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RESUMEN DE TESIS
PARA OPTAR AL GRADO DE
DOCTORA EN CIENCIAS DE LA INGENIERÍA,
MENCIÓN EN MODELACIÓN MATEMÁTICA
POR: STEPHANIE PAOLA CARO TORRES
FECHA: 2023
PROF. GUÍA: ABDERRAHIM HANTOUTE

Discretización y reducción en optimización semi-infinita y cálculo
subdiferencial para funciones supremo

El principal objetivo de esta tesis es proporcionar esquemas generales de discretización
para problemas de optimización semi-infinita que permitan reescribirlos en problemas de
optimización ordinaria. Los argumentos de reducción permitirán a su vez que el número
de restricciones involucradas se reduzca como máximo a la dimensión del espacio más uno,
siempre que el problema original se define en un contexto finito-dimensional. Las principales
herramientas de esta parte son un nuevo teorema de tipo minimax (de dimensión finita),
por un lado, y, por otro, nuevas reglas de cálculo subdiferencial para la función supremo
definida en espacios localmente convexos (de dimensión infinita). Estas últimas reglas se dan
de forma expĺıcita y exclusiva a través de los datos. Nuestros resultados incluyen nuevos
logros y también diferentes extensiones de resultados existentes en la literatura, como los
establecidos para la teoŕıa de la discretización en [6], [24], [42], [53], y [55] entre muchos
otros. En particular, obtenemos generalizaciones de [42] y [24].

Nuestro enfoque también conduce a nuevas caracterizaciones del subdiferencial de la
función supremo que ampĺıan algunos resultados recientes en [16], [35] y [43]. Nuestro en-
foque permite fórmulas más expĺıcitas ya que no apelamos al cono normal del dominio de
esta función surpemo sino directamente a las funciones involucradas. Aplicados a proble-
mas de optimización, estos resultados nos proporcionan nuevas y generales condiciones de
optimalidad, de tipo Fritz-John y KKT, que resaltan el papel que desempeñan las funciones
cuasi-activas y no activas en el punto de referencia.

Aplicamos los argumentos de discretización anteriores a problemas de optimización multi-
objetivo semi-infinita para proporcionar caracterizaciones de soluciones débilmente eficientes
utilizando subproblemas que involucran funciones objetivo con un número finito de funciones
de dato. Más precisamente, el número de dichas funciones no debe exceder la dimensión del
espacio más uno. Esto nos permitirá dar extensiones de algunos de los resultados en [44], [49],
[50] y [59]. La parte final de esta tesis trata de problemas de optimización cuadrática que
generalizan la optimización cuadrática estándar, donde el simplejo n-dimensional usual se
reemplaza por una base convexa compacta de un cono convexo cerrado puntiagudo. Estable-
ceremos un resultado de dualidad fuerte y proporcionaremos una forma expĺıcita de la función
valor (perturbada) asociada con estos problemas, proporcionando aśı una generalización de
[3, Teorema 4].

Palabras claves: Optimización semi-infinita, funciones convexas, procesos de discretiza-
ción y reducción, función supremo, teoŕıa del subdiferencial y condiciones de optimalidad,
teoŕıa de minimax.
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Discretization-reduction in semi-infinite optimization and subdifferential
calculus for supremum functions

The main objective of this thesis is to provide general discretization schemes for semi-
infinite optimization problems that allow them to be rewritten into ordinary optimization
problems. The reduction arguments will in turn allow the number of constraints involved
to be reduced to at most the dimension of the space plus one. The main tools of this
part are some new (finite-dimensional) minimax-type theorems, on the one hand, and, on
the other, new subdifferential calculus rules for the subdifferential of pointwise suprema
defined in (infinite dimensional) locally convex spaces. These last rules are given explicitly
and exclusively through the data provided. Our results include new achievements and also
different extensions of existing results in the literature, such as those established for the
discretization theory in [6], [24], [42], [53] and [55] among many others. In particular, we
obtain some consistent generalizations of [42] and [24].

Our approach also gives rise to new characterizations of the subdifferential of pointwise
suprema that extend some recent results in [16], [35] and [43], and which constitute the main
tool to obtain the aforementioned minimax theorems. Our analysis allows more explicit
formulas since we do not appeal to the normal cone of the domain of these suprema but
directly to the functions involved. Applied to optimization problems, these results provide
us new and general optimality conditions of Fritz-John and KKT types, which highlight the
role played by almost active and non-active constraints functions.

We apply the above discretization arguments to multi-objective optimization problems to
provide characterizations of weakly efficient solutions using subproblems involving finitely
many objective functions. More precisely, the number of such functions must not exceed the
dimension of the space plus one when the underlying setting is a finite dimensional. This will
allow us to give extensions of some of the results in [44], [49], [50] and [59]. The final part
of this thesis deals with quadratic optimization problems that generalize standard quadratic
optimization, where the usual n-dimensional simplex is replaced by a compact convex base
of a pointed closed convex cone. We will establish a strong duality result for this kind of
problems and provide an explicit form of the associated value (or perturbed) function that
results in a useful generalization of [3, Theorem 4].

Keywords: Semi-infinite optimization, convex functions, discretization and reduction
processes, supremum functions, subdifferential and optimality theory, minimax theory.

ii



To my family, especially to my mom.

iii



Agradecimientos
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Viaje a Ítaca

Cuando emprendas tu viaje a Ítaca pide que el camino sea largo, lleno de aventuras, lleno
de experiencias. No temas a los lestrigones ni a los ćıclopes ni al colérico Poseidón, seres

tales jamás hallarás en tu camino, si tu pensar es elevado, si selecta es la emoción que toca
tu esṕıritu y tu cuerpo. Ni a los lestrigones ni a los ćıclopes ni al salvaje Poseidón

encontrarás, si no los llevas dentro de tu alma, si no los yergue tu alma ante ti.

Pide que el camino sea largo. Que muchas sean las mañanas de verano en que llegues -¡con
qué placer y alegŕıa!- a puertos nunca vistos antes. Detente en los emporios de Fenicia y
hazte con hermosas mercanćıas, nácar y coral, ámbar y ébano y toda suerte de perfumes

sensuales, cuantos más abundantes perfumes sensuales puedas. Ve a muchas ciudades
egipcias a aprender, a aprender de sus sabios.

Ten siempre a Ítaca en tu mente. Llegar alĺı es tu destino. Mas no apresures nunca el viaje.
Mejor que dure muchos años y atracar, viejo ya, en la isla, enriquecido de cuanto ganaste en

el camino sin aguantar a que Ítaca te enriquezca.

Ítaca te brindó tan hermoso viaje. Sin ella no habŕıas emprendido el camino. Pero no tiene
ya nada que darte.

Aunque la halles pobre, Ítaca no te ha engañado. Aśı, sabio como te has vuelto, con tanta
experiencia, entenderás ya qué significan las Ítacas.
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Chapter 1

Introduction

1.1 English version

This thesis delves into the theory of Convex Analysis, visiting different topics dealing with
optimization problems that are studied from many points of view. The analysis carried out is
done through several steps organized into chapters, each with its own interest but all aimed
at better understanding the arguments of discretization and reduction in optimization theory,
namely in semi-infinite optimization and subdifferential theory.

The objectives of the thesis include the following items:

• Provide new minimax-type theorems of the form max
t∈T

inf
x∈Rn

f(x, t) = inf
x∈Rn

max
t∈T

f(x, t)

that allow reducing the number of the data functions involved, ft(·) := f(·, t), t ∈ T
(with T possibly infinite), to at most n+ 1 functions, where n is the dimension of the
underlying Euclidean space. It is worth observing that the classical minimax theorem
cannot be used here, at least not directly, since our model lacks the necessary hypotheses
required by the classical minimax theorem. In a second step, we analyze the relationship
between the optimal solutions of a given semi-infinite programming problem and the
optimal solutions of its sub-problems given with finitely many constraints and whose
number does not exceed n.

• Provide general characterizations of the subdifferential of the supremum of an arbitrary
family of convex functions defined on locally convex spaces, and indexed in arbitrary
sets. The desired characterizations will be given by means exclusively of the data func-
tions, without involving additional concepts like the effective domain of the supremum
or finite-dimensional sections of it.

• Provide applications to multi-objective and quadratic optimization.

The importance of minimax-type theorems, semi-infinite programming and Infsup prob-
lems is a well-known fact. There exists a lot of works in the literature related with this three
topics (see, e.g., [42], [5] and [4]). For finite-dimensional spaces, there are many results in
the literature dealing with the idea of reducing the number of sets or functions involved in
optimization problems either within the objective (or multi-objective) function or the cons-
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traints. The most emblematic achievements are the theorems of Helly and Carathéodory and
their extensions; see, for example, [53], [42], [6], [24] and [55] to name a few. More specifically,
the problem of characterizing the subdifferential of the supremum function has been raised
since the 1960s, and there are several contributions from different authors; see, for instance,
Brøndsted & Rockafellar [8], Valadier [57], Brøndsted [7], Hantoute, López & Zălinescu [35]
among many others.

These minimax problems and subdifferential calculus of the supremum are also useful in
multiobjective optimization problems; see, Jahn [38] and Sawaragi et al. [54] where one can
find the development of this theory and applications around this type of problems.

The topics studied in this thesis respond to the main objectives cited above and are un-
dertaken through five main chapters, each dedicated to responding to a particular objective.
These are given after Chapters 2 which is dedicated to fix the notations and provide some
preliminary results.

Chapter 3, entitled Discretization and reduction of Infsup and SIP optimization problems,
provides new minimax type results together with a reduction process for semi-infinite op-
timization problems. Chapter 4, entitled Subdifferential calculus: characterizations of the
normal cone to the domain of the supremum function, gives the first step towards the study
of the subdifferential of pointwise suprema. Chapter 5, entitled Subdifferential calculus for
pointwise suprema, presents new characterizations of the subdifferential of pointwise suprema
given explicitly by means of the data functions. Chapter 6, entitled Multiobjective optimiza-
tion, focuses on convex multiobjective optimization problems where the multiobjective func-
tions includes infinitely many functions. In this case, we provide characterizations of the set
of weakly efficient solutions by means of appropriately chosen sub-problems. Chapter 7, enti-
tled Strong duality for some quadratic problems, deals with a generalized quadratic problem
that contains as a particular case the well-known standard quadratic problem. Finally, in
Chapter 8 we present some future works that will arise from this thesis.

Below we describe the contents of each chapter.

In Chapter 3 we develop a minimax theorem which takes into account the reduction of
the number of the functions involved, allowing to rewrite Infsup type problems into Infmax
problems. Applied to optimization theory, these arguments will allow to transform semi-
infinite programming problem (SIP, for short) into an ordinary optimization problem. The
main result of this chapter is Theorem 3.1, which establishes that

inf
Rn

sup
t∈T

ft(x) = max
S⊂T, |S|≤n+1

inf
Rn

max{ft + ID, t ∈ S},

for an appropriately chosen set D that takes into account the geometry of the effective
domains of the ft’s or of their supremum. This, in particular, covers some of the results in
[24, Theorem 1] (see Theorem 3.3). The reduction process above is applied in Theorem 3.8 to
SIP problems, generalizing Levin’s Theorem in [42]. Some other extensions are given in this
chapter such as an alternative-type theorem (Theorem 3.10), Lagrangian reformulation of
SIP problems, and less restrictive qualifications conditions (Slater conditions for constraint
blocks (Corollary 3.13)). The results contained in this chapter are part of the following
pre-print,
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Caro, S. & Hantoute, A. Discretization and reduction of Infsup and SIP
optimization problem, pre-print.

Chapter 4 is dedicated to establish a characterization of the normal cone to the effec-
tive domain of pointwise suprema. Indeed, such a normal cone plays an important role in
establishing subdifferential calculus rules for the subdifferential of the supremum as shown
in different works like Hantoute, López & Zălinescu [35], López & Volle [43] and Correa,
Hantoute & López [16]. Thus, its characterization by means of the data functions would
allow for complete characterizations of the subdifferential of the supremum. The main result
of this chapter is given in Theorem 4.7, stating that

Ndom f (x) =

[
co

(( ⋃
t∈T0

∂ε(ρt,εft)(x)

)⋃( ⋃
t∈T\T0

Nε
dom ft(x)

))]
∞

, for all ε > 0,

where T0 := {t ∈ T : cl ft is proper}.

Chapter 5 presents a characterization of the subdifferential of the pointwise supremum
function. Now, with the help of Chapter 4, we will be able to provide a formula for such a
subdifferential which is written only by means of the data functions involved. For instance,
given an arbitrary set T we show in Theorem 5.1 that

∂f(x) =
⋂
ε>0

co

 ⋃
t∈Tε(x)

∂εft(x) +

ε ⋃
t∈T0\Tε(x)

∂ε(ρt,εft)(x)

 ∪
 ⋃
t∈T\T0

Nε
dom ft(x) ∪ {θ}

 .

The special case of compact index sets is also studied in Theorem 5.3 and Corollary 5.4.
Our results provide direct characterizations of the recent papers Correa, Hantoute & López
[12] and Hantoute & López [34]. The results contained in Chapters 4 and 5 are part of the
following pre-print,

Caro, S. & Hantoute, A. Highlighting the role of active and non-active
functions in optimization and subdifferential calculus, pre-print.

Chapter 6 is devoted to multiobjective semi-infinite-programming problems given in the
form

min
x∈S
{ft(x) : t ∈ T},

where ft : Rn → R∞, t ∈ T , is a family of extended real-valued functions with T being an
arbitrary set, and S ⊂ Rn is a nonempty convex set. First, we focus on the description of the
set of weakly efficient solutions of the problem above by using the information provided by
the associated sub-problems that involve no more that n+1 objective functions. This results
has been also analyzed elsewhere (for instance, in Lowe et al. [44] and Ward [59]) when T
is finite. Our approach uses the arguments developed in Chapter 3. The main result of this
chapter is Theorem 6.4 that states that

WET (S) =
⋃

B⊂T,|B|≤n+1

WEB(S ∩D).

In particular, we get Corollary 6.5 which recovers similar results in Plastria & Carrizosa [50].

3



Also, we provide characterizations of the set of weakly efficient solutions by means of
the subdifferential of the associated (supremum) objective function and the normal cone to
the constraints set S. Namely, in Theorem 6.6 we obtain the following equivalence that
generalizes some of the results in [50]:

x̄ ∈WET (S)⇐⇒ θ ∈ NS(x̄) +
⋂
ε>0

co

(⋃
t∈T

∂εft(x̄)

)
.

The results contained in this chapter are part of the following work which is in progress,

Caro, S. & Hantoute, A. Reduction arguments in multi-objective opti-
mization and subdifferential calculus.

Finally, in Chapter 7 we consider a generalization of the standard quadratic problem,
which is given by

µ = inf
g(x)=0, x∈C

1

2
x>Ax+ 2r>x,

where C ⊂ Rn is a closed convex cone, e ∈ intC∗ and g(x) := e>x − 1. The chapter
begins with a review of the Lagrangian duality theory, emphasizing the importance of the
relations given by Flores-Bazán & Mastroeni in [31]. We also study the equivalence between
the solutions of the dual/primal problems and the associated perturbation function given by
Flores-Bazán, Jourani & Mastroeni in [30]. Our main result, given in Theorem 7.6, proves
a strong duality theorem for the given quadratic problem through an explicit formulation of
the perturbed function, ψ,

ψ(a) =

{
(1 + a)2µ, if a ≥ −1,

+∞, if a < −1.

This analysis reveals a hidden convexity in the given quadratic problem, namely in view of
the fact that the set

{(f(x), g(x)) : x ∈ C}+ R+ × {0}

is convex. In Theorem 7.8, we present a generalization to some of the results in [3], showing
an explicit form of the function Θ(λ) = infx∈C f(x) + λ(e>x − 1). The results contained in
this chapter are part of the paper,

Flores-Bazán, F., Carcamo, G. & Caro, S. Extensions of the Standard
quadratic optimization problem: strong duality, optimality, hidden convex-
ity and S-lemma, Appl. Math. Optim. 81 (2020), no. 2, 383-408.

4



1.2 Spanish version

Esta tesis profundiza en la teoŕıa del Análisis Convexo, visitando diferentes temas que tratan
problemas de optimización estudiados desde muchos puntos de vista. El análisis realizado se
organiza a través de varias etapas organizadas en caṕıtulos, cada uno con su propio interés
pero todos dirigidos a comprender mejor los argumentos de la discretización y la reducción
en la teoŕıa de la optimización, concretamente en la optimización semi-infinita y la teoŕıa
subdiferencial.

Los objetivos de la tesis incluyen los siguientes puntos:

• Proporcionar nuevos teoremas de tipo minimax de la forma siguiente max
t∈T

inf
x∈Rn

f(x, t) =

inf
x∈Rn

max
t∈T

f(x, t) que nos permitan reducir el número de funciones de dato involucradas,

ft(·) := f(·, t), t ∈ T (con T posiblemente infinitas) hasta a lo más n + 1 funciones,
donde n es la dimensión del espacio Euclidiano subyacente. Vale la pena señalar que
el teorema clásico del minimax no se puede utilizar aqúı, al menos no directamente, ya
que nuestro modelo carece de las hipótesis necesarias que requiere el teorema clásico del
minimax. En un segundo paso, analizamos la relación entre las soluciones óptimas de
un problema de programación semi-infinito y la solución óptima de sus subproblemas
con un número finito de restricciones y cuyo número no exceda n.

• Proporcionar caracterizaciones generales del subdiferencial del supremo de una familia
arbitraria de funciones convexas definidas en espacios localmente convexos e indexadas
en conjuntos arbitrarios. Las caracterizaciones deseadas se daran exclusivamente me-
diante las funciones dato, sin involucrar conceptos adicionales como el dominio efectivo
del supremo o secciones finito-dimensional de este conjunto.

• Proporcionar aplicaciones para optimización cuadrática y multiobjetivo.

La importancia de los teoremas de tipo minimax, la programación semi-infinita y los
problemas Infsup es un hecho bien conocido. Existe una gran variedad de trabajos en la
literatura relacionados con estos tres temas (ver, por ejemplo, [42], [5] y [4]). Para espacios
de dimensión finita, hay muchos resultados en la literatura que tratan con la idea de reducir el
número de conjuntos o funciones involucradas en problemas de optimización, ya sea dentro de
la función objetivo (o multiobjetivo) o de las restricciones. Los resultados más emblemáticos
son los teoremas de Helly y Carathéodory, y sus extensiones; véase, por ejemplo, [53], [42],
[6], [24] y [55] por nombrar algunos. Más espećıficamente, el problema de caracterizar la
subdiferencial de la función suprema se plantea desde la década de 1960, y existen varias
contribuciones de distintos autores; véase, por ejemplo, Brøndsted & Rockafellar [8], Valadier
[57], Brøndsted [7], Hantoute, López & Zălinescu [35] entre muchos otros.

Estos problemas de tipo minimax y el cálculo subdiferencial del supremo también son
útiles en problemas de optimización multiobjetivo; ver Jahn [38] y Sawaragi et al. [54],
donde se puede encontrar el desarrollo de esta teoŕıa y aplicaciones alrededor de este tipo de
problemas.

Los temas estudiados en esta tesis responden a los principales objetivos citados anterior-
mente y se abordan a través de cinco caṕıtulos principales, cada uno de ellos dedicado a dar
respuesta a un objetivo particular. Estos se dan después del Caṕıtulo 2, que está dedicado a
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fijar las notaciones y proporcionar algunos resultados preliminares.

El caṕıtulo 3, titulado Discretization and reduction of Infsup and SIP optimization prob-
lems, proporciona nuevos resultados de tipo minimax junto con un proceso de reducción para
problemas de optimización semi-infinita. El caṕıtulo 4 Subdifferential calculus: characteriza-
tions of the normal cone to the domain of the supremum function, da el primer paso hacia
el estudio del subdiferencial de la función supremo puntual. El caṕıtulo 5, titulado Subdiffe-
rentials calculus for pointwise suprema, presenta una nueva caracterización del subdiferencial
de suprema puntual dada expĺıcitamente por medio de las funciones de dato. El caṕıtulo 6,
titulado Multiobjective optimization, se centra en problemas de optimización multiobjetivo
convexos donde las funciones objetivo pueden ser infinitas. En este caso, proporcionamos
caracterizaciones del conjunto de soluciones débilmente eficientes mediante subproblemas
elegidos adecuadamente. Caṕıtulo 7 de nombre Strong duality for some quadratic problems,
trata de un problema cuadrático generalizado que contiene como caso particular el conocido
problema cuadrático estándar. Finalmente, en el Caṕıtulo 8 presentamos algunos trabajos
futuros que surgirán de esta tesis.

A continuación describimos el contenido de cada caṕıtulo.

En Caṕıtulo 3 desarrollamos un teorema minimax que tiene en cuenta la reducción
del número de funciones involucradas, permitiendo reescribir problemas de tipo Infsup en
problemas de Infmax. Aplicados a la teoŕıa de la optimización, estos argumentos permitirán
transformar un problema de programación semi-infinita (SIP, para abreviar) en un problema
de optimización ordinario. El principal resultado de este caṕıtulo es el Teorema 3.1, el cual
establece que

inf
Rn

sup
t∈T

ft(x) = max
S⊂T, |S|≤n+1

inf
Rn

max{ft + ID, t ∈ S},

para un conjunto D apropiado, que tenga en cuenta la geometŕıa de los dominios efectivos
de las funciones ft’s o de su supremo. Esto, en particular, cubre algunos de los resultados
en [24, Teorema 1] (ver Teorema 3.3). El proceso de reducción anterior se aplica en el Teo-
rema 3.8 a problemas SIP, generalizando el Teorema de Levin en [42, Teorema 1]. En este
caṕıtulo se dan algunas otras extensiones, como un teorema de tipo alternativo (Teorema
3.10), la reformulación lagrangiana de problemas SIP y condiciones de calificación menos re-
strictivas (condiciones de Slater para bloques de restricciones (Corolario 3.13). Los resultados
contenidos en este caṕıtulo son parte del siguiente pre-print,

Caro, S. & Hantoute, A. Discretization and reduction of Infsup and SIP
optimization problem, pre-print.

Caṕıtulo 4 está dedicado a establecer una caracterización del cono normal al dominio
efectivo de la función supremo puntual. De hecho, dicho cono normal juega un papel im-
portante en el establecimiento de reglas de cálculo subdiferencial para el subdiferencial de la
función supremo, como se muestra en diferentes trabajos, ver por ejemplo, Hantoute, López
& Zălinescu [35], López & Volle [43] y Correa, Hantoute & López [16]. Aśı, su caracteri-
zación mediante funciones dato permitiŕıa caracterizaciones completas del subdiferencial de
la función supremo. El principal resultado de este caṕıtulo se da en Teorema 4.7, y establece
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que

Ndom f (x) =

[
co

(( ⋃
t∈T0

∂ε(ρt,εft)(x)

)⋃( ⋃
t∈T\T0

Nε
dom ft(x)

))]
∞

, para todo ε > 0,

donde T0 := {t ∈ T : cl ft es propia}.

Caṕıtulo 5 presenta una caracterización del subdiferencial de la función suprema pun-
tual. Ahora, con la ayuda del Caṕıtulo 4, podremos proporcionar una fórmula para dicho
subdiferencial que se escribe solo mediante las funciones dato involucradas. Por ejemplo,
dado un conjunto arbitrario T mostramos en Teorema 5.1 que

∂f(x) =
⋂
ε>0

co

 ⋃
t∈Tε(x)

∂εft(x) +

ε ⋃
t∈T0\Tε(x)

∂ε(ρt,εft)(x)

 ∪
 ⋃
t∈T\T0

Nε
dom ft(x) ∪ {θ}

 .

El caso especial de conjuntos de ı́ndices compactos también se estudia en Teorema 5.3 y en
Corolario 5.4. Nuestros resultados proporcionan caracterizaciones directas de los art́ıculos re-
cientes de Correa, Hantoute & López [12] y Hantoute & López [34]. Los resultados contenidos
en los Caṕıtulos 4 y 5 son parte del siguiente pre-print,

Caro, S. & Hantoute, A. Highlighting the role of active and non-active
functions in optimization and subdifferential calculus, pre-print.

Caṕıtulo 6 está dedicado a problemas de programación multiobjetivo semi-infinita, pre-
sentados en la forma

min
x∈S
{ft(x) : t ∈ T},

donde ft : Rn → R∞, t ∈ T , es una familia de funciones a valores reales extendidos, donde T
es un conjunto arbitrario y S ⊂ Rn es un conjunto convexo no vaćıo. Primero, nos centramos
en la descripción del conjunto de soluciones débilmente eficientes del problema anterior uti-
lizando la información proporcionada por los subproblemas asociados que involucran no más
de n + 1 funciones objetivo. Estos resultados también se han analizado en otros trabajos
(por ejemplo, en Lowe et al. [44] y Ward [59]) cuando T es finito. Nuestro enfoque utiliza los
argumentos desarrollados en el Caṕıtulo 3. El resultado principal de este caṕıtulo es Teorema
6.4 el cual establece que

WET (S) =
⋃

B⊂T,|B|≤n+1

WEB(S ∩D).

En particular, obtenemos el Corolario 6.5 que recupera el resultado de Plastria & Carrizosa
en [50, Corollary 2.1]. Además, proporcionamos caracterizaciones del conjunto de soluciones
débilmente eficientes mediante el subdiferencial de la función objetivo asociada (supremo) y
el cono normal del conjunto de restricciones S. Es decir, en el Teorema 6.6 obtenemos la
siguiente equivalencia que generaliza algunos de los resultados en [50]:

x̄ ∈WET (S)⇐⇒ θ ∈ NS(x̄) +
⋂
ε>0

co

(⋃
t∈T

∂εft(x̄)

)
.

Los resultados contenidos en este caṕıtulo son parte del siguiente trabajo que está en progreso
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Caro, S. & Hantoute, A. Reduction arguments in multi-objective opti-
mization and subdifferential calculus.

Finalmente, en el Caṕıtulo 7 consideramos una generalización del problema cuadrático
estándar, que viene dado por

µ = inf
g(x)=0, x∈C

1

2
x>Ax+ 2r>x,

donde C ⊂ Rn es un cono convexo cerrado, e ∈ intC∗ y g(x) := e>x−1. El caṕıtulo comienza
con una revisión de dualidad teoŕıa lagrangiana, enfatizando la importancia de las relaciones
dadas por Flores-Bazán & Mastroeni en [31]. También estudiamos la equivalencia entre
las soluciones de los problemas duales/primales y la función perturbada asociada, dada por
Flores-Bazán, Jourani & Mastroeni en [30]. Nuestro resultado principal, dado en Teorema
7.6, demuestra dualidad fuerte para el problema cuadrático dado a través de una formulación
expĺıcita de la función perturbada, ψ,

ψ(a) =

{
(1 + a)2µ, if a ≥ −1,

+∞, if a < −1.

De hecho, este análisis revela una convexidad oculta en el problema cuadrático dado, en vista
de que el conjunto

{(f(x), g(x)) : x ∈ C}+ R+ × {0}

es convexo. En Teorema 7.8 presentamos una generalización de un resultado en [3, Theorem
4], mostrando una forma expĺıcita de la función Θ(λ) = infx∈C f(x) + λ(e>x − 1). Los
resultados contenidos en este caṕıtulo son parte del siguiente art́ıculo,

F. Flores-Bazán, G. Carcamo & S. Caro, Extensions of the Standard
quadratic optimization problem: strong duality, optimality, hidden convex-
ity and S-lemma, Appl. Math. Optim. 81 (2020), no. 2, 383-408.
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Chapter 2

Notation and preliminary results

In this chapter, we present the basic notions and properties that we will use throughout this
manuscript.

