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RESUMEN DE LA TESIS PARA OPTAR
AL GRADO DE DOCTOR EN INGENIERÍA ELÉCTRICA
POR: PABLO ADOLFO BARRIOS SOTO
FECHA: 2023
PROF. GUÍA: MARTIN ADAMS

MÉTRICAS MULTI-OBJETO PARA LA EVALUACIÓN DE MAPAS ROBOTICOS Y
REGISTRO DE DATOS

En mapeo robótico y en Simultaneous Localization And Mapping (SLAM), la capacidad de
evaluar la calidad de los mapas estimados es crucial. Aunque existen conceptos para cuan-
tificar el error en la trayectoria estimada de un robot, o en un subconjunto de caracteristicas
del mapa estimado, rara vez se considera conjuntamente la diferencia entre todas las esti-
maciones y el ground truth. En la literatura de tracking, la métrica Optimal Sub-Pattern
Assignment (OSPA) proporciona una solución a este problema. A pesar de sus ventajas sobre
otras métricas, la métrica OSPA tiene algunas limitaciones en mapeo robótico. Por lo tanto,
la primera componente de esta tesis introduce la métrica Cardinalized Optimal Linear As-
signment (COLA), para la evaluación de mapas robóticos. Además, la segunda componente
de esta tesis amplía el uso de las metricas multi-objeto al problema del registro de nubes de
puntos, el cual es una componente crucial en muchas aplicaciones, incluyendo la estimación
del movimiento de los sensores sensor y la reconstrucción 3D. Los resultados de esta tesis
demuestran que la métrica COLA es fiable para evaluar mapeo robótico y SLAM. Además,
la métrica COLA mejora el registro de nubes de puntos abordando conjuntamente los errores
espaciales y de cardinalidad.
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MULTI-OBJECT METRICS FOR ROBOTIC MAP EVALUATION AND DATA
REGISTRATION

In robotic mapping and Simultaneous Localization And Mapping (SLAM) the ability to
assess the quality of estimated maps is crucial. While concepts exist for quantifying the error
in the estimated trajectory of a robot, or a subset of the estimated feature locations, the
difference between all current estimated and ground-truth features is rarely jointly considered.
The Optimal Sub-Pattern Assignment (OSPA) metric provided a solution to the problem of
assessing target tracking algorithms. Despite its advantages over other metrics when gauging
multi-target tracking errors, the OSPA metric has some limitations when applied to robotic
mapping errors. Therefore, the first component of this thesis introduces the Cardinalized
Optimal Linear Assignment (COLA) metric, as a complement to the OSPA metric, for feature
map evaluation Further, the point cloud registration problem is addressed as an application
of multi-object metric concepts. Therefore, the second component of this thesis extends the
application of multi-object metrics to the fundamental research problem of point cloud data
registration for sensor motion estimation and 3D reconstruction. The results of this thesis
demonstrate that the COLA metric is reliable for evaluating robotic mapping and SLAM.
Also, the COLA metric improves point cloud registration by jointly addressing spatial and
cardinality errors.
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Chapter 1

Introduction

Fundamental to any state estimation problem is the concept of estimation error. Solutions to
robotic mapping and SLAM, in which usually the location of an unknown number of features
should be estimated, are numerous offering various degrees of performance. Examples include
classical methods such as recursive EKF SLAM [1, 2], Multi-Hypothesis (MH) FastSLAM
[3], batch estimation methods such as GraphSLAM [4] and iSAM [5, 6] and Random Finite
Set (RFS) methods [7, 8]. Irrespective of the estimation methods used, while clear concepts
exist for quantifying the error in the estimated pose or trajectory of a robotic vehicle [9]
and/or a subset of the estimated feature locations within a single reference frame [2], the
absolute difference between all currently estimated and GT features in the map is rarely
jointly considered. In SLAM, this is of equal importance to the vehicle trajectory estimate.

Previous methods, which have been used to compare estimated and GT maps, include
the Root Mean Squared (RMS) and Normalized Estimation Error Squared (NEES) metrics
[10, 11, 12, 13]. These metrics are only defined if the number of estimated and GT features
are the same. In realistic scenarios, these numbers will differ, meaning that a sub-set of at
least one of the map’s features must be used. Examining the spatial errors between sub-sets
of the estimated and GT features may illustrate the consistency of the spatial state of the
selected features, but gives no indication of the quality of the estimate of the joint multi-
feature map state. The primary difficulty in mathematically defining map estimation error is
caused by the differences between the estimated and true number of features, and the need to
satisfy the four metric axioms [14]1. Map estimators which miss detections and/or produce
false alarms are potentially dangerous, since missed detections can result in robot to object
collisions and false alarms in a (e.g., search and rescue) robot thinking it is blocked, when in
fact it could maneuver to a victim in need of assistance. Therefore, the first component of
this thesis suggests that a concise map estimation metric, which penalizes estimators for both
feature detection as well as description (of which the location state is an example) errors, is
important, but lacking in the literature. It therefore introduces the concept of multi-object
metrics and their application to robotic map estimation error. The second component of this

1The four metric axioms can be defined as follows. Let X be an arbitrary, non-empty set. Then the
function d is a metric iff: 1) d(x,y) ≥ 0, for all x,y ∈ X ; 2) d(x,y) = 0 iff x = y, for all x ∈ X (identity
axiom); 3) d(x,y) = d(y,x), for all x,y ∈ X (symmetry axiom); 4) d(x,y) ≤ d(x, z) + d(z,y), for all
x,y, z ∈ X (triangle inequality axiom).

1



thesis extends the application of multi-object metrics to the fundamental research problem
of point cloud data registration for sensor motion estimation and 3D reconstruction.

1.1 Motivation: The Dilemma of Map Error Quantifica-
tion

To illustrate the dilemma in map quality estimation, recall that in state-of-the-art feature-
based SLAM formulations, the map is constructed by stacking features into a vector, and
consider the simplistic scenarios showed in Fig. 1.1. Fig. 1.1a depicts a scenario in which

+ +Est. features

X 0:k

2 x /m10−1
−1

0

1

/my

1

1

(b)

+

+

+

(a)

Est. features

X 0:k

2 x /m10−1
−1

0

1

/my

1
1

0
0

0
0

1
1

0
0

1
1

m = m = m = m =

True featuresTrue features

Figure 1.1: A hypothetical scenario showing a fundamental inconsistency with vector representations
of feature maps. If m is the GT map (blue circles), how should the error be assigned when the number
of features in the map estimate, m̂, (red crosses) is incorrect?

there are two true features at coordinates (0, 0) and (1, 1) (blue circles). The true map, m,
is then represented by the vector m = [0 0 1 1]>. If the estimated features (red crosses)
are stacked into a vector, in the order in which they were detected given the green vehicle
trajectory X0:k (as shown in the figure), and perfect measurements, the estimated map may
be given by the vector m̂ = [1 1 0 0]>. Despite a seemingly perfect estimate of the map,
the Euclidean error of the estimated map, ||m− m̂||, is 2. This inconsistency arises because
the ordering of the features in the representation of the map should not be relevant. A
vector representation however, imposes a mathematically strict arrangement of features in
the estimated map, usually based on the order in which they were detected [1, 2]. Intuitively,
the elements of m̂ could be permuted, via successful data association, to obtain zero error,
however the representation of all possible permutations of the elements of a vector is, by
definition, a set. Hence, such a permuting operation implies that the resulting error distance
should be a distance for sets.

Another problem is depicted in Fig. 1.1b, in which there are again two features at (0,0)
and (1,1), but due to a missed detection, the estimated map comprises only one feature at
(1,1). In such a situation, it is difficult to define a mathematically consistent error metric
(Euclidean error, RMS, NEES) between the vectors m and m̂ since they contain a different
number of features.

2



In the target tracking literature, a similar dilemma exists in which the performance of
trackers must be assessed, which led to the development of multi-object metrics, based on
sets instead vectors.

1.2 The Application of Set-based metrics to Point Cloud
Registration

Point Set Registration is the process of estimating a rigid transformation, defined by a rota-
tion matrix R and a translation vector t, to align two Point Cloud Data (PCD) sets defined
as a reference set of pointsM and a model set of points M̂, in a consistent manner. In the
literature numerous solutions exist with different degrees of performance. One of the first
solutions to this problem is the Iterative Closest Point (ICP) [15] algorithm which provides
a simple conceptual method based on vector-based L2 norm. Applications are numerous in
robotics and computer vision, such as robot localization [16] [17], object recognition [18] [19],
and 3D reconstruction [20] [21].
Similarly to mapping error estimation, point set registration in particular has been devel-
oped traditionally by using vector-based metrics, such as the L2 metric. However, in the
most general case,M and M̂ do not necessarily contain the same number of points as illus-
trated in Figure 1.2, due to the presence of miss-detections and false alarms. Also, in general
the correspondence between points is not given a priori. Therefore, methods which utilize
vector-based metrics require heuristics to cope with false alarms and miss-detection in the
presence of spatial uncertainty within the point sets, in order to solve the data association
between points fromM and M̂.

For solving the registration problem shown in Figure 1.2, in which the Chui & Rangarajan
fish dataset was used [22], the ICP algorithm assigns the closest points within M and M̂.
Because of this, the ICP algorithm suffers limitations since it, often erroneously, assumes that
the closest pairs define the correct correspondence. This limitation often causes ICP to fail
for various reasons. One possibility is that there are many false alarms and miss-detections in
the point clouds, which requires complementary methods to remove them, e.g., the RANdom
Sample Consensus (RANSAC) algorithm [23], or the Guaranteed Outlier Removal (GORE)
algorithm [24]. If the point clouds are not initially approximately aligned, ICP is susceptible
to local minima solutions producing inaccurate estimates. Further, ICP uses an L2 metric to
quantify registration error, which cannot penalize cardinality errors.

The lack of any criteria to penalize cardinality errors requires other metrics to evaluate
the errors between PCD sets and in this thesis, multi-object set-based metrics are suggested
to cope with both spatial and cardinality errors in a joint manner.

1.3 Thesis Hypotheses

In this thesis, the following hypotheses are proposed
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Figure 1.2: A scenario of point cloud data registration is presented here, in the presence of miss-
detections and false alarms, based on the Chui & Rangarajan fish synthetic dataset. Blue stars
represent the reference setM, and the model set M̂ with red circles. Note that in realistic scenarios
|M| 6= |M̂|. The excessive rate of false alarms presented here highlights one of the difficulties
of point cloud registration, called the correspondence problem. More precisely, the correspondence
problem is the estimation process that determines the correspondences between all points within M
and M̂. Therefore, when a large rate of false alarms or miss-detections exists, the probability of
correct correspondence decreases. Thus, if the correspondence problem is not accurately solved, point
cloud registration may fail in its execution, which suggests the requirements of new methods to cope
with both spatial and cardinality errors in a joint manner.

1. Error assessments in feature-based robotic mapping can be evaluated in a consistent
manner based on multi-object metrics.

2. In SLAM, assessing a robot’s trajectory error does not necessarily give an accurate
assessment of the robot’s mapping error.

3. Multi-object metrics have applications as principled measures for point cloud registra-
tion and general Data Association (DA), which take into account data differences (e.g.,
object location) and their cardinalities.

1.4 Thesis Objectives

The main objectives of this thesis are as follows:

1. As its name implies, SLAM jointly estimates a robot’s trajectory and map. State-of-
the-art SLAM evaluation methods often only consider the trajectory. This thesis will
demonstrate that the meaningful quantification of mapping error is also important and
necessary for true SLAM performance evaluation. Section 5.2 addresses this objective.

2. As a consequence of objective 1, a new multi-object metric, the COLA metric is de-
rived, which takes into account detection as well as spatial errors. The objective is to
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overcome some of the problems associated with state-of-the-art metrics, thus providing
a meaningful mapping error. Chapter 3 presents COLA as a new metric that satisfies
the four metric axioms. Additionally, Section 5.2 highlights its performance evaluation
based on the “Parque O’Higgins” and the “CityTrees10k” data sets.

3. It will be demonstrated that multi-object metrics can also be applied to the problem
of point data registration. A new method, referred to as the PSO-COLA algorithm,
will be derived to improve point cloud data registration in the presence of the realistic
phenomena of detection and spatial uncertainty. Chapter 4 presents PSO-COLA for
point data registration based in multi-object metric. Additionally, Section 5.3 highlights
its performance compare with state-of-the-art methods under different conditions.

The specific objectives of this thesis are as follows:

1. The COLA mapping metric will be implemented and its performance in terms of provid-
ing meaningful mapping error estimates, when compared with state-of-the-art methods,
will be validated. Chapter 3 addresses this objective.

2. Since SLAM is a joint (robot trajectory and map) estimation problem, different SLAM
algorithms should be compared based on both their trajectory and mapping estimation
errors. Therefore, overall SLAM performance will be evaluated based on the map-
ping component performance evaluations of the COLA metric as well as the trajectory
component evaluations performed by state-of-the-art single-object metrics. Section 5.2
addresses this objective.

3. Based on both controlled and real 3D datasets, improved point cloud data registration
in the presence of both detection and spatial errors will be demonstrated with the
PSO-COLA algorithm. Section 5.3 addresses this point.

1.5 Thesis Outline

The thesis proceeds as follows. Chapter 2 discusses the state of the art in robotic map
evaluation methods and 3D point data registration. Chapter 3 introduces the COLA
metric as a viable map evaluation alternative which takes into account both detection
and spatial uncertainty. Chapter 4 introduces the PSO-COLA algorithm as an alter-
native for point data registration. Chapter 5 presents the results. Multi-object metrics
are evaluated in real SLAM scenarios using the “Parque O’Higgins” dataset [25] as well
as the “CityTrees10k” SLAM dataset [5] and mapping results based on iSAM. Also,
the performance of the PSO-COLA algorithm as a point cloud registration solution is
evaluated in controlled scenarios based on the “Stanford Bunny” and “Dragon” datasets
[26], and in the real “ETH Apartment” scenario [27]. Chapter 6 concludes the thesis.
Finally, Appendix A corresponds to the published papers based on this thesis.
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Chapter 2

State of the Art

2.1 Introduction

In [28], it is noted that many robotic mapping performance measures are not true metrics,
since in order to obtain an intuitive measure, at least one of the metric axioms is violated.
To demonstrate the basic problem of precisely quantifying feature-based mapping error, Fig.
5.2 in Chapter 5, shows posterior map estimates from two different feature-based SLAM
filters. The true feature maps in each figure are shown as blue stars and the estimated maps
as red spatial uncertainty ellipses. A natural question is: “Which estimate is closer to GT”
Visual intuition is difficult due to the combination of missed detections, false alarms and
spatial errors. A metric to answer this fundamental question is lacking in the mobile robotics
literature.

It will be shown in this thesis, that multi-object1 metrics developed in the target tracking
community, which consider both multi-target state estimation cardinality as well as state
errors and which obey the metric axioms, provide a basis for gauging robotic maps in an
intuitive manner. Such set-based metrics are analyzed and described for the evaluation of
feature-based maps.

The first part of this thesis is an extension of the author’s paper [29], in which the
COLA metric was first presented. It extends the analyses by deriving the COLA metric from
the Wasserstein construction, providing a theoretical comparison of the way in which false
alarms and missed detections are quantified by the OSPA and COLA metrics, deriving the
map conditions which can cause them to differ, and providing more in depth results and
conclusions demonstrating the complementary nature of the OSPA and COLA metrics for
useful robotic map evaluation as presented in [25].

In the introduction, Section 1.1 demonstrated the difficulty in comparing feature map
estimates. In this chapter, Section 2.2 presents a discussion of state-of-the-art methods for
map error evaluation while Section 2.3 provides the mathematical definitions necessary to

1In the tracking community, a vector-based estimator is often referred to as a single-object estimator,
where as the RFS form is referred to as a multi-object estimator.
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quantify feature maps, for metric-based evaluation. Section 2.4 discusses the applicability
of mapping metrics when no ground truth is available and Section 2.5 overviews current
metrics and defines the COLA metric. Finally Section 2.6 highlights the problems associated
with state-of-the-art point cloud data registration methods and introduces a solution, which
overcomes these issues, based on multi-object metrics.

2.2 Robotic Mapping Error Estimation

Contrary to feature-based mapping approaches, occupancy grid methods use a predefined
quantity of occupancy values and do not need to encapsulate cardinality estimation error
- i.e. an estimated grid map with N cells is typically compared with a GT grid map, also
with N cells. In these cases, error metrics for fixed dimension problems, such as a sum of
the squared error [30, 31], or more complex errors such as “brokenness”, [32] can be applied.
Other work provides methods to gauge grid-based SLAM or mapping performance in robotic
competitions such as search and rescue and RoboCup [33, 34].

In other mapping approaches, [35] presented the concept of assessing map quality through
a binary classification of point cloud data by automatically labelling sections as plausible or
suspicious, through the use of conditional random fields, but without relating the data to
GT.

Various data-base websites such as [36] compare SLAM algorithms based on the error
in the corrected SLAM trajectory component, without analyzing the corresponding map. A
metric-based on the energy required to deform the estimated trajectory to its GT value was
defined in [9]. This metric is based on an intuitive concept for comparing estimated and
GT trajectories, and complies with the metric axioms. However, it will be shown in this
thesis that the trajectory energy metric can contradict principled multi-object metrics which
evaluate the map accuracy of the SLAM algorithm, which produced both the trajectory and
the map.

In [37], a method for comparing maps suggested the use of the Hausdorff metric. Al-
though this metric has been successfully applied in numerous vision applications for gauging
the similarity between pixelated images, it suffers various problems in the way it penalizes
cardinality errors between estimated and GT maps, as will be demonstrated in this thesis.

A feature-based map quality assessment method, based on searching for nearest neighbor
equivalent features between an estimated and GT map was given in [38]. Map quality was
assigned according to the number of associated point to point feature matches, however no
penalties for false alarms and missed detections were considered.

