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Resumen

UN PROBLEMA DE PERTURBACIÓN SINGULAR QUE MODELA LA AMPLITUD
SOBRE PAREDES EN PATRONES RAYADOS

El presente trabajo estudia el sistema de ecuaciones diferenciales que como modela el
choque y transición de patrones rayados a través de una pared de dominio utilizando como
modelo las ecuaciones de amplitud.

En el primer capitulo llamado introducción se entrega una noción general del origen de
los problemas abordados en las siguientes secciones, además de las preguntas y motivaciones
que generan varias de las técnicas utilizadas en este trabajo.

En el segundo capitulo son introducidos sistemas comúnmente asociados a la formación
de patrones, como lo es la ecuación de Swift-Hohenberg. Se presentan además las nociones
de inestabilidad lineal para el estado homogéneo, fenómeno que da origen a la generación de
patrones en estos sistemas no lineales. Posteriormente se realiza una derivación de la ecuación
de amplitud para la descripción espacial y evolución de estos patrones, lo que permite llegar
a los problema estudiados en este texto, sistemas no lineales de ecuaciones que posee dos
funciones como incógnitas a las que nos referiremos como u y v.

En el tercer capitulo son presentados aquellos resultados matemáticos que son consider-
ados indispensables para realizar los procedimientos de los caṕıtulos posteriores, esto con el
fin de que pueda ser rápidamente consultado y permita al lector una limpia vista del texto y
de una forma auto-contenida.

En el cuarto capitulo son expuestos todos aquellos procedimientos y resultados sobre los
sistemas no lineales estudiados, en las secciones 4.1, 4.2 y 4.3 se demuestra la existencia
de u0, v0 y vR0 (este tercero para el caso perpendicular), funciones que son aproximaciones
de soluciones del problema no lineal original, posteriormente, en la sección 4.4 se muestran
los resultados numéricos obtenidos mediante diferentes métodos para aquellos problemas los
cuales no han podido ser enfrentados de forma satisfactoria utilizando las técnicas anteriores.
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Abstract

A SINGULAR PERTURBATION PROBLEM MODELLING AMPLITUDE WALLS OF
STRIPED PATTERN

This work focuses on studying a system of differential equations that models the collision
and transition between stripe patterns across a domain wall using amplitude equations as a
model.

The first chapter, titled “Introduction”, provides a general overview of the origins of the
problems addressed in the following sections, along with the questions and motivations that
drive the various techniques used in this work.

In the second chapter, we introduce systems commonly associated with pattern formation,
including the Swift-Hohenberg equation. We also present the concept of linear instability for
the homogeneous state, a phenomenon that gives rise to pattern generation in these nonlinear
systems. Additionally, we derive the amplitude equation, which describes the spatial behavior
and evolution of these patterns. This leads us to the problems studied in this text, specifically
nonlinear systems of equations with two unknown functions denoted as u and v.

The third chapter covers essential mathematical results necessary to carry out the proce-
dures in the subsequent chapters. This is done to ensure quick accessibility and enable the
reader to have a clear understanding of the text in a self-contained manner.

In the fourth chapter, we present all the procedures and results related to the studied
nonlinear systems. Sections 4.1, 4.2, and 4.3 demonstrate the existence of u0, v0, and vR0
(the latter for the perpendicular case), which are functions that approximate solutions to
the original nonlinear problem. Furthermore, section 4.4 provides numerical results obtained
using different methods for those problems that have not been satisfactorily addressed using
the previous techniques.
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Chapter 1

Introduction

Pattern forming systems are systems where some spatial structure can be observed, this
structure can be of many different shapes and forms such as labyrinths, tescelations, stripes,
and others. The study of diffusion equations is the usual context where it is posible to find
these patterns.

When it comes to set results over these problems it happens that there is more than
one way to study how patterns are formed and more than one way to study the structure
that these patterns should have. One approach to study the structure is the amplitude
equation, that is the building an equation able to capture the amplitude associated to the
corresponding pattern we are studying, which can be formed by stripes, squares, hexagons or
another; the construction of an accurate amplitude equation is based on the different types of
symmetries the physical problem obeys. When two or more different oriented structures on
this pattern collide (for example stripes that collide with hexagons) it is neccesary to capture
the interaction between them, this is how coupled systems of differential equations emerge
as a model for this phenomena.

The problem of our interest is the coupled system of differential equations that emerges
when two different oriented stripes collide{

u′′ + u(1− u2 − µv2) = 0

δ2v′′ + v(1− v2 − µu2) = 0,

where each of the functions u and v represent the amplitude of the respective set of stripes,
as we can observe it is a nonlinear system and so nonlinear variational techniques may be
employed to show existence and regularity of solutions for approximations of this problem,
this is what we do in this text.

The limit case of the previous problem is when the angles between the stripes are per-
pendicular and one of them is parallel to the structure where the transition occurs (the grain
boundary). The problem in this limit case is given by:{

u′′ + u(1− u2 − µv2) = 0

−ε2v(iv) + v(1− v2 − µu2) = 0,

where ε is a real positive number, which is assumed to be small.
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Chapter 2

Background and origin of the problem

2.1 Pattern-Forming nonequilibrium systems

Pattern-forming systems are commonly associated to non-equilibrium systems, this is be-
cause, to form the structures, it is necessary to inject energy in a constant or periodic way,
enough to break the stability of the uniform state.

There are a lot of examples in nature where the uniform states (the medium is trans-
lationally invariant) are not stable. We will call a state unstable if it is possible to find
an arbitrary small perturbation that makes the system evolve rapidly away from this initial
state. In many cases the uniform state is not preserved as the system evolves, and so, another
stable state may be obtained.
In our context these new stable states usually have structure and we call them patterns. We
are interested in the study of these patterns and what geometrical and analytical properties
they have.

2.2 Swift-Hohenberg equation as a good simplificated

problem

The one-dimensional Swift-Hohenberg equation is the equation for a single field u(x, t) in a
one-dimensional domain 0 ≤ x ≤ L given by

∂tu = (r − 1)u− 2∂2
xu− ∂4

xu− u3,

or equivallently
∂tu = ru− (∂2

x + 1)2u− u3, (2.1)

this equation is commonly used to model patter-forming systems. As we see, we are dealing
with an evolution equation where the right-hand side is characterized for being translationally
invariant (x → x+ s) and rotationally invariant (x → −x).
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It is also clear that u = 0 works as a simple uniform solution of the equation, we are
interested on studying if there exists any condition over the parameter r on (2.1) to make
this state an unstable state.

2.2.1 Linear instability analysis

To carry out the linear stability analysis, we denote the solution u = 0 as the base state ub

and we refer as up to a perturbation such that

u(x, t) = ub + up(x, t),

the right-hand side of the evolution equation is given by

N [ub] = (r − 1)ub − 2∂2
xub − ∂4

xub − u3
b ,

and so

N [ub + up] = (r − 1)(ub + up)− 2∂2
x(ub + up)− ∂4

x(ub + up)− (ub + up)
3

N [ub + up] = N [ub] + (r − 1)up − 2∂2
xup − ∂4

xup − 3u2
bup︸ ︷︷ ︸

Lub
[up]

−3ubu
2
p − u3

p

N [ub + up] = N [ub] + Lub
[up] + o(u2

p.

The linearization of the equation for up on ub becomes

∂tup = (r − 1− 2∂2
x − ∂4

x − 3u2
b)up,

and then by using the specific base state ub = 0

∂tup = (r − 1− 2∂2
x − ∂4

x)up

is the evolution equation for small perturbations up.
Given that we are facing a linear evolution equation it is natural to assume exponential type
solutions

up(x, t) = Aeσteαx.

By replacing in the equation we get the following condition for the perturbation

σ = r − (α2 + 1)2.

If we assume an infinite boundary then α must be a purely imaginary number or the every-
where small perturbation assumption would be violated. We write α = iq where q is a real
value. We conclude that in this case (infinite boundary) it is possible to find solutions given
by

up = Aeσqteiqx,

where σq = r − (q2 − 1)2 (equation that can be interpreted as a dispersion equation) and
given that we are working with a linear equation any superposition of them will be also a
solution .
The key observation to make now is that if r > 0 then there exists infinite many values of
q for which we can find perturbations that have positive σq and so they grow exponentially
to infinity when t → ∞, and so this characterizes the instability of the ub = 0 state. We
conclude that for r > 0 the uniform state ub = 0 is linearly unstable.
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2.3 Amplitude equation

The previous chapter leave us with exponential growing solutions, and in the unstable case
the presence of unbounded solutions, which is unrealistic and so not a good model for most
physical situations. The cause of the problem is clear: we linearized the equation and assume
arbitrary small perturbations, which obviously gives birth to exponential type solutions. The
nonlinear terms of the equations are a necessity given that they quench the exponential growth
of these solutions and allows the system to reach some other stable state if possible. If the
system eventually approaches a time-independent state solution (this means the linear and
nonlinear terms of the equations are balanced) we call the resulting solution a saturated
nonlinear steady state. We would like to study how simple Fourier modes evolves in what
we call amplitude, we assume

u(x, t) = A(t)eiqx + c.c.

where c.c. means complex conjugate such that u is a real valued function and A(t) is for
the amplitude that we assume is time dependent. The simplest dynamic we can find for the
amplitude is the following

dtA = σA,

but as we said this dynamic is not able to capture saturation.

In order to make the saturation happen we need to obtain a higher order equation for the
amplitude, there are two ways of doing this. One is to substitute the simple Fourier mode
into the evolution equation and use some technique to derive the evolution equation for A.
This approach is specific for the physical system or model.
A second approach is to add terms to the equation (with some unknown coefficients) that
are consistent with our assumptions on smoothness and symmetry. For example, assuming a
rotationally invariant system, we expand the equation of motion for A to higher order terms
in a way that the transformation A → eiθA is still a solution, this gives

dtA = σA− γA2A∗ + ...,

where γ is a constant, the dots ... denote higher-order terms negligible if the amplitude |A|
is small enough and A∗ is for the complex conjugate of A, and so the equation may also be
written as

dtA = σA− γ|A|2A+ ....

In order to find a more complete description of the evolution of the system we can write

up(x, t) = A(x, t)eiqcx + c.c.+ h.o.t.,

where the amplitude is slowly varying with respect to x and h.o.t. is higher order terms that
are small enough in magnitude than the displayed terms.

2.3.1 Derivation of the amplitude equation

As was mentioned in the previous section, an amplitude equation for the amplitude A is
usually derived by one of two possible ways, one is replace up into the evolution equation for
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the specific problem and then by using formal expansion technique find the corresponding
equation, the other one (and the one we use here) is to recognize the symmetries of the
system and then deduce the form of the amplitude equation.
We argue that one-dimensional amplitude equation for a modulated stripe state near a type-
I-s instability (a stationary instability details in [7]) takes the form

τ0∂tA(x, t) = εA+ ξ20∂
2
xA− g0|A|2A,

where ε is called reduced bifurcation parameter while τ0, ξ0 and g0 are constants that de-
pend on details of the physical problem which may be calculated from the known evolution
equations [7].

It is not hard to notice that the previous equation is just the basic evolution equation
able to capture rotational invariance (x → −x in the one-dimensional case). More complex
elements may be added on the right-hand side of the equation but a more complicated
equation is not necessarily a better model.

2.4 Amplitude equations for two-dimensional patterns

For two dimensional problems it is useful to introduce a notation for the coordinates on
the physical system. A good way to give sense to this new coordinates is to think on the
Rayleigh-Bernard convection. Given a box where energy is flowing from the bottom to the
ceiling, this direction where energy flows is called parallel direction and will be denoted by
x∥, on the other hand the directions perpendicular to this one are called extended directions
and denoted by x⊥.