Let X be a (real) separated locally convex space (lcs, for short), whose topological dual
space, written X∗, is endowed with any compatible topology for duality pair associate to the
bilinear form (x∗, x) ∈ X∗ × X 7→ 〈x∗, x〉 := x∗(x). The w∗-topology, the Mackey topology,
and the norm topology when X is a Banach space, are typical examples of such compatible
topologies. The main feature of these topologies is that X∗∗ := (X∗)∗ ≡ X. The zero vectors
in X and X∗ are denoted by θ. The basis of closed, convex and balanced neighborhoods of
θ, in both X and X∗, called θ-neighborhoods, is represented by N . We use the notation
R+ = {x ∈ R : x ≥ 0}, R := R ∪ {−∞,+∞} and R∞ := R ∪ {+∞}, and adopt the
conventions (+∞) + (−∞) = (−∞) + (+∞) = +∞ and 0 · (+∞) := +∞.

Given a possibly infinite set T , we denote by RT the locally convex product space of
functions from T with values in R. We call support of α ∈ RT to the set suppα := {t ∈
T : αt = α(t) 6= 0}. Then the topological dual space of RT , written R(T ), is formed by the

mappings with finite support. We denote R(T )
+ := {α : T → R+ : | suppα| < +∞}, where | · |

stands for the cardinality of the set. The extended unit simplex is

∆(T ) :=

{
λ ∈ R(T )

+ :
∑
λt>0

λt = 1

}
.

In particular, when T is finite, the corresponding unit simplex is compact and is simply
denoted ∆|T |.

For the following preliminary results we rely on the books [13], [52] and [60].
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2.1 Convex analysis

Definition 2.1 We consider two sets A, B ⊂ X (or X∗).

1. A is convex if, for all x, y ∈ A,

λx+ (1− λ)y ∈ A, for all λ ∈ [0, 1].

2. The Minkowski sum of A and B is

A+B := {a+ b : a ∈ A, b ∈ B}, with A+ ∅ = ∅+ A = ∅. (2.1)

3. The product of A by Λ ⊂ R is

ΛA := {λa : λ ∈ Λ, a ∈ A} , λA := {λ}A, λ ∈ R and Λ∅ = ∅A = ∅.

4. The convex hull of A is

co(A) =

{
n∑
i=1

λixi : n ∈ N, λ ∈ ∆n, (xi) ⊂ Abn

}
.

5. The conical convex hull of A is

cone(A) = {λx : λ ≥ 0, x ∈ A} = R+A, with cone(∅) = θ.

6. The interior of A, denoted int(A) is the largest open set contained in C.

7. The closed hull of A, denoted cl(A) or A, is the smallest closed set containing A.

8. Let A be a convex cone in Rn, n ≥ 1. We say that A is a pointed cone if A ∩ (−A) =
{0n}, where 0n is the zero vector in Rn.

Theorem 2.2 (Carathéodory’s Theorem) Let S be any subset of Rn. Then x ∈ co(S) if and
only if x can be expressed as a convex combination of at most n+ 1 elements of S.

Theorem 2.3 (Helly’s Theorem) Consider a finite family of convex sets Ci ⊂ Rn, i ∈ T :=
{1, · · · , k}, k ≥ n. If

⋂
i∈SCi 6= ∅, for all S ⊂ T such that |S| ≤ n + 1, then we have⋂

i∈SCi 6= ∅.

Definition 2.4 Let be given a nonempty set A ⊂ X (or X∗) and ε ≥ 0.

1. The negative dual cone of A is

A− := {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 0, for all x ∈ A},

(observe that A− = (cone(A))−). We also write

A−− := (A−)−.
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2. The orthogonal subspace of A is

A⊥ := (−A−) ∩ A− = {x∗ ∈ X∗ : 〈x∗, x〉 = 0, for all x ∈ A}.

3. The ε-normal cone to A at x (x ∈ A) is

Nε
A(x) := {x∗ ∈ X∗ : 〈x∗, z − x〉 ≤ ε, for all z ∈ A}.

4. The normal cone to A at x is NA(x) := N0
A(x).

5. When A is closed and convex, its recession cone is

A∞ := {y ∈ X : x+ λy ∈ A, for all λ > 0},

where x is any point in A.

We give some important facts about the operations defined above.

Proposition 2.5 Let be given two nonempty sets A,B ⊂ X.

1. The Bipolar Theorem states that

A−− = cone(A).

2. If A ⊂ B, then B− ⊂ A−.

3. If 0 ∈ A ∩B, then (A+B)− = (A ∪B)− = A− ∩B−.

The following two lemmas comes from [12].

Lemma 2.6 Consider nonempty sets A and A1, · · · , Ak in X, k ≥ 2. Then,

[co(A ∪ (∪i=1,··· ,kAk))]∞ = [co(A ∪ (A1 + · · ·+ Ak))]∞ . (2.2)

Lemma 2.7 Consider a family of nonempty sets {At, t ∈ T1 ∪ T2} ⊂ X, where T1 and T2

are disjoint nonempty sets. Then for every m > 0 we have

[co (∪t∈T1∪T2At)]∞ = [co ((∪t∈T1At) ∪ (∪t∈T2mAt))]∞
= [co (∪t1∈T1,t2∈T2 (At1 +mAt2))]∞ . (2.3)

Lemma 2.8 Let A be a set in X∗ and x ∈ X, we have that⋂
L∈F(x)

[
co(A+ L⊥)

]
∞ = [co(A)]∞ ,

where F(x) = {L ⊂ X : L is a finite-dimensional linear subspace such that x ∈ L}.
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Proof. Let x ∈ X and fix any subspace L ∈ F(x). First we notice that co(A + L⊥) =
cl(co(A + L⊥)) ⊂ cl(co(A) + L⊥). Using the characterization of the recession cone given in
[60, pp. 6], for every a ∈ co(A+ θ)(⊂ co(A+ L⊥), for every L ∈ F(x)) we obtain⋂

L∈F(x)

[
co(A+ L⊥)

]
∞ =

⋂
L∈F(x)

⋂
t>0

t
[
co(A+ L⊥)− a

]
=

⋂
L∈F(x)

⋂
t>0

[
co(tA+ tL⊥)− ta

]
=

⋂
t>0

⋂
L∈F(x)

[
cl
(
co(tA) + L⊥

)
− ta

]

=
⋂
t>0

 ⋂
L∈F(x)

[
cl
(
co(tA) + L⊥

)]
− ta


=

⋂
t>0

(co(tA)− ta) (by [15,Lemma 3])

= [co(A)]∞ .

Definition 2.9 Let be given a function f : X → R.

1. The effective domain and the epigraph of f are, respectively,

dom f := {x ∈ X : f(x) < +∞} and epi f := {(x, λ) ∈ X × R : f(x) ≤ λ}.

2. The function f is proper if dom f 6= ∅ and f(x) > −∞ for all x ∈ X.

3. The function f is convex if epi f is convex.

4. The function f is strictly convex if for all x, y ∈ X and for all 0 < α < 1, satisfies

f(αx+ (1− α)y) < αf(x) + (1− α)f(y).

5. When X is a normed space, with a norm ‖ · ‖. The function f is coercive if

f(x)→ +∞ as ‖x‖ → +∞.

Definition 2.10 Let f, g : X → R be two functions.

1. The positive part of f is the function defined as

f+(x) := max{0, f(x)}, for all x ∈ X.

2. The convex hull of f, co f : X → R, is the largest among all convex functions dominated
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by f . Equivalently,

(co f)(x) = inf {µ : (x, µ) ∈ co (epi f)} (2.4)

= inf

{
k∑
i=1

λif(xi) : λ ∈ ∆k, xi ∈ X,
k∑
i=1

λixi = x, k ∈ N

}
. (2.5)

3. The Fenchel-Legendre conjugate of f is the function f ∗ : X∗ → R is

f ∗(x∗) := sup{〈x∗, x〉 − f(x) : x ∈ X}.

4. The inf-convolution of f and g is the function f�g : X → R defined as

(f�g)(x) = inf{f(x1) + g(x2) : x1 + x2 = x}, for all x ∈ X.

5. When X is a normed space with a norm ‖ · ‖, the Moreau-Yosida regularization of f
with parameter λ > 0 is the function fλ defined on X by

fλ(x) =

(
f �

1

2λ
‖ · ‖2

)
(x).

The following definitions presents some typical functions, which are frequently used in the
sequel.

Definition 2.11 Let A be a subset of X (or X∗).

1. The support function of A is the function σA : X∗ → R defined by

σA(x∗) := sup{〈x∗, x〉 : x ∈ A}, x∗ ∈ X∗, with σ∅ ≡ −∞,

2. The indicator function of A is

IA(x) :=

{
0, if x ∈ A,
+∞, if x ∈ X \ A.

Definition 2.12 Given A be a subset of X. The Minkowski function (Minkowski gauge) of
the set A is defined by

pA : X → R∞, pA(x) := inf{λ ≥ 0 : x ∈ λA},

with the convention inf ∅ = +∞.

The following gives a description of the domain of the support function.
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Lemma 2.13 Let A be a convex and closed subset of X (or X∗). Then we have

A∞ = (domσA)− and (A∞)− = cl(domσA).

Lemma 2.14 Let A and B be two nonempty subsets of X. Then,

([co (A ∪B)]∞)− ⊂ ([co (A)]∞)− ∩ ([co (B)]∞)− .

Proof. Since θ ∈ [co (A)]∞ ∩ [co (B)]∞, by Proposition 2.5(3) we obtain

([co (A)]∞)− ∩ ([co (B)]∞)− = ([co (A)]∞ ∪ [co (B)]∞)− .

Moreover, the inclusion [co (A)]∞ ∪ [co (B)]∞ ⊂ [co (A) ∪ co (B)]∞ is always fulfilled and
Proposition 2.5(2) this implies that

([co(A ∪B)]∞)− = ([co(A) ∪ co(B)]∞)−

⊂ ([co (A)]∞ ∪ [co (B)]∞)−

= ([co (A)]∞)− ∩ ([co (B)]∞)− .

2.2 Topology and convexity

Definition 2.15 Let be given a function f : X → R.

1. The function f is said to be lower semicontinuous (lsc, in brief) at x ∈ X if

f(x) = lim inf
x′→x

f(x′) = sup
V ∈N

inf {f(x′) : x′ ∈ x+ V } .

We say that f is upper semicontinuous (usc, in brief) at x if −f is lsc at x. The
function f is lsc (usc, respectively), if f is lsc (usc, respectively) at every point of X.
We sometimes refer to lsc functions as closed functions. If it is necessary to specify the
topology with respect to which the function is lsc, say a given topology τ , then we say
that such a function is τ−lsc.

2. The set of proper lsc convex functions on X is denoted Γ0(X).

3. A function f is continuous if and only if f is both upper and lower semicontinuous.

Below is a very useful property for functions in Γ0(X), see for example [60, Theorem 2.2.6].

Lemma 2.16 Given f : X → R belonging to Γ0(X), then f is bounded from below by a
continuous affine function.

Faced with the lack of semicontinuity/lower convexity, we will consider lsc and convex
hulls or envelopes.
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y

Figure 2.1: f ∈ Γ0(X) is minorized by a continuous affine mapping

Definition 2.17 Let be given a function f : X → R.

1. The closed hull of f is the function cl f : X → R whose epigraph is cl (epi f). Equiva-
lently,

(cl f) (x) = lim inf
x′→x

f(x′), for all x ∈ X. (2.6)

2. The closed convex hull of f, cof : X → R, is the largest among all closed convex
functions dominated by f. Equivalently, we have that

epi(cof) = co(epi f).

Definition 2.18 The set C(X,R) denotes the space of all continuous functions from X to
R and given k ∈ N, Ck(X,R) defines the k-times continuously differentiable functions.

Theorem 2.19 (Bi-conjugate Theorem) Let f : X → R be a function with a nonempty
domain.

1. If cof is proper, then f ∗∗ = cof .

2. If cof is not proper, then f ∗∗ = −∞.

3. Suppose that f is convex. If f is lsc at x̄ ∈ dom f , then f(x̄) = f ∗∗(x̄); moreover, if
f(x̄) ∈ R, then f ∗∗ = f and f is proper.
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Lemma 2.20 Let f : X → R∞ be a function.

1. If A ⊂ X, then
σ{0}∪A = (σA)+.

2. If f is convex, then
cl(f+) = (cl f)+.

3. If f is convex but not proper, then

cl(f+) = Idom cl f .

Proof. 1. Let x∗ ∈ X∗. We have

σ{0}∪A(x∗) = sup{〈x∗, x〉 : x ∈ {0} ∪ A}
= max{0, sup{〈x∗, x〉 : x ∈ A}}
= max{0, σA(x∗)} = (σA)+(x∗).

2. See [13, Proposition 5.2.4(ii)].

3. If x ∈ dom(cl f), then (cl f)(x) = −∞ and, by the previous item,

cl(f+)(x) = (cl f(x))+ = 0.

Otherwise, if x /∈ dom(cl f), then (cl f)(x) = +∞ and so, again by the previous item,

cl(f+)(x) = (cl f(x))+ = +∞.

The following proposition gathers some important facts about the Fenchel conjugate.

Proposition 2.21 Let f, g : X → R be two functions.

1. f ∗ is convex and w∗-lsc.

2. The Young-Fenchel inequality holds, that is, f(x)+f ∗(x∗) ≥ 〈x, x∗〉, ∀x ∈ X, ∀x∗ ∈ X∗.

3. f ≤ g ⇒ g∗ ≤ f ∗.

4. If α > 0, then we have (αf)∗(x∗) = αf ∗(α−1x∗), ∀x∗ ∈ X∗.

5. We have
f ∗(θ) = − inf

x∈X
f(x). (2.7)

6. If f is convex and lsc, then the function f ∗ is proper if and only if f is so.
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7. If X is a normed space, with norm ‖ · ‖ and dual norm ‖ · ‖∗, and f =
1

2
‖ · ‖2, then

f ∗ =
1

2
‖ · ‖2

∗.

8. The conjugate of the inf-convolution f�g of f and g is

(f�g)∗ = f ∗ + g∗.

9. When f, g ∈ Γ0(X), the conjugate of the sum, f + g, is

(f + g)∗ = cl(f ∗�g∗).

Additionally, if f is continuous at some point of dom g, then

(f + g)∗ = f ∗�g∗.

10. The conjugate of the Moreau-Yosida regularization fλ, λ > 0, is

(fλ)∗(x∗) = f ∗(x∗) +
λ

2
‖x∗‖2. (2.8)

11. If f = infi∈I fi for functions fi : X → R∞, i ∈ I, then

f ∗ = sup
i∈I

f ∗i .

12. If f = supi∈I fi for proper lsc convex functions fi : X → R∞, i ∈ I, and f is proper,
then

f ∗ = co

(
inf
i∈I

f ∗i

)
. (2.9)

Proof. Items 1− 4 and 8 can be found in [60, Theorem 2.3.1].

5. By definition, we have f ∗(θ) = sup{〈θ, x〉 − f(x) : x ∈ X} = − infx∈X f(x).

6. See [13, Proposition 3.1.4].

7. We start by proving the formula when X is a reflexive Banach space. Fix x∗ ∈ X∗.
If x∗ = θ, then the desired statement obviously holds. Otherwise, x∗ 6= θ and James’
theorem yields some x ∈ X \ {θ} such that 〈x∗, x〉 = ‖x∗‖‖x‖. Then the point z :=
x‖x∗‖/‖x‖ satisfies

〈x∗, z〉 = 〈x∗, x‖x∗‖/‖x‖〉 = ‖x∗‖2, ‖z‖ = ‖x∗‖,

and we deduce(
1

2
‖ · ‖2

)∗
(x∗) ≥ 〈x∗, z〉 − 1

2
‖z‖2 = ‖x∗‖2 − 1

2
‖z‖2 =

1

2
‖x∗‖2.
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Finally, the opposite inequality follows as,(
1

2
‖ · ‖2

)∗
(x∗) ≤ 1

2
‖x∗‖2

∗ +
1

2
‖z‖2 − 1

2
‖z‖2 =

1

2
‖x∗‖2

∗.

Next, in the general case, given x∗ ∈ X∗, we fix ε > 0 and xε ∈ BX (the closed unit
ball in X) such that ∣∣∣∣12‖x∗‖2

∗ −
1

2
〈x∗, xε〉2

∣∣∣∣ ≤ ε.

Take a finite-dimensional subspace L of X such that xε ∈ L, and denote by (f + IL)L
and x∗L the restriction of f + IL and x∗, respectively, to L. Then we easily verify that

((f + IL)L)∗(x∗L) = (f + IL)∗(x∗).

But (f + IL)L is nothing else but the function
1

2
‖x‖2

L, x ∈ L, with ‖ · ‖L being the norm

in L, which is the restriction of the initial norm ‖ · ‖ to L. Thus, since L is reflexive,
by the reasoning above we deduce that

((f + IL)L)∗(x∗L) =
1

2
‖x∗L‖2

L∗ .

Therefore, observing that f ≤ f + IL, we have f ∗(x∗) ≥ (f + IL)∗(x∗) by item 3., and
we obtain

f ∗(x∗) ≥ (f + IL)∗(x∗) = (1/2)‖x∗L‖2
L∗ ≥

1

2
〈x∗L, xε〉2 = (1/2)〈x∗, xε〉2

≥ (1/2)‖x∗‖2
∗ − ε.

Consequently, as ε ↓ 0, we get the first inequality f ∗(x∗) ≥ (1/2)‖x∗‖2
∗. To show the

opposite inequality we use the Young and Cauchy-Schwartz inequalities,

f ∗(x∗) = sup
x∈X
{〈x∗, x〉 − (1/2)‖x‖2}

≤ sup
x∈X
{(1/2)‖x‖2 + (1/2)‖x∗‖2

∗ − (1/2)‖x‖2}

= (1/2)‖x∗‖2
∗.

9. We apply the previous item to the functions f ∗ and g∗ to obtain

f ∗∗ + g∗∗ = (f ∗�g∗)∗

Since f, g ∈ Γ0(X), f ∗∗ = f, g∗∗ = g and f � g is convex. Then, applying the conjugate
to the last equality, we get

(f + g)∗ = (f ∗ � g∗)∗∗ = cl(f ∗ � g∗).

If we assume that f is continuous at x0 ∈ dom g, then the conclusion holds due to [60,
Corollary 2.3.5].
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10. Since fλ(x) =

(
f �

1

2λ
‖ · ‖2

)
(x), by items 6− 7 we have for all x∗ ∈ X∗

(fλ)∗(x∗) = f ∗(x∗) +

(
1

2λ
‖ · ‖2

)∗
(x∗)

= f ∗(x∗) +

(
1

λ

(
1

2
‖ · ‖2

))∗
(x∗)

= f ∗(x∗) +
1

λ
· 1

2
‖λx∗‖2

∗

= f ∗(x∗) +
λ

2
‖x∗‖2

∗.

11. For all x∗ ∈ X∗ we have(
inf
i∈I

fi

)∗
(x∗) = sup

x∈X

{
〈x∗, x〉 − inf

i∈I
fi(x)

}
= sup

x∈X
sup
i∈I
{〈x∗, x〉 − fi(x)} = sup

i∈I
f ∗i (x∗).

12. Using the bi-conjugate theorem, Theorem 2.19, together with item 9, for all x ∈ X we
have

f(x) = sup
i∈I

fi(x) = sup
i∈I

f ∗∗i (x) =

(
inf
i∈I

f ∗i

)∗
(x).

Thus, taking the conjugate of each side, for all x∗ ∈ X∗ we obtain that

f ∗(x∗) =

(
inf
i∈I

f ∗i

)∗∗
(x∗). (2.10)

Now, since f is assumed proper, its conjugate f ∗ is proper too, and we deduce that the
function (infi∈I f

∗
i )∗∗ is also proper. Thus, due to the inequalities(

inf
i∈I

f ∗i

)∗∗
≤ inf

i∈I
f ∗i ≤ f ∗i , for all i ∈ I,

the function co(infi∈I f
∗
i ) is proper. Finally, thanks to Theorem 2.19, the relation in

(2.10) yields
f ∗(x∗) = co(inf

i∈I
f ∗i ).

Proposition 2.22 Given f : Rn → R∞ a proper and convex function and x ∈ Rn. The
following properties hold

1. For all λ > 0, infx∈Rn f(x) = infx∈Rn f
λ(x).

2. For all λ > 0 the function fλ is C1.
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3. As λ→ 0, fλ converges pointwise to cl(f).

4. supλ>0 f
λ = cl f

Proof. Items 1-3 can be found in [48], page 52, Proposition 3.39 and Proposition 3.41,
respectively. To prove item 4 we use the previous item. For all λ > 0, the function fλ is lsc,
so supλ>0 f

λ is lsc too. Moreover, for all x ∈ Rn

fλ(x) ≤ f(x)⇒ sup
λ>0

fλ(x) ≤ cl f(x) ≤ f(x)

and together with item 2, we obtain the desired conclusion.

Lemma 2.23 Let {Aε, ε > 0} be a family of nonempty closed convex sets in X.

1. σ∪ε>0Aε = supε>0 σAε,

2. σ∩ε>0Aε = co (infε>0 σAε), provided that ∩ε>0Aε 6= ∅.

In particular, if the family of functions {σAε , ε > 0} is non-increasing, then the last
equality above becomes

σ∩ε>0Aε = cl(infε>0 σAε).

Proof. 1. This easily follows from the definition of the support function.

2. Fix x∗ ∈ X∗. We have

σ∩ε>0Aε(x
∗) = (I∩ε>0Aε)

∗(x∗) = (supε>0 IAε)
∗(x∗) = co(infε>0(IAε)

∗)(x∗),

where the last equality comes from Proposition 2.21(11.). Finally, we are done because
the infimum of a non-increasing family of convex functions is convex.

Below, we present the classical Minimax Theorem (see, for instance, [60, Theorem 2.10.2]).

Theorem 2.24 (Minimax Theorem) Let X be an lcs, Y be a linear space, A ⊂ X be a
nonempty convex compact set and B ⊂ Y be a nonempty convex set. Let also F : A×B → R
be a function with the property that F (·, y) is concave and usc, for every y ∈ B, and F (x, ·)
is convex for every x ∈ A. Then

max
x∈A

inf
y∈B

F (x, y) = inf
y∈B

max
x∈A

F (x, y).

If moreover Y is an lcs, B is compact and F (x, ·) is lsc for every x ∈ A, then

max
x∈A

min
y∈B

F (x, y) = min
y∈B

max
x∈A

F (x, y);

in particular F has saddle points.
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The following result is a consequence of the previous theorem.

Proposition 2.25 Given convex functions f1, · · · , fm : Rn → R∞, m, n ≥ 1, we have that

inf
Rn

max{f1, · · · , fm} = max
α∈∆m

inf
Rn

{∑
1≤i≤mαifi

}
.

Proof. We start by checking the following equality,

inf
Rn
f = inf

Rn
max
α∈∆m

{∑
1≤i≤mαifi

}
,

where f := max{f1, · · · , fm}. Since f ≥ fi, for all i = 1, · · · ,m, we obtain the inequality
infRn f ≥ infRn maxα∈∆m{

∑
1≤i≤m αifi}. Conversely, we take λ ∈ R such that

inf
Rn

max
α∈∆m

{ ∑
1≤i≤m

αifi

}
< λ.

Then there exists xλ ∈ Rn that satisfies the following inequality∑
1≤i≤m

αifi(xλ) ≤ λ, for all α ∈ ∆m.

In particular, fi(xλ) ≤ λ for all i = 1, · · · ,m. Therefore f(xλ) ≤ λ and consequently,
infx∈Rn f(x) ≤ λ.

Let us also observe that if f takes the value −∞ somewhere, then infRn f = −∞ and, so,
for all α ∈ ∆m,

inf
Rn

{ ∑
1≤i≤m

αifi

}
≤ inf

Rn

{ ∑
1≤i≤m

αif

}
= inf

Rn
f = −∞;

that is, the conclusion holds. The same occurs if infRn f = +∞. Indeed, in such a case we
can find some α ∈ ∆m such that infRn

{∑
1≤i≤mαifi

}
= +∞; otherwise, we would find some

x ∈ Rn such that
∑

1≤i≤m
1
m
fi(x) < +∞, implying the contradiction infRn f ≤ f(x) < +∞.

Next, according to the discussion above, we assume that f is proper and consider the
function F : ∆m × dom f ⊂ Rm × Rn → R, defined as

(α, x) 7−→ F (α, x) :=
∑

1≤i≤m

αifi(x).

Then we see that F (·, x) is concave and usc for every x ∈ dom f , and F (α, ·) is convex for
every α ∈ ∆m. Thus, since ∆m is a compact set in Rm and dom f is nonempty and convex,
the minimax theorem (Theorem 2.24)) ensures the equality, that is,

inf
Rn
f = inf

x∈dom f
max
α∈∆m

F (α, x) = max
α∈∆m

inf
x∈dom f

F (α, x). (2.11)

Moreover, since for all x ∈ dom f and α ∈ ∆m,

F (α, x) ≤ f(x) ≤ max
β∈∆m

F (β, x),

we have that maxα∈∆m F (α, x) = f(x) and, so, (2.11) reads

max
α∈∆m

inf
x∈dom f

F (α, x) = inf
x∈dom f

f(x) = inf
x∈X

f(x).
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2.3 Subdifferential analysis

We introduce here the notions of directional derivatives and subdifferentials for convex func-
tions defined on an lcs X.

Definition 2.26 We give a function f : X → R and x, u ∈ X.

1. The directional derivative of f at x in the direction u is the function f ′(x; ·) : X → R
defined by

f ′(x;u) := lim
t↓0

f(x+ tu)− f(x)

t
.

2. The ε-directional derivative of f at x in the direction u is the function f ′ε(x; ·) : X → R
defined by

f ′ε(x;u) := inf
t>0

f(x+ tu)− f(x) + ε

t
.

We give an example in which we relate the ε-directional derivative of the indicator of a
given set in terms of the gauge function.

Lemma 2.27 Let C ⊂ X be a nonempty convex set. Then, for all x ∈ C, u ∈ X and ε ≥ 0
we have

(IC)′ε(x;u) = εP(C−x)(u)

and, in particular,
(IC)′(x;u) = IR+(C−x)(u).

Proof. Since x ∈ C, we have

(IC)′ε(x;u) = inf
t>0

IC(x+ tu) + ε

t

= inf
{ε
t

: x+ tu ∈ C, t > 0
}

= ε inf{t > 0 : x+
1

t
u ∈ C}

= ε inf{t > 0 : u ∈ t(C − x)}
= εP(C−x)(u).

In particular, when ε = 0, by the definition of the gauge function we obtain

(IC)′(x;u) = 0 · P(C−x)(u) = IR+(C−x)(u).
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Definition 2.28 Let f : X → R be a function, ε ∈ R and x ∈ X.

1. The ε-subdifferential (or the approximate subdifferential) of f at x is

∂εf(x) = {x∗ ∈ X∗ : f(y) ≥ f(x) + 〈x∗, y − x〉 − ε for all y ∈ X}, (2.12)

when x ∈ dom f, and ∂εf(x) := ∅ when f(x) /∈ R or ε < 0.

2. The subdifferential of f at x is ∂f(x) := ∂0f(x). Equivalently, ∂f(x) =
⋂
ε>0 ∂εf(x).

The results below specify the concepts above to convex functions (see, e.g., [13] or [60]).

Theorem 2.29 Let f : X → R∞ be a proper convex function and take x ∈ dom f . Then,
for every u ∈ X, f ′(x;u) exists in R and we have that

f ′(x;u) = inf
t>0

f(x+ tu)− f(x)

t
.