The need for feature map metrics has also been identified in publicly available data sets,
such as the European Union’s FP6 Rawseeds project [39], where corner-based performance
metrics are suggested for comparing estimated and GT maps.

Recent work in SLAM has suggested that a collection of map features can be modelled
as a finite set, rather than a vector [7, 8]. Indeed the mathematical definitions of the four
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metric axioms apply to a set of vectors and it will be demonstrated in this thesis that if a
GT set-based mapMk and its set-based estimate M̂k, which vary with discrete time k, are
modelled as finite sets of feature location vectors, then a mathematically consistent notion
of estimation error is possible, even when the number of estimated and GT features differ.
This is because, the ‘distance’, or error between sets, is a well understood concept. Examples
include the Hausdorff distance and more recent metrics defined in the multi-target tracking
literature, such as the OMAT [40] and OSPA [14] distances.

In 2015, the COLA metric was initially introduced as an alternative to the OSPA metric
[29]. Instead of converting cardinality errors into distance errors, as takes place with the
OSPA metric, the COLA metric converts localization errors into fractional cardinality errors.
As with the OSPA metric, the COLA metric was also derived from the Wasserstein construct
and is a true metric, as it obeys the four metric axioms. An analysis of this metric, together
with comparisons with both the COLA and other metrics, which extends the analyses given
in [29], forms the subject of Chapter 3.

Subsequently, in 2017, a multi-object metric referred to as the Generalized Optimal Sub-
Pattern Assignment (GOSPA) metric was published [41]. In a manner similar to the COLA
metric, the GOSPA metric is also an absolute, rather than normalized metric, however it has
not been shown that it can be derived from the Wasserstein construction. It is also not clear
why this metric is referred to as "Generalized" OSPA, since no proof is given to demonstrate
any kind of generalization.

Finally, the Optimal Sub-Pattern Assignment(2) (OSPA(2)) metric [42, 43] was presented
as an extension of the OSPA metric, for comparing trajectories over time, rather than tar-
get/map states at a particular time instant.

The pioneering work by [14] introduced the OSPA metric, based on the concepts that it
should:

1. be a metric on the space of finite sets,

2. have a natural (meaningful) physical interpretation,

3. capture cardinality errors and state errors meaningfully,

4. be easily computed.

This philosophy is continued in this thesis, by analyzing current as well as the proposed
COLA set-based metrics.

2.3 Map Set Definitions

Modelling a robotic feature map as a set Mk, provides a general model, since the vectors
within each set can contain any (spatial and/or description) information of relevance to the
type of feature to be estimated. Further, the order in which these features are estimated,
in terms of gauging overall map quality, is irrelevant. Throughout this thesis, the GT map
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set Mk is considered to contain mk vectors mi
k, 1 ≤ i ≤ mk. For ease of notation and

explanation, and without loss of generality, m will be referred to as a spatial variable and
the time index k is now dropped. Therefore the GT map M = {m1,m2, . . . ,mm}, where
mi ∈ RN ∀i : 1 ≤ i ≤ m. The estimated map M̂ is considered to contain m̂ vectors modelling
the location of map objects - i.e. M̂ = {m̂1, m̂2, . . . , m̂m̂}, where m̂i ∈ RN ∀i : 1 ≤ i ≤ m̂.
N is the dimension of the general feature space. Note that m̂ is itself an estimate of m and
therefore, in general, m̂ 6= m (|M̂| 6= |M|).

2.4 When GT is Unavailable

There are cases in SLAM in which reliable GT maps are unavailable or incomplete, such as
dense visual-based maps. This thesis therefore analyses metrics which compare all of the
features estimated by a mapping or SLAM algorithm, either with those produced by another
algorithm, or GT. In the absence of GT, a possibility for evaluation is to select the most
robust known algorithm X, and then if the mapping performance of algorithms Y and Z
are to be compared, determine which is closer to X. Further, when GT is unavailable, the
triangular inequality can be exploited under certain conditions, to at least provide bounds
for the mapping error between estimated and GT maps. Assume that two estimated maps
M̂1 and M̂2 are available and that the GT map is M. If it is known that estimated map
M̂2 is closer to GT than estimated map M̂1 then

d(M̂2,M) = αd(M̂1,M) where 0 ≤ α < 1. (2.1)

Any chosen true metric d(M̂1,M̂2), which compares sets M̂1 and M̂2 can then be used
to determine upper bounds on the error between M̂1 and M and M̂2 and M. From the
triangular inequality

d(M̂1,M) ≤ d(M̂1,M̂2) + d(M̂2,M) (2.2)
From (2.1) and (2.2)

d(M̂1,M) and d(M̂2,M) ≤
(

1

1− α

)
d(M̂1,M̂2), (2.3)

meaning that upper bounds on the mapping error between M̂1 andM and M̂2 andM can
be determined in terms of the error between the map estimates of the two algorithms.

If a third map estimation algorithm is introduced which yields M̂3, the above analysis
can be extended to give

d(M̂3,M) ≤ d(M̂3,M̂1) +

(
1

1− α

)
d(M̂1,M̂2). (2.4)

Note that since a GT mapM is not required in the RHS of (2.3) and (2.4), the map feature
representations are not restricted to ones knowledge of GT, and can include dense (e.g.,
visual) feature representations. Note here the importance of the chosen map metric being
a true metric, such that the 4 axioms are obeyed. It is also desirable that α be as small as
possible.

From here on, comparisons will be referred to as being between estimated and GT maps,
although the concepts equally apply to comparisons of multiple map estimates.
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2.5 Metrics for Comparing Sets

2.5.1 The Hausdorff metric

Definition of the Hausdorff Metric

The Hausdorff metric calculates the degree of difference between the two sets of vectorsM
and M̂ for the general case when |M| and |M̂| may differ. Formally, the Hausdorff distance
from a finite nonempty set M to another finite nonempty set M̂ is a maximin function,
defined as:

dH(M,M̂) = max{maxm∈Mminm̂∈M̂ d(m, m̂),
maxm̂∈M̂minm∈M d(m̂,m)} (2.5)

where d(m, m̂) is the Euclidean distance between m and m̂.

Intuitive Map Quality Issues with the Hausdorff Metric

The Hausdorff metric has been applied extensively in computer vision analyses as a measure
of similarity of pixelated images. Examples include checking if a template image is present in
a test image [44], object matching between images [45] and automatic target recognition [46].
The metric has also been applied to the evaluation of multi-target data fusion algorithms
[47, 48].

In the work of Hoffman and Mahler, it was noted that although the Hausdorff distance
provides a useful assessment of the overall localization performance of multi-target estimation
algorithms, it lacks the ability to penalize false target estimates, and tends to over-penalize
single estimate outliers [40]2. These same issues affect the Hausdorff distance’s ability to
provide a meaningful and intuitive assessment of robotic map quality, as will be demonstrated
in Section 3.7. The inability to provide a meaningful measure of multi-target estimate quality,
motivated the introduction of the OMAT metric, explained next.

2.5.2 The OMAT metric

Definition of the OMAT metric

Hoffman and Mahler generalized the concept of a miss-distance in which they derived the
OMAT metric with power p is defined as [40]

dpOMAT(M,M̂) = min
Cm×m̂

(
m∑

i=1

m̂∑
j=1

ci,jd(mi, m̂j)p

)1/p

(2.6)

2It should be noted that there are generalizations of the Hausdorff metric which are able to specifically
avoid the outlier problem [49].
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where Cm×m̂ ∈ Rm×m̂ is the transportation matrix with elements ci,j. The OMAT metric
determines the matrix Cm×m̂, which minimizes the objective function in (2.6), where the
chosen metric d(mi, m̂j) represents the unit cost of transporting ci,j (quantity of) weights
from mi to m̂j for features i = 1, 2, ...,m from the ground truth map M to the features
j = 1, 2, ..., m̂ in the estimated map M̂, subject to the constraints given by

m̂∑
j=1

ci,j =
1

m
1 ≤ i ≤ m and

m∑
i=1

ci,j =
1

m̂
1 ≤ j ≤ m̂, (2.7)

which is a generalized distance between two probability distributions on some metric space
M. The OMAT metric was introduced in a tracking context when Mahler et al addressed
the data association problem in the context of multi-object estimation [50].

Intuitive Explanation of the OMAT Metric

The OMAT metric calculates the fractional assignment of features from set M to M̂ and
can be defined as a balanced transportation problem, since the assignment can be described
in terms of the total supply from setM being equal to the total demand required by set M̂
[51]. When p = 1, the transportation problem is also known as the “earth mover’s distance”
[52], used in image processing.

Limitations of the OMAT Metric

While the OMAT metric has been shown to partially solve the outlier problem associated
with the Hausdorff metric, various other problems exist, which will be demonstrated for
theoretical and real estimated map cases in Sections 3.7 and 5.2.1. Further, the OMAT
metric is mathematically undefined when eitherM or M̂ = ∅.

2.5.3 The OSPA metric

In 2008, [14] introduced the OSPA metric, which obeys the metric axioms and improves most
of the problems of the OMAT metric, as will be shown in Section 3.7. It has recently gained
popularity in gauging target tracking [53, 54, 55, 56] as well as robotic mapping performance
[8, 7].

Definition of the OSPA Metric

The OSPA metric d
(c,p)
OSPA(M,M̂) with power p and cut-off parameter c, for m̂ > m, is defined

as:
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d
(c,p)
OSPA(M,M̂) =

(
1

m̂
min
σ

m̂∑
i=1

d(c)(mi, m̂σ(i))p

)1/p

(2.8)

=

(
1

m̂

(
min
σ

m∑
i=1

d(c)(mi, m̂σ(i))p + cp(m̂−m)

))1/p

(2.9)

where σ is a permutation of the set {1, . . . ,m} which minimizes
(

m∑
i=1

d(c)(mi, m̂σ(i))p
)
, 1 ≤

p < ∞ and the cut-off parameter c > 0. The assignment σ(i) can be determined via an
optimal assignment method, such as the Hungarian method, [57, 58]. If both sets are empty,
m = m̂ = 0, d

(c,p)
OSPA(M,M̂) = 0. For m > m̂, the metric is defined as d

(c,p)
OSPA(M̂,M). The

distance d(c)(mi, m̂σ(i)) is defined as

d(c)(mi, m̂σ(i)) = min(c, d(mi, m̂σ(i))) (2.10)

where d(mi, m̂σ(i)) is any metric distance (e.g., Euclidean, Mahalanobis, Hellinger) between
mi, m̂σ(i).

Intuitive Explanation of the OSPA Metric

For m̂ > m and p = 1, the first term of the RHS of (2.9), determines individual assignments
between all m of the feature location vectors within M and a subset of dimension m of
the feature vectors within M̂. Due to (2.10), each assignment is given a value equal to
its (possibly statistical) distance up to a maximum value of c (statistical) distance units.
The remaining m̂−m features in M̂ which were not assigned, constitute a cardinality error
(possible false alarms). Each of these is penalized with the maximal distance error c, hence
yielding the RHS residual error c(m̂ − m) in (2.9). To comply with other metrics (L2 norm
etc.) the assigned distance values can be raised to the general power p. Intuitively, when
the (statistical) distance between feature i and its assigned feature σ(i) reaches a maximum
value (c), feature i becomes a cardinality error, contributing one more fixed distance error
cp. Hence the OSPA metric yields a measure of the difference between M̂ and M in units
of distance. From (2.9) and (2.10), d

(c,p)
OSPA(M,M̂) has minimum value zero and saturates to

a maximum value c for allM and M̂.

Selecting the c and p parameters in the OSPA metric

In [14], the cut-off parameter c can be determined according to the question: What distance
c should be used to establish whether or not an estimated feature is good? Based on this, the
selection of the parameter c is not unique and depends on the designer. A possible recipe for
this question is to find the cut-off c, which establishes a good balance to penalize the com-
bination of detection and cardinality errors. Section 5.2 studies several intuitive examples
related to this point. It utilizes the Mahalanobis (statistical) distance as an inner metric.
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Therefore, the cut-off c is defined as the validation gate, corresponding to a probability inter-
val within a chi-square test, within which an estimated feature is considered to correspond
to a GT feature. Finally, selecting the power p determines how sensitive the OSPA metric is
to penalize outlier estimates. In general, if p = 1, the OSPA metric corresponds to the sum
of cardinality and detection errors. However, this thesis will use p = 2 since it yields smooth
errors and is more in-line with other metrics, often L2-norms.

2.6 Point Cloud Data Registration

Previous work has demonstrated that if the correspondence between two point clouds is
known, then the optimal transformation can be computed as a closed-form solution [59]
[60]. However, in real scenarios, the correspondence between points is usually unknown.
This variation is known in the literature as correspondence and pose estimation [61] since it
estimates an optimal transformation and a robust correspondence between the point clouds.
The ICP [15] algorithm and its variants [62] [63] historically provided a simple conceptual
solution to this problem. However, ICP has limitations due to the assumption that the closest
pairs define the correct correspondence. This limitation often causes ICP to fail for various
reasons. One possibility is that there are many outliers in the point clouds, which require
complementary methods to remove them, e.g., the RANSAC algorithm [23], or the GORE
algorithm [24]. If the point clouds are not initially approximately aligned, ICP is susceptible
to local minima solutions producing inaccurate estimates. Finally, ICP uses an L2 metric to
quantify registration error, which cannot penalize detection errors due to outliers.

An ICP variant, Global ICP (Go-ICP) [64], is considered one of the first methods to
solve the point registration problem robustly. However, due to the Branch and Bound (BnB)
strategy for finding optimal global registration solutions, it can make the problem compu-
tationally expensive. Also, by maintaining the L2 metric as a cost function, this method
inherits some of the disadvantages of ICP, when outliers are present.

In [14], [25], the multi-object OSPA and COLA metrics were proposed as solutions to
the evaluation of errors between two sets, which are directly applicable to two different point
cloud data sets such asM and M̂. These multi-object metrics have applications in assessing
multi-target tracking and robotic mapping algorithms in the presence of both state and
state cardinality errors. As was shown in [25], the OSPA and COLA metrics can differ in
their evaluations when comparing two estimated map/target sets with a third ground truth
map/target set. In contrast, in the case of point cloud registration, a metric is required,
which calculates the difference between a model set and its transformed reference set, so that
this difference can be minimized to yield an optimal estimated transformation between them.
Therefore, in the case of point cloud registration, both the OSPA and COLA metrics yield
the same estimated transform, as will be proved in Section 4.2 and therefore without loss of
generality, this thesis applies the COLA metric.

In related work [65], extended the use of multi-object metrics to the evaluation of esti-
mated shape errors in image processing. For the direct comparison of point-based data sets
however, the COLA (and OSPA) metrics remain of relevance.
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Registration approaches are split into local and global methods. In each case, the following
literature review corresponds to joint pose and correspondence estimation.

2.6.1 Local registration methods.

As mentioned above, ICP [15] and its variants [62] [63] are known as local registration meth-
ods. However, these have several problems in the presence of outliers. Probabilistic ap-
proaches such as the Normal Distributed Transform (NDT) algorithm [66] and Gaussian
mixture (GM)-based registration methods [67] have been proposed to improve the robust-
ness of ICP. Based on the Kullback-Leibler divergence between two GMs, the aforementioned
methods demonstrate improvements in robustness to outliers. However, the optimization is
based on local search, providing solutions susceptible to local minima.

2.6.2 Global registration methods.

Currently, there are a variety of solutions to the global registration problem using BnB
techniques. Go-ICP [64] is one of the first methods that proposed this solution. It presents
a global variant of the ICP algorithm using the BnB technique. However, this method is
sensitive to occlusions due to its non-robust cost function, the L2 norm. For outlier removal,
Go-ICP uses trimming strategies. However, these trimming strategies increase the algorithm’s
computational time exponentially. Another algorithm by Li and Hartley, also based on BnB,
proposes an algorithm with increased search speed by using simpler bounding functions on
the L2 metric for error minimization [68]. This method is however still unable to penalize
cardinality errors.

In a manner similar to Go-ICP, the Globally Optimal Gaussian Mixture Alignment
(GOGMA) algorithm [69] also uses a BnB strategy to determine the optimal transforma-
tion between point clouds. However, in contrast to directly applying ICP to the point cloud
data sets for local minimization of the objective function, GOGMA first converts the point
cloud data sets into Gaussian mixtures and then aligns the mixtures based on the authors’
definition of an L2 metric between the mixtures. BnB is then used to achieve global mini-
mization. This method can yield significant improvements in performance over its Go-ICP
predecessor, however it can also fail to terminate due to excessive memory requirements.
This is because GOGMA generates a priority queue consisting of all current branches con-
necting the prior transformation estimate with all nearest possible transformation estimates.
This process requires large memory requirements and it is possible that the priority queue
grows faster than it can be pruned, resulting in intractability. Because of this problem, this
algorithm has been discarded for comparison with the PSO-COLA algorithm.

The Truncated least squares Estimation And SEmidefinite Relaxation (TEASER) algo-
rithm [70] proposes a method that decouples the rotation and translation estimates. Using a
truncated least-squares cost function, the authors show improvements in the presence of data
outliers. With even only a few given correct point correspondences, TEASER is shown to
converge to a global minimum, even when a low number of correct correspondences is made.
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In the sense of RANSAC [23], the 4-Points Congruent Sets (4PCS) [71] algorithm has
been proposed. This method obtains a transformation hypothesis by matching four congruent
coplanar points. Due to the quadratic time complexity of 4PCS, Super 4-Points Congruent
Sets (Super4PCS) [72] is presented as a solution that improves the time complexity. However,
the search for congruent points between the point clouds is not guaranteed to converge in
the presence of noise.

The Fast Descriptors and Correspondence Propagation (FastDesp) algorithm [73] has
been proposed as an efficient solution using descriptors computed from eigenvectors and
normals computed at multiple scales. Results show promising applications in large point
cloud datasets. However, when performing correspondence propagation, which is the process
of adding new possible correspondences to an initial correspondence set, it uses the nearest
neighbor algorithm, which ignores the joint compatibility of the data.

