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ACELERACIÓN DE ALGORITMOS DE OPTIMIZACIÓN

El trabajo de tesis está enfocado en el estudio de la convergencia y desempeño de algorit-
mos de optimización combinando mecanismos de aceleración y estabilización. En particular,
nos enfocamos en dos técnicas: un esquema de reinicio para una dinámica continua, y la
inclusión de inercia en iteraciones de Krasnoselskii-Mann.

El caṕıtulo 2 presenta un resultado sobre la convergencia de esquema de reinicio para
función convexa a través de las soluciones de una ecuación diferencial con amortiguamiento
definido por la curvatura. Esta dinámica en particular puede ser interpretada como la versión
continua del método acelerado de Nesterov con un término que depende del Hessiano de una
función convexa. La inclusión del término de segundo orden muestra, en la práctica, una
reducción en las oscilaciones de los valores de la función, resultando en una convergencia
más estable. Los resultados obtenidos en este caṕıtulo pueden ser vistos como una extensión
del esquema de reinicio propuesto por Su, Boyd y Candès en [83]. Se presentan también
experimentos numéricos, mostrando el desempeño del esquema de reinicio, en su versión
continua y sus consecuencias algoŕıtmicas, y un teorema de existencia para las soluciones de
la ecuación diferencial.

El caṕıtulo 3 se enfoca en la inclusión de inercia en iteraciones del tipo Krasnoselskii-
Mann (KM), gobernadas por una familia de operadores quasi-no expansivos sobre un espacio
de Hilbert. Las iteraciones KM pueden ser vistas como una versión relajada de las iteraciones
de Banach-Picard, y bajo hipótesis habituales, convergen a un punto fijo en común para la
familia de operadores. Las iteraciones de punto fijo juegan un importante rol al definir al-
goritmos de optimización para una variada gama de problemas. En particular, se presentan
resultados sobre la convergencia débil de las iteraciones hacia el punto fijo, junto con esti-
maciones para la tasa de convergencia no asintótica para los residuos. Se obtienen resultados
sobre convergencia fuerte y lineal en el caso quasi-contractante, y se presentan simulaciones
numéricas para versiones inerciales de un algoritmo primal dual y otro gobernado por tres
operadores. En ambos casos, se observan mejoras en el desempeño con respecto a sus contra-
partes no inerciales. Este caṕıtulo también presenta resultados de una investigación en curso
sobre el problema de estimación de desempeño (PEP) para iteraciones KM inerciales, lo cual
nos lleva a conjeturar sobre las tasas de convergencia.
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ACCELERATION OF OPTIMIZATION ALGORITHMS

This thesis is focused on studying the convergence and performance of optimization al-
gorithms combining acceleration and stabilization mechanisms. In particular, we focus on
two techniques: a restart scheme for a continuous dynamics, and the inclusion of inertia on
Krasnoselskii-Mann iterations.

Chapter 2 contains a result on the convergence of a restarting scheme for a convex function
through the solution trajectories of a differential equation with curvature-defined damping.
This particular dynamics can be interpreted as the continuous setting for Nesterov’s acceler-
ated method with a term that depends on the Hessian of the convex function. The inclusion
of the Hessian term shows, in practice, a reduction in the oscillations of the values of the
function, leading to a more stable convergence. The results displayed on this chapter can be
interpreted as an extension of the restart scheme proposed by Su, Boyd and Candès in [83].
Numerical experiments are displayed, showing the performance of the restart routine both
in the continuous setting and its algorithmic consequences, and an existence theorem for the
solutions of the differential equation.

Chapter 3 focuses on the inclusion of inertia on Krasnoselskii-Mann iterations, governed
by a family of quasi-nonexpansive operators defined over a Hilbert space. Krasnoselskii-Mann
iterations can be seen as a relaxed setting for Banach-Picard iterations, and under standard
hypotheses, they converge towards a common fixed point of the family of operators. Fixed
point iterations play a central role on defining optimization algorithms for a wide range
of problems. In particular, we provide results on the weak convergence of KM iterations
towards a common fixed point of the famility of operators, along with estimates for the non-
asymptotic rate at which the residuals vanish. Strong and linear convergence are obtained in
the quasi-contractive setting, and numerical illustrations are displayed for an inertial primal-
dual method and an inertial three-operator splitting algorithm, whose performance is superior
to that of their non-inertial counterparts. Also this chapter presents some results of an
ongoing research about the performance estimation problem (PEP) for inertial KM iterations,
leading us to conjecture about rates of convergence.
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compañeros de Doctorado y funcionarios que hicieron que mi estad́ıa en Beauchef fuera una
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Chapter 1

Introduction

Mathematical Optimization, the science behind finding the best solution in a range of possi-
bilities, is the core of endless applications and one of the main supports of modern mathemat-
ics. Convex analysis and operator theory provide mathematical properties and background
to tackle optimization problems. These two fields of study allow to build efficient and effec-
tive algorithms that converge to the optimal solution of the problem, leading researchers to
study conditions and features that guarantee convergence properties.

Nowadays, the increasing computer power and new coding techniques allow to provide
a wide range of applications for convex optimization and algorithms in engineering and in-
dustry problems. Some applications include classification and regression models for Machine
Learning, signal processing, risk modeling and portfolio management in finance, and control
theory related applications such as transport, biological systems and aerospace engineering.

Both in convex optimization and in operator theory, convergence results can be established
regarding the speed of convergence for algorithms, commonly known as rates of convergence,
which are upper bounds for some metric that measures proximity to an optimality condition,
for example the difference between the function values and the optimal value, the distance
between iterations to the theoretical solution, or the distance between two consecutive it-
erations. These kind of results have a great significance, because they ensure beforehand
the speed at which the algorithm will converge, allowing to establish stopping criteria for a
given tolerance. The rates of convergence, in practice do not provide information about the
execution time of the algorithm, but they provide valuable information about the precision
reached in a fixed amount of iterations. For complex problems, dealing with larger volumes
of data, an improvement on the execution time, memory consumption or precision defines a
crucial and valuable objective.

This thesis presents results regarding the study of acceleration, stabilization and perfor-
mance of optimization algorithms, in the context of convex analysis and fixed-point iterations.
The main work is divided into two mayor sections, both of them motivated by an important
minimization algorithm to be presented next.
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Chapter 1. Introduction

Nesterov’s accelerated gradient method

The fundamental problem in convex optimization is to find the minimum of a convex func-
tion. For that purpose, first-order methods are among the most popular tools, being the
gradient method [27] one of the essentials, mostly because it is easy to implement and is
computationally efficient. This method can be interpreted as a finite-difference discretization
of the differential equation

ẋ(t) + ∇ϕ
(
x(t)

)
= 0, (1.1)

describing the steepest descent dynamics. The gradient method is applicable to smooth func-
tions, but there are more contemporary variations that can deal with nonsmooth ones, and
even exploit the functions’ structure to enhance the algorithm’s per iteration complexity, or
overall performance. A key example is the proximal-gradient (or forward-backward) method
[57, 73], (see also [61, 79]), which is in close relationship with a nonsmooth version of (1.1).
See [19] for a more detailed reading about first-order methods.

In 1983, Yurii Nesterov proposed an accelerated version of the gradient method [67], which
can be formulated as follows. Let ϕ : Rn → R ∪ {+∞} be a differentiable convex function
that attains its minimum at x∗. Given two starting points x0, x1 ∈ Rn, define the sequences{

yk = xk + αk(xk − xk−1),
xk+1 = yk − s▽ϕ(yk),

(1.2)

where s > 0 is the step-size and αk acts as an extrapolation sequence given by

αk =
k − 1

k + α− 1
≈ 1 − α

k
.

If ∇ϕ is L-Lipschitz, s ≤ 1/L and α ≥ 3, this method exhibits the rate of convergence

ϕ(xk) − ϕ∗ ≤ O
(

1

k2

)
,

where ϕ∗ = ϕ(x∗). This scheme exhibits a faster worst-case convergence rate than the regular
gradient method (which corresponds to consider αk ≡ 0 on (1.2)), which exhibits a rate of
convergence of O(1/k). Then, the acceleration of the convergence is given by the inclusion
of the sequence αk, which is usually referred as momentum or inertia. The motivation for
considering this inertial term can be tracked to different algorithms and physical motivations
(see [76, 4]). Notice that the accelerated version (1.2) has a similar computational complexity
than the usual gradient method, because it only adds an extrapolation of two points.

Nesterov’s scheme, and its convergence properties motivate the work presented on this
thesis. The work is divided into two mayor parts, each of which can be seen as a branch of
extensions of the acceleration ideas provided by Nesterov.
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1.1. PART I: RESTART OF A DYNAMICS WITH HESSIAN DAMPING

1.1 Part I: Restart of a dynamics with Hessian

damping

In [83], Su, Boyd and Candès studied the following differential equation:

ẍ(t) +
α

t
ẋ(t) + ∇ϕ(x(t)) = 0, (AVD)

with α > 0 and t > 0. This equation can be interpreted as a continuous setting for Nesterov’s
method, given that the method can be derived by discretize (AVD). Equation (AVD) is
commonly known as AVD (Asymptotic Vanishing Damping), and [83] shows that the function
values along the trajectories converge towards the minimum at a rate of O(1/t2) for α ≥ 3.
Moreover in the case α > 3, [12] shows that x(t) converges weakly towards x∗ and [63] that
the rate of convergence is o(1/t2).

On [15], Attouch, Peypouquet and Redont proposed a Dynamic Inertial Newton system
with Asymptotically Vanishing Damping, given by

ẍ(t) +
α

t
ẋ(t) + ∇ϕ(x(t)) + β∇2ϕ(x(t))ẋ(t) = 0, (DIN-AVD)

where α, β > 0. Similar to the case (AVD), exhibits a rate of convergence of O(1/t2) for the
function values along the solutions, when α ≥ 3. Although this system asks to ϕ being twice
differentiable, and it seems more difficult to deal with second-order derivatives, the authors
show that it can be transformed into an equivalent first-order equation system in time and
space, which can be extended to a differential inclusion that is well posed whenever ϕ is
closed and convex.

One of the most interesting facts of the solutions of (DIN-AVD) is that the inclusion of the
Hessian term can be interpreted as a damping agent for the oscillations in the convergence.
As a very simple example, consider the convex function ϕ : R2 → R given by ϕ(x1, x2) =
1
2
(x2

1 + 100x2
2), which has a global minimum at (0, 0) and optimal value 0. Figure 1.1 shows

the convergence both for the trajectories and function values obtained by solving (DIN-AVD)
and (AVD) (which corresponds to (DIN-AVD) with β = 0). In both cases, the convergence
towards the minimizer and the optimal value can be observed, with a remarkable neutralizer
effect of the Hessian term.

The erratic behavior displayed by (AVD), and mostly by its discrete counterpart, Nes-
terov’s method, has motivated a strategy which aims to avoid it: restart schemes. This
heuristic involves running the algorithm until a stopping criteria is achieved, with the most
common choice being whenever ϕ(xk+1) > ϕ(xk), that is, the point when the function starts
to increase instead of decrease (see Figure 1.1 bottom left, the points where the function
“bounces”). Then, restart k to 0 and perform the algorithm again using as initial point
the last point of the previous cycle. O’Donaghue and Candès [72], proposed this strategy
which shows a monotonic and faster convergence in practice, but there are no rates of con-
vergence for this method that can explain the acceleration obtained. In order to address that
problem, there are several works that provide rates of convergence using different criteria
or approaches. One of those is the result given by Su, Boyd and Candès [83], where they
propose a restart scheme for the continuous setting of Nesterov’s method, that is, equation
(AVD), using as restart criteria the first moment where the speed of the solution trajectories

3



1.1. PART I: RESTART OF A DYNAMICS WITH HESSIAN DAMPING
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Figure 1.1: Convergence of solutions of (DIN-AVD) in the cases β = 0 and β = 1, using
α = 3.1 on the interval [1, 10]. Trajectories (top) and function values (bottom).

decreases. The motivation behind this criteria is to keep a high velocity along the trajectory.
Although a rate of convergence for the algorithm is not provided, the result in the continuous
case illustrates the behavior of a restart routine in an algorithmic context.

The main objective of this first part is to provide a speed restart scheme for the dynamics
given by (DIN-AVD), that is, to extend the results obtained in [83] to the case involving the
Hessian of the function. Our result states that the trajectories generated by this method
converge weakly as t → ∞ and the values converge to the optimum linearly. Equation
(DIN-AVD) leads to first-order optimization algorithms which involve a gradient-correction
term, being studied recently in [10, 11, 1], for example. The continuous speed restart result
obtained will hopefully give an insight into the use of a restart routine on this kind of
algorithms.

This first part is displayed on Chapter 2 as follows: Section 2.2 presents the main
result as a theorem for the convergence and the rate for the restart scheme for equation
(DIN-AVD). Sections 2.3 and 2.4 present technical results that are used to prove the main
result, the first one provides a bound for the restarting time, and the second one proves the
linear convergence between two restarts. Using the linear convergence obtained, along with
an estimation of how many times the trajectory has been restarted, the proof of the main
theorem is straightforward. A few numerical examples are displayed on Section 2.5 on the
continuous case, and Section 2.6 on the discrete case. In both cases, the convergence of the
function values is stabilized by the restart routine. By the end of the chapter, the proof of
the existence theorem and a useful bound are provided in Appendix 2.7 and Appendix 2.8,
respectively.

The results presented in this first part led to the writing of the article [62], published in
Journal of Optimization: Theory and applications.
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1.2. PART II: INERTIAL KRASNOSELSKII-MANN ITERATIONS

1.2 Part II: Inertial Krasnoselskii-Mann iterations

Let H be a real Hilbert space and consider the classical gradient method, that is: from a
starting point x0 ∈ H and s > 0, recursively define xk+1 = xk − s∇ϕ(xk). Notice, that the
algorithm can be defined in an operator form, as xk+1 = Txk, with T = I − s∇ϕ. Then,
finding a minimum of the function is the same as finding a fixed point of the operator.

Given an operator T and x0 ∈ H, iterations of the form

xk+1 = Txk, (1.3)

introduced in [75], are commonly known as Banach-Picard iterations and they converge to
the unique fixed point of the operator, when T is a strict contraction (L-Lipschitz with L < 1)
thanks to Banach’s fixed point theorem [17]. The convergence of iterations (1.3) towards a
fixed point of the operator can fail when this is not a strict contraction. A simple example
is to consider the operator Tx = −x, which has 0 as the unique fixed point. In that case,
iterations (1.3) with x0 ̸= 0 do not converge.

In order to relax the strict contraction hypothesis, Krasnoselskii-Mann (KM) iterations
[52, 60] were introduced. Given a sequence λk ∈ (0, 1), generate recursively

xk+1 = (1 − λk)xk + λkTxk, (1.4)

with x0 ∈ H. In [78] it is proved that if T is a nonexpansive operator (L-Lipschitz with L ≤ 1)
with Fix(T ) ̸= ∅, and

∑
λk(1 − λk) = ∞, then iteration (1.4) converges weakly towards a

fixed point of T . Then, λk acts as a sequence of relaxation or averaging parameters that
can improve the convergence with respect to Banach-Picard iterations. As a very simple
illustration, consider again Tx = −x and λk ≡ λ. Then, iteration (1.4) converges linearly to
0 for every value of λ ∈ (0, 1) and moreover, in the case λ = 1/2 converges in one step.

As shown before, the gradient method, which can be seen as a particular instance of
fixed-point iterations, improves its convergence by the inclusion of an inertial term. Then,
the purpose of this part is to develop further insight into the convergence properties of inertial
Krasnoselskii-Mann iterations in their general form{

yk = xk + αk(xk − xk−1)
xk+1 = (1 − λk)yk + λkTkyk,

(1.5)

where (Tk) is a family of operators defined on a real Hilbert space H, and the positive se-
quences (αk) and (λk) are the inertial and relaxation (or averaging) parameters, respectively.

The general aim of this part is to provide conditions on the parameter sequences and
the family of operators to ensure that the sequences generated by (1.5) converges (weakly or
strongly) to a common fixed point of the Tk’s, provided there are any. More specifically, our
contribution consists on a weak convergence result simplifying the existing hypotheses on the
literature, a strong convergence result with a rate of convergence, and numerical simulations
where two inertial schemes for existing fixed point algorithms are provided. We shall also see
that adding the inertial term does not always make algorithms faster (this is reflected in the
worst-case convergence rates), but may boost their convergence in some relevant instances.

The results presented in this second part corresponds to a joint work with Ignacio Fierro1,
and led to the article [45], submitted to Set-Valued and Variational Analysis.

1PhD, BIOCORE team, Centre INRIA de l’Université de la Côte d’Azur, France.
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1.2. PART II: INERTIAL KRASNOSELSKII-MANN ITERATIONS

In addition to the theoretical and numerical convergence results leading to the article
mentioned, we will also include results from an ongoing research project. This project is
motivated for an open question that has emerged in our study of KM iterations. The rate
of convergence found for the strong convergence of the iterations, implies that the optimal
performance is achieved when inertia is not employed. One challenging matter about rates
is to evaluate their tightness, that is, how close they approximate the actual convergence.
Since the rate is an upper bound, in practice it can converge to zero significantly slower than
the algorithm and will be still an upper bound. Then, a motivating open question in this
matter is to obtain a rate of convergence that truly explains the inclusion of inertia on KM
iterations.

Following ideas of Drori and Teboulle on [43], the problem of estimating the worst-case
speed of convergence for some iterations can be stated itself as an optimization problem, called
Performance Estimation Problem (PEP). Using this approach, the problem of estimating
rates of convergence for inertial KM iterations can be stated as a PEP. An overview of
the PEP modeling is provided along with preliminary results from our ongoing numerical
experiments.

This second part is displayed on Chapter 3 as follows: in Section 3.2 we establish the weak
convergence of KM iterations towards a common fixed point of the family of operators in
the quasi-nonexpansive case, along with a non-asymptotic rate at which the residuals vanish.
Section 3.3 is devoted to the strong and linear convergence in the quasi-contractive setting.
In both cases, we highlight the relationship with the non-inertial case, and show that passing
from one regime to the other is a continuous process in terms of parameter hypotheses and
convergence rates. In Section 3.4, we discuss several instances of KM iterations, which are
relevant to the numerical illustrations provided in Section 3.5, concerning an inertial primal-
dual method and an inertial three-operator splitting algorithm. The results of the PEP
analysis for KM iterations are displayed at Section 3.6.
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Chapter 2

Restart of a Hessian dynamics

2.1 Introduction

Let ϕ : Rn → R a twice continuously differentiable convex function, which attains its mini-
mum value ϕ∗, and whose gradient ∇ϕ is Lipschitz-continuous with constant L > 0. In [83],
Su, Boyd and Candès studied the following differential equation:

ẍ(t) +
α

t
ẋ(t) + ∇ϕ(x(t)) = 0, (AVD)

with α > 0 and t > 0. Despite its rate of convergence guarantees a faster decay than the
steepest descent dynamics (1.1), trajectories satisfying (AVD) exhibit a somewhat chaotic
behavior, especially if the objective function is ill-conditioned. In particular, the function
values tend not to decrease monotonically, but to present an oscillatory behavior, instead.

