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PROF. GUÍA: SR. ALEJANDRO MAASS SEPÚLVEDA

Subshifts de Wang en grupos finitamente generados

En este trabajo de tesis se estudia la dinámica simbólica en grupos finitamente generados.
La motivación inicial de esta investigación fueron los resultados obtenidos por S. Piantadosi
[42] en dinámica simbólica de grupos libres Fk, desarrollando la teoría de subshifts de tipo
finito, y el trabajo realizado por E. Jeandel y M. Rao [27], donde los autores obtuvieron
que la cantidad mínima de Z2-Wang tiles que generan un Z2-Wang subshift aperiódico no
vacío es 11 (definición de Wang tile y Wang subshifts en 3.1). En una de las líneas de
trabajo nos enfocamos en determinar la cantidad mínima de Fk-Wang tiles necesarias para
conseguir un Fk-Wang subshift aperiódico no vacío. En otra de las líneas de trabajo el foco
de la investigación es exponer la relación que existe entre condiciones necesarias para obtener
un teselamiento válido en Z2, resultado dado por J. Chazottes y coautores en [13], y las
condiciones determinadas por S. Piantadosi para Fk, obteniendo que ambas son equivalentes,
y que resultan ser condiciones necesarias para obtener un teselamiento válido en grupos
promediables finitamente generados.

La teoría de Wang subshifts, desarrollada por H. Wang [46], tuvo relevancia para estu-
diar el problema del dominó: dado un conjunto de restricciones (por ejemplo, un conjunto
de Wang tiles), ¿existe un algoritmo que decide si es posible obtener un teselamiento de Z2,
respetando dichas restricciones? El problema resultó ser indecidible, obteniéndose un tese-
lamiento aperiódico no vacío que usó 20.426 Z2-Wang tiles, dado por R. Berger [6]. A lo
largo de los años, el número de Z2-Wang tiles fue disminuyendo, hasta llegar a la cantidad
mínima el año 2015, que resultó ser 11. Motivados por este resultado y el desarrollo de la
dinámica simbólica en grupos libres por S. Piantadosi, extendimos la teoría de Wang sub-
shifts a grupos libres para determinar el número mínimo de Fk-Wang tiles que determinan
un Fk-Wang subshift aperiódico no vacío, resultando en el teorema prinicipal de esta línea
de trabajo, el que nos dice que dicha cantidad es 3.

En la segunda línea de trabajo, consideramos un conjunto de condiciones necesarias que
son heurísticas eficientes para decidir cuándo un conjunto de Wang tiles no puede teselar un
grupo. Para esto consideramos dos condiciones: la primera dada por S. Piantadosi [42] que
resulta ser una condición necesaria y suficiente para decidir si un conjunto de Fk-Wang tiles
entrega un teselamiento fuertemente periódico en el grupo libre; la segunda, dada por R.
Chazottes et. al [13], es una condición necesaria para decidir si un conjunto de Wang tiles
consigue un teselamiento válido en Z2. Demostramos que ambas condiciones son equivalentes,
uniendo y generalizando ambos mundos (Fk y Z2), probando que estas resultan ser condiciones
necesarias para tener un teselamiento válido en cualquier grupo promediable finitamente
generado.
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Wang subshifts on finitely generated groups

In this thesis work we study symbolic dynamics in finitely generated groups. The initial
motivation of this research comes from the results obtained by S. Piantadosi in symbolic
dynamics on free groups Fk, developing the theory of subshifts of finite type and the work
developed by E. Jeandel and M. Rao. [27], where the authors obtained that the minimum
number of Z2-Wang tiles generating an aperiodic nonempty Z2-Wang subshift is 11 (definition
of Wang tiles and Wang subshifts in 3.1). In one of the work lines we focus on determining
the minimum number of Fk-Wang tiles needed to achieve a nonempty aperiodic Fk-Wang
subshift, in another direction the focus of the investigation is to expose the relationship
between necessary conditions to obtain a valid tiling in Z2, result given by Chazottes et.
al. [13], and the conditions determined by S. Piantadosi for Fk, obtaining that both are
equivalent and moreover that they are necessary conditions to obtain a valid tiling in finitely
generated amenable groups.

Wang subshifts theory, developed by H. Wang [46], was relevant in the study of the domino
problem: given a set of restrictions (e.g., a set of Wang tiles), is there an algorithm to decide
whether it is possible to obtain a tiling of Z2, respecting those restrictions?. The problem
turned out to be undecidable, obtaining a nonempty aperiodic tiling using 20, 426 Z2-Wang
tiles, given by R. Berger. Over the years, the number of Z2-Wang tiles decreased, until
the proof that the minimal amount of Wang tiles that can produce an aperiodic SFT is 11,
which was done by E. Jeandel and M. Rao in 2015 [27]. Motivated by this result and the
development of symbolic dynamics in free groups by S. Piantadosi, we developed the theory
of Wang subshifts on free groups to determine the minimum number of Fk-Wang tiles that
generate a nonempty aperiodic Fk-Wang subshift, resulting in the main theorem of this work
line, where we obtain that such quantity is 3.

In a second direction, we study a set of necessary conditions which are an efficient heuristic
to decide when a set of Wang tiles cannot tessellate a group. For this, we consider two
conditions: the first given by S. Piantadosi [42] is a necessary and sufficient condition to
decide if a set of Wang tiles gives a strongly periodic tiling of the free group; the second,
given by R. Chazottes et. al. [13] is a necessary condition to decide if a set of Wang tiles
gives a tiling of Z2. We show that both conditions are equivalent, joining and generalizing
two different settings (Fk and Z2), and we prove that they are necessary for having a valid
tiling of any finitely generated amenable group.
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Symbols used in this book

Symbol Description
A ·∪B disjoint union

H ≤ G,H ⊴ G subgroup, normal subgroup
[G : H] Index of H over G
H ◁G H is subgroup normal of G
X ∼= Y isomorphism, conjugacy

f : X ↪→ Y injective map, monomorphism
f : X ↠ Y surjective map, epimorphism, factor map
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F[S] free group generated by S

ker(h) kernel of h: {x : h(x) = 0}
h(G) image of G under h

h−1[H] preimage of H under h
(h) f [(h)]
⟨S⟩ Subgroup generated by S in G

SYM(Γ) Symmetry group of Γ
Zk group of k-adic integers, k-adic odometer (not to be confused with Z/kZ)

P ⊑ x the point x contains the pattern P
gP translate of the pattern P by some g ∈ G
[P ] {x ∈ AG : x|(P ) = P}
g[P ] [g−1P ]
CX {x|C : x ∈ X}
X language of X, i.e. the union of all CX
XF shift space with forbidden patterns in F
Φ∞ sliding block code with local function Φ: CX → A

Orb(x) orbit of x
Stab(x) stabilizer of x

PerH(x),Per
0
H(x) H-periodic points, i.e. the set of all x with H ≤ (x) (resp., H = (x))

htop(X) entropy
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Introduction

The theory of dynamical systems arises from the desire to study systems that evolve over time,
many of them inspired by phenomena from physics, astronomy, computer science, etc. One
line of study is topological dynamics, this area studies geometrical and topological properties
of trajectories. One of the early applications is the study of periodicity in the movement
of planets. The mass of the sun is considerably bigger than the mass of any planet of this
planetary system, and the dominant force acting on a planet is the attraction to the sun,
thus the trajectory of any planet around the sun is very close to the Keplerian elliptic. When
an orbit is completed, the position and momentum of a planet is close to its initial state and
momentum, if between two planets the ratio of orbit times is almost a rational number

a

b
,

this means that one planet makes a orbits in nearly the same time as the other planet makes
b orbits ([9],[8]).

In the beginning, the concept of a dynamical system consisted of a pair (X, f), where
X corresponds to the phase space and f : R+ × X → X is a function which describes the
evolution of elements of X in time, i.e., if we consider x0 ∈ X then the set {f(t, x0)}t∈R+

shows the behavior of the point x0 over time. This classical theory of dynamical systems was
intended to respond to more qualitative problems, related to the study of the trajectory of
planets in the solar system, evolution of a predator-prey ecosystem in time, etc.

An important and more recent class of dynamical systems is the collection of symbolic
dynamical systems due to M. Morse and G. Hedlund ([40], [39]). The main idea is to study
the behavior of a certain phenomenon by discretising the phase space. This idea was initially
adopted by J. Hadamard [22], who used this technique to study geodesics on surfaces of
negative curvature. A way to study a phenomenon is by getting an encoding of their behavior:
if we have a partition of our phase space X given by P = {A1, . . . , An}, we can define the
function T : X → {1, . . . , n}N as follows:

T (x)(n) = i ⇐⇒ T n(x) ∈ Ai.

This allows us to get a coding of the trajectory of a point, when time is considered as a
discrete variable.

A special kind of symbolic dynamical systems are subshifts. These are systems in which
the space is made up of infinite or bi-infinite sequences of symbols in a fixed alphabet A, i.e.,
elements in the product space, for instance AN or AZ. Using the idea explained in the last
paragraph, the alphabet A corresponds to the set {1, . . . , n}, and the function corresponding
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to the system, the shift action σ, consists in moving every symbol of the sequence (xn)n∈N
(if we consider one-sided sequences) one position to the left, that is:

σ((xn)n∈N) = (xn+1)n∈N.

For example, let us consider the study of the trajectory of a ball in a Volleyball match.
For this, first we label by 0 the left side and by 1 the right side. We define the sequence of
numbers x0, x1, x2, · · · ∈ {0, 1}, where xi = 0 if the ball is in the left side and xi = 1 in the
right side, in the time i.

Figure 1: The first 7 seconds of the volleyball match.

As Figure 1 shows, we obtain the sequence .01110001 . . . and we see that the shift-action
applied to a sequence corresponds precisely to the encoding of the future states of the system
after moving forward in time. Nevertheless, the information we can obtain is very simplified,
since it only tells us in which side of the court the ball is. This is because the space was
partitioned into only two sets (both sides of the court), but if we consider a partition into
more sets, we can obtain much more information and complexity.

The simplest classes of subshifts are the so called G-subshifts of finite type (G-SFT) and
G-sofic subshifts, where G corresponds to a finitely generated group. Both types of subshifts
have been systematically studied. In this thesis work we will be generally interested in
G-SFTs. These systems can be defined by restricting their language (the set of all finite
subsequences we observe when looking at any element of the shift) through forbidden words,
a combinatorial viewpoint which allows to describe these systems using graph theory and the
theory of finite automata, at least in the 1-dimensional case.

For G = Z, the class of Z-SFTs has been thoroughly studied. Corresponding subshifts can
be represented by finite directed graphs such that valid Z-colorings are in bijection with bi-
infinite walks on the corresponding graph. For instance, let us consider a Z-SFTXF ⊆ {0, 1}Z

2



given by the following set of forbidden patterns:

F = {11}.

This means that the valid sequences of length 2 are {10, 01, 00}. The subshift XF corre-
sponds to a classic example in the one-dimensional theory called Golden mean shift and the
corresponding adjacency graph is the follows:

0 1

Figure 2: The Golden Mean shift as a vertex shift.

The valid sequences on XF correspond to labels of valid infinite walks on the graph;
for example, the valid sequences of length 2 correspond to L = {00, 01, 10}. Moreover, we
can define (in this case) an associated Z−Wang subshift given by the Z-Wang tiles T =
{T1, T2, T3} defined in Figure 3.

Figure 3: Z-Wang tiles corresponding to the Z-Wang subshift associated to the golden mean
shift.

Before continuing, it is important to note that the conjugacy between the golden mean shift
(Z-SFT) and its corrresponding Z-Wang subshift is not trivial, the increase in the amount
of symbols between the original alphabet A and the new alphabet T of Wang tiles provides
evidence of this. More details about this fact and conditions to construct this conjugacy will
be seen later in this thesis.

Hence, given a collection of nearest neighbor restrictions or a finite set of Wang tiles, we
can easily decide whether there is a valid Z-coloring by verifying that the associated directed
graph allows a bi-infinite path, i.e., it has a cycle. Therefore, both the Emptiness and the
Domino problem on Z are decidable, and in fact every nonempty Z-SFT has at least one
periodic coloring (for more details see [34] and [31]).

For G = Z2, decidability of the Emptiness problem is much less obvious and the Domino
problem in particular has a long history. In 1961, H.Wang [45] conjectured that if a finite
set of Z2-Wang tiles can tile Z2 then it must also allow periodic tilings. He then observed
that proving this conjecture would imply the existence of an algorithm to decide the Domino
problem on the plane. In 1966, Wang’s student R. Berger [6], showed that Wang’s conjecture
is false. He constructed an enormous alphabet of 20, 426 Z2-Wang tiles giving rise to a
nonempty weakly aperiodic Z2-Wang subshift. Furthermore, using properties of that subshift,
R. Berger showed that the Domino problem in Z2 is in fact undecidable.
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After this first example, people started to work on reducing the required number of Z2-
Wang tiles. In 1971, R. Robinson [43] constructed an aperiodic Z2 tiling with an alphabet
comprised of only 56 tiles, followed by H. Lauchli [46] who in 1975 published an aperiodic set
of 40 Z2-Wang tiles. After that, in 1996 J. Kari [29] invented a new method to build aperiodic
tile-sets and obtained an example with 14 Z2-Wang tiles. In the same year, together with K.
Culik [17], they reduced the set to 13 Z2-Wang tiles (Figure 4). Finally, in 2015 E. Jeandel
and M. Rao [27] determined that 11 is the smallest cardinality of Z2-Wang tiles which can
generate a nonempty aperiodic Z2-Wang subshift.

Figure 4: An aperiodic set of 13 Z2-Wang tiles.

On the free group G = Fk, some basic aspects of symbolic dynamics have been developed
by S. Piantadosi [42]. In particular, he studied conditions assuring non-emptiness as well
as the existence of strongly periodic colorings in Fk-nearest neighbor subshifts of finite type
(Fk-NNSFTs). The NNSFT are a type of SFT where the set of forbidden patterns is given
in a more easy form to study; more details about this type of SFT are given in Chapter 3.
In fact, the Emptiness problem is decidable for these groups, because every Fk-NNSFT is
completely determined by a family of k Z-NNSFTs. Moreover, every non-empty Fk-NNSFT
contains a weakly periodic coloring. Nevertheless, S. Piantadosi constructs an example of a
F2-NNSFT without any strongly periodic coloring.

It is interesting to see how these results can be different between the theory of symbolic
dynamics on Z and when the acting group G is changed. For instance, the difference between
Z and Z2, or the similar results between Z and Fk. Recently, these properties have been
studied in other kinds of groups. For instance, using again the existence of strongly aperiodic
SFTs, the domino problem was shown to be undecidable, apart from Zd, on some semisimple
Lie groups [41], the Baumslag-Solitar groups [2], the discrete Heisenberg group (announced,
[44]), surface groups [15, 1], semidirect or direct products on Z2 ([5] and [4] respectively),
polycyclic groups [25], some hyperbolic groups [14], etc. In contrast, with previous results,
the domino problem is decidable on free groups [42] and on virtually free groups [3], and it
is conjectured that these are the only groups where the domino problem is decidable.
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Main contributions

The aim of this thesis is to develop the theory of Wang subshifts in finitely generated groups.
There are two main directions, both of which are inspired by the results of S. Piantadosi in [42]
on symbolic dynamics in free groups. In his work, S. Piantadosi studied Fk-subshifts of finite
type, focusing in particular on Fk-nearest neighbor subshifts of finite type (Fk-NNSFTs).

First, we show that the conditions given by J. Chazottes, J. Gambaudo and F. Gautero
[13] for tiling the Euclidean plane by polygons are equivalent to the conditions given by S.
Piantadosi [42] for free groups. By joining both sides of the theory (i.e., Z2 and free groups),
we demonstrate that both conditions are necessary in finitely generated groups, but not
sufficient. To support this claim, we provide a counterexample that satisfies the conditions
but yields an empty tiling.