In the two-dimensional case rotationally invariant system become much more interesting:
we may face different structures such as stripes, squares, hexagons and other more complex
structures born from the interaction between Fourier modes.
Here we write an equation for the amplitude of a simple Fourier mode for a rotationally
invariant two-dimensional system, and then study the problem of superimposed stripes.

2.4.1 Stripes in rotationally invariant systems

The construction of the equation for the amplitude follows the same steps as the one-
dimensional case, but we now allow the amplitude to be a slowly varying function of the
two coordinates in the extended dimensions, as well as of time

up(x⊥, x∥, t) = A(x⊥, t)uc(x∥)e
iqcx + c.c.+ h.o.t.,

with x⊥ = (x, y). Given the rotationally invariance of the system, we are forced to introduce a
reference direction from which we can start building our amplitude equation, the x-direction
it is going to be the normal direction to the parallel stripes.

Having this in consideration we arrive to the following lowest-order derivative evolution
equation for the amplitude by adding what we call Newell-Whitehead-Segel operator to the
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right-hand side of the equation (details about the derivation in [7], [10])

τ0∂tA(x, y, t) = εA+ ξ20

(
∂x −

i

2qc
∂2
y

)2

A− g0|A|2A.

By means of the change of variables

A =
∣∣∣g0
ε

∣∣∣1/2A, X =
|ε|1/2x
ξ0

x, Y = |ε|1/4
(
qc
ξ0

)1/2

y, T =
ε

τ0
t,

we get

∂TA = A+

(
∂X − i

2
∂2
Y

)2

A− |A|2A.

2.4.2 Superimposed stripes

In systems where rotational invariance is satisfied, different striped patterns with different
orientations may coexists, in this cases there must be an interaction between them that we
capture by adding a new term to the equation. Here we give the system for two sets of
superimposed stripes [7]

τ0∂tA1 = εA1 + ξ20

(
∂x1 −

i

2qc
∂2
y1

)2

A1 − g0
(
|A1|2 +G(θ12)|A2|2

)
A1,

τ0∂tA2 = εA2 + ξ20

(
∂x2 −

i

2qc
∂2
y2

)2

A2 − g0
(
|A2|2 +G(θ12)|A1|2

)
A2,

(2.2)

where Ai is the corresponding amplitude for the i−th set of stripes and G is an even function
depending on the angle between the stripes, this new addition to the equation allows the
existence of corners, squares and many other defects such as the one we introduce now called
grain boundary.

2.4.3 Grain boundaries

Grain boundaries are extended line defects that separate two half-spaces of different oriented
patterns, for example stripes with different wave vectors, which is the case we will consider.
Studying this defect we consider the coordinate system defined so that the grain boundary
is along the infinite line x = 0, with a pattern of stripes at wave vector q1 for x → ∞ and q2
for x → −∞, where the angles between the stripes are θ1 and θ2 respectively with respect to
the vertical line defining boundary.

2.4.4 General Case

For the general case of θ1 and θ2 not close to π/2 the system (2.2) (after some scaling)
becomes [7],[10]

A1 + cos2 θ1∂
2
xA1 − (A2

1 +G12A
2
2)A1 = 0,

6



Figure 2.1: Two examples of grain boundaries, which are topological line defects. (a) Two
sets of stripes with different orientations meet along a line that has a general angle relative
to the stripes. (b) A perpendicular grain boundary is a special case for which the boundary
is normal to one set of stripes. Figure 4.12 extracted from Cross’s book [7].

A2 + cos2 θ2∂
2
xA2 − (A2

2 +G12A
2
1)A2 = 0,

where derivatives of third and fourth order are omitted given they are small in comparison
to the other terms. This can only be done when neither of the angles θ1 or θ2 are close to
π/2, (this limit case is included in the next subsection). We consider the general case when
|θi − (π/2 + c)| = O(δ), for i ∈ {1, 2} (only one of them), where c is a nonzero real constant.
In this case, once again by taking a variable scaling and reordering the terms we obtain the
system

∂2
xA1 + A1(1− A2

1 +G12A
2
2) = 0,

δ2∂2
xA2 + A2(1− A2

2 +G12A
2
1) = 0,

which is the first problem we study in the following chapter.

Perpendicular grain boundary

We present now the case where the angle between the two sets of stripes is exactly π/2, we
take the setup by considering θ1 = 0, θ2 = π/2. The coupled system of amplitude equations,
under a simple change of variables, becomes [10]

εA1 + ξ20∂
2
xA1 − g0(A

2
1 +GA2

2)A1 = 0,

εA2 −
ξ20
4q2c

∂4
xA2 − g0(A

2
2 +GA2

1)A2 = 0.

The previous system emerges direcly from (2.2), where both of the operators ∂2
y1

=
cos2 θ2∂

2
x and ∂x2 = cos2 θ2∂

2
x, become zero.

7



Figure 2.2: Geometry of a grain boundary. The stripes on either side make an angle θ1 and
θ2 with the grain boundary. Figure 8.5 extracted from Cross’s [7].

By means of a change of variables the previous system becomes

∂2
XĀ1 + Ā1(1− Ā1

2 −GĀ2) = 0,

−α∂4
XĀ2 + Ā2(1− Ā2

2
+GĀ1

2
) = 0,

where α is for an arbitrary small parameter. We also add the following boundary conditions
to set this problem as a transition from one set of stripes to another [10]

Ā1(−∞) → 0, Ā1(∞) → 1 and Ā2(−∞) → 1, Ā2(∞) → 0,

this is the problem we study in chapter 4.

8



Chapter 3

Some useful propositions

In this chapter we write useful results from real analysis, measure theory and differential
equations.

3.1 Real Analysis

Theorem 3.1 (Helly’s Theorem) Assume that {fn} is a sequence of monotonically increasing
functions on R with 0 ≤ fn(x) ≤ 1 for all x and all n. Then there exists a function f and a
sequence nk such that

f(x) = lim
k→∞

fnk
(x).

Theorem 3.2 (Fatou’s Lemma) Given a measure space (Ω,F , µ) and set A ∈ F , let {fn}
be a sequence of measurable non-negative functions fn : A → [0,+∞]. Define a function
f : A → [0,+∞] by setting f(x) = lim infn→∞ fn(x), for every x ∈ A.

Then f is a measurable function and also∫
A

fdµ ≤ lim inf
n→∞

∫
A

fndµ.

Theorem 3.3 (Dominated Convergence Theorem) Let {fn} be a sequence of measurable
functions, that fn → f point-wise almost everywhere as n → ∞, and that |fn| ≤ g for all n,
where g is integrable. Then f is integrable and∫

fdµ = lim
n→∞

∫
fndµ.

9



3.2 Functional Analysis

Theorem 3.4 (Banach-Alaoglu Theorem) If V is a neighborhood of 0 in a normed vector
space X and if

K = {Λ ∈ X∗ : |Λx| ≤ 1 for every x ∈ V }

then K is weak*-compact.

Theorem 3.5 (Sobolev’s Inequalities) Let U be a bounded open subset of Rn, with a C1

boundary. Assume u ∈ W k,p(U).

(i) If

k <
n

p
,

then u ∈ Lq(U), where
1

q
=

1

p
− k

n
.

We have in addition the estimate

∥u∥Lq(U) ≤ C∥u∥Wk,p(U),

the constant C depending only on k, p, n and U .

(ii) If

k >
n

p
,

then u ∈ Ck−
[

n
p

]
−1,γ(Ū), where

γ =

{[
n
p

]
+ 1− n

p
, if n

p
is not an integer

any positive number < 1, if n
p
is an integer.

We have in addition the estimate

∥u∥
C

k−
[

n
p

]
−1,γ

(Ū)

≤ C∥u∥Wk,p(U),

the constant C depending only on k, p, n, γ and U .

Theorem 3.6 (Rellich-Kondrachov) Assume U is a bounded open subset of Rn and ∂U is
C1. Then we have the following compact injections:

W 1,p ⊂ Lq(U) ∀q ∈ [1, p∗), where
1

p∗
=

1

p
− 1

N
, if p < n

W 1,p ⊂ Lq(U) ∀q ∈ [p,+∞), if p = n

W 1,p ⊂ C(Ū), if p > n.

In particular, W 1,p(U) ⊂ Lq(U) with compact injection for all p (and all n).

10



3.3 Calculus of Variations

Non linear problems can be extremely hard to work on, this is because of the variety of
nonlinearities that may be present on the respective problem. Let us suppose we want to
solve the following non-linear equation

A[u] = 0,

where A is a nonlinear operator defined over an unspecified set of functions.

In order to find methods for solving the previous equation we think of a functional J
which derivative (in a way we haven not defined yet) equals to the operator A. Then we
center our attention on

dJ [u] = 0,

which can be solved using minimization of J on the respective space we are working on. We
have divided the problem of solving our non-linear equation into:

1. Find a functional J such that dJ = A.

2. Study minimizers of J .

Specifically here we will write dJ(u)[h] when we refer to the following limit:

lim
ε→0+

J(u+ εh)− J(u)

ε
.

A necessary condition to u be a minimum is that the previous limit is nonegative for small
enough ε, this implies

dJ(u) = 0.

A much more easy way to compute dJ(u)[h] is by computing

d

dε
J(u+ εh)

∣∣∣
ε=0

,

and so the problem we want to solve becomes

d

dε
J(u+ εh)

∣∣∣
ε=0

= 0,

which we call the Euler-Lagrange equation associated to the functional J .

3.3.1 Direct Method in the Calculus of Variations

The direct method in the Calculus of Variations is a general method that is used to prove
the existence of a minimizer for an energy functional defined over what is usually a reflexive
space. It is based on the following.

11



Let X be a reflexive Banach space and be J : X −→ R an energy functional, lets consider
a minimizing sequence (un)n over some subset of X. If J is a coercive functional (J(u) → ∞
when ∥u∥ → ∞) then the set {un}n must be a bounded set. Using that X is reflexive then
this set is also compact in the weak topology. Given all this, if the functional J is at least
weakly lower semi-continuous we can conclude the existence of a limit function ū which is
the minimum for J over X given that

lim inf
n→∞

J(unk
) ≥ J(ū),

where (unk
)k is the sub-sequence of (un)n such that converges in the weak topology to ū, see

[8] for more details.
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Chapter 4

Study of the Non-Linear systems

As it was presented in the second chapter, the model for the general case of transition from
one set of stripes to another over a grain boundary is given by the following system of
differential equations for the amplitudes{

u′′ + u(1− u2 − µv2) = 0

δ2v′′ + v(1− v2 − µu2) = 0.
(4.1)

We are interested on solutions such that u(−∞) = v(∞) = 0 and v(−∞) = u(∞) = 1
[10].

4.1 The δ = 0 problem

First we focus our attention on studying the system assuming δ = 0, the system (4.1) becomes{
u′′
ε + uε(1− u2

ε − µv2ε) = 0

vε(1− v2ε − µu2
ε) = 0.

(4.2)

We know that µ < 1 may create squares in the pattern [7] and we are not interested in this
case, so we just consider the case µ > 1 given that we are trying to model the transition from
one stripped pattern to another.
By solving the first equation of the system (4.2) for vε = 0 we can obtain uε = tanh((x −
x0)/

√
2) where at this moment x0 is a free constant. On the other hand if we solve now by as-

suming vε ̸= 0 and using the second equation of the system (4.2) we get uε =

√
2

µ− 1
sech(

√
µ− 1(x−

x1)), and vε =

√
1− 2µ

µ− 1
sech2(

√
µ− 1(x− x1)) where x1 is a free constant just as x0.