Example 2.1.1. We consider the quadratic function ϕ : R3 → R, defined by

ϕ(x1, x2, x3) =
1

2
(x2

1 + ρx2
2 + ρ2x2

3), (2.1)

Figure 2.1 shows the behavior of the solution to (AVD), with x(1) = (1, 1, 1) and ẋ(1) =
−∇ϕ

(
x(1)

)
(the direction of maximum descent).

The oscillatory nature exhibited by the trajectories arises a problem when an approxi-
mation of the solution is needed. In that case, the precision of the approximation will vary
depending on where the time interval concludes. In order to avoid this undesirable behavior,
and partly inspired by a continuous version of Newton’s method [6], Attouch, Peypouquet
and Redont [15] proposed a Dynamic Inertial Newton system with Asymptotically Vanishing
Damping, given by

ẍ(t) +
α

t
ẋ(t) + ∇ϕ(x(t)) + β∇2ϕ(x(t))ẋ(t) = 0, (DIN-AVD)

where α, β > 0. The authors presented (DIN-AVD) as a continuous-time model for the
design of new algorithms, a line of research already outlined in [15], and continued in [10].
Although (DIN-AVD) may initially appear more intricate to deal with, due to the second
order information required on ϕ, a remarkable feature is that it can be rewritten as a first

7



2.1. INTRODUCTION

0 5 10 15 20 25 30 35
t
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10−1

101

103  ϕ(x(t))

0 5 10 15 20 25 30 35
t

10−3

10−1

101

103

 ϕ(x(t))

Figure 2.1: Depiction of the function values according to Example 2.1.1, on the interval
[1, 35], for α = 3.1, and ρ = 10 (left) and ρ = 100 (right).

order system depending only on the gradient of the function. In terms of the convergence, the
function values vanish along the solutions, with the same rates as for (AVD). Nevertheless,
in contrast with the solutions of (AVD), the oscillations are tame.

Example 2.1.2. In the context of Example 2.1.1, Figure 2.2 shows the behavior of the
solution to (AVD) in comparison with that of (DIN-AVD), both with x(1) = (1, 1, 1) and
ẋ(1) = −∇ϕ

(
x(1)

)
.

0 5 10 15 20 25 30 35
t

10−23

10−19

10−15

10−11

10−7

10−3

101

 β= 0
 β= 1

0 5 10 15 20 25 30 35
t

10−21

10−17

10−13

10−9

10−5

10−1

103

107

 β= 0
 β= 1

Figure 2.2: Depiction of the function values according to Example 2.1.2, on the interval
[1, 35], for α = 3.1, β = 1, and ρ = 10 (left) and ρ = 100 (right).

An alternative way to avoid (or at least moderate) the oscillations exemplified in
Figure 2.1 for the solutions of (AVD) is to stop the evolution and restart it with zero
initial velocity, from time to time. The simplest option is to do so periodically, at fixed
intervals. This idea is used in [69] for the accelerated gradient method, where the number
of iterations between restarts that depends on the parameter of strong convexity of the
function. See also [66, 3, 16], where the problem of estimating the appropriate restart times
is addressed. An adaptive policy for the restarting of Nesterov’s Method was proposed by
O’Donoghue and Candès in [71], where the algorithm is restarted at the first iteration k
such that ϕ(xk+1) > ϕ(xk), which prevents the function values to increase locally. This
kind of restarting criteria shows a remarkable performance, although convergence rate
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2.2. A SPEED RESTARTING SCHEME AND THE MAIN THEORETICAL RESULT

guarantees have not been established, some partial steps in this direction have been made
in [47, 56]. Moreover, the authors of [71] observe that this heuristic displays an erratic
behavior when the difference ϕ(xk) − ϕ(xk+1) is small, due to the prevalence of cancellation
errors. Therefore, this method must be handled with care if high accuracy is desired. A
different restarting scheme, based on the speed of the trajectories, is proposed for (AVD)
in [83], where rates of convergence are established. Also, in [83], the authors also perform
numerical tests using Nesterov’s inertial gradient method, with this restarting scheme as a
heuristic, and observe a faster convergence to the optimal value.

The aim of this first part is to analyze the impact that the speed restarting scheme has on
the solutions of (DIN-AVD), in order to set the theoretical foundations to further accelerate
Hessian driven inertial algorithms (like the ones in [10]) by means of a restarting policy.
This approach combines two oscillation mitigation principles that result in a monotonic
and fast convergence of the function values. Linear convergence rates for functions with
quadratic growth are provided, and it is observed a noticeable improvement in the behavior
of the trajectories in terms of stability and convergence speed, both in comparison with the
non-restarted trajectories, and with the restarted solutions of (AVD). As a byproduct, we
generalize and improve some of the results in [83]. It is worth noticing that the conver-
gence rate result holds for all values of α > 0 and β ≥ 0, in contrast with those in [12, 15, 10].

Consider the ordinary differential equation (DIN-AVD) with initial conditions x(0) = x0,
ẋ(0) = 0, and parameters α > 0 and β ≥ 0. A solution is a function in C2 ((0,+∞);Rn) ∩
C1 ([0,+∞);Rn), such that x(0) = x0, ẋ(0) = 0 and (DIN-AVD) holds for every t > 0.
Existence and uniqueness of such a solution is not straightforward due to the singularity at
t = 0, but can be established by a limiting procedure. As shown in Appendix 2.7, we have
the following:

Theorem 2.1.1. For every x0 ∈ Rn, the differential equation (DIN-AVD), with initial con-
ditions x(0) = x0 and ẋ(0) = 0, has a unique solution.

We are concerned with the design and analysis of a restart scheme to accelerate the
convergence of the solutions of (DIN-AVD) to minimizers of ϕ, based on the method proposed
in [83].

2.2 A speed restarting scheme and the main

theoretical result

Since the damping coefficient α/t goes to 0 as t → ∞, large values of t result in a smaller
stabilization of the trajectory. The idea is thus to restart the dynamics at the point where
the speed ceases to increase.

Given z ∈ Rn, let yz be the solution of (DIN-AVD), with initial conditions yz(0) = z and
ẏz(0) = 0. Set

T (z) = inf

{
t > 0 :

d

dt
∥ẏz(t)∥2 ≤ 0

}
. (2.2)

9



2.2. A SPEED RESTARTING SCHEME AND THE MAIN THEORETICAL RESULT

Remark 2.2.1. Take z /∈ argmin(ϕ), and define yz as above. For t ∈
(
0, T (z)

)
, we have

d

dt
ϕ(yz(t)) = ⟨∇ϕ(yz(t)), ẏz(t)⟩

= −⟨ÿz(t), ẏz(t)⟩ −
α

t
∥ẏz(t)∥2 − β⟨∇2ϕ(yz(t))ẏz(t), ẏz(t)⟩.

But ⟨∇2ϕ(yz(t))ẏz(t), ẏz(t)⟩ ≥ 0 by convexity, and ⟨ÿz(t), ẏz(t)⟩ ≥ 0 by the definition of
T (z). Therefore,

d

dt
ϕ(yz(t)) ≤ −α

t
∥ẏz(t)∥2 . (2.3)

In particular, t 7→ ϕ
(
yz(t)

)
decreases on [0, T (z)].

If z /∈ argmin(ϕ), then T (z) cannot be 0. In fact, we shall prove (see Corollaries 2.3.2 and
2.3.3) that

0 < inf
{
T (z) : z /∈ argmin(ϕ)

}
≤ sup

{
T (z) : z /∈ argmin(ϕ)

}
< ∞. (2.4)

Definition 2.2.1. Given x0 ∈ Rn, the restarted trajectory χx0 : [0,∞) → Rn is defined
inductively:

1. First, compute yx0, T1 = T (x0) and S1 = T1, and define χx0(t) = yx0(t) for t ∈ [0, S1].

2. For i ≥ 1, having defined χx0(t) for t ∈ [0, Si], set xi = χx0(Si), and compute yxi
. Then,

set Ti+1 = T (xi) and Si+1 = Si +Ti+1, and define χx0(t) = yxi
(t−Si) for t ∈ (Si, Si+1].

In view of (2.4), Si is defined for all i ≥ 1, infi≥1(Si+1 − Si) > 0 and limi→∞ Si = ∞.
Moreover, in view of Remark 2.2.1, we have

Proposition 2.2.1. The function t 7→ ϕ
(
χx0(t)

)
is nonincreasing on [0,∞).

Our main theoretical result establishes that ϕ
(
χx0(t)

)
converges linearly to ϕ∗, provided

there exists µ > 0 such that

µ(ϕ(z) − ϕ∗) ≤ 1

2
∥∇ϕ(z)∥2 (2.5)

for all z ∈ Rn. The  Lojasiewicz inequality (2.5) is equivalent to quadratic growth and is
implied by strong convexity (see [21]). More precisely, we have the following:

Theorem 2.2.1. Let ϕ : Rn → R be convex and twice continuously differentiable. Assume
∇ϕ is Lipschitz-continuous with constant L > 0, that there exists µ > 0 such that (2.5) holds,
and that the minimum value ϕ∗ of ϕ is attained. Given α > 0 and β ≥ 0, let be the restarted
trajectory defined by (DIN-AVD) from an initial point x0 ∈ Rn. Then, there exist constants
C,K > 0 such that

ϕ
(
χx0(t)

)
− ϕ∗ ≤ Ce−Kt

(
ϕ(x0) − ϕ∗) ≤ CL

2
e−Kt dist

(
x0, argmin(ϕ)

)2
for all t > 0.

The rather technical proof is split into several parts and presented in the next subsections.
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2.3 Technicalities

Throughout this section, we fix z /∈ argmin(ϕ) and, in order to simplify the notation, we
denote by x (instead of yz) the solution of (DIN-AVD) with initial condition x(0) = z and
ẋ(0) = 0.

2.3.1 A few useful bounds

We begin by defining some useful auxiliary functions and point out the main relationships
between them.

To this end, we first rewrite equation (DIN-AVD) as

d

dt
(tαẋ(t)) = −tα∇ϕ(x(t)) − βtα∇2ϕ(x(t))ẋ(t). (2.6)

Integrating (2.6) over [0, t], we get

tαẋ(t) = −
∫ t

0

uα∇ϕ(x(u)) du− β

∫ t

0

uα∇2ϕ(x(u))ẋ(u) du

= −
[∫ t

0

uα(∇ϕ(x(u)) −∇ϕ(z)) du

]
−
[
β

∫ t

0

uα∇2ϕ(x(u))ẋ(u) du

]
− tα+1

α + 1
∇ϕ(z). (2.7)

In order to obtain an upper bound for the speed ẋ, the integrals

Iz(t) =

∫ t

0

uα(∇ϕ(x(u)) −∇ϕ(z)) du, Jz(t) = β

∫ t

0

uα∇2ϕ(x(u))ẋ(u) du (2.8)

will be majorized using the function

Mz(t) = sup
u∈(0,t]

[
∥ẋ(u)∥

u

]
, (2.9)

which is positive, nondecreasing and continuous.

Lemma 2.3.1. For every t > 0, we have

∥Iz(t)∥ ≤ LMz(t)t
α+3

2(α + 3)
and ∥Jz(t)∥ ≤ βLMz(t)t

α+2

α + 2
.

Proof. For the first estimation, we use the Lipschitz-continuity of ∇ϕ and the fact that M
in nondecreasing, to obtain

∥∇ϕ(x(u)) −∇ϕ(z)∥ ≤ L∥x(u) − z∥

≤ L

∥∥∥∥∫ u

0

ẋ(s) ds

∥∥∥∥
11
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≤ L

∫ u

0

s
∥ẋ(s)∥

s
ds

≤ LMz(u)

∫ u

0

s ds,

which results in

∥∇ϕ(x(u)) −∇ϕ(z)∥ ≤ Lu2Mz(u)

2
(2.10)

Then, from the definition of Iz(t) we deduce that

∥Iz(t)∥ ≤
∫ t

0

uα ∥∇ϕ(x(u)) −∇ϕ(z)∥ du

≤ LMz(t)

2

∫ t

0

uα+2 du

=
LMz(t)t

α+3

2(α + 3)
.

For the second inequality, we proceed analogously to get∥∥∇2ϕ(x(u))ẋ(u)
∥∥ =

∥∥∥∥lim
r→u

∇ϕ(x(r)) −∇ϕ(x(u))

r − u

∥∥∥∥
≤ lim

r→u

L

r − u

∫ r

u

∥ẋ(s)∥ ds

≤ lim
r→u

LMz(r)

r − u

∫ r

u

s ds,

which yields ∥∥∇2ϕ(x(u))ẋ(u)
∥∥ ≤ LuMz(u). (2.11)

Then,

∥Jz(t)∥ ≤ β

∫ t

0

uα
∥∥∇2ϕ(x(u))ẋ(u)

∥∥ du ≤ β

∫ t

0

uα+1LMz(u) du ≤ βLMz(t)t
α+2

α + 2
,

as claimed.

The dependence of Mz on the initial condition z may be greatly simplified. To this end,
set

H(t) = 1 − Lβt

(α + 2)
− Lt2

2(α + 3)
. (2.12)

The function H is concave, quadratic, does not depend on z, and has exactly one positive
zero, given by

τ1 = −
(
α + 3

α + 2

)
β +

√(
α + 3

α + 2

)2

β2 +
2(α + 3)

L
. (2.13)

In particular, H decreases strictly from 1 to 0 on [0, τ1].

Lemma 2.3.2. For every t ∈ (0, τ1),

Mz(t) ≤
∥∇ϕ(z)∥

(α + 1)H(t)
. (2.14)
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Proof. If 0 < u ≤ t, using (2.7) and (2.8), along with Lemma 2.3.1, we obtain

∥ẋ(u)∥
u

≤ ∥Iz(u) + Jz(u)∥
uα+1

+
∥∇ϕ(z)∥
α + 1

≤
[

Lu2

2(α + 3)
+

Lβu

α + 2

]
Mz(u) +

∥∇ϕ(z)∥
α + 1

. (2.15)

Since the right-hand side is nondecreasing in t, we take the supremum for u ∈ [0, t] to deduce
that

Mz(t) ≤
[

Lt2

2(α + 3)
+

Lβt

α + 2

]
Mz(t) +

∥∇ϕ(z)∥
α + 1

.

Rearranging the terms, and using the definition of H, given in (2.12), we see that

H(t)Mz(t) ≤
∥∇ϕ(z)∥
(α + 1)

.

We conclude by observing that H is positive on (0, τ1).

By combining Lemmas 2.3.1 and 2.3.2, and inequalities (2.10) and (2.11), we obtain:

Corollary 2.3.1. For every t ∈ (0, τ1), we have

∥Iz(t) + Jz(t)∥ ≤ tα+1

[
1 −H(t)

H(t)

]
∥∇ϕ(z)∥
(α + 1)∥∥(∇ϕ(x(t)) −∇ϕ(z)

)
+ β∇2ϕ(x(t))ẋ(t)

∥∥ ≤
[
Lt2

2
+ βLt

]
∥∇ϕ(z)∥

(α + 1)H(t)
.

We highlight the fact that the bound above depends on z only via the factor ∥∇ϕ(z)∥.

2.3.2 Estimates for the restarting time

We begin by finding a lower bound for the restarting time, depending on the parameters α,
β and L, but not on the initial condition z.

Lemma 2.3.3. Let z /∈ argmin(ϕ), and let x be the solution of (DIN-AVD) with initial
conditions x(0) = z and ẋ(0) = 0. For every t ∈ (0, τ1), we have

⟨ẋ(t), ẍ(t)⟩ ≥ t ∥∇ϕ(z)∥2

(α + 1)2H(t)2

(
1 − (2α + 3)βLt

(α + 2)
− (α + 2)Lt2

(α + 3)

)
.

Proof. From (2.7) and (2.8), we know that

ẋ(t) = − 1

tα
(
Iz(t) + Jz(t)

)
− t

α + 1
∇ϕ(z). (2.16)

On the other hand,

d

dt

[
1

tα
(
Iz(t) + Jz(t)

)]
= − α

tα+1

(
Iz(t) + Jz(t)

)
+
(
∇ϕ
(
x(t)

)
−∇ϕ(z)

)
+ β∇2ϕ(x(t))ẋ(t).
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Then,

ẍ(t) =
α

tα+1

(
Iz(t) + Jz(t)

)
− (∇ϕ(x(t)) −∇ϕ(z)) − β∇2ϕ(x(t))ẋ(t)

− 1

α + 1
∇ϕ(z)

= A(t) −B(t),

where

A(t) =
α

tα+1

(
Iz(t) + Jz(t)

)
− 1

α + 1
∇ϕ(z),

B(t) =
(
∇ϕ(x(t)) −∇ϕ(z)

)
+ β∇2ϕ(x(t))ẋ(t).

With this notation, we have

⟨ẋ(t), ẍ(t)⟩ = ⟨ẋ(t), A(t)⟩ − ⟨ẋ(t), B(t)⟩ ≥ ⟨ẋ(t), A(t)⟩ − ∥ẋ(t)∥ ∥B(t)∥.

For the first term, we do as follows:

⟨ẋ(t), A(t)⟩ = −
〈

1

tα
(
Iz(t) + Jz(t)

)
+

t

α + 1
∇ϕ(z),

α

tα+1

(
Iz(t) + Jz(t)

)
− 1

α + 1
∇ϕ(z)

〉
≥ t

(α + 1)2
∥∇ϕ(z)∥2 − α

t2α+1
∥Iz(t) + Jz(t)∥2

− (α− 1)

tα(α + 1)
∥∇ϕ(z)∥ ∥Iz(t) + Jz(t)∥

≥ t

(α + 1)2
∥∇ϕ(z)∥2 − αt

(α + 1)2

[
1 −H(t)

H(t)

]2
∥∇ϕ(z)∥2

− (α− 1)t

(α + 1)2

[
1 −H(t)

H(t)

]
∥∇ϕ(z)∥2

=
t ∥∇ϕ(z)∥2

(α + 1)2

(
1 − α

[
1 −H(t)

H(t)

]2
− (α− 1)

[
1 −H(t)

H(t)

])

=
t ∥∇ϕ(z)∥2

(α + 1)2H(t)2

(
H(t)2 − α

(
1 −H(t)

)2 − (α− 1)H(t)
(
1 −H(t)

))
=

t ∥∇ϕ(z)∥2

(α + 1)2H(t)2
(
(α + 1)H(t) − α

)
,

where we have used the Cauchy-Schwarz inequality and Corollary 2.3.1. For the second term,
we first use (2.16) and observe that

∥ẋ(t)∥ ≤ 1

tα
∥Iz(t) + Jz(t)∥ +

t

(α + 1)
∥∇ϕ(z)∥ ≤ t ∥∇ϕ(z)∥

(α + 1)H(t)
,

and

B(t) ≤
[
Lt2

2
+ βLt

]
∥∇ϕ(z)∥

(α + 1)H(t)
,

by Corollary 2.3.1. We conclude that

⟨ẋ(t), ẍ(t)⟩ ≥ t ∥∇ϕ(z)∥2

(α + 1)2H(t)2

(
(α + 1)H(t) − α− Lt2

2
− βLt

)
14
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=
t ∥∇ϕ(z)∥2

(α + 1)2H(t)2

(
1 − (2α + 3)βLt

(α + 2)
− (α + 2)Lt2

(α + 3)

)
,

as stated.