Secondly, we develop the theory of Wang subshifts on free groups and address the question
of how many Wang tiles are needed to obtain a nonempty aperiodic Wang subshift. This
problem was solved in Z2 by E. Jeandel and M. Rao [25], who showed that 11 Wang tiles
were necessary. However, in our case, we generalize this result to Fk with k ≥ 2 and demon-
strate that the minimum number of Wang tiles required does not depend on the number of
generators in the free group, which is 3.

Symbolic dynamics in one dimension has been extensively studied [34], particularly with
respect to subshifts of finite type in Z. As described before, such subshifts can be represented
using graph theory, where their configurations can be viewed as bi-infinite walks in a labeled
graph. This approach has proven to be useful since the adjacency matrix associated to the
graph encoded important information of the system. However, subshifts of finite type in more
general groups cannot always be represented using graphs. For instance, in the case of Z2,
subshifts of finite type cannot be represented using graphs (see Example 2.6). Nevertheless,
S. Piantadosi shows in [42] that subshifts of finite type in free groups can be represented
using graphs, although as many graphs as the free group has generators are necessary.

The study of symbolic dynamics in free groups is particularly interesting because free
groups are non-amenable, unlike previous studied cases, such as Z or Z2. Therefore, obtaining
results in this area is crucial for the development of dynamical systems in increasingly general
groups.

The domino problem established a connection between periodicity and the existence of a
nonempty subshift of finite type. After R. Berger [43] (Wang’s student) presented an example
of a nonempty subshift of finite type with aperiodic tiling, which required an alphabet of
20, 426 Wang tiles, researchers became interested in obtaining subshifts of finite type with
similar properties but with a smaller number of Wang tiles in their alphabet. Noteworthy,
results were achieved by R. Robinson [43] and J. Kari [29] in 1996, who developed a new
method to construct aperiodic tile-sets and found an example with only 13 Z2-Wang tiles.
More recently, in 2015, E. Jeandel and M. Rao [27] showed that the minimum number of
Z2-Wang tiles required is 11, and they utilized computers to obtain their result.

Considering the results obtained in Z2, some intriguing questions arise, such as: What
happens in the case of free groups? Will the problem require as much time to solve as it
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did for Z2? Will computers be necessary to determine the minimum number of Wang tiles
required?

This thesis aims to address these questions by determining the minimum number of Fk-
Wang tiles necessary to generate a non-empty weakly aperiodic Fk-Wang subshift.

First, we note that not every Z-subshift of finite type generates a Z-Wang subshift, this
is shown by Example 3.4. Our focus then turned to see which are the graphs that generates
a nonempty Z-Wang subshift, obtaining the following result:

Proposition An essential directed graph Γ = (V,E) determines a valid nonempty Z-Wang
subshift if and only if for every v, w ∈ V :

1. V +(v) ∩ V +(w) ̸= ∅ implies V +(v) = V +(w),
2. V −(v) ∩ V −(w) ̸= ∅ implies V −(v) = V −(w).

Using the adjacency matrix of Γ, this means:

a. Each row and column contains at least a 1 (Γ is essential).
b. If two rows or two columns have a 1 in the same position, then those rows or columns

are identical.

This proposition provides us with the necessary and sufficient conditions to achieve a
nonempty Z-Wang subshift. Using a strategy similar to that of S. Piantadosi [42], we show
that by using k graphs with these characteristics we obtain a nonempty Fk-Wang subshift.

Proposition Every nonempty Fk-Wang subshift, using n Fk-Wang tiles, is completely de-
termined by a family of k nonempty Z-Wang subshifts.

Finally, we search for the networks that satisfy the above conditions. First, the search is
performed using graphs with two vertices (i.e., Fk-Wang subshifts defined using 2 Fk-Wang
tiles), obtaining Fk-Wang subshifts with at least a strongly periodic tiling. The main result
of this work line is the following.

Theorem Given k ≥ 2, the minimum cardinality of a set of Fk-Wang tiles which produces
a nonempty weakly aperiodic Fk-Wang subshift is 3.

Following this direction, we turn our attention to characterize all possible examples of
nonempty weakly aperiodic Fk-Wang subshifts using an alphabet of 3 tiles, obtaining for
every k ≥ 2 the amount of all them. We create all 25 essential directed graphs which give
rise to nonempty Z-Wang subshifts with exactly 3 tiles and we use Proposition 3.7 to generate
all possible Fk-Wang subshifts using a three letter alphabet. Analyzing those graphs and its
structure then leads to an effective method of classifying the Fk-subshifts aperiodicity in terms
of nontrivial solutions of a certain system of linear equations and allows us to determine all
weakly aperiodic examples.
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This result answers the question solved for Z2 in free groups, achieving a result that does
not depend on the number of generators of the free group and also characterizing all possible
examples that can be generated with such characteristics.

In another line of work, we show a set of necessary conditions which are efficient heuristics
for deciding when a set of G-Wang tiles cannot tile a finitely generated amenable group
G, making a link between the conditions that S. Piantadosi [42] got for free groups and
conditions obtained in the work of J. Chazottes, J. Gambaudo and F. Gautero [13] in a more
general context for tiling the Euclidean plane by polygons, but which is necessary for an SFT
to admit a tiling of Z2 [28], showing that these conditions are equivalent and that they form
a necessary condition for an SFT to admit a valid tiling on any finitely generated amenable
group, confirming a remark of E. Jeandel ([26]).

The conditions given by S. Piantadosi, in the context of free groups, which we call (⋆) and
(⋆⋆) respectively are:

Definition (Condition (⋆)) A family of graphs Γ = {Γi}1≤i≤d whose vertices are an alphabet
A satisfies condition (⋆) if and only if there is some nonempty A′ ⊂ A with a colouring
function Ψ : A′ × S → A′ such that, for any colour a ∈ A′ and any generator gi ∈ S,
a→ Ψ(a, gi) is an edge in Γi.

Definition (Condition (⋆⋆)) Consider a family of graphs Γ = {Γi}1≤i≤d and SC(Γi) =
{ωj

i }1≤j≤#SC(Γi) the set of simple cycles for each graph Γi.

We denote by (⋆⋆) the following equation on real numbers xi,j:

∀a ∈ A,
#SC(Γ1)∑

j=1

x1,j|ωj
1|a =

#SC(Γ2)∑
j=1

x2,j|ωj
2|a = · · · =

#SC(Γd)∑
j=1

xd,j|ωj
d|a.

We say that the graph family satisfies condition (⋆⋆) if equation (⋆⋆) is not empty (e.g.,
all graphs contain at least a cycle) and admits a nontrivial positive solution.

Both were stated in [42]. The last condition was considered by J. Chazottes-J. Gambaudo-
F. Gautero [13], in the context of the plane Z2:

Definition (Condition (⋆⋆)′) Let T be a set of Wang tiles on colours C and set of generators
S. For each g ∈ S ∪ S−1 and each colour c ∈ C, define cg the subset of Wang tiles τi ∈ T
such that τi(g) = c. We call (⋆⋆)′ the following equation:

∀g ∈ S,∀c ∈ C,
∑
τi∈cg

xi =
∑

τj∈cg−1

xj.

We say that T satisfies condition (⋆⋆)′ if Equation (⋆⋆)′ admits a positive nontrivial solution.

Although conditions (⋆⋆) and (⋆⋆)′ were introduced in very different contexts (periodic
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tilings of the free group and tilings of the Euclidean plane, respectively). An important result
of this line of work was to show that both conditions are equivalent.

Theorem Let T be a set of Wang tiles over the set of colours C and the set of generators S.

T satisfies condition (⋆⋆)′ if, and only if, the associated graphs satisfy condition (⋆⋆).

Finally, we provide the necessary conditions to obtain a valid tiling of a finitely generated
amenable group.

Theorem (Heuristic for tiling an amenable group) Let G be a finitely generated amenable
group, S a finite set of generators, and T a set of Wang tiles.

If there is a tiling of G with the tiles T , then condition (⋆⋆) (or equivalently (⋆⋆)′) is
satisfied.

The relevance of the last result is that the heuristics can be very useful when making an
exhaustive search for SFTs with desired properties; the necessary conditions in particular
allow fast rejection of most empty SFTs. For example, a transducer-based heuristic was used
in the search for the smallest set of Z2-Wang tiles that yield a strongly aperiodic Z2-SFT,
determined by E.Jeandel and M.Rao [27]. It is also of theoretical interest to understand how
the group properties impact the necessary conditions.

The text is organized as follows:

• In Chapter 1 we review prerequisites for each of the topics covered in this thesis. First,
we give some basic facts about group theory. In particular, we talk about groups via
generators and relations, because it turns out to be very important to understand the
main results of the following chapters. We dedicate our attention to the understanding
of free groups and the theory of Cayley graphs. Finally, we give the main definitions
and results about dynamical systems and symbolic dynamics ; in this last topic we turn
our attention to symbolic dynamics on Z and Fk.

• In Chapter 2, which is a collaboration with B. Hellouin de Menibus (from Université
Paris-Saclay) [19], was published on Discrete and continous dynamical system 2020,
Doi: http://dx.doi.org/10.3934/dcds.2020116 . In this work, we give a set of necessary
conditions which are efficient heuristics for deciding when a set of Wang tiles cannot
tile a group.

• In Chapter 3, which is a collaboration with M. Shchraudner, corresponds to an adap-
tation of Weakly aperiodic Wang subshifts with minimal alphabet size on the free group
[16]. The goal of this work was to determine the minimal amount of Fk-Wang tiles
which generate a nonempty weakly aperiodic Fk-Wang tiling. For this, we develope the
theory of Wang tiles and Wang tiling on free groups, giving conditions to get a valid
Fk-Wang tiling from k nonempty Z-Wang subshifts.
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Part I

Preliminaries
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Chapter 1

1.1 Elementary group theory
In this section we give the main results about elementary group theory. In general, these
results are presented without the proofs and the author recommends to consult the following
literature: [24], [4], [32], [37], [18], [21], [12] and [36].

Definition 1.1 (Groups) A group corresponds to a pair (G, ·), where G is a nonempty set
and · is a binary operation: G×G→ G satisfying the following axioms:

• Associativity: For all g1, g2, g3 ∈ G we have:

g1 · (g2 · g3) = (g1 · g2) · g3.

• Existence of a neutral element: There exists eG ∈ G such that for all g ∈ G:

g · eG = eG · g = g.

• Inverses: For every element g ∈ G there exists an inverse element, denoted by g−1 ∈ G,
such that:

g · g−1 = g−1 · g = eG.

Moreover, let us call the pair (G, ·) an Abelian group if it satisfies the additional axiom:

• Commutativity: For every g1, g2 ∈ G we have:

g1 · g2 = g2 · g1.

In order to simplify the notation, the binary operation symbol · is often omitted: instead
of writing g1 · g2 we just write g1g2. Also, when the group operation is clear, we denote the
group (G, ·) just by the set G. For instance, we refer to Z as “the group of integers” when we
formally mean (Z,+).

Definition 1.2 (Subgroups) Let G be a group and H ⊂ G. We say H is a Subgroup of the
group G if it satisfies the following conditions:
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• If h1, h2 ∈ H, then h1h2 ∈ H,

• eG ∈ H,

• ∀h ∈ H, h−1 ∈ H.

We use the notation H ≤ G to say that H is a subgroup of G. Furthermore, if for each
g ∈ G and h ∈ H we have ghg−1 ∈ H, we say that H is a normal subgroup of G and we
write H ◁G.

Using subgroups we can define an equivalence relation over G as follows. Let H ≤ G, we
define the equivalence relation ∼H as g1 ∼ g2 if and only if there exists h ∈ H such that
g1 = g2h, we observe that for any g ∈ G, the corresponding equivalence class is given by:

[g]∼H
= {x ∈ G | ∃h ∈ H : x = gh} = gH.

The set of equivalence classes is called left cosets and we denote it by G⧸H := G⧸∼H . We
define the index of H over G as:

[G : H] := |G⧸H|.

We observe that if H ◁ G and gH ∈ G⧸H, as ghg−1 ∈ H for each g ∈ H, we have that
gH = Hg, therefore we can endow G⧸H with the binary operation defined by

(g1H)(g2H) := (g1g2)H.

There is not any problem with this definition, because:

(g1H)(g2H) = g1(Hg2)H = g1(g2H)H = g1g2HH = g1g2H.

It important to note that if g1H = g′1H and g2H = g′2H then g1g2H = g′1g
′
2H, because

g1g2H = g1g
′
2H = g1Hg

′
2 = g′1Hg

′
2 = g′1g

′
2H.

Definition 1.3 If H is a normal subgroup of G, then the group G⧸H endowed with the
operation defined by (g1H)(g2H) = (g1g2H) is called the quotient group of G by H.

1.1.1 Group homomorphisms

Definition 1.4 Let G,H be groups. A function h : G → H is called a homomorphism of
groups if it satisfies the following:

h(g1g2) = h(g1)h(g2),∀g1, g2 ∈ G.

Remark A direct consequence of the definition of a homomorphism is that h(eG) = eH .
Moreover, every homomorphism of groups satisfies

h(g−1) = (h(g))−1, ∀g ∈ G.
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Definition 1.5 Let G,H be groups and h : G→ H a homomorphism of groups. Then:

• If h is injective it is a monomorphism.

• If h is surjective it is an epimorphism.

• If h is bijective it is an isomorphism.

• When G = H the function h is called an endomorphism.

• If h is an isomorphism and an endomorphism, then h it is called an automorphism.

Remark We say that the groups G and H are isomorphic it there exists an isomoprhism
between them. Moreover, it means that both groups are “the same group” up to notation.
We denote this by G ∼= H.

An important result in the group theory is Cayley’s theorem, previously we need to define
the permutation group.

Definition 1.6 A permutation corresponds to a bijection f : A → A, with A a finite set.
A permutation group corresponds to a finite group whose elements are permutations, group
operation is the composition of functions.

Example If A = {0, 1}, we can consider f : A → A as f(0) = 1 and f(1) = 0, clearly is a
bijection and therefore corresponds to a permutation in 2 elements, other permutation over
A is the identity function. Therefore, the permutation group in 2 elements is a group with 2
elements: f and the identity function 1A.

Theorem 1.7 Every group G is isomorphic to a permutation group of its own elements.

Other important results are Isomorphism Theorems. For our purposes we only use the
First Isomorphism Theorem, mainly to describe general groups using free groups.

Theorem 1.8 [First Isomorphism Theorem] Let G,H be groups and h : G → H be an
homomorphism. Then:

• ker(h) = {g ∈ G|h(g) = eH} is a normal subgroup of G,

• h(G) is a subgroup of H,

• h(G) ∼= G⧸ ker(h).
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1.2 Groups via generators and relations
Definition 1.9 If G is a group and S is a subset of elements in G, then S generates G if
every element in G can be expressed as a finite product of elements from S and inverses of
elements of S. We say that a group G is finitely generated if it has a finite generating set.

Example The following examples show possible situations that we can have in finitely gen-
erated groups.

• Every finite group is a finitely generated group: it is enough to consider S = G.

• The group Z is generated by S = {1}, therefore it corresponds to a finitely generated
group. Nevertheless, there are other possible generating sets with more elements, for
instance S ′ = {2, 3}. This fact shows that the choice of S is not unique.

• The group (Q,+) is not a finitely generated group.

Remark We shall give an explicit description of generated subgroups. Consider G a group
and S ⊂ G. Then, the subgroup generated by S in G always exists and can be described by:

⟨S⟩ =
⋂

{H | H ⊂ G is a subgroup with S ⊂ H}.

In other words, we can write the group ⟨S⟩ as follows:

⟨S⟩ = {st11 · · · stnn | n ∈ N, s1 . . . sn ∈ S, t1 . . . tn ∈ {−1, 1}}

1.2.1 Cayley graphs

Definition 1.10 A directed graph Γ = (V,E) consists of a set of vertices V and a set of
directed edges E ⊆ V × V given as ordered pairs of vertices. Each edge e = (u, v) ∈ E has
an initial vertex u and a terminal vertex v and we represent a graph visually as follows: each
vertex corresponds to a point, while an edge is represented graphically by an arrow leading
from vertex u to vertex v. We denote by Ends(e) = {u, v}.