Based on what has been discussed we find the following solution for the δ = 0 problem

uε(x) =


√

2
µ−1

sech(
√
µ− 1(x− x1)) when x ≤ z,

tanh
(

x−x0√
2

)
when x ≥ z,

(4.3)
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and

vε(x) =

{√
1− 2µ

µ−1
sech2(

√
µ− 1(x− x1)) when x ≤ z,

0 when x ≥ z,
(4.4)

where z is free, which makes sense given that we are working on an autonomous system and
the boundaries at infinity.
Now to make (4.3) and (4.4) continuous functions the constants x0 and x1 should be deter-
mined. The values that allow us to create these continuous functions always exists, this is
easy to check if we notice that all we want is

u+
ε (z) = u−

ε (z)

tanh

(
z − x0√

2

)
=

√
2

µ− 1
sech(

√
µ− 1(z − x1)),

where given that µ > 1 we can obtain x0 as a function of x1. Now to get x1 we consider the
problem

v+ε (z) = v−ε (z),

which implies √
2

µ− 1
sech(

√
µ− 1(z − x1)) =

1
√
µ
.

If we consider the preimage set generated by sech−1(·) we can write

x1 = z − 1√
µ− 1

sech−1

(√
µ− 1

2µ

)
,

this gives us at least one solution for x1, this can be observed in the graph of the function
sech.

y = sechx

−2 −1 1 2

−1

−0.5

0.5

1

1.5

x

y

Figure 4.1: Hyperbolic Secant graph.

The existence of at least one x1 is given by the following argument. We know the function
sech takes all the values between 0 and 1 so the problem of nonexistence of x1 shows up only
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if √
µ− 1

2µ
> 1,

it is easy to check that

0 <

√
µ− 1

2µ
≤ 1,

when we assume µ > 1, so the problem of existence of x1 for the continuous matching can
always be solved.
Regularity of vε may be a useful property to determine for further results on the study of
solutions for future problems and their regularity, for now can say for sure that vε is not a
globally Lipchitz function given that

(v−ε )
′ =

d

dx
(1− µu2

ε)
1/2 =

1

2
(1− µu2

ε)
−1/2 · (−2µuεu

′
ε) ,

and as we know uε(z) =
1√
µ
, this implies that limx→z−(v

−
0 )

′ = −∞. We conclude that the

function v0 is not a Lipchitz function in R, but it is in any interval (−∞, z−a)∪ (z+a,+∞)
for any a > 0.

4.1.1 vε regularity

As we just seen, the function vε is not a Lipchitz function, as the derivative grows without
bound as we tend x to z. However, we can show that vε is a Hölder function. Let us first
consider the following results

Proposition 4.1 Let be f : R −→ R a function defined by means of piecewise differentiable
Lipchitz functions. If |f ′| ≤ L almost everywhere for some L > 0, then f is also a Lipchitz
function.

Proof. If we take any two points x, y ∈ R where x < y, we can find x1 < x2 < ... <
xn the points between x and y that define the functions over the corresponding intervals
[x1, x2], [x2, x3], ..., [xn−1, xn]. Using the fundamental theorem of calculus we have

|f(x)− f(y)| = |f(x)− f(x1) + f(x1)− f(x2) + ...+ f(xn)− f(y)|
≤ |f(x)− f(x1)|+ |f(x1)− f(x2)|+ ...+ |f(xn)− f(y)|

=

∣∣∣∣∫ x1

x

f ′(s)ds

∣∣∣∣+ ∣∣∣∣∫ x2

x1

f ′(s)ds

∣∣∣∣+ ...+

∣∣∣∣∫ y

xn

f ′(s)ds

∣∣∣∣
≤

∫ x1

x

|f ′(s)|ds+
∫ x2

x1

|f ′(s)|ds+ ...+

∫ y

xn

|f ′(s)|ds

≤ L(x1 − x) + L(x1 − x2) + ...+ L(y − xn)

= L(y − x).

Then |f(y)−f(x)| ≤ L(y−x) when y > x and so |f(y)−f(x)| ≤ L|y−x| for any x, y ∈ R.
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Lemma 4.2 The function u2
ε is a Lipchitz function.

Proof. We have that (u2
ε)

′ = 2uεu
′
ε and given that uε is bounded and u′

ε is bounded almost
everywhere, all the hypothesis of Proposition 4.1 are fulfilled to conclude that u2

ε is a Lipchitz
function.

Theorem 4.3 The function vε defined by (4.4) is a 1
2
-Hölder function.

Proof. Considering x, y ≤ z

|vε(x)− vε(y)| = |
√

1− µu2
ε(x)−

√
1− µu2

ε(y)|
≤ |1− µu2

ε(x)− 1 + µu2
ε(y)|1/2

≤ µ1/2|u2
ε(x)− u2

ε(y)|1/2

C · |x− y|1/2,

where in the first inequality we used the known fact that the square root is a 1
2
-Hölder func-

tion (with constant 1), and in the last one we use that u2
ε is a Lipchitz function.

Now the case x ≤ z ≤ y

|vε(x)− vε(y)| = |vε(x)|
=

√
1− µu2

ε(x)

=

√
1− µu2

ε(x)

|(1− µu2
ε(x))− (1− µu2

ε(y))|α
· |1− µu2

ε(x)− 1 + µu2
ε(y)|α

≤
√

1− µu2
ε(x)

|(1− µu2
ε(x))|α

· |µu2
ε(x)− µu2

ε(y)|α,

where in the inequality we use the fact that 1− µu2
ε(y) ≤ 0 when y ≥ z, now taking α = 1/2

and using the fact that u2
ε is a Lipchitz function (for the previous lemma) we can conclude

that there exists a constant C > 0 such that

|vε(x)− vε(y)| ≤ C|x− y|1/2

and so vε is a
1
2
-Hölder function.

4.2 The u0 problem

Based on ideas presented in [14] we formulate the problem

u′′ + u(1− u2 − µv2ε) = 0, (4.5)

and we will call u0 to the solution of this equation, where

vε =

{√
1− 2µ

µ−1
sech2(

√
µ− 1(x− x1)) for x ≤ z,

0 for x ≥ z.
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Lets consider the following energy functional

Ez(u) =

∫ z

−∞

(u′)2

2
+

u2

2

(
µ− 1 +

2µ2

µ− 1
sech2(

√
µ− 1(x− x1))

)
︸ ︷︷ ︸

K(x)=−(1−µv2ε)

+
u4

4
(4.6)

+

∫ +∞

z

(u′)2

2
+

1

4
(1− u2)2. (4.7)

Proposition 4.4 The Euler-Lagrange equation associated with the functional given by (4.6)-
(4.7) is (4.5), we also have Ez ≥ 0.

Proof. Lets compute the Euler-Lagrange equation for the functional, to do this we define
Ez− and Ez+ as

Ez−(u) =

∫ z

−∞

(u′)2

2
+

u2

2

(
µ− 1 +

2µ2

µ− 1
sech2(

√
µ− 1(x− x1))

)
+

u4

4
,

Ez+(u) =

∫ +∞

z

(u′)2

2
+

1

4
(1− u2)2,

where clearly E = Ez− + Ez+ , then we have

d

dε
(Ez(u+ ϕε))

∣∣∣
ε=0

=
d

dε
(Ez−(u+ ϕε))

∣∣∣
ε=0

+
d

dε
(Ez+(u+ ϕε))

∣∣∣
ε=0

,

by considering K(x) = −(1− µv2ε), on one hand we have

d

dε
(Ez−(u+ ϕε))

∣∣∣
ε=0

=
d

dε

(∫ z

−∞

(u′ + ϕ′ε)2

2
+

(u+ ϕε)2

2
K(x) +

(u+ ϕε)4

4

) ∣∣∣
ε=0

=

∫ z

−∞
(u′ + ϕ′ε)ϕ′ + (u+ ϕε)ϕK(x) + (u+ ϕε)3ϕ

∣∣∣
ε=0

=

∫ z

−∞
u′ϕ′ + uϕK(x) + u3ϕ

=u′(z)ϕ(z) +

∫ z

−∞
(−u′′ + u(K(x) + u2))ϕ

=u′(z)ϕ(z) +

∫ z

−∞
(−u′′ − u(1− u2 − µv2ε))ϕ.

On the other hand

d

dε
(Ez+(u+ ϕε))

∣∣∣
ε=0

=
d

dε

(∫ +∞

z

(u′ + ϕ′ε)2

2
+

1

4
(1− (u+ ϕε)2)2

) ∣∣∣
ε=0

,
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and so

=

∫ +∞

z

(u′ + ϕ′ε)ϕ′ +
1

2
(1− (u+ ϕε)2) · −2 · (u+ ϕε)ϕ

∣∣∣
ε=0

=

∫ +∞

z

u′ϕ′ − (1− u2)uϕ

=− u′(z)ϕ(z) +

∫ +∞

z

−u′′ϕ− (1− u2)uϕ

=− u′(z)ϕ(z) +

∫ +∞

z

(−u′′ − u(1− u2))ϕ

=− u′(z)ϕ(z) +

∫ +∞

z

(−u′′ − u(1− u2 − µv2ε))ϕ,

the last equality is true given that vε(x) = 0 for all x > z. We proved

d

dε
(E(u+ ϕε))

∣∣∣
ε=0

=

∫ +∞

−∞
(−u′′ − u(1− u2 − µv2ε))ϕ,

and so the Euler-Lagrange equation associated with the energy functional E(·) is

u′′ + u(1− u2 − µv2ε) = 0.

Since

K(x) = µ− 1 +
2µ2

µ− 1
sech2(

√
µ− 1(x− x1))

where µ > 1 it is easy to check that Ez− and Ez+ are nonegative functionals.

It is important to remark that the function vε given by (4.4) depends on the choice of z
because x1 depends on it too. We have the following proposition that relates minimums of
Ez for different values of z.

Proposition 4.5 Lets consider Ez1 and Ez2 defined by (4.6)-(4.7), if uz1 is a minimizer for
Ez1, then there exists uz2 minimizer for Ez2 and Ez1(uz1) = Ez2(uz2), fuerthermore, if we
define uz2(x) := uz1(x+ (z1 − z2)) we get a minimizer for Ez2.

Proof. First lets make the following observation on the function K that appears in the
definition of Ez

K(x) = µ− 1 +
2µ2

µ− 1
sech2(

√
µ− 1(x− x1)),

where (x− x1) = (x− z +C), and C is a constant. The function K depends on (x− z) and
so it can be thought as the displacement of K̃ which is defined by

K̃(x− z) = K(x),

we then have that

Ez1(u) =

∫ z1

−∞

(u′)2

2
+ K̃(x− z1)

u2

2
+

u4

4
+

∫ +∞

z1

(u′)2

2
+

1

4
(1− u2)2,
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by applying the change of variables y = x+ (z1 − z2) and considering ũ(y) = u(y+ (z1 − z2))
we get

Ez1(u) =

∫ z2

−∞

(ũ′)2

2
+ K̃(x− z2)

ũ2

2
+

ũ4

4
+

∫ +∞

z2

(ũ′)2

2
+

1

4
(1− ũ2)2 = Ez2(ũ),

and so Ez1(u(·)) = Ez2(u(·+ (z1 − z2))). Having the previous it is easy to see that if u1(·) is
a minimizer of Ez1 then immediately u2(·) := u1(·+ (z1 − z2)) is the minimum for Ez2 .

