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Resumen

RESUMEN DE TESIS PARA OPTAR AL
GRADO DE DOCTOR
EN INGENIERÍA ELÉCTRICA
POR: SEBASTIÁN ANDRÉS ESPINOSA TRUJILLO
FECHA: 2023
PROFESOR GUÍA: JORGE SILVA SÁNCHEZ

ANÁLISIS DE DESEMPEÑO NO ASINTÓTICO Y DISEÑO BASADO EN DATOS EN
TEST DE HIPÓTESIS: UNA MIRADA DESDE LA TEORÍA DE LA INFORMACIÓN

Inspirado en el aporte de Claude E. Shannon en comunicaciones, esta tesis aborda tres
problemas relevantes de toma de decisiones que tratan con incertidumbre, restricciones de
comunicación y un número �nito de observaciones en test de hipótesis binarios (HT).

En la primera parte de este trabajo, se entregan nuevas cotas de límites superiores e
inferiores de desempeño para el test óptimo (Neyman-Pearson) en el problema clásico de HT
binario. Nuestras cotas de régimen �nito ofrecen la capacidad de cuanti�car la relación entre
el tamaño de la muestra y las probabilidades de error.

En la segunda parte de este trabajo, derivamos un nuevo límite de desempeño teórico
para un HT bivariado distribuido. Derivamos una expresión analítica para el exponente de
error del Tipo II dado una restricción de error de Tipo I y una restricción de tasa. También
medimos la discrepancia entre nuestras expresiones prácticas de desempeño con un número
�nito de muestras y sus límites asintóticos.

Finalmente, estudiamos la colaboración en la inferencia distribuida en el caso del test de
independencia con restricción de comunicación. Analizamos si la colaboración ofrece una
ventaja en cuanto al compromiso óptimo entre los errores de Tipo I y Tipo II.
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Summary

THESIS SUMMARY TO OBTAIN THE
DEGREE OF DOCTOR OF PHILOSOPHY
IN ELECTRICAL ENGINEERING
BY: SEBASTIÁN ANDRÉS ESPINOSA TRUJILLO
DATE: 2023
ADVISOR: JORGE SILVA SÁNCHEZ

FINITE-LENGTH PERFORMANCE ANALYSIS AND DATA-DRIVEN DESIGN FOR
HYPOTHESIS TESTING: AN INFORMATION THEORETIC PERSPECTIVE

Inspired by the work of Claude E. Shannon in communication, this Thesis tackle three
relevant decision-making problems that deal with uncertainty, communication constraints,
and a �nite number of observations (�nite-length analysis) in binary hypothesis testing (HT).

In the �rst part of this work, we o�er new upper and lower performance bounds for the
optimal (Neyman-Pearson) test in the classical binary HT problem. Our �nite-length bounds
o�er the ability to quantify the relationship between sample size and error probabilities.

In the second part of this work, we derive a new information-theoretic performance limit
(error exponent) for a distributed bivariate HT. In distributed HT, observations are trans-
mitted to the decision agent with a rate constraint (in bits per sample). We derive analytical
expressions for the error exponent of the Type II error given a Type I error restriction and a
rate constraint. We also extend the non-asymptotic �nite-length performance bounds from
the classical centralized setting to this distributed one.

Finally, we study collaboration in distributed inference for testing independence with a
�xed-rate communication constraint. We analyze the bene�ts of collaboration and evaluate
in theory and practice if collaboration o�ers an advantage regarding the optimal trade-o�
between Type I and Type II errors.
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Esta tesis se la dedico a mi familia y toda persona que fue parte de este camino.

Bonds are stars that light up the entire universe.
May your heart be your guiding key.
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estoy donde estoy, es porque ustedes con�aron en mi y me entregaron un apoyo incondicional.
Ustedes siempre han estado para mi y, sinceramente, aquí las palabras sobran.

∗ Ballero y Manuek, a ustedes dos les agradezco por tantos años de amistad. Los mejores
momentos de risa y diversión son siempre al verlos. Aunque los tiempos a veces no nos
acompañen para poder reunirnos, el hecho que nos podamos dar unas horas para poder jugar
o simplemente reir es muy llenador.

Ballero, gracias por soportarme tantos �nes de semana, sobretodo varios que fueron muy
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comentarios que a veces me dejan sin respiración de tanto que me río.
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iv



Tengo que también mencionar las partidas "colaborativas" de lfd2 y esperar al momento
�nal donde no existe equipo, al contrario hay pura traición y además que se salve quien
pueda (GGNTTY). Nada le gana a la buena jeringa y dejarlos botados por mancos. Un
momento de diversión con ustedes ya me hacen el día. Gracias parcito de ..., los quiero. No
olvidemos nuestro saludo AIAIAIAIAIAIAIAIAI.

∗ Mario, Franco y Nano, el team DIE-DCC. Me alegro harto que hayamos podido reencon-
trarnos aunque sea una vez al año. Las anécdotas que tenemos para contarnos son siempre
una instancia para volver a reir y pasarla muy bien. Podría estar recordando todo el pre-
grado con ustedes, pero ya les agradecí oportunamente en mi magister, ahora hay que dejarle
espacio al resto de privilegiados. Igual me alegra que nos ríamos siempre de lo mismo, incluso
si, lamentablemente, soy el protagonista del chisme.

∗ Selmi y Caro, muchas gracias por el reencuentro, con ustedes se pasa muy bien. Me
gusta mucho ver la evolución desde que las conocí como alumnas y ahora ya son todas unas
profesionales. Lo mejor es que podemos divertirnos en temas bien a�nes (bueno la Caro
malvada a veces arruga pero se le perdona), sólo espero que nos podamos seguir reuniendo
y pasarla bien, esos panoramas con un toque infantil pero divertido lo agradezco mucho.
Recuerdo con mucho cariño las anécdotas que hemos vivido, quisiera en particular destacar
los globos y cómo se les cayó la cara cuando supe que eran ustedes (tengo buenos dotes
detectivescos).

∗ Mario (dos), gracias por ayudarme con toda la parte algorítmica, sin duda que formamos
un gran equipo de investigación y más aún con las publicaciones logradas. Lo emocionante
es que también fuiste mi alumno por allá hace varios años atrás.

∗ Profesor Jorge, gracias por tu constante apoyo, agradezco todas las herramientas que me
entregó para potenciarme en el área que más me gusta. Nunca olvidaré que el secreto para
un buen entendimiento está en los detalles. Es algo que hasta el día de hoy aplico en mi vida
diaria. Eso marca la diferencia y si he estado tantos años es porque era necesario entregar lo
mejor de mi y eso es lo que siempre, de alguna u otra forma, trató de mostrarme.

∗ Don Rodri, te consideré un mentor para mi, tus consejos sobre cómo ser un buen in-
vestigador los sigo guardando y cada recomendación tuya es una fuente de conocimiento y
sabiduría di�cil de describir, gracias por guiarme en mis inicios como investigador. Hasta el
día de hoy tus recomendaciones son claves para mi y los agradezco profundamente.

∗ Felipito, gracias por tener esa disposición que siempre te caracteriza, eres una persona
muy admirable y querible. Me da harta pena que nuestros tiempos sean tan incompatibles,
pero sabes, te llevo en mis recuerdos como esa persona apoyadora e inteligente que daba la
sabiduría al laboratorio. Sólo te diré que te portes bien! Coqueto!

∗ Ceci, Toño y Vale, también les quiero agradecer su apoyo. Encontrarme con ustedes y
ver en qué andaban era muy entretenido para mi, ahora ya están prontos a egresar (edit:
egresados) y sólo quiero darles las gracias por esos momentos de copuchas y las conversa-
ciones de pasillo que más de alguna vez me sacaron una sonrisa.
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∗ Jo, te conocí ese día que entraste a la U por allá el 2017, desde ese entonces vi ese en-
tusiasmo y esfuerzo tuyo por ser la mejor estudiante. Me alegra saber que hasta el día de
hoy pueda seguir juntándome contigo. Aún recuerdo con entusiasmo las veces que ibas a
realizarme tus preguntas DIM y trataba de darte la mayor orientación posible. Desde que
me contaste que tu interés era la ingeniería eléctrica, supe que de alguna manera iba a seguir
sabiendo de ti. Lo que quizás no me esperaba era que nos seguiríamos apoyando y formar
una bonita amistad hasta el día de hoy, algo de lo cual estoy demasiado contento.

Agradezco de corazón que puedas entregarme parte de tu tiempo para poder conversar de
todo, eres de las pocas personas que me da la con�anza para hablarte mis cosas, gustos
ñoños, que no los encuentres raros y tú los apoyes. Por culpa de eso pareciese que vomito
información inservible, pero aprecio mucho que te des el tiempo de escuchar y reírte de todo
lo que sale de mi boca. Podría estar recitándote todo el día los diálogos de Drake & Josh
porque son muy buenos, pero el tiempo es limitado.

Por otra parte, me ayudaste a entender mi propio proceso de investigación y esa misma
experiencia espero habértela transmitido. Ahora con lo que hemos vivido, tenemos claro la
importancia de la superación, pero también vemos el poder del apoyo que te entregan tus
seres queridos. No olvides que siempre puedes contar conmigo, con todo lo vivido ya podemos
hacer los mejores trabajos de investigación y responder como se debe a todas las inquietudes
de los supervisores (Ángela aprueba esto).

Me gustan mucho y aprecio las conversaciones tan abiertas, ese lado un tanto extrovertido
tuyo, sumado al hecho que comprendemos el per�l del beauche�ano promedio (y lo pelamos),
permite juntas muy �uidas y entretenidas. Me llama la atención que puedas hacer tantas
cosas y reunirte con varios amigos tuyos, podrías compartirme tu secreto. Y también quisiera
agradecerte que hables bien de mi tan abiertamente con tu familia, así como también que te
acuerdes de vez en cuando de mi como un apoyo que he sido durante estos años ya que esto
último me ha hecho sentir más importante.

Quisiera agradecerte todos esos momentos en que me has mostrado tu disposición para poder
pasarla bien y divertirse, esto es algo que me llena de mucha alegría y aprecio que puedas
entregarme ese tiempo cuando estás disponible. En especial me emociona ver todo tu cariño
y bonitos gestos hacia mi durante estos años. Nunca había visto tanta dedicación en una
celebración. Junto con el Freire la pasamos muy bien ese día y se debe repetir. Probable-
mente no había visto es faceta competitiva tuya pero la verdad es muy graciosa. Estuve muy
contento esa vez, ya viste que el overcooked es un súper buen juego!

Finalmente te quiero decir que así como sientes que he formado parte de tu red de apoyo,
quizás con el sólo hecho de escucharte, tú también formas parte de mi red. A veces son los
pequeños gestos los que marcan las diferencia y esto lo sabemos muy bien. Tener ese cariño
tuyo así como poder compartir momentos para saber de ti, hizo que este proceso se haya
podido llevar a cabo de manera más amena. Serás la mejor eléctrica, de eso estoy seguro. Te
quiero mucho Jo!

∗ Mauricio, tu llegada al laboratorio fue sin duda un cambio de aire para el laboratorio,
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aunque ya te fuiste, no olvidaré cómo me entregaste el título inapelable de "generalísimo",
hasta el día de hoy me río de todas las anécdotas que fuimos viviendo con "mis vientos"
y el Miguel que no cuidaba las formas. Fueron momentos de mucha risa y se generaba un
ambiente muy grato en el laboratorio, gracias por permitirme a vivir estas instancias.

∗ Valeria, o mejor dicho, VALERIA, cuando me acuerdo de ti solamente se me vienen a
la cabeza recuerdos muy bonitos. Nunca había visto una estudiante que le diera tanta dedi-
cación y esfuerzo en su paso por la U. Creo que cualquier profesor debería sentirse afortunado
de tenerte como alumna, tal como me pasó a mi cuando te hice clases. Ese día que me dijiste
que ibas a estar visitándome semanalmente por las dudas, sabía que hablabas en serio y sólo
me llevo el mayor orgullo al ver todo lo que has logrado.

Este es por lejos uno de los agradecimientos más fáciles de escribir dado que siempre tengo
algo que decirte, asimismo, muchas de las cosas que podría colocar la verdad es que ya las
sabes y, muy probablemente, todo lo que leerás aquí alguna vez lo hemos conversado. La
diferencia es que en esta oportunidad quedará por escrito, y cómo son tantas cosas lo mejor
es que destaque algunas de ellas y será tu tarea completar esos bonitos momentos.

Lo primero que destaco son las preguntas VALERIA, con eso ya te dije todo y no hace
falta hablar más de esto. Lo segundo que destaco es la mejor copucha que consiste en la
historia de tu subida de puntaje en la corrección, no daré más detalles aquí porque ambos
sabemos lo que eso implicaría, pero siempre hay que contarlo al reunirnos, ya que eso signi�ca
reirse hasta no poder respirar (además que siempre le agrego un detalle adicional). Lo ter-
cero que destaco (esto es más reciente) son las reuniones con la auxiliar "tras bambalinas", es
obvio que toda información relevante debe primero pasar por ti para su posterior aprobación.

Valoro también tu apoyo durante la pandemia y la EDV, sobretodo esos momentos que
llamo "Full Synchro", donde se lograba un nivel de entendimiento telepático imposible de
replicar con otra persona, era impresionante como no debíamos ni comunicarnos y ambos
sabíamos lo que teníamos que hacer y, para rematar, nos anticipábamos a lo que nos íbamos
a sugerir.

Ahora bien, lo que de�nitivamente más te quiero agradecer es que debido a ti pude lograr
una mayor comprensión de mi personalidad, algo que siempre había querido saber. Diste en
el clavo inmediatamente (como siempre) cuando hablamos sobre nuestro don y gracias a eso
he llegado a ese punto en que entendemos como somos.

Tengo que mencionar obviamente las reuniones/sesiones contigo; esa tradición de princi-
pio de semestre de más de 3 horas para ponernos al día. Allí vemos y analizamos las cosas
con un nivel de detalle sorprendente e inigualable lo que sin duda es algo que nos caracteriza
y nos potencia. Identi�camos las fortalezas (y debilidades) que podemos llegar a tener la
gente como nosotros. Siempre vemos todo desde un punto de vista constructivo, con interés
en mejorar y de manera muy sincera.

Aunque todo lo anterior son momentos a destacar, la verdad que lo que más me alegra
es que podamos seguir teniendo este contacto, todo lo que he ido conociendo sobre ti y tú
sobre mi nos ha ayudado a fortalecer esta conexión que tenemos, la cual espero siga siendo
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cada día más fuerte. Cada vez que te recibo con la alegría que me caracteriza es una fe-
licidad muy sincera y, sin mentirte, me emociona mucho verte. La razón es porque puedo
anticipar que cada junta contigo será lo mejor, el hecho que vayas por tu propia voluntad lo
hace aún más signi�cativo. Tu apoyo va mucho más allá de querer escuchar, es más bien de
querer estar, algo que genuinamente demuestras pero que es muy difícil de percibir en la gente.

Para qué hablar de tu futuro prometedor si eso ya está más que claro, lo mas chistoso
es que tenemos que aconsejarnos las mismas cosas sobre con�anza pese a que nos cueste de
igual manera de colocar en práctica.

De verdad que es emocionante escribirte estas palabras y espero lleguen a ti de la misma
manera que nuestros momentos "Full Synchro". Lamento si no me explayé más, pero lo que
sí trato de destacar es nuestro sello, un sello donde existe entendimiento, respeto y comuni-
cación. Si no estás cerca físicamente no me preocupa ya que si un día quisiera verte, verías
tu apretado calendario, luego llegarías lo antes posible y eso ya es muy bonito. Te quiero
mucho VALERIA, gracias por todo, siempre en mi corazón.

∗ Mati, siempre es un agrado y me da mucha alegría cada vez que te veo. Esa alma tan
DIM tuya y llena de sabiduría me asegura que el departamento tiene al mejor. Gracias por
realizar conmigo la colaboración maratónica que nos mandamos. Fue la mejor manera de
poder dar cierre a mi proceso como auxiliar. Así como cuando fui auxiliar por primera vez,
mi mentor también decidió hacer una clase en conjunto. Sentí que era necesario hacer el
cierre de la misma manera. Ver estos ciclos son súper emocionantes y más si se comparten
con las personitas que corresponden. Me alegro mucho que sigas el camino de las auxiliares,
puedes notar lo llenadoras que son.

Ahora me entiendes cuando te preguntabas cómo era posible que yo siempre estuviese
disponible para ayudarte. Agradezco que hayas escuchado mis recomendaciones y veo que te
han ayudado mucho, pero también la verdad es que ya sé lo bien que te irá en todo, a estas
alturas mi aporte será más bien de cariño y desearte lo mejor como siempre. Si requieres
alguna orientación adicional, pues no se diga más, te apoyo. Te quiero crack.

∗ Carlitos, si bien ya no hablamos como antes quiero hacerte una mención honrosa ya que
aún recuerdo nuestras partidas de Rocket League del 2020 y te agradezco cada sonrisa que
me sacaste porque pucha que me ayudaron a sentirme mejor, te irá super bien en todo!

∗ Clared (o �aca para los con�anzudos), de verdad es que estoy muy agradecido contigo.
Eres una persona maravillosa, a pesar que nos separen como 2000km y tengamos unas difer-
encias bien marcadas en nuestros estilos de vida, nunca pensé que podría tener una amiga
como tú. La hemos pasado súper bien y gracias por reírte de mis chistes, incluso si me salen
fomes, por alguna razón igual te causan gracia.

También hemos tenido todo tipo de reuniones, ya sean emotivas, de copuchas, tragicómi-
cas y, obviamente, de yuyines que nos caracteriza. Lo más destacable tiene que ser la china
petri�cada, estoy seguro que debe estar aún ahi. Ojalá puedas darte el tiempo de venir a
Santiago, por más que no te guste la ciudad, los mejores artículos deportivos están aquí.
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Realmente espero que sigas logrando todas esas metas deportísticas que te propones, sigas
avanzando en tus proyectos tan importantes para el país y gracias de nuevo por darme de
ese tiempo para escucharme en esos momentos de mayor fragilidad. Tu alma periodística
no te lo quita nadie. Esa fuerza y coraje que nada te detiene es realmente admirable. A
su vez, puedo notar esa pequeña ternura que sale de ti y siento que esta doble faceta tuya
ha ayudado a fortalecer nuestra amistad. La clave de esto al �nal es el entendimiento y el
respeto. Siempre me causan risa tus pinzas de cangrejo jaja. Te quiero �aquita!

∗ Thamar, o mejor dicho, la pana, eres la última de esta privilegiada lista. Así como el
resto de las personas antes mencionadas me es fácil poder darte las gracias. Tengo que admi-
tir que tu personalidad es bien especial, algunas veces aún me parece indescifrable el cómo te
comportas conmigo, pero poco a poco voy sabiendo más de ti y de lo que estoy muy seguro
es que siempre me da una alegría muy grande el verte (esto seguramente no lo habías notado).

Te empecé a conocer en un momento un poco complicado que tú sabes, mientras hacía
pan. Siempre curiosa por los chismes y además te das el tiempo de escucharme y compren-
derme, de la misma manera que lo he hecho contigo cuando tienes ganas de hablar (aunque
con suerte me cuentas que "no te quejas").

Lo primero que debo destacar son los grandiosos, únicos e inigualables momentos Team
Nabla y cómo logramos sacar adelante la mismísima perfección en no uno sino que en tres
cursos (háganse esa). Te agradezco por apoyarme en todas mis ideas raras que iban desde
vengarse de pelao hasta posar magistralmente luego de una semana redonda. Me impresion-
aba que no solamente apoyabas las ideas sino que además las potenciabas con otras -aún no
entiendo cómo es que no nos expulsaron-.

A veces pienso qué fue lo que hizo que esta instancia fuese tan bonita, y la verdad pana, es
que el curso por si solo no basta para eso, también es importante para mi al menos una sen-
sación de unidad, algo que logramos indudablemente y hace que estos momentos los atesore
como ningún otro.

Ahora bien, una de las cosas por las cuales estaré siempre agradecido contigo -y esto es
de lo poco que no te he contado- es que me diste ese impulso para volver a sentirme vivo.
Ese día en donde logramos la hazaña a 17 segundos de perder, fue de las cosas que me dieron
las energías y el entusiasmo para seguir adelante pese a las adversidades que vendrían más
adelante. Aunque suene puntual, incluso exagerado y para ti pudo ser un día más, en mi
caso fue algo que me dejó dichoso ya que fue un tiempo para pasarla bien y divertirse en algo
que había querido hacer, por lo que se debe repetir.

Lo que vi en ti e hizo que me encariñara mucho contigo se deduce de todas las ideas an-
teriores. Al leerlas te das cuenta que comparten algo en común y eso corresponde a ese apañe
que me muestras de vez en cuando. Valoro tu bonita voluntad que tienes y ojalá la sigas
mostrando conmigo ya que me hace sentir privilegiado el tenerte cerca.

Lo que sí debo decir es que hay una sola cosa que extraño y es que antes había una pana
más conversadora a mediados del año pasado, debería y te exijo que vuelva si total Dr. Polo
ya nos funó. Tú también puedes hablarme para todo, al menos en mi caso soy feliz cuando
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converso contigo aunque sean cosas triviales. Tengo apañe que entregarte, no muerdo (sólo
hablo como loro en con�anza) y no me parece correcto que sólo vaya en una dirección. Re-
cuerda que tienes mi apoyo permanente y sincero sea en el ámbito que sea.

Se nota que eres una persona con un corazón muy puro, muy acorde a tus creencias y
de�nitivamente algo que debería verse más seguido en la gente. No tengo muy claro en qué
he sido un aporte para ti salvo en los momentos concretos en que soy tu esclavo intelectual,
pero estoy muy seguro que te irá demasiado bien en la U y en la vida.

Finalmente estoy muy agradecido por los momentos en que me has ido a ver (ya sea obliga-
torio o no), tu visita siempre me alegra harto ya que es sinónimo de que será un bonito día.
Me has apoyado en ciertos casos muy concretos, pero a la vez certeros; es curioso porque
apareces en un momento muy preciso que hasta llega a ser sorprendente (quizás lo percibes?)
y entregas tu apoyo con tu forma bien peculiar de hacerlo. Tu excusa es que justo estabas
modo nanai, pero ojalá vaya más allá de eso. Me gusta sentir ese cariño tuyo, es como si
estuvieras cerca, dándome una palmadita en mi hombro (o quizás un golpe conociéndote)
entregando un apoyo real.

A veces uno puede ser feliz con cosas tan resimples pero a la vez difíciles de conseguir, como
grata compañía, en particular, la tuya. Estos pequeños agradecimientos hacia ti pretenden
sintetizar un cariño muy grande, lo que se convierte en una tarea difícil mas no imposible.
Aunque quede como imaginación, suelo verte como si fuéramos ese dúo imbatible que siempre
quise formar pero que nunca pude, de ahí que el término "pana" es uno bien adecuado y
simbólico. No me pidas buscar otra pana menos polla, nunca más.

Panita, te tengo una muy buena noticia, ahora sí puedes pasar los límites pa'entro y darme
ese anhelado wate, es decir, tu forma particular de mostrar cariño hacia mi. De verdad te
quiero mucho, por siempre en mi corazón de bobo.

����������������������������������������
����������������������������������������

Para �nalizar, quisiera decir una frase motivacional, pero lamentablemente no tengo. Siem-
pre he estado en busca de alguna que me represente, sin embargo, hay una que sí puede
resumir muy bien los agradecimientos mencionados anteriormente. Varias veces para sacar
la fuerza para seguir adelante no salieron de mis conocimientos, sino que de mis lazos. Creo
�rmemente que el apoyo mutuo es central para salir adelante.

Las relaciones son como estrellas fugaces, te guían en la oscuridad. Además, a partir de
este apoyo derivan recuerdos y al menos en mi caso es relevante recordar estos hitos, ya que
incluso si no están presentes lo que permanece es lo que queda en mi memoria. Por lo tanto,
"Even if we're apart, we're not alone anymore".

Bonita frase cierto? Es de un juego, no diré cual es :). Mentira, es de "Kingdom Hearts",
juegazo, me tiene viciao como el color azul y el rojo, se los recomiendo 10/10. Y la analogía
con las estrellas fugaces de�nitivamente no diré de dónde lo saqué, eso ya es muy personal.

x
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Chapter 1

Introduction

Information theory was iniciated by Claude E. Shannon in 1948, in a landmark paper titled
�A Mathematical Theory of Communication� [1]. Shannon, widely regarded as the father
of information theory, made groundbreaking contributions that revolutionized the �eld of
communication. Shannon's signi�cant contribution to information theory laid the foundation
for modern communication systems and signi�cantly impacted many other areas.

In a nutshell, one of Shannon's key contributions was the development of the concept
of entropy [2]. Entropy measures the uncertainty or randomness in a random variable or
information's source. Shannon showed that entropy provides a fundamental limit on the
achievable compression and transmission of information. He showed that any source of in-
formation can be encoded with arbitrary accuracy by exploiting the source's statistical prop-
erties and achieving compression rates close to its entropy [2]. Shannon's entropy concept
also plays a crucial role in error control coding and channel capacity [2]. The basic goal of
communication is to send a message over a noisy channel, and then to reconstruct it with
low probability of error, in spite of the channel noise. The Shannon capacity theorem states
that for a given communication channel with a certain level of noise, there exists a maximum
data rate at which information can be reliably transmitted. This capacity is determined by
the channel's noise characteristics and can be approached but not exceeded with error con-
trol coding techniques. Shannon's work highlighted the importance of channel capacity as a
fundamental limit and provided guidelines for designing e�cient error correction codes [3].
Overall by quantifying the amount of information in a probabilistic setting, Shannon pro-
vided a theoretical framework for understanding the limits and e�ciencies of communication
systems [4].

The importance of Shannon's contributions extends beyond the �eld of communication
engineering. His work on information theory has had a profound impact on diverse disciplines,
including computer science, cryptography, statistics, and data compression [5�14].

By establishing fundamental limits and introducing mathematical formalisms to quantify
and manipulate information, Shannon's insights have shaped our understanding of commu-
nication problems and provided a framework for optimal system design and analysis [2]. In
this context, information theory applied to statistics provides a probabilistic formalization
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of this problem and, more importantly, fundamental performance limits for general decision
problems [2,4,5]. This view inspires the work presented in this thesis where statistical tools
are applied in three relevant problems in the area of HT.

1.1 Hypothesis Testing

In a nutshell, hypothesis testing (HT) is a statistical method used to make inferences from
observations. The goal of HT is to determine whether a particular hypothesis about a
random's object distribution is supported by the empirical evidence (data) or whether it
should be rejected. The importance of HT lies in its ability to provide a framework for
making objective decisions about data. For example, in the case of digital communications
HT is used to distinguish between the presence or absence of a signal in noisy channel
conditions [5]. In this context, the null hypothesis assumes that there is only noise, while the
alternative hypothesis indicates the presence of a signal. Various detection techniques, such
as energy-based detection or matched �ltering [5], are employed to make decisions based on
the received signal's characteristics. This allows decision makers to draw optimal decisions
about the observed data with a known level of performance or accuracy.

HT is particularly useful for event detection in sensor networks [15�17]. Data correlation
often occurs among observations of distributed devices in the presence of a relevant signal of
interest [18�21].In particular, researchers within the �eld of statistical signal processing have
been involved in a wide range of research initiatives studying decision and inference in the
presence of measurement noise or corruptions driven by various types of perturbations [22].
In real-world applications, these sources of degradation come from factors such as noise at the
sensors, communication restrictions between sensors and decision agents, or by the presence
of external sources of perturbations [23].

Formally speaking, one of the key aspects of HT is selecting over a space of hypotheses a
probability distribution that best �ts the observations. This model selection task is essential
and it is used to assess the evidence with respect to a collection of candidates (hypotheses).

1.1.1 Binary Hypothesis Testing

In this context, binary HT involves formulating a null hypothesis (H0) and an alternative
hypothesis (H1). The null hypothesis represents the nominal (or normal) condition being
tested, and the alternative hypothesis models the deviation scenario. The null hypothesis is
assumed to be true unless there is su�cient evidence to reject it [24]. The null and alternative
hypotheses are often speci�ed in terms of a probability distribution. For example, if the data
is assumed to be normally distributed, then the null hypothesis might be that the mean of
the distribution is equal to a speci�c value [24]. Alternatively, if the data is assumed to be
binomially distributed, then the null hypothesis might be that the probability of success is
equal to a speci�c value [24].

Once the null hypothesis has been speci�ed, the next step is to calculate a test statistic
based on the observed data. The test statistic is a measurable function of the data that
measures how far the evidence deviates from what is expected under the null hypothesis
(H0). The distribution of the test statistic, which is a random variable, is then compared to
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a probability distribution that is consistent with H0. Importantly, when the two distributions
are known, the celebrated Neyman-Pearson lemma provides the optimal decision scheme for
this testing task [25].

Selecting the appropriate probability distributions is a critical step in the mathemtical for-
mulation of HT. The choice of the distribution depends on the type of data being analyzed
and the assumptions being made about the problem. By selecting the correct distributions,
researchers can calculate test statistics (scores) and evaluate the evidence for or against a
speci�c scenario. For example, if the data is continuous and normally distributed, then
the test statistic might follow a t-distribution. If the data is discrete and follows a bino-
mial distribution, then the test statistic might follow a chi-squared distribution or a normal
distribution [26].

In many applications of binary HT, the goal is to identify from measurements whether
a particular signal or event is present or absent. The challenge is that there is always
uncertainty in the measurements, and, consequently, there is the posibility of making errors.
Deciding the null or the alternative hypotheses determines the probability of making errors.
The two types of errors that can occur are the Type I and Type II errors. The Type I

error occurs when the null hypothesis is rejected even though it is true. This is also known
as the false positive [26]. The Type II error occurs, on the other hand, when the null
hypothesis is not rejected even though it is false. This is also known as the false negative.
Then, probability of errors provides a way to quantify the complexity of the task and helps
designers make the best informed decisions about the cost associated with their conclusions.

1.2 Objectives

1.2.1 General Objectives of this Thesis

The general objective of this Thesis is to determine the optimal tradeo� between the Type
I error and Type II error as a function of the number of observations. We study the �nite
sample-size regime in three interesting HT regimes. More speci�cally, in the topic of uncon-
strained HT, in the area of distributed HT, and in the new area of collaborative detection.

1.2.2 Speci�c Objectives of this Thesis

The speci�c objectives of this thesis are the following:

1. We study the optimal tradeo� between the Type I error and Type II error using the ex-
ponential rate of convergence of the optimal miss error probability � as the sample size
tends to in�nity � given some (positive) restrictions on the false alarm probabilities.

