriminator D(·) are alternatively optimized
to train a GAN. Vanilla GANs have two main problems, representing unbalanced categorical
features and expressing numerical features having multiple modes. To solve this, Xu et
al. (2019) (Xu, Skoularidou, Cuesta-Infante, & Veeramachaneni, 2019) present a conditional
generator (CTGAN) that samples records from each category according to the log-frequency;
this way, the generator can explore all discrete values. Moreover, the multimodal distributions
are handled using kernel density estimation to assess the number of modes in each numerical
feature.

4.2.2.2. Variational autoencoders

Autoencoders (AE) are an unsupervised machine learning method that enables two main
objectives: low-dimensional representation and synthetic data generation. Variational Au-
toencoder (Kingma & Welling, 2013) interpret the latent space produced by the encoder as
a probability distribution modeling the training samples as independent random variables,
assuming the posterior distribution defined by the encoder qθ(z|x) and generative distribu-
tion pϕ(x|z) defined by the decoder. To accomplish that the encoder produces two vectors
as output, one of means and the other of standard deviations, which are the parameters to
be optimized in the model. Xu et al. (2019) (Xu et al., 2019) present TVAE, a variational
autoencoder adaption for tabular data, using the same pre-processing as in CTGAN and the
evidence lower bound (ELBO) loss.

4.3. Methodology and Experimental Design

4.3.1. Dataset

In this work, we use a dataset provided by a financial institution already used for research
on credit scoring (Muñoz-Cancino et al., 2021; Muñoz-Cancino et al., 2022). This dataset
includes each borrower financial information and social interactions features over two periods:
January 2018 and January 2019; each dataset contains 500,000 individuals. Each borrower
is labeled based on their payment behavior in the following 12-month observation period.
Each borrower in the 2018 dataset is labeled as a defaulter if it was more than 90 days past
due between February 2018 and January 2019 and is labeled as a non-defaulter if it was
not more than 90 days past due. Borrowers from the Jan-2019 dataset are similarly tagged.
This dataset contains three feature subsets: XF in corresponds to the borrower’s financial
information, XDegree corresponds to the number of connections the borrower has in the social
interaction network, and XSocInt are the features extracted from the social interactions.

58



4.3.2. Synthetic data generation
A step to privacy-preserving credit scoring model building is to generate a synthetic dataset
that mimics real-world behavior. In order to accomplish this, we compare the performance
of two state-of-the-art synthetic data generators, CTGAN and TVAE, defined in Sect. 4.2.
The first experiment (S01) only compares these methods using borrowers’ features XF in.
The objective of this stage is to find a method to generate synthetic data from real data, and
it is not part of this study to find the best way to generate them. Despite not generating
an exhaustive search for the best hyper-parameters, we will test two different architectures
(Arch) for each synthesizer. Arch A is the default configuration for both methods. In the case
of CTGAN, Arch B set up the generator with two linear residual layers and the discriminator
with two linear layers, both of size (64, 64). In the case of TVAE Arch B, set hidden layers
of (64, 64) for both the encoder and the decoder. Then, in experiment S02, we train a
new synthesizer using the best architecture from S01. This experiment uses the borrowers’
features XF in and exclusively one feature from the network data, the node degree XDegree.
We only include node degree because its feature enables us to reconstruct an entire network
using the random graphs generators. Finally, in experiment S03, the borrowers and social
interaction features (XF in+XDegree+XSocInt) are used to train a synthesizer. This experiment
corresponds to the traditional approach to generating synthetic data from a dataset using
social interaction features.

4.3.3. Borrower’s creditworthiness assessment
The objective of this stage is to have a framework that allows us to estimate the borrower’s
creditworthiness from a feature set. This modeling framework is based on previous inves-
tigations (Muñoz-Cancino et al., 2021; Muñoz-Cancino et al., 2022). This stage begins by
discarding attributes with low or null predictive power and selecting uncorrelated attributes.
The correlation-based selection method begins by selecting the attribute with the highest pre-
dictive power. It then discards the possible selections if the correlation exceeds a threshold ρ.
This step is repeated until no attributes are left to select. To ensure the model generalization
capability, we work under a K-fold cross-validation scheme; in this way, the feature selection
and the model training use K-1 folds, and the evaluation is carried out with the remaining
fold. Additionally, we use two holdout datasets, one generated with information from the
same year as the training dataset but not contained. The second contains information from
one year later. Both the results of the validation fold and the holdout dataset are stored to
use a t-test later to compare different models (Flach, 2012, Ch. 12).

4.3.4. Evaluation Metrics
In this section, we describe a set of metrics that will help us to evaluate the performance of the
synthetic data generators and the classification models used for creditworthiness assessment.
The area under the curve (AUC) is a performance measure used to evaluate classification
models (Bradley, 1997). The AUC is an overall measure of performance that can be inter-
preted as the average of the true positive rate for all possible values of the false positive
rate. A higher AUC indicates a higher overall performance of the classification model (Ho,
Mo, & Chan-Hee, 2004). Another classification performance measure is the F-measure.
This metric is calculated as the harmonic mean between precision and recall. It is beneficial
for dichotomous outputs and when there is no preference between maximizing the model’s
precision or recall (Hripcsak & Rothschild, 2005). Kolmogorov-Smirnov (KS) statistic mea-
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sures the distance separating two cumulative distributions (Hodges, 1958). The KS statistic
ranges between 0 and 1 and is defined as D = maxx |F1(x)−F2(x)|, where F1 and F2 are two
cumulative distributions. In the case of creditworthiness assessment, we are interested in the
difference between the cumulative distributions of defaulters and non-defaulters, and a higher
D indicates a higher discriminatory power. However, in the case of synthetic data generation,
we are interested in the real data distribution and the synthetic data distribution being as
similar as possible; in this way, a lower D indicates a better synthetic data generation. In
order for all the acceptance criteria to be the same, we define the KSTest as 1 − D; in this
way, a higher KSTest indicates a better synthetic data generator. In the synthetic data gen-
eration problem, the KS is only valid to measure the performance for continuous features; to
handle categorical features, we will use the chi-square test (CS). The CS is a famous test to
assess the independence of two events (McHugh, 2013). We will call CSTest to the resulting
p-value for this test. Therefore a small value indicates we can reject the null hypothesis that
synthetic data has the real data distribution. In the synthetic data generation problem, we
want to maximize the CSTest.