If we suppose that u2 is not minimizer for Ez2 , that is, there exists ū2 such that Ez2(ū2) <
Ez2(u2). Then defining ū1(x) := ū2(x− (z1 − z2)) we get

Ez1(ū1) = Ez2(ū2) =⇒ Ez1(ū1) = Ez2(ū2) < Ez2(u2) = Ez1(u1),

and so Ez1(ū1) < Ez1(u1) which is a contradiction given that we are assuming uz1 is a global
minimum.

Proposition 4.6 If uz1 minimizes Ez1 and uz2 build as in the previous proposition such that
minimizes Ez2, we have that uz1(z1) = uz2(z2), this means that uz(z) is independent of the
choice of z.

Proof. Based on the previous result we have Ez1(uz1) = Ez2(uz2) and uz2(x) = uz1(x+ (z1 −
z2)), evaluating on x = z2 we obtain uz2(z2) = uz1(z1), and so the value is independent of the
choice of z.

4.2.1 Existence of u0

Let us consider the following set of functions

X = {u : R −→ R|u′ ∈ L2(R), u1(−∞,z] ∈ L2(R),1[z,+∞)(1− u2) ∈ L2(R)}

We have the following

Proposition 4.7 If u ∈ X then u is also a C0,1/2(R) function.

Proof. Let us consider ε > 0 and x, y ∈ (−ε, ε) we have

|u(y)− u(x)| ≤ |y − x|1/2
(∫ y

x

u′2(s)ds

)1/2

≤ |y − x|1/2∥u′∥L2(R),

and so
|u(y)− u(x)|
|y − x|1/2

≤ ∥u′∥L2(R),

this implies u ∈ C0,α(−ε, ε) for any 0 < α ≤ 1/2.
Using that ε is arbitrary, the previous bound can be extended for any x, y ∈ R to conclude
that u ∈ C0,1/2(R).
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Lemma 4.8 Let u be a function in X, we have that there exists another function w in X
such that 0 ≤ w ≤ 1, is an increasing function, and Ez(w) ≤ Ez(u).

Proof. Let’s define the function w1 as follows for x > z

w1(x) =

{
|u(x)| if |u(x)| ≤ 1,

1 if |u(x)| > 1,

we have (1− w2
1)1[z,∞] ∈ L2 given∫ ∞

z

(1− w2
1)

2 =

∫
[z,∞)∩|u|>1

(1− w2
1)

2 +

∫
[z,∞)∩|u(x)|≤1

(1− w2
1)

2

≤
∫
[z,∞)∩|u(x)|≤1

(1− u2)2

≤
∫ ∞

z

(1− u2)2 < ∞,

and so (1− w2
1)1[z,∞) ∈ L2.

Now for x ≤ z we define

w1(x) =


0 if u(x) < 0,

u(x) if 0 ≤ u(x) ≤ 1,

1 if u(x) > 1.

We easily check that w11(−∞,z] ∈ L2∫ z

−∞
w2

1 =

∫
(−∞,z]∩u(x)<0

w2
1 +

∫
(−∞,z]∩0≤u≤1

w2
1 +

∫
(−∞,z]∩u>1

w2
1,

≤
∫ z

−∞
u2 < ∞.

We have then that |w1(x)| ≤ |u(x)| for all x, and |1− w2
1(x)| ≤ |1− u2(x)| for all x > z.

We now define w2 as follows,

w2(x) :=

{
supy∈[z,x] w1(y) if x ≥ z,

infy∈[x,z] w1(y) if x ≤ z.

Given that w1 is continuous, the function w2 is well defined. By the definition of infimum and
supremum, we obtain that w2 is a non-decreasing function and that 0 ≤ u(x) ≤ w2(x) ≤ 1
for all x ≥ z, and 0 ≤ w2(x) ≤ u(x) ≤ 1 for all x ≤ z, this implies that∫ +∞

z

(1− w2
2)

2 ≤
∫ +∞

z

(1− u2)2, and

∫ z

−∞
w2

2 ≤
∫ z

−∞
u2,

respectively.

Let’s study the derivative now. Given that the function w2 is a monotone increasing
function, by Lebesgue’s Theorem we know that the derivative of w2 exists almost everywhere.
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We consider the set A := {x ∈ R|w2(x) = u(x)}. Due to the continuity of u, we have that Ac

is an open set. In this set, w2 is locally constant, which implies that w2 is differentiable on
Ac and its derivative is the zero function. Therefore, the weak derivative on this set exists
and coincides with zero almost everywhere.

On the other hand, w2 coincides with u on A, we have

w′
2(x) =

{
0 for x ∈ Ac,

u′(x) for x ∈ A,

from this, its easy to conclude that∫
(w′

2)
2 ≤

∫
(u′)2 < ∞.

Thus, we have shown that w2 belongs to X, takes values between 0 and 1, and satisfies
E(w2) ≤ E(u).

Clearly, the conditions are satisfied by w = w2.

Proposition 4.9 Given (un)n a minimizing sequence on X without loosing any generality
we can assume that is a sequence of monotone functions taking values between 0 and 1.

Proof. Once having the sequence (un)n we can build an alternative sequence (wn)n where
each function wn is a monotone function taking values between 0 and 1, such that Ez(wn) ≤
Ez(un). The existence of each function wn is obtained using the two previous lemmas.
Thus, we have a minimizing sequence (wn)n consisting of monotone functions and uniformly
bounded between 0 and 1.

Theorem 4.10 There exists a function u0 that minimizes Ez on X, this is a monotone
function, 0 ≤ u ≤ 1 and also u ∈ C2,1/2.

Proof. Let us consider a minimizing sequence (un)n of the functional Ez on X. We have
proven that we can assume (un)n is a sequence of uniformly bounded and monotone functions.
By applying Helly’s Selection theorem we can find a subsequence (un)nk

that converges
pointwise to a function ū. We will now show that this function ū belongs to X. If this is
the case, we can use Fatou’s Lemma to establish that Ez(ū) ≤ Ez(unk

), indicating that ū is
a minimum. For clarity in notation, let us assume that (un)n converges to ū. Now, we goal
is to prove that ū′ ∈ L2. However, before proceeding, we need to establish the existence of
this derivative. We must find a function v such that:∫

vϕ = −
∫

ūϕ′ for each ϕ ∈ C∞
0 .

Given that (un)n is a minimizing sequence, we can observe that ∥u′
n∥ forms a uniformly

bounded family. Consequently, there exists a weakly convergent subsequence, which we will
still denote as (un)n, converging to a limit function denoted as v. As a result,∫

u′
nϕ −→

∫
vϕ for each ϕ ∈ L2.

21



By using the definition of the distributional derivative, we get

−
∫

unϕ
′ −→

∫
vϕ for each ϕ ∈ C∞

0 ,

finally, by using dominated convergence theorem we have

−
∫

unϕ
′ −→ −

∫
ūϕ′ for each ϕ ∈ C∞

0 ,

this implies that −
∫
ūϕ′ =

∫
vϕ for each ϕ ∈ C∞

0 . Therefore, the derivative exists and we
have u′

n → ū′ in the sense of the distributions and in the weak sense (as the first of the
previous limits shows).
Now we have this weak derivative exists, we just need to prove that this function is in L2,
for this, we use that the L2 norm is weakly lower semi-continuous. We already shown that
u′
n ⇀ ū′ and therefore

lim inf
n→∞

(∫
(u′

n)
2

)1/2

= lim inf
n→∞

∥u′
n∥ ≥ ∥ū′∥ =

(∫
(ū′)2

)1/2

,

which implies ū′ ∈ L2. By means of Fatou’s Lemma (here we use the known fact that un

converges pointwise to ū) we are able to bound term by term the energy functional Ez to
conclude that ū ∈ X and Ez(ū) ≤ lim inf Ez(un), this means ū is a minimizer. From now on
we will denote u0 to this minimum and see that it is a C2,1/2 function.
Given that u0 is a minimum of Ez it satisfies the corresponding Euler-Lagrange equation,
this means that ∫ ∞

−∞
(−u′′ − u(1− u2 − µv2ε))ϕ = 0 for each ϕ ∈ C∞

0 ,

where u′′ is the second derivative in the sense of distributions, which implies

u′′ = −u(1− u2 − µv2ε),

and given that u ∈ X is a C0,1/2 function, this implies u′′ ∈ C0,1/2, and so u ∈ C2,1/2.

4.3 The v0 problem

Having the solution obtained in the previous section, we write the following problem

δ2v′′ + v(1− v2 − µu2
0) = 0, (4.8)

and call v0 the solution of this problem. It is not hard to notice that structure of this problem
is not very different from the one we already studied for u0 and, so it is possible to procede
in a very similar way.
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4.3.1 Existence of v0

Let us consider the following set of functions defined taking s such that u2
0(x) ≥ 1

µ
for any

x ≥ s, we define

Y = {v : R −→ R|v′ ∈ L2,1[s,+∞)v ∈ L2,1(−∞,s](1− v2) ∈ L2},

we have the following results

Proposition 4.11 The equation (4.8) correspond to the Euler-Lagrange equation of the fol-
lowing Energy functional

E(v) =

∫ s

−∞
δ2
(v′)2

2
+

µu2
0v

2

2
+

(1− v2)2

4
+

∫ ∞

s

δ2
(v′)2

2
+

v2

2
(µu2

0 − 1) +
v4

4
.

Also, the functional is nonegative over Y .

Proof. We divide the functional in the following way

Es− =

∫ s

−∞
δ2
(v′)2

2
+

µu2
0v

2

2
+

(1− v2)2

4
,

Es+ =

∫ ∞

s

δ2
(v′)2

2
+

v2

2
(µu2

0 − 1) +
v4

4
,

clearly Ez = Es− + Es+ , then we have

d

dε
(E(v + ϕε))

∣∣∣
ε=0

=
d

dε
(Es−(v + ϕε))

∣∣∣
ε=0

+
d

dε
(Es+(v + ϕε))

∣∣∣
ε=0

.

Calculating separately

d

dε
(Es−(v + ϕε))

∣∣∣
ε=0

=
d

dε

(∫ s

−∞

δ2(v′ + ϕ′ε)2

2
+ µu2

0

(v + ϕε)2

2
+

(1− (v + ϕε)2)2

4

) ∣∣∣
δ=0

,

and so

=

∫ s

−∞
δ2(v′ + ϕ′ε)ϕ′ + µu2

0(v + ϕε)− (1− (v + ϕε)2)(v + ϕε)ϕ
∣∣∣
ε=0

=

∫ s

−∞
δ2v′ϕ′ + µu2

0vϕ− v(1− v2)ϕ

=

∫ s

−∞
δ2v′ϕ′ − v(1− v2 − µu2

0)ϕ

= v′(s)ϕ(s) +

∫ s

−∞
(−δ2v′′ − v(1− v2 − µu2

0))ϕ,

at the same time we have

d

dε
(Es+(v + ϕε))

∣∣∣
ε=0

=
d

dε

(∫ ∞

s

δ2
(v′ + ϕ′ε)2

2
+

(v + ϕε)2

2
(µu2

0 − 1) +
(v + ϕε)4

4

) ∣∣∣
ε=0

,
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and so

=

(∫ ∞

s

δ2(v′ + ϕ′ε)ϕ′ + (v + ϕδ)ϕ(µu2
0 − 1) + (v + ϕδ)3ϕ

) ∣∣∣
ε=0

=

∫ ∞

s

δ2v′ϕ′ + v(µu2
0 − 1)ϕ+ v3ϕ

= −v′(s)ϕ(s) +

∫ ∞

s

(−δ2v′′ − v(1− v2 − µu2
0))ϕ,

finally we get

d

dε
(Ez(v + ϕε))

∣∣∣
ε=0

=
d

dε
(Es−(v + ϕε))

∣∣∣
ε=0

+
d

dε
(Es+(v + ϕε))

∣∣∣
ε=0

=

∫ s

−∞
(−δ2v′′ − v(1− v2 − µu2

0))ϕ+

∫ ∞

s

(−δ2v′′ − v(1− v2 − µu2
0))ϕ

=

∫
(−δ2v′′ − v(1− v2 − µu2

0))ϕ,

and then we have
d

dε
(Ez(v + ϕε))

∣∣∣
ε=0

= 0

which implies
δ2v′′ + v(1− v2 − µu2

0) = 0.

