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MANIPULACIÓN DE LUZ COMPRIMIDA EN UN SISTEMA
TOPOLÓGICO UNI-DIMENSIONAL

Durante el siglo XX, se evidenciaron las limitaciones de la física clásica. Esta nos brinda
una comprensión adecuada del mundo cotidiano, pero se queda corta al intentar describir
fenómenos en escalas extremadamente grandes o diminutas. Es aquí donde entra en juego
la física cuántica, que se encarga de describir la naturaleza a niveles atómicos y subatómi-
cos. En este dominio emergen propiedades cuánticas únicas, las cuales posibilitan fenómenos
y tecnologías sin paralelo en el ámbito clásico. En los últimos años, los creciente avances
tecnológicos en el control y uso de propiedades cuánticas muestran la posibilidad futura de
crear, propagar y usar de forma confiable y escalable los sistemas cuánticos.
Un ejemplo de tecnología actual que utiliza propiedades cuánticas es el estado comprim-
ido del campo electromagnético (squeezed state), que permite aumentar la precisión en una
cuadratura del campo a costa de perder en la cuadratura ortogonal. Han sido principalmente
utilizados en metrología [1], más famosamente en la detección de ondas gravitacionales [2],
y en la computación cuántica [3]. Entre los sistemas para propagar luz, se encuentran las
guías de onda, en ellas, la luz puede ser propagada y guiada dentro de un medio al cambiar
localmente el índice de refracción. Crear varias guías de onda forman una red fotónica y la
luz puede progaparse a través de ellas de forma análoga a un electrón en una red cristalina.
De la mano con esto, los aislantes topológicos en la materia condensada, se caracterizan por
un número topológico obtenido del bulto de la red. Este número está relacionado con la
aparición de estados localizados robustos en el borde. Quizás el ejemplo más famoso es el
efecto Hall cuántico [4], donde la precisión de la conductancia medida permitió la redefini-
ción de constantes universales [5]. Esto no es único a la electrónica y, en los últimos años,
ha habido un gran interés en el área de fotónica topológica debido a la capacidad de estos
sistemas para controlar y proteger a la luz usando las propiedades topológicas [6, 7, 8]. A
pesar de que luz cuántica ha sido utilizada en algunos casos [9], los efectos topológicos en las
propiedades cuánticas de la luz aún no han sido completamente explicados y comprendidos.
Esta tesis parte de la premisa de utilizar la robustez de la luz comprimida debido a los efectos
conocidos de la topología [10]. Esto se realiza a través de una red fotónica topológica unidi-
mensional, en la cuál, al modificar el sistema sin romper la topología, generamos interacciones
entre la luz comprimida. Esto se explica y caracteriza utilizando los parámetros del sistema
y más tarde, se prueba la robustez para comprender los beneficios que otorga la topología.
La búsqueda de tecnologías cuánticas confiables y robustas para propagar y manipular la luz
cuántica todavía continúa. Esperamos que esta tesis impulse el uso de sistemas topológicos
para mejorar el control y la estabilidad de la luz comprimida a través de guías de onda.
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MANIPULATION OF SQUEEZED LIGHT IN A ONE-DIMENSIONAL
TOPOLOGICAL SYSTEM

During the 20th century, the limitations of classical physics became evident. While classical
physics provides us with a proper understanding of the everyday world, it falls short when
attempting to describe phenomena on extremely large or tiny scales. This is where quantum
physics comes into play, which deals with describing nature at atomic and subatomic levels.
In this domain, unique quantum properties emerge, enabling phenomena and technologies
unparalleled in the classical realm. In recent years, the growing technological advancements
in controlling and utilizing quantum properties show the future potential to create, propa-
gate, and reliably scale quantum systems.
An example of current technology utilizing quantum properties is the squeezed state of the
electromagnetic field, which allows for increased precision in one quadrature of the field at the
expense of losing precision in the orthogonal quadrature. These states have mainly been used
in metrology [1], most famously in the detection of gravitational waves [2], and in quantum
computing [3]. Among light propagation systems, waveguides are present where light can be
guided and propagated within a medium by locally changing the refractive index. Multiple
waveguides create a photonic network, and light can propagate through them similarly to an
electron in a crystalline lattice. Alongside this, topological insulators in condensed matter
are characterized by a topological number obtained from the lattice’s bulk. This number is
related to the appearance of robust localized states at the edge. Perhaps the most famous
example is the quantum Hall effect [4], where the precision of measured conductance led to
the redefinition of universal constants [5]. This phenomenon is not unique to electronics, and
in recent years, there has been great interest in the field of topological photonics due to these
systems’ ability to control and protect light using topological properties [6, 7, 8]. Despite
quantum light having been used in some cases [9], the topological effects on the quantum
properties of light have not yet been fully explained and understood.
This thesis is based on the premise of utilizing the robustness of squeezed light due to known
topological effects [10]. This is achieved through a one-dimensional topological photonic net-
work, in which, by modifying the system without breaking topology, we generate interactions
among squeezed light. This is explained and characterized using the system’s parameters,
and later, the robustness is tested to understand the benefits conferred by topology. The
search for reliable and robust quantum technologies to propagate and manipulate quantum
light continues. We hope that this thesis will drive the use of topological systems to enhance
the control and stability of squeezed light through waveguides.
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Chapter 1

Introduction

This thesis consists of six chapters, the first 4 chapters will set the fundamentals to under-
stand the theory. The fifth chapter fills all the details and bounds together with the topic
explained before with the purpose of presenting the system under study. The results, analy-
sis, and conclusions are shown in the last chapter.
The first chapter briefly introduces the history of topological systems, mainly in condensed
matter, and explains the basic properties of topological systems and their relation to sym-
metries. To do this we use the Su-Schrieffer–Heeger model and calculate its band structure,
topological invariant, and edge states while addressing the limits of the topology. We also
introduce localized states in domain walls and how to move them using a time-dependent
Hamiltonian.
The second chapter introduces photonic systems and the propagation of light through waveg-
uides. The evolution of light is calculated using the coupled mode approximation for one and
two waveguides to then generalize a photonic lattice. We finalize this section by commenting
on the experimental realization and the advantages waveguides have in the fabrication of
lattices.
In the third section, quantum light is presented by quantizing the electromagnetic field. We
define the principal states and tools used to represent and study the properties of the fields.
with special attention to the squeezed state of light, the main state used in this investigation.
In the fourth section, we comment on propagation quantum states using the coupled-mode
theory, the definition of topology for photonic systems called topological photonics, and the
principal differences between bosonic and fermionic systems.
In the fifth section, preliminary topics about quantum light on photonic and topological sys-
tems are discussed in order to fully understand the results and conclusions. This consists on
two works where the evolution of squeezed light inside a dimer and a topological lattice is
studied. Finalizing by presenting the numerical method used to calculate expectation values.
The last section consists of the setup, results, and conclusions of this investigation. The
setup consists of topological states localized on domain walls that through time-dependent
Hamiltonian are moved across the system and put next to each other. By injecting squeezed
light in these sites it is possible for the light to interact generating interference between them.
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We study the effects these interactions have on the quantum properties of the squeezed state
and the advantages the topology brings against different kinds of disorder.
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Chapter 2

Topological systems

2.1. Introduction to topological systems
A topological insulator has the properties of being an insulator in the bulk while hosting
conductive states on the edges, these states are related to a topological invariant defined by
the geometry of the wave functions obtained from the periodic (edge-less) system. As long
as the topological number remains, the states will possess localization and robustness.
To introduce these systems we start with the quantum hall effect [4]. In this experiment
when an electron gas is confined in two dimensions and placed under a strong magnetic field,
a current appears on the edges with a conductance quantized in multiples of e2/ℏ. The
precision in the measured conductivity was never seen before, this was the beginning of a
new area in physics called topological insulators, and later, it even impulsed the redefinition
of universal constants [5].
This precise conductivity in the surface (edge) of the system was attributed to the topological
quantity called the Chern number [11] defined by the eigenstates of the infinite version of the
system. This relation between the appearance of edge states and bulk properties is called the
bulk-boundary correspondence. Despite these amazing properties, strong magnetic fields and
confined 2D electrons are specific conditions for the phenomena to occur. It was not until
1988 that F. D. M. Haldane [12] proposed a theoretical honey-comb lattice with complex
second-neighbor coupling giving a locally magnetic-like phase between sites but a null global
magnetic field on each unit cell. Haldane obtained a Chern number related to the surface
states just like in the quantum hall effect. Even though this system was not experimentally
plausible at the time, the theoretical consequences gave a second kick to topological systems,
they are now depending on the configuration and interaction inside the lattice rather than
external effects.
Kane and Mele made the next milestone in 2005 [13] when they managed to get helicoidal
surface states polarized by their spin. Their system consisted of a honeycomb lattice with
spin-orbit interaction, and it made it possible to induce a topological phase without breaking
time-reversal symmetry. This system was called the quantum spin hall effect. In 2007,
just two years later, it was experimentally realized in HgTe quantum wells [14] setting the
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topological insulators as a whole new branch in physics.
Since then, topological systems have been extensively studied in many more dimensions
and with different interactions, some examples are the 3D crystals [15], Weyl semimetal
[16], Floquet insulators [17] and Non-hermitian systems [18] to mention a few. Even more,
the concept of topology has reached beyond crystals and electronic systems. Topological
properties have been found in areas like mechanical systems [19], electric circuits [20] and,
the focus of this thesis, photonic systems [6, 21], among others.
The following section will briefly introduce topological systems, what defines them, and their
properties. To do this, we will focus on defining and calculating the topological properties of
the Su-Schrieffer–Heeger (SSH) model. In the end, we define topological states localized in
domain walls and a time-dependent SSH model which "moves" the domain wall through the
system.

2.2. The Su-Schrieffer–Heeger (SSH) model
In condensed matter, a tight-binding model approximates the behavior of a single electron
inside a crystal, represented as an array of atoms with some periodicity, as a sum of bound
states in each atom with the hopping between them defined by how much the tails of the wave-
function between atoms overlap [22] (To be consistent with the vocabulary, from here on, we
use the concept of coupling instead of hopping). The electron is only allowed to be on an
atom with a probability of jumping to some neighbor proportional to the coupling. Because of
the lattice’s periodicity, the system’s Hamiltonian commutes with the translational operator
thus the system’s wave function can then be expressed in terms of Bloch waves with the same
periodicity as the lattice. By using this transformation, we get to the Bloch-Hamiltonian.
Studying the eigenvalues depending on the crystal momentum k yields the band structure of
the system encoding the basic electronic properties [23, 24].
The topological system used in this thesis is the Su-Schrieffer–Heeger model for polyacetylene
or SSH model [25, 26]. It corresponds to a dimerized chain with an alternating coupling u
and v, and a site energy ε0. It possesses two sites per unit cell where the intercell coupling
is v and the intracell coupling is u as shown in figure 2.1.
Considering N unit cells, the tight-binding Hamiltonian is

H =
N∑
i

[ϵ(2i)â
†
2iâ2i+ϵ(2i+1)â

†
2i+1â2i+1]+[uâ†

2i+1â2i+vâ†
2i−1â2i+h.c.] =

∑
mn
Hmnâ

†
mân,

(2.1)
where Hmn is a real matrix with the on-site and coupling coefficients corresponding to the
diagonal and off-diagonal components, respectively. âi and â†

i are annihilation and creation
operators, respectively, for each site index by i.
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Figure 2.1: The Su-Schrieffer-Heeger (SSH) chain. The unit cell possesses
two sites connected by the intra-cell coupling u while each unit cell is con-
nected by the inter-cell coupling v. All on-site energies are equal and the
periodicity of the lattice is given by a.

The site’s energies are equal, ε2i = ε2i+1 = ε0. They only represent a shift in the energies
which can always be made zero with the correct transformation, thus we can assume, without
loss in generality, that ε0 = 0.
To understand how topological protection arises from symmetry and gives birth to localized
edge states, we begin by studying the bulk properties. The following development has been
done before in references [27, 28].
We begin by assuming an infinite periodic chain as depicted in 2.1, because translation
symmetry allows for Bloch states to be the shared basis with the Hamiltonian, we apply a
discrete Fourier transform separating the even and odd sites corresponding to each sub-lattice
composing the unit cell.

â2n = 1√
N

∑
k

â2ke
ikan â2n+1 = 1√

N

∑
k

â2k+1e
ikan, (2.2)

The Hamiltonian in the Reciprocal space is

Ĥ =
∑

k

(u+ veika)â†
2k+1â2k + (u+ ve−ika)â2k+1â

†
2k =

∑
k

â†
kH(k)âk, (2.3)

where âk = (â2k+1, â2k)t. The matrix H(k) has the form

H(k) =
 0 (u+ veika)

(u+ ve−ika) 0

 , (2.4)

H(k) is the square matrix defining each block of the block diagonal matrix H. We calculate
the energy bands by solving the eigenvalue problem, directly yielding

E(k)± = ±
√
u2 + v2 + 2uv cos(ka), (2.5)
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each eigenvalue with the associated eigenstates

|±k⟩ = 1√
2

e±iϕ(k)

1

 ϕ(k) = arctan
(

v sin (ka)
u+ v cos (ka)

)
. (2.6)

Figure 2.2: Energy bands for different conditions on the coupling. The
left panel shows the bands for intra-coupling greater than inter-coupling,
the middle panel shows equal coupling and the right panel show the intra-
coupling lower than inter-coupling.