Theorem 2.30 Let f : X → R∞ be a proper convex function, x ∈ dom f and ε ∈ R+. Then
the function f ′ε(x; ·) is sublinear. Moreover, we have that

1. dom f ′ε(x; ·) = cone(dom f − x).

2. f ′ε(x;u) ≤ f(x+ u)− f(x) + ε, for all u ∈ X.

3. f ′(x;u) = limδ↓0 f
′
δ(x;u) = infδ>0 f

′
δ(x;u), for all u ∈ X.

4. If f is continuous at x, then f ′ε(x;u) ∈ R, for every u ∈ X.

Proof. See Theorems 2.1.14 and 2.4.9 in [60].

Lemma 2.31 Let f : X → R be a convex function which is not proper. Then, for all
x ∈ dom f, u ∈ X and ε ≥ 0 we have

(cl(f+))′ε(x;u) = εP(dom(cl f)−x)(u).

In particular, we have
(cl(f+))′(x;u) = IR+(dom(cl f)−x)(u).

Proof. Since f is convex and not proper, from Lemma 2.20(3.) we have for all z ∈ X

cl(f+)(z) = Idom(cl f)(z).

Then, for all x ∈ dom f and ε ≥ 0,

((cl f)+)′ε(x;u) = inf
t>0

(cl f)+(x+ tu)− (cl f)+(x) + ε

t

= inf
t>0

Idom(cl f)(x+ tu)− Idom(cl f)(x) + ε

t
,

and so we are done thanks to Lemma 2.27.
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Some properties of the subdifferential and ε-subdifferential come next.

Theorem 2.32 The following statements hold for every function f : X → R and every
x̄ ∈ X such that f(x̄) ∈ R.

1. ∂f(x̄) ⊂ X∗ is a convex and w∗-closed (possibly empty) set.

2. If ∂f(x̄) 6= ∅, then

(cof)(x̄) = f(x̄) = f(x̄) and ∂(cof)(x̄) = ∂f(x̄) = ∂f(x̄);

in particular, f is proper and f ∗∗(x̄) = cof(x̄); hence, f is lsc at x̄.

3. ∂f(x̄) 6= ∅ ⇔ f(x̄) = maxx∗∈X∗(〈x̄, x∗〉 − f ∗(x∗)).

4. We have, for every ε ≥ 0,

∂εf(x̄) = {x∗ ∈ X∗ : f(x̄) + f ∗(x∗) ≤ 〈x∗, x̄〉+ ε}. (2.13)

5. For λ > 0 ∂ε(λf)(x̄) = λ∂ε/λf(x̄).

6. Given ε1, ε2 ≥ 0 and g : X → R such that g(x̄) ∈ R, then

∂ε1f(x̄) + ∂ε2g(x̄) ⊂ ∂ε1+ε2(f + g)(x̄).

7. If X is a normed space and ε, δ ≥ 0, then ∂ε

(
δ

2
‖ · ‖2

)
(0) =

√
2εδBX∗, where BX∗ the

closed unit ball in X∗.

8. Given C be any subset of X, ε ≥ 0 and x ∈ C, then

∂εIC(x) = Nε
C(x).

Proof. For items 1− 3 see [60, Theorem 2.4.1], and [60, Theorem 2.4.2] for item 4− 5. while
the inclusion of item 6 is direct from the definition of ε-subdifferential. Moreover, for item 8
see [13], page 98. To prove item 7 we use the definition of the ε-subdifferential:

∂ε

(
δ

2
‖ · ‖2

)
(0) =

{
x∗ ∈ X∗ :

(
δ

2
‖ · ‖2

)∗
(x∗) +

(
δ

2
‖ · ‖2

)
(0) ≤ 〈x∗, 0〉+ ε

}
=

{
x∗ ∈ X∗ : δ

(
1

2
‖ · ‖2

)∗(
1

δ
x∗
)
≤ ε

}
(by Proposition 2.21(4.))

=

{
x∗ ∈ X∗ :

1

2δ
‖x∗‖2 ≤ ε

}
(by Proposition 2.21(6.))

=
{
x∗ ∈ X∗ : ‖x∗‖ ≤

√
2δε
}

=
√

2εδBX∗ .
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The following two results give the Moreau-Rockafellar and the Hiriart-Urruty & Phelps
theorems, respectively. See, for example, [13, Proposition 4.1.16] and [60, Corollary 2.6.7],
respectively.

Theorem 2.33 (Moreau-Rockafellar Theorem) Let f, g : X → R∞ be two functions in
Γ0(X) such that f is finite and continuous at some point in dom g. Then, for every x ∈ X,
we have

∂f(x) + ∂g(x) = ∂(f + g)(x).

Proposition 2.34 Let f, g ∈ Γ0(X). If x ∈ dom f ∩ dom g and ε ≥ 0, then we have the
following rules.

1. If ε > 0, then ∂ε(f + g)(x) = cl

 ⋃
ε1,ε2≥0
ε1+ε2=ε

(∂ε1f(x) + ∂ε2g(x))

.

2. ∂(f + g)(x) =
⋂
ε>0 cl (∂εf(x) + ∂εg(x)).

Lemma 2.35 Assume that {ft, t ∈ T} ⊂ Γ0(X). Given two families of parameters
(εt)t∈T , (αt)t∈T ⊂ ]0, 1], we have[

co

( ⋃
t∈T

0≤αt≤2εt

∂ε (αtft) (x)

)]
∞
⊂
[
co

(⋃
t∈T
∂ε (εtft) (x)

)]
∞
.

Proof. We have that[
co

( ⋃
t∈T

0≤αt≤2εt

∂ε (αtft) (x)

)]
∞

=

[
co

( ⋃
t∈T

0≤αt≤2εt

∂ε

(
αt
2εt

2εtft

)
(x)

)]
∞

⊂
[
co

( ⋃
t∈T

0≤αt≤2εt

(
∂ε

(
αt
2εt

2εtft

)
(x)
⋃
∂ε

(
(1− αt

2εt
)2εtft

)
(x)

))]
∞

=

[
co

( ⋃
t∈T

0≤αt≤2εt

(
∂ε

(
αt
2εt

2εtft

)
(x) + ∂ε

(
(1− αt

2εt
)2εtft

)
(x)

))]
∞

(2.14)

⊂
[
co

( ⋃
t∈T

0≤αt≤2εt

∂2ε

(
αt
2εt

2εtft + (1− αt
2εt

)2εtft

)
(x)

)]
∞

(2.15)

⊂
[
co

( ⋃
t∈T

0≤αt≤2εt

∂2ε

(
2εtft

)
(x)

)]
∞

=

[
co

(⋃
t∈T

2∂ε (εtft) (x)

)]
∞

=

[
co

(⋃
t∈T
∂ε (εtft) (x)

)]
∞
.

The equality in (2.14) above comes from Lemma 2.6, while the inclusion in (2.15) is a simple
version of Proposition 2.34.

25



2.4 Quadratic forms

Definition 2.36 (Pointed cone) Let P be a convex cone in Rn, n ≥ 1. We say that P is a
pointed cone if P ∩ (−P ) = {0n}, where 0n is the zero vector in Rn.

Definition 2.37 Let A ∈Mn×n(R) , n ≥ 1 be a matrix, and let P ⊆ Rn be a cone.

1. The matrix A is said to be positive semi-definite, written A � 0, if x>Ax ≥ 0 for all
x ∈ Rn.

2. The matrix A is said to be positive definite, written A � 0, if x>Ax > 0 for all
x ∈ Rn\{0}.

3. The matrix A is said to be copositive in P if x>Ax ≥ 0, for all x ∈ P .

4. The matrix A is said to be strictly copositive in P if x>Ax > 0, for all x ∈ P\{0}.

Let f : Rn → R and g : Rn → Rm, n,m > 1 be two functions. We consider the
minimization problem (called primal problem)

µ
.
= inf f(x)

s.t g(x) ∈ −P
x ∈ C,

(2.16)

where P is a convex cone in Rm and C is a convex subset of Rn. This problem (2.16) is
known as the standard quadratic problem when f(x) = 1

2
x>Ax is a homogeneous quadratic

function with A ∈ Sn(R), g(x) = 1>x − 1, 1> = (1, · · · , 1) ∈ Rn, P = {0m} and C = Rn+.
Then the associated feasible set becomes K := {x ∈ C : g(x) = 0} = ∆n, the canonical
simplex in the Euclidean n-dimensional space, and our problem is written

µ
.
= min

x∈4n
f(x). (2.17)

As observed in [2, Chapter 1], the minimizers of problem (2.17) remain the same if we replace
A by the new matrix Ã = A + γ1 · 1>, where γ is an arbitrary constant. Indeed, if x̄ is a
minimizer of (2.17), then for every feasible point x of (2.17) we have

x̄>Ãx̄ = x̄>Ax̄+ γx̄>
(
1 · 1>

)
x̄ = x̄>Ax̄+ γ (x̄>1)︸ ︷︷ ︸

=1

(1>x̄)︸ ︷︷ ︸
=1

= x̄>Ax̄+ γ ≤ x>Ax+ γ = x>Ax+ γ (x>1)︸ ︷︷ ︸
=1

(1>x)︸ ︷︷ ︸
=1

= x>Ax+ γx>
(
1 · 1>

)
x = x>

(
A+ γ1 · 1>

)
x

= x>Ãx.

The main advantage of this change is that the new matrix Ã has non-negative entries. Also,
according to the same author ([2, Chapter 1]), if the set K of constraints of (2.17) is main-
tained but the objective function is modified to a non-necessarily homogeneous quadratic
form, say f(x) = x>Ax + 2r>x, r ∈ Rn then one can “homogenize” by considering the ma-
trix Â = A+1 · r>+ r ·1>. Then we verify that the (non-homogeneous) problem (2.17) and
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its homogenized version have the same optimal value. In fact, for any element x ∈ 4n, we
would have that

x>Âx = x>A x+ x>(1 · r>)x+ x>(r · 1>)x

= x>A x+ x>1︸︷︷︸
=1

·r>x+ x>r · 1>x︸︷︷︸
=1

= x>A x+ 2 · r>x.
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Chapter 3

Discretization and reduction of Infsup
and SIP optimization problems

3.1 Introduction

In this chapter we work with extended real-valued convex functions defined on Rn, f0, ft :
Rn → R, t ∈ T , where the index set T is arbitrary (possibly infinite). To the space Rn we
associate the Euclidean norm, ‖ ·‖, unless another option is explicitly indicated. We consider
the semi-infinite programming problem (SIP, in brief)

inf
ft(x)≤0, t∈T

f0(x), (3.1)

and the associated ordinary (finite) programming subproblems

inf
ft(x)≤0, t∈S

f0(x), (3.2)

given for finite subsets S ⊂ T . We will answer the following questions: Can we reduce the
number of constraints involved within problem (3.1)?; that is, do problems (3.1) and (3.2)
have the same optimal value for some appropriately chosen sets S?

Some advantages of this type of results come from a numerical point of view, as we trans-
form an infinite problem into a finite one. This could reduce the computational implemen-
tation time, which is an important issue in every optimization problem. More precisely, the
reductions analysis would allow, for example, for a considerable simplification of the study
of duality theory for problem (3.1). Moreover, constraints qualification conditions would be
required to hold only for finite blocks of constraints.

Now, we consider Infsup optimization problems given in the following form

inf
x∈Rn

sup{ft(x), t ∈ T} (3.3)

and
inf
x∈Rn

max{ft(x), t ∈ S}, (3.4)
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where S ⊂ T and |S| < +∞. We wonder if it is possible to reduce the number of functions
involved in the objective function given as a supremum in (3.3). We will also show that there
is a relationship between SIP and Infsup problems.

In 1969, Levin presented a reduction result in SIP problems as (3.1) [42, Theorem 1],
under the hypotheses that T compact and the mappings t 7→ ft(x), x ∈ X are upper semi-
continuous, together with some convexity and continuity assumptions on the functions f0

and ft, t ∈ T and a Slater-type condition. The reduction in [42, Proposition 1] is done
for semi-infinite optimization problems allowing the use of Helly’s Theorem. For the Infsup
problem as (3.3), where all the involved functions are convex and the index set T is finite,
Drezner [24, Theorem 1] gives a short and direct proof using Helly’s Theorem to reduce the
problem (3.3) into a problem of type (3.4), providing an alternative proof to the one given
for ordinary semi-infinite optimization in [42]. In the same direction, Shapiro [55, Section 3]
proves a reduction for SIP problems but under the Slater condition.

It is also worth recalling that Rockafellar [53] and Borwein [6] also established a reduction
processes for Infsup convex problems with constraints given as

inf
fj(x)≤0, j∈J

f0(x), (3.5)

and where f0 := sup{fi : i ∈ I}, and both I and J are arbitrary index sets. In this case,
additionally, the authors used the so-called asymptotically regular conditions. We observe
that the proofs in [53] are not based on the Helly theorem, which is indeed deduced as a
corollary.

The main contribution of the chapter is to establish a process for reducing the number
of functions involved in Infsup problems like (3.3). To this aim we use a fairly general
condition that is based on the closures of the ft’s. condition cl(supt∈T ft) = supt∈T cl(ft),
and work in a compact-continuous setting. This result is a generalization of [42, Theorem 1].
Additionally, for SIP problems as (3.1) we also apply the mentioned reduction process but
with the additional “blocks” Slater condition. Our result generalizes [24, Theorem 1], and
does not use Helly’s theorem.

Although the analysis for SIP and Infsup problems is done separately, it is important to
notice that we can transform an Infsup problem from Rn into a SIP problem in Rn+1, as

inf
x∈Rn

sup
t∈T

ft(x) = inf
ft(x)−γ≤0, t∈T

γ,

which is an SIP problem whose objective function and constraints are f̃0(x, γ) := γ and
f̃t(x, γ) := ft(x)− γ, t ∈ T , respectively. There are different ways to transform a SIP into a
Infsup problem, for instance, using the Lagrangian reformulation

inf
ft(x)≤0, t∈T

f0(x) = inf
x∈Rn

sup
α∈∆(T )

(f0(x) +
∑
t∈T

αtft(x)).

However, when the optimal value of (3.1), µ, belongs to R we can show that

inf
x∈Rn

sup{f0(x)− µ, ft(x), t ∈ T} = 0,
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which in turn yields a reformulation of (3.1) that explicitly uses the data functions, f0 and
ft, t ∈ T . The results presented here can be applied in minimax theorem, Chebyshev’s norms,
location problems [11] among others.

The structure of the chapter is the following: in section 3.2 we study the reduction process
in Infsup problems (see Theorem 3.1), while in section 3.3 we provide reduction schemes for
SIP problems (Theorem 3.8 and Lemma 3.6). At the same time, the relationship between SIP
and Infsup problems is clarified. In section 3.4 we present some extensions of the previous
results; for example, Theorem 3.10 provides an Alternative-type theorem that allow us to
relate the ε-minima of the original problem with the ε-minima of the reduced problem. It also
gives information about the Lagrange multipliers of the reduced problem and, as consequence,
we obtain zero duality gaps under usual qualification conditions.

3.2 Reduction of Infsup problems

This section is devoted to reduce Infsup problems in Rn, given by

µ := inf
Rn

sup{ft, t ∈ T}, (3.6)

where ft : Rn → R∞, t ∈ T, are given proper convex functions. Throughout the section we
consider the associated supremum function

f := sup
t∈T

ft,

and assume the compact-continuous setting, that is, T is Hausdorff compact and the index
mappings t 7→ ft(x) are usc, for all x in a given convex set D such that

dom f ⊂ D ⊂ Rn. (3.7)

In this compact-continuous setting we know that (see, e.g., [33])

f := sup
t∈T

ft = max
t∈T

ft and dom f =
⋂
t∈T dom ft.

We give the first result of this section allowing for a reduction of problem (3.6) to smaller
Infmax problems. A variant of this result is given in Theorem 3.2 in which we remove the
condition on the lsc hulls of the functions involved.

Theorem 3.1 Consider problem (3.6), where T is Hausdorff compact and the index map-
pings t 7→ ft(x) are usc, for all x in a set D ⊂ X satisfying (3.7). If cl f = supt∈T (cl ft),
then

inf
Rn
f = max

S⊂T, |S|≤n+1
inf
Rn

max{ft + ID, t ∈ S}

and, consequently,

inf
Rn
f = max

α∈∆(T ), |suppα|≤n+1
inf
Rn

{∑
t∈T
αtft + ID

}
.
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Proof. By reasoning as in the beginning of the proof of Proposition 2.25, we may suppose
that f := supt∈T ft (= maxt∈T ft) is proper and infRn f > −∞. We proceed by proving the
first statement step by step.

Step 1. We assume here that f is additionally continuous and attains its infimum at
some point x̄ ∈ X, so that D = dom f = X. Then, according to Charatheodory’s Theorem,
there exists some index set

I ⊂ T (x̄) := {t ∈ T : ft(x̄) = f(x̄)},

such that |I| ≤ n+ 1 and, using [16, Corollary 10],

0n ∈ ∂f(x̄) = co

{⋃
t∈I
∂ft(x̄)

}
.

Moreover, because all the ft’s are also continuous, we have ∂ft(x̄) 6= ∅, for all t ∈ I. So, we
may assume that |I| = n+ 1. Then there are x∗t ∈ ∂ft(x̄) and α ∈ ∆n+1 such that

0n =
∑
t∈I
αtx

∗
t ∈

∑
t∈I
αt∂ft(x̄) ⊂ ∂

(∑
t∈I
αtft

)
(x̄) ⊂ ∂

(
max
t∈I

ft

)
(x̄).

Then the convex functions
∑

t∈Iαtft and maxt∈I ft attain their infimum at the point x̄ and
we verify that

∑
t∈Iαtft(x̄) = (maxt∈I ft) (x̄) = f(x̄). Thus

inf
Rn
f = f(x̄) =

∑
t∈Iαtft(x̄) ≤ max

α∈∆(T ), |suppα|≤n+1
inf
Rn

∑
t∈Iαtft ≤ inf

Rn

(
max
t∈I

ft

)
≤ inf

Rn
f,

and the conclusion follows in the present case.

Step 2. In this step we suppose that f is continuous but, possibly, it does not attain its
infimum. We fix δ, ε > 0 and pick xε ∈ dom f such that 0n ∈ ∂εf(xε) (as infX f > −∞), in
other words, xε is an ε-minimizer of f. Then we introduce the functions

f̃t := ft +
δ

2
‖· − xε‖2 , t ∈ T,

together with the continuous convex function

f̃ := max
t∈T

f̃t = f +
δ

2
‖· − xε‖2 .

Since f is minorized by a continuous affine mapping (as f ∈ Γ0(Rn)), the function f̃ is
coercive. So, because of the finite-dimensional setting, f attains its infimum at some point
x̄δ ∈ Rn. Therefore, based on step 1, we find some Iδ ⊂ T and αδ ∈ ∆(T ) such that
|suppαδ| ≤ n+ 1,

inf
Rn
f̃ = inf

Rn

(
max
t∈Iδ

f̃t

)
= inf

Rn

(
δ

2
‖· − xε‖2 + max

t∈Iδ
ft

)
,

and

ft(x̄δ) +
δ

2
‖x̄δ − xε‖2 = f(x̄δ) +

δ

2
‖x̄δ − xε‖2 ≤ f(xε) ≤ f(x̄δ) + ε, for all t ∈ Iδ,
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that is,
ft(x̄δ) = f(x̄δ) ≥ f(xε)− ε ≥ ft(xε)− ε, for all t ∈ Iδ. (3.8)

At the same time, we have

max
t∈Iδ

ft(x̄δ) ≤
(
δ

2
‖· − xε‖2 + max

t∈Iδ
ft

)
(x̄δ)

≤
(
δ

2
‖· − xε‖2 + f

)
(x̄δ) = inf

Rn
f̃

= inf
Rn

(
δ

2
‖· − xε‖2 + max

t∈Iδ
ft

)
≤ max

t∈Iδ
ft(xε),

and (3.8) yields

−max
t∈Iδ

ft(xε) ≤ −max
t∈Iδ

ft(x̄δ) = −f(x̄δ) ≤ −f(xε) + ε. (3.9)

Moreover, we get(
δ

2
‖· − xε‖2 + max

t∈Iδ
ft

)
(xε) = max

t∈Iδ
ft(xε) ≤ f(xε) ≤ inf

Rn
f + ε

≤ inf
Rn
f̃ + ε = inf

Rn

(
δ

2
‖· − xε‖2 + max

t∈Iδ
ft

)
+ ε,

and by using [60, Theorem 2.8.3] we obtain

0n ∈ ∂ε
(
δ

2
‖· − xε‖2 + max

t∈Iδ
ft

)
(xε)

⊂ ∂ε

(
δ

2
‖· − xε‖2

)
(xε) + ∂ε

(
max
t∈Iδ

ft

)
(xε).

Next, by Theorem 2.32, there exists x∗δ,ε ∈
√

2εδBX∗ such that

x∗δ,ε ∈ ∂ε
(

max
t∈Iδ

ft

)
(xε),

and so, taking into account (3.9), for all y ∈ D we have〈
x∗δ,ε, y − xε

〉
≤ max

t∈Iδ
ft(y)−max

t∈Iδ
ft(xε) + ε

≤ max
t∈Iδ

ft(y)− f(xε) + 2ε.

We may suppose, by taking the limit as δ ↓ 0, that Iδ → Iε and αδ → αε ∈ ∆(T ) such that
| suppαε| ≤ n+ 1. So, as δ ↓ 0, x∗δ,ε → 0n and for all y ∈ D

0 ≤ max
t∈Iε

ft(y)− f(xε) + 2ε,

showing that
inf
Rn
f ≤ max

t∈Iε
ft(y) + 2ε.
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We also show that Iε → I and αε → α ∈ ∆(T ) such that | suppα| ≤ n+ 1. So, by taking the
limit as ε ↓ 0 in the last inequality, we obtain

inf
Rn
f ≤ max

t∈I
ft(y), for all y ∈ D,

that is, infRn f = infRn (maxt∈I ft + ID).

Step 3. In this last step, we extend the analysis of step 2 to non-continuous functions.
Given λ, δ > 0, we consider the Moreau-Yosida regularizations of the functions ft, δ :=
ft + ID + δ

2
‖·‖2

fλt,δ := ft,δ �
‖·‖2

4λ
.

Hence, fλt,δ is convex and continuous (even C1). Moreover, the mappings t 7→ fλt,δ(x) are usc
for all x ∈ X. Indeed, given x ∈ X, we have that

lim sup
s→t

fλs,δ(x) = lim sup
s→t

inf
y∈D

(
fs(y) +

δ

2
‖y‖2 +

‖x− y‖2

4λ

)

≤ inf
y∈D

(
lim sup
s→t

fs(y) +
δ

2
‖y‖2 +

‖x− y‖2

4λ

)

≤ inf
y∈D

(
ft(y) +

δ

2
‖y‖2 +

‖x− y‖2

4λ

)
= fλt,δ(x),

where the last inequality uses the current upper semi-continuity of the mappings t 7→ ft(x),
x ∈ D. Consequently, supt∈T f

λ
t,δ = maxt∈T f

λ
t,δ and this function is continuous. Thus, step 2

(with D = X) yields some Iλ ⊂ T such that |Iλ| ≤ n+ 1 and

inf
Rn

max
t∈T

fλt,δ = inf
Rn

{
max
t∈Iλ

fλt,δ

}
= max

I⊂T, |I|≤n+1
inf
Rn

{
max
t∈I

fλt,δ

}
≤ max

I⊂T, |I|≤n+1
inf
Rn

{
max
t∈I

ft,δ + ID

}
.

So, taking the supremum over λ > 0 (equivalently, the limit as λ ↓ 0), we find some I ⊂ T
such that |I| ≤ n+ 1 and

sup
λ>0

inf
Rn

max
t∈T

fλt,δ ≤ inf
Rn

max
t∈I

(ft,δ + ID) . (3.10)

At the same time, on the one hand, by (2.7) and (2.9) we have that

sup
λ>0

inf
Rn

max
t∈T

fλt,δ = − inf
λ>0

(
max
t∈T

fλt,δ

)∗
(0n)

= − inf
λ>0

co

(
inf
t∈T

(fλt,δ)
∗
)

(0n)

= − inf
λ>0

co

(
inf
t∈T

(ft,δ)
∗ + λ ‖·‖2

)
(0n),
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where the last equality comes from (2.8). More specifically, since the mappings t 7→ (ft,δ)
∗(x∗),

x∗ ∈ Rn, are lsc, we also have that

sup
λ>0

inf
Rn

max
t∈T

fλt,δ = − inf
λ>0

co

(
min
t∈T

(ft,δ)
∗ + λ ‖·‖2

)
(0n).

On the other hand, we have(
inf
λ>0

(
max
t∈T

fλt,δ

)∗)∗
(x) = sup

x∗∈Rn
sup
λ>0

{
〈x∗, x〉 −

(
max
t∈T

fλt,δ

)∗
(x∗)

}
= sup

λ>0
sup
x∗∈Rn

{
〈x∗, x〉 −

(
max
t∈T

fλt,δ

)∗
(x∗)

}
= sup

λ>0

(
max
t∈T

fλt,δ

)∗∗
(x),

and, since the function x 7→
(
maxt∈T f

λ
t,δ

)
(x) is proper lsc and convex, the biconjugate

theorem (Theorem 2.19) entails(
inf
λ>0

(
max
t∈T

fλt,δ

)∗)∗
= sup

λ>0
max
t∈T

fλt,δ = sup
t∈T

sup
λ>0

fλt,δ = sup
t∈T

(cl ft,δ), (3.11)

where cl ft,δ is the closed hull of ft,δ with respect to the x-variable. Moreover, the function
infλ>0 co

(
mint∈T f

∗
t,δ + λ ‖·‖2) is proper convex and satisfies, for all t ∈ T ,

inf
λ>0

co

(
min
t∈T

f ∗t,δ + λ ‖·‖2

)
≤ inf

λ>0
co
(
f ∗t,δ + λ ‖·‖2) = inf

λ>0
(f ∗t,δ + λ ‖·‖2) = f ∗t,δ.

Thus, since each f ∗t,δ = cl
(
f ∗t �

‖·‖2
2δ

)
= f ∗t �

‖·‖2
2δ

is continuous, the function

inf
λ>0

co

(
min
t∈T

f ∗t,δ + λ ‖·‖2

)
is also continuous, by [60, Theorem 2.2.9]. Therefore, taking the conjugates in (3.11) we
deduce

inf
λ>0

co

(
min
t∈T

f ∗t,δ + λ ‖·‖2

)
(0n) = co

(
min
t∈T

f ∗t,δ

)
(0n),

and we derive that

sup
λ>0

inf
Rn

max
t∈T

fλt,δ = −co(min
t∈T

f ∗t,δ)(0n) = −(sup
t∈T

(cl ft,δ))
∗(0n) = inf

Rn
sup
t∈T

(cl ft,δ).

Hence, (3.10) yields

inf
Rn

sup
t∈T

(cl ft) ≤ inf
Rn

sup
t∈T

(cl ft,δ) ≤ max
I⊂T,|I|≤n+1

inf
Rn

max
t∈I

(ft,δ + ID) ,

and we obtain, as δ ↓ 0,

inf
Rn

sup
t∈T

(cl ft) ≤ max
I⊂T,|I|≤n+1

inf
Rn

max
t∈I

(ft + ID) .
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Finally, by the current assumption we have

inf
Rn
f = inf

Rn
(cl f) = inf

Rn
sup
t∈T

(cl ft) ≤ max
I⊂T,|I|≤n+1

inf
Rn

max
t∈I

(ft + ID)

≤ inf
Rn

max
t∈T

(ft + ID) = inf
D
f = inf

Rn
f,

and we are done with the first conclusion of the theorem. For the last conclusion, we apply
Proposition 2.25 and get

inf
Rn

max
t∈T

(ft + ID) = max
α∈∆(T ),|suppα|≤n+1

inf
Rn

{ ∑
t∈suppα

αtft + ID

}
.