To see that this functional is nonegative it is sufficent to note that all terms on Es+ are
squares of real values and so takes only positive values, for Es− we know it is positive given
that we chose s such that µu2

0(x)− 1 ≥ 1 for any x ≥ s, hence, E(v) is nonegative on Y .

Proposition 4.12 If v ∈ Y then v ∈ C0,1/2.

Proof. Let us consider ε > 0 then we have

|v(y)− v(x)| ≤ |y − x|1/2
(∫ y

x

v′2(s)ds

)1/2

≤ |y − x|1/2∥v′∥L2 ,

and so
|v(y)− v(x)|
|y − x|1/2

≤ ∥v′∥L2 ,

using that ε is arbitrary we conclude v ∈ C0,1/2.

Lemma 4.13 Given a minimizing sequence (vn) on Y we can assume without loosing gen-
erality that this sequence is uniformly bounded 0 ≤ vn ≤ 1 and each vn is a non-increasing
function.

Proof. We just take a function vn of the sequence of Y , it is related to another function un

in X given by un(x) = vn(−x + (s + z)), we can use the Lemma proved for functions in X
and build a function ũn such that its in X, is nondecreasing, bounded between 0 and 1, and
Ez(ũn) ≤ Ez(un), now we define the function that we will use ṽn(x) = ũn(−x+(s+z)). Clearly
ṽn ∈ Y and using that Ez(ũn) ≤ Ez(un) by a change of variables we obtain E(ṽn) ≤ E(vn),
by doing this for each function of the sequence we build this alternative sequence (ṽn)n with
the desired properties.
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Theorem 4.14 The problem (4.8) has a weak solution on Y , furthermore, it is a classical
solution and it lies in C2,1/2.

Proof. Let us consider a minimizing sequence (vn)n of E on Y . Without losing generality
we can assume this is a uniformly bounded sequence, 0 ≤ vn ≤ 1 of non-increasing functions,
and so, by Helly’s selection theorem there exists a subsequence which we will denote by (vn)n
that converges pointwise to a function v̄. We will prove that this function lies in Y . Lets
see first that the derivative is a function in L2. We have that ∥v′n∥ is a uniformly bounded
family and so there exists a weak convergent subsequence (which we call just (v′n)n) and w
to the limit. We then have ∫

v′nϕ −→
∫

wϕ, for each ϕ ∈ L2,

this implies

−
∫

vnϕ
′ −→

∫
wϕ for each ϕ ∈ C∞

0 ,

finally by dominated convergence theorem we have

−
∫

vnϕ
′ −→ −

∫
v̄ϕ′ for each ϕ ∈ C∞

0 ,

and so −
∫
v̄ϕ′ =

∫
wϕ for each ϕ ∈ C∞

0 , that means the derivative of v̄ exists (is the previous
function w) and we have v′n → v̄′ in the sense of distributions and in the weak sense.

Now that we have established the existence of the weak derivative, which is a function
(obtained as the poinwise limit of the previous sequence, provided by the Banach-Alaoglu
theorem), our next goal is to prove that this function belongs to L2. To acomplish this, we
utilize the fact that the L2 norm is weakly lower semi-continuous. By applying this property,
we can conclude that v′n ⇀ v̄′, and therefore

lim inf
n→∞

(∫
(v′n)

2

)1/2

= lim inf
n→∞

∥v′n∥ ≥ ∥v̄′∥ =

(∫
(v̄′)2

)1/2

,

and so v̄′ ∈ L2.

By Helly’s selection theorem we have (vn) converges point-wise to v̄, this allow us to use
Fatou’s Lemma to bound all terms (term by term) on E(vn) so we get v̄ ∈ S and

E(v̄) ≤ lim inf E(vn),

this means v̄ is a minimizer and is contained in S.

Given that v̄ is a minimum it satisfies the corresponding Euler-Lagrange equation and so∫ ∞

∞
(−δ2v′′ − v(1− v2 − µu2

0))ϕ = 0, for each ϕ ∈ C∞
0 ,

where v′′ is the second derivative in the sense of distributions, which implies

δ2v′′ = −v(1− v2 − µu2
0),

and so v′′ can be identified as a function, and given v ∈ S we obtain v′′ ∈ C0,1/2, so we
conclude v ∈ C2,1/2.
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4.3.2 Perpendicular Case

As discussed in the second chapter, the problem we are studying has a limit case that requires
us to consider a different system of differential equations. In this limit case, a fourth-order
derivative term becomes significant. As a result, the equation that describes this limit case
can be written as follows: {

u′′ + u(1− u2 − µv2) = 0

−ε2 v(iv) + v(1− v2 − µu2) = 0.

We consider first the approximation by taking ε = 0 and notice that the system obtained is{
u′′ + u(1− u2 − µv2) = 0

v(1− v2 − µu2) = 0,

we already solved this problem in the first part of the chapter, and obtained solutions uε, vε.
By replacing vε in the right hand side of the equation for u we obtain

u′′ + u(1− u2 − µv2ε) = 0,

problem that has a solution u0 on X as we proved. Now we present the fourth order equation
for v considering ε not zero and the right hand side considering u = u0, that is

−ε2viv + v(1− v2 − µu2
0) = 0. (4.9)

This problem is quite challenging since we cannot employ the same techniques we used for
the second order problem. The reason is that when working with the energy functional, we
have to deal with second-order derivatives. Even if the functions on Y are continuous (which
allows us to use that the derivative is a function), it is crucial to note that we cannot assume
the second derivative to be a function. As a result, our techniques used to prove Lemmas
4.11 and 4.12 cannot be applied. To face this new problem we consider (4.9) on a bounded
interval.

Theorem 4.15 Let YR be

YR = {v ∈ H2(−R,R)|v(−R) = 1, v(R) = 0, v′(−R) = v′(R) = 0},

we have that the functional JR defined by

JR(v) =

∫ s

−R

ε2
(v′′)2

2
+

µu2
0v

2

2
+

(1− v2)2

4︸ ︷︷ ︸
Js−
R

+

∫ R

s

ε2
(v′′)2

2
+

v2

2
(µu2

0 − 1) +
v4

4︸ ︷︷ ︸
Js+
R

over YR has a minimum vR0 , and this minimum is a C4,α function for 0 < α ≤ 1/2 and
classical solution of (4.9) on (−R,R).

Proof. Lets see first the connection between this functional and (4.9)

Js−

R =

∫ s

−R

ε2
(v′′)2

2
+

µu2
0v

2

2
+

(1− v2)2

4
,
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Js+

R =

∫ R

s

ε2
(v′′)2

2
+

v2

2
(µu2

0 − 1) +
v4

4
,

then we have

d

dδ
(JR(v + ϕδ))

∣∣∣
δ=0

=
d

dδ
(Js−

R (v + ϕδ))
∣∣∣
δ=0

+
d

dδ
(Js+

R (v + ϕδ))
∣∣∣
δ=0

.

Calculating separately

d

dδ
(Js−

R (v + ϕδ))
∣∣∣
δ=0

=
d

dδ

(∫ s

−R

ε2(v′′ + ϕ′′δ)2

2
+ µu2

0

(v + ϕδ)2

2
+

(1− (v + ϕδ)2)2

4

) ∣∣∣
δ=0

,

and so

=

∫ s

−R

ε2(v′′ + ϕ′′δ)ϕ′′ + µu2
0(v + ϕδ)− (1− (v + ϕδ)2)(v + ϕε)ϕ

∣∣∣
δ=0

=

∫ s

−R

ε2v′′ϕ′′ + µu2
0vϕ− v(1− v2)ϕ

=

∫ s

−R

ε2v′′ϕ′′ − v(1− v2 − µu2
0)ϕ

= v′′(s)ϕ′(s)− v′′′(s)ϕ(s) +

∫ s

−R

(ε2viv − v(1− v2 − µu2
0))ϕ,

at the same time we have

d

dδ
(Js+

R (v + ϕδ))
∣∣∣
δ=0

=
d

dδ

(∫ R

s

ε2
(v′′ + ϕ′′δ)2

2
+

(v + ϕδ)2

2
(µu2

0 − 1) +
(v + ϕδ)4

4

) ∣∣∣
δ=0

,

and so

=

(∫ R

s

ε2(v′′ + ϕ′′δ)ϕ′′ + (v + ϕδ)ϕ(µu2
0 − 1) + (v + ϕδ)3ϕ

) ∣∣∣
δ=0

=

∫ R

s

ε2v′′ϕ′′ + v(µu2
0 − 1)ϕ+ v3ϕ

= −v′′(s)ϕ′(s) + v′′′(s)ϕ(s) +

∫ R

s

(ε2viv − v(1− v2 − µu2
0))ϕ,

finally we get

d

dδ
(JR(v + ϕδ))

∣∣∣
δ=0

=
d

dδ
(Js−

R (v + ϕδ))
∣∣∣
δ=0

+
d

dδ
(Js+

R (v + ϕδ))
∣∣∣
δ=0

=

∫ s

−R

(ε2viv − v(1− v2 − µu2
0))ϕ+

∫ R

s

(ε2viv − v(1− v2 − µu2
0))ϕ

=

∫ R

−R

(ε2viv − v(1− v2 − µu2
0))ϕ,

and then we have
d

dδ
(JR(v + ϕδ))

∣∣∣
δ=0

= 0
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which implies that
−ε2viv + v(1− v2 − µu2

0) = 0

is the Euler-Lagrange equation associated.

To see that this functional is nonegative it is sufficent to note that all terms on Js+

R are
squares of real values and so takes only nonegatives values, for Js−

R we know it is positive
given that we chose s such that µu2

0(x)− 1 ≥ 1 for any x ≥ s, hence, JR(v) is nonegative on
YR.

The rest of the proof follows the direct method described in Chapter 3, it is easy to check
that the functional JR can be written as

JR(v) =
ε2

2
∥v′′∥L2 +

∫ s

−R

µu2
0v

2

2
+

(1− v2)2

4
+

∫ R

s

v2

2
(µu2

0 − 1) +
v4

4
.

We see that Y is a closed set over a H2(−R,R), this is useful to use the method described
on Chapter 3, we only need to prove that JR is coercive and weakly lower-semicontinuous:

Coercivity: It is easy to check that when ∥v′′∥ goes to infinity then so does JR(v). We have that

v(x) =

∫ x

−R

v′(s)ds+ 1,

≤ ∥v′∥L2(x+R)1/2 + 1,

≤ ∥v′∥L2(2R)1/2 + 1,

and so

∥v∥2L2 ≤ (2R)
(
∥v′∥L2(2R)1/2 + 1

)2
,

directly we have that ∥v∥L2 → ∞ implies ∥v′∥L2 → ∞.

At the same time,

v′(x) =

∫ x

−R

v′′(s)ds,

≤ (2R)1/2∥v′′∥L2 ,

and so

∥v′∥2L2 ≤ (2R)2∥v′′∥2L2 ,

we conclude ∥v∥H2 → ∞ =⇒ ∥v′′∥ → ∞ =⇒ JR(v) → ∞.

