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RESUMEN DE LA TESIS PARA OPTAR
AL GRADO DE DOCTORA EN CIENCIAS, MENCIÓN FÍSICA
POR: DANIELA IGNACIA GRANDÓN SILVA
FECHA: 2023
PROF. GUÍA: DOMENICO SAPONE

INFERENCIA BAYESIANA PARA LA COSMOLOGÍA DE PRECISIÓN: UN
ENFOQUE DESDE APRENDIZAJE DE MÁQUINAS

La cosmología se encuentra actualmente en el estado afortunado de recopilar cada vez más
datos y, en particular, datos cada vez más precisos. Esto, a su vez, implica que la estimación
de numerosos parámetros cosmológicos será cada vez más precisa. Lo anterior ofrece el
potencial para una comprensión más profunda de la naturaleza de la energía oscura y sobre
la importancia estadística de las tensiones observadas en el modelo cosmológico estándar,
conocido como ΛCold Dark Matter (ΛCDM). Con el fin de prepararse para la llegada de
estos datos tan precisos, una variedad métodos estadísticos y de machine learning (redes
neuronales, procesos gaussianos, entre otros) se han empleado como ayuda para procesar
los datos y acelerar la inferencia estadística de parámetros cosmológicos. Implementar estas
herramientas permite explorar diferentes estrategias para el análisis de datos, como el estudio
de efectos instrumentales y físicos que pueden introducir errores sistemáticos y la exploración
de modelos más allá de ΛCDM.

En esta tesis, se emplea por primera vez un método estadístico robusto que permite hacer
inferencia estadística en el caso que las evaluaciones de la función de verosimilitud o likelihood
de los datos sean asistidas por redes neuronales artificiales. Dado que las redes neuronales
son capaces de aproximar las cantidades aprendidas, un problema no resuelto es cómo evitar
que el error de aproximación introduzca errores en la inferencia de parámetros. Nuestro
método (Bayesiano) provee la solución a este problema, que consiste en una nueva función de
probabilidad a posteriori que elimina cualquier riesgo de que el resultado de los parámetros
cosmológicos esté sesgado por errores introducidos por las herramientas de machine learning.
Por otro lado, y siguiendo el estudio de los sesgos en la inferencia de parámetros cosmológicos,
esta tesis presenta un estudio de los sesgos que podrían introducir los efectos del feedback de
bariones, los cuales corresponden a procesos astrofísicos que pueden contaminar la señal del
efecto lente gravitacional débil. Para esto, se emplean datos simulados y reales del survey
de galaxias Hyper Suprime-Cam (HSC) y se implementan herramientas de machine learning
que son entrenadas en base a simulaciones de N-cuerpos. Logramos demostrar que el análisis
en base a datos simulados introduce sesgos severos en la inferencia del parámetro S8. Sin
embargo, el análisis en base a datos reales es consistente con un escenario donde los bariones
poseen un mecanismo de feedback débil, y por ende, no introducen sesgos importantes en la
inferencia de parámetros cosmológicos para los surveys de galaxias actuales, como HSC.

Finalmente, en esta tesis se estudian métodos paramétricos y no paramétricos con el
fin de develar las propiedades de la energía oscura, y entender si esta cantidad existe en
forma de constante cosmológica o un fluido dinámico. Para este análisis, usamos un set de
datos observacionales del Universo tardío, y distintos priors en el parámetro de Hubble H0.
Encontramos que distintos métodos convergen a una energía oscura dinámica, aunque su
significancia estadística no es suficiente para poder descartar completamente un modelo con
constante cosmológica.
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APPROACH

Cosmology is currently experiencing a fortunate growth in the collection of increasingly pre-
cise data, yielding sub-percent precision on numerous cosmological parameters. Such con-
straining power offers the potential for a deeper understanding of the nature of dark energy
and sheds light on the statistical significance of tensions observed in the standard cosmolog-
ical model, known as Λ Cold Dark Matter (ΛCDM). In order to get ready for the arrival
of such precise data, a variety of statistical methods and machine learning techniques have
been applied to assist the data processing and accelerate the statistical inference of cosmolog-
ical parameters. These tools enable the exploration of multiple analysis strategies, including
investigating systematic effects that may impact parameter inference and exploring cosmo-
logical models beyond ΛCDM.
In this thesis, we implement for the first time a robust statistical method that enables the
inference of cosmological parameters when the likelihood evaluations are assisted by artifi-
cial neural networks. As neural networks are, by design, an approximation of some target
function, a far unsolved problem is how to avoid that the neural net’s approximation error
will bias the parameter inference. We propose an adapted posterior function, which is the
Bayesian solution to the wish of wanting to eliminate a neural net’s bias and propagate the
uncertainty of its prediction. We demonstrate our method in a cosmological analysis and
show that our solution works successfully for both well-trained and poorly-trained neural
networks. Following the study of biases in cosmological inference, we also examine the bias
introduced by baryonic processes in the weak gravitational lensing signal. These are astro-
physical processes that can contaminate weak lensing data vectors and lead to bias in our
cosmological parameter estimates. To investigate this, we employ weak lensing mocks that
follow the Hyper Suprime-Cam (HSC) Year 1 properties. The mocks are based on cosmolog-
ical N-body simulations and hydrodynamical simulations, using the N-body simulations to
build a likelihood pipeline and train a Gaussian Process regressor that learns the statistics
for arbitrary cosmologies. We demonstrate that baryonic feedback mechanisms can intro-
duce severe biases in the amplitude of matter clustering parameter S8 for a simulation-based
analysis. We also perform statistical inference on HSC-Y1 real data and demonstrate that a
weak feedback scenario is preferred by the HSC data.
Finally, in this thesis we study dark energy through two approaches: a parametric method and
a non-parametric method based on Gaussian Processes, with the aim of determining whether
this exotic component is consistent with a cosmological constant or a dynamical fluid. We
use late-time cosmological data and consider different priors on the Hubble parameter H0.
We found that both approaches employed in this work support a deviation from standard
cosmology through an evolving dark energy component, although its statistical significance
is not enough to rule out the cosmological constant.
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Cuando emprendas tu viaje a Itaca
pide que el camino sea largo

Que muchas sean las mañanas de verano
en que llegues -¡con qué placer y alegría!-

a puertos nunca antes vistos.
Konstantino Kavafis, Ithaca (1911)
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Introduction

Our understanding of the Universe has undergone dramatic advances during the last century.
This rapid progress is attributed to the development of physical theories that aim to describe
the thermal history of the Universe, as well as the rapid advancement of technology that
has enabled the collection of numerous observational probes. Since the publication of Albert
Einstein’s Theory of General Relativity in 1916 [11], many observational efforts have been
dedicated to testing and confirming the predictions of this theory. In 1919, an expedition led
by Sir Arthur Eddington confirmed the predictions of General Relativity for the first time,
specifically in the deflection of light by the gravitational field of the Sun. In the subsequent
years, measurements of the time-delay effect in the Solar System further corroborated the
theory. Even in the past few decades, the direct detection of gravitational waves by the
LIGO detectors [12] has also provided confirmation of the predictions of this theory. Given
the precision of all these observations, General Relativity stands as one of the fundamen-
tal pieces in our current understanding of the dynamics of the Universe and its structures.
During the 20th century, other major breakthrough discoveries took place. The detection of
the cosmic microwave background (CMB) radiation in the early 1960s and the evidence of
accelerated expansion, thanks to Type-Ia supernovae observations [13, 14], initiated the era
of Modern Cosmology. The current concordance model of cosmology, the Λ Cold Dark Mat-
ter (Λ CDM) model, has been established and precisely determined based on observations
of the Cosmic Microwave Background (CMB) at microwave and infrared frequencies [2], the
large-scale structure probes [15], among others. From these observations, we know that 5% of
the energy-content in the Universe is composed by ordinary matter and radiation, described
by the standard model of particle physics. However, the energy-budget is dominated in a
95% by two exotic and unknown components: dark matter and dark energy. The former is
crucial to describe the formation of structures in the Universe, while the latter is considered
as the source of the accelerated expansion. To elucidate the properties and the nature of
these components, and also characterize the expansion history of the Universe, cosmology
is preparing for the advent of a new era of experiments. Ground-based galaxy surveys such
as Rubin Observatory’s Legacy Survey of Space and Time (LSST) [15], and space missions
such as the Euclid satellite [16], will provide measurements of the matter distribution with
unprecedented precision. Furthermore, galaxy surveys will provide large volumes of data,
conducting research into the era of precision cosmology and big-data. As for the study of
General Relativity during the past century, we hope a new data-driven era will shed on light
on the current cosmological paradigm. In order to prepare for the analysis of these data sets,
the implementation of novel machine learning techniques have been considered as a promising
tool to maximize the scientific-return of cosmological data.
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In this thesis, we investigate how statistical tools and machine learning techniques aim to
provide further insights into the current challenges of modern cosmology, such as biases in-
troduced in parameter inference due to important aspects of data analysis in cosmology: the
role of machine learning in cosmology, and the role of systematicsc in the study of weak
gravitational lensing.

In this context, neural networks have become popular to accelerate parameter inferences
in cosmology, especially for the upcoming generation of galaxy surveys. Many cosmology-
emulators based on neural networks have been designed for the analysis of the upcoming
Euclid and LSST data [17, 18, 19]. However, it is known that neural networks emulators
are only capable of approximate physical functions, and hence a recurrent question has been
how to propagate the approximation error of neural networks, in order to avoid biases in the
parameter inference. In this thesis, we present a Bayesian solution to propagating a neural
net’s approximation error and thereby debiasing parameter inference. We capture the re-
ported approximation errors, allowing us to eliminate the neural net’s bias during inference,
and propagating its uncertainties. We demonstrate that our method is quickly implemented
and successfully infers cosmological parameters even for strongly biased neural nets.

The precision and volume of data provided by the upcoming galaxy surveys not only ne-
cessitates the incorporation of novel methods to improve the process of parameter inference,
but also demands a detailed study of the systematic errors that can easily contaminate this
precise cosmological measurements. The study of the weak gravitational lensing of galaxies,
i.e. the bending of light due to intervining mass between the source and the observer, in-
volves the statistical detection of a coherent weak signal imprinted in the galaxy shapes. It
has been demonstrated that at small scales, astrophysical effects can impact the weak lensing
signal and lead to biased cosmological constraints if not accounted for [20, 21]. Moreover,
these astrophysical effects can be mimicked by varying cosmological parameters, such as the
neutrino mass [21]. Therefore, an analysis of the impact of astrophysical effects such as bary-
onic feedback, is an important consideration currently in galaxy survey collaborations. In
this thesis, we investigate the effects of baryonic physics on weak lensing measurements by
employing statistical tools that go beyond the traditional power spectrum. This approach
offers several benefits. Different statistical tools are expected to be influenced by systematics
in distinct ways. Moreover, the constraining power of summary statistics varies, making it
essential to determine which summary statistics can yield the tightest constraints on cosmo-
logical parameters while remaining robust against systematics. Rubin LSST [15] is currently
developing different strategies to account for the effects of baryons. Since the Hyper-Suprime
Cam (HSC) depth is 1 magnitude less depth than that of Rubin-LSST Year 10 [22] and pos-
sess an excellent image quality, studying the systematic effects on HSC data is important to
understand the potential challenges that LSST may face in the future. It is noteworthy that
machine learning methods are gaining popularity in the analysis of weak lensing data. These
methods range from deep learning techniques that directly extract cosmological information
from weak lensing maps [23] to the training of Gaussian Process or Neural Network emulators
for modeling non-Gaussian statistics. The latter is implemented in this thesis as well.

The content of this thesis is organized as follows: In Chapter 1 we provide an overview
of the standard model of cosmology at the background and matter perturbation level. We
discuss some of the cosmological probes that have placed constraints on the model parameters
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and address the challenges that the current cosmological paradigm is still encountering. In
Chapter 2 we present the elements of statistics and data analysis that are used in the follow-
ing chapters, encompassing descriptive statistics, statistical inference and machine learning
techniques. Chapter 3 reviews the weak gravitational lensing of galaxies due to the large-scale
structure in the Universe. Chapter 4, Chapter 5, and Chapter 6 present the contributions of
this PhD thesis. Chapter 4 and Chapter 5 aim to understand the biases in parameter infer-
ence. The results of our paper Grandón et al. (2022) [24] are presented in Chapter 4, where
a novel Bayesian formalism provides the framework for the statistical inference in cosmology
based on artificial neural networks. Chapter 5 is based on Grandón et al. (2023) [25] and
Marques et al. (incl. Grandón) (2023) [26]. It shows the result of the study of non-Gaussian
statistics and baryonic physics in a weak lensing survey, the Subaru Hyper-Suprime Cam
survey [27]. In Chapter 6, based on Grandón et al. (2021) [28] and Bernardo, Grandón, Levi,
Cárdenas (2021) [29] we investigate the dynamics of dark energy from a phenomenological
approach, using parametric and non-parametric analyses of late-time cosmological data. As
these methods are inherently different in how they analyze the data, the fact that similar
evolution for the dark energy densities are found suggests that the dynamics is driven by the
data, and is not an artifact of the reconstruction methods. Finally, our concluding remarks
and future research directions are presented in Chapter 6.7.
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Chapter 1

The standard model of cosmology

Our current understanding of the Universe is summarized in the standard model of cosmol-
ogy, the ΛCDM model, whose foundations are based on the Theory of General Relativity
published by Albert Einstein in 1916 [11]. The ΛCDM model has emerged as the con-
cordance model of cosmology as it successfully fits most of the cosmological observations.
Nevertheless, in order to fit those observations, ΛCDM incorporates three phenomenological,
intriguing and yet unknown mechanisms: cold dark matter (CDM), dark energy in the form
of the cosmological constant Λ and inflation. Revealing the true nature of these components
constitutes the forefront of ongoing research in this field, and we aim to understand better
their properties by designing new ground-based and space-based cosmological experiments.

In this chapter we provide an overview of the ΛCDM model, alongside the presentation
of essential tools needed for the rest of this thesis. At the end of this chapter, we also high-
light the open questions that challenge the current cosmological paradigm. The concepts
studied in this chapter are based on the textbooks [30, 31, 32] and lecture notes [33], where
a detailed derivation of all the equations can be found.

1.1 Einstein’s field equations

General Relativity (GR) describes gravity as a property of a dynamical and curved space-
time instead of an external gravitational force as assumed in classical Newtonian gravity.
Hence, particles do not move in a gravitational field, instead they are free-falling in a curved
space-time.
The fundamental element that encodes the effects of gravity is the metric tensor gµν(t, x⃗),
which generalizes the Minkowski metric from special relativity to curved space-times. It also
allows us to compute intervals between two events in a curved geometry through the line
element ds2 ≡ gµνdx

µdxν . The dynamics of the Universe come up by solving the Einstein
field equations1

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν , (1.1)

1speed of light is set to 1, c = 1.
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where G is the Newton gravitational constant. In the left-hand side (l.h.s.), the Einstein ten-
sor Gµν describes the geometry of space-time through partial derivatives of the metric tensor
encoded in the Ricci tensor Rµν and Ricci scalar R. The right-hand side (r.h.s.) contains the
energy-momentum tensor Tµν and describes the properties of the matter components in the
Universe as

Tµν = (p+ ρ)uµuν + pgµν + Σµν , (1.2)

with uµ is the four-velocity of the fluid in comoving coordinates. The pressure and energy
density of the fluid are represented by p and ρ, respectively, and Σµν is the viscous stresses.
This tensor incorporates the constituents in the Universe that source the curvature of space-
time.
The Einstein field equations correspond to ten coupled and non-linear partial differential
equations, in four independent variables (t, x⃗). The metric tensor gµν is a solution to Eq. (1.1),
which can be obtained by assuming highly symmetric space-times with simple forms of
Tµν , such as the spherically symmetric vacuum solution known as Schwarzschild metric for
black holes. In what follows, we are interested in the Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric to study the evolution and dynamics of the Universe. This is presented in
the next section.

1.2 The homogeneous and isotropic Universe

The central premise of the standard model of cosmology is that the Universe is statistically
isotropic and homogeneous at large scales (> 100 Mpc). This is called the cosmological
principle and is strongly supported by astronomical observations. Isotropy means that the
Universe looks the same in all directions from Earth position. As we do not occupy any
privileged position in the Universe, consequently we obtain spatial homogeneity2.
The standard model pose another pinnacle since 1929. Edwin Hubble [34], based on the
measurements of the distance and radial velocities of galaxies, discovered that the Universe
is expanding and the expansion rate can be derived from a linear relation between the re-
cession velocity and distance. Therefore, the distance between two events increases with
time. Years later, in 1998, two independent collaborations discovered that the expansion of
the Universe is accelerating [13, 14]. The cosmological principle and the expansion of the
Universe constitute the fundamental basis of our description of the Universe through GR.

For a Universe undergoing accelerated expansion and obeying the cosmological principle,
the most general solution to Eq. (1.1) is the Friedmann-Lemaitre-Robertson-Walker (FLRW)
metric [35, 36, 37, 38] in spherical coordinates

ds2 = −dt2 + a2(t)

(
dr2

1−Kr2
+ r2

(
dθ2 + sin2 θdϕ2

))
,

ds2 = −dt2 + a2(t)
[
dχ2 + S2

k(χ)dΩ
2
]
,

(1.3)

2Although this principle is robust against observations, there is still on-going research testing small de-
partures from it.
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with the differential of solid angle dΩ2 = dθ2+sin2θdϕ2. The function a(t) is called scale factor
and accounts for the cosmic expansion as function of cosmic time3 t, which is normalized to
a = 1 today. The radial coordinate χ is

χ =


sin−1(r) K = +1

r K = 0

sinh−1(r) K = −1

, (1.4)

and K take one of the values −1, 0, 1 describing an open, flat or closed geometry, respectively.
The value K = 0 corresponds to Euclidean geometry, and is strongly favoured by astronomical
observations.
In order to describe the expansion of the Universe and study how a(t) evolves, we need to
determine the r.h.s. of Eq. (1.1). In the FLRW Universe, the energy-momentum tensor
describes the matter content as a perfect fluid as seen by comoving observers, and is given
by

Tµν =


−ρ(t) 0 0 0
0 p(t) 0 0
0 0 p(t) 0
0 0 0 p(t)

 , (1.5)

where ρ and p refer to the total energy density and total pressure, respectively. We can
derive the equations of motions in a FLRW Universe by solving the Einstein field equations
for components i, j = 0 and spatial i = j (in this metric, the other components vanish) in
light of Eq. (1.5). The solutions are known as the Friedmann-equations

(
ȧ

a

)2

≡ H2 =
8πG

3
ρ− K

a2
, (1.6)

3H2 + 2Ḣ = −8πGP − K

a2
, (1.7)

where the dot denotes derivative with respect to cosmic time t, and H is the Hubble function

H(t) =
ȧ(t)

a(t)
, (1.8)

describing the expansion rate of the Universe. The key idea of GR is presented in these
equations for the FLRW Universe: the evolution of the scale factor and hence the expansion
is determined by the energy density ρ. It is common to denote the Hubble constant today
as H0, and define H = 100h km Mpc−1s−1 where h encodes our uncertainty on H. In order
to learn about the dynamics of the energy components, we can take the covariant derivative
of the energy-momentum tensor ∇µT

µ
ν = 0 or combine Eq. (1.6) with Eq. (1.7) to obtain

∂ρ

∂t
+ 3H(ρ+ p) = 0, (1.9)

3The cosmic time refers to the time measured by comoving observers that move with the cosmic flow.
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which defines the continuity equation for a perfect fluid, where the pressure and energy
density can be related through the equation of state

w =
p

ρ
. (1.10)

Solving Eq. (1.9) tells us how the energy density of the components in the Universe evolves
with time. For a perfect fluid with time-independent equation of state, integrating Eq.
Eq. (1.9) leads to

ρ = ρ0a
−3(1+w), (1.11)

where ρ0 is the present-day energy density for a certain specie. Among the components that
play a role through the evolution of cosmic history, we find radiation (relativistic particles
like photons), non-relativistic matter (baryonic matter, dark matter, massive neutrinos) and
energy with negative pressure such as the cosmological constant. The energy density of these
constituents dilutes with the expansion as

ρ =


ρ0ra

−4 w = 1/3 (Radiation)

ρ0ma
−3 w = 0 (Matter)

ρ0Λ w = −1 (Cosmological constant).

(1.12)

In turn, inserting Eq. (1.11) into Eq. (1.6), and assuming the Universe is dominated by one
of the energy species with equation of state w, the scale factor evolves with time as a ∝ t

2
3
(1+w) w ̸= −1

a ∝ eHt w = −1.

(1.13)

Therefore, for w = −1 the scale factor evolves exponentially, which leads to an important
remark: by combining both Friedmann Eqs. (1.6) and (1.7) we obtain the acceleration equa-
tion

ä

a
= −4πG

3
(ρ+ 3P ) = −4πG

3
ρ (1 + 3w) , (1.14)

from which we conclude that cosmic acceleration ä > 0 occurs if the dominant component
exhibits an equation of state w < −1/3. The component that fullfills this condition is referred
to as dark energy, whilst the particular case w = −1 is known as the cosmological constant.
In light of the components listed above, the Friedmann equation (1.6) recast as

H2 =
8πG

3
(ρm + ρr + ρΛ). (1.15)

We can split the total density into these components, i.e. matter, radiation and Λ. To do so, it
is convenient to define the relative abundances of each component through the dimensionless
parameter

Ωi,0 =
ρi,0
ρcr

, ρcr =
3H2

0

8πG
= 1.88h2 × 10−29g cm−3 , (1.16)

where ρi,0 is the density of any particular component today a = 1, and ρcr is the average
density in the Universe, also called critical density. In terms of the density parameters Ω,
Eq. (1.6) reads as ∑

i

Ωi + ΩK + ΩΛ = 1 , (1.17)
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where Ωi corresponds to

Ωi ≡
8πGρi
3H2

, ΩΛ =
Λ

3H0

, (1.18)

and the normalized density parameter of curvature ΩK

ΩK ≡ − K

(aH)2
. (1.19)

The components of the Universe and their relative abundance define the dynamics of the
expansion. They are determined by the cosmological parameters

• H0: Expansion rate today,
• Ωm: Energy density of total matter,
• ΩK : Energy density of curvature,
• Ωr: Energy density of radiation,
• w: Equation of state for dark energy,
• ΩDE: Energy density of dark energy (or ΩΛ when w = −1).

The goal of current research on cosmology is to obtain tight constraints to these parameters
based on local observations and observations of photons from the early Universe. Knowing
the cosmological parameters {Ω0,i, H0, w}, we can reconstruct the expansion history of the
Universe, which starts with an initial period of expansion called inflation, then a radiation-
dominated era made of a thermal bath of relativistic particles (until ∼ 50.000 years after
inflation [31]), followed by the matter-dominated era for 10 billion years. In the present
epoch, dark energy plays a dominant role, and it is postulated as the source of the accelerated
expansion. The latter, in turn, affects the measurement of distances in the Universe. Hence,
in order to elucidate more about the properties of dark energy it is important to introduce
the concept of distances in cosmology.

1.3 Redshift
As already mentioned, the observational evidence strongly supports an expanding Universe.
This means that at early epochs, the distance between objects in the Universe was smaller
than it is today. At the same footing, the electromagnetic waves emitted from distant galaxies
are stretched due to the expansion, proportional to the scale factor. Therefore, the observed
wavelength is larger than the emitted wavelength, leading to the lose of energy of the photon
and making emission/absorption lines in the spectra to be shifted. This shift due to expansion
is called cosmological redshift, or redshift hereinafter 4. It is defined as

1 + z =
λobs

λe

=
aobs
ae

. (1.20)

where λe stands for the emitted wavelength (as would be observed near the object in space
and time) and λo the observed value. If we recall that a(t0) = 1, the relation between scale
factor and redshift is given by

4Concepts of blueshift or redshift are commonly associated to Doppler effect. Here, we have a special case
as the redshift is due to the recession velocity of distant galaxies, driven by cosmic expansion.
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1 + z =
1

ae
, (1.21)

and present epochs corresponds to z = 0. With the definition of cosmological redshift, the
Friedmann equation (1.15) reads as

H2(z) = H2
0

(
Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩK,0(1 + z)2 + ΩΛ,0

)
(1.22)

with
Ωm,0 + Ωr,0 + ΩK,0 + ΩDE,0 = 1. (1.23)

1.4 Cosmic Distances
We can measure distances in terms of comoving coordinates, fixed in an expanding grid;
and physical coordinates, whose distance increase with the expansion. Photons travel in null
geodesics ds2 = 0, thus the metric reads as dr2 = dt2/a(t) (recall we set speed of light c = 1).
Then, the re-scaling of a physical distance by the scale factor gives the comoving coordinate.
By taking the definition dt = da/(aH), we can write dr = da/(a2H). These definitions lead
to the derivation of comoving distance, which is the distance to an object whose light was
emitted at t1

χ =

∫
dr =

∫
dt

a(t)
=

∫ a(t0)=1

a(t1)

da′

a′2H(a′)
. (1.24)

By manipulating through the equation (1.21), the comoving distance for a flat Universe reads
as

χ(z) =

∫ z

0

dz′

H(z′)

=
1

H0

∫ z

0

dz′√
Ω0

m(1 + z′)3 + Ω0
r(1 + z′)4 + Ω0

DE

.
(1.25)

If we consider the distance that light travels since t = 0, and assuming the ideal case that
light travels without further interactions, we obtain the comoving horizon

η =

∫ t

0

dt′

a(t′)
, (1.26)

which defines the maximum distance for causal connection, as no information could have
travelled further than light in a comoving grid. It is important to note that we actually
observe fluxes emitted by distant objects, and separation angles on the sky. Hence, we need
to define two more concepts: angular diameter distance and luminosity distance.

