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Abstract: In this paper, a system to assess dyspnea with the mMRC scale, on the phone, via deep
learning, is proposed. The method is based on modeling the spontaneous behavior of subjects while
pronouncing controlled phonetization. These vocalizations were designed, or chosen, to deal with
the stationary noise suppression of cellular handsets, to provoke different rates of exhaled air, and to
stimulate different levels of fluency. Time-independent and time-dependent engineered features were
proposed and selected, and a k-fold scheme with double validation was adopted to select the models
with the greatest potential for generalization. Moreover, score fusion methods were also investigated
to optimize the complementarity of the controlled phonetizations and features that were engineered
and selected. The results reported here were obtained from 104 participants, where 34 corresponded
to healthy individuals and 70 were patients with respiratory conditions. The subjects’ vocalizations
were recorded with a telephone call (i.e., with an IVR server). The system provided an accuracy of
59% (i.e., estimating the correct mMRC), a root mean square error equal to 0.98, false positive rate of
6%, false negative rate of 11%, and an area under the ROC curve equal to 0.97. Finally, a prototype
was developed and implemented, with an ASR-based automatic segmentation scheme, to estimate
dyspnea on line.

Keywords: respiratory distress estimation; deep learning; telephone speech

1. Introduction

Chronic respiratory diseases (CRDs) generate a high burden on healthcare systems
around the world [1]. It is estimated that 262 million people suffer from bronchial asthma,
and more than 200 million people suffer from chronic obstructive pulmonary disease
(COPD), making them the most common CRDs recorded. In 2019, more than 3 million
people died from COPD, which accounted for 6% of deaths that year worldwide [2], and it
is expected to be the third leading cause of mortality globally by 2030 [3,4]. Although CRDs
are not curable, the treatment of these diseases allows better control of their symptoms,
which therefore improves the quality of life of people that suffer from them [5].

One of the most widely employed methods to detect and monitor respiratory con-
ditions is by X-ray, due to its speed, accessibility, and low cost. Another widely utilized
method is CT imaging, which allows for visualization and quantitative detection of disease
severity [6]. Biomedical experts also employ the analysis of sounds generated by the respi-
ratory system (lung noise, coughing, breathing, voice, and hearbeats) to detect respiratory
conditions such as asthma, bronchitis, pertussis, and SARS-CoV-2 [7]. The spirometry
test can also detect pulmonary disorders, but its result must be carefully interpreted by
a medical specialist [8]. Notably, one thing that is repeated in all the previous methods
is that the patient must go to a clinical interview or to the health center to undergo the
corresponding test, which in turn involves natural restrictions regarding the patient´s age
and location.
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In recent years, there has been a considerable increase in the development of remote
monitoring health tools, due to the growing demand for health services [9]. There has
also been a great effort in trying to prevent COPD with the use of machine learning (ML),
since these methods are effective in collecting and integrating diverse medical data on a
large scale, in precision medicine [10]. This development has been boosted by the COVID-
19 pandemic [11], whereby several artificial intelligence (AI)-based solutions have been
proposed to automatically detect SARS-CoV-2 [12–15]. These ML-based solutions have
been focused mainly on smart phones due to the great scalability, ubiquity, and flexibility
that these devices offer [16]. Usually, these systems are useful for disease monitoring and
preventing people from having to visit medical centers. For example, in [17], the respiration
rate was remotely evaluated by using phone sensors. In [18], the importance of telemedicine
for people with COPD was evaluated, and in [19], the advantages of remote monitoring for
patients with interstitial lung diseases were studied. The relevance of remote monitoring
for people with chronic critical illness, who have already been discharged, is discussed
in [20].

In addition to the importance of remote monitoring, automation allows greater scala-
bility, by not requiring a specialist to evaluate each person, and several automatic health
applications have been proposed in the last few years. For example, the automatic detec-
tion of COVID-19 using X-ray and CT images of the lungs as input, has been extensively
addressed [21]. Other studies have focused on the automatic detection of SARS-CoV-2 by
means of analyzing the audio generated by forced coughing, vocalizations, and breath-
ing [22,23].