2. We study the gap between the minimum Type II error and its exponential approxi-
mation under di�erent setups, including restrictions imposed on the vanishing Type I

error probability under communication (information bits) constraints.

3. We analyze collaboration in distributed inference for testing independence with a �xed-
rate communication constraint. We look at collaboration as a strategy to improve
performance between the Type I error and Type II error.
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1.3 General Contribution of this Thesis

This Thesis advances state-of-the-art in the context of statistical HT in three di�erent areas.
The main technical goal in this thesis is to develop asymptotic information limits and non
asymptotic performance bounds by extending results on the literature of distributed HT [27],
[28] and [29]. We have made signi�cant contributions for the understanding and application
of HT in three concrete areas: in the topic of �nite length hypothesis testing (deriving
performance bounds for the probabilities of error), in the area of distributed HT, and in the
new area of collaborative detection.

1.3.1 Finite Length Result for Hypothesis Testing

Concerning the characterization of fundamental performance bounds in HT, a common ap-
proach is to determine the exponential rate of decay of the Type II error for a prescribed
Type I error constraint when the number of observations tends to in�nity [27]. In binary
HT, this optimal error exponent is expressed by an information-theoretic quantity and given
by the celebrated Stein's Lemma [30].

While many theoretical results in HT assume an in�nite number of observations (asymp-
totic analysis) [4], a �nite-length observation analysis acknowledges the �nite nature of avail-
able data and provides valuable insights into the performance of practical testing schemes.
One key importance of �nite length analysis is its ability to quantify the relationship between
sample size and error probabilities. In practical situations, it is often not feasible or e�cient
to collect an in�nite number of observations. Then, �nite length analysis allows designers
to determine the minimum sample size required to achieve a desired level of statistical dis-
crimination or to control error probabilities. Finite-length results could o�er guidance on
the optimal allocation of resources and enables informed decision-making in HT. This �nite-
length focus is particularly important in �elds such as medicine, �nance, and engineering,
where decisions based on HT have real-world implications. For example, in genetics research
or astronomical observation, the available data is often limited due to high experimental costs
or rarity of certain genetic variants. Therefore, �nite-length analysis could help evaluate the
signi�cance of observed associations in genetic markers and diseases [31, 32].

Adressing this challenge, in the �rst part of this thesis we obtain new upper and lower
bounds to the optimal Type II error probability for the important case when we have �nite
observations. To illustrate the use of these new bounds, the derived expressions are evaluated
and interpreted numerically for some vanishing Type I error restrictions and as a function
of the number samples. The speci�c contributions are presented in Section 1.4.1.

1.3.2 Distributed Hypothesis Testing

It is commonly assumed that the observations to make decision (samples) are available for
decision-making with no perturbation. However, in some practical settings, the data cannot
be received directly due to some geographical or communication limitations. Then, extending
the fundamental results of HT from centralized to decentralized scenarios is a very important
problem. On this, Ahlswede and Csiszar [28] characterized the asymptotic behaviour of
the error exponent with communication constraint modeling two agents located in di�erent
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Figure 1.1: A schematic of a test with communication constraints. Xn
1 and Y n

1 are random
vectors. fn and ϕn are the encoder and decoder, respectively.

locations (see an illustration in Fig. 1.1). More generally, Han [33] extended the derivation
of performance fundamental bounds for the case where both sources are limited by a rate
constraint. Several other constributions on this topic consider extension of this kind of
problem (such as asymptotic decay of the Type I error or universal setting) and they can
be found in [34�37].

In the second part of this thesis we address another important dimension of the problem
of HT by assuming that the decision agent does not have direct access to the observations;
rather, he/she has a lossy representation, more precisely, a �nite rate version of it. In the
classical HT setting (i.e. the centralized problem), the observations are collected at a single
location with no perturbations. To begin the study of this decentralized inference problem,
we consider the simplest scenario, namely, bivariate HT when one of the observation is
measured remotely, and its information is transmitted over a noiseless channel of �nite rate
constraint [28] (see Fig. 1.1). On the speci�cs we derive general conditions on the Type I
error restriction under which the error exponent of the optimal Type II error has a closed-
form expression for the task of testing against independence. This expression shows the e�ect
of the rate-constraint restriction in the inference power of the test. Importantly, we show
that the performance limit (error exponent) is preserved for a large family of decreasing Type
I error restrictions.

We also derive �nite length performance bounds and show that these bounds can be used
to accurately describe the optimal performance that can be achieved. We also describe the
�nite-length regimes where the error exponent is an excellent proxy for �nite sample-size
performances. The speci�c contributions are presented in Section 1.4.2.

1.3.3 Collaborative Hypothesis Testing

In the third part of this thesis we look at collaboration as a strategy to improve performance
in HT. It is well known that collaboration is crucial in human communication, scienti�c
research and decision-making processes. Collaboration as a communication strategy is key in
human interaction as it allows people share their �ndings, discuss ideas, and identify areas
where more research is needed. E�ective collaboration requires clear communication and the
ability to work together towards a common goal. On the technical side, collaboration has been
adopted in sensor networks or surveillance systems [38], where collaboration between multiple
sensors enhances HT capabilities. Each sensor may capture partial and noisy information,
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Figure 1.2: A schematic of collaborative distributed test.Xn
1 and Y n

1 are random vectors. fn
and gn are the encoders and ϕn is the decoder.

but by collaboratively fusing their evidence, a more comprehensive and accurate analysis can
be performed. Collaboration helps in signal detection, pattern recognition, reducing error
probabilities, and consequently, leading to improved decisions [39�42].

The problem of distributed HT in a collaboration context is interesting in theory and
needed for a wide range of applications. Consider for example problems related with sensor
networks and its practical applications (self-driving cars, array of sensors for measuring, in-
ternet of things). It is clear that the ability of automated systems to make minimum risk
decisions in a timely manner is crucial in the 21st century. These systems will often operate
under strict constraints over their resources. In some applications, e.g. automated systems,
relatively short blocklengths are common both due to delay and complexity constraints im-
posed in the application. It is, therefore, of signi�cance interest to assess the unavoidable
penalty in performance (error exponents) required to sustain the desired �delity at a given
�xed blocklength.

In the context of our decentralized HT problem, collaboration means a decentralized
framework where two agents (or nodes of the networks) interchange messages with an overall
rate constraint to arrive at a �nal decision (see our setting in Fig 1.2). In this thesis, we derive
an error exponent that expresses the bene�t of collaboration in concrete terms � compared
to the standard one-sided distributed strategy presented in Fig. 1.1. The bounds express the
bene�t of collaboration. Complementing this analysis, we also address the practical problem
of designing encoders and decoders for this distributed task. For that problem, we propose
an algorithm that uses ideas of machine learning for designing the encoder and decoder from
data. The speci�c detail of these contributions are summarized in Section 1.4.3.

1.4 Technical Contributions of this Thesis

The technical contributions of this thesis are the following:

1.4.1 Finite Length Results for Hypothesis Testing

1. Building on the use of concentration inequalities [43], we o�er new upper and lower
bounds to the optimal Type II error probability for the case of �nite observations.

2. The derived bounds are evaluated and interpreted numerically for some realistic models
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considering di�erent Type I error restrictions and number of samples.

1.4.2 Distributed Hypothesis Testing

1. We study a broader family of distributed HT problems (see Fig. 1.1) where the Type
I error probability vanishes with the sample size. The objective here is to assess the
impact of this more stringent set of restrictions on the asymptotic limit of Type II

error probability given by the error exponent. Our main result here (cf. Theorem 3.1)
gives new conditions on the admissible converge rate of the Type I error probability
restriction under which the error exponent of the Type II error probability admits a
closed-form expression.

2. For a family of sub-exponential decreasing Type I error probability restrictions, we
show that the resulting error exponent matches the expression in [28, Theorem 3]
while being consistent with the results obtained for the classical communication-free
(centralized )problem [44].

3. Regarding the �nite-length analysis, Theorem 3.2 o�ers new upper and lower bounds for
the Type II error probabilities as a function of the number of samples, the underlying
distributions, and the restriction on the Type I error probability.

4. Our bounds shed light on the speed at which the error exponent is achieved as the
number of samples tends to in�nity, and consequently, how well the performance limits
represent the performances of practical decision schemes operating on a �nite number
of observations.

5. We evaluate our bounds numerically. We show that these expressions can be used to
accurately describe the performance that can be achieved in practice with a scheme.
We also analyze regimes where the error exponent is an excellent theoretical proxy for
�nite sample-size performances.

1.4.3 Collaborative Decentralized Hypothesis Testing

1. We introduce a one-round collaborative extension of the distributed setting introduced
by Ahlswede and Csiszar in [28], as shown in Figure 1.2.

2. We derive an information limit (in the form of an error exponent) of the Type II error
probability subject to a vanishing Type I error (Theorem 4.1).

3. We analyze the performance gain with respect to the one-sided (unidirectional) case
introduced in [28]. We see that the overall quality of the test performance is governed
by the bit assignment between the nodes and is a�ected, at the same time, by the
distribution of the model.

4. On the practical side, we propose a data-driven design criterion for the two encoders
and the decoder of the introduced one-round collaborative setting (see Figure 1.2). To
design the encoder the problem is formulated as an info-max optimization task that
learns the encoders from supervised data.

5. Empirical results based on simulations show that the proposed one-round collaboration
strategy outperforms (in the ROC curve, i.e., Type I and Type II trade-o�) the
non-collaborative strategy and that the performance gain is a function of structural
attributes in the model. Importantly, we show that the performance gain is proportional
to a measure of the asymmetry of the underlying probability model.
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6. We evaluate how the number of samples (block-length) and the communication con-
straint (number of bits) a�ect the mentioned comparison.

1.5 Main Hypothesis

The main hypotheses of this work are the following:

1. For the �nite length analysis, the hypothesis is that we can obtain new non-asymptotic
result for the scenario with monotonic (sub-exponential decreasing) restriction on the
Type I error probability. This hypothesis is supported by the fact that similar results
have been established by Strassen [27].

2. For the problem of distributed HT, the hypothesis is that non-asymptotic expression
for the error exponent can be obtained and from this being able to analize the rate
of convergence of this expression to the theoretical asymptotic expression. Related
results has been established in the classical problem and we conjecture that this type
of analysis could be extended to the more challenging rate constrained case. The
main technical challenge was the di�culties of dealing with the likelihood ratio in the
rate constrained set-up. We propose to adress this technical issue by extending the
approach of Zhang et al. [45] to the case of noisy rate distortion theory and obtain
fundamental bounds via concentration inequalities (bounded di�erence inequality and
the Berry-Esséen theorem) [43].

3. For the problem of collaborative HT, our hypothesis is that collaboration could play
a crucial role and lead to better performance. The conjecture was that this collective
e�ort can lead to better decision in binary HT. We claim that the concept of error
exponent can be used as a metric to verify this hypothesis.

4. On the design of the encoder and the decoder , we conjecture that we can improve the
decision peformance using a family of soft encoders based on the Bolztmann distribu-
tions [46]. The importance of the Boltzmann distribution for encoders lies in its ability
to optimize encoding strategies by considering the statistical properties of the source
and the communication channel. Using this approach, we conjecture that encoders
have the capacity to allocate resources e�ciently, prioritize important information, and
maximize the overall performance of the coding decision system.

1.6 Structure of the Thesis

The structure of this Thesis will adopt a paper-based approach, wherein each published paper
will be presented as a separate chapter. Chapter 2 will encompass the contents of the �rst
paper, providing a comprehensive exploration of its objectives, methodology, �ndings, and
conclusions. Similarly, Chapter 3 will be dedicated to the second paper, delving into its
methodologies employed, results obtained, and the corresponding implications.

1.6.1 Speci�c Structure of the Thesis

This Thesis is organized in �ve Chapters. Chapter 2 introduces the binary HT. Here, we
present a new non-asymptotic result for the scenario with monotonic (sub-exponential de-
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creasing) restriction on the Type II error probability. In Chapter 3, we study distributed
binary HT of statistical independence under communication (information bits) constraints.
In Chapter 4 we study collaboration in distributed inference for testing independence with a
�xed-rate communication constraint. Finally, Chapter 5 presents the conclusions and exhibits
some future work.
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Chapter 2

Finite-Length Bounds on Hypothesis

Testing Subject to Vanishing Type I

Error Restrictions

A central problem in Binary Hypothesis Testing (BHT) is to determine the optimal tradeo�
between the Type I error (referred to as false alarm) and Type II (referred to as miss) error.
In this context, the exponential rate of convergence of the optimal miss error probability �
as the sample size tends to in�nity � given some (positive) restrictions on the false alarm
probabilities is a fundamental question to address in theory. Considering the more realistic
context of a BHT with a �nite number of observations, this paper presents a new non-
asymptotic result for the scenario with monotonic (sub-exponential decreasing) restriction
on the Type I error probability, which extends the result presented by Strassen in 2009.
Building on the use of concentration inequalities, we o�er new upper and lower bounds to
the optimal Type II error probability for the case of �nite observations. Finally, the derived
bounds are evaluated and interpreted numerically (as a function of the number samples) for
some vanishing Type I error restrictions.

2.1 Introduction

Binary Hypothesis Testing (BHT) is a common problem in statistics and it has been richly
used as a method to statistical signal detection [47,48]. In particular, the celebrated Neyman-
Pearson lemma provides the optimal detection scheme for this testing task [25]. On the
speci�cs, let us consider the classical n-length BHT setting given by

{
H0 : Xn

1 ∼ P n,
H1 : Xn

1 ∼ Qn,

where P,Q ∈ P(X) with D(P∥Q) > 0 and Xn
1 = (X1, ..., Xn) is a random vector with their

length as a superscript. In this work, we restrict our attention to the case of a �nite-alphabet
X, where P(X) denotes the family of probabilities on X. A decision rule ϕn of length n is a
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function ϕn : Xn → Θ ≜ {0, 1}, from which two types of errors are induced [49]:

P0(ϕn) ≡ P n({xn
1 ∈ X

n : ϕn(x
n
1 ) ̸= 0}) ≜ P n(Ac(ϕn)),

P1(ϕn) ≡ Qn({xn
1 ∈ X

n : ϕn(x
n
1 ) = 0}) ≜ Qn(A(ϕn)),

with decision region A(ϕn) ≜ {xn
1 ∈ X

n : ϕn(x
n
1 ) = 0}.

For a given sequence (ϵn)n of non-negative values such that lim
n→∞

ϵn = 0, we study the

solution to:
βn(ϵn) ≡ min

ϕn∈Φn

{P1(ϕn) : s.t. P0(ϕn) ≤ ϵn},∀n ≥ 1, (2.1)

where Φn ≡ {ϕn : Xn → Θ} denotes the class of n-length detectors. Importantly, (βn(ϵn))n≥1
represents the optimum Type II error sequence that satis�es a sequence of �xed Type I

error constraints.

The Neyman-Pearson lemma [50] o�ers the optimal trade-o� between the two type of er-
rors1. In this context, the determination of the (exponential) rate of convergence of the Type
II error, which is known as the error exponent, has been a central problem in HT's analysis.
Indeed, the error exponent is seen as an indicator of the complexity of the decision task (func-
tion of P0, P1 and (ϵn)n) and has found numerous applications [15,16]. For the important case
when ϵn = ϵ > 0 for all n, the celebrated Stein's lemma establishes that the error exponent
of the Type II error is given by the KL divergence D(P∥Q) ≡∑x∈X P (x) log P (x)

Q(x)
[2, 49].

Lemma 2.1.1 (Stein's lemma [2, 30]) For any �xed ϵ ∈ (0, 1), limn→∞− 1
n
log(βn(ϵ)) =

D(P∥Q).

Importantly, the error exponent limit in Lemma 2.1.1 is independent of ϵ > 0. However,
this limit changes when we impose a setting with a monotonic decreasing Type I error
restrictions. In particular, Han et al. [52] studied the case when the Type I error sequence
has an exponential decreasing behaviour. Nagakawa et al. [44] extended this analysis for a
family of decreasing sequence of Type I error restrictions:

Lemma 2.1.2 [44, Nakagawa] Let us assume that ϵn ≤ e−rn for some r ∈ (0, D(P∥Q)),
then limn→∞− 1

n
log(βn(ϵn)) = D(Pt∗∥Q), where Pt∗(x) ≡ Ct∗P (x)1−t

∗
Q(x)t

∗ ∀x ∈ X, and t∗

is the solution of D(Pt∗∥P ) = r.

A direct implication of Lemma 2.1.2 is the following result:

Corollary 1 [44] Let us assume that (1/ϵn)n is o(ern) for any r > 0, then

lim
n→∞

− 1

n
log(βn(ϵn)) = D(P∥Q). (2.2)

Importantly, Corollary 1 shows that the same error exponent of the Stein's lemma is ob-
tained for these stringent family of problems � where (ϵn)n tends to zero at a sub-exponential

1See [51] for a new proof based on properties of exponential density function families.
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rate. In contrast, when the Type I error restriction tends to zero exponentially fast (Lemma
2.1.2), the error exponent is strictly smaller than D(P∥Q).

2.1.1 Finite-Length Context and Contribution

In many practical problems, the statistician has access only to a �nite number of observations.
Consequently, it is critical to obtain non-asymptotic bounds for the probability of error βn(ϵn)
for a �nite n. Concerning the non-asymptotic analysis of this problem, the following result
was derived by Strassen for the speci�c regime when ϵn = ϵ > 0 for all n ≥ 1 [27].

Lemma 2.1.3 [27] Let us consider ϵ ∈ (0, 1), then eventually with n, it follows that

− log(βn(ϵ))

n
= D(P∥Q) +

√
V (P∥Q)

n
Φ−1(ϵ) +

log n

2n
+O

(
1

n

)
, (2.3)

where V (P∥Q) ≡
∑

x∈X

P ({x})
[
log

(
P ({x})
Q({x})

)
−D(P∥Q)

]2
.

Lemma 2.1.3 shows that
∣∣D(P∥Q)−

(
− 1

n
log(βn(ϵ))

)∣∣ is O
(

1√
n

)
, which expresses the

velocity of convergence of − 1
n
log(βn(ϵ)) to its limit D(P∥Q). Given the practical importance

of this type of �nite length results, it is very relevant to derive new results that extend Lemma
2.1.3 to our general problem in (2.1), as a function of P , Q, (ϵn)n and n. In addition, it is
critical that these bounds can be evaluated for its practical use. This last aspect is not
achieved in Lemma 2.1.3, which from that perspective is an asymptotic (convergence) result.

The main contribution of this chapter goes in this direction, where we derive new upper and
lower bounds for the discrepancy between − 1

n
log(βn(ϵn)) and its information limit D(P∥Q)

for any �nite n ≥ 1 when (ϵn)n tends to zero at a sub-exponential rate. These expressions can
be evaluated and interpreted numerically in any context where we know the models (P and
Q) and the parameters of the problem (ϵn and n). In addition, these new bounds stipulate
the velocity at which the error exponent is achieved as the sample size tends to in�nity. From
this, we could assess how realistic the information limits (asymptotic results) are in practice
when facing a problem with a �nite number of observations. To conclude our analysis, we
numerically compute and evaluate the expressions obtained by our result to show the derived
bounds' tightness for some speci�c scenarios.

2.1.2 Related Work

In a Bayesian setting, Sason [53] obtained an upper bound to the optimal Bayesian probability
of error (non-asymptotic) by bounding the Type I and Type II errors simultaneously in
such a way that they both decay to zero sub-exponentially with n. It is worth to mention that
this work di�ers from the current setting in the sense that we are interested in bounding the
discrepancy between − 1

n
log(βn(ϵn)) and its information limit and how this analysis depends

on the vanishing Type I error restrictions. In addition, we are interested in the velocity of
convergence of − 1

n
log(βn(ϵn)) to its information limit and the impact of considering stringent
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restriction on Type I errors (ϵn)n. Complementing this chapter, [54] studies a distributed
(two-terminal) version of the BHT problem subject to communication (rates) constraints.
Our results here do not derive from [54] since the setups are very di�erent from each other,
and di�erent tools are used to address them. Finally, a similar analysis of the Type I error
has been addressed by Bahadur [55]. In contrast to this work's focus, this analysis considers
a �xed restriction on the power of a test (1−Type II error) to determine the exponential
rate of convergence of their sizes (Type I error) as n tends to in�nity.

2.1.3 Notations and Organization

(bn)n being o(an) indicates that lim supn→∞ (bn/an) = 0 and (bn)n being O(an) indicates that
lim supn→∞|bn/an|< ∞. We say that (f(n))n ≈ (g(n))n if there exists a constant C > 0 such
that f(n) = Cg(n) eventually in n. The rest of the chapter is organized as follows: Section
2.2 presents the main result of this work. Numerical analysis and discussions are presented
in Section 2.3. The proof of is in Sect. 2.4.1.

2.2 Main Result

The main result of this Chapter extends Lemma 2.1.3 o�ering new non-asymptotic bounds for
βn(ϵn) in (2.1) under sub-exponential Type I error restrictions. In particular, the next result
provides upper and lower bounds for the discrepancy between − 1

n
log(βn(ϵn)) and D(P∥Q).

Theorem 2.1 Let us assume that P ≪ Q and that (1/ϵn)n is o(ern) for any r > 0. Then,
eventually in n, it follows that:

− 1
n
log(βn(ϵn)) ≥ D(P∥Q)− CX(P,Q)

√
2 ln(1/ϵn)

n

− 1
n
log(βn(ϵn)) ≤ D(P∥Q) +

log

(
1

1− ϵn − δn

)

n + δn

where CX(P,Q) ≡ sup
x∈X

∣∣∣log
(

P ({x})
Q({x})

)∣∣∣ and δn ≡ CX(P,Q)
√

2 ln(1/ϵn)
n

.

The proof is presented in Section 2.4.1.

2.2.1 Interpretation and Discussion of Theorem 2.1

1: This result establishes a non-asymptotic rate of convergence for the Type II error when
we impose a vanishing condition on (ϵn)n that is sub-exponential. Interestingly, the bounds
for the discrepancy − 1

n
log(βn(ϵn)) depend explicitly on the sequence (ϵn)n.

2: It is worth noting that the dependency on (ϵn)n observed in our result is non-observed in
the asymptotic limit in Corollary 1, which is D(P∥Q) as long as (1/ϵn)n is sub-exponential.
3: Adding on the previous point, the fact that the asymptotic error exponent is invariant
from the simpler �xed Type I setup (in Lemma 2.1.1) to the more restrictive sub-exponential
Type I error decay setting (in Corollary 1), it is however shown in our non-asymptotic
result in term of the rate of convergence to the limit D(P∥Q). In particular, there is a
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concrete penalty O(
√

log(1/ϵn)) on the velocity of convergence to zero of the discrepancy
(− 1

n
log βn(ϵn)−D(P∥Q)) in our result compared with what is obtained in Lemma 2.1.3.

4: The proof of the Theorem 2.1 has two parts: the constructive and unfeasibility arguments.
Both arguments are constructed from concentration inequalities using the i.i.d. structure
of the observations. For the constructive argument, we apply the bounded di�erence in-
equality [43]. On the unfeasibility argument, we use (concentration) results from typical
sequences [2] to construct a lower bound on the minimum probability of Type II error.
5: If we impose a �xed value of ϵn = ϵ ∈ (0, 1), our result recovers the rate of convergence
for the Type II error given by Lemma 2.1.3. However, we obtained explicit bounds.

2.3 Practical Implications of Theorem 2.1

In this section, we show how Theorem 2.1 may be adopted by a statistician to obtain bounds
on βn(ϵn) when n is �nite. The resulting bounds provide an interval of feasibility for βn(ϵn):

UB(ϵn) ≡ exp
[
− n

(
D(P∥Q)−

√
2 ln(1/ϵn)

n
CX(P,Q)

)]
,

LB(ϵn) ≡ exp
[
− n

(
D(P∥Q)− 1

n
log (1− ϵn − δn(ϵn)

)
+ δn(ϵn))

]
.

The length of [LB(ϵn),UB(ϵn)] indicates the precision of the result and, at the same time,
the interval [LB(ϵn),UB(ϵn)] can be used to measure how close βn(ϵn) is to e−nD(P∥Q).

Number of observations n
ϵn 50 250 350 550 650 750

1/log(n) 2.3587e-10 1.0595e-83 9.4592e-124 2.6103e-206 2.2862e-248 8.6970e-291
1/n0.1 7.8229e-17 9.1096e-99 1.3994e-141 1.3117e-228 1.4272e-272 9.5440e-317
1/n 0.5571 7.4403e-56 2.7823e-89 1.4443e-160 1.2489e-197 2.3163e-235

Table 2.1: Magnitude of UB(ϵn)−LB(ϵn) function of ϵn and n for the case when D(P∥Q) = 1.

Table 2.1 presents the length of [LB(ϵn),UB(ϵn)] for three regimes of: ϵn ∈ {n−1, n−0.1, 1/log(n)},
and two models P , Q where D(P∥Q) = 1 with |X|= 15. First, we observe that the length
of [LB(ϵn),UB(ϵn)] vanishes exponentially fast with the sample size. From this exponential
decay, we observe that the centered value predicted by Theorem 2.1, i.e., the exponential
behavior exp(−nD(P∥Q)), is a good approximation for βn(ϵn) provided that n is su�ciently
large. This supports the idea that exp(−nD(P∥Q)) is a useful proxy for βn(ϵn) provided
that a Critical Sample Size (CSS) is achieved (more details on this below). Table 2.1 also
shows that the result's precision is a�ected by the velocity of convergence of the Type I error
restriction (ϵn)n, which is consistent with the statement and the analysis of our main result.
In particular, for a faster speed of convergence of (ϵn)n to zero (i.e., a stringer problem), the
gap between the bounds is more prominent, which means that the bounds of Theorem 2.1
are expected to be less informative about βn(ϵn).

Regarding the implications of the above bounds to measure the gap between βn(ϵn) and
e−nD(P∥Q), we address the following question: given an arbitrary value of δ > 0 of the
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Figure 2.1: Critical number of samples (CSS) predicted by Th. 2.1 across
di�erent values of δ = 10−k. High divergence case with D(P∥Q) = 2.5 and
CX(P,Q) = 2.04.

Figure 2.2: CSS predicted by Th. 2.1 across di�erent values of δ = 10−k.
Low divergence case with D(P∥Q) = 0.5 and CX(P,Q) = 1.03. The
dashed lines show an estimation of the exact CSS obtained from βn(ϵn)
directly.
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form 10−k with k ∈ {1, . . . , 8}, and for two arbitrary models P and Q, we want to predict
from Theorem 2.1 the minimum number of samples required to guarantee that βn(ϵn) ∈
(e−nD(P∥Q) − δ, e−nD(P∥Q) + δ). The exponential decay of the length of [LB(ϵn),UB(ϵn)],
observed in Table 2.1, implies that this should happen eventually with n very quickly. Indeed,
we can derive an upper bound for this critical number of samples (CSS) from the expressions
we have for LB(ϵn) and UB(ϵn).2 Figures 2.1 and 2.2 present the predicted CSS versus
δ = 10−k for di�erent scenarios of P , Q (in terms of D(P∥Q)) and (ϵn)n. We consider two
scenarios for P and Q (low divergence D(P∥Q) = 0.5 and high divergence D(P∥Q) = 2.5)
and we explore (ϵn)n ∈ {n−1, n−0.1, 1/log(n), 0.1}. Figures 2.1 and 2.2 show that even for
really small precision δ = 10−8 the point at which βn(ϵn) can be well approximated by
e−nD(P∥Q) requires at most 16 samples and 60 samples for high and low divergence cases,
respectively, and the majority of (ϵn)n. The dependency of these curves on the magnitude of
D(P∥Q) and (ϵn)n is clearly expressed in these �ndings, which is consistent with our previous
analyses.

Finally, to evaluate the tightness of our predictions, we simulate i.i.d. samples according
to P and Q from which a precise empirical estimation of βn(ϵn) is derived. In particular,
given P , Q and (ϵn)n, we obtained empirical estimations of the error probabilities (Type I

and Type II) from which we estimate βn(ϵn). For this purpose, 2.5 · 106 realizations of P
and Q were used to have good estimations of these probabilities. Using the estimated values
of βn(ϵn), we obtain the point where βn(ϵn) ∈ (e−nD(P∥Q) − δ, e−nD(P∥Q) + δ) directly. Figure
2.2 contrasts our predictions and the true (estimated) values (the dashed lines) of the CSS.
Consistent with our result's nature, our prediction of the CSS is more conservative than the
true CSS estimated from simulations. Importantly, this discrepancy is not signi�cant overall,
expressing that our bounds are useful for this analysis and can be adopted in cases where
it is impractical to estimate βn(ϵn) from data. Indeed, in this analysis, we face this issue,
and it is very di�cult to obtain accurate estimates of βn(ϵn) for high divergence regimes.
Notice that βn(ϵn) is of order: O(e−nD(P∥Q)) for which around enD(P∥Q) simulations (i.e., i.i.d.
samples from P and Q) are needed. This becomes impractical even for n less than 30 when
D(P∥Q) is relatively large.

2The predicted CSS is the �rst n ≥ 1 such that max{UB(ϵn) − e−nD(P∥Q), e−nD(P∥Q) − LB(ϵn)} ≤ δ,
which is �nite for any δ > 0.
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2.4 Appendix

2.4.1 Proof of Theorem 2.1

We divide the proof of Theorem 2.1 in two parts.

Lower Bound Analysis

Under the assumption of Theorem 2.1, let us verify that

D(P∥Q)−
(
− 1

n
log βn(ϵn)

)
≤
√

2 ln(1/ϵn)

n
CX(P,Q).