1.4.1 Angular diameter distance

In astronomy, a common way to determine distances is to consider an object which physical
size on the sky is l and the subtended angle is θ. If the angle θ is small, it is possible to
estimate its angular diameter distance as

DA ≡ l

θ
. (1.27)
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As the comoving size of the object is given by l/a (with a the scale factor), the comoving
distance to that object χ will be

χ =
l/a

θ
, (1.28)

and thus the comoving distance and angular diameter distance are related by the redshift/s-
cale factor

Da =
χ

1 + z
, (1.29)

for a flat Universe. In the case of K ̸= 0, the angular diameter distance generalizes to [30]

Da(z) =
1

1 + z

1

H0

√
−ΩK

sin
(√

−ΩKH0χ
)
. (1.30)

1.4.2 Luminosity Distance

The luminosity L is related to the flux F through the luminosity distance DL

f =
L

4πD2
L

, (1.31)

where L is the absolute luminosity of the emission source, and it emits in spherical shells
of surface 4πDL. For a flat Universe, the projected surface is a sphere with area A = 4πr2,
where r is the radius r = aχ. For an expanding Universe, this relation depends on the scale
factor

f =
L(a)

4πχ2(a)
, (1.32)

where the area is described by a comoving spherical shell with radius χ(a). Since the energy
of the photon decreases by a factor of a due to expansion, L(a) is also reduced by a. Another
effect to take into account is the fact that the two photons emmited within an interval ∆te,
will reach our detectors in an interval ∆t0 = a∆te. Accordingly, their physical separation at
arrival to the telescope is larger than the separation when emmited, due to the expansion.
This produces

L0 = Le/(1 + z)2, (1.33)

f =
L

4πχ2(1 + z)2
, (1.34)

and hence

DL = DA(z)(1 + z)2. (1.35)

The luminosity distance is useful in situations when the intrinsic luminosity of the source is
known, and the observed dimming can be used to measure the distance. These kind of sources
are named standard candles, such as Supernovae Ia, whose light curve can be calibrated and
standardized in order to unveil the cosmic expansion.
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1.5 Density fluctuations and matter power spectrum
The cosmological principle is strongly supported by observations and only holds at very large
scales. Below these scales, we observe that the Universe is rich of smaller structures that
perturb such principle. Moreover, galaxies do not form randomly across space, instead they
form in clusters and filaments that make up the so called cosmic web. Hence, structures in
our Universe must emerge from initial perturbations, and consequently grow via gravitational
instability. To describe a perturbed Universe that lead to structure formation, we consider
departures from the FRLW metric using linear perturbation theory. A detailed and thorough
derivation of the theory of linear perturbations and the solution to the Einstein-Boltzmann
coupled equations is presented in [30, 33]. We refer the reader to the aforementioned refer-
ences for further details.
Let us start by defining the density contrast. Perturbations are regions with overdensities of
matter respect to the average amount of matter, and regions with underdensities of matter.
The matter density contrast describes the density fluctuations at position r and time t with
respect to the mean matter ρ̄m(t) density of all space as:

δ(r, t) =
δρ(r, t)
ρ̄m(t)

=
ρm(r, t)− ρ̄m(t)

ρ̄m(t)
, (1.36)

with {
δ < 0 Underdense region
δ > 0 Overdense region. (1.37)

In linear theory, this perturbation is considered small |δ(r, t)| ≪ 1. The density contrast is a
random variable and we want a statistical description of it. The first moment is the average,
and it is given by

⟨δ(r)⟩ = 0, (1.38)

where the angular brackets is the average over space, and is equal to 0 as we do not expect
any preferential position in the sky. More information is contained in its second moment, the
variance

⟨δ(r)2⟩ = σ2. (1.39)

The two point correlation between under(over)dense regions in different positions in the sky
also captures the variance information. In real-space, it is given by

ξ (x⃗, y⃗) = ⟨δ (x⃗) δ (y⃗ )⟩ = ξ(|x⃗− y⃗|). (1.40)

Following the cosmological principle, the correlation function ξ is not sensitive to the exact
positions and hence only depends on the distance difference between both locations |x⃗− y⃗|.
Due to this translational invariance, it is convenient to work with the Fourier modes of the
density fluctuations. The Fourier transform δ(k⃗) is connected to δ(x⃗) in 3D as

δ (x⃗) =

∫
d3k

(2π)3
eik⃗·x⃗δ̃

(
k⃗
)
, δ̃(k⃗) =

∫
d3x e−ik⃗·x⃗δ

(
x⃗
)
. (1.41)

The Fourier transform of the two-point correlation function is〈
δ(k⃗)δ∗(k⃗ ′)

〉
=

∫
d3x

∫
d3y ⟨δ (x⃗) δ (y⃗)⟩ e−ik⃗·x⃗ eik⃗·y⃗

′
, (1.42)
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replacing Eq. (1.40) in Eq. (1.42) we obtain

〈
δ(k⃗)δ∗(k⃗ ′)

〉
=

∫
d3x

∫
d3y ξ (x⃗− y⃗) e−ik⃗·x⃗ eik⃗·y⃗

′
, (1.43)

Defining the variable w⃗ = y⃗ − x⃗, the Fourier transform gives the power spectrum Pδ(k⃗)〈
δ(k⃗)δ∗(k⃗ ′)

〉
=

∫
d3x

∫
e−i
(
k⃗−k⃗ ′

)
·x⃗ d3w ξ (w⃗) eik⃗

′·w⃗

= (2π)3 δ3D
(
k⃗ − k⃗ ′)Pδ

(
k⃗
)
,

(1.44)

where the Dirac delta function δ3D
(
k⃗ − k⃗ ′) implies that different Fourier modes k are inde-

pendent. Therefore, the power spectrum is

Pδ

(
k⃗
)
≡
∫

d3x ξ (x⃗) e−ik⃗·x⃗ , (1.45)

which is derived by considering the two point function, and hence it is connected to the
variance. It tells us how the variance of the random field is distributed over spatial frequency
[33]. As the field is isotropic, it only depends on the modulus Pδ

(
k⃗
)
= Pδ(k). Physically,

regions with high density contrast means regions with a stronger clustering of matter. The
power spectrum will capture this effect by producing larger power in scales where these over-
densities take place.
In practice, the power spectrum is computed on smoothed or filtered fields, where the smooth-
ing kernel is depicted by W (r⃗)5. The smoothed field is a convolution of the field by the kernel

δ(x⃗) =

∫
d3rW (r⃗)δ(x⃗+ r⃗), (1.46)

and the variance is given by

σ2
R =

1

2π2

∫
P (k)|W (kR)|2k2dk. (1.47)

We can take advantage of this definition to compute the variance of density fluctuation in a
smoothed field at a given scale. In this particular case, the kernel or window function is a
spherical top-hat given by

WR(r)

{
3

4πR3 r < R
0 r > R.

(1.48)

Its Fourier transform corresponds to W̃ (kR) = 3j1(kR)/(kR) where j1(kR) is the spherical
Bessel function of the first kind (and order one). For a radius equal to the scale of massive
galaxy clusters R = 8Mpc/h we define

σ2
8 =

1

2π2

∫
P (k)

[
3j1(kR)

kR

]2
k2dk. (1.49)

5For example, the point spread function of the optical system.
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the root mean square (rms) of the amplitude of matter perturbations smoothed over 8Mpc/h,
at present time. The derived parameter σ2

8 is also the normalization of the matter power spec-
trum and it is constrained by cosmological probes.
We can derive a theoretical expression for power spectrum of matter, which depends on cos-
mological parameters. To do so, we need to study the evolution of δm. But first, we can
generally say that the matter power spectrum depends on initial conditions coming from the
very early Universe through the primordial power spectrum Po(k), a transfer function T (k)
that links the initial conditions to the distribution of matter we observe today and a growth
function D(a) that depends on the redshift. The main quantity that encodes the physics
behind perturbations is the transfer function. It describes the evolution of density perturba-
tions δ(k) inside the horizon according to the dynamics during the radiation-dominated and
matter-dominated eras. The expression for the matter power spectrum reads as

Pm(k, z) ∝ Po(k)T
2(k)D(a), (1.50)

where the details about T (k), D(a) and Po(k) are explained below. To derive this expression,
let us keep studying the density contrast. In the linear regime, it evolves according to the
second order differential equation

δ̈ + 2
ȧ

a
δ̇ = 4πGρ̄mδ, (1.51)

which holds for sub-horizon scales. The right-hand side is the source of perturbation growth
due to gravitational instability. The term 2Hδ in the left-hand side represents a friction term,
in this case sourced by the expansion of space-time through the scale factor. The solution to
this equation depends on the dominant matter specie in the Universe.

• For a radiation-dominated Universe, the contribution from the r.h.s. is negligible as
the dominant component is radiation. Hence, the solution to δ̈ + 2Hδ̇ = 0 is

δ(t) = A+Blnt, (1.52)

and perturbations will grow logarithmically, i.e. very slowly. This is reasonable as
radiation pressure prevents matter to agglomerate.

• In the matter-dominated regime, the solution corresponds to

δ(t) ∝ a(t), (1.53)

hence δ grows linearly to the scale factor.
• In the Λ-dominated regime, the solution is

δ(t) = A+B exp(−2Ht), (1.54)

where the second term is a decaying solution that does not contribute as it falls quickly.
The first term tells us that perturbations do not grow as dark energy suppress the
formation of structures.

A general solution for a Universe filled with multiple ingredients includes a growing and
decaying solution. We are interested in the growing modes, as decaying modes become
negligible. The general solution reads as
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Figure 1.1: Linear matter power spectrum as a function of wavenumber k. Black solid line
depicts the theory prediction given Planck 2018 cosmology at z = 0. Coloured points are
compiled observations made by ground-based surveys collaborations such as SDSS and BOSS.
Blue points are Planck 2018 results. Image original from [3].

δ(r, t) = D+(t)δ+(r) +D−(t)δ−(r) (1.55)

where D+(t) is the scale-independent growth factor and modulates how the density contrast
grows with the scale factor. This quantity is important as it describes the growth of structures
mainly at late times. For a flat matter-dominated Universe, the growth factor is D(a) = a
[30]. When dark energy dominates, the growth decays. Moreover, it is defined as

D+(a) =
5Ωm

2

H(a)

2H0

∫ a

0

da′

a′3

(
H0

H(a′)

)3

(1.56)

considering dark energy in the form of a cosmological constant. Defining the growth factor
in terms of the growth supression factor g(a), the dimensionless matter power spectrum is

∆2(k, a) = As
4

25

1

Ω2
M

(
k

kpiv

)ns−1(
k

H0

)4

[ag(a)]2T 2(k) (1.57)

where As and ns are cosmological parameters defined in the primordial power spectrum,
and kpiv = 0.05Mpc−1. The key quantity that resumes the results from linear theory is
the transfer function T (k). Analytical expressions have been derived for T (k), such as the
Bardeen, Bond, Kaiser, and Szalay [39] fitting function

T (k) =
ln(1 + 2.34q)

2.34q

[
1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4

]−1/4
, (1.58)
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where
q ≡ k

Ωmh2Mpc
, (1.59)

for ΛCDM. However, in other contexts numerical solutions are needed and thus it is common
to run theory codes called Boltzmann codes, such as CAMB [40, 41] or CLASS [42] that
output the transfer function and the matter power spectrum, among other quantities. These
computer codes solve the coupled Einstein-Boltzmann equations for the evolution of per-
turbations given input cosmological parameters and can be extended to other cosmological
models.
The equation (1.57) for the matter power spectrum succesfully describes the large-scale struc-
ture in linear theory, for scales > 10 Mpc. At small scales k > 0.1 Mpc−1, non-linearities
emerge which are better studied with N-body cosmological simulations [43]. Figure 1.1 shows
the theoretical matter power spectrum in solid black line for a ΛCDM cosmology, and the
measurements based on Planck, the Sloan Digital Sky Survey (SDSS), the Baryon Oscilla-
tion Spectroscopic Survey (BOSS) and the Dark Energy Survey (DES). We see a significant
agreement between theory and data, which provides one of the many reasons that make the
ΛCDM model a successful description of our Universe. We note that the power spectrum
goes as ∼ kns at large scales, and after the turnover it decays with kns−3. The turnover
happens at the matter-radiation equality with keq given by [31]

keq = aeqH = H0

√
2Ω2

m

Ωr

∼ 0.02Mpc−1. (1.60)

Hence, the matter power spectrum constraints cosmological parameters such as As, Ωmh
and σ8, with the growth factor carrying information about the dark energy parameters ΩΛ

and w through its dependence on H(a) in Eq. (1.56) (although it can also affect keq). The
matter power spectrum itself can be considered a cosmological probe, as it is sensitive to
many cosmological parameters and is one of the key quantities entering into the large-scale
structure observables.

1.6 Cosmological probes

1.6.1 Cosmic Microwave Background

The discovery of the cosmic microwave background (CMB) at the early 1960s is a corner-
stone of modern cosmology. The CMB observations provide the most precise constraints on
cosmological parameters today, obtained from the the Planck satellite observations [2]. The
study of the CMB started in 1950’s, and its measurements resulted in the 1978, 2006 and
2019 Nobel prizes6.
To understand the physics behind the CMB, we need to study the Universe back when it
was 380.000 years old. At early times, the Universe was filled with a hot baryon-photon
plasma characterized by photons and baryons tightly coupled. In this hot plasma, scattering

61978 Nobel prize was awarded to Arno Penzias and Robert Wilson, as they first detected this radiation.
Later on, in 2006, John Mather and George Smoot became Nobel Prize laureates for their study of the CMB
using the COBE satellite. In 2019, James Peebles obtained the Nobel prize for his work on a theoretical
description of the CMB and the large-scale structure.
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Figure 1.2: Planck 2018 CMB temperature power spectrum as a function of multipoles ℓ.
Light-blue solid line is the ΛCDM fit to the data, whereas red points depict the data points
of the CMB temperature power spectrum and error bars the 1σ Gaussian uncertainties. The
lower panel shows residuals respect to a base-ΛCDM model, and the scatter in low-multipoles
is due to cosmic variance (statistical uncertainties due to the large angle correlations). Taken
from [2].

of photons and electrons via Thomson scattering, and electrons and protons coupled through
Coulomb interactions make up a Universe dominated by this one-fluid. The mean free path of
the photons was very short, and thus the universe was still opaque. Meanwhile, the Universe
continued expanding and cooling.

The interplay between the radiation pressure due to photons, and gravity compressing
the plasma generated baryon-photon acoustic waves, where gravity pulling comes from dark
matter in the potential wells. At regions where acoustic waves go through the compression
phase, the photons become hotter than plasma average temperature, and, conversely, re-
gions undergoing the rarefaction phase, photons get colder. At z ≃ 1275, expansion reduces
the interaction rate to the point that protons and electrons combine into neutral hydro-
gen, a process called recombination. Photons decoupled from baryons and, at z ≃ 1090,
they free-stream through space. The Universe rapidly transition from an opaque plasma
to become transparent, and the last interaction between photons and baryons make up the
last scattering surface7. The temperature of the photons at the moment of decoupling was
T ≈ 3000 K. As Universe expands, the temperature of radiation decreases with the scale
factor T (t) = T0(a = 1)/a(t), and thus we observe this relic radiation today in the microwave
regime with temperature T ∼ 2.725K. The decoupling produces that the acoustic waves
stop oscillating and got frozen, with matter leaving a density profile of a characteristic scale,
imprinted in the matter distribution we see today.

7It is important to note that none of these events happen suddenly, rather they lasted for some thousands
of years. Recombination is a gradual process, and it is thought to happen from z ∼ 1450, when 90% of
Hydrogen was still ionized, to z ∼ 1060. Similar situation occurs for the last scattering, as some photons
scattered ∆z ∼ 100 later.

16



The Cosmic Background Explorer, also known as COBE (1992), confirmed for the first time
that the CMB follows a blackbody spectrum [44], as predicted by the theory. The satellites
Wilkinson Microwave Anisotropy Probe (WMAP) and more recently Planck characterized
the CMB properties with further details. The most precise full-sky measurements of the
CMB radiation by Planck report that CMB average temperature (the monopole) is uniform
across the sky, and its value corresponds to

T0 = 2.7255± 0.0006K, (1.61)

with tiny fluctuations of order
∆T

T
≃ 10−5. (1.62)

described by the quadrupole moment of the CMB8.

The effects of the acoustic waves are imprinted in the CMB anisotropies, as illustrated in
Fig.1.2. The main observables we extract from the CMB photons observations are the angu-
lar power spectrum of temperature anisotropies and the CMB lensing power spectrum. The
physics behind the CMB is encoded in the peaks of the angular power spectrum, as shown
in Fig. 1.2. The horizontal axis ℓ are the multipoles, with low-ℓ tracing large scales in the
sky, and high-ℓ describing small scales. The position ℓ of the first peak is sensitive to spatial
curvature, and provides the constraints ΩK = −0.044+0.018

−0.015 consistent with a flat Universe.
On the other hand, recalling the acoustic waves, CMB provides rich information on Ωch

2 and
Ωbh

2. The constraints are Ωch
2 = 0.11933± 0.00091 and Ωbh

2 = 0.02242± 0.00014, respec-
tively. Hence, the CMB observation directly probes the existence of dark matter, its value,
and the non-baryonic nature it poses, as it interacts very weakly with baryons in the acoustic
waves. Moreover, the combination of CMB temperature power spectrum and CMB lensing
gives tight constraints on matter clustering σ8 and total matter Ωm, and better constraints
on dark energy can be provided combining CMB and type Ia Supernovae data.
It is worth noting that more experiments are being designed to study the CMB radiation,
such as the LiteBIRD satellite9 [46, 47] and Simons Observatory [48] in the Atacama desert
in Chile. Most recent results of the CMB lensing were reported by the Atacama Cosmology
Telescope (ACT) collaboration in 2023 [49], whose telescope is also located in Chile and aims
to study the CMB itself, galaxy clusters, and provide better constraints in combination with
galaxy surveys data [50].

1.6.2 Supernovae Ia (SN Ia)

Consider a binary system containing at least one compact white dwarf star. The white
dwarf can interact with its companion star, whether as accreting material from the other,
or by merging with other white dwarf. When one of these situations occurs, there will be a
point when the white dwarf mass exceeds the Chandrasekhar mass ∼ 1.4M⊙. As a result,
the white dwarf will undergo thermonuclear collapse and then explode into a Supernovae
Ia (SN Ia). Spectroscopically, SN Ia are detected by the presence of strong silicon lines

8The dipole contribution comes from the motion of the Earth respect to the CMB rest frame [45]
9LiteBIRD stands for Lite (Light) satellite for the studies of B-mode polarization and Inflation from cosmic

background Radiation Detection
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and no hydrogen in their spectrum. In terms of photometry, SN Ia exhibits a characteristic
light curve, with a maximum value and then a rapid decay of its brightness. However, light
curves of SN Ia can scatter in their shape, including the peak brightness value, and can
be reddened due to intervening dust. In order to promote SN Ia as standard candle, a
standarisation of the light curve is needed. In 1993, Phillips [51] observed a relation between
the peak luminosity and the initial decline rate in the B band based on observations of
the Tololo Supernova Program [52]. This effect was later tested and confirmed by studying
32 Supernovaes Ia from the Calán-Tololo survey [52]. In order to correct for this effect,
many methods have been proposed, such as the stretch factor [53] or the ∆m15 correction
[54]. All these efforts, including corrections by reddening and host-galaxy contamination
[55], allowed to promote SN Ia as standard candles. Back in the 1990s, the high-redshift
supernova surveys Supernova Cosmology Project [14] and High-z Supernovae Search Team
[13] measured the apparent magnitude of 34 supernovae. Their work ended up in one of the
major discoveries in cosmology (whose impact led to the 2011 Nobel Prize). They found
that the Universe is undergoing a phase of accelerated expansion, and this acceleration can
be explained by assuming an Universe dominated by some exotic fluid, called later as dark
energy [56]. To understand how SN Ia can be used to constrain cosmology, we need to define a
few astronomical concepts. The apparent magnitude is a measure of the apparent brightness
of an object as observed in the sky, and it depends on the flux f as

m ≡ −2.5log10
f

fx
. (1.63)

On the other hand, the absolute magnitude is related to intrinsic luminosity through

M ≡ −2.5log10
L

Lx

. (1.64)

where the subscript x represent some reference value given the photometric filter. The values
M,L are assumed to be approximately constant for each object that belongs to the class of
standard candle. The difference between the apparent magnitude m and absolute magnitude
M defines the distance modulus µ:

µ ≡ m−M = 2.5log10

(
L

f

)
(1.65)

If we recall the equation 1.31 that relates flux and luminosity, the distance modulus reads as:

µ(zi) ≡ m−M = 5log10

(
DL(zi)

10PC

)
= 5log10

(
DL(zi)

1PC

)
+ 25

(1.66)

m−M = 5log10(DL) + 25. (1.67)

Equation 1.67 basically relates the apparent magnitude to the luminosity distance of an
object, which in turn depends on the cosmological parameters. Both parameters H0 and
M are degenerated, which means we can not extract information on H0 without knowing
something about M . Using Cepheids stars as calibrators, the absolute magnitude value is
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Figure 1.3: The Hubble diagram for high-redshift Supernovae Ia from the Supernova Cos-
mology Project (in red points) and low-redshift data from the Calán/Tololo Supernova Sur-
vey (in yellow). Black solid lines are the theoretical predictions for mB(z) for cosmological
models (ΩΛ,Ωm) = (0, 0) (top), (ΩΛ,Ωm) = (0, 1) (middle) and (ΩΛ,Ωm) = (0, 2) (bot-
tom). Dashed light-blue curves are fits based on flat cosmological models (ΩΛ,Ωm) = (1, 0)
(top), (ΩΛ,Ωm) = (0.5, 0.5) (second from top), (ΩΛ,Ωm) = (0, 1) (second from bottom) and
(ΩΛ,Ωm) = (−0.5, 1.5) (bottom). Error bars are 1σ Gaussian uncertainties. Original plot
from Perlmutter et al. [4].

estimated to be M ∼ −19.5 in the B-band. In Fig. 1.3 we see the type Ia Supernovae mB

data from [4], which includes the low-z measurements from the Calán/Tololo survey [54]. In
dashed light-blue lines we see the fit of different cosmological models varying Ωm and ΩΛ.
They found significant evidence of Λ ̸= 0, with best-fit value Ωm = 0.26± 0.08 and Ωm +ΩΛ

for a flat cosmology. Hence, they provide significant evidence of dark energy. In order to
determine spatial curvature, an analysis combining CMB+SNIa is needed.

1.6.3 Cosmic Chronometers

Cosmic Chronometers (CC) [57, 5] corresponds to a novel method to reconstruct the ex-
pansion history of the Universe by measuring the age difference between passively-evolving
galaxies. CC does not rely on any integrated quantity, neither on early physics assumptions
nor distance ladder calibration. With the minimal assumption of the FLRW Universe, it is
able to constraint cosmological parameters through

H(z) =
1

a

da

dt
= − 1

(1 + z)

∆z

∆t
. (1.68)

where the ratio ∆z/∆t (dz/dt) is obtained from the spectroscopy of a selected sample of
galaxies.
The method procceed as follows. First, an homogeneous and synchronised sample of galaxies
in some redshift range is selected, for which tracers of age can be found. The most well-suited
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Figure 1.4: Compilation of H(z) values. Each color represent a different differential ages
estimation method. Dashed black line is the prediction for a flat ΛCDM model based on
Planck cosmology. Error bars are 1σ uncertainties. Figure original from [5]

objects are massive and passive galaxies, with old stellar populations. Any hint of ongoing
star formation must be carefully addressed as it can lead to biased results, hence the selection
of the sample implies analyzing the spectral features of galaxies. Based on models of stellar
evolution and chemical composition of stars, it is possible to derive their differential age.
These massive and passive galaxies build up their mass during short timescales and at high
redshift, exhausting most of their gas reservoir very early in their life and hence evolving very
passively as seen from today. In general, measuring dt is challenging and there are many
methods to estimate the differential age dt, all based on characterizations of the spectrum.
A review of the methods can be found in [5]. For instance, one approach consists in using
the spectral line 4000 Å, which is correlated to the age of old stellar populations [58]. This
line is a break in the continuum due to absorption lines, whose amplitude is also correlated
with metal abundance. Once the metallicity is determined, the dt between two galaxies can
be obtained from the difference in their 4000 Å amplitude.

Figure 1.4 shows a compilation of CC H(z) data measured by different collaborations.
The potential of H(z) data to provide constraints on H0, w and ΩΛ has led to forecasts on
simulated data based on the Euclid satellite and the ATLAS future space-mission. Figure 1.5
illustrates results on the Ωm −H0, ΩΛ −H0 and w −H0 parameter planes. As this probe is
very sensitive to H0, it can shed light on the H0 tension and say something about the current
cosmological paradigm.

1.7 ΛCDM model

So far, we have revisited three cosmological probes that are in excellent statistical agreement
with the theory, at the expense of the inclusion of three exotic ingredients: dark energy, dark
matter and inflation (initial conditions). These components are three, purely phenomeno-
logical, pillars of the model. However, they lack an underlying physical theory that explains
their nature. Current experiments aim to unveil more about the fundamental physics be-
hind these components, with the ΛCDM model as a simple framework from which we can
test departures from it. Moreover, two cosmological parameters tensions have motivated the
exploration of extensions to the base ΛCDM model as well.

20



Figure 1.5: Forecast of CC real+mock data. Current data are the compiled H(z) values,
depicted in white scatter points. Blue and yellow points represent data and error bars at low
redshift (mainly based on SDSS re-analysis) and high redshift, respectively. High-redshift
points are simulated data based on Euclid survey and Astrophysics Telescope for Large Area
Spectroscopy (ATLAS) probe space-mission. Figure original from [5].

1.7.1 Inflation

Inflation is a period of accelerated exponential expansion at the very early stages of the
Universe [59, 60]. In its simplest form, it consists in fluctuations of a single and quantum
scalar-field, which seeds the formation of structures that make up our Universe. Hence, we
can work on the inverse problem and study cosmic inflation by analyzing the distribution
of matter and radiation in the Universe. As reviewed in the previous sections, the stan-
dard model of cosmology encompasses differential equations for the dynamics of the Universe
whose initial conditions were not originally provided. Moreover, observations of the CMB
show that the Universe is spatially flat with high-precision, and it is statistically uniform
on large scales (despite the tiny fluctuations). These observations can only be explained
by fine-tuned initial conditions. These fine-tunings are known as the flatness problem and
horizon problem [60, 61, 62]. Back in the 1980’s, a number of authors [63, 61, 62] introduced
inflation for the first time. They showed that mechanism of an accelerated expansion at the
very early stages of the Universe, where primordial fluctuations were in causal contact on
subhorizon scales, provide the solutions to such problems.
Equally important, inflation successfully provides the initial conditions for structure forma-
tion. Primordial fluctuations evolve through cosmic history, and once they enter the horizon,
seed the matter perturbations that evolve in the structures observed today. The primordial
fluctuations are described by the primordial power spectrum given by

P (k) = As

(
k

k∗

)ns−1

, (1.69)

where k∗ is a pivot scale, ns is the spectral index parameter and tells us whether the power
spectrum is scale dependent; and As is the amplitude of primordial fluctuations.
Inflation imprints its features into the large-scale structure observables, as the primordial
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power spectrum is directly connected to the matter power spectrum. It also predicts pri-
mordial gravitational waves, which emerge from tensor perturbations in the metric. The
primordial tensor modes of inflation induce B-modes in the CMB polarization, and thus the
detection of such CMB B-modes would be considered as a strong evidence that inflation
occurred [47].

