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MÉTODO DE GENERACIÓN DE COLUMNAS PARA PROBLEMAS DE
SELECCIÓN DE ATRIBUTOS DE GRAN ESCALA

El actual crecimiento en los datos disponibles y su utilización en campos como el aprendizaje
automático ha aumentado la demanda de algoritmos capaces de abordar problemas de gran
escala. En consecuencia, el problema de selección de atributos es fundamental para construir
modelos precisos y coherentes a partir de grandes conjuntos de datos. A pesar de que existe
una gran cantidad de métodos para este problema, sólo un número limitado de estos es capaz
de producir soluciones en un tiempo razonable y sin comprometer la calidad de las soluciones
en problemas de este tipo.

Esta investigación propone un algoritmo escalable, usando un método de descomposición
para problemas de optimización cónica de gran complejidad. Se trata de un método de
generación de columnas que descompone una versión cónica de segundo orden del problema
de selección de atributos, regularizando coeficientes asignando parámetros de penalización.
Se demuestra que el método es equivalente a LASSO, y es capaz de resolver instancias de
escala “mediana a grande” (miles de atributos y observaciones) en cuestión de segundos, en
instancias donde otras alternativas demoran minutos o incluso horas.

El método es similar a un enfoque Dantzig-Wolfe, dado que resuelve dos subproblemas en
cada iteración: (1) el problema cónico de segundo orden original, pero en un subconjunto de
su región factible, y (2) un problema relajado obtenido mediante la relajación Lagrangiana de
las restricciones cónicas de alta complejidad. El problema relajado genera nuevas soluciones
para expandir la región factible del problema maestro. En este trabajo se modifica el método
de generación de columnas para considerar casos de problemas relajados no acotados y
construir soluciones artificiales en ellos. Estas soluciones artificiales se construyen a partir
de información de los problemas no acotados.

El método propuesto puede resolver eficientemente instancias de escala “mediana a grande”,
con una penalización considerable, en cuestión de minutos, mientras que el problema original
y LASSO requieren más de 20 minutos para producir esa solución. Sin embargo, el método
propuesto muestra un rendimiento más lento en algunos casos. Espećıficamente, el método
de descomposición es más eficiente que el problema original cuando selecciona 40% o menos
atributos, y es más eficiente que LASSO cuando selecciona 4% o más atributos.
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COLUMN GENERATION-BASED DECOMPOSITION FOR LARGE-SCALE
FEATURE SELECTION PROBLEMS

The current growth in the size of available datasets and its uses in machine learning
has increased the demand for fast algorithms capable of addressing large-scale problems.
Consequently, the feature selection problem is central to construct meaningful and accurate
models from large-scale data. While numerous methods for this problem exist, only a limited
number of them can effectively handle large-scale datasets in a reasonable time without
compromising solution quality.

This research proposes a scalable algorithm based on a decomposition method for hard-
to-solve instances of conic optimization problems. The solution involves a column generation
method that deconstructs a Second-Order Cone formulation of the feature selection problem.
It regularizes the coefficients using penalization parameters and has been proven to be
equivalent to LASSO. The method can solve medium-to-large scale instances (thousands
of features and observations) in a matter of seconds, whereas other exact optimization
alternatives take minutes or even hours.

The method is similar to a Dantzig-Wolfe approach. It solves two subproblems in each
iteration: (1) the original Second-Order Cone Problem on a subset of its feasible region, and
(2) a relaxed problem obtained via Lagrange relaxation of the challenging conic constraints.
The relaxed problem provides new solutions to expand the master problem’s feasible region.
In this work, the column generation method is adjusted by considering cases of unbounded
relaxed problems, and constructing artificial solutions when that is the case. These artificial
solutions take into account the characteristics of the unbounded problems.

The proposed method can efficiently solve medium-to-large instances with substantial
penalization within a couple of minutes, while the original problem and LASSO require over
20 minutes to produce a solution. However, the proposed method exhibits slower performance
in some cases. Specifically, the decomposition method outperforms the execution time of the
original problem when selecting 40% or fewer features, while it outperforms LASSO when
selecting 4% or more features.
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Chapter 1

Introduction

Feature selection is a critical element in the field of machine learning and data analysis.
Its goal is to identify the most informative or relevant features within a given set when
attempting to explain the value of certain feature of interest. Feature selection has gained
significant importance in recent decades due to the exponential increase in data usage in
various domains, which has also led to more diverse and larger datasets. The ability to
effectively select relevant features not only enhances the performance and interpretability
of machine learning models but also addresses challenges such as high-dimensional data,
computational complexity, and overfitting.

Given the importance of this technique, over time, there have been many proposals on
how to carry out this task. Well-known classic examples of this technique in the field of data
analysis include the use of genetic algorithms employed by Holland (1975), the information
gain criterion proposed by Quinlan (1986), the LASSO (Least Absolute Shrinkage and
Selection Operator) method by Tibshirani (1996), and the sequential feature selection by
Kohavi & John (1997).

The following chapters focus on a specific subcategory of these methods: those that
perform feature selection with exact optimization while simultaneously minimizing the sum
of squared errors. Among the methods mentioned earlier, the only one that falls into this
category is LASSO, which minimizes the sum of squared errors subject to the constraint
that the ℓ1 norm of the weights assigned to each feature is less than a certain threshold.
Other exact optimization models have been proposed for this problem, with mechanisms
relatively similar to LASSO. An example of this is the model described by Bertsimas et al.
(2016), where instead of constraining the magnitudes of the coefficients associated with each
feature, penalties are imposed on the nonzero coefficients. In other words, it solves the
best-subset selection problem while minimizing the sum of squared errors. The problem
with this modeling approach is that it involves integer variables, so to solve the problem in
competitive times, the feature set should be of small to medium size. It can handle problems
with thousands of observations and hundreds of features, solving them in a matter of minutes.

This work aims to address instances of the feature selection problem with at least thousands
of features and tens of thousands of observations (medium-to-large size instances) in a matter
of minutes. To develop an efficient algorithm to solve problems of this size, this text proposes

1



the following steps.

1. Formulate a simple relaxation form of the Mixed-Integer Quadratic Problem addressed
by Bertsimas et al. (2016), which can minimize squared errors and select relevant
features, but in considerably less time than the initial problem.

2. Propose a conic formulation of the relaxed problem, to make use of the nonlinear
decomposition method proposed by Chicoisne (2023). The objective of the decomposition
method is to solve the problem in less than 10% of the original time for instances of
medium-to-large size.

3. Conduct various experiments to validate the efficacy of the proposed method in generating
meaningful solutions, comparing it against the conic formulation of the relaxed problem
as well as other classic exact optimization methods for feature selection.

Different approaches for the second step, and further analysis of each of these approaches,
are discussed in the methodology, available in Chapter 3. The results for the different
alternatives proposed, with different parameter configurations, are presented in Chapter 4.
The selected decomposition method excels at efficiently solving medium-to-large problems,
outperforming the original conic relaxation and the LASSO method in several instances.

2



Chapter 2

Theoretical Framework

2.1 Feature Selection Problem

The feature selection problem is a process that aims to reduce the quantity of features of a
given dataset. In other words, this method selects a subset of relevant features (according to
a certain metric) from an original set of them, which may include features with no relevance
at all. Features that are not part of the aforementioned relevant subset are removed from the
problem or the working database. This technique often leads to improved results in various
aspects, including a decrease in computational costs, enhanced accuracy of machine learning
models, and greater interpretability when analyzing results (Miao & Niu, 2016).

This process has become a necessity today in various fields due to the exponential growth
in the size (both in quantity and dimensionality) of data collected and stored each year. This
is primarily attributable to the ever-increasing volume of information gathered from various
sources, including various types of sensors, surveillance images, videos, social networks, and
many others. The challenges associated with this rapid data growth have been studied
for decades across various fields, including astronomy, statistics, optimization, and other
disciplines.

In his book, “Dynamic Programming” (Bellman, 1957), Richard Bellman coined the term
“the curse of dimensionality” to describe one of the challenges that arise in problems with
high-dimensional databases. With this term, he explains that as the dimensionality of the
data increases, the number of observations required to achieve good coverage (representation)
of the feature space increases exponentially. One consequence of insufficient coverage of
the feature space today is that many machine learning techniques may struggle to learn
and effectively generalize to new datasets (see Figure 2.1). In this context, reducing data
dimensionality decreases the number of features without diminishing the number of available
observations, resulting in a more effective representation of the final feature space. Therefore,
methods that reduce the dimension of a problem emerge as a viable alternative to address
this “curse”.

Additional challenges are linked to a high number of features within a dataset, which can
be further explored in this section. Nonetheless, the phenomena detailed previously suffice
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Figure 2.1: Detailed graph of the “Hughes’ Phenomenon” from the book “Supervised
Classification Techniques” by Richards (2022). The accuracy of a model improves with more
features up to a point, but beyond that, an increase in dimensionality results in a decrease
in model accuracy.

to underscore the relevance of feature selection methods nowadays.

Regarding existing methods, as can be inferred from the previous paragraphs, there is
a wide variety of them. According to Miao & Niu (2016), feature selection methods can
be classified in two ways: in terms of availability of label information data and also by the
different strategies of searching the most relevant features.

2.1.1 Feature Selection Methods in Terms of Availability of Label
Information

Miao & Niu (2016) classified feature selection methods into three families: supervised methods,
unsupervised methods, and semi-supervised methods. The following provides a description
of these three categories and an overview of some of the most relevant methods within each
group.

1. Supervised methods: These methods rely on the availability of labeled data and
use the target variable to guide the selection of relevant features. They assess the
relationship between features and the target variable, considering the predictive power
of each feature with respect to the outcome of interest.

The work presented in this document focuses on supervised methods providing an
exact optimization solution for regression problems. Examples of this subcategory
include LASSO (Tibshirani, 1996) and Elastic Net (Zou & Hastie, 2005). Both methods
minimize the sum of squared errors between the objective variable and a linear combination
of all available features, while imposing a penalty on the number of selected features
or their magnitude.
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Other common examples of supervised methods include those constructing a Feature
Ranking (Akman et al., 2023). These methods rely on a pre-defined metric to rank
features, from which the selection is performed. The scoring process may involve
measuring the correlation of each feature with the independent variable (Cui et al.,
2010), setting a certain threshold as in Minimum Variance Thresholding (Hou et al.,
2006), performing a Chi-squared test (Pearson, 1900), using Recursive Feature Elimination
(Guyon et al., 2002), and more.

2. Unsupervised methods: These techniques perform feature selection by relying solely
on the structure of the data, without considering any specific outcome or target variable.

Examples include the widely known Principal Component Analysis (PCA) (Rahmat
et al., 2023), clustering methods such as k-means (Khaleel, 2011), and autoencoders
(Xu et al., 2019).

3. Semi-supervised methods: These approaches make use of a combination of labeled
and unlabeled data to select features, identifying patterns and structures within the
dataset to make decisions about feature relevance. Semi-supervised methods are especially
useful when labeled data is limited or expensive to obtain.

A wide variety of semi-supervised feature selection methods exists, with their classification
within this family as described by Sheikhpour et al. (2017). These methods go beyond
the scope of this work.

2.1.2 Feature Selection Methods According to the different Strategies
of Searching the Most Relevant Features

Miao & Niu (2016) also classify feature selection methods into three search strategies to look
for the most relevant features in the dataset. The following provides a description of these
three categories and an overview of some of the most relevant methods within each group.

1. Filter Methods: These methods utilize statistical metrics to assign a score to each of
the available features, independently of the method or model used to solve the original
problem. They are useful for large-scale problems, as they are often efficient compared
to other types of feature selection methods.

Common filter methods include Correlation-based methods (Cui et al., 2010), Chi-
squared test (Pearson, 1900) , and Variance thresholding (Hou et al., 2006).

2. Wrapper Methods: These methods use the algorithm or model applied to address
the original problem, typically a prediction task, to obtain information and evaluate
different features based on their results. In other words, these methods test models with
different subsets, measuring their predictive performance in each case to determine the
ultimate feature space.

Common wrapper methods include Forward selection (Aha & Bankert, 1996), that
starts with an empty subset of features and incorporates the one that performs best
regarding the prediction of the target variable. It iteratively adds features that improve
performance until the model’s performance decreases (stopping criterion). On the

5



opposite, there is also Backward elimination (Aha & Bankert, 1996), that begins with
the subset of features containing them all, then removes less relevant features (whose
removal improves model performance) until the elimination of a feature does not yield
any performance gain.

3. Embedded Methods: These methods include feature selection within the same model
that solves the original problem. They are not independent stages or concepts in the
whole process.

Common embedded methods are LASSO (Tibshirani, 1996), Elastic Net (Zou & Hastie,
2005), and feature selection methods based on decision trees (Chen et al., 2020). In
all these methods, feature selection is performed simultaneously with problem solving.
They are part of the model itself.

As can be inferred from the previous subsection, this work focuses on embedded methods,
using exact optimization as a prediction and feature selection model at once. Subsection 2.4.1
introduces notation and other details associated with the models of interest.

2.2 Exact Optimization

To understand what feature selection methods with exact optimization are, one must first
define the concept of exact optimization. According to Rothlauf (2011), optimization methods
can be broadly categorized into two groups: exact optimization methods, which guarantee
the discovery of an optimal solution (either the minimum or maximum solution achievable
for a given problem), and heuristic optimization methods, which cannot ensure an optimal
solution, even though they may occasionally found one. The demand for optimization
heuristics arises from the complexities involved in solving problems using exact optimization
methods. There exist problems of such complexity in their feasible space, that the execution
times required to identify an optimal solution render exact solution methods impractical.
Heuristics take advantage of the structure of a problem to locate solutions that closely
approximate the optimal solution, and this can be accomplished in significantly less time than
through exact optimization. Nevertheless, certain problem contexts need precision, leaving
no room for errors, and in such cases, exact optimization methods become indispensable.
Furthermore, exact optimization methods offer a baseline for assessing and determining the
efficiency of heuristics in discovering solutions that closely approximate the optimal outcome.
Hence, it is almost always imperative to model and solve the exact optimization method.

2.2.1 Exact Optimization Problems

In general, an exact optimization problem can be defined in several ways. Using the notation
of Boyd & Vandenberghe (2004), an optimization problem has the form
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min
x∈Rn

f0(x) (2.1)

subject to fi(x) ≤ bi, i = 1, . . . ,m.

In this formulation, minx f0(x) refers to the minimization problem of the function f0 : Rn →
R with respect to the variable vector x = (x1, . . . , xn) ∈ Rn. The function f0 is the objective
function of the problem, the functions fi : Rn → R, i = 1, . . . ,m, are the constraint functions
that the problem is subject to, and b1, . . . , bm are the bounds of these constraints. Note that
any optimization problem with a scalar objective function can be written in this form. In the
case of problems aiming to maximize a function, it suffices to take f0 as the negative of that
function. Regarding inequality constraints, a similar principle can be applied to express all
constraints as in (2.1). In the case of equality constraints, they can be bounded from both
above and below by the same value.