The function G, defined by

G(t) = 1 − (2α + 3)βLt

(α + 2)
− (α + 2)Lt2

(α + 3)
= (α + 1)H(t) − α− Lt2

2
− βLt, (2.17)

does not depend on the initial condition z. Its unique positive zero is

τ3 = −(α + 3)(2α + 3)

2(α + 2)2
β +

√
(α + 3)2(2α + 3)2

4(α + 2)4
β2 +

(α + 3)

(α + 2)L
. (2.18)

In view of the definition of the restarting time, an immediate consequence of Lemma 2.3.3
is

Corollary 2.3.2. Let T∗ = inf
{
T (z) : z /∈ argmin(ϕ)

}
. Then, τ3 ≤ T∗.

Remark 2.3.1. If β = 0, then

τ3 =

√
(α + 3)

(α + 2)L
.

The case α = 3 and β = 0 was studied in [83], and the authors provided 4
5
√
L

as a lower
bound for the restart. The arguments presented here yield a higher bound, since

τ3 =

√
6

5L
>

1√
L

>
4

5
√
L
.

Recall that the function H given in (2.12) decreases from 1 to 0 on [0, τ1]. Therefore,
H(t) > 1

2
for all t ∈ [0, τ2), where

τ2 = H−1
(
1
2

)
= −

(
α + 3

α + 2

)
β +

√(
α + 3

α + 2

)2

β2 +
α + 3

L
< τ1. (2.19)

Evaluating the right-hand side of (2.17), we see that

G(τ2) =
(1 − α) − Lτ 22 − 2βLτ2

2
< 0,

whence
τ1 > τ2 > τ3 > 0. (2.20)

These facts will be useful to provide an upper bound for the restarting time.

Proposition 2.3.1. Let z /∈ argmin(ϕ), and let x be the solution of (DIN-AVD) with initial
conditions x(0) = z and ẋ(0) = 0. Let ϕ satisfy (2.5) with µ > 0. For each τ ∈ (0, τ2) ∩
(0, T (z)], we have

T (z) ≤ τ exp

[
(α + 1)2

2αµτ 2Ψ(τ)

]
, where Ψ(τ) =

[
2 − 1

H(τ)

]2
.
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2.4. FUNCTION VALUE DECREASE AND PROOF OF THEOREM 2.2.1

Proof. In view of (2.7) and (2.8), we can use Corollary 2.3.1 to obtain∥∥∥∥ẋ(τ) +
τ

α + 1
∇ϕ(z)

∥∥∥∥ =
1

τα
∥I(τ) + J(τ)∥ ≤ τ

[
1

H(τ)
− 1

]
∥∇ϕ(z)∥
(α + 1)

.

From the (reverse) triangle inequality and the definition of H, it ensues that

∥ẋ(τ)∥ ≥ τ ∥∇ϕ(z)∥
α + 1

− τ

[
1

H(τ)
− 1

]
∥∇ϕ(z)∥
(α + 1)

= τ

[
2 − 1

H(τ)

]
∥∇ϕ(z)∥
α + 1

, (2.21)

which is positive, because τ ∈ (0, τ2). Now, take t ∈ [τ, T (z)]. Since ∥ẋ(t)∥2 increases on[
0, T (z)

]
, Remark 2.2.1 gives

d

dt
ϕ
(
x(t)

)
≤ −α

t
∥ẋ(t)∥2 ≤ −α

t
∥ẋ(τ)∥2 ≤ −1

t

[
ατ 2Ψ(τ) ∥∇ϕ(z)∥2

(α + 1)2

]
.

Integrating over [τ, T (z)], we get

ϕ
(
x(T (z))

)
− ϕ
(
x(τ)

)
≤ −

[
ατ 2Ψ(τ) ∥∇ϕ(z)∥2

(α + 1)2

]
ln

[
T (z)

τ

]
. (2.22)

It follows that[
ατ 2Ψ(τ) ∥∇ϕ(z)∥2

(α + 1)2

]
ln

[
T (z)

τ

]
≤ ϕ

(
x(τ)

)
− ϕ
(
x(T (z))

)
≤ ϕ(z) − ϕ∗ ≤ ∥∇ϕ(z)∥2

2µ
,

in view of (2.5). It suffices to rearrange the terms to conclude.

Corollary 2.3.3. Let ϕ satisfy (2.5) with µ > 0, and let τ∗ ∈ (0, τ2) ∩ (0, T∗]. Then,

sup
{
T (z) : z /∈ argmin(ϕ)

}
≤ τ∗ exp

[
(α + 1)2

2αµτ 2∗ Ψ(τ∗)

]
.

2.4 Function value decrease and proof of Theorem

2.2.1

The next result provides the ratio at which the function values have been reduced by the
time the trajectory is restarted.

Proposition 2.4.1. Let z /∈ argmin(ϕ), and let x be the solution of (DIN-AVD) with initial
conditions x(0) = z and ẋ(0) = 0. Let ϕ satisfy (2.5) with µ > 0. For each τ ∈ (0, τ2) ∩
(0, T (z)], we have

ϕ
(
x(t)

)
− ϕ∗ ≤

[
1 − αµτ 2Ψ(τ)

(α + 1)2

] (
ϕ(z) − ϕ∗)

for every t ∈ [τ, T (z)].
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2.4. FUNCTION VALUE DECREASE AND PROOF OF THEOREM 2.2.1

Proof. Take s ∈ (0, τ). By combining Remark 2.2.1 with (2.21), we obtain

d

ds
ϕ(x(s)) ≤ −α

s
∥ẋ(s)∥2 ≤ −αs ∥∇ϕ(z)∥2

(α + 1)2

[
2 − 1

H(s)

]2
≤ −αs ∥∇ϕ(z)∥2

(α + 1)2
Ψ(τ)

because H decreases on (0, τ1), which contains (0, τ). Integrating on (0, τ) and using (2.5),
we obtain

ϕ
(
x(τ)

)
− ϕ∗ ≤ ϕ(z) − ϕ∗ − ατ 2Ψ(τ) ∥∇ϕ(z)∥2

2(α + 1)2
≤
[
1 − αµτ 2Ψ(τ)

(α + 1)2

] (
ϕ(z) − ϕ∗).

To conclude, it suffices to observe that ϕ
(
x(t)

)
≤ ϕ

(
x(τ)

)
in view of Remark 2.2.1.

Remark 2.4.1. Since Ψ is decreasing in [0, τ2), we have Ψ(t) ≥ Ψ(τ∗) > 0, whenever
0 ≤ t ≤ τ∗ < τ2. Moreover, in view of (2.20) and Corollary 2.3.2, we can take τ∗ = τ3 to
obtain a lower bound. If β = 0, we obtain

Ψ(t) ≥ Ψ(τ3) =

[
2 − 1

H(τ3)

]2
=

[
2 − 1

1 − 1
2(α+2)

]2
=

[
2α + 2

2α + 3

]2
,

which is independent of L. As a consequence, the inequality in Proposition 2.4.1 becomes

ϕ
(
x(t)

)
− ϕ∗ ≤

(
1 − 4α(α + 3)

(α + 2)(2α + 3)2
µ

L

)
(ϕ(x0) − ϕ∗).

For α = 3, this gives

ϕ
(
x(t)

)
− ϕ∗ ≤

(
1 − 8

45

µ

L

)
(ϕ(x0) − ϕ∗).

For this particular case, a similar result, obtained in [83] for strongly convex functions,
namely

ϕ
(
x(t)

)
− ϕ∗ ≤

(
1 − 3

25

(
67

71

)2
µ

L

)
(ϕ(x0) − ϕ∗).

Our constant is approximately 66.37% larger than the one from [83], which implies a greater
reduction in the function values each time the trajectory is restarted. On the other hand,

if β > 0, we can still obtain a slightly smaller lower bound, namely Ψ(τ3) >

(
2α + 1

2α + 2

)2

,

independent from β and L. The proof is technical and it can be found on Appendix 2.8.

Proof of Theorem 2.2.1

Adopt the notation in Definition 2.2.1, take any τ∗ ∈ (0, τ2) ∩ (0, T∗], and set

τ ∗ = τ∗ exp

[
(α + 1)2

2αµτ 2∗ Ψ(τ∗)

]
, where Ψ(τ∗) =

[
2 − 1

H(τ∗)

]2
.

In view of Corollaries 2.3.2 and 2.3.3, we have

τ∗ ≤ T (xi) ≤ τ ∗

17



2.5. NUMERICAL ILLUSTRATION

for all i ≥ 0 (we assume xi /∈ argmin(ϕ) since the result is trivial otherwise). Given t > 0,
let m be the largest positive integer such that mτ ∗ ≤ t. By time t, the trajectory will have
been restarted at least m times. By Proposition 2.2.1, we know that

ϕ
(
χx0(t)

)
≤ ϕ

(
χx0(mτ ∗)

)
≤ ϕ

(
χx0(mτ∗)

)
.

We may now apply Proposition 2.4.1 repeatedly to deduce that

ϕ
(
χx0(t)

)
− ϕ∗ ≤ Qm

(
ϕ(x0) − ϕ∗) where Q =

[
1 − αµτ 2∗ Ψ(τ∗)

(α + 1)2

]
< 1.

By definition, (m + 1)τ ∗ > t, which entails m > t
τ∗

− 1. Since Q ∈ (0, 1), we have

Qm ≤ Q
t
τ∗−1 =

1

Q
exp

(
ln(Q)

τ ∗
t

)
,

and the result is established, with C = Q−1 and K = − 1
τ∗

ln(Q). The proof is finished due
to the fact that ϕ(u) ≤ ϕ∗ + L

2
∥u− u∗∥2 for every u∗ ∈ argmin(ϕ). □

The convergence rate given in Theorem 2.2.1, holds for C and K of the form

C = C(τ∗) =

[
1 − αµτ 2∗ Ψ(τ∗)

(α + 1)2

]−1

and

K = K(τ∗) = − 1

τ∗
exp

[
− (α + 1)2

2αµτ 2∗ Ψ(τ∗)

]
ln

[
1 − αµτ 2∗ Ψ(τ∗)

(α + 1)2

]
>

αµτ∗Ψ(τ∗)

(α + 1)2
exp

[
− (α + 1)2

2αµτ 2∗ Ψ(τ∗)

]
,

for any τ∗ ∈ (0, τ2) ∩ (0, T∗]. In view of (2.20) and Corollary 2.3.2, τ∗ = τ3 is a valid choice.
On the other hand, the function K(·) vanishes at τ ∈ {0, τ2} and is positive on (0, τ2). By
continuity, it attains its maximum at some τ̂∗ ∈ (0, τ2) ∩ (0, T∗]. Therefore, K(τ̂∗) yields the
fastest convergence rate prediction in this framework.

Remark 2.4.2. It is possible to implement a fixed restart scheme. To this end, we modify
Definition 2.2.1 by setting Ti ≡ τ , with any τ ∈ (0, τ2) ∩ (0, T∗], such as τ̂∗ or τ3, for exam-
ple. In theory, τ̂∗ gives the same convergence rate as the original restart scheme presented
throughout this work. From a practical perspective, though, restarting the dynamics too soon
may result in a poorer performance. Therefore, finding larger values of τ̂∗ and τ3 is crucial
to implement a fixed restart (see Remarks 2.3.1 and 2.4.1).

2.5 Numerical illustration

In this section, we provide a very simple numerical example to illustrate how the convergence
is improved by the restarting scheme. A more thorough numerical analysis will be carried
out in a forthcoming work.
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2.5. NUMERICAL ILLUSTRATION

Example 2.1.2 revisited

We consider the quadratic function ϕ : R3 → R, defined in Example 2.1.1 by (2.1), with
ρ = 10. We set α = 3.1 and β = 0.25, and compute the solutions of (AVD) and (DIN-AVD),
starting from x(1) = x1 = (1, 1, 1) and zero initial velocity, with and without restarting,
using the Python tool odeint from the scipy package. Figure 2.3 shows a comparison of
the values along the trajectory with and without restarting, first for (AVD), and then for
(DIN-AVD). In both cases, the restarted trajectories appear to be more stable and converge
faster.

0 10 20 30 40 50
t

10−16

10−13

10−10

10−7

10−4

10−1

102

 ϕ
(x

(t)
)

 ϕ(χ(t))
 ϕ(x(t))

Figure 2.3: Values along the trajectory, with (red) and without (blue) restarting, for
(DIN-AVD).

However, one can do better. As mentioned earlier, restarting schemes based on function
values are effective from a practical perspective, but show an erratic behavior as the
trajectory approaches a minimizer. It seems natural as a heuristic to use the first (or n-th)
function-value restart point as a warm start, and then apply speed restarts, for which we
have obtained convergence rate guarantees. Although the velocity must be set to zero after
each restart, there are no constraints on the initial velocity used to compute the warm
starting point. The results are shown in Figure 2.4, with initial velocity set to zero and
ẋ(1) = −β∇ϕ(x1), respectively.

A linear regression after the first restart provides estimations for the linear convergence
rate of the function values along the corresponding trajectories, when modeled as ϕ

(
χ(t)

)
∼

Ae−Bt, with A,B > 0. The results are displayed in Table 2.1. The absolute value of the
exponent B in the linear convergence rate is increased by 34,67% in the case ẋ(1) = 0, and by
39,86% in the case ẋ(1) = −β∇ϕ(x1). Also, the minimum values for the methods presented
in Figure 2.4 can be analyzed. The last and best function values on [1, 25] are displayed
on Table 2.2. In all cases, the best value without restart is approximately 104 times larger
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2.6. A FIRST EXPLORATION OF THE ALGORITHMIC CONSEQUENCES
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Figure 2.4: Top: Values along the trajectory, with warm start, for (AVD) (blue) and
(DIN-AVD) (red), with inicial velocity set to zero (left) and ẋ(1) = −β∇ϕ(x1) (right).
Bottom: Includes trajectories without restarting, for reference.

than the one obtained with our policy. We also observe similar final values for the restarted
trajectories despite the different initial velocities.

ẋ(1) = 0 ẋ(1) = −β∇ϕ(x1)

β = 0 β = 0.25 β = 0 β = 0.25

A 3.7545 8.16e-6 3.2051 1.65e-05
B 0.8837 1.1901 0.859 1.2014

Table 2.1: Coefficients in the linear regression, when approximating ϕ
(
χ(t)

)
∼ Ae−Bt.

2.6 A first exploration of the algorithmic

consequences

Different discretizations of (DIN-AVD) can be used to design implementable algorithms and
generate minimizing sequences for ϕ, which hopefully will share the stable behavior we observe
in the solutions of (DIN-AVD). Three such algorithms were first proposed in [10], for which
we implemented a speed restart scheme, analogue to the one we have used for the solutions
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2.6. A FIRST EXPLORATION OF THE ALGORITHMIC CONSEQUENCES

ẋ(1) = 0 ẋ(1) = −β∇ϕ(x1)

β = 0 β = 0.25 β = 0 β = 0.25

Last value
without restart

0.0009 3.4793e-07 0.0079 2.8094e-07

Best value
without restart

4.0697e-06 2.8024e-14 3.2770e-05 3.2760e-14

Last (best) value
with restart and

warm start
9.8118e-10 2.0103e-18 1.3940e-09 1.9452e-18

Table 2.2: Values reached for ϕ at t = 25.

of (DIN-AVD). As the dynamics can be rewritten as a first order system, versions of the
algorithm using only first order information on the gradient arises naturally as algorithms
related to (DIN-AVD) dynamics. Since we obtained very similar results and the numerical
analysis of algorithms is not the focus of this research, we describe only the simplest one in
detail, Algorithm 1, and present the numerical results for that one. As in [83], a parameter
kmin is introduced, to avoid two consecutive restarts to be too close. Notice also, that the
restart criteria is also the same as in [83], motivated by the discretization of the continuous
speed restart used before.

Algorithm 1: Inertial Gradient Algorithm with Hessian Damping (IGAHD) - Speed
Restart version

Choose x0, x1 ∈ Rn, N , kmin and h > 0.
for k = 1 . . . N do

Compute yk = xk + (1 − α
k
)(xk − xk−1) − βh(∇ϕ(xk) −∇ϕ(xk−1)),

and then xk+1 = yk − h2∇ϕ(yk).
if ∥xk+1 − xk∥ < ∥xk − xk−1∥ and k ≥ kmin then

k=1;
else

k=k+1.
end
return xN .

Example 2.6.1. We begin by applying Algorithm 1, as well as the variation with the warm
start, to the function ϕ : R3 7→ R in Examples 2.1.1 and 2.1.2, with the parameters kmin = 10,
β = h = 1/

√
L and α = 3.1. Figure 2.5 shows the evolution of the function values along the

iterations. The coefficients in the approximation ϕ(xk) ∼ Ae−Bt, with A,B > 0, obtained
for each algorithm, are detailed on Table 2.3. As one would expect, the value of B is similar
and that of A is significantly lower. Also, Table 2.4 shows the values obtained along 1000
iterations. The best value without restart is 105 times larger than the one obtained with our
policy.
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Figure 2.5: Function values along iterations of Algorithm 1 without (left) and with (right)
warm start.

Algorithm 1 Algorithm 1 with warm start

A 0.3722 1.0749e-4
B 0.0571 0.057

Table 2.3: Coefficients in the linear regression for Example 2.6.1.

Last iteration without restart 1.2927e-20
Best iteration without restart 2.2907e-24

Last/best iteration with restart and warm start 2.0206e-29

Table 2.4: Functions values for Example 2.6.1.

Example 2.6.2. Given a positive definite symmetric matrix A of size n × n, and a vector
b ∈ Rn, define ϕ : Rn 7→ R by

ϕ(x) =
1

2
xTAx + bTx.

For the experiment, n = 500, A is randomly generated with eigenvalues in (0, 1), and b
is also chosen at random. We first compute L, and set kmin = 10, h = 1/

√
L, α = 3.1 and

β = h. The initial points x0 = x1 are generated randomly as well. Figure 2.6 shows the
comparison for Algorithm 1 and a variation of it giving a warm start as the one described in
the continuous setting. That is, to restart the first time when the function increases instead of
decrease, and then performing the speed restart detailed on Algorithm 1. It can be seen, that
the restart scheme stabilizes and accelerates the convergence in both cases. The coefficients
obtained for each algorithm in the approximation ϕ(xk) ∼ Ae−Bt, with A,B > 0, are presented
in Table 2.5. Also, Table 2.6 shows the value gaps obtained along 1800 iterations. The best
value without restart is more than 104 times larger than the one obtained with restart.
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Figure 2.6: Function values along iterations of Algorithm 1 without (left) and with (right)
warm start.