Let us consider the corresponding optimal decision regions from the Neyman-Pearson Lemma
parameterized in the following way: ∀t > 0,

Bn,t =

{
xn
1 ∈ X

n :
P n({xn

1})
Qn({xn

1})
> ent

}
. (2.4)

Considering the induced test ϕn,t(·) : Xn 7→ {0, 1} such that ϕ−1n,t({0}) = Bn,t. The Type I

error probability is given by P n(Bc
n,t). An upper bound for the Type II follows as:

Qn (Bn,t) ≤ e−nt. (2.5)

Then, for any �nite n > 0 and ϵn > 0, �nding an achievable Type II error exponent from
this construction (and the bound in Eq.(2.5)) reduces to solve the following problem:

t∗n(ϵn) ≜ sup
t
{t : P n(Bc

n,t) ≤ ϵn}. (2.6)

It will be convenient to re-parameterize t with respect to the value D(P∥Q). More precisely,
let us de�ne

tδ ≜ D(P∥Q)− δ,

for any δ > 0. Then using the bounded di�erence inequality [43], we obtain

P n
(
Bc

n,tδ

)
= P n

(
xn
1 ∈ X

n :

∣∣∣∣∣D̂(P∥Q)−D(P∥Q)

∣∣∣∣∣ ≥ δ

)

≤ exp

( −nδ2

2CX(P,Q)2

)
, (2.7)

where D̂(P∥Q) ≜ 1
n

∑n
i=1 log

(
P ({xi})
Q({xi})

)
is the empirical divergence. Finally, from Eq. (2.6) a

lower bound for t∗n(ϵn) can be determined from Eq. (2.7) by letting δ̃n(ϵn) to be the solution
of the following equality:

exp

(
−nδ̃n(ϵn)

2

2CX(P,Q)2

)
= ϵn. (2.8)

Consequently, we have that

t∗n(ϵn) ≥ tδ̃n(ϵn) ≜ D(P∥Q)−
√

2 log(1/ϵn)

n
CX(P,Q). (2.9)
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Finally, replacing the bound of (2.9) in (2.5) and taking logarithm we have that:

D(P∥Q)−
(
− 1

n
log(βn(ϵn))

)
≤
√

2 ln(1/ϵn)

n
CX(P,Q), (2.10)

which concludes this part.

Upper Bound Analysis

Let us consider the set

Ac
n,δ ≜

{
xn
1 ∈ X

n :

∣∣∣∣∣
1

n
log

(
P n({xn

1})
Qn({xn

1})

)
−D(P∥Q)

∣∣∣∣∣ ≥ δ

}
, (2.11)

for any δ > 0. We have the following result:

Lemma 2.4.1 [2, Sect 11.8] For any set Bn ⊆ X
n and its induced test ϕn

3 such that operates
at Type I error ϵn (i.e. P n(Bc

n) ≤ ϵn), then

Qn(Bn) ≥ (1− ϵn − δ)2−n(D(P∥Q)+δ). (2.12)

By construction, it is clear that there exists δ > 0 such that Ac
n,δ operates at Type I error

ϵn. In fact, we consider
δ∗n ≜ sup{δ : P n(Ac

n,δ) ≤ ϵn}. (2.13)

Using the bounded di�erence inequality [43], we get that

P n
(
Ac

n,δ

)
= P n

(
xn
1 ∈ X

n :

∣∣∣∣∣D̂(P∥Q)−D(P∥Q)

∣∣∣∣∣ ≥ δ

)

≤ exp

( −nδ2

2CX(P,Q)2

)
. (2.14)

Using the same argument from the lower bound analysis, we obtain a lower bound for δ∗n
given by

δ∗n ≥ δn ≜

√
2 log(1/ϵn)

n
CX(P,Q). (2.15)

Finally, replacing δn in Eq. (2.12) and taking logarithm, we have that for any set Bn

satisfying the assumptions of Lemma 2.4.1:

− 1

n
log(Qn(Bn)) ≤ D(P∥Q) +

log
(

1
1−ϵn−δn

)

n
+ δn. (2.16)

Therefore, we can choose the optimum set which implies that

− 1

n
log(βn(ϵn)) ≤ D(P∥Q) +

log
(

1
1−ϵn−δn

)

n
+ δn. (2.17)

This concludes the proof.
3Meaning that ϕn(x

n
1 ) = 0 if xn

1 ∈ Bn.
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Chapter 3

On the Exponential Approximation of

Type II Error Probability of Distributed

Test of Independence

This chapter studies distributed binary test of statistical independence under communica-
tion (information bits) constraints. While testing independence is very relevant in various
applications, distributed independence test is particularly useful for event detection in sensor
networks where data correlation often occurs among observations of devices in the presence
of a signal of interest. By focusing on the case of two devices because of their tractability,
we begin by investigating conditions on Type I error probability restrictions under which
the minimum Type II error admits an exponential behavior with the sample size. Then, we
study the �nite sample-size regime of this problem. We derive new upper and lower bounds
for the gap between the minimum Type II error and its exponential approximation under
di�erent setups, including restrictions imposed on the vanishing Type I error probability.
Our theoretical results shed light on the sample-size regimes at which approximations of the
Type II error probability via error exponents became informative enough in the sense of
predicting well the actual error probability. We �nally discuss an application of our results
where the gap is evaluated numerically, and we show that exponential approximations are
not only tractable but also a valuable proxy for the Type II probability of error in the
�nite-length regime.

3.1 Introduction

Motivated by decision-making problems over networks, researchers within the �eld of sta-
tistical signal processing have been involved in a wide range of research initiatives studying
decision and inference problems in the presence of quantization or measurement noise or
data corruption by various types of perturbations. In real-world applications, these sources
of degradation come from factors such as noise observations at the sensors, communication
restrictions between sensors and decision agents, or by the presence of external sources of
perturbations corrupting data [23]. The emerging �eld of Internet of Things (IoT) brings new
dimensions and technical challenges to the classical problem as data is no longer centrally
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available at the decision end. A related emerging domain is known as signal processing in
the context of unlabeled or unordered data [15�21]. Another important domain, which is
the general focus of this work, is distributed detection under data-compression [28, 52, 56].
The derivation of performance limits and characterization of statistical properties of optimal
detectors have been active research areas over the past years.

Distributed detection, data fusion, and multisensor integration have a long history in
statistics, signal, and information processing at large. Fundamental works can be traced back
to [57], [25], and [58], among others. Applications of the decentralized decision framework
arise in communications and sensor networks, for instance, in the context of Multiple Access
Channels (MAC) [59] and wireless sensor networks [47]. These works do not only investi-
gate practical solutions but, importantly, they study theoretical guarantees and performance
bounds to understand the intrinsic complexity of these problems. In [60], the authors derived
performances in the form of error exponents of the Type I and Type II error probabilities
over Fading MACs. However, explicit communication restrictions between the sensors and
the fusion center still remain a challenging problem [47, 59], which implies understanding
how (detection) performances are a�ected by the introduction of non-trivial communication
restrictions. Indeed, a crucial case of particular interest is when the fusion center receives
quantized descriptions of the measurements taken by remote sensors [61, 62]. Some recent
contributions have explored the asymptotic performance limits based on error exponents
of distributed scenarios with multiple decision centers and rate constraints between sensors
and detectors [63], [29], [64]. Communications constraints have also been studied within the
framework of Bayesian detection in [65] and [66].

This chapter investigates the problem of distributed binary Hypothesis Testing (HT) of
statistical independence under communication (information bits) constraints. In particular,
we focus on non-asymptotic performance bounds. More speci�cally, we study the gap between
the minimum Type II error probability and its exponential approximation under restrictions
on the vanishing Type I error probability. To this end, we revisit the distributed scenario
with communication constraints �rst introduced in [28]. This problem consists in testing
against independence where the observations (e.g., sensor measurements) come from two
modalities (e.g., two sensors), as shown in Fig. 3.1. One of the modalities is to be transmitted
to the decision-maker (or detector) using an error-free communication channel that introduces
a positive rate-constraint (in bits per sample). [28] derives the characterization of asymptotic
performance bounds in terms of a closed-form expression for the error exponent of Type II

error probability given a �xed restriction on the Type I error probability (ϵ > 0) [28, Ths. 2
and 3]. Notably, the results show the e�ect of the communication constraints in asymptotic
performance (error exponent), which is shown to be independent of ϵ. Later on, [52] derive
an asymptotic lower bound for the error exponent when Type I restriction (as a sequence)
tends to zero (with the sample size n) at an exponential rate given by O(e−nr).

3.1.1 Summary of contributions

Our work advances state-of-the-art in very di�erent ways.

1. We study a broader family of problems (see Fig. 3.1) where the Type I error probability
vanishes with the sample size. The objective here is to assess the impact of this stringer
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set of restrictions on the asymptotic limit of Type II error probability given by the
error exponent. Building on concentration inequalities and results from rate-distortion
theory, our main result here (cf. Theorem 3.1) gives new conditions on the admissible
converge rate of the Type I error probability restriction under which the error exponent
of the Type II error probability admits a closed-form expression. Interestingly, for
a family of sub-exponential decreasing Type I error probability restrictions, we show
that the resulting error exponent matches the expression in [28, Theorem 3] while being
consistent with the results obtained for the classical communication-free problem [44].

2. Regarding the non-asymptotic regime of this problem, Theorem 3.2 o�ers new upper
and lower bounds for the Type II error probabilities as a function of the number of
samples, the underlying distributions, and the restriction on the Type I error proba-
bility. As an important corollary, our bounds shed light on the speed at which the error
exponent is achieved as the number of samples tends to in�nity, and consequently, how
well the performance limits represent the performances of practical decision schemes
operating based on a �nite number of samples.

3. Finally, we evaluate our bounds numerically and show that these can be used to ac-
curately describe the optimal performance that can be achieved and, in particular, to
devise the regimes where the error exponent is an accurate proxy for �nite sample-size
performances.

3.1.2 Related works

In terms of �nite sample-size analysis within the centralized framework, [27] presented non-
asymptotic results for the optimal Type II error probability under a constant Type I error
restriction in the i.i.d case. Interestingly, the discrepancy between optimal �nite-length and
asymptotic performance was characterized, scaling as O(

√
n) with the sample size n. In the

same communication-free context, [53] borrows ideas from moderate deviation analysis [67] to
obtain an interesting upper bound for the Bayesian error probability by bounding the Type
I-Type II errors in a way that both decay to zero sub-exponentially with n. More recently,
in [68], we obtained non-asymptotic upper and lower bounds for the Type II error probability
for i.i.d samples draw according to two arbitrary distributions. We showed that the error
exponent is a good approximation for the Type II error probability in the �nite sample
regime. Importantly, the distributed setting investigated in this work, with a non-trivial rate
constraint in one of the modalities, induces a mathematical problem that is fundamentally
di�erent in terms of the requested tools. Communication restrictions subject to zero-rate
(in bits-per sample) have been investigated in [56]. The error exponent and non-asymptotic
bounds have been characterized. Extensions to interactive HT with zero-rate have been
reported in [69].

A preliminary version of this work was presented in [54] with partial results and sketches
of some of the arguments. In this chapter, we extend the results for a larger family of
scenarios, provide complete proofs of the results and more systematic analysis of the practical
implications of these results.
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Figure 3.1: Illustration of the coding-decision problem with one-side communication con-
straint. fn is the encoder of Xn

1 (one of the modalities) and ϕn is the detector acting on the
one-side compressed measurements (fn(Xn

1 ), Y
n
1 ).

3.1.3 Chapter Organization

The outline of the chapter is as follows. Section 3.2 introduces the main de�nitions and
reviews some seminal results for the case of unconstrained communication. Sections 3.3 and
3.4 present our main theoretical results for the asymptotic and the non-asymptotic regimes,
respectively. Numerical analysis and discussions are relegated to Section 3.5. Finally, the
proofs are relegated to Appendix.

3.1.4 Notations and Conventions

Boldface letters xn
1 and upper-case letters Xn

1 are used to denote vectors and random vectors
of length n, respectively. Let X, Y and V be three random variables with joint probability
PX,Y,V . If PX|Y,V (x|y, v) = pX|Y (x|y) for each x, y, v, then (X, Y, V ) forms a Markov chain,
which is denoted by X −
− Y −
− V . Let (bn) and (an) be sequences, (bn) = o(an) indicates
that lim supn→∞ (bn/an) = 0, and (bn) = O(an) indicates that lim supn→∞|bn/an|< ∞. We
say that (an) ≈ (bn) if for su�ciently large N > 0 there exists a constant C > 0 such that
an = Cbn, for all n ≥ N .

3.2 Problem Setting and Preliminaries

Let us consider a �nite alphabet product space Z = X × Y, where P(Z) denotes the family
of probabilities on Z. We have a joint random vector (X, Y ) with values in Z and equipped
with a joint probability P ∈ P(Z) where PX ∈ P(X) and PY ∈ P(Y) denote the marginal of
X and Y , respectively. Xn

1 = (X1, ..., Xn) and Y n
1 = (Y1, ..., Yn) denote the �nite block vector

with product (i.i.d.) distribution P n
X,Y ≜ PXn

1 Y
n
1
∈ P(Xn × Y

n). We consider two scenarios
for the data generated distribution of (Xn

1 , Y
n
1 ), i.e.,

H0 : (Xn
1 , Y

n
1 ) ∼ P n

XY ,
H1 : (Xn

1 , Y
n
1 ) ∼ Qn

XY ,
(3.1)
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where Qn
XY = P n

X · P n
Y denote the product probability modeling the case where Xn

1 and Y n
1

are independent. In order to make the problem non-trivial, we assume that [2]:

D(PXY ∥QXY ) =
∑

(x,y)∈X×Y

PXY (x, y) log
PXY (x, y)

QXY (x, y)

=
∑

(x,y)∈X×Y

PXY (x, y) log
PXY (x, y)

PX(x) · PY (y)

= I(X;Y ) > 0, (3.2)

where D(·∥·) denotes the KL divergence between two probabilities and I(X;Y ) is the mutual
information [2] between X and Y . As presented in expression (3.2), the mutual information
is the divergence between the joint distribution PXY and the product of its marginals, i.e.,
PX · PY .

Without communication constraints, the fusion center needs to decide about the true
underlying hypothesis (H0 or H1) based on an observation of the joint vector (Xn

1 , Y
n
1 ). Here

we introduce a decentralized version of this problem which is illustrated in Fig. 3.1. In this
distributed context, the decision rule is composed by a pair of encoder and decoder (fn, ϕn)
of length n and rate R (in bits per sample), where:

fn : Xn → {1, . . . , 2nR}, (encoder)
ϕn : {1, . . . , 2nR} × Y

n → Θ = {0, 1}, (decoder). (3.3)

fn(·) models a �xed-rate lossy encoder (or quantizer) of Xn
1 and ϕn(·) represents the detector

(or classi�er) acting on the one-sided compressed data (fn(X
n
1 ), Y

n
1 ) ∈ {1, ..., 2nR}×Y

n. The
encoder represents a remote agent that senses Xn

1 and transmit a �nite description (using
R bits per sample) of Xn

1 to a fusion center (see Fig.3.1). The fusion center receives the
quantization of Xn

1 and at the same time senses locally a second modality Y n
1 to guess (using

ϕn(·)) about the true distribution of the joint vector (Xn
1 , Y

n
1 ). For any pair (fn, ϕn) of length

n and rate R, we introduce the corresponding Type I and Type II error probabilities [24],
[49]:

P0(fn, ϕn) ≜ P n
XY (Ac(fn, ϕn)) and (3.4)

P1(fn, ϕn) ≜ Qn
XY (A(fn, ϕn)), (3.5)

where A(fn, ϕn) ≜ {(xn
1 , y

n
1 ) ∈ X

n×Y
n : ϕn(fn(x

n
1 ), y

n
1 ) = 0}. Traditionally, for any ϵ > 0, we

are interested in the family of optimal encoder-decoder pairs satisfying:

βn(ϵ, R) ≜ min
(fn,ϕn)

{P1(fn, ϕn) : P0(fn, ϕn) ≤ ϵ}, (3.6)

where the minimum is over all encoding-decoder pairs in (3.3). It is worth to mention that
expression βn(ϵ, R) (i.e., the optimization in (3.6)) is an explicit function of the underlying
model PXY . Consequently, in the analysis and results presented through this chapter, PXY

is assumed to be known.

We study the performance of the optimal scheme (3.6) by focusing on the case where a
sequence of restrictions (ϵn)n≥1 is required to tend to zero as the sample size grows. The

24



objective is to explore how this restriction is expressed in terms of (βn(ϵn, R))n with n in
conjunction with other properties of the problem (e.g., the distribution PXY and the rate
R). In this work, we are primarily interested in deriving expressions to bound βn(ϵn, R) in
the large sample regime (non-asymptotic analysis). To this end, it would be essential to �rst
characterize the asymptotic nature of the sequence (βn(ϵn, R))n.

Before presenting the main contributions of this chapter, we review some essential asymp-
totic results for the classical communication-free (centralized) scenario.

3.2.1 Review of centralized HT results

For completeness, it is worth revisiting the centralized case where fn : Xn → X
n is the identity

and the solution of (3.6) is then denoted by βn(ϵn). Furthermore, when ϵn = ϵ > 0 for all
n, this is a classical HT setting where the celebrated Stein's Lemma implies the following
result [2, 30]:

Lemma 3.2.1 (Stein's Lemma) For any ϵ ∈ (0, 1),

lim
n→∞

− 1

n
log βn(ϵ) = D(P∥Q).

This result establishes the asymptotic decayment of the Type II error subject to a �xed
ϵ > 0 implying that βn(ϵ) ∼ e−nD(P∥Q) as n tends to in�nity (large sampling regime). Inter-
estingly, in [68], we provided upper and lower bounds for βn(ϵ) in the �nite length regime
showing that in practice the number of samples required to approximate the Type II er-
ror probability to (e−nD(P∥Q)) is not large. This observation supports the claim that the
exponential approximation is a useful proxy for Type II error probability.

For the sub-exponential regime of (ϵn)n, the following result is known.

Lemma 3.2.2 ( [44, Sect. IX]) if (1/ϵn) is o(ern) for any r > 0 then limn→∞− 1
n
log βn(ϵn) =

D(P∥Q).

Therefore, the error exponent obtained with a �xed ϵ > 0 in Lemma 3.2.1 is preserved for a
family of stringer decision problems in (3.6) as long as (ϵn)n tends to zero at a sub-exponential
rate.

3.2.2 Review of distributed HT results

Returning to the main decentralized task with communication constraints in Fig.3.1, [28]
determined the following result1:

1This result can be interpreted as the counterpart of the Stein's Lemma in the decentralized setting of
Fig.3.1.
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Lemma 3.2.3 [28, Theorem 3] For any ϵ > 0, it follows that2

ξ(R) ≜ lim
n→∞

− 1

n
log βn(ϵ, R) = max

U :U−
−X−
−Y
I(U ;X)≤R |U|≤|X|+1

I(U ;Y ), (3.7)

where U −
−X −
− Y denotes the fact that (U,X, Y ) forms a Markov chain (i.e., (U, Y ) are
independent conditioned to X).

The optimization presented in (3.7) is a trade-o� between representation and regulariza-
tion, in the sense that we seek to learn the best possible representation of X for predicting
Y . As for the more challenging scenario where (ϵn)n tends to zero with n, in [33] the author
provided a lower bound for the error exponent of the Type II error probability in the case
of exponentially decreasing Type I error restrictions:

Lemma 3.2.4 [52, Han and Kobayashi] Let us assume that ϵn ≤ e−rn for some r > 0, then:
lim inf
n→∞

− 1
n
log βn(ϵn, R) ≥

max
w∈ρ(R,r)

min
P̃UXY

D(P̃UXY ∥PUXY )≤r
P̃U|X=PU|X=w

U−
−X−
−Y

[D(P̃X∥PX) + I(U ;Y )], (3.8)

ρ(R, r) ≜ {w ∈ P(U|X)| max
P̃X :D(P̃X∥QX)≤r

P̃U|X=w

PUX=w·P̃X

I(U ;X) ≤ R},

where P(U|X) denotes all test channels (or conditional probabilities) from X to U.

3.3 Asymptotic Result

Our �rst result complements the regime on (ϵn)n presented in Lemma 3.2.4 to obtain an
asymptotic characterization of (βn(ϵn, R))n. In particular, we explore the important sub-
exponential regime for the restriction sequence (ϵn)n of Type I error probability.

Theorem 3.1 Let us assume that (1/ϵn)n = o(ern) for any r > 0. Then,

lim
n→∞

− 1

n
log(βn(ϵn, R)) = ξ(R), (3.9)

where ξ(R) is de�ned in (3.7). (The proof is presented in Appendix 3.7.)

This result establishes an extensive regime on the speed at which (ϵn)n tends to zero for
which the error exponent of the problem is invariant and matches the expression obtained

2This result provides an interesting connection with the problem noisy lossy source coding with log-loss
�delity [70]. The performance limits in the right hand side (RHS) of (4.16) coincides precisely with the
distortion-rate function of the information bottleneck problem [71].

26



for the less restrictive and classical setting (ϵn = ϵ > 0) presented in Lemma 3.2.3. This
result is interesting because, as it was pointed out in [52], there was no guarantee that the
asymptotic limit in (3.9) remains the same as the result in Lemma 3.2.3 when moving to
stringer regimes on the speed at which (ϵn)n vanishes with n. Besides this, the above result
can be considered as being the counterpart of what is observed in the centralized setup when
contrasting Lemmas 3.2.2 and 3.2.1.

The proof of Theorem 3.1, in Appendix 3.7.1, is divided into two parts. The direct
part (i.e., constructive argument) is based on constructing an encoder-decision pair that
guarantees that the error exponent of the optimal Type II is greater than ξ(R). The second
part of the argument (i.e., the infeasibility part) proves that no pair of encoder-decoder rule
satisfying the restriction of the Type I error has an error exponent greater than ξ(R). The
proof argument used in both the achievable and infeasibility parts (see Appendix 3.7.1) is
based on a re�ned use of concentration inequalities [43]. In particular, the achievable part is
divided into two steps. The �rst step consists of reducing the problem to an i.i.d. structure
over a block of Xn

1 induced by the encoder, which will concentrate (in probability) to an
error exponent that is di�erent from ξ(R) in (3.9). Importantly, the discrepancy between the
concentration limit obtained from our approach (i.e., �nite-block strategy) and ξ(R) can be
resolved analytically by connecting our problem with a noisy rate-distortion problem, where
the discrepancy between its fundamental limit and a �nite length version of this object is
well understood [45]. The second step consists of optimizing our approach by giving concrete
conditions to make the discrepancy between ξ(R) and − 1

n
log(βn(ϵn, R)) vanishes with n.

3.4 Finite-length Result

Our main result is concerned with the practically relevant task of o�ering a non-asymptotic
characterization of the sequence (βn(ϵn, R))n for di�erent scenarios of (ϵn)n, given the model
PXY and the rate constraint R > 0. To address this question, our methodology uses the
asymptotic limit of (βn(ϵn, R))n, stated in Theorem 3.1, and from this, analyzes the dis-
crepancy between − 1

n
log βn(ϵn, R) and ξ(R) as a function of n. In concrete, our main

result (stated below) derives upper and lower bounds for − 1
n
log βn(ϵn, R) in di�erent sub-

exponential scenarios for the Type I restriction sequence (ϵn)n. As a corollary, we determine
the speed at which − 1

n
log βn(ϵn, R) achieves its limit in (3.9). The proof of this result is

presented in Appendix 3.7.2.

Theorem 3.2 Let us assume that R < H(X) and de�ne

C(PXY ) ≜ sup
(x,y)∈X×Y

∣∣∣ log
(
PXY ({(x, y)})
QXY ({(x, y)})

) ∣∣∣ < ∞. (3.10)

Then, we have the following results

i) If (ϵn)n = (1/log(n))n (logarithmic), it follows:

− 1

n
log(βn(ϵn, R))− ξ(R) ≥

(
dD(R)

6dR
−
√

2 ln(log(n))C(PXY )

log(n)
− o (1)

)
log n

n1/3
(3.11)

27



− 1

n
log(βn(ϵn, R))− ξ(R) ≤

(
16C(PXY ) +

log(log(n))
√
log(n)

n

)
1√

log(n)
; (3.12)

ii) If (ϵn)n = (1/np)n (polynomial) with 2 > p > 0, then

− 1

n
log(βn(ϵn, R))− ξ(R) ≥

(
1

6

dD(R)

dR
−
√
2p ln(n)

log n
C(PXY )− o (1)

)
log n

n1/3
(3.13)

− 1

n
log(βn(ϵn, R))− ξ(R) ≤

(
16C(PXY ) +

p log(n)

n1−p/2

)
1

np/2
; (3.14)

iii) If (ϵn)n = (1/np)n (polynomial) with p ≥ 2, then3

− 1

n
log(βn(ϵn, R))− ξ(R) ≥

(
1

6

dD(R)

dR
−
√
2p ln(n)

log n
C(PXY )− o (1)

)
log n

n1/3
(3.15)

− 1

n
log(βn(ϵn, R))− ξ(R) ≤

(
8
√
2C(PXY )

√
n2−p + 1

log(n)
+ 2

)
log(n)

n
; (3.16)

iv) If (ϵn)n = (1/en
p
)n (superpolynomial) with p ∈ (0, 1),

− 1

n
log(βn(ϵn, R))− ξ(R) ≥

(
(1− p)

6

dD(R)

dR
−

√
2C(PXY )

log(n)
− o (1)

)
log n

n(1−p)/3 (3.17)

− 1

n
log(βn(ϵn, R))− ξ(R) ≤

(
8
√
2C(PXY )

√
e−npn2 + 1

log(n)
+ 2

)
log(n)

n
. (3.18)

D(R) is the noisy distortion-rate function [2].

3.4.1 Discussion of Theorem 3.2

(i) The results establish non-asymptotic bounds for the Type II error when we impose
concrete scenarios for the monotonic behavior of (ϵn)n. We explore three main regimes for
(ϵn)n: logarithmic, polynomial, super-polynomial. Each of these cases has its corresponding
lower and upper bounds, which depends speci�cally on the considered (ϵn)n.

(ii) The proof of Theorem 3.2 involves an optimization problem of the upper and lower
bounds presented in the proof of Theorem 3.1, for which the arguments used to prove Theorem
3.1 were instrumental for this analysis. Speci�cally, we re�ne the analysis introduced in (3.43),
(3.45) and (3.55) by �nding optimal values for l and sn for a given ϵn. These choices of values
for l and sn give us non-asymptotic lower and upper bounds for − 1

n
log(βn(ϵn, R)), for each

scenario.

(iii) Regarding the upper bound of − 1
n
log(βn(ϵn, R)) ((3.12), (3.14), (3.16) and (3.18)),

obtained from the impossibility argument (converse part), as (ϵn)n goes to zero faster (from

3It is worth to mention that there is a discrepancy in the constant (
√
2C(PXY ) used in the upper bounds

in (3.16) and (3.18) with respect to the ones appearing in a preliminary version of this work in [54] which
was obtained under stringer additional (implicit) assumptions.
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case to case), the speed at which the bound tends to zero increases; from the slower rate

O
(
1/
√

log(n)
)
to the faster that is O (log(n)/n). Therefore, by imposing a more restrictive

(ϵn)n there is an e�ect in the discrepancy between the fundamental limit ξ(R) and the optimal
Type II error − 1

n
log βn(ϵn, R) obtained from this upper bound analysis.

(iv) Regarding the lower bound of − 1
n
log βn(ϵn, R) ((3.11), (3.13), (3.15) and (3.17)),

obtained from the direct argument (achievability part), as (ϵn)n goes faster to zero (from
case to case), the derived bound -for the super-polynomial case- decreases in the speed at
which the discrepancy in error exponent (i.e., − 1

n
log(βn(ϵn, R))−ξ(R)) tends to zero. For the

other two cases (logarithmic and polynomial), the speed is not a�ected, but the constants
change to slower magnitudes. These trends are consistent with the observation that by
relaxing the speed of (ϵn)n the decision problem is less restrictive and then, the result favors
the possibility of obtaining a better Type II error (smaller) than the one predicted by the
asymptotic limit, which is e−nξ(R).

(v) Finally, it is worth noting that if we consider the relaxed restriction ϵn = ϵ ∈
(0, 1) in Lemma 3.2.3, the achievability part of our argument still works and for ξ(R) −(
− 1

n
log βn(ϵ, R)

)
it o�ers an upper bound that converges to zero as O

(
log(n)

n1/3

)
.

This last speed of convergence is slower than the same result known for the unconstrained
(centralized) problem presented in [27]. In fact, when Xn

1 is fully observed at the detector
(see Lemma 3.2.1), in [27] the author showed that the discrepancy

∣∣D(P∥Q)−
(
− 1

n
log βn(ϵ)

)∣∣
tends to zero as O (1/

√
n).4. We conjecture that our slower rate can be attributed to the non-

trivial role of the communication constraint in our problem, which breaks the i.i.d. structure
of Xn

1 in a way that it is not possible to use the tools adopted to derive the unconstrained
result in Lemma 3.7.3. It is a topic of further research to uncover if the upper bound
O
(

log(n)

n1/3

)
for the discrepancy ξ(R) −

(
− 1

n
log βn(ϵ, R)

)
can be improved, or if it is possible

to show (by a converse argument) that this rate is indeed optimal provided that ϵn = ϵ > 0.

3.4.2 Interpretation of Theorem 3.2

In general, Theorem 3.2 can be presented as two bounds:

ξo − f(n) ≤ − 1

n
log βn ≤ ξo + g(n), (3.19)

where βn is the optimal Type II error consistent with Type I error restriction (ϵn in the
statement of Theorem 3.2), ξo is the performance limit (in Theorem 3.1), f(n) is a positive
sequences that goes to zero with n (o(1)) representing the penalization (in error exponent)
for the use of �nite simple-size, and g(n) is a positive sequence that goes to zero representing
a discrepancy with the limit but that can be seen as a gain in error exponent. Then, we have
a feasibility range for βn given by the interval:

[ exp[−n(ξo + g(n))], exp[−n(ξo − f(n))]].

This interval contains the nominal value e−nξo , which is consistent with the error exponent
limit in Theorem 3.1 but extrapolated to a �nite length regime. If we consider exp(−nξo) as

4For completeness, this is presented in Lemma 3.7.3 in Appendix 3.7.4.
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our reference, we can study two feasible regions: the pessimistic interval

(exp(−nξo), exp(−n(ξo − f(n)))]

where the error probability is greater than the nominal value e−nξo , and the optimistic interval

[exp(−n(ξo + g(n))), exp(−nξo)]

where the appositive occurs. The length of the interval of the two regions is an indicator
of the precision of our result (the worse case discrepancy with respect to e−nξo). For the
pessimistic region, the length of that interval is e−nξo(enf(n) − 1). From the fact that f(n)
is o(1) (see the statement of Theorem 3.2), the length of this interval tends to zero strictly
faster than O(e−n(ξo−ϵ)) for any ϵ > 0 and, consequently, the precision has an exponential
rate of convergence that is asymptotically given by the nominal exponent ξo > 0. On the
optimistic region, the length of this interval is e−nξo(1− e−ng(n)), which is O(e−nξo). Overall,
the length of the pessimistic interval dominates the analysis and, consequently, the precision
of the result (i.e., the worse case discrepancy with respect to the nominal e−nξo) tends to
zero as O(e−n(ξo−f(n))). This order is equivalent to the worse-case Type II error probability
(e−n(ξo−f(n))) predicted from Theorem 3.2.

