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Resumen

Canonicalización de consultas SPARQL 1.1

SPARQL es el lenguaje de consulta estándar para RDF de acuerdo al World Wide Web Con-
sortium (W3C). Es un lenguaje de consulta altamente expresivo que contiene las operaciones
estándares del álgebra relacional tales como los joins, la unión, los outer joins, etc. además
de operaciones propias de los lenguajes de consulta para grafos. Debido a esto, existen varias
maneras de representar la misma consulta que no son triviales de determinar, lo cual puede
causar ineficiencias en aplicaciones de la Web Semántica. Por ejemplo, un sistema de caché
podŕıa funcionar más eficientemente si fuese capaz de detectar estas consultas equivalentes.
Se propone una técnica de canonicalización como una solución a este problema, de manera
que se computa una forma canónica para las consultas SPARQL donde todas las consultas
son equivalentes módulo nombres de variables (o congruentes) a su forma canónica, y para un
subconjunto del lenguaje, todas las consultas congruentes tienen la misma forma canónica.
Se describen en detalle los pasos que componen este método de canonicalización: la nor-
malización algebraica, la representación de la consulta como un grafo RDF, la minimización
de las componentes monótonas de la consulta, y la rotulación canónica de las variables. A
pesar de la alta complejidad teórica del problema, los experimentos demuestran el buen com-
portamiento del método en consultas enviadas por usuarios reales. Finalmente, se discuten
posibles casos de uso en sistemas de caché, análisis de consultas, query benchmarking, etc.
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Abstract

SPARQL is the standard query language for RDF as recommended by the World Wide Web
Consortium (W3C). It is a highly expressive query language that contains the standard op-
erations based on set algebra such as joins, unions, outer joins, etc. as well as navigational
operations found in graph querying languages. Because of this, there are various ways to
represent the same query, which may lead to redundancies in applications of the Semantic
Web such as caching systems, where cached results could be returned if the systems were
capable of detecting these duplicates. We propose a canonicalisation technique as a solution,
where we compute a canonical form for SPARQL queries such that all queries are equivalent
modulo variable names (congruent) to their canonical form, and where for a subset of the
language, all congruent queries will have the same canonical form. We describe in full detail
the steps that comprise our canonicalisation method: the algebraic rewriting, the represen-
tation of the query as an RDF graph, the minimisation of monotone sub-queries, and the
canonical labelling. Despite the theoretical complexity of this problem, our experiments show
good performance over real-world queries. Finally, we anticipate applications in caching, log
analysis, query benchmarking, etc.
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Chapter 1

Introduction

I’m being quoted to introduce
something, but I have no idea what it
is and certainly don’t endorse it.

Randall Munroe

The purpose of the Semantic Web is to adapt or extend the current World Wide Web
so that certain processes that require human reasoning and deduction can be performed
automatically by machines. This is currently accomplished by structuring data in certain
formats that can be interpreted by machines, and be operated on with specific protocols.

One such format corresponds to the Resource Description Framework (referred to as RDF
hereafter)[27]. According to this framework, entities and their relationships are represented
as a set of triples containing a subject, a predicate, and an object [27].

In order to expand RDF to allow for the construction of simple ontologies, a schema
was designed: the Resource Description Framework Schema (RDFS) [14]. RDFS allows for
creating a basic ontology over the data in RDF format, allowing simple inferences without the
need for a user. Other more expressive languages exist, such as the Web Ontology Language
(OWL) [36], that extend the complexity of the ontologies we may define, allowing for more
advanced inferences to be made.

SPARQL [35] was then designed as the standard querying language for RDF as dictated
by the World Wide Web Consortium (W3C). It features most of the necessary functions to
carry out queries over RDF such as joins, unions, outer-joins, etc. [25]. SPARQL queries are
executed over a set of these graphs: a default graph, and another set of named graphs.

Despite this, SPARQL was missing useful features such as (an explicit expression for)
negation and the aggregation of results. Subsequently, these features were then implemented
and introduced as part of SPARQL 1.1 [35]. Furthermore, because of the graph-like structure
of RDF datasets, property paths were introduced. These allowed for the querying of relations
between entities denoted by paths of arbitrary length, as well as to express queries more
succinctly. Additionally, SPARQL allows for expressing federated sub-queries over external
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SPARQL endpoints [60].

A SPARQL endpoint is an online interface that allows users to query a knowledge base
using the SPARQL language over the Web via a standard protocol. These endpoints may
each contain features specially catered for the needs of their users, which can also be ac-
cessed externally by SPARQL’s support of federated queries. The results of these queries are
typically returned in one or more machine-processable formats.

There has been a steady growth of the usage of RDF for the representation of data and
metadata on the Web. For insance, a variety of public knowledge bases, such as DBPedia
[45], Wikidata [75], and LinkedGeoData [69] have been published on the Web as RDF. As
a result, the demand to query these datasets has also increased. Furthermore, there are
currently many SPARQL endpoints on the Web [8]. Some examples include: Wikidata and
DBpedia, both SPARQL endpoints that receive a vast number of queries everyday [65].

1.1 Problem

One problem that arises with the aforementioned SPARQL endpoints is the overload caused
by processing large streams of queries, some of which may be duplicated. In fact, Aranda
et al. [8] have concluded that renowned endpoints, such as DBpedia, are offline on average
about 4% of the time, thereby showing the importance of having methods to reduce workload
on said endpoints. In the particular case of duplicate queries, the machine must often perform
the exact same routine to return the same answers, instead of re-using the results of these
routines.

Since SPARQL is a rich and declarative query language, which offers an array of features
to express the users’ needs, there may be multiple ways to express the same abstract query.
Some SPARQL queries can thus be semantically identical; that is, they will yield the same
results over any RDF graph. We call such queries equivalent (denoted as Q ≡ Q′ for two
queries Q and Q′).

SELECT ?movie
WHERE{

?actor :actsIn ?movie;
:salary ?salary .

}

SELECT ?movie
WHERE{

?actor :salary ?salary ;
:actsIn ?movie .

}

Figure 1.1: An example of two equivalent SPARQL queries

Figure 1.1 contains two SPARQL queries that appear to be the same because the only
difference between the two is the order of the triple patterns. Since the join operator is
commutative, the results are the same for both queries over any RDF graph. Therefore,
these two queries are equivalent.
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On the other hand, the queries presented in Figure 1.2 are not equivalent, despite the
fact that they both return “the same results”. This is because they contain variables with
different labels, but the same semantic value. For example, ?movie and ?film refer to the
same thing: the movies or films that ?actor and ?actor2 acted in. Instead, we call these
queries congruent (denoted as Q ∼= Q′ for two queries Q and Q′) because we may rename the
variables so as to make both queries equivalent. As such, the queries presented in Figure 1.2
are congruent, because the query on the right contains a redundant variable and a different
order in the triples listed, as well as a redundant triple pattern.

SELECT DISTINCT ?movie ?salary
WHERE{

?actor :actsIn ?movie; :salary ?salary .
?actor2 :actsIn ?movie .

}

SELECT DISTINCT ?film ?wage
WHERE{

?actor2 :salary ?wage; :actsIn ?film .
?actor :actsIn ?film, ?film2 .

}

Figure 1.2: An example of two congruent SPARQL queries.

One way to reduce the workload on SPARQL endpoints would be to avoid executing
equivalent (or congruent) queries multiple times in a limited time span. This issue is partially
solved by caching the results [76] and simply returning the cached data if there’s a request
for a duplicated query. However, most methods only cache syntactically equivalent queries,
which limits the amount of results that can be reused, as we will miss queries that are
semantically equivalent.

Two queries are syntactically equivalent if the syntax of the queries is the same. This
means that elements such as variables must have the same names, and the order of elements
must be the same. On the other hand, queries are semantically equivalent if they have the
same “meaning”. For queries, this means that the evaluation of the query will produce the
same results over any dataset, despite having a different syntax.

Currently, more syntactical equivalences are found by computing normalised queries.
These normalisations are limited to techniques such as whitespace and lower-case normalisa-
tion on the received queries to facilitate the detection of duplicates. A number of endpoints
also perform a transformation process over raw queries and output an algebraic form of said
query, but this still only involves syntactic normalisation. The use of algebraic expressions
is effective in order to perform optimisations prior to the processing of a query [26]. Indeed,
the former techniques make the detection of syntactically equivalent duplicates trivial. How-
ever, the queries presented in Figure 1.1 are identical, but contain different variable names;
the queries in Figure 1.2 contain redundant variables as well; therefore the syntactically
normalised forms of neither pair would be equivalent.

Ideally, we could find queries that are not only semantically equivalent, but also congruent.
Assuming a static dataset, we could then trivially rewrite the variables of the previously-
evaluated congruent query in order to evaluate future queries.
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However, identifying whether or not two queries are semantically equivalent, or congruent,
is hardly a trivial matter. For example, Figure 1.3 denotes two congruent queries, but this
can only be seen if we expand the path patterns into equivalent unions and basic graph
patterns, and can reason about property paths such that we realise that the results of the
third UNION argument add no new results versus evaluating the second UNION argument.

SELECT DISTINCT ?series
WHERE {

?series :instanceOf/:subclassOf* :TVSeries .
?series :genre|:subgenre :ScienceFiction .

}

SELECT DISTINCT ?series
WHERE {

{ ?series :instanceOf ?instance .
?instance :subClassOf* :TVSeries .
?series :genre :ScienceFiction . }

UNION
{ ?series :instanceOf ?type .

?type :subclassOf* :TVSeries .
?series :subgenre :ScienceFiction . }

UNION
{ ?series :instanceOf :TVSeries .

?series :subgenre :ScienceFiction . }
}

Figure 1.3: An example of two equivalent queries with property paths.

Therefore, given a large set of queries, such as those sent to a given endpoint by users,
identifying which queries are equivalent or congruent is an even more challenging problem.

One option would be to check each pair of queries to determine those that are equivalent
or congruent. However, such a solution would require a quadratic number of pair-wise checks.
Evidently, such a solution is not viable for large-scale applications because each equivalence
check is computationally complex.

Instead, we look into the concept of normalisation as a solution for syntactic equivalence,
as we would only need to perform this normalisation once per query. This leads us to
the concept of canonicalisation, which means to convert an input that can have multiple
representations into a single, standard form that is called its canonical form.

A possible solution would then be to design a general algorithm to canonicalise queries.
In reference to the problem at hand, it would mean converting SPARQL queries into a
theoretical canonical form such that any two queries are congruent if, and only if, they are
represented by the same syntactic expression in their canonical form.

Therefore, the main goal of this thesis is to develop canonicalisation methods for SPARQL
including features introduced in SPARQL 1.1. These results may then allow us, for example,
to extend caching methods to support a larger number of semantically equivalent queries.
This would allow endpoints to detect a larger number of equivalent queries, thereby allowing
us to reuse more query answers instead of computing them repeatedly.

The idea of canonicalising every possible SPARQL query seems optimistic, to say the least.
As a matter of fact, for SPARQL, the equivalence problem is NP-complete even for well-
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designed queries with basic features [1]. When we include more features, such as property
paths, equivalence may become even harder to identify. In fact, the equivalence decision
problem for queries with property paths (similar in complexity to navigational queries) is
EXPSpace-complete [15]. For the full language, equivalence is undecidable.

Given that a canonicalisation procedure could be trivially used to solve equivalence, this
means that even for fragments of SPARQL, the canonicalisation problem must have a high
computational complexity. Furthermore, it means that a full canonicalisation procedure is
not possible for the full SPARQL language.

On the other hand, while canonicalisation of SPARQL queries has a high worst-case
complexity, most queries found in logs from renowned SPARQL endpoints are quite simple
[65]. Therefore, we could reduce the scope of the canonicalisation to simpler queries and use
existing efficient graph isomorphism algorithms to do a best-effort canonicalisation.

Our work proposes a method for the canonicalisation of SPARQL 1.1 queries that is sound
for the full-language, which means that the method will produce a valid and congruent canon-
ical query for any SPARQL query. In addition, said method is complete for a more limited
fragment of the language, which means that the method will produce the same canonical
query for all congruent queries in this fragment. This complete fragment consists in queries
that contain only joins, unions and projections, otherwise known as monotone queries 1.

Finally, since there are clear overlaps between monotone queries with property paths and
(unions of) conjunctive regular path queries [44], we expect that a sound and partially com-
plete canonicalisation can be developed for monotone queries that contain property paths.
In fact, path queries are equivalent to monotone queries if limited to property paths con-
taining concatenations, alternate paths and inverse paths. However, complications arise for
canonicalising property paths with Kleene’s star.

1.2 Hypothesis

Our hypothesis is that we can design a canonicalisation algorithm and implement a system
that can compute a canonical form for real-world SPARQL queries in reasonable time (sub-
second on average) despite the theoretical complexity of the problem, and that this system can
find more equivalent queries in real-world logs than syntactic methods alone. Additionally,
this algorithm should be sound for the full language, and complete for a monotonic fragment
of the language, which represents a large majority of real-world queries.

The proposed algorithm is sound if the process does not alter the semantics of the query,
or rather the canonical query is congruent to the original query; the algorithm is complete if
all congruent queries share the same canonical form.

It is evident that a sound and complete algorithm for the full language that always

1We refer to monotone queries as a syntactic fragment of SPARQL similar to the fragment of SQL studied
by Sagiv et al. [62]. We distinguish it from the semantic property of being monotonic [10], i.e., having more
results when data are added. Herein, all monotone queries are monotonic, but the inverse does not necessarily
hold.

5



halts does not exist, since otherwise it could be used to solve the equivalence of first-order
logic queries, a problem that is well-known to be undecidable. Despite the fact that the
algorithm may not find the finest partition of congruent equivalence classes, we anticipate
an improvement over systems that apply only a syntactic analysis of large sets of queries in
terms of the number of duplicated detected.

To validate this hypothesis, we follow a methodology as follows:

Literature Review: An extensive research of relevant studies is performed. This includes
the studying of normalisation techniques in both abstract structures such as algebraic
expressions and data structures such as graph datasets [34, 31, 44, 3, 5, 56, 67, 6, 57].
In addition, we must research similar systems or systems that may aid in solving the
proposed problem [41, 66, 54, 71, 21, 22, 80, 20].

Design of Solution: Based on the findings of the first step, a method and a system are
designed to solve the gap in the state of the art. This includes the design of data
structures optimised for our application, adapting existing methods to our purposes,
etc.

Implementation of Method: The next step involves the development of a system that
utilises the methods designed in the previous step in order to test the hypothesis. This
step is repeated following feedback from the evaluation stage in order to optimise the
system and address any shortcomings.

Evaluation of the System: Here we will acquire data about the performance of the system
based on execution time, number of additional duplicated queries detected, scalability,
and comparisons with similar existing systems. The results from this stage may reveal
issues and potential improvements that lead to a new stage of implementation.

Identification of Use-cases: In this stage, we must identify applications of the proposed
method to demonstrate its utility in practice.

It is worth noting that due to the nature of the data necessary for the testing and eval-
uating stages, there is no need for human participants. In fact, the data can be compiled
exclusively from existing SPARQL logs from well-known endpoints.

Consequently, the suggested methodology is iterative in nature. Feedback obtained after
the evaluation stages may be utilised to optimise the algorithm as far as possible in this work.
The results from previous iterations can be used as baselines for subsequent iterations, for
instance, to further extend the algorithms to support features commonly found in queries in
the logs [13].

1.2.1 Goals

The objective of this thesis is to develop a system for the canonicalisation of SPARQL. This
includes both the features of SPARQL 1.0 as well as the addition of newer features that
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were introduced as part of SPARQL 1.1. Furthermore, we may extend the completeness of
the algorithm to include monotone queries with inequalities. Additionally, it is desirable to
include support for the normalisation of regular path queries, a challenging, but theoretically
feasible process. This result may be used to form a partition of query logs into congruent
equivalence classes. Finally, it is necessary to identify use-cases for the system and adapt the
system to satisfy those use-cases. We anticipate the following applications:

Query caching: Papailiou et al. canonically labelled basic graph patterns in their study for
caching. Our method could lead to a higher cache hit rate by capturing a broader class
of congruent queries [54].

Log analysis: Large query logs are analysed to find statistics on uses of features, trends,
etc, which may be used to optimise existing SPARQL endpoints. Our method may
reduce the workload by computing sets of congruent queries, and may help to identify
recurring abstract patterns [65, 13].

Query optimisation: Our method may be used to process queries before execution to re-
move redundancies, and thereby improve the performance of systems, particularly if a
query must be executed multiple times [43].

Learning over queries: For applications that apply learning over queries – such as question
answering systems that translate natural language questions to structured queries – we
may reduce the number of different queries in the training sets used to train machines
by finding all unique, non-congruent queries and giving them a standard syntactic form,
thereby reducing the syntactic variance in the training set [17].

1.3 Thesis Structure

In this section, we describe the overall structure of this thesis.

� Chapter 2 begins by presenting the background of this study, where we describe the key
concepts necessary to understand this work. These include graph theory; RDF and its
components, representation of information, and its semantic properties; and SPARQL,
presenting features such as joins, unions, and projection.

� In the following chapter, we present the existing work related to this study, such as on
the minimisation of SPARQL queries, canonical labeling of RDF graphs, and systems
that check for containment (and equivalence) of SPARQL queries. Next, we present our
work on defining the entirety of SPARQL 1.1 formally, which fills a gap in the literature,
and is necessary in order to address the canonicalisation problem in a principled way.
This includes features that are seldom discussed such as aggregation, federated queries,
and the difference between the two forms of negation (MINUS vs. FILTER NOT EXISTS).

� Following this, we present our work on the canonicalisation of SPARQL for monotone
queries – for which the process is sound and complete – and then show our support for
additional features in both SPARQL 1.0 and 1.1. In particular, there is an emphasis in
our work on the normalisation and minimisation of property paths, and its limitations.
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� Building on the previous chapter, we then present the proofs for the soundness and
completeness of our method for monotone queries, as well as its computational complex-
ity. Subsequently, we present proofs for the soundness of our method for the entirety
of SPARQL 1.1, but show that it is incomplete for the full language.

� Next, we describe how our method was implemented by listing the software used, the
structure of the project, how testing was managed, etc. Subsequently, we describe the
experiments we designed to evaluate the performance of our method, as well as the
concrete results, and further discuss what these results allow us to conclude.

� In the next chapter, we present some use-cases for our method, and some preliminary
results that show how our method may improve other systems.

� Finally, we conclude and summarise the results of this study, and discuss possible future
work.
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Chapter 2

Background

In this chapter, we present concepts that are relevant to this study. To begin, we describe key
concepts of graph theory, such as definitions, and decision problems and their complexities.
Following this, we present the main elements of RDF such as triples, RDF graphs, IRIs,
etc, and how certain decision problems are viewed under the framework. Finally, we present
SPARQL, its features and semantics, and decision problems and their complexities.

2.1 Graph Theory

A directed graph G = (V,E) is composed of a set of vertexes V and a set of ordered pairs of
vertexes named edges E ⊆ V × V . Given (v, v′) ∈ E, vertex v is said to be connected to v′.
On the other hand, an undirected graph G = (V,E) is a graph where V is a set of unordered
pairs of vertexes. In other words, if (v, v′) ∈ E, then it follows that (v′, v) ∈ E.

Subsequently, given two undirected graphs G = (VG, EG) and H = (VH , EH), we say these
graphs are isomorphic if there exists a bijection β : VG → VH such that (v, v′) ∈ EG if and
only if (β(v), β(v′)) ∈ EH . In such a case, β is called an isomorphism, and G and H are said
to be isomorphic (written G ∼= H).

a b

c d

f g

h i

Figure 2.1: An example of two isomorphic graphs.

It is clear from the example in Figure 2.1 that by defining a bijection β such that β(a) = f ,
β(b) = g, β(c) = i, and β(d) = h, the graph on the right can be obtained by mapping each
node in the graph on the left using β.

Given two graphs, the graph isomorphism problem is a decision problem that returns true
if both graphs are isomorphic, and false otherwise. This problem is known to be in the NP
complexity class but it is not clear if it is NP-hard. For this reason, the graph isomorphism
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problem has been assigned its own complexity class – GI-complete – where GI stands for
graph isomorphism. In fact, Babai has determined that it can be solved in quasipolynomial
time, meaning that GI is in QP [11].

A related concept is that of homomorphism of graphs. Unlike an isomorphism, which
is a bijection, and therefore preserves both nodes and edges, a homomorphism may map
different nodes from the original graph to a single node so long as adjacency between nodes
is preserved. Also, it is not necessary for the image of the first graph under the homomorphism
to correspond to the second graph, but rather it can map the first graph into a sub-graph
of the second graph. More formally, given two undirected graphs G = (VG, EG) and H =
(VH , EH), a mapping µ : VG → VH is a homomorphism from G to H if and only if (v, v′) ∈ EG

implies (µ(v), µ(v′)) ∈ EH . If there is a homomorphism from G to H and from H to G, we
can call G and H homomorphically equivalent. In contrast to the graph isomorphism decision
problem, determining if there exists a homomorphism from G to H is NP-complete.

Furthermore, a homomorphism may be used to characterise a proper sub-graph of a graph.
If G is a graph and H is a sub-graph of G, then there must exist a homomorphism from H
to G. Indeed, we will design a mapping function µ as follows: for every edge (v, v′) ∈ H,
µ(v) = v and µ(v′) = v′. Clearly, this covers all of the edges of H since they are a subset of
the edges of G. Next, for every edge in G such that (v′′, v′′′) /∈ H, µ(v′′) = v and µ(v′′′) = v′

where (v, v′) ∈ H. We conclude that this mapping µ is a homomorphism.

However, not all graphs allow a homomorphism from itself to a proper sub-graph of itself.
Given an undirected graph G, we say it is a core if every homomorphism from G to itself is
an isomorphism (or an automorphism, given that it is an isomorphism from G to itself). This
means that there is no way to map nodes from G to a sub-graph of itself with fewer nodes
while preserving adjacency between nodes. Furthermore, if G is a core, G ⊆ H, and there
exists a homomorphism from H to G, we may also call G the core of H, which is unique up
to isomorphism.

2.2 RDF

RDF is a standard framework for the representation of information on the Web [68]. The
information is organised in a semi-structured form, where each piece of information is rep-
resented as a 3-tuple (s, p, o) known as a triple, where s denotes the subject, p denotes the
predicate, and o denotes the object. Alternatively, we may interpret them as a node labelled
s connected to a node labelled o, forming an edge s

p−→ o.

Elements in RDF are known as resources. A resource may denote anything that exists.
These resources may be referred to by an Internationalised Resource Identifier (IRI from this
point onwards), a literal or a blank node.

IRIs are used to identify resources in a manner that is generalised and standardised
globally, so as to avoid ambiguity or erroneous deductions when handling requests. They
may or may not be resolvable over the Web. The resource identified by an IRI is called its
referent. We define I as the set of all IRIs.
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Herein, we use the Turtle syntax, where IRIs may be written as prefixed names. A prefixed
name consists of a prefix label and a local name separated by a colon (:). For example, the
prefix rdf refers to the namespace http://www.w3.org/1999/02/22-rdf-syntax-ns#, so the
IRI http://www.w3.org/1999/02/22-rdf-syntax-ns#type may be written as rdf:type.

A literal is an element that is defined exclusively by its literal value, such as a numeric
value. We define L as the set containing all literals. A literal also has a datatype, which
denotes the range of values it may take, such as strings, numbers, dates, etc. In order to
specify a datatype, RDF primarily uses XML Schema Datatypes, which are referred to by
IRIs with the xsd prefix and the name of the datatype (for example ˆˆxsd:boolean refers to
the boolean datatype). If no datatype is specified, the literal is assumed to be a string.

A blank node is an element used to represent a value that is unknown, but is known to
exist. Implementations for the handling of blank nodes are dependant on the application
[48]. We define B as the set that contains all blank nodes. Blank nodes are written as an
underscore followed by a colon, and a blank node label. For example, :b refers to a blank
node with b as its label.

A subject may be an IRI or a blank node; a predicate may only be an IRI; an object may
be an IRI, a literal value or a blank node. Therefore, we may denote S = (I∪B) as the set of
all subjects, P = I as the set of all predicates, and O = (I ∪B ∪ L) as the set of all objects.

An RDF graph is then a set of triples G ⊆ S×P×O, which can be visualised as a directed
labelled graph. To do this, assume subjects(), predicates() and objects() are functions such
that subjects(G), predicates(G) and objects(G) return all the subjects, predicates or objects,
respectively, that appear in an RDF graph G. We may then define the set of vertices of G as
nodes(G) = subjects(G) ∪ objects(G). Furthermore, the set of edges of G is determined by
the set of triples, and the set of edge labels by predicates(G). Finally, a (proper) sub-graph
of an RDF graph is a (proper) subset of the triples in the graph.

Figure 2.2 shows an example of an RDF graph that describes Pokemon Yellow (repre-
sented by the IRI :PokemonYellow), its release dates in different regions, and its developer,
Game Freak (represented by the IRI :GameFreak). One notable feature is that :Japan ap-
pears as an object in two different triples, showing that RDF graphs may often present cycles
(both directed and undirected). Another feature of this graph is the presence of blank nodes
to describe the release dates of Pokemon Yellow in different regions. This is because we are
representing an n-ary relation between :PokemonYellow, its release dates, and each region.

However, an RDF graph doesn’t necessarily contain blank nodes; triples may consist
entirely of IRIs or literals (where appropriate). Such a graph is called a ground RDF graph.
The importance of ground graphs in this study stems from the fact it does not have any
ambiguities associated to blank nodes, which means that determining if two graphs are
equivalent is as trivial as checking string equivalence over a concatenation of a canonical
ordering and serialisation of the triples. We provide an example of a ground RDF graph in
Figure 2.3.
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:PokemonYellow

:Videogame

:instanceOf

:releasedIn

"1998-09-12"ˆˆxsd:date

:releaseDate

:Japan

:region

:releasedIn

"1999-10-19"ˆˆxsd:date

:releaseDate

:NorthAmerica

:region

:GameFreak

:basedIn

:developer

:GameStudio

:instanceOf

"1989-04-26"ˆˆxsd:date

:inception

Figure 2.2: An example of an RDF graph about Pokemon Yellow.

:PokemonYellow :Videogame:instanceOf

1998

:yearReleased

:GameFreak

:developer

:GameStudio:instanceOf

"1989-04-26"ˆˆxsd:date

:inception

Figure 2.3: Ground graph example

There are times where one may need to state claims about triples themselves. For instance,
we may need to specify when a triple was added or last modified. A way to address this is
through reification. In this way, we represent the information of a triple by making statements
about its structure and its contents. We denote the existence of the triple with a blank node or
IRI (depending on the form of reification), and we add triples denoting the subject, predicate
and object of the original triple. Figure 2.4 presents an example of a reified representation
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of a triple (:PokemonYellow ,:developer ,:GameFreak ) that was last updated on February
17th 2013. We note that, by default, the reified statement is not asserted; this makes sense
considering that the reification may qualify the statement to be outdated, of low confidence,
or outright false. In order to assert the statement, the corresponding triple must also be
added to the graph (in the case of Figure 2.4, this would involve adding an edge from
:PokemonYellow to :GameFreak labelled :developer).

:t rdf:Statementa

:PokemonYellow

rdf:subject

:developer

rdf:predicate

:GameFreak

rdf:object "2013-02-17"ˆˆxsd:date

:lastUpdated

Figure 2.4: Example of a reification of a triple. Here :t is used to denote the triple.

2.2.1 Semantics of RDF

An RDF graph is a set of triples. The semantics of RDF graphs is defined according to the
notion of a simple interpretation I, which, per the W3C standard [35], consists of:

� A non-empty set RI of resources, called the domain of I.

� A set PI , called the set of properties of I.

� A mapping EXTI from PI to the powerset of RI ×RI .

� A mapping SI from IRIs into (RI ∪ PI).

� A partial mapping LI from literals into RI .

In order to understand what it means for an RDF graph to be true under a simple
interpretation, EXTI(p) denotes the set of pairs of resources for which the property p is
true. The interpretation is then treated as a function from RDF terms, triples and graphs
to resources and truth values, as follows:

� If x ∈ L then I(x) = LI(x).

� If x ∈ I then I(x) = SI(x).

� If t is a triple (s, p, o), then I(t) = true if I(p) ∈ PI and (I(s), I(o)) ∈ EXTI(I(p)).
Otherwise, I(t) = false.
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� If G is an RDF graph, then I(G) = false if I(t) = false for some triple t ∈ G.
Otherwise I(G) = true.

Additionally, for non-ground RDF graphs, this is extended to include a mapping A from
blank nodes to resources in RI , resulting in the piecewise mapping [I + A] such that [I +
A](x) = I(x) if x is a literal or IRI, and [I + A](x) = A(x) if x is a blank node. In that
case, the mapping for triples and RDF graphs is defined analogously. As a result, the truth
condition for a non-ground RDF graph is: if G is an RDF graph, then I(G) = true if and
only if [I+A](G) = true for some blank node mapping A that maps the blank nodes in G to
values in RI . In other words, this means that an RDF graph is semantically interpreted as
the conjunction of the set of triples it contains, where blank nodes act as existential variables.

2.2.2 Isomorphism in RDF

Aside from the semantics of RDF, an important structural property of RDF graphs is that
of RDF isomorphism [27]. This notion captures the relation between RDF graphs that are
identical modulo blank node labels (which, we recall, denote existential variables, whose
particular values do not affect interpretations of the RDF graphs).

Let µ : ILB → ILB be a mapping of RDF terms to RDF terms. If µ is the identity
on IL, that is, IRIs and literals remain the same, then it is called a blank node mapping.
Furthermore, let its domain be denoted as dom(µ) and its codomain denoted as codom(µ).
Such a function is applied to an RDF graph G node by node, resulting in a new graph
H = µ(G) (by using µ(G) to denote the image of G under µ). The resulting graph is called
an instance of graph G. If at least one blank node has been replaced by a name in IL, or
two blank nodes have been mapped into the same node, it is a proper instance. Otherwise,
if the blank nodes in dom(µ) are mapped to blank nodes in codom(µ) in a bijective manner,
then µ is called a blank node bijection.

Subsequently, an RDF graph G is isomorphic with another RDF graph G′ (denoted as
G ≃ G′) if there exists a blank node bijection µ such that µ(G) = G′. In such a case, µ is
called an isomorphism. In other words, isomorphism indicates that the result of a one-to-one
blank node mapping function over one graph is the other graph.

An automorphism of an RDF graph G is an isomorphism µ such that µ(G) = G. In
essence, it is a map of G to itself. Evidently, the identity mapping is an automorphism, and
is known as a trivial automorphism. If µ is a mapping function different from the identity
mapping, it is known as a non-trivial automorphism. Finally, we denote by Aut(G) the set
of automorphisms of G.

2.2.3 Entailment and Equivalence in RDF

While the isomorphism relation compares RDF graphs based on the structure of the graph,
assuming that blank nodes are simply entities whose labels are inconsequential, then the
equivalence relation takes into consideration the semantics (rather than the structure) of
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RDF graphs, i.e. the meaning of the data contained in the graph. In the latter case, blank
nodes are considered values that are known to exist. Therefore, they are of utmost importance
when comparing the semantic equivalence of two graphs.

Firstly, we must address the matter of entailment. An RDF graph G entails another RDF
graph G′ if every possible interpretation I that makes G true also makes G′ true. In that
case, it is written G |= G′. Although there exist more complex entailments under ontologies
such as OWL, for the purposes of this study, we shall focus on simple entailment derived
from simple interpretations, and will further refer to it as entailment.

Evidently, if a graph G has been established as true under an interpretation I, it means
that all of its triples are true under that interpretation. Since any sub-graph G′ ⊆ G can
only contain triples from G, all of which are true under I, it must be true as well. In fact,
an RDF graph G entails G′ if, and only if, there exists a mapping µ such that µ(G′) is a
sub-graph of G [34].

Because of this, the entailment decision problem may be solved by checking if there exists
a homomorphism from G′ to G. In such a case, the homomorphism we look for is the
mapping µ such that µ(G′) ⊆ G. This problem is known to be NP-complete because given
a homomorphism µ from G′ to G as a witness, we can determine if µ is a valid mapping in
polynomial time, putting the problem in NP. On the other hand, we can trivially reduce
traditional graph homomorphism to this problem, giving the lower bound. As a result, the
entailment decision problem is also NP-complete.

An RDF graph G is equivalent to another RDF graph G′ if G entails G′, and G′ entails
G. In such a case, it is written G ≡ G′. If two RDF graphs are equivalent, it can be
interpreted as their being semantically equivalent. This means that, under RDF semantics,
they represent the same information.

In graph terminology, we can analogously say that G and G′ are equivalent if and only if
there exists a homomorphism from G to G′ and a homomorphism from G′ to G, in which case
we call G and G′ homomorphically equivalent. Thus semantic equivalence and homomorphic
equivalence coincide for RDF graphs (under simple semantics), and we can generically refer
to RDF graphs as being equivalent (under either notion).

Determining equivalence between RDF graphs is also NP-complete. This is because to
determine equivalence, we can check for entailment in both directions [57].