1.7.2 Cold dark matter (CDM)

We have compelling evidence that there is some missing mass in the total matter budget in the
Universe. This missing mass component is non-luminous, and hence it is called dark matter
[64]. Cosmological probes have shown that dark makes up around 85% of the total matter
content in the Universe, and today it encompass about 1/4 of the total energy budget.
Probes of dark matter range from small to large scales in the Universe. The first strong
evidence of dark matter was obtained by measuring the galaxy rotation curves. Vera C.
Rubin [65] showed that the velocity of stars at the outskirts of spiral galaxies deviate from
what is predicted by Newtonian gravity

v(r) =

√
GM(r)

r
. (1.70)

Equation (1.70) tells us that the velocity of a star is expected to behave as v(r) ≈ r−1/2,
however, velocity of stars is roughly constant v(r) ≈ const. including at the outskirts. If
we assume Newtonian physics to hold, we need the presence of extra matter (which is not
seen) in order to match the flat rotation curve. Observations of clusters of galaxies and
gravitational lensing also points to the missing mass problem, hence supporting the inclusion
of dark matter to the cosmological model.
The strongest evidence of dark matter nowadays is the large-scale structure and the cosmic
microwave background radiation. Both probes emerge from an inhomogeneous Universe,
where overdense regions are mainly composed by dark matter which drives the structure
formation in the Universe through gravitational clustering, as seen in Eq. (1.51) and the
matter power spectrum. The dark matter density Ωch

2 is tightly constrained by the peaks
location and heights of the CMB angular power spectrum. This probe accurately infers that
the density of baryonic matter is way smaller than that of cold dark matter Ωb ≪ Ωc and
thus dark matter is very likely to be non-baryonic in nature.
The extensive efforts up to date have enabled the characterization of the dark matter mech-
anism, although its microscopic nature is still unknown. Observations support that dark
matter acts as a non-relativistic (hence, it is cold) perfect fluid, with very small pressure
w ≈ 0, cs ≈ 0 and interacting extremely weakly with standard model particles. The most
popular candidate are weakly interacting massive particles WIMPs [66], such that they weakly
interact with baryons. Thermal relics particle from the early Universe may fulfill this condi-
tion and become a WIMP candidate. In order to elucidate the fundamental physics behind
DM, the efforts must come from many fronts, including particles physics, galaxy surveys and
Milky Way astronomical observations. Dark matter imprints its distinct properties in differ-
ent environments, and thus the multi-experiments approach is an imperative in the roadmap
for the next years of DM searches [67].
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1.7.3 Dark energy

What is the physical source that drives the acceleration? This answer is still one of the
most intriguing questions in cosmology. The ΛCDM model is determined by dark energy in
the form of cosmological constant Λ. Physically, Λ represents vacuum energy density due to
the fluctuations sourced by the creation/annihilation of particle-antiparticle pairs in vacuum.
The implementation of Λ in Eq. (1.1) takes advantage of the general covariance of Einstein
field equations, which allows to add an extra term to this equation. Actually, it was first
introduced by Albert Einstein in 1917 to obtain static solutions [68], and later re-introduced
after the discovery of the accelerated expansion. The energy density and pressure of Λ are

ρΛ =
Λ

8πG
PΛ = −ρΛ, (1.71)

respectively, where we take w = −1. This equation of state defines the mechanism that can
explain accelerated expansion, as probed early in this chapter. However, the energy density
required to drive the accelerated expansion is about ∼ 10123 smaller than the energy scale
predicted by particle physics.
Acceleration can also emerge from a general form of dark energy for which w < −1/3 holds.
To distinguish between dark energy mechanisms with time-independent energy density, we
can consider w as a free parameter. This is often referred to as the wCDM model. If flatness
is assumed, the two parameters Ωm and w can fully characterize the mechanism. Another
widely considered model adds another parameter that allows dark energy to vary with time,
the so called w0waCDM [69] model, where the equation of state is parametrized as

w(z) = w0 + wa

(
z

1 + z

)
, (1.72)

and the constrained parameters are Ωm, w0 and wa. For a time-varying equation of state
w(z), the normalized energy density is ρDE(z)/ρDE(0) and the Hubble function corresponds
to

H2(z) = H2
0

[
Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩDE,0 exp

(∫ z

0

3(1 + w(z′))

1 + z′
dz′
)]

. (1.73)

In spite of the nature of dark energy, the measurements of w(z) or ρDE(z) can be regarded as
a phenomenological description of cosmic expansion, as it allows to reconstruct the expansion
history through measurements of the luminisity distance (which in turns reconstruct H(z)/H0

and hence w). We can summarize the dark energy parametrizations as

w = −1 Λ,

w ̸= −1 wCDM,

w(a) = w0 + wa(1− a) w0waCDM,

ρDE(z)
ρDE(0)

= exp
(
3
∫ z

0
(1 + w(z′)dln(1 + z′))

)
XCDM.

(1.74)

The dynamical approach can be generalized introducing a spatially homogeneous and dy-
namical scalar field ϕ(t) in the form of a perfect fluid with density and pressure

ρϕ =
1

2
ϕ̇2 + V (ϕ) , (1.75)
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Pϕ =
1

2
ϕ̇2 − V (ϕ) , (1.76)

respectively. The field evolves according to the Klein-Gordon equation of motion ϕ̈+3Hϕ̇+
dV (ϕ)/dϕ = 0. The equation of state parameter for such scalar field is

wϕ =
Pϕ

ρϕ
=

1
2
ϕ̇2 − V (ϕ)

1
2
ϕ̇2 + V (ϕ)

. (1.77)

In order to obtain w < −1/3, it is required that ϕ̇2 < V (ϕ), which means that the scalar-field
potential must be shallow enough in order to ϕ slowly vary (or roll) along the potential [70].
These kind of models are referred to as Quintessence models and cosmologists propose models
for V (ϕ) that fulfills the slow-roll condition. As an alternative, modifications of the l.h.s. of
Eq. (1.1) are also considered. Up to date, all proposed mechanisms have their own pitfalls
and fine-tunings, including the cosmological constant as already explained in this section.
For a detailed and meticulous revision of dark energy models, we refer the reader to [70].

1.7.4 Cosmological parameters and model tensions

Cosmological analysis relies on high-dimensional likelihoods. In this context, it is common to
encounter parameters degeneracies, which means that the variation of multiple parameters
in specific manners can simulate the impact of altering a single parameter. For instance,
ΩK and ΩΛ are degenerated in the CMB [30]. As multiprobes analysis can break parameter
degeneracies and lead to tighter constraints [71], we utilize a variety of datasets in our cos-
mological analysis. However, different probes have led to discrepant best fits on parameters
S8 and H0. We proceed to present these tensions in this last part of the chapter.

We have measured the H0 parameter since the groundbreaking discovery of the expansion
by Edwin Hubble in 1929 [34]. He first inferred that the Hubble constant is about H0 ∼ 500
km Mpc−1s−1. Decades after, the H0 constraints ranged from 50 km Mpc−1s−1 to 100 km
Mpc−1s−1, with variations mainly arising due to statistical errors and calibrations [31]. Nowa-
days, the inferred H0 value span a narrower range of values, from ∼67 to ∼74 km Mpc−1s−1.
Nonetheless, given the precision achieved with current experiments, a tension on the expan-
sion rate today H0 has emerged, being established as a major puzzle aimed to be solved
nowadays [72]. Observations based on the Cosmic Microwave Background power spectrum
point to H0 = 67.27± 0.60 km Mpc−1s−1, whereas local observations employing the distance
ladder approach report H0 = 73.5± 1.1 km Mpc−1s−1 [73], in ∼ 4σ tension with the CMB.
The H0 values are

H0 =


67.27± 0.6 Planck CMB

67.9± 1.5 ACT CMB
(1.78)

H0 = 73.5± 1.1 Cepheids-SNIa. (1.79)

A wide range of low-redshift probes also show disagreement with the CMB constraints at the
4σ level [74, 75, 76]. Among the solutions, several papers have considered departures from
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the standard model, such as early dark energy models [77] or dark sector interactions [78].
On the other hand, the calibration using Cepheids stars has led extensively discussion. For
instance, in [79] the authors study the impact of metallicity on the period-luminosity relation
and analize the recalibration of Cepheids data. This led to H0 = 70.6 ± 3.3 km Mpc−1s−1,
in 1σ tension with Planck CMB data.
Up to date, calibrations and systematic errors are still being revisited and no concensus has
been reached whether the H0 tension is a statistical fluke or a hint to new physics [80].

At the level of cosmological perturbations, the S8 tension has emerged as another matter
of scrutinity of the ΛCDM model. Although not as statistically significant as the H0 tension,
the tension has pursuingly been revisited by many independent collaborations.
In the recent years, Stage-III weak lensing surveys such as Dark Energy Survey (DES) [81, 82],
Kilo Degree Survey (KiDS) [83], and the Subaru Hyper Suprime-Cam (HSC) [22, 27] have
achieved great precision in constraining cosmological parameters Ωm and σ8 by performing
two-point statistics analysis of galaxy shapes at low-redshift (z ≤ 1.5). Moreover, current
research report constraints on the growth parameter combination S8 ≡ σ8∗(

√
Ωm/0.3). Such

surveys have revealed that the inferred S8 value obtained from weak lensing analysis is in
tension with the value reported by the Planck CMB power spectrum [2]. The reported values
are the following

S8 =


0.759+0.024

−0.021 KiDS-1000 weak lensing

0.772+0.018
−0.017 DES Y3 weak lensing

0.800+0.029
−0.028 HSC Y1 weak lensing

(1.80)

S8 = 0.828± 0.016 Planck CMB. (1.81)

In other words, the inferred amplitude of fluctuations in the low-redshift regime is lower than
the value inferred by early time CMB data. KiDS is in a ∼ 2.5σ level tension with Planck,
whereas DES Y3 exhibits ∼ 2.4σ tension.
This has lead intensive investigation on many approaches intended to relieve the S8 tension
[20, 84, 85, 86]. One of them consists in improving the theoretical modelling of the weak
lensing signal and understanding the systematical effects that may impact the analysis from
catalogues to cosmology. It has been shown [20] that the low S8 amplitude constraints comes
mainly from non-linear scales. Recent works have explored whether the Planck result can
be reconciled with weak lensing S8 constraints by altering the matter power spectrum on
non-linear scales using DES Y3 and KiDS data. They found that the baryonic feedback10

may alleviate the tension, however the amplitude of the feedback needed to match Planck
results is larger than the provided by current state of the art hydrodynamical simulations.
In [87], the authors infer cosmological parameters using DESY3+KiDS-1000 data jointly and
found 1.7σ tension with Planck for certain modelling choices. Other large-scale structure
probes such as cluster counts and redshift space distortions agree with significant lower S8

10Baryonic feedback refers to a wide range of astrophysical processes such as stellar winds, star formation,
AGN feedback, among others, that can reshape gas inside haloes and alter the clustering at small scales.
This thesis extensively review this effect in Chapter 5.
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[75]. Moreover, we are preparing for the Stage-IV data releases such as LSST and Euclid
galaxy shapes catalogues that will bring precision cosmology to an absolutely new level and
will shed new light on the significance of the S8 tension. Both surveys will resolve small
scales with better precision, hence will contribute significantly to the discussion. Hence, it is
still too soon to discard the possibility that the tension may be solved by new physics, such
as dark matter candidates whose mechanism can contribute to the suppression of clustering
at small scales.
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Chapter 2

Elements of statistics and data analysis

Statistics play a key role in data-driven cosmology. The interplay between parametric cos-
mological models that describe our Universe and astronomical data is mediated by statistical
tools that summarize the information contained in data and provide credible values for the
model parameters. Moreover, to design an experiment investigating the nature of dark mat-
ter and dark energy, statistical methods and metrics are employed to evaluate the future
performance of such an experiment. Nevertheless, the complexity of the theoretical models
and the precision of observations are continuously increasing, requiring more refined and so-
phisticated data analysis techniques to handle and decode the physical information in the
data. The latter has been made possible in recent years by the increase in computational
power.
On the other hand, large-scale structure observables rely on the study of random fields. The
cosmic density field of the late Universe was seeded by the primordial density perturbations
of the inflaton field, which is quantum in nature and mostly predicted to be a Gaussian
random field. Therefore, it is important to note that we cannot access the true density field;
instead, we observe a random realization of it. This implies that the sophisticated tools
used to analyze cosmological data must be incorporated within a framework that includes
elements of statistics.
In summary, many aspects of statistics and data analysis come into play. Let us start this
chapter by studying random variables and later discuss descriptive statistics in general.

2.1 Random variables and basics of probability

A random variable, denoted by A, is a parameter that exhibits variation as a result of chance.
It is drawn from a probability distribution P (A), which is defined over the sample space S:
the entire set of possible outcomes. Random variables can be interpreted as events. As such,
it is possible to define the probability P (A,B) that two events A and B occur simultaneously
and the conditional occurrence of event A given that event B already happened, denoted as
P (A|B). Probability theory is founded on the Kolmogorov axioms, [88]:

1. P(A) ≥ 0,
2. P(S)=1,
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3. P (A1∪A2∪ ...∪An) = P (A1)+P (A2)+ ..+P (An) for mutually exclusive events {Aj}.

From these axioms, we can derive the law for a joint event P (A,B) as P (A|B)P (B) =
P (B|A)P (B). This reduces to Bayes’ theorem [89]

P (A|B) =
P (B|A)P (A)

P (B)
. (2.1)

Bayes’ theorem is an important result widely applied in all fields of science, and it is obtained
as a simple derivation that follows from probability distribution manipulations. Before study-
ing this theorem in more detail, let us define a few concepts of descriptive statistics.

2.1.1 Moments

Probability distributions can be defined by their moments. The nth moment mn corresponds
to the expectation value defined as

mn = ⟨xn⟩ =
∫ ∞

−∞
xnP (x)dx, (2.2)

from which the mean µ is

µ = ⟨x⟩ =
∫ ∞

−∞
xP (x)dx. (2.3)

We can also define the central moments, which are computed based on deviations from the
mean rather than with respect to zero, as

mn = ⟨(x− ⟨x⟩)n⟩ =
∫ ∞

−∞
(x− µ)nP (x)dx. (2.4)

The second moment of the distribution P (x) is the variance

Var(x) ≡ σ2 = ⟨(x− µ)2⟩ =
∫ ∞

−∞
(x− µ)2P (x)dx, (2.5)

which measures the spread of the distribution around the mean. Naturally, P (x) is not
necessarily a symmetric distribution. Hence, higher order moments are needed to capture
the asymmetry and other features of the distribution. Third and fourth order moments are
the skewness S and kurtosis K [90], defined as

S ≡

〈(
x− µ

σ

)3
〉
, (2.6)

K ≡

〈(
x− µ

σ

)4
〉
, (2.7)

and both scaled by σ. For this reason, they are also called standardized central moments.
To measure the asymmetry of a probability distribution, we compute the skewness S. If S
takes a positive value, the distribution exhibits longer right tails and the mean shifts from
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S>0
S=0
S<0

K<0
K>0

Figure 2.1: Left: Example of skewness for three different distributions. Red curve shows
positive skewness, blue curve negative skewness and the green curve depicts the Gaussian
distribution with vanishing skewness. Right: Two distributions showing the effect of high
(red) and low kurtosis (blue).

the median. On the contrary, negative skewness means longer left tail and the mass of the
distribution shifts to the right. Kurtosis quantifies the extent to which the tails of a distribu-
tion are heavier (high kurtosis) or lighter (low kurtosis) than those of a normal distribution.
For instance, the presence of outliers (sample points that deviate from the 3σ region around
the peak of the distribution) affect the tails of the distribution and therefore, since (x−µ)/σ
is raised to the fourth power, will impact the value of Kurtosis.

As noted previously, moments allow us to characterize probability distributions. In gen-
eral, when even moments exist and odd moments vanish, the distribution is symmetric with
respect to the mean. However, cases can also emerge where the moments of the probability
distribution do not converge.

2.1.2 Gaussian distribution

The Gaussian distribution is one of the most implemented distributions to describe nature.
The reason lies in the central limit theorem which basically states that any distribution with
finite variance will converge to a normal distribution as the sample size increases [91].
The univariate Gaussian distribution is

P (X|µ, σ2) =
1√
2πσ2

exp

[
−1

2

(
X − µ

σ

)2
]
. (2.8)

where µ is the mean (first moment) and σ2 is the variance (second moment). Hence, the
distribution is parameterized by the two parameters {µ, σ2} only, with higher-order moments
equal to 0. For this reason, it is common to denote a Gaussian distribution as N (µ, σ2).
For multivariate random variables, X turns into a n length vector denoted as X, with the
Gaussian distribution given by

P (X) =
1

(2π)n/2|detC|1/2
exp

[
−1

2
(X− µ)TC−1(X− µ)

]
, (2.9)

where
C = ⟨(X− µ)(X− µ)T ⟩ (2.10)

is the covariance matrix and has shape n× n.
In many situations, random variables follow non-Gaussian distributions (deviations from
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Gaussianity can be easily detected by computing skewness and kurtosis). This situation can
complicate probability distribution manipulations, such as computing marginals or imple-
menting an accurate distribution of the data. For this reason, methods that "Gaussianize"
the distribution have emerged [92, 93, 94]. Some examples are the method of data com-
pression [95, 96], or the application of transformations to data that reshape the probability
density nearly to a Gaussian shape [93].

2.1.3 χ2- distribution

The Chi-squared or χ2-distribution is a continuous probability distribution of common use
in statistical inference and also in cosmology.
Consider n independent random variables zi where zi ∼ N (0, 1). The sum of their squares

x =
n∑

i=1

z2i , (2.11)

follows the χ2-distribution

χ2(x, k) =
x

k
2
−1e−x/2

2k/2Γ(k
2
)
, (2.12)

where k is the number of degrees of freedom (number of random variables n).
In 1900, Karl Pearson proposed the χ2-test [97] for hypothesis testing. It states that given a
set of independent observations {Xi} sampled from some distribution, then the χ2-test

χ2 =
∑
i

(
Xi − µi

σi

)2

, (2.13)

follows a Chi-squared distribution.

2.1.4 Poisson distribution

The Poisson distribution is the probability of a number of events x occur in a given interval
of time and space, hence describing point-like events in nature. It has special interest for
observational astronomy as it describes photon noise and contributes to the covariance of
large-scale structure observables.
The distribution of a discrete random variable x is given by

P (x = n) =
λne−λ

n!
, (2.14)

where e is Euler’s number, n the number of occurrences and λ a model parameter in the real
domain which determines the shape of the distribution and represent the average rate [98].

2.2 Statistical inference
In order to provide a statistical description of the properties of the Universe, we need to
introduce a physical model described in terms of a set of model parameters. With the
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aim of determining the physical model, we first need to estimate the value of the model
parameters. Of course, this need to be done based on the observations of nature, i.e. the
observed distribution of galaxies in redshift surveys, the Hubble diagram of galaxies, or the
temperature fluctuations of the Cosmic Microwave Background radiation. Therefore, we need
to go beyond summarizing the observed data through descriptive statistics and the basics of
random variables, and somehow connect the random data with the random model parameters.
Statistical inference is the framework that accomplishes this, and in this section we present an
overview of how it is implemented in cosmology. We aim to answer the following questions:

• How to estimate such model parameters?
• How well the model fits the observed data?
• What is the allowed range of the free parameters?
• How do we incorporate our prior beliefs on the free parameters in the inference algo-

rithm?.

There are many ways to tackle the aforementioned questions. For convenience, let us first
introduce the following notation:

• In this chapter, we denote by M(θ) the parametric model described by the set of free
parameters θ (say, the model parameters of ΛCDM).

• X = {X1, X2 . . . XN} denotes a realization of the (observed) data.

2.2.1 Likelihood

In cosmology, the data vector X can be a set of observables such as the Type-Ia supernovae
distance modulus µ, the correlation functions of galaxy positions, etc, all derived from raw
astronomical observations. An effective physical model M(θ) provides theoretical predictions
for such observables, once θ are specified. To determine θ, we want to compare the observed
data with the theoretical predictions and establish which set of free model parameters θ
minimize the discrepancy between the two. This analysis is done by invoking the likelihood
function or forward model given by

L = P (X|θ,M), (2.15)

which is the probability of measuring the data given a set of parameters θ assumed to be true.
In other words, it describes how frequently nature (as described by the proposed physical
model) generates data X.
In most cases, the likelihood function is modeled as a multivariate Gaussian distribution,

L(X|θ,M) = (2π)
−N
2 |C|−1/2 exp

[
−1

2
(X − µ(θ,M))tC−1(X − µ(θ,M))

]
, (2.16)

where µ(θ,M) is the (theoretical) model prediction and C−1 the data precision matrix. It is
worth noting that the true likelihood function is unknown, but can be estimated analytically
or by sampling the distribution using a set of simulations. We typically assume a Gaussian
likelihood due to the central limit theorem, but in many situations this does not hold [99].
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The parameter estimation is carried out by comparing data and predictions through the
maximum likelihood estimation (MLE) method. MLE consists in choosing the value of
parameters θ that would have been most likely for generating the observed data X. This
means we aim to maximize L with respect to θ.

2.2.2 Bayes’ Theorem

In the field of statistical inference, two primary approaches exist: frequentist statistics and
Bayesian statistics. The key distinction between these approaches lies in how they interpret
probabilities. In the frequentist interpretation, a probability is the frequency with which
an event occurs in N number of independent trials, in the limit N ⇒ ∞. Particle physics
is widely regarded as a frequentist science because its theoretical foundations rely on event
rates, transition probabilities, branching fraction, etc. In brief, it is built based on the fact
that experiments can be repeated a finite number of times. However, there are situations
where repeating the experiment is unfeasible (for example, the Trinity test of the nuclear
bomb, or any event that can only be experienced once), thus making the Bayesian approach
a natural choice. As we have only one Universe to observe, cosmology inherently favors the
Bayesian reasoning, where probability is taken as a degree of belief. It is important to note
that both approaches agree on Bayes’ theorem as a mathematical result, which stems from
simple derivations based on probability axioms. However, for Bayesians, Bayes’ theorem
assumes the fundamental role in statistical inference. Under our current notation, Bayes’
theorem reads as

P (θ|x) = P (x|θ)P (θ)

P (x)
. (2.17)

The probabilities presented in this equation correspond to

• P (x|θ) expresses the probability of observing/measuring the data, given a set of pa-
rameters θ which we assume to be true. This is the definition of the likelihood function
denoted as L(x|θ) in Section 2.2.1.

• P (θ) is the prior distribution of the parameters θ. This probability incorporates our
knowledge about the model before the data have been gathered. It incorporates external
information, such as knowledge from previous experiments or constraints imposed by
the physical theory.

• P(x) is called the evidence. It describes the probability of measuring the data x given
all possible outcomes of parameters θ.

• P (θ|x) is the posterior probability that the model is true, given the data and the prior
beliefs on θ.

The key aspect of Bayes’ theorem as a inference framework lies in its ability to combine
different data sets, such as incorporating the information obtained from one data set as prior
information. In summary, it allows to update the prior knowledge in light of new data,
making Bayesian thinking a natural choice for cosmology, a physical theory driven by the
discoveries of newer experiments."

32



2.2.3 Prior

One of the reasons of debate between frequentist and Bayesians is the prior. The prior is a
fundamental ingredient in Bayesian statistics, and it is not possible to get rid of it. However,
specifying the prior belief as a probability distribution over θ is a non-trivial task. There-
fore, it is natural to ask how do you select the prior distribution. We hope for the data to be
informative, which means the likelihood will dominate over the prior. However, this is not
always the situation [100].
Among the classes of priors, it is customary to find flat priors, where the parameters θ are
bounded within specific lower and upper limits determined by the underlying theory. In
such cases, the prior probability can be modelled as a uniform distribution, which assigns
equal probability to all values within the defined range. For instance, a common example is
assuming Ωm to lie within the interval 0 < Ωm < 1. These priors are sometimes referred as
uninformative priors, however there is debate on whether the uniform probability distribu-
tion is in all cases uninformative [101]. It is also common to adopt Gaussian priors when the
posterior distributions of θ obtained from previous experiments result in a Gaussian distri-
bution. Another important distinction for priors is conjugate versus non-conjugate priors. If
the posterior and prior probability distributions belong to the same family of distribution,
the prior corresponds to a conjugate prior.
For instance, a Gaussian prior convolved with a Gaussian likelihood produces a Gaussian
posterior, and thus the Gaussian prior is a conjugate prior [102].

2.2.4 Sampling

Cosmology aims to infer the model parameters θ based on the available data, leading to the
quest for obtaining the posterior distribution of these parameters. However, in numerous
scenarios, the posterior distribution of the parameters is non-Gaussian, making analytical
solutions infeasible. Consequently, resorting to computational methods becomes necessary
to approximate the posterior distribution. A commonly employed approach for this purpose
is Markov Chain Monte Carlo (MCMC) sampling methods.

2.2.5 Monte Carlo Markov Chain

As in a Monte Carlo integration, the MCMC algorithm samples the parameter space to
approximate the posterior distribution. A Markov chain represents a series of random states
Θ, where each state depends only on its immediately preceding state Θ − 1 (and not on
earlier ones). Incorporating Markov chains into the approach renders it a powerful tool for
efficiently sampling posterior distributions. The Metropolis-Hastings algorithm [103, 104] is
the simplest efficient mechanism employed to transition from one state to another. It work
as follows [31]

• Initialize the algorithm at a given point Φ0.
• Define a proposal distribution q(Φ0) (usually a multi-variate Gaussian).
• Iterate: from i=0 to i=Nmcmc

– Propose a new state by drawing a random point Φ∗
0 ∼ q(Φ0)

– Evaluate the ratio of the posterior at the proposed state and the current state
R = P (Φ∗

0)/P (Φ0)
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– If R > 1, accept Φ0 and store it.
– If R < 1, draw α ∼ Uniform[0, 1]. If R > α, accept Φ0 and store it. If If R < α,

reject proposed state.

Comparing R with a random point from a uniform distribution is the crucial factor for why
the Metropolis-Hastings algorithm is successful. This particular step enables the walker to
effectively explore the parameter space and prevents it from getting trapped in regions of local
maximum: at these local maximum, no neighboring points have a lower probability, making
it unfeasible to keep exploring the space of parameters. When comparing with a random
point, there are chances to jump into another state, even if the walker is trapped in a local
maximum. When the chain converges, optimal performance is achieved when the acceptance
rate of the chain (acceptance-to-rejection fraction) is approximately 0.3. A high acceptance
rate, around ∼ 0.9, indicates that the sampler is taking steps that are too small, resulting
in the walkers not efficiently exploring all regions in the parameter space. On the other
hand, a low acceptance rate, approximately ∼ 0.05, implies that steps are extremely large,
causing the sampler to easily leave the global region of highest probability. The acceptance
rate could be far from optimal typically in high-dimensional posterior distributions or when
the distribution is multi-modal. In such cases, the sampler may not reach convergence in
a reasonable running time, or the chain may continuously get stuck. Therefore, alternative
algorithms are available, such as Hamiltonian Monte Carlo [105] or Nested sampling [106]
which can outperform Metropolis-Hastings.