Wlsc: Let’s divide the functional as follows

JR(v) =
ε2

2
∥v′′∥2L2︸ ︷︷ ︸

I

+

∫ s

−R

µu2
0v

2

2︸ ︷︷ ︸
II

+
(1− v2)2

4︸ ︷︷ ︸
III

+

∫ R

s

v2

2
(µu2

0 − 1)︸ ︷︷ ︸
IV

+
v4

4︸︷︷︸
V

I Given that the L2 norm is weakly lower-semicontinuous we have this term covered
and so it is weakly lower-semicontinuous.
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II Let (vn)n be a sequence in Y that converges to v in the weak topology of H2.
Due to the compact embedding of H2 into L2 (a direct consequence of Rellich-
Kondrachov’s Theorem), there exists a subsequence, also denoted as vn, that con-
verges in the norm topology of L2. By uniqueness of the limit, this new sequence
also converges to v in L2, we have∫ s

−R

µu2
0

2
(v2n − v2) ≤

∫ s

−R

µu2
0

2
|v2n − v2| ≤ Constant · ∥vn − v∥L2 ,

where the last inequality is obtained using Holder’s inequality. Thus, we have
achieved weak lower semi-continuity for this term.

III Let (vn)n be a sequence in Y that converges v in the weak topology of H2. Due
to the compact embedding of H2 into L2, there exists a subsequence of (vn), also
denoted as (vn)n, that converges in the L2 norm to v, and so∫ s

−R

|(1− v2n)
2 − (1− v2)2| ≤

∫ s

−R

|(1− v2n) + (1− v2)| · |(1− v2n)− (1− v2)|

≤ (∥1− v2n∥+ ∥1− v2∥L2) · ∥v2n − v2∥L2

≤ (∥1− v2n∥+ ∥1− v2∥L2) · ∥vn + v∥ · ∥vn − v∥L2

which tends to zero due to the continuity of the norm.

IV Let (vn)n a sequence in Y convergent to v in the H2 weak topology. By the
compact embedding of H2 into L2 there exists a subsequence also convergent to v
in the L2 norm (which we also call (vn)n), and so we have∫ R

s

v2n − v2

2
(µu2

0 − 1) ≤
∫ R

s

|v2n − v2|
2

(µu2
0 − 1) ≤ Constant · ∥vn − v∥L2 ,

and so we get weakly lower semi-continuity for this term.

V Let (vn)n a sequence of Y weakly convergent to v inH2, by the compact embedding
ofH2 into L2 there exists a subsequence convergent to v in L2 (which we call (vn)n)
and so ∫ R

s

1

4
(v4n − v4) ≤

∫ R

s

1

4
|v4n − v4|

=

∫ R

s

1

4
|v2n + v2| · |vn + v| · |vn − v|

≤ Constant · ∥vn − v∥L2 ,

and we have the weakly lower semi-continuity.

We have all the terms on JR are weakly lower semi-continuous and so the sum of them
is weakly lower semi-continuous.

Finally by means of direct method of calculus of variations we have that there exists a
minimum vR0 on Y for JR.
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Lets check now the regularity of vR0 , we know that vR0 ∈ YR, due to Sobolev’s Inequalities
we also know vR0 ∈ C0,1/2(−R,R) and that is a solution for∫ R

−R

(−ε2viv + v(1− v2 − µu2
0))ϕ = 0, ∀ϕ ∈ C∞

0 (−R,R),

by continuity is obtained that it also satisfies

−ε2viv + v(1− v2 − µu2
0) = 0, for all x ∈ (−R,R),

and so we conclude v ∈ C4,1/2 and given we are working on a bounded set (−R,R) is obtained
that v ∈ C4,α for all 0 < α ≤ 1/2.

To explore the problematic further, studying the behavior of vR0 as R → ∞ becomes
neccesary. However, this particular challenge is beyond the scope of our current work. In-
stead, we focus on investigating this specific problem within a bounded interval and employ
various numerical techniques to obtain solutions.

4.3.3 Scaled Problems

There are some natural scales to study both of the previous problems: the second order
problem of the section 4.3 and the fourth order problem of the section 4.3.2. This new
natural scaling will enable us to study the transition point s and the region close to this
point, ureferred to as corner layer [10] [7]. The term “corner layer” is used due to the type
of defect that appears in the generated patterns, similar to the ones observed in Figure 2.1.

Given that the energy functionals are divided into two parts and the functions that
minimize Js−

R and Js+

R separately are very different (the same happens with Es− and Es+

when considering the second order problem), it is of interest to study a scaled version of the
problem that can capture how the function should behave close to s, transitioning from one
minimizer to the other. Additionally, it is desirable for the new equation to be independent
of arbitrary small values such as ε or δ. Let’s choose a value s such that u2

0(s) = 1/µ and
consider the case of the second and fourth order problem:

Second order problem

By taking the expansions

u2
0(s+ δpt) = u2

0(s) + 2u0(s)u
′
0(s)δ

pt+ o(δ2pt2)

v(s+ δpt) = ϕ(t)δα.

The equation for ϕ obtained by replacing in (4.8) is given by

δ2−2pϕ′′ = −ϕ(1− δ2αϕ2 − µu2
0(s+ δpt)),
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using the previous expansion we get,

δ2−2pϕ′′ = −ϕ(1− δ2αϕ2 − µu2
0(s)− 2µu0(s)u

′
0(s)δ

pt+O(δ2pt2)),

and so we can solve for the exponents{
2− 2p = 2α

2α = p,

so we take p = 2/3, α = 1/3, and get the following limit problem for small enough t (x close
to s)

ϕ′′ − ϕ(ϕ2 + Ct) = 0, (4.10)

where C = 2u0(s)u
′
0(s), a second Painlevé equation.

We are interested in solutions of (4.10) in such a way that the derivative (and the second
derivative) vanishes at ±∞, we deduce{

ϕ(−∞) ≈
√

−2µu0(s)u′
0(s)t

ϕ(∞) = 0,
(4.11)

for this problem we have the following energy functional∫ 0

−∞

(ϕ′)2

2
+

1

4
(ϕ2 + Ct)2dt+

∫ +∞

0

(ϕ′)2

2
+

ϕ2

2

(
Ct+

ϕ2

2

)
dt. (4.12)

Proposition 4.16 The functional (4.12) has (4.10) as the Euler-lagrange equation associated
and it is compatible with (4.11).

Proof. Lets call I(ϕ) to the functional defined by (4.15), we have

I(ϕ+ εh) =

∫ 0

−∞

1

2
(ϕ′ + εh′)2 +

1

4
((ϕ+ εh)2 + Ct)2dt

+

∫ +∞

0

1

2
(ϕ′ + εh′)2 +

Ct

2
(ϕ+ εh)2 +

1

4
(ϕ+ εh)4dt,

and so
d

dε
I(ϕ+ εh) =

∫ 0

−∞
(ϕ′ + εh′)h′ + ((ϕ+ εh)2 + Ct)(ϕ+ εh)hdt

+

∫ +∞

0

(ϕ′ + εh′)h′ + Ct(ϕ+ εh)h+ (ϕ+ εh)3hdt,

finally, we just evaluate ε = 0 and get

d

dε
I(ϕ+ εh)

∣∣∣
ε=0

=

∫ 0

−∞
ϕ′h′ + (ϕ2 + Ct)ϕhdt+

∫ +∞

0

ϕ′h′ + Ctϕh+ ϕ3hdt

=

∫
ϕ′h′ + ϕ(ϕ2 + Ct)hdt,
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and so, if
d

dε
I(ϕ+ εh)

∣∣∣
ε=0

= 0 for all h ∈ C∞
c

then
−ϕ′′ − ϕ(ϕ2 + Ct) = 0.

To see that the functional is compatible with the boundary conditions (4.11) we notice that
to minimize the left side integral on (4.12) the function inside the integral must go to zero,
this implies (ϕ2 + Ct) → 0 as t → −∞ and so the first condition of (4.11) is fulfilled, the
same happens when we observe the second integral in the functional which allow us to obtain
the second boundary condition.

Fourth order problem

Just as in the second order problem, we consider the expansion

u2
0(s+ εpt) = u2

0(s) + 2u0(s)u
′
0(s)ε

pt+ o(ε2pt2),

and the change of variables
v(s+ εpt) = ϕ(t)εα,

in the equation (4.9), so we obtain

−ε2−4pϕiv = −ϕ(1− ε2αϕ2 − µu2
0(s+ εpt)),

and so
−ε2−4pϕiv = −ϕ(1− ε2αϕ− µu2

0(s)− 2µu0(s)u
′
0(s)ε

px+ o(ε2pt2))

−ε2−4pϕiv = ϕ(ε2αϕ2 + 2µu0(s)u
′
0(s)ε

pt+ o(ε2pt2)),

where the system for p and α is found{
2− 4p = 2α

2α = p

and we get p = 2/5, α = 1/5. The limit problem is:

−ϕiv − ϕ(ϕ2 + 2µu0(s)u
′
0(s)t) = 0, for all t ∈ R. (4.13)

We may ask ourselves about the boundary conditions this problem should have, by means of
the previous equation we deduce{

ϕ(−∞) ≈
√

−2µu0(s)u′
0(s)t

ϕ(∞) = 0,
(4.14)

and for this problem we have the following energy functional∫ 0

−∞

(ϕ′′)2

2
+

1

4
(ϕ2 + Ct)2dt+

∫ +∞

0

(ϕ′′)2

2
+

ϕ2

2

(
Ct+

ϕ2

2

)
dt, (4.15)

this is proved in the following proposition:
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Proposition 4.17 The functional given by (4.15) has (4.13) as the Euler-Lagrange equations
associated and is compatible with (4.14).

Proof. Lets call I(ϕ) to the functional defined by (4.15), for this functional we have that

I(ϕ+ εh) =

∫ 0

−∞

1

2
(ϕ′′ + εh′′)2 +

1

4
((ϕ+ εh)2 + Ct)2dt

+

∫ +∞

0

1

2
(ϕ′′ + εh′′)2 +

Ct

2
(ϕ+ εh)2 +

1

4
(ϕ+ εh)4dt,

and so
d

dε
I(ϕ+ εh) =

∫ 0

−∞
(ϕ′′ + εh′′)h′′ + ((ϕ+ εh)2 + Ct)(ϕ+ εh)hdt

+

∫ +∞

0

(ϕ′′ + εh′′)h′′ + Ct(ϕ+ εh)h+ (ϕ+ εh)3hdt,

finally, we just evaluate ε = 0 and get

d

dε
I(ϕ+ εh)

∣∣∣
ε=0

=

∫ 0

−∞
ϕ′′h′′ + (ϕ2 + Ct)ϕhdt+

∫ +∞

0

ϕ′′h′′ + Ctϕh+ ϕ3hdt

=

∫
ϕ′′h′′ + ϕ(ϕ2 + Ct)hdt,

and so, if
d

dε
I(ϕ+ εh)

∣∣∣
ε=0

= 0 for all h ∈ C∞
c

then
−ϕiv − ϕ(ϕ2 + Ct) = 0.

To verify that the functional is compatible with the boundary conditions (4.14), we simply
need to notice that in order to minimize the left-hand side integral on (4.15), the function
inside the integral must go to zero. This implies (ϕ2 + Ct) → 0 as t → −∞, thereby
satisfying the first condition of (4.14). The same observation applies to the second integral
in the functional, allowing us to obtain the second boundary condition.

4.4 Numeric implementation and results

In this section we show the numeric results using multiple implementations of different tech-
niques for the problem (4.5), (4.9) and (4.13).
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4.4.1 Minimization of the second order problem

Numerical approximation of u0

First we consider the problem given by

u′′ + u(1− u2 − µv2ε) = 0, for all x ∈ (−R,R),

u′(−R) = 0, u′(R) = 0.