To further generalize the concept of an optimization problem and simplify the notation,
it can be expressed as

min
x

f0(x) (2.2)

s. t. x ∈ X ,

where X represents the intersection of all constraints applied to x, including equalities,
inequalities, and, in general, any set in which x must reside. This set is commonly referred
to as the feasible region.

A vector x∗ ∈ Rn that satisfies x∗ = argminx∈Xf0(x) is referred to as the optimal solution
of the problem or simply the optimum. Algorithms designed to solve these optimization
problems (i.e., search for x∗) exploit the specific structure of each problem. There are
various methods and criterion to verify the optimality of a particular point. One of the most
extensively studied problem types, featuring numerous criteria and solution algorithms, is
convex optimization. All exact optimization problems addressed in this work belong to this
category.

2.2.2 Convex Optimization Problems

Based on the definition provided by Boyd & Vandenberghe (2004), in Chapter 4, pages
136-146, a convex optimization problem can be expressed as

min
x∈Rn

f0(x) (2.3)

s. t. fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p.
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Here, f0, . . . , fm : Rn → R are convex functions, and h1, . . . , hp : Rn → R are affine
functions. This definition requires convexity in the objective function and in functions that
should take negative values. Furthermore, it imposes that equality constraints, depending
on x, should be affine. However, this definition does not require that all these constraints
necessarily exist. In other words, problems like unconstrained convex objective functions,
linear problems, and problems with only inequality constraints less than zero that meet
convexity are also convex optimization problems.

Numerous advantages exist when solving convex optimization problems, including:

1. The feasible region X of a convex problem is a convex set, meaning that any local
minimum of the problem is necessarily a global optimum. Therefore, there’s no possibility
of algorithms getting stuck in some local minima.

2. As a consequence of the previous point, these problems, especially when f0, . . . , fm,
and h1, . . . , hp are differentiable functions, can be addressed using algorithms such
as gradient descent (Curry, 1944), the Newton method (Fletcher, 2013), and various
derivatives of these techniques.

3. In certain instances, optimality conditions can be utilized to determine an optimal
solution of a convex problem. A notable example of this is the sufficiency of the
Karush–Kuhn–Tucker conditions to characterize an optimal solution for a differentiable
convex problem (Karush, 1939).

2.2.3 Lagrange Relaxation of an Optimization Problem

Lagrange relaxation is an important concept to understand the different models that are
detailed in the next chapter. It is detailed in Lemaréchal (2001), where the optimization
problem involves the maximization of an objective function subject to equality constraints.
In this work, however, the focus is on problems with constraints of all types. Boyd &
Vandenberghe (2004), Chapter 2, pages 215–223, define the Lagrange function of a problem
as the sum of the objective function and weighted sums of the problem’s constraints in the
form

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x), (2.4)

where λi is the Lagrange multiplier associated with the constraints of the form fi(x) ≤ 0,
and similarly, νi is the Lagrange multiplier for the constraints of the form hi(x) = 0.

The common aim when using this function is to optimize the objective function of a
problem, either minimizing or maximizing it, while also penalizing any violation of the
problem’s constraints using the parameters λ and ν. This approach often simplifies the
problem-solving process, making it more tractable compared to directly dealing with the
original problem. The introduction of the Lagrange multipliers λ and ν allows the incorporation
of the constraints as penalties in the objective function, enabling the optimization algorithms
to handle the problem in a more efficient manner.
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2.2.4 Lagrange Dual Problem

Another important function that stems from the Lagrange function is the Lagrange dual
function. This function is the infimum value taken by the Lagrange function L(x, λ, ν) with
respect to x, the original variables of the problem. This is, for any value of (λ, ν), the
Lagrange dual function is

g(λ, ν) = inf
x∈Rn

L(x, λ, ν) = inf
x∈R

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)
. (2.5)

Note that this function may diverge if it is unbounded with respect to x. In this case, the
Lagrange dual function takes the value −∞. The Lagrange dual function also satisfies the
following property: for any vector λ ⪰ 0 (with all its components positive),

g(λ, ν) ≤ f0(x
∗). (2.6)

Here x∗ is the optimum solution of the original problem. This result is straight forward, as x*
satisfies the problem’s constraints fi(x

∗) ≤ 0 and hi(x
∗) = 0, which, along with the condition

λ ⪰ 0, yields L(x∗, λ, ν) ≤ f0(x
∗). Furthermore, since g(λ, ν) takes the infimum with respect

to x of L(x, λ, ν), it follows that

g(λ, ν) = inf
x∈Rn

L(x, λ, ν) ≤ L(x∗, λ, ν) ≤ f0(x
∗). (2.7)

Thus, the Lagrange dual function serves as a lower bound of the optimum objective value of
the original problem. Since g(λ, ν) is a lower bound of the optimum value of the objective
function f0(x

∗), it is also a lower bound of any feasible point x of the original problem

g(λ, ν) ≤ f0(x). (2.8)

This relationship is known as “weak duality”. Considering that the lower bound holds for
any λ ⪰ 0 and ν ∈ Rp, one can solve the alternative problem

max
λ∈Rm, ν∈Rp

g(λ, ν) (2.9)

s. t. λ ⪰ 0,

which is referred to as the Lagrange dual problem of the optimization problem. Its optimal
solution (λ∗, ν∗) also satisfies g(λ∗, ν∗) ≤ f0(x

∗), which can even lead to equality in certain
cases. When equality can be achieved for some optimization problem, it is said that “strong
duality” holds for that problem.

2.2.5 Particular Case: Conic Constrained Problems

Before introducing conic constrained problems, here are some definitions:
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1. A set C is a cone if, for every element x ∈ C and any non-negative scalar θ ≥ 0, it
holds that θx ∈ C. In other words, a set is a cone if all non-negative scalings of its
elements also belong to it.

2. A set C is a convex cone if, for every pair of elements x1, x2 ∈ C and any pair of
non-negative scalars θ1, θ2 ≥ 0, it holds that θ1x1 + θ2x2 ∈ C.

3. A set C is a proper cone if it is a convex cone that is closed, has a non-empty interior,
and does not contain any lines.

4. The dual cone of a cone C is a set C∗ whose elements y satisfy the condition that the
inner product between y and any element x ∈ C is always non-negative. This is

C∗ = {y : ⟨x, y⟩ ≥ 0, ∀x ∈ C}, (2.10)

where ⟨x, y⟩ = x · y =
∑

i xiyi is the inner product between vectors x and y.

In order to extend the definitions from the previous subsections to encompass more types
of problems, we introduce conic constrained problems in the form

min
x∈Rn

f0(x) (2.11)

s. t. − fi(x) ∈ Ki, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,

where fi : Rn → Rki and Ki ⊆ Rki are proper cones.

Similar to the problems presented in the previous subsections, the Lagrange function for
this type of conic constrained problem can be defined as

L(x, λ, ν) = f0(x) +
m∑
i=1

⟨λi, fi(x)⟩+
p∑
i=1

νihi(x), (2.12)

The difference compared to the definition (2.4) is that each fi(x) is associated with a vector
λi ∈ K∗

i , where the star symbol denotes the dual cone of Ki. Therefore, if x is a feasible point
of problem (2.11), it satisfies −⟨λi, fi(x)⟩ ≥ 0. Following the same arguments as in subsection
2.2.3, for feasible points of the conic constrained problem, the relaxation (2.12) is a lower
bound of the objective function of this problem at the same point. Consequently, everything
derived from the Lagrange relaxation, such as the dual Lagrange problem, is analogous for
conic constrained problems.
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2.3 Large-Scale Optimization

Just as handling large datasets poses a challenge in various ways for different types of
problems, a large number of variables or constraints in an optimization problem increases
its complexity, particularly in computational terms. Solution methods to address large-
scale problems involve developing techniques and algorithms that provide a solution that
is sufficiently close or identical to the optimal solution of the original problem within a
reasonable execution time.

Some techniques for solving large-scale problems include decomposition methods, heuristics,
approximation algorithms, among others. Naturally, there exists a trade-off between the
quality of the solution of these methods and their computational efficiency. This paper will
focus solely on decomposition methods.

Decomposition methods are optimization techniques that involve breaking down a large-
scale optimization problem into smaller subproblems, which can, in principle, be solved more
efficiently than the original problem. Each of these subproblems is solved separately, and the
solutions they generate serve as additional information for the rest. These different solutions
together form a framework capable of providing the solution to the large-scale optimization
problem.

2.3.1 Decomposition Methods for Linear Problems

Decomposition methods for solving large-scale linear optimization problems have been studied
for decades. The following subsections present two important decomposition methods.

2.3.1.1 Benders Decomposition

The method proposed by Benders (1962) is a technique for solving large-scale problems that
follow a block structure. That is, the variables and constraints can be separated into two
general groups, as can be seen in the formulation

min
x,y

c′x+ d′y (2.13)

s. t. Ax+By ≥ b

y ∈ Y
x ≥ 0 ,

where A and B are matrices with the same number of rows, and the same number of columns
as the dimension of x and y, respectively, while the vector b is a bound for the relationship
between the two variables. Y is the set that determines the nature of y, and c and d are
cost vectors. The only term that links both variables is the first constraint, so without it,
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they could be treated as two independent problems, each with its own variable. A similar
idea is applied in this method, solving two types of problems in different iterations, each
associated with a different variable, which provide lower and upper bounds for the original
problem. Generally, the two types of problems are a master problem and a subproblem. In
each iteration of the method, a new subproblem is solved, and its solution determines a new
constraint to add to the master problem.

Benders Decomposition is commonly used in stochastic programming, for instance, when
there is a vector of random variables for which there are different possible values (scenarios),
and another vector of deterministic variables, whose optimal value is affected by the different
possible scenarios of the random variables. Following this same line, it is a method widely
used to solve multilevel optimization problems (Vicente & Calamai, 1994).

2.3.1.2 Dantzing-Wolfe

The method proposed by Dantzig & Wolfe (1961) is a column generation method for large-
scale linear problems, taking advantage of the fact that in an optimal solution, many variables
often take on zero values. Therefore, by selecting only a subgroup of variables initially and
then iteratively adding them in an intelligent manner, the algorithm can typically attain
the solution in less time. Similar to the previous method, there is a master problem that
solves the problem with all the constraints, but only considering a subset of variables. It uses
different subproblems to choose new solutions with new variables to enter the solution’s base
if they improve the objective function of the problem. Given its form, this algorithm is useful
for problems with a large number of variables, where a considerable number of them are zero
in the optimal solution, similar to what is required in a feature selection method. Because of
this, the method proposed in this paper has significant similarities with this decomposition
method.

2.3.2 Decomposition Methods for Nonlinear Problems

There are decomposition methods to solve nonlinear problem which are pretty similar to those
used in linear optimization problems. In fact, the same Benders Decomposition method
has been extended to solve nonlinear problems (Karbowski, 2021). In addition to this
method, there are alternatives such as decomposition methods that make use of the Lagrange
relaxation of a large-scale optimization problem, as reviewed in the book by Nowak (2005).
As an alternative for various types of nonlinear optimization problems, a new method of
column generation and Lagrange relaxation for large-scale optimization problems with conic
constraints is described in subsection 2.4.3, and is the one that is used through all of the
present work.
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2.4 State of the Art

2.4.1 Feature Selection Methods with Exact Optimization

This section details some of the most common feature selection methods with exact optimization.
These approaches share a common logic and, in certain instances, leverage the Lagrange
relaxation of the problem rather than the optimization problem with constraints.

2.4.1.1 LASSO

The first method under review is the well-known LASSO, proposed by Tibshirani (1996),
which remains one of the most widely employed techniques for regularization and feature
selection in regression problems. The original optimization problem aims to minimize the
squared error, just like Ordinary Least Squares, while constraining the coefficients using a
predetermined parameter. Given a matrix X ∈ Rn×m of m features and n observations, a
vector y ∈ Rn of n independent variables to predict, and a vector of coefficients to estimate
β ∈ Rm, LASSO addresses the problem

min
β∈Rm

∥y −Xβ∥22 (2.14)

s. t. ∥β∥1 ≤ t,

where ∥ · ∥p is the ℓp norm: ∥β∥p =
(∑m

j=1 |βj|p
)1/p

.

An equally used alternative form of the LASSO method involves solving an equivalent
problem with a penalization parameter λ for the ℓ1 norm of the coefficients, formulated as

min
β∈Rm

∥y −Xβ∥22 + λ∥β∥1. (2.15)

This problem directly derives from the Lagrange relaxation of (2.14) by fixing the values of
the coefficient t.

2.4.1.2 Elastic Net

With a similar formulation, inspired by both LASSO and Ridge regression, Zou & Hastie
(2005) propose the Elastic Net, which consists of an unconstrained optimization with the
same form as 2.15, with an additional penalty term for the squared ℓ2 norm of the coefficient
vector β. In other words, it solves
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min
β∈Rm

∥y −Xβ∥22 + λ1∥β∥1 + λ2∥β∥22. (2.16)

The penalty term associated with the ℓ2 norm aims to decrease the coefficient values, emphasizing
those with larger magnitudes, as it penalizes the square of each coefficient value.

2.4.2 Feature Selection with Conic Optimization

There are various approaches to linear models with conic constraints in contemporary research.
Bertsimas et al. (2016) propose a mixed integer formulation for the “Best Subset Selection
Problem”, aiming to minimize the squared error of a linear model. The inclusion of constraints
with binary variables facilitates the selection of linear model coefficients, imposing a maximum
limit on the number of coefficients chosen, akin to the original concept of LASSO. In the
same article, the authors introduce different conic variations like those of the aforementioned
problem to derive lower bounds for the original model. In Chapter 3, this model is examined
as an initial reference for addressing features selection problems with conic constraints.

With a relatively similar group of constraints as the aforementioned model, Kucukyavuz
et al. (2020) propose a Mixed Integer Second-Order Cone Program (MISOCP), modifying
the constraints that bound the coefficients of the linear model with a property that allows
them to be written as second-order cones. Additionally, they incorporate a regularization
parameter in the objective function, similar to the relaxation of the LASSO model, and
another for penalizing each extra variable added to the model. This strategy is also reviewed
in the methodology outlined in Chapter 3.

Finally, Schwendinger et al. (2022) propose a package for solving various types of linear
models, “Generalized Holistic Linear Models”, with a wide variety of possible conic constraints,
such as second-order cones and exponential cones. These models deviate from the focus of
this work and are therefore not reviewed.