4.3.5. Experimental setup
The parameters of the univariate selection are set at KSmin = 0.01 and AUCmin = 0.53,
i.e., we discard feature with a univarite performance lower than KSmin or AUCmin. In the
multivariate selection process, we set ρ = 0.7 in the process to avoid high correlated features
(Akoglu, 2018). The N-Fold Cross-Validation stage is carried out considering N = 10, and in
each iteration, the results of regularized logistic regression and gradient boosting (Friedman,
2001) models are displayed.

4.4. Results and Discussion
In this section, we present the results of our methodology. We start with the implementation
details. Then, we compare the synthesizers, and finally, we analyze the creditworthiness
assessment performance of the models trained using synthetic data.

4.4.1. Implementation Details
In this work, we used the Python implementations of Networkx v2.6.3 (Hagberg et al., 2008)
and Synthetic Data Vault (SDV) v5.0.0 (Patki, Wedge, & Veeramachaneni, 2016) for net-
works statistics and synthetic data generation, respectively. To conduct the experiments, we
used a laptop with 8 CPU cores Intel i7 and 32 GB of RAM.

4.4.2. Synthetic Data Generation Performance
The first objective is to analyze the performance of the methods to generate synthetic data
presented above, CTGAN and TVAE. Table 4.1 shows the results obtained. The features
Synthesizer training features corresponds to the training feature set, while Arq indicates the
network architecture defined in Sect. 4.3.2. The experiment S01 consisted in comparing both
synthesizer using two different architectures. It is observed that a reduction in the number
of layers reduces the execution times considerably in both cases, being TVAE, the one that
presented the fastest execution times. KSTest show us the performance to synthesize con-
tinuous features, where TVAE achieves better performance than CTGAN. The difference
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between TVAE architectures is almost negligible when evaluate continuous features perfor-
mance. The performance to synthesize categorical features is measured using CSTest. In
this case, TVAE obtained higher performance again, the differences between architectures
is slightly higher to architecture A. Another popular approach to measuring the synthesizer
performance is training a classifier to distinguish between real and synthetic data. The col-
umn Logistic Detection in Table 1 shows the result after training a logistic regression model;
the value displayed corresponds to the complementary F-measure. In this way, values closer
to 1 indicate that the classifier cannot distinguish between real and synthetic data, and values
closer to 0 mean the classifier efficiently detects synthetic data. It can be seen that TVAE
achieve the best performance, but this performance decreases as we include more features to
the synthesizer.

Tabla 4.1: Synthetic data generators performance
Experiment Synthesizer training features Synthesizer Arch Exec Time (m) CSTest KSTest Logistic Detection

S01 XF in

CTGAN
A 410 0.836 0.864 0.697
B 260 0.861 0.846 0.749

TVAE
A 230 0.962 0.868 0.803
B 130 0.952 0.861 0.756

S02 XF in + XDegree TVAE B 140 0.935 0.836 0.644
S03 XF in + XDegree + XSocInt TVAE A 400 0.924 0.809 0.539
S03 XF in + XDegree + XSocInt TVAE B 320 0.907 0.825 0.542
S03 XF in + XDegree + XSocInt TVAE B 465 0.930 0.819 0.513

4.4.3. Creditworthiness assessment performance on real data

This section establishes a comparison line for the performance of the models trained with
synthetic data. In order to establish this comparison, we first trained classifiers using real-
world data and tested their performance using the holdout datasets previously defined. Table
4.2 shows the results of training models according to the methodology described in 4.3.3. The
performance is measured using AUC and KS on the two holdout datasets; the 10-folds mean
and its standard deviation are shown for each statistic. For each feature set, we trained two
classifiers, logistic regression and gradient boosting. The results show that gradient boosting
obtains better results compared to logistic regression. More details of this comparison are
shown in Table 4.3, where we quantify the higher predictive power of gradient boosting.

Tabla 4.2: Creditworthiness assessment performance for models trained on
real data

Classifier training
features Classifier

Holdout 2018 Holdout 2019
AUC KS AUC KS

XF in GB 0.88 ± 0.001 0.59 ± 0.002 0.82 ± 0.001 0.50 ± 0.002
XF in LR 0.87 ± 0.001 0.58 ± 0.001 0.82 ± 0.001 0.50 ± 0.002

XF in + XDegree + XSocInt GB 0.88 ± 0.001 0.59 ± 0.002 0.82 ± 0.001 0.50 ± 0.002
XF in + XDegree + XSocInt LR 0.87 ± 0.001 0.58 ± 0.002 0.83 ± 0.001 0.50 ± 0.002

XDegree + XSocInt GB 0.61 ± 0.002 0.17 ± 0.002 0.62 ± 0.001 0.18 ± 0.002
XDegree + XSocInt LR 0.60 ± 0.001 0.17 ± 0.002 0.61 ± 0.001 0.18 ± 0.002

Based on the results presented above, we will select gradient boosting for the comparisons
against the models trained on synthetic data that we will present in the next section.
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Tabla 4.3: Gradient boosting and logistic regression comparison on real
data (holdout 2018)

Classifier training features AUC diff (%) KS diff (%) AUC diff p-value KS diff p-value
XF in 0.70% 1.65% 0.000 0.000

XF in + XDegree + XSocInt 0.84% 1.91% 0.000 0.000
XDegree + XSocInt 1.65% 2.36% 0.000 0.000

4.4.4. Creditworthiness assessment performance on synthetic data
This section aims to know how the performance of a creditworthiness assessment model (the
classifier) behaves when trained on synthetic data and applied to real-world data. Table 4.4
shows the performance indicators on real-world data. Considering all synthesizers are trained
with at least the feature set XF in, the results of training the classifier with XF in are also
displayed for all synthesizers. It is observed that regardless of the synthesizer, training the
classifier incorporating at least feature set XF in produces similar performances in 2018 except
in S02. However, when we analyze how much the model degrades, the model trained with
synthetic XF in from synthesizer S01 is the one that suffers a minor discrimination power
loss. It can be explained in part that a better synthesizer manages to capture better the
proper relationship between the borrower features and the default.