PHASER presents a point cloud registration solution in the context of the Fourier trans-
form [74]. This solution exhibits accurate convergence to a global solution, however assumes
only spatial point cloud data errors, while ignoring the possibility of detection errors (i.e.
missing data and/or false alarms).

2.6.3 Preprocessing Point Cloud Data

This section describes point cloud data preprocessing, for the purpose of reducing the com-
plexity of data registration. In general, point cloud data sets contain a huge number of
points and their attributes. Therefore, a great deal of research addresses the problem of data
reduction without eliminating important information. In the following, the most commonly
used techniques for data reduction will be introduced, namely down-sampling and the use of
data descriptor-based methods.

Data Reduction-Based on Down-Sampling

There has been extensive research in the field of data down-sampling and the intention of
this section is to explain the classical techniques.

The Random Sample Filter randomly samples the point cloud according to a uniform
probability distribution, while preserving the spatial densities within the data [75]. The
computational complexity of this method is O(n), where n is the number of points in the
point cloud.

The Octree method on the other hand, starts by constructing the cube of minimum
volume which contains the entire point cloud data set [76]. Then the algorithm iterates, and
the cube is sub-divided into 8 equally sized cubes, called the children. After every iteration,
it is verified if the child cubes are filled. Empty cubes are pruned and the subdivision stops
if a certain discretization level is reached. Finally, the subsampled point data set becomes
the set of points corresponding to the centers of each filled child cube.

The Uniform Grid Sampling Filter uses a voxelized grid approach [77]. This technique
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uses 3D spatial voxels, which can contain any number of points within the point cloud. Every
point within a particular voxel will be replaced by a single point, which is closest to the center
of that voxel. Therefore, the data reduction in this case is sensitive to the voxel grid size.

In this thesis, the PSO-COLA registration algorithm will initially be applied to the Stan-
ford Bunny and Dragon datasets from the Stanford 3D Scanning Repository [26]. This is
because these datasets are recorded from a single object so that the PSO-COLA registration
algorithm can be tested in the absence of possible occlusions. These datasets have been ob-
tained from a high precision Cyberware 3030 MS laser stripe optical triangulation scanner,
to which controlled amounts of spatial and detection errors can be added. Due to the high
number of points in the raw Bunny and Dragon data sets, subsampling is necessary. To
subsample these data sets, the Uniform Grid Sampling Filter method will be used, due to its
superior performance over Octree and the Random Sample Filter in preserving the shape of
the datasets.

Data Reduction-Based on Descriptors

Descriptor-based methods for modelling point cloud data sets are also numerous in the liter-
ature. In general these techniques are useful for computing correspondences between points.

The Signature of Histograms of OrienTations (SHOT) algorithm is a local 3D descrip-
tor for surface matching [78]. It is rotation invariant and robust to spatial measurement
noise. The 3D SHOT descriptors are split into two categories, namely “Signatures” and “His-
tograms”. The novelty of this method is the signature descriptor, which provides a description
of a given point with respect to its 3D surface neighborhood.

The Fast Point Feature Histograms (FPFH) descriptor [79], has been published as an
improvement over its Point Feature Histograms (PFH) descriptor predecessor [80]. FPFH
descriptors contain information describing the local geometry around a given point in 3D
point cloud datasets. The computational complexity of this algorithm is given by O(n× k),
where n is the number of points in the PCD, and k is the number of its neighbors, within a
predefined spatial region. Due to this low computational complexity, this algorithm can be
used for computing the point correspondences necessary for 3D registration.

To apply the PSO-COLA registration algorithm in the presence of possible occlusions,
such as environments with walls, corners and corridors, in which a mobile robot may need to
navigate, the “ETH-Apartment” dataset will be used [27]. In the case of the ETH-Apartment
data set, data reduction is also necessary before the PSO-COLA, and most other, registration
algorithms can be applied in a tractable manner. In contrast to the Stanford Bunny and
Dragon datasets descriptor-based data reduction, as opposed to subsampling, will be used.
This is because, when recorded from a moving vehicle, consecutive scans can vary significantly
due to occlusions. For example, this occurs when passing from one room to another. In this
case, descriptors have the potential to improve the speed and accuracy of the PSO-COLA
algorithm. Due to the low computational complexity necessary to generate them, FPFH
descriptors will be applied.
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Chapter 3

The Cardinalized Optimal Linear
Assignment metric

3.1 Introduction

In this chapter the COLA metric is presented, for evaluating multi-object error estimation.
In particular, the COLA metric is a class of Wasserstein metric, which obeys the four metric
axioms, and measures dissimilarity between two probability distributions. Additionally, the
COLA metric is introduced for improving some of the limitations of the state of the art OSPA
metric in robotic mapping. Specifically, OSPA saturates to c when all of the localization errors
are larger than c, and is then insensitive to the size of the map cardinality error. Further,
it will be shown that unlike the OSPA metric, the COLA metric penalizes missed detections
and false alarms in an equal and symmetric manner.

3.2 Definition of the COLA Metric

The COLA metric can be derived from the Wasserstein construction as shown in Section 3.3.
For m̂ ≥ m, it is defined as

d
(c,p)
COLA(M,M̂) =

(
min
σ

m̂∑
i=1

(
d(c)(mi, m̂σ(i))

c

)p)1/p

(3.1)

=

(
min
σ

m∑
i=1

(
d(c)(mi, m̂σ(i))

c

)p
+ (m̂−m)

)1/p

(3.2)

where, σ, p, c and d(c)(mi, m̂σ(i)) carry the same definitions as the OSPA metric. For m > m̂,
the metric is defined as d

(c,p)
COLA(M̂,M). Section 3.4 proves that d

(c,p)
COLA(M̂,M) is a true

metric.
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3.3 Derivation of the COLA Metric

Consider two probability densities f(M) and g(M̂) in the n-Euclidean space. By definition,
the Wasserstein distance calculates the similarity between f and g and is given by:

dpw(f, g) := min
h

(∫ ∫
d(m, m̂)p h(m, m̂)dmdm̂

)1/p

, (3.3)

where 1 ≤ p < ∞, d(m, m̂) is any distance metric between m and m̂, and h(m, m̂) is any
joint distribution whose marginals are f(m) and g(m̂) such that:∫

h(m, m̂)dm̂ = f(m),

∫
h(m, m̂)dm = g(m̂). (3.4)

Consider the marginal distributions in (3.4) to be:

f(m) =
1

m

m∑
i=1

δ(m−mi), g(m̂) =
1

m̂

m̂∑
j=1

δ(m̂− m̂j) (3.5)

where δ is the Dirac delta function. This implies that the joint distribution h(m, m̂) is given
by

h(m, m̂) =
m∑

i=1

m̂∑
j=1

ci,jδ(m−mi)δ(m̂− m̂j). (3.6)

The derivation of the COLA metric follows a similar procedure as the OSPA metric [14].
A unique assignment coefficient

ci,j = δj,σ(i)/max(m, m̂), (3.7)

which satisfies (3.6), is used where σ(i) is a permutation of the larger set and δj,σ(i) = 1 iff
j = σ(i) and 0 otherwise.

Consider a GT map M′ = {m1, . . . ,mm}, and its estimated map M̂ = {m̂1, . . . , m̂m̂}.
The COLA metric can then be derived from (3.3) by replacing

d(mi, m̂j) =
(max(m, m̂))

1/p

c
d(c)(mi, m̂j). (3.8)

Note that if d(c)(mi, m̂j) is a metric, then d(mi, m̂j) is also guaranteed to be a metric as
required in (3.3). For m̂ ≥ m, replacing ci,j in (3.6) with (3.7) and then substituting the
result, together with (3.8) into (3.3) yields a new metric

d
(c,p)
COLA(M,M̂) =

(
min
σ

m̂∑
i=1

(
d(c)(mi, m̂σ(i))

c

)p)1/p

, (3.9)

where d(c)(mi, m̂σ(i)) is defined in the OSPA sense, with cut-off parameter c. For m ≥ m̂, the
metric is defined as d

(c,p)
COLA(M̂,M).
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3.4 Proof that d
(c,p)
COLA(M,M̂) is a true Metric

The proof that d
(c,p)
COLA(M,M̂) is a metric follows a similar procedure to the the proof

that d
(c,p)
OSPA(M,M̂) is a metric in [14]. d

(c,p)
COLA(M,M̂) ≥ 0 for all M,M̂ because metric

d(c)(mi, m̂j) ≥ 0 for all m
i and m̂j. Similarly d

(c,p)
COLA(M,M̂) = 0 iff M̂ =M - proof: From

(3.2), if d
(c,p)
COLA(M,M̂) = 0, then

min
σ

m∑
i=1

d(c)(mi, m̂σ(i))p

cp
= −(m̂−m) ≤ 0, (3.10)

since (3.2) is defined for m̂ ≥ m. The RHS of (3.10) therefore implies that m̂ = m (since
the LHS is positive), meaning that d(c)(mi, m̂σ(i)) = 0 ∀i. d

(c,p)
COLA(M,M̂) = d

(c,p)
COLA(M̂,M)

because d(c)(mi, m̂j) satisfies the symmetry property. It remains to be verified that the
triangle inequality is satisfied.

Consider the set N̂ = {n̂1, . . . , n̂n̂}, with cardinality n̂ ∈ N0. Consider the following sets
of dummy points U = {ui}i∈N0 and V = {vj}j∈N0 in RN where

d(ui,x) ≥ c, d(vi,x) ≥ c, d(ui,vj) ≥ c ∀ x, i, j.

Case 1: (m ≤ m̂ ≤ n̂): In order to raise the cardinality of setsM and M̂ to n̂, consider
the following dummy points:

mm+i = ui, 1 ≤ i ≤ n̂−m (3.11)
m̂m̂+j = vj, 1 ≤ j ≤ n̂− m̂ (3.12)

Then choose σ, τ ∈ Πn̂ such that,

min
π∈Πn̂

n̂∑
i=1

(
d(c)(mi, n̂π(i))

c

)p
=

n̂∑
i=1

(
d(c)(mi, n̂σ(i))

c

)p
(3.13)

min
π∈Πn̂

n̂∑
i=1

(
d(c)(n̂i, m̂π(i))

c

)p
=

n̂∑
i=1

(
d(c)(n̂i, m̂τ(i))

c

)p
(3.14)
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∴ d
(c,p)
COLA(M,M̂) =

(
min
π∈Πm

m̂∑
i=1

(
d(c)(mi, m̂π(i))

c

)p)1/p

(3.15)

≤
(

min
π∈Πm

m∑
i=1

(
d(c)(mi, m̂π(i))

c

)p
+ (n̂−m)

)1/p

(3.16)

≤
(
min
π∈Πn̂

n̂∑
i=1

(
d(c)(mi, m̂π(i))

c

)p)1/p

(3.17)

≤
(

n̂∑
i=1

(
d(c)(mi, n̂σ(i)) + d(c)(n̂σ(i), m̂τ(σ(i)))

c

)p)1/p

(3.18)

≤
(

n̂∑
i=1

(
d(c)(mi, n̂σ(i))

c

)p)1/p

+

(
n̂∑

i=1

(
d(c)(n̂σ(i), m̂τ(σ(i)))

c

)p)1/p

(3.19)

≤ d
(c,p)
COLA(M, N̂ ) + d

(c,p)
COLA(N̂ ,M̂). (3.20)

In (3.16) n̂ − m dummy points were added to the set M yielding (3.17). In (3.17) the
triangular inequality on the metric d(c) and the application of (3.13) and (3.14) resulted in
(3.18). Finally, Minkowski’s inequality yielded (3.19).

Case 2: (m, n̂ ≤ m̂): In order to raise the cardinality of setsM and N̂ to m̂, consider the
following dummy points:

mm̂−i+1 = ui, 1 ≤ i ≤ m̂−m (3.21)
n̂m̂−j+1 = uj, 1 ≤ j ≤ m̂− n̂ (3.22)

where d(mi, n̂i) = 0, max(m, n̂) ≤ i ≤ m̂.

Then choose σ, τ ∈ Πm̂ such that,

min
π∈Πm∨n̂

m∨n̂∑
i=1

(
d(c)(mi, n̂π(i))

c

)p
=

min
π∈Πm̂

m̂∑
i=1

(
d(c)(mi, n̂π(i))

c

)p
=

m̂∑
i=1

(
d(c)(mi, n̂σ(i))

c

)p
(3.23)

min
π∈Πm̂

m̂∑
i=1

(
d(c)(n̂i, m̂π(i))

c

)p
=

m̂∑
i=1

(
d(c)(n̂i, m̂τ(i))

c

)p
(3.24)

where m ∨ n̂ = max(m, n̂). Therefore, finally

d
(c,p)
COLA(M,M̂) =

(
min
π∈Πm̂

m̂∑
i=1

(
d(c)(mi, m̂π(i))

c

)p)1/p

(3.25)

≤
(

m̂∑
i=1

(
d(c)(mi, n̂σ(i)) + d(c)(n̂σ(i), m̂τ(σ(i)))

c

)p)1/p

(3.26)
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≤
(

m̂∑
i=1

(
d(c)(mi, n̂σ(i))

c

)p)1/p

+

(
m̂∑

i=1

(
d(c)(n̂σ(i), m̂τ(σ(i)))

c

)p)1/p

(3.27)

≤ d
(c,p)
COLA(M, N̂ ) + d

(c,p)
COLA(N̂ ,M̂). (3.28)

In (3.25) the triangular inequality on the metric d(c) and the application of (3.23) and (3.24)
resulted in (3.26). Again, Minkowski’s inequality 1 yielded (3.27).

3.5 Intuitive Explanation of the COLA Metric

Whereas the OSPA metric has the units of localization error (i.e. distance), the COLA
metric has the units of the cardinality error (i.e. no units). In contrast to the OSPA metric,
when the distance between an assigned feature i and feature σ(i) decreases to c it changes
from a cardinality error to a fractional cardinality error

(
d(c)(mi, m̂σ(i))/c

)p. Although the
difference between the OSPA and COLA metrics may seem trivial, Sections 3.7, 3.8 will
demonstrate significant differences in the intuitive behavior of the COLA metric over its
OSPA counterpart, when evaluating feature maps.

For m̂ > m, the first term of the RHS of (3.2) again determines individual assignments
between all m of the feature location vectors withinM and a subset of dimension m of the
feature vectors within M̂. Now however, due to (2.10), this term is fractional if d(mi, m̂σ(i)) <
c or unity otherwise, in which case it is effectively added as a single cardinality error on to
the pure cardinality error (m̂−m) on the RHS of (3.2). In contrast to the OSPA metric, it
can be seen from (3.2) and (2.10) that d

(c,p)
COLA(M,M̂) has minimum value zero and maximum

value (m̂)
1/p if m̂ > m or (m)1/p otherwise.

3.6 Interpreting the Components of the COLA Metric

In [14], it was shown that the OSPA error contains two components, which separately account
for localization and cardinality errors. This also applies to the COLA metric with individual
components d

(c,p)
LOC(M,M̂) and d

(c,p)
CARD(M,M̂):

d
(c,p)
LOC(M,M̂) =

(
min
σ

m∑
i=1

(
d(c)(mi, m̂σ(i))

c

)p)1/p

(3.29)

d
(c,p)
CARD(M,M̂) = (m̂−m)1/p. (3.30)

1The Minkowski inequality is
‖x+ y‖p ≤ ‖x‖p + ‖y‖p,

where ‖ · ‖p denotes the Lp norm and p ≥ 1. Equality holds if, and only if, x = αy for some scalar, α.
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Similarly to the note in [14], the functions d
(c,p)
LOC(M,M̂) and d

(c,p)
CARD(M,M̂) themselves are

not strict metrics on the space of finite subsets and the decomposition of the metrics should
not usually be necessary for gauging mapping performance. (3.29) and (3.30) however can
be evaluated to provide extra information regarding the contributions of description and
cardinality mapping errors.

The selection of the COLA metric’s parameters c and p, and their physical interpretation,
must also be addressed.

3.6.1 The effect of power variable p

In a similar manner to the OSPA metric [14], as p increases, the emphasis on localization
errors diminishes. Therefore the COLA metric also becomes more unforgiving to cardinality
errors for higher values of p. Based on the COLA metric form, given in (3.1), it is possible
to show that for the same value of c, the COLA metric is also ordered with respect to p,
however contrary to the OSPA metric:

d
(c,p1)
COLA(M,M̂) ≥ d

(c,p2)
COLA(M,M̂) for 1 ≤ p1 < p2 <∞. (3.31)

Proof: For |M̂| ≥ |M|, the COLA metric is defined as:

d
(c,p)
COLA(M,M̂) =

min
σ

|M|∑
i=1

(
d(c)(mi, m̂σ(i))

c

)p1/p

. (3.32)

If π is the permutation set which achieves the minimization of the COLA metric, then

d
(c,p)
COLA(M,M̂) =

 |M|∑
i=1

(
d(c)(mi, m̂π(i))

c

)p1/p

. (3.33)

Consider 1 ≤ p1 ≤ p2 and the following substitutions:

xi =
d(c)(mi, m̂π(i))

c
, s =

 |M|∑
i=1

xp1i

1/p1

, yi =
xi

s
≤ 1 (3.34)

∴ yp2i ≤ yp1i (3.35)∑|M|
i=1 x

p2
i

sp2
≤

∑|M|
i=1 x

p1
i

sp1
(3.36)∑|M|

i=1 x
p2
i(∑|M|

i=1 x
p1
i

)p2/p1 ≤ 1 (3.37)

 |M|∑
i=1

xp2i

1/p2

≤

 |M|∑
i=1

xp1i

1/p1

(3.38)
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and substituting for xi from (3.34) into (3.38) yields

d
(c,p2)
COLA(M,M̂) ≤ d

(c,p1)
COLA(M,M̂). (3.39)

Choosing p = 1 also makes the COLA metric behave in a relatively simple manner, in that
it is then composed of the sum of cardinality and localization errors, which can be interpreted
as fractional cardinality errors. Selecting p = 2 also makes the COLA metric more in-line
with other metrics, which are often L2-norms, and this value will be used throughout this
article.