2.4.3 Decomposition Method for Conic Optimization Problems

Chicoisne (2023) proposes a decomposition method for large-scale nonlinear problems of the
form

(P (X )) ω(X ) = min
x,y

f(x, y) (2.17)

s. t. x ∈ X ,
− g(x, y) ∈ C,

where x ∈ X are the main variables of the problem, with X being a high-dimensional set,
the vector y is an auxiliary variable, C is a cone in some Euclidean space, and f and g are
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some functions from a vector space to scalar values. The initial assumption of the proposed
decomposition method is that the difficulty of problem P (X ) derives from two sources: first,
the existence of conic constraints −g(x, y) ∈ C, and second, the high dimensionality of X .
This means that either the problem can be efficiently solved on a low-dimensional subset
S ⊆ X , or it can be efficiently solved by eliminating the conic constraints −g(x, y) ∈ C.

Based on the above idea, two types of alternative problems can be generated. The first
is P (S), which has the same form as (2.17), but with x ∈ S ⊆ X . This problem, being
an optimization problem on a subset of the feasible region of P (X ), necessarily yields an
optimal objective value that is greater than or equal to that of the latter, ω(X ) ≤ ω(S). On
the other hand, the second type of problem can be generated with the Lagrange relaxation
of the conic constraints, in the form

(L(X , λ)) ω(X , λ) = min
x,y

f(x, y) + ⟨λ, g(x, y)⟩ (2.18)

s. t. x ∈ X ,

with λ ∈ C∗, where C∗ is the dual cone of C. Thus, for feasible solutions x, y of P (X ), it holds
that ⟨λ, g(x, y)⟩ ≤ 0, ∀λ ∈ C∗. Therefore, since ω(X , λ) is the optimal value obtained from
the relaxation by minimizing over x, y, in particular, this value will be less than or equal to
the optimal objective value of (P (X )); that is, ω(X , λ) ≤ ω(X ), ∀λ ∈ C∗. With this, a lower
bound and an upper bound for problem (2.17) is obtained. These bounds are obtained by
solving P (S) and L(X , λ), which are easier to solve if the initial assumptions of this problem
are met.

An iterative algorithm can be constructed to leverage the bounds provided by these
two problems that bound the original problem P (X ). This algorithm can generate various
subsets Sk that, in turn, produce new solutions (which may not necessarily be feasible in
the original problem) derived through L(λ,X ). By solving P (Sk) for each of these subsets,
feasible solutions can be obtained, potentially leading to the optimal solution of P (X ). This
is precisely the idea of Algorithm 1, as proposed by Chicoisne (2023).

The stopping criteria of the algorithm can be summarized in the idea that the new solution
x̄k, which should improve the objective function, did not make any difference in the optimal
solution of the subproblem P (Sk). Consequently, the optimal solution derived from P (Sk)
cannot be further improved. Therefore, it is the optimal solution of the problem P (X ).
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Algorithm 1: Column Generation

Data: A problem P (X )
Result: An optimal solution for P (X )

1 Set λ0 =0, S1 ⊆ X contains at least one feasible solution for P (X ), and k = 1;
2 while True do
3 Solve P (Sk). Let (xk, yk) be an optimal solution ;
4 Let λk be an optimal dual vector corresponding to the constraints −g(x, y) ∈ C ;
5 if λk = λk−1 then
6 return (xk, yk) ;

7 Solve L(X , λk). Let (x̄k, ȳk) be an optimal solution ;
8 if x̄k ∈ Sk then
9 return (xk, yk) ;

10 Choose a set Sk+1 ⊆ X containing x̄k;
11 k ← k + 1 ;
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Chapter 3

Methodology

For the following sections, it is necessary to consider different aspects of notation.

1. To represent data sets with n observations and m ≫ 1 attributes or columns, the
notation will be:

(a) y ∈ Rn: Target vector of observations to be predicted with the linear model.

(b) X ∈ Rn×m: Matrix with different observations in its rows and attributes in its
columns.

2. If a model does not explicitly state the set to which a variable x belongs, it is assumed
to belong to Rq, where q is some scalar coherent with the operations applied to that
variable. In general, the variable β ∈ Rm is used in all models to represent the
coefficients associated with each attribute of the linear model.

3. A sufficiently large parameterM ≫ 1 is used in constraints that require bounds for the
model’s variables in certain scenarios, while in others, such bounds are not required.

4. Regarding the notation for the vectors used, the column vectors are denoted as x =x1...
xq

 ∈ Rq. The apostrophe is used to represent the transpose of a column vector, a

row vector, in the form x′ =
(
x1 . . . xq

)
∈ R1×q. Consequently, the inner product

between two vectors x and y in a Euclidean space can be written as ⟨x, y⟩ = x′y =∑q
i=1 xiyi. The same symbol is used for transposing matrices.

3.1 Baseline Model: Mixed Integer Quadratic Program

(MIQP)

To establish the foundation for the models presented in the following subsections, we revisit
the mixed integer quadratic problem proposed by Bertsimas et al. (2016), mentioned in 2.4.2.
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In this model, the best subset of attributes is chosen, restricting the number of coefficients
βi ̸= 0 to a maximum of k possible in the final solution, as follows

min
β,z

∥y −Xβ∥22

s.t. −Mzi ≤ βi ≤Mzi, i = 1, . . . ,m,
m∑
i=1

zi ≤ k,

z ∈ {0, 1}m,

(3.1a)

(3.1b)

(3.1c)

(3.1d)

Because of the binary nature of z, the constraint (3.1c) can be rewritten as ∥z∥1 ≤ k, which
is the same form of the original constraint of LASSO (2.14). Hence, it can be relaxed in
the same way as in (2.15), and the problem of choosing the best subset can be rewritten
equivalently as

min
β,z

∥y −Xβ∥22 + τ∥z∥1

s.t. −Mzi ≤ βi ≤Mzi, i = 1, . . . ,m,

z ∈ {0, 1}m.

(3.2a)

(3.2b)

(3.2c)

The equivalence between both problems depends on the values of the parameters k and τ ,
similar to the two alternatives of LASSO.

Considering the non-negativity of the components of the vector z, the ℓ1 norm of this
vector will be represented as a summation for better readability in the subsequent models.

Similar to the MISOCP proposed by Kucukyavuz et al. (2020), also mentioned in subsection
2.4.2, the two bounds imposed on the coefficients in (3.2b) can be rewritten in a single
quadratic form constraint, resulting in problem

min
β,z

∥y −Xβ∥22 + τ
m∑
i=1

zi

s.t. β2
i ≤M2zi, i = 1, . . . ,m,

z ∈ {0, 1}m,

(3.3a)

(3.3b)

(3.3c)

where zi = z2i , as they are binary variables. In this model, the value of the parameterM ≫ 1
can be adjusted to set a certain bound on the maximum value that the coefficients βi can take,
depending on the context of the problem. Slightly akin to the aforementioned MISOCP, this
parameter can also be a new variable of the model rather than a parameter, to which some
penalty κ can be assigned to bound the values of the coefficients βi. Thus, an alternative
model can be written as

min
β,z,u

∥y −Xβ∥22 + τ

m∑
i=1

zi + κ

m∑
i=1

ui

s.t. β2
i ≤ uizi, i = 1, . . . ,m,

ui ≥ 0, i = 1, . . . ,m,

z ∈ {0, 1}m.

(3.4a)

(3.4b)

(3.4c)

(3.4d)
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3.2 Relaxation: Quadratic Program (QP)

Given the mixed integer quadratic program, MIQP (3.4), it is possible to establish a relaxed
version of this problem by removing the integer constraint on the vector of variables z,
resulting in the model

min
β,z,u

∥y −Xβ∥22 + τ
m∑
i=1

zi + κ

m∑
i=1

ui

s.t. β2
i ≤ uizi, i = 1, . . . ,m,

ui ≥ 0, i = 1, . . . ,m,

zi ≥ 0, i = 1, . . . ,m.

(3.5a)

(3.5b)

(3.5c)

(3.5d)

This problem still maintains the idea of constraining the magnitudes of the coefficients
β and attempting to minimize their values through the penalty parameters τ and κ. The
difference from the model with binary variables is that it is no longer a problem of selecting
the best subset, as in the original MIQP (3.1).

Upon closer examination of the relaxed problem, it is easy to see that if τ = κ, then the
problem is symmetric with respect to z and u, as they have the same constraints and terms
in the objective function. Furthermore, Proposition 1 establishes an equivalence between
different problems, where this condition is met for one of them.

Proposition 1 ∀τ, κ > 0, parameters of the relaxed QP (3.5), there exists an equivalent
problem with the same structure, and parameters τ̃ and κ̃, such that τ̃ = κ̃ =

√
τκ.

Proof. Note that it is possible to express κ = α2τ , with α =
√
κ/τ > 0, in problem (3.5).

Therefore, the problem in question can be written as follows

(P1) min
β,z,u

∥y −Xβ∥22 + τ
m∑
i=1

zi + α2τ
m∑
i=1

ui

s.t. β2
i ≤ uizi, i = 1, . . . ,m,

ui ≥ 0, i = 1, . . . ,m,

zi ≥ 0, i = 1, . . . ,m.

The candidate for an equivalent problem of the same form with equal penalty parameters
is the problem

(P2) min
β,z,u

∥y −Xβ∥22 + ατ
m∑
i=1

zi + ατ
m∑
i=1

ui

s.t. β2
i ≤ uizi, i = 1, . . . ,m,

ui ≥ 0, i = 1, . . . ,m,

zi ≥ 0, i = 1, . . . ,m.
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It is straightforward to see that a feasible point of (P1) is also a feasible point of (P2),
and vice versa, as both problems have the same feasible region. Only the objective function
changes.

Let (β∗, z∗, u∗) and (β̃∗, z̃∗, ũ∗) be optimal solutions of (P1) and (P2), respectively. Taking
the new vectors ū = αu∗ and z̄ = 1

α
z∗, the objective function of (P1) evaluated at its optimal

point can be expressed as

∥y −Xβ∗∥22 + τ

m∑
i=1

z∗i + α2τ
m∑
i=1

u∗i = ∥y −Xβ∗∥22 + ατ

m∑
i=1

z̄i + ατ

m∑
i=1

ūi.

It follows that (β∗, z̄, ū) is also a feasible point of (P2), since β∗
i ≤ u∗i z

∗
i = ūiz̄i for

every component of these vectors, and z̄, ū maintain the non-negativity of their components
when multiplied by positive values. Thus, being a feasible point of the second problem, the
following relationship holds

∥y −Xβ̃∗∥22 + ατ
m∑
i=1

z̃∗i + ατ
m∑
i=1

ũ∗i ≤ ∥y −Xβ∗∥22 + ατ
m∑
i=1

z̄i + ατ
m∑
i=1

ūi

= ∥y −Xβ∗∥22 + τ
m∑
i=1

z∗i + α2τ
m∑
i=1

u∗i ,

with the optimal solution (β̃∗, z̃∗, ũ∗). That is, the optimal value of the objective function of
(P2) is a lower bound on the objective value of (P1).

Similarly, taking the vectors û = 1
α
ũ∗ and ẑ = αz̃∗, the objective function of (P2) can be

rewritten as

∥y −Xβ̃∗∥22 + ατ
m∑
i=1

z̃∗i + ατ
m∑
i=1

ũ∗i = ∥y −Xβ̃∗∥22 + τ
m∑
i=1

ẑi + α2τ
m∑
i=1

ûi.

Again, it is easy to see that (β̃∗, ẑ, û) is a feasible point in (P1) for the same reason as
before. Hence, the following inequality holds

∥y −Xβ∗∥22 + τ
m∑
i=1

z∗i + α2τ
m∑
i=1

u∗i ≤ ∥y −Xβ̃∗∥22 + τ
m∑
i=1

ẑi + α2τ
m∑
i=1

ûi

= ∥y −Xβ̃∗∥22 + ατ
m∑
i=1

z̃∗i + ατ
m∑
i=1

ũ∗i .

Therefore, the optimal value of the objective function of (P1) is a lower bound on the objective
value of (P2).

In conclusion, problems (P1) and (P2) are equivalent. Since the values of τ and κ are
arbitrary in R++, it follows that ∀τ, κ > 0, parameters of the relaxed QP (3.5), there exists an
equivalent problem with the same structure, and parameters τ̃ and κ̃, such that τ̃ = κ̃ =

√
τκ.
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It is easy to note from the previous procedure that (β̃∗, ẑ, û) is an optimal point of (P1)
and that (β∗, z̄, ū) is an optimal point of (P2), thereby yielding the same solution for the
coefficients βi in both problems.

Proposition 1 allows problem (3.5) to be written equivalently with parameters τ̃ = κ̃ in
any scenario. Thus, one can just take this alternative and, due to the fact that the problem
is symmetric with respect to to z and u, work with only one variable representing both and
only one penalty parameter. However, there could exist some computational benefits when
treating the problem in the exact same form as in (3.5). Therefore, in what follows, both
parameters and variables are still used independently.

Another important point to note is that the problem bounds the coefficients of problem
(3.5) similarly to the relaxed version of LASSO (2.15), with a first-degree penalty for the
magnitudes of the components of β. The equivalence between these two problems is established
in the following Proposition.

Proposition 2 ∀τ, κ > 0, parameters of the relaxed QP (3.5), there exists a penalty
parameter λ = 2

√
τκ for the relaxed version of LASSO (2.15), such that QP and LASSO are

equivalent.

Proof. It is sufficient to consider the equivalent problem of the QP (3.5), with parameters
τ̃ = κ̃ =

√
τκ. Given the symmetry of the problem with respect to each zi and ui, one can

remove variables ui and show that the objective function of problem (3.5) can be expressed
as ∥y −Xβ∥22 + 2

√
τκ
∑m

i=1 zi, and the constraint (3.5b) as β2
i ≤ z2i , ∀i ∈ {1, . . . ,m}. Then,

note that at the optimum solution the equality |βi| = zi holds for all i ∈ {1, . . . ,m}, allowing
the equivalent problem to be written with the objective function ∥y−Xβ∥22+2

√
τκ
∑m

i=1 |βi|,
which is precisely the Lagrange relaxation of LASSO with a penalty parameter λ = 2

√
τκ.

3.3 Conic Model: Second Order Cone Program (SOCP)

Once again, as described for the MISOCP proposed by Kucukyavuz et al. (2020), one can
make use of the result

a2 ≤ bc⇐⇒
∥∥∥∥(b− c2a

)∥∥∥∥
2

≤ b+ c, ∀ a ∈ R, b, c ∈ R+, (3.8)

in the constraints (3.5b) of the relaxed QP, to obtain a model with second-order conic
(SOC) constraints, resulting in a conic problem where the decomposition method described
in subsection 2.4.3 can be used on. The second-order cone program is formulated as

min
β,z,u

∥y −Xβ∥22 + τ

m∑
i=1

zi + κ

m∑
i=1

ui

s.t.

∥∥∥∥(ui − zi2βi

)∥∥∥∥
2

≤ ui + zi, i = 1, . . . ,m,

ui ≥ 0, i = 1, . . . ,m,

zi ≥ 0, i = 1, . . . ,m.