Tabla 4.4: Creditworthiness assessment performance on real data for model
trained on synthetic data

Synthesizer
Experiment

Classifier training
features

holdout 2018 holdout 2019
AUC KS AUC KS

S01 XF in 0.85 ± 0.003 0.53 ± 0.002 0.82 ± 0.002 0.48 ± 0.002
S02 XF in 0.82 ± 0.001 0.51 ± 0.001 0.80 ± 0.001 0.46 ± 0.002
S03 XF in 0.85 ± 0.002 0.55 ± 0.002 0.80 ± 0.002 0.46 ± 0.002
S03 XF in + XDegree + XSocInt 0.85 ± 0.002 0.56 ± 0.003 0.80 ± 0.002 0.47 ± 0.003
S03 XDegree + XSocInt 0.60 ± 0.002 0.16 ± 0.002 0.61 ± 0.003 0.18 ± 0.002

The comparison of performance obtained by the models trained with synthetic data against
the models trained on real-world data is presented in Table 4.5. We can understand this
comparison as the cost of using synthetic data, and it corresponds to the loss of predictive
power to preserve the borrower’s privacy. We can observe that in the best cases, this decrease
in predictive power is approximately 3% and 6% when we measure the performance in AUC
and KS, respectively.

Tabla 4.5: Comparison between models trained using synthetic data and
models trained on real data. ∗∗ denotes when the difference is statistically
significant using 0.05 as the p-value threshold, while ∗ uses 0.1.

Synthesizer
Experiment

Classifier training
features

holdout 2018 holdout 2019
AUC diff KS diff AUC diff KS diff

S01 XF in -3.59%∗∗ -10.09%∗∗ -0.86%∗∗ -3.92%∗∗

S02 XF in -6.24%∗∗ -13.24%∗∗ -3.32%∗∗ -6.48%∗∗

S03 XF in -2.81%∗∗ -6.01%∗∗ -3.21%∗∗ -6.70%∗∗

S03 XF in + XDegree + XSocInt -3.12%∗∗ -5.68%∗∗ -2.54%∗∗ -4.73%∗∗

S03 XDegree + XSocInt -1.85%∗∗ -4.31%∗∗ -0.69%∗∗ 1.10%∗
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4.5. Conclusions
This work aimed to use synthetic data to train creditworthiness assessment models. We used
a massive dataset of 1 million individuals and trained state-of-the-art synthesizer methods
to obtain synthetic data and achieve this goal. Then, we presented a training framework
that allows us to analyze trained models with synthetic data and observe their performance
on real-world data. In addition, we observed their performance one year after being trained
to see how susceptible they are to data drift. Our results show that lower quality synthetic
data is obtained as we increase the number of attributes in the synthesizer. Despite this, it
is possible to use these data to train models that obtain good results in real-world scenarios,
with only a reduction in the predictive power of approximately 3% and 6% when we measure
the performance in AUC and KS, respectively. These findings are of great relevance since they
allow us to train accurate creditworthiness models. At the same time, we keep borrowers’
privacy and encourage financial institutions to strengthen ties with academia and foster
collaboration and research in credit scoring without the privacy and security restrictions.

4.6. Future Work
Our future work will delve into how to synthesize social interactions’ information in the
form of graphs and not as added attributes to the training dataset since, as we show, this
deteriorates the quality of the synthetic data.
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Chapter 5

Conclusions

This doctoral thesis has produced valuable insights and advancements to enhance the cred-
itworthiness assessment. We have identified valuable knowledge impacting the predictive
performance of credit scoring models by blending different network representation learning
methodologies and using synthetic data for training models. Our first study’s conclusions
emphasize the importance of incorporating social-interaction data into credit scoring, espe-
cially for thin-file borrowers. We have improved creditworthiness assessment performance
by combining various graph representation learning approaches, such as hand-crafted feature
engineering and Graph Neural Networks. This methodology enhances the predictive power
of credit scoring models and contributes to financial inclusion by providing a proper credit
risk assessment for unbanked applicants.

Our second study explored the dynamics of creditworthiness assessment performance based
on credit history, loan repayment behavior, and social network data. Our findings indicate
that incorporating social interaction features adds significant value, particularly in the early
stages of the lending process. Additionally, as more credit history becomes available, credit-
worthiness assessment performance increases at a decreasing rate. This effect was observed up
to six months from the loan granting when it stabilized. This finding is meaningful because it
reduces the temporal extent of the datasets necessary to train and research behavioral credit
scoring models. These insights allow for more efficient risk management, expand the possibil-
ities of financial inclusion, and leverage second-chance banking, providing an opportunity for
borrowers with a negative credit history but a recent good credit behavior to regain access
to the financial system at an accelerated pace.

Lastly, the third study introduces the use of synthetic data in training creditworthiness
assessment models. Our results demonstrate that these models can perform well in real-world
scenarios while preserving borrower privacy. This approach opens up opportunities for col-
laboration between financial institutions and academia, encouraging research and innovation
in credit scoring without compromising privacy and security.