2.3 Machine Learning

In this thesis, our objective is not only to infer an underlying physical model from data
but also to learn structures in the data. To achieve this, we delve into machine learning
methods, which have emerged as crucial tools in astronomy in recent years. Significant
strides have been achieved across various domains of data analysis in the field of astronomy,
particularly in the realm of cosmology. The volumes of data obtained from ground-based
telescopes and satellites have increased drastically. We will move from 1 TB1 of data per
night (as in DES [107]) to 15TB in Rubin-LSST. Therefore, the amount of data is no longer
an important constraining factor; however, the statistical analysis of such data can become
burdensome unless we come up with an efficient approach to process and summarize this
wealth of information.
To maximize the scientific-return from large volumes of precise data, machine learning has
emerged as a powerful tool in cosmology. Some examples of successful implementations of
machine learning methods in cosmology includes photometric redshift estimation [108, 109],
emulators of summary statistics [110, 111, 112, 18, 19, 113], deep learning for transient alerts
[114, 115, 116] (with accurate detection of Type-Ia Supernovae), among others. In this
thesis I focus on supervised methods, which are characterized by the inclusion of the desired
solutions in the training data-set, commonly referred as labeled examples. Some supervised
machine learning algorithm include Support Vector Machines (SVMs), Decision Trees and
Neural networks [117]. Firstly, it is convenient to provide a summary of some key concepts
in machine learning:
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• Features: Features (often called attributes) refer to a property of an observation. Let
us consider the data-set arranged as a matrix D with dimensions N ×M . Each entry
Di with i = 1 . . . N will be a M -length vector, where M stands for the number of
features. If we aim to train a machine learning model that classifies observations into
two categories, babies and adults, each entry will represent an observation (either of a
baby or an adult), and the M features can be attributes such as age, height, etc. It is
crucial that these features carry informative content about the category they represent.

• Model parameters and hyper-parameters: The former refers to trainable param-
eters of the model. These are constantly being updated by the algorithm in each epoch
of training until the learning converges to the optimal values. On the other hand,
hyperparameters are chosen by hand before the training process, and thus they are
not learned during training. These parameters include the loss function (and some of
its parameters), the number of training epochs, and other model-specific parameters.
Hyperparameters may vary between different machine learning methods, and depend-
ing on the model’s performance, the designer may consider tuning the hyperparameter
values.

• Training-Validation-Test sets: In order to train a machine learning method, we first
randomly split the data-set in three sets: training, validation and test. The training
set typically covers 70-80% of the sample and is used to learn the model parameters
that best map from input to output. Once the training has finished, we obtain our first
approach of the machine learning model. The validation set is then utilized to evaluate
the model derived from the training process. If the performance on the validation set
is poor, the training process is repeated. We iterate between training and validation
until we achieve the optimal model parameters. Finally, we perform the final model
evaluation using the test set (also known as cross-validation). If there are two com-
peting models, we utilize the test set to determine which one exhibits the best score.
It is crucial that the three sets do not overlap and are representative of the overall
distribution of features.

• Loss function: The performance of the machine learning model is evaluated using the
loss function, which assesses the error between the prediction and the label.

A successful supervised learning model will be capable of learning the structure contained
in the features of the labeled outputs and generalizing to unseen examples (for example, those
present in the test set). However, these models can fail due to overfitting, which means that
the model learns all details and fine structures contained in the training set (in the worst
scenario, it fits the noise in the data). As a result, it lacks the ability to generalize to features
that deviate from what it has learned [118]. For successful machine learning training, a good
dataset should include enough samples relevant to the problem, exhibit representativity, and
include informative features.
Also, it is important to distinguish between two common science cases: regression algorithms
and classification. Neural networks are a class of ML method that can frequently outperform
other ML algorithms in both cases, so we first introduce artificial neural networks.

2.3.1 Artificial neural network

A neural network (NN) corresponds to a non-linear model that maps input data x, containing
M features, to the output y, which approximates the prediction of the target’s true value τ
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Figure 2.2: Multilayer perceptron with 1 input layer, 2 hidden layers and 1 output layer.
Input layer consists in 3 neurons, first hidden layer contains 5 neurons and second hidden
layer has 3 neurons. Each neuron contains the original input zNl

i which results from the
weighted sum. Then, the activation function is applied to zNl

i and outputs the result aNl
i

which is fed to the next layer. Figure taken from [6].

[119]. The specific configuration of a neural network is called its architecture.
In a nutshell, a neural network operates as follows: The architecture comprises an input
layer, which takes in the data x into the system. A layer is composed of a finite number of
neurons, with which the algorithm performs a weighted sum of the inputs. An activation
function is applied to the weighted sum, and this non-linear result is then fed into the next
layer. Intermediate layers, known as hidden layers, repeat the weighted sum until reaching
the last layer, which outputs the desired outcome.
The simplest neural network is called a perceptron [120] and consists of one layer with a single
neuron. It is suitable for simple linear binary classification problems but lacks the flexibility
required for more complex problems. Nowadays, we rely on multilayer perceptrons (a set of
interconnected perceptrons) shown in Fig. 2.2, which incorporate hidden layers and employ
differentiable activation functions that provide the non-linearity feature to neural network
models.
The non-linear model is parameterized by the set of trainable parameters called weights w,

with one weight associated to one neuron. The weighted sum reads as

ai = φ

(
L∑
i

wkixk

)
. (2.18)

It is worth mentioning that the activation function is chosen before the training process.
Therefore, the number of layers, number of neurons and activation functions are hyperparam-
eters.
To determine the weights, we utilize the loss function L. This function is computed at the end
of the feed-forward process (i.e., when all the weighted sums are performed from the input
layer until the output layer), and it measures the discrepancy between the predicted outputs
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τ and the targets t. Then, the neural network propagates this error through a backward pass,
from the output layer to the input layer. This process, known as backpropagation, aims to
find the weights that minimize the loss function, utilizing an optimization method called
gradient descent [119]. In this algorithm, the weights are iteratively updated by following

wnew = wold − λ
dL
dw

, (2.19)

where the derivative illustrates how the algorithm follows the gradient of the loss function in
order to find the global minimum. The hyperparameter λ, known as the learning rate, deter-
mines the extent to which we update the weights to explore the loss potential and discover
the global minimum. If λ is too small, the algorithm will explore the loss function through
small steps, leading to a longer time to find the minimum. Conversely, if λ is too large, the
algorithm may take excessively large steps, potentially causing it to miss the optimal weights
during iterative updates. For a more detailed overview of artificial neural networks, see [121].

2.3.2 Gaussian Process

Gaussian Process is a supervised machine learning method to reconstruct an unknown func-
tion (without the assumption of a parametric model) of a stochastic process defined as
y = f(t) + ϵ. It can work as an interpolation method or regression model given data (yi, ti)
with i = 1...N , and provide predictions on new points (y∗i , t

∗
i ) with the corresponding un-

certainties. The errors on the observations are represented by ϵ which follows a Gaussian
distribution N (0, σ2

y).
The Gaussian process method consist in a correlated set of random variables sampled from
a joint Gaussian distribution N (µ,K):


f(t1)
f(t2)

...
f(tN)

 ∼ N



µ(t1)
µ(t2)

...
µ(tN)

 ,


k(t1, t1) k(t1, t2) . . .
k(t2, t1) k(t2, t2)

...
... . . .

k(tN , t1) . . . k(tN , tN)

 ,

 (2.20)

where k(ti, tj) is the kernel function and defines the covariance at two locations ti and tj;
and µ(ti) is the expected value at the location ti. It is usually assumed that the kernel
corresponds to

k(ti, tj) = σ2
f exp

[
−(ti − tj)

2

2l2

]
, (2.21)

where σf and l are hyperparameters. This equation determines similarity between two ob-
servations and tells us that two random variables that are close-by in location ti ≈ tj, will
present high covariance. If we sample f(ti) and it results in a large value, then we expect
that a value f(tj) close to it, will be a large value as well.This property is important as data
will provide guidance of the most likely f(t∗) for a new point t∗. The parameters σf and l
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are learned. We introduce the Gaussian noise of our observations into the modelling, as we
aim to predict y∗ instead of f(t∗). The joint distribution including a new observation is[

y
y∗

]
∼ N

([
µ
µ∗

]
,

[
K + σ2In KT

∗
K∗ K∗∗

])
. (2.22)

As we are working in the framework of machine learning, what we actually want is the
conditional probability of a new observation t∗ (as present in the test-set) given training data
y, t. We can derive this expression in a Bayesian framework

p(y∗|y) ∼ N (ȳ∗, cov(y∗)) (2.23)

where the mean of the posterior distribution and the covariance are

ȳ∗ = µ(t∗) +K(t∗, t)[K(t∗, t) + C]−1(y − µ(t)) (2.24)

cov(y∗) = K(t∗, t∗)−K(t∗, t)[K(t∗, t) + C]−1K(t, t∗) (2.25)

with Cn×n = σ2
yIn×n.

It is important to train the GP model using different kernels. Among the possibilities, the
more implemented kernels in astronomy are:

• Kernel: Radial Basis Function (RBF)

k(ti, tj) = σf exp

(
−(ti − tj)

2

2l2

)
(2.26)

• Kernel: Matérn ν = 5/2

k(ti, tj) = σf exp

(
−
√
5|ti − tj|
l

)(
1 +

−
√
5|ti − tj|
l

+
5(ti − tj)

2

3l2

)
(2.27)

More details on Gaussian processes and some derivations of the quantities described above
can be found at [122, 123].
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Chapter 3

Cosmic shear

The perturbed Universe consists of gravitational potentials, seeded by tiny density fluctua-
tions in the early Universe, whose dominant component is dark matter. The pull of gravity in
these dark matter overdensities attracts baryonic matter to clump. Baryonic gas inside the
potential wells cools down, leading to galaxy formation, and clustering of galaxies at large
scales. As dark matter can not be directly observed, our only chance to trace the underlying
dark matter distribution and study the properties of the large-scale structure is through the
observation of galaxies at different wavelengths [124]. However, this is not an easy task as
galaxy formation and evolution occurs at large time-scales, it depends on interactions with
the matter distribution and the underlying physical processes are still not entirely charac-
terized on a range of scales. Therefore, the clustering of luminous matter can trace the dark
matter web in a way that is not completely understood, so we say it is a biased tracer. It
is desirable to have a tracer in place, which is sensitive to the total matter density (instead
of luminous matter only) and thus trace the cosmic web on large scales in an unbiased way.
This tracer corresponds to the gravitational lensing of galaxies. Gravitational lensing affects
the apparent shapes and position of objects in the Universe, due to the light ray being bent
around the curvature induced by the intervening matter in the path of light. This effect is
well described in General Relativity and it was actually predicted by several physicists in the
classical Newtonian limit years before GR [125].
Depending on the mass of the intervening structures, and the relative distances between
the background objects, the deflecting mass and the observer, gravitational lensing can be
classified in three types of lensing: strong lensing, microlensing and weak lensing. In this
thesis, we focus on the weak gravitational lensing of galaxies by the large-scale structure in
the Universe, also called cosmic shear [126].
Cosmic shear corresponds to slight distortions and magnifications of galaxy shapes. It is a
weak signal and, as such, it can not be detected by observing one single background galaxy.
Instead, statistical correlations among thousands of galaxy shapes are needed in order to
measure the cosmic shear signal. Since its discovery in 2000, cosmic shear has led to strin-
gent cosmological constraints, and was considered in the Dark Energy task force [127] as one
of the key cosmological probes to study the properties of dark energy.
This chapter presents an overview of the gravitational lensing formalism, its statistical de-
scription and the systematics that can affect the lensing signal in the weak lensing regime.
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Many notes and definitions are based on the review articles [126, 128] and textbooks [30, 31].

3.1 Basics of weak gravitational lensing

Light from distant objects propagates along null geodesics from its origin to our telecopes,
being continuously deflected by inhomogeneities in space-time. Gravitational lensing is the
distortion and magnification observed in the images of objects as a result of the deflection of
light. The massive object causing the perturbation is called lens, whilst the source emitting
light is called the source. As gravitational lensing is an effect due to the lens gravitational
potentials, let us start by considering the weakly perturbed metric under a flat FLRW back-
ground

ds2 = −
(
1 +

2Ψ

c2

)
c2dt2 + a2(t)

(
1− 2Φ

c2

)
dr2, (3.1)

where, as in Chapter 1, a(t) is the scale factor and t is cosmic time. The perturbed metric
incorporates the Bardeen potentials {Θ,Φ} that describe perturbations in the weak field limit
Ψ,Φ ≪ c2. In this particular case, we explicitly write the speed of light c for convenience.

As light propagates in null geodesics ds = 0, the effective speed of photons in the pres-
ence of Φ is c′ = c

(
1 + 2Φ

c2

)
at first order, which implies that the potentials Ψ and Φ act as a

medium with effective refraction index n = 1− 2Φ
c2

, altering the trajectory of light. Hence, by
applying Fermat’s principle which states that light rays will follow the path that extremizes
δt = 0, we can find the deflection angle [129]

α̃ =
−2

c2

∫
∇⊥Φdr, (3.2)

where the integration variable dr is the radial path along the light ray trajectory and the
2D gradient operator ∇⊥. Since the typical deflection angles are small, it is sufficient to
work in the Born approximation, i.e. the perturbed light path can be approximated by the
unperturbed one, and thus we can integrate over the unperturbed trajectory. In what follows,
we first introduce the lensing formalism in the thin-lens approximation, which states that the
lens mass distribution is thin compared to the distance between the observer, lens and source.
This means that we can approximate the lens distribution to a planar distribution of matter,
often referred to as the lens plane. It is also common to define the source to lie in the source
plane. In practice, the deflection angle α̃ induces a shift in the apparent angular position θ
of the observed source due to the deflecting mass. The original angular position, denoted by
β, can be recovered by subtracting the amount of lens deflection α to the observed position.
The latter is the definition of the lens equation given by

Dsβ = Dsθ −Dlsα(θ), (3.3)

where all angular positions are 2D vectors with respect to the optical axis (the line of sight).
The distances are the angular diameter distances to the source Ds and between the lens
and the source Dls. On the other hand, α̃ and α only differ in the location from where the
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deflection is being measured. The former is the amount of shift as seen from the lens position,
and the latter is the observed shift from Earth. Both are related through the distance ratio

α =
Dls

Ds

α̃. (3.4)

We are interested in the reduced deflection angle which can be written in terms of the lensing
potential

ϕ(θ) =
2

c2
Dls

DdDs

∫ χ

0

dzΦ(Ddθ, z), (3.5)

which traces the properties of the gravitational lens, and can be thought of as a scaled pro-
jection of the three-dimensional potential Φ. Hence, the reduced deflection angle Eq. (3.4)
can be denoted by α = ∇θϕ and thus the following relations can be obtained

∇ ·α = ∇2ϕ = 2κ(θ), (3.6)

where κ, called convergence, defines the projected surface mass density

κ(θ) =
Σ(Dlθ)

Σcrit

, (3.7)

scaled by the geometrical factor that characterizes the lens system

Σcrit =
c2

4πG

Ds

DlDls

, Σ(Dlθ) =

∫
ρ(Ddθ, z)dz. (3.8)

As the lens mass distribution can be approximated by the lens plane, the surface density takes
the simple form of Eq. (3.8), which integrates the three-dimensional density profile ρ along the
radial coordinate z. Hence, the projected surface mass density κ sources the inhomogeneites
encoded in the potential Φ that bends the emitted light from a distant source.
In order to understand the distortions due to lensing, we can build a local mapping between
the lensed coordinates and unlensed coordinates by means of the Jacobian Aij = ∂βi/∂θj.
The elements of the Jacobian define the distortion matrix in terms of the lensing potential
as

Aij =
∂βi

∂θj
= δij −

∂2ϕ

∂θi∂θj
. (3.9)

This matrix accounts for two situations: given a lens mass distribution, the Jacobian describes
the curvature effect induced by the lens through second derivatives of ϕ, and in the absence
of lensing, the matrix simply reduces to the delta Kroenecker δij, i.e. the identity matrix.
We can manipulate the distortion matrix and write the derivates of ϕ in terms of convergence
κ and the shear γ

Aij =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
, (3.10)

κ =
1

2
(∂1∂1 + ∂2∂2)ϕ =

1

2
∇2ϕ, γ1 =

1

2
(∂1∂1 − ∂2∂2)ϕ, γ2 = ∂1∂2ϕ, (3.11)
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where {γ1, γ2} are the shear components in γ = γ1 + iγ2 = |γ| exp(2iφ) describing the
distortion in the shape of the source. In the following, results holds in the weak lensing
regime, κ, γ ≪ 1. In Fourier space, the relations defined above are

κ̃(ℓ) =

(
ℓ21 − ℓ22
ℓ21 + ℓ22

)
γ̃1(ℓ) + 2

(
ℓ1ℓ2

ℓ21 + ℓ22

)
γ̃2(ℓ), (3.12)

where ℓ = (ℓ1, ℓ2) is the Fourier counterpart of the angular positions. With this expression,
we can convert the shear field into a convergence field.
To gain physical insights of convergence and shear, we can split Eq. (3.10) into an isotropic
and anisotropic trace-free part as

Aij = (1− κ)

(
1 0
0 1

)
− γ

(
cos(2ϕ) sin(2ϕ)
sin(2ϕ) −cos(2ϕ)

)
. (3.13)

Equation 3.13 explains the effect of lensing into more detail. The shear is an anisotropic
streching of the shape, turning a circular shape into an elliptical form. The convergence in
Eq. (3.13) is an isotropic contribution that only alters the size of the image. This effect is
called magnificaton and is quantified by the inverse of the determinant of A

µ ≡
∣∣∣ ∂θ
∂β

∣∣∣ = 1

detA
=

1

(1− κ)2 − |γ|
≈ 1 + 2κ, (3.14)

at first order. This expression tells us that magnification is determined by the convergence
with no contributions from the shear.
Let us consider a circular source under the lens effect. Its shape describes an ellipse due to
lensing, with semi-major axis a and semi-minor axes b. These values are proportional to the
eigenvalues of the inverse A−1

λ+ =
1− κ+ |γ|

detA
=

1

1− κ− |γ|
, λ− =

1− κ− |γ|
detA

=
1

1− κ+ |γ|
. (3.15)

Therefore, the ellipticity of that source is

ϵ ≡ a− b

a+ b
=

λ+ − λ−

λ+ + λ−
=

γ

1− κ
, (3.16)

where the last equality defines the reduced shear

g =
γ

1− κ
. (3.17)

As the factor (1− κ) does not contribute to shape distortion, what we can actually measure
is the reduced shear. In cosmology, we are interested in the lensing of galaxy shapes. As
galaxies are not intrinsically circular objects, the observed ellipticity is a contribution from
the intrinsic ellipticity and the reduced shear

ϵ ≈ ϵs + g. (3.18)
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In practice, the typical value of shear for lensing induced by the large scale structure in the
Universe is approximately 100 times smaller than the intrinsic ellipticity. Therefore, in order
to detect the weak lensing signal g, an average over the ellipticities ϵ of hundreds of galaxies
is needed (g is a small quantity, same as κ and γ). We can estimate g with the central
assumption that the galaxy shapes are randomly oriented and hence ⟨ϵs⟩ = 0,

⟨ϵ⟩ ≈ g. (3.19)

In reality, the intrinsic ellipticities follow a normal distribution with σϵ ≈ 0.2. This contri-
bution is called shape noise. The signal-to-noise ratio for a lens system in the weak lensing
regime is defined in terms of the shape noise and the number of galaxies N

S

N
=

γ
√
N

σϵ

, (3.20)

which automatically explains why galaxy surveys aim to observe a large number of galaxies
in order to reduce the noise.

3.1.1 Generalization to lensing by the large-scale structure

In what follows, instead of considering the thin lens system, we study the weak gravitational
lensing due to the large scale structure. In this context, the lens is all the intervening matter
along the line of sight, and hence the distance to the lens is a continuous quantity to integrate
over. Therefore, Eq. (3.5) generalises to comoving distances inside the integral instead of a
pre-factor of fixed distances to the lens-source system. The lens potential generalizes to

ϕ(θ) =
2

c2

∫ χ

0

dχ′χ− χ′

χ
Φ(χ′θ, χ′), (3.21)

where χ′ is the comoving distance to the lens. As one of the central quantities in lensing is
the convergence κ, it is possible to replace the Poisson equation and the mean matter density,

∇2Φ =
4πG

c2
ρ̄ma

2δ, ρ̄m =
3H2

0

8πG
Ωma

−3, (3.22)

into ∇2ϕ/2, to derive the convergence for an extended lens or multiple sources. The conver-
gence results in

κ(θ, χ) =
3H2

0Ωm

2c2

∫ χ

0

dχ′ χ
′(χ− χ′)

a(χ′)χ
δ(χ′θ, χ′). (3.23)

Again, from Eq. (3.23) it is clear that convergence describes the projected density along the
line of sight, weighted by the geometrical factor χ′(χ − χ′)/(a(χ′)χ) involving the distances
to the elements of the system. Also, it is seen that the convergence directly depends on
the inhomogeneities in the Universe, and therefore is a powerful tool to study the perturbed
Universe and provide a statistical description of the clustering of structures. For a sample of
source galaxies, the mean convergence can be obtained as

κ(θ) =

∫ χlim

0

dχnχ(χ)κ(θ, χ), (3.24)
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where nχ(χ) denotes the distribution of galaxies as a function of the comoving distance, and
χlim is the comoving distance to the farthest galaxy. The probability distribution of nχ(χ) can
be computed in terms of redshift through the equality n(χ)dχ = n(z)dz, with

∫
n(χ)dχ = 1.

Inserting Eq. (3.24) into (3.23), the convergence recast into

κ(θ) =
3H2

0Ωm

2c2

∫ χlim

0

dχg(χ)χ
δ(χθ, χ)

a(χ)
, (3.25)

where
g(χ) =

∫ χs

χ

dχ′n(χ′)
χ′ − χ

χ
, (3.26)

is the lensing efficiency, which characterizes the lensing strength at a given comoving distance.
From Eq. (3.25), it becomes clearer that weak lensing measurements are sensitive to the
cosmological parameters defined in Chapter 1. This is not only due to the direct dependence
on H2

0Ωm, but also through the comoving distances and the density contrast.
In order to make use of the lensing convergence to extract the cosmological information
encoded in weak lensing data, a statistical description of κ is needed. As explained in Chapter
1, we cannot access the exact position of the density contrast in the Universe. In the same
way, the truth underlying lensing effects induced by the density field in a given direction
are also unknown. What we know in practice, is that the measured image distortion of two
nearby galaxies will be similar, as the photons emitted by both galaxies go through nearby
structures in their journey towards us. On the contrary, the photons from two galaxies
far away of each other will go through different structures, and hence the observed shape
distortions may be very different. This indicates that the galaxy shapes are correlated. As
the mean density contrast is equal to 0, the mean convergence also does vanish ⟨δ⟩ = ⟨κ⟩ = 0.
Therefore, the lensing effect is encoded in the two point correlation function

ξ(|φ|) = ⟨κ(θ)κ(θ +φ)⟩, (3.27)

where φ is the angular separation vector between two objects and the two-point function
only depends on the modulus |φ| due to statistical isotropy. In some occasions, it is useful
to work with the angular power spectrum

Cκ(ℓ) =

∫
d2φξ(φ)e−iℓ⃗′φ⃗, (3.28)

which is the Fourier-transform of Eq. (3.27). In this expression, ℓ⃗′ is the 2D wave vector, the
Fourier conjugate of the separation angle φ⃗.
We can recast the angular power spectrum of convergence (3.28) into an integral of z or χ.
First, it is important to note that the lensing effect is an integral over a 2D projection of the
3D mass fluctuations along the line of sight. It is possible define a 2D quantity Q(θ) as a
projection of a 3D function by means of a weight function W . This is known as the Limber
approximation

Q(θ) =

∫ χs

0

W (χ)y(χθ, χ), (3.29)

where Q(θ) is the weight function along the radial direction, and y(χθ, χ) is defined in three-
dimensions. The Limber’s approximation gives an expression for the convergence angular
power spectrum in terms of the 3D matter power spectrum through the weight function
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Wκ(χ) =
3H2

0Ωm

2c2
g(χ)χ

a(χ)
, (3.30)

with the convergence power spectrum of cosmic shear given by

Cκ(ℓ) =
9H4

0Ωm

4c4

∫ χs

0

dχ
g2(χ)χ

a2(χ)
Pδ

(
k =

ℓ

χ
, χ

)
. (3.31)

Cosmic shear traces the matter distribution and it directly depends on cosmology through
the prefactor of Eq. (3.31), distances and the matter power spectrum. The latter can be ob-
tained from theory given a set of cosmological parameters, by means of a Boltzmann solver or
through analytical expressions of the transfer function. The convergence power spectrum de-
pends on the shape of the matter power spectrum, and hence it can provide tight constraints
on the combination of parameters Ω2

mσ
2
8, as demonstrated in [130]. Therefore, equation (3.31)

illustrates why cosmic shear is a powerful tool to study the growth of cosmic structures and
reveal information about the properties of dark energy.

3.2 Systematics
Cosmic shear distorts the galaxies shapes very weakly, and therefore many processes that
degrade the quality of the images can distort the galaxy shapes and dilute the lensing signal.
In these situations, the estimation of shear from galaxy images may include other effects apart
from lensing, which in turn may lead to biased results. The large-scale structure analysis
incorporates many methods to account for these various processes, also called systematic
errors, and hence survey strategies are designed to mitigate these effects [124].
One observational source of systematic error corresponds to the response of the telescope
optics and the atmospheric effects, which are modelled by the Point Spread Function (PSF)
[124, 131]. The image is always a convolution of the real galaxy image and the PSF. Hence,
the modelling of the PSF properties is important in order to assess reliable measurements of
galaxy shapes. Moreover, if the images exhibit an overlap of multiple galaxies, the galaxy
shape measurement could also be degraded. This effect is called blending and can be a major
issue in the upcoming galaxy surveys. Based on the Hyper Suprime-Cam wide survey realistic
simulations, the authors [132] detected 58% objects in some form of blending configuration,
thus a strategy to mitigate this effect is an imperative for galaxy surveys.
Another central aspect of weak lensing analysis is the estimation of redshifts. As reviewed in
this chapter, the cosmic shear analysis implies integrals along the line of sight that depends
on the distribution of the redshift of source galaxies n(z). Accurate cosmological constraints
depend on accurate estimations of n(z), mainly obtained from photometric redshifts derived
from flux measurements in photometric bands. Poor blending mitigation strategies can also
lead to wrong photometric redshift estimates [133] and degrade cosmological constraints.
Many other systematic errors take place, and Stage-III weak lensing surveys have provided a
deeper comprehension of the systematic effects in weak lensing measurements and analysis.
Two important aspects that will highly impact the upcoming galaxy surveys are astrophysical
processes that can contaminate the cosmic shear signal, and the modelling of the non-linear
evolution of the matter density field. In the past years, it has been shown that astrophysical
processes associated with baryons, such as star formation, magnetic fields, and the impact of
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jets and winds that emanate from Active Galactic Nucle (AGN) impact the agglomeration
of material on small physical scales [7]. Therefore, the matter power spectrum is re-shaped
by such effects, especially at non-linear scales. An accurate theoretical modelling of the
matter power spectrum involves thus a detailed study of the impact of these astrophysical
phenomena. These astrophysical processes are often referred to as baryonic feedback or
baryonic processes, and are the main topic of the following section.