From figure 2.2, when u = v we have a metallic model where the energy gap closes and the
solutions are plane waves that take arbitrarily low energy to move through the system. For
u ̸= v there is an energy band gap of size ∆ = |u− v|, representing an insulator with states
extended across the system.
At first sight, we notice no difference between the cases |u| > |v| and |u| < |v| in the
eigenvalues, does that mean both conditions are symmetric? To understand this we introduce
the topology and its relation with symmetry. The SSH model possesses chiral symmetry,
which is defined for a given Hamiltonian as

Γ̂ Ĥ Γ̂† = −Ĥ, (2.7)

to understand what this symmetry brings we must set the basic properties that the chiral
operator satisfies. First, it must be hermitian and unitary, this means that Γ̂ = Γ̂† and Γ̂2 = 1
i.e., it has real eigenvalues and leaves the Hamiltonian invariant if applied twice. The second
is that it must be local so if we apply it to the unit cell the operator Γ̂ is block diagonal
and can be defined using a local chiral operator acting on the i unit cell. The total chiral
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operator can be expressed as a tensorial product of each local chiral operator γ̂i

Γ̂ = γ̂1 ⊗ γ̂2 ⊗ · · · =
N⊕

i=1
γ̂i, (2.8)

with N the number of unit cells in the system. This means that the chiral operator Γ̂ satisfies,
in the real space, ⟨2m′ + 1| Γ̂ |2m+ 1⟩ = 0 = ⟨2m′| Γ̂ |2m⟩ if m ̸= m′, and as expected there
are no even-even and odd-odd site transitions for these type of Hamiltonian. Since the local
chiral operator acts on the unit cell, the Bloch-Hamiltonian satisfies

γ̂H(k)γ̂† = −H(k), (2.9)

It can also be easily checked that the energy spectrum of a system with chiral symmetry is
symmetrical, meaning that for an eigenstate |ψn⟩ and energy En there is another state with
energy −En. This means that if the eigenvalue of energy En = 0 exists, it is, at least, double
degenerate.
Chiral symmetry is preserved when adding coupling disorder and broken when adding on-site
disorder. This is because when adding on-site disorder the Hamiltonian stops satisfying the
relation in equation (2.7). To understand how this comes to be we start with the Bloch
Hamiltonian, which, as a 2x2 system, can be decomposed as a sum of the known Pauli
matrices (σx, σy, σz) as

H(k) = dx(k)σx + dy(k)σy + dz(k)σz = d⃗(k) · σ⃗, (2.10)

where, for our system in 2.4, each component take the values dx = u + cos (2ka), dy =
v sin (2ka), dz = 0. The local 2x2 chiral operator can be expressed as a Pauli matrix which
fulfills all the properties mentioned before

γ̂ = σz =
1 0

0 −1

 (2.11)

The Hamiltonian then must fulfill the symmetry condition (2.9). Applying the transformation
yields that

γH(k)γ† = σzdx(k)σxσ
†
z + σzdy(k)σyσ

†
z + σzdz(k)σzσ

†
z

= −(dx(k)σx + dy(k)σy) + dz(k)σz

(2.12)

The condition in equation (2.9) is only fulfilled if dz = 0 which translates in our initial
Hamiltonian (2.1) as having equal site energies (any non-zero value of the on-site energy can
be made zero by a simple shifting in the energies proportional to the identity). How does
this come into place with the topology?
To understand this, we introduce a topological invariant, the winding number, which is the
normalized version of the Zak phase [29]. The winding number can be expressed using the
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eigenstates as a closed integral in the Brillouin zone of the following form

ζ = 1
2πi

∮
⟨u(k)| ∂

∂k
|u(k)⟩ dk, (2.13)

this is an integral in a closed path of the eigenvectors through the momentum space. Using
the states in (2.6), it can be rewritten using ϕ(k) and integrating a closed loop between
[−π

a
, π

a
] in the reciprocal space as

ζ = 1
2π

∫ π/a

−π/a

∂

∂k
(ϕ(k))dk, (2.14)

which can be calculated for all conditions of the coupling. The relation |v| > |u| yields ζ = 1,
|u| > |v| yields ζ = 0, and for |u| = |v| it crosses the origin of the plane where the function is
undefined. The difference in the results is due to a branch crossing of the function ϕ(k). For
|v| > |u|, it only crosses one time meaning ζ = 1. For |u| > |v|, it crosses an even amount of
times (with opposite value) or zero, depending on the coupling difference, resulting in ζ = 0.
This is where the difference between coupling conditions appears, the eigenstates tell us that
there is a topological difference for each condition.
Two topological phases can be identified by the same invariant if by continuously changing
the parameters, we can go from one to the other without closing the energy gap (|u| ̸= |v|).
This is not the case for the SSH system as we have two topological phases related to two
different topological invariants. We will call the topological phase, trivial for ζ = 0 and
non-trivial or topological for ζ = 1. To go from one to the other it is necessary to close the
energy gap, so we have a topological transition.
As we talked about before, having different on-site energies on each sub-lattice breaks the
chiral symmetry. This translates into ϕ(k) having an extra term that lifts the function in the
k space and it no longer crosses the branch, giving a zero winding number and breaking the
topology. This is the relation between the symmetry and the topological number, breaking
one breaks the other.
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Figure 2.3: Energy bands for different coupling conditions when adding an
on-site energy difference ∆ between sites. The system can go between both
coupling conditions without closing the gap, meaning there is no topological
transition and the system is always in a trivial phase.

If we add an onsite difference to one of the sub-lattices as ϵ2n = ∆, the energy gap opens up for
any values of u and v, as shown in figure 2.3, and we can go adiabatically from one condition
of the couplings to the other without closing the energy gap, making both topological phases
equal and trivial.
The appearance of a non-zero topological invariant will have consequences and, as we will
see, this number is linked to the emergence of edge states in the system. Assuming stationary
states as ϕn = ψne

iEnt and solving the eigenvalue problem

Emψm =
∑

n

Hmnψn, (2.15)

each one of these modes will have a wave function distributed across the sites of the chain.
We are interested in the spatial distribution across the chain of the eigenstates with zero
energy, which are states outside of the bulk bands. We introduce the inverse participation
ratio (IPR) defined as

IPR = (∑n |ψn|)2∑
n |ψn|4

(2.16)

This quantity helps us understand how localized are the states across the lattice. For extended
states, the IPR tends to 1, while for localized states the IPR tends to 0.
We now study a finite SSH system with 30 sites and couplings u = 2, v = 4 in order to
understand the properties of topological states.
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Figure 2.4: SSH model of 30 sites with coupling u = 2 and v = 4. The
top left shows the energy spectrum with the topological states highlighted.
The top right shows the energy spectrum as a function of the coupling u.
When the condition |u| < |v| is met, localized zero energy states appear.
The bottom left and right panels show the amplitude and squared modulus,
respectively, distributions across the lattice for the zero energy state which
are exponentially localized on the edges with opposite phases.

The top right panel of figure 2.4 shows that when u > v, there are no states with zero energy
meaning that the edge state disappears, which is the condition where the topological number
is zero. On the contrary, for v > u the topological number is one, and the zero energy states
appear localized on the edges. This is a manifestation of the bulk-boundary relation where
we can get information from the edges by studying the properties of the bulk.
In the same figure, the wave function of the zero energy states is exponentially localized at
both edges. They also possess sub-lattice polarization, where the left and right edge state
decay through even and odd sites, respectively.
Another property these states possess is the robustness against coupling disorder. This is
because the topological invariant is independent of the coupling values and, as long as the
ratio between them is maintained in the topological condition, it will remain. The topological
states we just showed are called symmetry-protected edge states because they will prevail
against a disorder that does not break the symmetry. To visualize the robustness and its
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limits, coupling and on-site energy disorder are added as

∆ = [−δ, δ] · |u− v|
u′ = u+ ∆
v′ = v + ∆
ϵ′

2n = ∆

(2.17)

where [−δ, δ] is a random uniform distribution limited by δ. We add coupling and on-site
disorder separately in order to compare the effect on the edge states, When δ = 1 the disor-
dered couplings can switch ratios which is the limit to study before a topological transition.
We plot the energy spectrum as a function of the amount of disorder.

Figure 2.5: Energy spectrum as a function of the disorder magnitude δ.
The top panel shows the robustness of the zero energy states when adding
coupling disorder, maintaining the zero states inside the energy gap for a
considerable disorder. In the bottom panel, little amounts of disorder affect
the states and their energy, this showcases the weakness against on-site
disorder. At increasing disorder Anderson’s localization arises, explaining
the low IPR.

Adding onsite disorder break the zero energy states, moving their energy as shown in figure
2.5. Adding the same amount of disorder to the coupling preserves them because of the
topological protection and they remain pinned at zero. We have shown, in the finite SSH,
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the dependence of the appearance of edge states to the topological condition. The states
persist against symmetry-preserving disorder, which in this case is coupling disorder..

2.3. Localized states in domain walls
We now know that the SSH model has two edge states (supported on both edges) of zero
energy which exist within the band gap and are protected by chiral symmetry. This is not
the whole history, in a more general approach, a topological state can form in the boundaries
between systems with different topological phases [27]. The junction between systems is
called a domain wall, for example, the edge of the SSH can be considered a domain wall
separating the SSH from the vacuum and because of it, it can host a topological state given
the right condition. This can also happen inside lattices, an example of a domain wall inside
the SSH is shown in figure 2.6. To create it we attach two SSH models using an extra site
and the coupling u, this way we can maintain the topological geometry on both systems and
create a topological localized state in the junction.
The state in the domain wall will possess the properties of the edge state i.e. zero energy,
exponential localization to both sides of the site, and robustness against coupling disorder.

Figure 2.6: Example of SSH chains with domain walls pointed by the arrow.
The upper image shows a single domain wall while the lower image shows
two domain walls. Both systems have topological localized states on the
domain walls.

By joining two SSH models of N and M unit cells using an extra site, we get a localized
state in the 2N + 1 position. The Hamiltonian describing this system is

H =
N∑

i=0
(uâ†

2i+1â2i + v â†
2i−1â2i) +

M∑
j=N+1

+(v â†
2j+1â2j + u â†

2j−1â2j) + h.c., (2.18)

where âi<0 = âi>2M = 0. It is possible to have more than one domain wall per system and,
by properly adjusting the system’s geometry, as depicted in the bottom image of figure 2.6,
each domain wall will possess a localized topological state [30]. Creating a chain hosting w
domain walls by joining SSHs of N unit cells yields a full system of size 2N(w + 1) + w.

12



To study the state of the domain wall, we use a finite SSH model of 31 sites, couplings v = 4
and u = 2, and a domain wall in site 15.

Figure 2.7: Top left shows the energy spectrum of the SSH with 31 sites,
couplings u = 2, v = 4, and a domain wall on site 15. The top right is
the energy spectrum as a function of the coupling u, zero energy localized
states persist for both coupling conditions. Bottom left and right show the
amplitude and modulus squared, respectively, of the highlighted states in
the energy spectrum. Two of the states are localized on the domain wall
and they all have weight on the edges.

From the top right panel in figure 2.7, we can see that the condition v > u hosts zero energy
states like the SSH without the domain walls. For u > v this changes and a zero energy state
appears but, this state is not topological because the system is not in a topological phase, it
corresponds to a trivially localized state due to the coupling, which can be thought of as a
coupling impurity. As seen on the bottom panels of 2.7, the state localized on the domain
wall will gain weight on the nearest sites hosting a state of the same energy, this is known as
fractioning of the charge or the hybridizing of the state [31, 32].
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Figure 2.8: Energy spectrum as a function of the disorder with v = 4 and
u = 2. In the top panel, the effect of coupling disorder is shown, and,
as the normal SSH, the zero energy states persist at increasing disorder.
On the contrary, on-site impurities break the topology and states, moving
their energies. As the disorder is introduced, Anderson’s localization arises
explaining the low IPR.

In figure 2.8 is plotted the energy spectrum as a function of both types of disorder, with the
same form as (2.17). The states of zero energy remain at that energy for a great amount
of coupling disorder, proof of the robustness. On the contrary, adding the same amount of
on-site disorder moves the energies of the edge states, and they start to break. The domain
wall located between two couplings u only hosts topological states with zero energy, just like
the topological edge states, meaning that an excitation of the site will mostly stay in it, as
the dispersion to adjacent sites is low.
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Figure 2.9: The left panel shows the energy spectrum of SSH with a domain
wall between two couplings v where v = 4 and u = 2. The right panel shows
the modulus squared on each site for the eigenstates of the highlighted
topological and trivial states. The zero energy states are exponentially
localized on the sub-lattice around the position of the domain wall. On
the other hand, the trivial states are exponentially localized on the domain
wall.

It is also possible to have a domain wall between two couplings v which will host topological
states, however, the shape of the state is also different. This is due to the forming of an
effective site consisting of the domain wall and both of its neighbors, the wave function
of the topological state is localized on the sites adjacent to the domain wall, as seen in 2.9.
Alongside the topological state, there are two trivial states which are localized on the domain
wall and adjacent sites. This implies that exciting the topological state will also excite the
trivial states generating a coupling between them. This coupling between states is not wanted
and, as we will see in Chapter 5, it makes the domain wall unsuitable for the investigation
but we mention it here for completeness.