In conclusion, the overall quality of the result is governed by ξo and a�ected in a smaller
degree by how fast f(n) goes to zero. Note that g(n) plays no role from this perspective. We
discussed on the previous section that f(n) goes faster to zero when we relax the problem
(i.e., passing from a scenario for (ϵn)n to a scenario where this sequence tends to zero at a
smaller speed). Then, the precision of Theorem 3.2 improves when simplifying the problem
from one restriction (ϵn)n to a relaxed restriction (ϵ̃n)n for the Type I error. This reinforces
one of the points mentioned in Section 3.4.1, where we discussed that the speed at which
(ϵn)n goes to zero does not a�ect the limit ξo (Theorem 3.1) but it does a�ect our �nite
length result through f(n).

3.5 Application Examples

In this section, we present some empirical evidences illustrating the possible implication of
Theorem 3.2 to e�ectively bound βn(ϵn, R) with �nite-sample size n. Theorem 3.2 o�ers an
interval of feasibility for βn(ϵn, R) expressed by

UB(ϵn, R) = exp

[
−n

(
ξ(R) +

dD(R)

dR

log(l)

2l
−
√

2l ln(1/ϵn)

n
C(PXY )

)]
, (3.20)

LB(ϵn, R) = exp

[
−n

(
ξ(R) + 4C(PXY ) ·

√
2 ln

(
1

1− ϵn − hn(s)

)
+

log(1/hn(s))

n

)]
,

(3.21)

where βn(ϵn, R) ∈ [LB(ϵn, R),UB(ϵn, R)].5 The length of [LB(ϵn, R),UB(ϵn, R)] indicates the
precision of our approximation and the interval itself can be used to evaluate how represen-
tative is e−nξ(R) of βn(ϵn, R) for a �nite n.

5l and hn(s) are obtained according to the proof of Theorems 3.1 and 3.2 (see Appendix 3.7 and 3.7.2 for
details).
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We �rst evaluate the length of [LB(ϵn, R),UB(ϵn, R)] by considering four cases (ϵn)n ∈
{0.01, 1/log(n), n−0.01, n−0.1 } associated to a constant, a logarithmic and a polynomial Type
I error restriction, respectively. We use a discretized version of a Gaussian pdf PXY of
|X|×|Y| where the mutual information between the two variables (X and Y ) is 7 and 1.5
nats, respectively. To compute the expressions in (3.20) and (3.21), we need to evaluate
ξ(R). Obtaining ξ(R) involves an optimization problem with respect to the encoder fn
and the rate R [71]. To this end, we use the algorithm in [72] which is a generalization of
Blahut-Arimoto algorithm [73].6

Number of observations n
ϵn 50 250 350 550 650 750

1/log(n) 1.2138e-12 3.3636e-62 3.0109e-87 1.4286e-137 8.2535e-163 4.3764e-188
1/n0.01 6.4432e-10 4.2359e-52 4.5381e-74 8.5307e-119 1.9894e-141 3.4117e-164
1/n0.1 0.0045 2.5598e-28 2.0497e-43 8.5949e-76 1.0006e-92 4.9903e-110

Table 3.1: Magnitude of UB(ϵn)−LB(ϵn) function of ϵn and n for the case when I(X;Y ) = 1.5
nats and R = 2 bits.

Table 3.1 shows the lengths of [LB(ϵn, R),UB(ϵn, R)]. We verify that UB(ϵn, R)−LB(ϵn, R)
tends to zero exponentially fast with the sample size as observed in Section 3.4.2. From this
exponential decay, the nominal value predicted by Theorem 3.1, i.e., exp(−nξ(R)), is a very
precise approximation of βn(ϵn, R) provided that n is su�ciently large. This support the idea
that e−nξ(R) is an excellent proxy of βn(ϵn, R) if a critical number of samples is achieved. Table
3.1 also shows that the precision of the result measured by (UB(ϵn, R)−LB(ϵn, R)) is a�ected
by the speed at which the Type I error sequence tends to zero, which is consistent with our
previous analysis in Section 3.4.2. In particular, we observe that for a faster convergence rate
of (ϵn)n, i.e, a stringer distributed decision problem, the length of [LB(ϵn, R),UB(ϵn, R)] is
bigger, which means that our bounds are expected to be less informative on βn(ϵn, R) when
compared with a relaxed scenario.

The results presented in Table 3.1 support the claim that exp(−nξ(R)) can be adopted as
practical proxy to βn(ϵn, R). To formalize this, we address the following question: for a given
arbitrary small δ > 0 of the form 10−k with k ∈ {1, .., 5} and a joint model PXY , we seek
to �nd the lowest n such that βn(ϵn, R) ∈ (e−nξ(R) − δ, e−nξ(R) + δ). The exponential decay
of the length of [LB(ϵn, R),UB(ϵn, R)], observed in Table 3.1, suggests that this condition
happens eventually with n very quickly. Importantly, we can derive an upper bound for this
Critical Number of Samples (CNS) from the closed-form expressions we have for LB(ϵn, R)
and UB(ϵn, R).7 Figs. 3.2 and 3.3 present the predicted CNS vs. δ = 10−k for di�erent
scenarios of PXY (in terms of the magnitude of I(X;Y )) and (ϵn)n. We consider two scenarios
for PXY (I(X;Y ) = 7, R = 4 and I(X;Y ) = 1.5 with R = 2) and we explore (ϵn)n ∈
{n−0.01, n−0.1, 1/log(n), 0.1}. Figs. 3.2 and 3.3 show that even for a very small precision
δ = 10−5, the point at which βn(ϵn, R) is well approximated by e−nξ(R) happens with less
than 22 samples for the high-rate restriction case and in less than 80 samples for the low

6Importantly, under some mild conditions given in [72], this optimization (algorithm) converges to ξ(R).
7The predicted CNS is the �rst n ≥ 1 such that max{UB(ϵn, R) − e−nξ(R), e−nξ(R) − LB(ϵn, R)} ≤ δ,

which is �nite for any δ > 0 and can be computed from our result.
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Figure 3.2: Critical Number of Samples (CNS) predicted by Theorem 3.2
across di�erent values of δ = 10−k. The values used are ξ(R) = 3,
I(X;Y ) = 7, R = 4 and CX(P,Q) = 2.47.

Figure 3.3: CNS predicted by Theorem 3.2 across di�erent values of
δ = 10−k. Low rate case with ξ(R) = 0.7, I(X;Y ) = 1.5, R = 2 and
CX(P,Q) = 1.92. The dashed lines show an estimation of the exact CNS
obtained from βn(ϵn, R).
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rate case for the majority of (ϵn)n.8 The dependency of these values (predicted CNS from
Theorem 3.2) on the magnitude of I(X;Y ) and (ϵn)n is clearly expressed, which is consistent
with our previous analyses in Section 3.4.2.

Finally, to evaluate the tightness of our theoretical bounds for the CNS, we simulate
data from the true model PXY (i.i.d. samples) to have a practical lower bound for βn(ϵn).
In particular, given PXY , R and (ϵn)n, we obtained empirical estimations of the two error
probabilities from which we estimate βn(ϵn, R). 2.5 · 106 realizations of PXY were used to
obtain good estimations of these probabilities.9 Using the estimated values of βn(ϵn, R), we
obtained for each δ > 0 the corresponding CNS where the condition βn(ϵn, R) ∈ (e−nξ(R) −
δ, e−nξ(R) + δ) is meet directly (the empirical estimations of the CNS). Fig. 3.3 contrasts
our predictions (theoretical upper bounds) with the empirical estimations (the dashed lines)
of the CNS. Consistent with the nature of our result, the predicted CNS values are more
conservative than the CNS estimated from simulations. This discrepancy is not signi�cant
overall, in particular for the regime when ϵn exhibits a relatively small speed of convergence
to zero. Overall, we can conclude that the derived bounds are meaningful and can be adopted
in cases where it is prohibitive to estimate βn(ϵn, R) from data. Indeed, we face this issue in
this analysis, as it was not possible to estimate βn(ϵn, R) for the higher rate cases.10

3.6 Summary and Discussion

This thesis explores the problem of testing against independence with one-sided communi-
cation constraints. More speci�cally, the scenario of two memory-less sources is considered
where one of the modalities is transmitted to the decision-maker (fusion center) over a rate-
limited channel. In this context, we explored a general family of optimal tests (in the sense
of Neyman-Pearson) where restrictions on the Type I error are imposed. We are interested
in the speed at which the Type II error vanishes with the sample size. From a theoretical
perspective, we obtained the performance limits for a rich family of problems with a decreas-
ing sequence of Type I error probabilities (Theorem 3.1). This result establishes that the
error exponent of the Type II error probability tends to an error exponent (fundamental
limit) in the form of the classical Stein's Lemma. This error exponent is expressed in a
closed-form, which is a function of the operational rate (in bits per sample) imposed on one
of the information sources. Interestingly, this result implies that for a large family of Type I

error restrictions (vanishing to zero with the sample size), the error exponent coincides with
the result obtained in the (classical) scenario where the Type I error restriction is constant
with n (Lemma 3.2.3).

Concerning the �nite-sample size analysis, our main result (Theorem 3.2) provides bounds
for the Type II error probability. Using results from rate-distortion theory and concentra-
tion inequalities, we obtained upper and lower bounds for this error as a function of n (the
sample size), the sequence (ϵn)n that models the restriction for the Type I error proba-

8The observed variations can be attributed to the value of dD(R)
dR , which tends to zero as long as R > H(X).

9To achieve this, we use an scalar quantization based on the Lloyd-max algorithm [74] to obtain an induced
quantized distribution Pf(Xn

1 )Y .
10βn(ϵn, R) is of order O(e−nξ(R)) so when R is relatively high, the value of ξ(R) tends to I(X;Y ) for

which enI(X;Y ) simulations are needed. This number becomes prohibitive, even for n of order of 30 when
I(X;Y ) = 1.5.
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bility and the underlying distributions. We observed that the bounds o�er an interval of
feasibility for the optimal Type II error probability, which presents an accurate description.
A closed-form expression for the worse-case Type II error probability was derived where a
discrepancy in the error exponent (with respect to the asymptotic exponent) was identi�ed.
This discrepancy (overhead) can be attributed to using a �nite number of observations in the
decision. Furthermore, this penalization vanishes at a speed that is a function of (ϵn)n, and
consequently, we observed the e�ect of the Type I error restriction in this non-asymptotic
analysis.

We observed that the Type II error probability is arbitrary close (with n) to the nominal
value predicted by the asymptotic result e−nξ(R), where ξ(R) is the limit in Theorem 3.1.
Furthermore, the precision in Theorem 3.2, measured by the length of the feasible interval,
tends to zero exponentially fast. Numerical analysis in some concrete scenarios con�rms the
predicted quality of the non-asymptotic results in Theorem 3.2.

3.6.1 Future Work

A relevant topic to be further explored is extending the results presented in this thesis to
the problem of arbitrary binary hypothesis testing subject to communications constraints.
However, a single-letter characterization of the error exponent of the Type II error is not
available for the general setup and only a lower bound to it was derived in [33]. The char-
acterization of this fundamental limit would be essential to be able to extend our results to
the non-asymptotic analysis since a critical step was analyzing the discrepancy between the
non-asymptotic and its corresponding asymptotic expression.

3.7 Appendix

3.7.1 Proof of Theorem 3.1:

The proof is divided in two parts: a lower and an upper bound result. We begin with the
following bound that extends the result presented in [28, Theorem 3].

Theorem 3.3 Let us assume that ϵn > 0 for all n and (1/ϵn)n = o(ern) for any r > 0, then

lim inf
n→∞

− 1

n
log(βn(ϵn, R)) ≥ ξ(R). (3.22)

Proof. For an arbitrary encoder fn : Xn 7→ {1, . . . , 2nR} of rate R > 0, let us consider
the corresponding optimal decision regions -according to Neyman-Pearson's Lemma- on the
one-sided quantized space {1, . . . , 2nR} × Y

n expressed by

Bn,t(fn) ≜

{
(z, yn1 ) ∈ {1, . . . , 2nR} × Y

n :
Pfn(Xn

1 )Y
n
1
(z, yn1 )

Qfn(Xn
1 )Y

n
1
(z, yn1 )

> ent
}
. (3.23)

Bn,t(fn) is parametrized in terms of t, n and fn. Let us denote by ϕn,t(·) : {1, . . . , 2nR}×Yn 7→
{0, 1} the induced test (or decision rule) such that ϕ−1n,t({0}) = Bn,t(fn). Then the Type I
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error probability for the pair (fn, ϕn,t) is given by

P0(fn, ϕn,t) = Pfn(Xn
1 )Y

n
1
(Bc

n,t(fn)). (3.24)

By construction of the pair (fn, ϕn,t), an upper bound for the Type II is obtained by

P1(fn, ϕn,t) = Qfn(Xn
1 )Y

n
1
(Bn,t(fn)) ≤ e−nt. (3.25)

Then, for any �nite n > 0 and ϵn > 0, �nding an achievable Type II error exponent from
this construction (and the bound in (3.25)) reduces to solve the following problem:

t∗n(ϵn) ≜ sup
fn encoder of rate R

sup
t
{t : Pfn(Xn

1 )Y
n
1
(Bc

n,t(fn)) ≤ ϵn}. (3.26)

Note that fn breaks the i.i.d. structure of the problem, then determining t∗n(ϵn) is not a
simple task. We will derive a lower bound for t∗n(ϵn) using a �nite block analysis approach.
For this, let us consider a �xed l ≥ 1 and let us consider f̃l an encoder of length l, i.e.
f̃l : Xl → {1, . . . , 2lR}. The idea is to decompose Xn

1 in segments of �nite length to use
the induced block i.i.d. structure when n tends to in�nity. More precisely, we construct an
encoder that we denote by f̃n,l applying the function f̃l k-times to every sub-block of length
l, assuming for the moment that n = kl, i.e.,

f̃n,l(x1, . . . , xl, xl+1, . . . , x2l, . . . , xl(k−1)+1, . . . , xkl) ≜

(f̃l(x1, . . . , xl), f̃l(xl+1, . . . , x2l), . . . , f̃l(xl(k−1)+1, . . . , xkl)). (3.27)

In the use of the set Bn,t(f̃n,l) in (3.23), it will be convenient to parametrize t relative to the
reference value 1

l
D(Pf̃l(X

l
1)Y

l
1
∥Qf̃l(X

l
1)Y

l
1
) that is a function of f̃l. More precisely, let us de�ne

tδ ≜
1

l
D(Pf̃l(X

l
1)Y

l
1
∥Qf̃l(X

l
1)Y

l
1
)− δ,

for any δ > 0. Using the l-block structure of f̃n,l, the Type I error in (3.24) of the pair
(f̃n,l, ϕn,tδ) can be expressed by:

Pf̃n,l(X
n
1 )Y

n
1

(
Bc
n,tδ

(f̃n,l)
)
, (3.28)

where Bc
n,tδ

(f̃n,l)) has the elements zk1 , y
n
1 ∈ {1, . . . , 2lR}k × Y

n satisfying that
∣∣∣∣∣D̂(Pf̃l(X

l
1)Y

l
1
∥Qf̃l(X

l
1)Y

l
1
)−D(Pf̃l(X

l
1)Y

l
1
∥Qf̃l(X

l
1)Y

l
1
)

∣∣∣∣∣ ≥ lδ, (3.29)

where

D̂(Pf̃l(X
l
1)Y

l
1
∥Qf̃l(X

l
1)Y

l
1
) ≜

1

k

k∑

i=1

log

(
Pf̃l(X

l
1)Y

l
1
({zi, ykik(i−1)+1})

Qf̃l(X
l
1)Y

l
1
({zi, ykik(i−1)+1})

)

denotes the empirical divergence. We will use a concentration inequality to bound the
probability of the deviation event in (3.29). To this end, let us introduce the notation:
ui = (zi, yl(i−1)+1, . . . , yil) ∈ {1, . . . , 2lR} × Y

l and

g(u1, . . . , ui, . . . , uk) ≜
1

k

k∑

j=1

log

(
Pf̃l(X

l
1)Y

l
1
({uj})

Qf̃l(X
l
1)Y

l
1
({uj})

)
, (3.30)
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where it follows that for any k > 0 and ∀i ∈ {1, . . . , k}:

sup
u1,...,ui,ūi,...,uk

∈f̃l(Xl)×Yl

∣∣∣∣∣g(u1, . . . , ui, . . . , uk)− g(u1, . . . , ūi, . . . , uk)

∣∣∣∣∣ ≤
2

k
C(f̃l, PXY ), (3.31)

where C(f̃l, PXY ) ≜ sup
z,yl1∈f̃l(Xl)×Yl

∣∣∣∣∣ log
(

P
f̃l(X

l
1)Y

l
1
({z,yl1})

Q
f̃l(X

l
1)Y

l
1
({z,yl1})

)∣∣∣∣∣. From the bounded di�erence inequal-

ity [75, Theorem 2.2], we have that

Pf̃n,l(X
n
1 )Y

n
1

(
Bc
n,tδ

(f̃n,l)
)
≤ exp

( −k(lδ)2

2C2(f̃l, PXY )

)
. (3.32)

Finally, from (3.26), a lower bound for t∗n(ϵn) can be obtained from (3.32) by making δ (that
we denote by δ̃n,l(ϵn) in (3.33)) the solution of the following condition:

exp

(
−k(lδ̃n,l(ϵn))

2

2C2(f̃l, PXY )

)
= ϵn. (3.33)

Consequently, we have that

t∗n(ϵn) ≥
1

l
D(Pf̃l(X

l
1)Y

l
1
∥Qf̃l(X

l
1)Y

l
1
)− δ̃n,l(ϵn)

︸ ︷︷ ︸
tδ̃n,l(ϵn)=

(3.34)

where from (3.33),

δ̃n,l(ϵn) =

√
2 ln(1/ϵn)

nl
· C(f̃l, PXY ). (3.35)

Finally, replacing the bound of t∗n(ϵn) in (3.34) at the exponential term in (3.25) and taking
logarithm, we have that:

(3.36)ξ(R)−
(
− 1

n
logP1(f̃n,l, ϕn,tδ̃n,l(ϵn)

)

)

≤
[
ξ(R)− 1

l
D(Pf̃l(X

l
1)Y

l
1
∥Qf̃l(X

l
1)Y

l
1
)

]
+ δ̃n,l(ϵn).

Remark 1 Looking at (3.36) and using (2.6) and Theorem 3 in [28], ∀γ > 0, we can �nd a
su�cient large l∗ and f ∗l (function of γ) such that,

ξ(R)− γ <
D(Pf̃∗

l (X
l∗
1 )Y l∗

1
∥Qf̃∗

l (X
l∗
1 )Y l∗

1
)

l∗
< ξ(R). (3.37)
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Returning to the proof, we have that ∀l > 0, ∀n > 0 and any ϵn > 0

ξ(R)−
(
− 1

n
log(βn(ϵn, R))

)
≤ ξ(R)−

(
− 1

n
log(P1(f̃n,l, ϕn,tδ̃n,l(ϵn)

))

)

≤ ξ(R)− 1

l
D(Pf̃l(X

l
1)Y

l
1
∥Qf̃l(X

l
1)Y

l
1
) + δ̃n,l(ϵn)

=


 max

U :U−
−X−
−Y
I(U ;X)≤R
|U|≤|X|+1

I(U ;Y )− 1

l
I(f̃l(X

l
1);Y

l
1 )


+ δ̃n,l(ϵn). (3.38)

The �rst inequality is from the fact that βn(ϵn, R)) ≤ P1(f̃n,l, ϕn,tδ̃n,l(ϵn)
), the second from

(3.36), and the last equality from the de�nition of ξ(R) in Lemma 3.2.3, expressing the
divergence as a mutual information [2].

It is worth noting that the bound in (3.38) is valid for an arbitrary l > 0. Considering
that we know an expression for δ̃n,l(ϵn) from (3.35), we can address the problem of �nding
the best upper bound, i.e., the l that o�ers the best compromise between the two terms in
the RHS of (3.38). For that, we need to focus on:

max
U :U−
−X−
−Y

I(U ;X)≤R |U|≤|X|+1

I(U ;Y )− max
f̃l:Xl→{1,...,2lR}

1

l
I(f̃l(X

l
1);Y

l
1 ), (3.39)

which corresponds to the non-asymptotic analysis of the information bottleneck (IB) problem
[71]. This coding problem can be viewed as a classical rate-distortion (�xed-rate) lossy source
coding problem with the log-loss as the distortion function [76]. More precisely, (3.39) can
be expressed by:

min
f̃l:X

l
1→{1,...,2lR}

1

l
H(Y l

1 |f̃l(X l
1))− min

U :U−
−X−
−Y
I(U ;X)≤R |U|≤|X|+1

H(Y |U). (3.40)

The following Lemma connects the expression in (3.40) with an instance of the classical
rate distortion problem [77].

Lemma 3.7.1

1

l
H(Y l

1 |f̃l(X l
1) ≤ D(R)− d

dR
D(R)

log(l)

2l
+ o

(
log l

l

)
, (3.41)

where D(R) is the noisy distortion-rate function given by

D(R) = min
U :U−
−X−
−Y

I(U ;X)≤R |U|≤|X|+1

H(Y |U). (3.42)

The proof is presented in Appendix 3.7.3. Consequently, from (3.41) we have that the

expression in (3.39) is upper bounded by − d
dR

D(R) log(l)
2l

+ o
(

log(l)
l

)
. Applying this result to
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(3.38), it follows that

ξ(R)−
(
− 1

n
log(βn(ϵn, R))

)
≤ − d

dR
D(R)

log(l)

2l
+ δ̃n,l(ϵn) + o

(
log(l)

l

)
. (3.43)

To obtain a more explicit dependency of δ̃n,l(ϵn) on l we use the following result:

Proposition 3.4 Let us consider two arbitrary probability distributions µ, ρ ∈ P(X), an
arbitrary encoder fn : X → {1, . . . , n}. and its induced partition of X given by πn = {Ai,n ≜
f−1n ({i}) : i ∈ {1, . . . , n}}, then

sup
A∈πn

µ(A)

ρ(A)
≤ sup

x∈X

µ({x})
ρ({x}) . (3.44)

The proof is presented in Appendix 3.7.5.

From Proposition 3.4, we obtain that:

δ̃n,l(ϵn) =

√
2 ln(1/ϵn)

nl
· C(f̃l, PXY )

≤
√

2l ln(1/ϵn)

n
· C(PXY ). (3.45)

Using (3.45), the problem reduces to minimize the RHS of (3.43) as long as (ϵn)n tends to

zero at a sub-exponential rate, for which the assumption that
(

1
ϵn

)
n
is o(ern) for any r > 0

is central. In fact, it is su�cient to consider any sequence (ln)n of integers such that (1/ln)n
is o(1) and (ln)n is o

(
n

ln(1/ϵn)

)
, from which we conclude that

lim
n→∞

inf − 1

n
log(βn(ϵn, R)) ≥ ξ(R). (3.46)

Conversely, we have the following result:

Theorem 3.5 Let us assume that ϵn > 0 for all n and that (1/ϵn)n = o(ern) for any r > 0,
then

lim
n→∞

sup− 1

n
log(βn(ϵn, R)) ≤ ξ(R). (3.47)

Proof. Let us consider a �xed-rate encoder fn : Xn → {1, . . . , 2nR} of rate R. We begin by
using [78, Lemma 4.1.2], which states that for all t > 0 and ∀An ⊂ fn(X

n)× Y
n

(3.48)Pfn(Xn
1 )Y

n
1
(Ac

n) + entQfn(Xn
1 )Y

n
1
(An)

≥ Pfn(Xn
1 )Y

n
1

(
Bc
n,t(fn)

)
,
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where as before

Bn,t(fn) =

{
(z, yn1 ) ∈ fn(X

n)× Y
n :

Pfn(Xn
1 )Y

n
1
({z, yn1 })

Qfn(Xn
1 )Y

n
1
({z, yn1 })

> ent
}
.

Eq. (3.48) is valid for any binary decision rule (represented by the set An in (3.48)) act-
ing on (fn(X

n
1 ), Y

n
1 ). The rest of the argument focuses on �nding a lower bound to the

RHS of (3.48). The latter can be done by considering the following function i(xn
1 , y

n
1 ) =

log

(
PY n

1 |fn(Xn
1 )(yn1 |fn(xn1 ))

PY n
1
(yn1 )

)
and the fact that ∀q ≥ 1

E(Xn
1 ,Y

n
1 )∼Pn

XY
(i(Xn

1 , Y
n
1 )

q) ≤ q! (4n2C(PXY )
2)q. (3.49)

Using Bn,t(fn), it is useful to write t =
I(fn(Xn

1 );Y
n
1 )

n
+ s, then

Pfn(Xn
1 )Y

n
1

(
Bc
n,t(fn)

)
= P n

XY ({(xn
1 , y

n
1 ) : i(x

n
1 , y

n
1 )− E(i(Xn

1 , Y
n
1 )) ≤ ns}) , (3.50)

where the expected values in (3.50) assumes that (Xn
1 , Y

n
1 ) ∼ P n

XY . Using the bound on
i(Xn

1 , Y
n
1 ) in (3.49), we can use the moment concentration inequality [43, Theorem 2.1] to

obtain:

P n
XY ({i(xn

1 , y
n
1 )− E(i(Xn

1 , Y
n
1 )) ≤ ns}) ≥ 1− e−s

2/(32C(PXY )2). (3.51)

Combining (3.51) with (3.48), it follows that for any s > 0 and any set An ⊂ fn(X
n)× Y

n

Pfn(Xn
1 )Y

n
1
(Ac

n) + e
n

(
I(fn(Xn

1 );Y n
1 )

n
+s

)
Qfn(Xn

1 )Y
n
1
(An) ≥ 1− e−s

2/(32C(PXY )2). (3.52)

At this point, we introduce the restriction on the Type I error in the analysis of An.
More preciasly, let us consider an arbitrary An such that Pfn(Xn

1 )Y
n
1
(Ac

n) ≤ ϵn. Then we have
that:

e
n

(
I(fn(Xn

1 );Y n
1 )

n
+s

)
Qfn(Xn

1 )Y
n
1
(An) ≥ 1− e−s

2/(32C(PXY )2) − ϵn. (3.53)

Taking logarithm at both sides of (3.53) for any s satisfying the admisible condition 1− ϵn−
e
− s2

32C(PXY )2 > 0, it follows that

I(fn(X
n
1 );Y

n
1 )

n
−
(
− 1

n
log(Qf(Xn

1 )Y
n
1
(An))

)
≥ −s+

log

(
1− ϵn − e

− s2

32C(PXY )2

)

n
. (3.54)

Since both fn and the set An (the detector) are arbitrary in (3.54), the bound is valid
for the optimal pair (f ∗n, ϕ

∗
n) in (3.6) such that Qf∗

n(X
n
1 )Y

n
1
(A∗n) = βn(ϵn, R). In addition

I(fn(Xn
1 );Y

n
1 )

n
≤ ξ(R) by de�nition (see (2.5) in [28]), then for all s > 4C(PXY )

√
2 ln(1/1− ϵn)

it follows that

ξ(R)+
1

n
log(βn(ϵn, R)) ≥ −s+

log

(
1− ϵn − e

− s2

32C(PXY )2

)

n
. (3.55)

At this point, we use the assumption that limn→∞ ϵn = 0, which implies that there is a
sequence (sn)n that is O(

√
log(n)/n) for which (3.55) evaluated at s = sn holds for any n,

which implies that

lim
n→∞

sup− 1

n
log(βn(ϵn, R)) ≤ ξ(R). (3.56)
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3.7.2 Proof of Theorem 3.2

Proof. The proof can be divided in two independent parts from the analysis obtained in
Theorems 3.3 and 3.5. On the one hand, we have an upper bound obtained by optimizing
the RHS of (3.43) with respect to the blocklength l. More precisely, we have the following
inequality:

ξ(R)−
(
− 1

n
log(βn(ϵn, R))

)
≤ − d

dR
D(R)

log l

2l
+

√
2l ln(1/ϵn)

n
C(PXY ) + o

(
log l

l

)
,

(3.57)

where C(PXY ) ≜ sup(x,y)∈X×Y

∣∣∣∣∣ log
(

PXY ({(x,y)})
QXY ({(x,y)})

)∣∣∣∣∣. This expression depends on ϵn and it is

valid for all l ≥ 1. Then the tighest bound from (3.57), reduces to �nd l∗n solution of:

log l∗n
l∗n

≈
√

l∗n ln(1/ϵn)

n
. (3.58)

To address this problem, we consider ln = nα to look for this optimal α (function of ϵn). This
is the consequence of assuming that the condition in (3.58) holds, which reduces to:

log nα

nα
≈
√

nα ln(1/ϵn)

n
. (3.59)

To solve (3.59), we move into the speci�c cases for (ϵn) stated in Theorem 3.2. We have three
di�erent scenarios:
a) (ϵn)n = (1/np)n with p > 0: The condition (3.59) reduces to

α log n

nα
≈
√

nαp ln(n)

n
, (3.60)

where (non considering the logarithmic term) the equilibrium is obtained with α∗ = 1/3,
which makes the upper bound in (3.57) of the form:

ξ(R)−
(
− 1

n
log(βn(ϵn, R))

)
≤ −dD(R)

dR

log n

6n1/3
+

√
2p ln(n)

n2/3
C(PXY ) + o

(
log n

n1/3

)

=

[
−dD(R)

dR
· 1
6
+ o (1)

](
log n

n1/3

)
. (3.61)

b) (ϵn)n = (1/en
p
)n with p ∈ (0, 1): Following the previous approach, we solve

α log n

nα
≈
√

nαnp

n
, (3.62)

resulting in α∗ = (1− p)/3. This choice o�ers the bound

ξ(R)−
(
− 1

n
log(βn(ϵn, R))

)
≤ −dD(R)

dR

(1− p) log n

6n(1−p)/3 +

√
2C(PXY )

n(1−p)/3 + o

(
log n

n(1−p)/3

)

=

[
−dD(R)

dR

(1− p)

6
+ o (1)

](
log n

n(1−p)/3

)
. (3.63)
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c) (ϵn)n = (1/log(n))n: The matching condition reduces to �nd α such that

α log n

nα
≈
√

nα ln(log(n))

n
. (3.64)

It is simple to show that, as in the polynomial regime, the approximated solution is α∗ = 1/3,
which o�ers the following upper bound:

ξ(R)−
(
− 1

n
log(βn(ϵn, R))

)
≤ −dD(R)

dR

log n

6n1/3
+

√
2 ln(log(n))

n2/3
C(PXY ) + o

(
log n

n1/3

)

=

[
−dD(R)

dR
· 1
6
+ o (1)

](
log n

n1/3

)
. (3.65)

For the lower bound, we use the following inequality from the proof of Theorem 3.5 (see
(3.55)):

ξ(R)−
(
− 1

n
log(βn(ϵn, R))

)
≥ −s+

log

(
1− ϵn − e

− s2

32C(PXY )2

)

n
. (3.66)

This inequality is valid for any s ∈ R such that 1 − ϵn − e
− s2

32C(PXY )2 > 0 or, equivalently,
for all s such that s > 4C(PXY )

√
2 ln(1/1− ϵn). At this point, it is convenient to de�ne

hn(s) ≜ 1 − ϵn − e
− s2

32C(PXY )2 in the domain s > 4C(PXY )
√
2 ln(1/1− ϵn). Then, (3.66) can

be expressed in terms of hn(s) by

ξ(R)−
(
− 1

n
log(βn(ϵn, R))

)

≥ −4C(PXY )

√
2 ln

(
1

1− ϵn − hn(s)

)
− log(1/hn(s))

n
, (3.67)

where hn(s) > 0 if s > 4C(PXY )
√

2 ln(1/1− ϵn). We notice that as (ϵn)n is o(1) (function of
n) the �rst term on the RHS of (3.67) tends to zero if, and only if, (hn(s))n is o(1). On the
other hand, (log(1/hn(s)))n needs to be o(n) to make the second terms on the RHS of (3.67)
vanishing to zero with n. Then, there is a regime on the asymptotic behavior of (hn(s))n
where the bound in (3.67) is meaningful.