The condition on the closures in Theorem 3.1, cl f = supt∈T (cl ft), is obviously satisfied
when the ft’s are lsc. This is also the case when the supremum function f is continuous
somewhere or if all of the ft’s have the same effective domain (see [33] and [35]). However,
there are convex proper functions that do not satisfy this closure condition. For instance, if
we consider the functions f, g : R→ R∞ defined by

f(x) =


1

1− x
, for x < 0,

+∞, for x ≥ 0
and g(x) =

+∞, for x ≤ 0,
1

1 + x
, for x > 0.

At the same time, we have that epi f ∩ epi g = ∅ and epi f ∩ epi g = {(0, t) : t ≥ 1}, that is,
cl(max{f, g}) 6= max{cl f, cl g}.

Nevertheless, the following result rewrites Theorem 3.1 by avoiding the condition on the
closures.

Corollary 3.2 Consider problem (3.6), where T is Hausdorff compact and the index map-
pings t 7→ ft(x) are usc, for all x ∈ dom f. Then we have

inf
Rn
f = max

S⊂T, |S|≤n+1
inf

dom f
max{ft, t ∈ S} = max

α∈∆(T ), |suppα|≤n+1
inf

dom f

∑
t∈S
αtft.

Proof. Let us define the convex functions

f̃t := ft + Idom f , t ∈ T, and f̃ := sup
t∈T

f̃t.

Then, by [33] (see the proof of Proposition 6), we have that

cl f̃ = sup
t∈T

(
cl f̃t

)
,

and therefore, by applying Theorem 3.1 with D = dom f, we obtain

inf
Rn
f = inf

Rn
f̃ = max

S⊂T,|S|≤n+1
inf

dom f
max
t∈S

ft = max
α∈∆(T ), |suppα|≤n+1

inf
dom f

∑
t∈T
αtft.
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When T is a finite set, we have the following known result (see [24, Theorem 1]), which
can be deduced from the general case of Corollary 3.2 (or directly from the Helly theorem;
see the paragraph after Proposition 3.5 in the next section).

Corollary 3.3 Consider a finite family of convex functions f1, · · · , fm : Rn → R∞, m >
n− 1, and denote f := max1≤t≤m ft. Then we have

inf
Rn
f = max

S⊂{1,··· ,m}, |S|≤n+1
inf
Rn

max{ft : t ∈ S} = max
α∈∆m, |suppα|≤n+1

inf
Rn

{ ∑
t∈suppα

αtft

}
.

Proof. We are obviously in the compact-continuous setting, and it suffices to apply Theorem
3.1 with D = Rn.

Additionally, for the sake of completeness, we give a direct proof of the last theorem, which
is based on Helly’s theorem (this has also been used in [24]). This approach cannot be directly
extended to infinite families. We give a family of convex functions f1, · · · , fm : Rn → R∞,
m > n − 1, and f := max1≤t≤m ft such that infRn f < +∞. We also may suppose that
infRn f > −∞; for otherwise, we easily conclude the desired relation. Next, we consider the
nonempty convex sets

B :=
{

(x, γ) ∈ Rn+1 : γ < inf
Rn
f
}

and
Ct := epi ft, t ∈ {1, · · · ,m},

so that B∩ (∩1≤t≤mCt) = ∅. Since ∩1≤t≤mCt 6= ∅, as a consequence of the condition infRn f <
+∞, by applying Helly’s theorem in Rn+1 we find t1, · · · , tn+1 ∈ T such that

B ∩
(⋂

1≤i≤n+1Cti
)

= ∅.

Therefore, given any x ∈ X, δ > 0, there exists some j ∈ {1, · · · , n+1} such that (x, infRn f−
δ) /∈ Ctj , that is,

inf
Rn
f − δ < ftj(x) ≤ max

1≤i≤n+1
fti(x).

Thus, we get the desired conclusion when δ ↓ 0

inf
Rn
f ≤ inf

Rn
max

1≤i≤n+1
fti .

The terms ID and Idom f used in the previous results are essential in our analysis, and
could not be removed in general as we show in the following example.

Example 3.4 Consider the family of lsc proper convex functions fm, f∞ : R→ R∞, m ≥ 1,
given by (see Figure 3.1)

fm(x) :=

{
2− 1

m
, if − 1 ≤ mx ≤ 1,

+∞, if not,
and f∞(x) :=


+∞, x < 0,

−2
3
x+ 2, x ∈ [0, 3],

0, x > 3.
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Figure 3.1: Graphs of fm, m ∈ N, f∞

The index set here is the Hausdorff compact set T = N ∪ {+∞}, and we have that

f(x) := sup
t∈T

ft(x) = I{0}(x) + 2,

so that dom f = {0} and
lim sup
m→+∞

fm(0) = f∞(0) = 2,

that is, the conditions of Corollary 3.2 hold. Then we verify that infR f = 2 and we would
like to know whether there would exist t1, t2 ∈ T such that inf

R
f = inf

R
max{ft1 , ft2}. Observe

that

inf
R
fm = 2− 1

m
< 2, for all m ≥ 1, inf

R
f∞ = 0,

inf
R

max{fm1 , fm2} = 2− 1

max{m1,m2}
< 2, for all m1,m2 ≥ 1.

Also, since max{fm(x), f∞(x)} = −2

3
x+ 2 + I[0, 1

m ](x), we get

inf
R

max{fm, f∞} = 2− 2

3m
< 2.

However, we have that

inf
R

max{f∞ + Idom f} = f∞(0) = 2 = inf
R
f,

and Corollary 3.2 is not true if we remove the term Idom f from the reduction statement.

3.3 Reduction of SIP problems

We provide in this section a reduction approach to SIP programming problems. We start by
the case of ordinary convex optimization problems. The following result, already classical
([42, Proposition 1]), follows from Helly’s Theorem (Theorem 2.3). We include the proof for
completeness.
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Proposition 3.5 Given convex functions f0, f1, · · · , fm : Rn → R∞, m ≥ 1, we have

inf
fi≤0, 1≤i≤m

f0 = inf
fi≤0, 1≤i≤min{m,n}

f0,

provided the problem inffi≤0, 1≤i≤m f0 is feasible.

Proof. Because only the inequality “≤” needs to be proved, we suppose that

α := inf
fi≤0, 1≤i≤m

f0 > −∞.

Thus, since
[f0 < α]

⋂(⋂
1≤i≤m [fi ≤ 0]

)
= ∅ and

⋂
1≤i≤m [fi ≤ 0] 6= ∅,

Helly’s Theorem yields some S ⊂ T , |S| ≤ n (and not n+ 1 as in Helly’s theorem statement
because of the feasibility assumption), such that

[f0 < α]
⋂(⋂

i∈S [fi ≤ 0]
)

= ∅.

Hence, inffi≤0, i∈S f0 ≥ α, and the desired inequality follows by the arbitrariness of α.

It is worth observing that Proposition 3.5 also allows for a direct proof of Corollary 3.3.
In fact, as in [42], it suffices to write

inf
Rn

max{f1, · · · , fm} = inf
fi(x)≤γ, i∈{1,··· ,m}

γ,

and, then, use the reduction approach in Proposition 3.5.

The following key lemma transforms semi-infinite optimization problems into different
minimax problems.

Lemma 3.6 The following statements hold true for every arbitrary family of convex functions
f0, ft : Rn → R∞, t ∈ T (0 /∈ T ).

1. infft≤0, t∈T f0 = infRn sup
α∈R(T )

+
(f0 +

∑
t∈T αtft).

2. infft≤0, t∈T f0 = infRn sup{f0; I[ft≤0], t ∈ T}.

3. If µ := infft≤0, t∈T f0 ∈ R, then

inf
Rn

sup{f0 − µ; ft, t ∈ T} = 0. (3.12)

Proof. Assertions 1. and 2. are easily checked. To prove assertion 3., we assume that µ ∈ R.
Then

inf
x∈C

sup{f0(x)− µ; ft(x), t ∈ T} = inf
x∈C

(f0(x)− µ) = 0, (3.13)

where C := [supt∈T ft ≤ 0]. Now observe that

inf
Rn

sup{f0(x)− µ; ft(x), t ∈ T} ≤ inf
x∈C

sup{f0(x)− µ; ft(x), t ∈ T} = 0.
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Then, since
inf

x∈Rn\C
sup{f0(x)− µ, ft(x); t ∈ T} > 0,

relation (3.13) yields

inf
Rn

sup{f0 − µ, ft; t ∈ T} = inf
x∈C

sup{f0(x)− µ, ft(x); t ∈ T} = 0,

that is, infRn sup{f0 − µ, ft; t ∈ T} = 0.

The following lemma gives the opposite statement in Lemma 3.6(3).

Lemma 3.7 Given an arbitrary family of convex functions f0, ft : Rn → R∞, t ∈ T (0 /∈ T ),
such that infft≤0, t∈T f0 ∈ R, we suppose that Slater condition holds; that is, supt∈T ft(x0) < 0
for some x0 ∈ dom f0. Then we have that

inf
Rn

sup{f0 − µ; ft, t ∈ T} = 0 (3.14)

for some µ ∈ R if and only if
µ = inf

ft≤0, t∈T
f0.

Consequently, both problems

inf
ft≤0, t∈T

f0, and inf
Rn

sup{f0 − µ, ft, t ∈ T}

have the same set of ε-solutions.

Proof. According to Lemma 3.6(3), it suffices to prove the ”only if” part. Let µ ∈ R such
that (3.14) holds. Then, if C is defined as in the proof of Lemma 3.6(3), we obtain

inf
Rn

sup{f0 − µ, ft, t ∈ T} = inf
C

sup{f0 − µ, ft, t ∈ T} = 0. (3.15)

Next, take x ∈ C and denote xλ := λx0 +(1−λ)x ∈ C, λ ∈ [0, 1], where x0 is the given Slater
point; hence, xλ ∈ C and supt∈T ft(xλ) < 0. Consequently, (3.15) ensures that f0(xλ)−µ ≥ 0
and by the convexity assumption we deduce that

µ ≤ f0(xλ) ≤ λf0(x0) + (1− λ)f0(x).

Thus, as λ ↓ 0, we infer that f0(x) ≥ µ and the arbitrariness of x ∈ C implies that
infft≤0, t∈T f0 ≥ µ. Conversely, taking into account (3.15), we choose a sequence (xk) ⊂ C
such that

sup{f0(xk)− µ; ft(xk), t ∈ T} → 0.

Then

inf
ft≤0, t∈T

(f0 − µ) ≤ lim sup
k→+∞

(f0(xk)− µ) ≤ lim sup
k→+∞

sup{f0(xk)− µ; ft(xk), t ∈ T} = 0,

and we get the remaining inequality, µ ≥ infft≤0, t∈T f0.

39



In the next result we reduce the number of constraints involved in the SIP problem intro-
duced in (3.1), giving rise to a generalization of [42, Theorem 1]. We consider the reduced
problems (PS), S ⊂ T finite, given as

inf
ft(x)≤0, t∈S
x∈dom f

f0(x), (PS)

where f := supt∈T ft. We say that the subproblem (PS), S ⊂ T , satisfies the Slater condition
if there exists x0 ∈ dom f0 ∩ dom f such that

max
t∈S

ft(x0) < 0. (3.16)

Theorem 3.8 Consider an arbitrary family of convex functions f0, ft : Rn → R∞, t ∈ T ,
and denote f := supt∈T ft. Assume that T is Hausdorff compact and the mappings t 7→
ft(x), x ∈ dom f are usc. If infft(x)≤0, t∈T f0(x) < +∞ and, for all set S ⊂ T with |S| ≤ n,
the associated problem (PS) has a Slater Point. Then

inf
ft(x)≤0, t∈T

f0(x) = max
S⊂T, |S|≤n

inf
ft(x)≤0, t∈S
x∈dom f

f0(x).

Proof. We consider the SIP problem given in (3.1) and denote by µ its optimal value. We
may assume that infft(x)≤0, t∈T f0(x) ∈ R; otherwise, infft(x)≤0, t∈T f0(x) = −∞ and the
desired property obviously holds. Then, by Lemma 3.6(3), we have

inf
Rn

sup{f0(x)− µ; ft(x), t ∈ T} = 0, (3.17)

and Corollary 3.2 gives rise to some S ⊂ T with |S| ≤ n such that

inf
Rn

sup{f0(x)− µ+ Idom f0∩dom f (x); ft(x) + Idom f0∩dom f (x), t ∈ S} = 0,

that is,
inf
Rn

sup{f0(x)− µ; ft(x) + Idom f (x), t ∈ S} = 0.

Moreover, since (PS) satisfies the Slater condition by the current assumption, Lemma 3.7
entails that the optimal value of (PS) is equal to µ, as we wanted to prove.

The following example shows that Slater’s condition is necessary to have the equivalence
between SIP and Infsup problems. Otherwise, using only the information given in problem
(3.12), one could not specify which function would be the objective function.

Example 3.9 Consider the SIP problem, given in R2,

(P ) inf
−t3x1−tx2+2t2≤0, t∈[0,1]

x2,

having a 0 optimal value. Then, for every t1, · · · , tm ∈ [0, 1] and m ≥ 1, from Figure 3.2 we
can see that

inf
−t3i x1−tix2+2t2i≤0, i=1,··· ,m

x2 = −∞,
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Figure 3.2: Constraint half-spaces for each t ∈ (0, 1].

and (P ) admits no discretization. At the same time, we verify that

inf
Rn

sup{x2; − t3x1 − tx2 + 2t2, t ∈ [0, 1]} = inf
Rn

max{x2, 0, − x1 − x2 + 2} = 0. (3.18)

Here we use the fact that the supremum supt∈[0,1]{−t3x1 − tx2 + 2t2} is attained at t = 0,
t = 1, or at some t0 ∈]0, 1[. In the last case, t0 would satisfy −3t20x1 − x2 + 4t0 = 0, so that
x2 = −3t20x1 + 4t0 and

0 ≤ sup
t∈[0,1]

{−t3x1 − tx2 + 2t2} = −t30x1 − t0(−3t20x1 + 4t0) + 2t20 = 2t20(t0x1 − 1).

Hence, t0x1 ≥ 1, x1 > 0, and t0 cannot be a maximum point (because sufficiently small
perturbations of it would provide larger value of the supremum). In other words, we find
a reduction for this Infsup problem, while the SIP problem admits no discretization. In the
current example, the Slater condition does not hold for subproblems having the the constraints
0 and −x1 − x2 + 2.

Consequently, every ε-solution of (P ) ( ε > 0) is an ε-solution of the problem infR2 max{x2,
0, −x1 − x2 + 2}.

3.4 Consequences

We present here some consequences of Theorem 3.1. We obtain an alternative-type result,
which is a useful tool in optimization theory, namely within the analysis of Lagrangian
duality and scalarization of vector optimization problems, among other applications. In a
second step, we provide some relations between the solutions of a given SIP problem and its
associated finite subproblems.

Here is the first alternative theorem.

Theorem 3.10 Given a family of convex functions ft : Rn → R, t ∈ T , such that cl f =
supt∈T (cl ft), we assume that T is Hausdorff compact and the mappings t 7→ ft(x) are usc,
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for all x in a set D ⊂ X satisfying (3.7). Then only one of the following two alternatives,
(a) and (b), holds.

a) There exists x ∈ Rn such that supt∈T ft(x) < 0.

b) There exists λ ∈ ∆(T ) such that | suppλ| ≤ n+ 1 and∑
t∈T

λtft(x) ≥ 0, for all x ∈ D.

Proof. We have the following equivalences:

Alternative a) is not true ⇐⇒ sup
t∈T

ft(x) ≥ 0, for all x ∈ Rn

⇐⇒ inf
x∈Rn

sup
t∈T

ft(x) ≥ 0

⇐⇒ max
λ∈∆(T ), | suppλ|≤n+1

inf
x∈Rn

{∑
t∈T

λtft(x) + ID(x)

}
≥ 0

(by Theorem 3.1)

⇐⇒ there exists λ ∈ ∆(T ), | suppλ| ≤ n+ 1, such that∑
t∈T

λtft(x) + ID(x) ≥ 0, for all x ∈ Rn.

⇐⇒ Alternative b) is true .

The following Corollary gives another alternative theorem, which has been given in [6,
Theorem 3.1] under an additional condition called asymptotic regularity.

Corollary 3.11 Under the hypothesis of Theorem 3.10, exactly one of the following two
alternatives holds.

a) There is a solution in Rn to the system

ft(x) ≤ 0, for all t ∈ T.

b) There exist ε > 0 and λ ∈ ∆(T ), | suppλ| ≤ n+ 1, such that∑
t∈T

λtft(x) ≥ ε, for all x ∈ D.

Proof. If the first alternative holds, that is, there exists a solution x ∈ Rn to the system
ft(x) ≤ 0, t ∈ T , then for all ε > 0 there exists 0 < ε0 < ε such that ft(x) ≤ 0 < ε0 < ε.
Thus, applying Theorem 3.10 to the functions f̃t(x) := ft(x) − ε, t ∈ T , we conclude that
there is no λε ∈ ∆(T ) such that | suppλε| ≤ n + 1 and

∑
t∈T λε,tf̃t(x) ≥ 0, for all x ∈ D.
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Equivalently, there is no λε ∈ ∆(T ) such that | suppλε| ≤ n + 1 and
∑

t∈T λε,tft(x) ≥ ε, for
all x ∈ D. Hence, the second alternative does not hold.

Conversely, if the second alternative holds, then there exist ε > 0 and λ ∈ ∆(T ),
| suppλ| ≤ n+ 1, such that ∑

t∈suppλ

λt(ft(x)− ε) ≥ 0, ∀x ∈ D.

Next, applying Theorem 3.10, the system supt∈T (ft(x)− ε) < 0 has no solution, and so does
the system ft(x) ≤ 0, t ∈ T .

The next two results propose duals optimization problems to (3.1).

Theorem 3.12 Given a family of convex functions f0, ft : Rn → R, t ∈ T , and f :=
supt∈T ft, we suppose that cl(max{f, f0}) = supt∈T∪{0} cl ft. We also assume that T is Haus-
dorff compact and the mappings t ∈ T 7→ ft(x) are usc, for all x in a set D ⊂ X satis-
fying (3.7). Then, for every ε ≥ 0 and ε-minimum xε of problem (3.1), there exists some
λ ∈ ∆(T ∪ {0}) such that | suppλ| ≤ n+ 1,

−λ0ε ≤
∑

t∈Tλtft(xε) ≤ 0,

and xε is a (λ0ε)- minimum of the problem

inf
x∈D

λ0f0(x) +
∑

t∈Tλtft(x).

Proof. Given ε ≥ 0 and ε-minimum xε of (3.1), we easily verify that

sup{f0(x)− f0(xε) + ε; ft(x), t ∈ T} ≥ 0, for all x ∈ X.

Then, by Theorem 3.10, there exists λ ∈ ∆(T ∪ {0}) such that | suppλ| ≤ n+ 1 and

λ0 (f0(x)− f0(xε) + ε) +
∑

t∈Tλtft(x) ≥ 0, for all x ∈ D ∩ dom f0.

Hence, since xε is feasible, for all x ∈ D ∩ dom f0 we get

λ0f0(x) +
∑

t∈Tλtft(x) ≥ λ0f0(xε)− λ0ε ≥ λ0f0(xε)− λ0ε+
∑

t∈Tλtft(xε),

and xε is a (λ0ε)- minimum of the problem infD λ0f0 +
∑

t∈Tλtft. Moreover, the inequality
in the middle of the relation above yields −λ0ε ≤

∑
t∈Tλtft(xε) ≤ 0.

Corollary 3.13 Under the hypothesis of Theorem 3.12, we suppose that all subproblems
(PS) with |S| ≤ n+ 1 satisfies the Slater condition (see (3.16)). Then we have that

µ := inf
ft≤0, t∈T

f0 = max
S⊂T, |S|≤n

inf
ft≤0, t∈S

x∈D

f0 = max
λ∈R(T )

+ , | suppλ|≤n
inf
x∈D
{f0(x) +

∑
t∈S

λtft(x)},

where D = ∩t∈T dom ft.
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Proof. Lemma 3.6 (3.) implies that sup{f0(x) − µ; ft(x), t ∈ T} = 0. So, using Theorem
3.10, there exists λ ∈ ∆(T ∪ {0}) such that | suppλ| ≤ n+ 1 and

λ0(f0(x)− µ) +
∑
t∈T

λtft(x) ≥ 0, ∀x ∈ D ∩ dom f0.

More precisely, we have λ0 > 0 thanks to the Slater assumption and so, dividing on λ and
taking S := suppλ,

µ ≥ inf
ft≤0, t∈S

x∈D

f0 ≥ inf
x∈D
{f0(x) +

∑
t∈S

λtft(x)} ≥ µ, (3.19)

which yields the desired equalities.
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Chapter 4

Subdifferential calculus:
characterizations of the normal cone
to the domain of the supremum
function

4.1 Introduction

As a first step towards the study of the subdifferential of supremum functions, in this chapter
we begin by characterizing the normal cone to the domain of pointwise suprema of arbitrary
families of convex functions. We then extend the results of [16], given in the continuous-
compact setting, to provide explicit characterizations of such normal cones in terms of the
underlying data without assuming any algebraic or topological conditions on either the index
set or the index mappings.

It is well known that for every function f ∈ Γ0(X) and x ∈ dom f , the normal cone to
dom f is written by means of the ε-subdifferential as (see [60, Exercise 2.23])

Ndom f (x) = [∂εf(x)]∞ , for all ε > 0. (4.1)

Our objective is to extend this last relation to the case where f is the supremum of an
arbitrary family of convex functions, and to provide a similar characterization which uses the
ε-subdifferential of the data functions. First extensions to the continuous-compact setting
have been provided recently in [12] and [34].

We consider a nonempty family of convex functions ft : X → R, t ∈ T, where X is a given
lcs space, and the associated supremum function

f = sup
t∈T

ft.

Instead of the lower semi-continuity, we shall use the following condition

cl f = sup
t∈T

(cl ft), (4.2)

45



which is called closure condition. Additionally, we shall consider parameters (ρt)t∈T ∈ ]0, 1]
that satisfies

inf
t∈T

ρtft(x) > −∞.

Given x ∈ dom f and ε ≥ 0, remember that the ε-active set at x is

Tε(x) := {t ∈ T : ft(x) ≥ f(x)− ε} , with T (x) := T0(x).

So, when ε > 0 the set Tε(x) is always nonempty. However, the set T (x) is not necessarily
nonempty. When

T is a Hausdorff compact and the mappings t 7→ ft(x), x ∈ X, are usc, (4.3)

we say that we have compact-continuous. In such a case, T (x) is a nonempty compact subset
of T .

The chapter is structured as follows: Section 4.2 is dedicated to characterizing the normal
cone to the effective domain, when T is an arbitrary set of indices and the functions ft do
not necessarily belong to the family Γ0(X). Here it is enough to consider that each function
ft is convex and the family {ft, t ∈ T} satisfies the closure condition (4.2). The main result
of this section is Theorem 4.7. In Section 4.3 we provide some simplifications of the results
of [12] and [34] in the compact-continuous setting.

4.2 General characterizations of the normal cone

In this section we characterize the normal cone to the domain of the supremum of an arbitrary
family of proper convex functions ft, t ∈ T . For x ∈ dom f and ε > 0, we denote

ρt,ε :=

{
−ε

2ft(x)−2f(x)+ε
, if t ∈ T \ Tε(x),

1, if t ∈ Tε(x).
(4.4)

Observe that
inf
t∈T

ρt,εft(x) > −∞.

In fact, for all t ∈ Tε(x) we have that ρt,εft(x) = ft(x) ≥ f(x) − ε > −∞, while for all
t ∈ T \ Tε(x) we obtain

ρt,εft(x) =
−εft(x)

2ft(x) + ε
> −ε, (4.5)

provided that f(x) = 0. Also, if f(x) 6= 0, applying the last inequality to the functions
ft − f(x), we have that

ρt,ε(ft − f(x))(x) =
−ε(ft(x)− f(x))

2ft(x)− 2f(x) + ε
> −ε,

and, hence,
ρt,εft(x) > ρt,εf(x)− ε > −∞.

The first lemma of this section allows us to reduce the number of functions involved in
the characterization of the subdifferential of the supremum function f .
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Lemma 4.1 Consider a family of lsc proper convex functions f1, · · · , fm : Rn → R∞, m >
n+ 1, and denote f := max1≤i≤m fi. Then, for every x ∈ dom f and ε > 0, we have

∂εf(x) ⊂
⋃
{∂εfα(x) : fα(x) ≥ f(x)− ε, α ∈ ∆m, | suppα| ≤ n+ 1} ,

where fα :=
∑

i∈suppα αifi.

Proof. We pick x∗ ∈ ∂εf(x). Then

f(x)− 〈x∗, x〉 ≤ inf
Rn

(f − 〈x∗, ·〉) + ε, (4.6)

and applying Corollary 3.3 to the family of proper lsc convex functions {f1−〈x∗, ·〉, · · · , fm−
〈x∗, ·〉} we find α ∈ ∆m such that | suppα| ≤ n+ 1 and

inf
Rn

(f − 〈x∗, ·〉) = inf
Rn

(fα − 〈x∗, ·〉) . (4.7)

Thus,

(fα − 〈x∗, ·〉) (x) ≤ f(x)− 〈x∗, x〉 (4.8)

≤ inf
Rn

(f − 〈x∗, ·〉) + ε

= inf
Rn

(fα − 〈x∗, ·〉) + ε, (4.9)

and we deduce that x∗ ∈ ∂εfα(x). Moreover, from (4.8) and (4.9) we obtain the inequality
fα(x) ≥ f(x)− ε.

Next, we give the characterization of the normal cone when all the convex functions ft,
t ∈ T , are lsc.

Theorem 4.2 Assume that {ft, t ∈ T} ⊂ Γ0(X) and denote f := supt∈T ft. Then, for every
x ∈ dom f,

Ndom f (x) =
[
co
(⋃

t∈T∂ε(ρt,εft)(x)
)]
∞ , for all ε > 0. (4.10)

Proof. Fix x ∈ dom f and ε > 0. Since Tε(x) is always nonempty, we also choose t̄ ∈ Tε(x).
Then, according to [34, Theorem 7] we have that

Ndom f (x) =
[
co
(⋃

J∈T ∂εfJ(x)
)]
∞ , (4.11)

where T := {J ⊂ T : t̄ ∈ J, |J | < +∞} and fJ := maxt∈J ft. We pick J ∈ T , say
J = {t̄, t1, · · · , tm} for some m ≥ 1.

Let us first suppose that X is a finite-dimensional space, say of dimension n so that, by
Lemma 4.1,

∂εfJ(x) ⊂
⋃{

∂εfα(x) : fα(x) ≥ f(x)− ε, α ∈ ∆|J |, | suppα| ≤ n+ 1
}
,

where fα :=
∑

t∈suppα αtft. Observe that relation fα(x) ≥ f(x)− ε is equivalent to∑
t∈ suppα

αt(2ft(x)− 2f(x) + ε) ≥ −ε. (4.12)
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Additionally, on the one hand, for every t ∈ Tε(x) we have that

f(x) ≥ ft(x) ≥ f(x)− ε,

so that
ε = 2f(x)− 2f(x) + ε ≥ 2ft(x)− 2f(x) + ε ≥ −ε.

Hence,

ε
∑

t∈Tε(x)

αt ≥
∑

t∈Tε(x)

αt(2ft(x)− 2f(x) + ε) ≥ −ε
∑

t∈Tε(x)

αt.