These conclusions highlight the potential for enhancing creditworthiness assessment mod-
els through integrating social-interaction data, understanding the dynamics of credit behav-
ior, and leveraging synthetic data for training purposes. By addressing these key aspects,
we can further refine credit risk management procedures, promote financial inclusion, and
facilitate meaningful collaborations between academia and industry to pursue more accurate
and robust credit scoring methodologies.

64



Bibliography

Akoglu, H. (2018, 08). User’s guide to correlation coefficients. Turkish Journal of Emergency
Medicine, 18 (3), 91–93. doi: 10.1016/j.tjem.2018.08.001

Anderson, R. A. (2022). Credit intelligence and modelling: Many paths through the forest of
credit rating and scoring. Oxford University Press.

Apostolik, R., Donohue, C., & Went, P. (2009). Foundations of banking risk: an overview
of banking, banking risks, and risk-based banking regulation (Vol. 507). John Wiley &
Sons Incorporated.

Arsov, N., & Mirceva, G. (2019). Network embedding: An overview. arXiv preprint
arXiv:1911.11726 .

Aziz, S., & Dowling, M. (2019). Machine learning and ai for risk management. In Dis-
rupting finance: Fintech and strategy in the 21st century (pp. 33–50). Cham: Springer
International Publishing. doi: 10.1007/978-3-030-02330-0\_3

Baidoo, E. (2020). A credit analysis of the unbanked and underbanked: an argument for
alternative data (PhD dissertation). Analytics and Data Science Institute, Kennesaw
State University.

Banu, I. M. (2013). The impact of credit on economic growth in the global crisis con-
text. Procedia Economics and Finance, 6 , 25-30. (International Economic Confer-
ence of Sibiu 2013 Post Crisis Economy: Challenges and Opportunities, IECS 2013)
doi: https://doi.org/10.1016/S2212-5671(13)00109-3

Bhalla, D. (2016). Observation and performance window [Computer software manual]. (Re-
trieved from https://www.listendata.com/2016/08/observation-and-performance
-window.html. Accessed July 10, 2022)

Biron, M., & Bravo, C. (2014). On the discriminative power of credit scoring systems
trained on independent samples. In M. Spiliopoulou, L. Schmidt-Thieme, & R. Janning
(Eds.), Data analysis, machine learning and knowledge discovery (pp. 247–254). Cham:
Springer International Publishing.

Bradley, A. P. (1997). The use of the area under the roc curve in the evaluation of machine
learning algorithms. Pattern recognition, 30 (7), 1145–1159.

Bravo, C., Thomas, L. C., & Weber, R. (2015). Improving credit scoring by differentiating
defaulter behaviour. The Journal of the Operational Research Society, 66 (5), 771–781.

Bravo, C., & Óskarsdóttir, M. (2020). Evolution of credit risk using a personalized pagerank
algorithm for multilayer networks. arXiv preprint arXiv:2005.12418 .

Breiman, L. (2001). Random forests. Machine learning, 45 (1), 5–32.

65

https://www.listendata.com/2016/08/observation-and-performance-window.html
https://www.listendata.com/2016/08/observation-and-performance-window.html


Brown, K., & Moles, P. (2014). Credit risk management. K. Brown & P. Moles, Credit Risk
Management, 16 .

Carta, S., Ferreira, A., Reforgiato Recupero, D., & Saia, R. (2021). Credit scoring by
leveraging an ensemble stochastic criterion in a transformed feature space. Progress in
Artificial Intelligence, 10 (4), 417–432.

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining
(p. 785–794). New York, NY, USA: Association for Computing Machinery. doi: 10.1145/
2939672.2939785

Cnudde, S. D., Moeyersoms, J., Stankova, M., Tobback, E., Javaly, V., & Martens, D. (2019).
What does your facebook profile reveal about your creditworthiness? using alternative
data for microfinance. Journal of the Operational Research Society, 70 (3), 353-363.
doi: 10.1080/01605682.2018.1434402

Cusmano, L. (2018). SME and entrepreneurship financing: The role of credit guarantee
schemes and mutual guarantee societies in supporting finance for small and medium-
sized enterprises. OECD SME and Entrepreneurship Papers, No. 1 . doi: 10.1787/
35b8fece-en

Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in neural information
processing systems (pp. 3844–3852).

Diallo, B., & Al-Titi, O. (2017). Local growth and access to credit: Theory and evidence.
Journal of Macroeconomics, 54 , 410-423. (Banking in Macroeconomic Theory and
Policy) doi: https://doi.org/10.1016/j.jmacro.2017.07.005

Djeundje, V. B., Crook, J., Calabrese, R., & Hamid, M. (2021). Enhancing credit scoring
with alternative data. Expert Systems with Applications, 163 , 113766. doi: https://
doi.org/10.1016/j.eswa.2020.113766

Fang, F., & Chen, Y. (2019). A new approach for credit scoring by directly maximizing the
kolmogorov–smirnov statistic. Computational Statistics & Data Analysis, 133 , 180–
194.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The kdd process for extracting useful
knowledge from volumes of data. Communications of the ACM , 39 (11), 27–34.

Fey, M., & Lenssen, J. E. (2019). Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428 .

Fiore, U., De Santis, A., Perla, F., Zanetti, P., & Palmieri, F. (2019). Using generative adver-
sarial networks for improving classification effectiveness in credit card fraud detection.
Information Sciences, 479 , 448-455.

Flach, P. A. (2012). Machine learning - the art and science of algorithms that make sense
of data. Cambridge University Press.

Freedman, S., & Jin, G. Z. (2017). The information value of online social networks: Lessons
from peer-to-peer lending. International Journal of Industrial Organization, 51 , 185 -
222. doi: https://doi.org/10.1016/j.ijindorg.2016.09.002

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.