Algorithm 1 Algorithm 1 with warm start

A 3813.01 1.6142
B 0.0117 0.0121

Table 2.5: Coefficients in the linear regression for Example 2.6.2.

Last iteration without restart 0.0139
Best iteration without restart 9.4293e-06

Last/best iteration with restart and warm start 5.8481e-10

Table 2.6: Function values for Example 2.6.2.

2.7 Appendix: Proof of Theorem 2.1.1

Consider the differential equation

ẍ(t) + γ(t)ẋ(t) + F
(
x(t)

)
ẋ(t) + G

(
x(t)

)
= 0. (2.23)

We assume that γ is continuous and positive, with limt→0 γ(t) = +∞, and that F and G
are (continuous and) sufficiently regular so that the differential equation (2.23), with initial
condition x(δ) = xδ and ẋ(δ) = vδ, has a unique solution defined on [δ, T∞) for some T∞ ∈
(0,∞] and all δ > 0. Let

M(δ, t) := sup
s∈[δ,t]

{
γ(s) ∥ẋδ(s) − v0∥

}
. (2.24)

We have the following:

Theorem 2.7.1. Assume there is T > 0 such that

sup
0<δ≤t≤T

M(δ, t) < +∞. (2.25)

Then, the differential equation (2.23), with initial condition x(0) = x0 and ẋ(0) = v0, has a
solution.
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Proof. For δ ∈ (0, T ), define xδ : [0, T ] → Rn as follows: for t ∈ [0, δ], xδ(t) = x0 + tv0; and
for t > δ, xδ is the solution of (2.23) with initial condition x(δ) = x0 + δv0 and ẋ(δ) = v0.
Notice that xδ is a continuous function such that matches a solution of (2.23) on [δ, T ] .
From the hypotheses, there exist c,K > 0 and such that γ(t) ≥ c and M(δ, t) ≤ K for all
0 < δ ≤ t ≤ T . Therefore,

c ∥ẋδ(s) − v0∥ ≤ γ(s)∥ẋδ(s) − v0∥ ≤ M(δ, t) ≤ K

whenever 0 < δ ≤ s ≤ t ≤ T , so that

∥ẋδ(s) − v0∥ ≤ K

c
,

for all s ∈ [0, T ]. As a consequence,

∥xδ(s) − x0∥ ≤
∫ s

0

∥ẋδ(τ)∥ dτ ≤ ∥v0∥δ +
KT

c

on [0, T ]. It follows that (xδ) is bounded in H1(0, T ;Rn). By weak sequential compactness
and the Rellich–Kondrachov Theorem (see, for instance [23, Theorem 9.16]), there is a
sequence (δn) converging to zero, such that xδn converges uniformly to a continuous function
x∗, while ẋδn converges weakly in L2(0, T ;Rn) to some y∗.

Clearly, x∗(0) = x0. In turn, for t ∈ (0, T ], by the Mean Value Theorem and the definition
of M , we have ∥∥∥∥x∗(t) − x0

t
− v0

∥∥∥∥ = lim
n→∞

∥∥∥∥xδn(t) − x0

t
− v0

∥∥∥∥
= lim

n→∞
∥ẋδn(cn) − v0∥

≤ K̄

min
s∈(0,t]

γ(s)
,

which tends to zero as t → 0. It remains to prove that x∗ satisfies (2.23). To this end, take
any t0 ∈ (0, T ), and observe that δn < t0 for all sufficiently large n. Therefore, xδn satisfies
(2.23) on [t0, T ) for all such n. Multiplying by

Γ(t) := exp

(∫ t

t0

γ(s) ds

)
,

we deduce that

Γ(t)ẋδn(t) − Γ(t0)ẋδn(t0) +

∫ t

t0

Γ(s)F
(
xδn(s)

)
ẋδn(s) ds +

∫ t

t0

Γ(s)G
(
xδn(s)

)
ds = 0.

By taking yet another subsequence if necessary, we may assume that ẋδn(t0) converges to
some v∗. From the uniform convergence of xδn to x∗ on [0, T ], and the weak convergence of
ẋδn to y∗ in L2(0, T ;Rn), it ensues that

Γ(t)y∗(t) − Γ(t0)v̇
∗ +

∫ t

t0

Γ(s)F
(
x∗(s)

)
y∗(s) ds +

∫ t

t0

Γ(s)G
(
x∗(s)

)
ds = 0

for all t ∈ (t0, T ). As a consequence, x∗ is continuously differentiable, ẋ∗ = y, and x∗ satisfies
(2.23).
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Corollary 2.7.1. Equation (DIN-AVD) has at least one solution.

Proof. According to Theorem 2.7.1, for the existence, it suffices to show that the expression
M(δ, t), defined in (2.24), is bounded for 0 < δ ≤ t ≤ T , for some T > 0. Mimicking the
proof of Lemma 2.3.2, we show that

H(t)M(δ, t) ≤ ∥∇ϕ(x0)∥
α + 1

, with H(t) = 1 − βLt

α + 2
− Lt2

2(α + 3)
.

The only positive zero of H is τ1, given by (2.13), and H is decreasing on (0, τ1). Hence, if
T < τ1, then

sup
0<δ≤t≤T

M(δ, t) ≤ ∥∇ϕ(x0)∥
(α + 1)H(T )

< +∞,

as claimed.

Proposition 2.7.1. Equation (DIN-AVD), with initial condition x(0) = x0 and ẋ(0) = 0,
has at most one solution in a neighborhood of t = 0.

Proof. Let x and y satisfy (DIN-AVD) with the same initial state and null initial velocity.
We define

M̃(t) = sup
u∈[0,t)

{∥ẋ(u) − ẏ(u)∥},

and proceed as in the proof of Lemma 2.3.1, to obtain

∥∇ϕ(x(t)) −∇ϕ(y(t))∥ ≤ LtM̃(t) (2.26)

As x and y satisfy (DIN-AVD), we integrate by parts to obtain

tα(ẋ(t) − ẏ(t)) = −
∫ t

0

uα (∇ϕ(x(u)) −∇ϕ(y(u))) du

− β

∫ t

0

uα
(
∇2ϕ(x(u))ẋ(u) −∇2ϕ(y(u))ẏ(u)

)
du

= −
∫ t

0

uα (∇ϕ(x(u)) −∇ϕ(y(u))) du

− β

∫ t

0

uα d

du
(∇ϕ(x(u)) −∇ϕ(y(u))) du

= −
∫ t

0

uα (∇ϕ(x(u)) −∇ϕ(y(u))) du

− βtα (∇ϕ(x(t)) −∇ϕ(y(t)))

+ α

∫ t

0

uα−1 (∇ϕ(x(u)) −∇ϕ(y(u))) du.

Using (2.26), and the fact that M̃(t) is increasing, we get

tα ∥ẋ(t) − ẏ(t)∥ ≤
∫ t

0

Luα+1M̃(u) du + βLtα+1M̃(t) + αβ

∫ t

0

LuαM̃(u) du
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≤ 1

α + 2
LM̃(t)tα+2 +

2α + 1

α + 1
βLM̃(t)tα+1.

Then,

∥ẋ(t) − ẏ(t)∥ ≤ 1

α + 2
LM̃(T )T 2 +

2α + 1

α + 1
βLM̃(T )T,

whenever 0 < t ≤ T . Taking supremum, we conclude that

Q(t)M̃(T ) ≤ 0 with Q(t) = 1 − 2α + 1

α + 1
βLt− 1

α + 2
Lt2,

for all T > 0. Since Q(T ) > 0 in a neighborhood of 0, it follows that M̃ must vanish there,
whence x and y must coincide.

2.8 Appendix: A bound for Ψ(τ3)

Since H(t) > 1/2 and decreasing on (0, τ2), 2 − H(t)−1 is positive and decreasing there.
Whence Ψ is decreasing, and Ψ(t) ≥ Ψ(τ), whenever 0 ≤ t ≤ τ < τ2. In particular,
Ψ(t) ≥ Ψ(τ3) for every t ∈ [0, τ3]. It remains to compute (or find a lower bound for) Ψ(τ3);
or yet equivalently for H(τ3). Consider

Ψ(t) =

(
2 − 1

H(t)

)2

,

and τ3 as the positive root of G(t) given by (2.18). Let z = Lβ2 and consider the function

P (z) = 2(−
√
z
√
K1z + K2 + K3z + K4),

with

K1 = (α + 3)2(2α + 3)2

K2 = 4(α + 2)3(α + 3)

K3 = (α + 3)(2α + 3)

K4 = 2(α + 1)(α + 2)3.

Then, Ψ(τ3) can be written as

Ψ(τ3) = ∆(z) = 4

(
P (z)

P (z) + 2K5

)2

,

with K5 = 2(α + 2)4. The aim is to find a lower bound for Ψ(τ3). Then, we will split the
proof in three steps.

P (z) is positive.

Notice that we are only interested in the case where z > 0. Let us proceed by contradiction,
assume that there is a z > 0 such that P (z) is negative. That is,

K3z + K4 <
√
z
√
K1z + K2.
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As both sides are positive, we can take the square and noticing that K2
3 = K1 yields

z(2K3K4 −K2) + K2
4 < 0.

That is,
4z(α + 2)3(α + 3) [(2α + 3)(α + 1) − 1] + 4(α + 1)2(α + 2)6 < 0,

which is clearly a contradiction.

Derivative P ′(z).

Computing the derivative, it yields

P ′(z) =
2K3

√
z
√
K1z + K2 − 2K1z −K2√
z
√
K1z + K2

.

Notice that the sign of the derivative is given by the numerator. Proceeding as in the previous
step, we get that the P ′(z) is negative for every z > 0.

Limit of P (z).

lim
z→∞

P (z) = 2K4 + 2 lim
z→∞

−
√
z
√

K1z + K2 + K3z

= 2K4 + 2 lim
z→∞

K2
3z

2 − z(K1z + K2)√
z
√
K1z + K2 + K3z

= 2K4 − 2 lim
z→∞

zK2√
z
√
K1z + K2 + K3z

= 2K4 − 2 lim
z→∞

K2√
K1 +

K2

z
+ K3

= 2K4 −
K2

K3

= 4(α + 2)4
(2α + 1)

(2α + 3)

Using the previous results, we can perform an analysis on the function ∆(z). Notice that,
the derivative is given by

∆′(z) = 8

(
P (z)

P (z) + 2K5

)
2K5P

′(z)

(P (z) + 2K5)2
,

and as P (z) is positive and P ′(z) is negative, we get that ∆′(z) < 0 and then, ∆(z) is a
positive and decreasing function. Then, for every value of z > 0, ∆(z) is greater than the
limit towards ∞. Computing the limit,

lim
z→∞

∆(z) = lim
z→∞

4

(
P (z)

P (z) + 2K5

)2
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= lim
z→∞

4

 4(α + 2)4
(2α + 1)

(2α + 3)

4(α + 2)4
(2α + 1)

(2α + 3)
+ 4(α + 2)4


2

=
1

4

(2α + 1)2

(α + 1)2

Then, we have proved that

Ψ(τ3) >
1

4

(2α + 1)2

(α + 1)2
,

for every value of L and β. In the case where α = 3, the bound gives

(
7

8

)2

.
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Chapter 3

Inertial Krasnoselskii-Mann iterations

3.1 Introduction

Krasnoselskii-Mann (KM) iterations are at the core of numerical methods used in optimiza-
tion, fixed point theory and variational analysis, since they include many fundamental split-
ting algorithms whose convergence can be analyzed in a unified manner. These include
the forward-backward algorithm [57, 73] to approximate a zero of the sum of two maximally
monotone operators, and its various particular instances: on the one hand, we have the gradi-
ent projection algorithm [48, 53], the gradient method [27] and the proximal point algorithm
[61, 79, 24, 49], to cite some abstract methods, as well as the Iterative Shrinkage-Thresholding
Algorithm (ISTA) [36, 33], to speak more concretely. KM iterations also encompass other
splitting methods like Douglas-Rachford [42], primal-dual methods [30, 8, 31, 88, 34] and the
three-operator splitting [37].

As it was showed by Nesterov in [67], the inclusion of inertia on the gradient method
improves the convergence, so the main goal of this part is to study the effect of inertia in an
more general operator setting. To our knowledge, the first extensions beyond the optimization
setting was developed in [5], followed by [59, 58] some years later. The main drawback of
their analysis is that they require an implicit hypothesis on the sequence generated by the
algorithm (the summability of a certain series) to ensure its convergence. In [5], however, this
difficulty is overcome, in some special cases and for small values of the inertial parameters.
These ideas were also used in [22], and then improved in [41], by adapting the inertial factors
to the relaxation ones (see below). A similar principle had been used in [9], whose analysis
was based on [14]. Nonasymptotic convergence rates for the residuals have been given in
[81, 51]. Strong and linear convergence can be found in [82], for strictly contractive forward-
projection operators. Other extensions have been considered in [40, 32, 65, 39]. See also [38]
for a more thorough account of KM iterations, with and without inertia. Interest in this type
of methods increased remarkably in the past decade in view of theoretical advances in the
convergence theory for the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [20],
obtained in [29, 12, 13].

In this chapter inertial Krasnoselskii-Mann iterations will be studied in their general form{
yk = xk + αk(xk − xk−1)

xk+1 = (1 − λk)yk + λkTk(yk),
(3.1)
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where (Tk) is a family of operators defined on a real Hilbert space H, and the positive se-
quences (αk) and (λk) are the inertial and relaxation (or averaging) parameters, respectively.

The aim of this chapter is to provide convergence results for the iterations (3.1), in the
weak and strong sense, depending on the assumptions over the family of operators Tk. Nu-
merical illustrations are provided where the effect of inertia is observed by being implemented
over two existing fixed-point algorithms.

3.2 Vanishing residuals and weak convergence

An operator T : H → H is quasi-nonexpansive if Fix(T ) ̸= ∅ and ∥Ty − p∥ ≤ ∥y − p∥ for all
y ∈ H and p ∈ Fix(T ). This implies, in particular, that

2⟨y − p, Ty − y⟩ ≤ −∥Ty − y∥2 (3.2)

for all y ∈ H and p ∈ Fix(T ).

In this section, we consider a family (Tk) of quasi-nonexpansive operators on H, with
F :=

⋂
k≥1 Fix(Tk) ̸= ∅, along with a sequence (xk, yk) satisfying (3.1), where (αk) is a

nondecreasing sequence1 in [0, 1), and (λk) is a sequence in (0, 1) such that infk≥1 λk > 0.

To simplify the notation, given p ∈ F , we set

νk =
(
λ−1
k − 1

)
δk = νk−1(1 − αk−1)∥xk − xk−1∥2,

∆k(p) = ∥xk − p∥2 − ∥xk−1 − p∥2, ∆1(p) = 0

Ck(p) = ∥xk − p∥2 − αk−1∥xk−1 − p∥2 + δk, C1(p) = ∥x1 − p∥2,
ωk = ∥xk − 2xk−1 + xk−2∥2.

(3.3)

At different points, and in order to simplify the computations, we shall make use of a basic
property of the norm in H: for every x, y ∈ H and α ∈ [0, 1], we have

∥αx + (1 − α)y∥2 = α ∥x∥2 + (1 − α) ∥y∥2 − α(1 − α) ∥x− y∥2 . (3.4)

The following auxiliary result will be useful in the sequel:

Lemma 3.2.1. Let (Tk) be a family of quasi-nonexpansive operators on H, with F :=⋂
k≥1 Fix(Tk) ̸= ∅, and let (xk, yk) satisfy (3.1). For each k ≥ 1 and p ∈ F , we have

∆k+1(p) + δk+1 + νkαkωk+1 ≤ αk∆k(p) +
[
αk(1 + αk) + νkαk(1 − αk)

]
∥xk − xk−1∥2. (3.5)

Proof. Take p ∈ F . From (3.1), it follows that

∥xk+1 − p∥2 = ∥yk − p∥2 + λ2
k∥yk − Tkyk∥2 + 2λk⟨yk − p, Tkyk − yk⟩

≤ ∥yk − p∥2 − λk(1 − λk)∥yk − Tkyk∥2, (3.6)

1This is just to simplify the proof and is sufficiently general for practical purposes.
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where the inequality is given by (3.2). From

∥yk − p∥2 = ∥xk − p + αk(xk − xk−1)∥2

= ∥xk − p∥2 + α2
k∥xk − xk−1∥2 + 2αk⟨xk − p, xk − xk−1⟩

and
2αk⟨xk − p, xk − xk−1⟩ = αk∥xk − p∥2 + αk∥xk − xk−1∥2 − αk∥xk−1 − p∥2,

we deduce that

∥yk − p∥2 = (1 + αk)∥xk − p∥2 + αk(1 + αk)∥xk − xk−1∥2 − αk∥xk−1 − p∥2. (3.7)

By combining expressions (3.6) and (3.7), we obtain

∥xk+1 − p∥2 ≤ (1 + αk)∥xk − p∥2 + αk(1 + αk)∥xk − xk−1∥2 − αk∥xk−1 − p∥2

− λk(1 − λk)∥yk − Tkyk∥2.

Recalling from (3.3) that ∆k(p) = ∥xk − p∥2 − ∥xk−1 − p∥2, we rewrite the latter as

∆k+1(p) ≤ αk∆k(p) + αk(1 + αk)∥xk − xk−1∥2 − λk(1 − λk)∥yk − Tkyk∥2. (3.8)

In turn,

λ2
k∥yk − Tkyk∥2 = ∥xk+1 − xk∥2 + α2

k∥xk − xk−1∥2 − 2αk⟨xk+1 − xk, xk − xk−1⟩, (3.9)

and
−2αk⟨xk+1 − xk, xk − xk−1⟩ = αkωk+1 − αk∥xk+1 − xk∥2 − αk∥xk − xk−1∥2,

together give

λ2
k∥yk − Tkyk∥2 = (1 − αk)∥xk+1 − xk∥2 − αk(1 − αk)∥xk − xk−1∥2 + αkωk+1. (3.10)

By multiplying the latter by νk = (1 − λk)/λk, and using the definition of δk in (3.3), we
rewrite this as

δk+1 + νkαkωk+1 = νkαk(1 − αk)∥xk − xk−1∥2 + λk(1 − λk)∥yk − Tkyk∥2. (3.11)

Summing (3.8) and (3.11), we obtain (3.5).

We are now in a position to show that the sequence (xn) remains anchored to the set F ,
while both the residuals ∥yk − Tkyk∥ and the speed ∥xk − xk−1∥ tend to 0. We shall make
some assumptions on the parameter sequences (αk) and (λk).

Hypothesis A. There is k0 such that

αk(1 + αk) + (λ−1
k − 1)αk(1 − αk) − (λ−1

k−1 − 1)(1 − αk−1) ≤ 0,

for all k ≥ k0.

A reinforced version with strict inequality is given by:
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Hypothesis B.

lim sup
k→∞

[
αk(1 + αk) + (λ−1

k − 1)αk(1 − αk) − (λ−1
k−1 − 1)(1 − αk−1)

]
< 0.