More precisely, for any �nite n, we will address the problem of �nding

s ∈ (4C(PXY )
√
2 ln(1/1− ϵn),∞),

or equivalently �nding hn(s) ∈ (0, 1), that o�ers the best lower bound from (3.67). On the

speci�cs, as (ϵn)n and (hn(s))n go to zero with n, for the �rst term−4C(PXY )

√
2 ln

(
1

1−ϵn−hn(s)

)
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a Taylor expansion around 1 is used to aproximate the function. In particular, it follows that:

−4
√
2C(PXY )

√
ln

(
1

1− ϵn − hn(s)

)
≥ −2

√
2C(PXY )

√
ϵn + hn(s)

√
4− 5(ϵn + hn(s))

1− ϵn − hn(s)

≥ −2
√
2C(PXY )

√
ϵn + hn(s)

√
4

1/2

= −8
√
2C(PXY )

√
ϵn + hn(s), (3.68)

where the last inequality is obtained eventually as (ϵn+hn(s))n is o(1). Then, from (3.67) and
(3.68), the optimal lower bound reduces to �nd the optimal balance between −8

√
2C(PXY )√

ϵn + hn(s) and
log(1/hn(s))

n
. It is important to note that −8

√
2C(PXY )

√
ϵn + hn(s) tends to

zero at a speed that is proportional to how fast (hn(s))n tends to zero, as long as, (hn(s))n
is o(ϵn), otherwise, the speed is dominated by O(

√
ϵn), which is independent of (hn(s))n.

On the other hand, the second term (log(1/hn(s)))n tends to zero at a rate that is inversely
proportional to the speed at which (hn(s))n goes to zero. Therefore, the balance is function
of (ϵn)n. We recognize two regimes for this optimization problem:

1- If for some K > 0 we have that
√
2ϵn ≥ K log(1/ϵn)

n
, eventually in n, then the solution

of the optimization problem is achieved when (hn(s))n ≈ (ϵn)n (Regime 1);

2- Otherwise, if (
√
2ϵn)n is o

(
log(1/ϵn)

n

)
, then the solution of the optimization problem

implies that (ϵn)n is o(hn(s)) (Regime 2).

Finally, to obtain the upper bound, we need to evaluate (ϵn)n in the di�erent scenarios stated
in Theorem 3.2.

� (ϵn)n = (1/log(n))n: Regime 1 is met, then we choose hn(s) = ϵn. This implies that

ξ(R)−
(
− 1

n
log(βn(ϵn, R))

)
≥ −16C(PXY )√

log(n)
− log(log(n))

n

=

(
−16C(PXY )−

log(log(n))
√
log(n)

n

)
1√

log(n)

= (−16C(PXY )− o(1))

(
1√

log(n)

)
. (3.69)

� (ϵn)n = (1/np)n with 2 > p > 0: Regime 1 is met, then we choose hn(s) = ϵn. This
implies that

ξ(R)−
(
− 1

n
log(βn(ϵn, R))

)
≥ −16C(PXY )

np/2
− p log(n)

n

=

(
−16C(PXY )−

p log(n)

n1−p/2

)(
1

np/2

)

= (−16C(PXY )− o(1))

(
1

np/2

)
. (3.70)
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� (ϵn)n = (1/np)n with p ≥ 2: Regime 2 is met, then we have to solve the following
matching condition

√
ϵn + hn(s) ≈

log(1/hn(s))

n
. (3.71)

Assuming hn(s) = 1/nα, α ∈ (0, 2], the equilibrium is obtained with α∗ = 2. This
implies that

ξ(R)−
(
− 1

n
log(βn(ϵn, R))

)
≥ −8

√
2C(PXY )

√
n−p + n−2 − 2 log(n)

n

=

(
−8

√
2C(PXY )

√
n2−p + 1

log(n)
− 2

)(
log(n)

n

)

= (−o(1)− 2)

(
log(n)

n

)
. (3.72)

� (ϵn)n = (1/en
p
)n with p ∈ (0, 1): Regime 2 is met, then we follow the same condition

in (3.71). The equilibrium is obtained with α∗ = 2. This implies that

ξ(R)−
(
− 1

n
log(βn(ϵn, R))

)
≥ −8

√
2C(PXY )

√
e−np + n−2 − log(n)

n

=

(
−8

√
2C(PXY )

√
e−npn2 + 1

log(n)
− 2

)(
log(n)

n

)

= (−o(1)− 2)

(
log(n)

n

)
. (3.73)

3.7.3 Proof of Lemma 3.7.1

Proof. Let us consider a family of probability distributions Pλ ∈ P(Y) indexed with a pa-
rameter λ ∈ Λ, where Λ is some parametric space. Given a vector of parameters λn

1 ∈ Λn,
the product probability distribution in P(Yn) is de�ned as

Pλn({yn1 }) ≜
n∏

i=1

Pλi
({yi}). (3.74)

Let ρ(λn
1 , Y

n
1 ) : Λ

n × Y
n
1 → R

+ ∪ {0} denote the logarithmic loss distortion de�ned by:

ρ(λn
1 , y

n
1 ) ≜ − 1

n
logPλn

1
({yn1 }) =

n∑

i=1

− 1

n
logPλi

({yi}).

By construction ρ(λn
1 , y

n
1 ) is additive (ρ(λ

n
1 , y

n
1 ) =

∑n
i=1 ρ(λi, yi)) and then the following result

holds:
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Lemma 3.7.2 [76, Lemma 1] Let X l
1, Y

l
1 be a random vector with known joint distribution.

For any function f̃l : X
l → {1, ..., 2lR} and function g : {1, ..., 2lR} → Λn such that g(f̃l(X l

1)) =
λl
1 it follows that

E[ρ(g(u), Y l
1 )|f̃l(X l

1) = u] ≥ 1

l
H(Y l

1 |f̃l(X l
1) = u). (3.75)

Taking expectation on the two sides of (3.75) with repect to X l
1, we get that

E[ρ(g(f̃l(X
l
1)), Y

l
1 )] ≥

1

l
H(Y l

1 |f̃l(X l
1)). (3.76)

Remark 2 We observe that, if we identify the f̃l as an encoder and g as the decoder, the term
in the LHS of (3.76) corresponds to the noisy rate distortion function under the logarithmic
loss. Then, for the purpose of the following result, it is convenient to rede�ne the distortion
function ρ̃(xl

1, λ
l
1) : X

l
1 × Λl

1 → R ∪ {0} as

ρ̃(xl
1, λ

l
1) ≜ E[ρ(λl

1, Y
l
1 )|X l

1 = xl
1]. (3.77)

Denoting λi = gi(f̃l(x
l
1)) and gi is the ith component of g, we observe that ρ̃(xl

1, λ
l
1) =∑l

i=1 ρ̃(xi, λi) is additive.

Finally, using the previous observation, we can use f̃l as the encoder and gi as the decoder,
to recover an instance of the rate distortion problem [77]. Therefore, from [45, Theorem 3],
we obtain that

1

l
H(Y l

1 |f̃l(X l
1)) ≤ EX∼P l

X
[ρ̃(X l

1, λ
l
1)]

≤ D(R)− d

dR
D(R)

log(l)

2l
+ o

(
log(l)

l

)
,

which concludes the proof.

3.7.4 Finite-length Result for the Unconstrained Case

Lemma 3.7.3 [27] Let us consider ϵ ∈ (0, 1), then eventually in n it follows that − log(βn(ϵ))
n

=

D(P∥Q) +

√
V (P∥Q)

n
Φ−1(ϵ) +

log n

2n
+O

(
1

n

)
,

where V (P∥Q) =
∑
x∈X

P ({x})
[
log
(

P ({x})
Q({x})

)
−D(P∥Q)

]2
.

A direct corollary of this result shows that
∣∣D(P∥Q)−

(
− 1

n
log(βn(ϵ))

)∣∣ is O
(

1√
n

)
.
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3.7.5 Proof of Proposition 3.4

Proof. Given A ∈ πn, we note that

µ(A)

ρ(A)
=

∑
j∈A

µ({j})
∑
j∈A

ρ({j}) . (3.78)

Then, given a collection of positive numbers {ai : i ∈ {1, . . . , n}} and {bi : i ∈ {1, . . . , n}},
we use the following basic inequality

n∑

i=1

ai ≤ max
i

{
ai
bi

} n∑

i=1

bi. (3.79)

Finally, sinceA is arbitrary in (3.78) and using the positiveness of the probability, we conclude
the desired result.
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Chapter 4

Collaboration in Decentralized Testing

Against Independence: Performance

Analysis and Data-Driven Design

In this chapter, we study collaboration in distributed inference for testing independence with
a �xed-rate communication constraint. We look at collaboration as a strategy to improve
performance. By collaboration, we mean a decentralized framework where two agents (or
nodes of the networks) interchange messages with an overall rate constraint to arrive at a
�nal decision. In this context, we derive a novel asymptotic performance result (an error
exponent with a single-letter characterization) that expresses the bene�t of collaboration in
concrete terms � compared to the standard one-sided distributed strategy. We also address
the practical problem of designing encoders and decoders for this distributed task. Using
the knowledge derived about the information limit of this problem, we propose an info-max
design principle where tools from machine learning are incorporated to facilitate practical
solutions. Experiments using synthetic data show that our collaborative solution can sub-
stantially improve performance. Remarkably, we observe that a measure of the symmetrical
structure of the underlying model of the test dictates this gain. Furthermore, our rate-
constraint framework e�ectively preserves the discrimination information of the centralized
(best scenario) test against independence.

4.1 Introduction

The study of distributed decision and inference, where measurements are collected remotely
subject to communication constraints, is an important problem in signal processing over
networks. In this regard, the emerging �eld of the Internet of Things (IoT) brings new di-
mensions and technical challenges to classic decision problems as data is no longer centrally
available for inference, and we need to deal with technical challenges associated with data
corruption, sensor noise, adversarial sources of perturbation [23] and unlabeled or unordered
data [15�18]. In this context, an essential problem of signal processing over networks is the
task of distributed decision, where observations are collected remotely and the decision is
subject to communication constraints [19�21,28,79,80]. In this chapter we focus on the im-
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portant problem of detecting whether two remote measurements are statistically independent
or not. This problem is fundamental from a theoretical standpoint [28,81�83] and relevant in
many applications [47, 48, 84�88]. Examples of relevant applications include the problem of
spectrum sensing in the area of cognitive radio networks where there is a primary agent and
a group of secondary agents; the presence of the primary user's signal introduces dependence
on the decentralized sensors, and then the secondary agents collaborate to detect whether
the primary agent is present or not based on a test against independence [85, 86]. Other
applications have been explored in the context of censoring and security where a node is
interested in detecting independence of two remotely located sources with the presence of an
eavesdropper, which has access to the encoded bits [87], [88].

The celebrated one-sided distributed setting introduced by Ahlswede and Csiszar in [28]
consists of a test against independence where the observations (the evidence) are available
at two remote nodes, as shown in Figure 4.1. In particular, one of the nodes transmits to
another remote node (the detector) subject to a rate-constraint in bits per-sample. In this
setting, an information-theoretic analysis of the problem has been addressed [28], where the
asymptotic limit for the Type II error subject to a �xed Type I error constraint was derived
in a closed form (the error exponent). More recently, �nite-length performance bounds (non-
asymptotic) have been presented for this one-sided distributed problem [54,68,82].

These bounds are important because they indicate what is possible to achieve with an
optimal encoder and detector when a �nite number of observations are available for decision
making. In addition, these bounds shed light on the speed at which the error exponents
are attained as the number of samples tends to in�nity, and, consequently, how well the
error exponents represent performances of practical decision schemes operating with �nite
samples [82].

Departing from previous works, in this chapter we explore the role that collaboration plays
as a decentralized strategy to improve performance in distributed testing of independence. By
collaboration, we mean a setting of decentralized detection where the two agents cooperate
(interchange messages with an overall rate-constraint) to arrive at a �nal decision (see an
illustration in Figure 4.1). Applications of this setting can be found, for example, in a
cooperative communication system, where each wireless agent (user) transmits data and also
acts as a cooperative agent for other users: each agent transmits both its own bits as well
as some information for its partner to meet an operational requirement [89, 90]. Under this
umbrella, we look for two relevant technical aspects associated with the role of collaboration.
First, an important result is the derivation of performance limits (error exponent) that express
the bene�t of collaboration, if any, when the number of samples tends to in�nity. From this
information analysis, we could analyze the bene�t of collaboration and how the (information)
gains depend on speci�c attributes of the problem. Second, we propose concrete data-driven
strategies to implement and deploy these distributed inference techniques. The idea here is
to use the theoretical results (error exponent limits) as a guideline to design decentralized
encoders-decoders that could o�er competitive performances. To the best of our knowledge,
these two aspects have not been studied systematically and remain open.
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4.1.1 Contributions

1. We formalize and present a one-round collaborative extension of the distributed setting
introduced by Ahlswede and Csiszar in [28], as shown in Figure 4.1.

2. In the theoretical analysis of the one-round collaborative setting, we derive an informa-
tion limit (in the form of an error exponent) of the Type II error probability subject
to a vanishing Type I error (Theorem 4.1). This result has two technical parts. We
�rst derive an achievable result using for that a collaborative encoder-decoder strategy
with a single round of interaction. This feasibility approach o�ers a lower bound for
the error exponent for our task (testing against independence). The second part of the
result presents an unfeasible argument (i.e., a converse argument) that fully determines
a single-letter error exponent expression for our problem. This result is in line with
what is known as the one-sided distributed setting [28] with a distinctive information
term attributed to the role played by collaboration in the problem.

3. Based on this asymptotic result, we analyze the performance gain with respect to the
one-sided (unidirectional) case introduced in [28]. We see that the overall quality of the
test performance is governed by the bit assignment between the nodes and is a�ected,
at the same time, by the distribution of the model.

4. On the practical side, we propose a data-driven design criterion for the two encoders
and the decoder of the introduced one-round collaborative setting (see Figure 4.1). To
design the encoders, our criterion is informed by the single-letter optimization that
determines the error exponent in Theorem 4.1. This problem reduces to an info-max
optimization task that learns the encoders (quantizers) from supervised data of the
problem. Borrowing ideas from machine learning (ML) [91�93], a collection of soft-
quantizer, i.e. conditional probabilities, is used to formalize the info-max problem. In
particular, we consider the rich collection of Boltzmann distributions to represent the
space of soft-quantizers.1

5. Corroborating our previous analysis, empirical results based on simulations show that
the proposed one-round collaboration strategy outperforms (in the ROC curve, i.e.,
Type I and Type II trade-o�) the non-collaborative strategy in general and that the
performance gain is a function of structural attributes in the model. Importantly, we
observe that the performance gain is proportional to a measure of the asymmetry of
the underlying probability model. In this analysis, we also evaluate how the number of
samples (block-length) and the communication constraint (number of bits) a�ect the
comparison.

4.1.2 Related Works

The contribution that is closest to our work was made by Kim et al. [29]. They explored an
interactive communication scheme for testing against independence similar to the one-round
collaborating strategy studied in this work. They presented a construction that provides a
lower bound for the error exponent of the one-round collaboration problem. In our work, we
present a new achievable construction that o�ers a strong feasibility result and a converse

1Interestingly, this design task connects with the so-called Variational Information Bottleneck (IB) problem
in machine learning [71,94,95], as we are optimizing an empirical mutual information between class and latent
variables (the output of the quantizer) subject to a compression constraint [96].
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argument (impossibility result) that allows us to obtain a closed-form analytical expression
(single letter) for the error exponent. Other related works addressed collaboration in the
context of hypothesis testing with multiple detectors. Two interesting examples are [63, 64]
in which they obtain achievable Type II error exponents for testing against conditional
independence for two decision agents.

4.1.3 Chapter Organization

This chapter is organized as follows. Section 4.2 introduces the de�nitions and the prob-
lem setting for the unidirectional and collaborative case. Section 4.3 presents the main result
(Theorem 4.1) for the collaborative regime. Sections 4.4 and 4.5 present our data-driven algo-
rithms for the unidirectional and the collaborative regimes, respectively. Numerical analysis
and discussions are presented in Section 4.6. To conclude, the proof of Theorem 4.1 and
supporting results can be found in Appendix Sections.

4.1.4 Basic Notation and Conventions

We use upper-case letters to denote random variables (RVs) and lower-case letters to denote
realizations of RVs. Vectors are denoted by Xn

1 = (X1, ..., Xn) with their length as a super-
script. Sets, including alphabets of RVs, are denoted by calligraphic letters. Throughout this
chapter we assume all RVs are de�ned over �nite alphabets. PX ∈ P(X) denotes the distri-
bution for a RV X de�ned on the set X and P(X) denotes the set of all possible distributions
over X. X −
− Y −
− Z indicates that X, Y and Z form a Markov chain. For a RV X ∼ PX ,
the Shannon entropy is de�ned by H(X) = H(PX) = −∑

x∈X
PX(x) logPX(x). Similarly, the

conditional entropy is

H(Y |X) = H(PY |X |PX) = −
∑

x∈X

∑

y∈Y

PX(x)PY |X(y|x) logPY |X(y|x) (4.1)

where PY |X : X 7→ P(Y) denotes the conditional distribution and

D(PX∥QX) =
∑

x∈X

PX(x) log
PX(x)

QX(x)

is the Kullback-Leiber (KL)-divergence between PX and QX in P(X). The conditional KL
divergence between two stochastic mappings PY |X : X 7→ P(Y) and QY |X : X 7→ P(Y) wrt
PX ∈ P(X) is

D(PY |X∥QY |X |PX) =
∑

x∈X

∑

y∈Y

PX(x)PY |X(y|x) log
PY |X(y|x)
QY |X(y|x)

. (4.2)

For any two RVs, X, Y ∼ PXY , the mutual information is I(X;Y ) = D(PXY ∥PX · PY ). The
logarithm is assumed to be of base 2.

4.2 Problem Setting

We introduce the general setting of the problem addressed in this work. We have a decentral-
ized system conformed by two agents or nodes depicted in Fig. 4.1. These nodes sense the
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Figure 4.1: Schematics of the collaborative distributed hypothesis testing problem setting.

environment in a distributed way. Node 1 has lossless access to Xn
1 = (X1, .., Xn) and Node

2 has lossless access to Y n
1 = (Y1, ..., Yn). Then the two nodes communicate using a �nite

number of resources (in bits per sample) and make a decision about the joint underlying
probabilistic structure of (Xn

1 , Y
n
1 ). Below we introduce the formal elements of this problem

and the main questions addressed in this work.

4.2.1 Testing Against Independence

Let us consider a �nite observation space Z = X × Y. The joint random vector (X, Y ) in Z
represents two information sources sensed independently by two remote nodes illustrated in
Fig. 4.1. In this context, we consider two scenarios: either (X, Y ) follows a joint distribution
PX,Y ∈ P(Z), which is the main model of our problem, or (X, Y ) follows an alternative model
QX,Y = PX ·PY that consists of the product of the marginals of PX,Y : i.e., the scenario where
X and Y are independent2. The two nodes collect n i.i.d. samples of (X, Y ). We denote
by Xn

1 = (X1, ..., Xn) and Y n
1 = (Y1, ..., Yn) the n-samples where P n

X,Y denotes the n-product
(i.i.d) distribution of (Xn

1 , Y
n
1 ). Then, we can introduce the two hypotheses of the test against

independence by

H0 : (Xn
1 , Y

n
1 ) ∼ P n

XY ,
H1 : (Xn

1 , Y
n
1 ) ∼ Qn

X,Y .
(4.3)

The observational setting in (4.3) is the standard centralized context where based on the
joint evidence (Xn

1 , Y
n
1 ) a decision about the underlying data-generation process should be

made [97]. In this decision problem, we recognize two classic error events: the Type I error
is when independence is assumed despite H0 being true, while the Type II error is when
non-independence is declared despite H1 being true.

We will introduce two di�erent decentralized settings to address the problem depicted
in Fig. 4.1, where information of (Xn

1 , Y
n
1 ) is acquired remotely by the nodes, and a total

constraint in the number of messages (i.e., the number of bits) is imposed to make a decision
about the two underlying hypotheses: H0 and H1. Here, we recognize the standard unidi-
rectional setting introduced in [28], and an alternative strategy that involves one-round of
collaboration between the nodes.

2PX ∈ P(X) and PY ∈ P(Y) denote the marginals distributions of X and Y , respectively.
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Node 1Xn
1

Y n
1

R
000110011

Node 2

φn(fn(X
n
1 ), Y

n
1 ) ∈ {0, 1}

fn(X
n
1 )

Figure 4.2: The one-directional distributed test in which fn(·) is the encoder and ϕn(·) is the
detector acting on (fn(X

n
1 ), Y

n
1 ).

4.2.2 The One-directional (non-collaborative) Strategy

We begin with the distributed setting introduced by Ahlswede and Csiszar in [28] that is
depicted in Figure 4.2. The problem is to test the two hypotheses in (4.3) where the ob-
servations are available at two remote locations and one of the observations Xn

1 needs to be
transmitted from Node 1 to Node 2 subject to a rate-constraint of R > 0 in bits per-sample.
In this setting, Node 2 is acting as the detector, i.e., it observes Y n

1 (lossless) and receives a
compressed (lossy) version of Xn

1 to decide about H0 and H1. In this context, we recognize
an encoder and a detector. More precisely, let us consider the n-block pair of encoder-detector
(fn, ϕn) that uses R bits per sample by the following structure:

fn : Xn → {1, . . . , 2nR}, (encoder)
ϕn : {1, . . . , 2nR} × Y

n → Θ = {0, 1}, (detector). (4.4)

The detector ϕn(·)makes a decision from the one-sided compressed observations (fn(Xn
1 ), Y

n
1 ) ∈

{1, ..., 2nR} × Y
n as illustrated in Fig.4.2. Then, we have the following Type I and Type II

errors:

αn((fn, ϕn)) ≡ P n
XY (Ac(fn, ϕn)) and (4.5)

βn((fn, ϕn)) ≡ Qn
XY (A(fn, ϕn)) (4.6)

where A(fn, ϕn) ≡ {(xn
1 , y

n
1 ) : ϕn(fn(x

n
1 ), y

n
1 ) = 0} ⊂ X

n × Y
n.

To express the optimal trade-o� between the Type I and Type II errors of this problem,
we consider the following: given n ≥ 1 (the number of samples), R > 0 (the bits per sample)
and ϵ > 0 (the Type I error constraint), the best Type II is the solution of

βn(ϵ, R) ≡ min
(fn,ϕn)

{βn((fn, ϕn)) : αn((fn, ϕn)) ≤ ϵ}. (4.7)

The solution in (4.7) is optimized over all n-blocks pairs (fn, ϕn) that uses R bits of informa-
tion (see Eq.(4.4)). Therefore, (βn(ϵ, R))ϵ>0 expresses the optimal operational performance
for detecting H0 vs. H1 given a �nite number of observations n and nR bits of communica-
tions resources.
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Figure 4.3: The one-round distributed test in which fn(·), gn(·) is the encoder and ϕn(·) is
the detector acting on (Xn

1 , g
1(f 1

n(X
n
1 ), Y

n
1 )).

4.2.3 The Collaborative Strategy

We consider a simple collaborative strategy where Node 1 and Node 2 interchange messages
before making a decision. In particular, we work on what we call a one-round communication
setting depicted in Fig. 4.3.

In this setting, we recognize two encoders (fn(·), gn(·)) and a detector ϕn given by

fn : Xn −→ U, (encoder 1)

gn : Yn × U −→ V, (encoder 2)

ϕn : Xn × V −→ {0, 1}, (detector). (4.8)

The encoders fn(·) and gn(·) satisfy overall �xed-rate communication constraints in bits per
sample given by

log (|U||V|) ≤ nR. (4.9)

Given the encoders-decoder (fn(·), gn(·), ϕn(·)) in (4.8), there are two stages of data trans-
mission. In the �rst stage, fn(·) is used to transmit information from Node 1 to Node 2. In
the second stage, gn(·) is used to transmit information from Node 2 to Node 1 (see Figure
4.3). Then, the �nal decision is made by Node 1 after receiving the message from Node 2 with
an overall rate constraint expressed in (4.9). The information �ow goes from right-to-left and
then from left-to-right as shown in Fig. 4.3. It is worth noting that the total bits budget
used on these two data-compression stages is constrained by the same �xed-rate restriction
R > 0 introduced in Section 4.2.2.

As for performance, the corresponding Type I and Type II errors are given by

αn((fn, gn, ϕn)) ≡ P n
XY (Ac(fn, gn, ϕn)) and (4.10)

βn((fn, gn, ϕn)) ≡ Qn
XY (A(fn, gn, ϕn)), (4.11)

where A(fn, gn, ϕn) ≡ {(xn
1 , y

n
1 ) ∈ X

n × Y
n : ϕn(x

n
1 , gn(y

n
1 , f(x

n
1 ))) = 0}. As an analogy to

what was presented in (4.7), we introduce an expression for the optimal trade-o� between
Type I and Type II errors given by

βc
n(ϵ, R) ≡ min

(fn,gn,ϕn)
{βn((fn, gn, ϕn)) : αn((fn, gn, ϕn)) ≤ ϵ}, (4.12)
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where the minimization in (4.12) is above all the rules that use n-samples of (X, Y ) and
satisfy the �xed-rate communication constraint of (4.9).

The main focus of this work is to analyze the bene�t of collaboration and evaluate in theory
and in practice if collaboration o�ers an advantage in terms of the optimal trade-o� between
the Type I and Type II errors i.e. on the analysis of (βc

n(ϵ, R))ϵ>0 in (4.12) vs. (βn(ϵ, R))ϵ>0

in (4.7) for the same model PX,Y . An important aspect is to quantify the performance gain of
collaboration, if any, and see how that depends on properties of the underlying model PX,Y .
To address these questions, Section 4.3 presents information-theoretic limits to contrast these
two strategies from a theoretical perspective (when n −→ ∞), while Sections 4.4 and 4.5
explore a non-asymptotic comparison where practical solutions for the encoder and decoders
of the two strategies are presented.

4.3 Asymptotic Analysis

In this section, we present the main theoretical contribution of this work: Theorem 4.1. This
result o�ers a precise asymptotic characterization for βc

n(ϵ, R) in (4.12) when n −→ ∞. We
revisit the asymptotic result for the non-collaborative case studied in [28] and discuss the
interpretation of these two information limits. This comparative analysis is presented in
terms of an error exponent analysis [2]. Error exponents (EE) are fundamental performance
limits that express the discrimination power of the test when n −→ ∞. Importantly, EE can
be adopted as a very good approximation of the optimal performance, βc

n(ϵn, R), when n is
su�ciently large 3.

4.3.1 Collaborative Hypothesis Testing

In this subsection, we derive a closed-form expression for − 1
n
log βc

n(R, ϵ) when n tends to
in�nity. This expression determines the exponential velocity at which the Type II error
tends to zero (with the number of samples) given ϵ > 0 (a �xed Type I error restriction)
and R > 0 (a �xed-rate constraint for the collaboration between Node 1 and Node 2). The
result is the following:

Theorem 4.1 Given PX,Y in (4.3) and R > 0, the best performance trade-o� of the collab-
orative setting in (4.12) satis�es the following

lim
ϵ→0

lim inf
n→∞

− 1

n
log βc

n(R, ϵ) = E(R), (4.13)

where

E(R) = max
PU |X : X 7→ P(U)

PV |UY : U× Y 7→ P(V)
s.t. I(U ;X) + I(V ;Y |U) ≤ R

[I(U ;Y ) + I(V ;X|U)]. (4.14)

3 [82, Th. 2] shows that e−nE(R) is an excellent proxy for βn(ϵn, R), where E(R) denotes the EE of the
test within the limits of large samples. Importantly, [82, Sec.V] shows that this approximation happens very
quickly when n increases.
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In (4.14) (X, Y ) ∼ PXY and U and V are obtained from the joint vector (X, Y, U, V ) ∼
PX,Y · PU |X · PV |U,Y . PU |X is a conditional probability from X to U, and PV |U,Y denotes the
conditional probabilities from U× V to V, meaning that

X −
− (Y, U)−
− V. (4.15)

The proof of this result is presented in Appendix 4.8.1.

The result in (4.13) states that βc
n(ϵ, R) decreases exponentially with n with an equivalent

exponent E(R) > 0 that is determined analytically by (4.14). E(R) is the solution of
an information-theoretic optimization problem (an info-max single-letter optimization task)
that is a function of the model PX,Y (under H0) and R > 0 (the operational constraint).
Importantly, this asymptotic expression is obtained when considering an arbitrary small
Type I error restriction (parametrized by ϵ > 0). We will analyze the magnitude of E(R)
when compared with the equivalent result known for the non-collaborative setting presented
next.