66



Annals of statistics, 1189–1232.
García, V., Marqués, A. I., & Sánchez, J. S. (2019). Exploring the synergetic effects of

sample types on the performance of ensembles for credit risk and corporate bankruptcy
prediction. Information Fusion, 47 , 88-101. doi: https://doi.org/10.1016/j.inffus.2018
.07.004

Gicić, A., & Subasi, A. (2019). Credit scoring for a microcredit data set using the syn-
thetic minority oversampling technique and ensemble classifiers. Expert Systems, 36 (2),
e12363.

Giudici, P., Hadji-Misheva, B., & Spelta, A. (2020). Network based credit risk models.
Quality Engineering, 32 (2), 199-211. doi: 10.1080/08982112.2019.1655159

Goel, A., & Rastogi, S. (2021). Credit scoring of small and medium enterprises: a behavioural
approach. Journal of Entrepreneurship in Emerging Economies.

Goh, R. Y., & Lee, L. S. (2019). Credit scoring: a review on support vector machines and
metaheuristic approaches. Advances in Operations Research, 2019 .

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Grover, A., & Leskovec, J. (2016). Node2vec: Scalable feature learning for networks. In

Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and
data mining (p. 855–864). New York, NY, USA: Association for Computing Machinery.
doi: 10.1145/2939672.2939754

Gunnarsson, B. R., vanden Broucke, S., Baesens, B., óskarsdóttir, M., & Lemahieu, W.
(2021). Deep learning for credit scoring: Do or don’t? European Journal of Operational
Research. doi: https://doi.org/10.1016/j.ejor.2021.03.006

Hagberg, A., Swart, P., & SChult, D. (2008). Exploring network structure, dynamics, and
function using networkx. In In proceedings of the 7th python in science conference
(scipy (pp. 11–15).

Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Representation learning on graphs:
Methods and applications. arXiv preprint arXiv:1709.05584 .

Ho, P. S., Mo, G. J., & Chan-Hee, J. (2004). Receiver operating characteristic (roc) curve:
Practical review for radiologists. kjr , 5 (1), 11-18.

Hodges, J. (1958). The significance probability of the smirnov two-sample test. Arkiv för
Matematik, 3 (5), 469–486.

Hripcsak, G., & Rothschild, A. S. (2005, 05). Agreement, the F-Measure, and Reliability
in Information Retrieval. Journal of the American Medical Informatics Association,
12 (3), 296-298.

Hsieh, N.-C. (2004). An integrated data mining and behavioral scoring model for analyzing
bank customers. Expert Systems with Applications, 27 (4), 623-633. doi: https://doi.org/
10.1016/j.eswa.2004.06.007

Huang, C.-L., Chen, M.-C., & Wang, C.-J. (2007). Credit scoring with a data mining
approach based on support vector machines. Expert Systems with Applications, 33 (4),
847-856. doi: https://doi.org/10.1016/j.eswa.2006.07.007

Hurley, M., & Adebayo, J. (2017). Credit scoring in the era of big data. Yale Journal of Law
and Technology, 18 (1), 5.

67



Kao, L.-J., Lin, F., & Yu, C. Y. (2021). Bayesian behavior scoring model. Journal of Data
Science, 11 (3), 433-450. doi: 10.6339/JDS.201307_11(3).0004

Kaufman, S., Rosset, S., Perlich, C., & Stitelman, O. (2012, 12). Leakage in data mining:
Formulation, detection, and avoidance. ACM Trans. Knowl. Discov. Data, 6 (4). doi: 10
.1145/2382577.2382579

Kennedy, K., Mac Namee, B., Delany, S., O’Sullivan, M., & Watson, N. (2013). A window of
opportunity: Assessing behavioural scoring. Expert Systems with Applications, 40 (4),
1372-1380. doi: https://doi.org/10.1016/j.eswa.2012.08.052

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 .

Kipf, T. N., & Welling, M. (2016a). Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 .

Kipf, T. N., & Welling, M. (2016b). Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308 .

Kleinberg, J. M. (1999, 9). Authoritative sources in a hyperlinked environment. J. ACM ,
46 (5), 604–632. doi: 10.1145/324133.324140

Kozeny, V. (2015). Genetic algorithms for credit scoring: Alternative fitness func-
tion performance comparison. Expert Systems with Applications, 42 (6), 2998-3004.
doi: https://doi.org/10.1016/j.eswa.2014.11.028

Kozodoi, N., Lessmann, S., Papakonstantinou, K., Gatsoulis, Y., & Baesens, B. (2019). A
multi-objective approach for profit-driven feature selection in credit scoring. Decision
Support Systems, 120 , 106-117. doi: https://doi.org/10.1016/j.dss.2019.03.011

Kyeong, S., Kim, D., & Shin, J. (2022). Can system log data enhance the performance of
credit scoring?-evidence from an internet bank in korea. Sustainability, 14 (1). doi: 10
.3390/su14010130

Lei, K., Xie, Y., Zhong, S., Dai, J., Yang, M., & Shen, Y. (2020). Generative adversarial
fusion network for class imbalance credit scoring. Neural Computing and Applications,
32 (12), 8451–8462.

Leskovec, J., & Sosič, R. (2016). Snap: A general-purpose network analysis and graph-mining
library. ACM Transactions on Intelligent Systems and Technology (TIST), 8 (1), 1.

Letizia, E., & Lillo, F. (2019). Corporate payments networks and credit risk rating. EPJ
Data Science, 8 (1), 21.

Liu, Y. (2001). New issues in credit scoring application. Work report No, 16 .
Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions.

In Proceedings of the 31st international conference on neural information processing
systems (pp. 4765–4774). Red Hook, NY, USA: Curran Associates Inc.