Remark 3.2.1. With Hypothesis A or B, there exist ε ≥ 0 and k0 ≥ 1 such that

αk(1 + αk) + (λ−1
k − 1)αk(1 − αk) ≤ (λ−1

k−1 − 1)(1 − αk−1) − ε (3.12)

for all k ≥ k0 (if Hypothesis B holds, then ε > 0; otherwise, ε = 0). Also, under Hypothesis
B, α := supk≥1 αk < 1 and λ := infk≥1 λk > 0.

Theorem 3.2.1. Let (Tk) be a family of quasi-nonexpansive operators on H, and let (xk, yk)
satisfy (3.1). Take p ∈ F =

⋂
k≥1 Fix(Tk).

i) Assume that there is k0 ≥ 1 such that

αk(1 + αk) + (λ−1
k − 1)αk(1 − αk) − (λ−1

k−1 − 1)(1 − αk−1) ≤ 0 (3.13)

for all k ≥ k0. Then, the sequence
(
Ck(p)

)
k≥k0

is nonincreasing and nonnegative, thus

lim
k→∞

Ck(p) exists.

ii) If Hypothesis B holds, the series
∑
k≥2

ωk,
∑
k≥1

∥xk − xk−1∥2,
∑
k≥1

δk and
∑
k≥1

∥yk − Tkyk∥2

are convergent, and there is a constant M > 0, depending only on (αk) and (λk), such
that

min
1≤k≤n

∥yk − Tkyk∥2 ≤
M dist(x1, F )2

n
. (3.14)

Moreover, for each p ∈ F , lim
k→∞

∥xk − p∥ exists.

Proof. Without any loss of generality, we may assume that (3.12) holds with k0 = 1. Take
any p ∈ F , and combine (3.12) with (3.5), to obtain

∆k+1(p) + δk+1 + νkαkωk ≤ αk∆k(p) +
[
νk−1(1 − αk−1) − ε

]
∥xk − xk−1∥2

= αk∆k(p) + δk − ε∥xk − xk−1∥2. (3.15)

On the one hand, (3.15) immediately gives

∆k+1(p) ≤ αk∆k(p) + δk. (3.16)

On the other, since (αk) is nondecreasing, we have

Ck+1(p) − Ck(p) = ∆k+1(p) −
(
αk∥xk − p∥2 − αk−1∥xk−1 − p∥2

)
+ δk+1 − δk

≤ ∆k+1(p) + δk+1 − αk∆k(p) − δk.

Therefore, (3.15) implies

Ck+1(p) + νkαk∥xk+1 − 2xk + xk−1∥2 + ε∥xk − xk−1∥2 ≤ Ck(p). (3.17)

It ensues that
(
Ck(p)

)
is nonincreasing. To show that it is nonnegative, suppose that Ck1(p) <

0 for some k1 ≥ 1. Since
(
Ck(p)

)
is nonincreasing,

∥xk − p∥2 − αk−1∥xk−1 − p∥2 ≤ Ck(p) ≤ Ck1(p) < 0
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for all k ≥ k1. If follows that ∥xk − p∥2 ≤ ∥xk−1 − p∥2 + Ck1(p), and so

0 ≤ ∥xk − p∥2 ≤ ∥xk−1 − p∥2 + Ck1(p) ≤ · · · ≤ ∥xk1 − p∥2 + (k − k1)Ck1(p)

for all k ≥ k1, which is impossible. As a consequence
(
Ck(p)

)
is nonnegative, and lim

k→∞
Ck(p)

exists.
For ii), inequality (3.12) holds with ε > 0. The summability of the first two series follows
from (3.17). In particular,

ε
∑
k≥1

∥xk − xk−1∥2 ≤ C1(p) = ∥x1 − p∥2. (3.18)

The third one is a consequence of the second one, since λ := infk≥1 λk > 0. For the last one,
use (3.10) to write

λ2
k∥yk − Tkyk∥2 ≤ (1 + α)∥xk+1 − xk∥2 + α(1 + α)∥xk − xk−1∥2.

In view of (3.18), this gives the summability of the fourth series, with

n min
1≤k≤n

∥yk − Tkyk∥2 ≤
∑
k≥1

∥yk − Tkyk∥2 ≤
(1 + α)2

ελ2
∥x1 − p∥2.

Since this holds for each p ∈ F , we obtain (3.14) with M = (1+α)2

ελ2 . Now, denoting the
positive part of d ∈ R by [d]+, we obtain from (3.16) that

(1 − α)
[
∆k+1(p)

]
+

+ α
[
∆k+1(p)

]
+
≤ α

[
∆k(p)

]
+

+ δk.

Summing for k ≥ 1, we obtain

(1 − α)
∑
k≥1

[
∆k+1(p)

]
+
≤ α

[
∆1(p)

]
+

+
∑
k≥1

δk =
∑
k≥1

δk < ∞.

By writing hk = ∥xk−p∥2−
∑k

j=1

[
∆j(p)

]
+

, we get hk+1−hk = ∆k+1(p)−
[
∆k+1(p)

]
+
≤ 0,

from which we conclude that lim
k→∞

∥xk − p∥ = lim
k→∞

hk exists.

Remark 3.2.2. Hypotheses A and B are closely related, but different, from the hypotheses
used in [9] for forward-backward iterations. In the non-inertial case α = 0, Hypothesis A
is just lim supk→∞ λk < 1. On the other hand, since (αk) is nondecreasing and bounded, we
have αk → α ∈ [0, 1]. If λk → λ, then Hypothesis B is reduced to

λ(1 − α + 2α2) < (1 − α)2. (3.19)

For each α ∈ [0, 1), there is λα > 0 such that (3.19) holds for all λ < λα.

In order to prove the weak convergence of the sequences generated by Algorithm (3.1),
we shall use the following nonautonomous extension of the concept of demiclosedness.

The family of operators (I − Tk) is asymptotically demiclosed at 0 if for every sequence
(zk) such that zk ⇀ z and zk − Tkzk → 0, we must have z ∈ F =

⋂
k≥1 Fix(Tk).

Of course, if T : H → H is nonexpansive and Tk ≡ T , then I − Tk is asymptotically
demiclosed at 0. We shall discuss other examples in the next section.
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Theorem 3.2.2. Let (Tk) be a family of quasi-nonexpansive operators on H, with F =⋂
k≥1 Fix(Tk) ̸= ∅. Let (xk, yk) satisfy (3.1), and assume Hypothesis B holds. If (I − Tk) is

asymptotically demiclosed at 0, then both xk and yk converge weakly, as k → ∞, to a point
in F .

Proof. Recall that lim
k→∞

∥yk−Tkyk∥ = lim
k→∞

∥xk−xk−1∥ = 0, by part ii) of Theorem 3.2.1. From

(3.1), we deduce that (yk) and (xk) have the same (weak and strong) limit points. Suppose
xnk

⇀ x. Then, ynk
⇀ x as well. Since ynk

− Tkynk
→ 0, the asymptotic demiclosedness

implies x ∈ F . Opial’s Lemma [72] (see, for instance, [74, Lemma 5.2]) yields the conclusion.

3.3 Strong and linear convergence

We now focus on the strong convergence of the sequences generated by (3.1), and their
convergence rate. As before, we assume that (αk) is nondecreasing but we do not assume,
in principle, that infk≥1 λk > 0.

Given q ∈ (0, 1), an operator T : H → H is q-quasi-contractive if Fix(T ) ̸= ∅ and
∥Ty − p∥ ≤ q∥y − p∥ for all y ∈ H and p ∈ Fix(T ). If T is q-quasi-contractive, then
Fix(T ) = {p∗}. Given λ, q ∈ (0, 1) and ξ ∈ [0, 1], we define

Q(λ, q, ξ) := ξ
(
1−λ+λq2

)
+ (1− ξ)(1−λ+λq)2 = (1−λ+λq)2 + ξλ(1−λ)(1− q)2. (3.20)

Notice that Q(λ, q, ξ) ∈ (0, 1), and that it decreases as λ increases, or as either q or ξ
decreases. The quantity Q(λ, q, ξ) will play a crucial role in the linear convergence rate of
the sequences satisfying (3.1). The inclusion of the auxiliary parameter ξ will also allow
us to establish convergence rates, with and without inertia, in a unified manner (see the
discussion in Subsection 3.3.3).

The following result establishes a bound on the distance to a solution after performing a
standard KM step:

Lemma 3.3.1. Let T : H → H be q-quasi-contractive with fixed point p∗, and let x, y ∈ H
and λ > 0 be such that x = (1 − λ)y + λTy. Then, for each ξ ∈ [0, 1], we have

∥x− p∗∥2 ≤ Q(λ, q, ξ)∥y − p∗∥2 − ξλ(1 − λ)∥Ty − y∥2. (3.21)

Proof. Notice that
∥x− p∗∥ = ∥(1 − λ)(y − p∗) + λ(Ty − p∗)∥ .

Then, using (3.4), we get

∥x− p∗∥2 = (1 − λ)∥y − p∗∥2 + λ∥Ty − p∗∥2 − λ(1 − λ)∥Ty − y∥2

≤
(
1 − λ + λq2

)
∥y − p∗∥2 − λ(1 − λ)∥Ty − y∥2. (3.22)

On the other hand, we have

∥x− p∗∥ ≤ (1 − λ)∥y − p∗∥ + λ∥Ty − p∗∥ ≤ (1 − λ + λq)∥y − p∗∥. (3.23)

Then, inequality (3.21) is just a convex combination of (3.22) and the square of (3.23).
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3.3.1 Convergence analysis

We now turn to the convergence of the sequences verifying (3.1). To simplify the notation,
for each k ∈ N, we set

C̃k(p) = ∥xk − p∗∥2 − αk−1∥xk−1 − p∗∥2 + ξδk with C̃1(p
∗) = ∥x1 − p∗∥2.

We have the following:

Proposition 3.3.1. Let (Tk) be a sequence of operators on H, such that Fix(Tk) ≡ {p∗} and
Tk is qk-quasi-contractive for each k ∈ N. Let (xk, yk) satisfy (3.1), and let ξ ∈ [0, 1]. Write
Qk = Q(λk, qk, ξ), where Q is defined in (3.20). For each k ∈ N, we have

∥xk+1 − p∗∥2 + ξδk+1 ≤ Qk

[
(1 + αk)∥xk − p∗∥2 − αk∥xk−1 − p∗∥2

]
+
[
Qkαk(1 + αk) + ξνkαk(1 − αk)

]
∥xk − xk−1∥2. (3.24)

If, moreover,
Qkαk(1 + αk) + ξνkαk(1 − αk) − ξQkνk−1(1 − αk−1) ≤ 0 (3.25)

for all k ∈ N, then

C̃k+1(p
∗) ≤

[
k∏

j=1

Qj

]
∥x1 − p∗∥2 (3.26)

and

∥xk+1 − p∗∥2 ≤

[
αk +

k∑
j=1

αk−j

[
j∏

i=1

Qi

]]
∥x1 − p∗∥2. (3.27)

Proof. We use (3.1) and (3.21) to obtain

∥xk+1 − p∗∥2 ≤ Qk∥yk − p∗∥2 − ξλk(1 − λk)∥yk − Tkyk∥2.

Now, by (3.7), we deduce that

∥xk+1 − p∗∥2 ≤ Qk

[
(1 + αk)∥xk − p∗∥2 + αk(1 + αk)∥xk − xk−1∥2 − αk∥xk−1 − p∗∥2

]
− ξλk(1 − λk)∥yk − Tkyk∥2.

On the other hand, from (3.11), we get

ξδk+1 ≤ ξνkαk(1 − αk)∥xk − xk−1∥2 + ξλk(1 − λk)∥yk − Tkyk∥2,

and the last two inequalities together imply (3.24). For the second part, inequalities (3.24)
and (3.25) together give

∥xk+1 − p∗∥2 + ξδk+1 ≤ Qk

[
(1 + αk)∥xk − p∗∥2 − αk∥xk−1 − p∗∥2

]
+ ξQkδk.

Subtracting αk∥xk − p∗∥2, we are left with

C̃k+1(p
∗) ≤

(
Qk(1 + αk) − αk

)
∥xk − p∗∥2 − αkQk∥xk−1 − p∗∥2 + ξQkδk

≤ Qk∥xk − p∗∥2 −Qkαk−1∥xk−1 − p∗∥2 + ξQkδk
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= QkC̃k(p∗),

where the second inequality comes from αk being nondecreasing and Qk ≤ 1. This gives
(3.26), recalling that C̃1(p

∗) = ∥x1−p∗∥2. Now, since ∥xk+1−p∗∥2−αk∥xk−p∗∥2 ≤ C̃k+1(p
∗),

we have

∥xk+1 − p∗∥2 ≤ αk∥xk − p∗∥2 +

[
k∏

j=1

Qj

]
∥x1 − p∗∥2

≤ α∥xk − p∗∥2 +

[
k∏

j=1

Qj

]
∥x1 − p∗∥2,

which we then iterate to obtain (3.27).

The preceding estimations allow us to establish the main result of this section, namely:

Theorem 3.3.1. Let (Tk) be a sequence of operators on H, such that Fix(Tk) ≡ {p∗} and
Tk is qk-quasi-contractive for each k ∈ N. Let (xk, yk) satisfy (3.1), and let ξ ∈ [0, 1]. Write
Qk = Q(λk, qk, ξ), and assume that (3.25) holds for all k ∈ N. We have the following:

i) If
∑∞

k=1 λk(1 − q2k) = ∞, then xk converges strongly to p∗, as k → ∞.

ii) If λk ≥ λ > 0 and qk ≤ q < 1 for all k ∈ N, then xk converges linearly to p∗, as k → ∞.
More precisely,

∥xk − p∗∥2 ≤
[
Q(λ, q, ξ)k+1 − αk+1

Q(λ, q, ξ) − α

]
∥x1 − p∗∥2 = O

(
Q(λ, q, ξ)k

)
. (3.28)

Proof. For part i), write pk = λk(1− q2k), and observe that Qk ≤ 1− pk, because Q increases
with ξ. It ensues that

K∏
k=1

Qk ≤
K∏
k=1

(1 − pk) = exp

[
K∑
k=1

ln(1 − pk)

]
≤ exp

[
−

K∑
k=1

pk

]

since ln(1 − z) ≤ −z. If
∑∞

k=1 λk(1 − q2k) = ∞, then
∏∞

k=1Qk = 0. By (3.26),
limk→∞ C̃k(p∗) = 0. As in the proof of Theorem 3.2.1, we can show that the sum of the
first two terms in C̃k(p∗), namely ∥xk − p∗∥2 − αk−1∥xk−1 − p∗∥2, is nonnegative. Therefore,
limk→∞ [∥xk − p∗∥2 − αk−1∥xk−1 − p∗∥2] = 0. If αk ≡ 0, the conclusion is straightforward.
Otherwise, given any ε > 0, there is K ∈ N such that

∥xk − p∗∥2 ≤ α∥xk−1 − p∗∥2 + ε

for all k ≥ K, since αk is nondecreasing. This implies

∥xk − p∗∥2 ≤ αk−K∥xK − p∗∥2 + ε(1 − α)−1,

so that lim supk→∞ ∥xk − p∗∥ ≤ ε(1 − α)−1, and the conclusion follows.
For ii), we know that Q(λk, qk, ξ) ≤ Q(λ, q, ξ), because Q increases either if λ decreases,
and also if q increases. Gathering the common factors in the second and third terms on the
left-hand side of inequality (3.25), we deduce that Q ≥ α (strictly if α > 0). Using (3.27),
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and observing that the case Q(λ, q, ξ) = α is incompatible with inequality (3.25), we deduce
that

∥xk+1 − p∗∥2 ≤ αk

[
k∑

j=0

(
Q(λ, q, ξ)

α

)j
]
∥x1 − p∗∥2

=

[
αk+1 −Q(λ, q, ξ)k+1

α−Q(λ, q, ξ)

]
∥x1 − p∗∥2,

as claimed.

3.3.2 Behavior with and without inertia

In the non-inertial case αk ≡ 0, (3.25) holds if either ξ = 0 or λk ≤ 1 for all k, as in
Hypothesis A. This is less restrictive than Hypothesis B (see Remark 3.2.2). To simplify the
explanation, suppose qk ≡ q ∈ (0, 1). The best convergence rate is

∥xk − p∗∥ = O
(
qk
)
,

obtained from Theorem 3.3.1 with λk ≡ 1 and ξ = 0. If αk > 0 for at least one k, the case
ξ = 0 is ruled out, and

q2 ≤ (1 − λk + λkq)2 = Q(λk, q, 0) ≤ Q(λk, q, ξ) ≤ Q(λk, q, 1) = 1 − λk + λkq
2.

All inequalities are strict if λk ∈ (0, 1). This suggests that there may be operators for which
the inertial step actually deteriorate the convergence, so inertial steps should be handled
with caution and this can be seen as an argument against the use of inertia. Actually, it is
possible to find a wide variety of behaviors, even for some of the simplest operators, as shown
by the following case study:

Example 3.3.1. Let λk ≡ λ ∈ (0, 1) and αk ≡ α ∈ [0, 1). Take q ∈ (0, 1], and consider the
operator T : R → R, defined by Ty = −qy, whose unique fixed point is the origin.
If α = 0, for each k ≥ 0, we have xk+1 = Lxk, where we have written L = 1 − λ(1 + q).
Iterating from x0 = 1, we obtain |xk| = |L|k. If λ(1 + q) = 1, convergence occurs in one
iteration.
Now, let α ∈ (0, 1), so that (3.1) reads

xk+1 = L
(
xk + α(xk − xk−1)

)
. (3.29)

Here, we take x1 = x0 = 1. We can rewrite (3.29) in matrix form as

Xk+1 = MXk,

where

M =

(
(1 + α)L −αL

1 0

)
, Xk =

(
xk

xk−1

)
.

As before, convergence occurs in one step if L = 0. The eigenvalues of M are

µ± =
(1 + α)L±

√
(1 + α)2L2 − 4αL

2
.
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Let us consider the case L > 0 first. If (1+α)2L2 < 4αL (which is λ(1+q) > (1−α)2/(1+α)2),
the eigenvalues are complex conjugates, both with modulus |µ±| =

√
αL < 1. Now,

√
αL < L

if, and only if, L > α, which means that λ(1 + q) < 1 − α. Since |xk| = O(|µ±|), the inertial
iterations converge strictly faster than the noninertial ones if

(1 − α)2

(1 + α)2
< λ(1 + q) < 1 − α.

If L = α, the convergence rate is the same. Else, if (1 + α)2L2 ≥ 4αL, then M has two
real eigenvalues (counting multiplicities), with 0 < µ− ≤ µ+. But since L ∈ (0, 1) implies
−L < −L2, we always have

µ+ <
(1 + α)L +

√
(1 + α)2L2 − 4αL2

2
=

(1 + α)L + L
√

(1 − α)2

2
= L < 1.

Therefore, the inertial iterations also converge strictly faster if

0 < λ(1 + q) ≤ (1 − α)2

(1 + α)2
.