(3.9a)

(3.9b)

(3.9c)

(3.9d)
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The structure of the problem can be exploited to include even more possibilities in terms
of the conic constraints to be relaxed with the decomposition method. The quadratic error
term on the objective function can be treated as a new constraint with an auxiliary variable
ξ ∈ R, that reaches equality with the error term at the optimal solution. In other words,
consider ∥y −Xβ∥2 ≤ ξ, and minimize the new variable as follows

min
β,z,u,ξ

ξ2 + τ
m∑
i=1

zi + κ

m∑
i=1

ui

s.t. ∥y −Xβ∥2 ≤ ξ,∥∥∥∥(ui − zi2βi

)∥∥∥∥
2

≤ ui + zi, i = 1, . . . ,m,

ui ≥ 0, i = 1, . . . ,m,

zi ≥ 0, i = 1, . . . ,m.

(3.10a)

(3.10b)

(3.10c)

(3.10d)

(3.10e)

This introduces a new second-order conic constraint, which can also be relaxed in the
decomposition method, as described in the subsequent subsections.

3.4 Decomposition Method for the Second-Order Cone

Program

Recapping what was discussed in subsection 2.4.3, the problems to which the conic decomposition
method of Chicoisne (2023) is applied have the form

min
x,y

f(x, y) (3.11)

s. a x ∈ X ,
− g(x, y) ∈ C,

where C is a conic constraint that is challenging to solve. In the case of the SOCP (3.10), this
constraint can be interpreted in various ways since any of the second-order cone constraints
can be considered for relaxation, or even various intersections of them can be taken, as the
intersection of cones with a shared vertex is also a cone. To further clarify the possibilities
of conic sets that can be relaxed, we can rewrite the second-order conic problem (3.10) from
the previous subsection in the form

min
β,z,u,ξ

ξ2 + τ
m∑
i=1

zi + κ
m∑
i=1

ui

s.t.

(
y −Xβ

ξ

)
∈ Ln+1,ui − zi2βi

ui + zi

 ∈ L3, i = 1, . . . ,m,

u ∈ Rm
+ ,

z ∈ Rm
+ .

(3.12a)

(3.12b)

(3.12c)

(3.12d)

(3.12e)

22



Here, Lk+1 = {(x, y) ∈ Rk+1 : ∥x∥2 ≤ y} is a second-order cone of dimension k + 1, and Rm
+

is the cone that contains all vectors in Rm with non-negative components.

Regarding the general assumptions of the decomposition method described in subsection
2.4.3, two considerations will be made for this particular case:

1. Concerning the high dimensionality of the variables X , the only variables that add
complexity in this regard are β, z, u ∈ Rm, as ξ adds only one extra dimension,
independent of the value of m. With that being said, ξ is only an auxiliary variable
that is fully defined by y,X, and β at the optimal point, and it is used purely as an
extra variable throughout.

2. With respect to the complexity of the conic constraints in the SOCP (3.12), since
all the constraints of the problem are conic in nature, it is not clear whether all the
constraints complicate the problem or if only certain constraints make it difficult to
solve. In other words, different combinations of conic constraints can be considered for
relaxation (different sets X and C). However, the non-negative constraints will not be
considered as candidates for the conic relaxation.

3.4.1 Decomposition Algorithm for Second-Order Cone Program

In general terms, considering the information mentioned in the previous subsection, the
Algorithm 1 presented in subsection 2.4.3 can be rewritten in a way that is adapted to the
form of the SOCP (3.12). Generally, the algorithm takes the form shown in Algorithm 2. In
this algorithm, the optimal solutions of the master problem P (Sk) are denoted as xk, while
the solutions of the relaxation L(X , λk) are denoted as x̄k.

Algorithm 2: General Column Generation for SOCP

Data: An instance of the SOCP (3.12)
Result: An optimal solution of the problem

1 Set λ0 = 0, S1 ⊆ X contains at least one feasible solution for P (X ), and k = 1;
2 while True do
3 Solve P (Sk). Let (βk, zk, uk; ξk) be an optimal solution;
4 Let λk be an optimal dual vector corresponding to the constraints

−g(β, z, u; ξ) ∈ C ;
5 if λk = λk−1 then
6 return (βk, zk, uk; ξk) ;

7 Solve L(X , λk). Let (β̄k, z̄k, ūk; ξ̄k) be an optimal solution ;
8 if (β̄k, z̄k, ūk) ∈ Sk then
9 return (βk, zk, uk; ξk) ;

10 Choose a set Sk+1 ⊆ X containing (β̄k, z̄k, ūk) ;
11 k ← k + 1 ;
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3.4.2 Feasible Region Sk

The first element to consider in the decomposition method are the feasible regions Sk ⊆ X ;
in other words, the feasible region of the master problem on each iteration. These subsets
should be such that the instances P (Sk) of the master problem can be solved more efficiently
than P (X ), while in each iteration of the method, they incorporate optimal solutions from
the Lagrange relaxation of line 7 of the algorithm. Bearing this in mind, it is natural to
think of Sk as some kind of combination of the solutions obtained in the previous k − 1
iterations. Chicoisne (2023) reviews this same idea with different types of combinations,
including convex, conic, and linear combinations to generate the feasible region.

For the decomposition method of the SOCP (3.12), these three combination options will be
taken into account in the construction of Sk, along with the affine combination. Each of these
alternatives will have an initial set S1, which will contain a predefined number v0 (parameter)
of initial feasible points of P (X ), denoted as {x̄s}v0s=1 = {(β̄s, z̄s, ūs)}v0s=1. The problem P (Sk)
will seek to find the optimal weights for this problem, denoted as π ∈ Rv0+k−1 for the v0 initial
solutions and k − 1 solutions obtained in each iteration {x̄s}v0+k−1

s=1 = {(β̄s, z̄s, ūs)}v0+k−1
s=1 .

1. Convex combination:

Sk :=

{
x ∈ X : x =

v0+k−1∑
s=1

πsx̄
s, π ∈ Rv0+k−1

+ ,

v0+k−1∑
s=1

πs = 1

}
= X∩conv({x̄s}v0+k−1

s=1 )

2. Affine combination:

Sk :=

{
x ∈ X : x =

v0+k−1∑
s=1

πsx̄
s, π ∈ Rv0+k−1,

v0+k−1∑
s=1

πs = 1

}
= X ∩aff({x̄s}v0+k−1

s=1 )

3. Conic combination:

Sk :=

{
x ∈ X : x =

v0+k−1∑
s=1

πsx̄
s, π ∈ Rv0+k−1

+

}
= X ∩ cone({x̄s}v0+k−1

s=1 )

4. Linear combination:

Sk :=

{
x ∈ X : x =

v0+k−1∑
s=1

πsx̄
s, π ∈ Rv0+k−1

}
= X ∩ lin({x̄s}v0+k−1

s=1 )

The choice of initial feasible points {x̄s}v0s=1 as the elements determining the set S1 can
also be done in various ways. However, for simplicity, this study does not focus on finding
the best initial set. With that said, some simple alternatives are proposed for the choice of
this initial set as follows.
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1. Random selection of v0 initial feasible solutions of P (X ). This can be done with either
canonical vectors or completely random feasible solutions.

2. A single solution vector x̄1 = e, where e is the vector with all components equal to 1.

Both methods for selecting the initial set can be used together or separately.

3.4.3 Master Problem P (Sk)

Given a feasible region Sk constructed using one of the alternatives from the previous
subsection, the combination associated with each of the variables β, z, and u can be summarized
as the multiplication of a matrix, containing the solution vectors of the previous iterations as
columns, and different weights for each of them. In other words, one can define the following
matrices

Bk =

 β̄1
1 . . . β̄v0+k−1

1
...

. . .
...

β̄1
m . . . β̄v0+k−1

m

 ∈ Rm×(v0+k−1),

Uk =

 ū11 . . . ūv0+k−1
1

...
. . .

...
ū1m . . . ūv0+k−1

m

 ∈ Rm×(v0+k−1),

Zk =

 z̄11 . . . z̄v0+k−1
1

...
. . .

...
z̄1m . . . z̄v0+k−1

m

 ∈ Rm×(v0+k−1),

where Bk
s represents the s-th column of the matrix Bk, while bki represents its i-th row, and

the same notation is used for the other two matrices. Using this notation, the master problem
P (Sk) of the SOCP (3.12) can be written as follows

min
π,ξ

ξ2 + τ
m∑
i=1

zki π + κ
m∑
i=1

uki π

s.t.

(
y −XBkπ

ξ

)
∈ Ln+1,uki − zki

2bki
uki + zki

 π ∈ L3, i = 1, . . . ,m,

π ∈ Π,

(3.13a)

(3.13b)

(3.13c)

(3.13d)

where Π is the set of all additional constraints on variable π required for the chosen combination
(non-negative or normalized values). Non-negativity constraints on the components of Zkπ
and Ukπ are not necessary, as the solutions obtained at each iteration already meet these
conditions.
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3.4.4 Lagrange Relaxation L(X , λk)

In general, after solving an instance of the master problem P (Sk), the dual variables of the
conic constraints λk associated with the optimum of this problem are obtained. Based on
these solutions and the relaxation of the complex conic constraints, an optimization problem
of the minimization form (2.18) can be constructed. However, as mentioned at the beginning
of the section, there are various ways to relax the SOCP (3.12). Therefore, the following
three possibilities of relaxation will be considered.

1. Relaxation of the second-order cone constraint Ln+1 in (3.13b). For simplicity, this
constraint will be denoted as C1.

2. Relaxation of the m second-order cone constraints L3 in (3.13c). This intersection of
constraints will be denoted as C2, which is also a cone.

3. Relaxation of both cones C1 and C2.

To understand the aforementioned relaxations, the Lagrange relaxation of both sets of
constraints is presented as follows.

L(x, λ) = ξ2 + τ
m∑
i=1

zi + κ
m∑
i=1

ui︸ ︷︷ ︸
objective function

−
(
ψ′ µ

)(y −Xβ
ξ

)
︸ ︷︷ ︸

C1

−
m∑
i=1

(
αi γi δi

)ui − zi2βi
ui + zi


︸ ︷︷ ︸

C2

,

where x = (β, z, u, ξ) is the vector representing the primal variables of the conic problem
(3.12), λ = (ψ, µ, α, γ, δ) is the vector representing all dual variables associated with the
relaxed constraints. To maintain the lower bound of this function in a feasible point x in the
SOCP, it is necessary for the vectors (ψ, µ) and (αi, γi, δi), ∀i ∈ {1, . . . ,m}, to belong to the
dual cones of the relaxed cones, respectively. However, second-order cones of any dimension
q are self-dual; that is, L∗

q = Lq. Therefore, they must satisfy

(
ψ′

µ

)
∈ Ln+1 and

αiγi
δi

 ∈ L3,∀i ∈ {1, . . . ,m}.

However, the decomposition method yields a fixed value λk for the dual variables once the
master problem P (Sk) is solved, which already satisfy these conditions, so it is not necessary
to impose these constraints on the values of λk. Nonetheless, the structure of each cone
relaxation as shown in the Lagrange relaxation remains the same regardless.

3.4.4.1 Relaxation of C1

In this version, just the constraint C1 is relaxed. This is a second-order cone in Rn+1, and as
mentioned earlier, its dual cone is the same second-order cone (L∗

n+1 = Ln+1). Therefore, to
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relax this constraint, it is sufficient to take the optimal dual values (ψk, µk) obtained from
the master problem P (Sk) and write the Lagrange relaxation associated with C1 as follows.

LC1(x, λ
k) = ξ2 + τ

m∑
i=1

zi + κ

m∑
i=1

ui −
(
ψk

′
µk
)(y −Xβ

ξ

)
= (ξ − µk)ξ + ψk

′
Xβ + τe′z + κe′u− ψk ′y.

Based on this function, a new objective function is constructed, while the remaining
constraints of the problem (XC1) remain the same as in the conic problem. Thus, the relaxed
problem L(XC1 , λ

k) is defined as

(L(XC1 , λ
k)) min

β,z,u,ξ
(ξ − µk)ξ + ψk

′
Xβ + τe′z + κe′u− ψk ′y

s.t.

ui − zi2βi
ui + zi

 ∈ L3, i = 1, . . . ,m,

u ∈ Rm
+ ,

z ∈ Rm
+ ,

(3.14a)

(3.14b)

(3.14c)

(3.14d)

This problem can be simplified, as the variable ξ is completely independent of any other
variable of the problem. Furthermore, it is merely an auxiliary variable of the original
problem, so its value itself is not of interest once the constraint in which it participates is
relaxed. Thus, the term (ξ − µk)ξ can be omitted from the objective function, and the same
optimal solution will be attained. In case of needing to recover the value of this variable, it
is sufficient to note that the objective function is a convex and unconstrained function with
respect to this variable. Therefore, the first-order conditions can be used with this variable
to obtain the value that minimizes this term (impose a saddle point). That is, it can be
imposed that

∂

∂ξ
(ξ − µk)ξ = 0 =⇒ ξ =

µk

2
.

3.4.4.2 Relaxation of C2

Analogously to the relaxation of the constraint C1, in this case, the dual cones are of the same
type, so they are self-dual. The relaxation is written based on the optimal dual solutions
(αk, γk, δk) obtained from the master problem P (Sk) as follows.

LC2(x, λ
k) = ξ2 + τ

m∑
i=1

zi + κ

m∑
i=1

ui −
m∑
i=1

(
αki γki δki

)ui − zi2βi
ui + zi


= ξ2 − 2γk

′
β +

(
τe+ αk − δk

)′
z +

(
κe− αk − δk

)′
u.
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And, again, the remaining constraints of the problem can be denoted as XC2 . Hence, the
relaxed problem L(XC2 , λ

k) is defined as

(L(XC2 , λ
k)) min

β,z,u,ξ
ξ2 − 2γk

′
β +

(
τe+ αk − δk

)′
z +

(
κe− αk − δk

)′
u

s.t.

(
y −Xβ

ξ

)
∈ Ln+1,

u ∈ Rm
+ ,

z ∈ Rm
+ .

(3.15a)

(3.15b)

(3.15c)

(3.15d)

3.4.4.3 Relaxation of C1 and C2

The last alternative for relaxing the conic constraints that represent complexity when solving
the conic problem 3.12, namely the relaxation of the sets C1 and C2, is presented in this
subsection. The dual variables obtained in the master problem of the method are those
mentioned in the two previous alternatives, which imply a Lagrange relaxation of the form

LC1,2(x, λ
k) = ξ2 + τ

m∑
i=1

zi + κ
m∑
i=1

ui −
(
ψk

′
µk
)(y −Xβ

ξ

)
−

m∑
i=1

(
αki γki δki

)ui − zi2βi
ui + zi


= (ξ − µk)ξ +

(
ψk

′
X − 2γk

′
)
β +

(
τe+ αk − δk

)′
z +

(
κe− αk − δk

)′
u− ψk ′y.