3.6.2 The effect of cut-off variable c

Analysis of the COLA metric form in (3.2) shows that as c→∞ the COLA metric becomes
only sensitive to cardinality errors. Therefore, as in the OSPA metric, increasing c emphasizes
the cardinality errors. However, contrary to the OSPA metric, from (3.2):

d
(c1,p)
COLA(M,M̂) ≥ d

(c2,p)
COLA(M,M̂) for 1 ≤ c1 < c2 <∞. (3.40)

Figure 3.1 demonstrates the effect of c shown in Equation (3.40). Similarly to the OSPA
metric [14], c should be chosen based on “What distance (e.g., how many meters) the designer
wants to penalize a false or missing estimate”, which in any application should significantly
aid its practical choice. It should also be noted that the single object metric d(c)(mi, m̂σ(i))
does not have to be a distance (e.g., Euclidean) metric - but could be the Mahalanobis
(statistical) distance. In this case c could be chosen as a validation gate, corresponding to a
probability interval within a chi-square test, within which an estimated feature is considered
to correspond to a GT feature.

3.6.3 Setting a Threshold for the COLA Metric

A natural question which arises in the use of the COLA metric is: What threshold should
be used to establish whether or not an estimated map is good? In contrast to the OSPA
metric, the COLA metric does not saturate to a limiting value (c). In the case of p = 1, the
COLA metric yields the total cardinality error between two set-based maps, which can be
made up of fractional cardinality errors (assigned features which do not exactly coincide in
terms of their attributes) and integer cardinality errors, due to a difference in the number
of estimated and GT features. Therefore, a threshold to determine the difference between a
good and bad map can be determined in terms of the number of effective cardinality errors,
or outliers, one is willing to tolerate for a given application.
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(a) c = 1 and p = 1.
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(b) c = 2 and p = 1.

Figure 3.1: A demonstration of the COLA metric via the assignment solution between GT features
(blue circles), with their corresponding estimated map (red crosses). Figure 3.1a utilizes a cut-
off parameter of c = 1, while Figure 3.1b employs a cut-off parameter of c = 2. Both of these
figures represent c with black circles. Note that the number of correct assignments by the COLA
metric increases with c. Finally, the COLA metric decreases while c increases, maintaining the
same cardinality error. This reduction in their penalization is due to its localization component also
decreasing while c increases.

3.7 Comparison of the COLA and OSPA metrics

The physical interpretation of the OSPA and COLA metrics is now analyzed and compared
for particular and general cases of the mapsM and M̂, to highlight the usefulness of each
metric in assigning a meaningful score to map estimators. [14] demonstrated theoretical map
scenarios which showed that the Hausdorff and OMAT metrics, although sensitive to spatial
errors in the estimated map, are both insensitive to the cardinality error between M and
M̂. In those theoretical scenarios, it was shown that the OSPA metric provides intuitive
results in terms of its sensitivity to both spatial and cardinality errors, and in [29] it was
shown that the COLA metric provides intuitive results also. Therefore, in this section, in
order to highlight differences between the OSPA and COLA metrics, and to study realistic
mapping results, scenarios will be analyzed in which at least one of the maps is empty; one
of the maps contains multiple features which are imbalanced with respect to the other map;
and one of the maps contains outliers. An analysis of their penalizations of false alarms and
missed detections will be provided as well as the theoretical conditions under which they can
disagree in their comparisons of mapping performance.

To simplify the ensuing analyses here, d(mi, m̂σ(i)) will be the Euclidean distance metric.
To demonstrate their generality, actual SLAM performance evaluations in Section 5.2.1 will
apply the COLA and OSPA metrics, in which d(mi, m̂σ(i)) is the Mahalanobis distance,
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allowing the incorporation of estimated feature covariance information, as often provided by
SLAM algorithms.

3.7.1 Non-Empty Map Set vs Empty Map Set

Consider a GT map M = ∅ and its estimate M̂ = {m̂1, . . . , m̂m̂} or vice versa. This
corresponds to either a region containing no GT features or an empty estimated map, which
could occur when no features are detected. The Euclidean, Hausdorff and OMAT metrics are
all undefined in this case, since both sets must be non-empty. Meanwhile, the OSPA metric
is given by

d
(c,p)
OSPA(M,M̂) =

(
1

m̂
cp(m̂− 0)

)1/p

= c, (3.41)

and in this case, the COLA metric yields

d
(c,p)
COLA(M,M̂) = (m̂− 0)

1/p
= m̂1/p. (3.42)

Both metrics demonstrate a desirable asset since a metric should be defined when one of
the sets is empty. However, the COLA metric can be considered to provide a more intuitive
result. Irrespective of the difference in cardinality, the OSPA metric gives the same score (c)
and is insensitive to this difference, whereas the COLA metric increases with m̂. For p = 1,
the COLA metric increases linearly with m̂ which is the true value of the cardinality error in
this case.

3.7.2 Multiple GT and Estimated Features

Consider the OSPA and COLA metrics’ performances with GT map M = {m1, . . . ,mm}
and estimated map

M̂ = {m̂1,1, . . . , m̂1,q, . . . , m̂m−1,1, . . . , m̂m−1,q,

m̂m,1, . . . , m̂m,q−s} (3.43)

(i.e. the GT landmarks m1 to m(m−1) have in their neighborhoods q estimates whereas GT
landmark mm has in its neighborhood q−s estimates, making the estimated map imbalanced
[14]). The subsetM′ = {m1, . . . ,mm−1} ∈ M is balanced and:

d(mi, m̂i,l) = d ≤ c, 1 ≤ i ≤ m− 1, 1 ≤ l ≤ q

d(mi, m̂j,l) > d ∀ i 6= j, l

d(mm, m̂m,l) = d ≤ c, 1 ≤ l ≤ q − s
d(mi,mj) > 2d ∀ i 6= j. (3.44)

In this case

d
(c,p)
OSPA:imbal(M,M̂)p =

(
1

qm− s(mdp + cp(m(q − 1)− s))
) 1

p

. (3.45)

Note that if s = 0 in (3.43), the map is balanced such that d
(c,p)
OSPA:bal(M,M̂)p is given by

(3.45) with s = 0.
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Comparing the OSPA metric values for the cases of balanced and imbalanced maps gives

d
(c,p)
OSPA:bal(M,M̂)p ≥ d

(c,p)
OSPA:imbal(M,M̂)p, s ≥ 0,

d
(c,p)
OSPA:imbal(M,M̂)p ≥ d

(c,p)
OSPA:bal(M,M̂)p, s < 0 (3.46)

meaning that, unlike the Hausdorff and OMAT metrics, the OSPA metric penalizes false
alarms in an intuitive manner. This can be seen in Fig. 3.2 since the estimates in Fig.
3.2b and Fig. 3.2d are better than those of Fig. 3.2a and Fig. 3.2c because they have less
cardinality errors but the same spatial errors. These facts are not reflected correctly in the

Figure 3.2: Metric performances when cardinality errors exist. Figs. (a) and (c) are balanced
maps while Figs. (b) and (d) are imbalanced. The distance between the center of each GT landmark
(blue circles) and its neighboring estimates (red crosses) is 1m. For calculating dOSPA and dCOLA,
c = 3.00m and p = 2.

Hausdorff and OMAT metric values.

The general imbalanced scenario described in (3.43) yields a COLA metric value

d
(c,p)
COLA:imbal(M,M̂)p =

(
m

(
d

c

)p
+ (m(q − 1)− s)

)1/p

, (3.47)

Comparing the COLA metric values for the cases of balanced (s = 0) and imbalanced maps,
it can also be seen that d

(c,p)
COLA:bal(M,M̂)p ≥ d

(c,p)
COLA:imbal(M,M̂)p for s ≥ 0 and vice versa for
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s < 0, which again complies with intuition. It should also be noted that, true to its nature
of having units of cardinality error, for p = 1, d

(c,p)
COLA:bal(M,M̂)p − d

(c,p)
COLA:imbal(M,M̂)p = s,

yielding the exact cardinality error between the maps.

3.7.3 Outliers

Consider an estimated map with one outlier - i.e. M = {m1, . . . ,mm} and M̂ = {m̂1, . . . , m̂m+1},
and assume that every single GT landmark has a perfect estimate - i.e. d(mi, m̂i) =
0 for 1 ≤ i ≤ m. From (2.9), the OSPA metric is

d
(c,p)
OSPA(M,M̂)p = c

(
1

m + 1

)1/p

. (3.48)

If m→∞, the OSPA metric d
(c,p)
OSPA(M,M̂)p → 0 distance units, giving an intuitive result.

In the case of the COLA metric,

d
(c,p)
COLA(M,M̂)p = 1, (3.49)

which, since this metric yields cardinality, as opposed to average distance units, can also
be considered to be intuitive. In this case there is a single outlier, and the COLA metric
correctly reports it. It should be noted here that the COLA metric is somewhat unforgiving to
cardinality errors. For example, if a mapping algorithm estimates a large number of perfectly
located estimates, with just one false alarm, the COLA metric always penalizes the algorithm,
even though as m → ∞ the algorithm can be argued to be approaching perfection. In this
sense the OSPA metric behaves more intuitively. It should be noted however, that this does
not cause any problems in the use of the COLA metric, when estimated maps are compared
to the same GT, or other algorithm’s map, as carried out at the end of mapping/SLAM tasks,
since the same strict penalization of cardinality errors is applied to all estimates. However,
when assessing mapping performance during SLAM execution, as more of the GT map passes
through the field(s) of view of the sensor(s), the COLA metric would never lower its value
due to previous outliers, even if the map estimator approaches perfection later on. This
would not allow a useful on-line evaluation of mapping performance. In this case, due to
the per feature averaged distance nature of the OSPA metric, it provides the most intuitive
evaluation of the time varying estimated map.

3.7.4 Penalization of False Alarms and Missed Detections

A theoretical analysis will now demonstrate that the OSPA and COLA metrics penalize over
and underestimated cardinality errors (false alarms and missed detections) in a significantly
different manner. Consider a GT mapM = {m1, . . . ,mm}, and two map estimates, M̂1 =

{m̂1, . . . , m̂m−a} and M̂2 = {n̂1, . . . , n̂m+a}, where m ≥ a. Estimate M̂1 underestimates the
map size by a and estimate M̂2 over estimates it by the same amount, a. Suppose also that
M̂1 and a sub-set of M̂2, have no localization errors - i.e. m̂σ(i) = mi for 1 ≤ i ≤ m− a and
n̂π(i) = mi for 1 ≤ i ≤ m, where σ(i) and π(i) are the assignments used in comparing maps
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M̂1 withM and M̂2 withM respectively. The OSPA errors for both cases are

d
(c,p)
OSPA(M,M̂1) = c

( a

m

)1/p

(3.50)

d
(c,p)
OSPA(M,M̂2) = c

(
a

m + a

)1/p

, (3.51)

implying that, independent of parameters c and p, the OSPA metric penalizes the estimate
with the missed detections more than the estimate with the same number of false alarms.

On the other hand, the COLA metric for both cases yields

d
(c,p)
COLA(M,M̂1) = d

(c,p)
COLA(M,M̂2) = a1/p, (3.52)

implying that the COLA metric penalizes both estimates by the same amount. Arguably, the
COLA metric can be considered to provide a more intuitive error estimate of both mapping
errors, since neither the OSPA nor the COLA metrics are designed to judge them in an
unequal manner. The consequences of missed detections and false alarms on robot navigation
are application specific, and judging one type of error to be worse than the other is beyond
the scope of these metrics alone.

3.8 Can the COLA and OSPA Metrics Differ?

This section demonstrates the conditions under which the COLA and OSPA metrics disagree.
Consider a GT mapM with cardinality m and its estimates M̂1 and M̂2, with cardinalities
m̂1 and m̂2 respectively, where:

m̂1 ≤ m < m̂2 (3.53)

and d
(c,p)
OSPA(M̂1,M) ≥ d

(c,p)
OSPA(M,M̂2) (3.54)

The COLA metric values for both cases are then:

d
(c,p)
COLA(M̂1,M) =

m1/p

c
d

(c,p)
OSPA(M̂1,M) (3.55)

d
(c,p)
COLA(M,M̂2) =

m̂
1/p
2

c
d

(c,p)
OSPA(M,M̂2). (3.56)

For the metrics to disagree, it is necessary that

d
(c,p)
COLA(M̂1,M) < d

(c,p)
COLA(M,M̂2), (3.57)

which requires that
d

(c,p)
OSPA(M̂1,M)

d
(c,p)
OSPA(M,M̂2)

<

(
m̂2

m

)1/p

(3.58)

A similar analysis shows that if

m ≤ m̂1 < m̂2 (3.59)

and d
(c,p)
OSPA(M,M̂1) ≥ d

(c,p)
OSPA(M,M̂2) (3.60)
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the metrics can also disagree if

d
(c,p)
OSPA(M,M̂1)

d
(c,p)
OSPA(M,M̂2)

<

(
m̂2

m̂1

)1/p

(3.61)

Hence disagreement between both metrics is only possible if (3.53), (3.54) and (3.58) or
(3.59), (3.60) and (3.61) are simultaneously satisfied, as will be demonstrated in Section
5.2.1.

Note that if m̂1, m̂2 ≤ m, both metrics always agree.

3.9 Computational Complexity of the COLA Metric

Since metrics are often determined off-line, after experiments have terminated, their compu-
tational complexity is usually not of major concern. However, if the metric is to continuously
gauge mapping/SLAM performance during algorithm execution, its complexity is impor-
tant. For the COLA and OSPA metrics, their computational complexities are equivalent
and dependent on the assignment method used to determine σ(i). The Jonker and Vol-
genant algorithm is an efficient assignment method, which is, in general, faster than the
Hungarian method, and has worst case cubic complexity in the dimension of the distance
matrix Di,j = d(c)(mi, m̂j)p. In particular if m = |M| = |M̂| = m̂, implies that Di,j is an
squared matrix with dimensions m×m. This yields to a computational complexity of O(m3)
[14, 58, 81].

Other computational improvements of the Hungarian method are available, which are
reported to reduce the execution time in linear assignment problems by up to 90% [82]. Re-
cently, further optimizations of the Jonker and Volgenant algorithm have also been reported
[83].

Since, in general m = |M| 6= |M̂| = m̂, assuming m ≤ m̂, in the implementation of
the COLA metric, it is required to add dummy points toM, generating the new set M̄ =
{u1, . . . ,u(m̂−m)} ∪ M such that dc(uk, m̂j)p = cp, for all j, k. Finally the construction of
the D̄i,j = d(c)(m̄i, m̂j)p has dimensions of m̂ × m̂, yielding a computational complexity of
O(m̂3) = O(max(m, m̂)3). In conclusion, the computational complexity of OSPA and COLA
increases, when M̂ contains false alarms.
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Chapter 4

PSO-COLA: A Robust Solution for
Correspondence-Free, Point Set
Registration

4.1 Introduction

In this chapter we introduce a new technique called PSO-COLA for 3D PCD registration.
This method is based on the context of multi-object metrics, which quantify the error between
point cloud datasets in the presence of cardinality and spatial errors. This concept allows
for the robust registration of scans in terms of translation and rotation between them, also
taking into account possible detection errors. Recent methods address this problem in a
variety of ways, but rarely take into account detection errors, i.e., false alarms and missed
detections. The resulting PSO-COLA registration algorithm is shown to outperform state
of the art local and global point cloud registration algorithms in various scenarios in the
presence of data outliers and spatial uncertainty.

4.2 Registration with Multi-Object Metrics

Based on the concept of multi-object metrics, we show an alternative solution to rigid global
point cloud registration. To define the point set registration problem, it is necessary to con-
sider two sets: The reference setM = {m1, . . . ,mm} and its model set M̂ = {m̂1, . . . , m̂m̂}
recorded in different frames of reference defined by S and Ŝ respectively. Note that in the
presence of detection errors, in general, m 6= m̂. Our goal is to find a solution of:

argminR,t d(c,p)(Mtrans(R, t),M̂), (4.1)

where d(c,p)(M,M̂) is given by the OSPA or COLA metric,Mtrans(R, t) is the transformed
set ofM from S to Ŝ via rotation matrix R and translation vector t, c is the COLA metric’s
cut-off distance and p the power [25]. Without loss of generality, this thesis considers 3D
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space in which

Mtrans(R, t) = {Rm1 + t, . . . ,Rmm + t} (4.2)
R(α, β, γ) = Rz(γ)Ry(β)Rx(α) (4.3)

Rx(α) =

1 0 0
0 cosα − sinα
0 sinα cosα

 (4.4)

Ry(β) =

 cos β 0 sin β
0 1 0

− sin β 0 cos β

 (4.5)

Rz(γ) =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 (4.6)

t =

txty
tz

 (4.7)

α ∈ [−π, π] (4.8)
β ∈ [−π/2, π/2] (4.9)
γ ∈ [−π, π], (4.10)

where α, β and γ are the roll, pitch and yaw angles respectively and tx, ty and tz are the x,
y and z components of the translation vector.
Note that in general, minimizing (4.1) with respect to R and t is problematic, because the
function

f (c,p)(R(α, β, γ), t) = d(c,p)(Mtrans(R, t),M̂), (4.11)

belongs to a family of non-convex functions with several local maxima and minima, which
depend on both c and p. Therefore, a method which calculates the best solution in a global
sense is required.