:a :b:p

:c

:p

:d

:q

:d:q

:f :g:p

:h :d

:q

:d:q

:x :y:p

:d

:q

G1 G2 G3

Figure 2.5: An example of three RDF graphs that are semantically equivalent.

Indeed, one can appreciate from the example in Figure 2.5 that an RDF graph can
model the same information as a larger RDF graph, if they are equivalent. Taking this into
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consideration, we call an RDF graph G lean if it does not contain a proper sub-graph G′

such that G ≡ G′.

Determining if a graph G is lean is coNP-complete. This is because, given a graph G, a
proper sub-graph G′ such that G′ ≡ G, and a homomorphism µ : V → V ′ as our witness, we
can verify in polynomial time that µ is a valid homomorphism from G to G′, which leads us
to the conclusion that G is not lean [34].

Finally, as a result of the previous statements, determining if a graph C is the core of a
graph G is DP-complete, the complexity class of decision problems that can be solved by
answering both an NP-complete problem and a coNP-complete problem. In this case, we
can check if a graph C is the core of G by checking that C is equivalent to G (an NP-complete
problem) and that C is lean (a coNP-complete problem) [34].

2.2.4 Canonicalisation of RDF graphs

With respect specifically to canonicalisation, to the best of our knowledge, little work has
been done on SPARQL. In analyses of logs, authors have proposed very basic canonicalisa-
tion methods, such as normalising whitespace, that do manage to detect some duplicates,
but not more complex cases such as in the examples provided previously. On the other hand,
Papailiou et al. have proposed using isomorphism of basic graph patterns for a query caching
system [54]. However, there are some recent related works on efficiently canonicalising RDF
graphs that could be leveraged for the case of SPARQL [32]. The idea is that the struc-
ture of a SPARQL query can be replicated as an RDF graph, and that we can adapt this
canonicalisation algorithm for SPARQL.

Hence, the technical problem we tackle in this work will be to design an algorithm to
efficiently canonicalise SPARQL queries based on existing techniques for canonicalising RDF
graphs. We now introduce the latter techniques for canonicalising RDF graphs.

Iso-canonicalisation of RDF graphs

An iso-canonicalisation of a graph G, l(G) produces a graph such that G ≃ l(G), and for
any graph G′ it follows that l(G) = l(G′) if and only if G ≃ G′ [38].

The main issue we have to tackle in this form of canonicalisation is the labelling of blank
nodes. The labels of blank nodes are largely inconsequential when it comes to executing a
query. However, they are of essence to verify if two graphs are isomorphic. When it comes
to RDF graphs, if a graph is grounded, verifying isomorphism is simply a matter of verifying
whether or not both graphs contain the same triples.

The proposed solution to deal with blank nodes is to canonically label them. This canon-
ical labelling needs to be deterministic under graph isomorphism. Proposals for practical
graph isomorphism algorithms have been studied for decades as far back as the 60’s [24],
and as recent as a few years ago [50]. However, the aim of this study is not to improve
upon existing graph isomorphism algorithms, nor to evaluate their performance outside of
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the specifics of this work. Rather, we investigate a method for SPARQL queries that uses
such techniques. One such system is BLabel, which implements an algorithm for canonically
labelling blank nodes in RDF graphs along these lines [38], as we now summarise.

For each name (i.e. IRI or literal) in the input graph, a unique fixed hash is assigned based
on its syntactic string value. As for blank nodes they are all assigned the same initial hash.
Iteratively, each blank node is assigned a new hash which is computed from the hashes of the
terms of the triples it appears in. The process must be iterative because if two blank nodes
are in the same triple, changes in the hash of one of them will affect the other. Thus, this is
repeated until no new partitions are found. This algorithm is analogous to an RDF-specific
version of the classical Weisfeiler–Lehman algorithm (WL) [2]. However, not all blank nodes
may be distinguished by this algorithm.

In case there are still blank nodes with the same value after the previous process, the par-
titions of blank nodes are deterministically ordered based on their size, and their current hash
value. From the first partition in the order, a blank node is selected non-deterministically,
and distinguished by combining its hash with a fixed value. This process is then repeated
until we reach a fixpoint, where no additional partitions are distinguished.

All non-deterministic choices are explored following the steps above. For each resulting
graph with distinguished blank nodes, the smallest such graph in a total order is chosen as
the canonical graph.

:a :b:p :c:p

:d

:p

:E

:q

:f

:p

:h

:q

:g :p :i:p:h

:p

:h

:p

:E:q :E :q

ϕ ϕh(: p) ϕh(: p)

ϕ

h(: p)

h(: E)

h(: q)

ϕ

h(: p)

ϕ

h(: q)

ϕ h(: p) ϕh(: p)ϕ

h(: p)

ϕ

h(: p)

h(: E)h(: q) h(: E) h(: q)

G i = 0

Figure 2.6: Example of labelling process

Figure 2.6 shows the initial graph G, with blank node labels from :a to :h with the
exception of :E , which corresponds to an IRI. At the beginning (i = 0), all blank node labels
have the same hash value ϕ. Literals and IRIs are hashed according to their syntactic values.

Figure 2.7 shows the next steps of the algorithm. At i = 1, blank node labels are assigned
hash values depending on their adjacent nodes and edges. In the case of edges, there is a
distinction between outgoing edges and ingoing edges. We can clearly appreciate a partition
in blank node labels, illustrated with colours: { :a, :c, :g, :i} (coloured red), { :b, :h}
(coloured yellow), and { :d, :f} (coloured blue). If run for another iteration, the hashes may
change, but the partitions will not change. This is because the blank nodes in each partition
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α βh(: p) αh(: p)

δ

h(: p)

h(: E)

h(: q)

δ

h(: p)

β

h(: q)

α h(: p) αh(: p)β

h(: p)

β

h(: p)

h(: E)h(: q) h(: E) h(: q)

ρ γh(: p) ρh(: p)

ψ

h(: p)

h(: E)

h(: q)

ψ

h(: p)

γ

h(: q)

ρ h(: p) ρh(: p)γ

h(: p)

γ

h(: p)

h(: E)h(: q) h(: E) h(: q)

i = 1 i = 2

Figure 2.7: Example of labelling process (continued)

are indistinguishable by the method used, since the information used for the hashing is the
same (i.e., they have the same edges). At i = 2, the blank node labels have changed, but the
partition remains the same. At this point, the algorithm finishes since there are no differences
in the partition of blank nodes.

In cases where the fixpoint of the hashing process does not distinguish all blank nodes,
the hash value of a partition is used as an invariant in a NAUTY recursive search [24].

Equi-canonicalisation of RDF graphs

An equi-canonicalisation of an RDF graph G [38], eCan(G), produces an RDF graph such
that G ≡ eCan(G), and given graphs G1 and G2, eCan(G1) = eCan(G2) if and only if
G1 ≡ G2. Furthermore, eCan(G) is lean and thus unique up to isomorphism. In other words,
the equi-canonical form of graph G retains its semantic values,

We may accomplish this by computing the iso-canonicalisation of the core of G because
the core of an RDF graph is equivalent to G (because it is a sub-graph of G), and is unique
up to blank node labels. Subsequently, the algorithm used to compute the core of a graph G
is described as follows [38]:

In the first step, an initial set of blank nodes that cannot be mapped to another term by
a homomorphism (called unique blank nodes) is computed. These blank nodes are identified
by the analysis of the ground terms in their direct edges. Evidently, if the ground terms are
unique to a blank node, it cannot be mapped to any other blank node. In a later iteration,
these unique blank nodes are grounded, which means that for all intents and purposes they act
like an IRI or a literal, which also means that they will appear in the final core. Consequently,
another term may become unique due to its direct edges. Therefore, the grounding process
can be applied iteratively until no new groundings occur. If all blank nodes have been
grounded, the graph is lean: this happens in the vast majority of real-world graphs [65]. In
case it does not occur, the algorithm computes homomorphisms from the non-ground part of
the graph into itself (endomorphisms) that produce proper instances of the graph, iteratively,
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until no further proper instances of the graph to itself can be found. It is at this point that
this algorithm may become exponential because it may need to compute all combinations of
endomorphisms. However, this process can be optimised to reduce the practical cost of this
algorithm, for instance, by making use of the degree of symmetry of some graphs [50].

2.3 SPARQL

Now we will introduce some key concepts of SPARQL [35], the standard query language for
RDF. In this section, we introduce formal definitions specifically for SPARQL 1.0, as defined,
for example, by Pérez et al. [55]. We begin by summarising the abstract syntax of queries.
Thereafter we present the concept of solution mappings and the algebra of operations on sets
of solution mappings. Finally, we discuss the evaluation of queries under both set and bag
semantics.

2.3.1 Abstract Syntax

In this section, we describe the abstract syntax of SPARQL queries. Since SPARQL is
essentially a graph matching language, the queries are based on different types of graph
patterns. Therefore, we begin by defining V as the set that contains all variables, after which
we define the simplest of graph patterns, followed by the definition of the main operations
successively.

� Let t be an RDF triple that allows variables in any of its components. In that case, t
is a triple pattern. Furthermore, a triple pattern is also a query pattern.

� If Q1 and Q2 are query patterns, then [Q1 andQ2], [Q1 unionQ2] and [Q1 optQ2] are
query patterns.

� Let R be a built-in expression that contains elements ofVIBL and applies comparisons,
restrictions or other built-in operations. A boolean combination of such expressions
is also an expression. If Q is a query pattern and R is a built-in expression, then
filterR(Q) is also a query pattern.

� If Q is a query pattern and V is a set of variables, then selectV (Q) is also a query
pattern.

2.3.2 Solution mappings

A solution to a SPARQL query Q is a partial mapping from the variables that appear in the
query (denoted as vars(Q)) to terms from IBL appearing in the data. Such mappings will
be denoted by µ. Let dom(µ) denote the variables for which a mapping µ is defined. Given
{v1, . . . , vn} ⊆ V, and given {x1 . . . , xn} ⊆ IBL ∪ {⊥}, we denote by {v1/x1, . . . , vn/xn}
the mapping µ such that dom(µ) = {vi | xi ̸= ⊥} for 1 ≤ i ≤ n and µ(vi) = xi for

19



vi ∈ dom(µ). Let µ1 and µ2 be mappings. They are said to be compatible if and only if
for every v ∈ dom(µ1) ∩ dom(µ2) it holds that µ1(v) = µ2(v), which is denoted as µ1 ∼ µ2.
Additionally, if dom(µ1) ∩ dom(µ2) ̸= ∅ then µ1 and µ2 are said to be overlapping, denoted
as µ1 ∗ µ2.

Given a built-in expression R, we denote by µ(R) the result of mapping the variables that
appear in R (denoted as vars(R)) according to µ. Furthermore, we say that µ satisfies R
(denoted µ |= R) if µ(R) is evaluated as true. For example, let R = isIRI(x) where isIRI
is a function that returns true if the value bound to the variable x is an IRI. Then µ |= R if
and only if µ(x) is an IRI.

2.3.3 Algebra

Let M , M1, M2, etc. denote sets of solution mappings. Furthermore, let ▷◁, ∪, ▷, and ▷◁
denote the join, union, anti-join, and left outer join operators for sets, respectively. We define
the algebra of solution mappings as follows:

M1 ▷◁ M2 := {µ1 ∪ µ2 | µ1 ∈M1, µ2 ∈M2, µ1 ∼ µ2}
M1 ∪M2 := {µ | µ ∈M1 or µ ∈M2}
M1 ▷M2 := {µ1 ∈M1 | ∄µ2 ∈M2 : µ1 ∼ µ2}
M1 ▷◁ M2 := (M1 ▷◁ M2) ∪ (M1 ▷M2)

σR(M) := {µ ∈M | µ |= R}
πV (M) := {µ′ | ∃µ ∈M : µ′ ⊆ µ, dom(µ′) = V ∩ dom(µ)}

2.3.4 Semantics

The following definitions denote the evaluation of query patterns over an RDF graph G.

B(G) := {µ | ∃α : µ(α(B)) ⊆ G, dom(µ) = vars(B) and dom(α) = bnodes(B) }
[Q1 andQ2](G) :=Q1(G) ▷◁ Q2(G)

[Q1 unionQ2](G) :=Q1(G) ∪Q2(G)

[Q1 optQ2](G) :=Q1(G) ▷◁ Q2(G)

filterR(Q)(G) :=σR(Q(G))

selectV (Q)(G) := πV (Q(G))
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2.3.5 Set or Bag Semantics

The SPARQL standard considers bag semantics for query answering by default. In other
words, duplicate solutions are preserved and returned as solutions.

These semantics are captured using the extended query syntax:

selectV (Q)
∆, where ∆ =

{
true for set semantics

false for bag semantics

As of SPARQL 1.0, explicit projection is limited to only be used outside all other query
operators. Projection of basic graph patterns may be emulated using blank nodes as exis-
tential variables. SPARQL 1.1, as defined later, allows the projection of sub-queries.

2.3.6 Classes of Queries

In this section, we describe classes of SPARQL queries based on the features they contain,
as well as the general structure of the graph patterns.

Conjunctive Queries (CQs) These are queries that contain only projections and joins of
triple patterns. Basic graph patterns are also conjunctive queries in SPARQL where
blank nodes can be used to emulate projection.

Unions of Conjunctive Queries (UCQs) These are queries that consist in projections
of unions of conjunctive queries. They are analogous to first-order logic queries in a
disjunctive normal form.

Monotone Queries (MQs) These are queries that contain only joins, unions, and projec-
tions. In particular, both CQs and UCQs are monotone queries [62].

2.3.7 Safe Variables

We present the notion of safe variables as denoted by Schmidt et al. in their study [67]. These
are the variables in Q that are always bound in Q(G) for any RDF graph G. Whether or not
variables are safe may affect equivalence rules, which we will use later for canonicalisation.
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safeVars(t) := vars(t)

safeVars([Q1 andQ2]) := safeVars(Q1) ∪ safeVars(Q2)

safeVars([Q1 unionQ2]) := safeVars(Q1) ∩ safeVars(Q2)

safeVars([Q1 optQ2]) := safeVars(Q1)

safeVars([Q1minusQ2]) := safeVars(Q1)

safeVars(filterR(Q)) := safeVars(Q)

safeVars(selectV (Q)) := safeVars(Q) ∩ V

2.3.8 Other features

We have formalised the main features in SPARQL 1.0. Here we present other features which
are not formally defined in most literature in concrete SPARQL syntax:

ORDER BY

It may be of interest to establish an order over the results of query, for instance, if we want
to find the top results based on a certain value.

An ORDER BY clause determines the order of the results. It is followed by a sequence
of expressions composed of an order modifier (either ASC or DESC) with a variable. The
order modifier may be omitted, in which case it is assumed to be ordered in ascending order.
Figure 2.8 presents an example in concrete SPARQL syntax that presents actors in order of
being lowest-paid.

SELECT ?actor
WHERE{

?actor :actsIn ?movie;
:salary ?salary .

}
ORDER BY ?salary

Figure 2.8: Example of a query that contains an ORDER BY clause.

LIMIT, OFFSET

If we take into account a total order over the results, as defined by an ORDER BY clause,
we may wish to limit the number of results returned by a query. Otherwise, we may want
to limit the number of results to reduce the workload of a machine. Regardless, SPARQL
features the LIMIT clause, which is followed by a number n, and indicates that out of all
the possible results, only the first n are returned. On the other hand, an OFFSET clause
is also followed by a number n, and indicates that the first result it returns is the nth result.
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If both LIMIT and OFFSET are used, with m and n respectively, the query will return
the first m results starting from the nth result. Figure 2.9 presents an example of the usage
of both LIMIT and OFFSET in concrete SPARQL syntax, finding the actors in position
51–60 in terms of being lowest paid.

SELECT ?actor
WHERE{

?actor :actsIn ?movie;
:salary ?salary .

}
LIMIT 50
OFFSET 10

Figure 2.9: Example of a query that contains LIMIT and OFFSET
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Chapter 3

Related Work

In this section we present and discuss some studies we encountered during the Literature Re-
view stage of this work relating to normalisation and minimisation rules for SPARQL queries,
followed by systems that allow for some form of canonicalisation for RDF and SPARQL, and
systems that check for containment of SPARQL queries. We briefly explain their overall
results, as well as their more relevant conclusions to our study.

3.1 Rules for Minimisation and Normalisation

Pérez et al. [56] proved in their study that certain fragments of SPARQL 1.0 allowed a normal
form. This fragment corresponds to monotone queries, which are queries that contain only
combinations of joins, unions and projections. Furthermore, Schmidt et al. present in their
study [67] a number of rewriting rules over features such as left joins, filters and negations,
as well as an erratum on one of the results of Pérez et al., which suggested a normal form
for queries containing optional patterns.

Studies have shown that the containment decision problem is undecidable for queries that
contain optional patterns (left joins) under set semantics, let alone the full language [34].

3.2 Systems for RDF and SPARQL Canonicalisation

Hogan designed a system for the canonical labeling and leaning of RDF graphs (blabel)
[37]. The canonical labeling is based on computing successive partitions over blank nodes
in a deterministic manner, inspired by a NAUTY algorithm for checking graph isomorphism
[50].

In regards to the canonicalisation, a few studies have mentioned the canonical labeling of
variables in applications such as sub-query caching. Papailou et al. [54] utilised a canonical
labeling algorithm (specifically Bliss [41]) on basic graph patterns in order to either cache
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results or find stored results from isomorphic queries. However, the study uses canonical
labeling rather than offering a sound and complete canonicalisation for SPARQL, which
means that some equivalences and congruences of monotone queries may be missed.

3.3 Systems for SPARQL Containment

Perhaps because of the theoretical results that indicate that query containment, equivalence
and minimisation are complex problems in the worst-case, few systems have been imple-
mented to tackle these problems. However, by limiting the use of certain features, smaller
fragments of the language have been identified where these problems are decidable, and even
efficient in practice.

For SPARQL, a number of systems have been implemented to solve the containment
problem on queries under certain constraints. These are SPARQL Algebra [46] and the
Jena-SPARQL-API Graph-isomorphism (JSAG) tool [70]. In particular, the approach in the
study by Stadler et al. [70] consists in the representation of certain features of SPARQL as a
directed graph in order to normalise expressions. However, it is limited to mostly monotonic
features and optional patterns, whereas SPARQL 1.1 contains several other features that are
standard to other known query languages. These features include: aggregations, regular path
queries, negation, etc. Chekol et al. proposed a system [21] where queries are translated into
formulae which are then processed by either an Alternation Free two-way µ-calculus (AFMU )
decider [72] or Tree Solver [33], an XPath-equivalence checker. Their study also compared
the previously mentioned systems to SPARQL Algebra, and concluded that SPARQL Algebra
often outperformed the other systems. However, it is worth noting that SPARQL Algebra
works directly on SPARQL queries, whereas the other systems depend on a translation to
formulae.

Although the aforementioned containment checkers may allow us to determine whether
two queries are equivalent, this approach is not efficient if we need to find all equivalences
in a large set of queries. This is because we would need to perform a quadratic number of
pairwise checks in order to find all equivalences. Even then, we would not be able to find
any pairs of queries that are congruent but not equivalent.

3.4 Other Query Languages

XPath is an expression language for the retrieval of nodes in XML documents. These expres-
sions can also be visualised as tree patterns. It is used in query languages such as XQuery, the
standard query language for XML according to the W3C. XPath is flexible and expressive
enough to be used to query graph databases as well as XML documents [47].

The containment decision problem for XPath queries with constraints known as Docu-
ment Type Definitions (DTDs) is decidable for a fragment that contains tests for predicates,
wildcards, and searches for descendants, otherwise known as tree patterns [78, 53]. The same
problem without DTDs is known to be in coNP-complete [51]. Furthermore, this complex-

25



ity does not depend on whether the patterns are evaluated over tree structures or graph
databases [29].

In regards to minimisation, the XPath tree pattern minimisation decision problem is
in ΠP

2 in the general case [77], but there are certain fragments that allow minimisation in
PTime[78].

Interestingly, unlike monotone SPARQL queries, one can construct tree patterns that
contain no redundancies, but are not minimal. This means that non-redundancy does not
imply minimality [28].
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Chapter 4

SPARQL 1.1

While there exist various formal definitions for the core of SPARQL 1.0, as discussed in
Section 2.3, to the best of our knowledge, there does not exist a similar comprehensive
treatment for SPARQL 1.1 (though parts of the SPARQL 1.1 query language have been
defined formally [58, 4, 9, 59, 42]).

In this chapter, we present our extended definitions for SPARQL 1.1. These acknowledge
the features added in SPARQL 1.1 such as property paths, aggregation expressions, etc.
Furthermore, we have filled some of the gaps in the literature such as the subtle difference
between MINUS and FILTER NOT EXISTS, formalise the semantics of bags of solution map-
pings, and federated queries. Such features are commonly used in real-world queries [12, 8],
and defining them formally is an important prerequisite before proposing canonicalisation
methods. We will describe the results that are most relevant to this work, but we refer to our
study for a more thorough and detailed explanation [64]. For example, for brevity, here we
will exclude the formal definition of features relating to ordering results from SPARQL 1.0,
for which we do not apply a special treatment during canonicalisation, but these definitions
can be found in [64]. Likewise we focus on the canonicalisation and definition of SELECT
queries, where definitions for ASK, CONSTRUCT and DESCRIBE can rather be found in [64].

4.1 Syntax

We now introduce an abstract syntax for SPARQL 1.1 queries, which is defined recursively,
and which extends the abstract syntax for SPARQL 1.0 defined in Section 2.3.1. We present
the following preliminaries, followed by the definitions in Table 4.1.

- A triple pattern t = (s, p, o) is a member of the set VIBL×VI×VIBL.

- A basic graph pattern B = {t1, . . . , tn} is a set of triple patterns.

- A path pattern p = (s, e, o) is a member of the set VIBL×P×VIBL where P is the set
of property paths defined in Table 4.2.
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- A navigational graph pattern N = {p1, . . . , pn} is a set of path patterns and triple patterns
with variables as predicates.

- We denote by vars(B) the set of variables used in each triple pattern in B. Similarly, we
denote by vars(N) the set of variables used in each path pattern and triple pattern in N .
Additionally, we denote by paths(N) the set of property paths in N .

- A term in VIBL is also known as a built-in expression R. Let R denote the set of all built-
in expressions, ε denote an error and ⊥ denote an unbound value. A function ϕ is a built-in
function that receives a tuple of built-in expressions as input, and, when evaluated, outputs
a built-in expression, an error message (ε), or an unbound value (⊥). Then ϕ(R1, . . . , Rn)
is also a built-in expression. The set of variables used in R is denoted by vars(R). For
example, let R be the expression isBlank(?v), where isBlank() is a built-in function that
returns true if the built-in expression (?v in this case) is bound to a blank node.

- A function ψ : ((R)) → R ∪ {ε,⊥} is an aggregation function that takes bags of tuples
of built-in expressions as input and outputs a built-in expression, an error message (ε), or
an unbound value (⊥). Then ψ(R1, . . . , Rn) is an aggregation expression. For example, an
aggregate expression AVG(?v1) will return the average value of the bag of results bound to
?v1 (assuming they are numeric).

4.2 Semantics

In this section, we describe the evaluation of SPARQL queries over RDF graphs under set
semantics and bag semantics, where the output is a set of solution mappings, and bag (or
multiset) of solution mappings, respectively.

4.2.1 Set Semantics

The semantics of a SPARQL query Q is defined in terms of its evaluation over a SPARQL
dataset, which typically first involves transforming the dataset into solution mappings. We
first describe the set semantics of SPARQL 1.1, which works with sets of solutions, and builds
upon the definitions for SPARQL 1.0 described in Section 2.3.2.

Let M , M1 and M2 denote sets of mappings. We define an algebra consisting of the
natural-join (▷◁), union (∪), semi-join (⋉), anti-join (▷), left-outer-join ( ▷◁), minus (−),
projection (π), selection (σ), and bind (β) operators, respectively, as follows:
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Table 4.1: Abstract SPARQL syntax

- B is a basic graph pattern. ∴ B is a query pattern on vars(B).

- N is a navigational graph pattern. ∴ N is a query pattern on vars(N).

- Q1 is a query pattern on V1.

- Q2 is a query pattern on V2.

∴ [Q1 andQ2] is a query pattern on V1 ∪ V2;
∴ [Q1 unionQ2] is a query pattern on V1 ∪ V2;
∴ [Q1 optQ2] is a query pattern on V1 ∪ V2;
∴ [Q1 minusQ2] is a query pattern on V1.

- Q is a query pattern on V .

- Q1 is a query pattern on V1.

- Q2 is a query pattern on V2.

- v is a variable not in V .

- R is a built-in expression.

∴ filterR(Q) is a query pattern on V ;

∴ [Q1 feQ2] is a query pattern on V1;

∴ [Q1 fneQ2] is a query pattern on V1;

∴ bindR,v(Q) is a query pattern on V ∪ {v}.

- Q is a query pattern on V .

- M is a bag of solution mappings on
VM =

⋃
µ∈M dom(µ).

∴ valuesM(Q) is a query pattern on V ∪ VM.

- Q is a graph pattern on V .

- x is an IRI.

- v is a variable.

∴ graphx(Q) is a graph pattern on V .

∴ graphv(Q) is a graph pattern on V ∪ {v}.

- Q1 is a graph pattern on V1.

- Q2 is a graph pattern on V2.

- x is an IRI.

- ∆ is a boolean value.

∴ [Q1 service
∆
x Q2] is a graph pattern on V1∪V2.

- Q is a graph pattern on V .

- Q′ is a group-by pattern on (V ′, V ).

- V ′′ is a set of variables.

- A is an aggregation expression.

- Λ is a (possibly empty) set of pairs
{(A1, v1), . . . , (An, vn)}, where A1, . . . , An are ag-
gregation expressions, v1, . . . , vn are variables not
appearing in V ∪ V ′ such that vi ̸= vj for 1 ≤ i < j ≤ n,
and where vars(Λ) = {v1, . . . , vn}.

∴ Q is a group-by pattern on (∅,V ).

∴ Q′ is a graph pattern on V ′.

∴ groupV ′′(Q) is a group-by pattern on
(V ′′, V ).

∴ havingA(Q
′) is a group-by pattern on (V ′, V ).

∴ aggΛ(Q
′) is a graph pattern on (V ′ ∪

vars(Λ), V ).

- Q is a query but not a from query.

- X and X ′ are sets of IRIs.
∴ fromX,X′(Q) is a from query and a query.
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Table 4.2: SPARQL property path syntax

The following are path expressions
p a predicate (IRI)
!p not p
!(p1| . . . |pk|ˆpk+1| . . . |ˆpn) any (inv.) predicate not listed

and if e, e1, e2 are path expressions
the following are also path expressions:
ˆe an inverse path
e1/e2 a path of e1 followed by e2
e1|e2 a path of e1 or e2
e* a path of zero or more e
e+ a path of one or more e
e? a path of zero or one e
(e) brackets used for grouping

M1 ▷◁ M2 := { µ1 ∪ µ2 | µ1 ∈M1, µ2 ∈M2 and µ1 ∼ µ2}
M1 ∪M2 := { µ | µ ∈M1 or µ ∈M2}
M1 ⋉M2 := { µ1 ∈M1 | ∃µ2 ∈M2 : µ1 ∼ µ2}
M1 ▷M2 := { µ1 ∈M1 | ∄µ2 ∈M2 : µ1 ∼ µ2}
M1 ▷◁ M2 := (M1 ▷◁ M2) ∪ (M1 ▷M2)

M1 −M2 := { µ1 ∈M1 | ∄µ2 ∈M2 : µ1 ∼ µ2 and µ1 ∗ µ2}
πV (M) := { µ′ | ∃µ ∈M : µ′ ⊆ µ and dom(µ′) = V ∩ dom(µ)}
σR(M) := { µ ∈M | µ |= R}
βR,v(M) := { µ ∪ ⟨v/µ(R)⟩ | µ ∈M, v /∈ dom(µ) and µ(R) ̸= ε}

Letting Q denote a pattern in the abstract syntax, we denote the evaluation of Q over
an RDF graph G as Q(G). Before defining Q(G), first let t denote a triple pattern; then
by vars(t) and bnodes(t) we denote the set of variables and blank nodes appearing in t,
respectively. Then, we denote by µ(t) the image of t under a solution µ, and in a similar
fashion, we define α(t) as the image of t under a blank node mapping α; the difference
between these two lies in that although blank nodes may act as variables, they cannot generate
bindings.

On the other hand, in order to define the evaluation of a navigation graph pattern N , we
must first define the evaluation of property paths; a property path evaluated on an RDF graph
returns sets of pairs of elements connected by sequences of predicates that match the regular
expression defined by the property path. We denote the set of terms appearing as subjects or
predicates in an RDF graph G by so(G); more specifically so(G) := {x | ∃p, y : (x, p, y) ∈ G
or (y, p, x) ∈ G}. Then, the evaluation of a property path e over G (denoted e(G)) is defined
as follows:
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p(G) := {(s, o) | (s, p, o) ∈ G}
!p(G) := {(s, o) | ∃q : (s, q, o) ∈ G and q ̸= p}
ˆe(G) := {(s, o) | (o, s) ∈ e(G)}

e1/e2(G) := {(x, z) | ∃y : (x, y) ∈ e1(G) and (y, z) ∈ e2(G)}
e1|e2(G) := e1(G) ∪ e2(G)
e+(G) := {(y1, yn+1) | for 1 ≤ i ≤ n : ∃(yi, yi+1) ∈ e(G)}
e*(G) := e+(G) ∪ so(G)

e?(G) := e(G) ∪ so(G)

!(p1| . . . |pk|ˆpk+1| . . . |ˆpn)(G) := !(p1| . . . |pk)(G) ∪ !(ˆpk+1| . . . |ˆpn)(G)

Thus, given a navigational graph pattern N and RDF graph G, we define the path graph
GN as the set {(s, e, o) | e ∈ paths(N) and (s, o) ∈ e(G)}.

Finally, we can define Q(G) recursively as shown in Table 4.3:

Table 4.3: Set evaluation of graph patterns where G is an RDF graph; B is a basic graph
pattern; N is a navigational graph pattern; Q, Q1 and Q2 are graph patterns; V is a set of
variables; R is a built-in expression; v is a variable; M is a set of solution mappings; and x
is an IRI

B(G) := {µ | ∃α : µ(α(B)) ⊆ GD and dom(µ) = vars(B) and dom(α) = bnodes(B)}
N(G) := {µ | ∃α : µ(α(N)) ⊆ GN

D ∪GD and dom(µ) = vars(N) and dom(α) = bnodes(N)}

[Q1 andQ2](G) := Q1(G) ▷◁ Q2(G)
[Q1 unionQ2](G) := Q1(G) ∪Q2(G)
[Q1 minusQ2](G) := Q1(G)−Q2(G)
[Q1 optQ2](G) := Q1(G) ▷◁ Q2(G)
selectV (Q)(G) := πV (Q(G))
filterR(Q)(G) := σR(Q(G))
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4.2.2 Bag Semantics

The evaluation of SPARQL queries under bag semantics is similar to the evaluation under
set semantics, but operates over and returns bags of solution mappings, instead of sets of
solution mappings. This means that the multiplicities of the solution mappings is considered
as part of the evaluation. Therefore, we must define the algebra of bags of solution mappings
analogous to the definition presented in Section 4.2.1.

Let M, M1 and M2 denote bags of solution mappings. We define an algebra consisting
of the join, union, semi-join, anti-join, difference, left-outer-join, selection and projection
operators, respectively, as follows: note that we use Iverson bracket notation where [ϕ ] = 1
if and only if ϕ is true; otherwise, if ϕ is false or undefined, then [ϕ ] = 0.

M1 ▷◁M2(µ) :=
∑
µ1,µ2

M1(µ1) ·M2(µ2) · [µ1 ∪ µ2 = µ ]

M1 ∪M2(µ) := M1(µ) +M2(µ)

M1 ⋉M2(µ) := M1(µ) · [ there exists µ′ ∈M2 such that µ ∼ µ′ ]

M1 ▷ M2(µ) := M1(µ) · [ there does not exist µ′ ∈M2 such that µ ∼ µ′ ]

M1 −M2(µ) := M1(µ) · [ there does not exist µ′ ∈M2 such that µ ∼ µ′ and µ ∗ µ′ ]

M1 ▷◁M2(µ) := ((M1 ▷◁M2) ∪ (M1 ▷ M2))(µ)

πV (M)(µ) :=
∑
µ′

M(µ′) · [ dom(µ′) = V ∩ dom(µ) and µ ∼ µ′ ]

σR(M)(µ) := M(µ) · [µ |= R ]

βR,v(M)(µ) :=
∑
µ′

M(µ′) · [µ′ ∪ {v/R(µ′)} = µ ]

The bag evaluation of SPARQL queries remains largely the same, other than the evalua-
tion of basic graph patterns and navigational patterns:

Table 4.4: Bag evaluation of graph patterns where G is an RDF graph; B is a basic graph
pattern; N is a navigational graph pattern.