With regards to [24], a review of different studies, methods, and databases that focused
on the remote monitoring of respiratory diseases through audio analyses was carried out.
Detection by means of audio analysis makes it possible to standardize the evaluation;
reducing variability or bias between different doctors, that took the test in the form of a
questionnaire. In particular, although the dyspnea assessment questionnaire is easy for a
doctor to apply, it is not for ordinary people, who may have complications in understanding
or answering the questions, particularly in the case of elderly adults. Moreover, the
responses given in a questionnaire can be influenced by the patient’s mood or habituation
to the disease [25–27].

Coughing is a common symptom of both colds and respiratory conditions, which
accounts for about 38% of the respiratory disorder requests [28]. Despite the fact that it
can be considered an important source of information for machine learning (ML)-based
schemes, prompting the user to repeat coughing events compromises the naturalness
of the symptom and can be a source of discomfort. Some researchers, however, claim
that coughing is not the most reliable symptom to identify respiratory diseases such as
COVID-19, and that it obtained worse results compared to vocalizations such as a sustained
vowel or text reading [29].

As mentioned already, studies on the automatic identification of respiratory conditions
have focused mostly on COVID-19 [30], but have also included diseases such as asthma,
bronchitis, and pertussis [31]. However, the severity of the respiratory symptoms has
hardly been addressed. In fact, the degree of symptom severity is a very important metric
for monitoring patients, as well as for a first diagnosis. One exception is presented in [32],
where a method is proposed to classify patients in different degrees of COPD on a scale
from one (mild) to four (very severe) according to FEV1 (forced expiratory volume).

Open-source databases are used to train ML models such as COSWARA [33], DI-
COVA [34], or COUGHVID [35], among others, as well as private databases, which show
some similarities in the recorded audio, such as the use of sustained vowels, breathing,
sentence readings, or forced coughing. Despite the fact that the use of sustained vowels
is quite common, it is important to bear in mind that the noise suppression schemes of
cell phones may attenuate stationary signals. Studies such as [36] employ the same mi-
crophones for all the participants, to avoid any audio preprocessing mismatch. Moreover,
public or private databases are usually small, because they are difficult to produce, which
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in turn requires optimization of the training procedure to maximize the final accuracy and
robustness. Data augmentation methods such as time shifts [30] and k-fold cross-validation
training [29], are frequently adopted to increase the number of training examples.

ML-based schemes that employ speech as input usually extract features such as Mel-
frequency cepstral coefficients (MFCCs) and Mel-frequency spectrograms, which have been
widely employed in automatic speech recognition (ASR) [37], and have also been proposed
in [38] for respiratory distress detection. Furthermore, the first and second derivatives of
these coefficients allow for the evaluation of the dynamics of the voice signal [39]. Other
features such as pitch, jitter, and shimmer were proposed in studies such as [40] and for
COVID-19 detection.

The optimization of ML architectures and parameters is a common practice, as can
be seen in [30,41–44], where the problems of COVID-19 or respiratory distress detection
were addressed by employing convolutional neural network (CNN) layers to obtain deep
features. The resulting features were concatenated and input to a neural-network-based
classifier that was trained on an end-to-end basis to combine the parameters. Staged
training has also been adopted: first, classification modules are trained independently
with each set of features; then, the output of the classifiers is combined to obtain the final
system decision. This kind of strategy allows the optimization of the information delivered
by each set of features and the exploration of classification fusion methods, which is not
possible with single neural network architecture. For instance, in [26], the outputs of the
classification modules (i.e., softmax) are input to an SVM to obtain the final decision. In [45],
the final decision is obtained by applying the majority vote rule to the classifier outputs.
In [46], the output probabilities are weighted to obtain the final classification decision.

