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RESUMEN DE TESIS

PARA OPTAR AL GRADO DE

DOCTORA EN CIENCIAS DE LA INGENIERIA,
MENCION EN MODELACION MATEMATICA
POR: STEPHANIE PAOLA CARO TORRES
FECHA: 2023

PROF. GUIA: ABDERRAHIM HANTOUTE

Discretizacion y reduccién en optimizacién semi-infinita y calculo
subdiferencial para funciones supremo

El principal objetivo de esta tesis es proporcionar esquemas generales de discretizacién
para problemas de optimizacién semi-infinita que permitan reescribirlos en problemas de
optimizacién ordinaria. Los argumentos de reducciéon permitirdn a su vez que el nimero
de restricciones involucradas se reduzca como maximo a la dimension del espacio mas uno,
siempre que el problema original se define en un contexto finito-dimensional. Las principales
herramientas de esta parte son un nuevo teorema de tipo minimax (de dimensién finita),
por un lado, y, por otro, nuevas reglas de calculo subdiferencial para la funcién supremo
definida en espacios localmente convexos (de dimension infinita). Estas tltimas reglas se dan
de forma explicita y exclusiva a través de los datos. Nuestros resultados incluyen nuevos
logros y también diferentes extensiones de resultados existentes en la literatura, como los
establecidos para la teorfa de la discretizacion en [6], [24], [42], [53], y [55] entre muchos
otros. En particular, obtenemos generalizaciones de [42] y [24].

Nuestro enfoque también conduce a nuevas caracterizaciones del subdiferencial de la
funcién supremo que amplian algunos resultados recientes en [16], [35] y [43]. Nuestro en-
foque permite férmulas mas explicitas ya que no apelamos al cono normal del dominio de
esta funcién surpemo sino directamente a las funciones involucradas. Aplicados a proble-
mas de optimizacion, estos resultados nos proporcionan nuevas y generales condiciones de
optimalidad, de tipo Fritz-John y KKT, que resaltan el papel que desempenan las funciones
cuasi-activas y no activas en el punto de referencia.

Aplicamos los argumentos de discretizacion anteriores a problemas de optimizacion multi-
objetivo semi-infinita para proporcionar caracterizaciones de soluciones débilmente eficientes
utilizando subproblemas que involucran funciones objetivo con un ntimero finito de funciones
de dato. Mas precisamente, el nimero de dichas funciones no debe exceder la dimension del
espacio més uno. Esto nos permitird dar extensiones de algunos de los resultados en [44], [49],
[50] y [59]. La parte final de esta tesis trata de problemas de optimizacién cuadratica que
generalizan la optimizacién cuadratica estandar, donde el simplejo n-dimensional usual se
reemplaza por una base convexa compacta de un cono convexo cerrado puntiagudo. Estable-
ceremos un resultado de dualidad fuerte y proporcionaremos una forma explicita de la funcion
valor (perturbada) asociada con estos problemas, proporcionando asi una generalizacién de
[3, Teorema 4].

Palabras claves: Optimizacién semi-infinita, funciones convexas, procesos de discretiza-
cion y reduccién, funcion supremo, teoria del subdiferencial y condiciones de optimalidad,
teoria de minimax.
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Discretization-reduction in semi-infinite optimization and subdifferential
calculus for supremum functions

The main objective of this thesis is to provide general discretization schemes for semi-
infinite optimization problems that allow them to be rewritten into ordinary optimization
problems. The reduction arguments will in turn allow the number of constraints involved
to be reduced to at most the dimension of the space plus one. The main tools of this
part are some new (finite-dimensional) minimax-type theorems, on the one hand, and, on
the other, new subdifferential calculus rules for the subdifferential of pointwise suprema
defined in (infinite dimensional) locally convex spaces. These last rules are given explicitly
and exclusively through the data provided. Our results include new achievements and also
different extensions of existing results in the literature, such as those established for the
discretization theory in [6], [24], [42], [53] and [55] among many others. In particular, we
obtain some consistent generalizations of [42] and [24].

Our approach also gives rise to new characterizations of the subdifferential of pointwise
suprema that extend some recent results in [16], [35] and [43], and which constitute the main
tool to obtain the aforementioned minimax theorems. Our analysis allows more explicit
formulas since we do not appeal to the normal cone of the domain of these suprema but
directly to the functions involved. Applied to optimization problems, these results provide
us new and general optimality conditions of Fritz-John and KKT types, which highlight the
role played by almost active and non-active constraints functions.

We apply the above discretization arguments to multi-objective optimization problems to
provide characterizations of weakly efficient solutions using subproblems involving finitely
many objective functions. More precisely, the number of such functions must not exceed the
dimension of the space plus one when the underlying setting is a finite dimensional. This will
allow us to give extensions of some of the results in [44], [49], [50] and [59]. The final part
of this thesis deals with quadratic optimization problems that generalize standard quadratic
optimization, where the usual n-dimensional simplex is replaced by a compact convex base
of a pointed closed convex cone. We will establish a strong duality result for this kind of
problems and provide an explicit form of the associated value (or perturbed) function that
results in a useful generalization of [3, Theorem 4].

Keywords: Semi-infinite optimization, convex functions, discretization and reduction
processes, supremum functions, subdifferential and optimality theory, minimax theory.
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Viaje a Itaca

Cuando emprendas tu viaje a [taca pide que el camino sea largo, lleno de aventuras, lleno
de experiencias. No temas a los lestrigones ni a los ciclopes ni al colérico Poseidon, seres
tales jamés hallards en tu camino, si tu pensar es elevado, si selecta es la emocion que toca
tu espiritu y tu cuerpo. Ni a los lestrigones ni a los ciclopes ni al salvaje Poseidon
encontraras, si no los llevas dentro de tu alma, si no los yergue tu alma ante ti.

Pide que el camino sea largo. Que muchas sean las mananas de verano en que llegues -jcon
qué placer y alegrial- a puertos nunca vistos antes. Detente en los emporios de Fenicia y
hazte con hermosas mercancias, nacar y coral, ambar y ébano y toda suerte de perfumes

sensuales, cuantos mas abundantes perfumes sensuales puedas. Ve a muchas ciudades
egipcias a aprender, a aprender de sus sabios.

Ten siempre a Itaca en tu mente. Llegar alli es tu destino. Mas no apresures nunca el viaje.
Mejor que dure muchos anos y atracar, viejo ya, en la isla, enriquecido de cuanto ganaste en
el camino sin aguantar a que Itaca te enriquezca.

[taca te brindé tan hermoso viaje. Sin ella no habrias emprendido el camino. Pero no tiene
ya nada que darte.

Aunque la halles pobre, [taca no te ha enganado. Asi, sabio como te has vuelto, con tanta
experiencia, entenderds ya qué significan las Itacas.
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Chapter 1

Introduction

1.1 English version

This thesis delves into the theory of Convex Analysis, visiting different topics dealing with
optimization problems that are studied from many points of view. The analysis carried out is
done through several steps organized into chapters, each with its own interest but all aimed
at better understanding the arguments of discretization and reduction in optimization theory,
namely in semi-infinite optimization and subdifferential theory.

The objectives of the thesis include the following items:

e Provide new minimax-type theorems of the form max inf f(z,t) = inf max f(x,t)
teT weRn 2ER™ teT

that allow reducing the number of the data functions involved, f;(-) := f(-,t), t € T
(with T possibly infinite), to at most n + 1 functions, where n is the dimension of the
underlying Euclidean space. It is worth observing that the classical minimax theorem
cannot be used here, at least not directly, since our model lacks the necessary hypotheses
required by the classical minimax theorem. In a second step, we analyze the relationship
between the optimal solutions of a given semi-infinite programming problem and the
optimal solutions of its sub-problems given with finitely many constraints and whose
number does not exceed n.

e Provide general characterizations of the subdifferential of the supremum of an arbitrary
family of convex functions defined on locally convex spaces, and indexed in arbitrary
sets. The desired characterizations will be given by means exclusively of the data func-
tions, without involving additional concepts like the effective domain of the supremum
or finite-dimensional sections of it.

e Provide applications to multi-objective and quadratic optimization.

The importance of minimax-type theorems, semi-infinite programming and Infsup prob-
lems is a well-known fact. There exists a lot of works in the literature related with this three
topics (see, e.g., [42], [5] and [4]). For finite-dimensional spaces, there are many results in
the literature dealing with the idea of reducing the number of sets or functions involved in
optimization problems either within the objective (or multi-objective) function or the cons-



traints. The most emblematic achievements are the theorems of Helly and Carathéodory and
their extensions; see, for example, [53], [42], [6], [24] and [55] to name a few. More specifically,
the problem of characterizing the subdifferential of the supremum function has been raised
since the 1960s, and there are several contributions from different authors; see, for instance,
Brgndsted & Rockafellar [8], Valadier [57], Brgndsted [7], Hantoute, Lépez & Zalinescu [35]
among many others.

These minimax problems and subdifferential calculus of the supremum are also useful in
multiobjective optimization problems; see, Jahn [38] and Sawaragi et al. [54] where one can
find the development of this theory and applications around this type of problems.

The topics studied in this thesis respond to the main objectives cited above and are un-
dertaken through five main chapters, each dedicated to responding to a particular objective.
These are given after Chapters 2 which is dedicated to fix the notations and provide some
preliminary results.

Chapter 3, entitled Discretization and reduction of Infsup and SIP optimization problems,
provides new minimax type results together with a reduction process for semi-infinite op-
timization problems. Chapter 4, entitled Subdifferential calculus: characterizations of the
normal cone to the domain of the supremum function, gives the first step towards the study
of the subdifferential of pointwise suprema. Chapter 5, entitled Subdifferential calculus for
pointwise suprema, presents new characterizations of the subdifferential of pointwise suprema
given explicitly by means of the data functions. Chapter 6, entitled Multiobjective optimiza-
tion, focuses on convex multiobjective optimization problems where the multiobjective func-
tions includes infinitely many functions. In this case, we provide characterizations of the set
of weakly efficient solutions by means of appropriately chosen sub-problems. Chapter 7, enti-
tled Strong duality for some quadratic problems, deals with a generalized quadratic problem
that contains as a particular case the well-known standard quadratic problem. Finally, in
Chapter 8 we present some future works that will arise from this thesis.

Below we describe the contents of each chapter.

In Chapter 3 we develop a minimax theorem which takes into account the reduction of
the number of the functions involved, allowing to rewrite Infsup type problems into Infmax
problems. Applied to optimization theory, these arguments will allow to transform semi-
infinite programming problem (SIP, for short) into an ordinary optimization problem. The
main result of this chapter is Theorem 3.1, which establishes that

inf su r)= max infmax{f; +1Ip, t € S},
R™ tez? fil®) SCT, |S|<n+1 R" {fi+1p }

for an appropriately chosen set D that takes into account the geometry of the effective
domains of the f;’s or of their supremum. This, in particular, covers some of the results in
[24, Theorem 1] (see Theorem 3.3). The reduction process above is applied in Theorem 3.8 to
SIP problems, generalizing Levin’s Theorem in [42]. Some other extensions are given in this
chapter such as an alternative-type theorem (Theorem 3.10), Lagrangian reformulation of
SIP problems, and less restrictive qualifications conditions (Slater conditions for constraint
blocks (Corollary 3.13)). The results contained in this chapter are part of the following
pre-print,



Caro, S. & Hantoute, A. Discretization and reduction of Infsup and SIP
optimization problem, pre-print.

Chapter 4 is dedicated to establish a characterization of the normal cone to the effec-
tive domain of pointwise suprema. Indeed, such a normal cone plays an important role in
establishing subdifferential calculus rules for the subdifferential of the supremum as shown
in different works like Hantoute, Lépez & Zalinescu [35], Lépez & Volle [43] and Correa,
Hantoute & Lépez [16]. Thus, its characterization by means of the data functions would
allow for complete characterizations of the subdifferential of the supremum. The main result
of this chapter is given in Theorem 4.7, stating that

teTh teT\To

Naom r(2) = [@ << U 85(Pt,sft)($)) U ( U Nilmﬁ(@))] , for all € > 0,

where Ty := {t € T : cl f; is proper}.

Chapter 5 presents a characterization of the subdifferential of the pointwise supremum
function. Now, with the help of Chapter 4, we will be able to provide a formula for such a
subdifferential which is written only by means of the data functions involved. For instance,
given an arbitrary set 7" we show in Theorem 5.1 that

of@ =@ | U ofi@)+ e U 0(pef)@ || | Nagmp(@)U{6}

e>0 teT:(x) teTo\T:(x) teT\To

The special case of compact index sets is also studied in Theorem 5.3 and Corollary 5.4.
Our results provide direct characterizations of the recent papers Correa, Hantoute & Lépez
[12] and Hantoute & Lépez [34]. The results contained in Chapters 4 and 5 are part of the
following pre-print,

Caro, S. & Hantoute, A. Highlighting the role of active and non-active
functions in optimization and subdifferential calculus, pre-print.

Chapter 6 is devoted to multiobjective semi-infinite-programming problems given in the
form

min{fi(x) :t € T},

where f; : R" — R, t € T, is a family of extended real-valued functions with T" being an
arbitrary set, and S C R" is a nonempty convex set. First, we focus on the description of the
set of weakly efficient solutions of the problem above by using the information provided by
the associated sub-problems that involve no more that n+ 1 objective functions. This results
has been also analyzed elsewhere (for instance, in Lowe et al. [44] and Ward [59]) when T
is finite. Our approach uses the arguments developed in Chapter 3. The main result of this
chapter is Theorem 6.4 that states that

WEr(S)= |J WEs(SnD).

BCT,|B|<n+1

In particular, we get Corollary 6.5 which recovers similar results in Plastria & Carrizosa [50].



Also, we provide characterizations of the set of weakly efficient solutions by means of
the subdifferential of the associated (supremum) objective function and the normal cone to
the constraints set S. Namely, in Theorem 6.6 we obtain the following equivalence that
generalizes some of the results in [50]:

T € WEp(S) <= 60 € Ng(z) + [ | @ (U 8Eft(3z)) .

e>0 teT
The results contained in this chapter are part of the following work which is in progress,

Caro, S. & Hantoute, A. Reduction arguments in multi-objective opti-
mazation and subdifferential calculus.

Finally, in Chapter 7 we consider a generalization of the standard quadratic problem,
which is given by

1
= inf  —z"Az+2r'z,
K g(x)=0, zeC 2
where C' C R" is a closed convex cone, e € intC* and g(z) := e’z — 1. The chapter

begins with a review of the Lagrangian duality theory, emphasizing the importance of the
relations given by Flores-Bazan & Mastroeni in [31]. We also study the equivalence between
the solutions of the dual/primal problems and the associated perturbation function given by
Flores-Bazan, Jourani & Mastroeni in [30]. Our main result, given in Theorem 7.6, proves
a strong duality theorem for the given quadratic problem through an explicit formulation of
the perturbed function, 1,

¥(a) = {(1 +a)’u, ifa>-—1,

~+00, if a < —1.

This analysis reveals a hidden convexity in the given quadratic problem, namely in view of
the fact that the set

{(f(2), 9(z)) - 2 € O} + Ry x {0}

is convex. In Theorem 7.8, we present a generalization to some of the results in [3], showing
an explicit form of the function ©()\) = inf,cc f(x) + AM(e"z — 1). The results contained in
this chapter are part of the paper,

Flores-Bazan, F., Carcamo, G. & Caro, S. Eztensions of the Standard
quadratic optimization problem: strong duality, optimality, hidden convezx-
ity and S-lemma, Appl. Math. Optim. 81 (2020), no. 2, 383-408.



1.2 Spanish version

Esta tesis profundiza en la teoria del Anélisis Convexo, visitando diferentes temas que tratan
problemas de optimizacion estudiados desde muchos puntos de vista. El andlisis realizado se
organiza a través de varias etapas organizadas en capitulos, cada uno con su propio interés
pero todos dirigidos a comprender mejor los argumentos de la discretizacién y la reduccion
en la teoria de la optimizacién, concretamente en la optimizacion semi-infinita y la teoria
subdiferencial.

Los objetivos de la tesis incluyen los siguientes puntos:

e Proporcionar nuevos teoremas de tipo minimax de la forma siguiente max inf f(x,t) =
teT zeR”

inf max f(x,t) que nos permitan reducir el nimero de funciones de dato involucradas,
z€Rn teT

fi(+) :== f(-,t), t € T (con T posiblemente infinitas) hasta a lo mas n + 1 funciones,
donde n es la dimensién del espacio Euclidiano subyacente. Vale la pena senalar que
el teorema clasico del minimax no se puede utilizar aqui, al menos no directamente, ya
que nuestro modelo carece de las hipdtesis necesarias que requiere el teorema clasico del
minimax. En un segundo paso, analizamos la relacién entre las soluciones éptimas de
un problema de programacion semi-infinito y la solucién éptima de sus subproblemas
con un numero finito de restricciones y cuyo nimero no exceda n.

e Proporcionar caracterizaciones generales del subdiferencial del supremo de una familia
arbitraria de funciones convexas definidas en espacios localmente convexos e indexadas
en conjuntos arbitrarios. Las caracterizaciones deseadas se daran exclusivamente me-
diante las funciones dato, sin involucrar conceptos adicionales como el dominio efectivo
del supremo o secciones finito-dimensional de este conjunto.

e Proporcionar aplicaciones para optimizacion cuadratica y multiobjetivo.

La importancia de los teoremas de tipo minimax, la programacion semi-infinita y los
problemas Infsup es un hecho bien conocido. Existe una gran variedad de trabajos en la
literatura relacionados con estos tres temas (ver, por ejemplo, [42], [5] y [4]). Para espacios
de dimensién finita, hay muchos resultados en la literatura que tratan con la idea de reducir el
nimero de conjuntos o funciones involucradas en problemas de optimizacién, ya sea dentro de
la funcién objetivo (o multiobjetivo) o de las restricciones. Los resultados mas emblematicos
son los teoremas de Helly y Carathéodory, y sus extensiones; véase, por ejemplo, [53], [42],
[6], [24] y [55] por nombrar algunos. M4ds especificamente, el problema de caracterizar la
subdiferencial de la funcién suprema se plantea desde la década de 1960, y existen varias
contribuciones de distintos autores; véase, por ejemplo, Brendsted & Rockafellar [8], Valadier
[57], Brondsted [7], Hantoute, Lépez & Zalinescu [35] entre muchos otros.

Estos problemas de tipo minimax y el calculo subdiferencial del supremo también son
ttiles en problemas de optimizacién multiobjetivo; ver Jahn [38] y Sawaragi et al. [54],
donde se puede encontrar el desarrollo de esta teoria y aplicaciones alrededor de este tipo de
problemas.

Los temas estudiados en esta tesis responden a los principales objetivos citados anterior-
mente y se abordan a través de cinco capitulos principales, cada uno de ellos dedicado a dar
respuesta a un objetivo particular. Estos se dan después del Capitulo 2, que estd dedicado a



fijar las notaciones y proporcionar algunos resultados preliminares.

El capitulo 3, titulado Discretization and reduction of Infsup and SIP optimization prob-
lems, proporciona nuevos resultados de tipo minimax junto con un proceso de reduccién para
problemas de optimizacion semi-infinita. El capitulo 4 Subdifferential calculus: characteriza-
tions of the mormal cone to the domain of the supremum function, da el primer paso hacia
el estudio del subdiferencial de la funcién supremo puntual. El capitulo 5, titulado Subdiffe-
rentials calculus for pointwise suprema, presenta una nueva caracterizacion del subdiferencial
de suprema puntual dada explicitamente por medio de las funciones de dato. El capitulo 6,
titulado Multiobjective optimization, se centra en problemas de optimizacién multiobjetivo
convexos donde las funciones objetivo pueden ser infinitas. En este caso, proporcionamos
caracterizaciones del conjunto de soluciones débilmente eficientes mediante subproblemas
elegidos adecuadamente. Capitulo 7 de nombre Strong duality for some quadratic problems,
trata de un problema cuadratico generalizado que contiene como caso particular el conocido
problema cuadratico estandar. Finalmente, en el Capitulo 8 presentamos algunos trabajos
futuros que surgiran de esta tesis.

A continuacion describimos el contenido de cada capitulo.

En Capitulo 3 desarrollamos un teorema minimax que tiene en cuenta la reduccion
del nimero de funciones involucradas, permitiendo reescribir problemas de tipo Infsup en
problemas de Infmax. Aplicados a la teoria de la optimizacién, estos argumentos permitiran
transformar un problema de programacién semi-infinita (SIP, para abreviar) en un problema
de optimizacién ordinario. El principal resultado de este capitulo es el Teorema 3.1, el cual
establece que

inf su )= max infmax{f, +1p, t € S},
o teg fi(z) ST, |S[<nt1 R {fe+1Ip }

para un conjunto D apropiado, que tenga en cuenta la geometria de los dominios efectivos
de las funciones f;’s o de su supremo. Esto, en particular, cubre algunos de los resultados
en [24, Teorema 1] (ver Teorema 3.3). El proceso de reduccién anterior se aplica en el Teo-
rema 3.8 a problemas SIP, generalizando el Teorema de Levin en [42, Teorema 1]. En este
capitulo se dan algunas otras extensiones, como un teorema de tipo alternativo (Teorema
3.10), la reformulacién lagrangiana de problemas SIP y condiciones de calificacién menos re-
strictivas (condiciones de Slater para bloques de restricciones (Corolario 3.13). Los resultados
contenidos en este capitulo son parte del siguiente pre-print,

Caro, S. & Hantoute, A. Discretization and reduction of Infsup and SIP
optimization problem, pre-print.

Capitulo 4 esta dedicado a establecer una caracterizacion del cono normal al dominio
efectivo de la funcién supremo puntual. De hecho, dicho cono normal juega un papel im-
portante en el establecimiento de reglas de calculo subdiferencial para el subdiferencial de la
funcion supremo, como se muestra en diferentes trabajos, ver por ejemplo, Hantoute, Lépez
& Zalinescu [35], Lépez & Volle [43] y Correa, Hantoute & Lépez [16]. Asi, su caracteri-
zacion mediante funciones dato permitiria caracterizaciones completas del subdiferencial de
la funcién supremo. El principal resultado de este capitulo se da en Teorema 4.7, y establece



que

Naom f(7) =

co ((teLch as(Pt,aft)(ﬂ?)) U <t€HT Niom £, (a:)))] , para todo € > 0,

donde Ty := {t € T : cl f; es propia}.