Definition 1.11 A symmetry of a graph Γ is a bijection α taking vertices to vertices and
edges to edges such that if Ends(e) = {v, w} then Ends(α(e)) = {α(v), α(w)}. We give the
name Symmetry group of Γ to the collection of all symmetries and we denote it by Sym(Γ).

In this part, the main result is the following theorem which relates graph theory, symmetry
groups and finitely generated groups. We recommend [38] to consult the proof of this theorem
and more details about the theory.

Theorem 1.12 (Cayley’s better theorem) Every finitely generated group can be faithfully
represented as a symmetry group of a connected, directed, and locally finite graph.
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The proof of this theorem shows how to create the Cayley graph associated to the group
G. For simplicity, we show in the following definition this construction as well.

Definition 1.13 Let G be a finitely generated group by S. We define the right Cayley graph
associated to G as the graph ΓG,S = (V,E) constructed as follows:

• V = G,

• (g1, g2) ∈ E if and only if there exists s ∈ S such that g2 = g1s.

Remark It is important to note that the Cayley graph depends on the set of generators S.
For instance, in the case of Z we obtain the following Cayley graph if S = {1}.

Figure 1.1: Cayley graph of the group Z using S = {1} as generator.

Nevertheless, if we consider S = {2, 3}, the Cayley graph is different.

Figure 1.2: Cayley graph of the group Z using S = {2, 3} as generator.

A. Cayley introduced Cayley graphs in the theory of groups in a paper published in 1878
[11]. In that article, A. Cayley states that when the group has two or more generators,
we require different colours for its edges, one for each generator, as seen in Example 1.2.
Regardless some authors do not distinguish edges associated to different generators by color.

1.2.2 Amenable groups

Amenable groups are an important class of groups that arise in many areas of mathematics,
including analysis, geometry, topology, and algebra. They are characterized by a certain no-
tion of "niceness" or "regularity" that makes them amenable to certain kinds of mathematical
analysis.

One way to think about amenability is in terms of a certain type of averaging process.
Intuitively, a group is amenable if it is possible to average functions defined on the group in

15



a way that respects the group structure. More precisely, a group is amenable if it admits a
"left-invariant mean", which is a way of assigning to each function on the group a unique
"average value" that is invariant under left translations.

The study of amenable groups has led to many deep and surprising results in mathematics.
For example, it is known that all finitely generated abelian groups are amenable, but there
are also many examples of non-abelian amenable groups, such as the group of affine transfor-
mations of the real line. Amenability has connections to many other areas of mathematics,
such as the theory of operator algebras, harmonic analysis, and geometric group theory.

Definition 1.14 (Følner sequence) Let G be a group . A Følner sequence for G is a sequence
of finite subsets Sn ⊂ G such that:

G =
⋃
n

Sn and ∀g ∈ G,
#(Sng△Sn)

#Sn

−−−→
n→∞

0,

where Sng = {hg : h ∈ Sn} and A△B = (A\B) ∪ (B\A) is the symmetric difference.

In the previous definition, it is easy to see that the second condition only has to be checked
for g in a finite generating set. The set Sng△Sn can be understood as the border of Sn, so
an element of a Følner sequence must have a small border relative to its interior.

Definition 1.15 (Amenable group) A group G is amenable if it admits a Følner sequence.

This definition applies more generally for all countable groups. A few examples:

• Zd is amenable and a Følner sequence is given by Sn = [−n, n]d. Indeed, if (gi)1≤i≤d

is the canonical set of generators, then #Sn = (2n + 1)d and #((Sn + gi)△Sn) =
2 · (2n+ 1)d−1.

• Fd for d ≥ 2 is not amenable. In particular, the balls Sn of radius n - that is, reduced1

words of length ≤ n on the set of generators (gi)1≤i≤d - are not a Følner sequence.
Indeed, one can easily check that #Sn = Ω(dn) and #(Sngi△Sn) = Ω(dn).

The upcoming subsection will precisely focus on this last example, as free groups will play
a crucial role in the entirety of this thesis.

1.2.3 Free groups

Definition 1.16 Let S be a set and consider a copy S−1 = {s−1 | s ∈ S}. We say a word
in (S ∪ S−1)∗ is reduced if it does not contain ss−1 or s−1s as subwords.

We observe that every word in (S∪S−1)∗ can be transformed into an unique reduced word
by successively eliminating every occurrence of ss−1 or ss−1.

1with no g−1
i gi or gig

−1
i factors
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Definition 1.17 The free group over S2 is defined as the set F[S] of all reduced words in
(S ∪ S−1)∗, endowed with word concatenation followed by reduction as its binary operation.
If the cardinality of the set S is n, then we call F[S] the free group of rank n.

We can describe groups in a combinatorial way. For this, free groups turn out to be very
important, giving the basis for group presentations.

Theorem 1.18 Let G be any group and let {g1, . . . , gn} be a list of elements of G, which are
not necessarily distinct or non-trivial. Let S = {s1, . . . , sn} be a basis for a free group F[S].
Then there is a group homomorphism h : F[S] → G such that

h(si) = gi, ∀1 ≤ i ≤ n.

A consequence of this theorem is that two free groups with the same amount of generators
are isomorphic.

Corollary 1.19 Any two free groups of rank n are isomorphic

Proof. We consider G and H two free groups of rank n, with SG = {g1, . . . , gn} and SH =
{h1, . . . , hn} the respective bases. Using Theorem 1.18 there are h1 : G → H and h2 : H →
G homomorphisms satisfying the statement of the theorem. It follows that h1 ◦ h2 is the
identity automorphism of H and h2 ◦ h1 the same but for G; this implies that h1 and h2 are
bijections.

Remark In what follows we denote by Fn the free group of rank n.

Corollary 1.20 If G is generated by n elements then G is a quotient of Fn.

Proof. This is a consequence of Theorem 1.18 and the First Isomorphism Theorem (Theorem
1.8). It is important to note that the homomorphism h : Fn → G given by the theorem
satisfies that h(Fn) contains the generators of G and thus h is surjective. The result follows.

Definition 1.21 Let G be a group. A relation corresponds to an element ω in ker(h), where
h is as given in the last corollary. A subset R ⊂ ker(h) is a set of defining relations if the
smallest normal subgroup of Fn that contains R is ker(h). We say that G is finitely presented
if there is a finite set of defining relations R = {ω1, . . . , ωm}. In this scenario we write:

G = ⟨{g1, · · · , gn} | ω1, · · · , ωm⟩

.
2The set S is called the basis of F[S].
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Example In the case of Fn, its presentation is given by

Fn = ⟨{g1, · · · , gn} | ∅⟩ = ⟨{g1, · · · , gn} | ⟩.

The corresponding Cayley graph of F2 = ⟨{a, b} | ⟩ is the following:

Figure 1.3: Cayley graph of the free group of rank 2.
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1.3 Symbolic dynamics
The author recommends to consult the following bibliography [7], [12], [30], [31] and [35].
For more details about the results in this section these books develop symbolic dynamics on
more general groups, for this thesis work we will only need to understand the theory of shift
spaces defined on finitely generated groups.

1.3.1 Symbolic dynamics on finitely generated groups

Let G be a finitely generated group and A be a nonempty finite set. We consider the product
set AG = {x : G→ A} consisting of all functions from G to A. We refer to the set A as an
alphabet, its elements a ∈ A will be called symbols or colors and the elements of AG colorings
of G. Given x = (xg)g∈G ∈ AG, each xg corresponds to the symbol seen at position g ∈ G.
The group G acts on AG by left translation σ : G×AG → AG defined coordinatewise as:

σ(g, x)h := xg−1h ∀h ∈ G.

We refer to σ as the shift action and we use the notation σg(x) to denote σ(g, x). Given a
finite subset F ⊂ G, an element P ∈ AF is called a pattern and F = (P ) its support. We
say that a pattern P appears in a coloring x ∈ AG (and we write P ⊑ x) if there exists
g ∈ G such that σg(x)|F = P . For more details see [12] and [34]. Since A is a finite set, AG,
endowed with the pro-discrete topology, is a compact space and has a countable clopen basis
given by the cylinders [P ]g = {x ∈ AG | σg−1(x)|(P ) = P}.

The pair (AG, σ) is called G-full shift and every closed and σ-invariant subset X ⊆ AG

corresponds to a G-subshift. An equivalent, more combinatorial way of specifying a subshift
uses a set of forbidden patterns:

Proposition 1.22 A subset X ⊆ AG is a G-subshift if and only if there exists a family of
patterns F , such that X coincides with XF = {x ∈ AG | ∀P ⊑ x : P /∈ F}.

Proof. Let F be a set of patterns. Then XF = {x ∈ AG | ∀P ⊑ x : P /∈ F}. Clearly XF is
σ-invariant and its complement Xc

F =
⋃

g∈G
⋃

P∈F [P ]g is open as a union of open sets, thus
XF is closed.

If X is a G-subshift, Xc is open and thus a countable union of cylinders of the form [Pi]gi ;
x ∈ Xc if and only if some pattern Pi appears in some σg(x) (because X is σ-invariant).
Then, taking F as the set of all patterns Pi, we prove that X = XF : if x ∈ XF , then
x /∈

⋃
i[Pi]gi , and thus x /∈ Xc. Conversely, if x ∈ X \ XF , then there exists Pi such that

Pi ⊑ x, thus for some g ∈ G, x ∈ [Pi]gF (where Pi ∈ AF );then, σgg−1
i
(x) ∈ [Pi]giF ⊆ Xc.

If there exists a finite family of forbidden patterns F , such that X = XF , the G-subshift
X is called a G-subshift of finite type (G-SFT). Among G-SFTs, we distinguish two kinds
that have a particulary simple description.

Definition 1.23 A G-SFT is called a G-nearest neighbor subshift of finite type (G-NNSFT),
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if we can choose a set of forbidden patterns F , such that every element in F has a support
of the form {eG, s}, s ∈ S.

Remark If XF is a G-NNSFT, we identify a pattern with support {eG, s}, s ∈ S, with a
3-tuple (a, s, b) ∈ A × S × A and interpret it as the following restriction: if x ∈ XF and
xg = a, then xgs ̸= b, similarly xgs = b forces xg ̸= a.

1.3.2 Symbolic morphisms

Let X ⊆ AG and Y ⊆ AG be two G subshifts. A map ϕ : X → Y is said to be shift
commuting, if:

ϕ ◦ σg = σg ◦ ϕ , ∀g ∈ G

Definition 1.24 A continuous shift commuting map between two G-subshifts is called a
morphism.

A bijetive morphism ϕ : X → Y is called conjugacy, and we said that X is conjugated to
Y , this fact is written X ∼= Y . What is particular about the case of symbolic systems is that
the morpshisms can be characterized combinatorially. Let A,B be two alphabets and F ⊂ G
a finite support, we consider a map Φ : AF → B, which send patterns in AF to symbols in
B. It is possible to define a map ϕ : AG → BG given by ϕ(x)g = Φ(σg−1

(x)|F ). Any map
defined as before is called sliding-block code.

Theorem 1.25 (Curtis-Hedlund-Lyndon) Let X ⊆ AG and Y ⊆ BG be G-subshifts and
ϕ : X → Y be a map. Then ϕ corresponds to a morphisms if and only if ϕ is a sliding-block
code.

The original theorem considered G = Z, the lector can see the proof in [23], where M.
Curtis and R.Lyndon are mentioned as co-discoverers.

The next proposition is a folklore result in symbolic dynamics. For completeness we
include a formal proof, which for general groups is otherwise hard to find in the literature.

Proposition 1.26 Every G-SFT is topologically conjugate to a G-NNSFT.

Proof. Given a G-SFT XF ⊆ AG, let Br ⊆ G be a sufficiently large ball of radius r ∈ N
with respect to the word metric given by S, such that

⋃
P∈F(P ) ⊆ Br. Let us consider the

following alphabet:
A′ = {Q ∈ ABr |∀P ∈ F , P ̸⊑ Q}

We define XF ′ ⊆ (A′)G given by the set of forbidden patterns F ′ ⊆
⋃

s∈S(A′){eG,s} with
F ′ = {(P, s,Q) ∈ A′ × S × A′|∃h ∈ Br ∩ sBr : Ph ̸= Qs−1h}. (This construction is similar
to the definition of a higher block shift in the one-dimensional setting). By definition, the
subshift XF ′ corresponds to a G-NNSFT. To prove that it is topologically conjugated to XF ,
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let φ : XF ′ → XF be the map given by φ(x)g = (xg)eG . Given that φ is defined locally,
we can use the theorem of Curtis-Hedlund-Lyndon [12, Theorem 1.8.1] to conclude that φ is
σ-invariant and corresponds to a continuous map.

Suppose there exists x ∈ XF ′ such that φ(x) /∈ XF , which implies that there exists
g ∈ G and P ∈ F such that φ(x)g(P ) = P . First, let us see that by definition of F ′ we
have that for all g ∈ G, s ∈ S and h ∈ Br: xg(h) = xgs(s

−1h), writing h = s1 . . . sn, with
s1, . . . , sn ∈ S ∪ S−1 and n ≤ r, we have xg(h) = xgs1(s

−1
1 h), iterating this we obtain:

xg(h) = xgs1s2(s
−1
2 s−1

1 h) = · · · = xgs1...sn(s
−1
n . . . s−1

1 h) = xgh(eG).

Using this last fact and given that (P ) ⊆ Br we can conclude that P ⊑ xg, contradicting
the definition of A′. Therefore φ(XF ′) ⊆ XF .

Let us consider two distinct colorings y, z ∈ XF ′ , without loss of generality, we can suppose
that yeG ̸= zeG , thus there exists h ∈ Br such that yeG(h) ̸= zeG(h). As these colorings are
valid on XF ′ , this implies that yeG(h) = yh(eG) (similarly for z), thus φ(y)h ̸= φ(z)h implying
that φ is injective. Let x ∈ XF be an arbitrary element, we can consider take y ∈ XF ′ given
by yg = σg−1(x)|Br , then φ(y) = x. Therefore, the map φ is bijective.

A special subfamily of G-NNSFTs which will be of particular interest in this paper was
introduced (in the context of G = Z2) by H.Wang and is called G-Wang subshifts:

Definition 1.27 A G-Wang tile T corresponds to a map T : S ∪ S−1 → A, with A a finite
set. Given a finite set W of G-Wang tiles, the G-Wang subshift is defined as:

XW =
{
(xg)g∈G ∈ WG| ∀s ∈ S, g ∈ G : xg(s) = xgs(s

−1)
}
.

The elements in XW are called G-Wang tilings.

Remark We note that every G-Wang subshift is indeed a G-NNSFT, whose set of forbidden
patterns is given by:

F =
⋃
s∈S

{P : {eG, s} → W | PeG(s) ̸= Ps(s
−1)}.

Example If we consider A = {a, b, c, d}, examples of Wang tiles for each of the groups
Z = ⟨s | ⟩, Z2 = ⟨s1, s2 |s1s2s−1

1 s−1
2 ⟩ and F2 = ⟨s1, s2 |⟩ are given in Figure 1.4.

The Z-Wang tile is the map T : {s, s−1} → {a, b} defined by T (s−1) = a and T (s) = b. In
the resuming two examples, both groups are 2-generated, therefore the map for the Z2- or F2-
Wang tile, respectively, is defined as T : {s1, s2, s−1

1 , s−1
2 } → {a, b, c, d} given by T (s1) = b,

T (s2) = c, T (s−1
1 ) = a and T (s−1

2 ) = d. The form chosen to draw a Z2- or F2-Wang tile
depends on the geometry given by the group and the dual of its Cayley graph, but the map
is given abstractly and is independent of the visualization.

21



Figure 1.4: Examples of Wang-tiles

1.4 State of the art of subshifts of finite type on finitely
generated groups

In this section we expose a list of results about the theory developed for subshifts of finite
type defined in Z and Fk. We chose to write this because the results obtained in this thesis
are related to both types of groups.

In particular, we recommend to see more details about the theory in Z a classic book
wirtten by D. Lind and B. Marcus [34] and also P. Kurka [31].