B(G)(µ) := |{α | µ(α(B)) ⊆ G and dom(α) = bnodes(B)}| · [dom(µ) = vars(B)]
N(G)(µ) := |{α | µ(α(N)) ⊆ GN and dom(α) = bnodes(N)}| · [dom(µ) = vars(N)]

However, some property paths may be rewritten into equivalent (unions of) basic graph
patterns, which may affect the multiplicities of the results. This is because the evaluation of
property paths is done under set semantics, while the evaluation of operators into which the
property paths are rewritten are done under bag semantics. Table 4.5 indicates the evaluation
of navigational graph patterns..
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Table 4.5: Bag evaluation of navigational patterns where G is an RDF graph, N is a navi-
gational pattern, and x is a fresh blank node

N(G) :=


{(o, e, s)} ∪ (N \ {(s, ˆe, o)})(G) if there exists (s, ˆe, o) ∈ N
{(s, e1, x), (x, e2, o)} ∪ (N \ {(s, e1/e2, o)})(G) if there exists (s, e1/e2, o) ∈ N
[[{(s, e1, o)}union {(s, e2, o)}]andN \ {(s, e1|e2, o)}](G) if there exists (s, e1|e2, o) ∈ N
N(G) under set semantics otherwise

4.3 Default and Named Graphs

Thus far we’ve defined the semantics of SPARQL 1.1 queries over a single RDF graph.
However, SPARQL allows us to operate over several RDF graphs by defining a SPARQL
dataset. Formally, a SPARQL dataset D := (G, {(x1, G1), . . . , (xn, Gn)}) is a pair of an RDF
graph G called the default graph, and a set of named graphs of the form (xi, Gi), where xi is
a unique IRI (called a graph name) and Gi is an RDF graph. We denote by GD the default
graph G of D and by D∗ = {(x1, G1), . . . , (xn, Gn)} the set of all named graphs in D. We
further denote by GD[xi] the graph Gi such that (xi, Gi) ∈ D∗ or the empty graph if xi does
not appear as a graph name in D∗.

In concrete SPARQL syntax, the FROM and FROM NAMED clauses establish the default graph
and the set of named graphs, respectively. These clauses are followed by IRIs that denote
RDF datasets. Figure 4.1 provides an example of the use of the FROM clause in concrete
SPARQL syntax, where the basic graph pattern in the WHERE clause will now only generate
answers from the RDF graph named http://example.org/a.

SELECT ?actor
FROM <http://example.org/a>
WHERE{

?actor :actsIn ?movie;
:salary ?salary .

}

Figure 4.1: An example of a query that contains a FROM clause.

Queries are evaluated on a SPARQL datasetD, where dataset modifiers allow for changing
the dataset considered for query evaluation. First, let X and X ′ denote (possibly empty
or overlapping) sets of IRIs and let D denote a SPARQL dataset. We then denote by
D(X,X ′) := (

⊎
x∈X GD[x], {(x′, GD[x′]) | x′ ∈ X ′}) a new dataset formed from D by merging

all named graphs ofD named byX to form the default graph ofD(X,X ′), and by selecting all
named graphs of D named by X ′ as the named graphs of D(X,X ′). We define the semantics
of dataset modifiers in Table 4.6.

Table 4.6: Evaluation of dataset modifiers where X and X ′ are sets of IRIs

fromX,X′(Q)(D) := Q(D(X,X ′))

Once a set of named graphs has been defined, they can be accessed with the GRAPH clause.
A GRAPH clause is followed immediately by either an IRI that points to a specific external
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graph or a variable that maps to each of the named graphs. Finally, it is followed by a
sub-query that is executed over each named graph. Figure 4.2 presents a query that defines
three named graphs, and then defines a sub-query that looks for actors in each of the named
graphs.

SELECT ?actor
FROM NAMED <http://example.org/a>
FROM NAMED <http://example.org/b>
FROM NAMED <http://example.org/c>
WHERE{

GRAPH ?g
{ ?actor :actsIn ?movie;

:salary ?salary . }
}

Figure 4.2: An example of a query that contains FROM NAMED and GRAPH clauses.

We now define two operators that allow for generating query-specific datasets:

graphx(Q)(D) :=Q(⟨GD[x], DN⟩)

graphv(Q)(D) :=
⋃

(xi,Gi)∈DN

βxi,v(Q(⟨Gi, DN⟩))

With respect to the evaluation of the previously defined query features, these were defined
on RDF graphs rather than RDF datasets. In the case of RDF datasets, such features are
simply evaluated on the default graph of the dataset, unless a different active graph is selected
via the use of FROM or GRAPH, in which case they are evaluated on the active graph.

4.4 Assignments to Variables

SPARQL allows us to assign specific values to variables that may or may not depend on the
evaluation of the query. This can be achieved by the use of the BIND or the VALUES keywords.

The BIND keyword allows us to assign built-in expressions to variables. In the example
presented in Figure 4.3 we assign the difference between the actors’ date of birth and the
release date of the movies they acted in in order to determine the actors’ age at the release
of the movie.

SELECT ?actor ?movie ?age
WHERE{

?actor :actsIn ?movie .
?actor :dateOfBirth ?dob .
?movie :releaseDate ?date .
BIND ((?date - ?dob) AS ?age)

}

Figure 4.3: Example of a query with a BIND expression.
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Let Q be a query, G a dataset, and R a built-in expression that is being assigned to a
variable v. We define the semantics of BIND as follows:

bindR,v(Q)(G) := βR,v(Q(G))

On the other hand, SPARQL allows us to explicitly define in-line values by use of the
VALUES keyword. In the example presented in Figure 4.4 we are looking for actors who
have acted in horror, science fiction, and fantasy movies. While this could be accomplished
similarly by a UNION and explicitly declaring each value in a triple pattern, this is sometimes
used for optimisations such as in caching systems and federated query systems [9].

SELECT ?actor
WHERE {

?actor :actsIn ?movie .
?movie :genre ?genre .
VALUES ?genre { :Horror :ScienceFiction :Fantasy }

}

Figure 4.4: Example of a query with inline values.

The VALUES keyword allows us to explicitly define a set of solution mappings M in a
SPARQL query, that may be visualised as a table of results where each row is a solution
mapping µ, and each mapping contains a set of variables and the values assigned to said
variable. These values are either literal values, IRIs or a special value UNDEF that denotes an
unbound value.

Let Q denote a query pattern that is evaluated in a dataset G. The set of solution
mappings M defined as part of the VALUES clause is then joined with the evaluation of Q
over G as follows:

valuesM(Q)(G) :=Q(G) ▷◁ M

4.5 Aggregation

Aggregations expressions allow us to perform operations on bags of results instead of indi-
vidual results. Let (µ,M) denote a solution group, where µ is a solution mapping called
the key of the solution group, and M is a bag of solution mappings called the bag of the
solution group such that each solution in the bag of the solution group M is compatible with
the key of the solution mapping µ. Group-by patterns then return a set of solution groups
M := {(µ1,M1), . . . , (µn,Mn)} as their output. In concrete SPARQL syntax, we use the
GROUP BY expression to group sets of solution mappings based on partial results.

In the example presented in Figure 4.5 we look for actors and the box office of all movies
they acted in. We group these by the actors while we compute the average box office for each
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SELECT ?actor (AVG(?value) AS ?net)
WHERE{

?actor :actsIn ?movie .
?movie :boxOffice ?value .

} GROUP BY ?actor

Figure 4.5: Example of a SPARQL query with aggregation.

of them. In this query, ?actor defines the key of the solution group, and thus exists outside
the scope of the grouping. On the other hand, variables such as ?value may not be used
outside the grouping unless it has been used inside an aggregate function such as average
(AVG). Internally, this is the same as binding an expression (in this instance AVG(?value)) to
an anonymous variable. We now define the semantics of group-by patterns along with the
agg graph pattern, which allows for converting a set of solution groups to a set of solution
mappings.

Table 4.7: Aggregation algebra under bag semantics, where M and M′ are bags of solution
mappings; V is a set of variables and v is a variable; A is an aggregation expression; andM
is a set of solution groups; we recall that M is the set of all solution mappings

γV (M) := {(µ,M′) | µ ∈ πV (M) and ∀µ′ ∈M : M′(µ′) = M(µ′) · [ πV ({µ′}) = {µ} ]}
σ′
A(M) := {(µ,M) ∈M |M |= A}

β′
A,v(M) := { (µ ∪ {v/A(M)}, βA(M),v(M)) | (µ,M) ∈M}
ζ(M) := {µ | (µ,M) ∈M}

In Table 4.7, we present an algebra for aggregation, which includes the grouping operator
described earlier for inducing a set of solution groups from a set or bag of solution (e.g.,
grouping by ?actor), a selection operator for filtering solution groups that do not satisfy a
given aggregate condition (e.g., filter groups whose maximum ?salary is over a certain value),
a bind operator that stores the result of an aggregation operator to a fresh variable (e.g.,
assign MAX(?salary) to a variable ?max), and finally a flatten operator that extracts the key
of each solution group into a “flat” set of solution mappings (e.g., extract solution mappings
for ?max). Table 4.8 then shows the evaluation of queries that contain these features using
the algebra presented in Table 4.7.

Table 4.8: Evaluation of group-by patterns where D is a dataset, Q is a graph pattern
or group-by pattern, V is a set of variables, v1, . . . , vn are variables, and A,A1, . . . , An are
aggregation expressions

groupV (Q)(D) := γV (Q(D))
havingA(Q)(D) := σ′

A(Q(D))
agg{(A1,v1),...,(An,vn)}(Q)(D) := ζ(β′

A1,v1
(. . . (β′

An,vn
(Q(D))) . . .))

note: agg{}(Q)(D) := ζ(Q(D))
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4.6 Negation

Although negation could be accomplished in SPARQL 1.0 using a combination of optional
graph patterns and filter expressions, it was only natural to include explicit expressions for
negation. In fact, SPARQL 1.1 introduced two distinct forms of negation: MINUS and FILTER
(NOT) EXISTS.

SELECT ?actor ?salary
WHERE{

?actor :salary ?salary .
MINUS
{ ?movie :genre :Horror . }

}

SELECT ?actor ?salary
WHERE{

?actor :salary ?salary .
FILTER NOT EXISTS
{ ?movie :genre :Horror }

}

Figure 4.6: Example of queries featuring negation using MINUS (left) and FILTER NOT EXISTS
(right).

Figure 4.6 contains two queries that look for actors who have not acted in horror movies,
and their salaries. Unfortunately the user forgot to add a triple pattern to link actors to
movies, but this helps us to illustrate the difference between MINUS and FILTER NOT EXISTS.
We note that despite the fact that both express negation, both expressions are not equivalent.
In fact, the MINUS expression will have no effect on the results of the query on the left because
there is no overlap between the solutions for ?actor and ?salary, and ?movie. On the other
hand, the FILTER NOT EXISTS expression will return every result for ?actor and ?salary,
unless the graph contains a triple describing a movie of the horror genre, in which case the
results are empty. This has to do with the fact that FILTER NOT EXISTS requires mappings
that are compatible, and removes results if the mapping is not empty, whereas MINUS further
requires overlapping mappings on the right in order to remove mappings from the left (if no
solution on the right has a variable in common with a given solution on the left, the solution
on the left is kept). We now define these negation features for the abstract syntax considering
set semantics:

[Q1 feQ2](D) := {µ ∈ Q1(D) | (µ(Q2))(D) ̸= ∅}
[Q1 fneQ2](D) := {µ ∈ Q1(D) | (µ(Q2))(D) = ∅}

[Q1minusQ2](D) :=Q1(D)−Q2(D)

While the multiplicity of M1 −M2 was defined in Section 4.2.2, we are left to define the
multiplicity for the FILTER (NOT) EXISTS cases:

[Q1 feQ2](D)(µ) :=Q1(D)(µ) · [(µ(Q2))(D) ̸= ∅]
[Q1 fneQ2](D)(µ) :=Q1(D)(µ) · [(µ(Q2))(D) = ∅]

The observant reader may note that µ(Q2) in the previous definitions for FILTER (NOT)
EXISTS is not well-defined for all cases. For example, if Q2 contains a BIND clause to a variable
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v ∈ dom(µ), then replacing v with µ(v) in Q2 renders µ(Q2) syntactically invalid. This is a
known issue with SPARQL 1.1 that would require inventing new semantics to address, and
for which there is no natural solution. We refer to [64, Section 3.10] for more discussion.

4.7 Federated Queries

Federated queries allow us to run queries on remote SPARQL endpoints, and join the results
of that (federated) query with the results of our local query. For example, the query in
Figure 4.7 finds all actors who have acted in a horror movie in our default graph. Then,
assuming there exists a remote SPARQL endpoint at http://some-sparql-endpoint.com
that contains information on taxation, the query looks for information on taxes paid by each
actor in the year 2019. The results from the federated query are joined with the results from
the local query.

SELECT ?actor ?value
WHERE {

?actor :actsIn ?movie .
?movie :genre :Horror .
SERVICE <http://some-sparql-endpoint.com>
{ ?actor :taxed ?taxation .

?taxation :year 2019ˆˆxsd:year .
?taxation :value ?value . }

}

Figure 4.7: An example of a SPARQL query that includes a federated query.

In order to define this feature, we denote by ω a federation mapping from IRIs to services
such that, given an IRI x ∈ I, then ω(x) returns the service S hosted at x or returns ε in the
case that no service exists or can be retrieved. We denote by S.Q(DS) the evaluation of a
query Q on a remote service S. When a service of the query evaluation is not indicated (e.g.,
Q(D)), we assume that it is evaluated on the local service. Finally, we define that ε.Q(Dε)
invokes a query-level error ε – i.e., the evaluation of the entire query fails – while ε.Q∗(Dε)
returns a set with the empty solution mapping {µ∅}.1

We can then define the evaluation of federated queries in abstract syntax as follows, where
the first definition throws an error if the remove SPARQL query service fails, while the latter
returns the results for the local query (Q1) if the service fails. The latter then corresponds
to the use of the SILENT modifier in the SPARQL 1.1 concrete syntax.

[Q1 service
false
x Q2](D) := Q1(D) ▷◁ ω(x).Q2(Dω(x))

[Q1 service
true
x Q2](D) := Q1(D) ▷◁ ω(x).Q∗

2(Dω(x))

1We remark that {µ∅} is the join identity; i.e., {µ∅} ⋊⋉ M = M . On the other hand {} is the join zero;
i.e., {} ⋊⋉M = {}.
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4.8 Query Containment and Equivalence

Query containment and equivalence are problems that have been well studied in the litera-
ture. Some notable results for the purposes of this study are presented in Table 4.9. Here,
we present the complexities under both set and bag semantics for the following classes of
SPARQL queries: conjunctive queries (CQs) and conjunctive path queries (CPQs) are basic
graph patterns and navigational graph patterns, respectively; unions of conjunctive queries
(UCQs) and unions of conjunctive path queries (UCPQs) are unions of basic graph patterns
and navigational graph patterns, respectively; monotone queries (MQs) and monotone path
queries (MPQs) are queries that contain joins and unions of basic graph patterns and nav-
igational graph patterns, respectively2; non-monotone queries (NMQs) and non-monotone
path queries (NMPQs) are queries that contain joins and unions, as well as negation of basic
graph patterns and navigational graph patterns, respectively. In particular, both C(P)Qs
and UC(P)Qs are monotone (path) queries, and thus subsets of M(P)Qs.

Table 4.9: Complexity of SPARQL tasks on core fragments (considering combined complexity
for Evaluation). We annotate with * those results that are not stated but follow directly
from results presented in the respective paper. Note that -C and -H stand for -complete
and -hard, respectively.

Set semantics

Evaluation Containment Equivalence Congruence

CQ NP-C [56] NP-C [18]* NP-C [18]* NP-C
UCQ NP-C [56] NP-C [18]* NP-C [18]* NP-C
MQ NP-C ΠP

2 -C [62]* ΠP
2 -C [62]* ΠP

2 -C
NMQ PSpace-C [56] Undecidable [74]* Undecidable [74]* Undecidable

CPQ NP-C [44] EXPSpace-C [44] NP-H, EXPSpace NP-H, EXPSpace
UCPQ NP-C [44] EXPSpace-C [44] NP-H, EXPSpace NP-H, EXPSpace
MPQ NP-H [44]* EXPSpace-H [44]* ΠP

2 -H ΠP
2 -H

NMPQ PSpace-H Undecidable Undecidable Undecidable

Full PSpace-H Undecidable Undecidable Undecidable

Bag semantics

Evaluation Containment Equivalence Congruence

CQ NP-C NP-H, Decidability open GI-C [19]* GI-C
UCQ NP-C Undecidable [40]* GI-C [23]* GI-C
MQ NP-C Undecidable GI-H GI-H
NMQ PSpace-C Undecidable Undecidable [57]* Undecidable

Full PSpace-H Undecidable Undecidable Undecidable

The results presented in Table 4.9 show that the canonicalisation is a hard problem
because it may solve the congruence decision problem, which is NP-complete even for con-
junctive queries. On the other hand, we see that the problem is decidable even for MPQs,
even though it is EXPSpace-complete. Further studies reveal that this complexity may be

2Note that unlike UCQs and UCPQs, they permit joins of unions, and can thus express certain queries
exponentially more concisely.
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lower for MPQs under certain restrictions [31]. Intuitively this is because, under set seman-
tics, we must additionally check for redundancies with (U)CQs , while under bag semantics,
such “redundancies” can no longer be removed without affecting equivalence as this would
change the multiplicity of results. Thus, under bag semantics, it suffices to check that the
queries are “isomorphic”, which will be discussed in Chapter 5.

A notable result is that the complexity of the congruence decision problem for (U)CQs
under bag semantics is GI-complete, meaning that it is as hard as the graph isomorphism
decision problem, but may in fact be easier than the analogous problems under set semantics
(if GI ̸= NP).
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Chapter 5

Canonicalisation of SPARQL queries

The general objective of this thesis is to research methods for canonicalising SPARQL queries
and to design and implement a practical algorithm that takes as input a large list of SPARQL
queries and can identify subsets of equivalent (or congruent) queries.

The proposed algorithm aims to accomplish the following:

� Support the majority of real-world SPARQL queries.

� Capture more equivalences than baseline, syntactic methods.

� Be executed efficiently and at the scale of millions of queries.

In this chapter, we will first describe our method for the fragment of SPARQL known as
monotone queries, for which the canonicalisation process is sound and complete. Following
this, we will describe the method for the full language, where the process is sound but
incomplete. In particular, we will describe the partial canonicalisation we have achieved in
conjunctive queries with property paths.

5.1 Monotone Queries

In this section, we describe in detail the different steps that comprise the canonicalisation
method for monotone queries. Our method can be summarised in the following steps:

Query Rewriting We apply several rewriting rules in order to compute a more normal
form of the query. This includes rewriting monotone parts of the query into unions of
basic graph patterns, property paths into equivalent graph patterns, and renaming or
eliminating variables that do not affect the results. This may be repeated iteratively
until no more changes are made.

Graph Representation We construct a graph based on an algebraic expression of the
query. This allows us to capture both the commutative and associative properties of
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certain SPARQL operators, and is necessary to use the tools needed in the following
steps.

Removal of Redundancies We remove redundancies in the monotone parts of the query.
These are divided into two groups: redundant basic graph patterns, and redundant
triple patterns. We perform containment checks on every pair of basic graph patterns
in a union, and eliminate those that are contained in others. In addition, we compute
the core of the graph that represents each basic graph pattern in order to eliminate
redundant triple patterns.

Canonical Labeling We find canonical labels for the variables in the query by canonically
labeling the graph that represents the query. Thereby we assign new names for each
variable in a manner that is canonical modulo isomorphism.

We now describe each of the steps in greater detail.

5.1.1 Normalisation

In this section, we describe the normalisation process of our method. This step encompasses
several transformations and removal of redundancies. Most of these transformations are
results of equivalences that have been well studied in the literature [34, 67].

Algorithm 1 Pseudo-algorithm for the normalisation of monotone SPARQL queries.

Input: A monotone SPARQL query Q
Output: A normalised query Q′ = u(Q) such that Q′ ≡ Q
function U(Q)

Q← unionNormalisation(Q)
Q← variableNormalisation(Q)
Q← unsatisfiabilityNormalisation(Q)
Q← setVsBagNormalisation(Q)
return Q

end function

Algorithm 1 presents pseudo-code describing the steps that comprise the normalisation
process. To summarise, we first begin by describing the rewriting of monotone parts of
queries into UCQs. Subsequently, we describe cases where, under certain circumstances,
we may rewrite monotone queries that cannot produce duplicated bindings by adding the
DISTINCT keyword (if missing). Following this, we describe the cases in which certain vari-
ables are renamed in order to differentiate variables with the same name but that share no
semantic value (denoted as non-correlated variables). Next, we describe the cases in which
certain variables may be removed altogether without affecting the semantic value of the
query. Finally, we describe cases where certain CQs and UCQs may never produce results
(are unsatisfiable), and may be rewritten into a standard, canonical unsatisfiable CQ.

42



UCQ Normalisation

In this section, we describe the rules for rewriting monotone queries into UCQs. One of
the first results we consider is that joins of triple patterns can be rewritten to equivalent
BGPs. That is, a query pattern [tand t′] where t and t′ are triple patterns can be rewritten
to a BGP B = {t, t′}. In addition, in order to avoid potential issues with identical blank
nodes matching different terms, blank nodes are rewritten into fresh variables that do not
appear elsewhere in the query. Let η : B→ V denote a one-to-one mapping of blank nodes
to variables, and let η(B) denote the basic graph pattern {η(t), η(t′)}. This leads to the
following equivalence (under both set and bag semantics):

η(B) ≡ selectvars(B)([η(t)and η(t
′)])

Table 5.1: Equivalences given by Pérez et al. [56] for set semantics

Join is commutative [Q1 andQ2] ≡ [Q2 andQ1]
Union is commutative [Q1 unionQ2] ≡ [Q2 unionQ1]

Join is associative [Q1 and [Q2 andQ3]] ≡ [[Q1 andQ2]andQ3]
Union is associate [Q1 union [Q2 unionQ3]] ≡ [[Q1 unionQ2]unionQ3]

Join distributes over union [Q1 and [Q2 unionQ3]] ≡ [[Q1 andQ2]union [Q1 andQ3]]

i.e., a BGP B is equivalent to the result of rewriting its blank nodes to fresh variables and
joining the individual triple patterns, finally projecting only the variables originally in B.

Thereafter, Pérez et al. [56] prove a number of equivalences involving joins and unions,
as shown in Table 5.1. These known results give rise to a UCQ normal form for monotone
queries. More specifically, given a pattern [Q1 and [Q2 unionQ3]], we can rewrite this to
[[Q1 andQ2]union [Q1 andQ3]]; in other words, we translate unions of joins to (equivalent)
patterns involving joins of unions. Furthermore, we can abstract the commutativity and
associativity of both joins and unions by introducing two new operators that accept multiple
query patterns as an argument:

and(Q1, . . . , Qn) ≡ [Q1 and [. . . andQn]]

union(Q1, . . . , Qn) ≡ [Q1 union [. . . unionQn]]

The UCQ normal form for monotone queries is then of the form selectV (union(Q1, . . . , Qn))
(optionally with a distinct operator), where each Qi (1 ≤ i ≤ n) is of the form
and(Qi1, . . . , Qim).

Algorithm 2 shows pseudo-code for the UCQ normalisation of monotone SPARQL queries
recursively. A downside of this process is that the UCQ normal form may be of exponential
size on the number of patterns on the original monotone query; in the worst case, a pattern of
the form and(union(t11, . . . , t1m), . . . ,union(tn1, . . . , tnm)) would be rewritten to a union of
mn BGPs (for each combination of tij and tkl), with each BGP containing n triple patterns.
On the other hand, the advantage of this approach is that once we have the query in UCQ
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Algorithm 2 Pseudo-algorithm for the UCQ normalisation of monotone queries.

Input: A monotone SPARQL query Q
Output: A UCQ Q′ such that Q′ ≡ Q
function unionNormalisation(Q)

if Q = (s, p, o) then ▷ Q is a triple pattern.
return Q

else if Q = selectV (Q
′) then

return selectV (unionNormalisation(Q′))
else if Q = [Q1 andQ2] then

Q′ ← unionNormalisation(Q1)
Q′′ ← unionNormalisation(Q2)
if Q′ = [Q′

1 unionQ
′
2] and Q

′′ = [Q′
3 unionQ

′
4] then

return [[[Q′
1 andQ

′
3]union [Q′

2 andQ
′
3]]union [[Q′

1 andQ
′
4]union [Q′

2 andQ
′
4]]]

else if Q′ = [Q′
1 unionQ

′
2] then

return [[Q′
1 andQ

′′]union [Q′
2 andQ

′′]]
else if Q′′ = [Q′′

1 unionQ
′′
2] then

return [[Q′′
1 andQ

′]union [Q′′
2 andQ

′]]
else

return [Q′ andQ′′]
end if

else if Q = [Q1 unionQ2] then
Q′ ← unionNormalisation(Q1)
Q′′ ← unionNormalisation(Q2)
return [Q′ unionQ′′]

end if
end function
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normal form, we have a more regular structure for the query and can apply known techniques
to minimise it (i.e., to remove redundancies from it).

Renaming Variables

According to the standard SPARQL definitions, unions of query patterns with differing sets
of variables are allowed; this leads to more equivalence cases that must be considered.

On the other hand, the same variable may sometimes appear in multiple query scopes
such that the variable (once projected away) does not need to be bound to the same term in
a solution.

SELECT DISTINCT ?m
WHERE{
{ ?a :title ?m . ?a :actor ?p . ?d :directed ?a .}
UNION
{ ?a :title ?m . ?a ?r ?p . ?d :directed ?a .}
}

SELECT DISTINCT ?m
WHERE{
{ ?a :title ?m . ?a :actor ?p . ?d :directed ?a .}
UNION
{ ?b :title ?m . ?b ?r ?p . ?d :directed ?b .}
}

Figure 5.1: An example of two equivalent UCQs.

Evidently, the two queries in Figure 5.1 are equivalent since if we look at each sub-
query individually, we obtain a list of all directors, and the movies they have directed and
their titles. However, since in the right query, the variable which maps to the movies has
a different label in each sub-query (?a in one sub-query, and ?b in another), our current
approach registers them as distinct queries. This is because, despite the fact that in the
query on the left variable ?a appears in both sub-queries, because ?a is not projected outside
the sub-query, it belongs to two different scopes.

The scenario presented leads to a false correlation between both instances of variable ?a.
In such a case, we say that those variables are not correlated. We identify the following two
cases where this issue may arise:1

- We call a variable v local to a query pattern Q on V (see Table 4.1) if v ∈ vars(Q) and
v ̸∈ V . A variable v local to Q is not correlated with other appearances of v outside of Q.

- We call a variable v a union variable if it appears in a union Q = union(Q1, . . . , Qn).
A union variable v ∈ vars(Qi) does not correlate with other appearances of v ∈ vars(Qj)
where i ̸= j unless v is correlated outside of Q.

As a consequence, our method may fail to identify congruence between queries that con-
tain these non-correlated variables, and queries that contain the same structure, but where
the variables are distinguished. To address this, we process these queries to differentiate

1We recall that SPARQL does not allow the same blank nodes to appear in multiple graph patterns;
otherwise such blank nodes would need to be addressed in a similar manner.
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all non-correlated variables such that only variables that are correlated may share the same
name.

The solution we have devised for UCQs is to distinguish the variables in each CQ by
labelling each non-projected variable (or local variable) depending on the CQ they belong
to. This is formalised in Lemma 5.1.1:

Lemma 5.1.1. Let Q = selectV (union(Q1, . . . , Qn)) denote a UCQ. Let λ1, . . . , λn denote
variable-to-variable mappings such that for 1 ≤ i ≤ n, λi : V → V where dom(λi) =
vars(Qi) \ V , and, for all v ∈ dom(λi), it holds that λi(v) /∈ vars(Q) and there does not
exist λj (1 ≤ i < j ≤ n) and v′ ∈ dom(λj) such that λi(v) = λj(v

′). In other words, each
variable-to-variable mapping rewrites each non-projected variable of each union operand to
a fresh variable. Then the following equivalence holds:

selectV (union(Q1, . . . , Qn)) ≡
selectV (union(λ1(Q1), . . . , λn(Qn)))

Proof. Take any Qi (1 ≤ i ≤ n). Given any dataset D, for any solution µ ∈ Qi(D), there
must exist a corresponding solution λi(µ) ∈ λi(Qi)(D) with the same multiplicity, where
dom(λi(µ)) = λi(dom(µ)), and λi(µ)(λi(v)) = µ(v), i.e., a solution that is the same but
with variables renamed per λi. Furthermore, selectV (Qi)(D) = selectV (λi(Qi))(D) as by
definition λi does not rewrite variables in V . We now have:

selectV (union(Q1, . . . , Qn)) ≡
union(selectV (Q1), . . . , selectV (Qn)) ≡

union(selectV (λ1(Q1)), . . . , selectV (λn(Qn))) ≡
selectV (union(λ1(Q1), . . . , λn(Qn)))

which concludes the proof.

Removing Variables that are Always Unbound

Next we apply a simple rule to remove variables that are always unbound in projections.

Lemma 5.1.2. Let Q be a query pattern on V , let V ′ be a set of variables, and let V ′′ be a
set of variables such that V ∩ V ′′ = ∅. It holds that selectV ′(Q) ≡ selectV ′∪V ′′(Q).

For example, the query in Figure 5.2 has three projected variables: ?m, ?n and ?o. How-
ever, ?o appears nowhere else in the query, which means that it cannot produce results.
Therefore, as part of our normalisation, we eliminate variable ?o from the projection.

Proof. Let V = pvars(Q) denote the possible variables of Q, defined to be the set of variables
v ∈ vars(Q) such that there exists a dataset D and a solution µ ∈ Q(D) where v ∈ dom(µ).
Then, for such a dataset D, if µ ∈ Q(D) then dom(µ) ⊆ V . For each solution µ ∈ Q(D), the
projection selectV ′(Q)(D) produces a solution µ′ such that dom(µ′) ⊆ V ′ ∩ dom(µ) and
µ ∼ µ′, while the projection selectV ′∪V ′′(Q) produces a solution µ′′ such that dom(µ′′) =
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SELECT DISTINCT ?m ?n ?o
WHERE{
{ ?a a :Movie .
?a :title ?m .
?a :genre :Horror . }
UNION
{ ?a a :Movie .
?a :sequel ?b .
?b :title ?n .
?a :genre :Horror . }

}

Figure 5.2: An example of a query that projects an unbound projected variable.

(V ′ ∪ V ′′) ∩ dom(µ) and µ ∼ µ′′. But since dom(µ) ⊆ V and V ∩ V ′′ = ∅, this means that
dom(µ)∩ V ′′ = ∅. Hence dom(µ′′) = (V ′ ∪ V ′′)∩ dom(µ) = V ′ ∩ dom(µ) = dom(µ′). Further
given that µ ∼ µ′, µ ∼ µ′′, dom(µ′) = dom(µ′′) ⊆ dom(µ), we can conclude that µ′ = µ′′. We
have thus shown a one-to-one mapping from solutions of the form µ′ to µ′′ such that µ′ = µ′′,
and thus the result holds.

Finally, we present in Algorithm 3 pseudo-code that depicts how this may be implemented.
Recall that λi is a variable to variable mapping that rewrites non-projected variables to fresh
variables unique to the union operand Qi. We additionally remove variables in V that do
not appear in the query.

Algorithm 3 Pseudo-algorithm for renaming non-correlated variables of UCQs.

Input: A UCQ Q = selectV (union(Q1, . . . , Qn))
Output: A UCQ Q′ where local variables are uniquely named, and such that Q′ ≡ Q.
function variableNormalisation(Q)

V ′ ← V
for all Qi ∈ {Q1, . . . , Qn} do

for all v ∈ vars(Qi) do
if v /∈ V then

v ← λi(v)
else

V ′ ← V ′ \ {v}
end if

end for
end for
V ← V \ V ′

return selectV (union(Q1, . . . , Qn))
end function

Unsatisfiable BGPs

While in the general case, we are not able to verify preemptively if a graph pattern is satis-
fiable or not, there is a trivial case for (U)CQs [64]. This is when a BGP contains a triple
pattern with a literal value in the subject position, which is allowed in SPARQL but not in
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RDF (as of the time of this study). Therefore, it is not possible for such a pattern to yield
any results when evaluated. We state the following Lemma:

Lemma 5.1.3. Let Q denote a BGP. Q is unsatisfiable if and only if it contains a literal
subject.

Proof. First assume that Q does not contain a literal subject. Define G to be the result
of replacing all variables in Q with an IRI, say :x. Observe that G is a valid RDF graph.
Define D to be the dataset with the default graph G. Let µ denote the solution such that
dom(µ) = vars(Q) and µ(v) = :x for all v ∈ dom(µ). Observe that µ ∈ Q(D). Hence there
exists a dataset D such that Q(D) is non-empty: Q is satisfiable.

Next assume that Q contains a literal subject. Take any blank node mapping α and
solution mapping µ. Observe that µ(α(Q)) will still contain a literal subject, and hence for
any RDF graph G, blank node mapping α and solution mapping µ, it holds that µ(α(Q)) ⊈ G
as G cannot contain a triple with a literal subject. Hence Q cannot have any solution over
any dataset, Q is unsatisfiable, and the result holds.