3.2.1 Baryonic feedback

Baryonic processes such as radiative cooling, AGN feedback, magnetic fields, star formation
and radiative cooling modify the distribution of matter inside haloes, reshaping the gravita-
tional potentials where cosmic shear signal takes place [7, 134, 135]. Consequently, baryons
suppress the clustering of matter from intermediate to small scales, although the amplitude
of suppression is not precisely determined and scatters around a wide range of values [7]. In
Fig. 3.1, each solid coloured line shows the impact of baryons on the matter power spectrum
at z = 0, with the levels of suppression oscillation betwen 10%-30%. Unfortunately, these
feedback mechanisms encompass an extensive list of effects which lack a completely theoret-
ical modelling, and thus they are hard to address analytically. As it is expected that these
effects can propagate into the cosmological parameter inference and may bias the parameter
constraints, different approaches have been adopted by the community in order to mitigate
these biases. Stage-III surveys have applied severe small-scale cuts to the two-point statis-
tics in real and harmonic space to mitigate potential biases due to the unmodelled baryonic
feedback [136, 137, 22], but such choice remove cosmological information, degrades the cos-
mological constraints and hence will prevent us of unleashing the statistical power of Stage-IV
surveys. Many other strategies adopted to date rely on hydrodynamical simulations. These
simulations include gravity (as in N-body simulations) but also incorporate fluid dynamics
that account for the baryonic physics that happens in the Universe. By providing gravity-
only simulation runs as counterparts with the same cosmology and initial conditions, it is
possible to quantify the impact of baryons on the clustering of structures. A fast and accu-
rate approach is the baryonification modelling [138, 139]. It consists in displacing particle
outputs of N-body simulations that can mimic the effect of baryons inside haloes, producing
modified density profiles of haloes. It has been shown that the method reproduces the power
spectrum based on hydrodynamical simulations at 2% accuracy, but also is in good agreement
with observations [140]. Moreover, the authors found that the baryonic strength is mainly
determined by the maximum radius of gas ejection and the slope of the gas profile. They
also show that baryons produce a 10-20% suppression of the weak-lensing power spectrum at
scales scales ℓ > 500, however, this method has not been sufficiently accurate to predict other
statistics, such as the peak counts [141]. The authors in [142] present the halofit model, a
matter power spectrum fitting function based on the halo model that provides predictions for
the non-linear scales. The calibration is based on N-body simulations at various cosmological
parameters, however, in [143] it was found that this model predicts ∼ 5% less suppression
at k ∼ 1h Mpc−1 compared to recent high-resolution N-body simulation. Therefore, an op-
timized approach was proposed in [144], with the inclusion of variations of the dark energy
equation of state. Regarding the effect of baryons, they found that baryon cooling and the
effect of massive neutrinos are important at small scales, with the baryon cooling enhancing
the clustering at k ∼ 10h Mpc−1. More recently, in [145] the authors provide an analytic
fitting formula for the matter power spectrum that describes the effect of baryonic feedback
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Figure 3.1: Ratio of the matter power spectrum at z = 0 as measured in hydrodynamical
simulations, compared to the gravity-only runs. Each coloured solid line represent one dif-
ferent simulation. Simulations predict different amplitudes and scale-dependent impact of
baryons. Original plot from [7].

in the range 0 < z < 1.5 and scales k < 100h/Mpc, with baryons being modelled according
to the Over-Whelmingly Large (OWL) hydrodynamical simulation.
By analyzing at which scales these baryonic feedback mechanisms can impact the weak lensing
statistics, we can determine to what extent the effects of baryonic feedback can contribute to
the understanding of the inferred low S8, as explained in Chapter 1. Also, including baryons
in the modelling helps to decide appropriate scale cuts for the tomographic redshift bins in
future galaxy survey analysis.

3.3 Non-Gaussian statistics
The two-point statistics in real and harmonic space provide a full characterisation of a Gaus-
sian random field. Moreover, the weak lensing surveys have placed tight cosmological con-
straints based on the two-point statistics: the angular correlation function or angular power
spectrum of galaxy shapes. However, the non-linear evolution of structures in late times
introduces non-Gaussianities in the matter density field. In that sense, the traditional two-
point statistics cannot completely capture all the information encoded in the density field
traced by weak lensing data. This acquires special care in light of the upcoming weak lensing
surveys such as LSST and Euclid, as these surveys will deliver precise measurements of the
small scales. In order to fully exploit the weak lensing data in all scales, we need statistical
tools beyond the second-order statistical measurements. Various groups have introduced the
non-Gaussian statistics, a set of statistical tools very sensitive to the non-Gaussian infor-
mation in the cosmic density field that have shown great statistical power in constraining
cosmological parameters.
Non-Gaussian statistics [146] include the bispectrum [147], the peak counts (or simply peaks)
[148, 149, 21], minimum counts (or minima)[21], the probability distribution function (PDF)
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[150, 151, 152], Minkowski functionals [153], among others. All of them have shown their
potential to capture information beyond the one encoded in the angular power spectrum
alone. Furthermore, non-Gaussian statistics are sensitive to systematics effects in different
ways, therefore, a detailed analysis of its sensitivity to these systematic effects could guide
decisions for constructing future pipelines in weak lensing.

3.3.1 Bispectrum

An alternative to the power spectrum is the bispectrum. As the power spectrum contains
the information of the two-point correlation function in Fourier space, the bispectrum cor-
responds to the Fourier transform of the three-point correlation function [154]. It is lowest
order statistic beyond the power spectrum that is sensitive to the non-Gaussian information
of random fields, and hence its signal vanishes for Gaussian random fields.
The bispectrum measures three-point correlations of the convergence defined on in triangle
configurations in Fourier space [155]. As a complete bispectrum calculation is computation-
ally prohibitive, recent works have employed the binned bispectrum estimator [147], which
corresponds to the sum over products of a set of filtered lensing maps. Since the first mea-
surements, there has been significant work to understand the bispectrum constraning power
and how different systematics can impact the bispectrum measurements. In [156], they
found that the bispectrum and power spectrum contains similar information on parameters
{Ωm, σ8, w0, wa} for lensing tomography analysis. In combination with CMB and SNIa data,
the bispectrum can provide tight constraints on dark energy parameters. In a more recents
work [147], it was shown that the bispectrum can provide 30%, 13% and 57% improved
contraints on the neutrino mass Mν , Ωm and As for a LSST-like survey.

3.3.2 Peaks and Minimum counts

Peak statistic has been studied in the literature extensively and hence positioned as one of
the most popular non-Gaussian statistic to study the weak lensing field [157, 158, 149]. Peaks
are computed by counting the local maxima of a shear or convergence map, imprinted by
massive structures along the line of sight. These allow us to extract the information from the
non-linear regime, being complementary to the information from the variance of the field. In
a 2D map, the peaks correspond to pixel values that are higher than their surrounding eight
pixels. Conversely, minimum counts correspond to pixels whose values are lower than their
eight neighbors. Physically, minima trace the underdense region of the convergence field, and
hence can provide complementary information to the peak counts [21].
The first application of peak counts on real data was done by [148], for CFHTLenS data.
The authors found that the combination of the power spectrum with the peak counts reduces
the area of parameter countours by a factor ∼ 2 compared to the power spectrum alone, and
concluded that the peak counts are less sensitive than the power spectrum to systematic
effects. In another work [159], the authors found that cosmological constraints based on the
power spectrum and, separately, on the peak counts, are biased by magnification systematics
in different directions, and hence a combined analysis can mitigate the impact of this system-
atic in the final results. More recently, [157] performed an analysis using the peak counts for
DES-Y1 real data and found a 20% improvement in precision by combining the peak counts
and the two-point function compared to the 2PCF alone.
Regarding the minimum count analysis, [21] shows that when it is applied to convergence
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maps, the constraning power is slightly less than the peaks counts, although a combination of
peak counts and minimum counts can outperform the angular power spectrum in constraning
As by a 68% for a LSST-like survey.

3.3.3 Probability distribution function

The probability distribution function is a promising tool to access the non-Gaussian infor-
mation of the weak lensing field, with applications in the convergence κ field. It is sensitive
to cosmological parameters [151] and can provide precise constraints on the neutrino mass,
Ωm, σ8 and w0. In practice, the convergence PDF is built upon histogramming pixels of
normalized convergence maps. In [152], the authors propose a theoretical model for the PDF
based on the halo model with accurate predictions in the high PDF tail, whereas the au-
thors in [150] make use of large deviation statistics to model the PDF at mildly no linear
scales. Even though both approaches have found success at different scales, emulators based
on interpolation methods that are trained on N-body numerical simulations have provided
accurate theoretical predictions as well [160]. In [151], it is shown that the non-linear growth
produces non-Gaussianities in the PDF. They also show that PDF shrinks the errors on neu-
trino mass and σ8 by 20%, compared to the angular power spectrum alone in a tomographic
analysis for a LSST-like survey. Also, it has been shown that it is capable of shrinking the
errors in 27% for a Euclid-like survey compared to the power spectrum alone.

3.3.4 Minkowsi Functionals

Minkowski functionals (MF) are a set of mathematical descriptors of a field; invariants under
rotations and translations. To characterise a D-dimensional random field, a set of D + 1
minkowski functionals can be obtained [161]. For a two-dimensional map, three MF exist:

V0(ν) =

∫
Σν

1

A
da (3.32)

V1(ν) =

∫
∂Σν

1

4A
dl (3.33)

V2(ν) =

∫
∂Σν

1

2πA
dl. (3.34)

where da is the area element, and dl the line element. MFs are obtained by means of excursion
sets Σν (with boundaries ∂Σν), i.e. regions where the pixel values exceed a threshold level
ν. In this sense, the excursion set corresponds to a set of simple disjoint regions, or multiply
connected regions above the threshold value. The MF V0 in Eq. (3.32) is the area covered by
the excursion set and V1 defines the length of the boundary, all at a given value ν. Finally,
the MF V2 defines the connectivity of the field, and it is obtained as the difference between
the total number of connected regions > ν and the number of connected regions < ν. In
practice, many measurements of the MFs can be obtained by varying ν. In [153, 162], it is
confirmed that MFs can capture non-Gaussian information in the κ weak lensing field. The
authors in [153] show that MFs alone can outperform the constraints with respect to the
power spectrum alone by a factor of four for a LSST-like survey, whereas in [162] the MFs
can also outperform power spectrum for constraining the dark energy equation of state.
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Chapter 4

A Bayesian solution to neural-net
assisted inference

4.1 Overview

Cosmology currently finds itself in the fortunate state of collecting ever more, and in partic-
ular, ever more precise data. Upcoming Stage-IV surveys such as Euclid [163], Rubin-LSST
[15], and SKA[164] will provide data vectors with multiple million data points, yielding sub-
percent precision on numerous cosmological parameters. Like-wise, the trend of collecting
vaster, more precise data is repeated in all other disciplines of astronomy that also enjoy a
progress in instrumentation.
In order to prepare for the arrival of real data, we need to adjust pipelines according to anal-
ysis choices. These choices come from iteratively testing the mitigation of a wide range of
systematic effects (such as baryonic feedback), optimize survey strategies, forecasting theo-
retical models beyond ΛCDM, testing the performance of cosmological probes combinations,
among others. To do so, simulated likelihood analyses are performed repeatedly in order
to investigate the aforementioned science cases, which itself implies a large computational
cost. Furthermore, the likelihood analysis for the cosmic shear power spectrum and other
large-scale structure probes1 entails the execution of accurate but slow Boltzmann codes2

such as CAMB or CLASS to compute the theoretical predictions. The running of such Boltz-
mann solvers in the sampling of cosmological parameters posteriors is known to become the
bottleneck for Stage-IV surveys analysis. On the other hand, the increasing precision of
data demands an equal increase in the precision of theoretical models. All these situations
pose computational challenges for parameter inference and hence precise and faster numerical
methods are needed. In the past decade, methods based on machine learning have become
the cornerstone of data-driven cosmology. In particular, the training of machine learning
models that emulate the outputs of Boltzmann solvers have been considered as a compelling
solution to reduce the CPU hours needed to perform inference. As artificial neural networks
(hereafter, neural nets) are – once trained – compellingly fast, astronomy lately sees a surge of
neural-net based emulation of theoretical models and likelihoods. We refer to those cases as

1And the cosmic microwave background anisotropies power spectra.
2Besides the fact that such codes do not provide accurate model predictions in the non-linear regime.
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neural-net assisted inference as the neural net is directly involve in the likelihood evaluations.
[18] provide neural net predictions for half a million data points of weak lensing, galaxy clus-
tering and their cross-spectrum of a Euclid-like survey (sky coverage and tomographic bins),
computing the posterior of seven cosmological parameters when also emulating the theoreti-
cal predictions for a Planck-like [165] observation of the cosmic microwave background. [17]
provide a neural net emulator of the matter power spectrum and CMB power spectra (TT,
EE and ET), with accurate predictions in the 5σ region around Planck 2018 [2] best fit, and
also facilitating the incorporation of nuisance parameters. A different approach is adopted
in [166], where trained neural nets are used to replace expensive integrations of perturbation
equations inside Boltzmann solvers, instead of emulating the power spectra at once. Many
other approaches have been proposed, by means of different machine learning techniques or
more complex cosmological models [167, 111, 113].
As reviewed in Chapter 2, any neural net is by design an approximator, which means it learns
some target function during the training process, and output approximations of such function
as accurate as possible. Therefore, a far unsolved problem in neural-net assisted inference is
how to avoid that the neural net’s approximation error will bias the parameter inference. It
is vital to have a clean solution for propagating its error and safe-guard the inference in the
era of precision cosmology.
This chapter presents, for the first time, a Bayesian solution to propagating a neural net’s
approximation error and thereby debiasing parameter inference. The solution consists in a
new posterior distribution for the parameters, assisted by trained neural nets. In this work,
the neural nets predict the theoretical linear matter power spectrum in the likelihood evalu-
ations. Crucially, our solution is expected to work for a wide range of successfully and rather
unsuccessfully trained neural nets. As presented in our paper Grandón et al. [24], our method
provides the missing element to judge the accuracy of a posterior if it cannot be computed
based on an infinitely accurate theory code.
The Bayesian solution to propagating biases and approximation errors in a neural-net as-
sisted inference is presented in Sect. 4.2. The main results of this work are Eq. (4.7) and
Eq. (4.8), which give the adapted posterior function that replaces the posterior yielded from
a non-approximate code. Eq. (4.7) is the special case of Eq. (4.1) if the data follow a Gaus-
sian sampling distribution and the neural net’s errors can be approximated as Gaussian too,
as described in Sect. 4.3. Sect. 4.4 compares this adapted posterior to the ‘naive’ posterior
gained from wrongly assuming the neural net has an infinite precision. We demonstrate two
cases of varying neural net training success. Our results are discussed in Sect. 4.5.

4.2 Bayesian posterior for neural-net assisted inference

In this section, we assume that a neural net has been trained to learn the mapping from an
input data to some target observable. Hereafter, we refer to the input data as input param-
eters or simply parameters, as in cosmology, it is very common that the input layer of the
neural net consists of cosmological parameters. In this context, the target observable can be
any parametric function that we know is cosmology-dependent, such as the comoving dis-
tance, the growth function, the CMB power spectrum or the matter power spectrum, among
others.
We denote the neural net’s output predictions of the target observable as µNN(p), and we
assume that the neural net has undergone validation by testing its predictions on an inde-
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pendent validation set that contains a number V of samples of parameters p.
The neural net’s approximation error can then be evaluated at each sample of this valida-
tion set, and we define the discrepancy between the neural net prediction and the error-free
theoretical prediction µ at p to be ∆(p) = µ(p) − µNN(p). However, in the parameter
space between the validation points, the approximation error will remain unknown. Hence,
as ∆(p) is unknown for all but a set of points in parameter space, we treat it as a random
variable in the Bayesian sense. Therefore, we shall treat ∆(p) as a random variable.
As reviewed in Chapter 2, any random variable is described by a probability distribution.
We denote the distribution as ∆(p) ∼ D(∆(p)|·), where the placeholder · denotes variables
that specify the distribution further, such as the mean and the variance if D is a Gaussian
distribution. In the case of poor neural net training, the neural net will exhibit large approx-
imation errors that strongly vary with the values of p. For instance, there might be a region
in parameter space where the neural net successfully approximates the parametric theory
explanation of the data, while other regions may result in poor neural net performance with
significantly large approximation errors. In this case, we would have D(∆(p)|p, ·), indicat-
ing that the distribution of the neural net approximation errors explicitly depends on the
cosmological parameters themselves. A Bayesian solution to propagating the neural net’s
errors would then still be possible as long as D can be accurately estimated. One approach
to achieve this is by histogramming the approximation errors over different patches of the
parameter range. Another solution to a spatially-varying distribution D would be to model it
with a Gaussian process, see e.g. [110], though they find that the posterior using a Gaussian
process model differs more from the true posterior more than if the error were ignored all
together. On the other hand, using a Gaussian process for the sake of modelling spatially
varying approximation errors necessitates that hyperparameters must be set. To avoid such
hyper-parameters, we hence prefer to treat the approximation error as random also at the
validation points. This is a conservative choice as it treats the approximation error at the
validation points with the same uncertainty as in between the validation points.
We hence adopt the approximation that for all values of p, the neural net’s errors follow the
same distribution, namely ∆ ∼ D(∆|·), where the placeholder · now excludes the parameters
p. In numerical experiments of reasonably trained nets we found it to hold with excellent
precision. In summary, our notation proceeds as follows

• p: Model parameters,
• µNN(p): Neural net prediction,
• µ(p): Theory prediction,
• ∆(p): Neural net approximation error,
• D(∆|·): Probability distribution of the approximation error.

4.2.1 Marginalizing the neural net error and bias

We assume the neural net provides predictions for n data points, and we denote the scientific
data by x. The likelihood of the data L(x|p,∆) is dependent on the neural net’s approxi-
mation error ∆: if the neural net’s prediction is erroneous, other values of the parameters
p might fit the data better in order to compensate for the neural net’s error. This would
automatically lead to a bias of the cosmological parameters constraints. Such a bias in the
inferred parameters is the key worry we aim to eliminate by accounting for the neural net’s
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error.
We also assume that the prior probability of the parameters π(p) is independent of the prior
probability of approximation errors π(∆). This will hold if the neural net was trained ac-
cording to best practice, in particular if it was provided with ‘sufficiently’ many training
points in each region of the prior range. In brief, the training has to guarantee that π(p,∆)
factorizes. Counterexamples can be engineered. Namely π(p,∆) will not factorize when the
neural was trained on highly unrepresentative samples of p, for example having no training
samples in certain subregions, or if ∆ particularly deviates from average in certain region of
parameter space. Propagating the neural net’s prediction error then implies that we must
marginalize ∆. The posterior of parameters inferred from an imperfect neural net prediction
is hence the compound of the posterior of vanishing neural net error with the distribution of
the error

P(p|x) =
∫

P(p,∆|x)dn∆

=

∫ +∞

−∞
P(p|∆,x)D(∆|·)dn∆

∝
∫ +∞

−∞
L(x|p,∆)π(p)D(∆|·)dn∆,

(4.1)

where the proportionality sign arises by not having written out the Bayesian evidence.
Eq. (4.1) describes that parameter inference can be safeguarded against a neural net’s ap-
proximation error by specifying the data’s likelihood as a function of physical parameters and
the neural net’s approximation error. A prior is set on the parameters, and it is compounded
with the distribution D(∆|·). The posterior of physical parameters is hence the marginal
over the neural net’s approximation error.
We shall now specialize Eq. (4.1) to the most common case of Gaussian data.

4.2.2 Specialization to Gaussian data

In this section we provide a closed-form expression for the posterior of marginalized neural net
error for the case of Gaussianly distributed data. In line with this assumption, the likelihood
now reads

L(x|p) ∝ exp

(
−1

2
[x− µ(p)]TC−1[x− µ(p)]

)
, (4.2)

where µ is the error-free prediction of the data, evaluated as a function of the parameters p,
and C−1 is the inverse covariance matrix of the data.
Defining ξ(p) = x− µ(p), the likelihood with neural net error is

L(x|p,∆) ∝ exp

(
−1

2
[ξ(p)−∆]TC−1[ξ(p)−∆]

)
. (4.3)

We define the mean of the neural net approximation error as

∆̄ =
1

V

V∑
v=1

∆v, (4.4)
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where v runs over the samples of the validation set. Accordingly, the covariance matrix of
the neural net’s prediction error is

Σ =
1

V − 1

V∑
v=1

(∆v − ∆̄)(∆v − ∆̄)T . (4.5)

For an excellently trained neural net, the mean ∆̄ will vanish, meaning the neural net provides
an unbiased prediction of the theory function over the entire parameter range. On the other
hand, the covariance matrix Σ will contain large variances and covariances for a neural net
whose training did not yield very accurate predictions of the target function. The more
training samples were seen, and the smaller the loss during training, the smaller the elements
of Σ will become. The Gaussian distribution of ∆ then is

D(∆) ∝ exp

(
−1

2
[∆− ∆̄]TΣ−1[∆− ∆̄]

)
. (4.6)

In the limit Σ → 0, this distribution tends to Dirac’s delta distribution, correctly reflecting
that no errors are folded into the posterior of parameters.
As the compound of a Gaussian with another Gaussian yields a third Gaussian, inserting
Eq. (4.3) and Eq. (4.6) into Eq. (4.1) yields

P(p|x) ∝ exp

(
−1

2
[ξ(p)− ∆̄]TΨ[ξ(p)− ∆̄]

)
π(p), (4.7)

where
Ψ = (C+ Σ)−1, (4.8)

and ∆̄ is given by Eq. (4.4). Equation (4.7) is the main result of this work, which is widely
applicable with minimum effort. For a neural net that produces approximately Gaussian-
distributed inaccuracies in its predictions, Eq. (4.7) propagates the net’s uncertainties, and
effectively removes neural net biases in the inference of cosmological parameters.

4.3 Demonstration of parameter inference
We demonstrate the inference of cosmological parameters H0, Ωc and Ωb when the theory
prediction for the data has been replaced by the neural net output prediction. We will high-
light two cases of how (un)successful neural net training deforms the posterior of inferred
parameters. This analysis is performed using the public code emcee [168], with the chains
visualized using GetDist [169].
For our demonstration, we simulated a cosmological analysis of the linear matter power spec-
trum P (k), where k is the wavenumber. Our data range spans the range k ∈ [0.0033h/Mpc,
0.4h/Mpc]. Originally, the theory predictions for the matter power spectrum would come
from a Boltzmann solver or an analytic fitting function, as discussed in Chapter 1. For this
case, the notation defined before corresponds to

• p: Cosmological parameters {H0,Ωc,Ωb},
• µ(p): CAMB prediction for the matter power spectrum ,
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Figure 4.1: The training, validation and test set samples distributed across parameter space.

Prior ranges Fiducial cosmology

Ωc U [0.22,0.4] 0.269

Ωb U [0.02,0.06] 0.0494

H0 U [58,82] 66.8

Table 4.1: Prior ranges and input cosmology for Ωc, Ωb and H0.

• µNN(p): Neural net prediction for the matter power spectrum.

In order to train a neural net, we generate 10,000 power spectra with CAMB by randomly
drawing from the uniform prior given in Table 4.1 for the parameters H0,Ωc and Ωb, which
are the Hubble constant, the density parameter of cold dark matter, and the density parame-
ter of baryons, respectively. The fiducial cosmology depicted in Table 4.1 is used to generate
the data x, which is explained in more detail later in Sec. 4.4. We split the CAMB predictions
into batches of 70% for training, 20% for the validation set and 10% for test. These batches
are used to find the best architecture for the neural nets, with the test set serving to evaluate
the performance of the neural net on an unseen set of points. The training, validation and
test points in parameter space are shown in Fig. 4.1. As we can see, all points in each batch
span the parameter space equally. This means that the neural net training is performed in all
regions of the parameter space and that validation of the neural net architecture is tested in
all representative regions. We also segmented the power spectra into two wavenumber ranges
of k ∈ [0.0033h/Mpc, 0.0444h/Mpc] and k ∈ [0.044h/Mpc, 0.4h/Mpc], and trained a neu-
ral net for each k-range individually. The segmentation into k-ranges is not necessary, but
advantageous because it reduces the layer sizes and number of neurons, and hence reducing
the neural net trainable parameters.

For the training we engineered two cases. One is a successfully/accurately trained neural
net whose error on the test set is at the percent level on average over k. The second case is an

55



Figure 4.2: Histograms of the approximation error ∆ at specific wave number k values
obtained for all the points in parameter space in the fourth set V. Upper panel are results
for the inaccurate neural net, and lower panel for the accurate model. From left to right,
the two first histograms represent the general tendency of our histograms, where gaussianity
condition is fullfilled. The third column shows histograms where the distributions slightly
deviate from gaussianity.

unsuccessfully/inaccurately trained neural net where the prediction error is up to 40%. Such
a big error would clearly bias the posterior of cosmological parameters unless it is corrected
for.
To proceed with the Bayesian error propagation, we generate a fourth set V including new
10,000 power spectra at random p from the same prior range. We found it advantageous if
the fourth set includes more points than the test set. For each point v in V it is possible
to obtain the neural net approximation error ∆v(p) = µ(p)− µNN(p) that accounts for the
error in the prediction, where v runs from 1 to 10,000.
In this derivation, as stated in Section 4.2.2, we assume ∆ is a random variable that follows

a Gaussian distribution, so it is crucial to check this assumption by computing histograms for
different k. Fig.4.2 shows histograms for the two models at different k. As a very simple test,
the mean and the median are displayed as we expect both match for a normally distributed
sample. For both upper and lower panels of Fig. (4.2), the first two figures from left to right
show cases where Gaussianity assumption is completely fullfilled. The third column shows
handpicked examples where the Gaussian approximation is stretched, but are very rare cases
and no more extreme cases were observed. We also computed skewness and curtosis and en-
sured that no bimodal structure occurs in the histograms. By computing these higher-order
moments and applying Kolmogorov-Smirnov test for all histograms of k, we found that our
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assumption of Gaussianity is indeed supported for both models. In particular, there were no
bimodal distributions or heavy tails for the distribution ∆, which would most quickly invali-
date the approximation of ∆ being Gaussianly distributed. On the other hand, we check that
D(∆) does not depend on parameters by doing a sub-volumes analysis. By sub-volume we
imply small regions of the parameter space, where we study if Gaussianity also holds and if
the mean ∆ in these sub-volumes falls well within the bulk in the general D(∆) distribution
shown in Fig. 4.2. This is shown in Fig. 4.3, where most of the sub-volumes mean fall into
the 2σ region. Also, this holds for both the accurate and the inaccurate neural net. Hence,
D(∆) does not depend on cosmological parameters which fulfills our assumption.
As presented in Eq. (4.7), our adapted posterior accounts for the bias and the approxima-

tion error by defining ∆̄ and Σ. From ∆v(p), we apply Eq. (4.4) and Eq. (4.5) to obtain
{∆̄acc,Σacc} and {∆̄inacc,Σinacc} for the accurate and inaccurate models, respectively. In this
demonstration, the quantities ∆ and Σ do not vary either using 8,000, 9,000 or 10,000 points
of V, but we choose to use the largest number possible to provide a good approximation of
the distribution for ∆. Also, the sub-volumes analysis shows that the approximation error
is constant throughout parameter space. Hence, we can safely state that ∆̄acc and ∆̄inacc

represent the approximation error of the neural net’s for this particular case. The resulting
∆̄acc and ∆̄inacc are displayed in Fig. 4.4, and compared to the power spectra at the fiducial
cosmology in Table 4.1. The lower panel shows the fractional difference that goes up to 5%
compared to the input power spectra for the accurate neural net, and 40% for the inaccurate
model. Hence, we expect the bias of the best fit of parameters is small or even negligible
when comparing the resulting posteriors with and without error propagation for the accurate
model. In Fig. 4.5 we see the variance and covariances for both models, with the unsuc-
cessfully trained model display larger (co)variances, hence impacting strongly the covariance
matrix of the adapted posterior.