1.4.1 Shifts of finite type on Z
The class of Z-SFTs, also called one-dimensional shifts of finite type, has been thoroughly
studied. Let A be an alphabet and x ∈ AZ be a configuration. The configuration x may be
written as

x = · · ·x−2x−1.x0x1x2 · · ·

where xi ∈ A, for each i ∈ Z. The dot written between x−1 and x0 is important because it
indicates the "initial" position in x.

Example Some examples of Z-SFTs are the following:

a) The Z-full shift is a Z-SFT. This subshift has no restrictions, therefore we may consider
F = ∅ as its corresponding set of forbidden patterns.

b) The Golden mean shift X = XF , where F = {11}, is a classic example in the theory
of Z-SFTs. For instance: x = . . . 01.1001000 · · · ∈ XF .

c) Let us consider F = {0000, 11}. The corresponding Z-SFT X = XF can be written
using

F ′ = {0000, 1100, 0110, 0011}

obtaining the same subshift but with a set of forbidden patterns whose elements have
the same size. We note that, for a given subshift X, there are usually many different
sets F such that X = XF .
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Corresponding subshifts can be represented by finite directed graphs, such that valid Z-
configurations are in bijection with bi-infinite walks on said graph (see [34]).

Example Let us consider the Z-full shift X∅ on 2 symbols. Its associated graph is:

0 1

Figure 1.5: The Z-full shift on 2 symbols as a vertex shift.

Example Considering more restrictions, take X = XF where

F = {11, 00}

The associated graph is:

0 1

Figure 1.6: Graph associated to X{11,00}.

It is not possible to get a configuration with two consecutive 1’s or 0’s. Every time that
we see 1 must be 0 and vice versa the following symbol in the configuration.

With this in our mind, we can easily decide whether there is a valid Z-configuration by
verifying that the associated directed graph allows a bi-infinite path, i.e. it has a cycle.
Therefore, both the Emptiness and the Domino problem on Z are decidable, and, in fact,
every nonempty Z-SFT has at least one periodic configuration.

Remark In contrast to the results in symbolic dynamics on Z with respect to the study of
subshifts of finite type. In Zd, SFTs are not represented by graphs and the results obtained in
Z do not necessarily hold. Indeed, decidability of the Emptiness problem is much less obvious
and the Domino problem in particular, has a long history. In 1961, H.Wang conjectured [45],
that if a finite set of Z2-Wang tiles can tile Z2 then it also allows for periodic tilings. He then
observed that proving this conjecture would imply the existence of an algorithm to decide the
Domino problem on the plane. In 1966, Wang’s student R. Berger [6], showed that Wang’s
conjecture is false. He constructed an enormous alphabet of 20.426 Z2-Wang tiles giving
rise to a nonempty weakly aperiodic Z2-Wang subshift. Using properties of that subshift, R.
Berger furthermore showed that the Domino problem in Z2 is in fact undecidable.
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1.5 Subshifts of finite type on Free groups Fn
In this section we will expose a list of results about periodic properties of subshifts of finite
type on free groups. Our focus is in the results obtained in [42] by S.Piantadosi, mainly in
the study of nearest neighbor subshifts of finite type. Moreover, some definitions, notations
and results appear in [16].

Given an alphabet A, we consider the Fk-full shift AFk and study Fk-NNSFTs XF ⊆ AFk .
The following definition was introduced by S.Piantadosi in [42].

Definition 1.28 Given a Fk-NNSFT XF ⊆ AFk , XF has a coloring function for the alphabet
A if there exists a function Φ : A ×

(
S ∪ S−1

)
→ A such that for every a ∈ A and s ∈ S,

(a, s,Φ(a, s)) /∈ F and (Φ(a, s−1), s, a) /∈ F .

Using these coloring functions, S.Piantadosi gave a condition to determine whether or not
a Fk-NNSFT is empty.

Proposition 1.29 [42, Proposition 1] A Fk-NNSFT XF ⊆ AFk is nonempty if and only if
there exists a nonempty subset A′ ⊆ A and a coloring function for the alphabet A′.

As it turns out Fk-NNSFTs are relatively easy to analyze. For each generator s ∈ S, we
can see the set of forbidden patterns with support {eFk

, s} as defining a Z-NNSFT.

Remark Given {XFi
}ki=1 a family of k nonempty Z-NNSFTs, we can obtain a Fk-NNSFT

XF from these by letting x ∈ XF if and only if ∀g ∈ Fk, 1 ≤ i ≤ k, (xg, xgsi) /∈ Fi. We will see
that XF might be empty. For this, it is enough to look at the following F2-example: consider
A = {0, 1, 2} andXF1 , XF2 two nonempty Z-NNSFTs given by F1 = {00, 02, 11, 12, 20, 21, 22}
and F2 = {00, 01, 02, 10, 11, 20, 22}. Using the notation of Proposition 1.29, we have for XF1

and XF2 , the subsets A′
1 = {0, 1} and A′

2 = {1, 2} respectively. Our claim is that nevertheless
the resultingXF is empty. Indeed, suppose the existence of x ∈ XF ; without loss of generality
suppose xeF2 = 0. It is clear that xs−1

1
= 1 = xs1 but it is impossible to put a valid symbol

on xs2 and xs−1
2

, because 0 /∈ A′
2, thus such x cannot exist, hence XF is empty.

Definition 1.30 Given a family of Z-NNSFTs {XFi
⊆ AZ

i }ki=1, a nonempty set A′ ⊆
⋃k

i=1 Ai

is called a common alphabet if each XFi
admits a coloring function Φi : A′ × {s−1, s} → A′

on A′.

For the example presented in previous remark, there is no such common alphabet for the
resulting F2-NNSFT. The only possible choice for a common alphabet would be A′ = {1} ⊆
{0, 1, 2}, however every possible coloring function on XF1 is necessarily defined over {0, 1}
(similarly for XF2 considering {1, 2}). We will see that the existence of a common alphabet
is a necessary and sufficient condition to obtain a nonempty Fk-NNSFT from a given family
of k nonempty Z-NNSFTs.

24



Proposition 1.31 If XF is a nonempty Fk-NNSFT. There exist X1, ..., Xk nonempty Z-
NNSFTs that completely determine X, in the sense that, for all 1 ≤ i ≤ k there is Fi that
only considers the forbidden patterns restricted to generator si ∈ S.

Proof. Let {XFi
⊆ AZ

i }ki=1 be a set of k nonempty Z-NNSFTs. The common alphabet
A′ ⊆

⋃k
i=1 Ai implies for each XFi

the existence of a coloring function Φi : A′×{s, s−1} → A′.
We construct the nonempty Fk-NNSFT XF considering A′ and defining the coloring function
Φ : A′ ×

(
S ∪ S−1

)
→ A′ as an extension of the coloring functions Φi, which means that for

every a ∈ A′ and si ∈ S ∪ S−1, we set Φ(a, si) = Φi(a, s).

With this, valid colorings exist and thus XF is nonempty. Indeed, fixing xeFk ∈ A′ and
using the coloring function Φ, we extend the coloring on {eFk

} to a valid coloring on the
entire ball B1 = {eFk

} ∪ S ∪ S−1 of radius 1. For every 1 ≤ i ≤ k we put xsi = Φ(xeFk , si)

and xs−1
i

= Φ(xeFk , s
−1
i ). This is always possible because every coloring function Φi uses the

alphabet A′. Inductively, we extend a valid pattern from Bn to a valid pattern on Bn+1 as
follows: let g ∈ Bn \Bn−1 be an arbitrary element, by definition we write g = s1 . . . sn, with
s1, . . . , sn ∈ S ∪ S−1, then if sn ∈ S we put xgs = Φ(xg, s), ∀s ∈ (S ∪ S−1) \ {s−1

n } and if
sn ∈ S−1 then xgs = Φ(xg, s), ∀s ∈ (S ∪ S−1) \ {sn}. Note that by construction none of the
occurring patterns (xg, s, xgs) is forbidden. By compactness we obtain a valid coloring on
XF .

Remark Note that on general groups Proposition 1.31 does not hold. Consider two nonempty
Z-NNSFTs XF1 , XF2 ⊆ {0, 1, 2}Z given by F1 = {00, 02, 10, 11, 21, 22} and
F2 = {00, 11, 12, 21, 22}, the alphabet A′ = {0, 1, 2} already corresponds to a common alpha-
bet. However, on Z2 = ⟨{s1, s2} | s1s2s−1

1 s−1
2 ⟩, the corresponding Z2-NNSFTXF ⊆ {0, 1, 2}Z2

using F1 and F2 for the generators s1 and s2 respectively, is empty. Indeed, let us suppose
the existence of x ∈ XF . Without loss of generality we may suppose that xeZ2 = 0 then
xs1 = 1 and xs21 = 2. At the same time we have xs1s2 = 0 = xs21s2 . Thus no valid pattern on
the subgroup ⟨s1⟩ that can be extended to all of Z2, since (0, s1, 0) ∈ F = F1 ∪ F2.

1.5.1 Condition to obtain a periodic configuration on Fn

Definition 1.32 A finite walk on the directed graph Γ corresponds to a sequence of vertices
v1 . . . vn such that for every j ∈ {1, . . . , n − 1}: (vj, vj+1) ∈ E. Similarly, a bi-infinite walk
corresponds to a bi-infinite sequence of vertices (vn)n∈Z such that (vn, vn+1) ∈ E, ∀n ∈ Z. A
cycle, denoted by v1, . . . , vn, is a closed walk on Γ, i.e., (vn, v1) ∈ E. A simple cycle is in
particular a cycle but consisting only of different vertices. We denote by SC(Γ) the set of all
simple cycles on Γ. Let w be a cycle and v ∈ V . We define:

#v(w) = |{i | wi = v, 1 ≤ i ≤ |w|}|.

We can write #v(w) using the simple cycles on Γ, let SC(Γ) = {ci}|SC(Γ|
i=1 , then #v(w) =

|SC(Γ)|∑
i=1

xi#v(ci), where x1, . . . , x|SC(Γ)| are non-negative integers. If C is a set of cycles on Γ,

then: #v(C) =
∑
w∈C

#v(w).
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Remark Given a nonempty Z-NNSFT XF ⊆ AZ, it is possible to obtain a graph Γ = (V,E)
as follows: V = A and (a, b) ∈ E if and only if (a, s, b) /∈ F . Moreover, we can identify
each coloring of XF with a bi-infinite walk in a essential directed graph Γ′ = (V ′, E ′), where
V ′ = {v ∈ V | V +(v) ̸= ∅ ∧ V −(v) ̸= ∅} and E ′ ⊆ V ′ × V ′. The essential directed graph Γ′

as before is unique and in what follows for every Z-NNSFT we only consider the essential
directed graph associated.

Corollary 1.33 A nonempty Fk-NNSFT is completely determined3 by a family of k essential
directed graphs Γ if and only if all the graphs on Γ are defined on a common set of vertices
(considering the set of common vertices V = A′).

Studying the existence of periodic colorings, we see that every nonempty Fk-NNSFT
contains at least a weakly periodic coloring. This is a consequence of Proposition 1.31 and
the fact that every nonempty Z-NNSFT contains periodic colorings4. In [42] S.Piantadosi
gave necessary and sufficient conditions for the existence of a strongly periodic coloring.

Theorem 1.34 [42, Theorem 3.4] A nonempty Fk-NNSFT XΓ contains a strongly periodic
coloring if and only if there exists a family C = (Ci)

k
i=1 of finite sets of cycles on Γ = {Γi}ki=1

such that for all a ∈ A and 1 ≤ i < j ≤ k we have #a(Ci) = #a(Cj).

Example Let XΓ ⊆ {0, 1}F2 be a nonempty F2-NNSFT, where Γ = {Γ1,Γ2} are given as
follows:

0 1 0 1Γ1 : Γ2 :

Figure 1.7: Example of a strongly periodic coloring.

There exists a strongly periodic coloring on XΓ, because the cycle 01 is common to both
graphs and thus in Theorem 1.34 we can use C1 = C2 = {01} to conclude.

In contrast to Example 1.5.1, S.Piantadosi also constructs a F2-NNSFT without any
strongly periodic coloring using an alphabet with 3 symbols [42, Example 3]. We give another
example of a F2-NNSFT without any strongly periodic coloring, also using an alphabet with
3 symbols.

Example Consider the following two directed essential graphs:

Let XΓ ⊆ {0, 1, 2}F2 with Γ = {Γ1,Γ2}. Observe that XΓ is nonempty and XΓ corre-
3In the same sense of the proposition 1.31
4For every nonempty Z-NNSFT a periodic coloring stems from the existence of a cycle in its corresponding

essential directed graph.
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0

1 2

0

1 2

Γ1 : Γ2 :

Figure 1.8: Example of a F2-NNSFT without any strongly periodic coloring.

sponds to a weakly aperiodic F2-NNSFT. Indeed, the cycles on Γ1 necessarily hace the form
012 . . . 012 and the possible cycles on Γ2 are 1 . . . 1 and 2 . . . 2, thus for every nonempty set
of cycles C1 and C2 on Γ1 and Γ2 respectively, the condition #0(C1) = #0(C2) is always
violated. Therefore, XΓ effectively does not contain any strongly periodic coloring.
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Part II

Wang subshifts on finitely generated
groups
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Chapter 2

Necessary conditions for tiling finitely
generated amenable groups

This chapter corresponds to the manuscript developed by B. Hellouin de Menibus from
Université Paris-Saclay and H.Maturana Cornejo, “Necessary conditions for tiling finitely
generated amenable groups” [19], published on Discrete and continous dynamical system 2020,
Doi: http://dx.doi.org/10.3934/dcds.2020116.

2.1 Introduction
Z2-subshifts of finite type (SFT) are a set of colourings of the 2-dimensional lattice Z2,
or tilings, defined by a finite set of local restrictions. There are various equivalent ways to
express the restrictions, such as the Wang tiles formalism introduced by Hao Wang [45]. This
formalism was introduced to study the domino problem: given as input a set of restrictions
(e.g. a set of Wang tiles), is there an algorithm that decides whether there is a tiling of Z2

that respects those restrictions?

R. Berger [6] showed that the domino problem is undecidable. The proof depends heavily
on notions of periodicity and aperiodicity, more precisely on the existence of a set of Wang
tiles that only tile Z2 in a strongly aperiodic manner. This is in stark contrast with the
situation on Z where the domino problem is decidable thanks to a graph representation [34].

There has been a recent interest in symbolic dynamics on more general contexts, such as
where the lattice Z2 is replaced by the Cayley graph of an infinite, finitely generated group.
Using again the existence of strongly aperiodic SFTs, the domino problem was shown to
be undecidable, apart from Zd, on some semisimple Lie groups [41], the Baumslag-Solitar
groups [2], the discrete Heisenberg group (announced, [44]), surface groups [15, 1], semidirect
products on Z2 [5] or some direct products [4], polycyclic groups [25], some hyperbolic groups
[14]. . . It is decidable on free groups [42] and on virtually free groups [3], and it is conjectured
that these are the only groups where the domino problem is decidable (Conjecture 2.8 below).

As a consequence, outside of free and virtually free groups, one can not expect to find
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simple necessary and sufficient conditions for admitting a valid tiling. However, heuristics
can be very useful when making an exhaustive search for SFTs with desired properties;
necessary conditions in particular allow fast rejection of most empty SFTs. For example,
a transducer-based heuristic was used in the search for the smallest set of Wang tiles that
yield a strongly aperiodic Z2-SFT [27]. It is also of theoretical interest to understand how
the group properties impact necessary conditions.

2.1.1 Statements of results

We first consider a necessary and sufficient condition introduced by S. Piantadosi for an SFT
on the free group to admit a valid tiling [42]. It is well-known that an SFT on a finitely
generated group can only admit a tiling if the “corresponding” SFT on the free group does,
so this becomes a necessary condition on an arbitrary f.g. group (Corollary 2.14).