2.4. Moving domain walls using a time-dependent Hamil-
tonian

We now introduce a local time-dependent SSH model. This system possesses couplings
around specific sites which depend on the dynamical coordinate. Varying the coupling allows
us to "move" the domain wall to a different position across the system. If we want to maintain
the localization and topological properties of the state on the moving domain wall, the func-
tion defining the modulated coupling must be smooth and continuous while also maintaining
the topological geometry at the end, as depicted in Figure 2.10, otherwise the state couples
to the bulk and scatters. Both the speed of the modulation and the initial band gap of the
system size define the accuracy of the modulation and how much scattering to the bulk is
produced. A slower modulation accepts a lower band gap while a bigger band gap accepts
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a faster modulation. Both conditions come into play when defining a good modulation that
diminishes the coupling to the bulk but takes into account the limits of experimental real-
izations.

Figure 2.10: Example of how to move the domain wall. At the beginning of
the modulation, the domain wall is located on site 3, highlighted with pink.
By changing the orange and purple couplings, as depicted in the middle
panel, the domain wall can be "moved" to two sites to the right. At the end
of the modulation, the domain wall is located at the highlighted site 5 and
the system is still in a topological phase.

In order to maintain the topological phase of the system, the domain wall can only be moved
to its next neighbor, a pictorial representation of the modulation is shown in 2.10. As talked
before, the topological domain wall of interest must be adjacent to two couplings u, this is
just two SSH models attached through an extra site using coupling u.
To move the domain wall, we assign a time dependence to each coupling u(t) and v(t). These
functions have to be smooth and continuous while also beginning and finalizing the evolution
following

u(t0) = u v(t0) = v

u(tf ) = v v(tf ) = u

This maintains the geometry and preserves the topological phase. The modulation shown in
figure 2.10 can be done repetitively, moving the domain wall along the lattice. To maintain the
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geometry, the domain wall can only be moved to the next-adjacent site in each modulation.
In practice, time-dependent coupling is rare in condensed matter as the lattices, dictated by
nature, are in equilibrium which usually means a fixed coupling given the geometry of the
lattice. As we will see, photonic systems allow us to create and study these types of systems
in a relatively easy way. More details about this modulation and how it looks in waveguides
will be discussed in Section 5.
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Chapter 3

Photonic systems

3.1. Introduction to photonic systems
The area of photonics focuses on studying the propagating of light through different mediums
and geometries, understanding its origin, manipulation, and detection. From an experimental
point of view, photonics systems are characterized by using optical fibers, lasers, detectors,
quantum electronics, fibers, and materials. With uses in technology for areas such as com-
putation, communication, information [33] and biology [34] to mention a few.
In this thesis, our study is made on waveguide systems defined in the coupled mode theory
(CMT) approximation. These systems are typically made by locally changing the refractive
index inside a medium, confining the light to travel inside it [35]. We must mention that
the coupled mode approximation is not only defined to this kind of system, coupled optic
oscillators and cold atoms lattices can also be studied [36, 37].
A characteristic of light traveling through waveguides is the reproduction of the results of sys-
tems defined in other areas of physics (providing the correct approximations) and, as we will
see, the coupled mode theory works at the same level of approximation as the tight-binding
theory introduced in Chapter 1, and as such, photonic lattices can present topological effects.

3.2. Coupled mode theory
In the following section, we will formulate and describe the basics of the coupled mode
approximation. This theory has been extensively used and studied in optics to study periodic
systems [38]. To derive the coupled mode equations, we start with the Maxwell equations in
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materials

∇⃗ · D⃗ = ρ (3.1)
∇⃗ · B⃗ = 0 (3.2)

∇⃗ × E⃗ = −∂B⃗

∂t
(3.3)

∇⃗ × H⃗ = J⃗ + ∂D⃗

∂t
, (3.4)

with the constitutive relations:

D⃗ = ϵ0E⃗ + P⃗ (3.5)

H⃗ = B⃗

µ0
− M⃗ (3.6)

We now assume materials where there is no charge accumulation, no current, and no mag-
netization, thus we have ρ = 0, and J⃗ , M⃗ = 0. In classical light, the polarization vector
P⃗ represents the effects of the medium on the light dynamics. In a dielectric, the induced
polarization can be expressed as a Taylor expansion of the electric field.
In general, when considering a non-linear response, the polarization is expressed in higher
terms of the expansion. For more information on this topic, we recommend [39] which also
develops the coupled mode theory taking into account non-linear effects. In this work, we
only consider the linear response i.e., P⃗ ∝ E⃗, where the proportional factor is called electric
susceptibility which is a tensor depending on the medium’s properties. We will work on
glass-like materials that are both isotropic and homogeneous. The susceptibility is then a
constant fulfilling

P⃗ = ϵ0χ
(1)E⃗tot, (3.7)

where χ(1) is the first order electric susceptibility of the medium and E⃗tot is the total electric
field inside the medium.
Combining the Maxwell equations, the electric field satisfies the following

∇⃗ × ∇⃗ × E⃗ = ∇⃗ · (∇⃗E⃗) − ∇2E⃗ = −µ0ϵ0
∂2E⃗

∂t2
− ∂2

∂t2

 P⃗

ϵ0c2

 . (3.8)

For materials where the permittivity depends on the spatial coordinates ϵ = ϵ0
(
1 + χ(1)(x, y, z)

)
=

ϵ(x, y, z), and can be related to the refractive index as ϵ = n2(x, y, z), we arrive to the re-
lation: ∇⃗ · D⃗ = 0 = ∇⃗ · (ϵE⃗) = (∇⃗ϵ · E⃗ + ϵ∇⃗ · E⃗). Using this we get the general wave
equation

∇2E⃗ − 1
c2
∂2E⃗

∂t2
= −∇⃗

E⃗ · ∇⃗ϵ
ϵ

+ ∂2

∂t2

 P⃗

ϵ0c2

 . (3.9)
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Figure 3.1: Representation of a single waveguide in a medium with the
shape of its fundamental mode. Where the refractive index have the relation
n2(x, y, z) = n1 − ∆n(x, y, z)

We now consider two approximations for geometries like figure 3.1, where the change of
refraction index is small. The first is called weak guidance approximation, which states that
locally changing the refractive index inside a medium by a small amount ∆n(x, y, z) implies
that

∇⃗(lnn2
2) = ∇⃗

(
2 ln (n2

1 − 2n1∆n+ (∆n)2
)

= 4n1∇⃗(∆n)
n1 + 2n1∆n

≈ ∇⃗(∆n(x, y, z))
n1

→ 0

causes the gradient of the logarithm of the permittivity ∇⃗(ln (ϵ) to tend to zero as ∆n → 0.
This neglects the first term of the right side in (3.9) and doing this uncouples the polarizations
of the electric field and each one evolves independently.
The second is called the paraxial approximation, it is applied to the injected light stating
that light enters the medium perpendicular to the change of refraction index and the wave
vector in the injected direction is much greater than the transversal directions (kz ≫ kx,y),
i.e., we are focusing the light (lasers in most cases) through the "entrance" of the waveguide,
not the sides and the solution is of the form E⃗ = E⃗(x, y, z)eikzz. This also makes the second
derivative of the electric field with respect to the propagation variable negligible.
Using the weak guidance approximations on equation (3.9) and setting the parallel component
to ẑ, we now separate the Laplacian as ∇2 = ∇2

∥ + ∇2
⊥ = ∂2

∂z2 + ( ∂2

∂x2 + ∂2

∂y2 ) yielding

∂2E⃗

∂z2 +
(
∂2

∂x2 + ∂2

∂y2

)
E⃗ − 1

c2
∂2E⃗

∂t2
= ∂2

∂t2

 P⃗

ϵ0c2

 . (3.10)

Considering a single waveguide, as depicted in figure 3.1, where the solution can be expressed
as a sum of the normal modes with both amplitude and polarization inside the function
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f⃗(x, y, z), the solution for equation (3.10) can be expressed as

E⃗(r⃗, t) =
∑

j

f⃗j(x, y, z)ei(kjz−ωjt) + c.c., P⃗ = ϵ0χ
(1)(x, y, z)E⃗ (3.11)

The polarization P⃗ takes this form because we assume there is no extra electric field except
the one inside the waveguide. Replacing in equation (3.10) and that ∂2f⃗

∂z2 (x, y, z) ≈ 0 due to
the paraxial approximation, yields

2ikj
∂ f⃗
∂z

(x, y, z)ei(kjz−wjt) +
[
∂2

∂x2 + ∂2

∂y2 − 2
k2

j

n1
∆n(x, y, z)

]
f⃗(x, y, z)ei(kjz−wjt) = 0, (3.12)

where k0 = ωj/(c
√
ϵ0) and kj = n1k0. Equation 3.12 represents the evolution of the light

inside a single waveguide.

Figure 3.2: Two adjacent waveguides with their fundamental modes over-
lapping.

We now turn to define the evolution of the electric field for two adjacent waveguides, depicted
in figure 3.2, with the same refractive index n2 in a medium with refractive index n1. To do
this, we assume that the shape’s evolution of each mode remains the same throughout the
evolution but it can variate in amplitude represented as

f⃗j(x, y, z) = f⃗j(x, y)aj(z), (3.13)

This assumption can be made because by tuning the injecting light in a waveguide, it is
possible to select which mode to excite. The excited mode will define all the evolution
depending on the initial conditions of the light. The function fj(x, y) fulfills the mode
equation: [

∂2

∂x2 + ∂2

∂y2 − 2
k2

j

n1
∆n(x, y, z)

]
f⃗j(x, y) = 0 (3.14)

and the solution for the electric field in each waveguide m is

E⃗m(r⃗, t) =
∑

j

f⃗m,j(x, y)am,j(z)ei(kjz−ωjt) + c.c. (3.15)
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Now, we calculate the amplitude evolution of light traveling in a waveguide that is adjacent
to another waveguide; for this, we study the effects on waveguide 1 (left side) to make it
easier to understand. The results are later generalized to an array of waveguides and are
independent of the ones chosen initially. The left side of equation (3.10), after inserting in
(3.15) for m = 1, yields

∂2E⃗1,j

∂z2 =
[
2ikj

∂a1,j

∂z
− k2

za1,j(z)
]
f⃗1,j(x, y)ei(kjz−wjt) + c.c. (3.16)

1
c2
∂2E⃗1,j

∂t2
= −

ω2
j

c2 f⃗1,j(x, y)a1,j(z)ei(kjz−ωjt) + c.c., (3.17)

where we used that ∂2a1,j

∂z2 ≈ 0 due to the paraxial approximation.
To express the polarization, we use the total electric field on the waveguide; for this, we con-
sider the electric field coming from waveguide 2 (right side). Assuming a linear polarization
response and that the field in each waveguide possesses the same propagation constant and
frequency we have that the total electric field on waveguide 1 is:

E⃗tot
1,j = E⃗1,j + E⃗2,j =

[
f⃗1,j(x, y)a1,j(z) + f⃗2,j(x, y)a(1)

2,j(z)
]
ei(kjz−ωjt) + c.c. (3.18)

where a
(1)
2,j is the amplitude of the field of waveguide 2 inside waveguide 1, which can be

redefined as the amplitude inside waveguide 2 multiplied by a constant lower than 1, a(1)
2,j =

αa2,j with α < 1. The polarization takes the form

∂2

∂t2

 P⃗

ϵ0c2

 = −
ω2

j

c2 χ
(1)
1,j E⃗

tot
1,j , (3.19)

where χ(1)
1,j is the first-order electric susceptibility of the waveguide 1 and mode j. Inserting

equations 3.18 and 3.19 into (3.9) yields

2ikk
∂a1,j

∂z
f⃗1,j +

ω2
j

c2 χ
(1)
1,j f⃗2,jαa2,j = 0. (3.20)

To get rid of the mode shape dependence, we multiply by f ∗
1,j and integrate in the x-y plane.

We define the power in the waveguide 1 of mode j as P (j)
1 , and the coupling matrix elements

between the two waveguides of mode j as V (j)
1,2 :

P
(j)
1 =

∫∫
dxdy |f⃗1,j|2 (3.21)

V
(j)

1,2 = k2
0

2kjP1
α
∫∫

dxdy χ
(1)
1,j f⃗2,j f⃗

∗
1,j (3.22)

To simplify, we consider waveguides that can only support one mode so we omit the index j.
The dynamics equation for the amplitude of the mode in waveguide 1 is similar to waveguide
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2, known as the homogeneous coupled dimer

i
∂a1

∂z
+ V1,2a2 = 0 (3.23)

i
∂a2

∂z
+ V2,1a1 = 0. (3.24)

If each waveguide possesses a different propagation constant, the treatment is similar, but we
assume a phase difference between both amplitude of the form ai(z) = ui(z)e−ikiz yielding
the inhomogeneous coupled dimer

− i
∂u1

∂z
= k1u1(z) + V1,2u2(z) (3.25)

− i
∂u2

∂z
= k2u2(z) + V2,1u1(z). (3.26)

These equations define the evolution of the dimer, we will return to this system in Chapter 5
to comment on the propagation of squeezed light through it. Generalizing the procedure to a
d-dimensional lattice is straightforward and the evolution of the amplitude in the waveguide
i is governed by

−i∂ai

∂z
= βiai +

∑
l

Vi,lal, (3.27)

with βi the propagation constant of the waveguide i-th depending on the size and material
properties of each waveguide. Equation (3.27) does not tell us anything about the shape
evolution of the mode, only its amplitude, and is valid as long as there are no abrupt changes
in the direction of propagation or effects that destroys the shape of the mode.
The coupling matrix satisfies that V (j) ∝ 1

kj
∝ λj; i.e., the larger the wavelength of the

mode, the larger is the effective coupling between waveguides. Also, since V1,2 ∝ (f⃗2,j ·
f⃗ ∗

1,j), the coupling between waveguides is proportional to the spatial size of their modes
and how much their tails reach adjacent waveguides. Until now we have only worked in
1-D and considered symmetrical waveguides where each polarization has the same mode. In
asymmetrical waveguides, the mode’s shape of each polarization is not equal and the coupling
to adjacent waveguides depends on the polarization of injected light.
To summarize, the coupled mode theory approximates the evolution of the light through
a waveguide as a constant mode that travels varying in amplitude in the z direction. The
amplitude evolves following a Schrodinger-like equation. To finish, we now can study the
band structure by identifying the unit cell, expanding each waveguide amplitudes as plane
waves with propagation constant λ like ai(z) = αie

iλz.