4.4 Results

Once all the components of Eq. (4.7) are derived, we constrain cosmological parameters for
three scenarios: when the theory prediction is computed by CAMB, and when the prediction is
done with the accurate neural net model, and finally with the inaccurate model. The last two
parameter inference cases are referred to as neural-net based inference. For both, we consider
the cases when the posterior does and does not propagate the neural net’s error, where the
former is the adapted posterior proposed in Eq. (4.7) and the latter the traditional inference
approach, i.e. a naive plug-in of the neural net into the standard Gaussian likelihood. We
generated synthetic matter power spectra as our data vector x by a random draw from a
Gaussian distribution with mean the fiducial cosmology: H0 = 66.8 km s−1 Mpc−1, Ωcdm =
0.269,Ωb = 0.0494; and a covariance matrix C as the square of the fiducial power spectrum.
The mean is displayed as a black solid line in Fig. 4.4, where the synthetic data scatters
around.
The results for the parameter inference in all the scenarios are shown in Fig. 4.6 and Fig. 4.7.
In all figures, orange contours stand for the posteriors obtained from the inaccurate neural
net, purple posteriors for the accurate net, and light blue contours for the inference with
CAMB. The input parameters are indicated in all corner plots by dashed black lines.

• In Fig. 4.6, we depict the ‘naive’ posteriors, yielded by simply replacing the (taken as
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Figure 4.3: Sub-volume histograms for different wavenumber k, where ∆ is obtained with
the innacurate and accurate neural net. The overall distributon over all parameter space is
depicted in a dashed-black contour. Shaded colors in the background represent the obtained
histograms for different chosen sub-volumes, where the means are shown in vertical coloured
lines. We conclude that the neural net approximation error does not directly depend on the
sub-volume and hence not directly on the cosmological parameters themselves.

infinitely accurate) CAMB mean µ(p), or the neural net’s prediction, neither propagating
the neural net’s bias nor its approximation error around the true mean. Orange contour
show a noticeable non-zero bias in the best fit, while the purple contour mostly match
the CAMB blue contour. Hence, Fig. 4.6 demonstrates that parameter inference will
incur biases if the neural net’s approximation error is not propagated.

• Accordingly, Fig. 4.7 demonstrates the main results of this work, namely the adapted-
posterior that propagates the neural nets errors into the final parameter inference. For
both neural nets, the posterior of parameters is widened up as a consequence of the
covariance matrix of the neural net approximation error shown in Fig. 4.5. As this
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Figure 4.4: The prediction errors for the two neural nets are displayed and compared to the
matter power spectra at the input cosmology. The prediction error for the accurate model
∆̄acc is shown in green and the prediction error ∆̄inacc for the inaccurate model in purple.
The scatter plot represents the synthetic matter power spectra used for the inference.

covariance matrix adds to the original covariance matrix of the data, the uncertainty on
the parameter constraints increases. This is much more prominent for the inaccurately
trained neural net. Also seen is that the subtraction of the neural net’s bias leads to
a debiasing of the posterior: The fiducial cosmology is included in the posterior after
debiasing, but is excluded beforehand. This evidences that our Eq. (4.7) is a simple
but powerful method for safeguarding parameter inference against the approximative
nature of neural nets.

4.5 Discussion

In this work we derived an adapted posterior that propagates the error of the predictions of
neural-net based inference. The adapted posterior results in Eq. (4.7) and (4.8), and implies a
modified precision matrix and a bias correction when the error in the neural net prediction is
non-negligible. We investigate the impact of the neural net prediction error on a cosmological
analysis for constraining parameters Ωc, Ωb and H0. The method is easy to implement when
the prediction errors follow a Gaussian distribution, which must be checked. It is worth noting
that for this approximation, Gaussianity holds even if a few examples present mild longer
tails. However, non-negligible higher moments can emerge in cases where the distribution is
bimodal or where heavy tails are present. In those cases, it is crucial to either extend the
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Figure 4.5: Left: the covariance matrix Σacc. Right: Σinacc. We see that the badly trained
neural net causes not only a higher bias as seen in Fig. (4.4) but additionally also more
correlated errors in its prediction.

analysis and propose a new analytic form for D(∆), or to improve the neural net training, in
order to achieve Gaussian approximation errors. In this analysis, we found that Gaussianity
holds in most of the trained models, making the method simple to apply. In Section 4.4 we
show that error propagation can restore the input cosmology in the best-fit even if the neural
net is inaccurate.
As many works in the literature had shown the advantages of accelerated neural-net based
inference in the context of future Stage-IV cosmological surveys, we consider it critical to
also include error propagation for neural nets inference. In the era of precision cosmology,
where many efforts are still being done on the control of astrophysical or instrumentation
systematic effects, it is also necessary to consider and characterise the biases that our modern
statistical methods propagates into the inference.
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Figure 4.6: Marginal posterior contours obtained for neural-net based inference and normal
Boltzmann-code based inference for synthetic matter power spectra data. The contours
contain 68% and 90% posterior volume.
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Figure 4.7: Marginal posterior contours obtained for neural-net based inference implementing
the proposed adapted posterior. CAMB results are also displayed for comparison. The contours
contain 68% and 90% posterior volume.
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Chapter 5

The impact of baryons on weak lensing
non-Gaussian statistics

5.1 Overview

Weak gravitational lensing (WL), i.e., small distortions of the observed shapes of galaxies
due to the large-scale distribution of matter, has become a powerful probe for testing the
current cosmological paradigm. It is sensitive to the total density of matter in the Universe,
and its tomographic analysis allows us to trace the evolution of structure growth, affected by
the accelerated expansion of the Universe and the clustering of matter.
The two-point correlation function or angular power spectrum estimators of the weak lens-
ing signal have shown to be particularly sensitive to the matter clustering amplitude S8 =
σ8(
√

Ωm/0.3). In recent years, the results obtained by the on-going weak lensing surveys
have revealed a tension between their inferred value of S8, and the value derived by Planck
data. One approach adopted to explore this tension consists of understanding the systematic
and astrophysical effects that may impact the cosmological constraints.
We already reviewed in Chapter 3 that baryonic processes imprint specific signatures on
the small scales of the LSS, which can potentially be detected by non-Gaussian statistics.
Therefore, exploiting statistical tools beyond the angular power spectrum that capture the
non-Gaussian information at small scales presents an opportunity to deepen our understand-
ing of the effects of baryonic processes on the LSS and cosmological parameters. This is a
challenge to be targeted by the forthcoming Stage-IV surveys, such as the Vera Rubin Obser-
vatory LSST [15] and Euclid [163], where the precision of data demands a thorough study of
the impact of baryons on the relevant scales of the weak lensing signal. Moreover, systematic
effects might impact the statistical tools differently, and hence it is important to consider
more than one statistical tool to study the weak lensing data. [21] investigate the impact of
baryons on the cosmological parameters neutrino mass sum, Ωm and As utilizing the weak
lensing peaks and minimum counts for LSST-like weak lensing data at a single redshift. They
found that a 0.5σ bias from the minimum counts alone, and up to 4σ bias in the inferred
parameters from peak counts alone. [170] also study the impact of baryons from different
cosmological hydrodynamic simulations on non-Gaussian statistics for noiseless weak lensing
convergence maps, finding that baryons can modify the measured statistics up to 10% for
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z = 1. However, they do not propagate the impact of baryons into cosmological inference.
More recently, [160] found < 0.4σ bias on the inferred S8 from the weak lensing PDF when
including baryonic feedback, however they apply aggressive scale cuts which were decided
before analyzing the HSC real data.
In this chapter, we employ the cosmic shear power spectrum and non-Gaussian (NG) statis-
tics such as peak counts, minimum counts, and probability distribution function (PDF) to
investigate the influence of baryons on the inferred cosmological parameter S8 using the Sub-
aru Hyper Suprime-Cam (HSC) Year-1 weak lensing data. We often refer to all the statistics
employed as summary statistics.
As presented in Grandón et al. [25], we first investigate the baryonic feedback effect on the
summary statistics and on the inferred S8 based on HSC-Y1 weak lensing convergence mocks,
employing a data-vector contamination strategy. The baryonic feedback implementation is
based on cosmological hydrodynamical simulations IllustrisTNG and BAHAMAS. We em-
ploy different analysis choices to determine the extent to which baryons can influence the
summary statistics and introduce biases into the constraints on the amplitude of matter clus-
tering S8. In this way, we can analyze the scale cuts needed for different baryonic feedback
scenarios. Finally, we conduct parameter inference using HSC-Y1 real data and compare the
results with those derived from our mock-based analysis.

5.2 Subaru Hyper Suprime-Cam (HSC) survey

The HSC first-year data corresponds a catalog of galaxy shape measurements covering in
total 136.9 deg2 of the sky, splitted in six disjoint patches called: XMM, GAMA09H, WIDE12H,
GAMA15H, VVDS, and HECTOMAP [171, 172, 27]. The year 1 data release consists in observations
from March 2014 to April 2016, using the Subaru Hyper Suprime-Cam in five broadbands,
grizy [173]. The redshift distribution of source galaxies in the Y1 catalog is shown in Fig. 5.1.
These redshifts are determined in [8] based on the HSC five broadband photometry by using
the machine learning-based method MLZ. For our analysis, we restrict the source redshift
range to 0.3 < zbest < 1.5, where zbest is the best-fit photometric redshift determined by [8].
The resulting effective number density of galaxies per square degree is 17 arcmin−2, after
employing magnitude and redshift cuts. In this work, we consider four photometric redshift
bins, with bin edges [0.3, 0.6, 0.9, 1.2, and 1.5]. However, we exclude the highest redshift bin
from our analysis due to indications of either unmodelled effects in our mocks or systematic
issues in the real data such as a mis-calibration of redshift in this bin [22]. This decision
ensure a more conservative approach to our analysis. The redshift ranges and galaxy number
density of each tomographic bin are summarized in Table 5.1.
Cosmological constraints based on HSC-Y1 measurements have already been released for a
ΛCDM model, with an inferred amplitude of matter clustering S8 = 0.804+0.032

−0.029 based on the
cosmic shear two-point correlation functions analysis [10], and S8 = 0.78+0.030

−0.033 based on the
cosmic shear power spectrum [9].
As the deepest Stage-III galaxy weak lensing survey conducted to date, analyzing NG statis-
tics of HSC data provides a great avenue to delve into the modeling and impact of systematic
effects. This serves as a crucial stepping stone towards the upcoming Rubin LSST, enabling
us to enhance our understanding of systematic challenges of future weak lensing surveys.
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Figure 5.1: Redshift distribution for the four tomographic bins, based on the photometric
redshifts estimates by [8] for HSC-Y1 data.

z-range neff
g [arcmin−2]

0.3 < z < 0.6 5.14

0.6 < z < 0.9 5.23

0.9 < z < 1.2 3.99

1.2 < z < 1.5 2.33

Table 5.1: Properties of individual tomographic bins. The z−range refers to the photometric
redshift range that defines the four HSC tomographic bins, and the effective number density
neff
g assumes the definitions of [1]. Note that the fiducial sample in our analysis is the first

3 bins of the HSC sample. The information of the highest photo-z bin is shown in grey to
indicate it is not part of the fiducial analysis.

5.3 Data and simulations

In our analysis, we rely on a set of HSC Y1-like weak lensing convergence maps (also called
κ maps or mass maps) that have been reconstructed from cosmological N-body and hydro-
dynamical simulations. Upon these maps, we build the analysis pipeline, which includes the
likelihood and the inclusion of baryonic feeback through a contaminated data vector. In the
following section, we provide an overview of the simulations.

5.3.1 N-body simulations

To perform the parameter inference, we utilize convergence maps based on two sets of N-body
simulations.
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Figure 5.2: The distribution of cosmological models covered by the simulations. Cyan points
illustrate the 100 models of the cosmo-varied simulations, with the blue-star depicting the
model we employed for our mock data vector in the likelihood for all the statistics. The red
triangle represents the cosmology of the fiducial maps.

• Fiducial maps: To construct the covariance matrix, we utilize 2268 realizations of
HSC-Y1 weak lensing mocks at the Wilkinson Microwave Anisotropy Probe (WMAP)
nine-year cosmology : Ωb = 0.046, Ωm = 0.279, ΩΛ = 0.721, h = 0.7, σ8 = 0.82, and ns

= 0.97 [174]. These mocks are generated from 108 full-sky weak lensing maps presented
in [175] and are specifically designed to include the associated HSC Y1 specifics, such
as shape noise levels, variations in the lensing weight, image calibration uncertainties,
the spatial inhomogeneity of source galaxies, redshift distribution uncertainties, and
survey geometry. The method of the mock production has been presented in [26].

• Cosmo-varied maps: To perform cosmological inference, we need the predictions
for the summary statistics for arbitrary cosmologies. For this purpose, we adopt the
convergence maps based on the N-body simulations introduced in [176], which consists
of ray-tracing mocks for 100 different cosmologies on the Ωm − σ8 parameter space,
with 50 realizations each model under the flat-sky approximation. The cosmological
parameters span the ranges Ωm ∈ [0.1, 0.7] and σ8 ∈ [0.4, 1.4], and considers the Hubble
parameter fixed at h = 0.6727, the baryon density Ωbh

2 = 0.02225, and the spectral
index ns = 0.9645. Fig. 5.2 shows the distribution of the simulations in the Ωm- S8

plane, also depicting the fiducial maps cosmology as a red triangle in parameter space.
For a complete description of the simulation implementation and the mock production
process, we refer the reader to [177, 26].

5.3.2 Hydrodynamical simulations

As we lack a complete analytical modelling of the wide range of baryonic processes that
impact the distribution of matter, a state-of-the-art alternative is to employ hydrodynamical
simulations, where baryonic effects are mimicked by sub-grid models. As presented in Chapter
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3 and reviewed with detail in [7] , there is a large scatter around the amplitude of suppression
in the power spectrum due to baryonic feedback modelled by subgrid recipes. Hence, in
this work we not only rely on one hydrodynamical simulation, instead, we utilize BAryons
and haloes of MAssive Systems (BAHAMAS, [178]) and IllustrisTNG [170] for weak lensing
maps. Along with the fundamental differences between each other in terms of box sizes,
cosmology, or mass resolution, each implementation of baryonic feedback considers specific
calibration strategies that aim to model the processes accurately. Therefore, by using the two
hydrodynamical simulations, we can explore and compare to what extent different baryonic
process implementations and strengths can impact our cosmological constraints.

• BAHAMAS: The BAHAMAS suite is a 400 h−1Mpc box size simulation at the
WMAP 9-yr cosmology [179]. It provides modelling of stellar and AGN feedback,
aiming to reproduce the observed present-day amplitude of gas fraction–halo mass re-
lation of galaxy groups and clusters, and galaxy stellar mass function. The sub-grid
prescription also incorporates star formation, stellar evolution, and radiative cooling
that match a wide range of observable quantities. The box size is larger compared to
other hydrodynamic simulations because it has been designed to study the effects of
baryons on large scales for cosmology, suitable for the upcoming galaxy surveys analysis
[180]. BAHAMAS also incorporates two additional large-volume simulation runs with
the aim of varying the strength of AGN feedback. In one of them, the AGN heat tem-
perature is increased by 0.2 dex, and in the other the AGN temperature is decreased
by 0.2 dex. Hereafter, we refer to the +0.2 dex and -0.2 dex cases as high-AGN model
and low-AGN model, respectively. The reference model from which the AGN heat
temperature is shifted is referred to as fiducial-AGN model. The purpose of varying
this temperature is to encompass the scatter observed in the gas fraction for galaxy
groups in X-ray observations. We utilize weak lensing convergence maps for 60 source
redshifts up to zs = 3 based on BAHAMAS simulations. This set of maps includes
10.000 realizations per redshift and per model, each of them covering an area of 5× 5
deg2 of the sky and containing 3402 pixels.

• IllustrisTNG: The TNG300-1 simulations are a set of cosmological and large-scale
hydrodynamical simulations of box-size 205 h−1 Mpc [181, 182] at Planck 2016 cos-
mology Ωb = 0.0486, Ωm = 0.3089, h = 0.6774, σ8 = 0.8159, and ns = 0.9667 [183].
Sub-grid prescriptions are aimed at modeling black hole feedback, thermal and kinetic
AGN feedback, stellar evolution, chemical evolution, galactic winds, and magnetic fields
[184], among other physical processes. In this work, we use the already existing κTNG
convergence maps presented in [170]. These maps cover 5 × 5 deg2 of the sky and in-
clude 10.000 realizations for 40 source redshifts up to zs = 2.6, obtained from random
rotations, translation, and flips of the snapshots. Each map contains 10242 pixels, with
a pixel size of 0.29 arcmin.

In total, we have 10.000 realizations of convergence maps at source redshifts based on four
baryonic feedback scenarios: BAHAMAS low-AGN, fiducial-AGN, high-AGN, and κTNG.
All of them possess gravity-only counterparts, dark-matter-only counterpart hereafter, which
are based on the same corresponding simulation and initial conditions, but without baryonic
physics. Based on these maps, we generate HSC Y1-like mocks, by following the photometric
redshift distribution and galaxy number density in Table 5.1. The following methodology is
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Figure 5.3: The result for the step-by-step mock production. From left to right: Origi-
nal convergence map based on BAHAMAS high-AGN, HSC-Y1-like mock including shape
noise, previous HSC-Y1 mock after applying 2 arcmin smoothing scale, the second HSC-Y1
mock after applying 5 arcmin smoothing scale and the same mock after applying 8 arcmin
smoothing scale.

equally implemented for the maps based on hydrodynamical simulations, and in parallel to
the dark-matter-only counterpart maps.

1. We first split the mocks into the tomographic bins, 0.3 < zbest < 0.6, 0.6 < zbest < 0.9
and 0.9 < zbest < 1.2. We perform a weighted sum to the maps for each tomographic
bin, with the weight being based on the HSC Y1 redshift distribution shown in Fig. 5.1.
This ensures that our maps are consistent with the observed distribution of galaxies in
our data. In this manner, each tomographic bin is associated with the resulting map
from the weighted sum.

2. In order to mimick the HSC-Y1 shape noise, we add Gaussian noise to each pixel, whose
value is drawn from a Gaussian distribution centered at zero, with variance

σ2 =
σ2
e

neff
g Apix

, (5.1)

where σe ∼ 0.28 is mean intrinsic ellipticity of galaxies (shape noise), neff
g is the effective

galaxy number density in Table 5.1, and Apix is the solid angle of a pixel in units of
arcmin−2. The variance σ2 depends on tomographic bin and its corresponding neff

g .

3. In the next step, we smooth the maps. Smoothing is a standard procedure to reduce
the shape noise per pixel, and to exploit the features encoded in the maps [185]. In
our case, this method is extremely useful to investigate the scale at which the baryonic
effects can be sufficiently mitigated. Therefore, we apply a Gaussian smoothing filter
to the convergence mocks, using the Gaussian kernel WG

WG(θ) =
1

πθ2s
exp

{(
− θ2

θ2s

})
, (5.2)

implemented in LensTools package [186]. We consider the smoothing scales: θs =
{1, 2, 5, 8} arcmin.

An example of the effect of our methodology for a map at zs = 0.8 is depicted in Fig. 5.3.
The first map corresponds to the original convergence map from BAHAMAS high-AGN, the
second illustrates the result after applying noise given in Eq. (5.1). The last three maps are
the result of applying a smoothing kernel Eq. (5.2).
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5.3.3 HSC-Y1 real data

In order to understand the impacts of different analysis choices on the inferred S8, particularly
in configurations where baryonic effects are relevant, we complement our investigation using
convergence maps based on the HSC first data release (Y1) [172, 26]. We utilize the same
settings for our analysis of the HSC Y1 real data as those employed in the production of the
mock data, including the tomographic redshift bins and smoothing the maps with a Gaussian
kernel with the same smoothing scales.

5.4 Summary statistics
The use of non-Gaussian statistics, also known as higher-order statistics (HOS), has gained
significant attention in constraining cosmological parameters. Through Fisher forecast analy-
sis, it has been indicated that non-Gaussian statistics can provide improved statistical power
in cosmological constraints compared to relying solely on the weak lensing power spectrum
[150, 147, 21, 151, 159, 148, 152, 146]. Furthermore, the application of non-Gaussian statistics
to real data has demonstrated their effectiveness in constraining cosmological parameters e.g.
[148, 187]. These tools capture information beyond the linear regime and have become useful
tools for studying the impact of astrophysical systematics and constraining parameters such
as neutrino mass [153, 188, 147]. In this work, we focus on the convergence power spectrum,
peak counts, minimum counts, and PDF to study the convergence field.

5.4.1 Power spectrum

The lensing signal is measured within a complex sky mask that accounts for the HSC disjoint
patches and removes artifacts such as bright stars. Therefore, the estimation of the angular
power spectrum can be biased due to the effect of the mask, leading to mode coupling between
different scales. For this reason we compute the Pseudo-Cκκ

ℓ power spectrum estimator [189])
on the maps using the public code NaMaster [190]. This approach mitigates the masking effect
in the angular power spectrum estimation. We obtain the pseudo-power spectrum for each
tomographic bin in 14 logarithmical and equally spaced angular multipoles bins spanning the
range 80 < ℓ < 6500. To assess the influence of baryonic effects, we consider three different
scale cut strategies: 300 < ℓ < 900, 300 < ℓ < 1900, and 900 < ℓ < 1900. We do not consider
ℓ < 300 as [191] found that there are unmodelled systematic errors. For each tomographic
bin, we measure the power spectrum in each of the 10.000 realizations. We average over
all power spectrum realizations to obtain ⟨CH

κ ⟩ and ⟨CDM
κ ⟩, the average power spectrum for

maps containing baryonic physics, and for dark-matter-only maps, respectively (per baryonic
feedback scenario and per tomographic bin, with only 1 arcmin smoothing scale considered).

5.4.2 Peaks and Minimum counts

Peak statistic has been studied in the literature extensively and hence it is positioned as
one of the most popular non-Gaussian statistics to study the WL convergence field [159,
147]. We employ the definition of peaks which is the counting of pixels in the map whose
(convergence κ) value is higher than their surrounding eight pixels. It has been shown that
high peaks correspond to massive haloes in the line of sight, whereas low peaks trace the
superposition of smaller haloes [192]. Conversely, minimum counts correspond to pixels
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with lower values compared to their eight neighbors, tracing underdense regions and probing
information complementary to the peak counts alone [21]. We measure the peaks in the linear
signal-to-noise ratio κ/⟨σ(κ)⟩ with 19 equally spaced bins from -4 to 4. It is important to
note that the average ⟨σ(κ)⟩ refers to the average over the individual σ(κ) obtained for each
map realization. We remove the extreme bins and apply further scale cuts. For the peak
counts, we utilize 12 bins in the range −1.4 < κ/⟨σ(κ)⟩ < 3.6, whereas for the minimum
counts the same number of bins is obtained encompassing the values −3.6 < κ/⟨σ(κ)⟩ < 1.4.
The measured peaks counts (or minimum counts) based on maps containing baryonic physics
are denoted as NH, where H stands for ’hydro’. On the other hand, the measured peak counts
(minimum counts) based on dark-matter-only maps are denoted as NDM. We average the
statistics over the 10.000 realizations to obtain ⟨NH⟩ and ⟨NDM⟩.

5.4.3 Probability distribution function (PDF)

The probability distribution function is a statistical tool that captures a considerable amount
of cosmological information. It is sensitive to the NG information contained in the fields and
has been shown to contribute to tightening cosmological constraints for a single source redshift
or in a tomographic analysis [151, 150]. In this work, the convergence PDF is built upon
histogramming pixels of normalized convergence maps. As for peaks and minimum counts,
the PDF is calculated in 19 equally spaced signal-to-noise (S/N) bins κ/⟨σ(κ)⟩ from -4 to
4. We cut the first three bins and the 10th bin to prevent of covariance matrix instability,
following the analysis methodology implemented in [160]. Each PDF data vector contains 15
bins in total. As for the peak counts and minimum counts, we obtain the average PDF ⟨NH⟩
and ⟨NDM⟩.

5.5 Parameter inference

We perform a Monte Carlo Markov Chain (MCMC) analysis for Bayesian inference of cos-
mological parameters Ωm and S8, adopting the flat priors Ωm ∈ [0.15, 0.45] and S8 ∈ [0.5, 1]
and implemented through the Cobaya inference framework [193, 194]. We adopt a Gaussian
likelihood

L(x|p) ∝ exp

(
−1

2
[x − p]TC−1[x − p]

)
, (5.3)

where x is the data vector and p the theoretical prediction given a set of parameter values.
The covariance matrix is denoted as C which is built based on the Nr = 2668 realisations of
the fiducial model from full-sky N-body simulations with

Cij =
1

Nr − 1

Nr∑
n=1

(Dn
i − D̂)(Dn

j − D̂), (5.4)

where D̂ is the mean data vector of the summary statistic. In order to obtain an unbiased
inverse of the covariance matrix, we apply the Hartlap factor (Nr −Nb − 1)/(Nr − 1) [195],
where Nr is the number of realisations and Nb the number of bins. The theoretical predictions
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Figure 5.4: The impact of baryonic feedback on S8 for the power spectrum and non-Gaussian
statistics. We show the results for the hydrodynamical simulations BAHAMAS high-AGN (purple
squares), fiducial-AGN (blue diamonds), low-AGN (teal circles) and κTNG (pink triangles).
The vertical axis corresponds to the scales considered and the horizontal axis is the S8 discrepancies
defined as ∆S8 = SH

8 − SDM
8 where H stands for the resulting S8 from the contaminated synthetic

data vector and DM for no contamination.

p are modeled using an emulator, which is trained on the N-body simulations presented in
[176]. For the PDF, we utilize the public code presented in [160] to run the likelihood pipeline.