On the other hand, for every t ∈ T\Tε(x), we have 2ft(x)− 2f(x) + ε < −ε and, so,

αt(2ft(x)− 2f(x) + ε) ≤ −αtε ≤ 0;

that is, for all s ∈ T\Tε(x), we get

αs(2fs(x)− 2f(x) + ε) ≥
∑

t∈T\Tε(x)

αt(2ft(x)− 2f(x) + ε). (4.13)

Consequently, (4.12) yields∑
t∈T\Tε(x)

αt(2ft(x)− 2f(x) + ε) ≥ −ε−
∑

t∈Tε(x)

αt(2ft(x)− 2f(x) + ε) ≥ −ε− ε
∑

t∈Tε(x)

αt.

Thus, since 0 ≥ −ε
∑

t∈Tε(x) αt ≥ −ε, by (4.13) we deduce that for all t ∈ T\Tε(x)

αt(2ft(x)− 2f(x) + ε) + ε ≥ −ε,

that is,

αt ≤
−2ε

2ft(x)− 2f(x) + ε
= 2ρt,ε.

Therefore, using Proposition 2.34(1), by the definition of ρt,ε we obtain

∂εfJ(x) ⊂
⋃{ ∑

t∈ suppα

∂ε (αtft) (x) : α ∈ ∆|J |, | suppα| ≤ n+ 1, αt ≤ 2ρt,ε

}
+ εBX∗

⊂ (n+ 1) co

{ ⋃
t∈ suppα

{∂ε (αtft) (x) : α ∈ ∆|J |, | suppα| ≤ n+ 1, αt ≤ 2ρt,ε}
}

+ εBX∗ ,

where BX∗ is the unit ball in the dual X∗ of X, which is here supposed to be finite-
dimensional. Then, applying (4.11), we get

Ndom f (x) =
[
co
(⋃

J∈T ∂εfJ(x)
)]
∞ =

[
co

(⋃
J∈T

1

n+ 1
∂εfJ(x)

)]
∞

⊂
[
co
(

co
{⋃

t∈T, 0≤αt≤2ρt,ε
∂ε (αtft) (x)

}
+ εBX∗

)]
∞

=
[
co
(⋃

t∈T, 0≤αt≤2ρt,ε
∂ε (αtft) (x)

)]
∞

(4.14)

⊂
[
co

(⋃
t∈T
∂2ε (2ρt,εft) (x)

)]
∞

(4.15)

=

[
co

(⋃
t∈T
∂ε (ρt,εft) (x)

)]
∞
,
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where the inclusion in (4.15) follows from Lemma 2.35. Then we proved that the inclusion
“⊂” in the statement of the theorem holds.

Now we give the proof in the general case, where X is an lcs. We pick a θ-neighborhood
U and choose L ∈ F(x) such that L⊥ ⊂ U . We also denote f̃t := ft + IL, t ∈ T , so that the
domain of each function ft is included in the finite-dimensional subspace L. Consequently,
the domain of the associated supremum function f̃ := supt∈T f̃t = f + IL is also included in
L, and by applying the first part of the proof together with Proposition 2.34(1) we deduce
that

Ndom f (x) ⊂ NL∩dom f (x)

⊂
[
co

(⋃
t∈T
∂ε(ρt,εf̃t)(x)

)]
∞
.

Moreover, by applying Proposition 2.34(1) to the function ρt,εf̃t := ρt,εft + IL we obtain

∂ε(ρt,εf̃t)(x) = cl

 ⋃
ε1,ε2≥0,
ε=ε1+ε2

∂ε1(ρt,εft)(x) + ∂ε2IL(x)


⊂ cl

(
∂ε(ρt,εft)(x) + L⊥

)
,

and, so

Ndom f (x) ⊂
[
co

(⋃
t∈T

cl
(
∂ε(ρt,εft)(x) + L⊥

))]
∞

=

[
co

(⋃
t∈T
∂ε(ρt,εft)(x) + L⊥

)]
∞
.

In this way, we have proved that, for every finite-dimensional subspace L ∈ F(x),

Ndom f (x) ⊂
[
co

(⋃
t∈T
∂ε(ρt,εft)(x) + L⊥

)]
∞
,

and so the desired inclusion comes from Lemma 2.8. Finally, to prove the opposite inclu-
sion we follows the arguments used in the proof of [12, Theorem 5]. We denote Eε :=⋃
t∈T ∂ε(ρt,εft)(x), and fix x∗0 ∈ Eε. Then, given x∗ ∈ [co(Eε)]∞, for all β > 0 we have

x∗0 + βx∗ ∈ co(Eε) and, so, there are nets (λj,1, · · · , λj,kj) ∈ ∆+
kj

(where ∆+
kj

:= {λ ∈ ∆kj :

λt > 0, 1 ≤ t ≤ kj}), elements tj,1, · · · , tj,kj ∈ T and x∗j,1 ∈ ∂ε(ρtj,1,εftj,1)(x), · · · , x∗j,kj ∈
∂ε(ρtj,kj ,εftj,kj )(x) such that

x∗0 + βx∗ = lim
j

(λj,1x
∗
j,1 + · · ·+ λj,kjx

∗
j,kj

).

Hence, for every fixed y ∈ dom f ,

〈x∗0 + βx∗, y − x〉 = lim
j
〈λj,1x∗j,1 + · · ·+ λj,kjx

∗
j,kj
, y − x〉

≤ lim sup
j

∑
i=1,··· ,kj

λj,i
(
ρtj,i,εftj,i(y)− ρtj,i,εftj,i(x) + ε

)
≤ lim sup

j

∑
i=1,··· ,kj

λj,i
(
ρtj,i,εf

+(y)− ρtj,i,εftj,i(x) + ε
)

≤ f+(y)− inf{ρt,εft(x), t ∈ T}+ ε,
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and, dividing by β and taking the limit β → +∞, the hypothesis over the parameter leads
us to

〈x∗, y − x〉 ≤ 0,

for all y ∈ dom f = dom f+, that is, x∗ ∈ Ndom f (x).

Remark 4.3 As we can see in the proof above, the specification of the value of the parameters
ρt,ε is only used to verify the inclusion “ ⊃” in (4.10). For instance, the same proof as above
shows that, for every x ∈ dom f, we have that

Ndom f (x) ⊂
[
co
(⋃

t∈T∂εft(x)
)]
∞ , for all ε > 0. (4.16)

This observations leads to a simple characterization of the normal cone.

Corollary 4.4 Assume that {ft, t ∈ T} ⊂ Γ0(X), f := supt∈T ft and inft∈T ft(x) > −∞.
Then, for every x ∈ dom f ,

Ndom f (x) =
[
co
(⋃

t∈T∂εft(x)
)]
∞ , for all ε > 0. (4.17)

Proof. According to Remark 4.3, we only need to show the inclusion “ ⊃”. This can be done
by following the same arguments as those used at the end of the proof of Theorem 4.2.

The following example shows that the family of parameters ρt,ε cannot be ignored.

Example 4.5 Consider the proper lsc convex functions ft : R → R∞, t ∈ T := R+, defined
as ft(x) := tx− t. Set

f(x) := sup
t∈T

ft(x) =

{
0, if x ≤ 1,

+∞, if x > 1,

so that f(1) = f(0) = 0, dom f = ]−∞, 1] and, for each ε > 0 and x ∈ dom f , ∂εft(x) = {t}.
Then [

co
(⋃

t∈T∂εft(0)
)]
∞ =

[
co
(⋃

t∈T∂εft(1)
)]
∞ = R+.

If x = 1, then Ndom f (1) = R+ and we have the equality[
co
(⋃

t∈T∂εft(1)
)]
∞ = Ndom f (1).

Formula (4.17) can be applied in this case because inft∈T ft(1) = 0 > −∞. On the other
hand, for x = 0, we have that

Ndom f (0) = {0}  
[
co
(⋃

t∈T∂εft(0)
)]
∞ .

Here, formula (4.17) cannot be applied because inft∈T ft(0) = inft≥0(−t) = −∞.
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ε

ε/2

ε

t

∂ε(ρt,εft)(0)

Figure 4.1: ∂ε(ρt,εft)(0) for each t ∈ R+

In any case, using the parameters ρt,ε for every ε > 0 formula (4.10) gives us

Ndom f (0) =
[
co
((⋃

t∈Tε(0)∂εft(0)
)⋃(⋃

t∈T\Tε(0)∂ε(ρt,εft)(0)
))]

∞

=

[
co

((⋃
0≤t≤ε{t}

)⋃(⋃
t>ε

{
εt

2t− ε

}))]
∞

= [co ([0, ε])]∞ = {0} .

To give the main result of this section, we first establish the following technical lemma.

Lemma 4.6 Consider a family of convex functions ft : X → R, t ∈ T and f := supt∈T ft
such that condition (4.2) holds, that is, cl f = supt∈T (cl ft). Given the sets T1 := {t ∈ T :
cl ft is proper } and T2 := T \ T1, we consider the functions

f̃t :=

{
(ft)

+, if t ∈ T2,
ft, if t ∈ T1,

and the associated supremum f̃ := supt∈T f̃t. Then we have

cl f̃ = sup
t∈T

(cl f̃t)

Proof. First, observe that

f̃ := sup
t∈T

f̃t = max{sup
t∈T1

ft, sup
t∈T2

(f+
t )} (4.18)

= max{sup
t∈T1

ft, sup
t∈T2

ft, 0} = max{sup
t∈T

ft, 0} = (f)+. (4.19)

Then, on the other hand, by applying Lemma 2.20(2) twice we obtain that cl(f+
t ) = (cl ft)

+

and
sup
t∈T2

cl(f+
t ) = (sup

t∈T2

cl ft)
+.
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Hence, by the current assumption,

sup
t∈T

cl(f̃t) = max{sup
t∈T1

cl(ft), sup
t∈T2

cl(f̃t)} = max{sup
t∈T1

cl(ft), sup
t∈T2

cl(f+
t )}

= max{sup
t∈T1

cl(ft), (sup
t∈T2

cl ft)
+} = max{sup

t∈T
cl(ft), 0}

= max{cl(sup
t∈T

ft), 0} = (cl f)+ = cl(f+).

Theorem 4.7 Consider a family of convex functions {ft : X → R, t ∈ T} and denote
f := supt∈T ft. We assume that condition (4.2) holds, that is,

cl f = sup
t∈T

(cl ft).

If f is lsc at x ∈ f−1(R), then for all ε > 0 we have

Ndom f (x) =

[
co

(( ⋃
t∈T0

∂ε(ρt,εft)(x)

)⋃( ⋃
t∈T\T0

Nε
dom ft(x)

))]
∞

,

where T0 := {t ∈ T : cl ft is proper}.

Proof. We fix x ∈ dom f and ε > 0. We may assume, without loss of generality, that f(x) = 0
(it suffices to work with the functions ft − f(x)). We start by supposing that

{(cl ft), t ∈ T} ⊂ Γ0(X),

that is, all the functions (cl ft), t ∈ T, are proper so that T = T0. Then, since x ∈ dom f ⊂
dom(cl f), we have that

Ndom f (x) = Ncl(dom f)(x) = Ncl(dom(cl f))(x) = Ndom(cl f)(x),

and Theorem 4.2 applied to the family {(cl ft), t ∈ T} yields

Ndom f (x) = Ndom(cl f)(x) =
[
co
(⋃

t∈T∂ε(ρ̃t,ε(cl ft))(x)
)]
∞ , (4.20)

where (recall that (cl f)(x) = f(x) = 0 by the assumption of the theorem)

ρ̃t,ε :=

{
−ε

2(cl ft)(x)+ε
, if t ∈ T \ T̃ε(x),

1, if t ∈ T̃ε(x),

and T̃ε(x) := {t ∈ T : (cl ft)(x) ≥ −ε}. Observe that

T̃ε(x) ⊂ {t ∈ T : ft(x) ≥ −ε} = Tε(x)

and, for all t ∈ T \ Tε(x) (⊂ T \ T̃ε(x)), we have that

ρ̃t,ε =
ε

−2ft(x)− ε+ 2ft(x)− 2(cl ft)(x)
≤ ε

−2ft(x)− ε
= ρt,ε. (4.21)
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At the same time, for each t ∈ T̃ε(x) we have that (cl ft)(x) ≥ −ε ≥ ft(x)− ε (as f(x) = 0)
and so, on the one hand,

∂ε(ρ̃t,ε(cl ft))(x) = ∂ε(cl ft)(x) ⊂ ∂2εft(x).

On the other hand, using (4.5) and again the fact that f(x) = 0, for each t ∈ T \ T̃ε(x) we
have that ρ̃t,ε(cl ft)(x) > −ε ≥ ρ̃t,εft(x)− ε, and so

∂ε(ρ̃t,ε(cl ft))(x) = ∂ε(cl(ρ̃t,εft))(x) ⊂ ∂2ε(ρ̃t,εft)(x).

Thus, by (4.30),
Ndom f (x) ⊂

[
co
(⋃

t∈T∂2ε(ρ̃t,εft)(x)
)]
∞ .

Moreover, taking into account (4.31) and the fact that ρ̃t,ε ≤ 1, we have that ρ̃t,ε ≤ ρt,ε for
all t ∈ T, and Lemma 2.35 leads us to

Ndom f (x) ⊂
[
co
(⋃

t∈T∂2ε(ρt,εft)(x)
)]
∞ .

More specifically, arguing as in the proof of Theorem 4.2, the last inclusion becomes an
equality.

Now, we deal with the general case when not all the cl ft,’s are necessarily proper. We
consider the new functions

f̃t :=

{
(ft)

+, if t ∈ T \ T0,
ft, if t ∈ T0,

together with the associated supremum function

f̃ := sup
t∈T

f̃t.

Observe that, due to the condition f(x) = (cl f)(x) = supt∈T (cl ft)(x) = 0, we have that
T0 6= ∅. Also, since that (see Lemma 4.6)

cl f̃ = sup
t∈T

(cl f̃t)

and (cl f̃)(x) = f̃(x) = 0, by applying the paragraph above to the new family {f̃t, t ∈ T} ⊂
Γ0(X) we deduce that

Ndom f (x) = Ndom f̃ (x) =
[
co
(⋃

t∈T∂ε(cl(ρt,εf̃t))(x)
)]
∞
.

Since, (cl(ρt,εf̃t))
′
ε(x; ·) = σ∂ε(cl(ρt,εf̃t))(x)(·) by [60, Theorem 2.4.11] for all t ∈ T , by the bipolar

theorem and taking into account Lemma 2.13 the previous inclusion reads

cl

(
dom sup

t∈T
(cl(ρt,εf̃t))

′
ε(x; ·)

)
⊂ cl

(
dom sup

t∈T
σ∂ε(cl(ρt,εf̃t))(x)

)
= cl

(
domσ⋃

t∈T ∂ε(cl(ρt,εf̃t))(x)

)
=
([

co
(⋃

t∈T∂ε(cl(ρt,εf̃t))(x)
)]
∞

)−
= (Ndom f (x))− .
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Now observe that

cl

(
dom sup

t∈T
(cl(ρt,εf̃t))

′
ε(x; ·)

)
= cl

(
cl dom(sup

t∈T0

(cl(ρt,εft))
′
ε(x; ·)) ∩ cl dom( sup

t∈T\T0

(
(cl(ρt,εft)

+)′ε(x; ·)
)
)

)
. (4.22)

If t ∈ T0, then the associated functions cl ft and ρt,ε(cl ft) = (cl ρt,εft) belong to Γ0(X). Then
dom(ρt,ε(cl ft)) = dom(cl ft), and the function (cl(ρt,εft))

′
ε(x; ·) is lsc by [60, Theorem 2.4.11].

So,
sup
t∈T0

(cl(ρt,εft))
′
ε(x; ·) = sup

t∈T0

σ∂ε(cl(ρt,εft)(x) = σ∪t∈T0
∂ε(cl(ρt,εft)(x) = σA,

where
A = ∪t∈T0∂ε(cl(ρt,εft))(x),

that is, using Lemma 2.13,
cl (dom (σA)) = [co(A)]−∞ . (4.23)

Otherwise, if t ∈ T\T0, then by applying Lemma 2.20(3) to the non-proper convex function
cl(ρt,εf̃t) we get

cl(ρt,ε(ft)
+) = Idom(cl ft),

(cl(ρt,ε(ft)
+))′ε(x; ·) = σ∂ε(Idom(cl ft)

)(x) = σNε
dom(cl ft)(x)

= σNεdom ft
(x),

and

sup
t∈T\T0

(
(cl(ρt,εft)

+)′ε(x; ·)
)

= σ∪t∈T\T0
Nεdom ft

(x) = σB,

where
B = ∪t∈T\T0Nε

dom ft(x).

Moreover, again by Lemma 2.13 we have that

cl (dom (σB)) = [co(B)]−∞ . (4.24)

Now, since θ ∈ [co(A)]∞ ∩ [co(B)]∞, Lemma 2.14 leads us to

([co(A ∪B)]∞)− ⊂ [co(A)]−∞ ∩ [co(B)]−∞ . (4.25)

Therefore, combining (4.23), (4.24), and (4.25) in (4.22), we obtain that

([co(A ∪B)]∞)− ⊂ (Ndom f (x))−

and, thus,
Ndom f (x) ⊂ [co(A ∪B)]∞ .

Conversely, by Lemma 2.6 and following the idea in the proof of Theorem 4.2 , we denote

Eε := A+B,
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and fix x∗0 ∈ Eε since this last set is not empty. Then, given x∗ ∈ [co(Eε)]∞, for all β > 0 we
have x∗0 + βx∗ ∈ co(Eε) and, so, there are nets

(λj,1, · · · , λj,kj) ∈ ∆kj and tj,1, · · · , tj,kj ∈ T, kj ≥ 0,

u∗j,i ∈ ∂ε(ρtj,i,εftj,i)(x) and w∗j,i ∈ Nε
dom ftj,i

(x), i = 1, · · · , kj,

such that the elements x∗j,i := u∗j,i + w∗j,i satisfy

x∗0 + βx∗ = lim
j

(λj,1x
∗
j,1 + · · ·+ λj,kjx

∗
j,kj

).

Hence, for every fixed y ∈ dom f (⊂ dom ft, for all t ∈ T ),

〈x∗0 + βx∗, y − x〉 = lim
j
〈λj,1x∗j,1 + · · ·+ λj,kjx

∗
j,kj
, y − x〉

= lim
j

∑
i=1,··· ,kj

λj,i
(
〈u∗j,i, y − x〉+ 〈w∗j,i, y − x〉

)
≤ lim sup

j

∑
i=1,··· ,kj

λj,i
(
ρtj,i,εf

+(y)− ρtj,i,εftj,i(x) + 2ε
)

≤ f+(y)− inf{ρt,εft(x), t ∈ T}+ 2ε,

and, dividing by β and taking the limit when β → +∞, the hypothesis over the parameters
leads us to

〈x∗, y − x〉 ≤ 0, for all y ∈ dom f = dom f+,

that is, x∗ ∈ Ndom f (x).

The following corollary provides a sharper characterization of the normal cone to dom f .

Corollary 4.8 With the assumptions of Theorem 4.7 we have, for all x ∈ f−1(R) such that
f is lsc at x and all ε > 0,

Ndom f (x) =

[
co

((⋃
t∈T̂
∂ε(ρt,εft)(x)

)⋃( ⋃
t∈T\T0

Nε
dom ft(x)

))]
∞

,

where
T̂ := {t ∈ T : ∂ε(ρt,εft)(x) 6= ∅}.

Proof. For all t ∈ T̂ we have that

∂ε(ρt,εft)(x) + Nε
dom ft(x) ⊂ ∂2ε(ρt,εft)(x).

Thus, by Theorem 4.7,

Ndom f (x) ⊂

[
co

((⋃
t∈T̂
∂ε(ρt,εft)(x)

)⋃( ⋃
t∈T\T0

Nε
dom ft(x)

))]
∞

⊂

[
co

(⋃
t∈T̂

(
∂ε(ρt,εft)(x) ∪ Nε

dom ft(x)
)⋃( ⋃

t∈T\T0

Nε
dom ft(x)

))]
∞

.
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Hence, using Lemma 2.6,

Ndom f (x) ⊂

[
co

((⋃
t∈T̂
∂ε(ρt,εft)(x) + Nε

dom ft(x)

)⋃( ⋃
t∈T\T0

Nε
dom ft(x)

))]
∞

⊂

[
co

((⋃
t∈T̂
∂2ε(ρt,εft)(x)

)⋃( ⋃
t∈T\T0

N2ε
dom ft(x)

))]
∞

,

and the fact T̂ ⊂ T0 implies, again by Theorem 4.7,

Ndom f (x) ⊂

[
co

(( ⋃
t∈T0

∂2ε(ρt,εft)(x)

)⋃( ⋃
t∈T\T0

N2ε
dom ft(x)

))]
∞

= Ndom f (x).

It is worth observing that if t ∈ T is such that ft ∈ Γ0(X), then the corresponding term
Nε

dom ft
(x) can be removed form the characterization of the normal cone to dom f . More

precisely, the following corollary comes easily from Theorem 4.7.

Corollary 4.9 Consider a family {ft : X → R∞, t ∈ T} of proper convex lsc functions and
f := supt∈T ft. Then, for every x ∈ dom f , we have

Ndom f (x) =

[
co

(⋃
t∈T
∂ε(ρt,εft)(x)

)]
∞
, for all ε > 0.

Proof. In the current case, we have that T̂ = T0 = T . Thus, it suffices to apply Theorem
4.7.

The characterization in Theorem 4.7 takes a very simple form when the functions ft, t ∈ T
are uniformly bounded below at x, as the following corollary shows.

Corollary 4.10 Assume in Theorem 4.7 that, additionally, the point x satisfies

inf
t∈T

ft(x) > −∞.

Then, for every ε > 0 , we have

Ndom f (x) =
[
co
(⋃

t∈T
(
∂εft(x)

⋃
Nε

dom ft(x)
))]
∞ .

Proof. According to Theorem 4.7, for every ε > 0 we get

Ndom f (x) ⊂
[
co
(⋃

t∈T
(
∂ε(ρt,εft)(x)

⋃
Nε

dom ft(x)
))]
∞ ,

where ρt,ε ≤ 1, t ∈ T, is defined in (4.4). Then, by Lemma 2.35, we have

Ndom f (x) ⊂
[
co
(⋃

t∈T∂ε(ρt,εft)(x)∪Nε
dom ft(x)

)]
∞

⊂
[
co

(⋃
t∈T
∂εft(x)∪Nε

dom ft(x)

)]
∞
,

and we conclude because the converse inclusion is straightforward.
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Theorem 4.7 can be written in a slight general form.

Corollary 4.11 Consider a family {ft : X → R, t ∈ T} of convex functions such that
(4.2) holds, and denote f := supt∈T ft. Given x ∈ f−1(R) such that f is lsc at x, we choose
parameters εt ∈ [ρt,ε, 1], t ∈ T , where ρt,ε are defined in (4.4), such that

inf
t∈T

εtft(x) > −∞.

Then, for every ε > 0, we have that

Ndom f (x) =
[
co
(⋃

t∈T
(
∂ε(εtft)(x)

⋃
Nε

dom ft(x)
))]
∞ .

Proof. According to Theorem 4.7, for every ε > 0 we have that

Ndom f (x) ⊂
[
co
(⋃

t∈T
(
∂ε(ρt,εft)(x)

⋃
Nε

dom ft(x)
))]
∞ .

Then, since ρt,ε ≤ εt, Lemma 2.35 gives

Ndom f (x) ⊂
[
co
(⋃

t∈T
(
∂ε(εtft)(x)

⋃
Nε

dom ft(x)
))]
∞ ,

and the conclusion follows since the opposite inclusion holds straightforwardly.

We illustrate Theorem 4.7 in the linear case.

Example 4.12 (i) Let T be an arbitrary index set and consider the functions

f := sup
t∈T

ft := 〈at, ·〉 − bt, at ∈ X∗, bt ∈ R.

Take x ∈ dom f . Then, since ft ∈ Γ0(X), by Theorem 4.7 we have for every ε > 0

Ndom f (x) = [co (Aε(x) ∪Bε(x))]∞ ,

where

Aε(x) :=
⋃

t∈Tε(x)

∂εft(x) =
⋃

t∈Tε(x)

{at}, Bε(x) :=
⋃

t∈T\Tε(x)

∂ε(ρt,εft)(x) =
⋃

t∈T\Tε(x)

{ρt,εat}.

Hence, for the particular case when x = 0 and f(0) = 0, we get

Aε(0) =
⋃
t∈T

{at : bt ≤ ε} ,

Bε(0) =
⋃
t∈T

{
ε

2bt − ε
· at : bt > ε

}
.

If inft∈T (−bt) > −∞, then

Ndom f (0) = [co (∪t∈T{at})]∞ .
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(ii) Suppose that f := σD := sup{〈d∗, ·〉 : d∗ ∈ D} for some nonempty set D ⊂ X∗. Then
for every x ∈ dom f and for every ε > 0 we have that

Ndom f (x) = [co (Aε(x) ∪Bε(x))]∞ ,

where

Aε(x) = {d∗ ∈ D : 〈d∗, x〉 ≥ σD(x)− ε} ,

Bε(x) =

{
εd∗

2σD(x)− 〈2d∗, x〉+ ε
: 〈d∗, x〉 < σD(x)− ε

}
.

In particular, if σD(−x) < +∞, then

Ndom f (x) = [co (D)]∞ = (domσD)−,

where the last equality comes from Lemma 2.13. In other words, Ndom f (x) is the same
for all x such that σD(−x) < +∞. Indeed, this can also be seen from the fact that for
every such x we have

(Ndom f (x))− = cone (domσD − x) = cone (domσD) .

4.3 Characterization of the normal cone in the compact-

continuous setting

In this section we specify the results of the previous section to the compact-continuous
settings. We give a family of convex function ft, t ∈ T , such that the index set T is compact
and the mappings t 7→ ft(x), t ∈ T , are usc for all x ∈ X.

A consequence of this continuous.-compact setting is that (see [12, Lemma 4])

dom f = ∩t∈T dom ft, (4.26)

and, for every x ∈ dom f,

R+(dom f − x) = ∩t∈TR+(dom ft − x). (4.27)

These equalities do not necessarily hold outside the compact framework.

As before, we need to use an appropriate family of parameters:

ρt,ε :=

{
ε

−2ft(x)+2f(x)+ε
, if t ∈ T \ T (x),

1, if t ∈ T (x).
(4.28)

Let us check that these new parameters also satisfies the condition

inf
t∈T

ρt,εft(x) > −∞. (4.29)

If t ∈ T (x), then ρt,εft(x) = ft(x) = f(x) > −∞. Otherwise, provided that f(x) = 0, for all
t ∈ T \ T (x) we obtain

ρt,εft(x) =
εft(x)

−2ft(x) + ε
> −ε.
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More generally, when f(x) 6= 0, by applying the last inequality to the functions ft− f(x) we
get

ρt,ε(ft − f(x))(x) =
ε(ft(x)− f(x))

−2ft(x) + 2f(x) + ε
> −ε > −∞

and, hence,
ρt,εft(x) > ρt,εf(x)− ε,

showing that (4.29) holds.

In order to characterize the normal cone to the effective domain of function f in the current
compact-continuous setting, we start by considering the case where the convex functions ft’s
are lsc. The first characterization in the result below is given [12, Theorem 5].

Proposition 4.13 Given proper lsc convex functions ft : X → R, t ∈ T , we denote f :=
supt∈T ft. Assume that T Hausdorff compact and the mappings t 7→ ft(x) are usc for each
x ∈ X. Then, for every x ∈ dom f , we have that

Ndom f (x) =
[
co
(⋃

t∈T∂ε(ρt,εft)(x)
)]
∞ , for all ε > 0,

where (ρt,ε)t∈T are defined in (4.28). Moreover, if {(ft)′(x; ·), t ∈ T} ⊂ Γ0(X), then

Ndom f (x) =
[
co
(⋃

t∈T∂(ρtft)(x)
)]
∞ .