SELECT DISTINCT ?m ?n ?o
WHERE{

?a a :Movie .
?a :title ?m .
"Genre" :genre :Horror . }

Figure 5.3: An example of an unsatisfiable BGP.

Figure 5.3 contains a BGP with a triple pattern with a literal value in the subject position.
Evidently, there are no graphs in which this will yield results because RDF does not allow
literal values in the subject position. As a result, our approach is to replace any unsatisfiable
BGP with a canonical unsatisfiable BGP (Q⊥) so all unsatisfiable BGPs have the same
canonical form.

Finally, we must also address what happens with unsatisfiable BGPs in UCQs. We state
the following Lemma:

Lemma 5.1.4. A UCQ Q = union(Q1, Q2, · · · , Qn) is unsatisfiable if and only if each Qi

(where i ∈ {1, . . . , n}) is unsatisfiable. Furthermore, a UCQQ = union(Q1, · · · , Qk, · · · , Qn)
where one of its CQs Qk is unsatisfiable is equivalent to
Q′ = union(Q1, · · · , Qk−1, Qk+1, · · · , Qn) where Qk has been removed.

Proof. The evaluation of a UCQ union(Q1, . . . , Qn)(D) is the union of the evaluation of
each CQ

⋃n
i=1Qi(D) (with union being bag or set union depending on the semantics). The

result is (always) empty if and only if all Qi(D) are (always) empty. Removing any Qk

such that Qk(D) is (always) empty will not affect the results of the query. Thus the result
holds.

An example of this is presented in Figure 5.4, where the left query is a UCQ that contains
an unsatisfiable CQ. As we have stated, this is equivalent to the same UCQ obtained by
removing the unsatisfiable CQ.
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Algorithm 4 Pseudo-algorithms for the normalisation of unsatisfiable UCQs.

Input: A BGP Q = {t1, · · · , tn}
Output: Returns Q⊥ if Q is unsatisfiable or Q otherwise.
function isUnsatisfiableBGP(Q)

for all ti ∈ Q do
if ti has a literal subject then

return Q⊥
end if

end for
return Q

end function

Input: A UCQ Q = selectV (union(Q1, . . . , Qn))
Output: Removes all unsatisfiable CQs in Q or returns Q⊥ if Q is unsatisfiable.
function unsatisfiabilityNormalisation(Q)

S ← {}
for all Qi ∈ {Q1, . . . , Qn} do

if isUnsatisfiableBGP(Q) ̸= Q⊥ then
S ← S ∪ {Qi}

end if
end for
if S is not empty then

return selectV (union(S))
else

return Q⊥
end if

end function
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SELECT DISTINCT ?m
WHERE{
{ ?a a :Movie .
?a :title ?m .
"Genre" :genre :Horror . }
UNION
{ ?a a :Movie .
?a :title ?m .
?a :genre :Horror . }
}

SELECT DISTINCT ?m
WHERE{

?a a :Movie .
?a :title ?m .
?a :genre :Horror .
}

Figure 5.4: An example of two equivalent UCQs. Note that the UCQ on the left contains an
unsatisfiable CQ.

Algorithm 4 presents pseudo-code for the normalisation of unsatisfiable UCQs as described
earlier. Here, we have defined a function isUnsatisfiableBGP that given a query Q returns
a normal unsatisfiable query Q⊥ if Q is unsatisfiable, or Q otherwise. The next function
unsatisfiabilityNormalisation takes a UCQ Q then uses the previous function to check
each BGP in Q for satisfiability, and returns the union of all satisfiable BGPs, or Q⊥ if none
are satisfiable.

Set vs. Bag Semantics

In this section, we describe how in certain cases, the presence of the DISTINCT (or REDUCED)
keyword does not affect the multiplicity of the solutions that are generated by a query because
no duplicates can occur. We identify and normalise two specific cases – relating to UCQs –
where such cases occur.

SELECT ?a ?m
WHERE{

?a a :Movie .
?a :title ?m .
?a :genre :Horror .
}

SELECT DISTINCT ?a ?m
WHERE{

?a a :Movie .
?a :title ?m .
?a :genre :Horror .
}

Figure 5.5: An example of two equivalent BGPs.

Figure 5.5 shows two queries that contain the same triple patterns, and only differ in
that the rightmost one contains the DISTINCT keyword, whereas the leftmost one does not.
Despite this difference, both queries are equivalent because neither can return duplicates.

Lemma 5.1.5. Let Q denote a basic graph pattern. It holds that:

distinct(selectV (Q)) ≡ selectV (Q) .

if and only if vars(Q) ⊆ V and bnodes(Q) = ∅.

Or more simply, this means that a basic graph pattern that projects every variable (or
lacks an explicit projection) cannot produce duplicate results as long as it contains no blank
nodes. Therefore, it is equivalent to the same query where the DISTINCT keyword is specified.
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Proof. First we prove that given a basic graph pattern Q, if vars(Q) = V and bnodes(Q) =
∅, then distinct(selectV (Q)) ≡ selectV (Q). It suffices to show that selectvars(Q)(Q)
cannot produce duplicate results, which we will now prove by contradiction. Assume a
dataset D such that there exists a solution µ where selectvars(Q)(Q)(D)(µ) > 1; i.e., the
solution appears more than once. Since all variables are projected, selectvars(Q)(Q) ≡ Q.
For µ to be duplicated, there must then exist multiple blank node mappings α such that
dom(α) = bnodes(Q) and µ(α(Q)) ⊆ D (see Table 4.4), but since bnodes(Q) = ∅, there is
only the single empty mapping α, and hence we have a contradiction. The case vars(Q) ⊊ V
follows from this result and Lemma 5.1.2.

Next we prove that if vars(Q) ⊈ V or bnodes(Q) ̸= ∅, and Q is satisfiable, then
distinct(selectV (Q)) ̸≡ selectV (Q). It suffices to show that there exists a dataset D for
which selectV (Q) can produce duplicates if V ̸= vars(Q) or bnodes(Q) ̸= ∅. Let µ denote
a solution mapping such that dom(µ) = V and for all v ∈ dom(µ), µ(v) = :x. Let µ′ and µ′′

denote two solution mappings such that dom(µ′) = dom(µ′′) = vars(Q) \ V and for all v ∈
vars(Q)\V , µ′(v) = :y and µ′′(v) = :z. Let α′ and α′′ denote two blank node mappings such
that dom(α′) = dom(α′′) = bnodes(Q) and for all b ∈ bnodes(Q), α′(b) = :y and α′′(b) = :z.
Consider a dataset D whose default graph is defined as µ(µ′(α′(Q))) ∪ µ(µ′′(α′′(Q))); this is
a valid RDF graph as Q is satisfiable and thus does not contain literal subjects. We see that
selectV (Q)(D)(µ) ≥ 2, where the mapping to :y and the mapping to :z (be they blank
node mappings or solution mappings) are counted in the multiplicity of µ. Thus there exists
a dataset D for which selectV (Q) can produce duplicate solutions, which concludes the
proof.

Following this, we may extend the following Lemma for UCQs:

Lemma 5.1.6. Let Q1, . . . , Qn denote basic graph patterns and let Q = Q1∪ . . .∪Qn denote
the set union of their triple patterns. It holds that:

distinct(selectV (union(Q1, . . . , Qn))) ≡
selectV (union(Q1, . . . , Qn))

if and only if vars(Q) ⊆ V , bnodes(Q) = ∅ and vars(Qi) ̸= vars(Qj) for all 1 ≤ i < j ≤ k.

Proof. As before, we first prove that if blank nodes are not present (bnodes(Q) = ∅), all
variables are projected (vars(Q) ⊆ V ) and no BGP has the same set of variables (vars(Qi) ̸=
vars(Qj) for all 1 ≤ i < j ≤ n), then selectV (union(Q1, . . . , Qn)) cannot produce duplicate
results. We know from Lemma 5.1.5 that if blank nodes are not present and all variables are
projected, then no individual BGP in Q1, . . . , Qn can produce duplicate results. Hence we
are left to check for duplicates produced by unions of BGPs. We will assume for the purposes
of contradiction that there exists a dataset D and a solution µ such that µ ∈ Qi(D) and
µ ∈ Qj(D) where 1 ≤ i < j ≤ n. However, µ ∈ Qi(D) implies that dom(µ) = vars(Qi), while
dom(µ) = vars(Qj) implies that dom(µ) = vars(Qj). Given the assumption that vars(Qi) ̸=
vars(Qj), it follows that dom(µ) ̸= dom(µ): a contradiction. It then holds as a consequence
that if vars(Q) = V , bnodes(Q) = ∅ and vars(Qi) ̸= vars(Qj) for all 1 ≤ i < j ≤ n, then
distinct(selectV (union(Q1, . . . , Qn))) ≡ selectV (union(Q1, . . . , Qn)). The special case
of vars(Q) ⊊ V follows from this result and Lemma 5.1.2.
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In the other direction, we are left to show that if vars(Q) ⊈ V , or bnodes(Q) ̸= ∅, or
there exist 1 ≤ i < j ≤ n such that vars(Qi) = vars(Qj), then it follows that
distinct(selectV (union(Q1, . . . , Qn))) ̸≡ selectV (union(Q1, . . . , Qn)).
First, if vars(Q) ⊈ V or bnodes(Q) ̸= ∅, then Lemma 5.1.5 tells us that an individual
basic graph pattern with a blank node or non-projected variable can produce duplicates.
Hence we assume that vars(Q) ⊆ V and bnodes(Q) = ∅, and show that if there exists
1 ≤ i < j ≤ n such that vars(Qi) = vars(Qj), then duplicates can always arise for the query
selectV (union(Q1, . . . , Qn)). Let µ be a solution such that dom(µ) = vars(Qi) = vars(Qj)
and µ(v) = :x for all v ∈ dom(µ). Consider a dataset D whose default graph is defined as
µ(Qi) ∪ µ(Qj); again this is an RDF graph as Qi and Qj are assumed to be satisfiable. Now
µ ∈ Qi(D) and µ ∈ Qj(D), and since all variables are projected, we conclude that µ will be
duplicated in selectV (union(Q1, . . . , Qn))(D). The result holds.

As a result of this, a UCQ where no two CQs share the same set of projected variables
cannot produce duplicate results. Algorithm 5 presents pseudo-code showing how we may
check if a UCQ can produce duplicates.

Algorithm 5 Pseudo-algorithm for determining if a UCQ can produce duplicates.

Input: A UCQ Q = selectV (union(Q1, . . . , Qn))
Output: A UCQ Q′ = distinct(Q) if Q cannot produce duplicates, or Q otherwise.
function setVsBagNormalisation(Q)

if vars(Q) \ V ̸= ∅ then ▷ i.e., Q contains a non-projected variable.
return Q

else if bnodes(Q) ̸= ∅ then ▷ i.e., Q contains blank nodes.
return Q

else
for all Qi ∈ {Q1, . . . , Qn} do

for all Qj ̸= Qi do
if vars(Qi) ∩ V = vars(Qj) ∩ V then ▷ i.e., Qi and Qj have the same

projected variables.
return Q

end if
end for

end for
end if
return distinct(Q)

end function

Algorithm 5 shows pseudo-code to verify if a UCQ (without DISTINCT) can produce
duplicate results or not, and adds the DISTINCT keyword if not. First, we must check if Q
contains any variables that are not projected or blank nodes. If neither is the case, then we
perform pair-wise checks to find if any distinct BGPs contain the same projected variables.
If none are found, then we return distinct(Q).
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5.1.2 Graph Representation

In this section, we describe the representation of queries as representational graphs (r-graphs).
One of the advantages of this representation is that it captures the associative property of
joins and unions. Furthermore, the minimisation and canonical labeling steps depend on this
representation. We will use r(Q) to denote the r-graph representing Q, i.e., an RDF graph
describing Q.

Terms

SPARQL queries contain terms from ILBV while RDF graphs contain terms from ILB.
Terms from V will be mapped to blank nodes to facilitate canonical labelling. In practice,
blank nodes in SPARQL queries act as variables, except that they cannot be projected from
the query. SPARQL syntax does not allow the projection of said terms, hence no work is
done to distinguish variables from blank nodes in the query. Therefore we represent both B
and V in SPARQL as B in RDF.

Let λ() denote a function that returns a fresh blank node, and λ(x) denote a function
that returns a fresh blank node unique to x. Let ι(·) denote an id function such that:

- if x ∈ IL, then ι(x) = x;

- if x ∈ VB, then ι(x) = λ(x);

- if x is a natural number then ι(x) = "x"ˆˆxsd:integer;

- if x is a boolean value then ι(x) = "x"ˆˆxsd:boolean;

- otherwise ι(x) = λ().

:b :IRI "literal"

Figure 5.6: Illustration of SPARQL terms: blank nodes and variables (left), IRIs (center),
and literals (right)

We assume that natural numbers and boolean values produce datatype literals in canonical
form (for example, we assume that ι(2) = "2"ˆˆxsd:integer rather than, say,
"+02"ˆˆxsd:integer). We then define the representation graphs for a variety of query fea-
tures in Table 5.3.

In all of the following examples, nodes with a dashed outline denote other query graphs.
We also use an example prefix : whose value is not important in this study. The conventions
used for graphically representing different types of RDF terms are illustrated in Figure 5.6.
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Triple patterns

In this section, we describe the representation of triple patterns as graphs. Our representation
is a form of reification, except that it is limited to single triples and uses a different typing
system.

ι(t) :TP:type

:actor

:subject

:salary

:predicate

:salary

:object

Figure 5.7: Representation of a Triple Pattern

Figure 5.7 illustrates our representation of a triple pattern from Figure 1.1. There are
two blank nodes that correspond to the variables in the triple denoted by circles, and a blank
node (ι(t)) that represents the structure as a whole. The predicate of the triple is an IRI,
which is represented as a rounded rectangle. Finally, there is a node that indicates that this
graph represents a triple pattern (:TP ).

Operators

To represent operators such as joins and unions, triples are created for each operand with a
blank node as the subject, the IRI :arg as the predicate, and the operand as the object.
One other triple is used to indicate the type of the operator: either :Join or :Union . One
particular advantage of using the same predicate for every operand is that it captures the
commutativity of both operations in SPARQL, as they are unordered.

ι(Q) :Join:type

Q1

:arg

Q2

:arg

Figure 5.8: Visualisation of the graph representation of a JOIN expression.

Figure 5.8 illustrates the representation of an expression Q = Q1 ▷◁ Q2 where Q1 and
Q2 are sub-queries, which are denoted by dashed rectangles. These dashed rectangles are
replaced by their corresponding graph representation, where the edge indicated is linked to
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the blank node of the highest-level operator. For instance, if Q1 were the triple pattern
represented by the graph in Figure 5.7, then the node labelled ι(Q) would be linked to the
node labelled ι(t). Note that Q1 and Q2 may be other operators or a triple pattern as seen
in Figure 5.7. An advantage of this structure is that because graph edges are unordered, we
have already captured the commutative property of join.

ι(Q) :Union:type

Q1

:arg

Q2

:arg

Figure 5.9: Visualisation of the graph representation of a UNION expression.

Figure 5.9 illustrates the representation of an expression Q = Q1∪Q2, which is analogous
to the join operator presented in Figure 5.8. The one key difference is the type node that
denotes that this structure is of type :Union .

ι(Q) :Join:type

Q1

:arg

Q2 ∪Q3

:arg

ι(Q) :Union:type

Q1 ▷◁ Q2

:arg

Q1 ▷◁ Q3

:arg

Figure 5.10: Visualisation of the distributive Property of JOIN and UNION.

Figure 5.10 illustrates an example of how the application of the distributive property of
join over union should affect a graph. The graph on the left corresponds to a conjunction of
disjunctive queries (i.e. a join of unions), whereas the graph on the right shows an equivalent
query in the form we wish to represent: a disjunction of conjunctive queries (i.e. a union of
joins).

Projection

A projection is defined by the projected variables and whether it considers set or bag se-
mantics. Therefore, we have represented a projection as a blank node that is connected
to: all projected variables with an :arg predicate; a boolean literal node with a :distinct
predicate denoting whether it contains the DISTINCT keyword or not; and an :op predicate
pointing to the first operation of the r-graph denoting the body of the query. We also include
a representation for solution modifiers (ORDER BY, LIMIT, OFFSET) via the :mod predicate,
though not part of the monotone query fragment.
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ι(P ) :Projection:typetrue | false :distinct

Q

:op

for each v ∈ V

:arg

M

:mod

:Var:type

Figure 5.11: Visualisation of the graph representation of an explicit projection P =
selectV (Q).

Figure 5.11 illustrates the representation of a projection, as described above. A projection
such as this, assuming V = {?a, ?b}, may read as:

SELECT DISTINCT ?a ?b

Note that in such a case, the literal node would have the value true. The dashed circle
represents a variable number of blank nodes that are constructed according to the rule inside
it; in this case, there is a blank node created for each variable v in the set of projected
variables V . For instance, there would be a blank node for :a and another for :b.

With this, we have defined the representations of the SPARQL operators for which we
have implemented a full canonicalisation algorithm. We note that this process does not
alter the semantics of the query in any way. Finally, given a monotone query Q, where
[aandn]d [aunion c]cept sets rather than pairs of arguments, and because this process
maps each component of the query in a one-to-one manner, and no two distinct components
are represented by the same term, the graph representation function r(Q) is a bijection, and
r−(r(Q)) = Q where we can construct a mapping r−() that is the inverse function of r().

5.1.3 Redundancy-free Monotone Queries

As we have stated, when queries are evaluated under set semantics, equivalence between
queries may be preserved if we remove certain redundant triples. Evidently, for the purpose
of designing a normal form, such triples must also be removed.

In this section, we explain how to remove all of these redundancies from the r-graphs. At
this point, all monotone fragments have already been transformed into normal UCQs; there-
fore the query consists in a single union operator with either triple patterns or conjunctive
queries as arguments.

The redundancy elimination step considers two types of redundancies: redundant triple
patterns in basic graph patterns, and redundant basic graph patterns in unions.
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Redundancy-free CQs

The first type of redundancy we consider are redundant triple patterns. As we mentioned in
Section 5.1.2, as part of our method, we represent basic graph patterns as RDF graphs where
triple patterns are represented as triples with existential blank nodes instead of variables.
Therefore, if a basic graph pattern contains redundant triple patterns, its graph representa-
tion will contain redundant triples as well. As explained in Section 2.2, a lean RDF graph
does not contain any redundant triples. This also means that the core of the graph repre-
sentation of a basic pattern contains no redundant triples. Therefore, it is clear that if we
retrieve its basic graph pattern, it will not contain any redundant triple patterns.

Our approach will consist of the following steps:

� Remove the redundancies of each individual conjunctive query

� Compute the canonical form of the union of the reduced conjunctive queries

These steps will effectively remove the redundancy between conjunctive queries. In the
following description of the solution, we may use branch to refer to each individual conjunctive
query. We base our discussion on the example UCQ of Figure 5.1.

:p :Projectiona

:m

:arg

:b

:op

:Uniona

:j1

:arg

:t1

:arg

:t2

:arg

:t3

:arg

:a

:subject

:title

:predicate

:m

:object

:a

:subject

:actor

:predicate

:p

:object
:d

:subject

:directed

:predicate

:a

:object

:Join a :j2

:arg

:t4

:arg

:t5

:arg

:t6

:arg

:b

:subject

:title

:predicate

:m

:object

:b

:subject

:r

:predicate

:p

:object
:d

:subject

:directed

:predicate

:b

:object

:Joina

Figure 5.12: Example of an r-graph for a UCQ

Note that for readability, certain nodes are presented multiples time (for example :a in
Figure 5.12).

To begin, we identify two main components of the query based on the union operator node:
the inner graph which contains all the conjunctions, and the outer graph which contains all
other components, including: the type of projection, the variables that are projected, solution
modifiers; all of which are relevant to identify variables whose labels must be preserved
throughout this process.
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We continue by identifying projected variables that we cannot remove during minimisa-
tion. Once we have identified these variables, we must ground them by defining literal nodes
that contain the literal string value of each blank node label, thus ensuring that they will
not be removed. These literal nodes will later be used to restore its original label.

The inner graph is then divided into each of its branches. For each branch, we will work
with a graph corresponding to the union operator node with the individual branch as an
argument. What is not shown in these diagrams is that the nodes that correspond to these
variables are typed as :Var, unlike non-projected variable nodes.

:b :Uniona

:j2

:arg

:t4

:arg

:t5

:arg

:t6

:arg

:b

:subject

:title

:predicate

:m

:object

:b

:subject

:r

:predicate

:p

:object
:d

:subject

:directed

:predicate

:b

:object

"m"

:value

true

:temp

Figure 5.13: Example of the r-graph for a CQ.

Figure 5.13 illustrates the r-graph corresponding to a single branch (CQ). Note that each
of the individual branches contains a :Union node which will be used in a later step to merge
all the branches into a single union node. The variable ?m is grounded with a literal value as
it is projected by the UCQ, and thus it must be preserved during minimisation.

New blank nodes are created for every variable node that is neither projected, nor oth-
erwise appears outside the scope of this part of the query. These blank nodes are labelled
based on its branch and its original label. In the following figure, this is exemplified by the
concatenation of a number and the original labels.

In Figure 5.14 we can observe the same r-graph as the one in Figure 5.13, except for the
newly labelled nodes (shown in yellow). Note that the node corresponding to variable ?m
remains the same because it is projected.

Finally, we compute the core of the graph for each newly labelled branch, and store them
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:b :Uniona

:j2

:arg

:t4

:arg

:t5

:arg

:t6

:arg

:b2

:subject

:title

:predicate

:m

:object

:b2

:subject

:r2

:predicate

:p2

:object

:d2

:subject

:directed

:predicate

:b2

:object

"m"

:value

true

:temp

Figure 5.14: Example of a CQ with distinguished labels.

in an array for the next step. This is shown in Figure 5.15 where the sub-graph representing
the triple pattern (?b2, ?r2, ?p2) has been removed.

Redundancy-free UCQs

While it may be tempting to perform a union over all the new branches and finish the
process, we must consider there may be redundant basic graph patterns in this union. In a
UCQ under set semantics, a basic graph pattern Bi is redundant if there exists another basic
graph pattern Bj such that Bi ⊑ Bj. This is evident because any results for Bi also appear
in Bj (no matter the graph), so Bi adds no more results.

So far, our solution eliminates redundancies in CQs by finding the core of a graph. This
works perfectly when considering only conjunctions, since when regarding conjunctions, a
more specific query will take precedence over a more general one. However, this is not
the case for unions; let us consider the queries presented in Figure 5.16, both of which are
equivalent to each other:

Computing the core of the r-graph of the query on the left in Figure 5.16 will yield the
query on the right, because the triple pattern (?a, ?b, ?m) is absent from the core.

On the other hand, if we were to compute the core of the r-graph of the queries in Figure
5.17, both queries would have the same canonical form. This would change the semantics of
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:b :Uniona

:j2

:arg

:t4

:arg

:t6

:arg

:b2

:subject

:title

:predicate

:m

:object

:d2

:subject

:directed

:predicate

:b2

:object

"m"

:value

true

:temp

Figure 5.15: Example of a lean CQ.

the first query. This is because in the case of union, the more specific CQ is the redundant
one, therefore we should drop it to avoid redundancy. In Figure 5.17, in the query on the
left the more specific query is (?a, :title, ?m), which is what we should drop.

As such, in the case of UCQs, it is not sufficient to compute the core of the r-graph of
the UCQ, but rather we need to verify if there exists a case where one of the branches of the
UCQ entails another. Furthermore, we should only compare CQs that contain the same set of

SELECT DISTINCT ?m
WHERE{
?b :title ?m .
?b ?r ?p .
?d :directed ?b .

}

SELECT DISTINCT ?m
WHERE{
?b :title ?m .
?d :directed ?b .

}

Figure 5.16: Example of two equivalent queries, if we remove their redundancies.

SELECT DISTINCT ?m
WHERE{
{ ?a :title ?m }
UNION
{ ?a ?b ?m }

}

SELECT DISTINCT ?m
WHERE{
?a :title ?m .

}

Figure 5.17: On the other hand, these two queries are not equivalent

60



projected variables, as otherwise we will never find equivalences. Therefore, after computing
equivalence sets of CQs based on the projected variables they contain {Q1, . . . ,Qk} where
each Qi is a set of CQs with the same projected variables, we may do the following:

Let Q = ({Q1, · · · , Qn}, V ) be the current equivalence set, where V denotes the projected
variables of this partition. The following must be removed from Q:

- Qi (1 ≤ i ≤ n) if there exists Qj (1 ≤ j < i ≤ n) such that selectV (Qi) ≡ selectV (Qj)

- Qi (1 ≤ i ≤ n) if there exists Qj (1 ≤ i ≤ n) such that selectV (Qi) ⊏ selectV (Qj) (a
proper containment)

The first condition removes all queries apart from one for each equivalence set. This
ensures that no information is lost in this process. The second condition removes all queries
that are properly contained in another.

In order to do this, we perform pairwise containment checks of all basic graph patterns.
This is done by querying Qj over the representational graph of Qi in order to find if there
exists a homomorphism from Qj to Qi. It is a well-known result that if there exists a
homomorphism from Qj to Qi then Qi ⊑ Qj [20]. Finally, we eliminate all basic graph
patterns that are found to be contained in another basic graph pattern.

Algorithm 6 shows pseudo-code for the minimisation of UCQs. We assume there exists
a function partitionByProjectedVars that given a set of BGPs forms a partition of
equivalence classes based on their projected variables, and a function ground that given
a query Q and a set of variables V grounds all variables in Q that are contained in V . In
addition, we define a function removeRedundantBGPs that given a set of BGPs removes
all redundant BGPs (i.e. is contained in a different BGP) or all but one of each group of
equivalent BGPs (e.g., if Q1, Q2 and Q3 are equivalent, then Q2 and Q3 are removed). All
BGPs that are compared within a partition contain the same projected variables, and have
been minimised previously. To ascertain entailment, we perform the following procedure:
given Gi and Gj representing the BGPs Qi and Qj on different branches, where we want to
check if Qi ⊑ Qj, we evaluate Qj as a Boolean query (in SPARQL, by replacing the SELECT
with an ASK clause) over Gi. If it holds true, we conclude that Gi entails Gj, and therefore we
add Qi to the list of redundant queries. Although the number of checks needed is quadratic
on the number of BGPs, in practice we can reduce the number by checking if a BGP has
already been found to be redundant. For example, if Qi is known to be redundant, then
evaluating Qi ⊆ Qj would provide no information on whether Qj is redundant or not. On
the other hand, evaluating Qj ⊆ Qi would be enough to conclude that Qj is redundant.
Given the previous functions, UCQMinimisation then iterates over each equivalence class,
removes redundant BGPs, then returns the union of all remaining BGPs.

Figure 5.18 illustrates the canonically labelled ASK query form of the r-graph shown in
Figure 5.13 (denoted as G2), after leaning; canonical labels are shown in Greek letters. On
the other hand, the set of triples in Figure 5.19 correspond to the triples contained in the first
CQ from the left query shown in Figure 5.1 with canonical labels (denoted as G1). In practice,
both the query and the graph would be in reified form (to handle variable predicates), but
for illustration purposes we show both in non-reified form; we likewise replace the projected
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Algorithm 6 Pseudo-algorithm for the minimisation of UCQs.

Input: A UCQ Q = selectV (union(Q1, . . . , Qn))
Output: A minimised UCQ Q′.
function UCQMinimisation(Q)

S ← {}
for all ({Qi1 , . . . , Qik}, Vi) ∈ partitionByProjectedVars(Q1, · · · , Qn) do

S ← S ∪ removeRedundantBGPs({Qi1 , . . . , Qik}, Vi)
end for
return union(S)

end function

Input: A set of BGPs Q = {Q1, . . . , Qn} that contain the projected variables in V .
Output: A set of BGPs Q′ where no two distinct BGPs contain one another.
function removeRedundantBGPs(Q, V )

R← {} ▷ This set contains all redundant BGPs.
for all i ∈ {1, . . . , n} do

for all j > i do
Ci ← l(r(ground(Qi, V )))
Cj ← l(r(ground(Qj, V )))
if Ci ≡ Cj then

R← R ∪ {Qj}
else if Qi /∈ R and Ci ⊏ Cj then

R← R ∪ {Qi}
else if Qj /∈ R and Cj ⊑ Ci then

R← R ∪ {Qj}
end if

end for
end for
Q′ ← Q \R
return Q′

end function
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ASK
WHERE{

?π :title "m" .
?ν :directed ?π .

}

Figure 5.18: Example of an ASK query given by G2 in the running example.

_:λ :title "m" .
_:λ :actor _:ϕ .
_:δ :directed _:λ .

Figure 5.19: Example of G1 from the running example with canonical labels.

variable with a constant to show that it must be mapped to itself. Subsequently, the query
in Figure 5.18 will be evaluated over the triple set in Figure 5.19 and return true because
there exists a solution mapping for the query µ = {(?π → :λ), (?ν → :δ)}. This in turn
implies that G2 is entailed by G1, so as a result, G1 will be removed from the equivalence set
G. Note that the canonical labels in Figure 5.18 and Figure 5.19 don’t have to be the same
for the process to work. Once we have all the unique conjunctive queries, we can unite them
under a single union operator node.

5.1.4 Canonical Labelling

The second-last step of the canonicalisation process consists of applying a canonical labelling
to the blank nodes of the RDF graph output from the previous process [38]. Specifically,
given an RDF graph G, we apply the canonical labelling function l(·) described in Section
2.2.4 such that l(G) ≃ G and for all RDF graphs G′, it holds that G ≃ G′ if and only if
l(G) = l(G′); in other words, l(·) bijectively relabels the blank nodes of G in a manner that
is deterministic modulo isomorphism, meaning that any isomorphic graph will be assigned the
same labels. This is used to assign a deterministic labelling of query variables represented in
the r-graph as blank nodes; other blank nodes presenting query operators will also be labelled
as part of the process but their canonical labels are not used.

Figure 5.20 illustrates the resulting r-graph for the query on the left of Figure 5.1 after all
the processes we have described. All blank nodes have canonical labels –denoted by Greek
letters– and the redundant branch has been removed. Since there is only a single conjunctive
query, the :Union node has been removed, as it is also redundant.

5.1.5 Inverse Mapping

There are no more transformations to be done over the r-graphs at this point. We can now
obtain a canonical query by applying the inverse of the operations used to construct the
r-graphs. More specifically, we define an inverse r-mapping, denoted r−(G), to be a partial
mapping from RDF graphs to query expressions such that r−(r(Q)) = Q; i.e. converting Q
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:ν :Projectiona

:m

:arg

:α

:op

:β

:arg

:ω

:arg

:π

:subject

:title

:predicate

:m

:object

:δ

:subject

:directed

:predicate

:π

:object

:Joina

Figure 5.20: Resulting r-graph

to its r-graph and then applying the inverse r-mapping yields the query Q again.2

To arrive at a canonical concrete syntax, we order the operands of commutative operators
using a syntactic ordering on the canonicalised elements, and then serialise these operands
in their lexicographical order. To illustrate, Figure 5.21 shows the result of the full canoni-
calisation of our running example. This then concludes the canonicalisation of MQs.

SELECT DISTINCT ?m
WHERE{
{ ?a :title ?m .
?a :actor ?p .
?d :directed ?a .}
UNION
{ ?b :title ?m .
?b ?r ?p .
?d :directed ?b .}
}

→

SELECT DISTINCT ?µ
WHERE{

?π :title ?µ .
?ν :directed ?π .

}

Figure 5.21: This shows the canonical form of the query presented in Figure 5.1.

2Here we assume the use of union(·), etc., to abstract away the ordering of operands of commutative
operators.
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5.2 SPARQL 1.1

In this section, we describe the additional steps of the canonicalisation method for features
other than joins, unions and projections. We note that these techniques retain the soundness
of the canonicalisation method because the semantics are not changed in any step. However,
as we will explain in the next chapter in Section 6.2.2, the resulting canonical form will not
capture all possible congruences. Nevertheless, this is seen as a “best-effort” canonicalisation,
seeing as we may detect additional congruences that may be missed by standard techniques.

5.2.1 Normalisation

In this section, we present some additional rules for the rewriting of query patterns into
equivalent, normal patterns. Most of the rules used in the following have been studied and
defined thoroughly in the work [67] of Schmidt et al. A summary of the most important
results is presented in Table 5.2.

Table 5.2: Equivalences given by Schmidt et al. [67] for set semantics

Minus is left distributive [[Q1 unionQ2]minusQ3] ≡ [[Q1 minusQ3]union [Q2 minusQ3]]
Optional is left distributive [[Q1 unionQ2]optQ3] ≡ [[Q1 optQ3]union [Q2 optQ3]]

Nested filters can be combined filterR1∧R2
(Q) ≡ filterR1

(filterR2
(Q))

Unions with filters can be combined filterR1∨R2
(Q) ≡ [filterR1

(Q)unionfilterR2
(Q)]

Filters on unions can be pushed in filterR([Q1 unionQ2]) ≡ [filterR(Q1)unionfilterR(Q2)]

These equivalences hold if vars(R) ⊆ safeVars(Q1) :

filterR([Q1 andQ2]) ≡ [filterR(Q1)andQ2]
filterR([Q1 optQ2]) ≡ [filterR(Q1)optQ2]

filterR([Q1 minusQ2]) ≡ [filterR(Q1)minusQ2]

Filter Normalisation

One of the most notable results presented in Table 5.2 is that filter expressions allow a signif-
icant number of rewrites as long as the expressions contain only safe variables, as described
in Section 2.3.7. In addition, because of these rules, we may generalise monotone query pat-
terns with multiple filter expressions into a single, combined filter expression over the query
pattern. An example of this can be seen in Figure 5.22.