Surprisingly, the optimization of the complementarity that can be provided by different
types of phonetizations has not been addressed exhaustively. In some cases, as in [29],
the VGG19 CNN architecture was employed to find the vocalization that could provide
the highest accuracy in post COVID-19 patient identification. In other studies, such as
in [31], the features extracted from the phonetizations are concatenated and input to a
neural network that is expected to learn how to combine them.

This paper presents a system that detects dyspnea automatically over the telephone.
This design allows monitoring of the breathlessness status of patients, ubiquitously and re-
motely, with the modified Medical Research Council (mMRC) scale. The mMRC allows the
classification of respiratory distress in five levels, from zero (healthy) to five (very severe).
Surprisingly, this topic has not been addressed exhaustively in the literature, but most
related studies have focused on the binary detection of COVID-19 or respiratory conditions.

The database used to train the system consists of three controlled vocalizations af-
ter taking deep breaths and until gasping for air, which were designed to represent the
user’s behavior while performing them. The first two phonetizations correspond to/ae-
ae/and/sa-sa/, and provide relevant information about the amount of air exhaled by the
individuals. In contrast to sustained vowels employed elsewhere, they were not station-
ary and are not cancelled by the noise suppression scheme in smart phones. The third
phonetization corresponds to counting from one to thirty as fast as possible, to evaluate
the spontaneous behavior of the subjects who must make an effort to reach the goal. The
motivation is to cause involuntary breathing, voice pauses, coughing, tone variation, etc.,
that could characterize dyspnea severity.

The proposed method extracts time-dependent and time-independent features from
each phonetization. Thereafter, an individual classifier is trained per each kind of feature
and phonetization. By doing so, the dimensionality of the input vector of the models can
be reduced. Additionally, this strategy provides more degrees of freedom to make use of
the complementarity resulting from the different vocalizations and the information that
can be obtained from them. This issue has not been tackled in depth in the literature either.

The classifiers employed for the time-independent features corresponded to multilayer
perceptrons (MLP). For the time-dependent features, architectures based on CNN are
employed for the /ae-ae/ and /sa-sa/ vocalizations. In the case of the one-to-thirty
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counting, an architecture based on CNN and the long short-term memory (LSTM) neural
network was adopted.

The results obtained in this paper show that dyspnea can be detected and estimated
with an accuracy of 59% (i.e., the same mMRC score), with a root-mean-square error
(RMSE) equal to 0.98. The obtained false positive (FP) and false negative (FN) rates were
6% and 11%, respectively. The area under the ROC curve (AUC) was equal to 0.97. The
main contributions of this paper concern: automatic assessment of dyspnea on the phone
using a severity scale, i.e., mMRC; modelling the spontaneous behavior of individuals
when prompted to produce controlled phonetizations, where behavior includes the pitch
variation, speed changes, involuntary pauses or voice breaks, involuntary coughing, etc.;
vocalization selection that takes into consideration the noise suppression of cellular devices,
the air volume exhaled, and phonetic variability; a method to combine the information
provided by different types of features and phonetizations; and, a k-fold-based training
system with two validation sets. It is important to emphasize that the assessment of
dyspnea severity with the method proposed here goes beyond the COVID-19 pandemic.
For example, it can be used in telemedicine, the monitoring of seasonal bronchopulmonary
diseases, the effect of contamination in slaughter areas, and occupational diseases.

2. Methodology
2.1. Dataset

The database is composed of patients with respiratory conditions (COPD, pulmonary
fibrosis, COVID-19) recruited at the Clinical Hospital at University of Chile (HCUCH,
Hospital Clínico de la Universidad de Chile), and healthy volunteers from the Faculty of
Physical and Mathematical Sciences (FCFM, Facultad de Ciencias Físicas y Matemáticas) at
the same university. The study was approved by the scientific ethics committees at the
HCUCH and the FCFM. Those who were included in the database had to give informed
consent to participate in the study. They were thereafter interviewed by a pulmonologist
at HCUCH, who evaluated the degree of dyspnea using the mMRC scale (gold standard).
Each participant´s mMRC score was used as a target for training the system.