The next two stronger conditions were introduced by S. Piantadosi (to decide if an SFT
admits a strongly periodic tiling of the free group) and by J. Chazottes-J. Gambaudo-F.
Gautero [13] in a more general context of tiling the euclidean plane by polygons, but which
is necessary for an SFT to admit a tiling of Z2 [28]. We prove that the two conditions are
equivalent (Theorem 2.12), and that they form a necessary condition for an SFT to admit a
valid tiling on any finitely generated amenable group (Theorem 2.17), confirming a remark
of E. Jeandel ([26], Section 3.1).

Finally, we provide for any non-free finitely generated group a counterexample that satisfies
all conditions but does not provide a valid tiling.

2.2 Preliminaries

2.2.1 Symbolic dynamics on groups

Let G be an infinite, finitely generated group with unit element 1G. We write G = ⟨S | R⟩
where S = {g1, . . . , gd} is a finite set of generators and R = {r1, . . . , rm, . . . } ⊂ (S ∪S−1)∗ is
a (possibly infinite) set of relations. By convention r ∈ R means that r = 1G.

For instance:

• the free group Fd is the group on d generators with no relations;
• Z2 = ⟨{g1, g2} | g1g2g−1

1 g−1
2 ⟩.

Definition 2.1 (Weakly & strongly aperiodic) For a configuration x ∈ AG, we define the
orbit of the element x under the shift action as Orbσ(x) = {σg(x)|g ∈ G} and the set of
elements on G that fix the configuration x by Stabσ(x) = {g ∈ G|σg(x) = x}. A configuration
x ∈ AG is

strongly periodic if Stabσ(x) has finite index or, equivalently, if Orbσ(x) is finite;

strongly aperiodic if Stabσ(x) = {1G}.
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weakly periodic if it is not strongly aperiodic;

weakly aperiodic if it is not strongly periodic.

More generally, a subshift X ⊂ AG is weakly/strongly aperiodic if every configuration on X
is weakly/strongly aperiodic.

Example In G = Z2,

• the configuration x such that xg = 0 for all g is strongly periodic;
• the configuration x such that xgn1 = 0 for all n, and xg = 1 otherwise, is weakly periodic

and weakly aperiodic;
• the configuration x such that x(0,0) = 0, and xg = 1 otherwise, is strongly aperiodic.

2.2.2 Wang tiles, NNSFT and graphs

Definition 2.2 (Wang tiles, Wang subshifts) Let G = ⟨S | R⟩ be a finitely generated group
and C a finite set of colours. A Wang tile on C and S is a map S ∪ S−1 → C.

Given a set T of Wang tiles, the corresponding G-Wang subshift is defined as:

XT = {(xg) ∈ TG | ∀g ∈ G, s ∈ S ∪ S−1, xg(s) = xgs(s
−1)}.

We call the elements in XT G-Wang tilings.

Notice that the definition of a Wang tile depends only on the chosen set of generators, so
that the same Wang tile can be used for F2 and Z2, for example.

Z

a b
g1 7→ b
g−1
1 7→ a

Z2 or F2

a b

c

d

g1 7→ b
g−1
1 7→ a
g2 7→ c
g−1
1 7→ d

Figure 2.1: Examples of Wang tiles with colours C = {a, b, c, d} on one and two generators,
respectively, with their corresponding maps.

Take any G-NNSFT X on the alphabet A, where G = ⟨{g1, . . . , gd} | R⟩ is an arbitrary
finitely generated group. Let F be a set of forbidden patterns with each support of the form
{1G, gi}.

We associate to X a set of d graphs Γ1, . . . ,Γd, where the set of vertices is A for all Γi,
and

∀a, b ∈ A, a→ b in Γi ⇐⇒
{

1G → a
gi → b

/∈ F .
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By definition of a G-NNSFT, it follows that a configuration x belongs to X if, and only
if, xh → xhgi is an edge in Γi for all h ∈ G and all 1 ≤ i ≤ d.

Definition 2.3 (Cycles) A cycle on a graph Γ is a path - with possible edge and vertex
repetitions - that starts and ends on the same vertex. A cycle through the vertices a1 . . . ana1,
with ai ∈ A, is denoted a1 . . . an.

A cycle is simple if it does not contain any vertex repetition. Denote SC(Γ) the set of
simple cycles on Γ, which is a finite set.

Remark In graph theory, cycles are sometimes called closed walks, in which case cycle means
simple cycle. We decided to follow Piantadosi’s conventions [42] for convenience.

Let w be a cycle and a ∈ A. We define:

|w|a = #{i | wi = a, 1 ≤ i ≤ |w|}.

In any cycle, the path between the closest repetitions is a simple cycle. By removing this
simple cycle and iterating the argument, we can see that any cycle w can be decomposed
into simple cycles, in the sense that there are integers λω for ω ∈ SC(Γ) such that:

∀a ∈ A, |w|a =
∑

ω∈SC(Γ)

λω|ω|a.

We say that two G-subshifts X, Y ⊂ AG are (topologically) conjugate if there is a shift-
commuting homeomorphism Φ (that is, Φ ◦ σg = σg ◦ Φ for all g ∈ G) such that Φ(X) =
Y . A shift-commuting homeomorphism (or conjugacy) corresponds to a reversible cellular
automaton: there is a finite subset H ⊂ G and a local rule φ : AH → A such that

∀x ∈ X, ∀g ∈ G, Φ(x)g = φ(σg−1(x)|H),

and Φ−1 is itself a cellular automaton.

Proposition 2.4 For any set of generators, each G-SFT is conjugate to a G-NNSFT and
each G-NNSFT is conjugate to a G-Wang subshift.

This is folklore. A detailed proof for the SFT - NNSFT part can be found in [33] (Propo-
sitions 1.6 and 1.7), and a proof of the NNSFT - Wang subshift part in [16].

Since the conjugacy from a G-Wang subshift to a G-NNSFT can be chosen letter-to-letter
(i.e. H = {1G} in the definition), it is easy to see that the conjugacy does not depend on G,
so we could say that a set of graphs and a set of Wang tiles are conjugate.

Proposition 2.5 Let X and Y be two conjugate G-subshifts. X admits a valid tiling if and
only if Y admits a valid tiling. The same is true for weakly/strongly (a)periodic tilings.
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2.3 S. Piantadosi’s and J. Chazottes-J. Gambaudo-F. Gautero’s
conditions

2.3.1 State of the art on the free group and Z2

The first two conditions were introduced by S. Piantadosi in the context of symbolic dynamics
on the free group Fd.

Definition 2.6 (Condition (⋆) [42]) A family of graphs Γ = {Γi}1≤i≤d whose vertices are
an alphabet A satisfies condition (⋆) if and only if there is some nonempty A′ ⊂ A with a
colouring function Ψ : A′ × S → A′ such that, for any colour a ∈ A′ and any generator
gi ∈ S, a→ Ψ(a, gi) is an edge in Γi.

Theorem 2.7 ([42]) Let X be a Fd-NNSFT on the alphabet A. X is nonempty if and only
if the corresponding set of graphs satisfies condition (⋆).

This theorem provides a decision procedure for the domino problem in free groups of any
rank: find a subalphabet such that every letter admits a valid neighbour in the subalphabet
for every generator.

Definition 2.8 (Condition (⋆⋆) [42]) Consider a family of graphs Γ = {Γi}1≤i≤d and SC(Γi) =
{ωj

i }1≤j≤#SC(Γi) the set of simple cycles for each graph Γi.

We denote by (⋆⋆) the following equation on real numbers xi,j:

∀a ∈ A,
#SC(Γ1)∑

j=1

x1,j|ωj
1|a =

#SC(Γ2)∑
j=1

x2,j|ωj
2|a = · · · =

#SC(Γd)∑
j=1

xd,j|ωj
d|a.

We say that the graph family satisfies condition (⋆⋆) if equation (⋆⋆) is not empty (e.g.
all graphs contain at least a cycle) and admits a nontrivial positive solution.

Remark We formulated the previous condition in terms of simple cycles (using the formalism
from Theorem 3.6 instead of Theorem 3.4 in [42]) because they form a finite set, making it
easier to prove formally when the condition is not satisfied.

Theorem 2.9 ([42], Theorem 3.6) A Fd-NNSFT contains a strongly periodic configuration
if and only the associated family of graphs satisfies condition (⋆⋆).

Example We illustrate S. Piantadosi’s conditions on the following example:

The corresponding F2-NNSFT admits a tiling, because it satisfies condition (⋆) on the
alphabet A′ = A. However, it does not admit a periodic tiling: the simple cycles of Γ1 are
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0 1

2

0

1 2

Γ1 : Γ2 :

Figure 2.2: Illustrate Piantadosi’s conditions

(up to shifting) {012} and the simple cycles of Γ2 are {1, 2}, so Equation (⋆⋆) is:

x1,1 = 0 (a = 0)

x1,1 = x2,1 (a = 1)

x1,1 = x2,2 (a = 2)

which obviously doesn’t admit a nontrivial solution. As we will see later, the corresponding
Z2-NNSFT doesn’t admit any tiling.

Remark For example, if all graphs Γi share a common cycle w (say ω1
i = w for all graphs

Γi), then condition (⋆⋆) admits a solution: for all i, xi,1 = 1 and xi,j = 0 when j ̸= 1.
Therefore the corresponding Fd-NNSFT contains a periodic configuration.

Definition 2.10 (Condition (⋆⋆)′ [13]) Let T be a set of Wang tiles on colours C and set of
generators S. For each g ∈ S ∪S−1 and each colour c ∈ C, define cg the subset of Wang tiles
τi ∈ T such that τi(g) = c. We call (⋆⋆)′ the following equation:

∀g ∈ S,∀c ∈ C,
∑
τi∈cg

xi =
∑

τj∈cg−1

xj.

We say that T satisfies condition (⋆⋆)′ if Equation (⋆⋆)′ admits a positive nontrivial solution.

Theorem 2.11 ([13]) If a set T of Wang tiles admits a valid tiling of Z2, then it satisfies
condition (⋆⋆)′.

This condition and result were introduced in [13], but a much easier presentation in our
context is given in [28].

Example Example 2.3.1 is conjugate to the following set of Wang tiles. Equation (⋆⋆)′
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0 7→ τ0
1 7→ τ1
2 7→ τ2

τ0

a

b

b

a

τ1

b

a

c

a

τ2

c

b

a

b

Figure 2.3: Wang tiles as example to see conditions (⋆⋆)′

becomes the following, where next to each equation is the corresponding generator and colour.

(g1, a) x2 = x0 (g2, a) x1 = x0 + x1

(g1, b) x0 = x1 (g2, b) x0 + x2 = x2

(g1, c) x1 = x2 (g2, c) 0 = 0

This equation does not admit a positive nontrivial solution, so the corresponding Z2-Wang
subshift is empty.

2.3.2 Conditions (⋆⋆) and (⋆⋆)′ are equivalent

Although conditions (⋆⋆) and (⋆⋆)′ were introduced in very different contexts (periodic tilings
of the free group and tilings of the Euclidean plane, respectively), it turns out that they are
equivalent. The fact that (⋆⋆) is a condition on graphs (NNSFTs) and (⋆⋆)′ is a condition
on sets of Wang tiles (Wang subshifts) is only cosmetic since Proposition 2.4 lets us go from
one model to the other.

Theorem 2.12 Let T be a set of Wang tiles over the set of colours C and the set of generators
S.

T satisfies condition (⋆⋆)′ if, and only if, the associated graphs satisfy condition (⋆⋆).

Proof. (⇐) Let (xi,j) be a nonnegative solution to equation (⋆⋆). For every tile τi, put
xi =

∑#SC(Γ1)
j=1 x1,j|ωj

1|τi .

Because each simple cycle of Γ1 is a cycle, it contains as many tiles in cg1 as in cg−1
1

; that
is,

∑
τi∈cg1

|ωj
1|τi =

∑
τj∈cg−1

1

|ωj
1|τi . Summing over all simple cycles ωj

1, we get
∑

τi∈cg1
xi =∑

τi∈cg−1
1

xj.

Since (xi,j) is a solution to Equation (⋆⋆), we also have xi =
∑#SC(Γn)

j=1 xn,j|ωj
n|τi for every

n, so the same argument shows that (xi) is a nonnegative solution of equation (⋆⋆)′.

(⇒) Because equation (⋆⋆)′ admits a solution, it admits a rational solution, and therefore
an integer solution. Let (xi) be an integer, nonnegative solution of equation (⋆⋆)′.
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For the generator g1, consider the graph Γ1 obtained by the letter-to-letter conjugacy of
Proposition 2.4: concretely, it is the graph on vertices {τi}1≤i≤n with τi → τj ⇔ ∃c ∈ C, τi ∈
cg1 and τj ∈ cg−1

1
.

We define an auxiliary graph G1 on vertices {τ ki }1≤i≤n,1≤k≤xi
(that is, xi copies for each

tile τi) as follows.

Because
∀c ∈ C,

∑
τi∈cg1

xi =
∑

τj∈cg−1
1

xj,

we can fix an arbitrary bijection

Ψc
1 : {τ ki : τi ∈ cg1 , 1 ≤ k ≤ xi} → {τ k′i′ : τi′ ∈ cg−1

1
, 1 ≤ k′ ≤ xi′},

and put an edge τ ki → τ k
′

i′ if and only if Ψc
1(τ

k
i ) = τ k

′

i′ for some c ∈ C. Because each vertex
has indegree and outdegree 1, it is a (not necessarily connected) Eulerian graph and admits
a finite set of cycles covering every vertex exactly once.

Notice that by construction, if G1 has an edge τ ki → τ k
′

i′ , then Γ1 has an edge τi → τi′ .
Therefore each cycle of G1 can be sent on a cycle in Γ1 through the projection τ ki 7→ τi.
In this way, project the finite set of cycles obtained above and decompose them into simple
cycles of Γ1. Denote x1,j the total number of each simple cycle ωj

1 obtained in this way.

Because each tile τi was present in G1 as a vertex in xi copies, we have for every i:∑#SC(Γ1)
j=1 x1,j|ωj

1|τi = xi.

Now apply the same argument for each generator g2, . . . , gn and the variables (xi,j) thus
obtained are a solution to equation (⋆⋆).

2.4 Necessary conditions for tiling arbitrary groups
Since the above conditions apply on sets of Wang tiles or set of graphs, they actually are
conditions on a family of G-SFT where G ranges over all groups with a fixed number of
generators. The following proposition relates the properties of these SFT. It can be found
(under a different form) in [10] (Proposition 10 and remark below)

Proposition 2.13 Let G1 = ⟨{g1, . . . , gd}|R⟩, G2 = ⟨{g1, . . . , gd}|R′⟩ be finitely generated
groups, with R′ ⊂ R. Consider the canonical surjective morphism π : G2 → G1 defined by
π(gi) = gi, ∀1 ≤ i ≤ d. Let Φ : AG1 → AG2 be defined by Φ(x)g = xπ(g). Let X1 and X2 be
the corresponding G1-NNSFT and G2-NNSFT respectively, such that X2 has the same local
rules as X1.

We have:

1. If x is a valid tiling for X1 then Φ(x) is a valid tiling for X2.
2. If x is weakly periodic then Φ(x) is weakly periodic. In particular, if X1 admits a weakly

periodic tiling, then X2 admits a weakly periodic tiling.
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3. If x is weakly aperiodic then Φ(x) is weakly aperiodic. In particular, if X1 admits a
weakly aperiodic tiling, then X2 admits a weakly aperiodic tiling.

The strong properties are not preserved by Φ, but of course the image of a strongly
(a)periodic tiling remains weakly (a)periodic. Stronger versions with different hypotheses
can be found in [10, 26].

Proof. 1. Since X2 is an NNSFT, it is enough to check that, for all h ∈ G2 and all
1 ≤ i ≤ d, Φ(x)h → Φ(x)hgi is an edge in Γi, that is to say, that it is not a forbidden
pattern for X2. By definition of Φ, Φ(x)h = xπ(h) and Φ(x)hgi = xπ(h)π(gi) = xπ(h)gi .
Because x is a valid tiling for X1, we have that xπ(h) → xπ(h)gi is an edge in Γi, which
proves the result.