Capitulo 5 presenta una caracterizacion del subdiferencial de la funcién suprema pun-
tual. Ahora, con la ayuda del Capitulo 4, podremos proporcionar una férmula para dicho
subdiferencial que se escribe solo mediante las funciones dato involucradas. Por ejemplo,
dado un conjunto arbitrario 7" mostramos en Teorema 5.1 que

of(ry=e | | ofi@)+ e |J olpef)@) | Ul | Nogmp(x)u{6}
)

e>0 teT. (x teTo\T:(x) teT\To

El caso especial de conjuntos de indices compactos también se estudia en Teorema 5.3 y en
Corolario 5.4. Nuestros resultados proporcionan caracterizaciones directas de los articulos re-
cientes de Correa, Hantoute & Lépez [12] y Hantoute & Lépez [34]. Los resultados contenidos
en los Capitulos 4 y 5 son parte del siguiente pre-print,

Caro, S. & Hantoute, A. Highlighting the role of active and non-active
functions in optimization and subdifferential calculus, pre-print.

Capitulo 6 esta dedicado a problemas de programacién multiobjetivo semi-infinita, pre-
sentados en la forma

min{fy(z) : t € T},

donde f; : R® — R, t € T, es una familia de funciones a valores reales extendidos, donde T’
es un conjunto arbitrario y S C R" es un conjunto convexo no vacio. Primero, nos centramos
en la descripcion del conjunto de soluciones débilmente eficientes del problema anterior uti-
lizando la informacién proporcionada por los subproblemas asociados que involucran no mas
de n + 1 funciones objetivo. Estos resultados también se han analizado en otros trabajos
(por ejemplo, en Lowe et al. [44] y Ward [59]) cuando T es finito. Nuestro enfoque utiliza los
argumentos desarrollados en el Capitulo 3. El resultado principal de este capitulo es Teorema
6.4 el cual establece que

WEr(S)= |J WEs(SnD).

BCT,|B|<n+1

En particular, obtenemos el Corolario 6.5 que recupera el resultado de Plastria & Carrizosa
en [50, Corollary 2.1]. Ademds, proporcionamos caracterizaciones del conjunto de soluciones
débilmente eficientes mediante el subdiferencial de la funcién objetivo asociada (supremo) y
el cono normal del conjunto de restricciones S. Es decir, en el Teorema 6.6 obtenemos la
siguiente equivalencia que generaliza algunos de los resultados en [50]:

T € WEp(S) <= 0 € Ng(z) + [ | @ (U 8€ft(az=)) .

e>0 teT

Los resultados contenidos en este capitulo son parte del siguiente trabajo que esta en progreso



Caro, S. & Hantoute, A. Reduction arguments in multi-objective opti-
mization and subdifferential calculus.

Finalmente, en el Capitulo 7 consideramos una generalizacién del problema cuadratico
estandar, que viene dado por

= inf leAm + 2r'z,
g(x)=0, zeC 2

donde C' C R™ es un cono convexo cerrado, e € int C* y g(x) := ez —1. El capitulo comienza
con una revision de dualidad teoria lagrangiana, enfatizando la importancia de las relaciones
dadas por Flores-Bazan & Mastroeni en [31]. También estudiamos la equivalencia entre
las soluciones de los problemas duales/primales y la funcién perturbada asociada, dada por
Flores-Bazan, Jourani & Mastroeni en [30]. Nuestro resultado principal, dado en Teorema
7.6, demuestra dualidad fuerte para el problema cuadratico dado a través de una formulacién
explicita de la funcién perturbada, v,

() = {(1 +a)’u, ifa>-—1,

00, if a < —1.

De hecho, este analisis revela una convexidad oculta en el problema cuadratico dado, en vista
de que el conjunto

{(f(2), g(z)) - 2 € O} + Ry x {0}

es convexo. En Teorema 7.8 presentamos una generalizacién de un resultado en [3, Theorem
4], mostrando una forma explicita de la funcién O(\) = inf,ec f(z) + AMe"z — 1). Los
resultados contenidos en este capitulo son parte del siguiente articulo,

F. Flores-Bazan, G. Carcamo & S. Caro, FExtensions of the Standard
quadratic optimization problem: strong duality, optimality, hidden convex-
ity and S-lemma, Appl. Math. Optim. 81 (2020), no. 2, 383-408.



Chapter 2

Notation and preliminary results

In this chapter, we present the basic notions and properties that we will use throughout this
manuscript.

Let X be a (real) separated locally convex space (lcs, for short), whose topological dual
space, written X*, is endowed with any compatible topology for duality pair associate to the
bilinear form (z*,2) € X* x X — (z*,z) := 2*(x). The w*-topology, the Mackey topology,
and the norm topology when X is a Banach space, are typical examples of such compatible
topologies. The main feature of these topologies is that X** := (X*)* = X. The zero vectors
in X and X* are denoted by 6. The basis of closed, convex and balanced neighborhoods of
6, in both X and X*, called #-neighborhoods, is represented by N. We use the notation
R, ={z €R:2 >0} R:=RU{-00,+00} and Ry, := RU {+oc}, and adopt the
conventions (+00) + (—o0) = (—00) + (+00) = +o00 and 0 - (+00) := +o0.

Given a possibly infinite set T', we denote by RT the locally convex product space of
functions from T with values in R. We call support of a € RT to the set suppa = {t €
T : ay = at) # 0}. Then the topological dual space of R”, written R("), is formed by the
mappings with finite support. We denote RSFT) ={a:T — R, : |suppa| < +o0}, where |- |
stands for the cardinality of the set. The extended unit simplex is

A(T) = {AGRP : th:1}.
At>0

In particular, when T is finite, the corresponding unit simplex is compact and is simply
denoted Ajpy.

For the following preliminary results we rely on the books [13], [52] and [60].



2.1 Convex analysis
Definition 2.1 We consider two sets A, B C X (or X*).
1. A is convex if, for all z,y € A,

A+ (1 =Ny e A, forall X €[0,1].

2. The Minkowski sum of A and B is
A+B:={a+b: ac A, be B}, withA+0=0+A=0. (2.1)

3. The product of A by A C R is
A ={da: e, ac A} N ={A\} A XNER and A = 0A = 0.

4. The convex hull of A is

co(A) = {Z Xizi:neN e A, (z;) C Abn} :

i=1
5. The conical convex hull of A is

cone(A) ={Ax: A >0,z € A} =R, A, with cone(d) = 0.
6. The interior of A, denoted int(A) is the largest open set contained in C.

7. The closed hull of A, denoted cl(A) or A, is the smallest closed set containing A.

8. Let A be a convex cone in R", n > 1. We say that A is a pointed cone if AN (—A) =
{0,,}, where 0, is the zero vector in R™.

Theorem 2.2 (Carathéodory’s Theorem) Let S be any subset of R™. Then x € co(S) if and
only if x can be expressed as a convex combination of at most n + 1 elements of S.

Theorem 2.3 (Helly’s Theorem) Consider a finite family of convex sets C; CR", i € T :=
{1, Kk}, B >n. If(,esCi # 0, for all S C T such that |S| < n 4+ 1, then we have

mieSCi # 0.

Definition 2.4 Let be given a nonempty set A C X (or X*) and e > 0.

1. The negative dual cone of A is
A7 ={z" e X" : (2", x) <0, forallxe A},
(observe that A~ = (cone(A))~). We also write
A7 = (A7)

10



2. The orthogonal subspace of A is
At = (—A)NA ={2" € X*: (a*,2) =0, for all v € A}.

3. The e-normal cone to A at x (v € A) is

N(z) :={z" € X" : (2", 2z —x) <e, forall z € A}.

4. The normal cone to A at x is Ny(z) := NY(z).

5. When A is closed and convez, its recession cone is
Ao ={ye X x4+ Xy A, foral \> 0},

where x is any point in A.

We give some important facts about the operations defined above.

Proposition 2.5 Let be given two nonempty sets A, B C X.

1. The Bipolar Theorem states that
A~ =cone(A).

2. If AC B, then B- C A™.
3. If0e ANB, then (A+B)" =(AUB)" =A"NB".

The following two lemmas comes from [12].

Lemma 2.6 Consider nonempty sets A and Ay, --- , Ag in X, k > 2. Then,
[C0(AU (Uit,... xAk))], = [CO(AU (A1 + -+ Ap))] . - (2.2)

Lemma 2.7 Consider a family of nonempty sets {A;, t € Ty UTy} C X, where Ty and Ty
are disjoint nonempty sets. Then for every m > 0 we have

€0 (Ureryum, Ar)] o = [€0 ((Urery Ar) U (Urer,mAy))] .
= [@ (Ut1€T1,t2€T2 (At1 + mAtz))]oo . (23)

Lemma 2.8 Let A be a set in X* and x € X, we have that

(M [eo(A+ L], = [eo(4)].. .
LeF(x)

where F(x) = {L C X : L is a finite-dimensional linear subspace such that x € L}.

11



Proor. Let * € X and fix any subspace L € F(z). First we notice that co(A4 + Lt) =
cl(co(A + L*)) C cl(co(A) + Lt). Using the characterization of the recession cone given in
(60, pp. 6], for every a € co(A + 0)(C co(A + L*), for every L € F(x)) we obtain

() [@A+LY] . = () (t@A+Lh) —a]

LeF(x) LeF(x)t>0

= ﬂ ﬂ co( tA%—tLL —ta}

LeF(z) t>0

= ﬂ ﬂ Cl cotA —i—Ll)—ta]

>0 Le F(z)

= ﬂ ﬂ [cl (co(tA) + LH)] — ta

t>0 \ LeF(x)

= ﬂ (co(tA) —ta) (by [15, Lemma 3])

= [co(4)]

oo *

Definition 2.9 Let be given a function f: X — R.
1. The effective domain and the epigraph of f are, respectively,

dom f:={x e X: f(x) <+oo} and epif:={(z,\) € X xR: f(z) <A}

2. The function f is proper if dom f # () and f(x) > —oo for all z € X .
3. The function f is convez if epi f is convez.

4. The function f is strictly convez if for all x,y € X and for all 0 < o < 1, satisfies

flaz + (1 —a)y) <af(z) + (1 —a)f(y).

5. When X is a normed space, with a norm || -||. The function f is coercive if

f(x) = 400 as ||z]| = +o0.

Definition 2.10 Let f,g: X — R be two functions.

1. The positive part of f is the function defined as

fH(x) :==max{0, f(x)}, forallx € X.

2. The convex hull of f, co f : X — R, is the largest among all convex functions dominated

12



by f. Equivalently,
(co f)(w) = inf {u: (2, 1) € coepi f)} (2.4)
k k
i=1

=1

3. The Fenchel-Legendre conjugate of f is the function f*: X* — R is

(@) == sup{(z*,z) — f(x):x € X}.

4. The inf-convolution of f and g is the function fOg: X — R defined as

(fOg)(x) = inf{f(z1) + g(x2) : 1 + 22 = x}, for all x € X.

5. When X is a normed space with a norm || - ||, the Moreau-Yosida regularization of f
with parameter X > 0 is the function f* defined on X by

P = (1051 1) @)

The following definitions presents some typical functions, which are frequently used in the
sequel.

Definition 2.11 Let A be a subset of X (or X*).
1. The support function of A is the function o4 : X* — R defined by

oa(z”) :=sup{(z”,x) : x € A}, x* € X*, with oy = —0,

2. The indicator function of A is

|0, if x € A,
Lafw) = { Yoo, ifz € X\ A

Definition 2.12 Given A be a subset of X. The Minkowski function (Minkowski gauge) of
the set A is defined by

pa: X = Ry, pa(x):=inf{\>0:2¢€ A},

with the convention inf ) = 4o00.

The following gives a description of the domain of the support function.

13



Lemma 2.13 Let A be a convex and closed subset of X (or X*). Then we have

Ay = (domoy)™ and (Ax)” = cl(domaoy).

Lemma 2.14 Let A and B be two nonempty subsets of X. Then,

([co(AuB)l.)" C ([eo(A)l) N([eo(B)ly) -

Proor. Since 6 € [co (A)|_ N [co(B)],,, by Proposition 2.5(3) we obtain
([co(A)) N([eo(B)le) = ([co(A)] U [0 (B)]y) -

Moreover, the inclusion [¢o(A)] U [co(B)],, C [co(A)Uco(B)|,, is always fulfilled and
Proposition 2.5(2) this implies that

([co(AUB)].)” = ([co(A)ueo(B)l,.)"
C ([co(A)] Vo (B)le)
= ([co(A)]) N(feo (B)ls)

2.2 Topology and convexity
Definition 2.15 Let be given a function f : X — R.
1. The function f is said to be lower semicontinuous (lsc, in brief) at x € X if

f(z) =liminf f(2') = sup inf {f(2') : 2’ € x +V}.

' —x VeN

We say that f is upper semicontinuous (usc, in brief) at x if —f is lsc at . The
function f is lsc (usc, respectively), if f is lsc (usc, respectively) at every point of X.
We sometimes refer to lsc functions as closed functions. If it is necessary to specify the
topology with respect to which the function is lsc, say a given topology T, then we say
that such a function is T—Isc.

2. The set of proper lsc convex functions on X is denoted I'o(X).

3. A function f is continuous if and only if f is both upper and lower semicontinuous.

Below is a very useful property for functions in I'g(X), see for example [60, Theorem 2.2.6].

Lemma 2.16 Given f : X — R belonging to T'y(X), then f is bounded from below by a
continuous affine function.

Faced with the lack of semicontinuity/lower convexity, we will consider lsc and convex
hulls or envelopes.

14
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Figure 2.1: f € T'y(X) is minorized by a continuous affine mapping

Definition 2.17 Let be given a function f : X — R.

1. The closed hull of f is the function cl f : X — R whose epigraph is cl (epi f). Equiva-
lently,

(cl f) (z) = liminf f(2'), for all z € X. (2.6)

' —x

2. The closed convex hull of f, @of : X — R, is the largest among all closed convex
functions dominated by f. FEquivalently, we have that

epi(cof) = T (epi f).

Definition 2.18 The set C(X,R) denotes the space of all continuous functions from X to
R and given k € N, C¥(X,R) defines the k-times continuously differentiable functions.

Theorem 2.19 (Bi-conjugate Theorem) Let f : X — R be a function with a nonempty
domain.

1. Ifcof is proper, then f* =T¢Cof.

2. Ifcof is not proper, then f** = —oo.

5. Suppose that f is convex. If f is Isc at & € dom f, then f(z) = f**(Z); moreover, if
f(z) € R, then f** = f and [ is proper.

15



Lemma 2.20 Let f: X — R, be a function.

1. If AC X, then
ooyua = (04)™.

2. If f 1s convex, then
cl(f7) = (1 f)".

3. If f is convexr but not proper, then
c(fT) = Liomal f-
PROOF. 1. Let z* € X*. We have
opopuala”) = sup{(z”,z) : v € {0} U A}
= max{0,sup{(z*,z) : x € A}}
= max{0,04(2")} = (04)"(2%).
2. See [13, Proposition 5.2.4(ii)].
3. If x € dom(cl f), then (cl f)(z) = —oo and, by the previous item,
c(f") (@) = (cl f(x))" = 0.
Otherwise, if ¢ dom(cl f), then (cl f)(x) = +oo and so, again by the previous item,
cl(f ") (@) = (cl f(x))" = +o0.

The following proposition gathers some important facts about the Fenchel conjugate.

Proposition 2.21 Let f,g: X — R be two functions.
1. f* is convex and w*-lsc.

2. The Young-Fenchel inequality holds, that is, f(z)+ f*(z*) > (x,z*), Vo € X, Vaz* € X*.

o

Cf<g=g < f

4. If a >0, then we have (af)*(z*) = af*(a'z*), Vo* € X*.

5. We have
£(0) = — inf f(a). 2.7)
6. If f is convexr and lsc, then the function f* is proper if and only if f is so.

16



10.

11.

12.

1
If X is a normed space, with norm || - || and dual norm || - ||, and f = §|| - |1, then
* ]' 2
=gl

The conjugate of the inf-convolution fUg of f and g is

(fOg) = f"+g"

When f,g € T'y(X), the conjugate of the sum, f + g, is
(f +9)" = c(f"Tg").
Additionally, if f is continuous at some point of dom g, then

(f+9)" = fOg"

The conjugate of the Moreau-Yosida reqularization f*, X > 0, is

)\ *
Sl (2.8)

(@) = 1) + 5

If f =int,c; fi for functions f; : X — Ry, @ € I, then

*=sup f;.
iel
If f = sup,c; fi for proper lsc convex functions f; : X — Ry, ¢ € I, and f is proper,
then

r oo (). (29)

Proor. Items 1 — 4 and 8 can be found in [60, Theorem 2.3.1].

d.

6.

By definition, we have f*(6) = sup{(f,x) — f(x) : z € X} = —infcx f(x).

See [13, Proposition 3.1.4].

7. We start by proving the formula when X is a reflexive Banach space. Fix z* € X*.

If x* = 0, then the desired statement obviously holds. Otherwise, * # 6 and James’
theorem yields some € X \ {0} such that (z*,x) = ||z*|/||z]. Then the point z :=
x||z*|| /|| x| satisfies

(@, 2) = @ alla”|l/zl) = l="11%, D=l = 2],

and we deduce
1 . 1 1 1
(31°1) @) @ = G112 = ol = el = 511
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Finally, the opposite inequality follows as,
1 * 1 1 1 1
(31-17) @) < gl + 510 = el = S

Next, in the general case, given z* € X* we fix ¢ > 0 and x. € By (the closed unit
ball in X) such that
1 2

17l - 5

Take a finite-dimensional subspace L of X such that z. € L, and denote by (f + 1),
and z7 the restriction of f 4 I and z*, respectively, to L. Then we easily verify that

((f + 1)) (2p) = (f + 1o)" (7).

<e.

1
But (f +1.). is nothing else but the function §||x||2L, x € L, with || - || being the norm

in L, which is the restriction of the initial norm || - || to L. Thus, since L is reflexive,
by the reasoning above we deduce that

((f +10)n)"(22) = H LIz

Therefore, observing that f < f + I, we have f*(z*) > (f + I.)*(z*) by item 3., and
we obtain

£(a) > Sl = (12 5.

v

(f + 1) (") = (1/2)]}]
> 1/ - e

Consequently, as € | 0, we get the first inequality f*(z*) > (1/2)||z*||?. To show the
opposite inequality we use the Young and Cauchy-Schwartz inequalities,

@) = §2§{<I*,x>—(1/2)llx|\2}

< 2161)13{(1/2)”93”2 +(1/2) 2|17 = (1/2)ll= ("}
= (1/2)]l"I3-

. We apply the previous item to the functions f* and ¢* to obtain

Since f,g € I'o(X), f* = f,¢" = g and f O g is convex. Then, applying the conjugate
to the last equality, we get

(f+g) = 0Og)" =c(f Og).

If we assume that f is continuous at zo € dom g, then the conclusion holds due to [60,
Corollary 2.3.5].
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1
10. Since fA(z) = (f O ﬁ” : HQ) (x), by items 6 — 7 we have for all 2* € X*

Pre) = e (g R) @
= s+ (5 (311)) @
= Sy A

* * A *
= f@)+ Sl

11. For all 2* € X* we have

(i.nf f) (&) = sup {< z) — inf fz-(:c)}
el rzeX i€l

= supsup {(z",z) — fi(x)} = sup f] (z").
zeX i€l el

12. Using the bi-conjugate theorem, Theorem 2.19, together with item 9, for all z € X we

have

o) = sp i) = sup °(0) = (1f 1) (o).

iel iel
Thus, taking the conjugate of each side, for all x* € X* we obtain that
ra = (infr) @) (2.10)
1€

Now, since f is assumed proper, its conjugate f* is proper too, and we deduce that the
function (inf;c; 7)™ is also proper. Thus, due to the inequalities

(inf fz*) <inf ff < fF, foralliel,
iel i€l

the function ¢o(inf;c; f7) is proper. Finally, thanks to Theorem 2.19, the relation in
(2.10) yields

f*(a") = eo(int f;).

iel

Proposition 2.22 Giwen f : R* — R, a proper and convex function and x € R". The
following properties hold

1. For all A > 0, inf,cgn f(z) = infern f(2).

2. For all X\ > 0 the function f is C'.
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3. As A — 0, f* converges pointwise to cl(f).

4. supys fr=clf

Proor. Items 1-3 can be found in [48], page 52, Proposition 3.39 and Proposition 3.41,
respectively. To prove item 4 we use the previous item. For all A > 0, the function f* is lsc,
S0 Supy~q > is Isc too. Moreover, for all z € R™

fAx) < fx) = sup fA(a) < el f(z) < f(2)

A>0

and together with item 2, we obtain the desired conclusion. O]

Lemma 2.23 Let {A., € > 0} be a family of nonempty closed convex sets in X.

1. OU.50A:. = SUDc>0 0 A,
2. 0n..oa. = 00 (inf.s904,), provided that NesoA: # 0.

In particular, if the family of functions {oa_.,e > 0} is non-increasing, then the last
equality above becomes

On.opa. = cl(inf.spoa, ).

PROOF. 1. This easily follows from the definition of the support function.

2. Fix * € X*. We have

Onesoac (27) = (Inoga. ) (27) = (Supes La.)"(¢7) = €o(infeso(Ia.)") (27),

where the last equality comes from Proposition 2.21(11.). Finally, we are done because
the infimum of a non-increasing family of convex functions is convex.

O

Below, we present the classical Minimax Theorem (see, for instance, [60, Theorem 2.10.2]).

Theorem 2.24 (Minimax Theorem) Let X be an lcs, Y be a linear space, A C X be a
nonempty convex compact set and B C'Y be a nonempty conver set. Let also F': AXB — R
be a function with the property that F(-,y) is concave and usc, for everyy € B, and F(z,-)
is convex for every x € A. Then

inf I’ = inf F :
Dex ek Fn ) = b ne ey

If moreover Y is an lcs, B is compact and F(x,-) is Isc for every x € A, then

max min F(z, y) = min max F(z, y);

in particular F has saddle points.
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The following result is a consequence of the previous theorem.

Proposition 2.25 Given convex functions fi,--- , fm : R® = Ry, m,n > 1, we have that

iﬂgnf max{f, -+, fm} = o{giﬁ iﬂgnf {Zlgigm@ifi} .

Proor. We start by checking the following equality,
i]élnff = inf max {Zlgigmaifi}’

Rn aeAm

where f := max{fi, -+, fm}. Since f > f;, for all i = 1,--- m, we obtain the inequality
infgn f > infrn MaXaen, {D1<icpm @ifi}. Conversely, we take A € R such that

1&153;2}2{ Z aifi} < A\

1<i<m

Then there exists x) € R™ that satisfies the following inequality
Z a;fi(xy) < A, forall « € A,

1<i<m
In particular, f;(xz)) < A for all i = 1,--- ,m. Therefore f(x)) < A and consequently,
infern f(z) < A
Let us also observe that if f takes the value —oo somewhere, then infg» f = —o0 and, so,
for all a € A,,,
%f{ Z ozz»fi} < %nf{ Z oz,-f} :lﬂgnff = —00;
1<i<m 1<i<m

that is, the conclusion holds. The same occurs if infg» f = +00. Indeed, in such a case we
can find some o € A,,, such that infgn {21 cicmi fi} = +00; otherwise, we would find some
x € R such that Y3, ;.= f;(x) < +oco, implying the contradiction infga f < f(z) < 4o0.