Luo, C., Wu, D., & Wu, D. (2017). A deep learning approach for credit scoring using
credit default swaps. Engineering Applications of Artificial Intelligence, 65 , 465-470.
doi: https://doi.org/10.1016/j.engappai.2016.12.002

Maldonado, S., Pérez, J., & Bravo, C. (2017). Cost-based feature selection for support vector
machines: An application in credit scoring. European Journal of Operational Research,
261 (2), 656 - 665. doi: https://doi.org/10.1016/j.ejor.2017.02.037

68



Mashanovich, N. (2017). Credit scoring: Part 2 – credit scorecard modelling methodol-
ogy [Computer software manual]. (Retrieved from https://www.worldprogramming
.com/blog/datascience/credit_scoring_pt2/". Accessed July 10, 2022)

Masyutin, A. (2015). Credit scoring based on social network data. Business Informatics,
3 (33), 15-23.

McHugh, M. L. (2013). The chi-square test of independence. Biochemia medica, 23 (2),
143–149.

Moscato, V., Picariello, A., & Sperlí, G. (2021). A benchmark of machine learning approaches
for credit score prediction. Expert Systems with Applications, 165 , 113986. doi: https://
doi.org/10.1016/j.eswa.2020.113986

Muñoz-Cancino, R., Bravo, C., Ríos, S. A., & Graña, M. (2022). Assessment of credit-
worthiness models privacy-preserving training with synthetic data. In Hybrid artificial
intelligent systems (pp. 375–384). Cham: Springer International Publishing.

Muñoz-Cancino, R., Bravo, C., Ríos, S. A., & Graña, M. (2023a). On the combination
of graph data for assessing thin-file borrowers’ creditworthiness. Expert Systems with
Applications, 213 , 118809. doi: https://doi.org/10.1016/j.eswa.2022.118809

Muñoz-Cancino, R., Bravo, C., Ríos, S. A., & Graña, M. (2023b). On the dynamics of credit
history and social interaction features, and their impact on creditworthiness assessment
performance. Expert Systems with Applications, 218 , 119599. doi: https://doi.org/
10.1016/j.eswa.2023.119599

Muñoz-Cancino, R., Rios, S. A., Goic, M., & Graña, M. (2021). Non-intrusive assessment
of covid-19 lockdown follow-up and impact using credit card information: Case study
in chile. International Journal of Environmental Research and Public Health, 18 (11).
doi: 10.3390/ijerph18115507

Muñoz-Cancino, R., Ríos, S. A., & Graña, M. (2023). Clustering cities over features extracted
from multiple virtual sensors measuring micro-level activity patterns allows one to
discriminate large-scale city characteristics. Sensors, 23 (11). doi: 10.3390/s23115165

Nargesian, F., Samulowitz, H., Khurana, U., Khalil, E. B., & Turaga, D. (2017). Learning
feature engineering for classification. In Proceedings of the twenty-sixth international
joint conference on artificial intelligence, IJCAI-17 (pp. 2529–2535). doi: 10.24963/
ijcai.2017/352

Neto, R., Jorge Adeodato, P., & Carolina Salgado, A. (2017). A framework for data trans-
formation in credit behavioral scoring applications based on model driven develop-
ment. Expert Systems with Applications, 72 , 293-305. doi: https://doi.org/10.1016/
j.eswa.2016.10.059

Ngwenduna, K. S., & Mbuvha, R. (2021). Alleviating class imbalance in actuarial applications
using generative adversarial networks. Risks, 9 (3).

Nikolaidis, D., Doumpos, M., & Zopounidis, C. (2017). Exploring population drift on
consumer credit behavioral scoring. In Operational research in business and economics
(pp. 145–165). Springer.

Niu, B., Ren, J., & Li, X. (2019, 12). Credit scoring using machine learning by combing
social network information: Evidence from peer-to-peer lending. Information, 10 (12),
397. doi: 10.3390/info10120397

69

https://www.worldprogramming.com/blog/datascience/credit_scoring_pt2/"
https://www.worldprogramming.com/blog/datascience/credit_scoring_pt2/"


Ntwiga, D. B. (2016). Social network analysis for credit risk modeling (Unpublished doctoral
dissertation). University of Nairobi.

Óskarsdóttir, M., Bravo, C., Vanathien, J., & Baesens, B. (2018a, 11). Credit scoring for
good: enhancing financial inclusion with smartphone-based microlending. In Proceed-
ings of the thirty ninth international conference on information systems. San Francisco,
California, USA.

Óskarsdóttir, M., Bravo, C., Vanathien, J., & Baesens, B. (2018b, 7). Social network analytics
in micro-lending. In 29th european conference on operational research (08/07/18 -
11/07/18). Valencia, Spain.

Óskarsdóttir, M., & Bravo, C. (2021). Multilayer network analysis for improved credit risk
prediction. Omega, 105 , 102520. doi: https://doi.org/10.1016/j.omega.2021.102520

Óskarsdóttir, M., Bravo, C., Sarraute, C., Vanthienen, J., & Baesens, B. (2019). The value
of big data for credit scoring: Enhancing financial inclusion using mobile phone data
and social network analytics. Applied Soft Computing, 74 , 26 - 39. doi: https://doi.org/
10.1016/j.asoc.2018.10.004

Óskarsdóttir, M., Bravo, C., Verbeke, W., Baesens, B., & Vanthienen, J. (2018). Effects of
network architecture on model performance when predicting churn in telco.

Óskarsdóttir, M., Bravo, C., Verbeke, W., Sarraute, C., Baesens, B., & Vanthienen, J. (2017).
Social network analytics for churn prediction in telco: Model building, evaluation and
network architecture. Expert Systems with Applications, 85 , 204 - 220. doi: https://
doi.org/10.1016/j.eswa.2017.05.028

Paleologo, G., Elisseeff, A., & Antonini, G. (2010). Subagging for credit scoring models.
European Journal of Operational Research, 201 (2), 490-499. doi: https://doi.org/10
.1016/j.ejor.2009.03.008

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., . . . others (2019).
Pytorch: An imperative style, high-performance deep learning library. Advances in
neural information processing systems, 32 , 8026–8037.