The voice recordings employed here consist of three types of vocalizations that the
individuals were prompted to produce, without pauses, after taking deep breaths, and
until they gasped for air. These were, the sequence of Spanish phonemes /a/ and /e/,
denoted here as /ae-ae/; the sequence of Spanish syllables /sa/, indicated here as /sa-sa/;
and, the last one was inspired by the Roth test [47], where the subjects were asked to count
in Spanish from one to thirty, or until they gasped for air as fast as they could. From the
/ae-ae/ vocalization, information very similar to that of a sustained vowel (continuous
sequence) was obtained, but it avoided the problem of attenuation caused by the noise
suppression scheme of smart phones, because the corresponding speech signal is less
stationary than a single sustained vowel, such as /a/, for example. The sequence /sa-sa/
is not stationary either, it must be repeated as fast as possible, and the exhalation rate of air
volume is higher than in the case of /ae-ae/, because the vocal folds are distended when
the voiceless phoneme /s/ is being produced, in contrast to voiced phonemes such as
/ae-ae/. The telephone channel cut off frequency of 4 KHz dramatically reduces the sample
amplitude of /s/, but the vowel /a/ in the sequence /sa-sa/ allows for the detection of
the corresponding signal. The speech resulting from counting from one-to-thirty is highly
non-stationary, and allows a better representation of the user’s speaking behavior, such
as pauses, intonation changes, speaking speed, etc., while uttering continuous speech.
Interestingly, it was observed that these controlled vocalizations avoided forced situations
or behaviors such as coughing.

The database was composed of 104 participants, where 34 corresponded to healthy
individuals and 70 were patients with respiratory conditions (44 COPD, 21 pulmonary
fibrosis, and five sequelae of COVID-19). An mMRC score equal to zero was allocated to
the healthy participants. The patients were clinically evaluated with respect to their mMRC
score, resulting in 19 with an mMRC score equal to 1; 29 with an mMRC score equal to 2; 20
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with an mMRC score equal to 3; and two with an mMRC score equal to 4. These scores, that
were obtained by means of clinical evaluation, were employed as references, or the gold
standard, to train our deep-learning-based models. The models were trained with k-fold
cross-validation, where two validation subsets per partition were adopted. Conventionally,
the first subset had the purpose of stopping the learning procedure before overfitting.
However, the second one was employed to analyze the generalization capability of the
models, obtained by repeating the training process several times. The number of patients
with mMRC = 4 was too low (i.e., two) resulting in an underrepresented class. Consequently,
these subjects were incorporated to the subset of individuals with mMRC = 3, leading to
four classes, with the mMRC score ranging from 0 to 3, where level 3 corresponded to the
most severe breathlessness condition in our case.

Subsequently, in order to obtain the recordings of the phonetizations, people were
contacted by telephone with an IVR system. The individuals were prompted to repeat each
vocalization twice, following the procedure aforementioned. The audios obtained were
stored in WAV format, with a sampling rate of 8 kHz, and were assigned a random ID
to protect the identity of the participants. The database was composed of 104 people, so
each phonetization had 208 audios (two repetitions per individual), and the total dataset
reaches 624 vocalizations. After receiving all the audios, an automatic speech recognition
(ASR) system was trained to isolate the target vocalizations from the background noise or
undesirable audio.