Non-correlated Variables

Similar to the case of UCQs as mentioned in Section 5.1.1, there are cases with variables in
FILTER (NOT) EXISTS and MINUS patterns that may generate false equivalences.

We call a variable v local to a query pattern Q on V (see Table 4.1) if v ∈ vars(Q) and
v ̸∈ V . A variable v local to Q is not correlated with other appearances of v outside of Q.

65



?x ?y ?z .
FILTER( ?x > 0 )
FILTER( isBlank(?z))

?x ?y ?z .
FILTER( ?x > 0 && isBlank(?z) )

Figure 5.22: An example of two equivalent FILTER expressions

Variables that appear only inside a FILTER (NOT) EXISTS or MINUS expression are denoted
as local variables because they only exist inside the scope of the expression. Therefore, any
instance of the variable outside the FILTER (NOT) EXISTS or MINUS expression will have a
different semantic meaning.

SELECT DISTINCT ?m
WHERE{
{ ?a a :Movie .

?a :title ?m .
?a :genre :Horror .

MINUS { ?a :sequel ?b . ?b :title ?n . } }
UNION
{ ?a a :Movie .

?a :title ?m .
?a :genre :Comedy .

MINUS { ?a :sequel ?b . ?b :title ?n . } }
}

SELECT DISTINCT ?m
WHERE{
{ ?a a :Movie .

?a :title ?m .
?a :genre :Horror .

MINUS { ?a :sequel ?b . ?b :title ?n . } }
UNION
{ ?b a :Movie .

?b :title ?m .
?b :genre :Comedy .

MINUS { ?b :sequel ?a . ?a :title ?o . } }
}

Figure 5.23: An example of two equivalent queries.

In the example presented in Figure 5.23 we have a query that finds the titles of horror
and comedy movies, except those that have sequels. We note that, similar to the example in
Figure 5.1, the query on the left has variable ?a on both sides of the union bound to results of
type :Movie , and variable ?b bound to the sequels. However, the query on the right inverts
the use of these variables, and yet is equivalent to the query on the left. Additionally, the
name of the sequel of comedies is also bound to different variables in the second MINUS clause
of both queries (?n and ?o, respectively) but this again does not affect the equivalence of the
queries.

UCQ Normalisation

The UCQ normalisation rules presented in Section 5.1.1 can also be applied to all monotone
sub-queries contained in full SPARQL queries. However, when it comes to rewriting union
variables or otherwise non-correlated variables, we must not rewrite any variables that appear
both inside and outside the monotone sub-query, instead of only projected variables.

In the example shown in Figure 5.24 we can appreciate that the query pattern in the
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SELECT DISTINCT ?m ?n
WHERE {

?a a :Movie .
?a :title ?m .
?a :directedBy ?d
?a :genre :Horror .
OPTIONAL
{ ?c :sequel ?b .

?a :sequel ?b .
?b :title ?n .
?b :directedBy ?d . }

}

SELECT DISTINCT ?m ?n
WHERE {

?a a :Movie .
?a :title ?m .
?a :directedBy ?d
?a :genre :Horror .
OPTIONAL
{ ?a :sequel ?b .

?b :title ?n .
?b :directedBy ?d . }

}

Figure 5.24: An example of a SPARQL query with a monotone sub-query before and after
removing a redundant triple pattern.

optional part of the OPTIONAL graph pattern in the left query is a BGP with a redundant
triple pattern. However, it is clear that the minimisation must eliminate the triple pattern
(?c, :sequel, ?b) rather than the one with ?a instead. This is because ?a appears outside the
scope of this graph pattern even if neither ?a nor ?c are projected.

5.2.2 Graph Representation

In this section, we describe the graph representation of features other than those that appear
in monotone queries (i.e. joins, unions and projections). Table 5.3 contains a summary of
the definitions for the representational graphs of all features that are supported in SPARQL
1.1.
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Table 5.3: Definitions for representational graphs r(Q) of query patterns Q, where “a”
abbreviates rdf:type, B is a basic graph pattern, N is a navigational graph pattern, c is an
RDF term, e is a non-simple property path (not an IRI), k is a non-zero natural number, v is
a variable, w is a variable or IRI, x is an IRI, y is a variable or property path, µ is a solution
mapping, ∆ is a boolean value, V is a set of variables, R is a built-in expression, and M is a
bag of solution mappings.

· r(·)

B {(ι(·), a, :Join)} ∪
⋃

(s,p,o)∈B{(ι(·), :arg, ι((s, p, o))} ∪ r((s, p, o))

N {(ι(·), a, :Join)} ∪
⋃

(s,y,o)∈N{(ι(·), :arg, ι((s, y, o))} ∪ r((s, y, o))

and({Q1, . . . , Qn}) {(ι(·), :arg, ι(Q1)), . . . , (ι(·), :arg, ι(Qn)), (ι(·), a, :Join)} ∪ r(Q1) ∪ . . . ∪ r(Qn)
union({Q1, . . . , Qn}) {(ι(·), :arg, ι(Q1)), . . . , (ι(·), :arg, ι(Qn)), (ι(·), a, :Union)} ∪ r(Q1) ∪ . . . ∪ r(Qn)
[Q1minusQ2] {(ι(·), :left, ι(Q1)), (ι(·), :right, ι(Q2)), (ι(·), a, :Minus)} ∪ r(Q1) ∪ r(Q2)
[Q1 optQ2] {(ι(·), :left, ι(Q1)), (ι(·), :right, ι(Q2)), (ι(·), a, :Optional)} ∪ r(Q1) ∪ r(Q2)
filterR(Q

′) {(ι(·), :arg, ι(Q′)), (ι(·), :exp, ι(R)), (ι(·), a, :Filter)} ∪ r(Q′) ∪ r(R)
[Q1 feQ2] {(ι(·), :left, ι(Q1)), (ι(·), :right, ι(Q2)), (ι(·), a, :Exists)} ∪ r(Q1) ∪ r(Q2)
[Q1 fneQ2] {(ι(·), :left, ι(Q1)), (ι(·), :right, ι(Q2)), (ι(·), a, :NotExists)} ∪ r(Q1) ∪ r(Q2)
bindR,v(Q

′) {(ι(·), :arg, ι(Q′)), (ι(·), :exp, ι(R)), (ι(·), :var, ι(v)), (ι(·), a, :Bind)} ∪ r(Q′) ∪ r(R)
valuesM(Q′) {(ι(·), :arg, ι(Q′)), (ι(·), :vals, ι(M)), (ι(·), a, :Values)} ∪ r(Q′) ∪ r(M)
selectV (Q

′) {(ι(·), :arg, ι(Q′)), (ι(·), :vars, ι(V )), (ι(·), a, :Select)} ∪ r(Q′) ∪ r(V )

(s, p, o) {(ι(·), :s, ι(s)), (ι(·), :p, ι(p)), (ι(·), :o, ι(o)), (ι(·), a, :TP)}
(s, e, o) {(ι(·), :s, ι(s)), (ι(·), :p, ι(e)), (ι(·), :o, ι(o)), (ι(·), a, :TP)} ∪ r(e)
e see Section 5.3
V {(ι(·), a, :VarSet)} ∪ (

⋃
v∈V {(ι(·), :el, ι(v))}

X {(ι(·), a, :IriSet)} ∪ (
⋃

x∈X{(ι(·), :el, x)}
M {(ι(·), a, :SolBag)} ∪ (

⋃
µ∈M{(ι(·), :sol, ι((µ,M(µ))))} ∪ r((µ,M(µ))))

(µ, k) {(ι(·), a, :Binding), (ι(·), :num, ι(k))} ∪ (
⋃

v∈dom(µ){(ι(·), :el, ι((v, µ(v))))} ∪ r((v, µ(v)))

(v, c) {(ι(·), :var, ι(v)), (ι(·), :val, ι(c))}
R see Section 5.2.2

In a similar manner as we defined for MQs in Section 5.1.2, we may extend the inverse
mapping function r−() by applying the inverse of Table 5.3, where canonical blank nodes
in RDF term or variable positions (specifically, the objects of triples in the r-graph with
predicate :subject, :predicate, :object, or :arg) are mapped to canonical variables or
blank nodes using a fixed, total, one-to-one mapping λ− : B→ VB [63].

The following subsections will show the representation of these features in greater detail.

Optional

Optional terms, otherwise known as left outer join operators, are represented by a blank
node and two triples: one denoting the left operand, and the other the right operand. It is
important to distinguish one from another because OPTIONAL is not a commutative property.

Figure 5.25 illustrates our representation of a query patternQ of the formQ = [Q1 optQ2].
Our representation can only provide a partial canonicalisation for this feature because OPTIONAL
patterns can create unbound variables, and indirectly model negation. As a result, equiva-
lence can become undecidable, as we will explain in Section 6.2.2.
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ι(Q) :Optional:type

Q1

:left

Q2

:right

Figure 5.25: Visualisation of the graph representation of an OPTIONAL expression.

Built-in Expressions

In this section, we describe the graph representation of features that use built-in expressions.
These are filter expressions, binding expressions, and aggregate expressions. Filters operators
are more complicated to represent than binary operators such as joins or unions, because they
contain terms that are essentially functions of various orders that may or not be commutative.

We recall that a term in VIBL is a built-in expression. If a built-in expression R is simply
a term R ∈ VIBL, then we use ι(R) to represent the expression, where r(R) = ∅. Otherwise,
if R = ϕ(R1, . . . , Rn) where ϕ is a built-in function, then:

r(R) ={(ι(R), a, :BIExp), (ι(R), :func, ι(ϕ))} ∪
n⋃

i=1

({(ι(R), :arg, ι(Ri))} ∪ r(Ri))

where ι(ϕ) is an IRI that is assumed to uniquely identify the function, and ι(R), ι(Ri) are
fresh blank nodes. If ϕ has more than one argument and is not commutative then we add a
triple (ι(Ri), :ord, ι(i)) for each Ri to its representation.

Analogous to how we represent JOIN and UNION expressions – an operator node connected
to its operands by :arg edges – we represent the conjunctions (and) and disjunctions (or)
of filter expressions. The challenge here is that these must also be normalised. The commu-
tativity of “and” and “or” is captured in the same manner as JOIN and UNION, as explained
in Section 5.1.1.

Built-in functions –such as isBlank and isBound– as well as equality or inequality symbols
are represented as blank nodes connected by a value: predicate to a literal node containing
the literal value of the function or symbol. This representation has been chosen because it
makes the transformation back to a query much easier, but it may just as easily be represented
by an IRI. Figure 5.26 shows the representation of a generic, ordered built-in function.
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ι(R)

ι(ϕ)

:function

for each Ri

:arg

Ri

:value

i

:order

Figure 5.26: Visualisation of the graph representation of an ordered built-in function.

Filter

The most common use of built-in expressions is when said expression is declared with the
FILTER keyword. In such a case, this is represented as shown in Figure 5.27.

ι(FILTERR) :Filter:type

R

:arg

Figure 5.27: Visualisation of the graph representation of a FILTER expression.

However, two particular instances of FILTER expressions are those with the EXISTS and NOT
EXISTS functions. These functions take query patterns instead of other built-in expressions,
where the query patterns are represented in the standard way.

Binding Variables

The BIND operator allows for the assignment of built-in expressions to variables, which are
then treated as part of the solution mappings of the query pattern they belong to. The
example presented in Figure 5.29 shows the representation of a binding of a built-in expression
R to a variable v.
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ι(R)

:Exists |:NotExists

:function

Q

:arg

Figure 5.28: Visualisation of the graph representation of an (NOT) EXISTS function.

ι(BINDv,R) :Binding:type

v

:var

R

:arg

Figure 5.29: Visualisation of the graph representation of a BIND expression.

Aggregation

Figure 5.30 shows the representation of a query pattern that contains a GROUP BY and HAVING
expression. We create a new BIND expression for every term stated in the GROUP BY expression.
Each one of these expressions is bound to an anonymous variable that is only used internally.
For instance, in the case of GROUP BY ?actor, AVG(?salary), an expression BIND(??1 AS
?actor) and an expression BIND(??2 AS AVG(?salary)) would be added. Each of these
individual BIND expressions would be then handled as any built-in expression.

Solution Modifiers

As is only natural for applications that need to extract data, we may sometimes need to
return results in either ascending or descending order. SPARQL provides the ORDER BY
clause to return ordered results. Let V = {v1, ..., vn} be the set of variables we want to order
the results of a query by.

Figure 5.31 illustrates the representation of an ORDER BY clause. This r-graph is connected
to the projection node of a query Q by a :mod edge. The dashed circle represents that there is
a blank node for each variable in V . Each of these blank nodes has a literal node connected to
it by an :direction edge that indicates if the variable is ordered by ascending or descending
order; a variable node connected by an :var edge; and also a literal node that indicates the
order priority of the variable.

In some cases, we may only want to return a certain number of results, or even return
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Q

:OP

for each v ∈ V

:binding

v

:var

R

:value

for each Ri

:groupBy

v

:var

R

:value

ι(F )

:filter

Figure 5.30: Visualisation of the graph representation of a graph pattern that contains a
FILTER expression, a BIND expression, and a GROUP BY expression.

:o:OrderBy :type

for each vi ∈ V

:arg

vi

:var

0 | 1

:direction

i

:order

:p

:mod

:Project:type

Q

:op

Figure 5.31: Representation of an ORDER BY clause.

results starting from a certain position. SPARQL provides the LIMIT and OFFSET keywords
for each of the aforementioned cases, respectively. Both expressions are then (optionally)
followed by an integer. If a LIMIT clause is stated while the OFFSET clause is omitted, then
we return values from the initial position by default. On the other hand, if an OFFSET clause
is stated while the LIMIT clause is omitted, then all results are returned starting from the
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position given in the OFFSET clause.

:l:Limit :type

i

:offset

n

:value

:p

:mod

:Project:type

Q

:op

Figure 5.32: Representation of an OFFSET and LIMIT clause.

Figure 5.32 illustrates the representation of an OFFSET clause and a LIMIT clause. The
r-graph is connected to the main query in an analogous manner to the one shown in Figure
5.31. It contains a literal node that corresponds to the value v in the OFFSET clause and
another for the value n in the LIMIT clause.

Named Graphs

Assume we define a SPARQL dataset D which comprises both a set of graph names XD

referred to in FROM clauses, and a set of IRIs XN mentioned in FROM NAMED clauses that
denote named graphs. The default graph will be the result of the merge of the graphs
mentioned in the FROM clauses. If there are none, the default graph is an empty graph. The
query pattern described in Q will only match the graphs specified in XN if the keyword GRAPH
is used.

Figure 5.33 illustrates the representation of a query that contains both a FROM clause and
a FROM NAMED clause. In this example, the FROM NAMED node is connected to the FROM node
by an :op edge; if there is no FROM NAMED clause, then its node and its corresponding nodes
will be missing; if there is no FROM clause, then the FROM NAMED clause will be connected to
the projection node directly. Both the FROM and FROM NAMED nodes have an IRI node for each
graph IRI contained in GD and GN , respectively.

Figure 5.34 illustrates the representation of a GRAPH clause. This r-graph is connected to
either a blank node –if the graph is identified by a variable– or an IRI node –if the graph is
a named graph IRI. It is also connected to a query Q that corresponds to the query which is
to be matched to the graph pattern described in the GRAPH clause.
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:f:From :type

:fn

:op

:FromNamed:type

n ∈ XN

:arg

d ∈ XD

:arg

:p

:mod

:Project:type

Q

:op

Figure 5.33: Representation of a FROM clause.

:graph :Graph:type

Q

:arg

:g | :g

:value

Figure 5.34: Representation of a GRAPH expression.
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Inline Values

As stated previously, the VALUES keyword allows us to assign multiple values to one or more
variables at once. We note once again that a set of solution mappings M may be visualised
as a table where each row is a solution mapping µ; each column represents a variable v; and
each cell contains the value of v for the solution mapping µ. We may represent this table
and its (unordered) rows and columns as follows:

:Table:type

for each µ ∈M

:arg

for each v ∈ dom(µ)

:value

v

:var

µ(v)

:value

Figure 5.35: Visualisation of the graph representation of a VALUES expression.

5.3 Property Path Normalisation

An important part of this study has been to cover as many real-world SPARQL queries as
possible. In order to do this, we need to identify the largest fragment of SPARQL such that
our canonicalisation method is both sound and complete.

As we have shown in Table 4.9, decision problems such as the equivalence of (U)CPQs
belong to the EXPSpace-complete [44] complexity class, which means that it is a decidable
problem, albeit a very complex one. Therefore, our goal would be to find a fragment for
which sound and complete canonicalisation is not only possible, but also hopefully efficient
for real-world queries.

Property paths are triples that allow expressions similar to regular expressions in the
predicate positions. Due to this similarity, and because regular expressions and finite au-
tomata have the same expressivity, we have chosen to represent property paths as graphs
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that resemble finite automata. This approach has the benefit of being able to apply known
normal forms for finite automata, providing partial canonicalisation.

In this section, we describe a number of normalisations applied to property paths. These
normalisations allow us to detect a slightly larger fragment of monotone queries with property
paths, namely those that contain features that can be rewritten into UCQs.

Property Paths to UCQs

(x, e1/e2/ . . . /en, y) {(x, e1, b1), (b1, e2, b2), . . . , (bn−1, en, y)}
(x, e−, y) (y, e, x)

(x, e1| . . . |en, y) {(x, e1, y)} UNION . . . UNION {(x, en, y)}
Table 5.4: Rewrite rules for property paths to UCQs

Table 5.4 contains rewrite rules used to transform property paths into equivalent UCQs.
These rules rewrite any property paths with concatenation, union and inverses into UCQs.
In fact, this is how the semantics of these features are defined in SPARQL (under bag
semantics). When we are able to rewrite into UCQs, we can use use our existing algorithm
to canonicalise the result. Evidently, the main limitation of this approach is being unable to
remove redundant paths of zero/one or one/more. Furthermore, there is nothing that can be
done for paths that contain expressions inside Kleene stars, etc (e.g. ((p/q)|r)∗).

Inverse Normal Form

Inverse paths allow us to rewrite queries into other equivalent ones, sometimes as simply as
swapping the positions of subject and object in path patterns (taken care of previously with
rewrite rules). But other inverses might be inside other operators. Therefore, we need to
find a way to normalise these queries despite the existence of inverse paths.

(p−)− p
(p∗)− (p−)∗

(p1/p2)
− p−2 /p

−
1

(p1|p2)− p−1 |p−2
Table 5.5: Rewrite rules for property paths in inverse normal form

By following the rewrite rules described in Table 5.5 (which try to push inverses inwards to
create inverses of IRIs only), we can transform any property path into an equivalent property
path to its inverse normal form. This means that inverse operators (−) will only appear next
to IRIs, and therefore all property paths are operations (concatenation, union, Kleene star)
on IRIs or their inverse.
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Property Path Normal Form

Given an property path, we construct a non-deterministic finite automaton (NFA) based on
Thompson’s algorithm for transforming regular expressions to NFAs [73]. We then convert
this NFA into a deterministic finite automaton (DFA) by a standard superset expansion;
this transformation is exponential on the number of states of the NFA. Finally, we perform
a minimisation of the DFA using Hopcroft’s algorithm [39], which produces a minimal DFA
such that all regular expressions that express the same language will produce the same DFA.
We provide a simple example to illustrate this process.

Example 5.3.1. Consider an RPQ : p∗/: p∗/: p∗. In Figure 5.36 we provide an example of
the corresponding NFA produced by Thompson’s algorithm, the DFA produced by superset
expansion, and the minimal DFA produced by Hopcroft’s algorithm.
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Figure 5.36: NFA, DFA and minimal DFA produced for the RPQ : p∗/: p∗/: p∗

We use the resulting DFA as the r-graph representation of the property path, thus cap-
turing additional equivalences and congruences.

The normalisation techniques described in this section apply to property paths, but may
miss equivalences of (U)C(2)RPQs due to the multiple ways in which such queries can be
equivalently expressed, and in particular due to the interaction between similar features of
(U)CQs and (2)RPQs. We will discuss this issue in more detail in Chapter 7, where we
describe our efforts to push the bounds of canonicalisation towards covering UC2RPQs.
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Chapter 6

Soundness and Completeness

In this chapter, we prove the soundness, completeness and complexity of our method for
monotone queries. Subsequently, we show that for the full language soundness is preserved,
but completeness is not. These results and proofs have been published in our study [64].

6.1 Monotone Queries

In this section, we present the proofs for the soundness and completeness of our method for
monotone queries. We recall that this fragment corresponds to queries that contain only
projection, joins, and unions.

6.1.1 Soundness

Given a monotone queryQ, we denote by u(Q) the process described in Section 5.1.1 involving
the application of:

1. union normalisation

2. unsatisfiability normalisation

3. variable normalisation

4. set vs. bag normalisation

We begin the proof of soundness by showing that the UCQ normalisation preserves con-
gruence.

Lemma 6.1.1. For an MQ Q, it holds that:

u(Q) ∼= Q .

78



Proof. This follows from the fact that each step shown in Algorithm 1 preserves the congru-
ence of Q, as follows:

1. union normalisation: proven by Pérez et al [56];

2. unsatisfiability normalisation: Lemmas 5.1.3, 5.1.4;

3. variable normalisation: Lemmas 5.1.1, 5.1.2;

4. set vs. bag normalisation: Lemmas 5.1.5, 5.1.6.

Since congruence is an equivalence relation, it is transitive, and thus the composition of
multiple steps where each preserves congruence also preserves congruence. The result thus
holds.

Following this, we show that the canonical labeling of blank nodes, denoted by l(G) for
an RDF graph G, also preserves congruence:

Lemma 6.1.2. Given a UCQ Q, it holds that:

r−(l(r(Q))) ∼= Q .

Proof. Note that queries Q1 and Q2 are said to be isomorphic (denoted as Q1 ≃ Q2) if
there exists a one-to-one variable mapping ρ : V → V such that ρ(Q1) = Q2, and is the
identity on projected variables. Then, by definition, we have that r−(r(Q)) = Q, and thus
r−(r(Q)) ≃ Q, where r−(·) relies on a one-to-one mapping of blank nodes to variables
(namely ξ). Recalling that l(·) (described in Section 2.2.4) performs a one-to-one mapping
of blank nodes to blank nodes in r(Q), thus producing an isomorphic graph to r(Q), we can
conclude that r−(l(r(Q))) produces a query that is isomorphic to r−(r(Q)). Hence we have
that r−(l(r(Q))) ≃ r−(r(Q)) ≃ Q. Further given that isomorphism implies congruence,
we have that r−(l(r(Q))) ∼= r−(r(Q)) ∼= Q. The result then holds per the transitivity of
congruence.

Finally we prove that the minimisation of UCQs through their r-graphs preserves con-
gruence. Given a UCQ Q being evaluated under set semantics (with distinct), we denote by
m(Q) the result of minimising the UCQ, involving the two procedures:

1. BGP minimisation (Section 5.1.3);

2. union minimisation (Section 5.1.3).

Given a UCQ Q being evaluated under bag semantics (without distinct), we define that
m(Q) = Q. If bag semantics is selected, the UCQ can only contain a syntactic form of
redundancy: exact duplicate triple patterns in the same BGP, which are implicitly removed
since we model BGPs as sets of triple patterns. Any other form of redundancy mentioned
previously – be it within or across BGPs – will affect the multiplicity of results [19]. Hence if
bag semantics is selected, we do not apply any redundancy elimination other than removing
duplicate triple patterns in BGPs.
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Lemma 6.1.3. Given a UCQ Q, it holds that:

r−(m(r(Q))) ∼= Q .

Proof. We only consider set semantics, because under bag semantics, UCQs are not min-
imised.

Set semantics: Minimising CQs by computing their cores is a well-known technique
based on the idea that two CQs are equivalent if and only if they are homomorphically
equivalent (with corresponding projected variables [18]). Likewise the minimisation of UCQs
is covered by Sagiv and Yannakakis [62], who (unlike in the relational algebra but analogous
to SPARQL) allow UCQs with existential variables; however, their framework assumes that
each CQ covers all projected variables. Hence the only gap that remains is the minimisation
of SPARQL UCQs where BGPs may not contain all projected variables. This result is
quite direct since for a set of variables V , two BGPs Q1 and Q2 such that vars(Q1) ∩ V ̸=
vars(Q2) ∩ V , and any dataset D, it holds that selectV (Q1)(D) ∩ selectV (Q2)(D) = ϕ,
per the same arguments used to prove Lemma 5.1.5. Hence checking containment within the
partitions formed by the projected variables they contain does not miss containments. The
result for set semantics then follows from Sagiv and Yannakakis [62].

The following theorem then establishes soundness; i.e., that the proposed canonicalisation
procedure preserves congruence of MQs.

Theorem 6.1.1. For an MQ Q, it holds that:

r−(l(m(r(u(Q))))) ∼= Q .

Proof. The result holds as a direct corollary of Lemmas 6.1.1, 6.1.2, 6.1.3, and the transitivity
of congruence, which is an equivalence relation.

6.1.2 Completeness

In order to prove the completeness of our method for MQs, we need to show that Q1
∼= Q2

if and only if r−(l(m(r(u(Q1))))) = r−(l(m(r(u(Q2))))).

First, the claim that r−(l(m(r(u(Q1))))) = r−(l(m(r(u(Q2))))) implies Q1
∼= Q2 follows

almost directly from the soundness result, which tells us that Q1
∼= r−(l(m(r(u(Q1)))))

and Q2
∼= r−(l(m(r(u(Q2))))). Evidently, this equality relation implies congruence, and by

transitivity, we may conclude that Q1
∼= Q2.

Therefore, to conclude that our method is complete for MQs, we must prove that Q1
∼= Q2

implies r−(l(m(r(u(Q′
1))))) = r−(l(m(r(u(Q′

2))))). First we note that if Q1 = Q2, then the
result holds as each step in r−(l(m(r(u(·))))) is deterministic, so we must instead look at
the cases where Q1 ̸= Q2 but Q1

∼= Q2.

We outline useful relations to prove the completeness of our method for MQs.
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Lemma 6.1.4. The following hold:

1. if Q1 ≃ Q2, then u(Q1) ≃ u(Q2).

2. if u(Q1) ≃ u(Q2), then r(u(Q1)) ≃ r(u(Q2));

3. if r(u(Q1)) ≃ r(u(Q2)), then
m(r(u(Q1))) ≃ m(r(u(Q2)));

4. if m(r(u(Q1))) ≃ m(r(u(Q2))), then
l(m(r(u(Q1)))) = l(m(r(u(Q2))));

5. if l(m(r(u(Q1)))) = l(m(r(u(Q2)))), then
r−(l(m(r(u(Q1))))) = r−(l(m(r(u(Q2))))).

Thus, if any premise 1–5 is satisfied, it holds that r−(l(m(r(u(Q1))))) = r−(l(m(r(u(Q2))))).

In order to prove the result for various cases, our goal is thus to prove isomorphism of the
input queries, the queries in UCQ normal form, the r-graphs of the queries, or the minimised
r-graphs.

Our first lemma deals with unsatisfiable UCQs, which is a corner-case specific to SPARQL.

Lemma 6.1.5. Let Q1 and Q2 denote UCQs. If Q1 and Q2 are unsatisfiable (which implies
Q1
∼= Q2), then:

r−(l(m(r(u(Q1))))) = r−(l(m(r(u(Q2))))) .

Proof. If Q1 or Q2 is unsatisfiable, and Q1
∼= Q2, this implies that both Q1 and Q2 are

unsatisfiable. As a result of Lemmas 5.1.3, 5.1.4, u(Q1) = Q∅ and u(Q2) = Q∅, recalling that
Q∅ denotes the canonical unsatisfiable query. Thus u(Q1) = u(Q2) and the result holds per
premise 2 of Remark 6.1.4 since equality implies isomorphism.

In practice, if a UCQ Q is unsatisfiable, then the canonicalisation process can stop after
u(Q) yields Q∅. We state the result in this way to align the process for both satisfiable and
unsatisfiable cases. We can now focus on cases where both queries are satisfiable.

We will start with satisfiable CQs evaluated under set semantics (with distinct).

Lemma 6.1.6. Let Q1 and Q2 denote satisfiable BGPs and V1 and V2 sets of variables.
Further let Q′

1 = distinct(selectV1(Q1)) and likewise let Q′
2 = distinct(selectV2(Q2)).

If Q′
1
∼= Q′

2 then
r−(l(m(r(u(Q′

1))))) = r−(l(m(r(u(Q′
2))))) .

Proof. Since Q′
1 and Q′

2 are satisfiable, and evaluated under set semantics, we know from
the result of Chandra and Merlin [18] that Q′

1 ≡ Q′
2 if and only if both are homomorphi-

cally equivalent with respect to a homomorphism that is the identity on projected variables.
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Now m(r(u(Q′
1))) computes the core of each BGP, which is known to be unique modulo

isomorphism [34]. Thus if Q′
1 ≡ Q′

2 and both are satisfiable, we have that m(r(u(Q′
1))) ≃

m(r(u(Q′
1))). On the other hand, if Q′

1
∼= Q′

2, we know that there exists a variable renaming
such that ρ(Q′

1) ≡ Q′
2; combining this with the fact that m(r(u(Q′

1))) ≃ m(r(u(ρ(Q′
1)))),

and the fact that congruence is an equivalence relation, we know that Q′
1
∼= Q′

2 implies
m(r(u(Q′

1))) ≃ m(r(u(Q′
2))). The result then holds from premise 4 of Remark 6.1.4.

We move to CQs evaluated under bag semantics (without distinct; the result also considers
cases where the CQ cannot return duplicates).

Lemma 6.1.7. Let Q1 and Q2 denote satisfiable BGPs and V1 and V2 sets of variables.
Further let Q′

1 = selectV1(Q1) and Q
′
2 = selectV2(Q2). If Q

′
1
∼= Q′

2 then

r−(l(m(r(u(Q′
1))))) = r−(l(m(r(u(Q′

2))))) .

Proof. Given a satisfiable BGP Q, and selectV (Q) such that V \ vars(Q) ̸= ∅, then
u(selectV (Q)) will remove the unbound variables (V \ vars(Q)) from V per Lemma 5.1.2,
and therefore
u(selectV (Q)) = u(selectV ∩vars(Q)(Q)). As part of u(Q), during union normalisation,
blank nodes are rewritten to variables. This leaves us with cases where V ⊆ vars(Q) and Q
does not contain blank nodes.

If V1 = vars(Q1), then Q
′
1 cannot return duplicates (Lemma 5.1.5), and since Q′

1
∼= Q′

2,
then Q′

2 cannot return duplicates, and thus V2 = vars(Q2). Thus u(Q
′
1) and u(Q′

2) will add
distinct in both cases, and the result follows from Lemma 6.1.6.

This leaves us with the case that V1 ⊆ vars(Q1). In this case, Q′
1 will return duplicates

for certain datasets (Lemma 5.1.5), and must be evaluated under bag semantics. Given
that Q′

1
∼= Q′

2, this likewise means that Q′
2 returns duplicates. Under bag semantics, and

assuming that Q′
1 and Q′

2 are satisfiable, then Theorem 5.2 of Chaudhuri and Vardi [19]
tells us that Q′

1 ≡ Q′
2 if and only if Q′

1 ≃ Q′
2 with an isomorphism that is the identity on

projected variables. Noting that Q′
1
∼= Q′

2 implies that there exists a variable renaming ρ such
that ρ(Q′

1) ≡ Q′
2, it follows that there exists ρ such that ρ(Q′

1) ≃ Q′
2, or put more simply,

that Q′
1 ≃ Q′

2 (without the restriction on projected variables). The result then follows from
premise 1 of Remark 6.1.4.

We now move to UCQs evaluated under set semantics (with distinct).

Lemma 6.1.8. Let Q1 and Q2 denote satisfiable UCQs with distinct. If Q1
∼= Q2 then

r−(l(m(r(u(Q1))))) = r−(l(m(r(u(Q2))))) .

Proof. We show that given a satisfiable UCQ Q evaluated under set semantics, the min-
imisation function m(Q) will produce an r-graph corresponding to a minimal UCQ that is
unique, modulo isomorphism, for the set of UCQs congruent to Q. The minimisation of CQs
(i.e., unary UCQs) is covered by Lemma 6.1.6. The minimisation of (non-unary) UCQs is
based on Corollary 4 of Sagiv and Yannakakis [62], where we minimise the UCQ while main-
taining this equivalence relation, more specifically, such that each BGP in the input UCQ
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will be contained in some BGP of the output UCQ (with a containment homomorphism that
is the identity on projected variables). Note that this minimisation includes the removal of
all unsatisfiable BGPs (per Lemma 5.1.4; if all are removed, then Lemma 6.1.5 applies as
the UCQ is unsatisfiable). There are, however, two non-deterministic elements to consider
in this minimisation:

� The containment only considers projected variables as fixed. Hence the naming of other
variables (and blank nodes) in BGPs does not matter. However, this issue is resolved prior
to minimisation by u(·), which maps blank nodes to fresh (non-projected) variables, and
then renames non-projected variables in each BGP to fresh variables, per Lemma 5.1.1,
such that the naming of variables is deterministic modulo isomorphism.