5.5.1 Emulator

In order to model and predict the peak counts, minimum, PDF, and power spectrum for ar-
bitrary cosmologies, we build an emulator based on the Gaussian Process Regression (GPR)
method with a Radial-Basis-Function (RBF) kernel implemented in scikit-learn1. An indi-
vidual GPR is trained for each element of the data vectors, for each statistic, tomographic
redshift bin and smoothing scale. In total, we train 3 × 3 × 12 = 108 (smoothing scales ×
tomographic bin × S/N bins ) emulators for the peak counts, 3× 3× 12 = 108 for minimum

1https://scikit-learn.org
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Figure 5.5: Validation of the pipeline, where the data vector is one of the models in the
cosmo-varied simulations. The fiducial cosmology is depicted in dashed black lines.

counts and 3×1×14 = 42 for the power spectrum. The training set consists of the summary
statistics outputs from the 100 cosmological models from [176]. We assess the accuracy of
the emulators by performing a leave-one-out cross-validation test, at which we compare the
truth value with the emulator prediction. Our emulators present on average ∼ 3 percent
discrepancies between the prediction and truth for all statistics and smoothing scales. In
order to further validate the emulator in the inference pipeline, we perform the inference of
cosmological parameters in the case when the data vector is based on one of the models in
the cosmo-varied mocks. The results for the power spectrum are shown in Fig. 5.5, where
the contours are depicted in different colours to differentiate between the different analysis
choices employed for the power spectrum (three different scale cuts). From Fig. 5.5, it is seen
that we obtain unbiased results, recovering the truth cosmology depicted in dashed-black
lines.

5.5.2 Data vector and baryon contamination

The method we employ to account for the presence of baryons proceeds as follows: follow-
ing the methodology in Sec. 5.4.2 and Sec. 5.4.3, we measure the non-Gaussian statistics
and power spectrum on convergence maps that include baryons (for each redshift bin and
smoothing scale), and we repeat on the corresponding dark matter-only counterpart. The
latter is equally applied to the four feedback scenarios: κTNG, BAHAMAS low-AGN, BA-
HAMAS fid-AGN and BAHAMAS high-AGN. We divide the statistics vectors ⟨NH⟩/⟨NDM⟩
(or ⟨CH

κ ⟩/⟨CDM
κ ⟩) to obtain the contamination factor which is infused to the data vector as a

simple multiplication. Hence, the baryon-contaminated data vector in the likelihood pipeline
is

xH =
⟨NH⟩
⟨NDM⟩

x. (5.5)
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Figure 5.6: The impact of baryonic feedback on the convergence power spectrum (top left panel),
PDF (top right panel), peak counts (bottom left panel), and minimum counts (bottom right panel)
for κ-maps smoothed with a Gaussian smoothing kernel of θs = 2 arcmin. We show the results
for the hydrodynamical simulations BAHAMAS high-AGN (dashed purple line), fiducial-AGN
(dashed-dot blue line), low-AGN (solid teal line) and κTNG (solid pink line). The vertical axis
corresponds to the fractional difference where CH corresponds to the baryon-contaminated angular
power spectrum data vector, and CDM the uncontaminated data vector (based on the dark matter-
only runs of each simulation). The grey-shaded region corresponds to 1σ HSC-Y1 uncertainty.

We propagate the impact of baryons into the cosmological parameter inference as a two steps
process: First, we sample the posterior distributions of the parameters using the likelihood
based on dark matter-only data vectors x. Then, we introduce the effect of baryons in the
pipeline by replacing x for xH . This allows us to quantify the shift on Ωm and S8 due to
baryonic physics under four feedback scenarios and scale cuts.
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5.5.3 Data Compression

For the non-Gaussian statistics, we implement the MOPED (Massively Optimised Parameter
Estimation and Data compression) data compression method to the data. This method
reduces the size of the data vector to the number of parameters to be constrained (in this
case, two parameters: Ωm and S8), while preserving the Fisher information (the Fisher matrix
of the compressed dataset is identical to the Fisher matrix based on the original dataset)
[95, 96]. The advantages are two-fold: it ’Gaussianizes’ the likelihood as a consequence of
the central limit theorem and makes the sampling of the posteriors more computationally
efficient without losing information. The compressed data vector (Dcompr) is computed as
follows

Dcompr =
∂DT

∂pα
C−1D, (5.6)

where ∂D
∂pα

represents the partial derivative of the model data vector with respect to the α-th
parameter. The power spectrum data vectors range from 2 to 6 bins, with its distribution
known to be nearly Gaussian. Consequently, we apply the compression method only to the
non-Gaussian statistics.

5.6 Results
• In Fig. 5.6, we show the impact of baryons on each statistic and tomographic bin for

the mocks-based analysis with θs = 2 arcmin smoothing scale. The vertical axis stands
for the fractional difference ∆N = (NH − NDM)/NDM. As seen in Fig. 5.6, the four
baryonic feedback prescriptions considered in this work, namely κTNG (solid pink line),
low-AGN (solid teal line), fiducial-AGN (dashed-dot blue line) and high-AGN (dashed
purple line), suppress the clustering at small scales. These prescriptions exhibit varia-
tions in amplitude and scale, consistent with previous studies [7].
On the top left panel, we show the fractional difference for the power spectrum,
where the BAHAMAS high-AGN reaches ∼ 10% suppression for all tomographic bins
at ℓ > 1000, with a more pronounced effect observed in the first tomographic bin z1.
For the power spectrum, all the ratios exhibit a turn-around where baryons start to
enhance the clustering, possibly attributed to gas cooling and star formation at the
smaller scales. This turn-around appears earlier in ℓ when comparing all BAHAMAS
cases to κTNG, also consistent with previous findings for other analysis choices [170].
In all redshift bins, the low-AGN is the least pronounced feedback, mainly due to the
lower heating produced by the AGN-feedback mechanism. Moreover, low-AGN behaves
in the same manner as TNG up to ℓ ∼ 1000.
On the other hand, the peak counts (lower left panel) exhibit a suppression in the
counts of peaks of approximately ∼ 10% for high S/N, under BAHAMAS high-AGN.
This implies that the presence of baryons dilutes the overdense regions, as observed
indeed across all baryonic feedback implementations. However, these deviations from
zero are relatively small in comparison to the 1σ uncertainties of the HSCY1 data. In
the case of κTNG results, there is an overall suppression of the number of peaks for
all S/N bins. In contrast, the BAHAMAS simulations exhibit a slight increase in the
number of peaks for z1 and z2 at −1.5 < ν < 1.5. One possibility is that the removed
material from high S/N is placed in lower S/N regions. This is not seen in TNG as
the effect in high S/N is mild. As seen in Fig. A.1 and A.2 in the Appendix ??, the
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spectrum (green), peak counts (pink), minimum counts (blue), and PDF (yellow). For
comparison, we show the results from previous two-point analysis for HSC-Y1 [9, 10] (black).

baryonic feedback becomes almost negligible for θs = {5, 8} arcmin.
We also found that baryons produce an important impact on the PDF and minimum

counts, resulting in deviations beyond the 1σ error of the HSC-Y1 data. Since both
NG statistics capture information from underdense regions, the impact of baryons in
Fig. 5.6 shows consistent results between each other. The PDF and minimum counts
show the suppression due to baryons in negative S/N, while the PDF also traces the
peak counts information accordingly. In that sense, PDF is impacted in both tails,
with a > 15% effect in the left tail, and ∼ 10% in the right tail. Moreover, the κTNG
follows the low-AGN trend for the positive S/N region, whereas for negative S/N it
closely follows the fiducial-AGN tendency at z1. In the low-AGN case, we observe an
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Scale cuts

300 < ℓ < 900 300 < ℓ < 1900 900 < ℓ < 1900

Cκκ
ℓ 0.780+0.042

−0.033 0.809+0.032
−0.028 0.841+0.046

−0.040

Smoothing scales

8’ 5’ 2’

Peak 0.806± 0.048 0.814± 0.04 0.804± 0.032

Minimum 0.823+0.054
−0.047 0.825+0.046

−0.042 0.805± 0.044

PDF 0.896+0.0681
−0.0797 0.859+0.0656

−0.0515 0.836+0.056
−0.036

Table 5.2: Cosmological constraints for HSC-Y1 real data. For the power spectrum, we
consider three scale cuts: 300 < ℓ < 900, 300 < ℓ < 1900, and 900 < ℓ < 1900. The second
row refers to the smoothing scales θs considered for computing the non-Gaussian statistics.
For the power spectrum, we choose θs = 1 arcmin. We report 68% credible level.

interesting trend in the minimum counts, where the inclusion of baryons leads to an
increase in the number of minimum counts for the negative signal-to-noise (S/N) at z2
and z3, which stands in complete contrast to the results obtained in the high-AGN sce-
nario. The discrepancy can be explained by the characteristics of the low-AGN model,
which is characterized by weaker feedback strength. Consequently, underdense regions
can form and are not diluted as much as in the high-AGN case, where stronger energy
injection occurs.

Effect on S8: In Fig. 5.4, we observe how the effects described above result in changes
in S8, represented by the difference between the baryon-contaminated case (SH

8 ) and
the dark matter-only data vector (SDM

8 ). The error bars of the data points in the fig-
ure correspond to the 68% credible region, while the vertical axis displays the various
analysis choices under consideration.
When using the power spectrum on small scales (900 < ℓ < 1900), displayed in the
top-left panel, we observe that the impact of baryons leads to a shift of ∼ −2.5σ for
the fiducial-AGN scenario and ∼ −1.1σ for TNG. However, for the low-AGN model,
the result is statistically consistent, with a shift of < 1σ compared to the S8 constraints
from dark matter-only simulations. It is important to mention that the high-AGN case
demonstrates a significant effect at these scales, leading to constraints that could not
be obtained, as it falls outside the prior limits covered by the simulations. As baryonic
effects occur mainly at small scales, it is expected to see a negligible bias for large scales
(300 < ℓ < 900), except for the high-AGN model, which exhibits a shift of ∼ −2σ.
When considering the whole scales range (300 < ℓ < 1900), the shifts are −2.8σ and
−1.8σ for high-AGN and fiducial-AGN models, respectively. Hence, even for conser-
vative scale cuts, the high-AGN feedback mechanism bias the cosmological constraints
from the power spectrum.

The fractional difference results obtained from Fig. 5.6 translate into a direct impact
on S8 for both the minimum and the PDF shown in the top and bottom right panels
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of Fig. 5.4, respectively. At large scales, the ratio is close to unity, i.e., no significant
baryonic effects. Similarly as observed for the power spectrum on small scales, the PDF
and minimum counts under the influence of the high-AGN model introduces substantial
shifts in the S8 constraints for maps smoothed with a Gaussian kernel of θs = 2 arcmin.
These shifts exceed the prior range covered by our simulation set, which is why we do not
have S8 constraints for these statistics at this particular smoothing scale and baryonic
model. The other models, fiducial-AGN, lowAGN and κTNG, also introduced biases,
with shifts of −2.2σ, 2σ and −3.6σ, respectively, for minimum counts at 2 arcmin. The
low-AGN exhibits a positive shift S8 value for minimum, mainly due to the enhancement
seen in 5.6 in the negative S/N tail, however, this is not captured in the PDF results.
For PDF and minimum counts analyses of maps with larger smoothing scales, θs = 5
and 8 arcmin, we do not observe significant (< 1σ) shifts on S8 caused by the inclusion
of baryonic effects, except for the high-AGN model, with −2.2σ bias.
The S8 constraints from peak counts are less affected by baryonic physics, with no
significant shifts (< 1σ) for all the feedback mechanisms.

As a final remark for the mock-based analysis, it is interesting to notice the direction of
the shifts caused by the baryonic mechanisms for the different summary statistics. In
the case of the power spectrum, all feedback mechanisms tend to shift S8 towards lower
values. However, the behavior is not necessarily the same for the NG statistics (pdf,
peaks, and minimum counts). This variability indicates that baryonic effects might
have a more nuanced influence on the NG statistics, and the direction of the shifts in
S8 can depend on the specific feedback scenario and analysis setup.

• We repeat the parameter constraints using summary statistics computed from the HSC
Y1 real data rather than a synthetic data vector contaminated by baryonic effects.
We aim to investigate whether we observe any significant shifts in the cosmological
parameters derived from real data when employing the same analysis choices as for the
convergence mocks based on simulations. We show the results for the HSC Y1 real
data analysis in Fig. 5.7 and Table 5.2. The real data results show no statistically
significant shift in S8 when comparing large and small scales. In Fig. 5.7, we also
show the results from previous works that use the 2-point information of the HSC-Y1
data S8 = 0.780+0.030

−0.033, [9], and S8 = 0.823+0.032
−0.028, [10]. In all scenarios, we find good

agreement with these previous findings, although our analysis differs from these studies
in many aspects, including the tomographic bins, scale cuts, the model of the matter
power spectrum, and the parameters considered during the inference process. The
power spectrum result for Cℓ 900 < ℓ < 1900 exhibits a 1σ bias towards higher S8,
whereas minimum 2 arcmin shows a 0.3σ bias to lower S8. The larger S8 for power
spectrum small scales is consistent with other HSC results [196] based on the two-point
correlation function.

Finally, from Table 5.2 we observe that the constraints from peak counts at 2 arcmin
outperform all statistics, and hence a combined analysis of two-point information with
the peak counts can provide tighter constraints. In our companion paper [26], and in
[160], we further explore the constraining power of the NG statistics compared to the
power spectrum alone, using smoothing scales that are not expected to be impacted by
baryons as given by the hydrodynamical simulations among other systematic effects.
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5.7 Discussion

In this study, we investigate the impact of baryons on the convergence power spectrum and
non-Gaussian statistics peak counts, minimum counts, and the PDF for lensing convergence
maps based on HSC-Year1 mocks. To quantify the effect of baryons on the inferred ampli-
tude of matter clustering S8, we consider different analysis choices, such as varying smoothing
scales, applying scale cuts, and implementing different baryonic feedback models. We employ
cosmological hydrodynamical simulations κTNG and BAHAMAS low-AGN, fiducial-AGN,
and high-AGN to measure the fractional difference between the statistics obtained from
hydrodynamical simulations-based data vectors and dark matter-only data vectors. These
comparisons help us understand the impact of baryons on the cosmological constraints and
how it varies based on the different choices considered in our analysis.
The impact of baryons goes up to 10% for the power spectrum and the peak counts and
reaches > 15% impact on the negative S/N tails of the PDF and minimum counts. Our
results show that the BAHAMAS high-AGN feedback model produces the strongest impact
of baryonic effects on the inferred S8 when considering small scales. This effect is stronger for
the power spectrum, PDF and minimum counts. However, most of them show no significant
bias for scales larger than 5 arcmin in our mock-based analysis. If nature behaves similarly
to the high-AGN model, our analysis indicates that significant cuts are required in all the
statistics considered in this study in order to obtain unbiased results. This observation aligns
with the expected behavior based on the fractional differences observed in Fig.5.6. However,
most of them show no significant bias for scales larger than 5 arcmin in our mock-based
analysis. In general, the peak counts is less sensitive to baryons, contrary to what [21] found
(although for a different survey and analysis choice).
Interestingly, even though most of the baryonic mechanisms shift S8 towards lower values
due to the suppression of the structures on small scales, we found that the NG statistics
can exhibit a different trend depending on the specific setup of the analysis (Fig. 5.4). This
highlights the importance of exploring different summary statistics to perform cosmological
analysis. By considering various statistical measures, we can gain a more comprehensive
understanding of how baryonic physics impacts cosmological parameter estimation. Addi-
tionally, non-Gaussian statistics can improve the constraining power on S8 in a combined
analysis, as we show in our companion paper [26].
We run the parameter constraints using HSC-Y1 real data as data vector, under the different
smoothing scales and scale cuts we considered for the simulations. For real data, we do not
find any indication of significant shifts in S8, as observed in the simulations when small scales
are included Fig. 5.7. Hence, our results suggest that weak baryonic feedback scenarios, such
as BAHAMAS low-AGN, are more likely to reproduce HSC-Y1 real data systematics at small
scales. Our results are consistent with other Stage-III analyses based on the two-point infor-
mation, also showing that weak baryonic feedback scenarios are preferred for other Stage-III
surveys [197].
It is essential to consider the complexity and limitations of both the simulations and the
real data when interpreting these results. In real data, other sources of bias may arise from
unaccounted, scale-dependent effects. For instance, the intrinsic alignment of galaxies can
introduce correlations between the galaxy shapes that are scale-dependent and may impact
cosmic shear measurements [198]. Neutrino masses can also introduce scale-dependent effects
on the matter power spectrum, influencing the overall cosmological constraints. Given the
multitude of potential scale-dependent effects, it is crucial to carefully account for and model
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all relevant astrophysical and cosmological factors when conducting cosmological analyses.
Our main results may also indicate that other factors or systematic uncertainties might play
a more significant role in shaping the cosmological constraints obtained from the real ob-
servational data. We expect future analysis with improved constraining power will be able
to discriminate more precisely between baryonic feedback prescriptions and determine if the
lower amplitude in S8 found in some LSS studies can be attributed to baryonic feedback
systematics. The NG statistics are particularly valuable for this task, as they provide crucial
insights into the impact of different feedback models on cosmological constraints.
Future Stage-IV surveys will provide constraints on cosmological parameters with lower sta-
tistical errors, and thus the biases produced by unmodelled baryonic physics will be more
statistically significant than those found in this work. For such surveys, scale cuts based on
contaminated-data vectors with weak baryonic feedback strength need to be revisited.
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Chapter 6

Parametric and non-parametric
reconstruction of dark energy evolution

6.1 Overview

Since the discovery in 1998 [13, 14] of cosmic acceleration, the scientific community has in-
corporated the existence of an exotic component in the Universe, which in its simplest form
is known as a cosmological constant of a very specific magnitude. Beyond the cosmologi-
cal constant hypothesis, other candidates have emerged as an explanation to the observed
accelerated expansion: a new component filling the universe, such as a quintessence field,
modifications of the theory of gravity, or inhomogeneous models that do not fulfill the cos-
mological principle [70]. Because of our ignorance on the nature of dark energy (DE), it
becomes important to consider and test alternatives to the standard cosmological constant.
In this context, many studies have followed a phenomenological approach. For instance,
the Chevalier-Polarski-Linder [199] parametrization [69] extends the conventional first order
expansion of the dark energy equation of state (EoS) to the parametric redshift-dependent
form w(z) = w0+waz/(1+z). This model free parameters w0 and wa has been widely tested
and included in the forecast of cosmological parameters of future galaxy surveys [18, 15].
Another approach is to take the opposite direction: using the data to reconstruct the form of
cosmological functions, such as w(z). However, as was demonstrated in [200], the w(z) func-
tion is behind two integrals from the data we use to reconstruct it, and hence any dynamical
information presented in w(z) would be certainly erased after the analysis. For this reason,
in [201] a reconstruction was made using H(z) and the growth function, whereas the authors
of [202] propose a reconstruction of the scalar field potential assuming that a quintessence
field is the nature of DE. In this context, reconstruction schemes using the DE density ρde
were proposed by [203] and [204].
In this work, we use the dark energy density X(z) = ρde/ρ

0
de as a probe to detect departures

from the concordance ΛCDM model. With this methodology, we can study whether an evolv-
ing dark energy (DE) component, whose nature remains yet to be determined, emerge from
cosmological data. Our methodology follows two theory-agnostic approaches: a parametric
and non-parametric statistical analysis of late-time cosmological observations.
First, we consider a reconstruction scheme where the dark energy density is assumed under
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two separate parametric models: a quadratic and a cubic parametrization. And second, we
consider a data-driven approach where no functional form for DE density is assumed. The
latter approach has been widely used in cosmology [205, 206, 207] because it makes no as-
sumptions about the underlying cosmological model. Moreover, in order to make the results
reflective of any possible influence from the Hubble tension, we employ four priors on H0.
In this chapter, we first present the parametric methods proposed in our work Grandón et
al. [28], where the first test of the cubic parametrization against Type-Ia supernova and CC
data was provided. Later, we introduce the non-parametric approach, based on our paper
[29]. To assess the performance of the methods, we introduce a few metrics and compare our
results based on cosmic chronometers data, and Type-Ia supernovae data.

6.2 Parametric method
A general way to test whether a cosmological constant Λ or a dynamical fluid drives the
expansion consists in considering an arbitrary function X(z) describing the dark energy fluid.
To the best of our knowledge, this was first proposed in [204] assuming a linear interpolation
between redshifts, and later tested for a quadratic interpolation in [208, 209]. The results of all
these first explorations were that the DE density showed a slight increase with redshift, being
consistent with Λ at 2σ. With more recent data, the problem was revisited in [210] where a
quadratic interpolation was implemented and tested for data from SN Ia, gas mass fraction
in galaxy clusters, baryonic acoustic oscillations, and the cosmic microwave background.
Surprisingly, the trend obtained was contrary to the previous one, indicating a DE density
that decreases with redshift towards negative values for z > 1.5 at 1σ (which is consistent
with other studies [211, 212]). The extension of this work in light of more recent data is
presented in our work [28], where evidence for DE evolution using a quadratic and also a
cubic interpolation was studied using the latest SN Ia and cosmic chronometeres data.
The evolution of the dark energy sector enters through the spatially flat Friedmann equation
with E(z) = H(z)/H0

E(z)2 = Ωm0(1 + z)3 + (1− Ωm0)X(z) , (6.1)

where X(z) is the normalized DE density. In what follows, we aim to explore two parametriza-
tions techniques presented in [28].

6.2.1 Quadratic parametrization

We use first a quadratic interpolation for X(z) given by

X(z) =
x0(z − z1)(z − z2)

(z0 − z1)(z0 − z2)
+

x1(z − z0)(z − z2)

(z1 − z0)(z1 − z2)
+

x2(z − z0)(z − z1)

(z2 − z0)(z2 − z1)
, (6.2)

where x0, x1 and x2 are the constant values of X(z) evaluated at z0, z1 and z2 and we assume
that z2 > z1 > z0. We set X(z = z0 = 0) = 1 and define z2 as the largest redshift in the data
zm that allows us to properly estimate the parameters, and the intermediate redshift value
z1 = zm/2. With these definitions, the free parameters are: x1 = X(zm/2) and x2 = X(zm),
and (6.2) reduces to

X(z) = 1 +
z(4x1 − x2 − 3)

zm
− 2z2(2x1 − x2 − 1)

z2m
. (6.3)
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When all the free parameters are xi = 1, the dark energy density gives X(z) = 1, recovering
the ΛCDM limit.

6.2.2 Cubic parametrization

Knowing the limitations of a quadratic interpolation – the parametric function can only
detect a single trend, such as a parabolic increase(decrease) with the evolution – in this
section we extend to a cubic parametrization. The cubic parametrization corresponds to

X(z) =
x0(z − z1)(z − z2)(z − z3)

(z0 − z1)(z0 − z2)(z0 − z3)
+

+
x1(z − z0)(z − z2)(z − z3)

(z1 − z0)(z1 − z2)(z1 − z3)
+

+
x2(z − z0)(z − z1)(z − z3)

(z2 − z0)(z2 − z1)(z2 − z3)
+

+
x3(z − z0)(z − z1)(z − z2)

(z3 − z0)(z3 − z1)(z3 − z2)
. (6.4)

As in the quadratic form, we assume z0 < z1 < z2 < z3 and set z0 = 0 in such a way that
x0 = X(z = z0 = 0) = 1. We set z3 = zm as the largest redshift in the data sets, and define
{z2 = 2zm/3, z1 = zm/3}. In this model, the free parameters are x1 = X(z1), x2 = X(z2)
and x3 = X(z3), and Eq. (6.4) reduces to

X(z) = 1 + 9(−1 + 3x1 − 3x2 + x3)
z3

2z3m
+

−9(−2 + 5x1 − 4x2 + x3)
z2

2z2m
+

+(−11 + 18x1 − 9x2 + 2x3)
z

2zm
(6.5)

As before, the ΛCDM limit corresponds to x1 = x2 = x3 = 1.

6.3 Non-parametric method
Non-parametric methods offer a physics-agnostic alternative to reconstruct the cosmological
functions, providing credibility intervals for the reconstructed mean. In this study, we con-
sider a Gaussian Process (GP) reconstruction method, which is based purely on how data
points are statistical correlated based on a kernel function. The GP has emerged as a popu-
lar machine learning tool in cosmology, as for the reconstruction of physical functions or for
emulating cosmological observables any model [205, 206, 207]. The training process consists
in iteratively tuning the kernel hyperparameters (non-physical parameters) by maximizing
the likelihood function lnL.
Consider N observations of H(z) with a covariance matrix C of size N×N . The GP kernel is
defined as K (z∗, z̃∗), which relates the function values at coordinates z∗ and z̃∗, with z̃∗ ̸= z∗.
Then, the mean and covariance of the GP reconstruction of H(z) are given by

⟨H∗⟩ = K (z∗, Z) [K (Z,Z) + C]−1H (Z) , (6.6)
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and
cov (H∗) = K (z∗, z∗)−K (z∗, Z) [K (Z,Z) + C]−1K (Z, z∗) , (6.7)

where Z stands the redshifts in the observation. The kernel hyperparameters θ are then
obtained by maximizing

lnL = −1

2
H (Z)T [K (Z,Z) + C]−1H (Z)− 1

2
ln |K (Z,Z) + C| − N

2
ln (2π) . (6.8)

given the input data H(Z). Eqs. (6.6–6.8) therefore exhibits the simplicity of the GP method
and why it is constantly pursued in cosmology.
To assess the performance of each method, we consider three metrics that can be defined for
parametric and non-parametric methods. First, we study the χ2 test defined as

χ2 =
∑
z

(
Hrec(z)−Hobs(z)

σobs(z)

)2

, (6.9)

where Hrec(z) is the reconstructed Hubble function while Hobs(z) and σobs(z) are the mean and
1σ uncertainty of the data. This statistic measures the discrepancy between the reconstructed
H(z) and data in units of the uncertainty of the data, and it has the advantage that can be
defined for both parametric and non-parametric approaches. The good fit corresponds to χ2

close to the size of the data N , while overfitting in a parametric sense corresponds to χ2 < N .
We further consider two statistical measures which have been used previously to compare
nonparametric reconstruction methods [213]. These are given by

D =
∑
z

(
Hrec(z)−Hobs(z)√
σrec(z)2 + σobs(z)2

)
, (6.10)

and

γ2 =
∑
z

(
Hrec(z)−Hobs(z)√
σrec(z)2 + σobs(z)2

)2

, (6.11)

where σrec(z) is the uncertainty in the reconstruction. The main difference between χ2 and
the statistics D and γ2 is how they treat the uncertainties in the reconstruction. The D
and γ2 metrics consider the uncertainty in a reconstruction on an equal footing with the
uncertainty in the data, but D can be positive or negative (depending on whether the data
points lie mostly above/below the best fit) while γ2 is strictly positive.