λαi = (βj + Vij)αj (3.28)

Solving this equation allows us to get the band structure of the system just like in tight-
binding models. Each value of λ after solving the eigenvalue problem will tell us about the
possible standing solution i.e. the normal modes of the system.
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This, as we will see in Section 4, allow us to have photonic lattices with topological geometries
capable of replicating the properties seen in Section 1 but using light, and in particular, using
quantum light which is explained in the following section.
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3.3. Experimental waveguides systems
To finalize explaining the coupled mode theory, we briefly show and comment on the exper-
imental realization of waveguides. There are two principal methods to fabricate waveguides,
the first one consists of depositing material with a higher refractive index called deposition.
The second one locally changes the refractive index by removing or changing the distribution
of the atoms and is called substitution. Among substitution methods, the femtosecond laser
writing technique consists of locally modifying the refractive index inside a medium (typi-
cally some kind of glass) using a femtosecond laser, confining the light to travel within it with
low losses [40] [41]. The waveguides are created by moving the femtosecond laser along the
material, as seen in figure 3.3. By varying the power and speed of the writing, waveguides
can be made of different sizes. The size and shape of the waveguides determine how many
and which modes they can support, given the initial condition of the injected light (frequency
and amplitude). The change in the refractive index is about the order of 10−3 − 10−4 with
respect to the bulk material, making the approximation made in the previous section suitable
to describe the behavior of these waveguides.
This technique makes the manufacture of waveguide lattices low-cost and low-time-consuming.
The flexibility in their creation allows for waveguides of different sizes and distances between
them. Particularly, it is fairly easy to simulate a time-dependent coupling by only varying
the distance between waveguides as they are being written [42]. Making these experimental
setups suitable for simulating a lattice with a time-dependent Hamiltonian.

Figure 3.3: Example of a fetmosecond laser writing a waveguide [43].
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Chapter 4

Quantum light

In the early 20th century, based on existing experimental evidence, light was predominantly
considered as a wave, akin to sound, with the Maxwell equations accounting for its prop-
erties and behaviors. This perception changed with Einstein’s photoelectric experiment in
which light was associated with discrete energy packages, revealing its corpuscular nature and
challenging the classical theory. Subsequently, in 1956, R. Hanbury Brown and R.Q. Twiss
conducted a study on the correlation of intensity [44], which, while consistent with classical
theory, showcased the predictive capabilities of the emerging quantum theory. Quantum the-
ory could account for phenomena such as sub-Poissonian and sup-Poissonian photon statis-
tics, which classical theory failed to explain. Notably, R.J. Glauber, in 1963, predicted the
sub-Poissonian distribution [45], commonly referred to as photon anti-bunching. Experimen-
tal confirmation of this statistical property came in 1977, when H.J. Kimble, M. Dagenais,
and L. Mandel observed it in the resonance fluorescence of a two-level atom [46], marking
the first non-classical effect observed in optics.
A little later, squeezed light was theoretically proposed as a state of the electromagnetic field
exhibiting a sub-Poissonian distribution of photons. This state, which originated from a non-
linear process, was experimentally observed by R.E. Slusher,et.al. using Four-wave-mixing
in 1985 [47]. The principal characteristic of squeezed states is their asymmetric distribution
of the uncertainty principle along the canonical variables.
In this section, our focus is on deriving the quantum electromagnetic field and introducing the
quadrature operator. We will explore its properties and discuss its significance in describing
quantum electromagnetic states. Specifically, we will examine three important states: the
Fock state, the coherent state, and the squeezed state, with particular emphasis on the latter
as it is the main state used in this investigation.
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4.1. Quantizing the electromagnetic field
To study the electric and magnetic field on the quantum regime we need to quantize them,
starting from the Maxwell equations in vacuum

∇⃗ · E⃗(r, t) = 0 ∇⃗ · B⃗(r, t) = 0 (4.1)

∇⃗ × E⃗(r, t) = −∂B⃗

∂t
(r, t) ∇⃗ × B⃗(r, t) = µ0ϵ0

∂E⃗

∂t
(r, t), (4.2)

where µ0 and ϵ0 are the magnetic and electric permittivity in vacuum, respectively. We can
define a potential vector

B⃗ = ∇⃗ × A⃗(r, t) E⃗ = −∂A⃗
∂t

. (4.3)

Using this definition and choosing the coulomb gauge (∇⃗·A⃗ = 0), the vector potential satisfies
the wave equation

∇2A⃗ − 1
c2
∂2A⃗
∂t2

= 0, (4.4)

where c = 1√
µ0ϵ0

is the speed of light. It is sufficient to find the potential vector A⃗ to get
both electric and magnetic fields.
The general solution of (4.4) can be expanded in normal modes as

A⃗(r, t) =
∑
k,α

Ckak(t)u⃗k,α(r⃗) + c.c., (4.5)

where the summation is taken over an infinite discrete set of values of the wave vector k⃗ in
three dimensions, ak(t) is a dimensionless scalar function that depends on time and u⃗k,α(r⃗) is a
vector function which is orthogonal between different modes and depends on the polarization
α and position r⃗. The constant Ck is defined as

Ck =
(

ℏ
2ϵ0ωk

) 1
2

, (4.6)

which is conveniently defined this way to ease future calculations. Plugging the solution
above in the wave equation (4.4) yields

∇2u⃗k,α + ω2
k

c2 u⃗k,α = 0 ∂2ak

∂t2
+ ω2

kak = 0, (4.7)

We now consider the fields inside a big but finite 3D square box of width L. From the last
equations, the solution for u⃗α,k can be plane waves or sinusoidal waves, by imposing periodic
boundary conditions

uk,α(r⃗) = u⃗k,α(r⃗ + Lx̂) = u⃗k,α(r⃗ + Lŷ) = u⃗k,α(r⃗ + Lẑ), (4.8)
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we get plane waves solutions

u⃗k,α(r⃗) = ϵ⃗k,α√
V

exp
(
ik⃗n · r⃗

)
+ c.c., (4.9)

where k⃗n = 2π
L

(nx, ny, nz) with ni ∈ N and V = L3.
The second equation tells us that ak(t) evolves as an harmonic oscillator, with the solution

ak(t) = ak exp(−iωkt) + c.c. (4.10)

Using both solutions and redefining Ck = Ck/
√
V , the fields take the form of

A⃗ =
∑
k,α

Ckϵ⃗k,αak exp
(
i(k⃗nr⃗ − ωkt)

)
+ c.c. (4.11)

E⃗ = i
∑
k,α

Ckωk ϵ⃗k,αak exp
(
i(k⃗nr⃗ − ωkt)

)
− c.c. (4.12)

B⃗ = i

c

∑
k,α

Ck(k⃗ × ϵ⃗k,α)ak exp
(
i(k⃗nr⃗ − ωkt)

)
− c.c. (4.13)

Since ∇⃗ · A⃗ = 0, we have that k⃗ must satisfy

k⃗ · ϵ⃗k,α = 0, (4.14)

meaning the fields are purely transverse and therefore the two polarization are independent
for each k.
The electromagnetic Hamiltonian is defined as

H = 1
2

∫
dV
[
ϵ0|E|2 + 1

µ0
|B|2

]
(4.15)

Using the definition of the fields in (4.11) and expanding the constant Ck yields (since both
polarizations are independent of each other) we get the classical Hamiltonian as

H =
∑

k

ℏωk(aka
∗
k), (4.16)

the form of the constant Ck was chosen specifically to arrive at this Hamiltonian, otherwise,
we would have carried extra constants hindering the explanation and making it harder to see
the resemblance of the harmonic oscillator.
We can redefine this Hamiltonian by using the classical canonical variables of position and
momentum q and p, respectively, as

ak = 1√
ℏωk

(ωkqk + ipk) a∗
k = 1√

ℏωk

(ωkqk − ipk) (4.17)
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arriving at an analog of the harmonic oscillator

H =
∑

k

1
2[p2

k + (ωkqk)2]. (4.18)

Up to this point, we have worked on the classical domain whereby by imposing some condi-
tions on the Maxwell equation we get the fields, and by using them in the electromagnetic
Hamiltonian we arrive at the form of the harmonic oscillator. To quantize, we use the stan-
dard procedure, that is, by promoting the canonical variables to operators satisfying the
conmutation relations

q → q̂ p → p̂ [q̂, p̂] = iℏÎ (4.19)

imposing this, we transform the amplitudes ak and a∗
k into the operators âk and â†

k, respec-
tively, satisfying the commutation relations

[âk, â
†
k′ ] = δk,k′ [âk, âk′ ] = 0 = [â†

k, â
†
k′ ], (4.20)

âk and â†
k are the annihilation and creation operators of the mode k. Replacing the newly

promoted operators into the energy (4.15) yields the quantum electromagnetic Hamiltonian

Ĥ =
∑

k

ℏωk(â†
kâk + 1

2) =
∑

k

ℏωk(N̂ + 1
2), (4.21)

N̂k = â†
kâk is the number operator for the mode k. Expanding the constant Ck, the quantum

electromagnetic fields are

A⃗(r, t) =
∑
k,α

√
ℏ

2ϵ0V ωk

ϵ⃗k,αâk exp
[
i(k⃗r⃗ − ωkt)

]
+ c.c (4.22)

E⃗(r, t) = i
∑
k,α

√
ℏωk

2ϵ0V
ϵ⃗k,αâk exp

[
i(k⃗r⃗ − ωkt)

]
− c.c (4.23)

B⃗(r, t) = i

c

∑
k,α

√
ℏ

2ϵ0V ωk

(k⃗ × ϵ⃗k,α)âk exp
[
i(k⃗r⃗ − ωkt)

]
− c.c (4.24)

The index k denotes the different modes of the electromagnetic field which in principle are
infinite and the total solution is the sum of all of them. However, in photonic lattices, the
evolution is given by one mode per the waveguide, then when propagating quantum light we
can limit the sum and relate each k to the waveguide k where âk destroys a photon in the
k-th waveguide, this is elaborated in section 4.
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4.2. The quadrature, uncertainty principle, and Wigner
function

We now introduce the quadrature operator, its properties, and what is their use in represent-
ing quantum light states, later, we will connect it with the Wigner function as a way to fully
describe a state. The generalized quadrature operator for the mode j of the electromagnetic
field is defined for an angle ϕ as

X̂j(ϕ) = 1
2(âje

−iϕ + â†
je

iϕ), (4.25)

for any angle, it satisfies

[X̂(ϕ), X̂(ϕ+ π

2 )] = i

2 ∆X(ϕ)∆X(ϕ+ π

2 ) ≥ 1
4 , (4.26)

with the variance defined as (∆X)2 = ⟨X̂2⟩ − ⟨X̂⟩2, and ⟨ ⟩ is the expectation value of an
arbitrary state. We can connect them to the known momentum and position operators of a
mode j as

Xj(0) = X
(1)
j =

√
ω

2ℏ · q̂j = 1
2(âj + â†

j) (4.27)

Xj(
π

2 ) = X
(2)
j = 1√

2ℏω
· p̂ = 1

2i(âj − â†
j) (4.28)

They are orthogonal quadratures and, like the canonical variables, describe the phase space of
the system. We can use their definition to redefine the electromagnetic field in (4.22)-(4.24)
as

Â(r, t) =
∑
k,α

√
2ℏ

ϵ0V ωk

ϵ̂k,α

[
X̂

(1)
k cos (k⃗r⃗ − ωkt) − X̂

(2)
k sin (k⃗r⃗ − ωkt)

]
(4.29)

Ê(r, t) = −
∑
k,α

√
ℏωk

2ϵ0V
ϵ̂k,α

[
X̂

(1)
k sin (k⃗r⃗ − ωkt) + X̂

(2)
k cos (k⃗r⃗ − ωkt)

]
(4.30)

B̂(r, t) =
∑
k,α

√
ℏ

2ϵ0V ωk

(k⃗ × ϵ̂k,α)
[
X̂

(1)
k sin (k⃗r⃗ − ωkt) + X̂

(2)
k cos (k⃗r⃗ − ωkt)

]
(4.31)

We now see that both quadratures represent the magnetic and electric fields with a π
2 phase

between them. As conjugate variables, X(1) and X(2) cannot be measure simultaneously.
Both operators X̂1 and X̂2 can be used to represent properties of states of light by analyzing
the phase-space diagram. The uncertainty of each state is represented as an area in the
phase space. From a "classical" point of view, the distance from the origin to the state is
proportional to the photon number or amplitude of the field and the complex angle between
the axes is proportional to the phase of the field. The angle ϕ in equation (4.25) defines the
reference of phase-space axes. In the field equations, this translates to adding an extra phase
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ϕ.
To fully describe a quantum state, we now introduce the Wigner Function. It is a quan-
tum generalization of the classical distribution function which depends on the phase-space
variables. Even though the Wigner function plays an analog role to a conventional distribu-
tion function, it does not satisfy the same properties. As a quasi-probabilistic function, it
might yield negative values corresponding to quantum states, nevertheless, quantum states
can have positive values as it is seen in the squeezed state. The Wigner function for a system
represented with a density operator ρ̂ is

W (q, p) = 1
4πℏ

∫ ∞

∞
⟨q + 1

2x|ρ̂|q − 1
2x⟩eipx/ℏdx (4.32)

where q = X(1)(0) and p = X(2)(0), for pure states the density operator can be written as
ρ̂ = |ψ⟩ ⟨ψ|, which is the case for all states above. Integrating the Wigner function for all
variables yields 1 i.e., it is normalized, and integrating over one canonical variable yield the
probability function of the other one∫

dNq dNp W (q, p) = 1 (4.33)∫
dNqW (q, p) = |ϕ(p)|2 (4.34)∫
dNpW (q, p) = |ψ(q)|2 (4.35)

where ϕ(p) and ψ(q) are the momentum and coordinate space wave functions, respectively.
Just like in classical statistics, integrating this function with a given operator yields the
average. The Wigner function tells us about the quantum properties of the state and it is
used to differentiate each state.