2.2. The Proposed Method

The system aimed to characterize the behavior of the users when performing con-
trolled phonetization, to classify their dyspnea level on the mMRC scale. As discussed
above, the controlled vocalizations were chosen to provide some degree of complementarity
between them, and to counteract the noise suppression scheme of smartphones. The se-
lected phonetizations allow representation of the user´s phonetic articulation spontaneous
behavior such as pauses, intonation variation, vocalization length, speaking speed, and
non-voluntary coughing, breathing, or pauses. Notably, in order to realize these, time-
dependent and time-independent features were defined, and extracted independently from
the speech signals. The time-dependent features were computed on a frame-by-frame basis,
and attempted to capture the dynamics of the vocalization signals to represent pauses,
speaking speed, and non-voluntary coughing or breathing. They correspond to: /ae-ae/
and /sa-sa/ phonetizations, Mel filters estimated from the FFT log power spectrum; and,
one-to-thirty counting, FFT log power spectrum. On the other hand, time-independent
features aimed to characterize the whole vocalization signals, by providing information
such as the phonetization length, and intonation curve variation and slope.

Although the features were carefully chosen or designed, deep learning schemes
were necessary to obtain the final dyspnea mMRC score. One of the contributions of the
proposed approach is the fact that it does not require situations or behaviors to be forced
unnaturally, such as non-spontaneous coughing. In contrast, it relies on phonetizations that
can easily be replicated more naturally. As time-dependent and time-independent features
characterize users’ behavior with complementary representations, combining them should
result in a more accurate and robust final classifier.

The classical classification loses the ordinality of the labels, since it considers these as
independent [48]. However, the use of regression also suffers from the problem that the
root mean square error assumes that the separation between adjacent levels of the mMRC
scale would be uniform [49]. In fact, although not reported here, the regression performed
worse overall than the classification-based system. It is important to emphasize that the
regression restricts the flexibility in merging or combining the different modules to explore
the complementarity of their outputs. For these reasons, neuron stick-breaking [50] was
considered as a trade-off between both solutions, including ordinality in the classification
problem. The stick-breaking layer provided better results in some cases.
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Figure 1 shows the block diagram of the system presented here. Each type of vocaliza-
tion provided a four dimension softmax, representing the probability of each mMRC score.
These three phonetization dependent softmax were combined with the following five rules,
generating five new softmax: minimum, maximum, mean, median, and product. These
five outputs were averaged to generate the final softmax, where the estimated mMRC score
corresponds with the highest probability.
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Figure 1. Block diagram of the proposed system.

Figure 2 shows how the vocalization dependent scores were obtained. There were two
classifiers per type of phonetization, one that received the time-dependent features and
another one for the time-independent parameters. Each type of vocalization was repeated
twice by the individuals. After extracting the time-dependent and time-independent
features, they were propagated through the corresponding machine learning module that
outputs softmax per each repetition and kind of parameter. The time-dependent features
employed a CNN- or LSTM-based architecture, and the time-independent parameters
made use of an MLP scheme. The resulting time-dependent and independent softmax
delivered by each repetition were combined separately, using the same scheme described
above (Figure 1), with five combination rules, to obtain a single softmax per feature type.
Thereafter, the time-dependent and -independent feature softmax were combined by a
simple average to deliver the vocalization dependent softmax. This process was replicated
for each type of vocalization to deliver the estimated mMRC score, as shown in Figure 1.

Sensors 2023, 23, x FOR PEER REVIEW  6  of  18 
 

 

The classical classification loses the ordinality of the labels, since it considers these as 

independent [48]. However, the use of regression also suffers from the problem that the 

root mean square error assumes that the separation between adjacent levels of the mMRC 

scale would be uniform [49]. In fact, although not reported here, the regression performed 

worse overall than the classification‐based system. It is important to emphasize that the 

regression restricts the flexibility in merging or combining the different modules to ex‐

plore the complementarity of their outputs. For these reasons, neuron stick‐breaking [50] 

was considered as a trade‐off between both solutions, including ordinality in the classifi‐

cation problem. The stick‐breaking layer provided better results in some cases. 