When L < 0 (λ(1 + q) > 1), the matrix M will always have two real eigenvalues, one of each
sign. It is easy to verify that |µ+| < |µ−|, which implies that |µ−| determines the convergence
(the initial condition is not an eigenvector of M , so both eigenvalues intervene). But

µ− = −
(1 + α)|L| +

√
(1 + α)2L2 + 4α|L|

2

< −
(1 + α)|L| +

√
(1 + α)2L2

2
= −|L|
= L.

In this case, the inertial algorithm performs worse than the noninertial one. Moreover, the
inertial iterations do not converge if µ− ≤ −1, which is equivalent to

λ(1 + q) ≥ 2(1 + α)

1 + 2α
.

A few comments are in order:

� For 0 < λ(1 + q) < 1−α, the inertial iterations converge at a strictly faster linear rate
than the noninertial ones, even in the noncontracting case q = 1.

� At the transition point λ(1 + q) = 1 − α the convergence rate is the same.

� In the interval 1 − α < λ(1 + q) < 2(1+α)
1+2α

, the inertial step is counterproductive and
noninertial iterations perform better, except for the singular value λ(1 + q) = 1, where
both converge in one iteration. In both cases, the closer λ(1 + q) is to 1, the faster the
convergence.
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� If λ(1 + q) ≥ 2(1+α)
1+2α

, the inertial iterations do not converge, while the noninertial ones
do. Notice that, picking λ and α satisfying (3.19) can be read as picking λ < S(α),

with S(α) = (1−α)2

1−α+2α2 . Calling P (α) = 1+α
1+2α

, it is easy to see that

λ < S(α) < P (α) ≤ 2

1 + q
P (α), ∀q ∈ (0, 1].

Then λ(1 + q) < 2(1+α)
1+2α

for all q ∈ (0, 1]. Therefore, this last case is incompatible with
Hypotheses (A) or (B).

Now, the convergence rate results given by Theorem 3.3.1 correspond to worst-case sce-
narios, which certainly must include cases like the one discussed in Example 3.3.1. However,
this situation need not be representative of other concrete instances found in practice, in
which inertia improves either the theoretical convergence rate guarantees (see Subsection
3.4.2 below, and the commented references), or the actual behavior when the algorithm is
implemented. In fact, the numerical tests reported below show noticeable improvements in
the performance of the selected algorithms, upon adding the inertial substep.

3.3.3 Some insights into inequality (3.25)

To fix the ideas, we comment on some special cases of inequality (3.25), especially with
constant parameters:

1. In the limiting case qk ≡ 1, we have Qk ≡ 1. With constant parameters λk ≡ λ, αk ≡ α,
(3.25) becomes

λα(1 + α) − ξ(1 − λ)(1 − α)2 ≤ 0.

If
αλ(1 + α)

(1 − λ)(1 − α)2
≤ 1, (3.30)

then, there is ξα,λ,1 ∈ (0, 1) such that (3.25) holds for all ξ ∈ [ξα,λ,1, 1]. If ξ = 1, it is
precisely the constant case in Hypothesis A (see (3.19) for a more direct comparison).

2. Keeping λk ≡ λ ∈ (0, 1), αk ≡ α ∈ (0, 1), and fixing ξ = 1, let us take qk ≡ q ∈ (0, 1).
In this case, condition (3.25) is equivalent to

Ψ(λ) := (1 + α2)(1 − q2)λ2 −
(
2α2 + (1 − α)(2 − q2)

)
λ + (1 − α)2 ≥ 0. (3.31)

Observe that Ψ(0) = (1 − α)2 > 0, while Ψ(1) = −αq2(1 + α) < 0. Since Ψ is
quadratic, the equation Ψ(λ) = 0 has exactly one root in (0, 1), which we denote by
λα,q. It follows that, for each (α, q) ∈ [0, 1) × (0, 1), inequality (3.31) holds for all
λ ≤ λα,q. The values of λα,q on [0, 1) × (0, 1) are depicted in Figure 3.1. Once a value
for the inertial parameter α has been selected, the best theoretical convergence rate is

Q(λα,q, q, 1) = 1 − λα,q(1 − q2).

On the other hand, using the formula for the roots of a quadratic equation and some
algebraic manipulations, we deduce that[

2α2 + (1 − α)

2α2 + (1 − α)(2 − q2)

]
λα,1 ≤ λα,q ≤ λα,1
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Figure 3.1: Values of λα,q.

for every (α, q) ∈ [0, 1) × (0, 1). Therefore, λα,q → λα,1 as q → 1, and there is no
discontinuity as the contractive character is lost.
The case ξ ∈ (0, 1) is more involved. Lower values of ξ make the constant Q smaller,
but may also restrict the possible values for α and λ, in view of inequality (3.25). In
the fully general case, if α, λ and q satisfy[

αλ(1 + α)

(1 − α)(1 − λ)

] [
1 − λ + λq2

1 − λ + λq2 − α

]
< 1,

then, there is ξα,λ,q ∈ (0, 1) such that (3.25) holds for all ξ ∈ [ξα,λ,q, 1]. As q → 1, we
recover (3.30) as a limit case.

3.4 Examples

A broad class of algorithms to solve optimization and differential inclusion problems can be
stated as fixed point iterations. Some well known techniques are introduced, all of them align
with the framework presented in this chapter, that is, all of them preserve convergence after
the inclusion of inertia.

3.4.1 Averaged Operators

An operator T : H → H is γ-averaged if there is a nonexpansive operator R : H → H such
that T = (1 − γ)I + γR. In this case, Fix(T ) = Fix(R).

Let R : H → H be nonexpansive and let (γk) be a sequence in (0, 1). Setting Tk =
(1 − γk)I + γkR, (3.1) can be rewritten as{

yk = xk + αk(xk − xk−1)
xk+1 = (1 − γkλk)yk + γkλkR(yk),

(3.32)
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and Hypothesis B becomes

lim sup
k→∞

[
αk(1 + αk) +

(
(γkλk)−1 − 1

)
αk(1 − αk) −

(
(γk−1λk−1)

−1 − 1
)
(1 − αk−1)

]
< 0.

If γkλk → η > 0, this is
η(1 − α + 2α2) < (1 − α)2. (3.33)

It is not necessary to implement the algorithm using the operator R explicitly. However, the
interval for the relaxation parameters is enlarged, and it may be convenient to over-relax.
We shall come back to this point in the numerical illustrations.

3.4.2 Euler Iterations and Gradient Descent

An operator B is β-cocoercive with β > 0 if ⟨Bx−By, x−y⟩ ≥ β ∥Bx−By∥2 for all x, y ∈ H.

Let B : H → H be cocoercive with constant β, and let (ρk) be a sequence in (0, 2β). For
each k ≥ 1, set

Tk = I − ρkB.

Then, Tk is nonexpansive (thus quasi-nonexpansive) and (ρk/2β)-averaged. If ρ− :=
infk≥1 ρk > 0, the family (I − Tk) is asymptotically demiclosed. If λkρk → σ, Hypothe-
sis B becomes

σ(1 − α + 2α2) < 2β(1 − α)2.

Now, let f : H → H be convex and differentiable, and assume ∇f is Lipschitz-continuous
with constant L. Then, B = ∇f is cocoercive with constant β = 1/L. If, moreover, f is
strongly convex with parameter µ and ρk ≤ 2/(L + µ), then Tk is qk-quasi-contractive with

qk = 1 − 2µLρk
L + µ

≤ 1 − 2µLρ−
L + µ

=: q.

Therefore, (Tk) is q-quasi-contractive. Considering the non-inertial case (αk ≡ 0), λk ≡ 1
and the fixed-sted choice ρk = 2/(µ + L), the algorithm exhibits a rate of convergence

f(xk) − f ∗ ≤ L

2

(
Q− 1

Q + 1

)2k

∥x0 − x∗∥2 ,

where Q = L/µ is the condition number [70, Theorem 2.1.15]. Introducing the inertial term,
and using

ρk = 1/L and αk ≡

(√
L−√

µ
√
L +

√
µ

)
,

it turns into [70, Constant Step scheme, III], which has a rate of convergence of

f(xk) − f ∗ ≤ min

{(
1 −

√
µ

L

)k

,
4L

(2
√
L + k

√
µ)2

}(
f(x0) − f ∗ +

µ

2
∥x0 − x∗∥2

)
.
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Here, Hypothesis B can be written as

λ <
2Q

1 −
√
Q + 2Q

,

which gives the condition for the convergence of Nesterov’s constant step scheme with con-
stant relaxation λ.

3.4.3 Proximal and Forward-Backward Methods

Let M : H → 2H be maximally monotone and let (ρk) be a positive sequence. The proximal
method consists in iterating

zk+1 = (I + ρkM)−1zk, (3.34)

for k ≥ 1. The operator Tk = JρkM := (I + ρkM)−1 is nonexpansive, 1
2
-averaged, and

Z =
⋂

k≥1 Fix(Tk) = M−10. If λk → λ, Hypothesis A is reduced to

λ(1 − α + 2α2) < 2(1 − α)2.

As before, the family (I − Tk) is asymptotically demiclosed at 0 if infk≥1 ρk > 0. To see this,
let (zk) be a sequence in H such that zk ⇀ z and zk−Tkzk → 0. We must show that 0 ∈ Mz.
By the definition of Tk, we have

1

ρk
(zk − Tkzk) ∈ M(Tkzk).

The left-hand side converges strongly to zero, while Tkzk ⇀ z. We conclude by the
weak-strong closedness of the graph of M .

Let A : H → 2H be maximally monotone, let B : H → H be cocoercive with parameter
β, and let (ρk) be a sequence in (0, 2β). For each k ≥ 1, set

Tk = (I + ρkA)−1(I − ρkB).

Then, Tk is γk-averaged with γk = 2β(4β − ρk)−1. If ρk → ρ and λk → λ, then Hypothesis B
is equivalent to

λ(1 − α + 2α2) <

(
2 − ρ

2β

)
(1 − α)2.

As in the proximal case, the family (I−Tk) is asymptotically demiclosed at 0 if infk≥1 ρk > 0.

3.4.4 Douglas-Rachford and primal-dual splitting

Let A,B : H → 2H be maximally monotone, and let (rk) be a positive sequence. The
Douglas-Rachford splitting method consists in iterating zk+1 = Trkzk, for k ≥ 1, where

Tr = JrA ◦
(
2JrB − I

)
+
(
I − JrB

)
=

1

2

(
I + (2JrA − I) ◦ (2JrB − I)

)
. (3.35)
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The second expression shows that Tr is averaged. Using the weak-strong closedness of the
graphs of A and B, and a little algebra, one proves that the family

(
I−Trk

)
is asymptotically

demiclosed if infk≥0 rk > 0. Finally, observe that Zer(A + B) = JrB Fix(Tr).

More generally, let X and Y be Hilbert spaces, and consider the primal problem, which
is to find x̂ ∈ X such that

0 ∈ Ax̂ + L∗BLx̂,

where A : X → 2X and B : Y → 2Y are maximally monotone operators, and L : X → Y is
linear and bounded. The dual problem is to find ŷ ∈ Y such that

0 ∈ B−1ŷ − LA−1(−L∗ŷ).

The primal and dual solutions, namely x̂ and ŷ, are linked by the inclusions

−L∗ŷ ∈ Ax̂ and Lx̂ ∈ B−1ŷ.

Remark 3.4.1. Let f : X → R ∪ {+∞} and g : Y → R ∪ {+∞} be closed and convex, and
set A = ∂f and B = ∂g. The inclusions above are the optimality conditions for the primal
and dual (in the sense of Fenchel-Rockafellar) optimization problems

min
x∈X

{f(x) + g(Lx)} and min
y∈Y

{g∗(y) + f ∗(−L∗y)}, (3.36)

respectively. Douglas-Rachford splitting applied to A = ∂g∗ and B = ∂
(
f ∗ ◦ (−L∗)

)
yields the

alternating direction method of multipliers (see [46]).

In order to find a primal-dual pair, the primal-dual splitting algorithm (see [30]) iterates:{
xk+1 = JτA

(
xk − τL∗yk

)
yk+1 = JσB−1

(
yk + σL(2xk+1 − xk)

)
,

(3.37)

with τσ∥L∥2 ≤ 1. The algorithm can be expressed as (xk+1, yk+1) = T (xk, yk), where
T : X × Y → X × Y is a 1/2-averaged operator (see [18, Remark 4.34]).

An inertial version of the primal-dual iterations is given by
(yk, vk) = (xk, uk) + αk [(xk, uk) − (xk−1, uk−1)]
pk+1 = JτA(yk − τL∗vk)
qk+1 = JσB−1(vk + σL(2pk+1 − yk))
(xk+1, uk+1) = (1 − λk)(yk, vk) + λk(pk+1, qk+1),

(3.38)

with appropriate sequences αk and λk.

In [25], the authors propose the Split Douglas-Rachford algorithm
vk = Σ

(
I − JΣ−1B

)(
Lxk + Σ−1yk

)
xk+1 = JΥA

(
xk − ΥL∗vk

)
yk+1 = ΣL(xk+1 − xk) + vk,

(3.39)

where Υ and Σ are elliptic linear operators that induce an ad-hoc metric and account for
preconditioning.
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3.4.5 Three Operator Splitting

Given three maximally monotone operators A,B,C defined on the Hilbert space H, we wish
to find x̂ ∈ H such that

0 ∈ Ax̂ + Bx̂ + Cx̂. (3.40)

If C is β-cocoercive, the three-operator splitting method [37] generates a sequence (zk) by
xB
k = JρB(zk)

xA
k = JρA(2xB

k − zk − ρCxB
k )

zk+1 = zk + λk(xA
k − xB

k )
(3.41)

starting from a point z0 ∈ H. Here ρ ∈ (0, 2β), λk ∈ (0, 1/γ) and

γ =
2β

4β − ρ
. (3.42)

This recurrence is generated by iterating the γ-averaged operator

T = I − JρB + JρA ◦ (2JρB − I − ρC ◦ JρB),

and we have Zer(A + B + C) = JρB(FixT ). Also, it gives the forward-backward method if
B = 0 and the Douglas-Rachford method if C = 0. An inertial version is given by

uk = zk + αk(zk − zk−1)
xB
k = JρB(uk)

xA
k = JρA(2xB

k − uk − ρCxB
k )

zk+1 = uk + λk(xA
k − xB

k ),

(3.43)

for appropriate choices of αk, λk. One particular instance is given by the optimization problem

min f(x) + g(x) + h(Lx), (3.44)

where f, g, h are closed and convex, h has a (1/β)-Lipschitz-continuous gradient, and L is a
bounded linear mapping.

Remark 3.4.2. Notice that γ > 1, and then the feasible set for λk is greater than (0, 1),
allowing to consider the non-relaxed case λk ≡ 1.

Remark 3.4.3. There are two recent works that extend the results proposed by Davis and
Yin, extending the feasible interval for the step sizes ρ from (0, 2β) to (0, 4β). In [7], they
prove the convergence of algorithm (3.41) not using the fact that the operator T is averaged.
Considering the same hypotheses over the three operators, ρ ∈ (0, 4β) and (λk)k such that
λk ∈ (0, 2−ρ/(2β)] and

∑
λk(2− ρ

2β
−λk) = ∞2, they prove weak convergence of the iterations

defined by the Davis and Yin splitting algorithm (3.41).

The same result is proved in [35] using a different strategy. If ρ ∈ (0, 4β) and the relax-
ation parameter λ ∈ (0, 2 − ρ

2β
), then the operator

(1 − λ)I + λT = λJρB ◦ (2JρA − I − ρC ◦ JρA) + I − λJρA,

is averaged with parameter γ = 2λβ/(4β − ρ).

This result also applies for the forward-backward method.
2Notice that not all of the values of λk are allowed to be equal to 2 − ρ/(2β), because that case is

incompatible with the second hypothesis.
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3.5 Numerical Illustrations

In this section, we test the performance of the algorithm given by iterations (3.1) in two of
the settings described in Section 3.4. More precisely, we apply an inertial primal-dual split-
ting method to solve a TV-based denoising problem, and an inertial three-operator splitting
algorithm to in-paint a corrupted image.

3.5.1 Primal-Dual Splitting and TV-based Denoising

The algorithm will be tested in an image processing framework. Consider the problem

min
x∈RN1×N2

F TV (x) :=
1

2
∥Rx− b∥2 + w ∥∇x∥1 , (3.45)

where x ∈ RN1×N2 is an image to recover from a noisy observation b ∈ RM1×M2 ,
R : RN1×N2 → RM1×M2 is a blur operator, w is a positive parameter, and
∇ : x 7→ ∇x = (D1x,D2x) is the classical discrete gradient, whose adjoint ∇∗ is the
discrete divergence. A formulation for the gradient and divergence operators can be seen
on [28]. In these experiments, R will be a Gaussian blur of size 9 × 9, standard deviation 4
and relative boundary conditions (see [50] for details on the construction of the operator),
and w = 10−4. Considering the original image x̄ in Figure 3.3a composed by 256 × 256
pixels, the observation b is generated as b = Rx̄ + e, where e is an additive zero-mean white
Gaussian noise with standard deviation 10−3 (Figure 3.3b).

Setting f = 0, g : (u, v1, v2) 7→ 1
2
∥u− b∥2+w ∥v1∥1+w ∥v2∥1 and L : x 7→ (Rx,D1x,D2x),

the problem (3.45) can be formulated as (3.36), and solved via (3.38). Since

proxσg∗ :

 u
v1

v2

 7→


u− σb

σ + 1

v1 − σ proxw
σ
∥·∥1

(
v1

σ

)
v2 − σ proxw

σ
∥·∥1

(
v2

σ

)
 (3.46)

we are lead to Algorithm 2.

For a stopping criterion, we consider the relative error

R(xk+1, xk) 7→ ∥xk+1 − xk∥
∥xk∥

. (3.47)

Since the involved operator is 1/2-averaged (see [26]), we may set λk ≡ λ ∈ (0, 2), as
explained in Section 3.4.1.