The relaxed optimization problem L(XC1,2
, λk) can then be written as

(L(XC1,2
, λk)) min

β,z,u,ξ
(ξ − µk)ξ +

(
ψk

′
X − 2γk

′
)
β

+
(
τe+ αk − δk

)′
z

+
(
κe− αk − δk

)′
u− ψk ′y

s.t. u ∈ Rm
+ ,

z ∈ Rm
+ ,

(3.16a)

(3.16b)

(3.16c)

where XC1,2
is the set of all the constraints not relaxed in the previous Lagrange function.

This is a pretty simple problem since it only has non-negativity constraints and a linear
objective function. Furthermore, if the structure of the problem admits a finite solution,
then it can be found analytically. The optimal value of ξ can be obtained with the first order

condition, as in the relaxation of C1, the optimal value of the term
(
ψk

′
X − 2γk

′
)
β must be

always zero to meet the requirement of a finite solution, and the minimum value of z and u
must also be zero for the same reason. However, the finite solution depends on the values of
the dual variables, and this also true for the previous two problems. The following subsection
delves deeper into this matter.
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3.4.5 On the Boundedness of the Lagrange Relaxation L(X , λk)

The decomposition method described in Algorithm 2 assumes that the optimization problem
derived from the Lagrange relaxation L(X , λk) yields an optimal solution. However, this is
not necessarily true, as the dual variables λk derive from the master problem P (Sk) described
in (3.13), which can have a dual form very different from that of the original SOCP (3.12).
To clarify this further, the dual problem D(Sk) of the master problem P (Sk) is presented,
in the case where Sk is constructed through linear combinations of the previous method’s
solutions (π has no additional conditions of the form (3.13d)), as follows.

(D(Sk)) max
ψ,µ,α,γ,δ

− µ2

4
− ψ′y

s.t. (τe+ α− δ)′Zk + (κe− α− δ)′Uk

+ (ψ′X − 2γ′)Bk = 0,(
ψ
µ

)
∈ Ln+1,αiγi

δi

 ∈ L3, i = 1, . . . ,m.

(3.17a)

(3.17b)

(3.17c)

When considering the constraint on π belonging to Rv0+k−1
+ as in the conic and convex

combination, the only thing that changes in the problem D(Sk) is that the nullity “= 0”
of the expression in constraint (3.17a) becomes a “∈ Rv0+k−1

+ ” (all its components must be
non-negative). On the other hand, when considering the constraint of normalization of the
elements of π as in the affine and convex combination, one can generate a new dual variable
σ associated with this constraint, which adds an extra term “−σ” to the dual’s objective
function and an extra term “+σ” to each component of the resultant vector of the expression
(3.17a). Therefore, the dual problem does not change much when considering those additional
constraints.

In the following section, an analysis will be conducted on the necessary conditions for
boundedness of the Lagrange relaxation of each of the three alternatives presented in the
preceding subsection. This analysis aims to examine whether the dual problem (3.17)
guarantees that the Lagrange relaxation is a bounded optimization problem or not.

3.4.5.1 Necessary conditions for boundedness of L(XC1 , λ
k)

The objective function (3.14a) of the problem L(XC1 , λ
k) is written in a way that allows the

analysis of each variable of the problem separately. First, it has been mentioned that the
minimum can be found with respect to ξ using the first-order conditions. As for the rest of
the variables, if the second-order cone constraints (3.14b) did not exist, ensuring boundedness
of the objective function of the relaxation would require the following conditions.

1. ψk
′
X = 0, since β has no other constraints.

29



2. τe, κe ∈ Rm+, given that z, u ∈ Rm+.

The second conditions is always met, since for the selection problem, τ, κ are always chosen
from R++. However, the first condition is not guaranteed, as it is not a constraint on the
dual variables λk of any of the possibilities of the master dual problem D(Sk). Therefore, the
objective function may not be bounded on its own initially. However, with the existence of
the second-order cone constraints (3.14b), and recalling that they are equivalent to β2

i ≤ ziui,
the weights associated with zi and ui in the objective function can prevent the variable βi
from diverging in any direction, depending on their values.

Proposition 3 For any iteration k of Algorithm 2, the relaxed problem L(XC1 , λ
k) (3.14) is

bounded if and only if the dual variables λk satisfy the condition

|(X ′ψk)i| ≤ 2
√
κτ, ∀i ∈ {1, . . . ,m}.

Proof. If penalization values are chosen such that τ = κ, then, due to the symmetry of
problem L(XC1 , λ

k) with respect to z and u in every iteration k of Algorithm 2, the optimum

of the problem satisfies z∗ = u∗ and achieves equality in the conic constraint β∗
i
2 = z∗i u

∗
i .

Thus, the optimum satisfies |β∗
i | = z∗i = u∗i . Without loss of generality, a subproblem such

that it has the equality constraint |βi| = zi = ui, which achieves the same optimal value, can
be used instead. This is because its objective function is necessarily greater than or equal to
that of the original problem, being a subset of the feasible region, and the optimum of the
problem L(XC1 , λ

k) is feasible within it, resulting in the same objective function value at the
optimum.

As mentioned in subsection 3.4.4.1, one can impose the first order condition on variable
ξ to have a bound with respect to it on problem L(XC1 , λ

k). The only variables that can lead
to unboundedness then are β, z and u. The only terms that depend on these three variables
in the objective function of the subproblem that satisfies |βi| = zi = ui are of the form

(X ′ψk)iβi + τzi + κui = (X ′ψk)iβi + τ |βi|+ κ|βi|
= (X ′ψk)iβi + 2τ |βi|.

These terms can be analyzed by cases: a subset of the feasible region with all the solutions
that have a non-negative i-th component βi ≥ 0 and a subset of the feasible region with all
the solutions with a negative i-th component βi < 0. If βi ≥ 0, then these terms are of the
form

(X ′ψk)iβi + 2τ |βi| = (X ′ψk)iβi + 2τβi

= ((X ′ψk)i + 2τ)βi.

Since βi ≥ 0, it must necessarily hold that (X ′ψk)i + 2τ ≥ 0 for the objective function to be
bounded when minimizing with respect to βi, which is equivalent to −(X ′ψk)i ≤ 2τ . In the
opposite case, where βi < 0, the terms of the objective function take the form

(X ′ψk)iβi + 2τ |βi| = (X ′ψk)iβi − 2τβi

= ((X ′ψk)i − 2τ)βi.
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Now, because βi < 0, it must hold that (X ′ψk)i − 2τ ≤ 0 for the objective function to be
bounded, which is equivalent to (X ′ψk)i ≤ 2τ . The two conditions can be summarized in a
single general condition as

|(X ′ψk)i| ≤ 2τ, ∀i ∈ {1, . . . ,m}, (3.18)

which applies to all the feasible region of the problem.

The only issue with the previous condition is that it only holds if τ = κ. However, problem
L(XC1 , λ

k) and the quadratic problem (3.5) have the exact same structure for variables z and
u. Thus, Proposition 1’s proof also applies in this case. One can proof that for any problem
L(XC1 , λ

k) with penalty parameters τ ̸= κ, there exist an equivalent problem with the same
structure such that its penalty parameters satisfy τ̃ = κ̃ =

√
τκ. With this in mind, if one of

the problems is unbounded, the same applies for the second one, and the same boundedness
condition applies to both problems. Therefore, it suffices to transform condition (3.18) with
weights τ̃ = κ̃ =

√
τκ into its equivalent version as

|(X ′ψk)i| ≤ 2τ̃ , ∀i ∈ {1, . . . ,m}
⇐⇒ |(X ′ψk)i| ≤ 2

√
κτ, ∀i ∈ {1, . . . ,m}, (3.19)

with the latter being the general boundedness condition for any value of τ and κ as in the
proposition.

3.4.5.2 Necessary conditions for boundedness of L(XC2 , λ
k)

For the case of the relaxed problem L(XC2 , λ
k) presented in (3.15), a similar behavior to the

previously discussed case is observed. The necessary conditions can be summarized in the
following proposition.

Proposition 4 For any iteration k of Algorithm 2, the relaxed problem L(XC2 , λ
k) (3.15) is

bounded if and only if the dual variables λk satisfy the conditions

τe+ αk − δk ∈ Rm
+ ,

κe− αk − δk ∈ Rm
+ .

Proof. There are three sets of variables that are completely independent in this problem:
{z}, {u}, and {ξ, β}. Given this, boundedness conditions can be analyzed on a case-by-case
basis. For the case of ξ and β, the existence of the auxiliary variable ξ can be ignored
by removing the conic constraint (3.15b) and returning to the original form of the norm
∥y − Xβ∥22 in the objective function. Thus, the term dependent on the variable β in the
objective function becomes

∥y −Xβ∥22 − 2γk
′
β = y′y − 2y′Xβ + β′X ′Xβ − 2γk

′
β,

which is a convex function with respect to β, as X ′X ∈ Sm+ (a positive semidefinite matrix in
Rm×m). Therefore, without any constraints on this variable, a saddle point can be imposed
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to find a minimum of this function using the first-order conditions, resulting in the optimum
solution β∗ = (X ′X)−1(X ′y + γk), assuming X ′X ∈ Sm++, a positive definite matrix. Given
this, it is not necessary to impose conditions regarding this term in the objective function,
as computing independently the optimal result for it is sufficient.

Regarding the variables z and u, the conditions are evident. As there are only constraints
of non-negativity on the components of these vectors, any negative weighting of them in the
objective function results in unbounded solutions. That is, the only necessary conditions for
the convergence of the relaxed problem L(XC2 , λ

k) are

τe+ αk − δk ∈ Rm
+ ,

κe− αk − δk ∈ Rm
+ .

None of the conditions presented are guaranteed by the dual problem D(Sk), so any
component that does not satisfy them in any iteration of the decomposition method causes
a breakdown, as it does not provide a numerical solution for the relaxation.

3.4.5.3 Necessary conditions for boundedness of L(XC1,2
, λk)

In this last case the relaxed model L(XC1,2
, λk) presented in (3.16) has only independent

variables, so boundedness conditions are straightforward.

Proposition 5 For any iteration k of Algorithm 2, the relaxed problem L(XC1,2
, λk) (3.16)

is bounded if and only if the dual variables λk satisfy the conditions

τe+ αk − δk ∈ Rm
+ ,

κe− αk − δk ∈ Rm
+ .

Proof. Regarding the auxiliary variable ξ, it forms a convex function with the term (ξ−µk)ξ,
for which it was previously mentioned that a saddle point can be imposed. The variable β
is entirely free, so it can diverge in any direction, requiring the coefficient accompanying it
to be zero to allow boundedness with respect to it. Lastly, regarding the variables z and u,
the situation is analogous to the previous case, as the terms are identical. Given this, the
necessary conditions for boundedness of this problem are given by

X ′ψk − 2γk = 0, (3.20)

τe+ αk − δk ∈ Rm
+ , (3.21)

κe− αk − δk ∈ Rm
+ . (3.22)

Since, once again, none of these conditions for the dual variables λk are guaranteed by
the dual problem D(Sk), if any component of any of these conditions does not satisfy them,
the relaxed problem has a non-finite solution, which leaves the decomposition method with
no solution vector to add to the solutions matrix for the next iteration.

32



Table 3.1: Summary of the necessary boundedness conditions of the three versions of
relaxation of the second-order cone problem at each iteration of the decomposition method.

Relaxed Problem Boundedness Conditions

L(XC1 , λ
k) |(X ′ψk)i| ≤ 2

√
κτ, ∀i ∈ {1, . . . ,m}

L(XC2 , λ
k)

τe+ αk − δk ∈ Rm
+ ,

κe− αk − δk ∈ Rm
+

L(XC1,2
, λk)

X ′ψk − 2γk = 0,
τe+ αk − δk ∈ Rm

+ ,
κe− αk − δk ∈ Rm

+

3.4.6 Artificial Solutions for Unbounded Relaxed Problems

As discussed in the previous subsection, there may be cases where the variables of the dual
problem D(Sk) (3.17) do not satisfy the boundedness conditions, since the dual problem
does not guarantee any of them, resulting in the diverging of the specific relaxed problems.
Naturally, if this happens, the decomposition method loses its purpose, as obtaining a finite
solution from an unbounded problem becomes impossible. Consequently, the set Sk+1 cannot
be updated for the next iteration of the method. Therefore, there is a need to generate
solutions in an alternative way to ensure the functionality of the method in such cases.

A simple solution is to generate canonical solutions associated with the components of
the main variable β randomly, i.e., assigning a uniform probability to each i ∈ {1, . . . ,m} to
obtain some index j, generating an artificial solution of the form β̄k = ej, where the only
nonzero component is the j-th one. For the other two main variables, it is sufficient to take
the same vector z̄k = ūk = ej when τ = κ, or their equivalents in proportion, z̄k =

√
κ/τej

and ūk =
√
τ/κej, when τ ̸= κ, to maintain the structure of the optimal solutions.

The above idea can be further developed by considering that all the boundedness conditions
from the previous subsection come from weights of the form h(λk)′x in the objective function
of each problem, where h(λk) is some transformation of the dual variables λk (constant in
the relaxed problem), and x is the vector of the variables in the relaxed problem. If the
problem were the minimization of the function L(x, λk) = h(λk)′x without any constraints,
then the direction of the steepest descent of this function with respect to x is given by
−∇xL(x, λ

k) = −h(λk). In cases where xj → ±∞ upon solving the problem, i.e., the j-th
components of the vector h(λk) that do not satisfy the boundedness conditions, these values
should diverge precisely in the directions −∇xL(x, λ

k)j = −h(λk)j, so one might consider
taking the components of the steepest descent direction in the diverging components as
outlined in the previous subsection’s boundedness conditions. However, the solution x̄k

with the diverging components equal to those of −h(λk) and the rest of the components not
necessarily is not a good solution for the method as it is a mixture of components of maximum
descent and zero values. Therefore, it is proposed to take multiple canonical vectors in the
diverging components, weighted by the sign of−h(λ)kj if they are free variables in the problem,
and simply canonical vectors in the diverging components for non-negative variables. This
gives more freedom to the method to find the best direction among the diverging components
and the rest of the previous solutions, in addition to being a step beyond the random choice
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of canonical vectors, while making the same matching of components of β, z, and u described
with the random canonical solutions.

The problem that can arise from this method is that too many synthetic canonical
solutions are added due to the possibility of having many diverging components, which can
complicate the master problem of the next iteration by increasing the dimensionality of Sk+1

too much. To avoid this, a parameter v is added to the method, dictating the number of
canonical solutions to add, selecting the v with the greatest absolute value in its weight on
the objective function in each iteration where the relaxed problem is unbounded.