Next, according to the discussion above, we assume that f is proper and consider the
function F': A, x dom f C R™ x R™ — R, defined as

(o, 2) — F(a,x) := Z a; fi(x).

Then we see that F'(-,z) is concave and usc for every x € dom f, and F(a,-) is convex for
every a € A,,. Thus, since 4,, is a compact set in R™ and dom f is nonempty and convex,
the minimax theorem (Theorem 2.24)) ensures the equality, that is,

inf f = inf F = inf F . 2.11
inff= inf maxF(a,z)=max inf F(az) (2.11)

Moreover, since for all x € dom f and o € A,,,,
F < < F
(@, 2) < f(2) < max F(B,z),
we have that max,eca,, F'(a,z) = f(z) and, so, (2.11) reads

inf F = inf = inf .
max inf Floz)= inf f(z)=inf f(z)
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2.3 Subdifferential analysis

We introduce here the notions of directional derivatives and subdifferentials for convex func-
tions defined on an les X.

Definition 2.26 We give a function f: X — R and z,u € X.

1. The directional derivative of f at x in the direction u is the function f'(z;-): X — R

defined by
o) g TS

2. The e-directional derivative of f at x in the direction u is the function f!(x;-): X — R
defined by

fix;u) = %gg f(z + tu) t— flz) +5.

We give an example in which we relate the e-directional derivative of the indicator of a
given set in terms of the gauge function.

Lemma 2.27 Let C' C X be a nonempty convex set. Then, for allz € C, u € X ande >0
we have

(Ie)z(asu) = ePc—a(u)
and, wn particular,
(Ie) (z;u) = Ip, (c—a) ().

Proor. Since x € C, we have

. do(x+tu) + ¢
/ . p—
(Io)e(w;u) = inf ;

= inf{%:xjttuec, t>0}

1
= ginf{t>02x+¥u€C’}
= einf{t>0:uect(C—ux)}
= eBow(u).

In particular, when € = 0, by the definition of the gauge function we obtain

(Ie)'(z;u) = 0+ Plo—s) () = Iz, (c-a) (1)
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Definition 2.28 Let f: X — R be a function, e € R and x € X.

1. The e-subdifferential (or the approximate subdifferential) of f at x is
O-f(z) ={z" e X*: f(y) > f(zx)+ (", y —x) —e forally e X}, (2.12)
when x € dom f, and O-f(x) := 0 when f(x) ¢ R ore < 0.

2. The subdifferential of f at x is 0f(x) := Oof(x). Equivalently, 0f(x) = (.o 0-f ().

The results below specify the concepts above to convex functions (see, e.g., [13] or [60]).

Theorem 2.29 Let f : X — Ry be a proper convex function and take x € dom f. Then,
for every u € X, f'(x;u) exists in R and we have that

o) — g L0 = 1)

t>0 t

Theorem 2.30 Let f: X — R, be a proper convex function, x € dom f and e € R.. Then
the function fl(x;-) is sublinear. Moreover, we have that

1. dom f!(x;-) = cone(dom f — x).
2. fl(zsu) < f(x+u) — f(z) +¢, forallue X.
3. f'(x;u) = limgo f§(z;u) = infsso fi(z;u), for allu € X.

4. If f is continuous at x, then fl(x;u) € R, for every u € X.

Proor. See Theorems 2.1.14 and 2.4.9 in [60]. O

Lemma 2.31 Let f : X — R be a convex function which is not proper. Then, for all
xedomf, ue X and e > 0 we have

(Cl(f+))la(x7 u) = gp(dom(clf)fx) (’LL)
In particular, we have
(cI(f7)) (z;u) = Ip, (dom(el f)—a) ().

Proor. Since f is convex and not proper, from Lemma 2.20(3.) we have for all z € X

Cl(f+>(Z) = Idom(clf) (Z>
Then, for all x € dom f and € > 0,

(e YY) = inp D@+t = ()7 (x) + e

t>0 t
_ iy Lomern) (@ + 1) — Laomeap () + €
>0 t ’
and so we are done thanks to Lemma 2.27. ]
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Some properties of the subdifferential and e-subdifferential come next.
Theorem 2.32 The following statements hold for every function f : X — R and every
T € X such that f(z) € R

1. 0f(z) C X* is a convex and w*-closed (possibly empty) set.

2. If 0f (z) # 0, then

(e0/f)(7) = f(z) = f(z) and O(cof)(z) = Of(7) = 0f(2);
in particular, f is proper and f**(z) =<cof(x); hence, [ is lsc at T.
5. 0f(7) £0 & f(7) = maxg.ex-((7,2%) — f*(z)).
4. We have, for every e > 0,

0.f(z) = {a* € X" ¢ [(2)+ [*(a") < (2", &) + e} (2.13)

5. For A >0 0.(\f)(Z) = X0 )n f(Z).
6. Given 1,65 >0 and g : X — R such that g(T) € R, then

8€1f(j) + 8829(15) - a€1+82(f —|—g)(:f)

)
7. If X is a normed space and €, 6 > 0, then 0. (§H . HQ) (0) = V/2edBx+, where Bx~« the

closed unit ball in X*.

8. Given C be any subset of X, € > 0 and x € C, then
O1c(x) = Ng(x).
Proor. For items 1 — 3 see [60, Theorem 2.4.1}, and [60, Theorem 2.4.2] for item 4 — 5. while

the inclusion of item 6 is direct from the definition of e-subdifferential. Moreover, for item 8
see [13], page 98. To prove item 7 we use the definition of the e-subdifferential:

o (51-1P) 0 = {arex=s (51 ||2>* @)+ (311°) O < @0+
ot e X ( ) ( ><g} (by Proposition 2.21(4.))

= {x e X" Hx I? < 5} (by Proposition 2.21(6.))

z* GX*:Hx ||§\/255}:\/ g6 Bx~.

Oqlr—\
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The following two results give the Moreau-Rockafellar and the Hiriart-Urruty & Phelps
theorems, respectively. See, for example, [13, Proposition 4.1.16] and [60, Corollary 2.6.7],
respectively.

Theorem 2.33 (Moreau-Rockafellar Theorem) Let f,g : X — Ry be two functions in
[o(X) such that f is finite and continuous at some point in dom g. Then, for every x € X,
we have

Of (x) + 9g(x) = O(f + g)(x).

Proposition 2.34 Let f,g € T'o(X). If 2 € dom f Ndomg and ¢ > 0, then we have the
following rules.

1. Ife >0, then O-.(f + g)(z) =cl | U (0 f(x)+ 0,9(x))

€1,69>0
£1teg=¢

2. 0(f + 9)(#) = Ny € (0-1 () + O-g(x).

Lemma 2.35 Assume that {f;, t € T} C TI'o(X). Given two families of parameters
(et)ter, (au)er C ]0,1], we have

[w( U o (af) (w))L c [@ (UT 0. (=u11) <x>)} -

0<a;<2ey

Proor. We have that

oy aeso)] - oy o (gas) )],
ey () (e )],
ol u (o () erea(o- ran)n))]
(2.14)
C c_( U 825(;‘—;zgtft +(1- ;—;)%tft) (@)L (2.15)
[y o(earo)]_- [ o).
e (yaens)]

The equality in (2.14) above comes from Lemma 2.6, while the inclusion in (2.15) is a simple
version of Proposition 2.34. O
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2.4 Quadratic forms

Definition 2.36 (Pointed cone) Let P be a conver cone in R", n > 1. We say that P is a
pointed cone if PN (—P) ={0,}, where 0, is the zero vector in R™.

Definition 2.37 Let A € M, xn(R) , n > 1 be a matriz, and let P C R™ be a cone.

1. The matriz A is said to be positive semi-definite, written A = 0, if 27 Ax > 0 for all
r € R".

2. The matriz A is said to be positive definite, written A = 0, if ' Az > 0 for all
z € R"\{0}.

3. The matriz A is said to be copositive in P if x" Ax > 0, for all x € P.

4. The matriz A is said to be strictly copositive in P if " Az > 0, for all z € P\{0}.

Let f : R" - R and g : R* — R™, n,m > 1 be two functions. We consider the
minimization problem (called primal problem)

p=inf f(z)
st g(x)e —P (2.16)
x el

where P is a convex cone in R™ and C' is a convex subset of R”. This problem (2.16) is
known as the standard quadratic problem when f(x) = %:L‘TAHL' is a homogeneous quadratic
function with A € S,(R), g(z) =1z -1, 1" = (1,---,1) € R*, P = {0,,} and C' = R".
Then the associated feasible set becomes K = {z € C : g(z) = 0} = A,,, the canonical
simplex in the Euclidean n-dimensional space, and our problem is written

p = min f(z). (2.17)
As observed in [2, Chapter 1], the minimizers of problem (2.17) remain the same if we replace
A by the new matrix A = A+ 1 - 1", where ~ is an arbitrary constant. Indeed, if Z is a
minimizer of (2.17), then for every feasible point z of (2.17) we have

Az = zTAz+yz" (11T z=2"Az+~y(z'1) (12)
e
= ATty <z Az +y=z"Az+~y(z"1)(1"2)
-1 =1
= 2 Az 42’ (]1-]1T)gr;:317T (A—l—”y]l-]lT)x

= z' Az

The main advantage of this change is that the new matrix A has non-negative entries. Also,
according to the same author (|2, Chapter 1)), if the set K of constraints of (2.17) is main-
tained but the objective function is modified to a non-necessarily homogeneous quadratic
form, say f(x) = " Az +2r"z, r € R" then one can “homogenize” by considering the ma-
trix A= A+1-77 +r-17. Then we verify that the (non-homogeneous) problem (2.17) and
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its homogenized version have the same optimal value. In fact, for any element x € A,,, we
would have that

v'Ar = 2"Arv+2"(1-rNaz+a'(r- 1)
T Tq .. T T, 1T
—xAm+x1]lra:+xrﬂla:
= 2'Ax+2-r'z.
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Chapter 3

Discretization and reduction of Infsup
and SIP optimization problems

3.1 Introduction

In this chapter we work with extended real-valued convex functions defined on R, fo, f; :
R™ — R, t € T, where the index set T is arbitrary (possibly infinite). To the space R™ we

associate the Euclidean norm, || -||, unless another option is explicitly indicated. We consider
the semi-infinite programming problem (SIP, in brief)
inf x 3.1
ot fol@), (3.1)

and the associated ordinary (finite) programming subproblems

inf x), 3.2

ft(a:)lgo, teSfO( ) ( )

given for finite subsets S C T'. We will answer the following questions: Can we reduce the

number of constraints involved within problem (3.1)7; that is, do problems (3.1) and (3.2)
have the same optimal value for some appropriately chosen sets S?

Some advantages of this type of results come from a numerical point of view, as we trans-
form an infinite problem into a finite one. This could reduce the computational implemen-
tation time, which is an important issue in every optimization problem. More precisely, the
reductions analysis would allow, for example, for a considerable simplification of the study
of duality theory for problem (3.1). Moreover, constraints qualification conditions would be
required to hold only for finite blocks of constraints.

Now, we consider Infsup optimization problems given in the following form

ieann sup{ fi(z),t € T} (3.3)
and
iEann max{ fi(z),t € S}, (3.4)
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where S C T and |S| < +o00. We wonder if it is possible to reduce the number of functions
involved in the objective function given as a supremum in (3.3). We will also show that there
is a relationship between SIP and Infsup problems.

In 1969, Levin presented a reduction result in SIP problems as (3.1) [42, Theorem 1],
under the hypotheses that 7' compact and the mappings ¢ — f;(z), z € X are upper semi-
continuous, together with some convexity and continuity assumptions on the functions fy
and f;, t € T and a Slater-type condition. The reduction in [42, Proposition 1] is done
for semi-infinite optimization problems allowing the use of Helly’s Theorem. For the Infsup
problem as (3.3), where all the involved functions are convex and the index set 7" is finite,
Drezner [24, Theorem 1] gives a short and direct proof using Helly’s Theorem to reduce the
problem (3.3) into a problem of type (3.4), providing an alternative proof to the one given
for ordinary semi-infinite optimization in [42]. In the same direction, Shapiro [55, Section 3]
proves a reduction for SIP problems but under the Slater condition.

It is also worth recalling that Rockafellar [53] and Borwein [6] also established a reduction
processes for Infsup convex problems with constraints given as

inf  fo(x), (3.5)

[ (2)<0, jeJ

and where fy := sup{f; : « € I}, and both I and J are arbitrary index sets. In this case,
additionally, the authors used the so-called asymptotically regular conditions. We observe
that the proofs in [53] are not based on the Helly theorem, which is indeed deduced as a
corollary.

The main contribution of the chapter is to establish a process for reducing the number
of functions involved in Infsup problems like (3.3). To this aim we use a fairly general
condition that is based on the closures of the fi’s. condition cl(sup,cr fi) = supyep cl(fi),
and work in a compact-continuous setting. This result is a generalization of [42, Theorem 1].
Additionally, for SIP problems as (3.1) we also apply the mentioned reduction process but
with the additional “blocks” Slater condition. Our result generalizes [24, Theorem 1], and
does not use Helly’s theorem.

Although the analysis for SIP and Infsup problems is done separately, it is important to
notice that we can transform an Infsup problem from R" into a SIP problem in R"*!, as

inf su T) = inf ,
zeRn te’.IF) ft( ) fe(2)—y<0, tET/y
which is an SIP problem whose objective function and constraints are fo(x,v) = v and

filx, ) = fi(z) —~,t € T, respectively. There are different ways to transform a SIP into a
Infsup problem, for instance, using the Lagrangian reformulation

inf fo(x) = inf sup (fo(z)+ D aufi(@)).

ft(x)go, teT reR™ aGA(T) Py
However, when the optimal value of (3.1), p, belongs to R we can show that
inf sup{fo(x) — p, fla).t € T) =0,
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which in turn yields a reformulation of (3.1) that explicitly uses the data functions, fo and
fi,t € T. The results presented here can be applied in minimax theorem, Chebyshev’s norms,
location problems [11] among others.

The structure of the chapter is the following: in section 3.2 we study the reduction process
in Infsup problems (see Theorem 3.1), while in section 3.3 we provide reduction schemes for
SIP problems (Theorem 3.8 and Lemma 3.6). At the same time, the relationship between STP
and Infsup problems is clarified. In section 3.4 we present some extensions of the previous
results; for example, Theorem 3.10 provides an Alternative-type theorem that allow us to
relate the e-minima of the original problem with the e-minima of the reduced problem. It also
gives information about the Lagrange multipliers of the reduced problem and, as consequence,
we obtain zero duality gaps under usual qualification conditions.

3.2 Reduction of Infsup problems

This section is devoted to reduce Infsup problems in R", given by
pi=nfsup{f;, t €T}, (3.6)

where f; : R" — R, t € T, are given proper convex functions. Throughout the section we
consider the associated supremum function

teT

and assume the compact-continuous setting, that is, 7" is Hausdorff compact and the index
mappings ¢t — f;(x) are usc, for all x in a given convex set D such that

dom f C D C R". (3.7)
In this compact-continuous setting we know that (see, e.g., [33])

f:=sup fy = max f; and dom f = (),.dom f;.
teT te’T

We give the first result of this section allowing for a reduction of problem (3.6) to smaller
Infmax problems. A variant of this result is given in Theorem 3.2 in which we remove the
condition on the lsc hulls of the functions involved.

Theorem 3.1 Consider problem (3.6), where T is Hausdorff compact and the index map-
pings t — fi(x) are usc, for all x in a set D C X satisfying (3.7). If cl f = sup,ep(cl fi),
then

inff= ma inf ma Ip, te s
nf f ser! \Sén—i—l inf <{fi +1p }
and, consequently,
inf f = max inf arfr +1p ¢
R / a€A(T), |supp a|<n+1 R™ {t;“ o D}
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Proor. By reasoning as in the beginning of the proof of Proposition 2.25, we may suppose
that f := sup,er fi (= maxyer fi) is proper and infgn f > —o0. We proceed by proving the
first statement step by step.

Step 1. We assume here that f is additionally continuous and attains its infimum at
some point T € X, so that D = dom f = X. Then, according to Charatheodory’s Theorem,
there exists some index set

[CT(z):={teT: fi(z)=f(2)},
such that |I| < n+ 1 and, using [16, Corollary 10],

0, € 0f(x) = CO{U@ft(x)}.

tel

Moreover, because all the f;’s are also continuous, we have df(Z) # 0, for all ¢ € I. So, we
may assume that |I| = n + 1. Then there are =} € 0f,(Z) and o € A, ;1 such that

0n = > aux; € > a0f(T) C O (Zatft) (z) Co (r?ealx ft> (Z).

tel tel tel

Then the convex functions Zte ;o fr and maxer f; attain their infimum at the point z and
we verify that ), o, f(7) = (maxe; f) (7) = f(z). Thus

iﬂgnff = f(Z) = Y e oufi(Z) < . max inf >, ;o f; < inf

eA(T), |supp a|<n+1 R™ R

<max ft) < inf f,

tel R"

and the conclusion follows in the present case.

Step 2. In this step we suppose that f is continuous but, possibly, it does not attain its
infimum. We fix 4, ¢ > 0 and pick z. € dom f such that 0,, € 0. f(z.) (as infx f > —00), in
other words, z. is an e-minimizer of f. Then we introduce the functions

J

5”'_'136H27 tET,

fo=fi+
together with the continuous convex function
Fmmaxfo= f+ 30—
‘=max f; = — |- ="
ter ' 2 ‘
Since f is minorized by a continuous affine mapping (as f € Io(R")), the function f is
coercive. So, because of the finite-dimensional setting, f attains its infimum at some point

s € R™. Therefore, based on step 1, we find some I; C T and oy € A(T) such that
[supp ag| < n+1,

R\ tels R

e . x . ) 9
1H£1nff = inf <max ft) = inf (5 |- —z||” + Itrg}?:ft> ,
and
_ o 2 _ o, 2 _
fi(Zs) + 3 |lzs — z.||” = f(Zs) + 3 |Zs — z||” < f(z.) < f(Ts5) + &, forall t € I,
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that is,
fi(zs) = f(zs) > f(x.) —e > fi(z:) — e, forall t € Is. (3.8)

At the same time, we have

max f;(Zs) < (g |- — z.|” + %%?ft) (Z5)

tels

< (3ol 1) ) = 7

Nz )
~ inf <§ I 2l + %cft)

< max fe(ze),

and (3.8) yields

—max fy(z.) < —max fi(Z5) = — f(Ts) < — f(z:) +e (3.9)
tels tels
Moreover, we get
J
(5 |- — z||” + maxft) () = max fi(ze) < f(ze) < 1ﬂ£1nff +e
J
< iﬂgnff+5:1nf (§|| — 2| +maxft) +¢,

and by using [60, Theorem 2.8.3] we obtain
0, €0, (31— ol + mas ) ()
n 3 9 Te r{g}? t Te

d 2
C 0. (5 |- — 2| ) (xe) + O- (I}é&};{ ft) (xe).

Next, by Theorem 2.32, there exists zj_ € V20 Bx~ such that

Lse € a’f (Itrg}?:ft) ('Tﬁ)a
and so, taking into account (3.9), for all y € D we have

(x5 —x) < max fi(y) — max fi(z:) + e

< max fely) — f(z) + 2e.

We may suppose, by taking the limit as ¢ | 0, that I — I. and a5 — a. € A(T') such that
|suppa.| <n+1.So, as § ] 0, x5, — 0, and for all y € D

0< max fi(y) — f(ze) + 2e,

showing that

1 <
1H£1nff < max fi(y) + 2.
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We also show that I. — I and a. — « € A(T) such that |supp a| < n+ 1. So, by taking the
limit as € | 0 in the last inequality, we obtain

i <
%nff < r?ealet(y), for all y € D,

that is, infgn f = infgs (maxes fi + Ip).

Step 3. In this last step, we extend the analysis of step 2 to non-continuous functions.
Given A, 0 > 0, we consider the Moreau-Yosida regularizations of the functions f; s :=

fi+Io+ 2]
|17
ft),\é = fis 5—4/\ .

Hence, f; is convex and continuous (even C'). Moreover, the mappings ¢ — f75(z) are usc
for all x € X. Indeed, given x € X, we have that

s—t s—t 4)\

) z —ull?
lim sup fs/\d(x) = lim sup ig‘) (fs(y) + 5 H?J||2+” y” )
y

. . 5 v llr =yl
< inf |1 B — -7
< Inf (lr?jllpf (y) + 5 lyll” + 5

. 0 2 ||$_?JH2 A
< Inf (ft(y)+§HyH | = fis(@),

where the last inequality uses the current upper semi-continuity of the mappings ¢t — f;(x),
x € D. Consequently, sup,cp ft)"é = maXer ft’}a and this function is continuous. Thus, step 2
(with D = X)) yields some I, C T such that |I,| <n+ 1 and

inf max fs = inf { max f7s r = max inf { max f;
R teT "% Rn | tely *" ICT, |[[|<nt+1 R | tel " "

< max inf<max f;s+1Ip .
ICT, |I|<n+1 R™ tel "7

So, taking the supremum over A > 0 (equivalently, the limit as A | 0), we find some I C T
such that || <n+ 1 and

i A < : :
ili% 1ﬂ£1nf max fis < lmglnf max (fes+1p) (3.10)

At the same time, on the one hand, by (2.7) and (2.9) we have that

*
. A . A
sup inf max = —inf | max 0
)\>Ig R teT Jis A>0 ( teT ft"s) (0n)

N Y A\ *
=t (g ) 0

_ — [ : * . 2
=~ 0t (sni(a) A1) (0)

A>0
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where the last equality comes from (2.8). More specifically, since the mappings ¢ — (f;5)*(z*),
x* € R", are Isc, we also have that

sup inf max ft5 = —inf co (ItréiTn(ft,a)* +A ||||2> (0y)-

>0 R? teT A>0

On the other hand, we have

inf A — * .
(;go (rgeaTX ft,é) ) (x) Sup sup {(w , ) (rg%x fis
= sup sup {(x*,x) - (max 1

A>0 z*ERn teT

\_/v
*

o 2) 0

A>0 teT

and, since the function z (maxteT ft’}a) (x) is proper lsc and convex, the biconjugate
theorem (Theorem 2.19) entails

(inf <max ft5> ) = sup max [l = supsup f;5 = sup(cl f1), (3.11)

A>0 \ teT A>0 € teT A>0 teT

where cl f; 5 is the closed hull of f; 5 with respect to the z-variable. Moreover, the function
inf -0 €0 (minger fis+ A HHQ) is proper convex and satisfies, for all t € T,

o (i £+ A ) < oo (54 AIHIE) = b2+ A1) = £

A>0

2 2
Thus, since each f;; = cl ( f[‘D%) = ft*lj% is continuous, the function

inf co (mmft(; + M|l )

A>0

is also continuous, by [60, Theorem 2.2.9]. Therefore, taking the conjugates in (3.11) we
deduce

A>0

it o (mip 725+ M1 ) (0,) = 0 (i £ ) 00)

and we derive that

sup inf max f; = —co(mln fi5)(0,) = —(sup(cl f;,5))"(0,) = inf sup(cl fys).
A>0 R™teT teT R™ teT

Hence, (3.10) yields

fsup(cl f;) < inf sup(cl f I
REep(elf) = RSl o) < 0, gy s + 1),

and we obtain, as ¢ | 0,

inf sup(cl ma inf ma I
i te%)( fi) < Ichan i teIX(ft +1p).
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Finally, by the current assumption we have

. _ . _ .
inf f inf (cl f) = inf sup (clfe) < reiex | infmax (fi +1p)
_ e
= Ry (erio) =17 =ipls

and we are done with the first conclusion of the theorem. For the last conclusion, we apply
Proposition 2.25 and get

inf max (f; +1p) = max inf{ > atft+ID}.