� We non-deterministically choose one BGP from each quotient set of equivalent BGPs with
the same projected variables. However, since BGPs were previously minimised, all equiva-
lent BGPs are isomorphic, and hence the choice is deterministic modulo isomorphism.

Thus, given a satisfiable UCQ Q evaluated under set semantics, m(Q) will produce an
r-graph corresponding to a minimal UCQ that is unique, modulo isomorphism, for the set
of UCQs congruent to Q. Returning to the claim, we note that Q1 and Q2 are satisfiable
UCQs evaluated under set semantics (with distinct), that Q1

∼= Q2, and thus we have that
m(Q1) ≃ m(Q2): the result holds per premise 4 of Remark 6.1.4.

We next consider UCQs under bag semantics (without distinct; again, this also holds in
the case that the UCQs cannot return duplicates).

Lemma 6.1.9. Let Q1 and Q2 denote satisfiable UCQs without distinct. If Q1
∼= Q2 then

r−(l(m(r(u(Q1))))) = r−(l(m(r(u(Q2))))) .

Proof. Under bag semantics, observe that u(·) removes all unsatisfiable operands from the
UCQ and m(·) acts as the identity (no minimisation is applied). Per the results for CQs,
any minimisation of BGPs (aside from the implicit removal of duplicate triple patterns)
will reduce the multiplicity of results on some datasets. Likewise removing satisfiable BGPs
will reduce the multiplicities for any dataset where the removed BGP generates solutions.
This leaves one source of non-determinism (the same as in the case for set semantics) per
Lemma 5.1.1: that non-projected variables across BGPs may have the same label whereas
the query is equivalent if they have distinct labels. As before for set semantics, u(·), maps
blank nodes to fresh (non-projected) variables in the case of bag semantics. This implies that
if Q1

∼= Q2 then – letting Q′
1 and Q′

2 denote the result of removing unsatisfiable BGPs from
Q1 and Q2 and distinguishing variables per Lemma 5.1.1 – Q′

1 ≃ Q′
2.

There are then two cases to consider:

1. Either Q1 or Q2 cannot return duplicates, per the conditions of Lemma 5.1.6, but given
that Q1

∼= Q2, then this implies that both Q1 and Q2 cannot return duplicates, which
means that both satisfy the conditions of Lemma 5.1.6, and thus both will have distinct
invoked by u(·).
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2. Both Q1 and Q2 may return duplicates, i.e., they do not satisfy the conditions of
Lemma 5.1.6, and in neither case will distinct be invoked by u(·).

Thus we can conclude that u(Q1) ≃ u(Q2), satisfying premise 2 of Remark 6.1.4, from
which the result follows.

Finally we consider what happens when one (U)CQ has distinct, and the other does not
but is congruent to the first query.

Lemma 6.1.10. Let Q denote a satisfiable UCQ without distinct. Let Q′ = distinct(Q).
If Q ∼= Q′, then:

r−(l(m(r(u(Q))))) = r−(l(m(r(u(Q′))))) .

Proof. Since Q cannot return duplicates and Q ∼= Q′, it holds that Q′ cannot return dupli-
cates, and hence it must satisfy the conditions of Lemma 5.1.5. Thus u(Q′) will add distinct,
and we have that u(Q) ≃ u(Q′). The result then follows per premise 2 of Remark 6.1.4.

Having stated all of the core results, we are left to make the final claim of completeness.

Theorem 6.1.2. Given two MQs Q1 and Q2, if Q1
∼= Q2 then

r−(l(m(r(u(Q1))))) = r−(l(m(r(u(Q2))))) .

Proof. First we remark that for any EMQ Q, the first steps of u(Q) – property path and
union normalisation – yield a UCQ. We denote by Q′

1 and Q′
2 the UCQs derived from Q1

and Q2. We now consider the cases:

1. If Q′
1 or Q′

2 are unsatisfiable, then the result holds from Lemma 5.1.4.

2. Otherwise (Q′
1 and Q′

2 are satisfiable):

(a) If Q′
1 and Q′

2 use distinct, the result holds from Lemma 6.1.8.

(b) If neither Q′
1 nor Q′

2 use distinct, the result holds from Lemma 6.1.9.

(c) IfQ′
1 uses distinct, andQ

′
2 does not, thenQ

′
1
∼= Q′

2 implies thatQ′
2 cannot produce du-

plicates (since Q′
1 cannot). From this it follows that Q′

1
∼= Q′

2
∼= distinct(Q′

2). Now
given thatQ′

1
∼= distinct(Q′

2), it follows from Lemma 6.1.8 that r−(l(m(r(u(Q′
1))))) =

r−(l(m(r(u(distinct(Q′
2)))))) (noting that Q′

1 and distinct(Q′
2) use distinct).

Further given that Q′
2
∼= distinct(Q′

2), it follows from Lemma 6.1.10 that
r−(l(m(r(u(Q′

2))))) = r−(l(m(r(u(distinct(Q′
2)))))). We then have

r−(l(m(r(u(Q′
1))))) = r−(l(m(r(u(Q′

2))))).

(d) Otherwise, if Q′
1 does not use distinct, and Q′

2 uses distinct, the result follows from
the previous case and the symmetry of congruence.

This concludes the proof.

84



Finally we can leverage soundness and completeness for the following stronger claim.

Theorem 6.1.3. Given two EMQs Q1 and Q2, it holds that Q1
∼= Q2 if and only if

r−(l(m(r(u(Q1))))) = r−(l(m(r(u(Q2))))) .

Proof. Let Q′
1 denote r−(l(m(r(u(Q1))))), and Q

′
2 denote r−(l(m(r(u(Q2))))).

Q′
1 = Q′

2 implies Q1
∼= Q2: follows from Theorem 6.1.1 (soundness), which tells us that

Q1
∼= Q′

1 and Q′
2
∼= Q2, from which we have that Q1

∼= Q′
1 = Q′

2
∼= Q2, and thus that

Q1
∼= Q2.

Q1
∼= Q2 implies Q′

1 = Q′
2: is given in Theorem 6.1.2 (completeness).

6.1.3 Complexity

With respect to the complexity of the problem of computing the canonical form of (E)MQs
in SPARQL, a solution to this problem can be trivially used to decide the equivalence of
MQs, which is ΠP

2 -complete.

With respect to the complexity of the algorithm r−(l(m(r(u(·))))), for simplicity we will
assume as input an MQ Q such that all projected variables are contained in the query1, which
will allow us to consider the complexity at the level of triple patterns. We will denote by n
the number of triple patterns in Q.

Letting n = km, then the largest query that can be produced by u(Q) is when we have
as input:

Q = and(union({t1,1}, . . . , {t1,k}),
. . . ,
union({tm,1}, . . . , {tm,k}))

which will produce a query with a union of km BGPs, each of size m:

u(Q) = union({t1,1, . . . , t1,k}×
. . .×
{tm,1, . . . , tm,k})

Thus u(Q) may produce a UCQ with mkm triple patterns in total. Given n = km, when
n > 2, then km is maximised in the general case when k = ⌈e⌉ = 3 (e is Euler’s number) and
m = n/k = n/3. We thus have at most O(mkm) = O((n/3)3n/3) = O(n3n/3) triple patterns
for u(Q) in the worst case, with at most O(3n/3) BGPs, and the largest BGP having at most
O(n) triple patterns. We remark that the complexity of the other steps for u(Q) is trivially
upper-bounded by O(n3n/3).

1Other cases are not difficult to manage, but require considering the length of a property path, the number
of projected variables not appearing the query, etc., in the input, which we consider to be inessential to the
complexity, and to our discussion here.
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With respect to r(·), the number of triples in the r-graph is O(j) on j the number of triple
patterns in the input query, giving us O(n3n/3) for the r(·) step in r(u(·)), i.e., applying r(·)
on the result of u(·).

With respect to m(·), first we consider BGP minimisation, which requires computing the
core of each BGP’s r-graph G. Letting j denote the number of unique subject and objects
in G being minimised, which is also an upper bound for the number of blank nodes, we will
assume a brute-force O(jj) algorithm that searches over every mapping of blank nodes to
terms in G, looking for the one that maps to the fewest unique terms (this mapping indicates
the core [38]). Note that the number of triples in the r-graph for each BGP is bounded
by O(n), and so is the number of unique subjects and objects. Furthermore, the number
of BGPs is bounded by O(3n/3). Thus the cost of minimising all BGPs is O(3n/3ncn) for
some constant c > 1. We must also check containment between each pair of BGP r-graphs
(G′, G′′) in order to apply UCQ minimisation. Again, assuming the number of subjects and
objects in G′ ∪ G′′ to be bounded by j, we can assume a brute-force O(jj) algorithm that
considers all mappings. Given O(3n/3) BPGs, we have O((3n/3)2) = O(32n/3) pairs of BGPs
to check, giving us a cost of O(32n/3ncn). Adding both BGP and UCQ minimisation costs,
we have O(ncn(3n/3 + 32n/3)) = O(ncn32n/3) for the m(·) step in m(r(u(·))). We can then
reduce O(ncn32n/3) to O(2cn logn) by converting both bases to 2 and removing the constant
factors.2

With respect to l(·), letting j denote the number of triples in the input, we will assume
a brute-force O((cj)!) algorithm, for some constant c > 0, that searches over all ways of
canonically labelling blank nodes from the set { :x1, . . . , :xb}, where b is the number of blank
nodes (in O(j)). We remark that the total size of the r-graph is still bounded by O(n3n/3),
as the minimisation step does not add to the size of the r-graph. Since the number of blank
nodes is bounded by O(n3n/3), the cost of the l(·) step in l(m(r(u(·)))) is O((cn3n/3)!) for
some constant c > 0.

Finally, given a graph with j triples, then r−(·) is possible in time O(j log j), where some
sorting is needed to ensure a canonical form. Given an input r-graph of size O(n3n/3), we
have a cost of O(n3n/3 log n3n/3) = O(n3n/3(log n + (n/3) log 3)) = O(n23n/3) for the r−(·)
step in r−(l(m(r(u(·))))).

Putting it all together, the complexity of canonicalising an MQ Q with n triple patterns
using the procedure r−(l(m(r(u(Q))))) is as follows:

O(n3n/3 + n3n/3 + 2cn logn + (cn3n/3)! + n23n/3)

which we can reduce to O((cn3n/3)!), with the factorial canonical labelling of the complete
exponentially-sized UCQ r-graph yielding the dominant term.

Overall, this complexity assumes worst cases that we expect to be rare in practice, and our
analysis assumes brute-force methods for finding homomorphisms, computing cores, labelling
blank nodes, etc., whereas we use more optimised methods. For example, the exponentially-
sized UCQ r-graphs form a tree-like structure connecting each BGP, where it would be
possible to canonically label this structure in a more efficient manner than suggested by this

2With ncn = (2logn)cn = 2cn logn, and 32n/3 = (2log 3)2n/3 = 22n/3 log 3, then ncn32n/3 =
2cn logn+2n/3 log 3 ∈ O(2cn logn).
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worst-case analysis. Thus, though the method has a high computational cost, this does not
necessarily imply that it will be impractical for real-world queries. Still, we can conclude that
the difficult cases for canonicalisation are represented by input queries with joins of unions,
and that minimisation and canonical labelling will likely have high overhead. We will discuss
this further in the context of experiments presented in Chapter 9.

6.2 SPARQL 1.1

In this section, we present proof for the soundness of our method for the entirety of SPARQL
1.1. In addition, we provide proof for the incompleteness of this method for the full language.

6.2.1 Soundness

Next we show that the process is sound for queries in the full SPARQL 1.1 query language.
We use a(·) to denote the application of filter normalisation (Section 5.2.1), local variable
normalisation (Section 5.2.1), and property path normalisation (Section 5.3), in addition to
the UCQ normalisation.

Lemma 6.2.1. For a SPARQL 1.1 query Q, it holds that:

r−(l(m(r(a(Q))))) ∼= Q .

Proof. We show that each step preserves congruence.

In a(Q) we apply filter normalisation (Section 5.2.1), local variable normalisation (Section
5.2.1), and property path normalisation (Section 5.3), in addition to the UCQ normalisation.
Each step preserves query equivalence, and thus congruence.

Next we compute the r-graph, and apply minimisation. However, if the query is not in
UCQ normal form, we only apply minimisation on BGPs and unions of BGPs (UBGPs) con-
tained in the query, considering any variables external to the (U)BGP as being “projected”,
and thus fixed. More formally, taking a UBGP Q′ inside a larger query Q, and letting V ′

denote the variables of Q used both inside and outside Q, observe that we can replace Q′

with selectV ′(Q′) inside Q without changing the semantics of Q as variables not in V ′ are
not used elsewhere in Q, and since Q is a query, it must contain a select, ask, construct
or describe clause, whose results will not change if a variable not mentioned in the clause
is projected away. Now since selectV ′(Q′) is a UCQ, the minimisation process preserves
congruence per Theorem 6.2.1.

Regarding the r-graph, we assume that this (and the inverse r-mapping) has been defined
such that r−(r(Q)) = Q, with the exception of property paths, but in this case it is clear
that r−(r(Q)) ∼= Q since the r-graph representation of RPQs relies on well-known automata
techniques – Thompson’s construction, subset expansion, Hopcroft’s algorithm and state
elimination – that will produce an equivalent RPQ (similar automata-based techniques were
also used by Kostylev et al. [44] for their analysis of the containment of property paths).
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Thus r−(l(m(r(a(Q))))) ∼= r−(m(r(a(Q)))) ∼= r−(r(a(Q))) ∼= r−(r(Q)) ∼= Q, from which
the result holds.

6.2.2 Incompleteness

We provide some examples of incompleteness to illustrate the limitations of the canonicali-
sation process for the full SPARQL 1.1 language.

We start with filters, which, when combined with a particular graph pattern, may always
be true, may never be true, may contain redundant elements, etc.; however, detecting such
cases can be highly complex.

Example 6.2.1. Consider the following example:

SELECT ?o
WHERE {
:Ed ?p ?o .
FILTER(!isIRI(?p))

}

The FILTER here will always return false as the predicate in an RDF graph must always be
an IRI. Thus the query is unsatisfiable and thus ideally would be rewritten to Q∅; however,
we do not consider the semantics of filter functions (other than boolean combinations).

Note that reasoning about filters is oftentimes far from trivial. Consider the following
example:

SELECT ?o
WHERE {
:Ed ?p ?o .
FILTER(!contains(":",str(?p)))

}

This query is unsatisfiable because predicates must be IRIs, and IRIs must always contain a
colon (to separate the scheme from the hierarchical path) [30].

Next we consider issues with property paths.

Example 6.2.2. Consider the following example:

SELECT ?anc
WHERE {
:Ed :parent*/:parent* ?anc .

}

Clearly this is equivalent to:
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SELECT ?anc
WHERE {
:Ed :parent* ?x . ?x :parent* ?anc .

}

But also to:

SELECT ?anc
WHERE {
:Ed :parent* ?anc .

}

Currently we rewrite concatenation, inverse and disjunction in paths (not appearing within
a recursive expression) to UCQ features. This means that we currently capture equivalence
between the first and second query, but not the first and third. We will discuss this in more
detail in Chapter 7.

Other examples are due to inverses, or negated property sets; consider for example:

SELECT DISTINCT ?anc
WHERE {
:Ed :parent|!(:parent) ?anc .

}

This is equivalent to:

SELECT DISTINCT ?anc
WHERE {
:Ed ?p ?anc .

}

However, we do not consider the semantic relation between the expressions !(:parent) and
:parent.

Incompleteness can also occur due to negation, which is complicated by the ambiguities
surrounding NOT EXISTS[64]. We have postponed algebraic rewritings involving negation
until this issue is officially resolved.

Incompleteness can also occur while normalising well-designed query patterns with OPTIONAL.

Example 6.2.3. Consider the query Q1:

SELECT ?anc
WHERE {
{ :Ed :parent ?anc .
OPTIONAL { :Ed :email ?email } } .
{ :Bob :parent ?anc .
OPTIONAL { :Bob :address ?address } }

}
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Since AND is commutative, this is equivalent to Q2:

SELECT ?anc
WHERE {
{ :Bob :parent ?anc .
OPTIONAL { :Bob :address ?address } } .
{ :Ed :parent ?anc .
OPTIONAL { :Ed :email ?email } }

}

If we rewrite each well-designed pattern by pushing the OPTIONAL operators outside, we obtain
the following equivalent query for Q1:

SELECT ?anc
WHERE {
{ :Ed :parent ?anc .

:Bob :parent ?anc .
OPTIONAL { :Bob :address ?address } }

OPTIONAL { :Ed :email ?email }
}

and, analogously, for Q2:

SELECT ?anc
WHERE {
{ :Ed :parent ?anc .

:Bob :parent ?anc .
OPTIONAL { :Ed :email ?email } }

OPTIONAL { :Bob :address ?address }
}

However, in the general case it does not hold that [[Q1 optQ2]optQ3] ≡ [[Q1 optQ3]optQ2],
and thus we do not capture these equivalences.

We could list an arbitrary number of ways in which arbitrary features can give rise to
unsatisfiability or redundancy, or where queries using seemingly different features end up
being equivalent. We could likewise provide an arbitrary number of rewritings and methods
to deal with particular cases. However, any such method for canonicalising SPARQL 1.1
queries will be incomplete. Furthermore, many such “corner cases” would be rare in practice,
where dealing with them might have limited impact. We then see two interesting directions
for future work to address these limitations:

1. Use query logs or other empirical methods to determine more common cases that this
query canonicalisation framework may miss and implement targeted methods to deal
with such cases.

2. Extend the query fragment for which sound and complete canonicalisation is possible;
an interesting goal, for example, would be to explore MQs with full property paths
(such queries are similar to C2RPQs [44], for which containment and related problems
are decidable). We will discuss work in this direction in Chapter 7.
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6.2.3 Complexity

In terms of the complexity of (partially) canonicalising queries with these additional features,
if we assume that the size of the input query Q is in O(n), where n is the number of unique
triple patterns and path patterns in Q, then the complexity remains bounded by that of
canonicalising monotone queries: O((cn3n/3)!) for some constant c > 0. This assumes that
features of the query that do not involve triple or path patterns (e.g., BIND, VALUES, FILTER,
etc.) are of bounded size and bounded in number, while path expressions are of bounded
length. This may be an oversimplification.

We may rather consider the “token length” of the query, which is the number of terminals
– RDF terms, variables, keywords, etc. – appearing in the syntax of the query. In this case,
we must additionally consider the costs of computing a normal form for RPQs. Given an
RPQ of length l, which includes the number of non-parenthetical symbols (including IRIs, *,
+, |, /) Thompson’s construction creates an NFA of size O(l). Subset expansion may then
create a DFA with O(2l) states that remains exponential after minimisation. This will result
in an exponentially-sized representation of the RPQ.

Minimisation of DFAs is achieved using Hopcroft’s algorithm [39], which partitions states
into equivalence classes based on their behaviour for input sequences. This algorithm has a
worst-case scenario of O((2l)s log(2l)) on a DFA with O(2l) states and an alphabet of size s.
However, the size of the alphabet is bound by the length of the RPQ l, so this complexity is
reduced to O(2ll2).

Furthermore, canonical labelling will occur on this representation, where assuming again
a brute-force method in the order of O(b!) for b the number of blank nodes, we now have
a complexity of O(2l!) for canonicalising the RPQ representation graph of a property path
of length l, and given that we may have n such property paths, where n is the number
of triple patterns and path expressions, this generates a cost of O((cn2l)!) for canonically
labelling a navigational graph pattern, which we can add to the cost for monotone queries:
O((cn2l)! + (cn3n/3)!), where l is the length of the longest property path, n is the number of
triple patterns and path patterns, and c > 0 is some constant to account for the additional
“syntactic” blank nodes that appear in the r-graph.
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Chapter 7

Towards UC2RPQs

In this chapter we discuss some techniques that we have explored in order to compute a
canonical form for UC2RPQs in a sound and complete way. This would allow us to canon-
icalise (most) BGPs with property paths, which are common in real-world queries [13]. We
know that containment (and thus equivalence) is decidable for this fragment [3, 16], and
so it may be possible to design a procedure to compute a canonical form of queries in this
fragment. However, we have not yet achieved this goal. This chapter sketches some canon-
icalisation techniques for UC2RPQs that we have explored, how they are incomplete, and
what appear to be the difficult cases. A sound and complete canonicalisation procedure for
this fragment remains an open question that would be interesting to address in future work.

7.1 Normalisation

The fact that certain property paths may be rewritten into equivalent monotone queries
presents us with a dilemma: should we rewrite property paths into monotone queries, thereby
producing queries with more graph patterns (expansion); or should we rewrite monotone
queries into equivalent property paths, which results in fewer graph patterns with more
complex property paths (collapse)? We’ll take Figure 7.1 as a running example. We assume
that only ?x is projected under set semantics (denoted by underlining).

?x

?d

:p

?b

:p∗/:p∗

?a
:p∗/:p∗

?f

:r

Figure 7.1: Example of a path pattern.
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7.1.1 Expansion

Expansion refers to rewriting property paths into equivalent basic graph patterns or path
patterns with Kleene stars according to the rules we have presented in Section 5.3. We show
the result of expansion of the running example in Figure 7.2 where we replace concatenations
in path expressions with intermediate variables. This form is useful for getting rid of the
redundant edge from variable ?x to variable ?b (we have code for computing the core to
perform this type of minimisation), but not for identifying that :p∗/:p∗ can be simplified to
:p∗, and thus that the variables ?c and ?e we just created is redundant.

?x?b

?d

:p

?e

:p :p∗

?c

:p∗

?a

:p∗

?f

:r

Figure 7.2: The result the expansion of the pattern in Figure 7.1.

7.1.2 Collapse

On the other hand, we may choose to reduce basic graph patterns to equivalent path patterns,
or concatenate different path patterns into a single, larger path pattern, when possible. For
instance, if we have (?x, p1, ?y) and (?y, p2, ?z) as path patterns, we may rewrite both into
a single path pattern (?x, p1/p2, ?z). We refer to this as collapsing patterns. To do this,
we define path variables as non-distinguished (not projected, not used elsewhere) variables
with a degree of 2 (i.e. it only appears twice in the same graph pattern) such as ?y in
the previous example. A path variable can be rewritten into a concatenation of a single
path pattern (?x, p1/p2, ?z). By doing this, we effectively remove ?y from the query without
affecting the results of the query pattern. This is known as collapsing. We show the result of
collapsing the running example in Figure 7.3. If we collapse and then apply the automata-
based property path normal form discussed in Section 5.3, this is great for normalising the
path :p/:p∗/:p∗/:r to something like :p/:p∗/:r. But, unlike in the case of the expansion,
when we try to minimise, we now need to solve :p/:p∗/:p∗/:r |= :p to understand if we
should remove node b (and its edge) or not; by e1 |= e2, we denote the entailment of paths,
i.e., that, for any node n1 in any RDF graph, if there exists a node n2 such that there exists a
path from n1 to n2 matching e1, then this implies the existence of a node n3 such that there
exists a path from n1 to n3 matching e2.

?x?b
:p/:p∗

?f
:p/:p∗/:p∗/:r

Figure 7.3: The result of the collapse of the pattern in Figure 7.1.
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7.1.3 Collapse then Expand, or Expand then Collapse

Whether we decide to expand then collapse all paths, or collapse then expand, there are
certain equivalences we may not detect. Figure 7.4 presents an example where expanding
makes minimisation simple. Figure 7.5 presents a similar example where collapsing first
makes mores sense, since minimisation is not needed once the property paths are normalised.

Input: ?x

?c
:p

?d

:p/:p∗

:p∗

Expand: ?x

?c
:p

?b
:p

?d

:p∗

:p∗

Minimise: ?x

?c
:p

?d

:p∗

Figure 7.4: Example where expanding paths leads to more redundancies found.

We have also thought about alternating between collapsing and expanding in order to
detect more equivalences, but it seems there are cases where a fixpoint will never be reached.
(We can perhaps halt when a similar state is reached after a collapse or expansion.) It is not
clear if such a method will yield a complete canonicalisation procedure.

In the example shown in Figure 7.6 we can see a loop of paths of :p∗. Intuitively, we
can see that this is equivalent to a self-loop from node ?a (the only projected variable) to
itself of :p∗ because all paths in the loop are of length 0 or more. To compute this, we can
collapse it into a self-loop of :p∗/:p∗/:p∗/:p∗/:p∗/:p∗, which we could then minimise and
find that it is equivalent to :p∗. We can achieve this by collapsing and then normalising
the aforementioned property path; we could then remove the pattern (?a, :p∗, ?a) if needed
as a special case (a self-loop with *). However, in the example shown in Figure 7.7, which
is equivalent to (?a, :q, ?x), we cannot follow the same approach mentioned above for the
example in Figure 7.6 because only variable ?d has a degree of 2. Hence collapsing will just
get rid of variable ?d, leaving (?c, :p∗, ?e). Also expanding does nothing. We don’t know
what do with this pizza. It seems to require a special type of minimisation of graph patterns
that can deal with the zero case. We’ll look at some methods in Section 7.2.
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Input: ?x

?c
:p

?d

:p∗/:p

:p∗

Collapse: ?x ?d

:p∗/:p

:p/:p∗

Normalise property paths: ?x ?d

:p∗/:p

:p∗/:p

Remove duplicate paths: ?x ?d
:p∗/:p

Figure 7.5: Example where collapsing paths leads to more redundancies found.

?d?a

?f

:p∗

?e
:p∗

:p∗

?b

:p∗

?c

:p∗

:p∗

Figure 7.6: One ring to rule them all.

Zero-Length Entailments

There are some special cases relating to zero-length paths and entailments we would need to
clean up.

It is possible to find path patterns of the form (?x, :p∗, ?y) in graph patterns. Notably,
if variable ?y is not projected and not mentioned elsewhere, then variable ?x will match
every node in the subject position (every node is connected by a path of length 0 to itself).
Therefore, the aforementioned path pattern may be removed safely as long as ?x appears in
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a node position (subject or object) elsewhere.

Likewise something like (?a, :p∗, ?a) can be removed so long as ?a appears in a node
position elsewhere.

In a case like (?x, :p/:p∗, ?y), we can also often simplify this to (?x, :p, ?y) via entailment
(this would happen per the first case if we expand).

Inverse Entailments

There are some inverse cases that the aforementioned methods will not capture. Take for
example the relatively simple case shown in Figure 7.8, where e+ is just a shortcut for e/e∗.
The example is in inverse normal form. This is equivalent to (?a, :p, ?b), but since we do not
cover entailments involving inverses, here we have nothing to help us. There is nothing to
expand nor collapse, and property path normalisation considers :p and :p− to be unrelated
constants. It seems we might need 2-way automata (and a normal form for them) to cover
such cases. We will return to this issue in Section 7.2.3.

7.2 Minimisation

In this section we describe our more general attempts to minimise CPQs, the cases of equiv-
alences it may detect, and their limitations.

7.2.1 Compute the Transitive Closure

So far, the presence of paths of length zero or more limit our ability to find a normal form for
SPARQL queries with property paths. Later in this work, we discuss methods to deal with
redundant paths of zero or more by removing them from the query (minimisation). However,

?x ?d?a
:q

?f

:q:p∗

?e

:q

:p∗

:p∗

?b

:q:p∗

?c

:q :p∗

:p∗

Figure 7.7: The dreaded pizza
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?a ?b
(:p/:p−)+

Figure 7.8: A problem with inverses.

we also considered a way to compute a normal form by instead adding more property paths.
More precisely, we add paths of length zero or more (e.g. :p∗) between all pairs of nodes
n1 and n2 such that n2 is reachable from n1 by following paths of length zero or more, until
we exhaust all possible transitions. We show examples of this in Figures 7.9 and 7.10. Of
course, the result of this will not be a minimal form, but it may be a normal form.

?x ?c

:p∗

?d
:p

?z

:p∗:p∗

?x

:p∗

?c:p∗

:p∗
:p∗

?d
:p

?z

:p∗

:p∗

:p∗:p∗
:p∗

Figure 7.9: Example of a path pattern (left). Computation of the transitive closure of the
same path pattern (right).

?x ?c
:p∗

?d

:p∗ :p∗

?z

:p∗ ?x

:p∗

?c

:p∗
:p∗

:p∗

?d
:p∗

:p∗:p∗
:p∗

:p∗

?z
:p∗

:p∗

:p∗
:p∗:p∗

:p∗

:p∗

Figure 7.10: Example of a path pattern (left). Computation of the transitive closure of the
same path pattern (right).

The idea is to avoid the need to remove redundant paths by computing in a closure similar
to a chase to get to a least model.

Limitations Perhaps this could be applied after some form of minimisation to address
corner cases, but in general does not seem to be all too promising in that if we have redundant
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nodes, then we’ll just be adding a bunch of paths to them that are unnecessary. For example,
in Figure 7.10, if we project a single variable (any variable), then the entire query should
collapse to a self-loop on that variable with :p∗ rather than the mess on the right. (On the
other hand, if all four variables are projected, it is not clear what a normal form should look
like, and maybe the monstrosity on the right is something to aim for.)

Another limitation is that, unlike in the case of minimisation, computing the closure
produces a canonicalised query that is highly redundant, and may thus be less useful in
practice for certain use-cases; it could be possible to apply a minimisation step after the
closure to address this.

7.2.2 RPQ-aware Minimisation

The techniques we have defined so far aim to compute a normal form. However, they do not
address the presence of redundant path patterns in C(2)RPQs in a general way. In this section
we describe some of the techniques we have looked at to find redundancies in C2RPQs in a
more general way, aiming at finding a core that takes into consideration entailment between
property paths.

The RPQ-aware minimisation approach parallels the computation of the core of a graph
to remove redundant nodes due to the presence of homomorphisms from the graph to a
proper sub-graph of itself. We have implemented this for CQs/BGPs without property
paths in a fairly standard and simple way. Given a CQ/BGP Q, we create a graph G
that is the canonical graph for that query (the same structure). We then evaluate Q(G),
and we select the solution µ ∈ Q(G) that maps to the fewest constants in G, and maps
all projected variables to themselves. We then rewrite Q per µ. So for example, if Q =
{(?a, :p, ?b), (?a, :p, :x), (?a, ?c, ?d)}, we will generate a graph G = {(v:a, :p, v:b), (v:a, :p,
:x), (v:a, v:c, v:d)}, where nodes prefixed with v: denote variables, and evaluate Q(G). We
choose the solution µ ∈ Q(G) that maps ?a to v:a (since it’s a projected variable, µ should
be the identity for it), and maps to the fewest unique constants with v:. In this case, the
solution would be µ = {?a/v:a, ?b/:x, ?c/:p, ?d/:x}. This maps to only one variable node
with v: and is the identity for projected variables. In Q, we can then map ?b→ :x, c→ :p,
d→ :x per that solution, resulting in the minimised, equivalent query Q′ = {(?a, :p, :x)}.

In order to generalise this to handle property paths, we may need to be able to map
a triple pattern like (?a, :p∗, ?y) into (?a, :p, :x), which entails it. Along these lines, we
replace all (non-trivial) path patterns with a triple pattern that contains the same subject
and object, but replaces the path expression with a variable unique to that triple pattern.
By doing this, we generate candidates for which we need to check containment/entailment.

Given Q as input, Figure 7.11 shows how that we have mapped :p∗ to ?v1, and :q∗

to ?v2 to create Q′. Figure 7.12 shows how we create the canonical graph G from Q by
replacing variables and path expressions with proxy IRIs that encode them. Table 7.1 shows
the solutions of Q′(G). Assume that the only projected variable is ?a. We now:

1. Discard any results from Q′(G) that are not the identity for projected variables. In this
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Q

?a :p ?b .
?b :p* ?c .
?c :q* ?d .
?b :p ?c .
?b :q ?c .
?c :q ?e .

→

Q′

?a :p ?b .
?b ?v1 ?c .
?c ?v2 ?d .
?b :p ?c .
?b :q ?c .
?c :q ?e .

Figure 7.11: Mapping property paths to variables

Q

?a :p ?b .
?b :p* ?c .
?c :q* ?d .
?b :p ?c .
?b :q ?c .
?c :q ?e .

→

G

v:a :p v:b .
v:b :p-star v:c .
v:c :q-star v:d .
v:b :p v:c .
v:b :q v:c .
v:c :q v:e .

Figure 7.12: Creating the canonical graph

case, no solution is discarded as every solution maps ?a to v:a.

2. Discard any results from Q′(G) where any proxy variable for a path e maps to a proxy
IRI for a path e′ such that e′ ̸⊑ e. In this case, we discard the last two solutions of
Table 7.1, as we cannot map ?v1 (representing :p∗) to :q since :q ̸⊑ :p∗.