If J k
v denotes the set of the v components of the greatest magnitude among those that

do not meet the boundedness condition of their respective relaxed problem, the construction
procedure of artificial solutions x̄k = (β̄k, z̄k, ūk) for each proposed problem can be explicitly
presented in the summary of Table 3.2.

Table 3.2: Summary of boundedness conditions and the artificial solutions constructed in
each case when the relaxed problem is unbounded. All components of the artificial solutions
not explicitly stated, i.e., j /∈ J k

v , take on zero values.

Relaxed Problem Boundedness Conditions Artificial Solutions

L(XC1 , λ
k) |(X ′ψk)i| ≤ 2

√
κτ, ∀i ∈ {1, . . . ,m}

√
τ/κz̄kj =

√
κ/τūkj = 1,

β̄kj = − (X′ψk)j
|(X′ψk)j | , ∀j ∈ J

k
v

L(XC2 , λ
k)

τe+ αk − δk ∈ Rm
+

√
τ/κz̄kj =

√
κ/τūkj = 1,

β̄kj = ±1,∀j ∈ J k
v

κe− αk − δk ∈ Rm
+

√
τ/κz̄kj =

√
κ/τūkj = 1,

β̄kj = ±1,∀j ∈ J k
v

L(XC1,2
, λk)

X ′ψk − 2γk = 0

√
τ/κz̄kj =

√
κ/τūkj = 1,

β̄kj = − (X′ψk−2γk)j
|(X′ψk−2γk)j | ,∀j ∈ J

k
v

τe+ αk − δk ∈ Rm
+

√
τ/κz̄kj =

√
κ/τūkj = 1,

β̄kj = ±1,∀j ∈ J k
v

κe− αk − δk ∈ Rm
+

√
τ/κz̄kj =

√
κ/τūkj = 1,

β̄kj = ±1,∀j ∈ J k
v

After constructing the vectors β̄k of artificial solutions, their non-zero components are
separated into different canonical-like vectors, each representing a new column in the master
problem.

Since the aforementioned conditions do not depend on any results from relaxed problems,
the attempts to solve these problems can be omitted when any component does not meet the
boundedness criterion, saving the time of resolution in the decomposition method.
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Chapter 4

Results

All the results presented in this chapter were obtained using a computer with the following
specifications.

1. Processor: AMD Ryzen 7 4800HS, 2.90 GHz, with 8 cores and 16 threads.

2. RAM: 16.0 GB (15.4 GB in use).

3. OS: Windows 11 22H2, 64-bit.

4.1 Data

Concerning the data, synthetic instances were generated with multiple size options. Given a
quantity n of observations and m desired features, the matrix of independent variables X is
generated, where its columns are m different arrays of random variables following a normal
distribution Xi ∼ N (µi, σ

2
i ), with its parameters once again random variables distributed

uniformly µi ∼ U(−10, 10) and σi ∼ U(0, 5). The actual coefficients β are also generated
with a uniform distribution U(0, 1), similar to the aforementioned parameters, while the
target vector y is obtained using the equation y = Xβ.

Another detail about the data is that after obtaining the target vector y, ten percent of the
columns of X are transformed into noise. This noise follows a standard normal distribution
N (0, 1), resulting in a new matrix X, which is the one used as input for all the models tested
in the following sections results. The goal of this procedure is to resemble a more realistic
source of data.

35



4.2 Comparison of the Decomposition Method by the

Relaxed Problem

In the following subsections, the term CG − LC is used for the instances of the Column
Generation method described in Chapter 3, where C is one of the cones to relax. The
configuration of parameters of the method is detailed in each subsection. The term SOCP
represents the results of instances of the second-order cone problem (3.12). All these methods
are modeled in Python 3.9.7, using the package CVXPY version 1.2.2 (Diamond & Boyd,
2016), and solved through the Python API for MOSEK version 10.0.29 (MOSEK ApS, 2023).
All convergence tolerances, including the solver and the decomposition method, are set to
1e− 6 = 1× 10−6.

4.2.1 Preliminary Execution Times by the Relaxed Problem

The results for execution times of the conic model and the three types of decomposition
methods for each of the three relaxed problems presented in subsection 3.4.4, incorporating
also the artificial solutions in cases of unbounded problems as described in subsection 3.4.6,
are shown in Figures 4.1, 4.2, and 4.3. For all three figures, the parameter configurations
are considered as τ = κ = ∥y −XβOLS∥22, v0 = 6, v = max{⌊0.012m⌋, 5}. Here, βOLS is the
solution of ordinary least squares βOLS = (X ′X)−1X ′y. A 30-minute execution time limit is
set for all methods for these results.
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Figure 4.1: Execution times with synthetic data for the decomposition method for each of
the three possibilities of relaxation and the second order cone problem (3.12), for different
numbers of features m ∈ [10, 100], and n = 10000 observations.

It can be observed that the decomposition method that relaxes the conic constraints
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Figure 4.2: Execution times with synthetic data for the decomposition method for each of
the three possibilities of relaxation and the second order cone problem (3.12), for different
numbers of features m ∈ [100, 1000], and n = 10000 observations.
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Figure 4.3: Execution times with synthetic data for the decomposition method for each of
the three possibilities of relaxation and the second order cone problem (3.12), for different
numbers of features m ∈ [1000, 10000], and n = 10000 observations.

C2 is the slowest of all, reaching times exceeding 30 minutes for synthetic data instances
with m = 500 or more features, which is well above the time of the SOCP (3.12), which is
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able to solve the synthetic instance with m = 500 features in approximately 37 seconds. A
similar situation occurs with the decomposition method that relaxes all second-order cone
constraints C1,2, which exceeds 30 minutes for instances with m = 900 or more features,
while the SOCP is capable of solving the instance with m = 900 features in approximately
1 minute and 53 seconds. Neither of these two methods is able to improve the execution
times of the original SOCP in any instance, rendering the decomposition method with these
relaxations unnecessary.

Regarding the decomposition method that relaxes the second-order cone constraint C1, it
can be seen that for instances with m = 4000 features or more, the decomposition method is
systematically faster to solve than the SOCP, managing to solve an instance with m = 10000
features in less than 20 minutes, while the original conic problem exceeds 30 minutes of
execution time for instances with m = 4000 features or more. It is necessary to highlight that
in the instance with m = 3000 features, the decomposition method relaxing the constraints
of C1 solves the problem in approximately 19 seconds, while the SOCP solves this instance
in an approximate time of 22 minutes and 37 seconds. In other words, in this instance
the original problem is 71.42 times slower than the decomposition method, showing that
the decomposition method is capable, with this relaxation, of solving large instances of the
original conic problem in considerably shorter times.

4.2.2 Optimal Objective Value by the Relaxed Problem

To confirm that the decomposition method is indeed delivering the optimal result for the
different instances of the problem (3.12), it is also necessary to verify that in the previous
instances, the method is delivering the same optimal objective value, given the tolerance. To
do this, the counterparts of the figures from the previous subsection are presented for relative
differences in the optimal objective values of each version of the decomposition method with
respect to the second-order conic problem, in Figures 4.4, 4.5, and 4.6.

The relative difference of the optimal objective values (RDOV ) of the decomposition
method with a certain relaxation of conic constraints sets C (CG − LC) and the SOCP is
defined as

RDOVCG−LC =
f(x∗CG−LC

)− f(x∗SOCP )
f(x∗SOCP )

, (4.1)

where f(x∗CG−LC
) is the optimal objective value of the CG−LC method and f(x∗SOCP ) is

the optimal objective value of the original conic problem.

It can be observed that the greatest deviation from the optimal objective value of the
second-order cone problem occurs in Figure 4.4, with the decomposition method that relaxes
the C2 constraint set in the instance with m = 20 attributes, where the relative difference
is -8%, meaning the objective value of the CG − LC2 method is 8% greater than that of
the original problem. However, this is a small instance, so it is not expected that any
decomposition method is needed for it. The instances of interest are those of large size, with
m = 1000 or more attributes, and, as seen in Figure 4.6, the greatest relative difference
among the three large instances is approximately −2 × 10−7%, which, in practical terms,
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Figure 4.4: Relative difference of the optimal objective values with synthetic data for
the decomposition method for each of the three possibilities of relaxation and the second
order cone problem (3.12), for different numbers of features m ∈ [10, 100], and n = 10000
observations.
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Figure 4.5: Relative difference of the optimal objective values with synthetic data for the
decomposition method for each of the three possibilities of relaxation and the second order
cone problem (3.12), for different numbers of features m ∈ [100, 1000], and n = 10000
observations.
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Figure 4.6: Relative difference of the optimal objective values with synthetic data for the
decomposition method for each of the three possibilities of relaxation and the second order
cone problem (3.12), for different numbers of features m ∈ [1000, 10000], and n = 10000
observations.

given the predefined tolerance, is zero, so the optimal objective function is the same as the
optimal objective value of the SOCP. It can be concluded that the optimal objective value of
the decomposition methods in these instances are the same as that of the second-order conic
problem, and therefore, in these instances, they are equivalent problems.

4.3 Review of Convergence Criteria in Relaxed Models

Regarding the convergence criteria of the different decomposition methods, there is an
opportunity for improvement in terms of execution times. By knowing the boundedness
conditions and the artificial solutions that should be implemented in each case, as shown
in Table 3.1, it is possible to review these conditions prior to solving the respective relaxed
problem. This approach involves avoiding the resolution of the relaxed problems when there
is no finite solution and focuses only on generating the artificial solutions.

For the results presented in this subsection, the same aforementioned parameters are
used, except for the penalty weights, which change to τ = κ = ∥y − XβOLS∥22/M0.6. This
adjustment results in a smaller penalty depending on the instance size. The purpose of
this adjustment is to show instances of the problem with more iterations, providing more
opportunities to observe what happens with the relaxed problems.
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4.3.1 Behavior of the Lagrange Relaxation over Iterations

To assess how often the boundedness conditions are not met, the optimal objective values
and execution times of the master problem P (Sk) and the relaxed problem L(XC1 , λ

k) are
shown throughout the iterations of the CG− LC1 method in Figures 4.7 and 4.8.
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Figure 4.7: Optimal objective values of the subproblems by iteration of the CG−LC1 method,
without prior checking of boundedness conditions.
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Figure 4.8: Execution times (in minutes) of the subproblems by iteration of the CG − LC1
method, without prior checking of boundedness conditions.
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These figures indicate that there is always an execution time for the Lagrange relaxation
in each iteration, but not necessarily for its optimal value. This implies that the problem
was solved, but the objective is unbounded in all iterations except the last one, rendering
most of the time spent attempting to solve the relaxed problem futile. Execution times in
each iteration, and the fraction invested in solving relaxed problems, are shown in detail in
Table 4.1.

Table 4.1: Execution times (in minutes) and objective value for the decomposition method
and its subproblems, without prior checking of boundedness conditions.

t Objective value

Decomposition Method 9.11 74328058.97
Master problem 7.41 74328058.97
Lagrange relaxation 1.45 74328058.98

It can be seen that the resolutions of the relaxed problems account for 15.91% of the total
time of the method, making it worthwhile to attempt to reduce this time.

4.3.2 Omission of the Relaxed Problem with Boundedness Conditions

The results shown in Figures 4.9 and 4.10 are obtained for the same instance as in the
previous subsection, but with the implementation of the prior checking of the boundedness
conditions and omitting the relaxed problem when the conditions are not met. In this case,
the boundedness condition correctly identifies cases where the relaxed problem is unbounded
and attempts to solve it only in the last iteration, where the optimal value if finite.

For an aggregated comparison, the execution times in each subproblem of the method
per iteration are presented in Table 4.2. In this table, it can be observed that the optimal
objective value is the same as in Table 4.1, indicating that the same problem was solved,
and in the same number of iterations as well. The time spent on solving the Lagrange
relaxation of the problem decreased from 1.45 minutes to approximately 3.34 seconds. This
value can be influenced by various factors, being only a single instance, but the difference is
still substantial, clearly saving almost all the time of solving the Lagrange relaxation with
this adjustment.

Table 4.2: Execution times (in minutes) and objective value for the decomposition method
and its subproblems, with prior boundedness condition checking and omission of the relaxed
problem.

t Objective value

Decomposition method 7.36 74328058.97
Master problem 7.24 74328058.97
Lagrange relaxation 0.06 74328058.98

To verify more instances and also to examine what happens when applying the same
method with the remaining two methods, the execution times of the three decomposition
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Figure 4.9: Optimal objective values of the subproblems by iteration of the CG−LC1 method,
with prior boundedness condition checking and omission of the relaxed problem.
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Figure 4.10: Execution times (in minutes) of the subproblems by iteration of the CG− LC1
method, with prior boundedness condition checking and omission of the relaxed problem.

methods for different instance sizes are presented in Table 4.3. The table also includes
the RDOV between the two alternatives of decomposition method, to show that they are
equivalent.

It is clear that even with the omission of the Lagrange relaxation, the alternatives
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Table 4.3: Execution times comparison between the different decomposition methods
alternatives, with and without prior boundedness condition checking and L(XC, λ

k) omission.

Relaxation m t normal t pre-check RDOV

L(XC1 , λ
k)

100 0.30 0.21 0
200 0.72 0.52 0
300 2.07 1.57 0
400 4.58 3.64 0
500 4.77 3.76 0
600 4.47 3.65 0
700 5.29 4.09 0
800 6.25 4.89 0
900 6.79 5.31 0

L(XC2 , λ
k)

100 1.03 1.02 0
200 4.9 4.94 0
300 13.81 13.45 0
400 − − −
500 − − −
600 − − −
700 − − −
800 − − −
900 − − −

L(XC1,2
, λk)

100 2.44 2.41 0
200 3.43 3.38 0
300 4.63 4.61 0
400 − − −
500 − − −
600 − − −
700 − − −
800 − − −
900 − − −

L(XC2 , λ
k) and L(XC1,2

, λk) cannot surpass in efficiency the decomposition method with the

relaxation problem L(XC1 , λ
k).

4.4 Parameter Tuning of the Method

The parameters of the decomposition method that can be varied to solve the same problem
are mostly parameters that affect the construction of the solution sets Sk. The focus will
be on analyzing the results for different values of these parameters, in order to select those
parameters that decrease execution times without significantly affecting the performance of
the method.
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4.4.1 Initial Solutions S0

The initial solution set, as mentioned in the construction of the Sk sets in subsection 3.4.2,
has different options for its construction, which are divided into the following two subsections
of results.

4.4.1.1 Form of the Initial solutions

In first place, the differences in the decomposition method with the relaxation L(XC1 , λ
k) are

analyzed with different ways of constructing the initial solutions, or the initial feasible set
S0. As mentioned in the Methodology Chapter 3, the following two options are analyzed for
its construction.