4.3. Quantum states of light
In the previous section, we defined the electric and magnetic fields in terms of operators,
successfully quantizing both fields. What is left to do is define the quantum states that
describe the fields and their properties. In this section, we will introduce the concept of the
"Fock state," which serves as a discrete representation of the number of photons within a field.
Additionally, we will discuss the "Coherent state," known for possessing minimal uncertainty
and being regarded as the most ’classical’ state. Finally, we will explore the "Squeezed state,"
which exhibits an asymmetric distribution of uncertainty. We will show the properties of each
state using the quadrature and the phase-space representation, the Wigner function. Taking
special emphasis on squeezed states which are the main focus of this thesis [48, 49].
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4.3.1. Fock states

Fock states, also called number states, are defined through the number operator Nk = â†
kâk.

The eigenstate of this operator is the well-defined number state |n⟩ with the relations

â†
k |nk⟩ =

√
nk + 1 |nk + 1⟩ N̂k |nk⟩ = nk |nk⟩ (4.36)

âk |nk⟩ = √
nk |nk − 1⟩ , (4.37)

where âk and â†
k are the creation and annihilation operators with the commutations relation

in (4.20). Its quadrature properties are

⟨n| X̂1 |n⟩ = 0 ⟨n| X̂2 |n⟩ = 0 (4.38)

⟨n| X̂2
1 |n⟩ = 1

4(2n+ 1) ⟨n| X̂2
2 |n⟩ = 1

4(2n+ 1) (4.39)

(∆X̂1)2(∆X̂2)2 = 1
16(4n2 + 4n+ 1) (4.40)

The relations on 4.38 tell us that a single Fock state is not a state of well-defined electric and
magnetic fields, this is because the operators Ê and N̂ do not commute. This, however, does
not hold when taking a superposition of Fock states as we will see in the coherent states. The
relation 4.39 shows the uncertainty increases proportionally to the photon number, meaning
the uncertainty of the field is well defined. This state minimizes the uncertainty principle for
n = 0, and it increases proportionally to the photon number, as seen in relation 4.40. For
the Hamiltonian and the number operator, we have

Ĥ |n⟩ = ℏω(n+ 1
2) |n⟩ (4.41)

⟨n| (∆n)2 |n⟩ = 0 (4.42)

The relation 4.41 implies that the state fock state represents the energy of the field as discrete
amounts of ℏω proportional to the photon number. Finally, the relation 4.42 indicates that
the Fock state possesses a "sharp" photon number but, because of the uncertainty principle,
the phase of the field, which is the canonical variable to the photon number, is completely
lost [48].
The multimode basis is constructed using the tensor product between sub-spaces

|n⟩ = |n1⟩ ⊗ |n2⟩ ⊗ |n3⟩ ...⊗ |n∞⟩ = |n1, n2, ..n∞⟩ , (4.43)

each of these kets fulfill the relation ⟨ni|nj⟩ = δi,j.
The Wigner function of the Fock state is shown in figure 4.1. The photon number is rep-
resented as the distance from the origin to where the area is located, in this case, an area
shaped like a circle . The number of circles around the origin is proportional to the number
of photons, each circle is highlighted on yellow. The phase, defined as the angle between the
axes, goes from 0 to 2π which correspond to a superposition of all possible phases meaning
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that the phase is undefined for the Fock state. The quadratures are centered on the ori-
gin while the uncertainty is represented as the width of each circle, which is equal in both
quadratures and increases with the photon number.

Figure 4.1: Wigner function for the Fock states |1⟩, |2⟩, |3⟩ and |5⟩. The
photon number is proportional to the radius from the origin to the outer
circle, each state has the same number of circles as the number of photons.
The negativity of the Wigner function implies that the state is non-classical.
The phase defined by the angle between planes is, in this case, undefined as
it is an infinite superposition from 0 to 2π.

Because of their discrete nature, Fock states have been proposed for several protocols and
setups in quantum information and communication [50, 51]. The limits are the challenging
realization in experiments of single or more indistinguishable photons with high fidelity [52,
53]. Even though deterministic methods have been proposed [54, 55], to this date, there has
not been an experiment to produce this kind of state at the fidelity and stability required.
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4.3.2. Coherent states

The coherent state is defined as the eigenstate of the annihilation operator â:

â |α⟩ = α |α⟩ (4.44)

Expanding on the Fock basis it can be rewritten as

|α⟩ = e− |α2|
2
∑

n

αn

√
n!

|n⟩ , (4.45)

corresponding to a Poissonian distribution in the photon number.
The quadrature relations for the coherent states are

⟨α| X̂(1) |α⟩ = 1
2(α + α∗) = Re(α) ⟨α| X̂(2) |α⟩ = 1

2i(α− α∗) = Im(α) (4.46)

⟨α| (X̂(1))2 |α⟩ = 1
4 + Re(α)2 ⟨α| (X̂(2))2 |α⟩ = 1

4 + Im(α)2 (4.47)

then each quadrature obeys

⟨∆X̂(1)⟩2 = ⟨(X̂(1))2⟩α − (⟨X̂(1)⟩α)2 = 1
4⟨∆X̂(1)⟩2⟨∆X̂(2)⟩2 = 1

16 (4.48)

⟨∆X̂(2)⟩2 = ⟨(X̂(2))2⟩α − (⟨X̂(2)⟩α)2 = 1
4 (4.49)

The average of the quadrature means the state is displaced on the phase space depending
on the real and imaginary parts of α. They are also states of well-defined electromagnetic
fields, using relations (4.44) in (4.22)-(4.24) yields a nonzero amplitude that maintains the
initial form of the fields, looking analogous to the classical fields. From equations in (4.48), the
coherent state is independent of α and has minimum uncertainty relation on each quadrature.
The Hamiltonian and number operators satisfy

⟨α| Ĥ |α⟩ = ℏω(|α|2 + 1
2) ⟨α| ∆n |α⟩2 = |α|2 (4.50)

meaning the energy of this state is proportional to its amplitude and the standard deviation
of the photon number is equal to its mean value, as expected of a Poissonian distribution.
It also is possible to define the operator D̂(α), which when applied to the vacuum, yields the
coherent state

D̂(α) |0⟩ = |α⟩ , (4.51)

The operator D̂ is called the displacement operator and it is defined for a general mode i as

D̂i(α) = exp
(
αâ†

i − α∗âi

)
(4.52)

The representation of a coherent state with α = |α|eiθ on the phase-space plane is shown in
figure 4.2. It is represented as circular area where the distance from the origin to the center
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of the circle is the amplitude |α| and the polar angle between both axes is θ. The Wigner
function is centered at (Re{α}, Im{α}), while the uncertainty is constant and equal on both
quadratures shown by the circle.

Figure 4.2: Wigner function for a coherent state α = |α|eiθ, where α =
√

8
and the phases are (π

4 , −π
4 , 3π

4 , −3π
4 ). The distance from the origin to the

center of the area is proportional to the amplitude while the angle between
the axes is proportional to the phase of the coherent state.

Coherent states share many properties and similarities with the classical fields, as such, they
are regarded the most "classical" state. The expectation value of the quantum field takes the
same form as the classical field and they follow Poissonian statistics. The fluctuation in both
phase and amplitude quadratures becomes negligible for a large number of photons, which
can be interpreted as watching the phase space from afar where the circled area looks like
a point, making amplitude and phase well-defined within classical magnitudes. These states
minimize the uncertainty principle and as such, they define the standard quantum limit of
measurement.

35



4.3.3. Squeezed states and their properties

Squeezed light is a quantum state of light with the property of having an asymmetrical uncer-
tainty in their quadratures, this means that the measurement of the "squeezed" quadrature
is enhanced while the "stretched" quadrature losses accuracy, always obeying the uncertainty
principle.

(∆X̂(ϕ))2 <
1
4 (∆X̂(ϕ+ π

2 ))2 >
1
4 (4.53)

where ϕ defines the phase-space reference of the orthogonal quadratures. We can squeeze
the quadrature of a single mode, this is known as a single-mode squeezed state. Or we can
squeeze the quadrature superposition of 2 or more modes, called two-mode squeezing and
multi-mode, respectively. This state is different from the single mode because the squeezed
quadratures of a two-mode state contain a correlation between both modes, manifesting
entanglement. We first analyze the single-mode field to make the squeezed state easier to
comprehend.
Considering the single-mode squeezed vacuum state defined as

Ŝ(ξ) |0⟩ = |ξ⟩ (4.54)

Similar to the coherent state we can define the squeezing operator as

Ŝ(ξ) = exp
{1

2(ξ∗â2 − ξ(â†)2)
}
, (4.55)

where ξ = r exp(iθ), with r the magnitude of squeezing defining how much the quadrature is
squeezed and θ defining which quadrature is squeezed in relation with the chosen quadrature
axes determined by ϕ.
We can compute how it transforms the annihilation and creation operators using the Baker–
Campbell–Hausdorff (BCH) formula

eABe−A = B + 1
2[[B,A], A] + ...+ 1

n! [[B,A], ..., A]︸ ︷︷ ︸
n veces

(4.56)

for the squeezing operator, this relation yields

Ŝ†(ξ)âŜ(ξ) = â cosh(r) − â†eiθ sinh(r), (4.57)
Ŝ†(ξ)â†Ŝ(ξ) = â† cosh(r) − âe−iθ sinh(r). (4.58)
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Using these, the uncertainty of the quadrature yields

⟨(∆X̂(1)(ϕ))2⟩ = 1
4[cosh(2r) − sinh(2r) cos(θ − 2ϕ)], (4.59)

⟨(∆X̂(2)(ϕ))2⟩ = 1
4[cosh(2r) + sinh(2r) cos(θ − 2ϕ)]. (4.60)

For θ = 2ϕ we get

⟨(∆X̂(1))2⟩ = 1
4e

−2r ⟨(∆X̂(2))2⟩ = 1
4e

2r (4.61)

The uncertainty principle can be understood using the phase space diagram. The area de-
fined by the uncertainty of any state must be greater than 1

16 , but this relation does not put
a condition on how this area is shaped.
Equations on (4.61) indicate that the uncertainty of a squeezed state decreases below the
standard uncertainty limit for a quadrature at the cost of increasing the uncertainty in the
orthogonal quadrature.
The squeezed vacuum state is represented as an ellipse centered at the origin. It is possible
to move this state by applying the displacement operator defined before. We must notice
that the displacement and squeezing operators do not commute thus a displaced squeezed
state possesses a different phase-space representation than a squeezed displaced state.
From equations (4.59) and (4.60), θ defines which quadrature is squeezed according to the ref-
erence of the quadratures. Usually, the phase ϕ is set such that the uncertainty is minimized,
so the axes are aligned to the squeezed quadrature. Otherwise, the ellipse is distributed
between quadratures where each one will be squeezed by a different amount.
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Figure 4.3: Wigner function of a single-mode squeezed state with ξ =
0.5eiπ/4. The ellipse is rotated at an angle π/8 with respect to q

To characterize how much a quadrature is squeezed, we use a standard decibel formula for
the uncertainty using the coherent state as the reference

S[dB] = 10 log10

(
⟨∆X̂⟩2(ϕ)
⟨∆X̂⟩2

ch

)
, (4.62)

with ⟨∆X̂⟩2 the uncertainty of the measured state and ⟨∆X̂⟩2
ch = 1/4 the uncertainty of

the coherent state. A state with a squeezed quadrature yields negative values, a stretched
quadrature yields positive values, and if the uncertainty is equal to the coherent state, the
value is zero.