The algorithm is tested for 17 combinations of τ, σ satisfying the critical condition
τσ ∥L∥2 = 1 (according to [25], this tends to yield the best performance). The number ∥L∥
is computed using an adaptation of [77, Algorithm 12].
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Algorithm 2:

Choose x0, x1 ∈ RN1×N2 , u0, u1 ∈ Rm1×m2 , v10 , v
1
1 , v

2
0 , v

2
1 ∈ RN1×N2 , (λk)k∈N and (αk)k∈N such that

hypotheses of Theorem 3.2.1 are fulfilled, τ and σ such that τσ ∥L∥2 ≤ 1, ε > 0 and r0 > ε ;
while rk > ε do

(x̄k, ūk, v̄
1
k, v̄

2
k) = (xk, uk, v

1
k, v

2
k) + αk[(xk, uk, v

1
k, v

2
k)− (xk−1, uk−1, v

1
k−1, v

2
k−1)];

pk+1 = x̄k − τR∗ūk − τD∗
1 v̄

1
k − τD∗

2 v̄
2
k;

qk+1 = (ūk + σR(2pk+1 − x̄k)− σb)/(σ + 1);
w1

k+1 = v̄1k + σD1(2pk+1 − x̄k)− σ proxw∥·∥1/σ
(v̄1k/σ +D1(2pk+1 − x̄k));

w2
k+1 = v̄2k + σD2(2pk+1 − x̄k)− σ proxw∥·∥1/σ

(v̄2k/σ +D2(2pk+1 − x̄k));

(xk+1, uk+1, v
1
k+1, v

2
k+1) = (1− λk)(x̄k, ūk, v̄

1
k, v̄

2
k) + λk(pk+1, qk+1, w

1
k+1, w

2
k+1) ;

rk = R((xk+1, uk+1, v
1
k+1, v

2
k+1), (xk, uk, v

1
k, v

2
k)) ;

end
return (xk+1, uk+1, v

1
k+1, v

2
k+1)

Comparison in terms of the parameters τ and σ. In a first stage, we compare the
performance of the primal-dual splitting algorithm given by (3.37) (that is, Algorithm 2 with
αk ≡ 0), and its inertial counterpart (3.38), with λk ≡ 1. The sequence (αk)k∈N is

αk = α

(
1 − 1

k2

)
, (3.48)

with α = 1/(3 + 0.0001) (condition (3.33) with η = λ/2 gives the constraint α < 1/3). Table
3.1 shows the execution time, number of iterations, and the value for the objective value
reached, using a tolerance ε = 10−5. These results are depicted graphically, along with the
percentage of reduction, in Figure 3.2. The recovered images are collected in Figures 3.3c
and 3.3d.

Original algorithm Inertial algorithm
Case τ σ Time Iters. FTV (x) Time Iters. FTV (x)

1 0.0004 282.8427 72.59 1565 7.30 55.11 1095 7.13
2 0.0010 122.6475 115.66 2437 2.84 86.97 1741 2.66
3 0.0024 53.183 110.16 2330 1.35 83.98 1672 1.27
4 0.0054 23.0614 98.28 2077 0.7566 72.33 1446 0.7341
5 0.0125 10 94.80 2015 0.4624 69.59 1394 0.4537
6 0.0288 4.3362 105.19 2253 0.2975 77.83 1562 0.2928
7 0.0665 1.8803 122.23 2593 0.2107 89.83 1773 0.2091
8 0.1533 0.8153 156.34 3248 0.1592 112.09 2184 0.1589
9 0.3536 0.3536 140.91 2922 0.1428 101.69 1956 0.1427
10 0.8153 0.1533 139.50 2856 0.1350 98.97 1908 0.1350
11 1.8803 0.0665 151.08 3123 0.1312 107.72 2084 0.1312
12 4.3362 0.0288 108.08 2249 0.1303 78.03 1503 0.1303
13 10 0.0125 60.28 1238 0.1301 42.78 833 0.1301
14 23.0614 0.0054 47.61 983 0.1302 35.70 693 0.1302
15 53.1830 0.0024 70.78 1466 0.1302 54.61 1065 0.1302
16 122.6475 0.0010 119.22 2471 0.1302 89.91 1762 0.1302
17 282.8427 0.0004 179.22 3767 0.1302 150.52 2999 0.1302

Table 3.1: Execution time, number of iterations and final function value for the original
primal-dual algorithm and the inertial version, with tolerance ε = 10−5.
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Figure 3.2: Number of iterations (top left), execution time (top right), and percentage of
reduction (bottom), from Table 3.1.

Comparison in terms of the relaxation parameter λ. For both algorithms, case
14 showed the best performance in terms of iterations and execution time. We now assess
the performance of the inertial algorithm with different values for λk ≡ λ ∈ (0, 2), and
the corresponding inertial parameters fulfilling condition (3.33). The results are shown in
Tables 3.2 and 3.3, along with the value of α used in (3.48). A graphic depiction is shown
as heatmaps in Figure 3.4. Larger values of the relaxation parameter λ resulted in an
improvement in the performance of both algorithms, but limit the impact of inertia, as it
reduces the feasible range for the limit α. A more thorough study on the selection of these
parameters is the object of a forthcoming article.

Original algorithm Inertial algorithm
λ α Time Iterations FTV (x) Time Iterations FTV (x)

0.2 0.6534 119.16 2592 0.1303 49.23 992 0.1304
0.4 0.5425 74.44 1589 0.1302 40.45 799 0.1303
0.6 0.4619 62.28 1341 0.1302 39.06 773 0.1302
0.8 0.3943 54.05 1146 0.1302 33.94 730 0.1302
1.0 0.3333 46.12 983 0.1302 34.47 693 0.1302
1.2 0.2748 41.16 861 0.1301 35.17 684 0.1302
1.4 0.1352 38.22 771 0.1301 34.45 675 0.1301
1.6 0.0967 33.89 718 0.1301 33.59 655 0.1301
1.8 0.0535 32.28 679 0.1301 32.62 657 0.1301

Table 3.2: Execution time, number of iterations and final function value for the original
primal-dual algorithm and the inertial version (case 14), with tolerance ε = 10−5.
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Figure 3.3: Original, blurred and recovered images. Lowest recovered value F TV (x) = 0.1301
(case 13, both methods).
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Figure 3.4: Average number of iterations performed by the original (top) and inertial (bot-
tom) algorithms, with tolerance ε = 10−5, for each value of λ, and each case of τ and σ, from
Table 3.2.
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λ α
% Iterations
reduction

% Time
reduction

0.2 0.6534 61.73 58.69
0.4 0.5425 49.72 45.66
0.6 0.4619 42.36 37.28
0.8 0.3943 36.30 37.21
1.0 0.3333 29.50 25.26
1.2 0.2748 20.56 14.55
1.4 0.1352 12.45 9.86
1.6 0.0967 8.77 0.89
1.8 0.0535 3.24 -1.05

Table 3.3: Reduction percentage for the original primal-dual algorithm and the inertial ver-
sion (case 14), with tolerance ε = 10−5.

Finally, Figure 3.5 shows the evolution of the function values, the distance to the limit
and the residuals, all in logarithmic scale, for case 14. The figure also includes the plot of
k ∥zk − Tzk∥2. Theorem 3.2.1 states that the residuals show an non-asymptotic rate given
by (3.14), so we can conjecture an asymptotic rate of o(1/k).
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Figure 3.5: Evolution to the distance to the computed solution (top left), objective function
values (top right), residuals ∥zk − Tzk∥2 (bottom left) and k ∥zk − Tzk∥2 (bottom right), for
case 14.

3.5.2 Three-Operator Splitting and Image In-painting

Suppose that Z is a color image represented as a 3-D tensor where Z(:, :, 1), Z(:, :, 2), Z(:, :, 3)
are the red, green and blue channels, respectively. Consider a damaged image Y , with
randomly erased pixels, represented by the white color. The positions of the erased pixels
are known. Denote A the linear operator that selects the set of correct entries of Z (and so
A∗ is the zero upsampling operator). The objective is to recover the image, by filling the
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erased pixels. Following [37] we consider the following formulation of the in-panting problem:

min
Z∈H

F (Z) :=
1

2
∥A(Z − Y )∥2 + w

∥∥Z(1)

∥∥
∗ + w

∥∥Z(2)

∥∥
∗ , (3.49)

where H is the set of 3-D tensors, Z(1) is the matrix [Z(:, :, 1)Z(:, :, 2)Z(:, :, 3)], Z(2) is the
matrix [Z(:, :, 1)T Z(:, :, 2)T Z(:, :, 3)T ]T , ∥·∥∗ denotes the matrix nuclear norm and w is a
penalty parameter, which we take equal to 1 here, for simplicity. This problem fits in the
context of (3.44), with f(Z) = g(Z) = ∥Z∥∗ and h(Z) = 1

2
∥Z − Y ∥22. In this case, the

operator ∇(h◦A) is cocoercive with constant 1. With the error function R defined in (3.47),
the iterations defined by (3.43) lead to Algorithm 3.

Algorithm 3:

Choose Z0, Z1 ∈ Rm×n, (λk)k∈N and (αk)k∈N such that hypotheses of Theorem 3.2.1 are fulfilled,
ρ ∈ (0, 2), ε > 0 and r0 > ε ;

while rk > ε do
Uk = Zk + αk(Zk − Zk−1);
Xg

k = proxρg(Uk);

Zk+ 1
2
= 2Xg

k − Uk − ρA∗∇h(AXg
k );

Zk+1 = Uk + λk(proxρf (Zk+ 1
2
)−Xg

k );

rk+1 = R(Zk+1, Zk)
end
Return Zn+1, X

g
n;

As in the previous section, Algorithm 3 will be tested in the case αk ≡ 0 (the algorithm
studied in [37]) and, for the inertial version,

αk =

(
1 − 1

k

)
α, (3.50)

where α satisfies the condition (3.33). The corresponding algorithms will be referred to as
original and inertial, respectively. Algorithm (3) returns both the value of Zk and Xg

k , since
the latter represents the image solution of the problem. Throughout this section, the initial
points are both set to zero.

Comparison in terms of the number of erased pixels. Between 10000 and 250000
pixels are randomly erased from the image in Figure 3.10a to obtain the one in Figure 3.10b.
We compare the number of iterations and execution time needed by both methods with step
size ρ = 1 and λk ≡ 1, for a tolerance of 10−3. The results are shown in Figure 3.6. The
reduction stands between 12% and 22% in most cases, and the improvement seems to increase
with the number of erased pixels.

Comparison in terms of the step size. Both algorithms are tested for the same image
with 250000 randomly erased pixels for different values of the step size ρ. As β = 1, Remark
3.4.3 allow us to choose ρ ∈ (0, 4) and λk ≡ λ ∈ (0, 2 − ρ/(2β)). Then for each ρ we use
λ = 1−ρ/(4β). For the inertial version, the constant α in (3.50) is adapted accordingly. The
results are reported in Table 3.4 and depicted graphically in Figure 3.7. The percentage of
reduction is noticeably higher for lower values of ρ (always above 35% when ρ ≤ 2). This is
to be expected, since larger values of ρ require lower values of α, which limits the effect of
inertia.

51



3.5. NUMERICAL ILLUSTRATIONS

0 50000 100000 150000 200000 250000
Erased pixels

40

45

50

55

60

65

Nu
m

be
r o

f i
te

ra
tio

ns

Original
Inertial

0 50000 100000 150000 200000 250000
Erased pixels

10

11

12

13

14

15

16

Ti
m

e 
(s

)

Original
Inertial

0 50000 100000 150000 200000 250000
Erased pixels

8

10

12

14

16

18

20

22

24

Pe
rc

en
ta

ge
 o

f r
ed

uc
tio

n

Iterations reduction
Time reduction

Figure 3.6: Number of iterations (top left), execution time (top right) and percentage of
reduction (bottom) in terms of the number of erased pixels, with step size ρ = 1 and relaxation
parameter λk ≡ 1, for a tolerance of 10−3.

Comparison in terms of the relaxation parameter. Finally, we fix the value ρ = 1,
and compare the performance of the two methods for different values of the relaxation
parameter λ, which, as before, limit the possible range for the inertial parameter α in view
of condition (3.33). The results are presented in Table 3.5, and shown graphically in Figure
3.8. As with the step size, the reduction is greater for lower values of λ, which is consistent
with the loss of the inertial character imposed by condition (3.33). Nevertheless, observe
that over-relaxing with λ = 1.2 or λ = 1.4 gives better results (both in number of iterations
and execution time) than keeping λ in a neighborhood of 1.

The evolution of the function values, the distance to the limit and the residuals are shown
(in logarithmic scale) in Figure 3.9 for 250000 erased pixels, using ρ = 1 and λk ≡ 1. As
in the previous example, the sequence k ∥zk − Tzk∥2 tends to zero, allowing us to conjecture
again an asymptotic rate of o(1/k). Finally, Figure 3.10 shows the original, corrupted (with
250000 erased pixels) and recovered images.3

3For the sake of a fair visual comparison, we follow the implementation used in [37], as described in
https://damek.github.io/ThreeOperators.html, which differs slightly from the description given in Section
3.4.5 in that it contains a Bregman update.
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Original algorithm Inertial algorithm
ρ Time (s) Iterations Time (s) Iterations

0.2 128.77 295 67.29 158
0.4 62.03 166 17.70 88
0.6 23.90 121 12.54 63
0.8 19.85 99 10.61 52
1.0 18.22 88 9.56 48
1.2 16.62 83 10.03 50
1.4 16.77 83 10.48 52
1.6 17.64 87 11.41 56
1.8 18.92 93 12.25 60
2.0 21.45 100 13.54 65
2.2 22.42 108 15.12 71
2.4 24.36 117 16.36 78
2.6 27.36 129 20.21 86
2.8 33.87 144 20.84 96
3.0 35.10 163 24.09 109
3.2 40.82 190 28.12 126
3.4 50.19 230 33.43 152
3.6 68.55 302 43.52 197
3.8 108.05 486 67.46 307

Table 3.4: Execution time and number of iterations in terms of the step size ρ.

Original algorithm Inertial algorithm
λ Time (s) Iterations Time (s) Iterations

0.6 24.47 108 13.57 56
0.7 21.28 94 11.65 51
0.8 18.67 83 12.64 55
0.9 16.94 75 12.76 56
1.0 15.52 69 12.76 56
1.1 14.28 63 12.51 55
1.2 13.35 59 12.53 54
1.3 12.52 55 11.90 52
1.4 12.04 52 11.71 51

Table 3.5: Execution time and number of iterations for different values of λ.
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Figure 3.7: Number of iterations (top left), execution time (top right) and percentage of
reduction (bottom) in terms of the step size ρ.
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Figure 3.8: Number of iterations (top left), execution time (top right) and percentage of
reduction (bottom) in terms of the relaxation parameter λ.
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Figure 3.9: Evolution to the distance to the computed solution (top left), objective function
values (top right), residuals ∥zk − Tzk∥2 (bottom left) and k ∥zk − Tzk∥2 (bottom right), for
250000 erased pixels using ρ = 1 and λk ≡ 1.
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(a) Original image (b) Corrupted image

(c) Recovered without inertia (d) Recovered with inertia

Figure 3.10: Original image (a), corrupted image with 250000 randomly erased pixels (b),
images recovered without inertia (c), and with inertia (d).
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3.6 Performance analysis for KM iterations

On [43], Drori and Teboulle studied rates of convergence for first-order algorithms in a novel
manner: the worst-case behavior of a certain algorithm is an optimization problem, and they
refer to it as Performance Estimation Problem (PEP).

Consider a fixed value n ∈ N, and a first order algorithm A over a class of functions F
defined over Rd. The algorithm iterates from a starting point x0 ∈ Rd, generating a finite
sequence of points xk ∈ Rd, with k = 1, . . . , n, aiming to minimize the values of an objective
function f ∈ F . We refer to A as a first order algorithm because at each step, it depends
only on the previous steps, their function values and their gradients, that is,

xk+1 = A(x0, . . . , xk, f(x0), . . . , f(xk),∇f(x0), . . . ,∇f(xk)), k = 1, . . . , n.

Considering a minimizer x∗ of f , the problem of the worst case convergence for the function
values can be stated as follows: to maximize the value of f(xn) − f(x∗) subject to the
constraints that the sequence xk must be generated by the algorithm A, and that f is a
function over the class F . Then, the PEP has the following structure:

max f(xn+1) − f(x∗)
s.t. xk+1 is generated by A, for k = 1, . . . , n,

f ∈ F ,
x∗is a minimizer of f ,
∥x0 − x∗∥ ≤ R,
x0, . . . , xn, x

∗ ∈ Rd.

(3.51)

The condition ∥x0 − x∗∥ ≤ R, with R > 0, is a common practice, and it states that the
distance from the starting point of the algorithm to the minimizer is bounded. At a first
glance, problem (3.51) seems too general to solve, but on [43], the problem is stated for one
of the most common first order algorithms: the gradient method. In that case, F is the class
of convex and differentiable functions with L-Lipschitz gradient. Using properties of this
class of functions and duality arguments, the PEP for the gradient method can be stated as
a semidefinite program (SDP), and find an optimal solution, which matches the known tight
rate for the algorithm.

The procedure to state the infinite dimensional problem (3.51) into a SDP relies on
using the concept of interpolation. Taylor, Hendrickx and Glineur have made significant
contributions through two research articles that extend the formulation of Drori and Teboulle,
and formalize the interpolation in the context of the PEP. In [86], they provide conditions of
interpolation of first order methods for smooth strongly convex functions. In [85] they extend
their analysis to composite convex functions and a larger class of first order algorithms for
nonsmooth functions, such as the proximal method and its variations.

Ryu, Taylor, Bergeling and Gisselson in [80] set a PEP to find the tightest contrac-
tion factor for a nonexpansive operator. That is, to find the greater positive ρ such that
∥Tx− Ty∥ ≤ ρ ∥x− y∥. They focus mainly on operators defining splitting algorithms such
as Davis-Yin or Douglas-Rachford. In the case of Douglas-Rachford algorithm, they find
explicit tight bounds.

The main idea behind PEP, that is, setting the problem of finding tight rates for algo-
rithms has inspired research in various domains. For example, Mourcer, Taylor and Bach in
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[64] extend the PEP to continuous dynamics involving convex functions, aiming to estimate
the Lyapunov functions, even in a stochastic context. See also [87, 84] where they estimate
Lyapunov functions for first order methods.

In the following, results of an ongoing joint work with Juan Pablo Contreras4 are pre-
sented. Building on the concepts discussed previously, we aim to set a PEP for inertial KM
iterations. As of our current knowledge, there are no results of tight rates for the inertial
iterations presented on this chapter. Consequently, PEP emerges as a promising strategy to
address this challenge. We focus on maximizing the residual of the iterations ∥yn − Tyn∥, for
fixed parameters α, λ and a fixed nonexpansive operator T . Just as the Drori and Teboulle
approach, we show that PEP for inertial KM iterations can be written as a SDP. Although
this is an ongoing research by the time of writing of the thesis, it serves as both motivation
for future work and provides valuable insights into approaching unresolved questions.

3.6.1 PEP for inertial KM iterations

Consider the Krasnoselskii-Mann (KM) iterations:

xk+1 = (1 − λ)xk + λT (xk), (3.52)

where T : H → H is a nonexpansive mapping and fixed averaging parameter λ ∈ (0, 1). If
x∗ ∈ Fix(T ) and x0 ∈ H, an optimal error bound for the residuals can be stated (see [54]),
which is

∥xk − T (xk)∥2 ≤ 1

k + 1

(
k

k + 1

)k ∥x0 − x∗∥2

λ(1 − λ)
. (3.53)

The previous rate is proved to be tight, and the result is achieved by using semidefinite
programming. This strategy, and the Performance Estimation Problem (PEP) described
before motivate us to perform a numerical analysis for the rate of the residuals in the inertial
KM iterations with fixed parameters: given x0, x1 ∈ H, α ∈ [0, 1), λ ∈ (0, 1),{

yk = xk + α(xk − xk−1)
xk+1 = (1 − λ)yk + λTyk.