3. Take the remaining solution that maps to the fewest unique proxy IRIs (as the solution
that will get rid of the most variables and paths).1

?a ?b ?c ?d ?e ?v1 (:p*) ?v2 (:q*)
v:a v:b v:c v:d v:e :p-star :q-star
v:a v:b v:c v:d v:e :p :q-star
v:a v:b v:c v:e v:e :p-star :q
v:a v:b v:c v:e v:e :p :q
v:a v:b v:c v:d v:e :q :q-star
v:a v:b v:c v:e v:e :q :q

Table 7.1: Solutions for Q′ over the canonical graph G

In this case, the selected solution will be the fourth one in Table 7.1, which maps to four
unique proxy IRIs. Rewriting the query according to the selected solution should give us the
minimised version of the query, as shown for this case in Figure 7.13.

Limitations A limitation with this approach is the dreaded pizza, presented in Figure 7.7.
Again, we would like to minimise this to a self-loop on ?a with :p∗, and a link to ?x from ?a
with :q Ȧ possible solution to this issue is to add self-loops into the canonical graph. For

1Admittedly, it’s not clear that there cannot be ties here?
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?a :p ?b .
?b :p ?c .
?b :q ?c .
?c :q ?e .

Figure 7.13: Minimised (core) version of Q

example, in this case, if we add (?a, :p-star, ?a), which does not change the semantics of
the query, then this method will result in the expected minimisation.

Another concern is the inverse case, where this method cannot reverse the direction of
an edge when computing answers. However, it may be possible to address this through an
inverse rewriting, inverse normal forms, etc. In the worst case, we could add the inverses for
all edges explicitly to the canonical graph.

A final concern is the case where we need to map one property path into two or more edges
in the canonical graph. Take for example Figure 7.15, where the ?c node and its incident
edges are redundant (under set semantics at least). We would need a way to deal with such
cases. In fact, if we add a self-loop on ?d with :p∗, then this would be okay (?c would then
map to ?d). This may or may not be sufficient. In other cases, we might need to apply the
transitive closure of the canonical graph, per Section 7.2.1.

Another question is what sort of relation we should we checking for paths that are “map-
pable” to one another per the homomorphism. In general, we should of course be mapping
more general into more specific, but it is not clear in which cases this relation is specifically
containment, or rather some form of entailment (of 2RPQs).

?x

?c:p

?b:p∗

?d

:p

:p∗

Figure 7.14: Here ?c should collapse into ?b or ?b into ?c

Figure 7.14 shows an RPQ for which we may collapse ?b into ?c or vice-versa. This
is effectively a consequence of the fact that both :p/:p∗ and :p∗/:p are both valid and
equivalent ways of rewriting :p+. It is not clear which of the two should be preferred.

?x

?c:p

?d

:p∗

:p

Figure 7.15: A similar case to Figure 7.14, but with one edge mapping to two
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7.2.3 2RPQ Containment and Equivalence

Part of the minimisation of UCQs includes checking for containment between CQs, and the
computation of the cores of CQs in order to find redundancies. In a similar manner, adapting
this method to C2RPQs requires the finding of redundancies. However, containment of
property paths is sometimes not a sufficient condition for determining whether an RPQ is
redundant or not. Instead, we must check for entailment of property paths. For instance, if
there exists a result for ?x yielded by (?x, :p, ?y), then this means that there exists a result
for ?x yielded by (?x, :p/:p−, ?y), even if neither expression is contained in the other. We
also need to deal with 2RPQs.

A 2RPQ Q is defined over a set of symbols (or alphabet) Σ, and expressed as either a
regular expression or finite-state automaton over Σ± = Σ ∪ {r− | r ∈ Σ} (i.e. the set of
all symbols in Σ or their inverses). Then, L(Q) denotes the regular language defined by Q.
Finally, we say that a sequence of symbols in Σ± w = w1w2 · · ·wn conforms to Q if and only
if w ∈ L(Q). In particular, property paths without negated property sets are analogous to
2RPQs over the set of all IRIs.

Folding

The entailment and containment decision problems are harder for regular path queries with
inverse because regular path queries can be “folded” into shorter paths. Formally, we say
that a sequence of symbols v = v1v2 · · · vm folds onto u = u1u2 · · ·un (m ≤ n) if there is a
sequence i0, · · · , im of positive integers between 0 and n such that:

� i0 = 0 and im = n, and

� for 0 ≤ j < m, either:

– ij+1 = ij + 1 and vj+1 = uij+1, or

– ij+1 = ij − 1 and vj+1 = uij+1
−

For example (?x, p/p−/p, ?y) can be folded into (?x, p, ?y) via the sequence i = 0, 1, 0, 1,
and thus the latter is contained in the former. Calvanese et al. [16] then define the following
for containment of 2RPQs, where Q and Q′ are 2RPQs, L(Q) denotes the regular language
defined by Q, and fold(L) is a function over a regular language L such that fold(L) = {u |
v folds onto u, v ∈ L}.

Q ⊑ Q′ ⇐⇒ L(Q) ⊆ fold(L(Q′))

We may construct a two-way non-deterministic automaton that accepts the language of
fold(L(Q)).
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Two-Way Automata

Two-way automata denote the same language as regular expressions with inverse, but using
a lower number of states and transitions than DFAs and NFAs.

A two-way non-deterministic automatonM = (Q,S, F,Σ, δ) is a five-tuple where Q is the
set of states, S is the set of starting states, F is the set of accepting states, Σ denotes a set
of binary relational symbols, and δ is a transition function. Σ± denotes a set of symbols that
contains all symbols in Σ as well as the inverse of each symbol (i.e. whenever it’s read, we
go backwards). Finally, Σ̂ denotes a set of symbols equal to Σ± plus a left-end marker (⊣)
and a right-end marker (⊢).

The transition function δ : Q × Σ± → 2Q×{−1,0,1} denotes that a run of the 2NFA reads
a symbol, and depending on the current state, moves to one or many different states and
(optionally) moves the pointer either one position forward or backwards. A configuration
is pair (q, i) where q is a state, and i is an integer, and an accepting run of M on a word
w =⊣ w1 · · ·wn ⊢ is a sequence of configurations (q1, i1), · · · , (qm, im) where each qj is a state
in Q, and 1 ≤ ij ≤ n + 1 for 1 ≤ j < m. In addition, the initial configuration (q1, i1) is
such that q1 ∈ S is a starting state, and i1 = 1; the final configuration (qm, im) is such that
qm ∈ F is an accepting state, and im = n+1; and for each configuration (qj, ij) it is the case
that (qj+1, c) ∈ δ(qj, aij) such that ij+1 = ij + c. These conditions state that any accepting
run begins in a starting state, while reading the first symbol of the word, ends in a final
state after reading the last symbol (wn) and the last pointer (im) is at the end of string. It
is evident that the sequence of integers i1, · · · , in of an accepting run may be used to prove
that a regular expression can be folded into another.

In the following we will look at the constructions of two-way automata for some 2RPQs,
similar examples to those presented by Reutter [61]. We use the standard notation for
regular expressions (and denote their property path counterpart in parentheses) where a
generic symbol is denoted by a, a− denotes the inverse of a, · denotes concatenation (/), ∪
denotes disjunction (|), and ∗ denotes the Kleene star. Furthermore, q0 denotes the initial
state, qf denotes an accepting state, and qr denotes a rejection state (defined as a normal
state, but with the intuition that the state is currently rejecting). We begin reading the first
symbol w1 after the left-end marker.

� R = a (see Figure 7.16)

– M = ({q0, qf , qr}, q0, {qf},Σ±, δ)

– δ(q0, a) = {(qf , 1)}
– For every symbol b ∈ Σ± such that b ̸= a: δ(q0, b) = {(qr,−1)}
– δ(qr, a

−) = {(qf , 0)}

� R = a− (See Figure 7.17)

– M = ({q0, qf , qr}, q0, {qf},Σ±, δ)

– δ(q0, a
−) = {(qf , 1), (qr,−1)}

– For every symbol b ∈ Σ± such that b ̸= a−: δ(q0, b) = {(qr,−1)}
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q0 qf
(a, 1)

qr

(Σ̂,−1) (a−, 0)

Figure 7.16: A 2NFA that accepts words in fold(a).

– δ(qr, a) = {(qf , 0)}

q0 qf
(a−, 1)

qr

(Σ̂,−1) (a, 0)

Figure 7.17: A 2NFA that accepts words in fold(a−).
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� R = R1 ·R2

– M = (Q, q0, F,Σ
±, δ)

– Q = {q0, qf} ∪Q1 ∪Q2

– F = {qf} ∪ (F 1 − {q1m}) ∪ (F 2 − {q2m})
– δ = δ1 ∪ δ2 plus for each a ∈ Σ̂:

δ(q0, a) = {(q10, 0)}
δ(q1f , a) = δ1(q1f , a) ∪ {(q20, 0)}
δ(q2f , a) = δ2(q2f , a) ∪ {(qf , 0)}

� R = R1 ∪R2

– M = (Q, q0, F,Σ
±, δ)

– Q = {q0, qf} ∪Q1 ∪Q2

– F = {qf} ∪ (F 1 − {q1f}) ∪ (F 2 − {q2f})
– δ = δ1 ∪ δ2 plus for each a ∈ Σ̂:

δ(q0, a) = {(q10, 0)}
δ(q1f , a) = δ1(q1f , a) ∪ {(qf , 0)}
δ(q2f , a) = δ2(q2f , a) ∪ {(qf , 0)}

� R = R1
∗

– M = (Q, q0, F,Σ
±, δ)

– Q = {q0, qf} ∪Q1

– F = {qf} ∪ (F 1 − {q1f}))
– δ = δ1 plus for each a ∈ Σ̂:

δ(q0, a) = {(q10, 0)}
δ(q10, a) = δ1(q10, a) ∪ {(qf , 0)}

δ(q1f , a) = δ1(q1f , a) ∪ {(qf , 0), (q10, 0)}

q10 q1f
(:p, 1)

q1r

(Σ̂,−1) (:p−, 0)

q20
(Σ̂, 0)

q2f
(:p−, 1)

q2r

(Σ̂,−1) (:p, 0)

q30
(Σ̂, 0)

q3f
(:p, 1)

q3r

(Σ̂,−1) (:p−, 0)

Figure 7.18: A 2NFA that accepts words in fold(:p/:p−/:p).

The 2NFA shown in Figure 7.18 accepts words in fold(:p/:p−/:p). It follows the in-
ductive construction described earlier. It is evident that the word w =⊣ pp−p ⊢ will reach
an accepting state through the run (q10, 1), (q

1
f , 2), (q

2
0, 2), (q

2
f , 3), (q

3
0, 3), (q

3
f , 4), (qf , 4). On the

other hand, it is less evident that the word w′ =⊣ p ⊢ will reach an accepting state. This
can be done through the following run beginning with the configuration (q0, 1):
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� We begin at q0, read any symbol, and move to q10.

� At state q10 we once again read p, move the pointer to the right, and move to state q1f ,
leading to the configuration (q1f , 2).

� At state q1f we read any symbol, and move to q20, leading to the configuration (q20, 2).

� At state q20 we read the right-end marker ⊢, move the pointer to the left, and move to q2r ,
leading to the configuration (q2r , 1).

� At state q2r we read p, and move to q2f , leading to the configuration (q2f , 1).

� At state q2f we read p, and move to q30, leading to the configuration (q30, 1).

� At state q30 we read p, move the pointer to the right, and move to state q3f , leading to the
configuration (q3f , 2).

� Finally, at state q3f we read the right-end marker, and move to state qf (an accepting state),
leading to the configuration (qf , 2).

It is evident that this run is an accepting run since the first configuration is (q0, 1), the
final configuration is (qf , 2) where qf is an accepting state, and every configuration is well
defined by the transition function δ.

Any DFA that is equivalent to this 2NFA will have an exponential number of states
compared to the number of states of the 2NFA.

After constructing automata for both Q and Q′, we may construct a 2NFA that is the
difference (or intersection of Q and the complement of Q′). The study by Calvanese et al.
[16] presents a way to construct a “small” NFA that accepts this language, and has a size
that is exponential on the size of the 2NFA used to represent Q or Q′. We now outline these
steps:

� Construct NFAs M and M ′ such that L(M) = L(Q) and L(M ′) = L(Q′).

� Construct a 2NFA M ′′ such that L(M ′′) = fold(L(M ′)).

� Construct an NFA M ′′ such that L(M ′′ = (Σ±)∗ − L(M ′′)) (i.e. the complement of M ′′).

� Construct an NFA M× =M ′ ×M ′′ such that L(M×) = L(Q)− fold(L(M ′)).

� Check if there is a path from a start state to a final state in M×.

This would allow us to determine if an RPQ is contained in a different RPQ, which would
most likely mean that it is redundant and may be removed. This may be used in the process
described in Section 7.2.2 instead of the basic NFA containment mentioned there, which may
help us compute the “core” of an RPQ. A brute-force approach may remove triple or path
patterns in an RPQ Q, and then check if the resulting RPQ Q′ is equivalent to Q by using
the aforementioned automata approach.
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7.2.4 Union Expansion

In a completely different direction, we can view a path pattern (x, e+, y) as an infinite union
of basic graph patterns corresponding to (x, e, y)∪ (x, e/e, y)∪ . . .∪ (x, e/ . . . /e, y)∪ . . .. Our
idea was that such an expansion of path expressions into an infinite union would allow us to
re-use our UCQ method to find a minimisation. In addition, we believe that we would only
need to expand up to a certain point in order to test for containment. This allows us to find
cases where non-recursive paths or sub-BGPs are contained in recursive paths.

?x :p ?a .
?a :p ?b .
?b :p ?y .
?x :p* ?y .

(a) →

?x :p ?a .
?a :p ?b .
?b :p ?y .
{ ?x = ?y }
UNION
{ ?x :p ?y }
UNION
{ ?x :p _:b0 .
_:b0 :p ?y . }
UNION
{ ?x :p _:b0 .
_:b0 :p _:b1 .
_:b1 :p ?y . }

(b) →

{ ?x :p ?a .
?a :p ?b .
?b :p ?x . }
UNION
{ ?x :p ?y .
?x :p ?a .
?a :p ?b .
?b :p ?y . }
UNION
{ ?x :p _:b0 .
_:b0 :p ?y .
?x :p ?a .
?a :p ?b .
?b :p ?y . }
UNION
{ ?x :p _:b0 .
_:b0 :p _:b1 .
_:b1 :p ?y .
?x :p ?a .
?a :p ?b .
?b :p ?y . }

(c) →

{ ?x :p ?a .
?a :p ?b .
?b :p ?x . }
UNION
{ ?x :p ?y .
?x :p ?a .
?a :p ?b .
?b :p ?y . }
UNION
{ ?x :p _:b0 .
_:b0 :p ?y .
?x :p ?a .
?a :p ?b .
?b :p ?y . }
UNION
{ ?x :p ?a .
?a :p ?b .
?b :p ?y . }

(d) →

?x :p ?a .
?a :p ?b .
?b :p ?y .

(e)

Figure 7.19: Example of the steps of the union expansion of a path pattern.

In the example presented in Figure 7.19 we begin with the path pattern seen in Figure
7.19a. The next step is shown in Figure 7.19b where we have expanded the path of zero or
more :p into a union of up to 4 patterns (from 0 to 3) because the pattern contains 3 triple
patterns. The pattern {?x = ?y} denotes a pattern where ?x and ?y are mapped to the same
nodes when expanded into CQs as part of the UCQ expansion (the zero-length path case).
This can be seen in Figure 7.19c where we see the result of the UCQ expansion of the pattern
in Figure 7.19b, and the first CQ shows that ?y has been replaced by ?x; the other CQs each
show cases where the paths between ?x and ?y are of lengths between 1 and 3. Following
this, the pattern in Figure 7.19d shows the result of minimising each CQ of the pattern in
Figure 7.19c. Finally, Figure 7.19e shows the final result of the UCQ minimisation (which
we already have), where only a single CQ remains because it is contained by all other CQs
in the previous step. The result shows that the path pattern (?x, :p∗, ?y) was redundant.

Limitations One issue that we encountered is the case where the path is of length 0 (i.e.
(x, p∗, y) has cases where x = y), which cannot be expressed directly as an MQ. In that case,
we may rewrite the basic graph pattern by replacing all instances of ?x with ?y and vice-
versa, but it gets messy. Also it’s not clear how far we need to expand the infinite union, nor
how to handle containment between recursive patterns. Finally, we would need to rewrite
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the expansion back to the recursive case to restore equivalence.

7.3 Discussion

In this chapter, we have discussed several techniques that we have considered for the canon-
icalisation of UC2RPQ-style queries. However, in each case, we have managed to construct
counterexamples that show the technique to fall short of complete canonicalisation. Never-
theless, such techniques can be useful for partial but sound canonicalisation. This leaves an
interesting open question of whether or not a canonical form for UC2RPQs is possible to
construct, and if so, how.
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Chapter 8

Implementation

In this chapter we describe the tools – mainly software – that were used to implement
the structures, representations and techniques described in the previous chapter. A better
understanding of the implementation is important in the context of performance measures
that will be presented later in Chapter 9. These steps are summarised as follows:

1. Parsing queries and constructing r-graphs

2. Normalisation of r-graphs

3. Canonical Labelling

4. Generation of queries

We also include a section describing some of the test cases which were used to test the
correctness of certain transformations.

8.1 Dependencies

The implementation makes use of Apache Jena [49] version 3.17, a framework for the devel-
opment of Semantic Web and Linked Data applications. It is used to represent queries in an
algebraic form, perform transformations over these algebraic queries, traverse their structure,
build RDF graphs in order to represent these queries, and serialise these graphs into valid
SPARQL queries.

In addition, the project is structured as a Maven project 1, which manages its dependen-
cies, and makes the project easier to build and include for other applications.

1https://maven.apache.org/
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8.2 Project Structure

src

builder

QueryBuilder

RGraphBuilder

data

Analysis

FeatureCounter

PropertyPathFeatureCounter

QueryFeaturesCounter

generate

BGPGenerator

Generator

MultipleGenerator

UCQGenerator

UCQGeneratorTest

WellDesignedPatternGenerator

main

Benchmark

EasyCanonicalisation

Launcher

RGraph

SingleQuery

parsers

BGPParser

JenaParser

Parser

QueryParser

Figure 8.1: File structure of project QCan
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paths

PathTransform

PathWalker

PGraph

tools

BGPSort

CommonNodes

CustomTripleBoundary

NodeComparator

OpUtils

PathUtils

TripleComparator

Utils

transformer

BranchRenamer

ExprTransformer

FilterTransform

LocalVarRenamer

OpRenamer

RemoveUnboundVariables

RemoveUnsatisfiableBGPs

TransformPath

UCQTransformer

WellDesignedTransformer

Figure 8.1: File structure of project QCan (continued)
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visitor

BGPExtractor

FilterVisitor

PathVisitor

TopDownVisitor

Figure 8.1: File structure of project QCan (continued)

Figure 8.1 displays the general structure of the Java classes of this project. We will now
explain in greater detail each package and the classes they comprise.

8.2.1 Builder

This package contains classes used to build data structures, namely SPARQL queries and
r-graphs.

Query Builder This class is used to serialise an RGraph object into a Op object as provided
by Jena, an algebraic expression. This can subsequently be used to form a query in
String form.

RGraph Builder This class is an implementation of the OpVisitor interface provided by
Jena, which is used to traverse an Op object in a bottom-up fashion. By traversing the
structure, an equivalent RGraph object is built.

8.2.2 Data

This package contains classes used to analyse sets of queries for later experiments.

Analysis This class is used to read the files written after our experiments, and automatically
calculate relevant statistics such as minimum values, median values, etc.

Feature Counter This class is an implementation of the OpVisitor interface provided by
Jena. It is used to find all features contained in a single query.

Property Path Feature Counter This class is an implementation of the PathVisitor
interface provided by Jena. It is used to find all property path features contained in a
single query, such as Kleene stars, negated property sets, etc.

Query Features Counter This class makes use of the FeatureCounter and
PropertyPathFeatureCounter classes to count all occurrences of SPARQL features in
a set of queries.
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8.2.3 Generate

This package contains classes used to generate artificial queries for benchmarking.

Generator An abstract class used as a template for other classes in this package.

BGP Generator This class is used to generate basic graph patterns with structures based
on well-known classes of graphs, such as cliques, lattices, etc.

Multiple BGP Generator This class traverses a directory, and generates basic graph pat-
terns based on each file in the directory.

UCQ Generator This class is used to generate UCQs from monotone queries.

UCQ Generator Test This class is used to run experiments on queries generated by the
UCQ Generator class, and record the results.

Well-designed Pattern Generator This class is used to generate well-designed optional
patterns with random variable names.

8.2.4 Main

This package contains classes we deem to be crucial to the project.

Benchmark The main class used to run our experiments over large sets of queries. These
generate files that contain the runtimes for each query, and also a file with the distri-
bution of queries under the congruence class equivalence.

Easy Canonicalisation A simple class used to either canonicalise a single query provided
as part of the input, or alternatively a file containing queries. In addition, one can
choose to skip certain parts of the canonicalisation algorithm.

Launcher A class whose only purpose is to receive commands as input, and pass those
commands to the appropriate class launcher. This is because JAR files usually define
a single class as its main class.

R-graph A class that encapsulates the functions used to build an r-graph, serialise different
data structures into an r-graph, perform operations over r-graphs, etc.

Single Query A class that encapsulates the functions used to canonicalise SPARQL queries.
It also contains fields for measuring the time it takes to construct an r-graph, and the
time it takes to output the canonical form of the query. Other fields include: the
number of triples patterns in the r-graph, the number of nodes in the r-graph, and the
number of variable nodes in the r-graph; there are two instances of these fields: one for
the r-graph before any leaning, and another for after.
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8.2.5 Parsers

Parser This class serves as a template for the other parser classes. It contains methods used
to read text files that contain queries line by line. In addition, it stores the unique
queries, unsupported queries, etc.

BGP Parser This class extends the Parser class in order to read queries, find all basic
graph patterns it contains, canonicalise them, and store the results.

Jena Parser This class extends the Parser class in order to read queries, transform them
into Op objects, and store the results.

Query Parser This class extends the Parser class, and receives a number of boolean values
as input to determine what steps of the canonicalisation method are taken: normali-
sation, graph representation, minimisation, and canonical labeling. Furthermore, this
class takes a text file that contains many SPARQL queries, and calls multiple instances
of SingleQuery for each query. It writes into a text file each of the fields in SingleQuery
separated by tabs.

8.2.6 Paths

This package contains classes used to transform, traverse, and normalise property paths.

Path Transform This class is used to transform property paths according to the rules we
defined in Section 5.3.

Path Walker This class implements the PathVisitor interface provided by Jena in order
to traverse Path objects, and construct a PGraph object that represents an NFA.

PGraph A class that encapsulates the functions used to build NFAs and DFAs, minimise
DFAs, serialise DFAs into property paths, perform operations over other automata, etc.

8.2.7 Transformer

This package contains classes used to apply transformations to Op objects, mostly in order
to rewrite queries into normal forms as described in Section 5.1.1.

Branch Renamer This class is used to rename the union variables in UCQs, as described
in Section 5.1.1.

Local Var Renamer This class is used to rename local variables as described in Section
5.1.1.

Expression Transformer This class normalises expressions into a disjunctive normal form.
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Filter Transformer This class normalises graph patterns with filter expressions by pushing
the expressions outside, following the notion of safe variables as described in Section
5.2.1.

Remove Unbound Variables This class removes unbound variables from projections as
described in Section 5.1.1.

Remove Unsatisfiable BGPs This class replaces any unsatisfiable BGPs with a standard
unsatisfiable graph pattern.

Well-designed Transformer This class rewrites well-designed optional patterns as de-
scribed in Section 5.2.1.

8.2.8 Visitor

This package contains classes that traverse objects such as those of the Op or Path classes
in order to analyse the contents of the objects (such as the operators in a query or property
path).

BGP Extractor This class traverses Op objects in order to extract all BGPs that appear
in the query.

Filter Visitor This class traverses Expr objects, and builds an RGraph that represents its
corresponding built-in expression.

Path Visitor This class traverses Path objects (which represent property paths) in order
to analyse the structure and features of the property path.

Top-down Visitor This is an abstract class that traverses Op objects in a top-down fashion,
which is unlike the visitors provided by Jena.

8.3 Canonical Labelling

We use the blabel https://blabel.github.io/ library for the labelling and leaning of the
r-graphs [38]. This library contains several functions for finding or determining isomorphism
and equivalence in RDF graphs, as well as several tools that are related to isomorphism and
equivalence.

Among these tools is a canonical labelling algorithm that is deterministic and preserves
isomorphism. To determine the labels, it utilises a hashing algorithm, which means that hash
collisions are possible. However, these values are 128 bits in length, so collisions are very
unlikely to occur. This is especially true considering the mean number of blank nodes in the
r-graphs.
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We utilise the canonical labelling algorithm for blank nodes provided by blabel to label
our r-graphs. We have implemented functions to provide a representation of an r-graph that
is readable by blabel, and vice-versa.

For the leaning of graphs we also use an algorithm provided by blabel which computes
the core of an RDF graph.

8.4 Serialisation of Representational Graphs

After the r-graph of a query has been constructed, normalised, labelled and leaned, we need
to reconstruct the canonical query represented by the r-graph. To do this, we have created
the QueryBuilder class, which contains methods that take a Node object, check its type, and
output an Op object of the corresponding type. In addition, depending on the type of the
node, more recursive calls are made to nodes that are connected to the former.

This query is constructed by traversing the r-graph recursively, starting from the root
node that is stored by every object of the RGraph class. The result of this process is an Op
object that represents the same query as the RGraph object. Following this, we make use of
Apache Jena’s own methods to serialise the Op object to a String. Finally, we assign labels
that are easier to read to each variable in the resulting query.

8.5 Property Paths and Automata

We have designed the PGraph class to be a graph representation of property paths similar
to what the RGraph class is to queries. This means that PGraph contains functions for the
construction of a NFA equivalent to a given property path. Furthermore, it contains functions
for the construction of a DFA based on the aforementioned NFA, and finally a function for
the minimisation of the DFA based on Hopcroft’s algorithm.

The construction of the NFA is accomplished by the class PathWalker, an implementation
of the PathVisitor interface, which traverses the property path in a bottom-up trajectory.
As it traverses the property path, it creates fresh blank nodes that correspond to the states of
the NFA, and the transitions following Thompson’s algorithm for the construction of NFAs
from regular expressions [73].

8.6 Testing

The testing of the software has been complicated because there are potentially infinite vari-
ations of query patterns. We cannot test for correctness and completeness for every possible
query, but we have defined a number of test cases that contain queries which use the main
features supported by our software. There is at least one test case defined for each feature,
some of which combine multiple features.
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Some of the test cases contain combinations of features that we anticipated would produce
complications. For instance, the effect the presence of filter expressions would have on the
UCQ transformation process.

SELECT DISTINCT ?z
WHERE {
{ ?c <http://ex.org/a> ?y ; ?p ?o . }
UNION
{ ?c <http://ex.org/b> ?y }
?y <http://ex.org/c> ?z

}

SELECT DISTINCT ?q4
WHERE {
{ ?q3 <http://ex.org/a> ?q0 ;

?q2 ?q1
{ ?q0 <http://ex.org/c> ?q4 }
}
UNION
{ ?q3 <http://ex.org/b> ?q0 .
?q0 <http://ex.org/c> ?q4 }

}

SELECT DISTINCT ?q0
WHERE {
{ ?q4 ?q3 ?q2 ;

<http://ex.org/a> ?q1
{ ?q1 <http://ex.org/c> ?q0 }
}
UNION
{ ?q4 <http://ex.org/b> ?q1 .
?q1 <http://ex.org/c> ?q0 }

}

Figure 8.2: Example of a test case for UCQ rewriting, leaning, and canonical labelling.

Figure 8.2 contains three SPARQL queries that are congruent. The original text file
used for testing would contain a single query per line, but we have formatted them here
differently for readability. Each one of these queries is processed fully by the canonicalisation
algorithm, and the resulting canonical queries are compared to test the correctness of the
leaning process.

Other test cases are negative in the sense that they test that two queries are not congruent.

SELECT *
WHERE {

?s <http://ex.org/p> ?o1 .
?s <http://ex.org/p> ?o2 .
FILTER((?o2 != 1000) || REGEX(

?o1,"ˆa"))
}

SELECT *
WHERE {

?s <http://ex.org/p> ?o1 .
?s <http://ex.org/q> ?o2 .
FILTER(1000 != ?o2)
FILTER(REGEX(?o1,"ˆa"))

}

Figure 8.3: Example of a test case for filter rewriting and canonical labelling.

Figure 8.3 contains two queries that contain FILTER expressions. Though both contain
the same built-in expressions, the left query looks for mappings where the values for ?o1
begin with the letter “a” or values for ?o2 different from 1000. On the other hand, the query
on the right looks for mappings where both conditions are met simultaneously. Furthermore,
in the query on the left ?s is connected to ?o2 by the property http://ex.org/p, whereas
in the query on the right, it is connected by the property http://ex.org/q. Because of this,
this test case checks that both queries are not congruent, and will fail if both are found to
be congruent.
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Chapter 9

Results and Evaluation

For the purposes of this study, we define the following research questions relating to the
hypothesis outlined at the outset::

� How is the performance of the canonicalisation process for real-world queries?

� Given that our algorithm is doubly-exponential, at what point does the algorithm begin to
fail?

� How many more duplicate queries can be detected using our procedure versus baseline
syntactic methods?

We now describe the evaluation we have designed to answer the previous questions, and
then the experimental results generated, as well as a discussion of the results obtained.

9.1 Queries used

It is evident that the techniques described in Chapter 5 should be tested with SPARQL
queries. However, to verify each of the questions we have postulated, we will need different
types of queries. We will now describe the queries used to test each aspect of the canonical-
isation process.

9.1.1 Real-world Queries

For the purpose of evaluating the performance of the software on real-world queries, a dataset
from the Linked SPARQL Queries (LSQ) study was used [65]. This dataset contains queries
taken from the logs of six public SPARQL endpoints.

The raw logs contained a large amount of information that was deemed unnecessary for
the evaluation, since only the raw queries were relevant. A script was used over the dataset
to extract the queries.
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Following this, another process was carried out to filter queries that were syntactically
incorrect. In this process, a query was filtered if the query parser provided by Apache Jena
was unable to parse the raw query and threw an exception.

Table 9.1 shows the distribution of features in the LSQ dataset. Notable results include
the fact that Wikidata contains the most variety of features. In particular, it is the only set
of queries that contain federated services (SERVICE). Furthermore, it also contains the most
instances of property paths (other logs were collected prior to the recommendation of the
SPARQL 1.1 standard).

Table 9.1: Distribution of features in the DBpedia (DBp), SWDF, RKB Explorer (REx),
RKB Endpoint (REn), Wikidata (WD) and Linked Geo (Geo) sets of queries.

Feature DBp SWDF REx REn WD Geo

BGP 424,328 112,398 335,450 169,425 861,383 842,794
Distinct 192,168 57,195 210,058 147,575 538,878 5,477
Union 89,766 32,459 5,550 1,653 92,807 49,299
Join 58,952 54,702 34,180 19,355 751,243 78,575
Service 0 0 0 0 406,990 0
Filter 200,001 4,716 14,938 8,974 65,081 125,849
Opt 31,211 27,824 23,587 9,741 343,838 19,914
Mods 4,576 60,199 80,655 40,957 321,239 412,343
Bind 0 15,307 19,641 0 71,102 0
Agg 0 10,268 16,444 0 42,777 0
Minus 0 25 192 0 5,700 0
Paths 0 37 192 96 268,530 0
Values 0 83 0 0 55,037 174

Total 424,362 112,470 335,833 169,617 872,555 842,794

We can observe that UNION is used far less than other features such as OPTIONAL and
FILTER. In addition, as we have already mentioned, the full canonicalisation of these features
would be undecidable, but since they are so widely used, we felt it was important to offer an
incomplete canonicalisation of these features.

Features introduced in SPARQL 1.1 such as aggregation, property paths and federated
queries are present in several queries in the set. More notably, Wikidata contains the only
instances of federated queries, in over 40% of the total queries, many calling an internal
labelling service particular to Wikidata. Moreover, the same set contains property paths in
over 25% of all queries.

BGPs in Real Queries

In addition to the queries mentioned in the previous section, we extracted all BGPs contained
in each query. This was done in order to test the performance of our algorithm in applications
that need to find commonly-used basic graph patterns, such as caching systems.
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9.1.2 Synthetic Queries

In order to test the limitations of our algorithm, we needed queries with specific characteristics
that are unlikely to appear in real-world queries. Because of this, we have designed programs
(as described in Chapter 8) that construct synthetic queries. In this section, we describe
these types of queries, as well as the aspect of our algorithm they are used to test.

Synthetic BGPs

In order to better test the proper functionality of the canonicalisation process, a series of
synthetic basic graph patterns were created using the classes from the generate package
described in Section 8.2.3. These synthetic BGPs are based on well-known types of graphs,
where we add a triple pattern (vi, :p, vj) for every pair of adjacent nodes i and j in the graph.

To ensure that the leaning process removes the largest number of triples (i.e. to represent
difficult cases), we enclose the graph pattern in a SELECT DISTINCT V query, where V is a
set of randomly selected variables.