2. If x is a weakly periodic tiling in X1, then σ(x) is nontrivial by definition. We have:

σ(Φ(x)) = {g ∈ G2 : ∀h ∈ G2,Φ(x)hg = Φ(x)h}
= {g ∈ G2 : ∀h ∈ G2, xπ(h)π(g) = xπ(h)}.

Since π is surjective, this means that π(σ(Φ(x))) =σ (x). σ(x) is nontrivial so σ(Φ(x)) =
π−1(σ(x)) is nontrivial as well.

3. If x is a weakly aperiodic tiling in X1, then σ(x) does not have finite index. The
canonical morphism π : G2 → G1 yields a morphism on the quotient:

π̃ : G2/π
−1(σ(x)) → G1/σ(x),

and π̃ is surjective since π is surjective. Remember that σ(Φ(x)) = π−1(σ(x)) by the pre-
vious point. Since σ(x) does not have finite index, G1/σ(x) is infinite, so G2/π

−1(σ(x))
is infinite as well, and σ(Φ(x)) = π−1(σ(x)) does not have finite index.

Remark In the last proposition, the converse of the point (1) does not hold. For instance,
consider G = Z2 = ⟨g1, g2 | g1g2g−1

1 g−1
2 ⟩. Example 2.3.1 provided an example of a set of

graphs that satisfies condition (⋆) (so the corresponding F2-NNSFT admits a valid tiling)
but does not satisfy condition (⋆⋆) (so the corresponding Z2-NNSFT does not admit any
valid tiling).

To understand why, notice that ker(π) contains g1g2g−1
1 g−1

2 , so if a tiling x ∈ AF2 is such
that x1F2 ̸= xg1g2g−1

1 g−1
2

, then Φ−1(x) = ∅. If this happens for all x ∈ X2 then X1 is empty.

Corollary 2.14 Let Γ1, . . . ,Γd be a set of graphs that does not satisfy condition (⋆). Then
the corresponding G-NNSFT is empty for an arbitrary group G with d generators.

Proof. If there was a valid tiling in G = ⟨g1, . . . , gd | R⟩ then, applying Proposition 2.13, we
would obtain a tiling on Fd = ⟨g1, . . . , gd | ∅⟩, which is in contradiction with Theorem 2.7.
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2.5 Necessary conditions for tiling amenable groups
Definition 2.15 (Følner sequence) Let G be a group. A Følner sequence for G is a sequence
of finite subsets Sn ⊂ G such that:

G =
⋃
n

Sn and ∀g ∈ G,
#(Sng△Sn)

#Sn

−−−→
n→∞

0,

where Sng = {hg : h ∈ Sn} and A△B = (A\B) ∪ (B\A) is the symmetric difference.

In the previous definition, it is easy to see that the second condition only has to be checked
for g in a finite generating set. The set Sng△Sn can be understood as the border of Sn, so
an element of a Følner sequence must have a small border relative to its interior.

Definition 2.16 (Amenable group) A group G is amenable if it admits a Følner sequence.

This definition applies more generally for all countable groups. A few examples:

• Zd is amenable and a Følner sequence is given by Sn = [−n, n]d. Indeed, if (gi)1≤i≤d

is the canonical set of generators, then #Sn = (2n + 1)d and #((Sn + gi)△Sn) =
2 · (2n+ 1)d−1.

• Fd for d ≥ 2 is not amenable. In particular, the balls Sn of radius n - that is, reduced1

words of length ≤ n on the set of generators (gi)1≤i≤d - are not a Følner sequence.
Indeed, one can easily check that #Sn = Ω(dn) and #(Sngi△Sn) = Ω(dn).

Theorem 2.17 (Heuristic for tiling an amenable group) Let G be a finitely generated amenable
group, S a finite set of generators, and T a set of Wang tiles.

If there is a tiling of G with the tiles T , then condition (⋆⋆) (or equivalently (⋆⋆)′) is
satisfied.

This results confirms a remark by E. Jeandel in [26], Section 3.1.

Proof. Let x ∈ TG be a tiling of G and Sn be a Følner sequence for G. Using notations from
Definition 2.8, for a colour c ∈ C and a generator g ∈ S, cg is the set of tiles τ such that
τ(g) = c.

For any h ∈ Sn ∩ Sng
−1, we have xh ∈ cg ⇔ xhg ∈ cg−1 (and in this case, hg ∈ Sn ∩ Sng).

This means that, for all c ∈ C, g ∈ S and n ∈ N:

#{h ∈ Sn ∩ Sng
−1 : xh ∈ cg} = #{h ∈ Sn ∩ Sng : xh ∈ cg−1},

so in particular

|#{h ∈ Sn : xh ∈ cg} −#{h ∈ Sn : xh ∈ cg−1}| ≤ #(Sng△Sn) + #(Sng
−1△Sn).

1with no g−1
i gi or gig

−1
i factors
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For each tile τi, let xni = #{h∈Sn : xh=τi}
#Sn

. The previous computation implies that:

∀g ∈ S, ∀c ∈ C,

∣∣∣∣∣∣
∑
τi∈cg

xni −
∑

τj∈cg−1

xnj

∣∣∣∣∣∣ ≤ #(Sng△Sn)

#Sn

+
#(Sng

−1△Sn)

#Sn

.

Notice that the right-hand side tends to 0 as n tends to infinity by definition of a Følner
sequence. Consider the sequence of vectors ((xni )i)n∈N and, by compacity, let (xi) be any
limit point of this sequence. Since

∑
i x

n
i = 1 for all n by definition,

∑
i xi = 1 as well, and

we have
∀g ∈ S, ∀c ∈ C,

∑
τi∈cg

xi =
∑

τj∈cg−1

xj,

so (xi) is a nontrivial solution to Equation (⋆⋆). Condition (⋆⋆)′ follows by Theorem 2.12.

2.6 Counterexamples
It is clear that none of the (⋆), (⋆⋆) or (⋆⋆)′ conditions can be a sufficient condition to admit
a Zd-tiling, since it would be a decision procedure for the Domino problem; this argument
applies to any group where the Domino problem is undecidable. For completeness, we provide
explicit counterexamples for any non-free finitely generated group.

Theorem 2.18 Let G be an arbitrary finitely generated group. If G is not free, then there
exists a Wang tile set that satisfies the three conditions (⋆), (⋆⋆) and (⋆⋆)′ and such that the
corresponding G-Wang subshift is empty.

Proof. Write G = ⟨g1, . . . , gd | R⟩, and take r1 : w1 . . . wn ∈ R, with w1 . . . wn a reduced
word on generators g1 . . . gd (no generator is next to its inverse).

We build a family of graphs Γd on vertices {0, . . . , n} with the following edges:

∀i ≤ n,

{
if wi = gj, then Γj has an edge i− 1 → i;
if wi = g−1

j , then Γj has an edge i→ i− 1.

Notice that every vertex has indegree and outdegree at most 1 and we did not create any
cycle in the process, so we can complete every Γj to be isomorphic to a n-cycle graph Cn.

Now we define a set of n+1 Wang tiles on n+1 colours {0, . . . , n} as follows. Tile τi has
the following colours: for all j, g−1

j → i and gj → k if there is an edge τi → τk in Γj.

Example For Z2, we have r1 : g1g2g
−1
1 g−1

2 = 1. Therefore Γ1 contains 0 → 1 and 3 → 2,
and Γ2 contains 1 → 2 and 4 → 3. One possible completion for Γ1 and Γ2 is the following:

The corresponding G-NNSFT is conjugate to the G-Wang subshift defined by the following
tiles through the rewriting i↔ τi:
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Γ1 : 0

1

24

3

Γ2 :

Figure 2.4: One possible completion for Γ1 and Γ2

τ0

0 1

1

0

τ1

1 4

2

1

τ2

2 0

4

2

τ3

3 2

0

3

τ4

4 3

3

4

Figure 2.5: Corresponding tiles conjugates to the example

This tiling satisfies condition (⋆⋆)′ since we can assign the same weight 1
n

to each tile.

It is clear that a tiling x of G using tiles τ0, . . . , τn must contain every tile. Assume w.l.o.g
that x1 = τ0. By construction we must have xw1 = τ1, xw1w2 = τ2, and by an easy induction
xw = τn. But since w = 1 in G, we have τ0 = x1 = xw = τn, a contradiction. Therefore there
is no tiling of G using tiles τ0, . . . , τn.

2.7 Extension of the result
The condition that we attributed to [13] ((⋆⋆) in op.cit) appeared earlier in [20]. Furthermore,
a combinatorial interpretation of the condition was given by T. Monteil in various talks in
the context of tiling translation surfaces. We thank P. Guillon and T. Monteil for bringing
this to our attention.

Lemma 2.19 For any normal subgroup S of G, if T tiles G and there is a configuration
x ∈ XT , with Stab(x) ⊆ S, then T tiles G⧸S.

Theorem 2.20 Let T be a set of Wang tiles on d-generators. The following are equivalent,
where all groups are finitely generated:

1. T tiles some group in a strongly periodic manner.

2. T tiles Fd in a strongly periodic manner.
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3. T tiles some infinite amenable group.

4. T tiles some infinite amenable torsion-free group.

5. T tiles some finite group.

6. T tiles some virtually Z group.

Proof. 2 ⇒ 1, 4 ⇒ 3 and 6 ⇒ 3 are clear. 3 ⇒ 2 is proved in Theorem 2.17.

1 ⇒ 5. Let G be a some group and x ∈ XT a strongly aperiodic configuration. Let
S =

⋂
y∈Orb(x)

Stab(y) =
⋂

y∈Orb(x)

g · Stab(y) · g−1. S ⊂ Stab(x) and S is a normal subgroup of

G, so by lemma 2.19, T tiles G⧸S. We prove that G⧸S is a finite. Every σg for g ∈ G is
a permutation of Orb(x), and σ : g 7→ σg is a morphism from G to SOrb(x). Bye definition,
S = ker(σ), so G⧸S is isomorphic to some subgroup of SOrb(x) which is finite.

5 ⇒ 6. Let G be a finite group tiled by T . G can be written as Fd⧸S for some nor-
mal subgroup S. Let φ be any morphism Fd → Z with infinite image; for example, the
morphism generated by φ(g1) = 1 and φ(gi) = 0, for i > 1. Then φ(S) ̸= {0}, because
otherwise Fd⧸ ker(φ) ⊂ Fd⧸S would be infinite. So, denoting S⋆ = ker(φ|S), we have
φ(S) = kZ = S⧸S⋆, for some k > 0. Then the canonical surjection Fd⧸S⋆ → Fd⧸S has fi-
nite image and has kernel S⧸S⋆ = kZ, so by Lemma 2.19, T tiles Fd⧸S⋆ which is virtually Z.

3 ⇒ 4. Write G as Fd⧸S for some normal subgroup S. Then Fd⧸S ′ is torsion-free, where
S ′ is the derived group of S. By the previous Lemma 2.19, T tiles Fd⧸S ′.

Corollary 2.21 Sets of Wang tiles on d generators can be split into three types:

1. Those that tile no group.

2. Those that tile the free group but no amenable group (incl. finite groups).

3. Those that tile some amenable group, and there is an algorithm that, given a set of
wang tiles, outputs its type.

2.8 Conclusion
We would like to mention the two following conjectures that relate the fact of admitting a
valid (periodic) tiling and the underlying group structure: [[3]] A finitely generated group
has a decidable domino problem if and only if it is virtually free.
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Figure 2.6: The previous theorem provide various characterisations of Type 3 sets.

[[10]] A finitely generated group has an SFT with no strongly periodic point if and only if
it is not virtually cyclic.

In both cases, the “if” direction is proven and the “only if” direction is open.

If Conjecture 2.8 holds, every infinite amenable groupe has an undecidable domino prob-
lem. We ask whether the domino problem could be decidable when considering all amenable
groups “at the same time”, with a decision procedure given by Conditions (⋆⋆) and (⋆⋆)′.
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Chapter 3

Weakly aperiodic Wang subshifts with
minimal alphabet size on the Free group

This chapter corresponds to an adaptation of the original manuscript developed by M.
Schraudner and H. Maturana, “Complexity and entropy in tree shifts not of finite type”,
in preparation.

3.1 Introduction
Given a finitely generated group G, a G-subshift corresponds to the coloring of G respecting
a set of local restrictions. When there are only finitely many restrictions the G-subshift
associated is a G-subshift of finite type (G-SFT). A subclass of G-SFTs considering only
restrictions between adjacent elements is called nearest neighbor SFTs (G-NNSFT). A special
kind of G-NNSFT, which we shall consider, are the G-Wang subshifts (Definition 3.1). In
this case the restrictions are given by matching colors along edges between adjacent sites and
a valid coloring of G is called a G-Wang tiling. It is a folklore result that every G-SFT is
conjugated to a G-NNSFT (Proposition 1.26) and also that every G-NNSFT is conjugated
to a G-Wang subshift. We give a proof for this last fact in Proposition 3.2. An important
question is to know whether given a set of local restrictions, the resulting G-SFT is empty or
not. This question is known as the Emptiness problem and in the case of a G-Wang subshift
is also called the Domino problem.

For G = Z, the class of Z-SFTs has been thoroughly studied. Corresponding subshifts
can be represented by finite directed graphs, such that valid Z-colorings are in bijection
with bi-infinite walks on said graph (see [34]). Hence, given a collection of nearest neighbor
restrictions or a finite set of Wang tiles, we can easily decide whether there is a valid Z-
coloring by verifying that the associated directed graph allows a bi-infinite path, which is
equivalent to having a cycle. Therefore, both the Emptiness and the Domino problem on Z
are decidable and in fact, every nonempty Z-SFT has at least one periodic coloring.

For G = Z2 decidability of the Emptiness problem is much less obvious and the Domino
problem in particular, has a long history. In 1961, H. Wang conjectured [45], that if a finite
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set of Z2-Wang tiles can tile Z2 then it also allows for periodic tilings. He then observed
that proving this conjecture would imply the existence of an algorithm to decide the Domino
problem on the plane. In 1966, Wang’s student R. Berger [6], showed that Wang’s conjecture
is false. He constructed an enormous alphabet of 20.426 Z2-Wang tiles giving rise to a
nonempty weakly aperiodic Z2-Wang subshift. Using properties of that subshift, R. Berger
furthermore showed that the Domino problem in Z2 is in fact undecidable.

After this first example, people started to work on reducing the required number of Z2-
Wang tiles. In 1971, R. M. Robinson [43] constructed an aperiodic Z2 tiling with an alphabet
comprised of only 56 tiles, followed by Lauchli [46] who in 1975 published an aperiodic set of
40 Z2-Wang tiles. After that, in 1996 J. Kari [29] invented a new method to build aperiodic
tilesets and obtained an example with 14 Z2-Wang tiles. In the same year, together with
K. Culik [17], they reduced the set to 13 Z2-Wang tiles. Finally, in 2015 E. Jeandel and M.
Rao [27] determined that 11 is the smallest cardinality of Z2-Wang tiles which can generate
a nonempty aperiodic Z2-Wang subshift.

On free groups G = Fk, some basic aspects of symbolic dynamics have been developed
by S. Piantadosi [42]. In particular, he studied conditions assuring non-emptiness as well as
the existence of strongly periodic colorings in Fk-NNSFTs. In fact the Emptiness problem is
decidable, because every Fk-NNSFT is completely determined by a family of k Z-NNSFTs
(Proposition 1.31). Moreover every non-empty Fk-NNSFT contains a weakly periodic color-
ing, nevertheless S. Piantadosi constructs an example of a F2-NNSFT without any strongly
periodic coloring.

The goal of this chapter is to study Fk-Wang subshifts. To do this, it is important to note
that not every Fk-NNSFT corresponds to a Fk-Wang subshift. We show a counterexample
for F1 = Z in Example 3.4, by construction it is possible to extend this counterexample to
Fk, k ≥ 2. With this in mind, we give conditions on the essential directed graphs which
determine a valid nonempty Z-Wang subshift in Proposition 3.7 and following a similar ar-
gument as before, we show that every nonempty Fk-Wang subshift is completely determined
by a family of k nonempty Z-Wang subshifts (Proposition 3.8). In a second step we deter-
mine the minimal cardinality of Fk-Wang tiles which generate a weakly aperiodic Fk-Wang
subshift. Clearly, a simple tile is not enough, but also the case of a two-element alphabet is
quickly discarded (Proposition 3.9). Sufficiency of three distinct Fk-Wang tiles is shown by
contrasting a first example, leading to the following main result:

Theorem Given k ≥ 2, the minimum cardinality of a set of Fk-Wang tiles which produces
a nonempty weakly aperiodic Fk-Wang subshift is 3.