Note that if either the OSPA or COLA metrics are used within the point cloud registration
algorithm of equation (4.11), the same estimated transform results. To prove this, assume
that the rotation matrix R? and the translation vector t? satisfy

min
R,t

d
(c,p)
OSPA(Mtrans(R, t),M̂) = d

(c,p)
OSPA(Mtrans(R

?, t?),M̂) (4.12)

Using the relationship between the COLA and OSPA metrics from equation (3.55)

min
R,t

d
(c,p)
COLA(Mtrans(R, t),M̂) = min

R,t

(
max(m, m̂)1/p

c

)
d

(c,p)
OSPA(Mtrans(R, t),M̂)

=

(
max(m, m̂)1/p

c

)
min
R,t

d
(c,p)
OSPA(Mtrans(R, t),M̂).(4.13)

Substituting (4.12) into equation (4.13) yields

min
R,t

d
(c,p)
COLA(Mtrans(R, t),M̂) =

(
max(m, m̂)1/p

c

)
min
R,t

d
(c,p)
OSPA(Mtrans(R

?, t?),M̂)

= d
(c,p)
COLA(Mtrans(R

?, t?),M̂). (4.14)
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Therefore, the rotation matrix R? and the translation vector t? optimize both the OSPA and
COLA metrics simultaneously. Therefore without loss of generality, this thesis applies the
COLA metric.

In the following sections, we will explain the method used in this work, in order to mini-
mize equation (4.1). For this, section 4.3 considers a method to estimate a coarse alignment
between M and M̂ as an initialization. Subsequently, Section 4.4 defines a refinement so-
lution based on this initialization, using Particle Swarm Optimization (PSO). The complete
algorithm is referred to as the PSO-COLA algorithm.

4.3 Initialization: Coarse pose and correspondence esti-
mation by distance pattern matching.

It is assumed that the correspondence between points within the model and the reference sets
is unknown. Furthermore if the transformation that best aligns these sets is rigid, as assumed
in this article, then the distance between corresponding points is equivalent if the data is not
corrupted with spatial noise. The concept used here is to define correspondence hypotheses
between point pairs and then use multi-object metrics to estimate which correspondence is
most likely. Mathematically, suppose that m̂i and m̂j correspond to mk and ml respectively,
i.e.

m̂i = Rmk + t, m̂j = Rml + t. (4.15)

Due to the assumption of rigid transformation, the distance between each corresponding
pair of points, within each set, satisfies

‖m̂i − m̂j‖ = ‖Rmk −Rml‖ = ‖R(mk −ml)‖ = ‖mk −ml‖, (4.16)

and the distances between m̂i and m̂j and mk and ml are equivalent. Equation (4.16)
suggests that we can define the distance:

do(m̂
i, m̂j,mk,ml) = |‖m̂i − m̂j‖ − ‖mk −ml‖| (4.17)

as the error associated with this correspondence hypothesis. Note that do(m̂
i, m̂j,mk,ml) =

0 iff m̂i and m̂j correctly correspond to mk and ml respectively.

In this paper we generalize this concept, for computing correspondences based on multi-
object metric concepts similar to the COLA metric. The key idea is to find the optimal
correspondence, in the sense of the COLA metric, between the sets

DMmi = {‖m1 −mi‖ . . . ‖mm −mi‖}, DM̂m̂l = {‖m̂1 − m̂l‖ . . . ‖m̂m̂ − m̂l‖}, (4.18)

where DMmi is the set of distances withinM, with respect to a chosen point mi. Similarly, DM̂
m̂l

is the set of distances within M̂, with respect to a chosen point m̂l (see Fig. 4.1). Assuming
that M̂ is corrupted with spatial and detection uncertainty, we define a multi-object COLA
metric d

(c,p)
Match(DMmi ,DM̂m̂l) such that if m̂ ≥ m.

d
(c,p)
Match(DMmi ,DM̂m̂l) =

(
min
σ

m∑
s=1

(
d(c)(‖ms −mi‖, ‖m̂σ(s) − m̂l‖)

c

)p
+ m̂−m

)1/p

, (4.19)
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Figure 4.1: Highlighting the construction of the set of distances DMmi with a respect to a
chosen point mk within the Stanford Bunny dataset.

where σ is a set of permutations of {1, ....,m}, associated with correspondences between
elements ofM and M̂, which minimizes

∑m
s=1 d(c)(‖ms−mi‖, ‖m̂σ(s)−m̂l‖)p. d(c) is defined

as the inner metric:

d(c)(‖ms −mi‖, ‖m̂σ(s) − m̂l‖) = min(c, |‖ms −mi‖ − ‖m̂σ(s) − m̂l‖|), (4.20)

and c > 0 is the cut-off parameter. Note that for m̂ ≤ m, the metric is defined as
d

(c,p)
Match(DM̂

m̂l ,DMmi). The following points should also be noted:

• This generalizes the concept of comparing distances between sets based on RANSAC,
since it allows the computation of correspondences even in the presence of cardinality
differences betweenM and M̂.

• Based on the Hungarian method, the metric d
(c,p)
Match(DMmi ,DM̂m̂l) is globally minimized.

The computation of the optimal correspondence to compute an initial coarse set of trans-
formations R and t is as follows:

1. Compute d
(c,p)
Match(DMmi ,DM̂m̂l) for each mi ∈M and m̂l ∈ M̂. For this purpose, set n = 1

and compute the following indices

i(n) =
⌈ n
m̂

⌉
, l(n) = n− m̂

⌊
n− 1

m̂

⌋
, (4.21)

where d·e and b·c are the ceiling and floor functions respectively. Note that the index
n = 1, . . . ,mm̂. Then, compute the corresponding di(n),l(n) value as follows

di(n),l(n) = d
(c,p)
Match(DMmi(n) ,DM̂m̂l(n)). (4.22)

2. Use only the correspondences σ determined in equation (4.19) for which

d(c)(‖ms −mi(n)‖, ‖m̂σ(s) − m̂l(n)‖) < c. (4.23)

Refer to this subset of permutations as γ(s). Then, compute the transformations R?

and t? via Arun’s method [60] as presented in Algorithm 1.
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Algorithm 1: The Arun’s Method

Input: Reference setM = {m1, . . . ,mm}, Model set M̂ = {m̂1, . . . , m̂m}.
Output: Rotation matrix R?, translation vector t?.
// Compute the centroids mc and m̂c of M and M̂ respectively,

1 Initialize mc = 1
m

∑m
s=1 mγ(s)

2 Initialize m̂c = 1
m

∑m
s=1 m̂σ(γ(s)).

// Compute the translated sets M′ and M̂′ with respect to their
respective centroids mc and m̂c

3 InitializeM′ = {m1 −mc, . . . ,m
m −mc}

4 Initialize M̂′ = {m̂1 − m̂c, . . . , m̂
m − m̂c}.

// Compute the covariance matrix H.
5 Initialize H =

∑m
s=1 m

′s(m̂
′s)>.

// Compute the orthogonal matrices U and V, via SVD
6 H = UΣV // where Σ is a diagonal matrix, with singular value

components.
7 // Compute the rotation matrix R? and translation vector t? using the

orthogonal matrices U and V, as well as the centroids mc and m̂c

via R? = VU> and t? = m̂c −Rmc.
8 Return R?, t?. ;

This is a closed-form solution to the least-squares approach to register two point sets
in 3D space. It uses the Singular Value Decomposition (SVD) method, applied to the
centroids and covariance matrices from each point set.

3. Using the equation (4.11), compute the corresponding COLA metric betweenM and
M̂, using the transformation R? and t?. In particular, if n = 1, Ro = R? and to = t?.

4. When the minimum according to equation (4.11) is found, Ro = R? and to = t?.

5. Return to step 1 and iterate using n := n+ 1 in equations (4.21) until n = mm̂.

6. Finally, the transformation for registration initialization is Ro, to.

4.4 The PSO-COLA Algorithm

The PSO is currently applied in several disciplines. This is due to its robustness in finding
optimal global solutions in few steps with a set of particles exploring an objective function.
The PSO algorithm uses interactive particles pi(k) at iteration k, with positions xi(k) and
velocity vi(k). Further, all members of the particle population communicate their cost func-
tion values g(xi(k)) to the other particles pj(k), j 6= i. g(xi(k)) is the cost function evaluated
at position xi(k), where in this case the function g() is the objective function defined by

g(xi(k)) = f (c,p)(R(k), t(k)). (4.24)
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Finally, the method uses an iterative motion model for the particles given by the following
equations:

vi(k + 1) = χvi(k) + c1r1(xi
local(k)− xi(k)) (4.25)

+ c2r2(xglobal(k)− xi(k))

xi(k + 1) = xi(k) + vi(k + 1), (4.26)

where xi
local(k) corresponds to the best personal experienced position, i.e.

g(xi
local(k)) < g(xi(k)) for all k, (4.27)

and the particle’s position xglobal(k) corresponds to the global best position corresponding to

g(xglobal(k)) < g(xi(k)) for all pi, and for all k. (4.28)

The interpretation of each of the three terms in equation (4.25) is now explained. The
first term defines the inertial weight, which determines the contribution of vi(k) to vi(k+ 1).
This is referred to as the inertial factor χ ∈ (0, 1].

The second term c1r1(xi
local(k)−xi(k)) is the local exploration factor of each particle pi(k),

based on each particle’s best personal experience xi
local(k). Note that exploration occurs along

the direction of the vector c1r1(xi
local(k)−xi(k)) as shown in Figure 4.2. The parameter c1 is

known in the literature as the local acceleration [84], and r1 corresponds to a random variable
in [0, 1]. Finally, the third term c2r2(xglobal(k) − xi(k)) is the global exploitation factor of
each particle pi(k), based on the best global position xglobal(k). Note that the exploitation
occurs in the direction c2r2(xglobal(k) − xi(k)) (Figure 4.2). The parameter c2 is referred to
as the social acceleration [84], and r2 corresponds to a random variable in [0, 1].

Figure 4.2 shows a diagram of the PSO algorithm’s evolution. Assume a particle pi at
position xi(k) and velocity vi(k), given xi

local(k), xglobal(k). The diagram shows the addition
of each term from equation (4.25), i.e., the inertia weight, exploration, and exploitation terms.
As a result, the updated position xi(k + 1) of the particle pi evolves as a position nearer to
both xi

local(k) and xglobal(k), as shown in Figure 4.2. Therefore, the PSO algorithm tries to
determine the global optimum between the positions xi

local(k) and xglobal(k).

The application of the PSO method to point cloud data requires the definition of xi(k),
vi(k), xi

local(k), xglobal(k), corresponding to particle i at iteration k. For the case of 3D PCD
registration, these definitions are given as follows

xi(k) =


αi(k)
βi(k)
γi(k)
tx

i(k)
ty

i(k)
tz

i(k)

 , vi(k) =


vi
α(k)
vi
β(k)
vi
γ(k)

vtx
i(k)

vty
i(k)

vtz
i(k)

 (4.29)

xi
local(k) =


αi

local(k)
βi

local(k)
γi

local(k)
tix,local(k)
tiy,local(k)
tiz,local(k)

 , xglobal(k) =


αglocal(k)
βglobal(k)
γglobal(k)
tx,global(k)
ty,global(k)
tz,global(k)

 , (4.30)
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Figure 4.2: Intuitive explanation of the Particle Swarm Optimization algorithm, highlighting
the pose recursion based on global position xglobal(k) and local best experience xi

local(k) of
each member in the swarm.

where the first three components of each position vector xi(k), xi
local(k), xglobal(k), correspond

to the roll, α, pitch, β and yaw γ angles for the rotation matrix given by equation (4.3).
Similarly, their last three components correspond to the translation vector components tx, ty
and tz. Therefore,

R(k) = R(αi(k), βi(k), γi(k)) (4.31)
t(k) = [tx

i(k), ty
i(k), tz

i(k)]. (4.32)

Conceptually, point set registration requires the correct computation of point/feature relative
translation, rotation and inter scan detection errors. To initialize the PSO algorithm [84],
the concept adopted is to spread N − 1 particles randomly from rest, i.e. vi(k = 0) = 0,
with positions xi(k = 0) uniformly distributed in the domain of the objective function to be
minimized. The domain used for the PSO-COLA method is given by:

tx, ty, tz ∈ [tmin, tmax] (4.33)
α, γ ∈ [−π, π] (4.34)
β ∈ [−π/2, π/2]. (4.35)

Additionally, we include a single particle pN at position xN(k = 0) = [αo, βo, γo, txo, tyo, tzo]
>

from rest, where parameters αo, βo, γo txo, tyo and tzo satisfy

Ro = Rz(γo)Ry(βo)Rx(αo) (4.36)
to = [txo, tyo, tzo]

>, (4.37)

where Ro and to are computed utilizing the methodology shown in Section 4.3.
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4.4.1 Robustness of the PSO-COLA Registration Algorithm

Stagnation is the phenomenon of premature convergence, which may generate erroneous
results, such as local minima. This problem occurs in PSO methods. This phenomenon can
occur due to several factors, such as poor initialization or due to the characteristics of the
objective function f . To illustrate this phenomenon, consider the one-dimensional objective
discontinuous function f : R→ R such that

f(x) =


1, if x 6= 0, 1

0, if x = 1

−1, if x = 0

(4.38)

Note that f has a global minimum at x = 0 and a local minimum at x = 1.

Assume that N particles are available, initialized from rest, such that

f(xi(k = 0)) =

{
1, if i = 1, . . . , N − 1

0, if i = N.
(4.39)

Without loss of generality, assume that |xi(k = 0)| � 0 for all i = 1, . . . , N − 1. Then
xi
local(k = 0) and xglobal(k = 0) are determined as follows.

f(xi
local(k = 0)) =

{
1, if i = 1, . . . , N − 1

0, if i = N
(4.40)

xglobal(k = 0) = 1. (4.41)

Then for k <∞ iterations, it can be seen that the probability of obtaining the global position
xglobal = 0 is zero due to the discontinuities of f . Therefore, the equation of motion of each
particle pi, with i = 1, . . . , N − 1 will be:

vi(k + 1) = χvi(k) (4.42)
xi(k + 1) = xi(k) + vi(k + 1). (4.43)

Equation (4.42) shows that the evolution of velocities vi(k + 1) is dominated by the inertial
factor χ, reducing the velocity of the particles at each iteration. On the other hand, equation
(4.43) shows that the particle with position xi(k+1) performs exploration in the neighborhood
of xi(k) with velocity vi(k + 1). Similarly, the equations of motion for the particle pN are:

vN(k + 1) = χvN(k) + (c1r1 + c2r2)(1− xN(k)) (4.44)
xN(k + 1) = xN(k) + vN(k + 1). (4.45)

Equation (4.44) shows that the updated velocity vN(k + 1) is given by the addition of the
inertial factor χ and the global exploitation factor (c1r1 + c2r2)(1 − xN(k)). Since in the
example of the function defined in equation (4.38) xglobal(k) 6= 0, particle pN performs a
random search given by equation (4.45). Then, the solution will be stagnated at the local
minimum x = 1 observing a premature convergence of the system to a local minimum.

In general, this problem highlights the importance of a good initialization, such that in
the set of all particles, at least one of them (particle pi) obeys the following

xi
local(k = 0) ≈ xglobal(k = 0). (4.46)
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4.4.2 Implementation of the PSO-COLA Registration Algorithm

Algorithm 2: The PSO-COLA algorithm
Input: Rotation Initialization Ro, Translation Initialization to, Number of Particle

N , Maximum number of iterations Kmax

Output: Rotation matrix R, Translation matrix t.
// Initialize particles from rest with position

xi(k) = [αi(k), βi(k), γi(k), tx
i(k), ty

i(k), tz
i(k)]

1 for i← 1 to N do
2 Initialize vi(k)← 0
3 Initialize xi(k) uniformly distributed with domains according equations (4.33),

(4.34), (4.35)
4 Initialize xi

local(k) using equation (4.27)
5 Initialize xglobal(k) using equation (4.28)
6 end
// Main loop

7 for k ← 1 to Kmax do
8 for i← 1 to N do
9 Update vi(k + 1)← vi(k) using equation (4.25)

10 Update xi(k + 1)← xi(k) using equation (4.26)
11 end
12 Update xi

local(k + 1)← xi
local(k) using equation (4.27)

13 Update xglobal(k + 1)← xglobal(k) using equation (4.28)
14 end
15 Return xglobal(Kmax)
16 Return R, t using equations (4.3), (4.31) and (4.32).

4.4.3 Computational Complexity

The PSO-COLA algorithm, first requires the computation of the objective function g(xi(k)),
which, due to equations (4.11) and (4.24) is equivalent to the computation of the COLA
metric-based on setsMtrans(R, t) and M̂. The COLA metric’s computational complexity is
given by O(max(|M|, |M̂|)3). If a particle swarm with N particles is chosen, PSO-COLA
must compute the COLA metric for each member in the swarm. Additionally, as can be
seen in Algorithm 2, the number of iterations k of the PSO-COLA algorithm is restricted
to a maximum value of Kmax. Therefore the computational complexity of the PSO-COLA
registration algorithm is

O(N × k ×max(|M|, |M̂|)3), (4.47)

with worst case complexity O(N ×Kmax ×max(|M|, |M̂|)3).

It can be seen from equation (4.47) that this complexity is dominated by the complexity of
the COLA metric. This in turn is dependent upon the complexity of the Hungarian method,
used to estimate the correspondences between points within the two data sets, making it
potentially intractable for very large data sets.
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As mentioned in Section 3.9, regarding the computational complexity of the COLA metric
itself, computational improvements beyond the Hungarian method are available, which are
reported to reduce the execution time by up to 90% [82]. Recently, further optimizations of
the Jonker and Volgenant algorithm have also been reported, which could be applied to the
PSO-COLA registration algorithm in future work [83].

Note that if the point correspondences between the datesets are given, no assignment is
necessary, and the computational complexity of the COLA metric reduces to O(min(m, m̂)),
resulting in a computational complexity for the PSO-COLA algorithm, with known corre-
spondences, of

O(N × k ×min(m, m̂)), (4.48)

which is linear with respect to the dimensions of the smaller point cloud set.
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Chapter 5

Results

5.1 Introduction

This chapter presents the COLA metric mapping error performance and the PSO-COLA
algorithm performance for point set registration. In the case of robotic mapping error and
feature-based-SLAM, multi-object metrics are evaluated in real SLAM scenarios using the
“Parque O’Higgins” dataset [25] as well as the “CityTrees10k” SLAM dataset [5] and mapping
results based on iSAM. Finally, the performance evaluation of PSO-COLA as a point cloud
registration solution is applied first in controlled scenarios based on the “Stanford Bunny”
and “Dragon” datasets [26] . For real scenarios, PSO-COLA is evaluated using a real dataset
called the “ETH Apartment” dataset [27].