4.3.2 Non-Collaborative Hypothesis Testing

For the non-collaborative setting introduced in Section 4.2.2, we have the counterpart of
Theorem 4.1, where its respective error exponent is also expressed as a single letter info-max
optimization that is a function of PX,Y and R:

Theorem 4.2 [28, Th.1]. Given the model PX,Y in (4.3) and R > 04:

lim
ϵ→0

lim inf
n→∞

− 1

n
log βn(ϵ, R) = ξ(R) = max

PU|X :X7→P(U)
(X,Y,U)∼PY |X ·PU|X ·PX

I(U ;X)≤R
|U|≤|X|+1

I(U ;Y ). (4.16)

4.3.3 Discussion of the Results

i) Our main result in Theorem 4.1 establishes an asymptotic limit for the Type II error
when we consider an arbitrary small Type I error parameterized by ϵ > 0 in (4.13).
The proof of Theorem 4.1 has two parts: an achievable argument (i.e., the construction
of a decision scheme) and an impossibility argument that shows the optimality of the
proposed construction. It is worth noting that testing against independence in a coop-
erative scenario was �rst studied in [29] for the case of a single round of interaction.
They show that the expression in (4.14) o�ers a lower bound for the limit of the Type
II error in (4.13). Our proof completes this analysis adding an impossibility argument
that proves that the obtained lower bound is optimal.

ii) The achievable argument mentioned implies the construction of a scheme, which is
based on properties of typical sequences [2]. In a nutshell, given a sequence Xn

1 , Node

4As a side comment, in [82, Th.1] we presented a non-trivial extension of Theorem 4.2 exploring van-
ishing Type I error restriction (function of n). We show that if (1/ϵn)n = o(ern) for any r > 0, then
lim
n→∞

− 1
n log βn(ϵn, R) = ξ(R), where ξ(R) has the same expression presented in (4.16)
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1 searches in its respective codebook: if the sequence belongs to their typical set, the
sequence is re-transmitted to Node 2, if not, Node 1 declares H1. Then, Node 2 repeats
the same strategy; that is, Node 2 searches in its respective codebook and retransmits
to Node 1 if the sequence belongs to the codebook of Node 2. The details are presented
in Appendix 4.8.1. Importantly, this construction is used later for the task of designing
a practical detector in Section 4.5.2.

iii) Comparing the obtained error exponents, i.e., E(R) in (4.14) vs. its respective non-
collaborative expression ξ(R) in (4.16), we observe that both are the solution of a single
letter optimization task function of the model PX,Y and R > 0. These optimizations are
very similar and related. Both objectives use information measures with information
restrictions. Importantly, in the single-letter task used to obtain E(R), a non-zero
additive term given by I(V,Xn

1 |U) > 0 is observed with respect to the related expression
used to determine ξ(R). This extra information component o�ers a non-zero gain in
the asymptotic error-exponent. These results can be used to argue that collaboration
in theory and asymptotically o�ers better performance: i.e., E(R) ≥ ξ(R) (see the
argument in Appendix 4.8.4). The inclusion of this additional term I(V,Xn

1 |U) > 0
in (4.14) comes from the ability of re-transmission (see the proof and (4.45)), which is
exclusive of the collaborative setting. This observation (a the new additive term) will
be exploited in the next Section where we use these two single-letter optimizations as
criteria for designing both (fn, gn, ϕn) and (fn, ϕn).

In summary, we observe that in contrasting the non-collaborative versus the collaborative
strategy, there is a discrepancy in the error exponents expressed analytically by the extra term
I(V,X|U) ≥ 0 in (4.13). This conditional MI behaves as an additive information gain that
emerges exclusively when we have the ability of collaboration. To complement this theoretical
observation, in the next two Sections we will evaluate the bene�t of collaboration when n
is �nite (a non-asymptotic analysis). Importantly for a �nite n > 0, selecting (fn, ϕn) and
(fn, gn, ϕn) as being the solutions to the operational problems in (4.7) and (4.12) respectively
is not possible. To address this in practice, we look at the task of designing practical encoders
and a decoder for each strategy using samples of the distributions presented in (4.14) and
(4.16). For these designs, we will propose new data-driven approaches that are based on the
adoption of the info-max principles presented in (4.14) and (4.16). For the optimizations,
we adopt some ideas of machine learning to select a collection of expressive parametric
distributions and the stochastic gradient decent (SGD) to make the problems tractable.

4.4 Data-Driven Design:Non-Collaborative

In this and the next section, we introduce an info-max learning principle for the design of
the encoders and decoders of the two distributed inference strategies presented in Section
4.2. We begin with the non-collaborative approach.

Our basic conjecture is that designing the encoder from (4.16) would improve the detection
performance at the decision stage. For that, we propose a concrete data-driven info-max
criterion for selecting fn(·) (and implicitly ϕn(·)) for testing independence.
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4.4.1 The Multi-letter Info-Max Problem

From our analysis of the previous section, the fundamental limit of the Type II error in (4.16)
is given by the mutual information (MI) maximization between a soft (lossy) representation
of X (represented by U) and the class level Y . Using this optimization, we propose to
maximize the MI between the representation U = fn(X

n
1 ) and Y n

1 given a size constraint on
the range of fn(·). This yields the following info-max problem

max
fn:Xn→U={1,...,|U|}

I(U = fn(X
n
1 );Y

n
1 ). (4.17)

The problem in (4.17) can be interpreted as a multi-letter version of (4.16), where we use
deterministic mappings (quantizers) instead of the soft mappings (conditional probabilities)
expressed in (4.16).

4.4.2 Approximations and Design Considerations

The problem in (4.17) is combinatorial and non-tractable for large n. Some approximations
are needed to make it numerically tractable and to estimate MI. For this, we relax some
assumptions making the problem data-driven.

Empirical Version of (4.17)

First, we note that the sequence U = f(Xn
1 ) −
− Xn

1 −
− Y n
1 (and the model PU,X,Y ) forms

a Markov chain. From this, the mutual information I(U ;Y n
1 ) in (4.17) can be conveniently

expressed as

∑

xn
1∈Xn

u∈U

PU |Xn
1
PXn

1
log


 1∑

xn
1∈Xn

PU |Xn
1
PXn

1


−

∑

xn
1∈Xn

u∈U
yn1 ∈Yn

PY n
1 |Xn

1
PU |Xn

1
PXn

1
log




∑
xn
1∈Xn

PY n
1 |Xn

1
PXn

1

∑
xn
1∈Xn

PY n
1 |Xn

1
PU |Xn

1
PXn

1




(4.18)

where PXn
1
, PY n

1 |Xn
1
and PU |Xn

1
are short-hand notations for PXn

1
(xn

1 ), PY n
1 |Xn

1
(yn1 |xn

1 ) and
PU |Xn

1
(u|xn

1 ), respectively.

In practical communication problems, the distribution of the sources at the nodes is of-
ten unknown. Then, instead of assuming PXn

1
in (4.18), we assume a training (i.i.d) set

{x1, . . . , xm}, with xi ∈ X
n that will be used to approximate the expectations in (4.18)

(w.r.t. PXn
1
) by their respective empirical means. In addition for large n, the second expec-

tation is impractical to compute. For that, we assume i.i.d. samples Sxn
1
= {y1, . . . , ym′}

of Y n
1 given Xn

1 = xn
1 . These conditional samples are used to approximate the expectation

in (4.18) (w.r.t. PXn
1 ,Y

n
1
) by their respective empirical average. Then, our empirical (and
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numerically tractable) version of I(U ;Y n
1 ) is written as

Îα(U ;Y n
1 ) ≡

1

m

m∑

i=1

∑

u∈U

PU |Xn
1
(u|xi) log

(
1

1
m

∑m
l=1 PU |Xn

1
(u|xl)

)

− α

mm′

m∑

i=1

∑

yj∈Sxi

∑

u∈U

PU |Xn
1
(u|xi) · log




m∑
l=1

PY n
1 |Xn

1
(yj|xl)

m∑
l=1

PY n
1 |Xn

1
(yj|xl)PU |Xn

1
(u|xl)


 . (4.19)

The derivation of this equation is presented in Appendix 4.8.6.

Soft-quantizers based on Boltzmann distributions

We need to determine the collection of models PU |Xn
1
in (4.19). Every PU |Xn

1
is directly

linked to the encoder fn(·). Instead of using a deterministic mapping to index PU |Xn
1
, we

consider more general soft-quantizers (or conditional distributions from Xn
1 to U). We relax

this deterministic assumption to enrich the space of hypotheses used to solve (4.17). In the
process, our problem connects naturally with the type of info-max optimization addressed
in representation learning for selecting the encoder [98, 99]. Following [91], we consider the
family of Boltzmann distribution [46] as it is a rich and expressive collection of parametric
distributions for PU |Xn

1
. More precisely, we consider the following family of conditional models

(soft-encoders):

pW (u|xn
1 ) ≡ PW,τ

U |Xn
1
(u|xn

1 ) =
e−

τ∥wu−xn1 ∥2

2

∑
l∈U e

−
τ∥wl−xn1 ∥2

2

, (4.20)

where W is a weight matrix W ∈ R
n×|U|, given by W = [w1; . . . ;w|U|] and wu ∈ X

n, ∀u ∈ U.
This family of conditional distributions has been widely used in machine learning because of
its expressiveness and learning properties [100,101].

Info-Max Learning

At the end, we address our main design problem as follows:

W ∗ = arg max
W∈Rn×|U|

Îα(U ;Y n
1 ). (4.21)

Importantly, the expression in (4.21) is smooth and di�erentiable with respect to W , i.e.,
our collection (pW (u|xn

1 )). Consequently, the solution of (4.21) can be approximated based
on the Stochastic Gradient Descent (SGD) algorithm [102]. A pseudo-code for this mutual
information maximization algorithm is provided here:

The encoder fn(·)
Finally, the solution in (4.21) is a weight matrix that produces a soft quantizer (or conditional
distribution). To obtain a hard-quantizer or encoder (denoted by fW

n (·)), we use the MAP
(or soft-max) rule:

fW
n (xn

1 ) = argmax
u∈U

e−
τ∥wu−xn1 ∥2

2

∑
l∈U e

−
τ∥wl−xn1 ∥2

2

5. (4.22)

5For this analysis we set τ = 1
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Algorithm 1 Unidirectional Mutual Information Maximization
1: Initialize: τ , α, λ, m (number of iterations), W
2: for i← 0 to m do

3: pW (u|xi)← e−
τ∥wu−xi∥

2

2 u ∈ U
4: pW (u|xi)← pW (u|xi)∑

l∈U pW (u|xl)

5: wu ← wu − λ
∂Îα(Y n

1 ;U)

∂wu

6: end for

7: Result: Prediction f(xi) = argmaxu∈U pW (u|xi)

Decision Stage: ϕn(·)

Given U = fW
n (Xn

1 ) and Y n
1 , the decision rule ϕn(·) is given by the (optimal) Neyman-

Pearson (NP) test acting on U , which is the optimal decision rule given (U, Y n
1 ), and it o�ers

the optimal trade-o� between the two types of errors. Therefore, the decision (decoder) is

given by the family ϕτ
n(u, y

n
1 ) = 0 if

PU,Y n
1
(u,yn1 )

PU (u)PY n
1
(yn1 )

> τ and ϕτ
n(u, y

n
1 ) = 1, otherwise.

4.5 Data-Driven Design: Collaborative

To design the collaborative setting in Fig. 4.3, we need to construct two encoders fn(X
n
1 )

and gn(f(X
n
1 ), Y

n
1 ) and the detector ϕn(·). As in the previous section, we use the information

limit, in this case stated in Theorem 4.1, to inform the objective function (or loss) needed to
select from data fn(·) and gn(·). In particular, the fundamental limit of the Type II error
in (4.13) is a speci�c single letter optimization that expresses the role played by the two
encoders of the problem: maximizing the MI between a soft lossy version of X (represented
by U) and Y plus a conditional MI between a lossy representation of (U, Y ) (represented
by V ) and X. The two compressed terms U and V (or latent variables) represent the role
played by fn(·) and gn(·), respectively. Consequently, using the single letter optimization in
(4.14) as a proxy, we maximize the multi-letter version of this problem

max
fn(·):Xn→U,gn(·):U×Yn→V

I(U ;Y n
1 ) + I(V ;Xn

1 |U) (4.23)

where U = fn(X
n
1 ), V = g(f(Xn

1 ), Y
n
1 ) for a given a cardinality constraint on U and V.

The expression in Eq. (4.23) has two information components I(U ;Y n
1 ) and I(V ;Xn

1 |U).
A key observation on this is that the �rst term I(U ;Y n

1 ) depends only on fn(·). Conse-
quently � and for numerical simplicity � we decided to address the optimization in (4.23)
sequentially: First we optimize fn(·) and with that solution solve the problem for gn(·). More
precisely, we use (4.17) to solve fn(·) (the �rst optimization). Then, �xing fn(·), we solve
gn(·) by maximizing I(V ;Xn

1 |U) from (4.23). The focus of the next subsections is to present a
numerically e�ective way to address the second optimization task: maxg(·) I(V ;Xn

1 |U). This
reduces to �nd a practical way to estimate I(V ;Xn

1 |U).
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4.5.1 Approximations and Design Considerations

Empirical Version of I(V ;Xn
1 |U)

Using the fact that V −
− (U, Y n
1 ) −
− Xn

1 and the de�nition of the conditional MI [97], we
have that I(V ;Xn

1 |U) can be conveniently expressed as

I(V ;Xn
1 |U) =

∑

xn
1∈Xn

u∈U
v∈V

yn1 ∈Yn

PV |Y n
1 ,UPU |Xn

1
PY n

1 |Xn
1
PXn

1
log




∑
xn
1∈Xn

PU |Xn
1
PXn

1

∑
xn
1∈Xn

yn1 ∈Yn

PV |Y n
1 ,UPU |Xn

1
PY n

1 |Xn
1
PXn

1




−
∑

xn
1∈Xn

u∈U
v∈V

yn1 ∈Yn

PV |Y n
1 ,UPU |Xn

1
PY n

1 |Xn
1
PXn

1
log


 1∑

yn1 ∈Yn

PV |Y n
1 ,UPY n

1 |Xn
1


 (4.24)

where PXn
1
, PY n

1 |Xn
1
, PV |Y n

1 ,U and PU |Xn
1
are short-hand notations for PXn

1
(xn

1 ), PY n
1 |Xn

1
(yn1 |xn

1 ),
PV |Y n

1 ,U(v|yn1 , u) and PU |Xn
1
(u|xn

1 ), respectively. Instead of assuming PXn
1
in (4.24), we assume

a training set (i.i.d. samples of PXn
1
) {x1, . . . , xm} ⊂ X

n. The samples of PXn
1
are used to

approximate the expectations in (4.24) (w.r.t. PXn
1
) by their respective empirical means.

In addition, we generate i.i.d. of the conditional distribution of Y n
1 given Xn

1 = xn
1 . We

denote these conditional sets by Sxn
1
= {y1, . . . , ym′} ⊂ Y

n for any xn
1 ∈ X

n. Consequently, a
semi-empirical version of I(V ;Xn

1 |U) is given/denoted by Îα(V ;Xn
1 |U) ≡

=
1

mm′

m∑

i=1

∑

yj∈Sxi

∑

u∈U
v∈V

PV |Y n
1 ,U(v|yj, u)PU |Xn

1
(u|xi) log




m∑
l=1

PU |Xn
1
(u|xl)

1
m′

m∑
l=1

∑
yj∈Sxl

PV |Y n
1 ,U(v|yj, u)PU |Xn

1
(u|xl)




− α

mm′

m∑

i=1

∑

yj∈Sxi

∑

u∈U
v∈V

PV |Y n
1 ,U(v|yj, u)PU |Xn

1
(u|xi) log


 1∑

yj∈Sxi

PV |Y n
1 ,U(v|yj, u)


 . (4.25)

The derivation of this equation is presented in Appendix 4.8.7.

Soft quantizers based on Boltzmann distributions

We need to determine the collection of models PV |Y n
1 ,U used in (4.25). PV |Y n

1 ,U is directly
linked to the encoder gn(·). As in the case of PU |Xn

1
(see Section 4.4.2), instead of using a

deterministic mapping, we consider more general soft-quantizers (or conditional distributions
from U× Y

n to V) given by

pW2(v|yj, u) ≡ PW2,τ
V |U,Y n

1
(v|yj, u) =

e−
τ ||w2

v−(yj,u)||
2

2

∑
ṽ∈V e

−
τ ||w2

ṽ
−(yj,u)||2

2

, (4.26)

where W2 ∈ R
(n+1)×|V| is a weight matrix such that W2 = [w2

1; ...;w
2
|V|] and w2

v ∈ U × Y
n,

∀v ∈ V and U = f(Xn
1 ) is the solution of (4.22). With this parametric selection, our main
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Figure 4.4: Collaborative strategy to detect H0 and H1 given an overall rate-communication
constraint.

design problem is

W ∗
2 = arg max

W2∈R(n+1)×|V|
Îα(V ;Xn

1 |U). (4.27)

Finally, the solution in (4.27) is a weight matrix that produces a conditional probability (or
soft quantizer). The hard-quantizer or encoder (denoted by gW2

n (·)) is obtained with the
MAP (soft-max) rule:

gW2
n (Y n

1 , U = fW
n (Xn

1 )) = argmax
v∈V

e−
τ ||w2

v−(Y n
1 ,U)||2

2

∑
ṽ∈V e

−
τ ||w2

ṽ
−(Y n

1 ,U)||2

2

. (4.28)

Algorithm 2 Collaborative Mutual Information Maximization
1: Initialize: τ , α, λ, m (number of iterations), W (pretrained), W2

2: for i← 0 to m do

3: pW2 (v|yn1 , u)← e−
τ∥w2

v−(yn
1 ,u)∥2

2 v ∈ V

4: pW2 (v|yn1 , u)←
pW2 (v|yn

1 ,u)∑
v∈V pW2 (v|yn

1 ,u)

5: wv ← wv − λ
∂Îα(V ;Xn

1 |U)

∂wv

6: end for

7: Result: Prediction g(f(xi), y
n
1 ) = argmaxv∈V pW2 (v|yn1 , u)
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4.5.2 Decision Stage:

Assuming fn(·) and gn(·), we need to design the decision rule ϕn(·). Because of the non-trivial
interaction between the nodes in this setting (see Fig. 4.3), the design of ϕn(·) does not follow
from a simple adoption of the NP test (used in Section 4.4.2 for the non-collaborative setting).
Instead, our solution is inspired by the achievable construction used in the proof of Theorem
4.16. In this construction, there are two decision rules: one rule taken by Node 2 after
receiving the information from Node 1, i.e., acting on (fn(x

n
1 ), y

n
1 ) as evidence, and a second

rule located at Node 1 that uses the preliminary decision of Node 2 (1 bit of information)
and the information (bits) from Node 2, i.e., v = gn(f(x

n
1 , y

n
1 )), as evidence. This process

is illustrated in Fig. 4.4. More precisely, we propose the following collaborative two-stage
detection scheme.

i) For the �rst decision, Node 2 runs an optimal NP test based on the evidence (fn(xn
1 ), y

n
1 )

at this stage of the process (�rst-round).
Let us de�ne accordingly the following decision region for the alternative hypothesis
(H1):

Aτ
fn,n =

{
(xn

1 , y
n
1 ) ∈ X

n × Y
n : log

(
Pf(Xn

1 )Y
n
1
(f(xn

1 ), y
n
1 )

Pf(Xn
1 )
(f(xn

1 ))P
n
Y (y

n
1 )

)
> log(τ)

}
(4.29)

function of the threshold τ > 0. Note that (Aτ
fn,n

, (Aτ
fn,n

)c) corresponds to a partition
of the observation space induced by the classical NP test. This is the optimal strategy
at this stage.

ii) For the second and �nal decision stage, Node 1 receives the evidence (v = gn(f(x
n
1 , y

n
1 )), x

n
1 )

and one extra bit indicating if (xn
1 , y

n
1 ) ∈ Aτ

fn,n
(from stage 1). This �nal stage aggre-

gates information in the following way:

A: Under the condition that (xn
1 , y

n
1 ) ∈ Aτ

fn,n
, Node 2 runs an optimal NP test based

on (v, xn
1 ) and a threshold τ̃ > 0. More precisely, it decides H0 if

log

(
Pg(Y n

1 ,f(Xn
1 ))X

n
1
(gn(y

n
1 , f(x

n
1 )), x

n
1 )

Pg(Y n
1 ,f(Xn

1 ))
(gn(yn1 , f(x

n
1 )))P

n
X(x

n
1 )

)
> log(τ̃)

or H1 otherwise.

B: Under the condition that (xn
1 , y

n
1 ) /∈ Aτ

fn,n
, Node 1 trust Node 2's judgment and

decides the alternative H1.

4.5.3 Error Computation

Finally, it is worth expressing the two types of errors of this joint collaboration scheme and
comparing them with their respective expression for the one-side approach. The unidirec-
tional setting has the following Type I and Type II errors given, for a �xed τ > 0, by

αn((fn, ϕn)) ≡ P n
XY ((A

τ
fn,n)

c) and (4.30)

βn((fn, ϕn)) ≡ Qn
XY (A

τ
fn,n). (4.31)

6In particular, the construction used to prove Lemma 4.8.1 in Appendix 4.8.1.
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For the collaborative case, for a �xed τ, τ̃ > 0 let us consider, additionally to Aτ
fn,n

, the
following set

B τ̃
fn,gn,n =

{
(xn

1 , y
n
1 ) ∈ X

n × Y
n : log

(
Pg(Y n

1 ,f(Xn
1 ))X

n
1
(gn(y

n
1 , f(x

n
1 )), x

n
1 )

Pg(Y n
1 ,f(Xn

1 ))
(gn(yn1 , f(x

n
1 )))P

n
X(x

n
1 )

)
> log(τ̃)

}
.

(4.32)
Then, we divide the decision stage into two options:

A: under the condition that (xn
1 , y

n
1 ) ∈ Aτ

fn,n
, Node 1 runs an optimal NP test based on

the partition induced by B τ̃
fn,gn,n

for τ̃ > 0.
B: otherwise, if (xn

1 , y
n
1 ) /∈ Aτ

fn,n
, Node 1 trusts Node 2's judgment and decides the alter-

native H1.

Then, from these conditions, we have that the Type I error occurs when Node 2 declares H1

given H0 (using (Aτ
fn,n

)c) or when Node 1 declares H1 given H0 (using (Bτ
fn,n

)c and Aτ
fn,n

).
On the other hand, the Type II error occurs when Node 1 declares H0 given H1 (using Bτ

fn,n

and Aτ
fn,n

). Formally. the expressions are given by

αn((fn, gn, ϕn)) ≡ P n
XY ((A

τ
fn,n)

c) + P n
XY ((B

τ̃
fn,gn,n)

c ∩ Aτ
fn,n) and (4.33)

βn((fn, gn, ϕn)) ≡ Qn
XY (B

τ̃
fn,gn,n ∩ Aτ

fn,n). (4.34)

Comparing these expressions with Eq.(4.30) and (4.31), we note that there is no evident
performance relationship between the two schemes. The main reason is that for a �xed rate
R > 0, Node 1 in the non-collaborative setting has more bits assigned to it than its respective
counterpart in the collaborative setting. This justi�es the numerical analysis presented in
Section 4.6, where under di�erent symmetric conditions for PX,Y , we compare (numerically)
the trade-o� derived from the expressions in Eqs.(4.33)-(4.34).

Finally, it is worth mentioning that the two errors in (4.33) and (4.34) are functions of two
parameters (τ, τ̃) of this scheme. Then, we have two degrees of freedoms, i.e., a bi-dimensional
space of plausible solutions, that produces di�erent trade-o�s between Type I and Type II

errors. To simplify this exploration, we consider a functional one-to-one relationship between
(τ, τ̃) using a monotone mapping between τ and τ̃ given by τ̃ = r(τ) = τα with α ∈ (0, 100].
These mappings o�er the possibility of exploring a rich collection of performance trade-o�s
without compromising the expressiveness of the original 2D space (τ, τ̃). In the next section,
we show this strategy to explore the 2D parameter domain.

4.6 Numerical Analyses

We evaluate the performance of the collaborative and non-collaborative strategies proposed
in this work to see if we can ratify the performance discrepancy predicted by the error
exponent results in Section 4.3. We present two empirical analyses. First, we evaluate
the performance of the info-max encoder fW

n (·) in (4.22) and compare it with some other
quantization design principle across di�erent quantization sizes |U| (associated to the rate)
and sample-length n. Secondly and more importantly, we compare the collaborative scheme
and the non-collaborative scheme presented in this work under di�erent rates and sample
lengths scenarios. In this last part, we evaluate the e�ect of collaboration between the nodes
in terms of performances as a function of some structural attributes of the model (i.e., PX,Y ).

62



4.6.1 Preliminary Analysis

For the experimental setting, accordingly to Section 4.4, we consider a joint space of size
|X|×|Y|= 5× 5. We derive a discrete probability by partitioning R2 with a Gaussian density
in R2 of parameters (µX , µY , σX , σY .ρ). To this end, we assume that µX = µY and σ2

X = σ2
Y

where ρ is the cross-covariance. Using this construction, we control the statistical dependency
induced in the vector (X, Y ) with the parameter ρ > 0 of the continuous model. Figures 4.5
(a) and (b) show the joint distribution PXY for ρ = 0.5 and ρ = 0.8, respectively.

(a) (b)

Figure 4.5: Distribution of PXY for the non-collaborative experiment. Figures (a) and (b)
show a correlation coe�cient of ρ = 0.5 and ρ = 0.8, respectively.

E�ective Cardinality (EC)
0.000512 0.00256 0.4 0.8

ρ
0.5 0.0614 0.0018 0.0015 0.0009
0.7 0.0820 0.0029 0.0012 0.001

Table 4.1: ROC curve performance discrepancy for di�erent level statistical dependency or
discrimination (indexed by ρ) and for di�erent e�ective cardinalities (measured by |U|

|X|n ).

Figures 4.6 presents the ROC curve for di�erent level statistical dependency or dis-
crimination (indexed by ρ), for di�erent quantization levels |U|, and for di�erent values
of n ∈ {2, 4, 6}. In Figure 4.7, we also contrast our strategy (continuous line) with an
unsupervised method that is agnostic to the task and only tries to preserve the infor-
mation of Xn

1 (dashed line). More precisely, the unsupervised method is the solution of
max

fn:Xn→U={1,...,|U|}
I(U ;Xn

1 ). In all the settings (indexed by n, ρ), as |U| increases, the perfor-
mance of both strategies improves: a large |U| implies that more bits log2(|U|) are transferred
to the decision stage. In comparing the results (ROC curves) between the one-side approach
and the non-supervise approach, we clearly see in Fig. 4.7 (a) and (b) the advantage of
optimizing the encoder fn(·) to maximize the MI between the representation and Y n

1 (4.17).
Importantly, this advantage is more prominent when the level of dependency between X and
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(a) (b) (c)

(a) (b) (c)

Figure 4.6: ROC curve for di�erent levels of statistical dependency or discrimination (indexed
by ρ), for di�erent quantization levels |U|, and for di�erent values of n.

(a) (b)

Figure 4.7: ROC curve for di�erent levels of statistical dependency in which the algorithm
is compared with respect to the unsupervised method using the same quantization level |U|
for each color.

Y increases (by increasing ρ). In addition, there is a concrete e�ect of the correlation coe�-
cient, a greater ρ implies a higher mutual information between (X, Y ) and, as a consequence,
a better trade-o� between the errors [97].

Focusing in the expressiveness of our strategy, our info-max data-driven quantizer fn(·)
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shows to be e�ective in representing with few bits the information that the lossless sample
o�ers to discriminate H0 from H1. This is observed when comparing the performances of our
info-max lossy strategy with the oracle (lossless) NP test acting on (Xn

1 , Y
n
1 ), for the di�erent

regimes of mutual information. It is worth noting that |U| is a small (almost zero) fraction of
the cardinality of Xn, however fW ∗

n (Xn
1 ) produces modest degradation in performance with

respect to the use of Xn
1 . To further illustrate this last point, Table 4.1 shows the reduction

of the power of the test with respect to the centralized (lossless) decision case. For that, we
compute the area below the ROC curve of the lossless case for di�erent e�ective cardinality
levels de�ned as |U||X|n ∈ (0, 1). Interestingly, as the e�ective capacity increases (relative to the
alphabet size 5n) the performance of our test increases signi�cantly. This observation implies
that although we can not achieve the optimal NP lossless results, our info-max compression
scheme can achieve close to optimal NP results by using a negligible fraction of the size of
X
n.

4.6.2 Collaborative vs Non-Collaborative Analysis

In this subsection, we evaluate the e�ect of collaboration by comparing the performance of
the two strategies presented in Sections 4.5.1 and 4.5.2, respectively. In theory, we noticed
that the re-transmission from Node 2 to 1 produces additional information (expressed by
the term I(V ;Xn

1 |U) in Eq. (4.23)). Our conjecture is that this error exponent gain (or
information gain) could translate into a non-asymptotic ROC performance gain: in terms of
the trade-o� between the two errors.

Analyzing the error exponent expressions, we observe that the information gain E(R) −
ξ(R) ≥ 0 is in�uenced by the similarity between the conditional distribution PY |X from
Node 1 to 2 (forward direction) and the conditional distribution PX|Y from Node 2 to 1
(backward direction). To quantify this discrepancy, we de�ne a similarity indicator between
two arbitrary conditional distributions (µY |X(·|x))x∈X ⊂ P(Y) and (νY |X(·|x))x∈X ⊂ P(Y) as

D(µY |X∥νY |X |PX) ≡
∑

x∈X

PX(x)
∑

y∈Y

µY |X(y|x) log
µY |X(y|x)
νY |X(y|x)

≥ 0, (4.35)

with respect to PX ∈ P(X ). For the symmetric case where |Y|= |X|, we propose to measure
the level of symmetry or asymmetry of a joint model PX,Y by

Λ(PX,Y ) = D(PY |X∥PX|Y |PX) ≥ 0, (4.36)

where PY |X and PX|Y denote the two conditional distributions that can be obtained from
PX,Y .

Bit Allocation

For the collaborative scheme, the allocation of quantization levels between the nodes needs
to be addressed. In particular, for a �xed number of transmission symbols we want to have
a good bit assignment between the nodes. Figures 4.8 (a) and (b) show the performance of
di�erent collaborative assignments of quantization levels between Node 1 and 2. The curves
are also compared with its non-collaborative (half-round) case with |U|= 20. Interestingly,
we see that the overall quality of the ROC curve is governed by the assignment between
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the nodes and a�ected at the same time by the asymmetry of the distribution. From this
analysis, we observe that a good strategy is to distribute in a balanced way the bits assigned
to each node. The performance of the ROC curve decreases when Node 2 has more bits
available with respect to Node 1. This is consequence of the design of the quantizers that
mostly uses the information contained in the �rst half round given by PY |X . This is reinforced
by comparing the main results in (4.16) and (4.14), where the term I(V,Xn

1 |U) behaves as
an additive information gain that emerges exclusively when there is re-transmission.

(a) (b)

Figure 4.8: ROC curves for di�erent collaboration schemes between Node 1 and 2, using
di�erent quantization levels for |U| and |V|. All these curves are compared with their corre-
sponding half round performance using |U|= 20.