R™ teT a€A(T),|supp a|<n+1 R™ | tcsuppa

O

The condition on the closures in Theorem 3.1, cl f = sup,cp(cl f¢), is obviously satisfied
when the f,’s are Isc. This is also the case when the supremum function f is continuous
somewhere or if all of the f;’s have the same effective domain (see [33] and [35]). However,
there are convex proper functions that do not satisfy this closure condition. For instance, if
we consider the functions f,g: R — R, defined by

1
f <0 ~+00, for z <0,
flx)y=<1—2a’ o " and g(z) = 1
+o0, forz>0 T for z > 0.

At the same time, we have that epi f Nepig = () and epi f Nepig = {(0,t) : t > 1}, that is,
cl(max{f, g}) # max{cl f,clg}.

Nevertheless, the following result rewrites Theorem 3.1 by avoiding the condition on the
closures.

Corollary 3.2 Consider problem (3.6), where T is Hausdorff compact and the index map-
pings t — fi(x) are usc, for all x € dom f. Then we have

inf f= max inf max{f;,, t€ S} = max inf > oy f;.
R™ SCT, |S|<n+1dom f { ’ } a€A(T), |supp a|<n+1dom f t%;g

Proor. Let us define the convex functions

ft = fi + laomys, t €T, and f = Supft.
teT

Then, by [33] (see the proof of Proposition 6), we have that

clf: sup (clﬁ) ,

teT

and therefore, by applying Theorem 3.1 with D = dom f, we obtain

inf f=inf f = max inf max f; = max inf > ayf;.
R R SCT,|S|<n+1dom f teS a€A(T), |supp @|<n+1dom f t%;’
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When T is a finite set, we have the following known result (see [24, Theorem 1]), which
can be deduced from the general case of Corollary 3.2 (or directly from the Helly theorem;
see the paragraph after Proposition 3.5 in the next section).

Corollary 3.3 Consider a finite family of convexr functions fi,---, fm : R" = Ry, m >
n — 1, and denote f := maxi<i<,, fi. Then we have

inf f = max infmax{f;,:t€ S} = max inf Q :

R™ / Sc{l,-,m}, |S|[<n+1 R” {ft } a€Apm, [supp a|<n+1 R™ {tEsuproc tft}

Proor. We are obviously in the compact-continuous setting, and it suffices to apply Theorem
3.1 with D = R"™. m

Additionally, for the sake of completeness, we give a direct proof of the last theorem, which
is based on Helly’s theorem (this has also been used in [24]). This approach cannot be directly
extended to infinite families. We give a family of convex functions fi,---, f, : R® — R,
m > n — 1, and f := maxj<i<,, fi such that infgn f < +00. We also may suppose that
infgn f > —o00; for otherwise, we easily conclude the desired relation. Next, we consider the
nonempty convex sets

B = {(:L',’y) e Ry < iﬂ&ff}
and
Cy:=epify, t€{l,---,m},

so that BN (M1<t<mCt) = . Since Ny<;<,, C; # 0, as a consequence of the condition infg. f <
+o00, by applying Helly’s theorem in R™™! we find ¢1,--- ,t,41 € T such that

BN (Mizizn1Cr) = 0.

Therefore, given any z € X, § > 0, there exists some j € {1,--- ,n+1} such that (z,infg. f—
5) ¢ Ctja that iS,

inf f -0 < fi,(z) < max fi(z).

Thus, we get the desired conclusion when ¢ | 0

inf f <inf max f;..
R™ R? 1<i<n+1

The terms Ip and Iqom s used in the previous results are essential in our analysis, and
could not be removed in general as we show in the following example.

Example 3.4 Consider the family of lsc proper convex functions f, foo : R — Ry, m > 1,
given by (see Figure 3.1)

2L gf —1<ma<1 oo z <0,
— =, if —1<mz <1,
fm(z) == { m’o and foo() == § —22+2, xz€0,3],
400, if not,
0, x > 3.
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+o00+400 +00

Figure 3.1: Graphs of f,,, m € N, f

The indez set here is the Hausdorff compact set T = N U {+o0}, and we have that

F@) = sup fi(x) = Tyoy(a) + 2

teT

so that dom f = {0} and
limsup fn(0) = fo(0) = 2

m—-+00

that is, the conditions of Corollary 3.2 hold. Then we verify that infg f = 2 and we would
like to know whether there would exist t1,ty € T such that i%ff = i%f max{ fi,, fi,}. Observe

that
. 1 .
inff,, = 2——<2, forallm>1, inf f,, =0,
R m R
1

%fmax{fml,fm} = 2- m < 2, fOT’ all my, my > 1.

2
Also, since max{ f,(z), fo(z)} = —3% +2+ I[o,i] (x), we get

2
inf my foo} =2 — — < 2.
infmas{ i, foc} =2~ o
However, we have that
i%{fmax{foo + Idomf} - foo(o) =2= I%ffv

and Corollary 3.2 is not true if we remove the term laom 5 from the reduction statement.

3.3 Reduction of SIP problems

We provide in this section a reduction approach to SIP programming problems. We start by
the case of ordinary convex optimization problems. The following result, already classical
([42, Proposition 1)), follows from Helly’s Theorem (Theorem 2.3). We include the proof for
completeness.
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Proposition 3.5 Given convexr functions fo, f1, -, fm : R" = Ry, m > 1, we have

inf f() = inf f(),

fi<0, 1<i<m £i<0, 1<i<min{m,n}

provided the problem infy,<o 1<i<m fo is feasible.

Proor. Because only the inequality “<” needs to be proved, we suppose that

o= inf  fo > —o0.
fi<0, 1<i<m

Thus, since
[fo <a]N (ﬂlgz’gm [fi < 0]) = () and ﬂ1§¢gm [fi < 0] #0,

Helly’s Theorem yields some S C T, |S| < n (and not n + 1 as in Helly’s theorem statement
because of the feasibility assumption), such that

[fo < a]N (mieS Ifi < 0]) = {).

Hence, inff,<q ies fo > a, and the desired inequality follows by the arbitrariness of «. O

It is worth observing that Proposition 3.5 also allows for a direct proof of Corollary 3.3.
In fact, as in [42], it suffices to write

infmaX s oy Imp = 1nf )
nf max{fy Jm} fi@)<, i m) |

and, then, use the reduction approach in Proposition 3.5.

The following key lemma transforms semi-infinite optimization problems into different
minimax problems.
Lemma 3.6 The following statements hold true for every arbitrary family of convex functions
fo, i i R" >R, teT (0¢1T).

1. iﬂfftgo, ter fo = infgn SupaeRf) (fo + ZteT Oétft).

2. infft§07 teT fo = infRn sup{fo; I[ftgo], te T}

3. If p:=infg,<o er fo € R, then

iﬁ{lﬂf sup{fo—u; fi, t€ T} =0. (3.12)

Proor. Assertions 1. and 2. are easily checked. To prove assertion 3., we assume that p € R.
Then

inf sup{fo(z) — i fi(z), t €T} = mf(fo(z) —p) =0, (3.13)

where C' := [sup,cp fi < 0]. Now observe that

infsup{fo(w) —p; fi(w), t € T} < inf sup{fo(z) —p; fil2), t €T} =0.
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Then, since
infsup{ fole) — 1, fila); L €T} >0,

z€R?\C
relation (3.13) yields
infsup{fo — i fi ¢ € T} = inf sup{f(w) — i fule): t €T} =0,
that is, infgn sup{fo — p, fi; t € T} = 0. ]

The following lemma gives the opposite statement in Lemma 3.6(3).

Lemma 3.7 Given an arbitrary family of convez functions fo, f; : R* - Ry, t €T (0¢ T),
such that inf ;<o e fo € R, we suppose that Slater condition holds; that is, sup,cp fi(xo) < 0
for some xy € dom fy. Then we have that

iﬂgﬂf sup{fo—p; fr, t€T} =0 (3.14)
for some p € R if and only if
p= inf
f+<0, teT

Consequently, both problems

ftglg,lfl;ET f07 and %nf Sup{fo - K, ftvt € T}

have the same set of e-solutions.

Proor. According to Lemma 3.6(3), it suffices to prove the "only if” part. Let u € R such
that (3.14) holds. Then, if C' is defined as in the proof of Lemma 3.6(3), we obtain

i]élnfsup{fo - K, ftat € T} = lrclfsup{fo - M7ftat € T} =0. (315)

Next, take x € C and denote x) := Azg+ (1 —N)z € C, X € [0, 1], where z; is the given Slater
point; hence, z) € C and sup,cy fi(z)) < 0. Consequently, (3.15) ensures that fo(zy) —p >0
and by the convexity assumption we deduce that

< fo(za) < Afo(wo) + (1 = A) fo(x).

Thus, as A | 0, we infer that fy(z) > p and the arbitrariness of x € C' implies that
inff, <o, ter fo > p. Conversely, taking into account (3.15), we choose a sequence (zy) C C
such that

sup{fo(zx) — p; fi(zx),t € T} = 0.

Then
inf  (fo— p) <limsup(fo(zx) — p) < limsupsup{ fo(xy) — pu; fi(zy),t € T} =0,
ft<0, teT k—~400 k—+o00
and we get the remaining inequality, 1 > inf s, <o et fo. m
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In the next result we reduce the number of constraints involved in the SIP problem intro-
duced in (3.1), giving rise to a generalization of [42, Theorem 1]. We consider the reduced
problems (Pg), S C T finite, given as

P (GO (Ps)
zedom f
where f := sup,cp fi. We say that the subproblem (Pg), S C T, satisfies the Slater condition
if there exists xg € dom fy N dom f such that

max fi(zo) < 0. (3.16)

Theorem 3.8 Consider an arbitrary family of convex functions fo, fi : R®™ = Ry, t € T,
and denote f := sup,cp fi. Assume that T is Hausdorff compact and the mappings t —
fi(x),x € dom f are usc. If infy, <o, ter fo(x) < +00 and, for all set S C T with |S| < n,
the associated problem (Ps) has a Slater Point. Then

inf T) = max inf ).
fi(@)<0, er o) SCT, [8l<n £1x)<0, tcs fol)

Proor. We consider the SIP problem given in (3.1) and denote by p its optimal value. We

may assume that infy, <o ter fo(x) € R; otherwise, infy, <o, ter fo(r) = —oo and the
desired property obviously holds. Then, by Lemma 3.6(3), we have
inf sup{fo(x) — i fix), t €T} =0, (3.17)

and Corollary 3.2 gives rise to some S C T with |S| < n such that
lélnf SUP{fQ(ZE) — M + Idomfoﬂdomf(x); ft(x) + Idomfoﬂdomf(m)7 t e S} = 07
that is,
infsup{ fo(z) — 115 fi(@) + Laom s(2), ¢ € S} = 0.

Moreover, since (Pg) satisfies the Slater condition by the current assumption, Lemma 3.7
entails that the optimal value of (Pg) is equal to pu, as we wanted to prove. ]

The following example shows that Slater’s condition is necessary to have the equivalence
between SIP and Infsup problems. Otherwise, using only the information given in problem
(3.12), one could not specify which function would be the objective function.

Example 3.9 Consider the SIP problem, given in R?,

P inf

(P) 7t3117t1241rr2lt2§0, t€[0,1] T2,
having a 0 optimal value. Then, for every ty, -+ ,t, € [0,1] and m > 1, from Figure 3.2 we
can see that

inf Ty = —00,
—t3m1—t;x2+2t2<0, i=1,,m
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Figure 3.2: Constraint half-spaces for each t € (0, 1].

and (P) admits no discretization. At the same time, we verify that

iﬂglf sup{zy; — t3w; —twy + 212, t €[0,1]} = ilgf max{zy, 0, —x; —22+2} =0. (3.18)

Here we use the fact that the supremum supte[()’l}{—t%l — txg + 2t} is attained at t = 0,
t =1, or at some ty €]0,1[. In the last case, ty would satisfy —3t3xy — x9 + 4tg = 0, so that
To = —3t(2]x1 + 4tg and

0 < sup {—t*z; — twy + 262} = —t32 — to(—3twy + 4ty) + 262 = 2t2(tex, — 1).
t€[0,1]

Hence, toxy > 1, z1 > 0, and ty cannot be a maximum point (because sufficiently small
perturbations of it would provide larger value of the supremum). In other words, we find
a reduction for this Infsup problem, while the SIP problem admits no discretization. In the
current exzample, the Slater condition does not hold for subproblems having the the constraints
0 and —x1 — x9 + 2.

Consequently, every e-solution of (P) (€ > 0) is an e-solution of the problem infgrz max{xs,
O, —T1 — T2 + 2}
3.4 Consequences

We present here some consequences of Theorem 3.1. We obtain an alternative-type result,
which is a useful tool in optimization theory, namely within the analysis of Lagrangian
duality and scalarization of vector optimization problems, among other applications. In a
second step, we provide some relations between the solutions of a given SIP problem and its
associated finite subproblems.

Here is the first alternative theorem.

Theorem 3.10 Given a family of conver functions f; : R* — R, t € T, such that cl f =
sup,ep(cl fi), we assume that T is Hausdorff compact and the mappings t — fi(z) are usc,
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for all x in a set D C X satisfying (3.7). Then only one of the following two alternatives,
(a) and (b), holds.

a) There exists x € R™ such that sup,ep fi(z) < 0.

b) There exists A € A(T) such that |supp A| < n+1 and

> Xfilx) >0, forallz € D,

teT

Proor. We have the following equivalences:

Alternative a) is not true <= sup f;(x) > 0, for all z € R"
teT

f 0
— xlean Stléle? filz) >

— inf A I >0
(>ﬂ“|{z i) + 1o >}—

(by Theorem 3.1)
<= there exists A € A, |supp A| < n+ 1, such that

> Nfilx) +1p(x) > 0, for all z € R™.
teT
<= Alternative b) is true .

O

The following Corollary gives another alternative theorem, which has been given in [6,
Theorem 3.1] under an additional condition called asymptotic reqularity.

Corollary 3.11 Under the hypothesis of Theorem 3.10, exactly one of the following two
alternatives holds.

a) There is a solution in R™ to the system

fi(z) <0, forallteT.

b) There exist € > 0 and A € A(T), |supp A| < n+ 1, such that

> Nfi(z) >e, forallzeD.

teT

Proor. If the first alternative holds, that is, there exists a solution x € R" to the system
fi(x) <0, t €T, then for all € > 0 there exists 0 < g9 < € such that fi(x) <0 < gy < e.
Thus, applying Theorem 3.10 to the functions f;(z) := f,(z) —e, t € T, we conclude that
there is no A\. € A(T) such that [supp .| < n+ 1 and 3,0 A fi(z) > 0, for all z € D.
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Equivalently, there is no A\. € A(T) such that [supp A.| <n+1and ), .. A fi(x) > ¢, for
all x € D. Hence, the second alternative does not hold.

Conversely, if the second alternative holds, then there exist ¢ > 0 and A € A(T),
|supp A| < n + 1, such that

> Mlfilw)—e) >0, VzeD.

teEsupp A

Next, applying Theorem 3.10, the system sup,.(fi(z) —¢) < 0 has no solution, and so does
the system fi(z) <0,t€T. O

The next two results propose duals optimization problems to (3.1).

Theorem 3.12 Given a family of convex functions fy, fi : R* = R, t € T, and f =
SUper fi, we suppose that cl(max{f, fo}) = supyeryoy €l fi- We also assume that T' is Haus-
dorff compact and the mappings t € T — f,(z) are usc, for all x in a set D C X satis-
fying (3.7). Then, for every e > 0 and e-minimum z. of problem (3.1), there exists some
A€ A(TU{0}) such that |supp A| < n +1,

=o€ <D jepMifi(ze) <0,
and z. is a (Aoe)- minimum of the problem

l{g]fj Ao fo(x) + D criifi().

Proor. Given € > 0 and e-minimum z. of (3.1), we easily verify that
sup{ fo(z) — fo(z.) +&; fi(z),t € T} > 0, for all z € X.
Then, by Theorem 3.10, there exists A € A(T'U {0}) such that |supp A\| < n+ 1 and
Ao (fo(z) = fo(xe) +€) + X ,epAefi(x) > 0, for all z € DN dom f.
Hence, since x. is feasible, for all z € D N dom f, we get
Mofo(x) + D erAefi(m) = Xofo(xe) — Aoe = Ao fo(e) — Xog + D erMefi(ze),

and x. is a (Age)- minimum of the problem infp Ao fo + ZteT/\t fi. Moreover, the inequality
in the middle of the relation above yields —Age < >, p A fi(2:) < 0. O

Corollary 3.13 Under the hypothesis of Theorem 3.12, we suppose that all subproblems
(Ps) with |S| < n+ 1 satisfies the Slater condition (see (3.16)). Then we have that

p:= inf fy= max inf fo= max inf { fo(z) + Z M fi(x)},

<0, teT <0, tes T D
f:<0, te SCT, |S|<n fi weD AER&_ ), |supp A|[<n %€ tesS
where D = Myer dom f;.
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Proor. Lemma 3.6 (3.) implies that sup{fo(z) — p; fi(z), t € T} = 0. So, using Theorem
3.10, there exists A € A(T"U {0}) such that |supp A| <n+ 1 and

Xo(fo() = 1)+ Mefi(x) >0, ¥z € DNdom fo.

teT

More precisely, we have A\g > 0 thanks to the Slater assumption and so, dividing on A and
taking S := supp A,

pz i fo> wf {fo(e) + ) Mfi(2)} = p, (3.19)
x€eD tes
which yields the desired equalities. -
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Chapter 4

Subdifferential calculus:
characterizations of the normal cone
to the domain of the supremum
function

4.1 Introduction

As a first step towards the study of the subdifferential of supremum functions, in this chapter
we begin by characterizing the normal cone to the domain of pointwise suprema of arbitrary
families of convex functions. We then extend the results of [16], given in the continuous-
compact setting, to provide explicit characterizations of such normal cones in terms of the
underlying data without assuming any algebraic or topological conditions on either the index
set or the index mappings.

It is well known that for every function f € I'y(X) and = € dom f, the normal cone to
dom f is written by means of the e-subdifferential as (see [60, Exercise 2.23])

Naom f(z) = [0-f(2)] ., , for all € > 0. (4.1)

Our objective is to extend this last relation to the case where f is the supremum of an
arbitrary family of convex functions, and to provide a similar characterization which uses the
e-subdifferential of the data functions. First extensions to the continuous-compact setting
have been provided recently in [12] and [34].

We consider a nonempty family of convex functions f; : X — R, t € T, where X is a given
lcs space, and the associated supremum function

J =sup fi.

teT

Instead of the lower semi-continuity, we shall use the following condition

cl f = sup(cl fy), (4.2)

teT
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which is called closure condition. Additionally, we shall consider parameters (p;)ier € |0, 1]
that satisfies

inf pfi(x) > —oo.

Given x € dom f and € > 0, remember that the c-active set at x is
T (x) ={teT: fi(z)> f(xr)—¢e}, with T'(x) := Ty(z).

So, when € > 0 the set T.(x) is always nonempty. However, the set T'(x) is not necessarily
nonempty. When

T is a Hausdorff compact and the mappings ¢t — fi(z), x € X, are usc, (4.3)

we say that we have compact-continuous. In such a case, T'(x) is a nonempty compact subset
of T.

The chapter is structured as follows: Section 4.2 is dedicated to characterizing the normal
cone to the effective domain, when 7' is an arbitrary set of indices and the functions f; do
not necessarily belong to the family I'o(X). Here it is enough to consider that each function
fi is convex and the family { f;, t € T'} satisfies the closure condition (4.2). The main result
of this section is Theorem 4.7. In Section 4.3 we provide some simplifications of the results
of [12] and [34] in the compact-continuous setting.

4.2 General characterizations of the normal cone

In this section we characterize the normal cone to the domain of the supremum of an arbitrary
family of proper convex functions f;,¢ € T. For z € dom f and € > 0, we denote

Pre 1= m’ iftET\TE(x)’ (4.4)
’ 1, ift € To(x).

Observe that
inf py.o fi(w) > —oc.

In fact, for all t € T.(x) we have that p,.fi(x) = fi(x) > f(x) —e > —oo, while for all
t €T\ T.(x) we obtain
—efi(x)

pt,eft(x) = m > —¢£, (45)

provided that f(z) = 0. Also, if f(z) # 0, applying the last inequality to the functions
fi — f(x), we have that

> —¢,

and, hence,
prefi(x) > pref(r) — € > —00.

The first lemma of this section allows us to reduce the number of functions involved in
the characterization of the subdifferential of the supremum function f.
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Lemma 4.1 Consider a family of lsc proper convex functions fi, -+, fm : R — Ry, m >
n+ 1, and denote f := maxi<;<m fi. Then, for every x € dom f and ¢ > 0, we have

0-f(z) C U{@Efa(:p) Cfa(x) > f(x) —e, a €A, |suppal <n+ 1},
where fo := Ziesuppa a; fi.