Proof. For the first equality we refer to [12, Theorem 5]. To prove the second statement,
we suppose that {(ft)′(x; ·), t ∈ T} ⊂ Γ0(X). Then, by [60, Corollary 2.4.15], we have that
∂(ρt,εft)(x) 6= ∅ and (ρt,εft)

′(x; ·) = σ∂(ρt,εft)(x) for all t ∈ T and, so,

(Ndom f (x))− = cl(R+(dom f − x))

= cl(
⋂
t∈T
R+(dom ft − x))

= cl(
⋂
t∈T
R+(dom(ρt,εft)− x))

= cl(
⋂
t∈T

dom((ρt,εft)
′(x; ·)))

⊃ cl

(
dom(sup

t∈T
(ρt,εft)

′(x; ·))
)

= cl

(
domσ∪t∈T ∂(ρt,εft)(x)(·)

)
=
([

co
(
∪t∈T∂(ρt,εft)(x)

)]
∞

)−
,

that is,
Ndom f (x) ⊂

[
co
(⋃

t∈T∂(ρt,εft)(x)
)]
∞ .

The opposite inclusion is straightforward.

Now, we establish the general characterization of the normal cone to dom f in the current
compact-continuous setting.
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Theorem 4.14 Consider a family of convex functions {ft : X → R, t ∈ T}, and f =
supt∈T ft, where T is a Hausdorff compact and the mappings t 7→ ft(x) are usc for each
x ∈ X. If condition (4.2) holds, that is,

cl f = sup
t∈T

(cl ft),

then, for every x ∈ dom f such that f(x) = (cl f)(x) ∈ R, we have

Ndom f (x) =

[
co

(( ⋃
t∈T0

∂ε(ρt,εft)(x)

)⋃( ⋃
t∈T\T0

Nε
dom ft(x)

))]
∞

, for all ε > 0,

where T0 := {t ∈ T : cl ft is proper}.

Proof. We fix x ∈ dom f and ε > 0. Then the proof is analogous to the one given in Theorem
4.7. In fact, assuming without loss of generality that f(x) = 0, we first suppose that

{(cl ft), t ∈ T} ⊂ Γ0(X).

Then, since x ∈ dom f ⊂ dom(cl f), we have that

Ndom f (x) = Ncl(dom f)(x) = Ncl(dom(cl f))(x) = Ndom(cl f)(x),

and Proposition 4.13 applied to the family {(cl ft), t ∈ T} yields

Ndom f (x) = Ndom(cl f)(x) =
[
co
(⋃

t∈T∂ε(ρ̃t,ε(cl ft))(x)
)]
∞ , (4.30)

where

ρ̃t,ε :=

{
ε

−2(cl ft)(x)+ε
, if t ∈ T \ T̃ (x),

1, if t ∈ T̃ (x),

and T̃ (x) := {t ∈ T : (cl ft)(x) = 0} = T (x) (since f(x) = cl f)(x) = 0). Moreover, for all
t ∈ T \ T (x), we have that

ρ̃t,ε =
ε

−2ft(x) + ε+ 2ft(x)− 2(cl ft)(x)
≤ ε

−2ft(x) + ε
= ρt,ε. (4.31)

Also, for each t ∈ T (x) we have that (cl ft)(x) = 0 = ft(x) and, so,

∂ε(ρ̃t,ε(cl ft))(x) = ∂ε(cl ft)(x) ⊂ ∂εft(x).

At the same time, for each t ∈ T \ T (x) we have that ρ̃t,ε(cl ft)(x) > −ε ≥ ρ̃t,εft(x) − ε

(because ft(x) ≤ 0 and ρ̃t,εft(x) ≤ 0) and, so,

∂ε(ρ̃t,ε(cl ft))(x) = ∂ε(cl(ρ̃t,εft))(x) ⊂ ∂2ε(ρ̃t,εft)(x).

Thus, by (4.30),
Ndom f (x) ⊂

[
co
(⋃

t∈T∂2ε(ρ̃t,εft)(x)
)]
∞ .

Moreover, since that ρ̃t,ε ≤ ρt,ε for all t ∈ T, by Lemma 2.35 we obtain

Ndom f (x) =
[
co
(⋃

t∈T∂2ε(ρt,εft)(x)
)]
∞

(the inclusion “⊃” in the last relation is straightforward; see the proof in Proposition 4.13).
The proof of the general case when not all the cl ft,’s are necessarily proper is done using
similar arguments as those of the second part of the proof of Theorem 4.7.
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More generally, we have the following result which relaxes the compact-continuous setting.

Theorem 4.15 Consider a family {ft : X → R, t ∈ T} ⊂ Γ0(X) and f := supt∈T ft, where
T an arbitrary index set. Assume that, for each sequence (tn)n ⊂ T, there exists some finite
set J ⊂ T such that

lim sup
n

ftn ≤ fJ := max{ft, t ∈ J}.

Then, for every x ∈ dom f,

Ndom f (x) =
[
co
(⋃

t∈T∂ε(ρt,εft)(x)
)]
∞ , for all ε > 0.

Proof. Take u ∈ Ndom f (x). Then, by [34, Proposition 3], for each L ∈ F(x) there exists a
countable set {t1, · · · , tk, · · · } ⊂ T such that

u ∈ NL∩dom(supn ftn )(x).

By the current assumption we choose a finite set J ⊂ T such that lim sup ftn ≤ fJ ; the family
{ftn , n ≥ 1, ft, t ∈ J} satisfies

dom(sup{ρtn,εftn , n ≥ 1, ρt,εft, t ∈ J}) ⊂
( ⋂
n≥1

dom(ρtn,εftn)

)⋂(⋂
t∈J

dom(ρt,εft)

)
=

( ⋂
n≥1

dom(ftn)

)⋂(⋂
t∈J

dom(ft)

)
=

( ⋂
n≥1

dom(ftn)

)⋂
dom(fJ),

where the last equality comes from (4.26). Take z ∈
(⋂

n≥1 dom(ftn)
)
∩dom(fJ). Then, since

lim supn ftn(z) ≤ fJ(z) < +∞, we obtain that z ∈ dom(supn ftn) and this implies( ⋂
n≥1

dom(ftn)

)⋂
dom(fJ) ⊂ dom(sup

n
ftn).

Therefore, applying Proposition 4.13 to the countable family {ρtn,εftn , n ≥ 1, ρt,εft, t ∈ J,
IL}, we have for each ε > 0

u ∈ NL∩dom(supn ftn )(x) ⊂ Ndom(sup{ρtn,εftn , n≥1, ρt,εft, t∈J, IL})(x)

=
[
co
((⋃

n≥1∂ε(ρtn,εftn)(x)
)⋃ (⋃

t∈J∂ε(ρt,εft)(x)
)⋃

L⊥
)]
∞

⊂
[
co
(⋃

t∈T∂ε(ρt,εft)(x) + L⊥
)]
∞ .

Consequently, the desired inclusion follows by intersecting over L ∈ F(x) and applying
Lemmas 2.6 and 2.8.
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Chapter 5

Subdifferential calculus for pointwise
suprema

5.1 Introduction

The supremum function is a standard tool in convex analysis and optimization theory, playing
a fundamental role in establishing KKT and Fritz-John optimality conditions, subdifferen-
tial calculus rules, conjugation analysis and duality theory, minimax problems, and so on.
Our main goal in this chapter is to achieve a characterization for the subdifferential of the
pointwise supremum function, ideally an expression that directly depends exclusively on the
data functions with minimal requirements, avoiding the use of finite-dimensional sections of
the associated effective domain of this supremum function.

Formally, we deal with the pointwise supremum function, f := supt∈T ft, of a family of
extended real-valued convex functions defined on an lcs X, ft : X → R∞, and indexed in
an arbitrary set T . There are many contributions to this topic; we refer, for example, to
Brøndsted & Rockafellar [8], Valadier [57], Brøndsted [7], Volle [58] and Ioffe [37] among
many other contributions. For more recent works, we refer among many others to Hantoute,
López & Zălinescu [35], López & Volle [43], Mordukhovich & Nghia [46], Correa, Hantoute
& López [15] (see, also, [16], [12]) and Hantoute & López [33] (also, [34]).

A general formula of ∂f(x) is given in [35, Theorem 4] under the closure condition, cl f =
supt∈T cl ft, showing that for all x dom f

∂f(x) =
⋂

L∈F(x), ε>0

co

 ⋃
t∈Tε(x)

∂εft(x) + NL∩dom f (x)

 , (5.1)

where F(x) is a set of finite-dimensional linear subspaces that contain the point x, and
Tε(x) := {t ∈ T : ft(x) ≥ f(x)− ε} is the ε-active index set.

In the so-called compact-continuous setting (T a Hausdorff compact set and the mappings
t 7→ ft(x), x ∈ X, are usc), the characterization involves the active functions (t ∈ T0(x)) as
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shown in [16, Theorem 3.8]:

∂f(x) =
⋂

L∈F(x), ε>0

co

 ⋃
t∈T (x)

∂εft(x) + NL∩dom f (x)

 . (5.2)

The problem is then whether the terms using the effective domain of f can be removed. For
instance, in [34, Theorem 5] where all the convex functions ft’s are assumed to be lsc and
proper, the author provided the following characterization for every x ∈ dom f ,

∂f(x) =
⋂
ε>0

co

 ⋃
t∈Tε(x)

∂εft(x) + {0, ε}
⋃

J∈Tε(x)

∂εfJ(x)

 ,

where Tε(x) := {J ∈ T : fJ(x) ≥ f(x)−ε}, T = {J ⊂ T : |J | < +∞} and fJ := max{ft : t ∈
J}. The normal cone used above is replaced with the union of subdifferentials of maximum
functions, each one involving a finite set of indices. This last expression does not distinguish
between the role of ε-active functions and the others, as the condition fJ(x) ≥ f(x)− ε may
involve both kinds of functions.

At the same time, the work in [12], which deals with the compact-continuous setting, gives
a more explicit representation of the subdifferential of f without using the extra maxima fJ
but, instead, it uses parameters for non-active functions. There, also assuming that the data
are from Γ0(X), it is shown that for all x ∈ dom f

∂f(x) =
⋂
ε>0

co

 ⋃
t∈T (x)

∂εft(x) + {0, ε}
⋃

t∈T\T (x)

∂ε(ρtft)(x)

 .

Then our objective is to extend the last formula to the general framework outside the
compact-continuous setting. To this aim, the characterizations of the normal cone given
in the previous chapter will be of a great help. Indeed, we shall prove that, for all x ∈ dom f ,

∂f(x) =
⋂
ε>0

co

 ⋃
t∈Tε(x)

∂εft(x) +

ε ⋃
t∈T0\Tε(x)

∂ε(ρt,εft)(x)

 ∪
 ⋃
t∈T\T0

Nε
dom ft(x) ∪ {θ}

 ,

where T0 := {t ∈ T : cl ft is proper}. The main feature of this formula is that the role of
ε-active and non ε-active data appears explicitly.

This chapter is structured as follows: The new characterization of the subdifferential of
the supremum is given in Section 5.2. For instance, Theorem 5.1 deals with the general
framework where some appropriate parameters are assigned to non-ε-active functions. The
specification of the last result to the compact-continuous setting is given in Theorem 5.3.
Section 5.3 establishes a reduction process that is involved within the characterization of the
subdifferential of the supremum. In Section 5.4 we present Danskin’s Theorem and some
extensions of it and. We end the Chapter with Section 5.5 where we apply the previous theo-
rems to provide some optimality conditions for convex semi-infinite programming problems.
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5.2 Subdifferential of the supremum function

As the following theorem shows, the subdifferential of f is constructed upon the following
three blocks give for x ∈ dom f and ε > 0, as

Aε(x) :=
⋃
{∂εft(x) : t ∈ Tε(x)},

Bε(x) :=
⋃
{∂ε(ρt,εft)(x) : t ∈ T0\Tε(x)}, with ρt,ε ∈]0, 1],

Cε(x) :=
⋃
t∈T\T0

Nε
dom ft

(x) ∪ {θ},

where
Tε(x) := {t ∈ T0 : ft(x) ≥ f(x)− ε},

with
T0 := {t ∈ T : cl ft is proper}.

Remember that by convention we have⋃
t∈ ∅

Nε
dom ft(x) = ∅.

Moreover, the parameters ρt,ε, are define by

ρt,ε :=

{
−ε

2ft(x)−2f(x)+ε
, if t ∈ T0 \ Tε(x),

1, if t ∈ Tε(x).
(5.3)

and satisfies, as we checked before,

inf
t∈T

ρt,εft(x) > −∞.

The first block Aε(x) corresponds to the almost active indices, while Bε(x) involves the rest
of functions but multiplied by a parameter ρt,ε ∈ ]0, 1]. The set Cε(x) represents somewhat
those functions which are not represented in the first two blocks, and whose closure is not
proper.

Theorem 5.1 Let ft : X → R, t ∈ T, be a family of convex functions and denote f =
supt∈T ft. We assume that

cl f = sup
t∈T

(cl ft).

Then, for every x ∈ dom f, we have that

∂f(x) =
⋂
ε>0

co (Aε(x) + (εBε(x) ∪ Cε(x))) . (5.4)

Proof. Fix x ∈ dom f , ε > 0, U ∈ N and pick L ∈ F(x) such that L⊥ ⊆ U . We start
by proving the direct inclusion “⊂” in the nontrivial case when ∂f(x) 6= ∅. Hence, we
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may assume that f(x) = cl f(x) = 0 and, so, we can apply Theorem 4.7 to the family
{ft, t ∈ T ; IL} to obtain

NL∩dom f (x) =

[
co

(( ⋃
t∈T0

∂ε(ρt,εft)(x)

)⋃
L⊥
⋃( ⋃

t∈T\T0

Nε
dom ft(x)

))]
∞

,

that is, using Lemmas 2.6 and 2.7,

NL∩dom f (x) =
[
co
(
Aε(x) ∪ (Bε(x) ∪ Cε(x)) ∪ L⊥

)]
∞

=
[
co
(
Aε(x) + (εBε(x) ∪ Cε(x)) + L⊥

)]
∞ .

Therefore, since every t ∈ T such that ∂εft(x) 6= ∅ belongs to Tε(x), (5.1) entails

∂f(x) ⊂ co

(( ⋃
t∈Tε(x)

∂εft(x)

)
+
[
co
(
Aε(x) + (εBε(x) ∪ Cε(x)) + L⊥

)]
∞

)
= co

(
Aε(x) +

[
co
(
Aε(x) + (εBε(x) ∪ Cε(x)) + L⊥

)]
∞

)
⊂ co

(
Aε(x) + (εBε(x) ∪ Cε(x)) + L⊥

)
⊂ co (Aε(x) + (εBε(x) ∪ Cε(x))) + 2 U,

and the desired inclusion follows by taking the intersection first over U ∈ N and next over
ε > 0.

To prove the opposite inclusion, we assume without loss of generality that f(x) = 0. We
take x∗ in the right-hand side of equality (5.4). Then, for each ε > 0, there are nets

(αj,1, · · · , αj,mj) ∈ ∆+
mj
, mj ≥ 1,

and, for i = 1, · · · ,mj,

x∗j,i := u∗j,i + βj,iεw
∗
j,i + γj,iv

∗
j,i, where u∗j,i ∈ ∂εftj,i(x), w∗j,i ∈ ∂εfsj,i(x), v∗j,i ∈ Cε(x),

where
tj,i ∈ Tε(x), sj,i ∈ T0 \ Tε(x), βj,i, γj,i ∈ {0, 1},

such that

x∗ = lim
j

mj∑
i=1

αj,i
(
u∗j,i + εβj,iw

∗
j,i + γj,iv

∗
j,i

)
.

Then, for all i, j as above and y ∈ dom f we have

〈u∗j,i, y − x〉 ≤ ftj,i(y)− ftj,i(x) + ε ≤ f(y) + 2ε,

implying that u∗j,i ∈ ∂2εf(x). Similarly, since 0 < ρtj,i ≤ 1 and inf ρt,εft(x) > −ε (see (4.5)),
we have that

〈w∗j,i, y − x〉 ≤ ρtj,i,εftj,i(y)− ρtj,i,εftj,i(x) + ε

≤ f+(y)− inf ρt,εft(x) + ε ≤ f+(y) + 2ε,
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that is, w∗j,i ∈ ∂2ε Thus, since each v∗j,i satisfies 〈v∗j,i, y − x〉 ≤ ε, we conclude that

〈x∗, y − x〉 = lim
j

mj∑
i=1

αj,i
(
〈u∗j,i, y − x〉+ βj,iε〈w∗j,i, y − x〉+ γj,i〈v∗j,i, y − x〉

)
≤ lim sup

j

mj∑
i=1

αj,i
(
(f(y) + 2ε) + βj,iε(f

+(y) + 2ε) + γj,iε
)

≤ f(y) + 3ε+ ε(f+(y) + 2ε).

Finally, as ε ↓ 0 we deduce that x∗ ∈ ∂f(x), as we wanted to prove.

The next result extends Corollary 12 in [12] to possibly non-compact-continuous settings.

Corollary 5.2 Assume in Theorem 5.1 that, additionally, all the functions ft are in Γ0(X).
Then we have

∂f(x) =
⋂
ε>0

co [Aε(x) + (εBε(x) ∪ {0})] .

In particular, if f attains its minimum at x, then

∂f(x) =
⋂
ε>0

co [Aε(x) ∪ εBε(x)] .

Proof. The first statement follows immediately from Theorem 5.1 taking into account that
in the current case we have T\T0 = ∅ and so, by our convention,

Cε(x) =
⋃
t∈ ∅

Nε
dom ft(x) ∪ {θ} = {θ}.

To prove the second statement, as in the proof of Theorem 5.1 we show that

NL∩dom f (x) =
[
co
(
Aε(x) ∪ εBε(x) + L⊥

)]
∞ ,

and (5.1) entails

∂f(x) ⊂
⋂
ε>0

co (Aε(x) ∪ εBε(x)) .

Conversely, for every ε > 0, we know that (see the proof of Theorem 5.1)

co (Aε(x) ∪ εBε(x)) ⊂ co
(
∂2εf(x) ∪ ε∂2εf

+(x)
)
.

More specifically, since f is assumed to attain its minimum at x, by [12, Lemma 1] we know
that ⋂

ε>0

co
(
∂2εf(x) ∪ ε∂2εf

+(x)
)

= ∂f(x),

and the desired result follows from the last inclusion above.
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We turn now to the compact-continuous setting. In this case, the active index set suffices
to describe the subdifferential of the supremum. Given x ∈ x dom .f , we denote

T (x) := {t ∈ T0 : ft(x) = f(x)},

together with the sets

Ãε(x) :=
⋃
{∂εft(x) : t ∈ T (x)},

B̃ε(x) :=
⋃
{∂ε(ρt,εft)(x) : t ∈ T0\T (x)},

where

ρt,ε :=

{
ε

−2ft(x)+2f(x)+ε
, if t ∈ T0 \ T (x),

1, if t ∈ T (x).
(5.5)

Theorem 5.3 Let ft : X → R, t ∈ T, be a family of convex functions and denote f :=
supt∈T ft. Assume that T is Hausdorff compact and the mappings t 7→ ft(x), x ∈ X, are usc.
If condition (4.2) holds, that is, cl f = supt∈T cl ft, then for every x ∈ dom f we have that

∂f(x) =
⋂
ε>0

co
(
Ãε(x) + (εB̃ε(x) ∪ Cε(x))

)
.

Proof. To prove “⊂” we may suppose that ∂f(x) 6= ∅; for otherwise, the proof is trivial.
Hence, f(x) = cl f(x) ∈ R and the set T (x) is nonempty. Moreover, by (5.2), for all ε > 0
and all L ∈ F(x) we know that

∂f(x) ⊂ co
(
∪t∈T (x)∂εft(x) + NL∩dom f (x)

)
,

where, due to Theorem 4.14,

NL∩dom f (x) =
[
co
((
∪t∈T0∂ε(ρt,εft)(x)

)
∪
(
∪t∈T\T0Nε

dom ft(x)
)
∪ L⊥

)]
∞ . (5.6)

In other words, by rearranging these last terms and using Lemmas 2.6 and 2.7, we have

NL∩dom f (x) =
[
co(Ãε(x) ∪ (B̃ε(x) ∪ Cε(x)) ∪ L⊥)

]
∞

=
[
co(Ãε(x) + (εB̃ε(x) ∪ Cε(x)) + L⊥)

]
∞
. (5.7)

Additionally, since θ belongs to Cε(x) and L⊥, we note that

∪t∈T (x) ∂εft(x) ⊂ co
(
∪t∈T (x)∂εft(x) + (εB̃ε(x) ∪ Cε(x)) + L⊥

)
. (5.8)

Therefore, by (5.2),

∂f(x) ⊂ co
(
∪t∈T (x)∂εft(x) +

[
co
(
∪t∈T (x)∂εft(x) +

(
εB̃ε(x) ∪ Cε(x)

)
+ L⊥

)]
∞

)
⊂ co

(
Ãε(x) +

(
εB̃ε(x) ∪ Cε(x)

)
+ L⊥

)
⊂ co

(
Ãε(x) + (εB̃ε(x) ∪ Cε(x))

)
+ 2U.

The conclusion follows by taking the intersection over ε > 0 and U ∈ N . Finally, we are
done because the inclusion “⊃” follows easily from Theorem 5.1.
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The proof of the following result, already given in [12, Theorem 10], is similar to the one
of Corollary 5.2.

Corollary 5.4 Let ft : X → R, t ∈ T, be a family of functions in Γ0(X), and denote
f := supt∈T ft. Assume that T is compact Hausdorff and the mappings t 7→ ft(x), x ∈ X, are
usc. Then, under condition (4.2), that is, cl f = supt∈T (cl ft), we have for every x ∈ dom f

∂f(x) =
⋂
ε>0

co
(
Ãε(x) + (εB̃ε(x) ∪ {0})

)
.

Moreover, when f attains its minimum at x we get

∂f(x) =
⋂
ε>0

co
(
Ãε(x) ∪ εB̃ε(x)

)
.

The parameters
(
ρt,ε
)
t∈T ⊂]0, 1] are used to give the exact characterization of ∂f(x), by

providing a control on those functions ft which escapes at −∞ at the reference point x.
Hence, if we take all the parameters to be equal to 1, then we only obtain an estimate from
above for the set ∂f(x), which also could be of some interest. Such an upper estimate also
turns into an exact characterization for ∂f(x) when the functions are uniformly bounded
below at x, as we show in the following corollary.

Corollary 5.5 With the assumptions of Theorem 5.1, we suppose that

inf
t∈T

ft(x) > −∞.

Then, for every x ∈ dom f we have that

∂f(x) =
⋂
ε>0

co
(
Aε(x) +

(
εB1

ε (x) ∪ Cε(x)
))
,

where B1
ε (x) := ∪{∂εft(x) : t ∈ T0\Tε(x)}. Also, with the same condition as above, in the

context of Theorem 5.3 we have that

∂f(x) =
⋂
ε>0

co
(
Ãε(x) +

(
εB̃1

ε (x) ∪ Cε(x)
))

,

where B̃1
ε (x) := ∪{∂εft(x) : t ∈ T0\T (x)}.

Proof. The proof of the first statement follows by combining Theorem 5.1 and Lemma 2.35.
Similarly, the second statement follows by Theorem 5.1 and the same lemma.

Example 5.6 Consider the function f := supt∈T {〈at, ·〉 − bt} and take x ∈ dom f. Then,
according to Theorem 5.1,

∂f(x) =
⋂
ε>0co(Aε(x) + (εBε(x) ∪ {0})),
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where

Aε(x) := {at : 〈at, x〉 − bt ≥ f(x)− ε} ,

Bε(x) :=

{
εat

2bt − 2 〈at, x〉+ 2f(x)− ε
: 〈at, x〉 − bt < f(x)− ε

}
.

Moreover, if x satisfies inft∈T {〈at, x〉 − bt} > −∞, then Corollary 5.5 yields

∂f(x) =
⋂
ε>0co

(
Aε(x) +

(
B1
ε (x) ∪ {0}

))
,

where
B1
ε (x) := {at : 〈at, x〉 − bt < f(x)− ε}.

In the following example, we consider a particular pointwise supremum function, which is
the Fenchel conjugate.

Example 5.7 Take a function f : X → R∞ together with its conjugate, that is,

f ∗(x∗) = sup
x∈dom f

fx(x
∗), where fx := 〈·, x〉 − f(x).

Given x∗ ∈ dom f ∗, we introduce the sets

Aε(x
∗) = {x ∈ dom f : 〈x∗, x〉 − f(x) ≥ f ∗(x∗)− ε} = (∂εf)−1(x∗),

Bε(x
∗) =

{
εx

2(f ∗(x∗) + f(x)− 〈x, x∗〉)− ε
: x ∈ dom f, 〈x∗, x〉 − f(x) < f ∗(x∗)− ε

}
.

Therefore, by Theorem 5.1,

∂f ∗(x∗) =
⋂
ε>0co

(
(∂εf)−1(x∗) + (εBε(x

∗) ∪ {0})
)
. (5.9)

Moreover, if infx∈X fx(x) > −∞, then the relation

Argmin(cof) = ∂f ∗(θ)

together with Corollary 5.5 gives us

Argmin(cof) =
⋂
ε>0co (ε- Argmin(f) + εBε(θ) ∪ {0}) ,

where

Bε(θ) :=

{
εx

2(f(x)− infX f)− ε
: x ∈ dom f \ (ε- Argmin(f))

}
.

The following corollary gives a way to avoid the boundedness condition used in Corollary
5.5.

Corollary 5.8 With the assumptions of Theorem 5.1, for every x ∈ dom f we have that

∂f(x) =
⋂
ε>0

co
(
Aε(x) + (εB+

ε (x) ∪ Cε(x))
)
,

where
B+
ε (x) :=

⋃
{∂εgt(x) : t ∈ T0\Tε(x)}, with gt := max{ft, f(x)}.
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Proof. Given x ∈ dom f and ε > 0, we start by supposing that f(x) = 0, so that gt = f+
t

for all t ∈ T , ft(x) ≤ 0 for all t ∈ T , and ft(x) < −ε for all t ∈ T\Tε(x). Next we claim that

Bε(x) ⊂ B+
2ε(x).

Indeed, given x∗ ∈ Bε(x), we choose t ∈ T0\Tε(x) such that x∗ ∈ ∂ε(ρt,εft)(x). Then, for all
y ∈ dom(f+

t ) (= dom(ρt,εft)), we have that

〈x∗, y − x〉 ≤ (ρt,εft)(y)− (ρt,εft)(x) + ε

≤ ((ft)
+(y) + ε+ ε = f+

t (y)− f+
t (x) + 2ε,

the last equality because (ft)
+(x) = max{ft(x), 0} = 0. Hence,

x∗ ∈ ∂2εf
+
t (x) ⊂ B+

2ε(x),

and the claim holds true. Consequently, the inclusion “⊂” holds and we finish the proof in
the current case as the opposite inclusion follows similarly like in the proof of Theorem 5.1.

In the general case, where possibly f(x) 6= 0, we consider the convex functions

f̂t := ft(·)− f(x), t ∈ T,

together with the associated supremum functions f̂ := supt∈T f̂t. Then f̂ = f − f(x) and,

so, f̂(x) = 0. Thus, from the first paragraph we infer that

∂f(x) = ∂f̃(x) =
⋂
ε>0

co
(
Âε(x) + (εB̂+

ε (x) ∪ Ĉε(x))
)
,

where
Âε(x) :=

⋃
{∂εf̂+

t (x) : t ∈ Tε(x)}

and
B̂+
ε (x) =

⋃
{∂εf̂+

t (x) : t ∈ T0\Tε(x)}.