The discretization of the above problem is performed by splitting the interval [−R,R] using
h = 2R/n with n ≥ 3 generating n+1 points xi = −R+ ih with 0 ≤ i ≤ n. We consider the
following approximation for the derivative:

u′
j =

uj+1 − uj

h
,

and finally obtain the finite dimensional minimization problem (when considering z = 0)

min
u∈Rn

⌊n/2⌋∑
i=1

(
(u′

i)
2

2
+

u2
i

2
K(xi) +

u4
i

4

)
h+

n−1∑
i=⌊n/2⌋+1

(
(u′

i)
2

2
+

1

4
(1− u2

i )
2

)
h,

subject to
u′(−R) = 0, u′(R) = 0.

The minimization was performed by the algorithm sequential least squares programming
and the following is the obtained for different values of n:

Figure 4.2: u0 as a result of minimization of discretized energy functional.

Numerical approximation of v0

Once having values of u0 it is posible to confront the problem of finding v0, that is

min

∫ s

−R

δ2
(v′)2

2
+

µu2
0v

2

2
+

(1− v2)2

4
+

∫ R

s

δ2
(v′)2

2
+

v2

2
(µu2

0 − 1) +
v4

4
,
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subject to
v′(−R) = 0, v′(R) = 0.

To solve the previous problem we need to find s, that is easy, we just consider the first index
such that u0[i] = 1/µ and take s = xi, we will call s to this index. Once knowing the value
of s it is posible for us to define the finite dimensional minimization problem corresponding
to vR0 :

min
vi∈Rn

s∑
i=1

(
δ2
(v′i)

2

2
+

µu2
0i
v2i

2
+

(1− v2i )
2

4

)
h+

n∑
i=s+1

(
δ2
(v′i)

2

2
+

v2i
2
(µu2

0i
− 1) +

v4i
4

)
h,

subject to
v′(−R) = 0, v′(R) = 0.

Just as before we use the use sequential least squares programming algorithm to minimize
this and obtain the following set of figures for different values of δ and n:
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Figure 4.3: v0 as a result of minimization of discretized energy functional.

where in each case two monotone functions are obtained. Also, we can look at an interval
of lenght O(δ2/3) where its supposed to be localized the domain wall where v drops, we choose
to graph lines on ±4δ2/3 on some of the previous graph to observe that

Figure 4.4: v0 and u0 as a result of minimization of discretized energy functional, where red
lines are for x = ±4δ2/3.
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4.4.2 Minimization of the fourth order problem

The fourth order has been challenging to work with due to the presence of a second derivative
in its energy functional. This prevents us from constructing a uniformly bounded monotone
sequence of functions to minimize the energy. Therefore, we consider the previous minimiza-
tion problems as finite-dimensional minimization problems.

Numerical approximation of u0

As we did in the previous case we consider the problem given by

u′′ + u(1− u2 − µv2ε) = 0, for all x ∈ (−R,R),

u′(−R) = 0, u′(R) = 0,

and compute the minimization of the finite dimensional optimization problem

min
u∈Rn

⌊n/2⌋∑
i=1

(
(u′

i)
2

2
+

u2
i

2
K(xi) +

u4
i

4

)
h+

n−1∑
i=⌊n/2⌋+1

(
(u′

i)
2

2
+

1

4
(1− u2

i )
2

)
h,

subject to
u′(−R) = 0, u′(R) = 0,

where

u′
j =

uj+1 − uj

h
.

Numerical approximation of v0

Once having values of u0 it is posible to confront the problem of finding v0, that is

min

∫ s

−R

ε2
(v′′)2

2
+

µu2
0v

2

2
+

(1− v2)2

4
+

∫ R

s

ε2
(v′′)2

2
+

v2

2
(µu2

0 − 1) +
v4

4
,

subject to
v′(−R) = 0, v′(R) = 0.

To solve the previous problem we need to find s, that is easy, we just consider the first index
such that u0[i] = 1/µ and take s = xi, we will call s to this index. Once knowing the value
of s it is posible for us to define the finite dimensional minimization problem corresponding
to vR0 :

min
vi∈Rn

s∑
i=1

(
ε2
(v′′i )

2

2
+

µu2
0i
v2i

2
+

(1− v2i )
2

4

)
h+

n∑
i=s+1

(
ε2
(v′′i )

2

2
+

v2i
2
(µu2

0i
− 1) +

v4i
4

)
h,

subject to
v′(−R) = 0, v′(R) = 0.

Just as before we use the use sequential least squares programming algorithm to minimize
this and obtain the following set of figures for different values of ε and n:
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Figure 4.5: v0 as a result of minimization of discretized energy functional.

As we observe, the solution obtained for v0 is not a monotone function, which is consistent
with the theoretical problem of constructing a non-increasing minimizing sequence. It may
also be interesting to examine the size of this domain boundary in relation to ε. In the
previous discussion, where the equation (4.13) was introduced, the change of scale on x was
ε2/5. This suggests that the length of this structure should be proportional to this quantity
when it is small. We obtained the following figures when we considered the lines x = ±4ε2/5

as reference and highlighted in red

Figure 4.6: v0 and u0 as a result of minimization of discretized energy functional, where red
lines are for x = ±4ε2/5.
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4.4.3 Minimization of the rescaled Calculus of Variation Problem

Second order problem

The equation (4.12) has the following minimization problem associated:

min J(ϕ) =

∫ 0

−∞

(ϕ′)2

2
+

1

4
(ϕ2 + Ct)2dt+

∫ +∞

0

(ϕ′)2

2
+

ϕ2

2

(
Ct+

ϕ2

2

)
dt

we are interested in to capture the behavior of the solution around t = 0 and so we consider
the numeric problem of minimizing the following integral taking big enough A:∫ 0

−A

(ϕ′)2

2
+

1

4
(ϕ2 + Ct)2dt+

∫ A

0

(ϕ′)2

2
+

ϕ2

2

(
Ct+

ϕ2

2

)
dt

to do it we first consider a uniform discretization for n points on the interval [−A,A] and
the following the scheme we use for the second derivative

y′i =
yi+1 − yi

h
,

where h = 2A/n. We set the finite-dimensional optimization problem

min
y∈Rn

⌊n/2⌋∑
i=1

(
(y′)2i
2

+
1

4
(y2i + Cxi)

2)

)
h+

n−1∑
i=⌊n/2⌋+1

(
(y′)2i
2

+ Cxi
y2i
2

+
y4i
4

)
h.

An important observation to make here is that the value C is free at this moment given
u′
0(s) is unknown and yet we dont have any constraint for its value. The constant C takes

place in the objective function and the boundary conditions, given that the techniques used
are not able to fix it, we use the value 1 for our numerical simulations.

The following figures are the solutions for the optimization problem using scipy SLSQP
algorithm from scipy library for different values of n and A.
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Figure 4.7: Solutions for ϕn for different values for n and A using numeric minimization of
energy functional.

Fourth order problem

As we proved, the equation (4.13) has the following minimization problem associated:

min J(ϕ) =

∫ 0

−∞

(ϕ′′)2

2
+

1

4
(ϕ2 + Ct)2dt+

∫ +∞

0

(ϕ′′)2

2
+

ϕ2

2

(
Ct+

ϕ2

2

)
dt

we are interested in to capture the behavior of the solution around t = 0 and so we consider
the numeric problem of minimizing the following integral taking big enough A:∫ 0

−A

(ϕ′′)2

2
+

1

4
(ϕ2 + Ct)2dt+

∫ A

0

(ϕ′′)2

2
+

ϕ2

2

(
Ct+

ϕ2

2

)
dt

to do it we first consider a uniform discretization for n points on the interval [−A,A] and
the following the scheme we use for the second derivative

y′′i =
yi+1 − 2yi + yi−1

h2
,

where h = 2A/n. We set the finite-dimensional optimization problem

min
y∈Rn

⌊n/2⌋∑
i=1

(
(y′′)2i
2

+
1

4
(y2i + Cxi)

2)

)
h+

n−1∑
i=⌊n/2⌋+1

(
(y′′)2i
2

+ Cxi
y2i
2

+
y4i
4

)
h.
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Analogous to the second order case, we have that C is free given u′
0(s) is unknown and

yet we dont have any constraint for its value. We use C = 1 for our numerical simulations.

The following figures are the solutions for the optimization problem using scipy SLSQP
algorithm from scipy library for different values of n and A.

Figure 4.8: Solutions for ϕn for different values for n and A using numeric minimization of
energy functional.
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4.4.4 Finite Element Method Approach

In this section, we introduce and explain the methodology used to confront nonlinear prob-
lems using Finite Element Method and Newton’s Algorithm. We also present the results
obtained for the rescaled problem (4.13).

We have the following Non Linear equation we want to study

−ϕiv − ϕ(ϕ2 + Ct) = 0, t ∈ R,

subject to (4.14). We are particularly interested on the behavior close to t = 0.

As in the previous section we work on the interval [−A,A] for big enough A, and claim
this will be able to capture how the solution ϕ for (4.13)-(4.14) behaves close to 0. This new
problem can be written as finding ϕ ∈ V from the following variational formulation∫

ϕ′′v′′ + ϕ3v + Csϕv = 0, ∀v ∈ V0, (4.16)

where V is given by V = V0

⊕
VΓ, where V0 = H2

0 (−A,A) (which we write H2
0 for simplicity)

and VΓ = {u ∈ H2|u(−A) =
√
AC, u(A) = 0}.

The problem (4.16) is a non-linear equation which we can write using F : V ×H2
0 −→ R

defined by

F (ϕ; v) =

∫
ϕ′′v′′ + ϕ3v + Csϕv, (4.17)

and so we obtain that (4.16) can be written as F (ϕ; v) = 0, for all v ∈ V0. The function F
is non-linear on ϕ and linear on v, we then consider the Newton’s Algorithm by means of
displacements over V0 to solve it, Newton’s Algorithm is based on considering the following
expansion (using the decomposition of the space V on V0 and VΓ, u = u0 + uΓ = (u0, uΓ))

F (u0 + δ, uΓ; v) = F (u0, uΓ; v) + ∂V0F (u0, uΓ; v)[δ] + o(δ),

and solve the equation
0 = F (u0, uΓ; v) + ∂V0F (u0, uΓ; v)[δ]

to find δ and after each iteration we consider the update of values u+ = u+ δ. The previous
equation can be solved using Finite Elements Method over

DV F (u; v)[δ] = −F (u; v),

where δ lives in V0 = H2
0 . We iterate this procedure until observe δ ≈ 0.

When we compute DV F (u; v)[δ] we obtain

DV F (ϕ; v)[δ] =

∫
δ′′v′′ + 3ϕ2δ + Cδvs,

where DV F : H2
0 ×H2

0 −→ R.

The numeric scheme used to solve (4.16) is by considering Vh = P2, where P2 is the set of
polynomials, with real coefficients, of real variable with degree less or equal to 2. We start

the algorithm with ϕ0 =
(

1
2
− arctan(·)

π

)
·
√
CA. The figure 4.9 shows the results of iteration

over this ϕ0:
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Figure 4.9: The upper-left figure is ϕ0, the upper-right figure is the last function after iterate
14 times ϕ14, the down-left figure is the first δ associated to ϕ0 and the down-right is the last
δ associated to ϕ13.
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Chapter 5

Conclusion

In the previous sections we have reached many results over we can set some interesting
conclusions which we enumerate:

• From the results obtained, observed in Figures 4.7, 4.8 and 4.9, it is possible to conclude
that the equation (4.13), which captures the transition that occurs at x = s for the
solutions of (4.8), cannot be satisfactorily studied using the previous methods based
on weak (variational) formulations of the original problem. Neither the minimization
of the calculus of variation problem nor the finite element method iteration were able
to provide a smooth enough solution, especially close to x = s.