Comparison

Returning to the comparison, Figures 4.9 and 4.10 illustrate two models with low and high
symmetry in terms of Λ(PX,Y ). Here, we want to analyze the contribution of collaboration
(performance gain) when there is a discrepancy between the forward (PY |X) and backward
channel (PX|Y ) measured by Λ(PX,Y ). To explore the collaborative scheme proposed in 4.5.2,
we explore the ROC curves over the 2D surface parameterized by (τ, τ̃). More precisely,
given a �xed τ (described in (4.29)), we generate a ROC curve exploring di�erent values of
τ̃ ∈ (0,∞). To simplify this exhaustive search, we consider a monotone relationship between
τ and τ̃ expressed by τ̃(τ) = τα with α ∈ (0, 100]. Using this selection, Figures 4.11 (a)
and (b) show the performance of the ROC curve for the two cases associated with high
and low symmetry, respectively. For the collaborative setting, we use |U|= 5 and |V|= 4
and we compared with the non-collaborative case with the same rate, i.e., |U|= 20. In
the collaborative setting, we have many solutions (indexed by α). Consequently, we obtain
the ROC by the superposition of all obtained curves selecting the α value that o�ers the
best performance trade-o� in di�erent regimes. The color zones separated with the vertical
dashed black lines indicate the best α chosen for di�erent areas of the ROC curve. Thus,
from Figs 4.11(a) and 4.11(b), our collaborative scheme shows improvement with respect
to the non-collaborative case. The improvement is a function of PX,Y and dictated by its
symmetry Λ(PX,Y ) (illustrated in Figs. 4.10 (a) and (b)). This con�rms our intuition that
model symmetry plays an important role in this performance analysis.

66



(a) (b)

Figure 4.9: Illustrative example of the two channels (conditional probabilities) with Λ = 0.34
(low asymmetry). Figure 4.9 (a) corresponds to the graphical illustration of the frontward
channel (PY |X) for Model 1, and Figure 4.9 (b) corresponds to the graphical illustration of
the backward channel (PX|Y ) for Model 1.

(a) (b)

Figure 4.10: Illustrative example of the two channels (conditional probabilities) with Λ = 0.65
(high asymmetry). Figure 4.10(a) corresponds to the graphical illustration of the frontward
channel (PY |X) for Model 2, and Figure 4.10 (b) corresponds to the graphical illustration of
the backward channel (PX|Y ) for Model 2.

Finally, to complement the results illustrated in Figs 4.11(a) and 4.11(b), Table 4.2 shows
the relative reduction of the power of the collaborative test (area under the ROC curve)
with respect to the area of its non-collaborative (half-round) for di�erent di�erent models
(organized by Λ(PX,Y )). Additionally, we present the relative performance gain of the Type
II error for the operational points of 3 di�erent Type I errors in the ROC curve (0.15,
0.35 and 0.75). For the collaborative scheme, we chose the symmetric assignment |U|= 5
and |V|= 4, and |U|= 20 for the non-collaborative scheme. As the asymmetry of the model
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(a) (b)

Figure 4.11: ROC curves for the case of one round collaboration, using |U|= 10, |V|= 10.
Di�erent color zones indicate the optimal relationship between t̃ = f(t). All these curves are
compared with their corresponding half-round performance using |U|= 20.

increases, the relative gain in performance of our collaborative strategy increases signi�cantly.
These results support the idea that there is an important improvement when we introduce
collaboration between the nodes, and this improvement is dictated by a speci�c structural
property of PX,Y .

Λ(PX,Y ) Accumulative performance Type II Relative Performance
0.15 0.35 0.75

0.72 0.1237 42.45% 25.39% 6.71%
0.52 0.0832 28.68 % 18.89% 3.93%
0.41 0.0385 19.21 % 8.74% 1.77%
0.25 0.0087 8.49% 3.71% 0.21%
0 0.0000001 0.00014% 0.00017% 0.00014%

Table 4.2: Accumulative and relative performance gain in terms of the ROC curve with
respect to the asymmetry coe�cient Λ(PX,Y ). The accumulative gain is calculated using the
di�erence of the area below the ROC curve. For the relative gain, we �xed di�erent Type I

errors and calculated the relative gain of the power of the test. For both cases, we compare
the collaborative case (using |U|= 5 and |V|= 4) with respect to the unidirectional case using
|U|= 20.

4.7 Discussion and Concluding Remarks

This work investigated and proposed new data-driven schemes for testing against indepen-
dence with communication constraints. The main conceptual focus was understanding collab-
oration's role in this task. We obtained analytical expressions to measure the e�ect of node
cooperation by deriving and exploring asymptotic performance limits. From this theoretical
understanding, we proposed an info-max design method to learn some practical strategies
(encoders-decoder).
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In particular, an algorithm is derived to tackle a multi-letter info-max learning task remi-
niscent of the type of representation for learning algorithms used in modern ML algorithms.
Importantly, our solution does not need a description of the model PX,Y (data-driven) as it
builds upon information obtained from i.i.d. samples (empirical observations).7

When analyzing our collaborative strategy, we observe that the performance of the test
is governed by the assignment between the nodes and a�ected at the same time by the
asymmetry of the data-generating distribution. In all the cases explored, our collaborative
scheme shows improvement with respect to its non-collaborative counterpart where this gain
was a function of a speci�c attribute of the model PX,Y : its symmetry.

Finally, our results support the adoption of collaboration as a way of e�ectively using
resources (bits) in distributed inference settings. We also show the importance of deriving
fundamental information limits for distributed inference problems. These expressions admit
analytical interpretations and also have the power to inform the design of practical schemes
operating in non-asymptotic conditions.

The promising results presented in this work illuminate many areas of further research.
One relevant topic is extending the results presented in this thesis to multiple rounds of
node interactions, which is a challenging problem as the derivation of an error exponent for
the Type II error for multiple rounds is not a simple extension of the argument presented
in this work. Another relevant topic is the problem of arbitrary binary hypothesis testing
subject to communications constraints. In this area, a single-letter characterization of the
Type II error exponent remains an open problem where only a lower bound was derived
in [33]. Characterizing this fundamental limit would be essential in extending the type of
design algorithms proposed in this thesis.

7Although the proposed scheme uses partial information of the underlying model PY |X (the channel), it
can be directly extended to a scenario where PY |X is also estimated from data.
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4.8 Appendix

4.8.1 Proof of Theorem 4.1

Proof. The proof is divided in two distinctive parts associated to a feasibility (or construc-
tive) and a unfeasibility (or converse) argument.

Feasibility

We �rst introduce a key Lemma that o�ers a lower bound (a constructive argument) for the
error exponent of the Type II error in the regime when ϵ > 0 (the Type I error restriction)
is arbitrary small.

Lemma 4.8.1 Given PXY ∈ P(X × Y) and R > 0, let S (R) ⊂ P(U × V × X × Y) and
L (PUV XY ) ⊂ P(U× V× X× Y) denote the sets of probability de�ned by

S (R) = {PUV XY ∈ P(U× V× X× Y) : (X, Y, U) ∼ PXY · PU |X ,

(X, Y, U, V ) ∼ PX,Y · PU |X · PV |U,Y , s.t. I(U ;X) + I(V ;Y |U) ≤ R ,

|U|, |V|< +∞} , (4.37)

L (PUV XY ) = {µUV XY ∈ P(U× V× X× Y) : µUV X = PUV X , µUV Y = PUV Y } . (4.38)

Then, it follows that

lim
ϵ→0

lim inf
n→∞

− 1

n
log βc

n(R, ϵ) ≥ max
PUV XY ∈S (R)

min
µUV XY ∈L (PUV XY )

D(µUV XY ||QUV XY ) , (4.39)

where QUV XY ≡ QXY · PU |X · PV |UY derives from PUV XY = PXY · PU |X · PV |UY being PU |X
and PV |UY the two channels used to construct PUV XY ∈ S (R) from PX,Y (see the de�nition
in Eq.(4.37)).

The proof of Lemma 4.8.1 is presented in Appendix 4.8.2.

Using Lemma 4.8.1, the lower bound in Eq.(4.39) can be alternatively expressed as8:

lim
ϵ→0

lim inf
n→∞

− 1

n
log βc

n(R, ϵ) ≥
max

PUV XY ∈S (R)
min

µUV XY ∈L (PUV XY )

[
D(µUXY ||QUXY ) +D(µXV |UY ||µX|UY · µV |UY |µUY )

]
.

(4.40)

For our test against independence problem, we analyze each information term in (4.40)
separately. Considering �rst D(µUXY ∥QUXY ), we have that

D(µUXY ∥QUXY )
(a)
= D(µUY ||QUY ) +D(µX|UY ||QX|UY |µUY ) (4.41)
(b)
= I(U ;Y ) +D(µX|UY ||QX|U |µUY ) (4.42)

= I(U ;Y ) +D(µX|UY ||µX|U |µUY ) +D(µX|U ||QX|U |µU) (4.43)
(c)

≥ I(U ;Y ) +D(µX|UY ||µX|U |µUY ) , (4.44)

8The details are presented in (4.108), Appendix 4.8.2
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where (a) is due to the chain rule of the divergence [97] and D(µX|UY ||QX|UY |µUY ) denotes
the conditional KL-divergence; (b) derives from the independence assumption on QX,Y (the
alternative hypothesis), the Markov chain structure U −
− X −
− Y and the fact (from
the de�nition of L (PUV XY )) that µUY = PUY ; and (c) follows from the fact that the KL-
divergence is non-negative. Continuing the analysis of D(µUXY ∥QUXY ), we obtain from
(4.44) that

D(µUXY ∥QUXY ) ≥ I(U ;Y ) +
∑

(u,x,y)∈U×X×Y

µUXY (u, x, y) log

(
µX|UY (x|u, y)
µX|U(x|u)

)
(4.45)

= I(U ;Y ) +
∑

(u,x,y)∈U×X×Y

µUXY (u, x, y) log

(
µXY |U(x, y|u)

µX|U(x|u)µY |U(y|u)

)
(4.46)

= I(U ;Y ) +D(µXY |U ||µX|U · µY |U |µU) . (4.47)

For the second information term in (4.40), D(µXV |UY ||µX|UY · µV |UY |µUY ) =

D(µV XY |U ||µV Y |U · µX|U |µU)−D(µXY |U ||µX|U · µY |U |µU)

= D(µXY |UV ||µY |UV · µX|UV |µUV ) +D(µV X|U ||µV |U · µX|U |µU)−D(µXY |U ||µX|U · µY |U |µU)

≥ D(µV X|U ||µV |U · µX|U |µU)−D(µXY |U ||µX|U · µY |U |µU) . (4.48)

Integrating these derivations in (4.40), we obtain that

lim
ϵ→0

lim inf
n→∞

− 1

n
log βc

n(R, ϵ) ≥ max
PUV XY ∈S (R)

min
µUV XY ∈L (PUV XY )

[
I(U ;Y ) +D(µV X|U ||µV |U · µX|U |µU)

]

(4.49)

= max
PUV XY ∈S (R)

[I(U ;Y ) + I(V ;X|U)] , (4.50)

which completes the constructive part of the proof.

Weak unfeasibility

We use the following key Lemma:

Lemma 4.8.2 (Theorem 2, [29]) Let us considerR > 0. For any pair of mappings (f̃n(·), g̃n(·))
satisfying the information bound

R ≥ 1

n
[I(UN1 ;X

n
1 ) + I(VN2 ;Y

n
1 |UN1)]

where UN1 ≡ f̃n(X
n
1 ) and VN2 ≡ g̃n(f̃n(X

n
1 ), Y

n
1 ), the Type II error exponent of the testing

against independence with one round is upper bounded by:

lim
ϵ→0

lim inf
m→∞

− 1

m
log βc

m(R, ϵ) ≤ 1

n
[I(UN1 ;Y

n
1 ) + I(VN2 ;X

n
1 |UN1)] , (4.51)

for all n ≥ 1.
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The proof of Lemma 4.8.2 follows from many known results in [28, 29].

Using Lemma 4.8.2, it follows that:

lim
ϵ→0

lim inf
m→∞

− 1

m
log βc

m(R, ϵ) ≤ lim sup
n→∞

1

n
[I(UN1 ;Y

n
1 ) + I(VN2 ;X

n
1 |UN1)]

︸ ︷︷ ︸
∆n≡

(4.52)

where UN1 represents the message sent from Node 1 while VN2 represents the reply from Node
2. To derive a single-letter expression of this upper bound similar to the result in (4.49), we
expand ∆n in (4.52) as follows.

∆n
(d)
=

1

n

n∑

i=1

[
I(UN1 ;Yi|Y n

i+1) + I(VN2 ;Xi|UN1 , X
i−1
1 )

]
(4.53)

(e)
=

1

n

n∑

i=1

[
I(UN1 , Y

n
i+1;Yi) + I(VN2 , Y

n
i+1;Xi|UN1 , X

i−1
1 )− I(Y n

i+1;Xi|UN1 , VN2 , X
i−1
1 )

]
(4.54)

=
1

n

n∑

i=1

[
I(UN1 , X

i−1
1 , Y n

i+1;Yi)− I(X i−1
1 ;Yi|UN1 , Y

n
i+1) + I(Y n

i+1;Xi|UN1 , X
i−1
1 ) (4.55)

+ I(VN2 ;Xi|UN1 , X
i−1
1 , Y n

i+1)− I(Y n
i+1;Xi|UN1 , VN2 , X

i−1
1 )

]
(4.56)

(f)
=

1

n

n∑

i=1

[
I(Ûi;Yi) + I(Vi;Xi|Ûi)− I(Y n

i+1;Xi|UN1 , VN2 , X
i−1
1 )

]
, (4.57)

where X i
1 denotes the �rst i samples and Xn

1 = (X1, . . . , Xn). (d) derives from the chain rule
of the MI [97] and (e) from the assumed i.i.d. nature of the joint sources (Xn

1 , Y
n
1 ). Finally

to obtain the equality presented in (f), the identity

n∑

i=1

I(X i−1
1 ;Yi|UN1 , Y

n
i+1) =

n∑

i=1

I(Y n
i+1;Xi|UN1 , X

i−1
1 ) , (4.58)

presented in [3, chapter 15] is used where we also introduce the following auxiliary RVs on
the measurable spaces (Ui × Vi,BUi×Vi

):

Ûi ≡ (UN1 , X
i−1
1 , Y n

i+1) and Vi ≡ VN2 , ∀ i = {1, ..., n} . (4.59)

It is important to emphasize that our choice in (4.59) satis�es the required Markov chains
X −
− (Ûi, Y )−
− Vi for each i = {1, ..., n} (the argument is presented in Appendix 4.8.3).

If Q denotes a RV uniformly distributed over {1, ..., n}, then Eq. (4.57) can be expressed
as:

∆n = I(ÛQ;YQ|Q) + I(VQ;XQ|ÛQ, Q)− 1

n

n∑

i=1

I(Y n
i+1;Xi|UN1VN2X

i−1
1 ) (4.60)

= I(U ;Y ) + I(V ;X|U)− T , (4.61)

where U ≡ (ÛQ, Q), V ≡ VQ and T ≡ 1
n

∑n
i=1 I(Y

n
i+1;Xi|UN1VN2X

i−1
1 ). Since Xn

1 and Y n
1 are

i.i.d we have that X = XQ and Y = YQ, over any value in the support of Q.
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Let us return to our operational problem. For that let us consider an arbitrary encoder-
decoder fn(·), gn(·) meeting the �xed-rate constraint log (|U||V|) ≤ nR. If we denote by
UN1 ≡ fn(X

n
1 ) and VN2 ≡ gn(fn(X

n
1 ), Y

n
1 ) then it is simple to verify that:

nR ≥ H(UN1) +H(VN2) ≥ I(UN1 ;X
n
1 ) + I(VN2 ;Y

n
1 , UN1) ≥ I(UN1 ;X

n
1 ) + I(VN2 ;Y

n
1 |UN1) .

(4.62)

We analyze each of the two last information terms in (4.62) separately.

I(UN1 ;X
n
1 ) =

n∑

i=1

I(UN1 , X
i−1
1 ;Xi) (4.63)

=
n∑

i=1

[
I(UN1 , X

i−1
1 , Y n

i+1;Xi)− I(Y n
i+1;Xi|UN1 , X

i−1
1 )

]
, (4.64)

where (4.63) is due to the i.i.d nature of joint samples (X1, Y1)....(Xn, Yn).

The second term I(VN2 ;Y
n
1 |UN1) writes as

I(VN2 ;Y
n
1 |UN1) =

n∑

i=1

[
I(VN2 , X

i−1
1 ;Yi|UN1 , Y

n
i+1)− I(X i−1

1 ;Yi|UN1 , VN2 , Y
n
i+1)
]

(4.65)

=
n∑

i=1

[
I(X i−1

1 ;Yi|UN1 , Y
n
i+1)

+I(VN2 ;Yi|UN1 , X
i−1
1 Y n

i+1)− I(X i−1
1 ;Yi|UN1 , VN2 , Y

n
i+1)
]
(4.66)

=
n∑

i=1

[
I(VN2 ;Yi|UN1 , X

i−1
1 , Y n

i+1)

+I(Xi;Y
n
i+1|UN1 , X

i−1
1 )− I(X i−1

1 ;Yi|UN1 , VN2 , Y
n
i+1)
]
, (4.67)

where for the �nal step we use the identity in Eq. (4.58). Integrating these derivations in
(4.62), we obtain that

nR ≥
n∑

i=1

[I(UN1 , X
i−1
1 , Y n

i+1;Xi) + I(VN2 ;Yi|UN1 , X
i−1
1 Y n

i+1)− I(X i−1
1 ;Yi|UN1 , VN2 , Y

n
i+1)] .

(4.68)
Introducing Ûi ≡ (UN1 , X

i−1
1 , Y n

i+1) and Vi ≡ VN2 , ∀i ∈ {1, ..., n}, we have that

R ≥ I(ÛQ;XQ|Q) + I(VQ;YQ|ÛQ, Q)− I(X i−1
1 ;Yi|UN1 , VN2 , Y

n
i+1) (4.69)

= I(U ;X) + I(V ;Y |U)− 1

n

n∑

i=1

I(Y n
i+1;Xi|UN1VN2X

i−1
1 ) (4.70)

= I(U ;X) + I(V ;Y |U)− T , (4.71)

where U ≡ (ÛQ, Q), V ≡ VQ, T ≡ 1
n

∑n
i=1 I(Y

n
i+1;Xi|UN1VN2X

i−1
1 ) and Y = YQ, X = XQ for

a. In (4.71) we use the identity of (4.58) using the pair (UN1VN2) instead of UN1 .

Finally adopting (4.61) and (4.71), we have the following related bounds
{
∆n ≤ I(U ;Y ) + I(V ;X|U)− T ,

R ≥ I(U ;X) + I(V ;Y |U)− T ,
(4.72)
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where (U, V ) are auxiliary RVs that respect the required Markov chains in (4.15).

Next we show that the region in (4.72) is equivalent to

{
∆n ≤ I(U ;Y ) + I(V ;X|U) ,

R ≥ I(U ;X) + I(V ;Y |U) ,
(4.73)

that means that all the pairs (R,∆n) that are forbidden in the region in (4.72) are also
forbidden in (4.73). First of all, we use the Fourier-Motzkin elimination [chapter 12, [103]].
This allow us to remove T ≥ 0 by using T = I(U ;Y )+ I(V ;X|U)−∆n from (4.61) in (4.72),
from this we get:

{
∆n ≤ I(U ;Y ) + I(V ;X|U) ,

R ≥ I(U ;X) + I(V ;Y |U)− I(U ;Y )− I(V ;X|U) + ∆n ,
(4.74)

and using the Markovian relations U −
−X −
− Y and X −
− (U, Y )−
− V we obtain that

{
∆n ≤ I(U ;Y ) + I(V ;X|U) ,

R ≥ I(U ;X|Y ) + I(V ;Y |UX) + ∆n .
(4.75)

Finally, to obtain that the two regions in (4.73) and (4.75) are equivalent, we only need to
check the extremal points of ∆n, i.e., the scenarios ∆n = 0 and ∆n = I(U ;Y ) + I(V ;X|U).
If ∆n = 0 the result is trivial because R = 0 is optimal under both regions. On the other
hand, if ∆n = I(U ;Y ) + I(V ;X|U), we have that

R ≥ I(U ;X|Y ) + I(V ;Y |UX) + I(U ;Y ) + I(V ;X|U) (4.76)

= I(U ;X) + I(V ;Y |U) . (4.77)

Therefore, the two regions in (4.72) and (4.73) are equivalent.

Since the upper bound for ∆n in (4.73) is independent of n and for any of this induced
pair of variable (U, V ) they meet the condition R ≥ I(U ;X) + I(V ;Y |U), we obtain from
the de�nition of S (R) in (4.37) that:

lim sup
n→∞

∆n ≤ max
PUV XY ∈S (R)

I(U ;Y ) + I(V ;X|U). (4.78)

Finally from (4.50), (4.52) and (4.78), we have that

lim
ϵ→0

lim inf
m→∞

− 1

m
log βc

m(R, ϵ) = max
PUV XY ∈S (R)

I(U ;Y ) + I(V ;X|U) . (4.79)

This concludes the proof of Theorem 4.1.

4.8.2 Proof of Lemma 4.8.1

For the proof of this result, the notation and well-known information-theoretic results pre-
sented in Appendix 4.8.5 will be used.
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Proof. We start by describing the random construction of codebooks, as well as encoding
and decision functions. By analyzing the asymptotic properties of such decision systems, we
aim at implying a feasibility (existence) result of interactive functions and decision regions
that satisfy, for any given ϵ, ε > 0, the following inequalities:

1

n
log (|fn||gn|) ≤ I(U ;X) + I(V ;Y |U) + ε , αc

n(R) ≤ ϵ , (4.80)

− 1

n
log βc

n(R, ϵ) ≥ min
µUV XY ∈L (PUV XY )

D(µUV XY ||PŪ V̄ X̄Ȳ )− ε , (4.81)

provided that n is large enough and for any given distribution PUV ∈ S (R), where |fn|
and |gn| denote the number of codewords in the codebooks used for interaction (note that
feasibility is de�ned in the information-theoretic sense which implies the random existence
of interactive and decision functions with desired properties).

Codebook generation. Without loss of generality, we assume that Node 1 is the �rst to
communicate. Fix a conditional probability PUV |XY (u, v|x, y) = PU |X(u|x)PV |UY (v|u, y) that
attains the maximum in (4.39). Let

PU(u) =
∑

x∈X

PU |X(u|x)PX(x) , (4.82)

PV |U(v|u) =
∑

y∈Y

PV |UY (v|u, y)PY (y). (4.83)

For this choice of RVs, set the rates (RU , RV ) to be

I(U ;X) + ϵ(δ) = RU , (4.84)

I(V ;Y |U) + ϵ(δ′) = RV (4.85)

with ϵ(δ) → 0 as δ → 0. By the de�nition of the set S (R) in (4.37), it is clear that
RU + RV ≤ R + ϵ(δ) + ϵ(δ′). Randomly and independently draw 2nRU sequences un

1 =
(u1, . . . , un), each according to

∏n
i=1 PU(ui). Index these sequences by mU ∈ [1 : MU ≡ 2nRU ]

to form the random codebook Cun
1
≡ {un

1 (mU) : mU ∈ [1 : MU ]}. As a second step, for each
word un

1 ∈ Cun
1
, build a codebook Cvn1 (mU) by randomly and independently drawing 2nRV

sequences vn1 , each according to
∏n

i=1 PV |U(vi|ui(mU)). Index these sequences by mV ∈ [1 :
MV ≡ 2nRV ] to form the collection of codebooks Cvn1 (mU) ≡ {vn1 (mU ,mV ) : mV ∈ [1 : MV ]}
for mU ∈ [1 : MU ].

Encoding and decision mappings. Given a sequence xn
1 , Node 1 searches in the codebook

Cun
1
for an index mU such that (un

1 (mU), x
n
1 ) ∈ T n

[UX]δ
(note that this notation denotes the δ-

typical set with relation to the probability measure implied by H0). If no such index is found,
Node 1 declaresH1. If more than one sequence is found, Node 1 chooses one at random. Node
1 then communicates the chosen index mU to Node 2, using a portion RU bits of the available
exchange rate. Upon receiving the index mU , Node 2 checks if (un

1 (mU), y
n
1 ) ∈ T n

[UY ]δ′
. If not,

Node 2 declares H1. If the received sequence un
1 and yn1 (the observed sequence at Node 2)

are jointly typical, Node 2 looks in the speci�c codebook Cvn1 (mU), for an index mV such
that (un

1 (mU), v
n
1 (mU ,mV ), y

n
1 ) ∈ T n

[UV Y ]δ′
. If such an index is not found, Node 2 declares H1.

If Node 2 �nds more than one such index, it chooses one of them at random. Node 2 then
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transmits the chosen index mV to Node 1. Upon reception of the index mV , Node 1 checks
if (un

1 (mU), v
n
1 (mU ,mV ), x

n
1 ) ∈ T n

[UV X]δ′′
. If so, it declares H0, otherwise it declares H1. The

relation between δ, δ′ and δ′′ can be deducted from Lemma 4.8.7 in Appendix 4.8.5. It is,
however, important to emphasize that δ′(δ) → 0 as δ → 0, and δ′′(δ′) → 0 as δ′ → 0 with
n → ∞.

Analysis of αn (Type I). The analysis of αn is identical to the one proposed in [29], for the
case of testing against independence. We give here a short summary of the analysis available
in [29]. Assuming that the measure that controls X and Y is PXY , and denoting the chosen
indices at nodes 1 and 2 by mU and mV respectively, the error probability of the Type I can
be expressed as follows

αn ≡ P(E1 ∪ E2 ∪ E3) ≤ P(E1) + P(Ec
1 ∩ E2) + P(Ec

1 ∩ Ec
2 ∩ E3) , (4.86)

where E1, E2 and E3 represent the following error events:

E1 ≡ {(un
1 (mU), x

n
1 ) /∈ T n

[UX]δ ∀mU ∈ [1 : MU ]} , (4.87)

E2 ≡ {(vn1 (mU ,mV ), u
n
1 (mU), y

n
1 ) /∈ T n

[V UY ]δ′
∀mV ∈ [1 : MV ] (4.88)

and the speci�c mU selected at Node 1} ,

E3 ≡ {(vn1 (mU ,mV ), u
n
1 (mU), x

n
1 ) /∈ T n

[V UX]δ′′
, (4.89)

for the speci�c mU and mV previously chosen} .

Analyzing each of the probabilities in (4.86) separately, P(E1) → 0 as n → ∞ by the covering
lemma [104], provided that RU ≥ I(U ;X) + ϵ(δ), with ϵ(δ) → 0 as δ → 0. P(Ec

1 ∩ E2) → 0
when n → ∞ by the conditional typicality lemma [104], in addition to the covering lemma,
provided that RV ≥ I(V ;Y |U)+ ϵ(δ′). Finally, the third term in (4.86) can be shown to tend
to zero through the use of the Markov lemma (see Lemma 4.8.8), as well as Lemma 4.8.6
and Lemma 4.8.7 in Appendix 4.8.5. Thus, as all three components tend to zero with large
n, we may conclude that αn ≤ ϵ for any constraint 0 < ϵ < 1 and n large enough.

Analysis of βn (Type II). The error probability of Type II is de�ned by

βc
n(R, ϵ) ≡ P(decide H0|XY ∼ QXY ) . (4.90)

Thus, we assume that PX̄Ȳ controls the measure of the observed RVs throughout this analysis.
We use similar methods to what was done in [33], although we choose to work with random
codebooks. The in�uence of this choice is on the analysis of αn only, as seen above, and not
on βn.

For a given pair of sequences (xn
1 , y

n
1 ) with type variables P̂XY ∈ Pn(X× Y), we count all

possible events that lead to an error. We notice �rst, that given a pair of vectors (xn
1 , y

n
1 ) ∈

X
n × Y

n the probability that these vectors will be the result of n i.i.d. draws, according to
the measure implied by H1, is given by Lemma 4.8.6 in Appendix 4.8.5 to be:

Q((Xn
1 , Y

n
1 ) = (xn

1 , y
n
1 )) = exp

[
−n
(
H(P̂XY ) +D(P̂XY ||QXY )

)]
, (4.91)

where P̂XY ∈ Pn(X × Y) are the type variables of (xn
1 , y

n
1 ) (see Appendix 4.8.5). For each

pair of codewords (un
1 )i ∈ Cun

1
and (vn1 )ij ∈ Cvn1 (i), we de�ne the set:

Sij(x
n
1 ) ≡ {(un

1 )i} × {(vn1 )ij} × Gij × {xn
1} , (4.92)

76



where Gij ⊆ Y
n is the set of all vectors yn1 that, given the received message (un

1 )i, will result
in the message (vn1 )ij being transmitted back to Node 1. Denoting by Kij(x

n
1 ) the number of

elements ((un
1 )i, (v

n
1 )ij, y

n
1 , x

n
1 ) ∈ Sij(x

n
1 ) whose type variables coincide with U (n)V (n)X(n)Y (n),

we have by Lemma 4.8.5 in Appendix 4.8.5 that:

Kij(x
n
1 ) ≤ exp

[
nH(Y (n)|U (n)V (n)X(n))

]
. (4.93)

Let K(U (n)V (n)X(n)Y (n)) denote the number of all elements:

Sn ≡
MU⋃

i=1

MV⋃

j=1

⋃

xn
1∈T n

[X|(un1 )i(v
n
1 )ij ]δ′′

Sij(x
n
1 ) (4.94)

that have type variable U (n)V (n)X(n)Y (n) ∈ Pn(U× V× X× Y), then

K(U (n)V (n)X(n)Y (n)) ≤
MU∑

i=1

MV∑

j=1

exp
[
nH(Y (n)|U (n)V (n)X(n))

]
|T n

[X|(un
1 )i(v

n
1 )ij ]δ′′

| (4.95)

≤ exp
[
n
(
H(Y (n)|U (n)V (n)X(n)) (4.96)

+ I(U ;X) + I(V ;Y |U) +H(X|UV ) + µn

)]
, (4.97)

where MU and MV are the sizes of the codebooks Cun
1
and Cvn1 (·). The �rst and second

additional terms in the �nal expression come from the size of the codebooks and the third
is a bound over the size of the delta-typical set (see Lemma 4.8.9 in Appendix 4.8.5). The
resulting sequence µn is a function of δ, δ′, δ′′ that complies with µn → 0 as n → ∞. The
error probability of Type II satis�es:

βc
n(R, ϵ) ≤

∑

U(n)V (n)X(n)Y (n)∈Sn

exp
[
−n
(
k(U (n)V (n)X(n)Y (n))− µn

)]
, (4.98)

where the function k(U (n)V (n)X(n)Y (n)) is de�ned by

k(U (n)V (n)X(n)Y (n)) ≡ H(X(n)Y (n)) +D(P̂XY ||QXY ) (4.99)

− H(Y (n)|U (n)V (n)X(n))−H(X|UV ) (4.100)

− I(U ;X)− I(V ;Y |U) . (4.101)

We deliberately made an abuse of notation in (4.98) to indicate that the sum is taken
over all possible type-variables U (n)V (n)X(n)Y (n) ∈ Pn(U × V × X × Y) formed by empirical
probability measures from elements (un

1 , v
n
1 , x

n
1 , y

n
1 ) ∈ Sn.