Thus, since that

f̂+
t (·) = max{ft(·)− f(x), 0} = max{ft(·), f(x)} − f(x) = gt − f(x),

we get
Âε(x) =

⋃
{∂εgt(x) : t ∈ Tε(x)}

and
B̂+
ε (x) =

⋃
{∂εgt(x) : t ∈ T0\Tε(x)}.

An immediate consequence of Theorem 5.1 is the following extension of the Brøndsted
formula in [7], and the formula given in [33, Proposition 6.3] (in finite dimensions and under
the continuity of the ft’s).

70



Corollary 5.9 Let ft : X → R, t ∈ T, be a family of convex functions and denote f :=
supt∈T ft. Assume that condition (4.2) holds. Then, for every x ∈ dom f such that T (x) = T
we have that

∂f(x) =
⋂
ε>0

co

(⋃
t∈T
∂εft(x) +

( ⋃
t∈T\T0

Nε
dom ft(x) ∪ {θ}

))
.

In particular, if ft ∈ Γ0(X) for all t ∈ T , then

∂f(x) =
⋂
ε>0

co

(⋃
t∈T
∂εft(x)

)
.

5.3 Reduction process and subdifferential of the supre-

mum

In this section, we use Theorem 3.1 to provide sharp characterizations of the subdifferential
of the supremum function in the finite-dimensional space Rn, which only appeal to at most
n+ 1 functions from the data.

Theorem 5.10 Consider a family of lsc proper convex functions ft : Rn → R∞, t ∈ T , and
denote f := supt∈T ft. Let D ⊂ X be a convex set such that dom f ⊂ D ⊂ X, and assume
that T is Hausdorff compact and the mappings t 7→ ft(x), x ∈ D, are usc. Then, for every
x ∈ dom f and ε > 0, we have

1. ∂εf(x) =
⋃

ε1+ε2=ε
ε1, ε2 ≥0

⋃
S⊂T, |S|≤n+1

{∂ε1(maxt∈S ft + ID)(x) : maxt∈S ft(x) = f(x)− ε2}.

2. ∂εf(x) =
⋃

S⊂T, |S|≤n+1, α∈∆|S|
η∈[0,ε],

∑
t∈T αtft(x)−f(x)+ε≥η

∂η
(∑

t∈T αtft + ID
)

(x).

Proof. 1. First, to prove the inclusion “⊂” we take x∗ ∈ ∂εf(x), so that

f(x)− 〈x∗, x〉 ≤ inf
Rn

(f − 〈x∗, ·〉) + ε. (5.10)

Then, applying Theorem 3.1 to the family of functions {ft−〈x∗, ·〉, t ∈ T}, there exists
an index set S ⊂ T with |S| ≤ n+ 1 such that

inf
Rn

(f − 〈x∗, ·〉) = inf
Rn

(
max
t∈S

ft − 〈x∗, ·〉+ ID

)
. (5.11)

Thus, taking ε2 := f(x)−maxt∈S ft(x) ≥ 0,(
max
t∈S

ft − 〈x∗, ·〉+ ID

)
(x) = f(x)− 〈x∗, x〉 − ε2 (5.12)

≤ inf
Rn

(f − 〈x∗, ·〉) + ε− ε2

= inf
Rn

(
max
t∈S

ft − 〈x∗, ·〉+ ID

)
+ ε− ε2, (5.13)
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and we deduce that x∗ ∈ ∂ε−ε2 (maxt∈S ft + Idom f ) (x).

To prove the opposite inclusion, we take x∗ ∈ ∂ε−ε2 (maxt∈S ft + ID) (x), where S ⊂ T ,
|S| ≤ n+ 1, and ε2 = f(x)−maxt∈S ft(x). So, for all z ∈ D,

〈x∗, z − x〉 ≤
(

max
t∈S

ft + ID

)
(z)−

(
max
t∈S

ft + ID

)
(x) + ε− ε2

≤ f(z)− f(x) + ε2 + ε− ε2,

and we infer that x∗ ∈ ∂εf(x).

2. If x∗ ∈ ∂εf(x), then 0 ∈ ∂ε(f−x∗)(x) and Theorem 3.1 gives rise to some S ⊂ T, |S| ≤
n+ 1, and α ∈ ∆|S| such that

f(x)− 〈x∗, x〉 ≤ inf
Rn

(f − 〈x∗, ·〉) + ε = inf
Rn

(
max
t∈S

ft + ID − 〈x∗, ·〉
)

+ ε

= max
α∈∆|S|

inf
Rn

(∑
t∈S

αtft + ID − 〈x∗, ·〉

)
+ ε (by Proposition 2.25)

= inf
Rn

(∑
t∈S

αtft + ID − 〈x∗, ·〉

)
+ ε;

in particular, we have that η := ε− f(x) +
∑
t∈S

αtft(x) ∈ [0, ε]. Thus, since

∑
t∈S

αtft(x)− 〈x∗, x〉 ≤ f(x)− 〈x∗, x〉,

we deduce that

x∗ ∈ ∂η

(∑
t∈S

αtft + ID

)
(x).

Now we assume that x∗ ∈ ∂η
(∑
t∈S

αtft + ID

)
(x) for some S ⊂ T, |S| ≤ n+1, α ∈ ∆|S|

and η ∈ [0, ε] such that ε− f(x) +
∑

t∈S αtft(x) ≥ η. Then, for all z ∈ dom f ,

〈x∗, z − x〉 ≤

(∑
t∈S

αtft + ID

)
(z)−

(∑
t∈S

αtft + ID

)
(x) + η

≤ f(z) + ID(z)− f(x)− ID(x) + ε

≤ f(z) + Idom f (z)− f(x) + ε

≤ f(z)− f(x) + ε,

and we infer that x∗ ∈ ∂εf(x).
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Let us recall that if T is finite in Theorem 5.10, say T := {1, · · · ,m} with m ≥ 1, then
by Lemma 4.1 in section 4.2 we have proved that, for every x ∈ dom f and ε > 0,

∂εf(x) ⊂
⋃
{∂ε(

∑
t∈suppα

αtft)(x) :
∑

t∈suppα

αtft(x) ≥ f(x)− ε, α ∈ ∆m, | suppα| ≤ n+ 1}.

Moreover, in this finite case, Theorem 5.10 simplifies to:

Corollary 5.11 Consider a family of lsc proper convex functions f1, · · · , fm : Rn → R∞,
m > n+ 1 and denote f := max1≤i≤m fi. Then, for every x ∈ dom f and ε > 0, we have

1. ∂εf(x) =
⋃

ε1+ε2=ε
ε1,ε2≥0

⋃
S⊂{1,··· ,m},
|S|≤n+1

{
∂ε1

(
max
t∈S

ft

)
(x) : maxt∈S ft(x) = f(x)− ε2

}
.

2. ∂εf(x) =
⋃

S⊂{1,··· ,m},|S|≤n+1,α∈∆|S|
η∈[0,ε],

∑
t∈S αtft(x)−f(x)+ε≥η

∂η

(∑
t∈S

αtft

)
(x).

5.4 Danskin’s Theorem

This section is dedicated to extend the Danskin Theorem [20, Theorem I (Chapter III)], by
using the concept of ε-directional derivative instead of the usual directional derivative.

The classical Danskin’s theorem involves a function F (x, y) of two variables x and y,
defined on the product of the Euclidean space Rn and some compact topological space Y .
The function F (x, y) as well as its partial derivatives are supposed to be continuous. Then
Danskin’s theorem allows for an explicit characterization of the directional derivative of the
function ϕ defined as

ϕ(x) = min
y∈Y

F (x, y).

Namely, if ϕ′(x;u) denotes the directional derivative of ϕ at the point x ∈ X in the direction
u ∈ X, then ϕ′(x;u) is given by means of the partial directional derivatives of F given, for
appropriately chosen elements y ∈ Y , as

F
′

i (x, y) := lim
s→0

s−1(F (x+ sei, y)− F (x, y)), i = 1, · · · , n,

where {e1, · · · , en} denotes the canonical basis of Rn. More precisely, we have

Theorem 5.12 For every u = (u1, · · · , un) ∈ Rn,

ϕ′(x;u) = min
y∈Y(x)

n∑
i=1

uiF
′

i (x, y),

where Y(x) := {y ∈ Y : ϕ(x) = F (x, y)}.

In the line of Danskin’s Theorem we present below a characterization for the directional
derivative of the supremum function, f = supt∈T ft, where T is any set (possible infinite).
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Our characterization is given by means of the ε-directional derivatives of the ft’s and makes
use of the parameters ρt,ε defined in (5.3) as

ρt,ε :=

{
−ε

2ft(x)−2f(x)+ε
, if t ∈ T0 \ Tε(x),

1, if t ∈ Tε(x),

with T0 := {t ∈ T : cl ft is proper}.

Theorem 5.13 Consider a family of proper lsc convex functions ft : X → R, t ∈ T , and
denote f := sup ft∈T . If x ∈ X is such that ∂f(x) 6= ∅, then we have

cl(f ′(x; ·)) = cl

(
inf
ε>0

(
sup

t∈Tε(x)

(ft)
′
ε(x; ·) + ε sup

t∈T\Tε(x)

((ρt,εft)
′
ε(x; ·))+

))
.

If, in addition, inft∈T ft(x) > −∞, then

cl(f ′(x; ·)) = cl

(
inf
ε>0

(
sup

t∈Tε(x)

(ft)
′
ε(x; ·) + ε sup

t∈T\Tε(x)

((ft)
′
ε(x; ·))+

))
.

Proof. According to [60, Corollary 2.4.15], we write

cl(f ′(x; ·))(u) = sup{〈u, x∗〉 : x∗ ∈ ∂f(x)}, for all u ∈ X. (5.14)

Then, using Corollary 5.2,

cl(f ′(x;u)) = sup {〈u, x∗〉 : x∗ ∈ ∩ε>0co (Aε(x) + (εBε(x) ∪ {θ}))}

= cl
(

inf
ε>0

(sup {〈u, x∗〉 : x∗ ∈ Aε(x) + (εBε(x) ∪ {θ})})
)

(by Lemma 2.23)

= cl
(

inf
ε>0

(sup {〈u, x∗〉 : x∗ ∈ Aε(x)}+ sup {〈u, x∗〉 : x∗ ∈ εBε(x) ∪ {θ}})
)

= cl
(

inf
ε>0

(
sup

{
〈u, x∗〉 : x∗ ∈ ∪t∈Tε(x)∂εft(x)

}
+

sup
{
〈u, x∗〉 : x∗ ∈ ∪t∈T\Tε(x) (ε∂ε(ρt,εft)(x) ∪ {θ})

} ) )
= cl

(
inf
ε>0

(
sup

t∈Tε(x)

sup
x∗∈∂εft(x)}

〈u, x∗〉+ sup
t∈T\Tε(x)

sup
x∗∈ε∂ε(ρt,εft)(x)∪{θ}

〈u, x∗〉

))
(by Lemma 2.23)

= cl

(
inf
ε>0

(
sup

t∈Tε(x)

(ft)
′
ε(x; ·) + ε sup

t∈T\Tε(x)

((ρt,εft)
′
ε(x; ·))+

))
,

and the first statement follows. Under the additional assumption, the proof of the second
statement is done in the same way as in the paragraph above by taking as weighting param-
eters the value 1 instead of the ρt,ε’s (see Corollary 4.10).
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The following result gives the counterpart of Theorem 5.13 for the compact-continuous
setting. In this case, instead of the ρt,ε used above we use the the parameters ρt,ε defined in
(5.3), that is,

ρt,ε :=

{
ε

−2ft(x)+2f(x)+ε
, if t ∈ T0 \ T (x),

1, if t ∈ T (x).

Theorem 5.14 With the assumption of Theorem 5.13 suppose that T is Hausdorff compact
and the mappings t 7→ ft(x), x ∈ X, are usc. If x ∈ X is such that ∂f(x) 6= ∅, then we have

cl(f ′(x; ·)) = cl

(
inf
ε>0

(
sup
t∈T (x)

(ft)
′
ε(x; ·) + ε sup

t∈T\T (x)

(
(ρt,εft)

′
ε(x; ·)

)+

))
,

and, provided that inft∈T ft(x) > −∞,

cl(f ′(x; ·)) = cl

(
inf
ε>0

(
sup
t∈T (x)

(ft)
′
ε(x; ·) + ε sup

t∈T\T (x)

((ft)
′
ε(x; ·))+

))
.

In particular, if ft(x) = f(x) for all t ∈ T, then

cl(f ′(x; ·)) = cl

(
inf
ε>0

(
sup
t∈T

(ft)
′
ε(x; ·)

))
.

Proof. The proof is similar to the one of Theorem 5.13, taking into account the compact-
continuous setting (using ρt,ε instead of ρt,ε and applying Corollary 5.9).

A more simple formula of the directional derivative is obtained if the supremum function
is continuous somewhere.

Corollary 5.15 Given a family of convex function {ft, t ∈ T} such that f := supt∈T ft is
finite and continuous at a given x ∈ X, we suppose that T is Hausdorff compact and the
mappings t 7→ ft(z), z ∈ X are usc. Then we obtain

f ′(x; ·) = sup
t∈T (x)

f ′t(x; ·).

Proof. The proof is similar to Theorem 5.14 but with the use of [16, Corollary 10]. Indeed,
sine the function f is continuous at x (and so are all the ft’s), we obtain for all u ∈ X

f ′(x; ·)(u) = sup{〈u, x∗〉 : x∗ ∈ co
(
∪t∈T (x)∂ft(x)

)
}

= sup
t∈T (x)

sup{〈u, x∗〉 : x∗ ∈ ∂ft(x)}

= sup
t∈T (x)

f ′t(x; ·)(u) (by [60, Corollary 2.4.15]).
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5.5 Optimality conditions

In the literature on semi-inifnite optimization one can find several KKT-type optimality con-
ditions which use, for example, approximate subdifferentials of the data functions [36], exact
subdifferentials of data functions but at close points [56], Farkas-Minkowski-type closedness
[23] and many others. In our case we derive new optimality conditions that highlight the role
played by ε-active and non ε-active functions.

We consider the following semi-infinite programming problem (SIP, in brief), written in
an lcs X as

inf f0(x)

s.t. ft(x) ≤ 0, t ∈ T, (5.15)

where T is an arbitrary index set and ft : X → R∞, t ∈ {0}∪T are convex and lsc functions.

The following establishes the KKT and Fritz-John optimality conditions for problem (5.15)
at an optimal solution x̄ ∈ X. Remember that

T0 = {t ∈ T : cl ft is proper}

and, for any ε > 0, the parameters ρt,ε, t ∈ {T ∪ 0} are defined by

ρt,ε :=

{
−ε

2ft(x̄)+ε
, if t ∈ T0 \ Tε(x̄),

1, if t ∈ {0} ∪ Tε(x̄),

where Tε(x̄) = {t ∈ T0 : ft(x̄) ≥ −ε}.

Theorem 5.16 For every ε > 0 and every U ∈ N , there are associated elements t1, · · · , tm ∈
Tε(x̄), tm+1, · · · , tm+n ∈ T0\ (Tε(x̄) ∪ {0}), tm+n+1, · · · , tm+n+r ∈ (T ∪ {0}) \T0 and the
multipliers (λ0, · · · , λm+n+r) ∈ ∆m+n+r+1, m,n, r ≥ 1 such that

θ ∈ λ0∂εf0(x̄) +
m∑
i=1

λi∂εfti(x̄) +
m+n∑
i=m+1

ελi∂ε(ρti,εfti)(x̄) +
m+n+r∑
i=m+n+1

λiN
ε
dom fti

(x̄) + U,

and, provided that ft ∈ Γ0(X) for all t ∈ T ∪ {0},

θ ∈ λ0∂εf0(x̄) +
m∑
i=1

λi∂εfti(x̄) +
m+n∑
i=m+1

ελi∂ε(ρti,εfti)(x̄) + U.

Moreover, if inft∈T∪{0} ft(x) > −∞, then instead of ρt,ε we take the fixed value 1 in the two
relations above.

Proof. Since x̄ is an optimal point of (5.15), Lemma 3.6 ensures that x̄ is a global minimum
of the function g = sup{f0(·)−f0(x̄); ft(·), t ∈ T}; hence, g(x̄) = 0 and θ ∈ ∂g(x̄). Therefore,
given any ε > 0, Corollary 5.2 entails

θ ∈ ∂g(x̄)

=
⋂
ε>0

co
( ⋃
t∈(Tε(x̄)∪{0})

∂εft(x̄) +
( ⋃
t∈(T0\(Tε(x̄))∪{0})

ε∂ε(ρt,εft)(x̄) ∪
⋃

t∈(T∪{0})\T0

Nε
dom ft(x̄)

))
.
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Therefore, for all ε > 0 and for all U ∈ N ,

θ ∈ co
( ⋃
t∈(Tε(x̄)∪{0})

∂εft(x̄) +
( ⋃
t∈(T0\(Tε(x̄))∪{0}))

ε∂ε(ρt,εft)(x̄) ∪
⋃

t∈(T∪{0})\T0

Nε
dom ft(x̄)

))
+ U,

and so there exist elements t1, · · · , tm ∈ Tε(x̄), tm+1, · · · , tm+n ∈ T0\ (Tε(x̄)) ∪ {0}), together
with tm+n+1, · · · , tm+n+r ∈ (T ∪ {0}) \ T0 and (λ0, λ1, · · · , λm, · · · , λm+n, · · · , λm+n+r) ∈
∆m+n+r+1, m, n, r ≥ 1 that satisfy the first statement of the theorem.

In the case where all the ft’s are in Γ0(X), we get the desired conclusion by arguing as
above with the use of Corollary 5.2. The same arguments are used to establish the last
conclusion, thanks to Corollary 4.10.

Next, we give the counterpart of the previous theorem for the compact-continuous setting,
by arguing similarly as in the proof of Theorem 5.16 and using the parameters ρt,ε defined
by

ρt,ε :=

{
ε

−2ft(x)+ε
, if t ∈ T0 \ T (x),

1, if t ∈ {0} ∪ T (x).

Theorem 5.17 Assume that T is a Hausdorff compact set and that the mappings t 7→ ft(x),
x ∈ X, are usc. Then, for every ε > 0 and every U ∈ N , there are associated elements
t1, · · · , tm ∈ T (x̄), tm+1, · · · , tm+n ∈ T0\ (T (x̄) ∪ {0}), tm+n+1, · · · , tm+n+r ∈ (T ∪ {0}) \T0

and (λ0, λ1, · · · , λm, · · · , λm+n, · · · , λm+n+r) ∈ ∆m+n+r+1, m, n, r ≥ 1 such that

θ ∈ λ0∂εf0(x̄) +
m∑
i=1

λi∂εfti(x̄) +
m+n∑
i=m+1

ελi∂ε(ρti,εfti)(x̄) +
m+n+r∑
i=m+n+1

λiN
ε
dom fti

(x̄) + U,

and, provided that ft ∈ Γ0(X) for all t ∈ T ∪ {0},

θ ∈ λ0∂εf0(x̄) +
m∑
i=1

λi∂εfti(x̄) +
m+n∑
i=m+1

ελi∂ε(ρti,εfti)(x̄) + U.

Moreover, under the Slater condition and the assumption that ft ∈ Γ0(X), for all t ∈ T ∪{0},
we have that λ0 > 0.

Proof. The proof is analogous to the proof of the theorem above but with the use of Corollary
5.4 instead of Corollary 5.2. To establish the last conclusion, we proceed by contradiction
and assume λ0 = 0, so that

θ ∈
m∑
i=1

λi∂εfti(x̄) +
m+n∑
i=m+1

ελi∂ε(ρti,εfti)(x̄) + U.

Then direct calculus lead us to

θ ∈
⋂
ε>0

co

(
∂ε(sup

t∈T
ft)(x̄), ε∂2ε(sup

t∈T
ft)(x̄)

)
⊂ ∂(sup

t∈T
ft)(x̄),

which gives us a contradiction.
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Chapter 6

Multiobjective optimization

6.1 Introduction

Consider the multiobjective optimization problem (MOP, for short)

min
x∈S
{ft(x) : t ∈ T}, (6.1)

where ft are extended real-valued convex functions, defined on Rn and indexed in an arbitrary
set (possible infinite) T , and S is a nonempty subset of Rn. Associated to problem (MOP)
we consider the sub-problems

min
x∈S
{ft(x) : t ∈ B}, (6.2)

where B ⊂ T . We shall use two concepts of solutions for problem (MOP), the (classical)
efficient and the weakly efficient solutions.

The model above has been proved to be very useful in different applications such as
allocation problems, approximation theory, cooperative n-persons games, portfolio problems,
Engineering design and so on (see, e.g., [38] and [54]).

We want to apply the reduction process of Chapter 3 to problem (MOP), in order to
characterize the set of weakly efficient solutions of problem (MOP) by means of efficient
and/or weakly efficient solutions of problems (6.2).

First works to set out these objectives have been realized by Lowe et al. [44] for finite
index sets T , showing that the set of weakly efficient solutions of problem (MOP) can be
obtained upon efficient solutions of all subproblems (6.2). In 1989, Ward [59] improved the
previous result by restricting to subproblems [59] associated to subsets B ⊂ T with cardinaly
not exceeding n+ 1. He also studied some particular cases in which the number of objective
functions can be reduced to n at most. These results have been done for convex functions.
The case of quasi-convex functions has been recently in Plastria [49] for finite index sets T .
In this case, the set of weakly efficient solutions of problems(6.1) is completely determined by
the set of weakly efficient solutions of all sub-problems with at most n+1 objective function.
In the compact-continuous setting, where T is compact and the mappings t 7→ ft(x), x ∈ X
are continuous, Plastria & Carrizosa [50, Corollary 2.1] studied the case where the convex
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functions {ft}t∈T are finite-valued on a fixed given set Ω ⊂ Rn. They showed that, if the
constraint set for problem (6.1) satisfies S ⊂ Ω, the set of weakly efficient solutions of (6.1) is
completely determined by the set of weakly efficient solutions of all sub-problems (6.2) with
at most n+ 1 objective functions.

Most of the results dealing with the reduction of the number of constraints in problem
(6.1), including the results cited above, are based on Helly’s Theorem. In our case, we shall
use the results established previously in Chapter 3 for the subdifferential of the supremum
function.

Roughly speaking, we shall be interested in characterizations given in the following forms,

WET (S) =
⋃

B⊂T, |B|≤n+1

WEB(S ∩D),

for appropriately chosen sets D ⊂ Rn, and

x ∈WET (S)⇐⇒ 0 ∈ co

(⋃
t∈T

∂ft(x)

)
+ NS(x).

This chapter is divided into several sections. Section 6.2 deals with a reduction process
for problem (MOP), when T is Hausdorff compact and the geometric constraints represented
by S ⊂ Rn is closed and convex. Theorem 6.4 shows that the weakly efficient solutions of the
original problem is characterized by means of weakly efficient solutions of all sub-problem
with at most n+ 1 objective functions. Theorem 6.4 provides an extension of [50, Theorem
2.1]. In section 6.3 we present a characterization of the weakly efficient points of (MOP)
by using the subdifferential of the objective functions and the normal cone to the geometric
constraints set. Our main result is Theorem 6.6, where the objective functions are extended
real-valued functions defined on an lcs X.

6.2 Reduction processes in multiobjective optimization

Let ft : Rn → R∞ be a family of extended real-valued functions, t ∈ T , with T being an
arbitrary set of indices, and let S ⊂ Rn be a nonempty convex set. We denote f := supt∈T ft
and consider the multiobjective optimization problem

MOP(T) min
x∈S
{ft(x) : t ∈ T}. (6.3)

There are several types of solutions for Problem (MOP(T)), but we will restrict ourselves in
this chapter to efficient and weakly efficient solutions.

Definition 6.1 (Efficient solutions) The point x̄ ∈ S ∩ dom f is said to be efficient solution
of problem (6.3) if there is no point x ∈ S ∩ dom f such that (i) ft(x) ≤ ft(x̄), for all t ∈ T ,
and (ii) ft̄(x) < ft̄(x̄), for some t̄ ∈ T . The set of the efficient solutions of (6.3) is denoted
by E(T, S).
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Definition 6.2 (Weakly efficient solutions) The point x̄ ∈ S ∩ dom f is a weakly efficient
solution of (6.3) if and only if there is no y ∈ S ∩ dom f such that ft(y) < ft(x̄), for all
t ∈ T . The set of weakly efficient solutions of problem (6.3) is denoted by WET (S).

Clearly, we have that E(T, S) ⊂ WET (S) but the opposite inclusion cloud not be true.
We have the following simple example (see [38, Example 11.6]).

Example 6.3 We consider the multiobjective optimization problem given in R2 by

min
x∈S
{f1(x), f2(x)},

1

1 x

y

(0, 0)

S

Figure 6.1: E({1, 2}, S) in red, WE{1,2}(S) in yellow.

where S = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}, f1(x1, x2) = x1 and f2(x1, x2) = x2.
The point (0, 0) is the only efficient solution of the given problem, but the set {(x1, x2) ∈ S :
x1 = 0 or x2 = 0} represents the set of weakly efficient solutions. See Figure 6.1.

In the following theorem we characterize the set of weakly efficient solutions for constrained
and unconstrained multiobjective optimization problems (6.3), where the constraint set S is
convex and the objective functions are indexed in a Hausdorff compact set T .

Theorem 6.4 Given a family of convex lsc functions ft : Rn → R∞, t ∈ T , and a closed
convex set S ⊂ Rn, we assume that T is Hausdorff compact and the mappings t 7→ ft(x), x ∈
D, are continuous, where D is any convex set satisfying (3.7), that is, dom f ⊂ D ⊂ Rn.
Then we have that

WET (S) =
⋃

B⊂T, |B|≤n+1

WEB(S ∩D).

Proof. Since WET (S) ⊂ dom f ⊂ D, the current compactness-continuity assumptions give
us

x̄ ∈WET (S) ⇐⇒ ∀ y ∈ S ∩ dom f, ∃ t ∈ T such that ft(y) ≥ ft(x̄)

⇐⇒ inf
y∈S∩dom f

max
t∈T

(ft(y)− ft(x̄)) ≥ 0

⇐⇒ inf
y∈S∩dom f

sup
t∈T

(ft(y)− ft(x̄)) ≥ 0.
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Let the functions ϕt : Rn → R∞, t ∈ T , be defined as ϕt(y) = ft(y) − ft(x̄) + IS(y), and
consider the associated supremum function ϕ := supt∈T ϕt. Then, using [12, Lemma 4], we
know that

domϕ =
⋂
t∈T

dom(ft − ft(x̄) + IS) =
⋂
t∈T

dom ft ∩ S = dom f ∩ S,

and we deduce that

inf
y∈S∩dom f

sup
t∈T

(ft(y)− ft(x̄)) = inf
y∈S∩D

sup
t∈T

(ft(y)− ft(x̄)) = inf
y∈S

sup
t∈T

(ft(y)− ft(x̄)).

So, the equivalence above reads

x̄ ∈WET (S) ⇐⇒ inf
y∈S∩D

sup
t∈T

(ft(y)− ft(x̄)) ≥ 0

⇐⇒ inf
y∈S

sup
t∈T

(ft(y)− ft(x̄)) ≥ 0.