• The problem given by (4.8) may be a good approximation for a solution of (4.1), but a
better approximation may be built if we follow the logic of how we have built problems
(4.5), (4.8), and use some of the ideas in [14]. In this reference a second-order system
is studied, where one of the unknowns has a perturbation parameter. They study{

x′′ = gx(x, y)

ε2y′′ = gy(x, y),

where ε is a small parameter. They are interested in solutions that satisfy constraints
at infinity, just as we do in our problems. The techniques used are very different, based
on certain properties of the function g, but a good adaptation of the methodology may
be applied to find solutions for (4.1). Our problem can be written in a similar manner
as in [14] with a different function g, since our problem is indeed a variational one.

• The equations (4.10) appear as the natural scale of the second-order-problem studied.
The structure of this equation is very similar to Painlevé transcendents of the second
type

y′′ = 2y3 + xy + α.

Techniques used for the study of this particular Painlevé equation may be adapted.
Unfortunately, the fourth order equation (4.13) does not match with any of the Painlevé
equations, nevertheless, it follows a similar structure, so perhaps the techniques used
to study those can also be modified to study this problem.

44



• The fourth-order problem introduces new difficulties when working with its variational
formulation. To tackle these challenges, we have limited our analysis to a bounded
interval. However, valuable insights can be considered from previous studies on fourth-
order systems, as we can find in works of [13] and [4].

In the first study, they usted sublevel sets of the respective functional and demonstrated
that these sets form equicontinuous and uniformly bounded families. This allowed them
to successfully apply Ascoli’s theorem. We can explore and adapt some of these concepts
to overcome the difficulties specific to our case.

The second study bears similarities to our work, as they focused on specific functions
within the domain of their functional and they constructed a minimizing sequence of
these specific type of functions. However, instead of employing Helly’s theorem, they
utilized Ascoli’s theorem by establishing uniform bounds on both values and derivatives
of the functions. We can consider adopting some of these ideas as well for (4.9).
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Chapter 6

Annex

In this section it is included a compilation of the code and functions used on Python and
Freefem++ to generate the figures above on this text.

1 import numpy as np

2 from scipy.optimize import minimize

3 import matplotlib.pyplot as plt

4

5 #Metodo que minimiza y grafica sin restricciones

6 def Minimizarsinrestr(A,n,C):

7 def laplacianodetres(a,b,c,h):

8 return (a-2*b+c)/(h**2)

9 def derivada(a,b,c,h):

10 return (a-b)/(h)

11 def objective(y):

12 return sum(laplacianodetres(y[i+1],y[i],y[i-1],h)*h/2 for i in

range(1,n))+\

13 sum(C*(-A+i*h)*(y[i]**2/2) +(y[i]**4/4) for i in range(int(n

/2),n))*h+\

14 sum ((1/4) *(y[i]**2+C*(-A+i*h))**2 for i in range(1,int(n/2)

))*h

15 h=2*A/n

16 y_0=np.ones(n+1)

17 y_0 [0]=np.sqrt(C*A)

18 y_0 [-1]=0

19 b= (0,None)

20 bnds =()

21 for j in range(n+1):

22 bnds=bnds+(b,)

23 sol=minimize(objective ,y_0 ,method=’SLSQP’,bounds=bnds ,constraints =[])

24 xx=np.linspace(-A,A,n+1)

25 plt.figure(figsize =(10 ,4))

26 plt.plot(xx[2:-2],sol.x[2: -2])

27 plt.plot(xx[2: int(n/2) -2],np.sqrt(-xx[2:int(n/2) -2]*C))

28 plt.xlabel(’s’)

29 plt.legend ([r’$\phi_n$ ’, r’$\sqrt{-Cs}$’])
30 plt.title(r’$\phi_n$ ’+’ using n=’ +str(n)+’ A=’+str(A))

31 plt.show()
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32 return sol

Listing 6.1: Python example

1 import numpy as np

2 from scipy.optimize import minimize

3 import matplotlib.pyplot as plt

4

5 def minimizarv(R,n,u_0):

6 def derivada(a,b,c,h):

7 return (a-b)/(h)

8

9 def buscars(u_0):

10 for k in range(len(u_0)):

11 if u_0[k]**2 >= 1/mu:

12 return k

13

14 def segderivada(a,b,c,h):

15 return (a-2*b+c)/(h**2)

16 def objective(v):

17 s=buscars(u_0)

18 return sum(( epsilon **2)*( segderivada(v[i+1],v[i],v[i-1],h)**2)+mu*

u_0[i]*v[i]+.5*(1 -v[i]**2) **2 for i in range(1,s))*h/2+\

19 sum(( epsilon **2)*( segderivada(v[i+1],v[i],v[i-1],h)**2) +((v

[i]**2)*(mu*u_0[i]-1)+v[i]**4/2) for i in range(s,n))*h/2

20

21 def constraint1(v):

22 return v[-1]-v[-2]

23 def constraint2(v):

24 return v[0]-v[1]

25 con1={’type’: ’eq’,’fun’:constraint1}

26 con2={’type’: ’eq’,’fun’:constraint2}

27 cons=[con1 ,con2]

28 h=2*R/n

29 v_0=np.ones(n+1)

30 v_0 [0]=1

31 v_0 [-1]=0

32 b=(0,None)

33 bnds =()

34 for j in range(n+1):

35 bnds=bnds+(b,)

36 sol=minimize(objective ,v_0 ,method=’SLSQP’,bounds=bnds ,constraints =[])

37 xx=np.linspace(-R,R,n+1)

38

39 plt.figure(figsize =(8,6))

40 plt.plot(xx[2:-2],u_0 [2: -2])

41 plt.plot(xx[2:-2],sol.x[2: -2])

42 plt.legend ([’u_n’,’v_n’])

43 plt.title(’v_n and u_n using n=’ +str(n)+’, R=’+str(R) + ’, epsil=’+

str(epsilon))

44

45 plt.figure(figsize =(8,6))

46 plt.plot(xx[2:-2],u_0 [2: -2])

47 plt.plot(xx[2:-2],sol.x[2: -2])

48 plt.legend ([’u_n’,’v_n’])

49 plt.axvline(x = -4*epsilon **(2/5) , color = ’r’, label = ’axvline -

full height ’)
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50 plt.axvline(x = 4* epsilon **(2/5) , color = ’r’, label = ’axvline - full

height ’)

51 plt.title(’v_n and u_n using n=’ +str(n)+’, R=’+str(R) + ’, epsil=’+

str(epsilon))

52 plt.show()

53 return sol

Listing 6.2: Python example

1 import numpy as np

2 from scipy.optimize import minimize

3 import matplotlib.pyplot as plt

4 def minimizarvord2(R,n,u_0):

5 def derivada(a,b,c,h):

6 return (a-b)/(h)

7

8 def buscars(u_0):

9 for k in range(len(u_0)):

10 if u_0[k]**2 >= 1/mu:

11 return k

12

13 def segderivada(a,b,c,h):

14 return (a-2*b+c)/(h**2)

15 def objective(v):

16 s=buscars(u_0)

17 return sum(( epsilon **2)*( derivada(v[i+1],v[i],v[i-1],h)**2)+mu*u_0

[i]*v[i]+.5*(1 -v[i]**2) **2 for i in range(1,s))*h/2+\

18 sum(( epsilon **2)*( derivada(v[i+1],v[i],v[i-1],h)**2) +((v[i

]**2) *(mu*u_0[i]-1)+v[i]**4/2) for i in range(s,n))*h/2

19

20 def constraint1(v):

21 return v[-1]-v[-2]

22 def constraint2(v):

23 return v[0]-v[1]

24 con1={’type’: ’eq’,’fun’:constraint1}

25 con2={’type’: ’eq’,’fun’:constraint2}

26 cons=[con1 ,con2]

27 h=2*R/n

28 v_0=np.ones(n+1)

29 v_0 [0]=1

30 v_0 [-1]=0

31 b=(0,None)

32 bnds =()

33 for j in range(n+1):

34 bnds=bnds+(b,)

35 sol=minimize(objective ,v_0 ,method=’SLSQP’,bounds=bnds ,constraints =[])

36 xx=np.linspace(-R,R,n+1)

37

38 plt.figure(figsize =(8,6))

39 plt.plot(xx[2:-2],u_0 [2: -2])

40 plt.plot(xx[2:-2],sol.x[2: -2])

41 plt.legend ([’u_n’,’v_n’])

42 plt.title(r’v_n and u_n using n=’ +str(n)+r’, R=’+str(R) +’, ’+ r’$\
delta$ ’+ ’=’+ str(epsilon))

43

44 plt.figure(figsize =(8,6))

45 plt.plot(xx[2:-2],u_0 [2: -2])
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46 plt.plot(xx[2:-2],sol.x[2: -2])

47 plt.legend ([’u_n’,’v_n’])

48 plt.axvline(x = -4*epsilon **(2/3) , color = ’r’, label = ’axvline -

full height ’)

49 plt.axvline(x = 4* epsilon **(2/3) , color = ’r’, label = ’axvline - full

height ’)

50 plt.title(r’v_n and u_n using n=’ +str(n)+r’, R=’+str(R) +’, ’+ r’$\
delta$ ’+ ’=’+ str(epsilon))

51 plt.show()

52 return sol

Listing 6.3: Python example

1 int n=20;

2 real C=1;

3 int A=5;

4 real grosor =.5;

5 real delta =.2;

6 border a(t=-A,-delta){x=t ;y=0; label =1;}

7 border under(t=-delta ,delta){x=t; y=0; label =2;}

8 border b(t=delta ,A){x=t ;y=0; label =3;}

9 border c(t=0,grosor){x=A ;y=t ;label =4;}

10 border d(t=A,delta){x=t ;y=grosor ;label =5;}

11 border upper(t=delta ,-delta){x=t ;y=grosor ;label =6;}

12 border e(t=-delta ,-A){x=t ;y=grosor ;label =7;}

13 border f(t=grosor ,0){x=-A;y=t ;label =8;}

14 mesh Th =buildmesh(a(n)+under (2*n)+b(n)+c(n)+d(n)+upper (2*n)+e(n)+f(n));

15 plot(Th ,wait =1);

16 // Fespace

17 fespace Vh(Th ,P2);

18 Vh phi ,dphi ,v,phicero;

19 phicero =(.5- atan(x)*.318)*sqrt(C*A);

20 //loop

21 phi=phicero;

22 int m;

23 real err =0;

24 savemesh(Th,"meshfile.msh");

25

26 plot(phi ,value=false ,wait=1,dim=3,fill=1,cmm="Phi_0");

27 for(m=1; m<15;m++){

28 // Newton

29 solve LinearStep(dphi ,v)=int2d(Th)(dxx(dphi)*dxx(v)+3*phi^2* dphi*v+C*x*

dphi*v)

30 +int2d(Th)(dxx(phi)*dxx(v)+phi^3*v+C*x*phi*v)+on(4,dphi =0)+on(8,dphi =0);

31 plot(dphi ,value=false ,wait=1,dim=3,fill=1,cmm="h");

32 phi=phi+dphi;

33 plot(phi ,value=false ,wait=1,dim=3,fill=1,cmm="Phi_"+(m));

34 }

35 plot(phi ,value=false ,wait=1,dim=3,fill=1,ps="imagen.eps");

36 {

37 ofstream fout("solution.txt");

38 fout << phi [];

39 }

Listing 6.4: C++ example
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