Proor. We pick z* € 0. f(z). Then

Fla) — (o 2) < inf(f — (@) + =, (46)
and applying Corollary 3.3 to the family of proper lsc convex functions { f; — (x*,-), -+, fin —
(x*,-)} we find a € A, such that |suppa| < n+1 and
inf(f — (a*,) = inf (fu — (", ). (4.7
Thus,
(fo = (2%, ) (x) < flz) = (27, x) (4.8)
< I@Lf(f - <$*7 >) te
= inf (fa — {2",) +e, (4.9)

and we deduce that x* € 0.f,(z). Moreover, from (4.8) and (4.9) we obtain the inequality
folz) > f(x) —€. O

Next, we give the characterization of the normal cone when all the convex functions f;,
teT, are lsc.

Theorem 4.2 Assume that {f;, t € T} C I'o(X) and denote f := sup,cp fi. Then, for every
x € dom f,

Ndom #(z) = [co (UteTaa(pmft)(x))}oo , for all e > 0. (4.10)

Proor. Fix 2 € dom f and € > 0. Since T.(z) is always nonempty, we also choose t € T.(z).
Then, according to [34, Theorem 7] we have that

Naom 7 (2) = [0 (U er0-f1(2))] ., (4.11)

where T := {J C T : t € J, |J| < 400} and f; := maxyc; f;. We pick J € T, say
J=A{t,ty, -t} for some m > 1.

Let us first suppose that X is a finite-dimensional space, say of dimension n so that, by
Lemma 4.1,

O.f1(x) CU{0-falx) : fulz) = f(x) — 2, a € Ay, |suppal <n + 1},

where fo =) cqippa Qtft- Observe that relation f,(x) > f(z) — ¢ is equivalent to

> w2fi(x) = 2f(z) + ) > —e. (4.12)

t€ supp «
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Additionally, on the one hand, for every ¢ € T.(z) we have that

f(x) = fix) = f(x) -
so that
e=2f(x) —2f(x)+e>2f(x) —2f(x) +e > —e.

5 Z ap > Z a(2fi(x) —2f(z) +¢€) > —¢ Z Q.

teT:(x) teT.(x) teT. (x)
On the other hand, for every t € T\T.(z), we have 2f;(z) — 2f(x) + & < —¢ and, so,

ar(2fi(x) —2f(z) +¢) < —aye < 0;
that is, for all s € T\T.(x), we get

0, (2fi(z) = 2f(x) +2) = Y w(2fi(x) - 2f(x) +2). (4.13)

teT\T:(z)

Hence,

Consequently, (4.12) yields
Z a(2fi(x) —2f(z) +e) > —e — Z a(2fi(x) —2f(z)+e) > —e—c¢ Z Q.
teT\T:(z) teTe(x) teTe(x)

Thus, since 0 > =€, 1,y = —¢, by (4.13) we deduce that for all ¢t € T\T ()
ozt(2ft(x) — 2f<ﬂ?) + 5) +e > —E,

that is,
< —2¢ 2
[0 = .
CS0f(x) —2f(x) e Tt

Therefore, using Proposition 2.34(1), by the definition of p;. we obtain

O-fi(x { > O (aufi)( a€A|J|,|SUPp04\§n+1,&t§2pt,e}+83x*

t€ supp o

C(n+1) co{ U {0-(aufe) (x) : v € Ay, |suppal <n+ 1,0y < 2,0,575}} + eBx-,

te supp o

where By is the unit ball in the dual X* of X, which is here supposed to be finite-
dimensional. Then, applying (4.11), we get

N 10) = [0 (Uyer0:S5)].. :[m(umn#ﬂasfm))}w
C [ (c0 {Urer, ocancn. 0 (acf) () } + 2By )|
= [ (Urer. 0carcan. o sy (@)] (4.14)
< o (Yoo e >)L (4.15)
= __O<tL€JT<9 (prefi) ( ))L,
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where the inclusion in (4.15) follows from Lemma 2.35. Then we proved that the inclusion
“C” in the statement of the theorem holds.

Now we give the proof in the general case, where X is an lcs. We pick a #-neighborhood
U and choose L € F(x) such that L+ ¢ U. We also denote f, := f, +1I,,t € T, so that the
domain of each function f; is included in the finite-dimensional subspace L. Consequently,
the domain of the associated supremum function f := SUpcr fi = f +1; is also included in
L, and by applying the first part of the proof together with Proposition 2.34(1) we deduce
that

Ndomf(x) C NLﬂdomf(x)

< [o (o) -

teT

Moreover, by applying Proposition 2.34(1) to the function pt’gft = piefr + 1 we obtain

86(pt,6ft)(x) = « U 851(pt7€ft)(x)+8521[,(17)

€1,622>0,
e=eq1+eg

C cl (ae<pt,eft)(x) + Ll) ’

and, so

Naom 7 () C [@( el (0-(prefi) () + LL))}

teT o

_ {@ (gﬁmﬁﬁ)(@ * Ll)} .

In this way, we have proved that, for every finite-dimensional subspace L € F(z),

Naam(0) < [ ( Yot + 1) R

teT

and so the desired inclusion comes from Lemma 2.8. Finally, to prove the opposite inclu-
sion we follows the arguments used in the proof of [12, Theorem 5. We denote E. :=
Uer O=(prefi)(x), and fix x5 € E.. Then, given z* € [c0(L;)]w, for all 3 > 0 we have
g + Br* € To(E.) and, so, there are nets (Aj1,--, A\jx;) € Ay (where Al == {A € Ay
Ao > 0,1 <t < kj}), elements &1, -+t € T and 25y € 0-(pt; e f1;,)(@), -+, 2y, €
35(Ptj,k.j ﬁftj’kj)(z) such that

xé + ﬁx* — h?l(/\],lx;l R /\j,kj‘r;,kj)'

Hence, for every fixed y € dom f,
(xg + Py —z) = li;rn()\j,lx;,l 4+ )\j,ij;’kj,y — )

S lim Sup Z )\j:i (ptj,i,Eftj,i <y> - ptj,i,é‘ftj,z‘ (LC) + E)
J i=1, k;

IN

hm Sup Z )\],Z (ptjﬂ',&f-i_(y) - ptj’i,é‘ftj’i (.ZC) + 6)

T =1, Ky

fHy) —inf{pfi(z),t € T} +e,

IN
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and, dividing by § and taking the limit § — 400, the hypothesis over the parameter leads
us to
<I’*, Yy — 37) < 07

for all y € dom f = dom f*, that is, * € Ngom (). O

Remark 4.3 As we can see in the proof above, the specification of the value of the parameters
pre is only used to verify the inclusion “ D7 in (4.10). For instance, the same proof as above
shows that, for every x € dom f, we have that

Naom £(2) C [0 (Uyer0-fi(x)) ], for all e > 0. (4.16)

This observations leads to a simple characterization of the normal cone.

Corollary 4.4 Assume that {f,, t € T} C I'o(X), f = sup,ep fr and infier fi(z) > —o0.
Then, for every x € dom f,

Naom 7 (2) = [0 (Uyer0-fe(x))] ., for alle > 0. (4.17)

Proor. According to Remark 4.3, we only need to show the inclusion “ D”. This can be done
by following the same arguments as those used at the end of the proof of Theorem 4.2. [

The following example shows that the family of parameters p,. cannot be ignored.

Example 4.5 Consider the proper lsc convex functions f; : R — Ry, t € T := R, defined
as fi(x) :=tx —t. Set

f(z) :=sup fi(z) =

teT

{0, ifr <1,

+oo, ifx>1,
so that f(1) = f(0) =0, dom f = ]—o0, 1] and, for each ¢ > 0 and x € dom f, 0. f;(z) = {t}.

Then
[0 (Uierd:1:(0))] . = [0 (Uierd-fi(1))] . = Re
If t =1, then Ngom s(1) = R4 and we have the equality

(@ (Urer@:£:(1))] ., = Naom ¢(1)-

Formula (4.17) can be applied in this case because infier fi(1) = 0 > —oo. On the other
hand, for x =0, we have that

Naom £(0) = {0} & [0 (Uyer-£(0)] -

Here, formula (4.17) cannot be applied because infier f;(0) = infi>o(—t) = —o0.
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as(ﬂt,sft) (0)
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3

Figure 4.1: 0.(p1f:)(0) for each t € Ry

In any case, using the parameters p; . for every € > 0 formula (4.10) gives us

Naom £(0) = [ ((UteT 9 f1(0 )) U <Ut€T\TE(O)aE(pt:5ft)(O)>):|OO

= {@ ((UOStSE{t}) U (Ut>e {%}))L}

= [co([0,¢])], = {0}
To give the main result of this section, we first establish the following technical lemma

Lemma 4.6 Consider a family of conver functions f; : X — R, t € T and f := sup,y f:
such that condition (4.2) holds, that is, cl f = sup,ep(cl fy). Given the sets Ty == {t € T :
cl fy is proper } and Ty := T \ T}, we consider the functions

FoL_ (ft)+7 ift€T27
Te= 5" e,

and the associated supremum f = SUDyer ft Then we have

cl f = sup(cl f;)

teT

Proor. First, observe that

f = supfi = max{sup f,sup(f;")} (4.18)
teT teTy teTs
= max{sup f;,sup f;,0} = max{sup f5,0} = (/)T (4.19)
teTy teTs

Then, on the other hand, by applying Lemma 2.20(2) twice we obtain that cl(f;") = (cl fi)T

and
supcl(f;") = (supcl fy)".
teTs tels
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Hence, by the current assumption,

supcl(fy) = max{supcl(ft),supcl(ﬂ)}:max{supcl(ft),supcl(f;r)}

teT tely teTy tely teTs

= max{supcl(f;), (supcl f;)*} = max{supcl(f;), 0}
teT teTs teT

= maX{Cl(fleljl? f0),0} = (el f)" = (7).

]

Theorem 4.7 Consider a family of convex functions {f, : X — R, t € T} and denote
[ :=sup,er fi. We assume that condition (4.2) holds, that is,

cl f = sup(cl fy).

teT

If f is Isc at x € f~Y(R), then for all € > 0 we have

Naom (z) = [@ ((U aa<ptvaft><m>) U (U\ Noom <x>>)] ,

where Ty = {t € T : cl f; is proper}.

Proor. We fix x € dom f and € > 0. We may assume, without loss of generality, that f(z) =0
(it suffices to work with the functions f; — f(x)). We start by supposing that

{(cl fy), t €T} CTo(X),

that is, all the functions (cl f;), t € T, are proper so that 7' = Ty. Then, since x € dom f C
dom(cl f), we have that

Ndom £(%) = Nai(dom 1) (%) = Naitdom(el £)) (%) = Naom(el £) (),
and Theorem 4.2 applied to the family {(cl f;),t € T} yields
Naom 7(2) = Naom(er ) () = [0 (Uyer0= (pre(cl f)) ()] ., (4.20)

where (recall that (cl f)(z) = f(z) = 0 by the assumption of the theorem)

0; - 1= Q(let_)iw)Jrs’ ift e ,1: \ Tg(l‘),
]-7 lf t e Tg(l’),

and T.(z) := {t € T : (cl f,)(x) > —&}. Observe that
T(r) C{teT: fi(z) > —¢} = T(x)

and, for all t € T'\ T.(z) (C T\ T-(z)), we have that

- 19 I3
Pre = o) — et 2fi(x) — 2 f) (@) = —2f(x) —2 Ot

(4.21)
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At the same time, for each ¢ € T.(z) we have that (cl f;)(z) > —e > fi(z) — ¢ (as f(z) = 0)
and so, on the one hand,

Oc(pre(cl fi))(x) = Oc(cl fi)(x) C Do fi()-

On the other hand, using (4.5) and again the fact that f(z) = 0, for cach t € T'\ T.(x) we
have that p;.(cl f;)(x) > —e > profi(x) — €, and so

Oc(Pre (el f)) (@) = O (cl(prefi)) () C Dac(Pre fi) ().

Thus, by (4.30),
Naom s(7) C [@ (UteTa%(ﬁtﬁft)(x))} 0

Moreover, taking into account (4.31) and the fact that ;. < 1, we have that p,. < p;. for
all t € T, and Lemma 2.35 leads us to

Ndomf(x) C [@ (UteTaZE(pt,sft)(x))} 00"

More specifically, arguing as in the proof of Theorem 4.2, the last inclusion becomes an
equality.

Now, we deal with the general case when not all the cl f;,’s are necessarily proper. We
consider the new functions

. (f)", ift € T\ Ty,
e fta if t € T07

together with the associated supremum function

f = sup ft
teT

Observe that, due to the condition f(z) = (cl f)(x) = sup,ep(cl fi)(x) = 0, we have that
To # (. Also, since that (see Lemma 4.6)

cl f = sup(cl f;)

teT

and (cl f)(x) = f(z) = 0, by applying the paragraph above to the new family {f;, t € T} C
['o(X) we deduce that

Naom #(2) = N 1(2) = [ (Uper0=(cllpef) (@) ) |

[e.e]

Since, (cl(pyef)).(z;-) = T, (el(prof))() () DY [60, Theorem 2.4.11] for all ¢ € T', by the bipolar
theorem and taking into account Lemma 2.13 the previous inclusion reads

cl (dom sup(cl(peofi)).(z; )) Ccl (dom sup O-as(Cl(pt,sft))($)>

T teT
=cl (dom UUteT 8E(Cl(pt,aft))(x)>

= ([ (Uiert@llorefi)@)] ) = (ams@) "

53



Now observe that

 (domsup(coe. ).

teT

= d (cl dom(sup(cl(psefe))-(x;+)) Neldom( sup ((cl(peefi)*)-(x; )))) . (4.22)

teTo teT\Tp

If t € Tp, then the associated functions cl f; and p; o(cl fi) = (cl prfi) belong to I'g(X). Then
dom(pec(cl fy)) = dom(cl f;), and the function (cl(p;c fi))L(z;-) is Isc by [60, Theorem 2.4.11].
So,

sup(cl(prc 1))z (25 +) = SUD To. (cl(pr c fi)(2) = OUseny 0 (l(prc fi) (@) = T4
teTy teTp

where

A= UtETOaE<C1(pt,€ft)) (l’)7

that is, using Lemma 2.13,
cl(dom (04)) = [co(A)], . (4.23)

Otherwise, if £ € T'\Tj, then by applying Lemma 2.20(3) to the non-proper convex function
cl(prefi) we get

A(pe(f1)") = Laom(el f),

(CApee(f))e(@;) = Oo(gomer ) (@) = N ey = PN 1, (001
and
seT\Th ((clpeef) w3 )) = Olierin Ny, (@) = B
where

B = UtET\TON(Eiom ft (LC)

Moreover, again by Lemma 2.13 we have that

cl (dom (03)) = [co(B)] . (4.24)

Now, since 6 € [co(A)], N [co(B)],,, Lemma 2.14 leads us to
([co(AU B)],,)~ < [eo(A)], Nfea(B)], - (4.25)

o (e}

Therefore, combining (4.23), (4.24), and (4.25) in (4.22), we obtain that

([ca(AU B)] )~ € (Naom s())"

and, thus,
Naom f(7) C [c0(AU B)], .

Conversely, by Lemma 2.6 and following the idea in the proof of Theorem 4.2 | we denote

E. .= A+ B,
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and fix = € E. since this last set is not empty. Then, given x* € [¢6(E. )], for all 5 > 0 we
have x§ + fz* € ¢o(FE.) and, so, there are nets

(Mt 5 Ajk,) € Ay and B0, -+ e, €T, k; >0,
uj; € O=(pt; ;e ft;;)(x) and wi; € Nfiomftjy,- (), i=1,---kj,
such that the elements 7, := uj, + wj, satisfy
xy + frt = 1ijf,n(>\j,137;,1 + )\j,ij;kj).
Hence, for every fixed y € dom f (C dom f;, forallt € T),
(xy+ B’y —x) = hjm()\j,lx;‘f’l 4t /\j,ij;,kjv Yy —x)

= lim Z Ni (5509 — ) + (w);,y — 1))
T =1k
S lim Sup Z )\j,i (ptj,i,sf+(y> - ptj,iyfftj,i ($) + 25)
T =1k

< fM(y) — inf{pcfi(z), t € T} + 2,

and, dividing by § and taking the limit when g — +o00, the hypothesis over the parameters
leads us to
(x*,y —x) <0, forall y€ dom f=dom [T,

that is, * € Ngom (). O

The following corollary provides a sharper characterization of the normal cone to dom f.

Corollary 4.8 With the assumptions of Theorem 4.7 we have, for all v € f~Y(R) such that
f islsc at x and all € > 0,

Naom s (&) = [@ ((uaa(pt,aftxx)) U (U\ Nzomfxx)))] ,

Ti={t € T: d.(picfi)(@) # 0}.

where

Proor. For all + € T' we have that

a€(pt,€ft)(x) + Naomft (I) C aQE(pt,Eft)<x>‘
Thus, by Theorem 4.7,

Ndomf<x) - co (( UAaE(pt,sft)(x)) U (teHT NZomft (’]7)> >]

c @(U(ae<pt,eft><x>UNzomfxx»u( U Naomfxx)))] |

[}

teT teT\To
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Hence, using Lemma 2.6,

Naom r(2) C ﬁ((Uas(pt,sft)(x)+N§omft(x)>U( U Ngomft(x)>)]

teT teT\To

C co (( UAaQE(pt,Eft)(x>> U (tegT chlf)mft<x>> )] )

and the fact T' C T, implies, again by Theorem 4.7,

Naom f(z) C lm <(tg 32:—:(Pt,sft)(l‘)) U (tGHT N fi (@))

= Ndomf<x>‘

[e o]

]

It is worth observing that if t € T' is such that f; € ['((X), then the corresponding term
Niom 1, (z) can be removed form the characterization of the normal cone to dom f. More
precisely, the following corollary comes easily from Theorem 4.7.

Corollary 4.9 Consider a family {f, : X — R, t € T'} of proper convez lsc functions and
f = supyer fr. Then, for every x € dom f, we have

Naom f(7) = {@ <U Gs(pmft)(:c))] o for all e > 0.

teT

Proor. In the current case, we have that 7' = Ty = 7. Thus, it suffices to apply Theorem
4.7. O

The characterization in Theorem 4.7 takes a very simple form when the functions f;,t € T
are uniformly bounded below at z, as the following corollary shows.

Corollary 4.10 Assume in Theorem 4.7 that, additionally, the point x satisfies
%gjﬁft(x) > —00.

Then, for every e >0 , we have

Ndomf(x) = [@ (UteT (asft(x)UNfiomft<x>))] oo’

Proor. According to Theorem 4.7, for every € > 0 we get

Ndomf(x) C [E (UteT (af(pt,sft)(x)UNfiomft (l‘)))} 00’
where p; . <1,t €T, is defined in (4.4). Then, by Lemma 2.35, we have

Naom £(2) C [0 (Uyeq0=(pref) () UNG,y 1, ()]
| (Yo Aa) Nz o)) -

and we conclude because the converse inclusion is straightforward. O]

56



Theorem 4.7 can be written in a slight general form.

Corollary 4.11 Consider a family {f, : X — R, t € T} of convex functions such that
(4.2) holds, and denote f := sup,cr fi. Given x € f~'(R) such that f is lsc at z, we choose
parameters €; € [pe, 1], t € T, where p;. are defined in (4.4), such that

22%515]”,5(95) > —00.
Then, for every € > 0, we have that
Naom £(2) = [€0 (Uyer (9=(eef)(#)UNGom 1, (2)))] ., -

Proor. According to Theorem 4.7, for every € > 0 we have that

Ndomf(x) C [@ (UteT (85(pt,5ft)(x)UN30mft (l’)))} oo’

Then, since p;. < &;, Lemma 2.35 gives

Ndomf(J:) C [@ (UteT (as(stft)(J:)UNflomft(x)))] 00’

and the conclusion follows since the opposite inclusion holds straightforwardly. O]

We illustrate Theorem 4.7 in the linear case.

Example 4.12 (i) Let T be an arbitrary index set and consider the functions

f = Supft = <Clt, > — bt, a; € X*7 bt € R.

teT

Take x € dom f. Then, since f; € I'y(X), by Theorem 4.7 we have for every e > 0

Ndomf(:E) = [@ (A£($) U BE<I))]

00 ?

where

Ae)= | 0fil)= | {a}, Beilo)= |J Olpeef)@) = |J {preast
)

teT:(x) teT: (x teT\T:(z) teT\T: ()

Hence, for the particular case when x =0 and f(0) =0, we get

A(0) = U{at (b < e},

teT

B.(0) = U{2bt€_€~at:bt>e}.

teT

If infier(—0;) > —o0, then
Naom £(0) = [€0 (Urer{as})] -
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(ii) Suppose that f := op := sup{(d*,-) : d* € D} for some nonempty set D C X*. Then
for every x € dom f and for every e > 0 we have that

Naom 7(7) = [0 (Ac(2) U B.(2))] . »
where

Al(z) = {d"e€D: (d',z) >op(x)—¢},
ed” .
B.(z) = {QJD(x)—<2d*,:c>+€ :(d*, x) <0D(x)—5}.

In particular, if op(—x) < 400, then

Naom 7() = [c0 (D)], = (domap)~,

where the last equality comes from Lemma 2.13. In other words, Naom £(x) is the same
for all x such that op(—x) < +oo. Indeed, this can also be seen from the fact that for
every such x we have

(Ndom £(x))” = cone (domop — z) = cone (domop) .

4.3 Characterization of the normal cone in the compact-
continuous setting

In this section we specify the results of the previous section to the compact-continuous
settings. We give a family of convex function f;,¢ € T', such that the index set T" is compact
and the mappings t — fi(x), t € T, are usc for all x € X.

A consequence of this continuous.-compact setting is that (see [12, Lemma 4])
dom f = Nier dom fy, (4.26)
and, for every x € dom f,
R, (dom f — x) = NyerRy (dom f; — ). (4.27)
These equalities do not necessarily hold outside the compact framework.

As before, we need to use an appropriate family of parameters:

_ —_th(x);f(x)ﬁ, ifteT\T(z), 498
pt,s T . ( . )
1, if t € T'(z).
Let us check that these new parameters also satisfies the condition
%g Profe(x) > —00. (4.29)

If t € T(x), then p, _fi(z) = fi(x) = f(x) > —oo. Otherwise, provided that f(x) = 0, for all
t € T\ T(z) we obtain
efi(x)

Prefilx) = 2(x) + 2 > —€.
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More generally, when f(z) # 0, by applying the last inequality to the functions f; — f(z) we

get
Bl ~ 1)) = D )

T 2@ 2@

and, hence,
ﬁt,aft(x) > ﬁt,af(x) - &
showing that (4.29) holds.