Patki, N., Wedge, R., & Veeramachaneni, K. (2016, Oct). The synthetic data vault. In 2016
ieee international conference on data science and advanced analytics (dsaa) (p. 399-
410).

Putra, S. G. P., Joshi, B., Redi, J., & Bozzon, A. (2020). A credit scoring model for smes
based on social media data. In M. Bielikova, T. Mikkonen, & C. Pautasso (Eds.), Web
engineering (pp. 113–129). Cham: Springer International Publishing.

Rabecca, H., Atmaja, N. D., & Safitri, S. (2018). Psychometric credit scoring in indonesia
microfinance industry: A case study in pt amartha mikro fintek. In The 3rd interna-
tional conference on management in emerging markets (icmem 2018) (pp. 620–631).
Bali, Indonesia.

Radović, O., Marinković, S., & Radojičić, J. (2021). Credit scoring with an ensemble deep
learning classification methods–comparison with traditional methods. Facta Universi-
tatis, Series: Economics and Organization, 029–043.

Rajan, R. G., & Zingales, L. (1996, September). Financial dependence and growth (Working
Paper No. 5758). National Bureau of Economic Research. doi: 10.3386/w5758

70



Rathi, S., Verma, J. P., Jain, R., Nayyar, A., & Thakur, N. (2022). Psychometric profiling
of individuals using twitter profiles: A psychological natural language processing based
approach. Concurrency and Computation: Practice and Experience, e7029. doi: 10
.1002/cpe.7029

Roa, L., Correa-Bahnsen, A., Suarez, G., Cortés-Tejada, F., Luque, M. A., & Bravo, C.
(2021). Super-app behavioral patterns in credit risk models: Financial, statistical and
regulatory implications. Expert Systems with Applications, 169 , 114486. doi: https://
doi.org/10.1016/j.eswa.2020.114486

Roa, L., Rodríguez-Rey, A., Correa-Bahnsen, A., & Valencia, C. (2021). Supporting financial
inclusion with graph machine learning and super-app alternative data.

Romero, D. M., Uzzi, B., & Kleinberg, J. (2019). Social networks under stress: Specialized
team roles and their communication structure. ACM Transactions on the Web (TWEB),
13 (1), 1–24.

Ruiz, S., Gomes, P., Rodrigues, L., & Gama, J. (2017). Credit scoring in microfinance
using non-traditional data. In E. Oliveira, J. Gama, Z. Vale, & H. Lopes Cardoso
(Eds.), Progress in artificial intelligence (pp. 447–458). Cham: Springer International
Publishing.

Shumovskaia, V., Fedyanin, K., Sukharev, I., Berestnev, D., & Panov, M. (2020). Linking
bank clients using graph neural networks powered by rich transactional data.

Siddiqi, N. (2012). Credit risk scorecards: developing and implementing intelligent credit
scoring (Vol. 3). John Wiley & Sons.

Simumba, N., Okami, S., Kodaka, A., & Kohtake, N. (2021). Spatiotemporal integration
of mobile, satellite, and public geospatial data for enhanced credit scoring. Symmetry,
13 (4). doi: 10.3390/sym13040575

Stevenson, M., Mues, C., & Bravo, C. (2021). The value of text for small business default
prediction: A deep learning approach. European Journal of Operational Research,
295 (2), 758-771. doi: https://doi.org/10.1016/j.ejor.2021.03.008

Sukharev, I., Shumovskaia, V., Fedyanin, K., Panov, M., & Berestnev, D. (2020). Ews-gcn:
Edge weight-shared graph convolutional network for transactional banking data.

Tan, T., & Phan, T. Q. (2018). Social media-driven credit scoring: The predictive value of
social structures. Available at SSRN 3217885 .

The Basel Committee on Banking Supervision. (2000, 09). Principles for the management
of credit risk. Basel Committee Publications, 75 .

The Global Financial Index. (2022). The global findex database 2021: Financial inclu-
sion, digital payments, and resilience in the age of covid-19. (Retrieved from https://
openknowledge .worldbank .org/bitstream/handle/10986/37578/9781464818974
.pdf. Accessed July 3, 2022)

Thomas, L., Crook, J., & Edelman, D. (2017). Credit scoring and its applications. SIAM.
Thomas, L. C. (2000). A survey of credit and behavioural scoring: forecasting financial

risk of lending to consumers. International Journal of Forecasting, 16 (2), 149-172.
doi: https://doi.org/10.1016/S0169-2070(00)00034-0

Torres, D. G. (2018). Generation of synthetic data with generative adversarial networks

71

https://openknowledge.worldbank.org/bitstream/handle/10986/37578/9781464818974.pdf
https://openknowledge.worldbank.org/bitstream/handle/10986/37578/9781464818974.pdf
https://openknowledge.worldbank.org/bitstream/handle/10986/37578/9781464818974.pdf


(Unpublished doctoral dissertation). Ph. D. Thesis, Royal Institute of Technology,
Stockholm, Sweden, 26 November.

Van, L. T.-H., Vo, A. T., Nguyen, N. T., & Vo, D. H. (2021). Financial inclusion and
economic growth: An international evidence. Emerging Markets Finance and Trade,
57 (1), 239-263. doi: 10.1080/1540496X.2019.1697672

Verbraken, T., Bravo, C., Weber, R., & Baesens, B. (2014). Development and application
of consumer credit scoring models using profit-based classification measures. European
Journal of Operational Research, 238 (2), 505 - 513. doi: https://doi.org/10.1016/
j.ejor.2014.04.001

Vlasselaer, V. V., Bravo, C., Caelen, O., Eliassi-Rad, T., Akoglu, L., Snoeck, M., & Baesens,
B. (2015). Apate: A novel approach for automated credit card transaction fraud
detection using network-based extensions. Decision Support Systems, 75 , 38 - 48.
doi: https://doi.org/10.1016/j.dss.2015.04.013

Wan, Z., Zhang, Y., & He, H. (2017). Variational autoencoder based synthetic data genera-
tion for imbalanced learning. In 2017 ieee symposium series on computational intelli-
gence (ssci) (p. 1-7).