Figure 1 shows the block diagram of the system presented here. Each type of vocali‐

zation provided a four dimension softmax, representing the probability of each mMRC 

score. These three phonetization dependent softmax were combined with the following 

five rules, generating five new softmax: minimum, maximum, mean, median, and prod‐

uct. These five outputs were averaged to generate the final softmax, where the estimated 

mMRC score corresponds with the highest probability. 

Figure 2 shows how the vocalization dependent scores were obtained. There were 

two classifiers per type of phonetization, one that received the time‐dependent features 

and another one for the time‐independent parameters. Each type of vocalization was re‐

peated twice by the individuals. After extracting the time‐dependent and time‐independ‐

ent features, they were propagated through the corresponding machine learning module 

that outputs softmax per each repetition and kind of parameter. The time‐dependent fea‐

tures employed a CNN‐ or LSTM‐based architecture, and the time‐independent parame‐

ters made use of an MLP scheme. The resulting time‐dependent and independent softmax 

delivered by each repetition were combined separately, using the same scheme described 

above (Figure 1), with five combination rules, to obtain a single softmax per feature type. 

Thereafter,  the  time‐dependent and  ‐independent  feature softmax were combined by a 

simple average to deliver the vocalization dependent softmax. This process was replicated 

for each type of vocalization to deliver the estimated mMRC score, as shown in Figure 1. 

 

Figure 1. Block diagram of the proposed system. 

 

Figure 2. Estimation of the vocalization dependent scores. Figure 2. Estimation of the vocalization dependent scores.

2.2.1. MLP and Time-Independent Features

Two of the time-independent features were computed with the fundamental frequency,
F0, estimated on a frame-by frame basis with Praat [51]. To represent the subjects´ behavior
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with respect to the F0 curve [52], the following features were extracted within each vocal-
ization: the mean of the normalized slope and the standard deviation. The third parameter
corresponds to the phonetization length in seconds. The mean and variance normalization
(MVN) was applied to each parameter, where the mean and variance of each parameter
were computed within the whole database. As stated above, one time-independent feature,
MLP, was trained per each type of phonetization, i.e., /ae-ae/, /sa-sa/, and one-to-thirty
counting (see Figure 2). The learning rate was made equal to 0.001, ADAM optimizer and
cross entropy as a loss function was employed. The hidden layers employed the ReLU
activation function. The output layer had four neurons with softmax activation. In the case
of /ae-ae/, the network had two hidden layers of 20 neurons each. The MLP corresponding
to /sa-sa/ used one 20-node hidden layer. Finally, the one-to-thirty counting vocalization
made use of a network with one 30-node hidden layer.

2.2.2. Neural Network Architectures for Time-Dependent Features

The time-dependent features were based on the FFT log power spectrum, and were
optimized for each type of phonetization. The 512-sample FFT was estimated in 50 ms win-
dows with 50% overlap, where 257 frequency bins were obtained. Fourteen Mel filter log
energies/frame were thereafter computed in the case of the /ae-ae/ and /sa-sa/ phonetiza-
tions. In the case of the one-to-thirty counting vocalization, Mel filters were not employed,
but 75% of the lower frequency bins of the log spectrum was selected, and the corre-
sponding first derivative or delta features were included, resulting in 257 × 0.75 × 2 = 386
features/frame. MVN is applied on the time trajectories of the time-dependent features
where the parameter means and variances are computed on the whole database. Finally,
zero padding was performed based on the longest utterance in the training data, corre-
sponding to the same type of phonetization. The time-dependent feature architecture and
hyperparameter optimization led to: the use of neuron stick breaking, a learning rate equal
to 0.0001, and ADAM optimizer and cross entropy as the loss function. The resulting deep
learning architectures are shown in Figure 3a (/ae-ae/ and /sa-sa/ vocalizations) and
Figure 3b (one-to-thirty counting).