4.3.4. Two-mode squeezed state

The two-mode squeezed states of light are defined by squeezing the superposition of the
quadrature between two modes of the electromagnetic field. If we consider a multi-mode field
like (4.22)-(4.23), an exact solution for a free propagating field can be calculated using the
infinite sum of all the modes, this only get worse if we add non-linear effect as the interaction
between modes is generated, this is no easy feat. Luckily in photonic lattices, only one mode
is supported per waveguide so the total field inside the lattice is a superposition of each
fundamental mode k, corresponding to the waveguide k. This means that saying correlation
between the mode i and j means a correlation between the light on waveguides i and j.
To understand this correlation we introduce the general two-mode orthogonal quadratures
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between modes i and j as

X̂
(1)
i,j = 1√

2
[X̂(1)

i (ϕ) + X̂
(1)
j (ϕ)] = 1

2 3
2
[(â†

i + â†
j)eiϕ + (âi + âj)e−iϕ] (4.63)

X̂
(2)
i,j = 1√

2
[X̂(2)

i (ϕ) + X̂
(2)
j (ϕ)] = 1

2 3
2 i

[(âi + âj)e−iϕ − (â†
i + â†

j)eiϕ] (4.64)

We can squeeze one of these quadratures by using the two-mode squeezing operators

Ŝij(ξ) = exp
{
ξ∗âiâj − ξ â†

i â
†
j

}
, (4.65)

with ξ = reiθ defined in an analogous way to the single mode, it satisfies the properties

Ŝ†
ij âi(j)Ŝij = cosh (r)âi(j) − eiθâ†

j(i) sinh (r) (4.66)

Ŝ†
ij â

†
i(j)Ŝij = cosh (r)â†

i(j) − e−iθâj(i) sinh (r) (4.67)

Acting on the vacuum |ψij⟩ = Ŝij |0i, 0j⟩, we get a state where its two-mode quadrature is
squeezed as

⟨(∆X̂(1)
i,j )2⟩ = 1

4[cosh2(r) + sinh2(r) − 2 sinh(r) cosh(r) cos(θ − 2ϕ)] (4.68)

⟨(∆X̂(2)
i,j )2⟩ = 1

4[cosh2(r) + sinh2(r) + 2 sinh(r) cosh(r) cos(θ − 2ϕ)] (4.69)

yielding the same result as the quadrature for the single mode state, but here we are squeezing
the superposition of both modes. Expanding in the Fock basis, the two mode squeezed state
can be written as

|ξi,j⟩ = 1
cosh r

∞∑
n=0

(−1)neinθ(tanh r)n |ni, nj⟩ , (4.70)

each pair |ni, nj⟩ corresponds to the number state of both modes i, j and they are correlated.
This state cannot be separated into two single-mode states, and as such, it has entanglement
properties containing a correlation between both [56].
If we are working only with two-mode states, the selection of ϕ is performed, just like in
the single-mode, by choosing the angle that minimizes the superposition of quadratures in
equation (4.68).
In the presence of single-mode squeezing the choice of the angle ϕ is not so simple because the
single-mode squeezing has a contribution to the two-mode squeezing but as a single-mode,
it does not bring correlation between modes. Not selecting the correct phase ϕ can lead to
misinterpretation and the appearance of two-mode squeezing where there is none.
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Figure 4.4: Wigner function of a two-mode squeezed state with magni-
tude ξ = 0.5. a) and b) are the marginal distribution between each mode
j = (1, 2), showing no single mode squeezing. c) and d) are the marginal
distributions for the combination of modes, where each quadrature has en-
tanglement between modes.

As depicted in figure 4.4, the Wigner function of the two modes squeezed state, shows no
correlation between the same mode meaning there is no single-mode squeezing.

4.3.5. Generation and usage of squeezed states

Squeezed states are produced using non-linear interactions, needing precise conditions on
the injected light and the non-linear medium. The most common processes to generate
them are by four-wave-mixing [47] and an optical parametric oscillator [57]. Squeezed light
possesses interesting and unique properties with no classical counterpart. The most impactful
property is they can decrease the uncertainty for amplitude or phase quadratures allowing
for measurements below the standard noise limit defined by the coherent state [58, 59, 60].
In particular, the usage of squeezed state in metrology has allowed for the enchantment of
detection systems. The most famous example is in the LIGO collaboration for the detection
of gravitational waves, where by using vacuum-squeezed states they managed to improve the
measurement beyond the quantum noise limit. This enhancement in performance allowed the
clear detection of gravitational waves in 2015 [61]. Apart from gravitational waves, sensing
with squeezed light has increased in many areas as they show much promise for the future
[62]. These states have also been proposed as continuum variables for computer quantum
protocols, like teleportation [63] and logic gates, among others [64, 65, 3].
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The current challenges these states possess in technology are their creation and propagation
without the loss in coherence, entanglement, and amplitude because as quantum states they
are sensitive to many interactions inside systems. In the context of waveguides, the initial
coupling after creation and the thermal effects along the propagation are the main generators
of losses [66].
Having explained the quantum states of light, in the next section, we put together the tools
we gathered from all previous sections and show the capacity for photonic lattices with
topological properties to propagate quantum states such as the squeezed state. In order to
present the investigation in a clear and complete way.
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Chapter 5

Topological photonics

5.1. Quantum states of light in coupled mode theory
We will now discuss the relationship between the coupled mode (CMT) and tight-binding
theory (TBT), the ability of the former to sustain the evolution of quantum states of light,
and the definition of topology for systems with photons.
In Chapter 3, we showed how we could approximate the evolution of the fields inside a
waveguide by localized modes that change in amplitude but not in shape, this is the first
similarity to tight-binding. The dynamical equation for the paraxial evolution of light in
periodic systems bears resemblance to the evolution of spinless massive particles subject to a
periodic potential. The key distinction lies in the fact that the spatial coordinate, denoted by
z, assumes the role of time, represented by t. The electric field E in optics and wavefunction
Ψ in electronic obey the equations

i∂zE =
(

− 1
2kj

∇2
⊥ + 2kj

n1
∆n(x, y)

)
E iℏ∂tΨ =

(
− ℏ2

2m∇2 + V (x, y)
)

Ψ (5.1)

Both CMT and TBT approximations are defined analogously, the light (electron) is confined
to propagate inside each waveguide (atom) as a bound state which may jump to adjacent
waveguides (atoms) proportional to the coupling defined using the evanescent field inside
the adjacent waveguides (atoms). CMT can be further expanded to accommodate quantum
states by establishing a connection between the annihilation and creation operators of the
quantized electromagnetic field and the amplitudes described in (4.11). This extension allows
us to apply the paraxial equation to the quantum electric field, resulting in a similar evolution
as observed in the classical field.
In CMT each waveguide supports only one mode, then, we can associate each mode k of the
field to the waveguide k, using this, the total field is now a finite sum of all the waveguides
in the lattice. The operator â†

j(âj) creates (destroys) a photon on the waveguide j, and the
electric field is given by

Ê(r) =
∑

j

E(r)j âj + E(r)∗
j â

†
j (5.2)
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This allows us to define the multimode vacuum as the tensorial product of the number of
waveguides, just like equation (4.43) but with a finite number of sub-spaces.
The propagation of quantum light can also be understood by interpreting that each waveguide
is a harmonic oscillator whose energy is quantized and each photon has a probability to
tunnel over adjacent waveguides proportional to the coupling constant. The corresponding
interaction between modes is defined using a tight-binding Hamiltonian where the site energy
ϵ0 is defined using the wave vector kj of the injected light together with the shape of the
mode on the waveguide. The coupling matrix between sites is defined through the classical
matrix Vij in equation 3.22 and depends on the injected light, refractive index, and distance
between waveguides.
In contrast to electronic systems, photons are bosonic particles, and as such, there can be
many particles in the same state (waveguide in this case). This is necessary when working
with the squeezed state, which, as a non-linear state, is represented by a superposition of
even number states

|ξ⟩ = 1√
cosh r

∞∑
m=0

(−1)m

√
(2m)!

2mm! e
imθ(tanh r)m |2m⟩ (5.3)

Even though the tight binding is a one-electron model, because our photons are indistinguish-
able and do not interact with each other, this approximation is valid and we can have many
photons in each site, instead of a normalized wave-function probability. Of course, it is always
possible to normalize the electric field to yield a normalized probability function given an
initial amount of photons assuming the system does not pump in extra photons throughout
the evolution. The description above is valid for linear systems, when introducing non-linear
interaction between the medium or photons we must take extra steps to describe the full
quantum dynamic [67, 68]

5.2. Topological photonics
From Chapter 2, we can see that the coupled mode theory uses the same formalism as
the tight-binding theory, yielding the same kind of Hamiltonian to describe the low-energy
interaction of the system. From equation (5.1), we know that the dynamic equations for
each system are analogous, where a spatial dimension in optics takes the role of time, and a
periodic refractive index represents the periodic potential in a crystal.
For both we can expand the electric field and wave function as plane and Bloch waves,
respectively, finding the band structure of the systems. The difference is that the crystal
momentum and energy are replaced by the wave vector and the frequency of the light,
respectively. For optics systems, the dynamic variable is defined using a spatial dimension
so we need D + 1 spatial dimensions in optics to represent the evolution of a D dimension
electronic system. There is no traveling back in time for the case of back-scattered light
as our systems are smooth enough (in theory and experiment) so that light back-scattered
is negligible and does not interfere with the dynamics. All of this together means that
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the evolution of photons in a lattice made of waveguides obeys the same dynamic as the
evolution of electrons in a lattice of atoms, granting they possess the same geometry. We can
also analogously calculate the band structure and topological invariants in photonics systems
as in condensed matter. [69, 6]
Does it mean we can replicate electronic systems and phenomena in photonics systems? is
the topology defined in the same way for both systems? It does not, and there are two
key differences between photonic and electronic systems. The first and most direct is that
photons are bosonic particles while electrons are fermionic, this makes a difference in the
definition of their statistic, symmetries, and commutators. An example is the time-reversal
symmetry which obeys T 2 = −1 for fermions and T 2 = +1 for bosons, and because this
relation is necessary degeneracy of the state due to Kramer’s theorem, the quantum spin hall
effect can not be replicated in photonics. This, however, does not mean that an analog of
this system can not be made rather it means that the topology will present itself differently.
Topological symmetries and their consequences do not show themself in the same way for
electronic and photonic systems. Nevertheless, analogous systems with similar properties can
and have been realized without the need to be defined exactly the same [7, 70].
For the SSH model, the chiral operator cannot be defined the same way because the Fermionic
commutations are needed for the relation in (2.7). It is sufficient to define a local operator Γ̂
that satisfies the relation which is the only condition needed for the topological invariant to
be well-defined and non-trivial. In our system the topology is defined through the geometry,
as long as the refractive index possesses the same periodicity as the tight-binding SSH model,
it can be represented in a photonic array of waveguides.
The second difference is the non-equilibrium nature of photons. Typically photons, as non-
conservative particles, tend to be absorbed by a medium, scattered by thermal radiation,
or just expelled off the system. This means that to maintain light propagating through a
system a pump-like mechanism must be put in place, like a laser, nevertheless, there are
exceptions to this condition [71, 72, 73, 74]. The non-equilibrium effects also change how
the topology is manifested and measured [75]. An experimental consequence for photons
is radiation loss which acts as an effective non-hermitian term that has to be taken into
account in the replication of electronic systems, but for this effect to take place the light
has to propagate long distances. For short enough distances, the pump-like mechanism will
maintain the photons inside the waveguide and the radiation loss will be negligible to the
dynamics. One consequence of this is that for optics systems, states in the energy bands can
be selectively excited by the injected light in comparison to electronic bands where all bands
below the Fermi level are occupied. This means that the topological number in photonics is
defined for each band which differs from the electronic part where the topological number
is defined from the sum of the filled bands while the Fermi energy must be in the energy
gap for it to be calculated. Another consequence of the weakly interaction of photons is that
measuring time evolution (spatial evolution) or obtaining properties of the photon means that
it must be absorbed in some setup, in contrast to electronic systems where the properties
can be probed using quantum transport methods.
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We can conclude that topology in lattices is not only reserved for electronic systems, but
optical lattices made of waveguides will also possess topological properties if the geometry
allows it. In the case of the SSH model, the topology will manifest as localization and
robustness of the injected light when propagating through the topological state.

45



Chapter 6

Preliminar for the investigation

In this Chapter, we briefly introduce the dimer, trimer and the propagation of squeezed
light through them which was studied in [76], this will help us compare and understand the
results. Following this, we talk about the effect of topology on the squeezed quadrature
and the benefit it provides to the quadrature, following the work in [10]. Ending with the
numerical method used for the simulations of squeezed light on photonic lattices for both
time-independent and time-dependent Hamiltonians.

6.1. Evolution of squeezing on dimer
In this section, we focus on the simplest multi-waveguide setup, the dimer depicted in figure
6.1, consists of two waveguides adjacent to each other, and the trimer, consists of three
adjacent waveguides.

Figure 6.1: Representation of the dimer, two waveguides next to each other.