Creating all 25 essential directed graphs which give rise to non-empty Z-Wang subshifts
with exactly 3 tiles, we use Proposition 3.7 to generate all possible Fk-Wang subshifts using a
three alphabet. Analyzing those graphs and its structure then leads to an effective method of
classifying the Fk-subshifts aperiodicity in terms of non-trivial solutions of a certain system
of linear equations and allows us to determine all weakly aperiodic examples.
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3.2 Preliminaries and notations
Let G be a finitely generated group and A be a nonempty finite set. We consider the product
set AG = {x : G → A} consisting of all functions from G to A. We refer to the set A as
an alphabet, its elements a ∈ A will be called symbols and the elements of AG colorings of
G. Given x = (xg)g∈G ∈ AG, each xg corresponds to the symbol seen at position g ∈ G. The
group G acts on AG by the left shift σ : G×AG → AG defined coordinatewise as:

σ(g, x)h := xg−1h ∀h ∈ G.

We refer to σ as the action and we use the notation σg(x) to denote σ(g, x). Given a
finite subset F ⊂ G, an element P ∈ AF is called a pattern and F = (P ) its support.
We say that a pattern P appears in a coloring x ∈ AG (and we write P ⊏ x) if there
exists g ∈ G such that σg(x)|F = P . Since A is a finite set, AG endowed with the pro-
discrete topology, is a compact space and has a countable clopen basis given by the cylinders
[P ]g = {x ∈ AG | σg−1(x)|(P ) = P}.

The pair (AG, σ) is called G-full shift and every closed and σ-invariant subset X ⊆ AG

corresponds to a G-subshift.

A special subfamily of G-NNSFTs which will be of particular interest in this chapter was
introduced (in the context of G = Z2) by H.Wang and is called G-Wang subshifts:

Definition 3.1 Let S be a finite generator set of G. A G-Wang tile T corresponds to a map
T : S ∪ S−1 → A, with A a finite set. Given a finite set W of G-Wang tiles, the G-Wang
subshift is defined as:

XW =
{
(xg)g∈G ∈ WG| ∀s ∈ S, g ∈ G : xg(s) = xgs(s

−1)
}
.

The elements in XW are called G-Wang tilings.

Remark We note that every G-Wang subshift is indeed a G-NNSFT, whose set of forbidden
patterns is given by:

F =
⋃
s∈S

{P ∈ W {eG,s} | PeG(s) ̸= Ps(s
−1)}.

Example If we consider A = {a, b, c, d}, examples of Wang tiles for each of the groups
Z =< s | >, Z2 =< s1, s2 |s1s2s−1

1 s−1
2 > and F2 =< s1, s2 | > are given in Figure 1.4.

The Z-Wang tile is the map T : {s, s−1} → {a, b} defined by T (s−1) = a and T (s) = b. In
the resuming two examples, both groups are 2-generated, therefore the map for the Z2- or F2-
Wang tile, respectively, is defined as T : {s1, s2, s−1

1 , s−1
2 } → {a, b, c, d} given by T (s1) = b,

T (s2) = c, T (s−1
1 ) = a and T (s−1

2 ) = d. The shape chosen to draw a Z2- or F2-Wang tile
depends on the geometry given by the group and the dual of its Cayley graph, but the map
is given abstractly and is independent of the visualization.
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Figure 3.1: Examples of Wang-tiles

Proposition 3.2 Every G-NNSFT is topologically conjugate to a G-Wang subshift.

Proof. Let XF be an arbitrary G-NNSFT, with F =
⋃

s∈S Fs where Fs ⊆ A{eG,s}. We
denote by F c

s = A{eG,s} \ Fs.

Consider the G-Wang subshift XW given by a set of G-Wang tiles W defined as follows:
T ∈ W if and only if ∃a ∈ A, ∀s ∈ S :

(
T (s−1) = a ∧ ∃b ∈ A: T (s) = b ⇒ (a, s, b) ∈ F c

s

)
.

Our claim is that XF and XW are topologically conjugated.

Define the map φ : XF → XW by φ((xg)g∈G) = (Tg)g∈G, such that ∀g ∈ G, ∀s ∈ S :
Tg(s) = xgs and Tg(s−1) = xg. By construction,

∀x ∈ XF : ∀g ∈ G, s ∈ S : (φ(x)g)(s) = (φ(x)gs)(s
−1).

This implies that φ(XF) ⊆ XW . Given that the map φ is defined locally, by the Theorem
of Curtis-Hedlund-Lyndon we conclude that it is σ-invariant and continuous. Now consider
x, y ∈ XF such that φ(x) = (Tg)g∈G = φ(y), then for every g ∈ G and arbitrary s ∈ S, we
have Tg(s−1) = xg = yg obtaining x = y. Thus φ is an injective map. For every (Tg)g∈G ∈
XW , we can construct (xg)g∈G ∈ XF given as xg = Tg(s

−1), with some fixed arbitrary s ∈ S.
We note that φ((xg)g∈G) = (Tg)g∈G and thus φ is a surjective map. Therefore, the map φ
gives a σ-commuting homeomorphism between XF and XW .

Remark In general the conjugacy between a G-NNSFT and a G-Wang subshift is not trivial.
The alphabet of XW is usually larger than the alphabet used for XF . For instance, if we
consider a group G on n generators and XF ⊂ {0, 1}G given by F = {(1, s, 1)}s∈S, then W
as constructed in the proof of Proposition 3.2 has 2n+1 G-Wang tiles

(
there are 2n G-Wang

tiles with T (s−1) = 0, for every s ∈ S and only one with T (s−1) = 1
)
.

Even more, it is impossible to obtain a conjugacy map between XF and any G-Wang
subshift using only two G-Wang tiles. Indeed, let W ′ = {T1, T2} be an arbitrary set of two
distinct G-Wang tiles and suppose the existence of a conjugacy ψ : XF → XW ′ . Given
that ψ commutes with the action σ, this map preserves fixed colorings. Thus without loss
of generality we can suppose that ψ((0)g∈G) = (T1)g∈G. This implies that T1(s) = T1(s

−1),
∀s ∈ S. Let {xi = (xig)g∈G}ni=1 ⊆ XF be a set of n distinct XF -colorings, given by xig = 0 for
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every g ∈ G\ < Si > and

xisni =

{
1, if n is an even integer
0, if n is an odd integer

.

For each 1 ≤ i ≤ n, we have that σsi(xi) ̸= xi, but σs2i (x
i) = xi. Using that the map

ψ commutes with σ, the Wang-tiling ψ(xi) cannot be a fixed point, thus ψ(xi) cannot be
(T1)g∈G or (T2)g∈G, however σs2i (ψ(x

i)) = ψ(σs2i (x
i)) = ψ(xi) focus the tiling ψ(xi) to have

period 2 along direction si so necessary it must contain . . . T1T2T1T2 . . . . By the definition
of G-Wang tiles, we obtain: T1(si) = T2(s

−1
i ) and T2(si) = T1(s

−1
i ), thus T2(si) = T2(s

−1
i ) =

T1(si) = T1(s
−1
i ), ∀si ∈ S. Therefore, we conclude that T1 = T2. Contradiction.

In the last remark, we may consider the group Z =< s | >. If there exists an element
g ∈ Z such that σg fixes a coloring, we say that this coloring is periodic. In particular, the
coloring x = (xg)g∈Z defined as xsn = 1 for every n an even integer and xsn = 0 for odd n, is
periodic with period 2, i.e. σs2(x) = x. For more general groups however we have to define
the concept of periodicity with more care. To see this it is enough to consider the group
Z2 =< s1, s2 | s1s2s−1

1 s−1
2 > and the coloring x1 (as given in the last remark). Effectively, for

x1 there exists s21 ∈ Z2 such that σs21(x
1) = x1, but for the generator s2 there is no integer n,

distinct of 0, such that σsn2 (x
1) = x1. Therefore we can say that the coloring x1 is 2-periodic

in direction s1 but aperiodic in the direction of s2.

3.3 Fk-NNSFT using essential graphs
Given a nonempty Z-NNSFT XF ⊆ AZ, it is possible to obtain a graph Γ = (V,E) as
follows: V = A and (a, b) ∈ E if and only if (a, s, b) /∈ F . Moreover, we can identify each
coloring of XF with a bi-infinite walk in a essential directed graph Γ′ = (V ′, E ′), where
V ′ = {v ∈ V | V +(v) ̸= ∅ and V −(v) ̸= ∅} and E ′ ⊆ V ′ × V ′. The essential directed graph
Γ′ as before is unique and in what follows for every Z-NNSFT we only consider the essential
directed graph associated.

Obtaining a valid coloring of the free group Fk by employing a finite set of F constraints
corresponds to conducting these colorings individually in each of the k directions. In other
words, we can consider the XF Fk-NNSSFT as comprising k distinct Z-NNSFTs, with each
one incorporating a specific set of forbidden patterns Fi ⊆ A × {σi} × A. This significant
observation is formally presented in the subsequent corollary.

Corollary 3.3 A nonempty Fk-NNSFT is completely determined by a family of k essential
directed graphs Γ if and only if all the graphs on Γ are defined on a common set of vertices
V = A′.

Example We consider F2 and A = {0, 1}, we define XF as the Fibonacci shift in the
free group on two generators. Specifically, we represent XF as (1, si, 1), where 1 ≤ i ≤ 2.
By utilizing the aforementioned characterization, we observe that this F2-NNSFT can be
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effectively regarded as two distinct Z-NNSFTs. Each Z-NNSFT is determined by the set of
forbidden patterns Fi = (1, si, 1), where 1 ≤ i ≤ 2.

Definition 3.4 As a consequence of Proposition 1.31 and Corollary 3.3, we are going to
denote by XΓ the Fk-NNSFT defined by the set of k essential directed graphs Γ = {Γi}ki=1,
using the common set of vertices V = A′. Using the same notation as in the proof of
Proposition 1.31, in what follows we are going to assume that Φ(a, si) = Φi(a, s), ∀a ∈ A′,
1 ≤ i ≤ k. In other words the valid colorings in each coset g < si > of a particular generator
si and an arbitrary g ∈ Fk, correspond to valid colorings of XFi

.

Lemma 3.5 Given a nonempty Fk−1-NNSFT XΓ ⊆ V Fk−1 and X a Z-NNSFT defined by Γk,
the essential directed graph associated using the same set of vertices as the family Γ. Then,
it’s possible to obtain a nonempty Fk-NNSFT XΓ′ ⊆ V Fk , such that Γ′ = Γ ∪ Γk.

Proof. In order to use Proposition 1.29, we consider as alphabet A′ = V and we define a
coloring function ΦXΓ′ for XΓ′ as an extension of the coloring function ΦXΓ

of XΓ obtained
using Proposition 1.29 over the alphabet A′. This means ΦXΓ′ (a, si) = ΦXΓ

(a, si), for every
a ∈ A′ and 1 ≤ i ≤ k − 1. Given that Γk is an essential directed graph defined over
V = A′ implies the existence of a coloring function Φk : A′ × {s−1, s} → A′, thus we can
define ΦXΓ′ (a, sk) = Φ(a, s) and ΦXΓ′ (a, s

−1
k ) = Φk(a, s

−1), for all a ∈ A′. Therefore XΓ′ is a
nonempty Fk-NNSFT.

Next, we show how to construct a weakly aperiodic (Definition 2.1) Fk-NNSFT, starting
from a weakly aperiodic Fk−1-NNSFT. With this in mind, we can extend examples defined
on F2 to Fk, with k > 2.

Lemma 3.6 Given a weakly aperiodic Fk−1-NNSFT XΓ and X a Z-NNSFT, with Γk its
essential directed graph associated, using a common set of vertices as the family Γ. Then it’s
possible to obtain a weakly aperiodic Fk-NNSFT XΓ′, with Γ′ = Γ ∪ Γk.

Proof. For XΓ consider Γ = {Γ1, . . . ,Γk−1} a family of essential directed graphs defined over
a common set of vertices V . Considering Γk a essential directed graph defined over V and
using Lemma 3.5, we obtain XΓ′ a nonempty Fk-NNSFT, with Γ′ = {Γ1, . . . ,Γk−1,Γk}. As
XΓ is a weakly aperiodic Fk−1-NNSFT, by Theorem 1.34 we obtain that for all set of cycles
C1, . . . , Ck−1 on Γ1, . . . ,Γk−1 respectively, there exists a symbol on the set of vertices a ∈ V
such that #a(Ci) = #a(Cj), for some 1 ≤ i < j ≤ k − 1. Hence, independent of the graph
Γk, the condition for the existence of a strongly periodic coloring given in Theorem 1.34 is
always violated. Therefore, XΓ′ is weakly aperiodic Fk-NNSFT.

Remark Let XΓ be a nonempty Fk-Wang subshift, with Γ = {Γ1, . . . ,Γi, . . . ,Γj, . . .Γk}.
If consider Γ′ = {Γ1, . . . ,Γj, . . . ,Γi, . . .Γk}, the resulting nonempty Fk-NNSFT YΓ′ has the
same characteristic of periodicity that XΓ, this means that if XΓ has a strongly periodic
coloring then also YΓ′ , equivalently if XΓ is weakly aperiodic, also will be YΓ′ .
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3.4 Necessary and sufficient conditions to determine a
valid nonempy Fk-Wang subshift

We proper our attention to study Fk-Wang subshifts. As mentioned in Section 2.1 these
subshifts form a strict subclass of Fk-NNSFTs. In contrast to Corollary 3.3, not every family
of k essential directed graphs does determine a valid nonempty Fk-Wang subshift. Coun-
terexamples already exists for F1 = Z.

Example Consider the nonempty Z-NNSFT given by the following essential directed graph:

T1 T2

T3

Figure 3.2: Example of a Z-NNSFT which is not a Z-Wang subshift

This Z-NNSFT is not a Z-Wang subshift. The definition of Z-Wang tiles would imply
that T1(s) = T2(s

−1), T2(s) = T3(s
−1), T3(s) = T1(s

−1) and T2(s) = T1(s
−1), forcing that

T3(s) = T3(s
−1), which is impossible because there is no edge from T3 to T3.

Next we state necessary and sufficient conditions on the class of directed essential graphs
which produce valid nonempty Z-Wang subshifts.

Proposition 3.7 An essential directed graph Γ = (V,E) determines a valid nonempty Z-
Wang subshift if and only if for every v, w ∈ V :

1. V +(v) ∩ V +(w) ̸= ∅ implies V +(v) = V +(w),
2. V −(v) ∩ V −(w) ̸= ∅ implies V −(v) = V −(w).

Using the adjacency matrix of Γ, this means:

a. Each row and column contains at least a 1 (Γ is essential).
b. If two rows or two columns have a 1 in the same position, then those rows or columns

are identical.

Proof. Let W = {Ti}|V |
i=1 be a set of Z-Wang tiles corresponding to the set of vertices of Γ.

We will identify Ti with vi, for all 1 ≤ i ≤ |V |. Thus, for every edge (vi, vj) ∈ E it must be
fulfilled that Ti(s) = Tj(s

−1).
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(⇒) For (1), consider vl ∈ V +(vi) ∩ V +(vj), this implies that (vi, vl), (vj, vl) ∈ E, which
in terms of Z-Wang tiles means Ti(s) = Tl(s

−1) and Tj(s) = Tl(s
−1). If vp ∈ V +(vi) then

(vi, vp) ∈ E, thus Ti(s) = Tp(s
−1). We obtain that Tj(s) = Tp(s

−1) or equivalently (vj, vp) ∈
E, implying vp ∈ V +(vj) and therefore V +(vi) ⊆ V +(vj). Similarly we get V +(vj) ⊆ V −(vi),
obtaining V +(vi) = V +(vj).