5.2 Map Error Quantification Results

5.2.1 The “Parque O’Higgins” Data Set

In this section the performance of the Hausdorff, OMAT, OSPA and COLA metrics, as well
as the SLAM trajectory energy metric of [9], will be analyzed by comparing their ability to
evaluate real estimated SLAM results in a physically meaningful manner based on the Parque
O’Higgins dataset shown in Figure 5.1.

Parque O’Higgins is a traditional urban park, founded in 1873 and located in Santiago,
Chile. It is in the vicinity of the Faculty of Physical and Mathematical Sciences (FCFM) of
the University of Chile. In addition, it has a perimeter fence, with an area of approximately
80 hectares. The “Parque O’Higgins” dataset was collected in a small region inside the entire
park, highlighted with a blue square as shown in Figure 5.1, covering a surface with an
approximate area of 16, 800[m2].

The results will demonstrate that the trajectory energy metric can yield map scores which
contradict the OSPA, COLA and Hausdorff map metrics for a given SLAM result. Further,
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Figure 5.1: An aerial view of Parque O’Higgins, Santiago, Chile. The “Parque O’Higgins” dataset
was collected within the highlighted blue region, which contains a small forest, in the presence of
people carrying out outdoor activities.

while the OSPA metric often saturates to its maximum cut-off value c, the COLA metric does
not, allowing maps to be compared and, in contrast to the OSPA metric, penalizes missed
detections and false alarms equally. The effect of varying c will also be further elucidated.

Fig. 5.2 shows the SLAM estimates from two different SLAM algorithms1, which were
designed to estimate 2D vehicle trajectories and maps corresponding to the x, y location of
the centers of tree trunks. Each algorithm is referred to as “SLAM Alg. 1” and “SLAM
Alg. 2” and each result is superimposed onto a satellite image of the area to show the
tree coverage and spacing corresponding to the vehicle’s “Figure 8” trajectory. The GT
trajectories (blue lines) were obtained via manual scan-matching2 due to the lack of reliable
GPS in the environment, and the red dashed lines represent the estimated trajectories from
each SLAM algorithm. The blue stars represent the GT features (tree trunk center locations),
again obtained through independent, manual scan matching procedures3. The red ellipses are
centered at the estimated feature locations and represent the covariances for each estimated
feature. The ellipses shown correspond to “3-Sigma ellipses”, which from 2 degree-of-freedom
Chi-squared tables, correspond to a theoretical probability mass of a feature being within

1The estimated SLAM solutions are based on MH-FastSLAM [3] and Rao-Blackwellized (RB)-PHD-SLAM
[7].

2This corresponds to manually identifying points in successive scans from identifiable tree trunks, and
determining the corresponding vehicle displacement to align such points within the global coordinate system.

3The GT map is also of limited precision since the laser data, used for scan matching, is prone to range
errors of up to 5cm, and more importantly, the determination of the centers of the trees was prone to errors
of up to 20cm. Importantly, these distance errors are significantly less than the average mapping distance
errors and the GT map is guaranteed to contain all circular objects detectable by the algorithm used here.
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(a) SLAM Alg. 1 (b) SLAM Alg. 2

Figure 5.2: GT and estimated trajectories from SLAM Algs. 1 (a) and 2 (b). The GT feature
locations (blue stars) are superimposed onto a satellite image of the park. The estimated maps
produced by SLAM Algs. 1 (a) and 2 (b) are shown as red “3-sigma” confidence interval ellipses.
The dashed line in each figure represents the Hausdorff distance between each map set. “FA” =
no. false alarms, “MD” = no. missed detections, “DE” = no. detection errors (= MD + FA) and
Ecard = ||M̂| − |M||.

each ellipse of 0.99. Hence, d(c)(mi, m̂σ(i)) in (2.9) can be the Mahalanobis distance such that

d(c)(mi, m̂σ(i)) = min

(
c,

√
(mi − m̂σ(i))> (Pi)−1 (mi − m̂σ(i))

)
where c = 3.00 and Pi is the covariance matrix corresponding to estimated feature m̂σ(i)

and GT feature mi. In this analysis it is assumed that the error associated with all GT
features is zero4 and that the estimated feature covariance values are available from the
SLAM estimator. In each figure, the Hausdorff (dHAUS), OMAT (dOMAT), OSPA (dOSPA),
COLA (dCOLA) errors, numbers of False Alarms (FA), Missed Detections (MD), Detection
Errors (DE = FA +MD) and estimated cardinality (Ecard = ||M̂|−|M||) errors are provided.
In all of the experiments, p = 2, which according to [14] yields smooth distance curves, and
is commonly used in other metrics, such as the L2 distance.

Performance of the Trajectory Energy Metric

The energy metric proposed in [9], which calculates the energy required to deform the esti-
mated (red dashed) trajectory X̂0:k to the GT (blue solid) trajectory X0:k, can be calculated

4In the target tracking literature, [56] applied the OSPA metric-based on a Hellinger distance metric, in
which the GT target covariances were replaced with their Cramer-Rao lower bound values.
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based on the trajectories shown in Fig. 5.2. In Fig. 5.3 the values of the translational compo-
nent of the energy metric, dTrans

Energy(X0:k, X̂0:k) over time, given the GT trajectory, during each
SLAM run are shown. The final values of dTrans

Energy(X0:k, X̂0:k) for SLAM Algs. 1 and 2 suggests
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Figure 5.3: The translational component of the energy metric applied to SLAM Alg. 1 (Red line)
and SLAM Alg. 2 (Green dashed line).

that SLAM Alg. 2 slightly out-performs SLAM Alg. 1. Interestingly, this contradicts the
final OSPA, COLA and Hausdorff metric evaluations, shown in Fig. 5.2 and also contradicts
most of the time varying OSPA and COLA metric values recorded during the SLAM runs,
shown in Fig. 5.4 for two different values of c. This demonstrates the necessity of gauging
mapping as well as trajectory performance.

Performance of Multi-Object Metrics

Referring to Fig. 5.4, it is important to note that both the OSPA and COLA map error
evaluations are based on the time varying number of features which have theoretically been
covered by the vehicle’s sensor’s field of view (GT) and those which have been estimated at
each time. Setting the Mahalanobis distance based cut-off parameter c = 0.25 in both metrics,
Fig. 5.4a shows that during most of the SLAM trial, the OSPA metric for both algorithms
saturates to its maximum value c = 0.25. This indicates that most of the estimated spatial
errors are larger than 0.25m within both SLAM estimates. It should be noted however, that
under these circumstances, the OSPA metric fails to give any indication as to which algorithm
is superior, even in terms of the detection (map cardinality) errors. Conversely however, the
corresponding COLA metric plots (Fig. 5.4b) show that although the first 8 minutes of each
SLAM trial perform similarly, after this time, it is possible to define which algorithm performs
better (usually SLAM Alg. 1) despite most estimates having Mahalanobis distances larger
than c = 0.25. This is due to the COLA metric’s ability to continue gauging cardinality
errors, even when the OSPA metric saturates.

In Figs. 5.4c and 5.4d, the OSPA and COLA metrics are again plotted versus time, during
the same SLAM experiments, but this time with cut-off parameter c = 3.0. Now, as shown
in [14], the values of the OSPA metric increase for both SLAM algorithms. However, now
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(a) OSPA metric vs time (c = 0.25 and p = 2). (b) COLA metric vs time (c = 0.25 and p = 2).

(c) OSPA metric vs time (c = 3.00 and p = 2). (d) COLA metric vs time (c = 3.00 and p = 2).

Figure 5.4: The OSPA and COLA metrics versus time for SLAM Algs. 1 and 2, with differing
values of c.

SLAM Alg. m̂ Gated MD FA dCOLA dOSPA [m] dHAUS [m] dOMAT [m] dTrans
Energy [m2] NEES*

1 263 72 101 191 14.69 (1) 2.72 (1) 15.74 (1) 30.49 (2) 42.45 (2) 231.33 (2)
2 272 59 114 213 15.32 (2) 2.79 (2) 16.28 (2) 29.02 (1) 42.35 (1) 159.34 (1)

Table 5.1: Detection errors and map metric results for SLAM Algs. 1 and 2 (c = 3.00 and p = 2).
m̂ = number of estimated features, “Gated” = number of gated features, “MD” = number of Missed
Detections, “FA” = number of False Alarms. The bracketed numbers give the ranking by each metric.
*The NEES metric was calculated only based on the number of gated features, ignoring detection
errors.

that more features are assigned to (gated with) GT values, the curves in Fig. 5.4c remain
unsaturated, and provide a significant difference in their judgement of SLAM Algs. 1 and 2,
at all times. Note that as time increases, the effective field of view of the sensed area has
increased. The COLA metric, in the right hand graphs of Fig. 5.4, shows its tendency to
increase as it is unforgiving to an increase in cardinality error. On the other hand, the OSPA
metric, in Fig. 5.4c shows its averaging nature as the number of erroneous feature estimates
increases with increasing sensor coverage.

Table 5.1 shows the number of gated features, MD and FA and dCOLA, dOSPA and dOMAT

based on a validation gate c = 3.00. dHAUS and dTrans
Energy are also given. The NEES metric,

undefined for the full estimated and GT maps since their cardinalities are different, has been
calculated based purely on the gated features (for c = 3.00). Note that both dTrans

Energy and the
NEES metric, often used in gauging SLAM performance, favor SLAM Alg. 2, disagreeing
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with the multi-object metrics dCOLA, dOSPA and dHAUS. The NEES metric can only be
calculated for the 59 gated, out of the 272 estimated, features in SLAM Alg. 2, and ignores
the remaining estimates, even though they constitute detection errors. For SLAM Alg. 1,
the NEES metric gave a higher value, purely because more features were gated (72).

In light of Table 5.1, SLAM Alg. 1 has less detection errors and more gated features and
dCOLA, dOSPA and even dHAUS all confirm its mapping superiority over SLAM Alg. 2.

Assessing Metric Performance Based on a Sub-Map

To highlight the differences between the OSPA and COLA metrics, the estimated and GT
sub-maps in the boxes in Figs. 5.2a and 5.2b are analyzed for various values of c. Comparing
the smaller sub-maps simplifies the assessment of the COLA and OSPA metrics’intuitive
performances. In these boxes, the number of GT features is |M| = 4, the number of estimates
for SLAM Alg. 1 is |M̂1| = 3 and that for the SLAM Alg. 2 is |M̂2| = 5. Under these
conditions, it will be shown that there are values of c where (3.53), (3.54) and (3.58) are
satisfied, meaning that the OSPA and COLA metrics can disagree.

The Impact of c on the OSPA and COLA Metrics

Figs. 5.5a and 5.5b show the values of the OSPA and COLA metrics, for the sub-maps
within Figs. 5.2a and 5.2b, for p = 2 and varying c. As shown in [14], dOSPA increases with
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Figure 5.5: The OSPA and COLA metrics versus c. The red and green curves shows the metric
values for SLAM Algs. 1 and 2 respectively.

c, whereas, as shown in (3.40), dCOLA decreases. The gradient changes in Figs. 5.5a and 5.5b
occur when estimated features become gated. The metric evaluations of SLAM Algs. 1 and
2, based on this sub-map, now follow for three values of c.

a) Figs. 5.6a and 5.6d show the performances of SLAM Algs. 1 and 2, and their metric
values, when c = 0.15. Each estimated feature is surrounded by its validation gate ellipsoid,
corresponding to the region in which the Mahalanobis distance√

(mi − m̂σ(i))> (Pi)−1 (mi − m̂σ(i)) < c,
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(b) SLAM Alg. 1, p = 2 and
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c = 0.15.

ø

ø

ø

ø

+

+

+

++

-25 -20 -15 -10 -5 0

0

5

10

15

x�meter

y�
me

te
r

dHaus= 9.21 m dOMAT= 13.92 m

dOSPA= 1.97 m dCOLA= 2.

(e) SLAM Alg. 2, p = 2 and
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Figure 5.6: Metric values for p = 2 and three different values of the cut-off parameter c.

in equation (5.1). Note that for c = 0.15, these ellipses are barely visible, but will be for larger
values of c. Since all of the GT features are ungated, the map estimation result of SLAM Alg.
1 constitutes 4 missed detections and 3 false alarms (a total of 7 detection errors). The result
of SLAM Alg. 2 constitutes 4 missed detections and 5 false alarms (a total of 9 detection
errors). For both SLAM Algs. 1 and 2, OSPA saturates to its cut-off value c = 0.15 and
is unable to differentiate between the two. The COLA metric (intuitively) penalizes SLAM
Alg. 2 more than SLAM Alg. 1, showing its dependence on the cardinality of the larger set.

b) Figs. 5.6b and 5.6e show the case when c = 2.20. Note the significantly larger validation
gates, centered on each estimate. Two feature estimates are gated by SLAM Alg. 2, implying
a total of 2 missed detections and 3 false alarms. Interestingly, this matches the total number
of detection errors exhibited by SLAM Alg. 1 (3 missed detections and 2 false alarms). For
SLAM Alg. 1, the COLA metric has almost settled to a steady state value wrt c, as indicated
by the red curve in Fig. 5.5b.

c) Figs. 5.6c and 5.6f show the case when c = 3.00. In the case of SLAM Alg. 1, its
estimate that was gated when c = 2.20 becomes statistically better localized (due to a more
tolerant, larger validation gate), however 3 missed detections and 2 false alarms remain. For
SLAM Alg. 2, two of its previously gated estimates become statistically better localized as c
increases, still leaving 2 missed detections and 3 false alarms - i.e. still the same cardinality
error as SLAM Alg. 1. Interestingly, as verified in Fig. 5.5a, the OSPA metric now reverses
its decision, favoring SLAM Alg. 2 over SLAM Alg. 1, in contrast to the COLA metric.
Note that only in this case are (3.53), (3.54) and (3.58) simultaneously satisfied, indicating
disagreement between the OSPA and COLA metrics. It can be seen from Fig. 5.5a, that
the OSPA metric decisions are very sensitive to small changes in gradient, when features are
gated. Initially, for c ≤ 0.26, d

(c,p=2)
OSPA (M,M̂) = c, and as c increases, a small number of
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features start to gate, causing the OSPA metric to only lower its value very slightly below
c. Since d

(c,p=2)
OSPA (M,M̂1) and d

(c,p=2)
OSPA (M,M̂2) are both very similar, and close to c for most

values of c, the slight gradient changes which occur when features gate, result in non-intuitive
changes in the mapping performance decisions of the OSPA metric. This problem is avoided
in the COLA metric, as can be seen in Fig. 5.5b.

In the limit, as c → ∞, the 3 estimates in SLAM Alg. 1 will gate with 3 of the 4
GT features. Similarly, for SLAM Alg. 2, 4 of its 5 estimates will all gate with the 4 GT
features. Therefore, (2.9) shows that for SLAM Alg. 1, d

(c,p=2)
OSPA (M,M̂1) → (1/

√
4)c and

for SLAM Alg. 2, d
(c,p=2)
OSPA (M,M̂2) → (1/

√
5)c, demonstrating the averaging ability of the

OSPA metric, since for SLAM Alg. 1, 1 out of 4 of the GT features remains unassigned and
for SLAM Alg. 2, 1 out of 5 of the estimated features remains unassigned. This is also a
particular case of the analysis presented in Section 3.7.4, with m = 4 and a = 1, in which
(3.50) and (3.51) confirm the above values, showing the OSPA metric’s lower penalization of
false alarms compared with missed detections.

For the COLAmetric, (3.2) shows that as c→∞, under a similar analysis, d
(c,p=2)
COLA (M,M̂1)

and d
(c,p=2)
COLA (M,M̂2) →

√
1, again demonstrating the COLA metric’s nature of gauging

cardinality, rather than averaged distance error, and its ability to equally penalize missed
detections and false alarms.

The dashed lines in Fig. 5.6 indicate the Hausdorff distances. The OMATmetric disagrees
with all the other metrics. Note that it made assignments only within the considered region.

5.2.2 The “CityTrees10k” Data Set

To test the intuitive behavior of each metric with a publicly available data set, “CityTrees10k”
was chosen, due to its available GT map [5]. This data set comprises 10,000 simulated robot
movements and 100 GT features (simulated trees) which can be detected within a field of view
of 10 meters around the robot. iSAM [5, 6] and the g2o graph optimization SLAM solver [85],
with perfect and estimated DA, were applied, yielding three solutions, SLAM Algs. 3, 4 and
5. Fig. 5.7a (SLAM Alg. 3) shows the SLAM result based on perfect DA (provided with the
data set) using iSAM. Fig. 5.7d shows the corresponding GT and estimated maps only. Figs.
5.7b (SLAM Alg. 4) and 5.7e show the SLAM and mapping results respectively, with perfect
DA, but before complete convergence of the g2o solver, yielding a distorted trajectory. As
shown in Fig. 5.7e, due to perfect DA, all of the feature locations are reasonably close to GT,
since they were estimated within the less erroneous, initial part of the trajectory. Figs. 5.7c
(SLAM Alg. 5) and 5.7f show the SLAM and mapping results respectively, of allowing the
g2o solver to converge, when replacing the given (perfect) DAs with an automated Nearest
Neighbor (NN) DA algorithm, based on a Euclidean gating distance of 3m.