1. Adding to the initial matrix B0 a column with a vector of constant solutions with
coefficients of absolute value one. That is, adding a solution such that |β0

i | = 1,∀i ∈
{1, . . . ,m}, and for the matrices Z0 andU0, taking vectors z0, u0 with all their components
equal to 1. Since a sign must be chosen for the components of β0, but it is not known
which sign will behave better in each component, the sign of each of these components
is randomly chosen, but the positive value is maintained in the components of the other
two solution vectors.

2. Adding to the initial matrix B0 a quantity v0 of vectors with a single component of
absolute value one, but with different signs in the component associated with β0, as in
the previous case, and the rest of the components being zero. For the case of matrices
Z0 and U0, canonical vectors with a one in the same non-zero component of the β0 are
added. To have baseline for this type of solutions, the option of constructing solutions
with random components with values 0, 1, and −1 for the β0 vectors will also be
considered, while the other two vectors are filled with ones in the non-zero components
of β0.

In Table 4.4, the average execution time results, in minutes, for different instances are
presented, with 10 attempts for each parameter configuration and number of attributes.
The table also presents the number of successful instances, the execution time deviation,
the average number of selected attributes, the average number of iterations, and the average
objective value, in order to analyze the behavior of the different configurations more accurately.
All the parameters no shown in the table are the same as stated in the last results, except
for τ = κ = ∥y −XβOLS∥22/M0.4 and v0 = max{⌊0.02m⌋, 5}.

It is observed that the canonical solutions speed up the method in any case, while the
constant solution seems to increase execution times, which is seen even more clearly in
instances with canonical initial solutions. However, instances without a constant solution
in the canonical solutions results seem to be less stable, as they are opportunities where
the number of features selected has the most difference with the rest of the configurations.
The solution seems to stabilize by adding a constant solution, as the number of selected
attributes remains similar in any case, while in instances without a constant solution, there
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Table 4.4: Average execution time and other metrics for different configurations of the initial
solutions form of the method for different data sizes, with n = 10000.

Configuration Metrics
m Const. sol. Canonical sol. # success Mean t t std. # feat. # iter. Objective value

1000 False False 10 0.239 0.045 3.0 2.2 8.371744e+07
True 10 0.147 0.015 3.1 2.2 8.371744e+07

True False 10 0.234 0.049 3.0 2.2 8.371744e+07
True 10 0.265 0.068 3.0 2.7 8.371744e+07

2000 False False 10 2.686 0.473 98.0 6.3 2.095731e+08
True 10 0.813 0.084 98.5 6.0 2.095731e+08

True False 10 2.703 0.496 98.0 6.4 2.095731e+08
True 10 2.369 0.436 98.0 6.1 2.095731e+08

3000 False False 10 2.991 0.346 53.0 4.1 2.632429e+08
True 10 0.644 0.023 57.3 3.0 2.632429e+08

True False 10 3.441 0.785 53.0 4.5 2.632429e+08
True 10 1.852 0.241 54.5 3.1 2.632429e+08

4000 False False 10 2.207 0.408 3.1 2.1 3.262692e+08
True 10 0.673 0.013 28.7 2.0 3.262692e+08

True False 10 2.085 0.027 3.0 2.0 3.262692e+08
True 10 1.773 0.019 3.1 2.0 3.262692e+08

5000 False False 10 7.647 0.075 84.0 4.0 4.486613e+08
True 10 1.172 0.026 90.3 3.0 4.486613e+08

True False 10 7.987 0.856 83.8 4.1 4.486613e+08
True 10 4.272 0.026 84.3 3.0 4.486613e+08

is greater variability among configurations. However, the solutions appear to be numerically
equivalent, as the objective function is the same in terms of tolerance.

In principle, the configuration with only canonical solutions is chosen as the best, prioritizing
execution time, and in instances with greater convergence instability, the constant solution
can also be added to the initial solution matrices.

4.4.1.2 Number of Initial Solutions

The second parameter to vary in terms of the construction of the initial feasible set S0 is
the number of canonical initial solutions to consider. In other words, varying the size of
the parameter v0. To do this, it is changed in relation to the number of parameters in the
problem. If v0 = m is chosen, then the original conic problem is obtained, so a considerably
smaller quantity must be chosen, considering the assumption of large size m.

In Table 4.5, the results for instances with v0 between 1 and m/4+1 are shown. It can be
observed that as the fraction of canonical initial solutions v0

m
increases, the method’s resolution

time also increases. However, choosing a single initial solution result in less stable solution,
as some of these instances had some numerical errors, and the average number of selected
attributes changes drastically (not the objective value). That being said, it is preferable to
choose a small value but with greater consistency in the solutions. The procedure is then
repeated with smaller intervals.

In the Table 4.6, it can be observed that the average execution times seem to be lower
in instances with v0 between 1 and m/20 + 1, with instances with a single solution again
having many failed instances, while for v0 close to between 1 and 2% of m, all instances are
successful. However, the differences in execution times between these configurations are not
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Table 4.5: Average execution time and other metrics for different configurations of the number
of initial solutions of the method for different data sizes, with n = 10000 and v0 ∈ [1, m

4
+1].

Configuration Metrics
m v0 # success Mean t t std. # feat. # iter. Objective value

1000 1 10 0.123 0.004 5.100 2.000 8.371673e+07
51 10 0.185 0.028 3.200 2.100 8.371673e+07
101 10 0.238 0.020 3.100 2.000 8.371673e+07
151 10 0.304 0.046 3.100 2.100 8.371673e+07
201 10 0.374 0.044 3.100 2.100 8.371673e+07
251 10 0.465 0.070 3.900 2.100 8.371673e+07

2000 1 7 0.648 0.045 96.000 5.857 2.127228e+08
101 10 0.839 0.025 96.800 5.000 2.127228e+08
201 10 1.268 0.058 95.600 5.000 2.127228e+08
301 10 1.761 0.051 95.600 5.000 2.127228e+08
401 10 2.416 0.078 94.300 5.000 2.127228e+08
501 10 3.106 0.226 95.000 4.900 2.127228e+08

3000 1 7 0.595 0.075 62.857 3.429 2.658655e+08
151 10 0.814 0.025 52.900 3.000 2.658656e+08
301 10 1.274 0.054 52.800 3.000 2.658656e+08
451 10 1.874 0.066 52.400 3.000 2.658656e+08
601 10 2.657 0.100 53.300 3.000 2.658656e+08
751 10 3.641 0.120 53.000 3.000 2.658656e+08

4000 1 9 0.571 0.007 35.889 2.000 3.262936e+08
201 10 0.827 0.023 11.600 2.000 3.262936e+08
401 10 1.304 0.074 9.700 2.000 3.262936e+08
601 9 1.980 0.066 8.111 2.000 3.262936e+08
801 10 2.870 0.097 10.300 2.000 3.262936e+08
1001 10 4.092 0.171 13.600 2.000 3.262936e+08

5000 1 5 1.140 0.123 122.000 3.600 4.558796e+08
251 10 1.640 0.042 87.200 3.000 4.558797e+08
501 10 2.783 0.069 90.900 3.000 4.558797e+08
751 9 4.418 0.063 110.889 3.000 4.558797e+08
1001 10 6.781 0.721 94.100 3.100 4.558797e+08
1251 10 9.028 0.196 123.300 3.000 4.558797e+08

significantly large, with instances close to 2% of m appearing to take more time in general.
In consequence, any value within this parameter range will be used in the following results.

4.4.2 Feasible Region Sk

For the construction of the feasible region of the master problem, Sk, various options are
considered, as previously described.

1. The four different types of solution combinations described in subsection 3.4.2.

2. The number of artificial solutions to be added in iterations where the Lagrange relaxation
is unbounded, as described in subsection 3.4.6.
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Table 4.6: Average execution time and other metrics for different configurations of the number
of initial solutions of the method for different data sizes, with n = 10000 and v0 ∈ [1, m

20
+1].

Configuration Metrics
m v0 # success Mean t t std. # feat. # iter. Objective value

1000 1 10 0.122 0.004 5.100 2.000 8.371673e+07
11 10 0.132 0.014 3.100 2.100 8.371673e+07
21 10 0.135 0.006 3.100 2.000 8.371673e+07
31 10 0.149 0.003 3.300 2.000 8.371673e+07
41 10 0.160 0.011 3.200 2.000 8.371673e+07
51 10 0.170 0.012 3.200 2.000 8.371673e+07

2000 1 7 0.649 0.014 98.286 6.000 2.127228e+08
21 10 0.590 0.012 95.900 5.000 2.127228e+08
41 10 0.668 0.039 96.400 5.100 2.127228e+08
61 10 0.712 0.023 96.900 5.000 2.127228e+08
81 10 0.779 0.048 97.000 5.100 2.127228e+08
101 10 0.842 0.044 96.200 5.000 2.127228e+08

3000 1 9 0.621 0.066 58.778 3.556 2.658655e+08
31 10 0.581 0.015 53.200 3.000 2.658656e+08
61 10 0.618 0.015 53.100 3.000 2.658656e+08
91 10 0.677 0.014 53.000 3.000 2.658656e+08
121 10 0.740 0.026 52.700 3.000 2.658656e+08
151 10 0.816 0.015 53.200 3.000 2.658656e+08

4000 1 8 0.579 0.005 40.750 2.000 3.262936e+08
41 10 0.618 0.007 15.300 2.000 3.262936e+08
81 10 0.671 0.019 8.900 2.000 3.262936e+08
121 10 0.727 0.026 15.300 2.000 3.262936e+08
161 10 0.784 0.021 9.800 2.000 3.262936e+08
201 10 0.839 0.023 9.000 2.000 3.262936e+08

5000 1 3 1.136 0.141 116.333 3.667 4.558797e+08
51 10 1.058 0.014 89.300 3.000 4.558797e+08
101 10 1.156 0.018 86.800 3.000 4.558797e+08
151 9 1.268 0.025 91.111 3.000 4.558797e+08
201 10 1.426 0.039 88.300 3.000 4.558797e+08
251 10 1.554 0.035 88.100 3.000 4.558797e+08

4.4.2.1 Solutions Combination

There are four options of combination to use: convex combination, affine combination, conic
combination, and linear combination. These combinations can be summarized with two
distinct constraints on the variables π of the master problem P (Sk) (3.13):

∑
j πj = 1 and

π ≥ 0.

Table 4.7 presents the same results as the previous tables, but for the different configurations
of the two combination constraints mentioned above. Two critical behaviors can be observed
with respect to the convex and affine combinations, which include the constraint

∑
j πj = 1.

In these two combinations, there are many instances that fail, and some configurations
even have no instances with results. The second peculiar behavior is that in these same
combinations, the optimal value of the objective function is different from that of the conic
and linear combinations. Upon closer examination of the successful instances of the convex
and affine combinations, it is observed that the artificial solutions created in the last iterations
are repeated throughout them. In other words, no new artificial solutions are added, but the
same vectors are repeated, causing the master problem to have the same feasible region in
the final iterations of the instance (Sk+1 = Sk). This situation does not occur with the conic
and linear combinations, where there are always new solutions among the artificial solutions.
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The aforementioned problem can be largely explained by the nature of the artificial
solutions, as these solutions consist of vectors with unitary or null magnitude components.
A convex combination among them can only generate coefficient values βk = Bkπ with
components between −1 and 1 (−1 ≤ βki ≤ 1) and components between 0 and 1 for zk

and uk. In other words, with this type of combination and artificial solutions, results for
general problems cannot be obtained, quickly leading the problem to be stuck in the best
possible solution of its feasible region, which is certainly not the optimum of the original
problem, which has an optimum with coefficients of different magnitudes. As for the affine
combination, it is not the same problem, but it is very similar since it also restricts the value of
the coefficients with each other, where, for a coefficient to have a large magnitude, there must
be enough coefficients different from it, with opposite signs, so that these magnitudes are
counterbalanced in the constraint

∑
j πj = 1. Consequently, the complete space of possible

solutions is distorted, and the same with the optimal result.

Table 4.7: Average execution time and other metrics for different combinations of previous
solutions of the method for different data sizes, with n = 10000.

Configuration Metrics
m

∑
j πj = 1 π ≥ 0 # success Mean t t std. # feat. # iter. Objective value

1000 False False 10 0.142 0.018 3.200 2.200 8.371673e+07
True 10 0.133 0.006 3.400 2.000 8.371673e+07

True False 10 0.271 0.021 3.000 3.100 8.371673e+07
True 10 2.073 0.167 3.900 13.600 8.371673e+07

2000 False False 10 0.530 0.013 94.800 4.000 2.127228e+08
True 10 0.586 0.119 94.600 4.200 2.127228e+08

True False 0 − − − − −
True 1 0.477 − 43.000 5.000 1.238704e+09

3000 False False 10 0.615 0.076 55.400 3.000 2.658656e+08
True 10 0.613 0.008 61.200 3.000 2.658656e+08

True False 10 0.516 0.075 42.900 3.800 4.611430e+08
True 8 0.542 0.076 39.000 3.875 4.611430e+08

4000 False False 10 0.675 0.010 20.500 2.000 3.262936e+08
True 10 0.680 0.013 26.100 2.000 3.262936e+08

True False 10 1.794 0.408 6.500 2.800 3.262688e+08
True 0 − − − − −

5000 False False 10 1.162 0.032 110.300 3.000 4.558797e+08
True 10 1.155 0.015 114.700 3.000 4.558797e+08

True False 3 1.129 0.373 95.000 4.333 1.129547e+09
True 2 1.032 0.417 74.500 4.000 1.129547e+09

Given that combinations with the constraint
∑

j πj = 1 are not suitable for problems
of this type, one can continue analyzing Table 4.7 regarding the conic (π ≥ 0) and linear
combinations. It can be observed that the execution times for these two types of combinations
are quite similar, so it cannot be concluded that one combination is better than the other.
Initially, to minimize the number of constraints on the master problem, the linear combination,
without constraints on π, is chosen as the default for the decomposition method.

4.4.2.2 Number of Artificial Solutions

The last parameter that influences the construction of the feasible set Sk is the number of
artificial solutions v added in each iteration where the Lagrange relaxation is unbounded.
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Similar to v0, the results for different configurations of v are presented, with values between
1 and m/4 + 1 solutions in Table 4.8, where an increase in execution time can be observed
as the value of v increases relative to m, but with a decrease between the single solution
and 5% of the total attribute count m. It can be seen that the best performance in terms
of execution time efficiency is obtained between 1 and 10%, with less consistent solutions in
configurations with a single solution.

Table 4.8: Average execution time and other metrics for different configurations of the number
of artificial solutions added in iterations with unbounded relaxation for different data sizes,
with n = 10000 and v ∈ [1, m

4
+ 1].