In order to characterize the normal cone to the effective domain of function f in the current
compact-continuous setting, we start by considering the case where the convex functions f;’s
are Isc. The first characterization in the result below is given [12, Theorem 5].

Proposition 4.13 Given proper lsc conver functions f, : X — R, t € T, we denote f =
supser fi- Assume that T Hausdorff compact and the mappings t — fi(z) are usc for each
x € X. Then, for every x € dom f, we have that

Ndom () = [co (UteTg‘?(ﬁt,aft)(x))}oo , foralle >0,

where (p, . )ier are defined in (4.28). Moreover, if {(fi)'(v;-), t € T} C I'o(X), then
Naom () = [0 (Uyer0(pofi) ()] . -

Proor. For the first equality we refer to [12, Theorem 5]. To prove the second statement,
we suppose that {(f;) (z;+), t € T} C I'o(X). Then, by [60, Corollary 2.4.15], we have that

O(Prefi) () # 0 and (9, f1) (2;+) = 0o, . f)() for all t € T and, so,

(Naom ()~ = cl(Ry (dom f — z))
= cl( Ry (dom f; — x))

teT

= c( Ry (dom(p, . f) — x))

teT

= cl( dom((p,.f.)(z;-)))

teT

> ot (domteup(7,. 452

teT

=cl (domUuteTa(pt,gft)(x)('O = ([0 (Verd @, fo)(x))] )

that is,
Ndomf(x) C [@ (UtETa(ﬁt,eft)(x))]oo‘

The opposite inclusion is straightforward. O

Now, we establish the general characterization of the normal cone to dom f in the current
compact-continuous setting.
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Theorem 4.14 Consider a family of convex functions {f, : X — R, t € T}, and f =
sup,er ft, where T' is a Hausdorff compact and the mappings t — fiy(x) are usc for each
x € X. If condition (4.2) holds, that is,

cl f = sup(cl fp),

teT

then, for every x € dom f such that f(z) = (cl f)(z) € R, we have
Naom f(7) = [ﬁ << U 35(Pt,eft)(x)) U ( U Nﬁomft(x)>>] , forall e >0,
teTo teT\Tp -

where Ty == {t € T : cl f; is proper}.

Proor. We fix z € dom f and € > 0. Then the proof is analogous to the one given in Theorem
4.7. In fact, assuming without loss of generality that f(z) = 0, we first suppose that

{(cl fy),t € T} C To(X).

Then, since z € dom f C dom(cl f), we have that

Naom £(#) = Nei(gom ) (%) = Neiaom(et 1)) (%) = Naom(e 1) (%),
and Proposition 4.13 applied to the family {(cl f;),t € T'} yields

Naom (%) = Naom(et ) () = [0 (Uyer0= (P (el ) ()] . (4.30)
where ~

S { e THET\T@)
’ 1, if t € T(x),

and T(z) :== {t € T : (cl f,)(z) = 0} = T(x) (since f(z) = clf)(z) = 0). Moreover, for all
t € T\ T(z), we have that

_ £ £ _
Pre = —2fi(x) +e+2fi(x) — 2(cl fi)(x) = —2fi(x) +¢ = Pre (4.31)

Also, for each t € T'(z) we have that (cl f;)(z) = 0 = fi(z) and, so,
0:(Pre (L fi))(w) = O:(cl fi) () C Ocfu(x).

At the same time, for each ¢ € T'\ T(x) we have that p, (cl f;)(z) > —¢ > p, fi(x) — ¢
(because f;(z) < 0 and p, . fy(x) < 0) and, so,

O:(pre (el f2)) (@) = Oc(cl(py o f)) (@) C Ooc(py o 1) ()

Thus, by (4.30), -
Naom (%) C [0 (UperQe: (b fi) ()] , -

Moreover, since that Etﬁ < p. forall t € T, by Lemma 2.35 we obtain
Naom (%) = [0 (UperO2: (712 fo) ()]

(the inclusion “D” in the last relation is straightforward; see the proof in Proposition 4.13).
The proof of the general case when not all the cl f;,’s are necessarily proper is done using
similar arguments as those of the second part of the proof of Theorem 4.7. O
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More generally, we have the following result which relaxes the compact-continuous setting.

Theorem 4.15 Consider a family {f; : X — R, t € T} C [o(X) and f := sup,cp f;, where
T an arbitrary index set. Assume that, for each sequence (t,), C T, there exists some finite
set J C T such that

limsup f;, < f7:=max{f;,t € J}.

Then, for every x € dom f,
Naom £(2) = [E (UteTﬁa(ﬁt,Eft)(x))Lo , foralle > 0.

Proor. Take u € Ngom (). Then, by [34, Proposition 3], for each L € F(z) there exists a
countable set {t1,--- ,t,---} C T such that

(VRS NLﬂdorn(supn ftn)(x)'

By the current assumption we choose a finite set J C 7' such that limsup f;, < f;; the family
{ft., n > 1, fi, t € J} satisfies

dom(sup(7i, o, 1> 1, Puofu t€T)) C (m dom(ﬁtn,sfm)m(m dom(ﬁt,gft))

n>1 teJ

= (0 domiz) 0 0 @omts)

n>1 teJ

= ([ dom() ) Ntom(s),

n>1

where the last equality comes from (4.26). Take z € (ﬂnZI dom(f;,)) Ndom(f,). Then, since
limsup,, f;,(2) < fs(2) < 400, we obtain that z € dom(sup,, f;,) and this implies

(. dom(£,)) Ndoma( ) < domsup £,

n>1

Therefore, applying Proposition 4.13 to the countable family {p, _fi., n > 1, p,.fi, t € J,
I}, we have for each € > 0

u € NLmdom(supn ftn)(x> C Ndom(sup{ﬁtn,efzm n>1, p; . ft, t€J, IL})(x>
= [ (Uy210- (01, 2 1) (@) U (Use - (21.f) (@) ULH)]
C [@ (UtETaE(ﬁt,eft)(x) + LL)] 0

Consequently, the desired inclusion follows by intersecting over L € F(z) and applying
Lemmas 2.6 and 2.8. O
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Chapter 5

Subdifferential calculus for pointwise
suprema

5.1 Introduction

The supremum function is a standard tool in convex analysis and optimization theory, playing
a fundamental role in establishing KKT and Fritz-John optimality conditions, subdifferen-
tial calculus rules, conjugation analysis and duality theory, minimax problems, and so on.
Our main goal in this chapter is to achieve a characterization for the subdifferential of the
pointwise supremum function, ideally an expression that directly depends exclusively on the
data functions with minimal requirements, avoiding the use of finite-dimensional sections of
the associated effective domain of this supremum function.

Formally, we deal with the pointwise supremum function, f := sup,cp fi, of a family of
extended real-valued convex functions defined on an les X, f; : X — R, and indexed in
an arbitrary set T. There are many contributions to this topic; we refer, for example, to
Brgndsted & Rockafellar [8], Valadier [57], Brgndsted [7], Volle [58] and Ioffe [37] among
many other contributions. For more recent works, we refer among many others to Hantoute,
Lépez & Zalinescu [35], Lopez & Volle [43], Mordukhovich & Nghia [46], Correa, Hantoute
& Lépez [15] (see, also, [16], [12]) and Hantoute & Lépez [33] (also, [34]).

A general formula of f(x) is given in [35, Theorem 4] under the closure condition, cl f =
sup,cr cl fi, showing that for all z dom f

of(x)= () @ U 0-fix) + Nergoms(x) | | (5.1)

LeF(x), e>0 teT:(x)

where F(x) is a set of finite-dimensional linear subspaces that contain the point z, and
T.(x):={teT: fi(x) > f(x) — e} is the e-active index set.

In the so-called compact-continuous setting (7" a Hausdorff compact set and the mappings
t — fi(z), v € X, are usc), the characterization involves the active functions (¢ € Ty(z)) as
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shown in [16, Theorem 3.8]:

of(xy= (1 @| | 0-fi(@) + Nerdoms(z) | - (5.2)

LeF(x), e>0 teT(z)

The problem is then whether the terms using the effective domain of f can be removed. For
instance, in [34, Theorem 5] where all the convex functions f;’s are assumed to be lsc and
proper, the author provided the following characterization for every x € dom f,

8f(x):ﬂ® U aft +{07€} U 8st(x) )

e>0 teT:(x) JETe(x)

where To(z) :={J €T : f;(x) > f(x)—e}, T={J CT:|J| < +oo}and f; :=max{f;: t €
J}. The normal cone used above is replaced with the union of subdifferentials of maximum
functions, each one involving a finite set of indices. This last expression does not distinguish
between the role of e-active functions and the others, as the condition f;(z) > f(z) — € may
involve both kinds of functions.

At the same time, the work in [12], which deals with the compact-continuous setting, gives
a more explicit representation of the subdifferential of f without using the extra maxima f;
but, instead, it uses parameters for non-active functions. There, also assuming that the data
are from I'g(X), it is shown that for all x € dom f

Of(x) = m@ U O fu(x) +{0,¢} U O:(pefe) (@)

£>0 teT(x teT\T(x)

Then our objective is to extend the last formula to the general framework outside the
compact-continuous setting. To this aim, the characterizations of the normal cone given
in the previous chapter will be of a great help. Indeed, we shall prove that, for all x € dom f,

of(ry=e | | ofil@)+ e |J Olpef)@ | U |J Nagmp@ui{o}] |,

e>0 teT:(x) teTo\T:(x) teT\To

where Ty := {t € T : cl f; is proper}. The main feature of this formula is that the role of
e-active and non e-active data appears explicitly.

This chapter is structured as follows: The new characterization of the subdifferential of
the supremum is given in Section 5.2. For instance, Theorem 5.1 deals with the general
framework where some appropriate parameters are assigned to non-c-active functions. The
specification of the last result to the compact-continuous setting is given in Theorem 5.3.
Section 5.3 establishes a reduction process that is involved within the characterization of the
subdifferential of the supremum. In Section 5.4 we present Danskin’s Theorem and some
extensions of it and. We end the Chapter with Section 5.5 where we apply the previous theo-
rems to provide some optimality conditions for convex semi-infinite programming problems.
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5.2 Subdifferential of the supremum function

As the following theorem shows, the subdifferential of f is constructed upon the following
three blocks give for € dom f and € > 0, as

Ad(w) == UL0.fil) : t € To(0)},
B.(x) = Uf0-(prefi) @) : ¢ € T\TL()}, with p. €)0, 1],

Ce(@) == User\r, Naom 5, () U {0},
where
T.(z) :={t €Ty : fi(z) > f(x) — e},

with
To:={t €T :clf; is proper}.

Remember that by convention we have

U Ndom ft

te 0

| |
=

Moreover, the parameters p; ., are define by

Pte = th(m):;f($)+s7 if ¢ < TO \ Ta(x)7
’ 1, if t € T.(x).

and satisfies, as we checked before,
inf py.c fi(w) > —oo.

The first block A.(x) corresponds to the almost active indices, while B.(z) involves the rest
of functions but multiplied by a parameter p;. € ]0,1]. The set C.(x) represents somewhat
those functions which are not represented in the first two blocks, and whose closure is not
proper.

Theorem 5.1 Let f, : X — R, t € T, be a family of convex functions and denote f =
sup,er fr- We assume that

cl f = sup(cl fy).

teT

Then, for every x € dom f, we have that

0f(x) = () @ (A:(z) + (¢B:(x) U C(x))). (5.4)

e>0

Proor. Fix z € dom f, ¢ > 0, U € N and pick L € F(z) such that L+ C U. We start
by proving the direct inclusion “C” in the nontrivial case when df(x) # 0. Hence, we
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may assume that f(z) = clf(z) = 0 and, so, we can apply Theorem 4.7 to the family
{ft, t € T;1,} to obtain

Nirdom £(2) [@ ((u as<pt,€ft><m>) U L'y (L{ Noom @;)))] ,

that is, using Lemmas 2.6 and 2.7,

Nindom f(x) = [@ (Ag(x) U (Be(z) U Ce(x)) U LL)LO
= [0 (A-(2) + (eB.(z) U Ce(x)) + L))

Therefore, since every t € T such that 0. f;(z) # 0 belongs to T.(z), (5.1) entails

Of(z) C ©o (( U 0£ft(x)> + [co (As(z) + (eB(x) U Ce(x)) + LL)}OO>

teT ()
)+ [0 (Ac(2) + (eB:(2) U Ce()) + LT)] )

Ac(x
(2) + (eBe(x) U Cc(w)) + L)
() + (eB:(2) U Cc(2))) + 2 U,

C ( .
C co(A
and the desired inclusion follows by taking the intersection first over U € N and next over

e > 0.

To prove the opposite inclusion, we assume without loss of generality that f(xz) = 0. We
take x* in the right-hand side of equality (5.4). Then, for each € > 0, there are nets

(O‘j%l? T ?O‘j»mg’) € Artzj? m; > 1,
and, fori =1,---,my,
xi, = ul; + Biews, + 75,45, where ul, € O-f; (x), wi; € O:fs; . (x), v} v, € Ce (x),
where
tii € To(z), sji € To\ Te(x), Bjir vii € {0,1},
such that

x* —hmE Qi u“—|—5ﬂﬂwﬂ+vﬂvﬂ).
i=1

Then, for all 7, j as above and y € dom f we have

Wy — ) < fi,,(y) = fiy (@) + & < fy) + 2,
implying that u}; € O f(z). Similarly, since 0 < p;;, < 1 and inf p; . fi(z) > —¢ (see (4.5)),
we have that

ptj,ifftj,i(y) - ptj,i,sftj,z‘ (.T) +e
f+(y) —inf py o fi(z) +e < f+(y) + 2e,

<w;‘<,i7 Yy— l’>
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that is, w},; € 0. Thus, since each v, satisfies (v};,y — ) < &, we conclude that
(z*,y —x) = lim Z Qg ((sz, Yy — ) + Bjae{wi, vy — o) + 75V Yy — $>)

< limjsup Z i ((f(y) + 2e) + Bje(fT(y) + 22) + vj.4€)
< fly)+3e+e(fT(y) + 2e).

Finally, as € | 0 we deduce that z* € 0f(x), as we wanted to prove. O

The next result extends Corollary 12 in [12] to possibly non-compact-continuous settings.

Corollary 5.2 Assume in Theorem 5.1 that, additionally, all the functions f; are in T'o(X).

Then we have
= (oo [A(x) + (eB.(x) U {0})].

e>0

In particular, if f attains its minimum at x, then

mco x) UeB(x)].

e>0

Proor. The first statement follows immediately from Theorem 5.1 taking into account that
in the current case we have T\T, = () and so, by our convention,

U Ndomft U {9} - {9}

te 0

To prove the second statement, as in the proof of Theorem 5.1 we show that

Nrdom £(2) = [@ (Ag(x) UeB.(z) + LL)}

and (5.1) entails

ﬂco x)UeB(x)).

e>0

Conversely, for every € > 0, we know that (see the proof of Theorem 5.1)
0 (A-(z) UeB.(x)) C €0 (Oaef(x) Ueda fH ().

More specifically, since f is assumed to attain its minimum at x, by [12, Lemma 1] we know
that

()@ (02 f () Ut f () = Of (x),

e>0

and the desired result follows from the last inclusion above. O]
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We turn now to the compact-continuous setting. In this case, the active index set suffices
to describe the subdifferential of the supremum. Given x € x dom.f, we denote

T(x) ={t €Ty : filz) = f(x)},
together with the sets

A(2) = U{0-fil) : t € T(w)},
Bu(2) = 0. (0, f) (@) : t € T\T (@)},

8

where

_ ey it €To\T(x),
Do = { 2fe(z)+2f (2)+ (5.5)

1, ift € T'(z).

Theorem 5.3 Let f, : X — R, t € T, be a family of convex functions and denote f :=
sup;er fi. Assume that T is Hausdorff compact and the mappings t — fi(x), v € X, are usc.
If condition (4.2) holds, that is, cl f = sup,cpcl fi, then for every x € dom f we have that

f(x) = e (1215(33) 4 (eB.(z) U C’E(:c))) .

e>0

Proor. To prove “C” we may suppose that df(z) # (); for otherwise, the proof is trivial.
Hence, f(x) = cl f(z) € R and the set T'(x) is nonempty. Moreover, by (5.2), for all ¢ > 0
and all L € F(x) we know that

8f(x) C co (UteT(x)asft(x) + NLﬁdomf(m)) )
where, due to Theorem 4.14,

NLﬁdomf(x) = [@ ((UtETan(pt,eft)(x» U (UtET\TONgomft ($)) U LL)] o (56>

In other words, by rearranging these last terms and using Lemmas 2.6 and 2.7, we have

Nintoms(z) = [e0(Au(a) U (Bu(a) U Cula)) U LY)]

o0

= [e0(Ac(x) + (eBu(x) U Culw)) + 1Y) . (5.7)

o0

Additionally, since 6 belongs to C.(x) and L+, we note that

UteT(ac) 8sft(x) C co (UtET(z)aeft(I) + (8B€(I> U Cz—:(x)) + LJ_) : (58>

Therefore, by (5.2),

df(xr) C ©o (UteT(m)asft(x) + [@ (UtET(z)aeft<x> + <5Bs($) U Ce(ﬁ)) + LL)} OO)
c @ (/L(:v) + <5Ba(z) U OE@)) + LL)
C co (/L(x) + (eB.(x) U Cg(x))> + 2U.

The conclusion follows by taking the intersection over ¢ > 0 and U € N. Finally, we are
done because the inclusion “D” follows easily from Theorem 5.1. [
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The proof of the following result, already given in [12, Theorem 10|, is similar to the one
of Corollary 5.2.

Corollary 5.4 Let f, : X — R, t € T, be a family of functions in T'y(X), and denote
[ i=supep fi. Assume that T is compact Hausdorff and the mappings t — fi(x), v € X, are
usc. Then, under condition (4.2), that is, cl f = sup,ep(cl f;), we have for every x € dom f

0f (@) = (oo (Aex) + (eB(2) U {0}))
e>0
Moreover, when f attains its minimum at x we get

df () = (oo (Ag(x) U eéa(az)) .

e>0

The parameters (ﬁt,a) e C|0, 1] are used to give the exact characterization of df(z), by
providing a control on those functions f; which escapes at —oo at the reference point .
Hence, if we take all the parameters to be equal to 1, then we only obtain an estimate from
above for the set 0f(x), which also could be of some interest. Such an upper estimate also
turns into an exact characterization for d0f(x) when the functions are uniformly bounded
below at x, as we show in the following corollary.

Corollary 5.5 With the assumptions of Theorem 5.1, we suppose that

%géft(x) > —00.

Then, for every x € dom f we have that

0f(x) =[] @ (Ac(w) + (¢BL(x) U CL(x))),

e>0

where Bl(z) := U{d.fi(x) : t € To\T.(z)}. Also, with the same condition as above, in the
context of Theorem 5.3 we have that

0f(w) = (@ (Alw) + (Bl(x) U C:(a))).

e>0

where BN (x) == U{0.f,(x) : t € T\\T(2)}.

Proor. The proof of the first statement follows by combining Theorem 5.1 and Lemma 2.35.
Similarly, the second statement follows by Theorem 5.1 and the same lemma. O

Example 5.6 Consider the function f = sup,ep {{a,) — b} and take x € dom f. Then,
according to Theorem 5.1,

Of (x) = NesoC0(Ae(x) + (eB=(x) U{0})),
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where
A(x) = Hay: (ag,x) — b > f(x) — €},

eay ‘
B.(x) = {26,:—2(@@) ) ¢ (ap, ) — by < f(x) —5}.

Moreover, if x satisfies infyer {{at, x) — b} > —o0, then Corollary 5.5 yields

0f () = Nesg® (Ac(x) + (B2 (z) U{0})) ,

where

BX(z) == {a; : {as,x) — b, < f(x) —€}.

In the following example, we consider a particular pointwise supremum function, which is
the Fenchel conjugate.

Example 5.7 Tuoke a function f : X — Ry together with its conjugate, that is,
f*(z*) = sup ffx(:c*), where f, = (-, x) — f(x).

z€dom
Given x* € dom f*, we introduce the sets
Ay = {wedom [ (o*2) — f(2) > [*(a") — e} = (@0.1) (&),
o Ex
5.6 =\ e o=
Therefore, by Theorem 5.1,
Of(2") = Mo ((0-) " (2") + (eB:(z") U{0})) . (5.9)
Moreover, if inf,ex f.(x) > —o0, then the relation

Argmin(cof) = 9f*(0)

cx €dom f, (x*,z) — f(z) < fr(z¥) — 5} )

together with Corollary 5.5 gives us
Argmin(cof) = (),.,C0 (e- Argmin(f) +eB.(0) U {0}),

where
Ex

2(f(z) —infx f) —¢

B5.(0) = { o € dom (- Argin( ) |

The following corollary gives a way to avoid the boundedness condition used in Corollary
5.5.

Corollary 5.8 With the assumptions of Theorem 5.1, for every x € dom f we have that
0f(x) = (o0 (A-(z) + (B (x) U Cc(2)))
e>0

where

B:(:E) = U{aegt(x) s te TO\TE(I)}? with gt = max{ft; f(J:)}
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Proor. Given x € dom f and € > 0, we start by supposing that f(x) = 0, so that g; = f,"
forallt € T, fi(x) <Oforallt € T, and fi(z) < —¢ for all t € T\T.(z). Next we claim that

B.(z) C By.(z).

Indeed, given x* € B.(z), we choose t € To\T:(x) such that z* € 0.(p.fi)(x). Then, for all
y € dom(f,") (= dom(p;.f;)), we have that

(Prefi) (W) = (prcfi)(@) + ¢
((f) () +e+e=fy) — fi'(z) + 2,

the last equality because (f;)*(z) = max{f;(x),0} = 0. Hence,

(2% y — )

<
<

2" € 0. f(x) C BL(a),

and the claim holds true. Consequently, the inclusion “C” holds and we finish the proof in
the current case as the opposite inclusion follows similarly like in the proof of Theorem 5.1.