It can be solved analytically (assuming only linear effects take place) and the solutions are
periodic functions that transmit the light back and forth between waveguides. It possesses
two modes with opposite phases called the even and odd modes. The periodic transmission
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of light when injecting it on one waveguide is due to the excitation of both modes which
have different energy (βeven, βodd). As light propagates, a phase difference (βeven − βodd)z
is added, explaining the transmission between waveguides. The trimer has a slightly more
complex solution and we omit it here to not overload this section but the general solution for
the amplitude when exciting the waveguide n0 of a homogeneous chain with coupling V is
an(z) = in−n0Jn−n0(2V z) [39], where Jn(x) are the first order Bessel functions, this behavior
is known as discrete diffraction.
From a quantum mechanic point of view, the evolution operator of the dimer using the
coupled mode theory approximation and the beam splitter operator, respectively, are :

Ûdimer = eiκz(â†
0â1+â†

1â0) ÛBS = eiθ(â†
0â1+â†

1â0) (6.1)

Identifying θ = κz shows the equivalence between both, meaning that a dimer is a beam
splitter with its angle defined by the coupling and length of the waveguides.
The propagation of squeezed light in a waveguide dimer and trimer was studied in [76]. In
this work, single-mode squeezed light is propagated on a dimer and trimer through all the
entries. It is found for the dimer, that the output light on each waveguide can have single-
mode, two-mode squeezing, or a mix of the two for both orthogonal quadratures. The output
state depends on the coupling and length of the waveguides. For the trimer, generation two
and even three mode squeezing is seen depending on the same parameters. They studied
the effect of adding losses which diminished the magnitude but not the behavior, and by
using different polarization of the light, they managed to control the output as the coupling
depends on the polarization for asymmetrical waveguides.

6.2. Topological protection of squeezed quadrature
What are the effects of the topology on the properties of a squeezed state when propagating
through a topological edge state? Are there any benefits compared to a trivial edge state?
In the work [10], we compared a topological edge state in the SSH with a trivial edge state
made by an onsite impurity in a homogeneous chain as depicted in figure 6.2.
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Figure 6.2: The top two images show the topological edge state (T) with
the unit cell highlighted and the impurity edge state (I) in a homogeneous
lattice. The bottom image shows the eigenstate localized on each of the
edges and their distribution on each waveguide. The topological state decays
exponentially with weight only on the even sites due to chiral symmetry.
The impurity state decays exponentially on each site. Figure taken directly
from [10].

When propagating squeezed light throughout them, it was seen that the squeezing inherits
the localization of the edge states. Showing, at first sight, no significative difference between
both states apart from the sub-lattice localization of the topological state favoring the two-
mode squeezing between sites of the same sub-lattice. The difference appears in the presence
of coupling disorder, it was seen that the topological state protects the phase of the squeezed
quadrature from rotating due to the disorder, in comparison to the trivial state where it
rotates randomly as depicted in figure 6.3
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Figure 6.3: Evolution of single-mode squeezing through the topological (T)
and the impurity (I) edge states. The initial phase of the quadrature is
chosen to be maximally squeezed. The top panel corresponds to a lattice
without disorder, and the initially squeezed quadrature persists for both
edge states. The middle panel corresponds to a lattice with coupling dis-
order, the phase of squeezed quadrature starts to rotate for the impurity
showing diminishing squeezing on the quadrature we are currently mea-
suring, on the other hand, the topological state does not rotate and the
maximally squeezed quadrature remains in the same phase, this is effect of
the topology. Last but not least, on-site disorder is added on the bottom
panel. It shows the breaking of the topology causing a rotation in the phase
of the squeezed quadrature for both types of edge states. Figure taken di-
rectly from [10].

This behavior was explained by realizing that the rotation of the phase is due to the energy
of the state, which remains at zero for the topological system even in the presence of disorder
while it varies randomly for the trivial state. This property was exploited to enhance a tele-
portation protocol using two-mode squeezed state [63]. In the presence of coupling disorder,
it was observed that the topological edge state possessed a much greater fidelity in the re-
ceived message compared to the trivial state due to the locking of the squeezed quadrature,
asserting the benefits of using topologically protected squeezed light in the protocol.
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Because we would like to exploit this property, we now comment on the two types of domain
walls an SSH model can host, one type is between two coupling u, and the other type is
between two coupling v. As seen in figure 2.9, the latter possesses two trivial states and
two topological states localized on and around the domain wall. This means that injecting
squeezed light in the domain wall or neighbor sites will excite all four states, causing a beat-
ing of the light between them [77]. In our system, this will cause the squeezed quadrature
to rotate as the trivial states does not have zero energy. To exploit the zero energy states,
we only study the propagation of squeezed light in a domain wall between couplings u which
only hosts topological states and the squeezed phase is locked.

6.3. Evolution of expectation values on photonic lat-
tices

The squeezing is proportional to the uncertainty of the quadrature, to obtain this, we need
to calculate:

⟨∆X̂i,j(ϕ)⟩2(t) = ⟨X̂i,j(ϕ)2⟩(t) − ⟨X̂i,j(ϕ)⟩2(t) (6.2)

for both orthogonal quadratures. For this, we use the time-dependent Trotter-Suzuki algo-
rithm [78] and exploit the linearity of the Hamiltonian to compute the evolution, even for
time-dependent Hamiltonians.
We start by considering a general linear Hamiltonian which can be written as

Ĥ =
∑
m,n

Hmnâ
†
mân, (6.3)

Hmn is the matrix containing the site’s energies and coupling in real space, which correspond
to the diagonal and non-diagonal matrix elements, respectively. In the Heisenberg picture,
the evolution of an operator Ŷ is given by the equation

dŶ

dt
= i[Ĥ, Ŷ ], (6.4)

for time-independent Hamiltonians, this equation has solutions of the form

Ŷ (t) = Û †(t0, t)Ŷ (t0)Û(t0, t), (6.5)

with Û(t0, t) = exp
{
−i
∫ t0+t

t0
Ĥ(s)ds

}
.

The evolution for the operator âj in the Heisenberg picture is given by

âj(t) = eibĤâje
−ibĤ = (eib

∑
m,n

Hmnâ†
mân)âj(e−ib

∑
m,n

Hmnâ†
mân), (6.6)
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where b is a real constant depending on time. By using the BCH relation (4.56) this expression
can be reduced to

eibHâje
−ibH =

∑
n

e−ibHjn ân. (6.7)

This relation can be used to calculate the evolution in the Heisenberg picture for any operator
defined in terms of the ladder operators for a time-independent Hamiltonian. The calculation
of the expectancy or variance is straightforward given the initial state.
Now we focus on treating a time-dependent Hamiltonian, meaning that the matrix Hmn =
Hmn(s) can depend on the time s. The evolution from t0 to t0 + t is determined by the
evolution operator satisfying the equation d

dt
U(0, t) = −iH(t)U(0, t), with the solution given

by the time-ordered integral

Û(t0, t) = T exp
{∫ t

t0
Ĥ(s)ds

}
, (6.8)

this expression can be approximated, even for time-dependent Hamiltonian, as a series of
small steps using an infinitesimal time-evolution operator [78]

Û(tj, tj + ∆t) ≈ exp
{

−i
∫ tj+∆t

tj

Ĥ(s)ds
}

= exp
{
−B(ti,∆t)mn â

†
mân

}
) (6.9)

with B(ti,∆t)mn = i
∫ ti+∆t

ti
H(s)mnds. The evolution of a state is approximately given by

|Ψ(t)⟩ ≈
N−1∏
j=0

Û(tj, tj + ∆t) |Ψ(t0)⟩ , (6.10)

where N is the number of steps and ∆t the step size satisfying ∆t = (t − t0)/N . Using
equation (6.7), the infinitesimal evolution of an operator in the Heisenberg picture is

âm(ti + ∆t) = Û †(ti, ti + ∆t)âm(ti)Û(ti, ti + ∆t) (6.11)

s
=
∑

n

exp{−B(ti,∆t)}mnân(ti) =
∑

n

U(ti, ti + ∆t)mnân(t) (6.12)

where U(ti, ti +∆t)mn = exp[B(ti,∆t)]mn = exp
(
i
∫ ti+∆t

ti
H(s)ds

)
mn

is a squared matrix with
the same size of the system. Using this method, it is possible to compute the expectancy
and variance evolution of any combination of ladder operators as long as the initial state
possesses an initial matrix representation and the system has a linear Hamiltonian of the
form (6.3).
To characterize how much a quadrature is squeezed using equation (6.2), we use the decibel
formula in equation (4.62). The one-mode quadrature and two-mode quadrature of states
fulfilling ⟨ψ0| âi,j |ψ0⟩ = 0 and ⟨ψ0| â†

i,j |ψ0⟩ = 0, means that the evolution of the variance
will be completely dictated by ⟨X̂2

ij⟩, which can be computed from the following relations for
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both single and two-mode quadratures as

A
(1)
ij (t) = ⟨ψ(t)| âiâj |ψ(t)⟩ = ⟨ψ(t0)| Û †(t0, t)âiâjÛ(t0, t) |ψ(t0)⟩ (6.13)

A
(2)
ij (t) = ⟨ψ(t)| â†

i âj |ψ(t)⟩ = ⟨ψ(t0)| Û †(t0, t)â†
i âjÛ(t0, t) |ψ(t0)⟩ (6.14)

A
(3)
ij = ⟨ψ(t)| âiâ

†
j |ψ(t)⟩ = A

(2)
ji + δij (6.15)

A
(4)
ij = ⟨ψ(t)| â†

i â
†
j |ψ(t)⟩ = (A(1)

ji )†, (6.16)

Each one can be expressed as a multiplication of matrices, by finding the BCH transformation
of the operator using the linear Hamiltonian, in this case, it yields the evolution

A
(1)
ij (t) =

∑
m,n

N−1∏
k=0

Uim(tk, tk + ∆t)A(1)
mn(t0)UT

nj(tk, tk + ∆t) (6.17)

A
(2)
ij (t) =

∑
m,n

N−1∏
k=0

U †
im(tk, tk + ∆t)A(2)

mn(t0)UT
nj(tk, tk + ∆t) (6.18)

where T is the transpose and † is the transpose conjugate. These equations tell us that by
recursively multiplying the time evolution matrix U(ti,∆t) to both sides of the initial matrix
A(j)

mn(t0) at each time, we can compute the total evolution and, by taking the correct matrix
elements we can get both one-mode and two-mode squeezing in and between waveguides.
These relations are theoretical and are only limited by intrinsic numerical errors. That
does not mean that the total evolution is exact, because we are using the trotter algorithm
to approximate the evolution operator it is necessary to define a time-step shorter than the
fluctuation of the Hamiltonian i.e, ∆t ≪ ||∂H/∂t||. Our system satisfies ||∂H/∂t|| ≈ 10−1|u−
v|, defining the trotter step-size as ∆t = 10−3 relative to the coupling values (u, v) ∝ 100,
will be enough to simulate the evolution accurately.
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Chapter 7

Manipulation of squeezed light in an
SSH model with adiabatic modulation

To fully understand the results, the setup has to be clear. For this, the beginning of this
chapter is reserved to explain how to move the domain wall, the parameters controlling the
quality, and the limits of the modulation. Once this is understood, we present the initial
conditions which are the injected light, and how we study the effects of the disorder. The
chapter is finalized by presenting the results of the evolution, the behavior observed, and the
robustness of the states.
The results of this thesis focus on manipulating squeezed light in a photonic array of waveg-
uides with topological properties, understanding what benefits the topology brings, and what
are the limits.
To do this, we inject two single-mode squeezed lights onto two separated topological domain
walls. Then, by using a time-dependent Hamiltonian, we locally change the coupling around
each domain wall and move them as depicted in figure 7.1. After the modulation, both
domain walls remain together for a fixed period of time, called time of interaction. After
this, the inverse modulation begins. the domain walls are separated and taken back to their
original waveguides. We see that the properties and transmission of the output states depend
on the time of interaction Tint, the smoothness of the modulation TM , and the initial band
gap ∆C(g).
The output states, which are physically apart and possess topological properties, have single-
mode or/and two-mode squeezing, depending on the interaction length Tint for a fixed modu-
lation TM and band gap ∆C(g). The same is seen when injecting three single-mode squeezed
light into three domain walls. The behavior of the output squeezing at the two and three
domain walls for different interaction lengths is analogous to the evolution of single-mode
squeezed light in a two and three-waveguide system, as talked about in the previous section.
In our system, because the Hamiltonian is linear and the squeezing is generated through a
non-linear interaction, the total injected squeezing magnitude acts as a conserved quantity.
This means that any loss in the output states is due to coupling and scattering to the bulk.
We do not consider any other type of loss effect.
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7.1. Details of the coupling modulation
In the modulation, each domain wall is moved across the lattice using the mechanism 2.10
described at the end of Chapter 1. It is represented in waveguides in figure 7.1, where the
couplings u and v are inversely proportional to the distance between waveguides.

Figure 7.1: Coupling modulation represented in waveguides that moves the
domain wall two sites to the left. The yellow line shows the evolution of
light through the system when injected on the domain wall.

In the first part of the evolution, the two nearest coupling in the direction of the movement
varies with length in which the modulation in figure 7.1 is repeated the number of times
necessary for the domain walls to get next to each other, this process is depicted in figure 7.2
and it takes a total length of TM . As we will see, varying the total length affects the quality
of the modulation. At the end of this, the domain walls are at the middle point between
their original location and have a coupling u between them. Because the system is still in a
topological phase, the coupled domain walls host localized states, which prevents light from
scattering to the bulk while permitting the light to propagate between them. After a length
Tint, which defines the length of interaction between the domain walls.
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Figure 7.2: Example of half the evolution, the domain walls are "moved"
until coupled. The black box shows the modulation in 7.1, by repeating the
process the domain wall is "moved" across the system guiding the light. The
green arrow shows the evolution of the light when injected into the domain
walls.