From the construction of Sn, it is clear that if (un
1 , v

n
1 , x

n
1 , y

n
1 ) ∈ Sn, then at least

(un
1 , v

n
1 , x

n
1 ) ∈ T n

[UV X]δ′′
and (un

1 , v
n
1 , y

n
1 ) ∈ T n

[UV Y ]δ′
. Thus, the summation in (4.98) is only

over all types satisfying:

|PU(n)V (n)X(n)(u, v, x)− PUV X(u, v, x)|≤ δ′′ ,

|PU(n)V (n)Y (n)(u, v, y)− PUV Y (u, v, y)|≤ δ′ ,
(4.102)

77



for all (u, v, x) ∈ supp(PUV X) and (u, v, y) ∈ supp(PUV Y ). In addition, it follows by
Lemma 4.8.4 (from the total number of types of length n) that:

βc
n(R, ϵ) ≤ (n+ 1)|U||V||X||Y|

× max
U(n)V (n)X(n)Y (n)∈Sn

exp
[
−n
(
k(U (n)V (n)X(n)Y (n))− µn

)]
.

(4.103)

By (4.102) and the continuity of the entropy as well as the KL divergence [2], we can conclude
that

k(U (n)V (n)X(n)Y (n)) = H(µXY ) +D(µXY ||QXY )−H(µUV XY )

+H(µUV )−D(µUX ||µU · µX)−D(µV Y |U ||µV |U · µY |U |µU) + µ′n
(4.104)

= D(µUV XY ||µUV · µXY ) +D(µXY ||QXY )

−D(µUX ||µU · µX)−D(µV Y |U ||µV |U · µY |U |µU) + µ′n (4.105)

= D(µUXY ||µXY · µU) +D(µV XY |U ||µXY |U · µV |U |µU) +D(µXY ||QXY )

−D(µUX ||µU · µX)−D(µV Y |U ||µV |U · µY |U |µU) + µ′n (4.106)

= D(µUXY ||µXY · µU) +D(µV X|UY ||µV |UY · µX|UY |µUY ) +D(µXY ||QXY )

−D(µUX ||µU · µX) + µ′n (4.107)

= D(µU |X ||µY |X |µX) +D(µV X|UY ||µV |UY · µX|UY |µUY ) +D(µXY ||QXY ) + µ′n
= D(µUXY ||QUXY ) +D(µV X|UY ||µV |UY · µX|UY |µUY ) + µ′n (4.108)

with µUV XY ∈ L (PUV XY ) and µ′n → 0 when n → ∞.

Finally, the following Markov chain: X −
− (U, Y )−
− V holds under both hypotheses.

Then, from (4.108) the development of k(U (n)V (n)X(n)Y (n)) goes as follows:

k(U (n)V (n)X(n)Y (n)) = D(µUXY ||QUXY ) +D(µX|UY ||µV |UY |µUY ) + µ′n (4.109)

=
∑

∀(u,v,x,y)

µUV XY (u, v, x, y)×

× log

(
µUXY (u, x, y)

QUXY (u, x, y)

µXV |UY (x, v|u, y)
µX|UY (x|u, y)µV |UY (v|u, y)

)
+ µ′n (4.110)

(g)
=

∑

∀(u,v,x,y)

µUV XY (u, v, x, y) log

(
µUV XY (u, v, x, y)

QUXY (u, x, y)QV |UY (v|u, y)

)
+ µ′n

(4.111)

=
∑

∀(u,v,x,y)

µUV XY (u, v, x, y) log

(
µUV XY (u, v, x, y)

QUV XY (u, v, x, y)

)
+ µ′n (4.112)

= D(µUV XY ||QUV XY ) + µ′n , (4.113)

where the sums are over the supp(µUV XY ); and (g) is due to the de�nition of the set
L (PUV XY ) that implies that µV |UY (v|u, y) = PV |UY (v|u, y). In addition, as coding (at
each side) is performed before a decision is made, it is clear that it must be done in the
same way under both hypotheses. Thus, while PUV Y (u, v, y) ̸= QUV Y (u, v, y), it is true that
QV |UY (v|u, y) = PV |UY (v|u, y) = µV |UY (v|u, y). As µn, µ

′
n are arbitrarily small (as a func-

tion of the choices of δ and δ′ provided that n is large enough) this concludes the proof of
Lemma 4.8.1.
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4.8.3 Proof of Markov Chain Structure

As a part of the weak unfeasibility part of the proof of Theorem 4.1, two Markov chains are
necessary: {

Ûi −
−Xi −
− Yi , ∀ i = {1, ..., n}
Vi −
− (Ûi, Yi)−
−Xi , ∀ i = {1, ..., n}. (4.114)

Using the chosen RVs from (4.59), these Markov chains are represented by
{
(UN1 , X

i−1
1 , Y n

i+1)−
−Xi −
− Yi , ∀ i = {1, ..., n}
VN2 −
− (UN1 , X

i−1
1 , Y n

i )−
−Xi , ∀ i = {1, ..., n}. (4.115)

In order to check this, we use the following result.

Lemma 4.8.3 LetA1, A2, B1, B2 be RVs with joint probability measure PA1A2B1B2 = PA1B1PA2B2

and assume that {f i}ki=1, {gi}ki=1 are any collection of P -measurable mappings with domain
structure given by:

f 1(A1, A2); f
2(A1, A2, g

1); . . . ; fk(A1, A2, g
1, . . . , gk−1) , (4.116)

g1(B1, B2, f
1); g2(B1, B2, f

1, f 2); . . . ; gk(B1, B2, f
1, . . . , fk) . (4.117)

Then,
I(A2;B1|f 1, f 2, . . . , fk, g1, g2, . . . , gk, A1, B2) = 0 . (4.118)

Proof. Refer to reference [105, Lemma 1].

In order to prove the �rst Markov chain, we simply let:
{
A1 = Xi, B1 = Yi ,

A2 = (X i−1
1 , Xn

i+1, Y
n
i+1) , B2 = Y i−1

1 .
(4.119)

It can be easily veri�ed that PA1A2B1B2 = PA1B1PA2B2 , which stems directly from the i.i.d.
nature of the samples. Thus, according to Lemma 4.8.3:

0 = I(X i−1
1 , Xn

i+1, Y
n
i+1;Yi|Xi, Y

i−1
1 )

= I(X i−1
1 , Xn

i+1, Y
i−1
1 , Y n

i+1;Yi|Xi)− I(Y i−1
1 ;Yi|Xi) ,

(4.120)

which shows the Markov chain:

(X i−1
1 , Xn

i+1, Y
i−1
1 , Y n

i+1)−
−Xi −
− Yi , ∀ i = {1, ..., n}. (4.121)

As UN1 = fn(X
n
1 ), the following Markov chain is also true:

(UN1 , X
i−1
1 , Y n

i+1)−
−Xi −
− Yi , ∀ i = {1, ..., n}, (4.122)

which proves the �rst Markov chain in (4.115). As for the second one, we let:
{
A1 = X i−1

1 , B1 = Y i−1
1 ,

A2 = (Xi, X
n
i+1) , B2 = (Yi, Y

n
i+1) .

(4.123)
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Under this choice, UN1 = fn(A1, A2) and thus,

I(Xi, X
n
i+1;Y

i−1
1 |UN1 , X

i−1
1 , Yi, Y

n
i+1) = 0 , ∀ i = {1, ..., n}. (4.124)

The later identity proves the following Markov chain:

(Xi, X
n
i+1)−
− (UN1 , X

i−1
1 , Yi, Y

n
i+1)−
− Y i−1

1 , ∀ i = {1, ..., n}. (4.125)

As VN2 = gn(UN1 , Y
n
1 ), it also holds that:

Xi −
− (UN1 , X
i−1
1 , Y n

i )−
− VN2 , ∀ i = {1, ..., n}, (4.126)

which yields the desired Markov chain.

4.8.4 Proof that E(R) ≥ ξ(R)

Suppose that the solution of ξ(R) is P ∗U |X such that I(U ;X) = R. This implies that |V|= 1

and then I(V ;Y |U) = 0. This implies that E(R) = ξ(R). Now assume that there exists P ∗U |X
such that I(U ;X) < R. Then, we can always �nd P ∗V |UY such that I(U ;X)+ I(V ;Y |U) ≤ R

and plugin P ∗U |X and P ∗V |UY into I(U ;Y ) + I(V ;X|U) we have by de�nition that I(U ;Y ) +

I(V ;X|U) = ξ(R) + I(V ;X|U) and, therefore, E(R) ≥ ξ(R).

4.8.5 Technical De�nitions and Lemmas

In this appendix, we revise fundamental notions and properties of method of types [81], which
are extensively used through this chapter. Given a vector xn

1 = (x1, . . . , xn) ∈ X
n, let N(a|xn

1 )
be the counting measure, i.e., the number of times the letter a ∈ X appears in the vector
xn
1 . The type of the vector xn

1 , denoted by Qxn
1
, is de�ned through its empirical measure:

Qxn
1
(a) = n−1N(a|xn

1 ) with a ∈ X. Pn(X) denotes the set of all possible types (or empirical
measures) of length n over X. We use type variables of the form X(n) ∈ Pn(X) to denote a
RV with a probability measure identical to the empirical measure induced by xn

1 . The set of
all vectors xn

1 that share this type is denoted by T (Qxn
1
) = T[Qxn1

].

De�nition 4.3 (Types [3]) The type of a sequence xn
1 ∈ X

n is the measure P̂X on X de�ned
by P̂X(a) =

1
n
N(a|xn

1 ) , ∀a ∈ X , where N(a|xn
1 ) is the counting measure of the letter a in

xn
1 . The joint type of a pair (xn

1 , y
n
1 ) ∈ X

n × Y
n is the empirical measure P̂XY on X× Y such

that

P̂XY (a, b) =
1

n
N(a, b|xn

1 , y
n
1 ) , ∀(a, b) ∈ X× Y , (4.127)

where N(a, b|xn
1 , y

n
1 ) is the joint counting measure of the pair (a, b) in (xn

1 , y
n
1 ).

De�nition 4.4 (Conditional Types [3]) The vector yn1 ∈ Y
n
1 is said to have conditional type

V : X 7→ Pn(Y) given xn
1 ∈ X

n if

N(a, b|xn
1 , y

n
1 ) = N(a|xn

1 )V (b|a) , ∀(a, b) ∈ X× Y , (4.128)

where V is a stochastic mapping.
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Lemma 4.8.4 (Type Counting) Let Pn(X) be the set of all possible types of sequences in
X
n. Then, |Pn(X)|≤ (n+ 1)|X| .

Proof. Refer to reference [3, Lemma 2.2].

Lemma 4.8.5 For any type P̂ ∈ Pn(X) of sequences in X
n, denote by T[P̂ ] the set of all

sequences with this type. Then,

(n+ 1)−|X| exp [nH(P̂ )] ≤ |T[P̂ ]|≤ exp [nH(P̂ )] . (4.129)

In a similar fashion, for every xn
1 ∈ X

n and stochastic mapping V : X 7→ Pn(Y), let T[V ](x
n
1 )

be the set of all sequences yn1 ∈ Y
n
1 with the conditional type V given xn

1 . Then,

(n+ 1)−|X||Y| exp [nH(V |P̂ )] ≤ |T[V ](x
n
1 )|≤ exp [nH(V |P̂ )] , (4.130)

where H(V |P̂ ) is the conditional entropy function,

H(V |P̂ ) =
∑

x∈X

P̂ (x)H(V (·|x)) . (4.131)

Proof. Refer to reference [3, Lemma 2.3, Lemma 2.5].

Lemma 4.8.6 (Inaccuracy) Let P̂ ∈ Pn(X) be the type of xn
1 ∈ X

n (X(n) ∼ P̂ is referred to
as the type variable). Then, for any RV X on (X,BX, PX),

P n
X(X

n
1 = xn

1 ) = exp
{
−n
[
H(P̂ ) +D(P̂∥PX)

]}
. (4.132)

Proof. Refer to reference [33, Lemma 3], [3, Lemma 2.6].

De�nition 4.5 (δ-Typicality [33]) Let δ > 0, an n-sequence xn
1 is called δ-typical, denoted

by T[X]δ , if |N(a|xn
1 ) − nPX(a)|≤ O(δ), ∀a ∈ X , and P̂X ≪ PX . Jointly δ-typical T[XY ]δ

and conditionally δ-typical sequences T[Y |X]δ(x
n
1 ) are de�ned in a similar manner.

Lemma 4.8.7 Let T[X]δ , T[XY ]δ and T[Y |X]δ denote the sets of typical, jointly typical and
conditionally typical sequences, respectively. For any xn

1 ∈ T[X]δ and yn1 ∈ T[Y |X]δ′
, then

(xn
1 , y

n
1 ) ∈ T[XY ]δ+δ′

. Moreover, yn1 ∈ T[Y ]δ′′
, with δ′′ = (δ + δ′)|X|.

Proof. Refer to reference [3].

Lemma 4.8.8 (Generalized Markov Lemma) Let PUXY ∈ P (U× X× Y) be a probability
measure that satis�es: U −
− X −
− Y . Consider (xn

1 , y
n
1 ) ∈ T n

[XY ]ϵ′
and random vectors Un

generated according to:

P

(
Un
1 = un

1 |Un
1 ∈ T n

[U |X]ϵ′′
(xn

1 ), x
n
1 , y

n
1

)
=
1
{
un
1 ∈ T n

[U |X]ϵ′′
(xn

1 )
}

|T n
[U |X]ϵ′′

(xn
1 )|

. (4.133)
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For su�ciently small ϵ, ϵ′, ϵ′′ > 0,

P

(
Un /∈ T n

[U |XY ]ϵ(x
n
1 , y

n
1 )
∣∣∣Un ∈ T n

[U |X]ϵ′′
(xn

1 ), x
n
1 , y

n
1

)
≡ O

(
c−n
)

(4.134)

holds uniformly on (xn
1 , y

n
1 ) ∈ T n

[XY ]ϵ′
where c > 1.

Proof. Refer to reference [106].

Lemma 4.8.9 For every probability measure PX ∈ P(X) and stochastic mapping W : X 7→
P(Y), there exist sequences (εn)n∈N+ , (ε

′
n)n∈N+ → 0 as n → ∞ satisfying:

∣∣∣∣
1

n
log|T[X]δ |−H(X)

∣∣∣∣ ≤ εn , (4.135)
∣∣∣∣
1

n
log|T[Y |X]δ(x

n
1 )|−H(Y |X)

∣∣∣∣ ≤ εn , (4.136)

for each xn
1 ∈ T[X]δ where εn ≡ O(n−1 log n), and

PXn
1
(T[X]δ) ≥ 1− ε′n , (4.137)

W n(T[Y |X]δ(x
n
1 )|Xn

1 = xn
1 ) ≥ 1− ε′n , (4.138)

for all xn
1 ∈ X

n where ε′n ≡ O
(

1
nδ2

)
, provided that n is su�ciently large.

Proof. Refer to reference [3, Lemma 2.13].

4.8.6 Derivation of Half-Round Algorithm

Using the fact that f(Xn
1 )−
−Xn

1 −
− Y n
1 (Markov chain) we can rewrite (4.17) as

I(U ;Y n
1 ) = H(U)−H(U |Y n

1 )

=
∑

u∈U

PU(u) log

(
1

P (u)

)
−
∑

yn1 ∈Yn

∑

u∈U

PU,Y n
1
(u, yn1 ) log

(
PY n

1
(yn1 )

PU,Y n
1
(u, yn1 )

)
(4.139)

The �rst term H(U) can be computed using the following identity

H(U) =
∑

u∈U

PU(u) log

(
1

PU(u)

)

=
∑

xn
1∈Xn

∑

u∈U

PU |Xn
1
(u|xn

1 )PXn
1
(xn

1 ) log

(
1∑

xn
1∈Xn PU |Xn

1
(u|xn

1 )PXn
1
(xn

1 )

) (4.140)

82



The second term H(U |Y n
1 ) can be computed using the folowing Markov chain property:

H(U |Y n
1 )

=
∑

yn1 ∈Yn

∑

u∈U

PU,Y n
1
(u, yn1 ) log

(
PY n

1
(yn1 )

PU,Y n
1
(u, yn1 )

)

=
∑

yn1 ∈Yn

∑

xn
1∈Xn

∑

u∈U

PY n
1 ,U,Xn

1
(yn1 , u, x

n
1 ) log

( ∑
xn
1∈Xn PY n

1 ,Xn
1
(yn1 , x

n
1 )∑

xn
1∈Xn PY n

1 ,U,Xn
1
(yn1 , u, x

n
1 )

)

=
∑

xn
1∈Xn

u∈U
yn1 ∈Yn

PY n
1 |Xn

1
(yn1 |xn

1 )PU |Xn
1
(u|xn

1 )PXn
1
(xn

1 ) log




∑
xn
1∈Xn

PY n
1 |Xn

1
(yn1 |xn

1 )PXn
1
(xn

1 )

∑
xn
1∈Xn

PY n
1 |Xn

1
(yn1 |xn

1 )PU |Xn
1
(u|xn

1 )PXn
1
(xn

1 )




(4.141)

In practice, we do not have access to the marginal distribution of X but we have a training
set {x1, ..., xm} i.i.d, with xi ∈ X

n. Then, we can introduce the empirical version of the
marginal of PXn

1
(xn

1 ), by:

PXn
1
(xn

1 ) ≈ P̂Xn
1
(xn

1 ) =
1

m

m∑

i=1

1xi=xn
1
. (4.142)

We also observe that (4.141) is computationally costly because it depends on the alphabet of
Y
n. We can approximate this expression by substituting the conditional distribution by its

empirical mean. More precisely, given Xn
1 = xn

1 we have a set Sxn
1
= {y1, ..., ym′} i.i.d, with

yi ∈ Y
n and

PY n
1 |Xn

1
(yn1 |xn

1 ) ≈ P̂ (Y n
1 = yn1 |Xn

1 = xn
1 ) =

1

m′

∑

yj∈Sxn1

1yj=yn1
. (4.143)

Plugin these two expressions in (4.139) we have the empirical version of the mutual informa-
tion I(U ;Y n

1 ).

Îα(Y
n
1 ;U) ≡ Ĥ(U)− αĤ(U |Y n

1 ) (4.144)

with

Ĥ(U) =
∑

xn
1∈Xn

∑

u∈U

PU |Xn
1
(u|xn

1 )P̂Xn
1
(xn

1 ) log

(
1∑

xn
1∈Xn PU |Xn

1
(u|xn

1 )P̂Xn
1
(xn

1 )

)

=
1

m

m∑

i=1

∑

u∈U

PU |Xn
1
(u|xi) log

(
1

1
m

∑m
i=1 PU |Xn

1
(u|xi)

) (4.145)
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and

Ĥ(U |Y n
1 )

=
∑

xn
1∈Xn

u∈U
yn1 ∈Yn

P̂Y n
1 |Xn

1
(yn1 |xn

1 )PU |Xn
1
(u|xn

1 )P̂Xn
1
(xn

1 ) log




∑
xn
1∈Xn

PY n
1 |Xn

1
(yn1 |xn

1 )P̂Xn
1
(xn

1 )

∑
xn
1∈Xn

PY n
1 |Xn

1
(yn1 |xn

1 )PU |Xn
1
(u|xn

1 )P̂Xn
1
(xn

1 )




=
1

mm′

m∑

i=1

∑

yj∈Sxi

∑

u∈U

PU |Xn
1
(u|xi) log




m∑
i=1

PY n
1 |Xn

1
(yj|xi)

m∑
i=1

PY n
1 |Xn

1
(yj|xi)PU |Xn

1
(u|xi)


 .

(4.146)

4.8.7 Derivation of One-Round Algorithm

Using the fact that V −
− (U, Y n
1 ) −
−Xn

1 and the de�nition of the conditional MI, we have
that I(V ;Xn

1 |U) can be expressed as H(V |U)−H(V |Xn
1 , U). The �rst term H(V |U) can be

computed using the following Markov chain property

= H(V |U)

=
∑

u∈U

∑

v∈V

PU,V (u, v) log

(
PU(u)

PU,V (u, v)

)

=
∑

u∈U

∑

v∈V

∑

yn1 ∈Yn

PU,V,Y n
1
(u, v, yn1 ) log

(
PU(u)∑

yn1 ∈Yn PU,V,Y n
1
(u, v, yn1 )

)

=
∑

u∈U

∑

v∈V

∑

yn1 ∈Yn

PV |Y n
1 ,U(v|yn1 , u)PU,Y n

1
(u, yn1 ) log

(
PU(u)∑

yn1 ∈Yn PV |Y n
1 ,U(v|yn1 , u)PU,Y n

1
(u, yn1 )

)

=
∑

u∈U
v∈V

xn
1∈Xn

yn1 ∈Yn

PV |Y n
1 ,UPY n

1 |Xn
1
PU |Xn

1
PXn

1
log




∑
xn
1∈Xn

PU |Xn
1
PXn

1

∑
yn1 ∈Yn

∑
xn
1∈Xn

PV |Y n
1 ,UPY n

1 |Xn
1
PU |Xn

1
PXn

1


 .

(4.147)

The second term H(V |Xn
1 , U) can be computed using the folowing Markov chain property
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= H(V |Xn
1 , U)

=
∑

u∈U
v∈V

xn
1∈Xn

PU,V,Xn
1
(u, v, xn

1 ) log

(
PU |Xn

1
(u|xn

1 )

PU,V,Xn
1
(u, v, xn

1 )

)

=
∑

u∈U
v∈V

xn
1∈Xn

PU,V,Xn
1
(u, v, xn

1 ) log

(
PU |Xn

1
(u|xn

1 )∑
yn1 ∈Yn PU,V,Xn

1 ,Y
n
1
(u, v, xn

1 , y
n
1 )

)

=
∑

u∈U
v∈V

xn
1∈Xn

PU,V,Xn
1
(u, v, xn

1 ) log

(
PU |Xn

1
(u|xn

1 )∑
yn1 ∈Yn PV |U,Y n

1
(v|u, yn1 )PXn

1 |U,Y n
1
(xn

1 |u, yn1 )PU,Y n
1
(u, yn1 )

)

=
∑

u∈U
v∈V

xn
1∈Xn

PU,V,Xn
1
(u, v, xn

1 ) log

(
PU |Xn

1
(u|xn

1 )∑
yn1 ∈Yn PV |U,Y n

1
(v|u, yn1 )PU,Xn

1 ,Y
n
1
(u, xn

1 , y
n
1 )

)

=
∑

u∈U
v∈V

xn
1∈Xn

PU,V,Xn
1
(u, v, xn

1 ) log

(
PU |Xn

1
(u|xn

1 )∑
yn1 ∈Yn PV |U,Y n

1
(v|u, yn1 )PY n

1 |Xn
1
(yn1 |xn

1 )PU |Xn
1
(u|xn

1 )

)

=
∑

u∈U
v∈V

xn
1∈Xn

PU,V,Xn
1
(u, v, xn

1 ) log

(
1∑

yn1 ∈Yn PV |U,Y n
1
(v|u, yn1 )PY n

1 |Xn
1
(yn1 |xn

1 )

)

=
∑

u∈U
v∈V

xn
1∈Xn

yn1 ∈Yn

PV |Y n
1 ,UPY n

1 |Xn
1
PU |Xn

1
PXn

1
log


 1∑

yn1 ∈Yn

PV |U,Y n
1
PY n

1 |Xn
1


 .

(4.148)

Again, we do not have access to the marginal distribution of X but we have a training set
{x1, ..., xm} i.i.d, with xi ∈ X

n, to introduce the empirical version of the marginal of PXn
1
(xn

1 ),
by:

P̂Xn
1
(xn

1 ) =
1

m

m∑

i=1

1xi=xn
1
. (4.149)

We also approximate the conditional distribution by its empirical mean. More precisely,
given Xn

1 = xn
1 we have a set Sxn

1
= {y1, ..., ym′} i.i.d, with yi ∈ Y

n and

PY n
1 |Xn

1
(yn1 |xn

1 ) ≈ P̂ (Y n
1 = yn1 |Xn

1 = xn
1 ) =

1

m′

∑

yj∈Sxn1

1yj=yn1
. (4.150)

With this we have that the empirical version of the mutual information I(V ;Xn
1 |U), by:

Îα(V ;Xn
1 |U) ≡ Ĥ(V |U)− αĤ(V |Xn

1 , U) (4.151)
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with

Ĥ(V |U)

=
∑

u∈U
v∈V

xn
1∈Xn

yn1 ∈Yn

PV |Y n
1 ,U P̂Y n

1 |Xn
1
PU |Xn

1
P̂Xn

1
log




∑
xn
1∈Xn

PU |Xn
1
P̂Xn

1

∑
yn1 ∈Yn

∑
xn
1∈Xn

PV |Y n
1 ,U P̂Y n

1 |Xn
1
PU |Xn

1
P̂Xn

1




=
1

mm′

m∑

i=1

∑

yj∈Sxi

∑

u∈U
v∈V

PV |Y n
1 ,U(v|yj, u)PU |Xn

1
(u|xi) log




m∑
l=1

PU |Xn
1
(u|xl)

1
m′

m∑
l=1

∑
yj∈Sxl

PV |Y n
1 ,U(v|yj, u)PU |Xn

1
(u|xl)




(4.152)

and

Ĥ(V |Xn
1 , U) =

∑

u∈U
v∈V

xn
1∈Xn

yn1 ∈Yn

PV |Y n
1 ,U P̂Y n

1 |Xn
1
PU |Xn

1
P̂Xn

1
log


 1∑

yn1 ∈Yn

PV |U,Y n
1
P̂Y n

1 |Xn
1




=
1

mm′

m∑

i=1

∑

yj∈Sxi

∑

u∈U
v∈V

PV |Y n
1 ,U(v|yj, u)PU |Xn

1
(u|xi) log


 1∑

yj∈Sxi

PV |Y n
1 ,U(v|yj, u)


 .

(4.153)

86



Chapter 5

Conclusion

5.1 Concluding Remarks

This thesis presents signi�cant contributions to the area of �nite-length analysis, distributed
inference, and collaborative HT. By exploring the impact of �nite observations and practical
communication restrictions on distributed inference, we provide novel results in the form of
concrete performance bounds. These results help the understanding of practical limitations
and provide the means to design concrete encoder-decoder strategies.

Our contribution on decentralized HT, speci�cally Theorem 3.2 o�ers achievable perfor-
mance bounds that establish non-asymptotic bounds for the Type II error when we impose
concrete scenarios for the monotonic behavior of (ϵn)n. These results link the gap between
practical �nite length results and fundamental asymptotic limits o�ering a deeper under-
standing of the detection problem with real-world constraints and the presence of degradation
sources such as noisy observations, communication restrictions between sensors and decision
agents, and the presence of external sources of perturbations. Furthermore, Theorem 4.1 in
collaborative HT highlights the importance of collaboration as an inference strategy. The
complementary information provided by multiple interaction between sensors and decision
agents enhances accuracy. This underscores the signi�cance of collaboration as a strategy
for improving hypothesis testing outcomes.

While our theoretical frameworks provide a foundation for understanding the principles
and limitations of detection schemes, developing practical methods is crucial for real-world
applications. On this dimension, the contributions of this thesis shed light on the design and
implementation of algorithms that facilitate e�ective collaboration between sensors or agents
in binary HT scenarios. Our data-driven solutions o�er an e�cient information exchange
and a coordination strategy (encoder design), and an optimal decision-making framework
(decoder design). Furthermore, the algorithm proposed in Section 4.5 brings a novel per-
spective to the area of collaborative HT. Our algorithm establishes conditions to obtain a
performance improvements. We see an improvement in the detection performance in scenar-
ios where there is the presence of channel asymmetry. This groundbreaking insight opens
up exciting possibilities for optimizing collaborative HT processes, shedding light on how
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asymmetry can be leveraged to achieve heightened performance levels.

5.2 Future Work

A relevant topic to be further explored is extending the results presented in this Thesis to the
problem of arbitrary binary HT subject to communications constraints. Our contribution
that focuses on testing independence can be extended to two arbitrary distributions. These
considerations become crucial as they re�ect a broader conditions under which decisions could
be made. A crucial step in this direction is the characterization of a fundamental limit for
arbitrary binary HT setting. Obtaining this result is essential to extend our non-asymptotic
study since a critical step was analyzing the discrepancy between non-asymptotic bounds
and its corresponding asymptotic limit. Existing contributions that go in this direction are
found in [33,56], where they derived a lower bound for the general bivariate HT.

Another topic to investigate is the extension of collaborative HT with multiple rounds
of interactions. In many domains, such as social networks, collaborative environments, or
distributed systems, interactions occur between multiple participants simultaneously or over
extended periods. Multiple interactions o�er potential advantages. Firstly, they enable
robustness and reliability in communication [74]. By allowing numerous opportunities for
information exchange, errors and disruptions in individual interactions can be mitigated or
corrected. This could enhance the overall accuracy of communication, reducing the impact
of noise, channel impairments, or transmission failures [23]. Finally, this iterative nature
is particularly relevant in contexts such as negotiations, iterative algorithms, or interactive
protocols, where multiple rounds of interaction are necessary to converge towards optimal
outcomes [39�42]. A possible way to address this problem is by borrowing ideas from [29]
combined with the method of types [81].

Finally, the data driven encoder-decoder algorithm proposed in this Thesis has many appli-
cations beyond binary HT where digitalization is necessary to make decisions. For example,
quantization algorithms with multiple sensors have applications in cryptographic systems.
The detection of spoo�ng attacks against cryptographically-secured signals takes the form
of an hypothesis test that accounts for the statistical pro�le of a replay-type spoo�ng at-
tack [107]. Discretizing data also provides a means of transforming information into a form
that can be securely processed and transmitted. Quantization-based encryption schemes and
cryptographic protocols utilize quantization algorithms to ensure the con�dentiality and in-
tegrity of digital data. In [108], for example, they o�er an improved security mechanism,
considering the security level for wireless sensor networks. This is an area where our dis-
tributed framework could be adopted.
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