In the general case, where possibly f(z) # 0, we consider the convex functions

ft = ft()_f(x)a teTa

together with the associated supremum functions f 1= SUP;cp ft. Then f = f — f(z) and,
so, f(z) = 0. Thus, from the first paragraph we infer that

0f (@) = 0f (@) = (oo (Aul) + (B2 (2) U Cula)) )

where
Ae(‘r) = U{aaft+(x) e Te(x)}
and
B (2) = W{0-fi" (z) : t € T\\Tu(x)}.
Thus, since that

FEC) = max{f,(-) = f(2), 0} = max{fi(), f(2)} — f(x) = g — [(2),

we get X
Ae(2) = U{O:gu(2) = ¢ € Te(x)}
and

B (2) = i) : t e T\TL(x)}.
OJ

An immediate consequence of Theorem 5.1 is the following extension of the Brgndsted
formula in [7], and the formula given in [33, Proposition 6.3] (in finite dimensions and under
the continuity of the f;’s).
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Corollary 5.9 Let f, : X — R, t € T, be a family of convex functions and denote f =
sup,er fi- Assume that condition (4.2) holds. Then, for every x € dom f such that T'(x) =T
we have that

Of(x) = (o (Uaeft(x) + ( U Naom s, () U {9}>) :

e>0 teT teT\To

In particular, if f; € To(X) for allt € T, then

01w) = (o ( Uo.hio)).

e>0 teT

5.3 Reduction process and subdifferential of the supre-
mum

In this section, we use Theorem 3.1 to provide sharp characterizations of the subdifferential
of the supremum function in the finite-dimensional space R", which only appeal to at most
n + 1 functions from the data.

Theorem 5.10 Consider a family of lsc proper convex functions f; : R" — Ry, t € T, and
denote f = sup,er fi. Let D C X be a convex set such that dom f C D C X, and assume
that T is Hausdorff compact and the mappings t — fi(z), © € D, are usc. Then, for every
x € dom f and € > 0, we have

L o.f(x)= U U {0, (maxies fy +1p) (@) : maxies fi(w) = f(x) — 2}

c1tee=¢ SCT, |S|<n+1
€1, €9 >0

2. O:f(z) = U Oy (ZteT o fi + ID) (z).

SCT, |S|<n+1, a€lg
n€[0.e], i atfr(z)—f(x)+e=n

Proor. 1. First, to prove the inclusion “C” we take z* € 0.f(z), so that
fl@) = (@) <inf(f — (2%,-)) + & (5.10)

Then, applying Theorem 3.1 to the family of functions { f; — (x*,-), t € T'}, there exists
an index set S C T with |S| < n + 1 such that

iﬂgnf(f —(z*,")) = iﬂglnf (I?G%X fi —(z",-) + ID> : (5.11)
Thus, taking €5 := f(x) — maxes fi(x) >0,
(r&agxft — (z*,) + ID> () = f(x)—(z" 2) — e (5.12)
< iﬁlnf(f —(z*, ) +e—e

R™ tesS

= inf (maxft — (z*, ) + ID> +e—e9, (5.13)
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and we deduce that 2* € 0._., (maxes fi + Laom f) (7).

To prove the opposite inclusion, we take x* € 0._., (maxes fi + Ip) (z), where S C T,
|S] <n+1, and g5 = f(x) — maxyes fi(z). So, for all z € D,

(", 2z —x) < (I?G%Xft +ID) (z) — (I&%Xft +ID) () +e—ey
< f(2) = fl@) +eate—e
and we infer that z* € 0. f(x).

Ifa* € 0.f(x), then 0 € 0.(f —2*)(x) and Theorem 3.1 gives rise to some S C T, |S| <
n+1, and @ € Ajg such that

F@) = ) < () e =it (St T~ 7)) 2

R’I’L

= max inf (Z afy +1p — (2%, >) + e (by Proposition 2.25)

SR B\ ies

= 1nf<2atft+ID— ,->>—|—5;

tesS

in particular, we have that n :=¢ — f(z) + Y @ fi(x) € [0,¢]. Thus, since
tes

S @ file) - (*,2) < fla) — (2", a),

we deduce that

" € 0, <Zatft + ID) (x).

tes

Now we assume that 2* € 0, (Z o f + ID> (x) forsome S C T, |S| <n+1, a € A
tes
and 7 € [0, €] such that € — f(x) + 3 ,.g v fe(x) > n. Then, for all z € dom f,

(", z—x) < (Zatft+ID) <Zatft+ID>
tes tes
< f(2)+1Ip(z) — f(z) —Ip(z) +¢
< f(2) 4 Laoms(z) — flz) + €
< f(2) = flz) +e,

and we infer that z* € J.f(x).
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Let us recall that if 7" is finite in Theorem 5.10, say 7" := {1,--- ,m} with m > 1, then
by Lemma 4.1 in section 4.2 we have proved that, for every x € dom f and € > 0,

O-f(z) C U{@E( Z af)(x) Z arfi(x) > f(z) —e, a€ Ay, |suppal <n+1}.

tEsupp o t€supp o

Moreover, in this finite case, Theorem 5.10 simplifies to:

Corollary 5.11 Consider a family of lsc proper convex functions fi,---, fm : R" — R,
m >n+ 1 and denote f := maxi<;<, fi. Then, for every x € dom f and ¢ > 0, we have

Los@= U U o (maes) @ mases i) = 10 -}

€1+eg=e SC{1,--
€1,692>0 |S|<n+1

2 0.4(2) = U 0, (S out) (@)
SC{I,m,m},\S|§n+1,a€A‘S| tes
n€[0,e],>te g ot fr(z)—f(z)+e>n

5.4 Danskin’s Theorem

This section is dedicated to extend the Danskin Theorem [20, Theorem I (Chapter III)], by
using the concept of e-directional derivative instead of the usual directional derivative.

The classical Danskin’s theorem involves a function F'(x,y) of two variables z and y,
defined on the product of the Euclidean space R™ and some compact topological space ).
The function F(z,y) as well as its partial derivatives are supposed to be continuous. Then
Danskin’s theorem allows for an explicit characterization of the directional derivative of the
function ¢ defined as

— min F .
o(r) min (z,y)

Namely, if ¢/(z;u) denotes the directional derivative of ¢ at the point x € X in the direction
u € X, then ¢'(x;u) is given by means of the partial directional derivatives of F' given, for
appropriately chosen elements y € ), as

Fi/(x,y) = lir% s HF(z+sep,y) — F(z,y), i=1,---,n,
5—

where {eq, -+ ,e,} denotes the canonical basis of R™. More precisely, we have

Theorem 5.12 For every u = (uy,--- ,u,) € R,

n

90/<ZL’, U) = min U’iF;,’/ (ﬂf, y)7

yeYV() Py

where Y(z) :={y € YV : p(x) = F(x,y)}.

In the line of Danskin’s Theorem we present below a characterization for the directional
derivative of the supremum function, f = sup,cp f;, where T'is any set (possible infinite).
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Our characterization is given by means of the e-directional derivatives of the f;’s and makes
use of the parameters p;. defined in (5.3) as

e = s Lt € To\ Tu(x),
L if t € T.(x),

with Ty := {t € T : cl f; is proper}.

Theorem 5.13 Consider a family of proper lsc convex functions f; - X — R, t € T, and
denote f :=sup fier. If x € X is such that Of (x) # (), then we have

A(f/(w5)) =l (i“f ( sup (f)l(wi)+e sup ((prefi).(w: ->>+>> |

e>0 \ teT. (x) teT\T (z)

If, in addition, inf,cr fi(x) > —o0, then

cl(f'(x;-)) = cl (inf< sup (fi).(z;-) +¢e sup )((ft);(a:;-))+>> :

e>0 \ teT.(2) teT\T. (z

Proor. According to [60, Corollary 2.4.15], we write
cl(f'(x; ) (u) = sup{(u, z*) : * € 9f (x)}, for all u € X, (5.14)
Then, using Corollary 5.2,

cd(f(z;u)) = sup{{u,x*) : 2" € N.soco (A(x) + (eB.(x) U {0}))}
— (gg (sup {{u,2*) : 2* € A.(z) + (eB.(x) U {9})})) (by Lemma 2.23)

~ d (gg (sup {{u,2*) : 2* € A.(2)} +sup {{u,2*) : 2* € eB.(x) U {9}}))

— ol (inf (sup {(u,2") : 2" € Upemdfil(e) } +

sup {(u,x*) 127 € Upen\1 (o) (€0:(prefi)(z) U {9})} ) )

= clfinf | sup sup (u,x*)+ sup sup (u, x*)
£>0 \ teTu(z) a*€o. fi (2)} te€T\Tx (x) a* €0 (pr = fr) (z) {0}

(by Lemma 2.23)

= cl (inf( sup (fi).(x;-)+e sup ((pt,aft)lg(x;'))+>) )

e>0 \ teT.(x) teT\T: (z)

and the first statement follows. Under the additional assumption, the proof of the second
statement is done in the same way as in the paragraph above by taking as weighting param-
eters the value 1 instead of the p;.’s (see Corollary 4.10). O

74



The following result gives the counterpart of Theorem 5.13 for the compact-continuous
setting. In this case, instead of the p; . used above we use the the parameters p, . defined in
(5.3), that is,

b, = h@ar@re 1€ To\T(z),
° 1, if t € T(x).

Theorem 5.14 With the assumption of Theorem 5.13 suppose that T' is Hausdorff compact
and the mappings t — fi(z), © € X, are usc. If x € X is such that Of (x) # 0, then we have

e>0 \ teT(z) teT\T'(z)

cl(f'(x;-)) = cl (inf ( sup (f)i(z;) +e sup ((Bcfi)e(@: '))+>) :

and, provided that infyer fi(x) > —o0,

cl(f'(w; ) = cl (inf ( sup (fo)o(w;) +e sup ((fi)(w; '))+>) :

€20 \ teT(z) teT\T ()

In particular, if fi(z) = f(x) for allt € T, then

e>0 \ ter

(i) = (iuf (sup(F) (o) ).

Proor. The proof is similar to the one of Theorem 5.13, taking into account the compact-
continuous setting (using p, . instead of p;. and applying Corollary 5.9). O

A more simple formula of the directional derivative is obtained if the supremum function
is continuous somewhere.

Corollary 5.15 Given a family of convex function {f;, t € T} such that f = sup,ep fi is
finite and continuous at a given x € X, we suppose that T is Hausdorff compact and the
mappings t — fi(z),z € X are usc. Then we obtain

fl(x;-) = sup fi(x;).

teT(z)

Proor. The proof is similar to Theorem 5.14 but with the use of [16, Corollary 10]. Indeed,
sine the function f is continuous at x (and so are all the f;’s), we obtain for all u € X

fla)(w) = sup{(u,a”) : 2" € © (Uerw)0fi(v)) }

— sup sup{(u,a%) : 2° € Ofy(x))
teT (x)

= sup fi(x;-)(u) (by [60, Corollary 2.4.15]).

teT (x)
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5.5 Optimality conditions

In the literature on semi-inifnite optimization one can find several KKT-type optimality con-
ditions which use, for example, approximate subdifferentials of the data functions [36], exact
subdifferentials of data functions but at close points [56], Farkas-Minkowski-type closedness
[23] and many others. In our case we derive new optimality conditions that highlight the role
played by e-active and non e-active functions.

We consider the following semi-infinite programming problem (SIP, in brief), written in
an les X as

inf  fo(z)
st. filr) <0, teT, (5.15)

where T is an arbitrary index set and f; : X — R, t € {0} UT are convex and lsc functions.

The following establishes the KKT and Fritz-John optimality conditions for problem (5.15)
at an optimal solution z € X. Remember that

To={t € T :clf; is proper}
and, for any € > 0, the parameters p; ., t € {T"U0} are defined by
pre = {2f(€)+s’ if ¢t € To\ Te(2),
’ 1, ift € {0} UT.(2),
where T.(z) = {t € Ty : fi(x) > —¢}.

Theorem 5.16 For everye > 0 and every U € N, there are associated elementsty, - ,t,, €
T5<i'), tm-i—l; s tm+n - TO\( ( )U {0}) m+n+1, ety tm+n+r c (TU {0}) \TO and the
multipliers (X, -+ s Amantr) € Domantrs1, m,n,r > 1 such that
m+n m+n—+r
6 € X\O-fo(T +Z)\aft Z ENO=(pr e fr)( Z )‘Ndomft z)+U,
i=m+1 i=m+n+1
and, provided that f, € To(X) for all t € T U {0},
m+n
0 € Xo0-fo(T) + Z NO-fi(2)+ > eX0c(pr, o f1,)(T) + U
i=m-+1

Moreover, if infierugoy fi(x) > —o0, then instead of p,. we take the fived value 1 in the two
relations above.

Proor. Since Z is an optimal point of (5.15), Lemma 3.6 ensures that Z is a global minimum
of the function g = sup{ fo(-)— fo(Z); fi(-), t € T'}; hence, g(z) = 0 and 6 € Jg(z). Therefore,
given any € > 0, Corollary 5.2 entails

6 € 0g(x)
- Neo( U er@+( U efd@u U Nwn@)):
e>0 te(Te(z)U{0}) te(To\(T=()){0}) te(TU{0})\Tp
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Therefore, for all € > 0 and for all U € NV,
veoo( U os@+( U befd@U U Niwn@)) +0

te(Te(z)U{0}) te(To\(Te(7))u{0})) te(TU{0})\To

and so there exist elements t1, -+ ,t,, € To(Z), tmy1, - tm+n € To\ (T-(z)) U {0}), together
with tm—i—n—l—la o 7tm+n+r € (T U {0}) \ TO and (/\0) /\1) ) )\m7 ) )‘m—i—’m ) )‘m—i-n—i—’/‘) €
Apiniri1, m, n, 7> 1 that satisfy the first statement of the theorem.

In the case where all the f;’s are in I'o(X), we get the desired conclusion by arguing as
above with the use of Corollary 5.2. The same arguments are used to establish the last
conclusion, thanks to Corollary 4.10. O]

Next, we give the counterpart of the previous theorem for the compact-continuous setting,
by arguing similarly as in the proof of Theorem 5.16 and using the parameters p, . defined
by

he 1, if t € {0} UT ().

Theorem 5.17 Assume that T is a Hausdorff compact set and that the mappings t — fi(z),
r € X, are usc. Then, for every € > 0 and every U € N, there are associated elements

tlu"' 7tm € T(J_I), tm-‘rl"" 7tm+n € TO\ (T(j) U {0})7 tm—‘,—n—‘,—l"" 7tm+n+7‘ € (TU {0}) \TO

and (/\07 /\17 e a)‘mv e 7/\m+n7 e 7/\m+n+7”) € Am—l—n—i—r-{—lf m, n, r = 1 such that
m m-+n m-+n+r
0 € M0-fo() + > _ N0 fu(@) + D eNO-(D o fi) @)+ Y ANagmy,, (B) + U,
=1 i=m-+1 i=m+n+1
and, provided that f; € To(X) for allt € T U {0},
m m+n
0 € MO-fo(@) + D N0Fo (@) + Y eNid:(By, i) (@) + U.
i=1 i=m+1

Moreover, under the Slater condition and the assumption that f, € T'o(X), for allt € TU{0},
we have that A\g > 0.

Proor. The proof is analogous to the proof of the theorem above but with the use of Corollary
5.4 instead of Corollary 5.2. To establish the last conclusion, we proceed by contradiction
and assume Ay = 0, so that

m m—+n
€ No-fi(®)+ Y eXde(p,, . fu)(@) + U.
=1 1=m-+1

Then direct calculus lead us to

0 & (Yoo (ufsup fa). <0uomp F)0) ) © Dsup £,

>0 teT teT teT

which gives us a contradiction. O
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Chapter 6

Multiobjective optimization

6.1 Introduction

Consider the multiobjective optimization problem (MOP, for short)
Hlelgl{ft(.f) teTy, (6.1)

where f; are extended real-valued convex functions, defined on R" and indexed in an arbitrary
set (possible infinite) 7', and S is a nonempty subset of R™. Associated to problem (MOP)
we consider the sub-problems

r;lelél{ft(x) :t € B}, (6.2)

where B C T. We shall use two concepts of solutions for problem (MOP), the (classical)
efficient and the weakly efficient solutions.

The model above has been proved to be very useful in different applications such as
allocation problems, approximation theory, cooperative n-persons games, portfolio problems,
Engineering design and so on (see, e.g., [38] and [54]).

We want to apply the reduction process of Chapter 3 to problem (MOP), in order to
characterize the set of weakly efficient solutions of problem (MOP) by means of efficient
and/or weakly efficient solutions of problems (6.2).

First works to set out these objectives have been realized by Lowe et al. [44] for finite
index sets T', showing that the set of weakly efficient solutions of problem (MOP) can be
obtained upon efficient solutions of all subproblems (6.2). In 1989, Ward [59] improved the
previous result by restricting to subproblems [59] associated to subsets B C T with cardinaly
not exceeding n + 1. He also studied some particular cases in which the number of objective
functions can be reduced to n at most. These results have been done for convex functions.
The case of quasi-convex functions has been recently in Plastria [49] for finite index sets 7.
In this case, the set of weakly efficient solutions of problems(6.1) is completely determined by
the set of weakly efficient solutions of all sub-problems with at most n+ 1 objective function.
In the compact-continuous setting, where 7" is compact and the mappings ¢t — f(z), z € X
are continuous, Plastria & Carrizosa [50, Corollary 2.1] studied the case where the convex
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functions {f;}ier are finite-valued on a fixed given set 2 C R". They showed that, if the
constraint set for problem (6.1) satisfies S C €2, the set of weakly efficient solutions of (6.1) is
completely determined by the set of weakly efficient solutions of all sub-problems (6.2) with
at most n + 1 objective functions.

Most of the results dealing with the reduction of the number of constraints in problem
(6.1), including the results cited above, are based on Helly’s Theorem. In our case, we shall
use the results established previously in Chapter 3 for the subdifferential of the supremum
function.

Roughly speaking, we shall be interested in characterizations given in the following forms,

WEr(S)= | WEs(SnD),

BCT, |B|<n+1

for appropriately chosen sets D C R", and

x € WEp(S) <=0 € co <U 8ft(x)) + Ng(x).

teT

This chapter is divided into several sections. Section 6.2 deals with a reduction process
for problem (MOP), when T is Hausdorff compact and the geometric constraints represented
by S C R" is closed and convex. Theorem 6.4 shows that the weakly efficient solutions of the
original problem is characterized by means of weakly efficient solutions of all sub-problem
with at most n + 1 objective functions. Theorem 6.4 provides an extension of [50, Theorem
2.1]. In section 6.3 we present a characterization of the weakly efficient points of (MOP)
by using the subdifferential of the objective functions and the normal cone to the geometric
constraints set. Our main result is Theorem 6.6, where the objective functions are extended
real-valued functions defined on an lcs X.

6.2 Reduction processes in multiobjective optimization

Let f; : R® — R, be a family of extended real-valued functions, t € T, with T" being an
arbitrary set of indices, and let S C R" be a nonempty convex set. We denote f := sup,cr f:
and consider the multiobjective optimization problem

MOP(T) rfelg{ft(x) teTh. (6.3)

There are several types of solutions for Problem (MOP(T)), but we will restrict ourselves in
this chapter to efficient and weakly efficient solutions.

Definition 6.1 (Efficient solutions) The point & € S Ndom f is said to be efficient solution
of problem (6.3) if there is no point x € S Ndom f such that (i) fi(z) < fi(Z), for allt € T,
and (ii) fi(x) < fe(T), for some t € T. The set of the efficient solutions of (6.3) is denoted
by E(T., S).
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Definition 6.2 (Weakly efficient solutions) The point = € S Ndom f is a weakly efficient
solution of (6.3) if and only if there is no y € S Ndom f such that fi(y) < fi(Z), for all
t € T. The set of weakly efficient solutions of problem (6.3) is denoted by WE(S).

Clearly, we have that E(T,S) € WEz(S) but the opposite inclusion cloud not be true.
We have the following simple example (see [38, Example 11.6]).

Example 6.3 We consider the multiobjective optimization problem given in R? by

I;lelgl{fl(l')afZ(l’)L

(0,0) 1 =

Figure 6.1: E({1,2},5) in red, WE{; 2;(S) in yellow.

where S = {(z1,22) €R*: 0 <2y <1, 0 <y < 1}, fiwy, 22) = 21 and fo(wy, 22) = 2o.
The point (0,0) is the only efficient solution of the given problem, but the set {(x1,x2) € S :
x1 =0 or xy = 0} represents the set of weakly efficient solutions. See Figure 6.1.

In the following theorem we characterize the set of weakly efficient solutions for constrained
and unconstrained multiobjective optimization problems (6.3), where the constraint set S is
convex and the objective functions are indexed in a Hausdorff compact set T'.

Theorem 6.4 Given a family of convex lsc functions f; : R® — Ry, t € T, and a closed
conver set S C R", we assume that T is Hausdorff compact and the mappings t — fi(z), x €
D, are continuous, where D is any convex set satisfying (3.7), that is, dom f C D C R".
Then we have that

WEr(S)= |J WEs(SnD).

BCT, |B|<n+1

Proor. Since WEr(S) C dom f C D, the current compactness-continuity assumptions give
us

€ WEp(S) <= VyeSndomf, 3te T suchthat fi(y) > fi(z)

; — r)) >
el ) 2l 2 0

— inf — f.(x)) > 0.
yGS%%omfilel’_/P(ft(y) ft(x)) =
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Let the functions ¢; : R" — R, t € T, be defined as ¢;(y) = fi(y) — fi(z) + Is(y), and
consider the associated supremum function ¢ := sup,c ;. Then, using [12, Lemma 4], we
know that

dom ¢ = ﬂdom(ft — fi(@) +1g) = ﬂdomftﬁS:domfﬂS,

te’T teT

and we deduce that

inf sup(f(y) = () = it sp(f(y) — (@) = infsup(£(y) — £(0)).

yeSndom f e yeSND e teT

So, the equivalence above reads

€ WEr(S) < inf sup(fi(y) — fi(7)) = 0

yeSND teT
< inf sup(fi(y) — fi(Z)) > 0.
YES teT

Next we verify the hypotheses of Theorem 3.1, when applied to the family of functions
{¢s, t € T'}. Indeed, it is clear that all the ¢;’s are convex and lsc, and that the mappings
t — ¢(y) are usc for all y € D. Thus, since that domy = dom f NS C D, Theorem 3.1
applies and yields

inf sup[f,(y) — fi(2)] = iﬂgnf ileljl“)[ft — fi(@) +1s]

YeS teT

per B B~ (@) + 15 + 10}

Therefore
T E inf — f(2)] >
PEWBIE) S M U W)~ ] 20
— I € U WEg(SN D),
BCT, |B|<n+1
and we are done. O

Below we present an extension of [50, Corollary 2.1].

Corollary 6.5 Given a family of convexr continuous functions f; : R" — Ry, t € T, we
denote f = sup,er fr. Let S C R™ be a closed convex set, and assume that T is Hausdorff
compact and the mappings t — fi(z), v € R™, are continuous. Then

WEr(S)= )  WEz(S).

BCT, |B|<n+1

Proor. Due to the continuity of the functions f;,t € T, it suffices to take D := R"™ in Theorem
6.4. ]
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6.3 Characterization of weakly efficient solutions

The following Theorem extends [50, Theorem 2.1] to extended real-valued lsc convex functions
defined on an lcs X.