Next we verify the hypotheses of Theorem 3.1, when applied to the family of functions
{ϕt, t ∈ T}. Indeed, it is clear that all the ϕt’s are convex and lsc, and that the mappings
t 7→ ϕt(y) are usc for all y ∈ D. Thus, since that domϕ = dom f ∩ S ⊂ D, Theorem 3.1
applies and yields

inf
y∈S

sup
t∈T

[ft(y)− ft(x̄)] = inf
Rn

sup
t∈T

[ft − ft(x̄) + IS]

= max
B⊂T, |B|≤n+1

inf
Rn

max
t∈B
{ft − ft(x̄) + IS + ID}.

Therefore

x̄ ∈WET (S) ⇐⇒ max
B⊂T, |B|≤n+1

inf
y∈S∩D

max
t∈T

[ft(y)− ft(x̄)] ≥ 0

⇐⇒ x̄ ∈
⋃

B⊂T, |B|≤n+1

WEB(S ∩D),

and we are done.

Below we present an extension of [50, Corollary 2.1].

Corollary 6.5 Given a family of convex continuous functions ft : Rn → R∞, t ∈ T , we
denote f = supt∈T ft. Let S ⊂ Rn be a closed convex set, and assume that T is Hausdorff
compact and the mappings t 7→ ft(x), x ∈ Rn, are continuous. Then

WET (S) =
⋃

B⊂T, |B|≤n+1

WEB(S).

Proof. Due to the continuity of the functions ft, t ∈ T , it suffices to take D := Rn in Theorem
6.4.
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6.3 Characterization of weakly efficient solutions

The following Theorem extends [50, Theorem 2.1] to extended real-valued lsc convex functions
defined on an lcs X.

Theorem 6.6 Given a family of convex lsc proper functions ft : X → R∞, t ∈ T , we denote
f := supt∈T ft. Let S be a closed convex subset of X, and assume that T is Hausdorff compact
and the mappings t 7→ ft(x), x ∈ X, are continuous. If the function f is continuous at some
point in S, then x̄ ∈WET (S) if and only if

θ ∈ co

(⋃
t∈T

∂ft(x̄)

)
+ Ndom f (x̄) + NS(x̄), (6.4)

if and only if

θ ∈ NS(x̄) +
⋂
ε>0

co

(⋃
t∈T

∂εft(x̄)

)
.

Moreover, when X = Rn the same holds if we replace co in (6.4) with co.

Proof. As we have observed before we have that

x̄ ∈WET (S) ⇐⇒ x̄ is an optimal solution to the Infsup problem

min
y∈Rn

sup
t∈T

(ft(y)− ft(x̄) + IS(y)) (6.5)

⇐⇒ θ ∈ ∂
(

(sup
t∈T

ft − ft(x)) + IS

)
(x̄). (6.6)

Moreover, since the function supt∈T ft(·) is continuous at some point in S by the current
assumption, the function supt∈T (ft − ft(x̄)) is continuous at the same point. This is a con-
sequence of the current compactness-continuity assumption which ensure that

c := inf
t∈T

ft(x̄) > −∞,

so that
sup
t∈T

(ft − ft(x̄)) ≤ sup
t∈T

ft − c.

Then, by applying Moreau-Rockafellar’s Theorem, we conclude that x̄ ∈WET (S) if and only
if

∂

(
(sup
t∈T

ft − ft(x̄)) + IS

)
(x̄) = ∂

(
sup
t∈T

ft − ft(x̄)

)
(x̄) + NS(x̄).

So, [13, Corollary 6.1.12] entails that x̄ ∈WET (S) if and only if

θ ∈ co

(⋃
t∈T

∂ft(x̄)

)
+ Ndom f (x̄) + NS(x̄).
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Moreover, when X = Rn this last conclusion is valid if we use co instead of co, due to [13,
Corollary 6.1.12]. Furthermore, thanks to Corollary 5.9, we have that

∂

(
sup
t∈T

(ft − ft(x̄))

)
(x̄) =

⋂
ε>0

co

(⋃
t∈T

∂ft(x̄)

)
,

and so, arguing as above, we get the remaining conclusion.
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Chapter 7

Strong duality for some quadratic
problems

7.1 Introduction

Let A be any real symmetric matrix of order n, and C ⊂ Rn be a pointed, closed, convex
cone with non-empty interior. We study the quadratic problem

µ = min

{
1

2
x>Ax : e>x = 1, x ∈ C

}
, (7.1)

where e ∈ intC∗ and C∗(= −C−) is the non-negative polar cone of C. Its (Lagrangian) dual
problem is

sup
λ∈R

inf
x∈C

{
1

2
x>Ax+ λ(x>ee>x− 1)

}
.

We only work with homogeneous quadratic objective functions because, due to the structure
of the feasible set, we can transform any quadratic function into a homogeneous one.

The standard quadratic optimization problem (StQO), introduced in Bomze [2], corre-
sponds to the case C = Rn+, e = 1 = (1, · · · , 1) ∈ intRn:

min
x∈∆n

1

2
x>Ax,

where ∆n is the n-dimensional simplex. There are many applications of this formulation such
as quadratic allocation problems, portfolio optimization problems and the maximum weight
clique problem among others.

One of the goals of this chapter is to establish an S-lemma. We will first state an equiv-
alence to the fulfillment to the strong duality for (7.1) (with respect to a suitable dual
problem) in terms of the convexity of (f, g)(C) + R+(1, 0), without passing by a copositive
representation scheme.

A second issue we will deal with is the study of the validity of strong duality for the primal
problem (7.1) with respect to Lagrangian dual problems: we characterize that property via
the copositivity of A on suitable subsets of Rn.
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We analyze the cases µ = 0 and µ > 0. Obviously:

µ = 0 ⇐⇒ A is copositive but not strictly copositive on C;

µ > 0 ⇐⇒ A is strictly copositive on C.

The structure of this Chapter is the following: Section 7.2 is dedicated to present a review
about Lagrangian duality from two different points of view. In section 7.3 we study the
general quadratic problem with one constraint and provide the main result in Theorem 7.6.
This shows an explicit form for the perturbed function and provide a strong duality result.
Finally, in section 7.4 we treat the standard quadratic problem, here the properties proved
for the general problem are obtained as a consequence. In particular, we recover in Theorem
7.8 the result of Bomze, Locatelli & Tardella in [3, Theorem 4].

7.2 Lagrangian duality

Let C ⊆ Rn be a non-empty set and, given two functions f : Rn → R and g : Rn → R, we
consider the minimization problem called primal problem

µ
.
= min{f(x) : g(x) = 0, x ∈ C}, (P)

and the associated Lagrangian dual problem which is given by

ν
.
= sup

λ∈R
inf
x∈C
{f(x) + λg(x)}. (D)

Here the set C is called geometric set of constraints. The feasible set is denoted by

K = {x ∈ C : g(x) = 0}.

It is possible to solve the primal problem indirectly by solving the dual problem. Associated
with the problem (P), there is a family of perturbed problems, which vary according to certain
parameter a ∈ R. These problems are obtained by replacing the original feasible set with
the set

K(a) = {x ∈ C : g(x) = a}.

Moreover, with this new set we define the function ψ : R→ R, called a perturbation function.
For each a ∈ R we associate the value

ψ(a) =

{
inf{f(x) : g(x) = a, x ∈ C}, if K(a) 6= ∅,
+∞, if K(a) = ∅.

This problem is denoted by (Pa). In particular, when a = 0 we recover the primal problem
(P), that is, ψ(0) = µ and Flores-Bazán, Jourani & Mastroeni show in [30] that domψ =
g(C).

Additionally, we associate with problem (P) the Lagrangian

L(γ, λ, x) = γf(x) + λg(x),
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where γ ≥ 0 and λ ∈ R are the Lagrangian multipliers. With the scheme above, the dual
problem can be rewritten in the form

ν = sup
λ∈R

inf
x∈C

L(1, λ, x).

As we mentioned before, the next inequalities trivially hold

γ inf
x∈K

f(x) ≥ inf
x∈K

L(γ, λ, x) ≥ inf
x∈C

L(γ, λ, x), for all γ ≥ 0, for all λ ∈ R. (7.2)

This implies that ν ≤ µ. So, we only consider the case when µ ∈ R and K 6= ∅, since, if
µ = −∞ =⇒ ν = −∞, then any element of R is a solution of (D). On the other hand, when
K is an empty set, the problem (P) does not make sense. Thus, to have a strong duality
property we need the opposite inequality in (7.2) for some γ ≥ 0 and λ ∈ R, that is, one
must have

γ(f(x)− µ) + λg(x) ≥ 0 for all x ∈ C, (γ > 0)

〈(γ, λ), (f(x)− µ, g(x))〉 ≥ 0 for all x ∈ C
〈(γ, λ), a〉 ≥ 0 for all a ∈ F (C)− µ(1, 0)

〈(γ, λ), a〉 ≥ 0 for all a ∈ F (C)− µ(1, 0) + R+ × {0}
〈(γ, λ), a〉 ≥ 0 for all a ∈ Eµ
〈(γ, λ), a〉 ≥ 0 for all a ∈ co Eµ
〈(γ, λ), a〉 ≥ 0 for all a ∈ cone(co Eµ),

where F = (f, g), F (C) = {(f(x), g(x)) : x ∈ C} and Eµ = F (C)− µ(1, 0) + R+ × {0}.

From the above relationships, the first equivalence of the following theorem that relates
strong Duality to the set cone(co Eµ) appears naturally. This result appears in [31, Theorem
3.2].

Theorem 7.1 Let µ ∈ R. The following statements are equivalent

a) Strong Duality holds.

b) cone (co Eµ) ∩ − (R++ × {0}) = ∅.

The next Theorem comes from [30, Theorem 3.1].

Theorem 7.2 If K(0) 6= ∅, then ν = ψ∗∗(0).

Proposition 7.3 If µ = ψ(0) ∈ R, then the following statements hold:

a) ψ(0) = ψ(0)⇐⇒ Eµ ∩ −R++ × {0} = ∅,

b) coψ(0) = ψ(0)⇐⇒ co Eµ ∩ −R++ × {0} = ∅.
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When the set Eµ is convex and the optimal value of the primal problem is finite, Theorem
3.6 in [30] provides a zero duality gap.

Theorem 7.4 If Eµ is convex and µ ∈ R, then the following hold:

a) ν = ψ(0).

b) ν = µ⇐⇒ ψ(0) = ψ(0).

Item b) in the previous theorem says that, under the convexity hypothesis, we only need
to add the lower semi-continuity at 0 of the perturbed function to guarantee a zero duality
gap.

In [30, Theorem 3.2] a relationship is presented between the perturbed function ψ and the
set F (C) + R+ × {0}, which says

F (C) + R+ × {0} ⊆ epiψ ⊆ F (C) + R+ × {0}.

If in the previous inclusions we take the closure and convex hulls and also consider the set
Eµ, then we obtain the following equalities

epiψ = F (C) + R+ × {0},
Eµ = epiψ − µ(1, 0),

co(Eµ) = co(epiψ)− µ(1, 0).

An alternative way to present the duality theory is exposed in Lemaréchal & Renaud [41],
where problem (P) is treated geometrically, this is achieved by relating the infimum of the
Lagrangian with the support function. If we keep the notation as before, problem (P) can
be equivalently rewrite by

inf{r0 : f(x) ≤ r0, g(x) = 0, x ∈ C}.

And in its geometric version presented in the cited work,

inf{r0 : (x; r0, 0) ∈ G for some x ∈ C},

where G = {(x; r0, a) ∈ X × R × Y : x ∈ C, f(x) ≤ r0, g(x) = a}. To show the geometric
form of the dual problem (D), we need an auxiliary function. Let the auxiliary function θ
defined by Θ : R→ R, λ 7→ Θ(λ) := infx∈C L(1, λ, x).

Observe that

Θ(λ) = inf
x∈C

(f(x) + λg(x))

= − sup
x∈C

(−f(x) +−λg(x)) ,
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so the geometric form of this function will be Θ(λ) = −σG(0;−1,−λ). Indeed, we have that

σG(0;−1,−λ) = sup
(x;r0,r)∈G

〈(0;−1,−λ), (x; r0, a)〉

= sup
(x;r0,a)∈G

−r0 − λ>a

= − inf
(x;r0,a)∈G

r0 + λ>a

= −Θ(λ).

With the new notation, the perturbed function is expressed through

ψ(a) = inf{r0 : (x; r0, a) ∈ G, para algún x ∈ Rn}.

In [41, Proposition 2.5], Lemaréchal & Renaud present a relationship between the function
Θ and the Fenchel-Legendre conjugate of the perturbed function ψ.

Proposition 7.5 If the function Θ is not identically −∞, then it holds that

−Θ(−λ) = ψ∗(λ).

In addition, a modification of the perturbed function is defined. Let ψ̃(a) = inf{r0 :
(x; r0, a) ∈ G∗∗, for some x ∈ Rn}. This function is shown to be convex and satisfy the
following relations

1. ψ̃∗(λ) = ψ∗(λ) = −Θ(−λ).

2. ψ̃∗∗ = ψ∗∗.

Once both schemes have been presented, it is possible to relate some results that are obtained
using the perturbed function. We re-write the set G to obtain

G = {(x, f(x), g(x)) : x ∈ C}+ {0} × R+ × {0}.

Also we consider the set

C × epiψ = {(x, t, a) ∈: x ∈ C, ψ(a) ≤ t}.

Thus, we have
G ⊆ C × epiψ ⊆ G.
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7.3 General problem

Let us consider the following data,

f(x) =
1

2
x>Ax+ 2r>x, A ∈Mn×n(R), A = A>, x ∈ Rn.

C ⊆ Rn closed convex cone and pointed.

e ∈ int C∗.

P = {0}.
g(x) = e>x− 1.

4 = {x ∈ Rn : g(x) = 0, x ∈ C}.

We consider the primal Problem
µ = inf

x∈4
f(x). (7.3)

The function f : Rn → R is a non-homogeneous quadratic form, but as we see before in
Chapter 2, due to the structure of the feasible set, we can transform the function f into a
homogeneous quadratic form through the matrix

Ã =
1

2
A+ e · r> + r · e>.

Thus,

inf
x∈4

(
1

2
x>A x+ 2 · r>x

)
= inf

x∈4
x>
(

1

2
A+ e · r> + r · e>

)
x

= inf
x∈4

1

2
x>Ã x.

So, we just study the problem when r = θ.

For this type of problem, we want to prove the zero duality gap and strong duality. In the
first part we will see the properties that the problem has and then we will try to prove the
desired relation.

Let a ∈ R and define the set 4a = {x ∈ C : e>x− 1 = a}. From here it is easy to see that
the set 4a is closed and convex for all a ∈ R; moreover, if a ∈ R is such that 4a = ∅, then
the properties hold trivially. Also, when a = 0 we get the set of constraints for the original
problem (7.3), that is, 4 = 40, which is a bounded set. Since the quadratic function is
continuous and the set of constraints is compact, by the Weierstrass’s Theorem the problem
(7.3) attains its minimum, so we can write

µ = min
x∈40

f(x).

We note that the set 40 is a base of the constraints set C, because any element in C can
be represented by a suitable weight of an element of 40. Indeed, is a ∈ R such that 4a 6= ∅,

x ∈ 4a ⇐⇒ e>x− 1 = a, x ∈ C,
⇐⇒ x = t · y, for some y ∈ 40 y t = 1 + a.
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Furthermore, when we use this representation on the objective function, for each x ∈ 4a we
get

f(x) =
1

2
x>Ax =

1

2
(1 + a)2y>Ay (y ∈ 40)

= (1 + a)2f(y) (y ∈ 40).

From the above analysis, we havethat

min
x∈4a

f(x) = (1 + a)2 min
y∈40

f(y)

= (1 + a)2µ, for all a ≥ −1. (7.4)

Otherwise, using the perturbation function ψ, we know from Section 7.2 that its domain
satisfies the equality domψ = g(C) + P . So, by (7.4), for every element of its domain it is
possible to compute explicitly the value of the function ψ through the following relation

inf
x∈4a

f(x) = (1 + a)2 inf
y∈40

f(y)

q q
ψ(a) (1 + a)2µ.

Therefore,

ψ(a) =

{
(1 + a)2µ, if a ≥ −1,

+∞, e.o.c.

Then we can conclude that ψ is convex on R and lsc for every element in its effective domain.
Hence by Theorem 7.2 and Theorem 7.3, the duality gap for problem (7.3) is zero. Based on
the information obtained, we can see in Figure 7.1 the graph of the perturbation function.
Figure 7.2 shows the epigraph of ψ for different optimal values.

Figure 7.1: Perturbed Function, ψ.

Theorem 7.6 Let A,C and e be as before. Then,

a) the perturbed function ψ is given by

ψ(a) =

{
µ(1 + a)2, if a ≥ −1;

+∞, if a < −1.

90



(a) epiψ with µ > 0. (b) epiψ with µ = 0.

Figure 7.2: Epigraph of perturbed Function, epiψ.

Thus, ψ is convex if and only if µ ≥ 0.

b) cone (Eµ) ∩ − (R++ × {0}) = ∅

c) F (C) and F (C) + R+(1, 0) are closed, so

epiψ = F (C) + R+(1, 0).

Proof. a) Seen before.

b) Now we would like to prove that problem (7.3) satisfies the strong duality. Applying Theo-
rem 7.1 we just need to prove that the intersection between the sets is empty. By contradic-
tion, we can assume that there is an element (a, 0) ∈ cone (Eµ)∩− (R++ × {0}). So, there
exists a sequence {(ak, bk)}k∈N ⊆ cone (Eµ), where (ak, bk) = tk(uk, vk) = (tkuk, tkvk) −→
(a, 0) with (uk, vk) ∈ Eµ and tk > 0 (if for all k ∈ N, tk = 0, we obtain a contradiction be-
cause tkux → a < 0). So, (uk+µ, vk) ∈ epiψ, that means that ψ(vk) ≤ uk+µ = uk+ψ(0).
For item a) we know that ψ(vk) = (1 + vk)

2ψ(0). Hence, if ψ(0) = 0, then 0 ≤ uk and
multiplying both sides of the inequality by tk and then, taking the limit when k → +∞,
we get a contradiction. On the other hand, if ψ(0) > 0, then we multiply the inequality
(1 + vk)

2ψ(0) ≤ uk + ψ(0) by tk to obtain

tk(1 + vk)
2ψ(0) ≤ tkuk + tkψ(0)

⇐⇒ tk(1 + 2vk + v2
k)ψ(0) ≤ tkuk + tkψ(0)

=⇒ (2tkvk + tkv
2
k)ψ(0) ≤ tkuk

=⇒ 2tkvkψ(0) ≤ (2tkvk + tkv
2
k)ψ(0) ≤ tkuk. (tkv

2
k ≥ 0) (7.5)

Then, taking the limits when k → +∞ in (7.5), we come to a contradiction. So, the
assumption is false and due to Theorem 7.1 strong duality holds.

c) Additionally, we show that the set F (C) + R+ × {0} is closed. Indeed, let (r, a) ∈
F (C) + R+ × {0}. Then there exists a sequence {xk}k∈N ⊆ C, {qk}k∈N ⊆ R+ such that

(f(xk) + qk, g(xk)) −→ (r, a),

f(xk) + qk −→ r,

g(xk) −→ a.
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First we show that the sublevel set of function g are bounded. Let λ ∈ R and denote

Sλ := {x ∈ C : g(x) ≤ λ},
= {x ∈ C : e>x− 1 ≤ λ}.

Since the element e belongs to int C∗, by [28, equation (2.3)] we have e>x > 0 for all
x ∈ C\{0}. Now, we assume that there exists a sequence {xk}k∈N ⊆ Sλ such that ‖xk‖ →
+∞. From this sequence it is possible to create a new one of the form

{
xk
‖xk‖

}
⊆ C such

that xk
‖xk‖
→ v 6= 0. Since for all k ∈ N the term xk satisfies the inequality e>xk − 1 ≤ λ,

we can multiply both sides by
1

‖xk‖
to get

e>
xk
‖xk‖

− 1

‖xk‖
≤ λ

‖xk‖
. (7.6)

Taking the limits when k → +∞ we obtain e>v ≤ 0, which contradicts the fact that
vector e belongs to the set int C∗. This completes the proof, that is, the sublevel sets Sλ
are bounded.

Second, since C is a closed set and the sublevels of g are bounded, we can conclude that
there exists a convergent subsequence {xkl}l∈N, with xkl −→ x̄ ∈ C. Then

i. f(xkl) −→ f(x̄) (f is continuous).

ii. qkl = [f(xkl) + qkl ]− f(xkl) −→ r − f(x̄) = q ≥ 0; then, r = f(x̄) + q ∈ f(C) + R+.

iii. g(xkl) −→ g(x̄) = a ∈ g(C).

Therefore (r, a) ∈ F (C) + R+ × {0} and, as consequence, the set F (C) + R+ × {0} is
closed.

Furthermore, from section 7.2 we have certain relations that establish a connection be-
tween the set F (C)+R+×{0} and the perturbed function ψ. Since the perturbed function
turns out to be convex, we conclude that the last set is also convex.

In the following Theorem we establish the explicit value of the function Θ(λ) = inf
x∈C

L(1, λ, x).

This is a generalization of the result of Bomze, Locatelli & Tardella in [3, Theorem 4].

Theorem 7.7 Let A ∈ Mn×n(R) be a symmetric matrix, C a closed convex and pointed
cone, e ∈ int C∗. We have that

1. If µ > 0, then

Θ(λ) =

−λ, if λ ≥ 0,

−λ− 1

4µ
λ2, if λ < 0.
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2. If µ = 0, then

Θ(λ) =

{
−λ, if λ ≥ 0,

−∞, if λ < 0.

Therefore sup {Θ(λ) : λ ∈ R} = µ and, so, the duality gap is zero.

Proof. We know that λ ∈ R. We proceed by cases.

1. Case 1: λ ≥ 0. The infimum of Θ(λ) is attained at x = 0, that is, Θ(λ) = −λ.

Case 2: λ < 0. The inequality [x>Ax+ λe>x]2 ≥ 0 is fundamental to the conclusion

[x>Ax+ λe>x]2 = 2(x>Ax)

(
1

2
x>Ax+ λe>x

)
+ (λe>x)2 ≥ 0

⇐⇒ 1

2
x>Ax+ λe>x ≥ −(λe>x)2

2x>Ax
. (7.7)

Moreover,
(e>x)2

2x>Ax
≤ 1

4µ
∀ x ∈ C, x 6= 0. (7.8)

Indeed, let x = t · y where y ∈ 40. Thus,

(e>x)2

2x>Ax
=
t2(e>y)2

2t2y>Ay
=

1

2y>Ay
.

Since y ∈ 40, the inequality 0 < µ ≤ 1

2
y>Ay is always fulfilled and this implies

1

4µ
≥ 1

2y>Ay
. For the associated Lagrangian to problem 7.3 we have that:

L(1, λ, x) :=
1

2
x>Ax+ λ(e>x− 1)

=
1

2
x>Ax+ λe>x− λ

≥ −(λe>x)2

2x>Ax
− λ (by (7.7) )

≥ −λ
2

4µ
− λ. (by (7.8))

Let x̄ be an optimal solution to problem (7.3). Then x̄ ∈ C and since C is a cone, we
have x0 = − λ

2µ
x̄ ∈ C. So, x0 is a feasible point of problem infx∈C L(1, λ, x) and

L(1, λ, x0) =
1

2
x>0 Ax0 + λ(e>x0 − 1)

=

(
− λ

2µ

)2
1

2
x̄>Ax̄− λ2

2µ
− λ

=
λ2

2µ

[
1

2
− 1

]
− λ

= −λ
2

4µ
− λ.
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With the arguments above it is proved that

inf
x∈C

L(1, λ, x) = −λ
2

4µ
− λ, when λ < 0.

2. Case 1: λ ≥ 0. The argument is the same as the previous item.

Case 2: λ < 0. For the function Θ we have that

Θ(λ) = inf
x∈C

{
1

2
x>Ax+ λ(e>x− 1)

}
= inf

t≥0, y∈40

{
t2 · 1

2
y>Ay + λ(t− 1)

}
= −∞.

Therefore, as a conclusion, we do not only know the explicit value of the perturbed func-
tion, ψ, but also the explicit value of the function Θ(λ) = inf

x∈C
L(1, λ, x).

7.4 Standard quadratic problems

The standard quadratic problem is given by:

µ = min

{
1

2
x>Ax : 1>x = 1, x ≥ 0

}
, (7.9)

where A ∈Mn×n(R) is a symmetric matrix and 1 = (1, · · · , 1) ∈ Rn.

Observe that this Problem (7.9) is just a particular case of Problem (7.3), because it
is enough to consider C = Rn+. Moreover, the closed convex pointed cone coincides with its

polar set, so 1 = e ∈ int Rn+ = Rn++ and the involved functions become f(x) =
1

2
x>Ax and

g(x) = 1>x− 1. Now, the feasible set is K = {x = (x1, · · · , xn) ∈ Rn+ : g(x) = 0}.

On the other hand, remember that for this problem the quadratic form may or may not be
homogeneous. But as we saw before, in Chapter 2, it is possible to assume that the entries of
the matrix A are all strictly positive, that is, the condition A = (aij), aij > 0 is a consequence
of the problem and not an additional hypothesis.

By virtue of these observations, we have all the results obtained in the generalized problem.
In summary, the standard quadratic problem satisfies the following properties:

1. For the perturbed function ψ, we have an explicit expression plus some properties

i) ψ(a) =

{
(1 + a)2µ, if a ≥ −1;

+∞, if a < −1.
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ii) convex on R.

iii) continuous on ]− 1,+∞[.

iv) lsc for all a ≥ −1.

2. Zero duality gap.

3. Strong duality.

4. F (C) + R+ × {0} is closed and convex.

The following Theorem, coming from Bomze, Locatelli & Tardella in [3, Teorema 4], gives
us the explicit value of the function Θ(λ) = inf

x≥0
L(1, λ, x) for the standard quadratic problems.

Theorem 7.8 Assume that the matrix A has only positive entries. Then, for function Θ we
obtain

Θ(λ) =

−λ, if λ ≥ 0,

−λ− 1

4µ
λ2, if λ < 0.

Therefore sup {Θ(λ) : λ ∈ R} = µ and, thus, the duality gap is zero.

Proof. The proof is analogous to proof of Theorem 7.8 with C = Rn+ and the vector
1 = e.
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Chapter 8

Future work

The research developed in this PhD thesis provided solutions to many open problems, but
also gave rise to some open questions that deserve to be studied in future works. Some of
them are described below:

1. I would to work on numerical implementations of our reduction methods, previously
presented in Chapter 3, in order to take advantage of this kind of reductions when
general semi-infinite optimization problems are involved. In the literature, we can find
some research works that can help us with our goal like, for example, the books of
Fletcher [25] and Nocedal & Wright [47], and the paper of Cera et al. [11]. I am also
considering the use of these methods in concrete problems like in locating problems,
Chebyshev approximation theory and multi-objective problems.

2. I would like to extend the reduction methods obtained for SIP and semi-infinite multi-
objective problems to cover quasi-convex functions, that can be considered either to
model the (multi-) objective functions or the constraints. I am aware that the approach
used here in the convex case could not be extended in a direct way, since there is still
no consensus on a unified concept of subdifferential for such functions. But still there
is a hope to obtain some things in this direction because of the rich properties of
quasi-convex functions, as it can be confired by the works of Auslender & Teboulle [1],
Flores-Bazán & Hadjisavvas [29], Flores-Bazán & Thiele [32], Jeyakumar et al. [39]
and Rockafellar [53].

3. Due to the diversity of formulas developed for the characterization of the subdifferential
for the supremum function, we would like to extend them to the non-convex setting,
possibly with the use of generalized concepts like the strong and weak slopes ([22]).
This would allow us to extend our results to the general setting of metric spaces and,
so, to cover, a wide range of applications namely in the theory of metric critical points
(see for example [18], [19] and [21]).
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