(3.54)

If λ, α satisfy

λ <
(1 − α)2

(1 − α + 2α2)
, (3.55)

then Theorem 3.2.2 gives that both xk and yk converge weakly to a point in Fix(T ). Given
parameters α and λ, the tight rate of convergence corresponds to the worst case of convergence
for an operator T . In other words, to find the operator T which gives the slowest speed of
convergence. Therefore, we aim to maximize the value for the residuals, under the constraints
of nonexpansiveness of the operator, the existence of fixed points, and that the sequence is
generated by KM iterations. That is, the problem, in a general form, can be stated as

max
x0,x1,x∗

∥yn − Tyn∥2

s.t. xk, yk are generated as inertial KM iterations,
T is a nonexpansive mapping,
T admits a fixed point x∗

4Postdoctoral Researcher, Universidad Católica del Norte, Antofagasta, Chile.
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for a fixed n ∈ N, and vectors xk, yk ∈ Rd, for k = 0, . . . , n. In the following, we state the
objective function and each one of the constraints in a convenient form to tackle the problem
using a numerical solver. The constraint of xk and yk being generated as KM iterations will
be used to rewrite the other expressions only in terms of xk.

� Objective function. Using (3.54), observe that

∥yn − Tyn∥2 =

∥∥∥∥1

λ
(yn − xn+1)

∥∥∥∥2
=

∥∥∥∥1

λ
xn+1 −

(α + 1)

λ
xn +

α

λ
xn−1

∥∥∥∥2
� Constraint 1: T must be nonexpansive. That is, for each k, j = 1, . . . , n, with
k ̸= j,

∥Tyk − Tyj∥2 ≤ ∥yk − yj∥2 .
Notice that (3.54) allows to rewrite the previous expression only in terms of xk, xj,
using

Tyk =
xk+1

λ
− (1 − λ)

λ
(1 + α)xk +

α

λ
(1 − λ)xk−1, (3.56)

and
yk = xk(1 + α) − αxk−1. (3.57)

� Constraint 2: T admits a fixed point x∗. We will generate a sequence xk, k =
0, . . . , n+1 and an extra point, xn+2 that will serve as fixed point. Then, the fixed-point
condition will be modeled as follows: for every k = 1, . . . , n,

∥Tyk − xn+2∥2 ≤ ∥yk − xn+2∥2 .

Using (3.56) and (3.57), this expression can be rewritten in terms of xk.

Using the notation ν = (1 − λ)/λ, the problem can be formulated as follows:

max
x0,x1,...,xn+1

∥∥∥∥1

λ
xn+1 −

(α + 1)

λ
xn +

α

λ
xn−1

∥∥∥∥2
s.t.

∥∥∥xk+1

λ
− ν(1 + α)xk + ανxk−1 −

xj+1

λ
+ ν(1 + α)xj − ανxj−1

∥∥∥2
≤ ∥xk(1 + α) − αxk−1 − xj(1 + α) + αxj−1∥2 ,

∀ k, j = 1 . . . n, k ̸= j,∥∥∥xk+1

λ
− ν(1 + α)xk + ανxk−1 − xn+2

∥∥∥2
≤ ∥xk(1 + α) − αxk−1 − xn+2∥2 , ∀ k, j = 1, . . . , n, k ̸= j,

∥x0 − x∗∥2 ≤ 1,

∥x1 − x∗∥2 ≤ 1.

(3.58)
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As it was mentioned in the introductory PEP (3.51), a constrain of boundedness on
the fixed point is added. The optimization problem consists in an objective function and
constraints written as squared norms depending only on the sequence xk and the parameters
α, λ. Then, the squared norms can be expressed as inner products, and the problem can be
formulated in terms of ⟨xk, xj⟩, with k, j = 0, . . . , n + 2. Considering this formulation, we
can set as the variables of the optimization problem the value of each inner product ⟨xk, xj⟩.
That is, the variables can be represented in a lower triangular matrix

X =

 ⟨x0, x0⟩ . . . 0
...

. . .
...

⟨x0, xn+2⟩ ⟨xn+2, xn+2⟩

 .

To write the objective function, let us define a cost vector

c =
[
λ−1,−(α + 1)λ−1, αλ−1

]
,

where ci, i ∈ {1, 2, 3} states for each one of the components. Then, let us define the lower
triangular matrix C ∈ Mn+3(R) as

Cij =

{
cicj for i, j ∈ {n− 1, n, n + 1}, i ≥ j,
0 in any other case.

Therefore, the objective function of the problem (3.58) can be written as tr(CX), where tr
stands for the trace operator. Notice that the problem has n2 + 2 constraints, each of them
can be written as tr(AiX) ≤ bi, i = 1, . . . , n2 + 2. Then, for a fixed value of n ∈ N, problem
(3.58) reduces to {

max
X∈Ln+3(R)

tr(CX)

s.t. tr(AiX) ≤ bi, i = 1, . . . , n2 + 2,
(3.59)

where Ln+3(R) stands for the set of the lower triangular matrices of size n+3. Problem (3.59)
is a semi definite program (SDP), and we will study the solutions using the optimization solver
cvxpy in python.

3.6.2 The non-inertial case

First we solve (3.58) in the non-inertial setting, that is, α = 0, for n = 1 . . . , N . Figure 3.11
shows the optimal value of the problem for every n, with N = 25, starting from n = 3 to
avoid an erratic behavior in the first iterations. The simulation shows that the best rate of
convergence is achieved in the case λ = 1/2, which is consistent with the best value of λ on
the rate (3.53). The solution obtained by PEP matches Lieder’s tight rate (3.53) Moreover,
which is depicted in Figure 3.12 for λ = 1/2. The results obtained by the previous model
align with established theoretical findings, offering a motivation to conjecture about unknown
rates, particularly the case of inertial iterations.

3.6.3 The inertial case

For the inertial KM iterations, currently there are no examples of tight bounds for the
residuals. Then, the numerical experiments described in the following hopefully will provide
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Figure 3.11: Solution of the PEP (3.58), non-inertial case.
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Figure 3.12: Comparison of PEP solution, λ = 1/2 and rate (3.53).
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a better insight to obtain theoretical results in an upcoming research. First, an overall result:
notice that condition (3.55) in the case λ = 1/2 gives α < 1/3. Figure 3.13 shows the results
of the experiment in the case λ = 1/2 and feasible values of α < 1/3. Here, the best case is
achieved using α = 0, that is, not using inertia. Let us recall that in the strict contractive
case, the rate (3.28) is provided for the iterations, and although there is no information
whether its tightness, it also suggests not implementing inertia. Then, both results leads us
to conjecture that KM iterations are a extremely general case for the use of inertia.

5 10 15 20 25
n

0.0

0.5

1.0

1.5

2.0

||y
n
−
Ty

n||
2

α=0
α=0.15
α=0.3

Figure 3.13: PEP solution, λ = 1/2 and different inertial values.

Nevertheless, the study of inertia under this numerical experiment may be revealing for
future research. Then, the next experiment considers solutions of the PEP only in the inertial
setting. For a given value of α ∈ (0, 1), we must pick λ ∈ (0, λ(α)), with

λ(α) =
(1 − α)2

(1 − α + 2α2)
,

to fulfill condition (3.55). The function λ(α) is decreasing on [0, 1], with λ(0) = 1 and
λ(1) = 0, which implies that as larger the value of α is, the smaller is the interval of feasible
values of λ. The experiment will be performed as follows: for different values of α ∈ (0, 1),
problem (3.58) will be solved using several values of λ ∈ (0, λ(α)). Figure 3.14 shows the
solutions of (3.58) for different combinations of α, λ.

Considering the results of the previous experiment, a natural question is given a value of
α, what is the best option of λ in the feasible set to achieve the best rate of convergence? As
a criteria for picking the best value of λ, we will choose the one that attains the minimum
value at the last iteration. For a fixed value of α, let us call λ∗ = λ(α) using (3.55), and then
we will pick the best λ on the feasible set (0, λ∗). Figure 3.15 shows the results obtained and
they are detailed on Table 3.6. There, it can be seen that the ratio λbest/λ∗ remains constant
equal to 1/2. Thus, this experiment lead us to the following conjecture: given an inertial
coefficient α, the best value λ to choose is the middle point of the interval (0, λ∗). Notice
that this result is consistent for the best value of λ in the theoretical rate (3.53).
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Figure 3.14: PEP solution in the inertial case.

0.0 0.2 0.4 0.6 0.8
α

0.0

0.2

0.4

0.6

0.8

1.0

λ

λ *
λbest

Figure 3.15: Best value of λ for every value of α ∈ [0, 1].
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α λ∗ λbest λbest/λ∗

0 1.0000 0.5000 0.5
0.05 0.9450 0.4725 0.5
0.10 0.8804 0.4402 0.5
0.15 0.8073 0.4036 0.5
0.20 0.7273 0.3636 0.5
0.25 0.6429 0.3214 0.5
0.30 0.5568 0.2784 0.5
0.35 0.4721 0.2360 0.5
0.40 0.3913 0.1957 0.5
0.45 0.3168 0.1584 0.5
0.50 0.2500 0.1250 0.5
0.55 0.1919 0.0960 0.5
0.60 0.1429 0.0714 0.5
0.65 0.1025 0.0513 0.5
0.70 0.0703 0.0352 0.5
0.75 0.0455 0.0227 0.5
0.80 0.0270 0.0135 0.5
0.85 0.0141 0.0071 0.5
0.90 0.0058 0.0029 0.5
0.95 0.0013 0.0007 0.5

Table 3.6: Best value of λ for every value of α ∈ [0, 1).

3.6.4 Discussion

This chapter presents important results for the convergence of inertial Krasnosleskii-Mann
iterations. In the strict contractive case, a rate of linear convergence is provided. While this
rate may imply that the optimal performance of the iterations is achieved by not implement-
ing inertia, the numerical instances tested show the opposite: both the primal-dual splitting
algorithm and the Davis and Yin method boost their convergence when inertia is used.

A natural question that arises from this part of the research is to explain this apparent
contradiction. From our point of view, two key aspects require consideration. First, the
tightness of the rate found. Secondly, the class of operators studied. It is worth noting
that although the linear convergence is guaranteed for any contractive operator, our tests are
performed over two algorithms defined by firmly nonexpansive operators. Then, a possible
answer to the discrepancy between theoretical and practical behavior, is that maybe we are
studying a broader class of operators than necessary.

The PEP presented before matches the theoretical rate for residuals in the noninertial
case, suggesting that is a reliable rate estimating tool. However, also gives a slower conver-
gence by implementing inertia. This lead us to conjecture that, in effect, we may be studying
inertia in a too large context. This motivate us to focus in the study of inertia in maybe
averaged or firmly nonexpansive operators.
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Chapter 4

Conclusions and perspectives

The content of this Thesis summarizes the work carried out since the second half of 2020,
divided into two main themes, which led to the elaboration of two scientific articles, and
some preliminary results of an ongoing research.

First part: Restart

The first part is devoted to propose a restart scheme for a continuous dynamics involving the
Hessian of a convex function, which can be seen as an extension of the continuous restart
scheme setting for Nesterov’s accelerated method, proposed by Su, Boyd and Candès on
2014. Our contribution is to provide a convergence result for the restart scheme, along with
a rate of convergence, and an existence theorem for the solutions of the dynamics. Numerical
simulations are provided for the restarted trajectories, showing the acceleration and the
mitigation of the oscillations of the values of the function towards its minimizer. Also, a first
glance to the algorithmic consequences is studied, applying the restart scheme to first order
algorithms with a gradient correction term. This research led us to the following questions
that hopefully will be addressed in a future work:

� In practice, it can be seen that the bound found for the restart scheme is not tight,
that is, the function values converge faster. Although it is the same problem exhibited
by the bound found by Su, Boyd and Candès, we conjecture that it can be improved
by using a different approach on the upper bound of the restart time. Also, it can
be observed that in practice, the speed restart time is small, leading to an almost
immediate restart. By the time of writing of this thesis, a new speed-restart criteria is
being studied, aiming to restart after the speed-criteria presented here.

� For discrete inertial settings, just as Nesterov’s algorithm, a fixed restart rate of conver-
gence is easy to compute using the linear convergence rates in the strongly convex case.
There are no existing results of linear rates for algorithms with gradient correction at
the time of writing this thesis. One interesting perspective is to study rates for this
kind of algorithm in the strongly convex case.

� For the discrete setting, that is, the algorithms with a gradient correction term, we
aim to establish a convergence result by implementing a restart routine. This is not
straightforward, as there are not even rates for Nesterov’s algorithm using the discrete
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speed criteria showed in Algorithm 1. Existing literature primarily provides convergence
rates for restart schemes for Nesterov’s Algorithm or FISTA, where the restart criteria
typically depends on the strong convexity parameter (see for example [69, 68, 89, 66,
44]). As this parameter in practice is not easy to know beforehand, there are works
on restarted schemes that use approximations of it to define the restart [16, 55]. For
automatic restart criteria, we refer to the work of Alamo et al., [3, 2], where linear
convergence is achieved using criteria defined by the reduction of the function values or
the composite gradient mapping values. An interesting challenge is how to implement
some of these methods in algorithms with gradient corrections.

� The results of the convergence for the discrete algorithms, such as the ones presented
on [10, 11] ask to the value of β to be significantly small, leading the algorithm to
approach Nesterov’s method. In practice, it can be noticed an improvement on the
velocity of the convergence for a larger range of values of β. Thus, we presume that
the feasible interval should be larger, or another kind of algorithms derived from the
second order dynamic will allow more freedom for β.

Second part: Inertial KM iterations

The second part of the Thesis focuses on the study of the inclusion of an inertial term on
KM iterations. Although there are several related works on this subject, our contribution
is to provide a unified proof for the weak convergence using a general pair of sequences αk

and λk, along with a new strong convergence result. Also, we provide two inertial settings
for existing fixed point algorithms that outperforms the original versions. The study of this
topic raised the following questions:

� The given bound for the strong convergence implies that the optimal results are ob-
tained not using inertia. Also, the PEP results support this hypothesis. In contrast, the
numerical simulations show that the inclusion of inertia can accelerate the convergence,
both in time and iterations. This makes us conjecture that we are addressing the prob-
lem of the inclusion of the inertia in a very broad class of iterations. By considering a
wide class of operators, for example we are dealing with isometries, such as rotations,
that usually do not show fast convergence properties. Thus, we should focus on a more
restricted class of operators, or particular instances of the nonexpansive ones, such as
firmly nonexpansive or averaged operators.

� If the rate provided is close to reality, that is, if there exists some kind of nonexpansive
operator for which inertial KM iterations converges slower than the non-inertial, then
we should be able to find an example that will provide us a lower bound on the rate of
convergence.

� Numerical illustrations show an interesting behavior in the case of the over-relaxation
for averaged operators, that is, to use a sequence λk (or a fixed value of λ for practical
purposes) which is greater than one. We aim to provide a more analytical study of this
phenomenon.
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[4] Felipe Álvarez. On the minimizing property of a second order dissipative system in
Hilbert spaces. SIAM Journal on Control and Optimization, 38, 2001.
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la SMC. Springer, Cham, second edition, 2017.

[19] Amir Beck. First-Order Methods in Optimization. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 2017.

[20] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.
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[27] Augustin Cauchy et al. Méthode générale pour la résolution des systemes d’équations
simultanées. Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.

[28] Antonin Chambolle, Vicent Caselles, Daniel Cremers, Matteo Novaga, and Thomas
Pock. An introduction to total variation for image analysis. Theoretical foundations and
numerical methods for sparse recovery, 9(263-340):227, 2010.

[29] Antonin Chambolle and Charles Dossal. On the convergence of the iterates of the
“fast iterative shrinkage/thresholding algorithm”. Journal of Optimization Theory and
Applications, 166(3):968–982, 2015.

[30] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex
problems with applications to imaging. Journal of mathematical imaging and vision,
40(1):120–145, 2011.

[31] Patrick L. Combettes. Solving monotone inclusions via compositions of nonexpansive
averaged operators. Optimization, 53(5-6):475–504, 2004.

[32] Patrick L Combettes and Lilian E Glaudin. Quasi-nonexpansive iterations on the affine
hull of orbits: from mann’s mean value algorithm to inertial methods. SIAM Journal
on Optimization, 27(4):2356–2380, 2017.

[33] Patrick L. Combettes and Valérie R Wajs. Signal recovery by proximal forward-backward
splitting. Multiscale modeling & simulation, 4(4):1168–1200, 2005.

[34] Laurent Condat. A primal–dual splitting method for convex optimization involving
lipschitzian, proximable and linear composite terms. Journal of optimization theory and
applications, 158(2):460–479, 2013.

[35] Minh N Dao and Hung M Phan. An adaptive splitting algorithm for the sum of two
generalized monotone operators and one cocoercive operator. Fixed Point Theory and
Algorithms for Sciences and Engineering, 2021(1):1–19, 2021.

[36] Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding al-
gorithm for linear inverse problems with a sparsity constraint. Communications on Pure
and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical
Sciences, 57(11):1413–1457, 2004.

[37] Damek Davis and Wotao Yin. A three-operator splitting scheme and its optimization
applications. Set-valued and variational analysis, 25(4):829–858, 2017.

[38] Qiao-Li Dong, Yeol Je Cho, Songnian He, Panos M. Pardalos, and Themistocles M.
Rassias. The Krasnosel’skii-Mann iterative method: recent progress and applications.
Springer, 2022.

[39] Qiao-Li Dong, Yeol Je Cho, and Themistocles M. Rassias. General inertial Mann al-
gorithms and their convergence analysis for nonexpansive mappings. Applications of
Nonlinear Analysis, pages 175–191, 2018.

[40] Qiao-Li Dong and Han-bo Yuan. Accelerated Mann and CQ algorithms for finding a fixed
point of a nonexpansive mapping. Fixed Point Theory and Applications, 2015(1):1–12,
2015.

69



Bibliography

[41] Yunda Dong. New inertial factors of the Krasnoselskii-Mann iteration. Set-valued and
variational analysis, 29:145–161, 2021.

[42] Jim Douglas, Jr. and H. H. Rachford, Jr. On the numerical solution of heat conduction
problems in two and three space variables. Trans. Amer. Math. Soc., 82:421–439, 1956.

[43] Yoel Drori and Marc Teboulle. Performance of first-order methods for smooth convex
minimization: a novel approach. Mathematical Programming, 145(1-2):451–482, 2014.

[44] Olivier Fercoq and Zheng Qu. Restarting accelerated gradient methods with a rough
strong convexity estimate. arXiv preprint arXiv:1609.07358, 2016.
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[62] Juan José Maulén and Juan Peypouquet. A speed restart scheme for a dynamics with
Hessian driven damping. Journal of Optimization Theory and Applications, 2023.

[63] Ramzi May. Asymptotic for a second-order evolution equation with convex potential
andvanishing damping term. Turkish Journal of Mathematics, 41(3):681–685, 2017.
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cation à la tomographie par émission de positrons. PhD thesis, Université Paris-Est,
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