Configuration Metrics
m v # success Mean t t std. # feat. # iter. Objective value

1000 1 10 0.191 0.004 3.000 4.0 8.371673e+07
51 10 0.158 0.026 3.100 2.1 8.371673e+07
101 10 0.180 0.016 3.100 2.0 8.371673e+07
151 10 0.216 0.022 3.000 2.0 8.371673e+07
201 10 0.284 0.080 3.100 2.1 8.371673e+07
251 10 0.295 0.025 3.000 2.0 8.371673e+07

2000 1 10 8.542 0.193 92.100 91.7 2.127228e+08
101 10 0.484 0.013 98.500 3.0 2.127228e+08
201 10 0.638 0.163 99.200 2.7 2.127228e+08
301 10 0.667 0.261 103.800 2.3 2.127228e+08
401 10 1.001 0.678 102.200 2.4 2.127228e+08
501 10 1.032 0.481 110.900 2.2 2.127228e+08

3000 1 10 6.226 0.085 51.300 51.7 2.658656e+08
151 10 0.528 0.013 65.600 2.0 2.658656e+08
301 10 0.682 0.031 65.500 2.0 2.658656e+08
451 10 0.979 0.316 61.900 2.1 2.658656e+08
601 10 1.160 0.038 54.500 2.0 2.658656e+08
751 10 1.497 0.052 56.800 2.0 2.658656e+08

4000 1 10 0.852 0.061 3.100 3.8 3.262936e+08
201 10 0.736 0.015 26.900 2.0 3.262936e+08
401 9 0.995 0.029 3.667 2.0 3.262936e+08
601 10 1.373 0.091 4.500 2.0 3.262936e+08
801 9 1.840 0.050 7.222 2.0 3.262936e+08
1001 10 2.370 0.096 6.000 2.0 3.262936e+08

5000 251 10 1.312 0.308 184.000 2.5 4.558797e+08
501 10 1.412 0.032 189.900 2.0 4.558797e+08
751 10 1.961 0.054 297.500 2.0 4.558797e+08
1001 10 2.638 0.075 201.000 2.0 4.558797e+08
1251 10 3.564 0.102 132.700 2.0 4.558797e+08

To further analyze the aforementioned range in detail, Table 4.9 shows the results for
different smaller intervals between 1 and approximately 10% of the available m attributes
in the dataset. This table shows that the shortest times are obtained with a quantity of
artificial solutions v ranging from approximately 2− 5% of m, with seemingly shorter times
at 3%, but with differences not significant enough to conclude that this percentage is the
best value for v. That being said, the values within the 2− 5% interval of the total number
of attributes m are considered sufficiently effective for the decomposition method.

4.5 Model Penalty Variation and Final Comparisons

In this section, the behavior of solutions and the execution times of the decomposition method
will be analyzed as the penalty parameters of the problem, τ and κ, are varied. These
parameters modify the problem by assigning different weights to the objective function for
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Table 4.9: Average execution time and other metrics for different configurations of the number
of artificial solutions added in iterations with unbounded relaxation for different data sizes,
with n = 10000 and v ∈ [1, m

10
+ 1].

Configuration Metrics
m v # success Mean t t std. # feat. # iter. Objective value

1000 1 10 0.198 0.007 3.000 4.000 8.371673e+07
17 10 0.152 0.027 3.100 2.200 8.371673e+07
33 10 0.146 0.014 3.100 2.100 8.371673e+07
49 10 0.160 0.012 3.100 2.000 8.371673e+07
65 10 0.159 0.009 3.100 2.000 8.371673e+07
81 10 0.170 0.009 3.200 2.000 8.371673e+07
97 10 0.189 0.019 3.000 2.000 8.371673e+07

2000 1 9 8.659 0.192 92.444 92.000 2.127228e+08
34 10 0.525 0.010 97.200 4.000 2.127228e+08
67 10 0.482 0.090 97.500 3.100 2.127228e+08
100 10 0.490 0.016 100.900 3.000 2.127228e+08
133 10 0.607 0.114 98.000 3.100 2.127228e+08
166 10 0.596 0.115 97.800 2.800 2.127228e+08
199 10 0.566 0.172 102.100 2.500 2.127228e+08

3000 1 10 6.408 0.091 51.100 51.900 2.658656e+08
51 10 0.605 0.005 53.600 3.000 2.658656e+08
101 10 0.547 0.101 60.800 2.300 2.658656e+08
151 10 0.556 0.092 62.400 2.100 2.658656e+08
201 10 0.742 0.202 67.900 2.400 2.658656e+08
251 10 0.682 0.153 70.800 2.100 2.658656e+08
301 10 0.697 0.026 64.000 2.000 2.658656e+08

4000 1 10 0.891 0.008 3.000 4.000 3.262936e+08
67 10 0.648 0.015 7.000 2.000 3.262936e+08
133 10 0.693 0.018 26.600 2.000 3.262936e+08
199 10 0.757 0.011 7.000 2.000 3.262936e+08
265 10 0.818 0.018 34.400 2.000 3.262936e+08
331 10 0.914 0.030 10.000 2.000 3.262936e+08
397 10 1.014 0.032 7.800 2.000 3.262936e+08

5000 1 0 − − − − −
84 10 1.128 0.017 97.300 3.000 4.558797e+08
167 10 1.094 0.193 163.000 2.400 4.558797e+08
250 9 1.152 0.254 152.222 2.222 4.558797e+08
333 9 1.313 0.346 186.333 2.222 4.558797e+08
416 9 1.273 0.048 201.778 2.000 4.558797e+08
499 8 1.394 0.020 112.500 2.000 4.558797e+08

the variables that bound the coefficients β. Consequently, the number of selected attributes
should change as these values are adjusted, leading the method to select fewer attributes as
the values of τ and κ increase.

The rest of the model parameters are chosen among the best alternatives explored in the
previous subsections, so it can have the best performance possible in average when comparing
the decomposition method with its two equivalent problems. That is, the original second-
order cone problem (3.12) and the state of the art feature selection model, LASSO (2.15).
The latter is the relaxed version of the LASSO model that uses Coordinate Descent to solve
the problem as proposed by Friedman et al. (2010), which is implemented in the Python
package Scikit-Learn version 0.24.2 for Machine Learning (Pedregosa et al., 2011).

The different instances to compare the three models consider changes on the penalty
parameters τ = κ, and also on the number of original features m to have a wider range
of results. The results of the mean execution times of the three models with τ, κ ∈ [∥y −
XβOLS∥22/M0.7, ∥y−XβOLS∥22/M0.1],m ∈ [1000, 5000], v = max{⌊0.03m⌋, 5}, v0 = max{⌊0.012m⌋, 5},
n = 10000 observations, linear combination of solutions, no constant initial solution, and
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canonical initial solutions are shown in Figures 4.11, 4.12, 4.13, 4.14, and 4.15.
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Figure 4.11: Average execution times of the three equivalent models in terms of the number
of selected features in each instance, for m = 1000. Each instance is executed 10 times.
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Figure 4.12: Average execution times of the three equivalent models in terms of the number
of selected features in each instance, for m = 2000. Each instance is executed 10 times.

Given the results shown in these five Figures, is easy to see that the fastest method in the
instances where just a few features are selected is the LASSO model solved with Coordinate
Descent. When the number of features selected starts to grow, the fastest method is the
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Figure 4.13: Average execution times of the three equivalent models in terms of the number
of selected features in each instance, for m = 3000. Each instance is executed 10 times.
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Figure 4.14: Average execution times of the three equivalent models in terms of the number
of selected features in each instance, for m = 4000. Each instance is executed 10 times.

decomposition method proposed in this work. On the contrary, for instances where the
number of features selected is around 40% or more of the total m, the original second-order
cone problem appears to be the fastest. This threshold cannot be confirmed for instances
with m greater than 3000, because the method starts to have numerical issues when that

53



0 500 1000 1500 2000
Number of selected features

0

50

100

150

200

250

300

Ex
ec

ut
io

n 
tim

e 
(m

in
s)

m=5000
SOCP
CG - LC1
LASSO

Figure 4.15: Average execution times of the three equivalent models in terms of the number
of selected features in each instance, for m = 5000. Each instance is executed 10 times.

percentage of features is selected in bigger instances.

Figures 4.16 and 4.17 show the aggregated results for the same instances as the previous
figures, and also the logarithm of execution times on the second figure. It is clear that the
execution times of the Coordinate Descent method and the conic decomposition method on
these instances depend only on the number of features selected, while the execution time of
the original problem only increases with the number of original features m.
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Figure 4.16: Average execution times of the three equivalent models in terms of the number
of selected features in each instance, form ∈ [1000, 5000]. Each instance is executed 10 times.
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Figure 4.17: Logarithm of the average execution times of the three equivalent models in terms
of the number of selected features in each instance, for m ∈ [1000, 5000]. Each instance is
executed 10 times.
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Chapter 5

Conclusions

This research has successfully achieved a significant breakthrough in the development of a
novel feature selection model with conic constraints, capable of effectively handling instances
of varying number of total features. Notably, the model has been proven as being equivalent
to the widely recognized LASSO method (see Proposition 2).

The implementation of a state-of-the-art decomposition method for conic problems has
yielded promising results, demonstrating the method’s ability to match the optimal solution
of the original conic problem in lower execution times, with instances were the decomposition
method took 1% of the SOCP execution time to retrieve a solution (see Figure 4.15).
Nonetheless, there is still room for improvements for this method to address some issues
like the numerical problems for big instances with more than 40% of the features selected.

The C1 conic constraint relaxation has emerged as the fastest option among the three
possible relaxation alternatives (see Figures 4.1, 4.2, and 4.3). This could be because of
the relationship between the main three variables β, z and u, which only appears in the
relaxed problem L(XC1 , λ

k), not just as a constraint, also in the convergence condition of the
problem. The other two relaxed problems treat each one of these variables as independent
ones, possibly leading to poor solutions in many of the iterations of the method.

The identification of convergence conditions to check before trying to solve the different
Lagrange relaxations has significantly improved the execution times of the L(XC1 , λ

k) relaxation
(see Tables 4.1 and 4.2). The rest of the relaxed problem alternatives did not show any
significant decrease in the execution times (see Table 4.3). The Lagrange relaxation of these
two alternatives only have positiveness constraints, so they are not hard-to-solve problems.
While these advancements have been instrumental, there remains room for further enhancements
in the pre-checking process of problematic behavior of the relaxed problems and in the
artificial solution techniques.

A deeper exploration of the initial feasible region and solutions can be explored in the
future. Seeing the fast results with techniques like Coordinate Descent in the LASSO method
when just a few features are selected, as shown in Figures 4.11 to 4.15, a smart selection
of an initial region holds the potential to refine the overall effectiveness of the method.
Additionally, comparative analyses of the decomposition method, the original SOCP and the
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LASSO method with more heterogeneous datasets and real-world instances are essential to
fully evaluate the method’s efficiency and applicability.

Further modifications to the method, such as solving the master’s dual D(Sk) instead of
the master problem P (Sk), trying different construction method of the feasible regions Sk,
and so on, offer promising avenues for decreasing execution times enhancing the method’s
robustness. Continued exploration of these modifications is crucial to ensure the method’s
reliability and consistency across various scenarios. This research marks a significant initial
step, laying the foundation for continued advancements and refinements in the field of feature
selection methods.
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Pearson, K. (1900). X. On the criterion that a given system of deviations from the probable
in the case of a correlated system of variables is such that it can be reasonably supposed
to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 50(302):157–175.

Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–
572.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning
in python. Journal of machine learning research, 12(Oct):2825–2830.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1):81–106.

Rahmat, F., Zulkafli, Z., Ishak, A. J., Rahman, R. Z. A., Stercke, S. D., Buytaert, W., Tahir,
W., Rahman, J. A., Ibrahim, S., and Ismail, M. (2023). Supervised feature selection using
principal component analysis. Knowledge and Information Systems, pages 1–41.

Richards, J. A. (2022). Supervised Classification Techniques, pages 263–367. Springer
International Publishing, Cham.

Rothlauf, F. (2011). Optimization Methods, pages 45–102. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research
directions. SN Computer Science, 2(3).

Schwendinger, B., Schwendinger, F., and Vana, L. (2022). Holistic generalized linear models.
arXiv:2205.15447.

Sheikhpour, R., Sarram, M. A., Gharaghani, S., and Chahooki, M. A. Z. (2017). A survey
on semi-supervised feature selection methods. Pattern Recognition, 64:141–158.

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58(1):267–288.

Vicente, L. N. and Calamai, P. H. (1994). Bilevel and multilevel programming: A
bibliography review. Journal of Global Optimization, 5(3):291–306.

Xu, X., Gu, H., Wang, Y., Wang, J., and Qin, P. (2019). Autoencoder based feature selection
method for classification of anticancer drug response. Frontiers in Genetics, 10.

Zou, H. and Hastie, T. (2005). Regularization and Variable Selection Via the Elastic Net.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 67(2):301–320.

60


	Introduction
	Theoretical Framework
	Feature Selection Problem
	Feature Selection Methods in Terms of Availability of Label Information
	Feature Selection Methods According to the different Strategies of Searching the Most Relevant Features

	Exact Optimization
	Exact Optimization Problems
	Convex Optimization Problems
	Lagrange Relaxation of an Optimization Problem
	Lagrange Dual Problem
	Particular Case: Conic Constrained Problems

	Large-Scale Optimization
	Decomposition Methods for Linear Problems
	Benders Decomposition
	Dantzing-Wolfe

	Decomposition Methods for Nonlinear Problems

	State of the Art
	Feature Selection Methods with Exact Optimization
	LASSO
	Elastic Net

	Feature Selection with Conic Optimization
	Decomposition Method for Conic Optimization Problems


	Methodology
	Baseline Model: Mixed Integer Quadratic Program (MIQP)
	Relaxation: Quadratic Program (QP)
	Conic Model: Second Order Cone Program (SOCP)
	Decomposition Method for the Second-Order Cone Program
	Decomposition Algorithm for Second-Order Cone Program
	Feasible Region Sk
	Master Problem P(Sk)
	Lagrange Relaxation L(X, lk)
	Relaxation of C1
	Relaxation of C2
	Relaxation of C1 and C2

	On the Boundedness of the Lagrange Relaxation L(X, lk)
	Necessary conditions for boundedness of L(XC1, lk)
	Necessary conditions for boundedness of L(XC2, lk)
	Necessary conditions for boundedness of L(XC12, lk)

	Artificial Solutions for Unbounded Relaxed Problems


	Results
	Data
	Comparison of the Decomposition Method by the Relaxed Problem
	Preliminary Execution Times by the Relaxed Problem
	Optimal Objective Value by the Relaxed Problem

	Review of Convergence Criteria in Relaxed Models
	Behavior of the Lagrange Relaxation over Iterations
	Omission of the Relaxed Problem with Boundedness Conditions

	Parameter Tuning of the Method
	Initial Solutions S0
	Form of the Initial solutions
	Number of Initial Solutions

	Feasible Region Sk
	Solutions Combination
	Number of Artificial Solutions


	Model Penalty Variation and Final Comparisons

	Conclusions
	Bibliography