We describe the following types of graphs that were used on our experiments:

2D Grid: For k ≥ 2, the k-2D-grid contains k2 nodes, each with a coordinate (x, y) ∈ N2
1···k,

where nodes with distance one are connected; this graph has a total of 2(k2− k) edges.
See an example in Figure 9.1.

3D Grid: For k ≥ 2, the k-3D-grid contains k3 nodes, each with a coordinate (x, y, z) ∈ N3
1···k,

where nodes with distance one are connected; this graph has a total of 3(k3−k2) edges.
See an example in Figure 9.2.

Clique: For k ≥ 2 contains k nodes that are pairwise connected; this graph has a total of(
k
2

)
edges. See an example in Figure 9.3.

Triangular: The line graph1 of the k-clique, also known as a triangular graph: the resulting
graph has k(k−1)

2
blank nodes, k(k−1)(k−2)

2
edges. See an example in Figure 9.4.

Miyazaki: This class of graphs was designed by Miyazaki [52] to enforce a worst-case expo-
nential behaviour in NAUTY-style canonical labelling algorithms. For k, each graph has
20k nodes and 30k edges. See an example in Figure 9.5.

Note that under set semantics, 2D-Grid and 3D-Grid graphs collapse to a core that
consists in a single undirected edge; Miyazaki graphs collapse down to a core with a 3-cycle;
finally, Clique graphs are lean, so no triples are removed.

1The line graph of an undirected graph is constructed by converting the edges of the original graph into
nodes in the line graph and connecting the nodes in the line graph if and only if the corresponding edges in
the original graph share a node.
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Figure 9.1: 3-2D-Grid Figure 9.2: 2-3D-Grid

Figure 9.3: 6-clique Figure 9.4: 4-triangle

Figure 9.5: An example of a Miyazaki Graph (Source: http://vlsicad.
eecs.umich.edu/BK/SAUCY).
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Synthetic UCQs

The previous queries only represent CQs and would not test UCQ normalisation. Therefore,
in order to test our method on monotone queries, we have designed synthetic UCQs using
the a similar process as for the synthetic CQs; however, instead of constructing a conjunction
of all the triples, we construct queries of the form Q = (T11∪ . . .∪T1m) ▷◁ (T21∪ . . .∪T2m) ▷◁
. . . ▷◁ (Tn1 ∪ . . . ∪ Tnm) where m is the number of unions in each disjunction, and n is the
number of disjunctions. The terms Tij are selected from the triples created for the synthetic
queries. This process is random in the sense that we select m triples for every disjunction.
This means that some of the triples may be repeated inside other disjunctions, but never in
the same disjunction. An example of such a query is featured in Figure 9.6.

SELECT DISTINCT ?v1
WHERE
{ { { { ?v1 :p ?v2 }

UNION
{ ?v1 :p ?v3 }

}
UNION
{ ?v4 :p ?v3 }

}
UNION
{ ?v3 :p ?v2 }
{ { ?v3 :p ?v2 }

UNION
{ ?v3 :p ?v2 }

}
UNION
{ ?v1 :p ?v4 }

}
UNION
{ ?v4 :p ?v3 }

}

Figure 9.6: An example of a monotone query featuring a join of two unions of four triple
patterns each.

The purpose of these artificial UCQs is to test the performance of our algorithm in
difficult cases, particularly the UCQ rewriting and UCQ minimisation. For this evaluation,
we consider the case when the query is in its conjunctive normal form.

9.2 Machine Specifications

Experiments were run remotely on a single machine with two Intel Xeon E5-2609 V3 CPUs
and 32GB of RAM running Debian v.7.11. The max memory size was set to 10GB during
execution.
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9.3 Results

We now present the results of the experiments that were carried out to test the performance
of our software on all of the aspects denoted by our questions.

9.3.1 Real-world Queries

We begin by showing the results of our algorithm over the real-world queries from the LSQ
dataset described in Section 9.1.1, starting with the runtimes for each step of the algorithm,
followed by the number of additional duplicates detected compared to our baseline method.

Runtimes

Figure 9.7 shows a box plot of the runtimes for each step of the algorithm: rewriting to
a normal form (Rewrite), graph representation (Graph), minimisation (Minimise), and
canonical labelling (Label); finally, we also show the total runtimes (Total Time). It is
important to highlight that the x-axis is in logarithmic scale.
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Figure 9.7: Runtimes for each step of the canonicalisation algorithm

We now present the results of performing the full canonicalisation method on all the
queries in our test group. The results in Figure 9.7 indicate that the construction of the
r-graph is the step that takes the most time on average, followed by the canonical labelling.
This is an expected result since both the graph representation and the canonical labeling
scale with the size of the graph, and both the SWDF and WD sets contain the queries
with the largest r-graphs. However, it is noteworthy that the minimisation step presents the
largest variation of all the steps, as can be seen in the results for the SWDF and WD sets.
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In fact, in some occasions the runtime is dominated by the minimisation time rather than
the labeling time. Despite the fact that our algorithm is doubly-exponential most individual
queries were processed in just over 11ms (median). This is due to the simplicity of most
real-world queries.

Following this, we show the results of the canonicalisation method over the set of all
BGPs extracted from the queries in the LSQ dataset.
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Figure 9.8: Runtimes for each step of the canonicalisation algorithm on BGPs
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The results shown in Figure 9.8 present a similar trend to those in Figure 9.7, except
that at no point does the canonical labelling dominate the runtime of the full process. In
addition, results show that all BGPs can be processed in under a second, with at least 75%
of them being processed in under a millisecond. The one notable exception to the general
trend is the minimisation step for the WD set, where the variance between runtimes is much
more pronounced than in any of the other sets. These results are likely explained by the fact
that BGPs in real-world queries often contain very few triple patterns.

Duplicates Detected

In this section, we describe the performance of our algorithm in finding additional duplicate
queries than the baseline methods we have defined. We begin by describing our rubric, and
then present our results.

For this experiment, we started with our baseline method, and in each successive iteration
we added another step of the full algorithm, until we reached the full algorithm.

Raw The raw query string is used, without any kind of normalisation.

Parse The raw query string is parsed using Jena ARQ into its query algebra, and then
serialised back into concrete SPARQL syntax.

Label The raw query string is parsed using Jena ARQ into its query algebra, the r-graph is
constructed and canonically labelled, and then serialised back into concrete SPARQL
syntax.

Rewrite The raw query string is parsed using Jena ARQ into its query algebra, the query
is rewritten per the algebraic rules, the r-graph is constructed and canonically labelled,
and then serialised back into concrete SPARQL syntax.

Full The raw query string is parsed using Jena ARQ into its query algebra, the query is
rewritten per the algebraic rules, the r-graph is constructed, minimised, canonically
labelled, and then serialised back into concrete SPARQL syntax.

Table 9.2 shows the total number of duplicates found, while Table 9.3 shows the most
duplicates found of a single query (below) by each of the methods defined at the beginning
of this section. It is worth noting that the results in Table 9.2 indicate that the canonical
labelling is enough to detect more duplicates than our baseline method. Subsequently, the
rewriting of the queries and the minimisation do not increase this number in any significant
way, except for the WD set where the rewriting finds almost 100 additional duplicates.
However, this is an expected result since most of the queries used in these experiments are
quite simple, and are therefore unlikely to contain any redundancies.

Analogously, Table 9.4 and Table 9.5 show the total number of duplicate BGPs, and
the most number of duplicate BGPs, respectively, found by the methods described at the
beginning of this section. Once again, we see that the canonical labelling is the step of our
algorithm that finds the most additional duplicates, ranging from only 32 (DBp) up to 3,364
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Table 9.2: Total number of duplicates found by each method

Query set Raw Parse Label Rewrite Full

DBp 250,940 251,283 251,315 251,315 251,315
Geo 723,116 736,331 739,695 739,700 739,702
REn 142,032 143,523 144,007 144,007 144,008
REx 299,892 301,419 301,910 301,910 301,911
SWDF 53,061 53,263 53,388 53,388 53,388
WD 683,132 686,453 687,654 687,751 687,760

Table 9.3: Most duplicates of a single query found by each method

Query set Raw Parse Label Rewrite Full

DBp 5,464 5,514 5,514 5,514 5,514
Geo 22,582 31,379 40,744 40,744 40,744
REn 3,814 3,814 3,814 3,814 3,814
REx 14,690 14,910 14,910 14,910 14,910
SWDF 2,388 2,633 4,938 4,938 4,938
WD 232,339 232,339 232,339 232,339 232,339

Table 9.4: Total number of duplicate BGPs found by each method

Query set Raw Parse Label Rewrite Full

DBp 250,940 251,283 251,315 251,315 251,315
Geo 723,116 736,331 739,695 739,700 739,702
REn 142,032 143,523 144,007 144,007 144,008
REx 299,892 301,419 301,910 301,910 301,911
SWDF 53,061 53,263 53,388 53,388 53,388
WD 683,132 686,453 687,654 687,751 687,760

Table 9.5: Most duplicates of a single BGP found by each method

Query set Raw Parse Label Rewrite Full

DBp 5,464 5,514 5,514 5,514 5,514
Geo 22,582 31,379 40,744 40,744 40,744
REn 3,814 3,814 3,814 3,814 3,814
REx 14,690 14,910 14,910 14,910 14,910
SWDF 2,388 2,633 4,938 4,938 4,938
WD 232,339 232,339 232,339 232,339 232,339
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(Geo). However, the rewriting and minimisation steps find only a few additional duplicates
(at most 97 for WD).

9.3.2 Synthetic Queries

Synthetic CQs

We now present the results of the experiments on synthetic CQs.
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Figure 9.9: Runtimes for synthetic CQs

Figure 9.9 illustrates the runtimes – which consist in both the graph creation times and
canonicalisation times – for the different types of graphs we defined previously, except for
Miyazaki graphs. The latter results are missing because the algorithm would timeout for
Miyazaki graphs for k > 2, which gave results for only a single size (249 seconds for k = 2).
All other times are displayed in log scale. Upon analysing the data shown in Figure 9.9, we can
observe that the runtimes for 2D-Grid, 3D-Grid, and Triangle graphs, increase exponentially
as we increase their k value, which is an expected result since both the number of nodes and
edges also increase in a linear fashion after leaning, and the canonical labeling algorithm has
an exponential behaviour. On the other hand, Clique graphs runtimes increase by a double
exponential factor, which is most likely because these graphs are already lean, and therefore
the canonical labeling is done over the entire graph.

127



It is noteworthy that instances of 2D-Grid for k ≤ 10, instances of 3D-Grid for k ≤ 4,
instances of Clique for k ≤ 6, and instances of Triangle for k ≤ 6 can be canonicalised in
under a second. Conversely, for instances of 2D-Grid for k > 30, instances of 3D-Grid for
k > 8, instances of Clique for k > 8, and instances of Triangle for k > 6 (and all Miyazaki
graphs for k > 2) the algorithm would timeout.

Synthetic UCQs
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Figure 9.10: Times for UCQ stress tests

The graphs presented in Figure 9.10 show the runtimes for the synthetic UCQs, where
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each has a number of conjunctions (m value) while the x-axis presents the number of unions
inside each disjunctive query (n value).

It is noteworthy that increasing the value of n increases the size of the normalised form
more sharply than m. Values for m vary between 1 and 64 while values for n go only up to
4 before becoming too complex to be canonicalised in mere seconds or even minutes. This
makes clear that the runtimes grow exponentially, which was the expected result.

What is not considered in this experiment is the presence of multiple projections, any
solution modifiers or filter expressions. We have yet to determine appropriate test cases for
those features, but they are not key to the initial evaluation of this algorithm.

9.4 Comparison with Other Systems

In this section, we show the results of our experiments in comparison to other systems. Since
to our knowledge, no other system exists that also canonicalises SPARQL queries, we instead
compare the ability to find duplicate (equivalent) queries in a predetermined set of queries.
To do this, we have found systems that check for containment between SPARQL queries.

Table 9.6: UCQ features supported by SPARQL Algebra (SA), Alternating Free two-way
µ-calculus (AFMU), Tree Solver (TS) and Jena-SPARQL-API Graph-isomorphism (JSAG);
note that ABGP denotes Acyclic Basic Graph Patterns

Method ABGP BGP Projection Union

SA ✓ ✓
AFMU ✓ ✓ ✓
TS ✓ ✓ ✓
JSAG ✓ ✓ ✓ ✓
QCan ✓ ✓ ✓ ✓

Table 9.6 shows the features supported by each of the containment checking systems for
SPARQL found in our study. We note that none of the systems support features other than
those in monotone queries.

Figure 9.11 shows the runtimes for our comparison of both containment checkers and our
method. We note that there are two sets of queries: one that contains conjunctive queries
without projection, and the other contains unions of conjunctive queries with projection.
Both sets of queries were obtained from the JSAG project, which provided these queries as a
benchmark for checking containment. SA1, JSAG1 and QCan1 correspond to the tests on the
set of conjunctive queries without projection, whereas SA2, JSAG2 and QCan2 correspond to
the tests on the set of unions of conjunctive queries with projection. However, there are no
values for SA2 because SPARQL-Algebra does not support queries with projection. The results
indicate that both SA and JSAG take on average between a thousandth and a hundredth of
a second, whereas our method takes under a tenth of a second. Therefore, our method is
considerably slower than both containment checkers if we want to check for the equivalence
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of two queries. However, it should be noted that the number of containment checks that
were needed to find all equivalent queries is quadratic on the number of queries, whereas our
method is linear on the number of queries.
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Chapter 10

Use-cases

In this chapter, we describe some of the use-cases for which we predict our canonicalisation
technique may prove useful. These range from query caching and processing query logs,
both of which have already shown promising results, to more speculative use-cases such as
normalising automated queries, and a query taxonomy. We now discuss each of these use-
cases.

10.1 Query Caching

Canonicalisation may have applications in query caching systems, where it may improve
the cache hit rate by detecting more congruences. We may compute the canonical form of
sent queries, and store them if they haven’t been seen before, or retrieve them from the
cache otherwise. However, caching full queries may prove too specific, and thus there may
potentially be no cache hits. Therefore, it may be more practical to cache common sub-
queries rather than full queries.

Jena Caching is a caching system under development by a Master’s student that stores
results for BGPs found in queries to improve the answer times for future queries. This
system notably caches results for additional sub-BGPs based on the BGPs that appeared in
previous queries. In addition, the system uses the canonicalisation techniques and software
developed in the context of this thesis. The initial idea was to compute the powerset of all
triple patterns in a given BGP. In other words, if B = {t1, · · · , tn}, then the results for a
total of 2n − 1 BGPs would potentially be cached, if seen before, after canonicalisation was
applied. However, this näıve approach ultimately caused such an overhead that it didn’t
improve the performance of the system over the baseline of evaluating the query without
caching. Because of this, the caching strategy was altered to cache sub-BGPs based on the
selectivity of each triple pattern, as computed by Jena. Triple patterns that are more selective
will return fewer results than those that are less selective. To begin, the results for a basic
graph pattern containing only the most selective triple pattern would be cached. Without
loss of generality, let us assume that (t1, · · · , tn) is sorted by selectivity, where t1 is the most
selective triple pattern, and t2 is the next most selective triple pattern that shares a variable
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with a triple pattern preceding it (or simply the next most selective triple pattern if no such
triple pattern exists). In the next step, the second most selective triple pattern t2 would be
added to the basic graph pattern, resulting in B′ = {t1, t2}, and the results for B′ would be
checked in the cache (and potentially cached if not already in the cache, if seen before, and
if chosen by the particular caching policy). Each subsequent step would add the next most
selective triple pattern, until all triple patterns have been added. As a result, a total of n
BGPs would be cached, instead of the 2n − 1 BGPs of the näıve approach. Furthermore,
this approach minimises the total number of results stored because the process begins with
the most selective triple pattern. In this process, our canonicalisation method is used to
canonicalise these sub-BGPs in order to improve the cache hit rate.

10.2 Automated Queries

Frameworks such as the Ontology-based Data Access (OBDA) generate queries with redun-
dant joins and unions. Our method may be used to process queries to minimise these queries.
Furthermore, these queries tend to be monotone, the fragment for which our method is sound
and complete. Automated query generators may produce SPARQL queries with redundant
joins and unions [79].

10.3 Benchmarking Queries

The analyses of query logs is useful for several applications such as: studying the types of
queries and features sent to a system, determining the data that is most frequently requested,
the overall performance of a system under certain parameters, etc. However, because of
the large number of queries received by these systems [7], these analyses must be done by
machines. Furthermore, there is no guarantee that these queries have been processed in
a way that allow for an easy analysis; in fact in our own study, several queries from the
Wikidata query logs were excluded from our experiments because they were syntactically
invalid, among other reasons. Our system can be used to process the queries in these logs to
normalise them, reduce the variance and size of the query log by grouping all equivalent or
congruent queries, and remove variable that are always unbound.

Of the applications we have mentioned, we highlight the ability to study the behaviour
of queries sent to a system. This is potentially useful for the creation of query benchmarks
for new systems that need to simulate cases that are likely to occur in practice. It is possible
to create new queries that are based in queries that have been sent by real users to systems
that serve a similar purpose.

We now illustrate an example: as part of our work on a new knowledge base for aca-
demic publications and citations, BibKG, we had to adapt queries found in query logs from
Wikidata and SWDF. This process was automatised because these logs contained hundreds
of thousands of queries, some of which were not useful.

SPARQL, much like RDF in Turtle syntax, defines prefixes for IRIs that make their text

133



forms much more human-readable. Often these prefixes refer to namespaces for IRIs of a
specific service or endpoint (for example, it is standard to define the prefix rdf for IRIs
beginning with http://rdf.org/).

In order to adapt these queries to this new knowledge graph, we had to map IRIs that
refer to certain properties to our namespace. For instance, Wikidata uses the IRI
http://www.wikidata.org/prop/statement/P304 to refer to the number of pages of a pub-
lication, whereas BibKG uses the IRI http://bibkg.imfd.cl/voc#pages. Therefore, as part
of our automated process, any instances of the former IRI are replaced by the latter.

However, we found that this process was not enough to produce valid SPARQL queries
for experiments. Some of the queries contained projected variables that are never bound, as
well as other redundancies. In addition, a significant number of the queries in these logs are
duplicated instances of very simple basic graph patterns.

We found that QCan suited this work perfectly, since it addresses both of these issues
as part of the canonicalisation process. By preprocessing the queries, the total number of
queries decreased by up to a three-hundredth.

10.4 Query Taxonomy

Another use-case that we explored was the creation of a taxonomy of query patterns, in order
to complement the creation of benchmark queries, by helping to structure and understand the
contents of massive logs. Starting with high-level, more general query patterns at the root,
each level of the taxonomy would add canonicalised abstractions of queries that partition the
log into finer and finer equivalence classes, eventually ending in the raw input queries at the
leaves.

To better illustrate this idea, we begin with the query shown in Figure 10.1:

SELECT DISTINCT ?resource ?uri ?wtitle ?image
WHERE {
{

{ ?resource foaf:page <http://en.wikipedia.org/wiki/
Calendar> }

UNION
{ ?resource foaf:page <http://en.wikipedia.org/wiki/

Trackback> }
}
?resource foaf:page ?uri .
?resource rdfs:label ?wtitle .
FILTER langMatches(lang(?wtitle), ’en’).
OPTIONAL
{ ?resource foaf:depiction ?image }

}

Figure 10.1: A SPARQL query based on a simplified version of a real query.

The query shown in Figure 10.1 is based on a real query found in a log. This query
finds resources in a knowledge graph whose URI are either http://en.wikipedia.org/wiki/
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Calendar or http://en.wikipedia.org/wiki/Trackback, their labels in English, and any
associated images, if available.

SELECT DISTINCT ?var1 ?var2 ?var3 ?var4
WHERE {
{

{ ?var1 foaf:page <http://en.wikipedia.org/wiki/
Calendar> }

UNION
{ ?var1 foaf:page <http://en.wikipedia.org/wiki/

Trackback> }
}
?var1 foaf:page ?var2 .
?var1 rdfs:label ?var3 .
FILTER langMatches(lang(?var3), ’en’).
OPTIONAL
{ ?var1 foaf:depiction ?var4 }

}

Figure 10.2: The running example now with canonical labels.

The query shown in Figure 10.2 is the same query that appears in Figure 10.1, but with
canonical labels. In this taxon, all queries with the same structure will be equivalent.

SELECT DISTINCT ?var1 ?var2 ?var3 ?var4
WHERE {
{ ?var1 foaf:page <http://en.wikipedia.org/wiki/

Calendar> .
?var1 foaf:page ?var2 .
?var1 rdfs:label ?var3 .
OPTIONAL { ?var1 foaf:depiction ?var4 } }
UNION
{ ?var1 foaf:page <http://en.wikipedia.org/wiki/

Trackback> .
?var1 foaf:page ?var2 .
?var1 rdfs:label ?var3 .
OPTIONAL { ?var1 foaf:depiction ?var4 } }
FILTER langMatches(lang(?var3), ’en’)
}

Figure 10.3: The running example now in a UCQ normal form, and having pushed the
optional pattern inside.

The query shown in Figure 10.3 is the running example normalised according to the rules
described in Sections 5.1.1 and 5.2.1. In this taxon, we will find that in addition to all the
equivalences found in the previous taxon, we also find more equivalences for all queries that
have this normal form.

The query shown in Figure 10.4 is the same query as the one in Figure 10.3, except for
the fact that the IRIs http://en.wikipedia.org/wiki/Calendar or http://en.wikipedia.
org/wiki/Trackback have been replaced with fresh variables. As a result, this taxon groups
all queries that have the same overall structure. Furthermore, queries in this taxon could
be used to design query plans that are independent of any specific values, where variables
serve as parameters to be replaced for specific queries. For instance, variables ?var5 and
?var6 – previously associated to http://en.wikipedia.org/wiki/Calendar and http://
en.wikipedia.org/wiki/Trackback, respectively – may be replaced with IRIs from other
domains to a similar effect.
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SELECT DISTINCT ?var1 ?var2 ?var3 ?var4
WHERE {
{ ?var1 foaf:page ?var5 .
?var1 foaf:page ?var2 .
?var1 rdfs:label ?var3 .
OPTIONAL { ?var1 foaf:depiction ?var4 } }
UNION
{ ?var1 foaf:page ?var6 .
?var1 foaf:page ?var2 .
?var1 rdfs:label ?var3 .
OPTIONAL { ?var1 foaf:depiction ?var4 } }
FILTER langMatches(lang(?var3), ’en’)
}

Figure 10.4: The running example from Figure 10.3 with the IRIs replaced with variables.

SELECT DISTINCT ?var1 ?var2 ?var3 ?var4
WHERE {
{ ?var1 :p ?var5 .
?var1 :p ?var2 .
?var1 :p ?var3 .
OPTIONAL { ?var1 :p ?var4 } }
UNION
{ ?var1 :p ?var6 .
?var1 :p ?var2 .
?var1 :p ?var3 .
OPTIONAL { ?var1 :p ?var4 } }
FILTER langMatches(lang(?var3), ’en’)
}

Figure 10.5: The running example from Figure 10.4 with all predicates replaced with a generic
IRI :p.
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Figure 10.5 contains the running example as shown in Figure 10.4 where all terms in the
predicate position have been replaced with an identical, standard IRI ?p. This taxon will
thus group all queries based on the shape of their query patterns, i.e. if we were to draw
graphs based on the basic graph patterns in these queries, the graphs would be isomorphically
equivalent. Queries in this taxon may allow us to analyse the features used, the size of basic
graph patterns, the connectivity of basic graph patterns, etc.

Eventually, we may strip queries from all their features, until we are left with the root of
all SPARQL queries: a single, generic triple pattern of the form (?s, ?p, ?o). An example of
this can be seen in Figure 10.6.

SELECT *
WHERE {
?s ?p ?o .

}

Figure 10.6: The simplest graph pattern.

These taxons we have presented are some of the ideas we have come up with based on
some of the applications mentioned earlier in this Section. However, it is clear that other
taxons may be defined that are more appropriate for other applications, and as such, there is
no one taxonomy to fit all possible applications. As part of our future work, we may want to
formalise the definition of query taxons in a way that is flexible enough to represent groups
of queries independent of domain.

We believe that this idea of a query taxonomy may be useful for analysing and classifying
queries in large sets of queries.

In addition, we believe that it may be used for caching query plans instead of query
results, such as the example described in Section 10.1. This is because we may store the
query plans for more general queries, leaving any variables they contain as parameters to be
filled depending on the specific query. We believe that query plans for similar queries may
be used instead of having to compute a new query plan.
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Chapter 11

Conclusion

11.1 Summary

The RDF framework is a fundamental part of the Semantic Web, providing a standard for
the representation of data in a formal suitable for the goal of the Semantic Web. Because of
the significant growth in usage of the Semantic Web and Linked Data, it was necessary to
access this data for both users and machines. SPARQL was then introduced as the standard
query language for the retrieval of RDF data, while containing most of the features that are
standard for query languages based on relational algebra such as joins, unions, filters, etc.

However, as a consequence of the expressiveness of SPARQL, the same query may be
expressed in different ways. This is a problem in situations where we may want to process
unique queries only once, or to group queries that are equivalent, such as in query caching
systems. We propose the canonicalisation of SPARQL queries to address this problem, where
we compute a canonical form for queries such that any two equivalent or congruent queries
will have the same canonical form. However, because the equivalence decision problem for
the full language is undecidable, we are unable to compute a canonical form that meets this
requirement for all SPARQL queries. Instead, we propose a “best-effort” canonicalisation
method that is sound, meaning that a query is congruent to its canonical form, for the full
language, and complete, meaning that any two congruent queries will have the same canonical
form, for all monotone SPARQL queries (i.e. queries that contain only joins, unions and
projection). Furthermore, we propose that this canonicalisation has practical use despite its
high worst-case complexity, under the assumption that most queries that are likely to occur
in reality are simple.

Two important aspects of this canonicalisation are the iso-canonicalisation and equi-
canonicalisation: the former is managed by a NAUTY style canonical labelling that produces
labels that are identical for any two isomorphically equivalent RDF graphs; the latter is
managed by the computation of the core of an RDF graph, in a process called leaning, which
produces RDF graphs without any redundant triples.

The steps of our method have been divided in the following: the algebraic rewriting of
the query, the representation of the query as an RDF graph (denoted r-graph), the minimi-
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sation of monotonic fragments of the query, the iso-canonicalisation of the r-graph, and the
serialisation of the canonicalised r-graph back into a canonical SPARQL query.

The first step transforms SPARQL queries in an algebraic form into equivalent normal
forms, such as monotone sub-queries into unions of conjunctive queries (UCQs), introducing
a first level of normalisation. The second step – the representation of the query as an RDF
graph – serves to abstract away the order of operands in commutative operators (such as triple
pattern in a basic graph pattern), transform binary distributive operators into n-ary operators
(such as unions of unions into a single union), and allow us to apply iso-canonicalisation
and equi-canonicalisation over the resulting graph. For the third step, the minimisation,
we identify all UCQs, and for each UCQ we lean all the CQs it contains, eliminating all
redundant triple patterns. After this, we partition the CQs in equivalence classes based
on the projected variables they contain, and remove all redundant CQs in each partition.
The remaining CQs are once again merged into a single, minimised UCQ. Subsequently, the
resulting r-graph is iso-canonicalised, which allows us to determine canonical variable names
that are based on the structure of the r-graph.

We have developed a system using the Apache Jena framework, BLabel package, etc., in
order to provide a proof of concept of our method, by measuring the runtimes of the algo-
rithm for real-world queries, and to provide a useful and easy-to-use system for applications
that need canonicalisation (full or otherwise) of queries, such as query caching, analysis of
query logs, query benchmarking, etc. Furthermore, the experiments that were carried out to
prove the efficiency of the algorithm in real-world queries show that the algorithm is prac-
tical despite the theoretical complexity of the problem. In addition, the point at which the
algorithm breaks and can no longer process a query in a reasonable time was never reached
in practice, and instead had to be enforced using synthetic queries. Finally, the number of
duplicated queries our method can detect is indeed higher than the number of duplicated
queries that syntactic equivalence tools can detect.

11.2 Key Results

Our hypothesis states that we could design and implement a canonicalisation algorithm for
SPARQL queries that:

� Is practical in a real-world setting, despite the high complexity of the problem.

� Is sound for all SPARQL queries, and complete for monotone queries.

� Finds more duplicates than baseline syntactic methods.

To address the first requirement, we point to the results presented in Section 9.3.1, which
show that the vast majority of real-world queries were canonicalised in under 15 milliseconds,
despite the fact that the algorithm has a high cost in the worst-case scenario. This is because
queries that enforce a worst-case scenario appear to be very unlikely to occur in a real
setting (based on currently available logs), which was made further evident by the fact that
the algorithm in our experiments only failed for difficult synthetic cases.

139



To address our second hypothesis, we point to the proofs presented in Chapter 6, which
show that the algorithm is sound for all SPARQL queries because each step of the canoni-
calisation algorithm preserves congruence, and that the algorithm is complete for monotone
queries, but will miss equivalences and congruences for larger fragments of SPARQL.

Finally, to address our third hypothesis, we point to the results presented in Section 9.3.1,
which show that our algorithm is able to find more duplicates in query logs than the baseline
methods we defined. We highlight the fact that the majority of additional duplicates are
found because of the canonical labelling of variables, whereas the minimisation of monotone
fragments finds only a few additional duplicates. This is most likely because real-world queries
tend to be simple, and are unlikely to contain any redundancies. On the other hand, as stated
in Section 10.2, certain automated systems may produce queries that contain redundancies,
so we believe our system may benefit applications that make use of said systems.

11.3 Discussion

Aside from the research contributions previously highlighted, a number of other practical
contributions and artifacts have also resulted from this work:

� A system that allows for the canonicalisation of SPARQL 1.1 queries in a reasonable time.

� Test-cases to check the correctness of our canonicalisation algorithm that, though unable
to prove correctness for all possible SPARQL queries, serve as a benchmark for any future
works that may attempt to canonicalise SPARQL queries.

� The formalisation of the entirety of SPARQL 1.1, filling a gap in the state of art.

However, despite our best efforts, we have identified some limitations of this study:

Although the runtimes are well under a second, for applications such as query caching,
it may sometimes be more efficient to run the queries again. The developer of Jena Caching
has opted to turn off the minimisation step of the canonicalisation, assuming that the vast
majority of additional cache hits would be a result of the canonical labelling rather than
the minimisation. This is most likely the case because the sub-queries that are cached are
basic graph patterns instead of full monotone queries, and are therefore not likely to contain
any redundancies; also, as observed previously, queries in practice tend to be quite simple,
and thus not prone to being redundant.. This suggests that further study is warranted
to determine the trade-off between more complete canonicalisation (that will capture more
congruences) and less complete canonicalisation that might miss some congruences, but run
more efficiently. We anticipate that this trade-off may also depend on the specific application
in question, rather than there being a one-fits-all answer.

Furthermore, as stated, our canonicalisation is only complete for monotone queries, which
is a significant portion of SPARQL, but leaves many queries that are likely to occur in a
real-world setting. These include queries with built-in expressions (such as those in FILTER
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expressions), optional graph patterns, and property paths. Although both built-in expres-
sions and optional graph patterns make the equivalence decision problem undecidable, there
may exist certain fragments of SPARQL that are still decidable, and may allow a canoni-
cal form, for said features with certain restrictions. In addition, we have studied fragments
of SPARQL with property paths that allow canonical forms, and the equivalence decision
problem is decidable for this fragment, but may not be practical.

Nevertheless, these limitations present an opportunity for further research and future
work.

11.4 Future Work

Perhaps we can design a form of adaptive canonicalisation where variations of the canonicali-
sation algorithm may be designed and extended based on the features contained by a specific
query. For instance, if the input query is a BGP we may choose to only canonically label
the query instead of minimising, such as in the case of Jena Caching mentioned earlier. Our
work on the canonicalisation of SPARQL queries with property paths is incomplete, and we
can see that further research can be done on this topic. We may yet find a larger fragment of
SPARQL that allows property paths with certain limitations, and may still allow a canonical
form. Furthermore, we have introduced the idea of a query taxonomy, though it is in its early
stages. This idea requires a formalisation before it can be applied to new systems. Finally,
the processes that comprise our canonicalisation method are not unique to SPARQL, and can
therefore also be applied to other querying languages that are also widely used, and perhaps
also have a larger number of simple queries than complex ones, such as SQL.
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SPARQL query containment under SHI axioms. In AAAI Conference on Artificial In-
telligence, 2012.
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[29] Wojciech Czerwiński, Wim Martens, Pawel Parys, and Marcin Przybylko. The (almost)
complete guide to tree pattern containment. In Proceedings of the 34th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, pages 117–130, 2015.

[30] Martin Dürst and Michel Suignard. Internationalized Resource Identifiers (IRIs).
Request for Comments (RfC) 3987, January 2005. https://tools.ietf.org/html/
rfc3987.

[31] Diego Figueira. Containment of UC2RPQ: the hard and easy cases. In 23rd International
Conference on Database Theory (ICDT 2020). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020.

[32] Aldo Gangemi, Stefano Leonardi, and Alessandro Panconesi, editors. International Con-
ference on World Wide Web (WWW). ACM, 2015.
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