Table 5.2 summarizes the metric evaluations of Fig. 5.7. SLAM Alg. 3 appears to
perform best, as reflected by all the metrics. Some interesting differences occur in each
metric’s ranking of SLAM Algs. 4 and 5. Intuitively, SLAM Alg. 5 may initially appear
superior than SLAM Alg. 4, since the trajectory appears to bear a closer relationship to GT,
as indicated in Fig. 5.7c, and the Trajectory Energy Metric dTrans

Energy in Table 5.2. However,
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result.
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(f) SLAM Alg. 5: Estimated
and GT maps.

Figure 5.7: “CityTrees10k” data set SLAM and mapping results with known data association and
differing numbers of the g2o solver iterations and with automatic Nearest Neighbor (NN) data asso-
ciation. Blue lines/circles: GT trajectory/map, red lines/circles: corresponding estimates.

SLAM Alg. m̂ Gated MD FA dCOLA dOSPA [m] dHAUS [m] dOMAT [m] dTrans
Energy [m2] SSEE*

3 100 100 0 0 1.22 (1) 0.37 (1) 0.64 (1) 0.37 (1) 0.893 (1) 13.47 (1)
4 100 35 65 65 8.95 (2) 2.69 (3) 16.87 (2) 9.28 (2) 39.214 (3) 136.54 (3)
5 299 68 32 231 15.43 (3) 2.68 (2) 18.24 (3) 11.45 (3) 10.974 (2) 64.73 (2)

Table 5.2: Detection errors and map metric results for SLAM Algs. 3 to 5 (c = 3.00 and p = 2).
*The SSEE metric was calculated only based on the number of gated features, ignoring detection
errors. The bracketed numbers give the ranking by each metric.

SLAM Alg. 5 has committed multiple data association errors, causing it to vastly over
estimate the number of map features (m̂ = 299) (compare Figs. 5.7f and 5.7e). From a
mapping perspective, intuition dictates that SLAM Alg. 5 is worst, with many more false
alarms than the map produced by SLAM Alg. 4, and, contrary to the OSPA metric, the
COLA metric correctly reflected this. The reason that OSPA, non-intuitively reports a lower
mapping error can be seen from (2.9), where the averaging nature of the OSPA metric requires
division by m̂. Since in SLAM Alg. 4 (Fig. 5.7e) m̂ = 100 a higher OSPA value results than
for SLAM Alg. 5 (Fig. 5.7e), with m̂ = 299. Note that in the case of SLAM Algs. 4 and 5,
(3.53), (3.54) and (3.58) are obeyed, indicating that disagreement between the COLA and
OSPA metrics will result.

For comparison, and since no feature covariance information was used, the Sum of Squared
Euclidean Errors (SSEE) values are given in Table 5.2 which, as in the case of the NEES
metric, can only be calculated based on the number of gated features. Although SLAM Alg.
5 has gated more features (68) than SLAM Alg. 4 (35), the sum of their localization errors
is lower, resulting in a lower SSEE value. Since the SSEE metric ignores detection errors, it
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disagrees with the COLA metric.

5.3 Point Cloud Data Registration Results

5.3.1 Synthetic Data: The Stanford Bunny and Dragon datasets

This section shows the 3D PCD data registration performance of PSO-COLA in comparison
to state-of-the-art methods. The datasets used are the publicly available Stanford Bunny and
Dragon datasets [26] as shown in Figure 5.8. For this purpose, we perform (i) experiments
which evaluate registration performance in the presence of spatial noise, (ii) experiments that
simulate cardinality differences between the model and reference sets (iii) experiments that
simulate overlapping variations between the two sets while keeping them of equal cardinality.
Additionally, the evaluation of performance is divided into two parts: (a) we evaluate the
rotation error as | arccos((tr(R̂>R)−1)/2)| which is the geodesic distance between the ground
truth rotation R and its estimate R̂ [70] and (b), the translation error, defined as ||t − t̂||,
the L2 norm of the difference between the ground truth translation t and its estimate t̂.

(a) Unregistered scenario for the Bunny
dataset.

(b) Registration solution
based on PSO-COLA for
the Bunny dataset.

(c) Unregistered scenario for the Dragon
dataset.

(d) Registration solution
based on PSO-COLA for
the Dragon dataset.

Figure 5.8: Representation of unregistered and registered point clouds. The reference set M is
shown as red points, while the model set M̂ is presented as blue points. Note that the model set is
corrupted with spatial and detection uncertainty.
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Description of the Experiments

For the construction of the simulated model dataset M̂, in a manner similar to the procedure
given in [70], the reference dataset M is first normalized to fit within a cube of dimension
[0, 1]3. Subsequently, the reference dataset M is transformed into Mtrans(R, t) (equation
(4.2)) and corrupted with spatial noise via the following equation,

m̂i = Rkmi + tk + wi, (5.1)

where mi ∈ M, m̂i ∈ M̂, Rk and tk are the ground truth rotation and translation respec-
tively. In all the experiments, the model dataset is corrupted with Gaussian noise samples
wi drawn from a zero mean multivariate Normal distribution N (µµµ = 0,ΣΣΣ = diag(σ2)) where
σ is the chosen standard deviation of the spatial noise. Note that the addition of random
noise implies that the transformed reference data set is no longer necessarily restricted to a
unit cube.

The possibility of detection errors is accounted for in the following manner.

1. False alarms are simulated by the addition of false points to the transformed reference
data set. The number of added false alarms is pFA × |M| where pFA is the probability
of false alarm. Since the transformed, noisy data set is no longer necessarily restricted
to a unit cube, the added false alarms are uniformly distributed within a sphere of
radius r = 2[m], centered at the center of the transformed unit cube [70].

2. Miss-detections are simulated by the random extraction of pMD × |M| points, where
pMD is the probability of miss-detection.

The resulting transformed, spatially corrupted and contaminated data set containing detec-
tion errors, defines the model point cloud data set M̂.

Finally, for comparison purposes, an overlapping simulation is performed as in [70]. This
corresponds to the case in which a percentage po of points in the model dataset are replaced by
random points within a sphere of radius r = 2[m]. Therefore in the results, each registration
algorithm’s performance is also demonstrated as a function of the reference to model dataset
percentage overlap, 100− po.

The number of simulations consists of 10 different rotations and translations computed
with 40 Monte Carlo runs for each registration algorithm. Table 5.3 shows the roll, α, pitch,
β, and yaw, γ, angles as well as the x, y and z translations, tx, ty and tz, used in each of
the 10 transformation experiments. Figures 5.9 and 5.10 show the registration result for the
Bunny and Dragon dataset, using transformation H1 (see Table 5.3).

In the particular case of the Go-ICP registration algorithm, a trimming factor is available
which allows the user to preselect what may be assumed to be the percentage of possible
incorrect correspondences between M and M̂, with the aim of improving robustness in
the presence of outliers. Therefore, the Go-ICP registration algorithm was executed with
different values of this trimming factor, namely 30, 60, and 90%, as well as the standard
Go-ICP algorithm with 0% trimming factor.
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Transformation α β γ tx ty tz
H1 113.3005 73.0425 -134.2847 0.4134 0.1324 -0.4025
H2 -79.7406 8.4387 164.7025 0.4649 -0.3424 0.4706
H3 164.5801 -2.6324 108.101 -0.3581 -0.0782 0.4157
H4 105.1946 82.7086 56.0667 -0.4643 0.3491 0.434
H5 64.3447 46.3932 87.5277 -0.1078 0.1555 -0.3288
H6 74.1766 -84.2701 -80.3077 -0.4538 -0.4029 0.3235
H7 70.1383 -32.9221 162.0799 -0.4656 -0.0613 -0.1184
H8 95.586 53.136 -112.7259 -0.0102 -0.0544 0.1463
H9 75.3713 45.8436 -80.631 0.1797 0.1551 -0.3374
H10 -137.1608 -0.2945 165.5078 -0.1596 0.0853 -0.2762

Table 5.3: Parameters used for the 10 rigid transformations fromM to M̂. The Table shows
the Roll, α, pitch, β, and yaw, γ, angles as well as the x, y and z translations, tx, ty and tz,
used in each of the 10 transformation experiments.

Finally, the PSO-COLA algorithm utilizes two different approaches. In the first, the PSO-
COLA with Unknown Correspondence (Unknown Correspondence (UC)) algorithm utilizes
the Hungarian method to estimate the set of correspondences and the estimated transfor-
mations to register M and M̂ jointly. In the second case, the PSO-COLA with Known
Correspondence (KC) algorithm, utilizes the assumed correct set of correspondences between
M and M̂, avoiding the use of the Hungarian algorithm.
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(a) Unregistered scenario for
the Bunny dataset.
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(b) Bunny registration using
GT transformation H1.
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(c) Registration solution based
on PSO-COLA for the Bunny
dataset.

Figure 5.9: Registration-based on the Stanford Bunny dataset. The model set M̂ is corrupted with
Gaussian noise wi drawn from zero mean multi-variate Normal distribution N (µ = 0,Σ = diag(σ2))
with σ = 0.01[m]. pFA = 0.25 and pMD = 0.75.
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(a) Unregistered scenario for
the Dragon dataset.
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(b) Dragon registration using
GT transformation H1.
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Figure 5.10: Registration-based on the Dragon dataset. The model set M̂ is corrupted with Gaussian
noise wi drawn from zero mean multi-variate Normal distribution N (µ = 0,Σ = diag(σ2)) with
σ = 0.01[m]. pFA = 0.25 and pMD = 0.75.
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Registration Robustness in the Presence of Spatial Noise

To assess the robustness of each registration algorithm to only spatial noise within the model
dataset, the spatial noise standard deviation is varied from σ = 0[m] to σ = 0.1[m], in the
absence of miss-detections and false alarms.

This particular scenario is of interest, to determine the effects of the cut-off parame-
ter c and the Hungarian assignment algorithm within the COLA metric component of the
PSO-COLA algorithm. In contrast, most of the other registration algorithms simply apply
the L2 metric to determine transformed reference to model dataset correspondences. PSO-
COLA with UC in Figure 5.11 (solid red curves) is able to obtain an accuracy comparable to
TEASER KC (blue dashed curves). This demonstrates the PSO-COLA algorithm’s robust-
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(b) Standard deviation experiment for the
Dragon dataset.

Figure 5.11: Monte Carlo Simulations for the Stanford Bunny and Dragon datasets showing the
rotation and translation errors as a function of spatial standard deviation σ in the registration process,
with respect to the ground truth transformations.

ness to unknown correspondences between points inM and M̂. Go-ICP (with 0% trimming
factor) shows an increase in error when σ = 0.06[m]. This is due to the problem of Go-ICP
eliminating correct matches, generating incorrect results. It is also interesting to note that
the FastDesp registration algorithm demonstrates good performance when σ < 0.02[m]. This
is because, with increased spatial noise, the probability of obtaining correct data correspon-
dences reduces, as a consequence of FastDesp ignoring the joint compatibility of all the data.
Super4PCS exhibits high errors for all values of σ. This shows the fragility of Super4PCS
when spatial noise exists, since the number of correct congruent point assignments between
M and M̂ is reduced.

As expected, the local ICP and NDT registration algorithms exhibit the worst perfor-
mances. This due do to the large rotational component within some of the transformations
used in the Monte Carlo (MC) runs, as shown in Table 5.3.

Miss-detection experiments

This set of experiments evaluates the performance of each registration algorithm with in-
creasing miss-detection rate. To simulate realistic scenarios, spatial Gaussian noise wi drawn
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from a zero mean multivariate Normal distribution N (µµµ = 0,ΣΣΣ = diag(σ2)) with σ = 0.01[m]
is also added.

The results of the PSO-COLA algorithm (solid red curves) are shown in Figures 5.12a
and 5.12b for the Stanford Bunny and Dragon datasets respectively for the case of miss-
detections. It can be seen that the PSO-COLA algorithm outperforms all the state-of-the-art
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(a) Miss-detection experiment for the Bunny
dataset.
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(b) Miss-detection experiment for the Dragon
dataset.

Figure 5.12: Monte Carlo runs for the Stanford Bunny and Dragon datasets showing the rotation
and translation errors in the registration process as a function of the miss-detection rate, with respect
to the ground truth transformations.

algorithms considered, for values of probability of miss-detection, pMD ≤ 0.8 with respect to
the reference set. Go-ICP shows different results depending on the trimming factor utilized
and, as expected, every time the overlap between the datasets corresponds to the trimming
factor, Go-ICP demonstrates its best performance, with Go-ICP (30%) showing the best
results.

TEASER (blue dashed curves) requires some of the correct correspondences between
points inM and M̂. As the number of miss-detections is increased, the number of correct
corresponding points which remain, is reduced. Figures 5.12a and 5.12b verify this since
the translational and rotational errors corresponding to TEASER increase significantly for
miss-detection rates beyond pMD = 0.

FastDesp (purple dashed curves) exhibits higher errors that both PSO-COLA and Go-
ICP as expected. This is because as pMD increases, there are less points in M̂ to compute
the necessary descriptors. Similarly, Super4PCS (yellow dotted curves) also shows lower
performance because as pMD increases, there are less points in M̂ to compute the necessary
congruent points.

The local registration algorithms ICP and NDT perform worst along with Go-ICP 90%
(brown dashed curves). As expected, the local methods are sensitive to the large rotational
component within some of the transformations used in the MC runs, as shown in Table 5.3.
When pMD ≥ 0.9, all algorithms start to diverge. The slight reduction in error for Go-ICP
90% is expected, since the overlap between the datasets corresponds to the trimming factor.
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False Alarm experiments

This set of experiments evaluates the performance of each registration algorithm with in-
creasing false alarm rate. To simulate realistic scenarios, spatial Gaussian noise wi drawn
from a zero mean multivariate Normal distribution N (µµµ = 0,ΣΣΣ = diag(σ2)) with σ = 0.01[m]
is also added.

The PSO-COLA and Go-ICP registration algorithms provide the best, and similar, results
when the probability of false alarms, pFA, increases, as can be seen in Figures 5.13a and
5.13b. Zoomed views of the errors are shown in Figures 5.13c and 5.13d where it can be
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(a) False Alarms experiment for the Bunny
dataset.
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(b) False Alarms experiments for the Dragon
dataset.
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(c) Zoomed False Alarms experiment for the
Bunny dataset.
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(d) Zoomed False Alarms experiments for the
Dragon dataset.

Figure 5.13: Monte Carlo runs for the Stanford Bunny and Dragon datasets showing the rotation
and translation errors in the registration process, as a function of false alarm rate, with respect to
the ground truth transformations.

seen that the differences between them is of the order of fractions of millimeters. Notice
that in Figure 5.13c, the Go-ICP algorithm narrowly outperforms PSO-COLA, whereas, in
Figure 5.13d both Go-ICP and PSO-COLA show similar behavior. This could be because
the BnB optimization method used in the Go-ICP registration algorithm is more robust to
stagnation than PSO under certain point cloud geometries such as symmetries within the
data. The Bunny dataset has large rotational symmetry within the body section of the data,
which can cause the PSO-COLA registration algorithm to stagnate, a problem which can
potentially be overcome with the Go-ICP algorithm, due to its BnB component.

It is expected that the PSO-COLA registration algorithm would perform better with the
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Dragon dataset since it contains less symmetries than the Bunny dataset, making stagnation
less likely with PSO-COLA, such that it performs equally as well as Go-ICP. This is evident
in Figures 5.13b and 5.13d.

We note in Figures 5.13a and 5.13b that Go-ICP (with 0% trimming factor) provides
better results than Go-ICP with 30, 60 and 90% trimming factor, because all points from the
reference set are present in the model set (no miss-detections). When using trimming factors,
Go-ICP could incorrectly eliminate correct matches, generating higher errors. Therefore, as
expected, Go-ICP with trimming factor 90% gives the worst performance in this case.

In this case, TEASER is provided with the correct correspondences betweenM and M̂.
As expected, it yields low translational and rotational errors, however, it fails to outperform
PSO-COLA. This is because of the spatial noise added to M̂, showing that TEASER is more
sensitive to spatial noise than false alarms when given the correspondences.

It is also interesting to note that Super4PCS has a similar performance to Go-ICP with
trimming factor 60%, while FastDesp shows large errors for pFA ≥ 0.5.

The local registration algorithms ICP and NDT exhibit the worst performance. Again,
this is due do to the large rotational component within some of the transformations used in
the MC runs, as shown in Table 5.3.

Simulated overlapping experiments

Overlapping experiments, which correspond to the case in which a percentage po of points in
the model are replaced by random points within a sphere of radius r = 2[m], are shown in
Figures 5.14a and 5.14b. It can be seen that if po increases from 0% to 100%, PSO-COLA with
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(a) Overlapping experiment for the Bunny
dataset.
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(b) Overlapping experiment for the Dragon
dataset.

Figure 5.14: Monte Carlo runs for the Stanford Bunny and Dragon datasets showing the rotation
and translation errors in the registration process, as a function of overlap with respect to the ground
truth transformations. The x axis is represented by the overlap defined as Overlap = 100− po.

known correspondence (PSO-COLA (KC) solid blue curves) has the best performance for the
Bunny when the overlap 100− po > 60% and for the Dragon when 100− po > 70%. At lower
percentages however, PSO-COLA (KC) loses its accuracy due to particle stagnation at local
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minima. The reason for this stagnation is related to the loss of accuracy in the initialization
proposed in our method. Interestingly, if the correspondences between points inM and M̂
are unknown, PSO-COLA (UC) (solid red curves) is able to obtain an accuracy comparable
to TEASER with known correspondences (TEASER (KC) orange dashed curves). This
demonstrates the PSO-COLA algorithm’s robustness to unknown correspondences between
points inM and M̂.

Notice when the Overlap < 70% for the Stanford Bunny dataset and Overlap < 60% for
the Dragon dataset, the Go-ICP algorithm with 0%, 30%, 60% and 90% trimming factor, and
TEASER perform better than PSO-COLA. This is due to the PSO method being susceptible
to local minima. However, due to robust initialization given in Section 4.3, the solution given
by PSO-COLA is still close to the global minima, providing acceptable registration results.