Consider vl ∈ V −(vi) ∩ V −(vj), thus (vl, vi), (vl, vj) ∈ E, or equivalently Tl(s) = Ti(s
−1)

and Tl(s) = Tj(s
−1). If vp ∈ V −(vi) then (vp, vi) ∈ E. This means that Tp(s) = Ti(s

−1).
We obtain that Tp(s) = Tj(s

−1) and then (vp, vj) ∈ E, resulting that V −(vi) ⊆ V −(vj).
Analogously V −(vj) ⊆ V −(vi) and therefore V −(vi) = V −(vj) proving (2).

Finally, considering the adjacency matrix of the graph Γ, (a) is a consequence of Γ being
an essential graph. and (b) is equivalent to points (1) and (2), for the rows and columns
respectively.

(⇐) Given a essential directed graph Γ = (V,E) satisfying the conditions (1) and (2), where
the set of vertices is a set of Z-Wang tiles V = {Ti}|V |

i=1. Considering a nonempty finite set
A, we define Ti : S ∪ S−1 → A, for every 1 ≤ i ≤ |V |, as follows: if vi ∈ V +(vj) then
Tj(s) = Ti(s

−1) and every time that vi ∈ V −(vj) we put Ti(s) = Tj(s
−1). As Γ is an essential

directed graph satisfy the conditions (1) and (2), it guarantees that we can well define the
set of Z-Wang tiles with this method and effectively this set of Z-Wang tiles is consistent
generating the graph Γ. Therefore, by definition of the elements on V , the set of every
bi-infinite walks on Γ generate a valid nonempty Z-Wang subshift.

Proposition 3.8 Every nonempty Fk-Wang subshift, using n Fk-Wang tiles, is completely
determined by a family of k nonempty Z-Wang subshifts.

Proof. For 1 ≤ i ≤ k, consider Wi = {T i
j : {s−1, s} → Ai}nj=1 set of Z-Wang tiles and

XWi
⊆ W Z

i a Z-Wang subshift. We construct a Fk-Wang subshift from these k Z-Wang
subshifts using as alphabet the following set W = {Tj : S ∪ S−1 → A}nj=1 a set of Fk-Wang
tiles, where A =

⋃k
i=1Ai and ∀1 ≤ i ≤ k, 1 ≤ j ≤ n : Tj|{s−1

i ,si} = T i
j .

The Fk-Wang subshift XW ⊆ W Fk is nonempty by construction, because every XWi
is

nonempty and using Proposition 1.29 the results follows (this is a valid argument, because
every Fk-Wang subshift corresponds to a Fk-NNSFT). Also, by construction of the alphabet
W , we have that every Fk-tiling on XW restricted in the coset g < si > corresponds to a
Z-tiling on XWi

, i.e. the local rules on XW in the direction of the generator si are the same
that XWi

.

3.5 Weakly aperiodic Fk-Wang subshifts with minimal al-
phabet size

Note that there is a unique nonempty Fk-Wang subshift using a single Fk-Wang tile, namely
the one consisting of a uniform and thus strongly periodic coloring. The following proposition
identifies all possibilities for an alphabet with 2 tiles.
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Proposition 3.9 Every nonempty Fk-Wang subshift, defined on an alphabet with 2 Fk-Wang
tiles, contains strongly periodic tilings.

Proof. Starting from a set of two Z-Wang tiles, Proposition 3.7 gives 3 possibles essential
directed graphs Γ1, Γ2 and Γ3, given by the following adjacency matrices respectively:

A1 =

(
1 0
0 1

)
, A2 =

(
0 1
1 0

)
, A3 =

(
1 1
1 1

)
.

Let Γ be a nonempty family of k essential directed graphs considering Γ1, Γ2 and Γ3.
Using Proposition 3.8, we obtain a nonempty Fk-Wang subshift XΓ ⊆ W Fk on 2 element
alphabet W = {T1, T2}. By Theorem 1.34, if Γ only has k equal essential directed graphs
consider the same set of cycles C1 = · · · = Ck concluding that XΓ has at least a strongly
periodic tiling. We obtain the same result if in Γ we only consider the graphs Γ1 and Γ3 (or
Γ2 and Γ3), since Γ3 contains all the possible cycles of Γ1 and Γ2.

If Γ1,Γ2 ∈ Γ we may consider the set of cycles C1 = {T1, T2} and C2 = {T1T2}, for Γ1 and
Γ2 respectively, satisfying the conditions in Theorem 1.34 and guaranteeing the existence of
a strongly periodic tiling. Finally, if Γ1,Γ2,Γ3 ∈ Γ it is enough to consider for the graphs Γ1

and Γ2 the same set of cycles C1 and C2 as before, for Γ3 any of these could be considered,
concluding the existence of a strongly periodic tiling by Theorem 1.34.

Theorem 3.10 For every k ≥ 2, the minimum cardinality of a set of Fk-Wang tiles which
produces a weakly aperiodic Fk-Wang subshift is 3.

Proof. To obtain this result it is enough to exhibit a corresponding F2-example and applying
k − 2 times Lemma 3.6 to conclude for Fk, k ≥ 3. Consider a set of three vertices V =
{v1, v2, v3}, and the following two essential directed graphs Γ1 and Γ2.

v1 v2

v3

v1 v2

v3

Γ1 : Γ2 :

Figure 3.3: Corresponding essential graphs generates an example of weakly aperiodic Fk-
Wang subshift

Since Γ1, Γ2 satisfy the conditions of Proposition 3.7, this implies that Γ1 and Γ2 determine
valid nonempty Z-Wang subshift. Thus, they give rise to a F2-Wang subshiftXΓ ⊆ V F2 , given
by Γ = {Γ1,Γ2}, considering two F2-Wang tiles which corresponds to extensions of the maps
(Z-Wang tiles) before obtained. Corollary 3.3 implies that XΓ is nonempty and moreover
corresponds to a weakly aperiodic F2-Wang subshift. First, observe that every cycle in Γ1
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has the form v1a1v1a2v1 . . . v1an with ai ∈ {v2, v3} and the possible cycles in Γ2 can be
v1v2v3 . . . v1v2v3. Thus, for every nonempty set of cycles C1 and C2 in Γ1 and Γ2 respectively,
we have:

#v1(C1) = #v2(C1) + #v3(C1), (3.1)
#v1(C2) = #v2(C2) = #v3(C2). (3.2)

Suppose the existence of a strongly periodic tiling on XΓ. Theorem 1.34 would enforce:

#v1(C1) = #v1(C2), (3.3)
#v2(C1) = #v2(C2), (3.4)
#v3(C1) = #v3(C2). (3.5)

Using these equations we would obtain #v1(C2) = 0, which is impossible, since Γ2 contains
no cycle avoiding v1, and we conclude that XΓ cannot have strongly periodic colorings.
Finally, applying k − 2 times Lemma 3.6 from XΓ we obtain a weakly aperiodic Fk-wang
subshift, for every k ≥ 3.

3.6 Characterizing all the possible examples of weakly
aperiodic Fk-Wang subshifts with minimal alphabet
size

We turn our attention to characterize all the possible examples of weakly aperiodic Fk-Wang
subshifts using an alphabet with 3 tiles, obtaining for every k ≥ 2 the amount of all them.
First, we enunciate an equivalent form of Theorem 1.34, which uses simple cycles. The simple
cycles form a finite set, making it easier to prove formally when the condition in Theorem
1.34 is not satisfied.

In what follows, every graph considered satisfies the conditions of Proposition 3.7. We
will enunciate Theorem 3.12 for Fk-Wang subshift. Nevertheless, the result in [42] is for
Fk-NNSFTs.

Definition 3.11 Consider a family of graphs Γ = {Γi}ki=1, defined over a common set of
vertices V and SC(Γi) = {ci,j}|SC(Γi)|

j=1 , 1 ≤ i ≤ k. We denote by (⋆) the following equations
on xi,j:

∀v ∈ V,

|SC(Γ1)|∑
j=1

x1,j#v(c1,j) = · · · =
|SC(Γk)|∑

j=1

xk,j#v(ck,j).

We say that the family Γ satisfies the condition (⋆) if the equations in (⋆) admit a nontrivial
positive solution.

Now, if we fix the attention in Γi ∈ Γ and we consider an arbitrary cycle c ∈ Γi, using the
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previous notation, we have the existence of constants xi,1, . . . , xi,|SC(Γi)|, such that:#v1(c)
...

#vn(c)

 = xi,1

#v1(ci,1)
...

#vn(ci,1)

+ · · ·+ xi,|SC(Γi)|

#v1(ci,|SC(Γi)|)
...

#vn(ci,|SC(Γi)|)

 . (⋆)′

We denote by WΓi
⊆ N|V |

0 to the set of solutions for Γi given in (⋆)′.

Theorem 3.12 [42, Theorem 3.6] A nonempty Fk-Wang subshift contains a strongly periodic
tiling if and only if the associated family of graphs satisfies the condition (⋆).

A direct consequence from Theorem 3.12, using these sets of solutions, is the following.

Corollary 3.13 Let XΓ be a nonempty Fk-Wang subshift. Then XΓ contains a strongly
periodic tiling if and only if

⋂k
i=1WΓi

̸= 0.

Before continuing with the description of all possible examples of weakly aperiodic Fk-
Wang subshifts using an alphabet with minimal size. We are going to prove that a F2-Wang
subshift is weakly aperiodic using Corollary 3.13.

XΓ is a nonempty F2-Wang subshift by Proposition 3.8 . So, the corresponding set of sim-
ple cycles are SC(Γ1) = {v1v3, v2v3} and SC(Γ2) = {v1, v2}, for Γ1 and Γ2 respectively. More-

over, we obtain WΓ1 =


 a

b
a+ b

 ∈ N3
0 | a, b ∈ N0

 and WΓ2 =


ab
0

 ∈ N3
0 | a, b ∈ N0

.

We note that WΓ1 ∩ WΓ2 =

0
0
0

 satisfying Corollary 3.13 and thereforeXΓ is a weakly

aperiodic F2-Wang subshift.

Using Proposition 3.7 we obtain all the possible graphs, defined on 3 vertices, which de-
termine a valid nonempty Z-Wang subshift. Satisfying these characteristics, there are a total
of 25 essential directed graphs, which will be classified in 5 sets W1, . . . ,W5, whose criterion
will be the set of solutions for (⋆)′ showed in Definition 3.11. For simplicity, we expose these
sets using the adjacency matrices of the corresponding graphs, as follows:

W1 =


1 1 1
1 1 1
1 1 1

 ,

1 1 0
1 1 0
0 0 1

 ,

1 0 0
0 1 1
0 1 1

 ,

1 0 1
0 1 0
1 0 1

 ,

1 0 0
0 1 0
0 0 1

 ,
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W2 =



0 0 1
1 1 0
1 1 0

 ,

0 1 1
0 1 1
1 0 0

 ,

0 0 1
0 1 0
1 0 0

 ,

1 1 0
0 0 1
1 1 0

 ,

1 0 1
1 0 1
0 1 0

 ,1 0 0
0 0 1
0 1 0

 ,

0 1 1
1 0 0
0 1 1

 ,

0 1 0
1 0 1
1 0 1

 ,

0 1 0
1 0 0
0 0 1




,

W3 =



0 0 1
1 1 0
0 0 1

 ,

0 1 0
0 1 0
1 0 1

 ,

1 1 0
0 0 1
0 0 1

 ,

1 0 0
1 0 0
0 1 1

 ,

1 0 1
0 1 0
0 1 0

 ,1 0 0
0 1 1
1 0 0




,

W4 =


0 0 1
0 0 1
1 1 0

 ,

0 1 0
1 0 1
0 1 0

 ,

0 1 1
1 0 0
1 0 0

  ,

W5 =


0 1 0
0 0 1
1 0 0

 ,

0 0 1
1 0 0
0 1 0

 ,

Previously, it results important to observe that, for instance, on W2 there are graphs

Γi,Γj ∈ Γ whose sets of solutions isWΓi
=


aa
b

 ∈ N3
0 | a, b ∈ N0

 andWΓj
=


ab
a

 ∈ N3
0 | a, b ∈ N0

,

respectively. Where both sets are practically the same set, because for our goal they be-
have the same, thus we will say that W2 is isomorph to some set with these characteristics.

In general, we have W1 ≃ N3
0, W2 ≃


aa
b

 | a, b ∈ N0

, W3 ≃


ab
0

 | a, b ∈ N0

,

W4 ≃


 a
a+ b
b

 | a, b ∈ N0

 and W5 ≃


aa
a

 | a ∈ N0

, this classification aims to

obtain the following result.

Proposition 3.14 The amount of examples of weakly aperiodic Fk-Wang subshifts depends
of k. For k = 2 this amount is 48 and when it is considered k ≥ 3 the amount has exponential
growth order 25o(n).

Proof. The main idea to prove this result will be to use Corollary 3.13. Then, it is nec-
essary to obtain the possible sets which we can obtain after intersecting pairs. Doing
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this result the following sets appear: W6 ≃


a0
0

 | a ∈ N0

, W7 ≃


aa
0

 | a ∈ N0

,

W8 ≃


2a
a
a

 | a ∈ N0

 and W9 =

0
0
0

. Next, we construct a directed graph, which will

allow us to compute the examples of weakly aperiodic Fk-Wang subshifts, for every k ≥ 2.
Let ΓW = (VW , EW ) be a directed graph defined as follows: VW = {W1, . . . ,W9} and there
exists an edge (Wi,Wj) ∈ EW every time that, for some 1 ≤ t ≤ 5, some directed graph on
Wt satisfies that Wt intersected with Wi results Wj. For simplicity, we going to labeling the
edges of ΓW with the amount of edges which there are between two vertices. With this in
our mind, the graph ΓW is the following:

ΓW :
W1

W2 W3 W4

W6 W7 W8 W5

W9

5

9 6 2 3

8 7 6

4
9 1

8 10 5 3
12
4 3

12
12 9

16

13 13 16 9

25

Figure 3.4: Graph that allows to compute the amount of examples of weakly aperiodic Fk-
Wang subshifts.
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Using the graph ΓW and Corollary 3.13, it is possible to compute the amount of examples
of weakly aperiodic Fk-Wang subshift. These correspond to all the paths of length k from
W1 to W9. For instance, if we want to compute the total of examples weakly aperiodic
F2-Wang subshifts, we must count the amount of paths of length 2 on ΓW , resulting in 48
(because, there are 18 possibilities passing for W3, same amount for W5 and others 12 for
W4). Moreover, for k ≥ 3, this amount has a exponential growth, because W9 corresponds
to the trivial set and all the possible 25 graphs satisfies the condition defined previously for
the edges. Moreover, the adjacency matrix associated to ΓW is diagonalizable, being 25 the
biggest eigenvalue, the result follows.

Remark We may use the above to do an alternative proof of Proposition 3.9. The good
reader can review that the following sets of solutions are the obtained: WΓ1 = WΓ3 ={(

a
b

)
∈ N2

0 | a, b ∈ N0

}
and WΓ2 =

{(
a
a

)
∈ N2

0 | a ∈ N0

}
. The corresponding directed

graph is:

WΓ1 WΓ2 0

2

1

3

0
3

We see that there are no paths from WΓ1 to 0, then by Corollary 3.13 we can conclude that
for every k ≥ 2, always there exists a periodic tiling in the corresponding Fk-Wang subshift.

3.7 Conclusion
The problem of determining the minimum number of Fk-Wang tiles required to generate a
nonempty weakly aperiodic Fk-Wang subshift has been solved for free groups. In contrast to
the result obtained by E. Jeandel and M. Rao in [25], for the case G = Z2, where there show
that this quantity is 11, our result shows that this quantity is 3 in the case G = Fk, k ≥ 2.

Moreover, all possible examples with these characteristics have been fully characterized.
Therefore, there is no further work to be done in this direction for free groups. However, a
possible direction for future research could be the study of Wang subshifts in other groups,
or even the resolution of the problem in Zd, for any d.
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