By doing the inverse process of the initial modulation, the domain walls are separated and
returned to their original waveguides. After this, the output light at both domain walls is
studied. The whole evolution is represented in figure 7.3, the domain walls are coupled and
then returned to their original positions.
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Figure 7.3: Example of full evolution, the domain walls are coupled for a
fixed length and then returned to their original positions. The green arrows
show the path taken by the light when injected on the domain wall.

To modulate the coupling, we use the hyperbolic tangent function because of its smooth-
ness and convenience as a switch function, its integral is also convenient when defining an
infinitesimal step.
For convenience, the order of the coupling is vorder is proportional to uorder so that the order
of magnitude is defined by one variable. The length dependence of the coupling is defined as

vorder = uorder + g · tanh (1) (7.1)

v(t) = uorder + g · tanh
(

1 − (t− t0)
tm

)
(7.2)

u(t) = uorder + g · tanh
(

(t− t0)
tm

)
(7.3)

where t0 is the initial length and tm is the length of each cycle of modulation, depicted in
figure 7.1, and is defined as tm = TM/|∆P | where TM is the total duration of the modulation
and ∆P = |Pb − Pa|/2 is the number of sites between the domain walls which is fixed. This

56



form for tm is chosen to simplify the control over the modulation because of two reasons.
First, TM helps to control how long is the modulation compared to the whole evolution and,
second, ∆P defines the minimum number of cycles you need to move each domain wall to
reach the middle. When considering three domain walls, the number of sites is defined using
the distance between the middle and one of the lateral domain walls. Using this definition the
parameter g determines the size of the energy gap 2.2 while uorder sets the order of magnitude
of the system. The band gap of the system with this definition is

∆C(g) = |vorder − uorder| = g · tanh (1) (7.4)

These will allow us in the next section to control the quality of the modulation using the
values TM and g, while uordere sets reference for the system’s energies.

7.2. Parameters of the system
We study an SSH model with a total of 30 waveguides possessing two domain walls in the
positions pa = 11 and pb = 20. We inject single-mode squeezed light with a magnitude of
r = 0.5 and phase θ = 0 on both domain walls. This translates, in the decibel formula, to
approximately -4.34 dB of squeezing. We define the length of interaction proportional to the
energy gap ∆C(6) = ∆E and varies from 2∆E to 3∆E which, for all cases, is enough to see
at least one full cycle of the behavior. The output squeezing is studied by taking the mean
output on the domain walls considering different lengths of interaction Tint for a fixed band
gap ∆C and a modulation length Tm.
The relation between the modulation time and the band gap defines how good the modula-
tion can be, for smaller band gaps we need larger modulation times, and vice versa. For this
reason and to maintain a common order of magnitude when simulating the system, we chose
the value ∆E and explored the system’s reaction to changes on this order of magnitude.
We study the output squeezing for varying band gaps using the values g = (3, 6, 9, 12)
in combination with the modulation lengths TM = (∆E, 2∆E, 3∆E, 4∆E). These values
are chosen because they define the limits of the behavior. The band gap g = 3 shows, for
all cases, a poor behavior, setting the lower limit for the band gap, and values greater than
g = 12 show little to no difference in the behavior, setting the upper limit. The modulation
length TM is proportional to ∆E. It is defined this way to match the band’s gap order of
magnitude, this allows us to get the lower limit where the effective behavior is lost.
We start by presenting the dependence of the output states on the energy gap and modula-
tion length. After this, we present the interaction of three initial localized states with the
same conditions.
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7.3. Two domain walls interacting
For the two domain walls interesting, the correct phase to measure two-mode squeezing is
ϕ = (2n + 1)π

4 . We take the angle from the analysis in [76] but it can be directly obtained
by studying the correlation matrix defined for a Gaussian state, such as the squeezed state,
or from the Wigner function [3].

Figure 7.4: Output squeezing of two interacting domain walls. Each figure
shows the single and two-mode squeezing output on each domain wall versus
the length of interaction for different combinations of modulation lengths
and band gaps. Each letter shows a different band gap while each number
represents a different modulation time. We have the band gap sizes: ai) g =
12 , bi) g = 9 , ci) g = 6 and di) g = 3. The index i ranges from 1
to 4 representing the modulation lengths: 1) TM = ∆E, 2) TM = 2∆E,
3) TM = 3∆E and 4) TM = 4∆E.
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We can see from all images in figure 7.4, by varying the length of interaction the output
squeezing at the domain walls changes from single-mode squeezing to two-mode squeezing
as a dimer would. The period of each oscillation is fixed and depends on the coupling of the
joint domain walls but has a translation on the x-axis depending on the modulation length.
Figures in d) show that a band gap of g = 3 is too low to achieve a successful modulation
which translates into a low squeezing transmission (relative to the injected squeezing) and
poor behavior (analogy to a dimer). As we increase the band gap, we can see in figures ai),
bi), and ci) that, for larger modulation lengths, the output squeezing behaves well and has
high transmission. However, this is not valid for the shortest modulation time which does
not behave well for all band gaps. In general, the bigger the combination of band gap and
modulation time, the better the modulation and the lesser losses but we can see in the figures
that good dimer behavior is seen for almost all cases, only diminishing in magnitude at the
output by a maximum of 30% and in the best case the loss is lower than 10%. The band gap
g = 3 and modulation length TM = ∆E define the minimum possible values to accurately
replicate the behavior of a dimer.
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7.4. Three domain walls interacting
To study three interacting domain walls, we consider a system of size n = 31, with domain
walls in the positions pa = 9, pb = 16, and pc = 23. The chosen values for the band gaps
and modulation lengths are the same as the dimer. In this case, the two-mode squeezing is
measured at the quadrature phases of ϕab = 3π

4 , ϕbc = 3π
4 and ϕac = π

2 .

Figure 7.5: Output squeezing of three interacting domain walls. Each figure
shows the output two-mode squeezing on each domain wall versus the length
of interaction for different fixed values of modulation lengths and band gaps.
Each letter shows a different band gap while each sub-index represents a
different modulation time. We have the band gap sizes: ai) g = 12 , bi) g = 9
, ci) g = 6 and di) g = 3. For each letter we have the index i ranging from
1 to 4 representing the modulation lengths: 1) TM = ∆E, 2) TM = 2∆E,
3) TM = 3∆E and 4) TM = 4∆E.
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Just like two domain walls, by changing the length of interaction we can output two-mode
squeezing between each domain wall. For certain lengths, we can even get three-mode squeez-
ing as the single and two-mode squeezing is zero just like in [76]. From figures in d), just
like the dimer, this band gap size is not enough for a good modulation, losing the effective
trimer behavior. As we increase the band gap, the behavior and transmission get better at
replicating the trimer. For the shortest modulation length TM = ∆E, the behavior is lost
for all band gaps. Nevertheless, good behavior is seen for almost all cases, only changing
the magnitude of the output squeezing by less than 30%. Just like in the previous case, the
bigger the band gap and the modulation lengths, the better the behavior and transmissivity
of the injected squeezing.

7.5. Topological protection for two and three domain
walls

Different levels of the disorder are added to the couplings (u, v) and on-site energy (ϵ0)
to visualize the benefits the topology grants. The disorder is proportional to the coupling
difference, a uniform random distribution between −1, 1 called r[−1, 1] and a δ parameter
that manages the disorder’s magnitude.

d = |u− v| · δ · r[−1, 1] (7.5)
u(d) = u+ d (7.6)
v(d) = v + d (7.7)
ϵ0(d) = d (7.8)

As seen in figures 7.4 and 7.5, the behavior is lost for band gap of size g = 3 and modulation
length of ∆E, we omit these cases as the introduction of disorder will not improve them.
The disorder in the site energies must be placed on the even or odd sites in order to break
the chiral symmetry. We chose the even sites but there is no difference in using odd sites.
We added disorder to the systems with the largest modulation length while varying band
gap. This means we are testing the topology at different band gaps, we did this because it is
the condition directly related to the coupling magnitude and the most prone to fluctuations
due to disorder. The following figures show the output squeezing when adding 10% (δ = 0.1)
of coupling and on-site disorder for different band gap sizes and fixed modulation time of
4∆E. This magnitude of disorder is big for waveguides which typically present a disorder of
1% in their fabrication. We made 50 realizations to study the disorder for each case.
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Figure 7.6: Output squeezing of the two interacting domain walls with
coupling and on-site disorder. The disorder is of the same magnitude δ =
10%. The top three images a1), a2), a3) show the effect of coupling disorder.
The bottom three images b1), b2), b3) show the effect of on-site disorder. The
modulation length is maintained constant at TM = 4∆E while the band gap
takes the values of g = 6, 9, 12.
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Figure 7.7: Output squeezing of three interacting domain walls with cou-
pling and on-site disorder. The disorder is of the same magnitude δ = 10%.
The top three images a1), a2), a3) show the effect of coupling disorder. The
bottom three images b1), b2), b3) show the effect of on-site disorder. The
modulation length is maintained constant at TM = 4∆E while the band
gap takes the values of g = 6, 9, 12.

The top three images in figure 7.6 show the behavior of a dimer, this is proof of the topological
protection. The coupling disorder does not break the sub-lattice symmetry and the domain
walls remain, protecting the propagation and localization of the squeezing against it. There
are more losses as the scattering to the bulk is increased in the modulation length by the
disorder. In figure 7.7, we see a trimer behavior but, like for the dimer, with less magnitude.
This is due to the scattering to the bulk as the modulation initial and final points are
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imperfect with the added disorder, increasing the band gap or modulation length will increase
the transmitted magnitude and quality of the effective trimer. In contrast, adding on-site
disorder to both systems break the symmetry and, in consequence, the domain walls, meaning
all output squeezing is scattered to the bulk and lost.
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Chapter 8

Conclusions

We conducted a study on the evolution of squeezed light in a one-dimensional topological
system known as SSH, with two domain walls hosting topological states. By manipulating
the couplings adjacent to the domain wall, we successfully brought the states closer together,
resulting in an interaction between the domain walls. This interaction can be seen as the
evolution of an effective dimer or trimer, depending on the number of domain walls involved.
Our analysis of the response to coupling disorder revealed that the topological domain wall
remains protected throughout the evolution. Although the output squeezing diminished
in magnitude due to scattering to the bulk caused by the disorder, the behavior of the
output squeezing remained mostly consistent. However, the introduction of on-site disorder
disrupted the states and scattered the squeezing throughout the system, thereby nullifying
the effectiveness of the effective dimer and trimer. This confirmation of topology protection
demonstrates that the quantum properties of the squeezed state are preserved throughout
the evolution of moving domain walls. As a side note, the percentage of on-site disorder
we selected is significantly larger than what is typically found in real-life waveguide systems.
However, it’s important to note that even a small amount of on-site disorder could potentially
disrupt the states in theory. Nevertheless, in practice, the behavior should still remain within
a certain limit. It’s also important to consider the edge states in this context since the
system is always in a topological phase. These edge states can be leveraged to inject or
maintain light during the evolution, thereby opening up possibilities for simulating various
systems such as interferometers and quantum protocols that exploit the system’s topology.
Our investigation highlights the advantages of utilizing topological domain walls for the
communication and movement of squeezed light through time-dependent couplings. This
approach enhances the interaction between quantum states while minimizing scattering and
preserving quantum properties. The topological protection allows for imperfections in the
coupling, enabling consistent behavior even in the presence of poorly distanced but similar
waveguides. Moreover, these properties may extend to analogous systems governed by similar
equations, such as tight-binding and coupled-mode theories. We hope these findings will
expand the usage of quantum light on photonic systems with topological properties. Opening
the door for greater control and stability of quantum properties and allowing for the creation
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of new quantum technology.
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Annex A

Energy spectrum and wavefunction
distribution

A.1. Two domain wall system
The following shows the energy spectrum and wavefunctions of the system used for the
simulation in the results.

Figure A.1: Energy spectrum SSH in a topological phase with two domain
walls in the positions pa = 11 and pb = 20. The system has 32 sites and
couplings u = 1, v = 1 + 6tanh(1).

Because of the two domain walls, we have 4 states with zero energy. One per edge and one
per domain wall and they are well separated from the bulk. The distribution weight across
the lattice can be seen in figure A.2. The amplitude of all energies quickly decays when
moving away from the domain walls and edges, they are sufficiently apart for the injected
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light to be confined on the domain wall.

Figure A.2: Wavefunction across the lattice of the states with zero energy
in a system with two domain walls.

A.2. Three domain wall system
For three domain walls, we can see there is a similar extra zero energy state corresponding
to the third domain wall.

Figure A.3: Energy spectrum SSH with u = 1 andv = 1 + 6 tanh 1 in a
topological phase with three domain walls on the positions pa = 9 , pb = 16
and pc = 23.
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In this case we have 5 zero energy states, the band gap for this system is 6 tanh 1 ≈ 4.5 which
is enough for the zero energy states to be well separated from the bulks.

Figure A.4: Wavefunction across the lattice of the states with zero energy
in a system with three domain walls.

The distribution weight across the lattice with three domain walls for each zero energy state
is shown in A.4. Just like for the dimer, all states with zero energy quickly decay when
moving away from the edges or domain walls, ensuring the light keeps propagating mainly
through one of those waveguides if injected in it.
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