6.4 Data

6.4.1 H(z) measurements

We consider measurements of the Hubble function H(z) from cosmic chronometers (CC)
and baryon acoustic oscillations (BAO). The CC data set includes 31 data points [214, 215,
216, 217, 218, 219] obtained through the differential aging method described in Chapter 1.
The second set of Hubble data consists of 26 points derived from BAO measurements, a
characteristic scale in the distribution of galaxies with its origin in the fluctuations of the
baryon density in the early Universe. The BAO directly measures the combination H(z)rd
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Figure 6.1: Redshift distributions of the base Hubble data coming from CC and BAO (blue
bars), and SN-Ia observations (red bars).

where rd is the radius of the sound horizon during baryon drag. This additionally relies on
the ΛCDM model which sets the scale of the sound horizon (rd = 147.74 Mpc) during baryon
drag and supplements more points to the Hubble data [220, 221, 222, 223, 224, 225, 226, 227,
228, 229, 230, 231]. The compiled Hubble data from CC and BAO is presented in Table B.1.

6.4.2 Type Ia Supernovae

We make use of 1048 supernovae (SNe) type Ia observations from the Pantheon sample
[232]. These measurements span the redshift range 0.01 < z < 2.3. We utilize the SNe
measurements of E(z) of the CANDELS and CLASH Multi-Cycle Treasury data (MCT)
[233]. This compression of the Pantheon data in terms of the normalized expansion function
is utilized for the GP which together with an H0 prior can be used to reconstruct H(z) =
H0E(z) [234, 235]. When considering the SNe observations, we marginalize analytically over
the SNe absolute magnitude, as detailed in Ref. [236].
The redshift distribution of the Hubble data and SNIa observations employed in this work is
shown in Figure 6.1.

6.5 Priors

In order to sample parameter posterior distribution based on the parametric models, we make
use of a Gaussian likelihood in a separate analysis for Hubble data and SNIa data.
To make the results reflective of any possible influence from the Hubble tension, we perform
parameter inference in four scenarios, each of them considering a different Gaussian prior on
H0. The priors on H0 corresponds to

• HP18
0 = 67.4± 0.5 km s−1Mpc−1 [165]

• HTRGB
0 = 69.8± 1.9 km s−1Mpc−1 [237]
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• HA21
0 = 71.5± 1.8 km s−1Mpc−1 [238]

• HR21
0 = 73.04± 1.04 km s−1Mpc−1 [239].

These H0 values represent the current Hubble tension and are considered in this analysis to
shed more light on this intriguing puzzle [74]. We emphasize that the usage of parameter
priors such as those on H0 compromise the notion of “model-independence” depending on
which assumptions were considered to obtain the priors in the first place. On the other
hand, the local H0 values differ in terms of how the supernovae were calibrated. The derived
HR21

0 comes from the SNIa calibration using cepheids, while the derived HTRGB
0 comes from

calibration based on the tip of the red giant branch. HA21
0 is a recent reanalysis of the

TRGB which lead to a slightly different value of H0. In summary, taking into account these
different measurements of H0 may provide valuable insight into how the Hubble tension
may influence the estimates of cosmological parameters. Finally, we consider the matter
fraction prior Ωm0h

2 = 0.1430 ± 0.0011 [165] which is measured from the cosmic microwave
background observations using the angular peaks in the damping tail. Therefore, even though
the methods are completely different in nature, they stand on at least a common ground in
this analysis, which is the Planck prior on combination of the matter density and the present
expansion rate. This is particularly needed for the GP since unlike parametric methods, the
GP does not estimate parameters outside of the information it is provided, but rather it
reconstructs a particular data set which it is given. The sampling of posteriors is performed
using the public code emcee [168]. This is a stable, well tested Python implementation of
the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by
Goodman & Weare [240]. The output from the chains are visualized using GetDist [169].

6.6 Results

We first show our results for the posterior distribution of the quadratic model parameters
based on the H(z) data. These results are shown in Fig. 6.2. From this corner plot, it can
be seen that the estimated parameters are influenced by the choice of H0 prior. Clearly, this
is the effect of the Gaussian prior over the likelihood, which directly impacts the parameter
posteriors. The most notable feature of Fig. 6.2 is that the posteriors of x1 and x2 continue
to deviate further from ΛCDM (x1 = x2 = 1) for increasing values of H0. The reason for
this trend might be due to the Planck Ωm0h

2 prior. However, even for the Planck prior,
the inferred quadratic model parameters are x1 = 0.8 ± 0.1 and x2 = −0.6 ± 0.6, which
disfavours ΛCDM (x1 = x2 = 1) at 2σ for x2. Also, Figure 6.2 shows the effect of Ωm0h

2

prior, where the value inferred Ωm0h
2 is fairly constant irrespective of the value of priors on

H0. On the other hand, x1 and x2 seem to be correlated giving lower(higher) values with
respectively higher(lower) H0 priors. Furthermore, it can be seen that the tension in H0

induces a tension in the matter density Ωm0 when Ωm0h
2 is practically fixed given the cosmic

microwave background data (also, consdering that this parameter is well measured from CMB
power spectrum). Figure 6.3 shows the results for the cubic parametrization. Again, we see
the impact of the H0 priors on the model parameters. The increasing trend of deviation from
the ΛCDM model can also be seen in this case, i.e., the deviation of the posteriors of x1,
x2, and x3 away from x1 = x2 = x3 = 1 increases in the order P18, TRGB, A21, and R21,
which is more significant in the x1 parameter. As in the quadratic case, this can be traced to
the use of the Planck prior on the combination Ωm0h

2 of the matter fraction and the Hubble
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Figure 6.2: The sampled posteriors of the parameters (H0,Ωm0, x1, x2) in quadratic
parametrized DE for each H0 prior: HP18

0 = 67.4 ± 0.5 km s−1Mpc−1, HTRGB
0 = 69.8 ± 1.9

km s−1Mpc−1, and HA21
0 = 71.5± 1.8 km s−1Mpc−1, and HR21

0 = 73.04± 1.04 km s−1Mpc−1.
These were obtained with the base Hubble data (CC + BAO).

constant. Again, a deviation from ΛCDM is also present for the cubic parametrization even
for HP18

0 , particularly with the marginalized posterior of x3 = −0.9± 0.5 excluding x3 = 1 at
more than 2σ. It is worth to note that the Hubble tension is practically only influencing the
matter density and not some of the dark energy parameters, such as x2 and x3 in the cubic
case. This means that we may draw conclusions on dark energy evolution regardless of the
Hubble tension, motivating our use of the various H0 priors.
Figure 6.4 shows the Hubble function reconstruction based on the GP algorithm using the
Matern(ν = 5/2) kernel, provided the compiled Hubble data from the H(z) measurements
(CC+BAO) and H0 values. In the inset, we show how the different priors on H0 impact the
reconstructed H0 values at low redshift. On the other hand, it is important to note that the
GP as in this straightforward application also comes with flawbacks. The most obvious being
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Figure 6.3: The sampled posteriors of the parameters {H0,Ωm0, x1, x2, x3} in cubic
parametrized DE for each H0 prior: HP18

0 = 67.4 ± 0.5 km s−1Mpc−1, HTRGB
0 = 69.8 ± 1.9

km s−1Mpc−1, and HA21
0 = 71.5± 1.8 km s−1Mpc−1, and HR21

0 = 73.04± 1.04 km s−1Mpc−1.
These were obtained with the base Hubble data (CC + BAO).

underestimating uncertainties [241], as seen in 6.4, but also the risk of overfitting [213]. The
result of the metrics χ2, D, and γ2 from the Hubble data are presented in Table 6.1. We can
see that both parametric and non-parametric methods outperforms the ΛCDM model. This
holds independent of the choice of an H0 prior and can be observed for each of the metrics
where the ΛCDM values always bring the largest deviation throughout. This may also be
viewed as unsurprising, considering the fact that the parametric models fit more parameters
than ΛCDM, while the GP tend to overfitting. From Table 6.1, we see the proposed methods
predict a χ2 < χ2

ΛCDM < N where χ2
ΛCDM is based on the the best fit ΛCDM model. We

find that for the quadratic method, χ2
P18 < χ2

TRGB < χ2
R21 < N , while for both the cubic

method and the GP, χ2
R21 < χ2

TRGB < χ2
P18 < N . It is also worth noting that the χ2 for the

quadratic method is generally larger than those of the cubic method and the GP which are
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Figure 6.4: The GP reconstructed Hubble function per H0 prior: HP18
0 = 67.4 ± 0.5 km

s−1Mpc−1, HTRGB
0 = 69.8± 1.9 km s−1Mpc−1, HA21

0 = 71.5± 1.8 km s−1Mpc−1, and HR21
0 =

73.04 ± 1.04 km s−1Mpc−1. The colored and hatched parts show the region within 2σ of
the GP. Hatches: (P18: “−”), (TRGB: “/”), (A21: “|”), (R21: “\”). The inset shows the low
redshift region z ∈ (0, 0.3) of the GP reconstructed Hubble function.

coincidentally of comparable sizes to within a few percent. It should be further noted that
the results from the cubic parametrization and the GP are less sensitive to the choice of the
H0 prior. For instance, within the ΛCDM model, we find |χ2

P18 − χ2
R21| = 22.4, while the

corresponding values are ∆χ2 = 1.70 and 1.00 for the cubic method and the GP, respectively.
For the statistic D, the general result is that D < 0, implying that most of the data points can
be found above the best fit line, albeit the H(z) reconstruction is within the data error bars.
It is also interesting to see the results for γ2, suggesting that the quadratic method performs
better than the cubic method and the GP. A more consistent trend for each method can be
observed for γ2, that γ2

quad < γ2
cubic < γ2

GP < γ2
ΛCDM, where we remind that γ2 considers the

uncertainty of the reconstruction and the data on an equal footing.

6.6.1 Reconstructed dark energy from Hubble data

In this section, we show the reconstructed DE density and evaluate the performance of each
reconstruction approach based on the three metrics presented in Section 6.3.
Figure 6.5 shows the (normalized) DE density X(z) obtained by means of all the methods
for each H0 prior. The ΛCDM curves X = 1 appear as horizontal black dotted line.

From Fig. 6.5, it is seen that regardless of the H0 prior, the reconstructions are statisti-
cally consistent with the ΛCDM model at low redshifts, albeit slight deviations emerge for
the HR21

0 prior. Moreover, deviations from X = 1 emerge at high redshifts for all values of
H0, for all the methods. In general, larger H0 lead to slightly larger deviations, with the
quadratic method disfavouring ΛCDM at 2σ for z ≳ 1.5. The latter can also be seen for the
cubic method and the GP method, albeit deviating from z ∼ 2.3 where the earliest observa-
tional data can be found. The influence of the H0 priors also come into play at low redshifts
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Table 6.1: An assessment of the performance of each method using the statistics given by
Eqs. (6.9), (6.10), and (6.11). The Hubble data corresponds to N = 57 points coming
from CC (31 points) and BAO (26 points). The Planck prior for the matter fraction is
Ωm0h

2 = 0.1430± 0.0011 [2].

H0 prior Method/Model χ2 D γ2

P18

ΛCDM 37.6 −3.11 30.7

Parametric (quadratic) 30.6 −3.06 7.01

Parametric (cubic) 27.0 −3.08 14.3

Nonparametric (GP) 26.6 −2.19 25.2

TRGB

ΛCDM 38.6 1.27 24.6

Parametric (quadratic) 32.1 −2.28 6.15

Parametric (cubic) 26.1 −1.69 10.8

Nonparametric (GP) 26.1 −1.03 24.4

A21

ΛCDM 42.8 4.29 25.2

Parametric (quadratic) 33.8 −1.84 6.99

Parametric (cubic) 25.7 −1.13 11.3

Nonparametric (GP) 25.8 −0.25 24.0

R21

ΛCDM 60.0 15.5 34.8

Parametric (quadratic) 36.4 −0.97 8.16

Parametric (cubic) 25.3 −0.72 13.3

Nonparametric (GP) 25.6 0.53 23.6

z ≲ 0.3, as seen in the insets of Figure 6.5. Nevertheless, the HP18
0 prior shows consistency

with ΛCDM model in this low redshift region. Overall, the three methods, despite their
inherent differences, appear to suggest dynamical dark energy, or more precisely, an evolving
X(z) as shown in Figure 6.5. Figure 6.5 shows an interesting trend, which is that all recon-
struction methods exhibit X(z) < 0 at the high redshift regime. Our findings are consistent
with other recent reports using different methodologies and data sets [242, 212, 243]. We
refer the reader to [242] for the implications of the sign-change in X(z) (but also on the
theoretical implications of w(z) = −1 crossing) in the context of modified gravity scenar-
ios. We also highlight the difference between the low redshift reconstruction of the GP and
the parametrized approaches. In the parametrized reconstructions, the uncertainties shrinks
to an infinitely narrow size closer to z = 0. This can be traced from the fact that these
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(a) HP18
0 = 67.4± 0.5 km s−1Mpc−1 (b) HTRGB

0 = 69.8± 1.9 km s−1Mpc−1

(c) HA21
0 = 71.5± 1.8 km s−1Mpc−1 (d) HR21

0 = 73.04± 1.04 km s−1Mpc−1

Figure 6.5: The reconstructed normalized DE per method derived from the base Hubble data
(CC + BAO) for each H0 prior: (a) P18, (b) TRGB, (c) A21, and (d) R21. Legends: “quad”
and “cubic” stands for the quadratic and cubic parametrized DE, respectively; “GP” for the
GPs. The colored and hatched regions show the 2σ confidence interval of the reconstructions.
Hatches: (quad: “−”), (cubic: “|”), (GP: “/”). The inset zooms in on the low redshift region
z ∈ (0, 0.3).

parametrized methods are an expansion about the redshift, i.e., X(z) ∼ 1+ az+ bz2+O(z3)
for constants a, b, · · · . The GP, on the other hand, does not share this feature, and continues
to be able to interpolate for low redshifts even down to z = 0 since X(z = 0) = 1 by con-
struction. In summary, from the X(z) reconstructions, our result show that both parametric
and non-parametric approaches somehow agree in their macrophysical implications, despite
their inherent differences. The overall trend in the redshift evolution of X(z) is shared by
all the methods, with only the cubic case and GP differing from the quadratic evolution at
intermediate redshifts due to their intrinscally larger freedom to fit the data. Even though
each method is unequivocally challenging in its own way and likely leaving traces of non-
physical artefacts in their reconstruction, all agree on a conclusion despite this difference.
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(a) HP18
0 = 67.4± 0.5 km s−1Mpc−1 (b) HTRGB

0 = 69.8± 1.9 km s−1Mpc−1

(c) HA21
0 = 71.5± 1.8 km s−1Mpc−1 (d) HR21

0 = 73.04± 1.04 km s−1Mpc−1

Figure 6.6: The reconstructed normalized DE density per method derived from the base
Hubble data (CC + BAO) and supernovae observations (Pantheon/MCT) for each H0 prior:
(a) P18, (b) TRGB, (c) A21, and (d) R21. Legends: “quad” and “cubic” stands for the
quadratic and cubic parametrized DE, respectively; “GP” for the Gaussian processes. The
colored-hatched regions show the 2σ-region of the reconstructions while the insets reveal a
magnified view of the low redshift region z ∈ (0, 0.3). Hatches: (quad: “−”), (cubic: “|”),
(GP: “/”).

6.6.2 Reconstructed dark energy from Supernovae

In this section, we study the reconstructed X(z) by including supernovae observations in
the analysis. This is done using the 1048 SNe observations from the Pantheon sample [232]
for the parametric methods and through the E(z) measurements from the CANDELS and
CLASH Multi-Cycle Treasury (MCT) data [233] for the GP. For the GP, we use the H0

priors to convert this into H(z) = H0E(z) measurements, which are then subsequently used
together with the base Hubble data [234, 235]. The reconstructed normalized DE is shown
in 6.6, with the ΛCDM curve being depicted by horizontal dotted lines.
We found an overall trend similar to the reconstructions obtained with the base Hubble
data only. Therefore, the same observations made for the X(z) reconstructions with the base
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Hubble data (CC + BAO) therefore holds in this case including information from supernovae
(Pantheon/MCT). That is, there is a more than 2σ deviation from the ΛCDM model at high
redshifts z ≳ 2.3 for any method and H0 prior, while this deviation occurs earlier in redshift
for the quadratic model.
The overall picture from this is that the deductions that were made in the previous sections
about the dynamical nature of DE still hold, or even strengthened, with the inclusion of
supernovae observations.

6.7 Discussion
Despite its discovery many decades ago, a theoretical understanding of dark energy (DE)
remains elusive. To explore and shed light on the properties of this component, we adopted
a phenomenological approach to study the evolution of dark energy. In our analysis, we
incorporate four H0 priors that account for the Hubble tension, along with the Planck prior on
Ωm0h

2 (therefore, compromising the notion of a model-independent approach). Interestingly,
even with the Planck priors on the Hubble constant and matter density, which are consistent
with the ΛCDM model, both the parametric and non-parametric approaches employed in this
work support a deviation from standard cosmology in the form of an evolving DE component.
The most robust evidence for dark energy evolution is found at high redshifts (z ∼ 2.3),
particularly near the Lyman alpha BAO measurements. This finding aligns with previous
reports of BAO measurements [223, 220, 224, 231, 244], which also indicate tension with the
ΛCDM model. We have demonstrated that despite the inherent difference in how the different
methods analyze the data, there is an overall trend for the evolution of dark energy. This
evolving dark energy revealed by all the methods, data sets and H0 priors is the highlight of
this work. If this feature had emerged using only parametric or nonparametric approaches,
it could have been easily doubted as a mere artifact of the methods.
However, it is important to note that the methods utilized in our study come with their own
limitations. For instance, parametric methods often face criticism for the arbitrary nature
of the parametrization of phenomenological functions [245], while the GP method may suffer
of the underestimation of uncertainties [213, 241, 246]. Indeed, the GP reconstruction of the
Hubble function H(z) presented in Fig. 6.4 indicates a clear underestimation of uncertainties.
By appropriately propagating errors, the observed deviations in the reconstruction shown in
Fig. 6.6 may become less significant. Given these considerations, a natural extension of this
work is to incorporate various other approaches [247, 248, 242, 243] and study whether the
trends we found in this paper for the dark energy evolution can still be observed.
On the other hand, it should be emphasized as well that dynamical DE does not necessarily
imply modified gravity as alluded in [249]. To make robust conclusions about modified
gravity, for example, one can instead extend this work to accommodate observations of
redshift space distorsions. Relevant progress in this direction are [250, 251].
Finally, we find it interesting to investigate how the methods employed in this work perform
when considering observables at the perturbative level. We will leave this for future work.
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Conclusions

In cosmology, our ultimate goal is to unveil the physical model that describes the proper-
ties and evolution of our Universe. This endeavor has been pursued for years, leading to
significant advances in our understanding of the Universe. Observations of the cosmic mi-
crowave background radiation, Supernovae Ia, and the large-scale structure have established
the ΛCDM model as the concordance model, albeit requiring the inclusion of two exotic
and as-yet-unknown components: dark matter and dark energy. Numerous efforts have been
devoted to designing cosmological experiments capable of yielding valuable data, sensitive to
the properties and nature of these components. However, without careful study of the meth-
ods we employ to analyze such data, we may not be capable of drawing accurate conclusions
about the underlying cosmological model. The work presented in this thesis contributes to
the latter, employing statistical tools and machine learning techniques to analyze cosmolog-
ical data and provide unbiased estimates of the model parameters.

After an overview of machine learning tools and statistical methods in Chapter 2, we present
the formalism behind weak gravitational lensing in Chapter 3. The study of weak gravita-
tional lensing has become increasingly considered as it is one of the main cosmological probes
to be targeted by the next generation of cosmology experiments. In Chapter 4, we provide
for the first time a Bayesian framework to perform parameter inference when the theoretical
predictions are assisted by neural networks. The latter is a method firmly considered for
the analysis of large-scale structure probes, such as weak gravitational lensing, as the matter
perturbations rely on the computation of accurate but slow Boltzmann codes. Our formalism
consist in a new posterior distribution for parameter inference, whose shape accounts for the
error introduced by the neural net approximation of the target function. In this manner, this
adapted-posterior propagates the neural net uncertainties and debias parameter inference.
We show that our method can be easily implemented in the case of Gaussian distributions.
We train two different neural networks to learn the mapping from cosmological parameters to
the matter power spectrum at z = 1. In both cases, the parameter inference assisted by these
neural networks can recover the true cosmology when our methodology is applied. Therefore,
we consider it highly beneficial to incorporate this method in future galaxy survey pipelines,
either to directly debias inference or to examine the accuracy needed in the neural network
predictions to obtain unbiased and precise cosmological constraints. For future work, we plan
to extend this analysis to directly emulate the weak lensing power spectrum in a tomographic
analysis, making it easier to implement in the galaxy surveys pipelines. Along the same lines,
we intend to build a public code that can facilitate the incorporation of our methodology.

In Chapter 5 we investigate the impact of baryonic feedback on the weak lensing power
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spectrum and non-Gaussian statistics. We utilize HSC-Y1 mocks based on hydrodynamical
and N-body simulations. Our methodology consists in simulation-based analysis where a
baryon contamination factor is injected in the likelihood data vector. The results show that
baryons can introduce severe biases in the inferred S8 parameter. The BAHAMAS high-AGN
simulation introduces the more drastic effects, especially impacting the power spectrum, min-
imum counts and PDF measurements. On the other hand, we found that the peak counts is
the statistics with better constraining power and, at the same time, less sensitive to the influ-
ence of baryons (as accounted in this paper). This is an important result, as the peak counts
can be easily implemented in future weak lensing pipelines. Finally, we conducted an analysis
on HSC-Y1 real data, finding that the results obtained from both large and small scales are
statistically consistent. This leads to the conclusion that, for current Stage-III surveys such
as HSC, baryonic physics does not seem to play a major role in the bias of cosmological
parameters. This is an interesting finding as the baryonic feedback is considered one of the
main potential systematic that can induce a lower amplitude of structures S8 [20] compared
to the value derived by Planck. The results obtained in this work requires further validation
for the upcoming surveys. For this reason, ongoing work is being conducted by applying this
same methodology to LSST mock data. However, the precision of cosmological parameters
estimates in LSST forecasts demands a careful analysis of the emulators and likelihood. As
future research, we plan to delve more deeply into the accuracy needed for non-Gaussian
statistics emulators, following a similar approach as presented in Chapter 4. Additionally,
other strategies to account for baryons will be explored, so that we do not have to rely solely
on simulations at different cosmologies and resolutions.

In Chapter 6, we present our results regarding the study of dark energy evolution using
both parametric and non-parametric methods. The non-parametric method employs the
Gaussian Process algorithm, which is also applied in Chapter 5. We found that all methods,
prior distributions, and data sets agree on a dynamical dark energy scenario, characterized
by a decreasing value of X(z) with redshift. Moreover, the cubic parametrization and the GP
method exhibit strong agreement across all reconstruction schemes. However, the statistical
significance of the non-parametric method needs to be revisited, as the method clearly under-
estimates its uncertainties. For future work, we are exploring the inclusion of a regularization
parameter in the GP, which could lead to better posterior estimates. The results presented in
this work are obtained from a completely phenomenological approach, nonetheless it is still
important to account for the physical theories that can explain a dynamical dark energy. For
instance, models with interaction between dark components [252, 28] can potentially lead to
an effective X(z) that decreases with redshift.
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Annex A

The impact of baryons for larger
smoothing scales

Similar to Fig. 5.6, we show the impact of baryonic feedback on the fractional difference for
the smoothing scales of 5 arcmin in Fig. A.1 and 8 arcmin in Fig. A.2.
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Figure A.1: The impact of baryonic feedback on the power spectrum, PDF, peak counts,
and minimum counts for convergence maps smoothed with Gaussian smoothing kernel of
θs = 5 arcmin. We show the results for the hydrodynamic simulations BAHAMAS high-AGN
(dashed purple line), fiducial-AGN (dashed-dot blue line), low-AGN (solid teal line)
and κTNG (solid pink line). Vertical axis corresponds to fractional difference, where CH

κ

is the baryon-contaminated angular power spectrum and CDM the angular power spectrum
measured in the dark matter only runs. The grey-shaded region corresponds to HSC-Y1
uncertainty.
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Figure A.2: The same as Fig. A.1, but for maps smoothed with Gaussian smoothing kernel
of θs = 8 arcmin.
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Annex B

Table of H(z) data

We present the Hubble expansion data used in this paper in Table B.1.
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Table B.1: Expansion data from cosmic chronometers (31 points, left column) and baryon
acoustic oscillations (26 points, right column).

z H [km s−1 Mpc−1] Ref. z H [km s−1 Mpc−1] Ref.

0.07 69± 19.6 [216] 0.24 79.69± 2.99 [225]

0.09 69± 12 [217] 0.3 81.7± 6.22 [226]

0.12 68.6± 26.2 [216] 0.31 78.18± 4.74 [227]

0.17 83± 8 [217] 0.34 83.8± 3.66 [225]

0.1791 75± 4 [218] 0.35 82.7± 9.1 [228]

0.1993 75± 5 [218] 0.36 79.94± 3.38 [227]

0.2 72.9± 29.6 [216] 0.38 81.5± 1.9 [229]

0.27 77± 14 [217] 0.4 82.04± 2.03 [227]

0.28 88.8± 36.6 [216] 0.43 86.45± 3.97 [225]

0.3519 83± 14 [218] 0.44 84.81± 1.83 [227]

0.3802 83± 13.5 [214] 0.44 82.6± 7.8 [221]

0.4 95± 17 [217] 0.48 87.79± 2.03 [227]

0.4004 77± 10.2 [214] 0.51 90.4± 1.9 [229]

0.4247 87.1± 11.2 [214] 0.52 94.35± 2.64 [227]

0.4497 92.8± 12.9 [214] 0.56 93.34± 2.3 [227]

0.47 89± 34 [219] 0.57 87.6± 7.8 [222]

0.4783 80.9± 9 [214] 0.57 96.8± 3.4 [230]

0.48 97± 62 [217] 0.59 98.48± 3.18 [227]

0.5929 104± 13 [218] 0.6 87.9± 6.1 [221]

0.6797 92± 8 [218] 0.61 97.3± 2.1 [229]

0.7812 105± 12 [218] 0.64 98.82± 2.98 [227]

0.8754 125± 17 [218] 0.73 97.3± 7.0 [221]

0.88 90± 40 [217] 2.3 224± 8.6 [231]

0.9 117± 23 [217] 2.33 224± 8 [224]

1.037 154± 20 [218] 2.34 222± 8.5 [220]

1.3 168± 17 [217] 2.36 226± 9.3 [223]

1.363 160± 33.6 [215]

1.43 177± 18 [217]

1.53 140± 14 [217]

1.75 202± 40 [217]

1.965 186.5± 50.4 [215]
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