Note again the sensitivity of the Go-ICP algorithm with respect to the trimming factors.
The merit of the PSO-COLA algorithm shown in this experiment is that unlike Go-ICP,
it does not require a correspondence related trimming factor. PSO-COLA automatically
eliminates incorrect correspondences by using the cut-off parameter c used in its COLA
metric.

Note that the FastDesp and Super4PCS algorithms yield an inferior performance com-
pared with the other global registration methods.

Again, the local registration algorithms ICP and NDT exhibit the worst performance.
This due to the large rotational component within some of the transformations used in the
MC runs, as shown in Table 5.3.

Combined Miss-detection and False Alarm experiments

In this case, the construction of each dataset contains both false alarms and miss-detections,
and again the model dataset is corrupted with Gaussian noise wi drawn from a zero mean
multivariate Normal distribution N (µµµ = 0,ΣΣΣ = diag(σ2)) with σ = 0.01[m]. Interestingly,
in the absence of miss-detections, Go-ICP and PSO-COLA, provide the best performances
as can be seen in Figure 5.15. This scenario is drastically changed when miss-detections
appear. In particular, when pMD = 0.5, it is clear that PSO-COLA outperforms the Go-ICP
algorithm. However, when pMD = 0.75 we observe errors of the order of 0.5[m], with both
PSO-COLA and Go-ICP. The reason for this behavior is the failures in the correct assignment
between points withinM and M̂, when both miss-detections and false alarms increase.

Note that the FastDesp and Super4PCS algorithms still yield inferior performances com-
pared with other global registration algorithms. Both methods are very sensitive to miss-
detections. Additionally, because this experiment also contains false alarms, it is more diffi-
cult for these algorithms perform robust registration.

Again, the local registration algorithms ICP and NDT exhibit the worst performance.
This due to the large rotational component within some of the transformations used in the
MC runs, as shown in Table 5.3.
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Figure 5.15: Monte Carlo runs for the Stanford Bunny and Dragon datasets showing the rotation
and translation errors in the registration process, with respect to the ground truth transformations.

5.3.2 The “ETH Apartment” Dataset

In this section, the large-scale point cloud datasets corresponding to the “ETH Apartment”
from [27] are used to compare the scan matching algorithms. The entire dataset contains 44
3D scans recorded at different poses inside the apartment. Figure 5.16 shows all 44 scans
superimposed, displayed relative to the ground truth locations at which they were recorded.
These are shown as black dots. The yellow line shows the ground-truth trajectory of the laser
range finder. Ground truth in this case was determined by manually matching all 44 scans
using the ICP registration algorithm. The ground truth locations are useful, since they allow
the transformation errors to be calculated when comparing different registration algorithms.

At consecutive time stamps, the laser range finder records two point clouds defined as
M(τ − 1) and M(τ), with τ = [1, . . . , 44]. Then, FPFH feature descriptors [79] are com-
puted for M(τ − 1) and M(τ) to establish an estimated set of correspondences between
them, as explained in Section 2.6.3. This estimated set of correspondences may contain
incorrect correspondences and the aim of this experiment is to test the robustness of each
registration algorithm accordingly. The advantage of the FPFH algorithm is that it reduces
the computational complexity of PSO-COLA drastically, as explained in Section 4.4.3.

Figures 5.17a and 5.17b summarise the errors committed by each registration algorithm.
The height of each stacked bar, represents the translation and rotation error of each regis-
tration algorithm at each time stamp τ . In particular, these results show high variability in
the errors for the local registration algorithms ICP and NDT. On the other hand, the global
registration algorithms such as PSO-COLA, TEASER, Go-ICP and SuperPCS exhibit signif-
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Figure 5.16: The ETH Apartment dataset, containing 44 3D laser range scans.
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(a) The translational error resulting from each registration algorithm in meters.

(b) The rotational error resulting from each registration algorithm in degrees.

Figure 5.17: Error bar plots resulting from each registration algorithm.
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cantly lower errors. The height, and therefore error, corresponding to PSO-COLA is lowest
in most cases.

Note that in Figure 5.17a, PSO-COLA exhibits a large translation error at time stamp
τ = 4, corresponding to the registration of the scans at timesM(τ = 4) andM(τ = 3). This
is due to the PSO algorithm’s susceptibility to stagnate to an incorrect minimum. Figure 5.18
shows the registration results with the purple scan representing the scan at time τ = 3 and
the green scan showing the scan at time τ = 4. Figure 5.18a shows the unregistered scans
and Figure 5.18b shows the registered version of the scans. Note that the scan at time τ = 4

(a) Unregistered datasetsM(τ = 3) andM(τ = 4).

(b) PSO-COLA Registration at time stamp τ = 4.

Figure 5.18: Plan view of the unregistered and registered scans at time stamps τ = 4 (green) and
τ = 3 (purple).

(green) is slightly rotated, yielding a good registration with respect to rotation, as verified
at time τ = 4 in Figure 5.17b. The translational registration shown in Figure 5.18b has a
relatively large error however, as verified in Figure 5.17a. Close examination of Figure 5.18b
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reveals that the estimated transform has produced a better overlap in parts of the environ-
ment, for example the left hand lower wall in the x direction, but has failed to yield the
displacement necessary to align the end walls in the y direction.

Figure 5.19 presents the box plot statistics corresponding to each registration algorithm.
The size of each box plot is defined as the distance between the quartile Q3(75%) and
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Figure 5.19: Box-Plot of the translational and rotational error components.

Q1(25%), referred to as the interquartile range

IQR = Q3(75%)−Q1(25%).

The median, Q2(50%) is represented by a line segment within each box plot. The upper and
lower whiskers (Uw and Lw respectively) of each box plot are given by the equations:

Uw = Q3(75%) + 1.5IQR (5.2)
Lw = Q1(25%)− 1.5IQR. (5.3)

We consider a registration error (“trans.” or “rot.” respectively) to be “large” if either the
translational or rotational errors are above the upper whisker Uw as shown in Figure 5.19.

Note that, as seen in Figure 5.19, although FastDesp and TEASER have similar error
statistics to PSO-COLA, their registration solutions yield greater numbers of outliers. This
is due to their poor performance in evaluating the correct registrations, given incorrect cor-
respondence estimates by the FPFH algorithm. In contrast, the PSO-COLA registration
algorithm is able to cope with such incorrect correspondences due to its ability to quantify
them as detection errors, due to its cut-off parameter c.

Tables 5.4 and 5.5, summarize the statistics of each box-plot, where the highlighted blue
and red numbers correspond to the best and worst performances for each statistical error
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value (median and mean errors, standard deviation, minimum and maximum errors), for
each registration algorithm respectively. From Table 5.4, it can be seen that the number

Statistics ICP NDT TEASER PSO-COLA GoICP FastDesp Super4PCS
Median error 0.102 0.057 0.047 0.048 0.059 0.042 0.155
Mean error 0.362 0.409 0.070 0.062 0.230 0.096 0.477
Std. Dev. of error 0.508 0.548 0.081 0.110 0.423 0.189 0.667
Minimum error 0.023 0.013 0.019 0.007 0.008 0.005 0.023
Maximum error 2.257 1.910 0.505 0.766 1.823 1.023 2.691

Time stamp of large trans. errors 4-11 14 10-23-29-
35 4 4-9-10-

29-34-35
14-16-30-
31-42

14-28-30-
31-42

Number of large trans. errors 2 1 4 1 6 5 5

Table 5.4: Translational error statistics for the ETH Apartment in meters.

Statistics ICP NDT TEASER PSO-COLA GoICP FastDesp Super4PCS
Median error 4.90 2.01 1.74 1.29 1.74 1.36 4.07
Mean error 14.95 15.63 5.64 1.33 11.04 6.12 16.93
Std. Dev. of error 21.73 21.46 14.57 0.57 22.75 17.80 39.70
Minimum error 0.89 0.36 0.14 0.49 0.35 0.27 0.40
Maximum error 88.12 76.05 83.28 2.70 90.96 95.96 178.75

Time stamp of large rot. errors
4-8-9-

10-29-30-
34-35

9-10-12-
21-34-35

12-21-23-
29-33-35 4-18

4-8-9-
10-14-29-
34-35-44

14-16-28-
31-42

13-28-30-
42

Number of large rot. errors 8 6 6 2 9 5 4

Table 5.5: Rotational error statistics for the ETH Apartment in degrees.

of large translational errors is low in comparison with those of the other global registration
algorithms. Further, in Table 5.5 it can be seen that the number of large rotational errors
is low in comparison with those of the other global registration algorithms and significantly
lower than those committed by the local registration algorithms. In general, in both tables,
it is evident that the PSO-COLA registration algorithm outperforms the other algorithms in
most cases, yielding a small number of large registration errors and high accuracy.

Despite Super4PCS being a global registration algorithm it yielded the worst results (red
numbers in the tables) for most of the statistical values. The reason for this is mentioned
in [72], where the authors state that Super4PCS is a coarse refinement solution, and that it
requires a refinement methodology such as trimming-ICP to cope with point cloud cardinality
differences.

We also compared the PSO-COLA registration algorithm with the TEASER and Go-ICP
registration algorithms, due to their high performances demonstrated in Section 5.3. These
comparisons will be demonstrated with the scans recorded at time stamps τ = 28 and τ = 29,
corresponding to Figure 5.20a, and τ = 34 and τ = 35, corresponding to Figure 5.21a.

For the case of the scans with time stamps τ = 28 and τ = 29 (Figure 5.20a), it can be
seen thatM(τ = 28) andM(τ = 29), have approximate angular symmetries of 90 degrees
in the x − y plane, meaning that if either of them are rotated by 90 degrees, there are
significant similarities. Similarly, for the case of the scans with time stamps τ = 34 and
τ = 35 (Figure 5.21a), it can be seen that M(τ = 34) and M(τ = 35), have approximate
angular symmetries of 180 degrees in the x − y plane, meaning that if either of them are
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rotated by 180 degrees, there are significant similarities. This is because the width and length
of the room shown in Figure 5.21a are slightly different.

The registration results forM(τ = 28) andM(τ = 29) based on PSO-COLA, TEASER
and Go-ICP are shown in Figures 5.20b, 5.20c and 5.20d respectively, with their plan views
shown in Figures 5.22a, 5.22b, 5.22c respectively. Note that despite the approximate 90
degree symmetry between these data sets, the PSO-COLA registration algorithm yields a
correct registration as shown in Figures 5.20b and 5.22a. TEASER and Go-ICP however yield
transformation estimates which are incorrect in their rotational components by approximately
90 degrees, showing their fragility in the presence of data symmetries. This is evident in
Figures 5.20c and 5.22b and Figures 5.20d and 5.22c

The registration results forM(τ = 34) andM(τ = 35) based on PSO-COLA, TEASER
and Go-ICP are shown in Figures 5.21b, 5.21c and 5.21d respectively with their plan views
shown in Figures 5.23a, 5.23b, 5.23c respectively. Similarly, note that despite the approximate
180 degree symmetry between these data sets, the PSO-COLA registration algorithm yields
a correct registration as shown in Figures 5.21b and 5.23a. Again, TEASER and Go-ICP
however yield transformation estimates which are incorrect in their rotational components by
approximately 180 degrees, again showing their fragility in the presence of data symmetries.
This is evident in Figures 5.21c and 5.23b and Figures 5.21d and 5.23c.

It should also be noted that the overlap between bothM(τ = 28) andM(τ = 29) and
M(τ = 34) andM(τ = 35) is unknown. Therefore, in the case of the Go-ICP registration al-
gorithm, it is difficult to choose a correct trimming factor, which despite the data symmetries
could help improve its performance.
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(a) Unregistered setsM(τ = 28) andM(τ = 29). (b) Registration-based on PSO-COLA.

(c) Registration-based on TEASER. (d) Registration-based on Go-ICP.

Figure 5.20: Registration solutions at τ = 29. Green (model set) and purple (reference) point clouds
are represented by the setM(τ = 28) andM(τ = 29) respectively.
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(a) Unregistered setsM(τ = 34) andM(τ = 35). (b) Registration-based on PSO-COLA.

(c) Registration-based on TEASER. (d) Registration-based on Go-ICP.

Figure 5.21: Registration solutions at τ = 35. Green (model set) and purple (reference) point clouds
are represented by the setM(τ = 34) andM(τ = 35) respectively.
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(a) Registration-based on PSO-COLA.

(b) Registration-based on TEASER. (c) Registration-based on Go-ICP.

Figure 5.22: Plan view of the registration solutions at τ = 29. Green (model set) and purple
(reference) point clouds are represented by the setM(τ = 28) andM(τ = 29) respectively.
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(a) PSO-COLA Registration. (b) TEASER Registration. (c) Go-ICP Registration.

Figure 5.23: Plan view of the registration solutions at τ = 35. Green (model set) and purple
(reference) point clouds are represented by the setM(τ = 34) andM(τ = 35) respectively.

68



Chapter 6

Conclusions and Future Work

6.1 Conclusions I: Multi-object metrics for evaluating feature-
based robotic mapping errors

Metrics which gauge the error in the SLAM trajectory, do not necessarily provide intuitive
assessments of the full SLAM error. It was demonstrated that the multi-object map metrics,
which provide intuitive assessments of mapping errors (Table 5.2), can significantly disagree
with the trajectory evaluation metrics. In the case of robotic maps, single object metrics, such
as the Euclidean distance, RMS, or NEES, can only gauge the error between maps, or subsets
of maps, with the same cardinality. When feature cardinalities differ, multi-object metrics
offer a solution. The OSPA metric is an averaged distance metric. When assessing mapping
performance during SLAM execution, as more of the GT map passes through the field(s) of
view of the sensor(s), this metric provides the most intuitive evaluation of the time varying
estimated map (see Section 3.7.3). When comparing multiple estimated maps against a fixed
GT map, the OSPA metric has some disadvantages, such as its saturation to parameter c
when no features are gated, irrespective of the cardinality errors, and its higher penalization of
missed detections over false alarms. On the other hand, when comparing multiple estimated
maps with a fixed GT map, the COLA metric solves some of the problems associated with
the OSPA metric. In particular, it is able to distinguish between map qualities, even if no
features are gated (it does not saturate), and it equally penalizes missed detections and false
alarms. Finally, since the OSPA metric often yields values close to c, small changes in c
can result in the metric changing its decision when comparing different maps to GT. This
problem is reduced with the COLA metric.

6.2 Conclusions II: Point set feature-based on multi-object
metrics

The PSO-COLA algorithm was presented as a robust solution to the point cloud registration
problem. It performs an initialization based on distance pattern matching and an opti-
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mization based on PSO using the multi-object COLA metric as its objective function. In
contrast to most state-of-the-art metrics, the COLA metric penalizes datasets in terms of
their cardinality and spatial differences and within the PSO-COLA framework provides the
core component for point cloud registration, taking into account both detection and spatial
errors.

For testing the performance of the PSO-COLA algorithm, the publicly available Stanford
Bunny and Dragon datasets were used. State-of-the-art algorithms such as Go-ICP, TEASER
among others were compared. The results show that the PSO-COLA algorithm outperforms
state-of-the-art methods in cases were cardinality and spatial errors exist, demonstrating its
robustness in such realistic situations. This is due to the ability of the COLA metric to
penalize cardinality as well as spatial errors.

The PSO-COLA algorithm increases its computational complexity when the point cloud
dataset becomes large. This problem is inherited, from the COLA metric, which in turn
inherits the problem from the Hungarian method. One way of reducing this complexity is
to apply the PSO-COLA algorithm to FPFH descriptors instead of the point cloud data
directly. Therefore, when comparing its performance with other methods using the large
“ETH Apartment” dataset, the registration of FPFH descriptors within the PSO-COLA
algorithm yielded a computationally tractable and robust solution. Relatively low translation
and rotation errors resulted, even in the presence of significant point cloud data symmetries.

6.3 Future Work

Firstly, due to the computational complexity of the OSPA and COLAmetrics (O(|M|, |M̂|)3),
future work could develop a new probabilistic multi-object metric which avoids the Hungarian
method. This problem could be addressed by using metrics with power q ≥ 1 such that:

d(M,M̂) =

(
m∑

i=1

m̂∑
j=1

pi,jd
(c)(mi, m̂j)q

)1/q

, (6.1)

with cut-off value c and inner truncated metric d(c)(mi, m̂j), equivalent to the inner metrics
of the OSPA and COLA metrics. pi,j is the probability of assigning points from mi ∈ M to
m̂j ∈ M̂ according to a Maxwell-Boltzmann distribution. In this case

pi,j =
exp(−βd(c)(mi, m̂j))∑
i,j exp(−βd(c)(mi, m̂j))

, (6.2)

where β is a scale factor. In physics, the value β is related to the inverse of the temperature
of a system of particles.

Equation (6.2) suggests the following scenarios: Consider two points mi ∈ M and m̂j ∈
M̂ such that d(c)(mi, m̂j)) = 0. pi,j is then the highest probability of associating mi ∈ M
and m̂j ∈ M̂. Otherwise, if d(c)(mi, m̂j)) = c, pi,j corresponds to the lowest probability of
associating mi ∈M and m̂j ∈ M̂.
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Note that in equation (6.2), the factor in the denominator∑
i,j

exp(−βd(c)(mi, m̂j)),

is constant and corresponds to the normalization factor of the Maxwell-Boltzmann distri-
bution, and can be computed once with a quadratic computational complexity. Therefore,
probabilistic multi-object metrics could be applied, resulting in a significantly reduced com-
putational complexity compared with the OSPA and COLA metrics.

A second proposal for future work is to improve the registration algorithm presented in
this thesis. The PSO technique in general suffers stagnation at local minima. Hence, a
new registration solution based in multi-object metrics could be implemented using a BnB
technique in a manner similar to the concept of Go-ICP.

Finally, it should be noted that the initialization method proposed for PSO-COLA only
takes into account distance measures in its inner metric in equation (4.20), ignoring rotational
errors. This can cause incorrect assignments for σ in equation (4.19) and an avenue for future
research would be to derive an initialization inner metric capable of considering rotational
measures also.
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