Theorem 6.6 Given a family of convez lsc proper functions f; : X — Ry, t € T, we denote
fi=supyer fi. Let S be a closed convex subset of X, and assume that T is Hausdorff compact

and the mappings t — fi(x), v € X, are continuous. If the function f is continuous at some
point in S, then & € WE7(S) if and only if

0 cco (U Oft(:zr)> + Naom f(Z) + Ng(Z), (6.4)

teT

if and only if

6 € Ng(z) + [ |0 (U 8Eft(:1:)> .

e>0 teT

Moreover, when X = R™ the same holds if we replace €6 in (6.4) with co.

Proor. As we have observed before we have that

T € WEr(S) <= 7z is an optimal solution to the Infsup problem

minsup (fi(y) = £i(7) + Ls(v)) (6.5)
= 00 (lsupsi— fi(a) +1s) (@) (6.6)

Moreover, since the function sup,c fi(+) is continuous at some point in S by the current
assumption, the function sup,.; (fi — f:(Z)) is continuous at the same point. This is a con-
sequence of the current compactness-continuity assumption which ensure that

¢ = inf fi(7) > —oo,

so that

Sup (fe — fi(z)) < Sup fi—c.

Then, by applying Moreau-Rockafellar’s Theorem, we conclude that £ € WEr(S) if and only
if

teT teT

0 ((sup i~ o) 41 ) (@) = 0 (sup o~ @) ) ) + N,

So, [13, Corollary 6.1.12] entails that & € WE(S) if and only if

0 € o (U Oft(x)> + Nuom £(Z) + Ng(Z).

teT
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Moreover, when X = R™ this last conclusion is valid if we use co instead of €0, due to [13,
Corollary 6.1.12]. Furthermore, thanks to Corollary 5.9, we have that

o (sup<ft - ft<x>>) (1) = e (U aftcr)) 7

teT e>0 teT

and so, arguing as above, we get the remaining conclusion. O
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Chapter 7

Strong duality for some quadratic
problems

7.1 Introduction

Let A be any real symmetric matrix of order n, and C' C R" be a pointed, closed, convex
cone with non-empty interior. We study the quadratic problem

1
u—min{ixTAx:eTx—l,xEC}, (7.1)

where e € int C* and C*(= —C7) is the non-negative polar cone of C. Its (Lagrangian) dual
problem is
1
sup inf < —x' Az 4+ XNz 'ee'z — 1)} .
)\Eg zeC { 2 ( )
We only work with homogeneous quadratic objective functions because, due to the structure
of the feasible set, we can transform any quadratic function into a homogeneous one.

The standard quadratic optimization problem (StQO), introduced in Bomze [2], corre-
sponds to the case C =R%, e=1=(1,---,1) € int R™
min leAx,
€A,
where A, is the n-dimensional simplex. There are many applications of this formulation such
as quadratic allocation problems, portfolio optimization problems and the maximum weight

clique problem among others.

One of the goals of this chapter is to establish an S-lemma. We will first state an equiv-
alence to the fulfillment to the strong duality for (7.1) (with respect to a suitable dual
problem) in terms of the convexity of (f, g)(C) + Ry (1,0), without passing by a copositive
representation scheme.

A second issue we will deal with is the study of the validity of strong duality for the primal
problem (7.1) with respect to Lagrangian dual problems: we characterize that property via
the copositivity of A on suitable subsets of R"™.
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We analyze the cases p = 0 and p > 0. Obviously:

=0 <= Ais copositive but not strictly copositive on C;
>0 <= A is strictly copositive on C.

The structure of this Chapter is the following: Section 7.2 is dedicated to present a review
about Lagrangian duality from two different points of view. In section 7.3 we study the
general quadratic problem with one constraint and provide the main result in Theorem 7.6.
This shows an explicit form for the perturbed function and provide a strong duality result.
Finally, in section 7.4 we treat the standard quadratic problem, here the properties proved
for the general problem are obtained as a consequence. In particular, we recover in Theorem
7.8 the result of Bomze, Locatelli & Tardella in [3, Theorem 4].

7.2 Lagrangian duality

Let C C R"™ be a non-empty set and, given two functions f : R* — R and g : R" — R, we
consider the minimization problem called primal problem

p = min{f(z) : g(z) = 0,7 € C}, (P)

and the associated Lagrangian dual problem which is given by

v = sup inf {f(z) + Ag(x)}. (D)

AcR z€C

Here the set C'is called geometric set of constraints. The feasible set is denoted by
K ={xeC:g(x) =0}

It is possible to solve the primal problem indirectly by solving the dual problem. Associated
with the problem (P), there is a family of perturbed problems, which vary according to certain
parameter a € R. These problems are obtained by replacing the original feasible set with
the set

K(a)={x € C:g(x) =a}.

Moreover, with this new set we define the function 1 : R — R, called a perturbation function.
For each a € R we associate the value

W(a) = inf{f(z): g(x) =a,x € C}, if K(a)# 0,
+00, if K(a) = 0.

This problem is denoted by (P,). In particular, when a = 0 we recover the primal problem
(P), that is, ¥(0) = u and Flores-Bazan, Jourani & Mastroeni show in [30] that dom =

9(C).

Additionally, we associate with problem (P) the Lagrangian

L(v, A\, ) = v f(x) + Ag(w),
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where v > 0 and A € R are the Lagrangian multipliers. With the scheme above, the dual
problem can be rewritten in the form

v =supinf L(1,\ x).

As we mentioned before, the next inequalities trivially hold

yxlglf(f(x) > ;g}f{L(% A x) > m1I€1£L('y, A, x), forall v > 0,forall A € R. (7.2)
This implies that v < p. So, we only consider the case when u € R and K # 0, since, if
p = —00 = v = —00, then any element of R is a solution of (D). On the other hand, when
K is an empty set, the problem (P) does not make sense. Thus, to have a strong duality
property we need the opposite inequality in (7.2) for some 7 > 0 and A € R, that is, one
must have

Y(f(z) —p)+Ag(x) > 0 forallzeC, (v>0)
(1, A), (f(@) = p,g(x)) = 0 forallzedC
{((7,N\),a) > 0 forallae F(C)— u(1,0)
((v,A),a) > 0 forallae F(C)—u(1,0)+R; x {0}
((v,A),a) > 0 forallaeé,
((7,A),a) > 0 forallaecoé&,
((7,A);a) > 0 forall a € cone(co&,),

where F = (f,9), F(C) = {(f(x). g(x)) : v € C} and &, = F(C) — u(1,0) + R, x {0}.
From the above relationships, the first equivalence of the following theorem that relates

strong Duality to the set cone(co &,) appears naturally. This result appears in [31, Theorem
3.2].

Theorem 7.1 Let i € R. The following statements are equivalent
a) Strong Duality holds.

b) cone (co&,) N — (Ryy x {0}) = 0.

The next Theorem comes from [30, Theorem 3.1].
Theorem 7.2 If K(0) # 0, then v = ¢**(0).

Proposition 7.3 If un=(0) € R, then the following statements hold:
@) B(0) = $(0) <= &, N Ry x {0} = 0,

b) coyp(0) =(0) <= co&, N —Ry x {0} =0.
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When the set £, is convex and the optimal value of the primal problem is finite, Theorem
3.6 in [30] provides a zero duality gap.

Theorem 7.4 If &, is conver and 1 € R, then the following hold:
a) v =1(0).
b) v =p <= 1(0) = (0).

Item b) in the previous theorem says that, under the convexity hypothesis, we only need
to add the lower semi-continuity at 0 of the perturbed function to guarantee a zero duality

gap.

In [30, Theorem 3.2] a relationship is presented between the perturbed function ¢ and the
set F(C) + R, x {0}, which says

F(C)+ Ry x {0} Cepiyy C F(C) + Ry x {0}.

If in the previous inclusions we take the closure and convex hulls and also consider the set
&, then we obtain the following equalities

epivy = F(C)+R; x {0},
&, = epig— p(1,0),
co(€,) = co(epivp) — p(1,0).

An alternative way to present the duality theory is exposed in Lemaréchal & Renaud [41],
where problem (P) is treated geometrically, this is achieved by relating the infimum of the
Lagrangian with the support function. If we keep the notation as before, problem (P) can
be equivalently rewrite by

inf{ry : f(z) <ro,g(x) =0,2 € C}.
And in its geometric version presented in the cited work,
inf{ry : (z;79,0) € G for some z € C},

where G = {(x;r9,a) € X xRxY :z € C, f(z) <7, g(x) = a}. To show the geometric
form of the dual problem (D), we need an auxiliary function. Let the auxiliary function 6
defined by © : R — R, A — O()\) :=inf,cc L(1, A, x).

Observe that

O() = inf (f(z) +Ag(x))
= —sup(—f(z) + —XAg(x)),

zeC
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so the geometric form of this function will be ©(\) = —og(0; —1, —\). Indeed, we have that

og(0; —1,—-X) = sup ((0; =1, =X), (z;70,a))

(z3r0,m)EG

= sup —ro— A\ a
(z5r0,0)€G

= — inf ry+ \a
(x5m0,a0)€G
= —0O(\).
With the new notation, the perturbed function is expressed through
¥(a) = inf{rg : (x;r0,a) € G, para algin z € R"}.

In [41, Proposition 2.5], Lemaréchal & Renaud present a relationship between the function
© and the Fenchel-Legendre conjugate of the perturbed function .

Proposition 7.5 If the function © is not identically —oo, then it holds that

—O(=A) =¢*(M).

In addition, a modification of the perturbed function is defined. Let t(a) = inf{ry :
(x;ro,a) € G, for some z € R"}. This function is shown to be convex and satisfy the
following relations

L (A) = ¢4 (N) = =O(=A).

Once both schemes have been presented, it is possible to relate some results that are obtained
using the perturbed function. We re-write the set G to obtain

G ={(z, f(z),9(z)) : 2 € C} + {0} x Ry x {0}.
Also we consider the set
C xepith ={(x,t,a) €: x € C, P(a) <t}

Thus, we have B
g CCxepiyp CG.
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7.3 General problem

Let us consider the following data,

flz) = 1athAx +2r'z, A€ Myn(R), A=AT xcR"

C C I%&" closed convex cone and pointed.
e € int C”.
P = {0}.

glx) = e'z—1.

A = {xeR": g(z)=0, x € C}.

We consider the primal Problem

p = inf f(z). (7.3)

The function f : R® — R is a non-homogeneous quadratic form, but as we see before in
Chapter 2, due to the structure of the feasible set, we can transform the function f into a
homogeneous quadratic form through the matrix

~ 1
A=§A+6~TT+7"6T.

Thus,
1 1
inf (=z"Axz+2-7"2) = infz' ([ZA4+e-r +r-e' |z
zeN \ 2 HISYAN 2
1 ~
= inf-zx'Az.
zeAD

So, we just study the problem when r = 6.

For this type of problem, we want to prove the zero duality gap and strong duality. In the
first part we will see the properties that the problem has and then we will try to prove the
desired relation.

Let a € R and define the set A, = {x € C': "z — 1 = a}. From here it is easy to see that
the set A\, is closed and convex for all a € R; moreover, if a € R is such that A\, = (), then
the properties hold trivially. Also, when a = 0 we get the set of constraints for the original
problem (7.3), that is, A = A\, which is a bounded set. Since the quadratic function is
continuous and the set of constraints is compact, by the Weierstrass’s Theorem the problem
(7.3) attains its minimum, so we can write

p = min f(z).

[ASVAN)

We note that the set /g is a base of the constraints set C', because any element in C' can

be represented by a suitable weight of an element of Ay. Indeed, is a € R such that A, # 0,
reN, — e'z—1=aq, x e,

<~ x=t-y, forsomeyeclNyyt=1+a.
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Furthermore, when we use this representation on the objective function, for each x € A, we
get
L ¢ 1 2 T
flz) = 37 Ax:§(1+a) y' Ay (y € Do)
= (L+a)’fly) (€ L)

From the above analysis, we havethat
. _ 1 2 .
minf(z) = (1+a) minf(y)
= (14a)*u, foralla>—1. (7.4)
Otherwise, using the perturbation function 1, we know from Section 7.2 that its domain
satisfies the equality dom) = ¢g(C) + P. So, by (7.4), for every element of its domain it is
possible to compute explicitly the value of the function 1 through the following relation
inf = (1 2 inf
Jof Jz) = (1+a) inf f(y)
I I
v(a) (1+a)’p.

Therefore,

(1+a)’p, ifa>-—1,
o1

+00, €.0.C.
Then we can conclude that v is convex on R and Isc for every element in its effective domain.
Hence by Theorem 7.2 and Theorem 7.3, the duality gap for problem (7.3) is zero. Based on
the information obtained, we can see in Figure 7.1 the graph of the perturbation function.
Figure 7.2 shows the epigraph of ¢ for different optimal values.

¥(a)

Figure 7.1: Perturbed Function, 1.

Theorem 7.6 Let A,C and e be as before. Then,

a) the perturbed function 1 is given by



(a) epitp with p > 0. (b) epiv) with u = 0.

Figure 7.2: Epigraph of perturbed Function, epi.

Thus, 1 is convex if and only if p > 0.

b) come (E,) N — Ry x {0}) =0

c) F(C) and F(C) 4+ R, (1,0) are closed, so

epiyy = F(C) + Ry (1,0).

ProoF. a) Seen before.

b)

Now we would like to prove that problem (7.3) satisfies the strong duality. Applying Theo-
rem 7.1 we just need to prove that the intersection between the sets is empty. By contradic-
tion, we can assume that there is an element (a,0) € cone (£,) N— (R4 x {0}). So, there
exists a sequence {(ay, by) treny C cone (€,), where (ag, by) = t(ug, vi) = (tpuk, tyvr) —
(a,0) with (ug,v;) € €, and ¢, > 0 (if for all £ € N, ¢, = 0, we obtain a contradiction be-
cause tyu, — a < 0). So, (ux+ i, vx) € epit), that means that ¥ (vx) < up+p = ur+1(0).
For item a) we know that ¢(v;,) = (1 + v;)?9¥(0). Hence, if ¢(0) = 0, then 0 < wu;, and
multiplying both sides of the inequality by ¢; and then, taking the limit when k& — 400,
we get a contradiction. On the other hand, if ¢/(0) > 0, then we multiply the inequality
(1 + vx)*(0) < ug +(0) by ¢4 to obtain

tr(1 4 vi)*(0) < trug + t1(0)
< (1 + 20 +v)w(0) < trpug + t10(0)
= (2tpvp + t02)0(0) < tpuy,
—  2600(0) < (2tpvr + )Y (0) < trug.  (tpvi > 0) (7.5)

Then, taking the limits when k& — 400 in (7.5), we come to a contradiction. So, the
assumption is false and due to Theorem 7.1 strong duality holds.

Additionally, we show that the set F(C') + R, x {0} is closed. Indeed, let (r,a) €
F(C)+ R,y x {0}. Then there exists a sequence {xy}ren C C,{qx tren € R, such that
(f(zr) + ar, g(zr)) — (r,a),
f(xk) +q — T
g(xg) — a.
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First we show that the sublevel set of function g are bounded. Let A € R and denote

Sy == {reC:glr) <AL
= {zeC:e'x—-1< )2}

Since the element e belongs to int C*, by [28, equation (2.3)] we have ez > 0 for all
xz € C\{0}. Now, we assume that there exists a sequence {zy }ren C Sy such that ||zx| —

+00. From this sequence it is possible to create a new one of the form % C C such

that 2 — v # 0. Since for all k¥ € N the term z;, satisfies the inequality e’z — 1 < )\,

[

1
we can multiply both sides by Tn to get
T
1
eT Tk < A (7.6)
el lrll = llzwll

Taking the limits when & — 400 we obtain e'v < 0, which contradicts the fact that
vector e belongs to the set int C*. This completes the proof, that is, the sublevel sets S
are bounded.

Second, since C'is a closed set and the sublevels of g are bounded, we can conclude that
there exists a convergent subsequence {zy, }1en, with xy, — Z € C. Then

i. f(xy,) — f(z) (f is continuous).
gy, = [f(zn) + @) = flag) — 7= [(Z) = ¢ = 0; then, r = f(Z) + g € f(C) + R,
iii. g(zg,) — g(z) = a € g(C).

Therefore (r,a) € F(C)+ Ry x {0} and, as consequence, the set F(C) 4+ R, x {0} is
closed.

Furthermore, from section 7.2 we have certain relations that establish a connection be-
tween the set F'(C')+R,; x {0} and the perturbed function . Since the perturbed function
turns out to be convex, we conclude that the last set is also convex.

]

In the following Theorem we establish the explicit value of the function ©(\) = in(fj L(1,\ z).
e

This is a generalization of the result of Bomze, Locatelli & Tardella in [3, Theorem 4].

Theorem 7.7 Let A € M, xn(R) be a symmetric matriz, C' a closed conver and pointed
cone, e € int C*. We have that

1. If u >0, then
-, if A >0,

1
“A——X\2, ifA<O.
4y
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2. If p =0, then

N, A
o =4 N A=Y
—o0, if A <O.

Therefore sup {O(A) : A € R} = p and, so, the duality gap is zero.

Proor. We know that A € R. We proceed by cases.
1. Case 1: A > 0. The infimum of ©(\) is attained at x = 0, that is, ©(\) = —A.

Case 2: \ < 0. The inequality [z Az 4+ Ae'z]? > 0 is fundamental to the conclusion

[T Az + Xe'z])? = 2(2' Az) <%xTA:c + )\eTaz> +(e'z)? >0

L+ T (AeTx)?
—r A > 7.7
— 5% T+ Ade'x > 5o g (7.7)
Moreover,
(eT2)? 1
<— Vv C 0. 7.8
20T Az~ 4p veles (78)
Indeed, let x =t -y where y € A\g. Thus,
(7o) 2Ty 1

2TAx  222yTAy  2yT Ay’

1
Since y € A, the inequality 0 < p < §yTAy is always fulfilled and this implies
1

— > ————. For the associated Lagrangian to problem 7.3 we have that:
du — 2yT Ay
1
L(1,\x) = §$TA1‘ + ez —1)
1
= §xTAx + ez — A
(Ne'z)?
> — - by (7.7
> - (by (7.7))
)\2
> —— =\ by (7.8
> -4 (by (7.8)
Let Z be an optimal solution to problem (7.3). Then z € C' and since C' is a cone, we
have xg = —ﬁi’ € C. So, x is a feasible point of problem inf,cc L(1, A, z) and

1
L1\ zg) = —x)Azg+ Me'zo—1
570

2u) 2 2u
2
2u |2
/\2
= —@—



With the arguments above it is proved that

2
inf L(1,\, z) = A A, when A < 0.
zeC 4[&

2. Case 1: A > 0. The argument is the same as the previous item.

Case 2: )\ < 0. For the function © we have that

zeC

O(\) = inf {%CL’TAx +Me'r — 1)}

1
= inf {t2-§yTAy+/\(t—1)}

t>0, yelo
= —00Q.

]

Therefore, as a conclusion, we do not only know the explicit value of the perturbed func-
tion, 1, but also the explicit value of the function ©(\) = in(ij(l, A x).
xE

7.4 Standard quadratic problems

The standard quadratic problem is given by:
1 T
p=minq oo Az 1 z=1,2>0;, (7.9)

where A € M, (R) is a symmetric matrix and 1 = (1,---,1) € R™,
Observe that this Problem (7.9) is just a particular case of Problem (7.3), because it
is enough to consider C' = R’.. Moreover, the closed convex pointed cone coincides with its
1
polar set, so 1 = e € int R} = R, and the involved functions become f(x) = ixTAm and

g(x) =17z — 1. Now, the feasible set is K = {z = (21, -+ ,z,) € R : g(x) = 0}.

On the other hand, remember that for this problem the quadratic form may or may not be
homogeneous. But as we saw before, in Chapter 2, it is possible to assume that the entries of
the matrix A are all strictly positive, that is, the condition A = (a;;), a;; > 0 is a consequence
of the problem and not an additional hypothesis.

By virtue of these observations, we have all the results obtained in the generalized problem.
In summary, the standard quadratic problem satisfies the following properties:

1. For the perturbed function ¢, we have an explicit expression plus some properties

5 ¢(a)_{(1+a)2,u, if @ > —1;

B ~+00, ifa < —1.
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ii) convex on R.
iii) continuous on | — 1, +o0|.
iv) Isc for all @ > —1.
2. Zero duality gap.
3. Strong duality.
4. F(C) + Ry x {0} is closed and convex.

The following Theorem, coming from Bomze, Locatelli & Tardella in [3, Teorema 4], gives
us the explicit value of the function ©(\) = ir>1£ L(1, A\, x) for the standard quadratic problems.

Theorem 7.8 Assume that the matriz A has only positive entries. Then, for function © we

obtain
-\, if A >0,

2\ =
o) —A—iv, if A < 0.
4p

Therefore sup {O(N) : A € R} = p and, thus, the duality gap is zero.

Proor. The proof is analogous to proof of Theorem 7.8 with C' = R” and the vector
1=e. [
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Chapter 8

Future work

The research developed in this PhD thesis provided solutions to many open problems, but
also gave rise to some open questions that deserve to be studied in future works. Some of
them are described below:

1. T would to work on numerical implementations of our reduction methods, previously
presented in Chapter 3, in order to take advantage of this kind of reductions when
general semi-infinite optimization problems are involved. In the literature, we can find
some research works that can help us with our goal like, for example, the books of
Fletcher [25] and Nocedal & Wright [47], and the paper of Cera et al. [11]. T am also
considering the use of these methods in concrete problems like in locating problems,
Chebyshev approximation theory and multi-objective problems.

2. I would like to extend the reduction methods obtained for SIP and semi-infinite multi-
objective problems to cover quasi-convex functions, that can be considered either to
model the (multi-) objective functions or the constraints. I am aware that the approach
used here in the convex case could not be extended in a direct way, since there is still
no consensus on a unified concept of subdifferential for such functions. But still there
is a hope to obtain some things in this direction because of the rich properties of
quasi-convex functions, as it can be confired by the works of Auslender & Teboulle [1],
Flores-Bazan & Hadjisavvas [29], Flores-Bazan & Thiele [32], Jeyakumar et al. [39]
and Rockafellar [53].

3. Due to the diversity of formulas developed for the characterization of the subdifferential
for the supremum function, we would like to extend them to the non-convex setting,
possibly with the use of generalized concepts like the strong and weak slopes ([22]).
This would allow us to extend our results to the general setting of metric spaces and,
so, to cover, a wide range of applications namely in the theory of metric critical points
(see for example [18], [19] and [21]).
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