Wei, Y., Yildirim, P., Van den Bulte, C., & Dellarocas, C. (2016). Credit scoring with social
network data. Marketing Science, 35 (2), 234-258. doi: 10.1287/mksc.2015.0949

West, D. (2000). Neural network credit scoring models. Computers & Operations Research,
27 (11), 1131-1152. doi: https://doi.org/10.1016/S0305-0548(99)00149-5

Wirth, R., & Hipp, J. (2000). Crisp-dm: Towards a standard process model for data
mining. In Proceedings of the 4th international conference on the practical applications
of knowledge discovery and data mining (Vol. 1, pp. 29–39).

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2020). A comprehensive
survey on graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems, 1-21. doi: 10.1109/TNNLS.2020.2978386

Xu, L. (2020). Synthesizing tabular data using conditional gan (Unpublished doctoral dis-
sertation). Massachusetts Institute of Technology.

Xu, L., Skoularidou, M., Cuesta-Infante, A., & Veeramachaneni, K. (2019). Modeling tabular
data using conditional GAN. CoRR, abs/1907.00503 .

Zeng, G., & Zeng, E. (2019). On the three-way equivalence of auc in credit scoring with tied
scores. Communications in Statistics-Theory and Methods, 48 (7), 1635–1650.

Zhang, M., & Chen, Y. (2018). Link prediction based on graph neural networks. In Advances
in neural information processing systems (pp. 5165–5175).

72


	Resumen
	Table of Content
	List of Tables
	List of Figures

	1 Introduction
	1.1 Motivation
	1.2 Research Problem
	1.2.1 General Objective
	1.2.2 Specific Aims
	1.2.2.1 Aim 1: On the combination of graph data
	1.2.2.2 Aim 2: On the dynamics of graph data features and their impact on performance
	1.2.2.3 Aim 3: On the training of credit scoring models using synthetic data


	1.3 Proposed Methodology
	1.4 Contributions and outline
	1.5 Publications
	1.6 Structure of the thesis

	2 On the combination of graph data for assessing thin-file borrowers' creditworthiness
	2.1 Introduction
	2.2 Background and Related Work
	2.2.1 Credit Risk Management
	2.2.2 Credit Risk and Social Networks

	2.3 Representation Learning on Networks
	2.3.1 Feature Engineering
	2.3.2 Network Embeddings
	2.3.3 Graph Neural Networks (GNN)
	2.3.3.1 Graph Convolutional Networks
	2.3.3.2 Derivation of GCN from Spectral Methods
	2.3.3.3 Graph Autoencoders (GAEs)


	2.4 Data Description
	2.4.1 Ethical and Privacy Protection Considerations
	2.4.2 Social-Interaction Data
	2.4.3 Financial Data
	2.4.4 Network Construction

	2.5 Experimental Design and Methodology
	2.5.1 Datasets
	2.5.2 Target
	2.5.3 Traditional and Graph Representation Learning Features
	2.5.4 Feature Subsets
	2.5.5 Evaluation Metrics
	2.5.6 Methodology
	2.5.7 Experimental Setup

	2.6 Results and Discussion
	2.6.1 Implementation Details
	2.6.2 Execution Time
	2.6.3 Model Performance Results
	2.6.3.1 Model Performance Using Traditional Features
	2.6.3.2 Model Performance Using Graph Representation Learning Features
	2.6.3.3 The Advantages of Blending Graph Representation Learning

	2.6.4 Feature Importance Analysis
	2.6.4.1 Business Credit Scoring 
	2.6.4.2 Personal Credit Scoring 


	2.7 Conclusions

	3 On the dynamics of credit history and social interaction features, and their impact on creditworthiness assessment performance
	3.1 Introduction
	3.2 Background and Related Work
	3.3 Creditworthiness Assessment Methodology
	3.4 Experimental Setup
	3.4.1 Dataset Overview
	3.4.1.1 Target
	3.4.1.2 Dataset Description

	3.4.2 Dataset Engineering Pipeline
	3.4.3 Data Sources
	3.4.3.1 Traditional Data Sources: Borrower Data
	3.4.3.2 Alternative Data Sources: Social Interaction Data

	3.4.4 Borrower and Social Network Features
	3.4.5 Experiments

	3.5 Results and Discussion
	3.5.1 Experiment E1: Borrower Credit History
	3.5.2 Experiment E2: Borrower Credit History and Repayment Features
	3.5.3 Experiment E3: borrower credit history, repayment features and social interaction features
	3.5.4 Importance of Social Interaction Features Over Time

	3.6 Conclusions and Future Work

	4 Assessment of creditworthiness models privacy-preserving training with synthetic data
	4.1 Introduction
	4.2 Related Work
	4.2.1 Credit Scoring
	4.2.2 Generative models for synthetic data generation
	4.2.2.1 Generative Adversarial Networks
	4.2.2.2 Variational autoencoders


	4.3 Methodology and Experimental Design
	4.3.1 Dataset
	4.3.2 Synthetic data generation
	4.3.3 Borrower's creditworthiness assessment
	4.3.4 Evaluation Metrics
	4.3.5 Experimental setup

	4.4 Results and Discussion
	4.4.1 Implementation Details
	4.4.2 Synthetic Data Generation Performance
	4.4.3 Creditworthiness assessment performance on real data
	4.4.4 Creditworthiness assessment performance on synthetic data

	4.5 Conclusions
	4.6 Future Work

	5 Conclusions
	Bibliography