2.2.3. K-Fold Training with Double Validation

To optimize the available database, a nine-fold cross-validation was performed. Twelve
users from the database were extracted in the first five partitions, and 11 people in the
remaining four partitions, for testing. It is important to mention that this data division
scheme ensures that a given speaker could not have vocalizations in the training, validation,
or testing subsets simultaneously. Besides testing the individuals, each partition was
composed of training, validation 1 and validation 2 subsets, corresponding to 70%, 15%,
and 15% of the partition individuals, respectively.

The classifiers were trained eight times with each partition, to take into consideration
the variability due to weight initialization. The training subset was used to estimate the
network weights, and validation 1 data was employed to stop the iterations and avoid
overfitting, with an early stopping of 20. For each partition, the optimal neural network
classifier was chosen, among the eight that were trained, by picking the one with the
highest average accuracy evaluated on the validation 1 and validation 2 subsets. The latter
did not make part of the training procedure, so the chosen trained neural network is also
the one with the best generalization capability. Test data, which was never seen by the
network, was propagated to obtain the mMRC scores and metrics for the corresponding
partition. These steps were replicated for all the partitions to obtain the scores and metrics
for all the 104 individuals. Finally, the whole procedure was repeated five times to obtain
more reliable statistics.
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2.3. Performance Metric

The metrics adopted to evaluate the system performance were: mMRC score accuracy;
root mean square error (RMSE); false positive rate (FP); false negative rate (FN); and, area
under the ROC curve (AUC). RMSE was calculated as follows:

RMSE =

√
∑N

i=1(Estimated mMRC scorei − Reference mMRC scorei)
2

N

where Estimated mMRC scorei and Reference mMRC scorei denote the estimated and ref-
erence mMRC scores assigned to user i, and N is the total number of individuals in the
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database. A false positive event is defined as an individual whose reference mMRC score is
equal to 0, but who was assigned an estimated mMRC score equal to one, two, or three. In
contrast, a false negative event is defined as an individual whose reference mMRC score
is greater than or equal to one, but was assigned an estimated mMRC score equal to zero.
Although the classification is carried out with four classes (i.e., mMRC from zero to three),
metrics such as FP, FN, and AUC, are obtained on a binary basis, where class 0 corresponds
to the healthy condition, and an mMRC score from 1 to 3 indicates the presence of dyspnea.

2.4. Feature, Architecture, Hyperparameter, and Training Optimization

The time-independent features that were considered initially were duration, average
pitch, pitch slope, pitch standard deviation, jitter, voice breaks, and, energy center per frame.
Subsequently, the features that provided the highest discrimination between individuals
with (i.e., reference mMRC score equal to 1, 2, or 3) and without (i.e., reference mMRC score
equal to 0) dyspnea were chosen: the pitch slope normalized by the average F0; the standard
deviation of the F0 curve; and the vocalization duration in seconds. The time-independent
feature fully connected MLP was tuned with respect to: learning rates, i.e., 0.1, 0.01, 0.001,
or 0.0001; number of neurons per layer, i.e., 10, 20, 30, 40, 50, or 60; the number of hidden
layers, i.e., 1, 2, 3, 4, or 5; and the use of neuron stick-breaking.

In the case of the time-dependent features, the following configurations were tested:
number of FFT samples, i.e., 128, 256, 512, and 1024; window length, i.e., 128, 256, and
512 samples; bandwidth from the first FFT bin, i.e., 25%, 50%, 75%, and 100% of the FFT
bins; FFT log spectrum vs. Mel filter log energy; and, with or without delta and delta–delta
features. The window overlap was made equal to 50% and the number of Mel filters was 14.
Regarding the time-dependent feature neural networks, a more exhaustive optimizations
was carried out: 1D CNN convolutional networks, i.e., kernel size (3, 5, or 7), numbers of
filters (16, 32, 64, or 128), and number of convolutional layers (3, 6, 10, or 14); max pooling
blocks; residual connections; LSTM or BiLSTM, i.e., number of layers and dimensionality; as
well as the use of neuron stick-breaking. As depicted in Figure 3a, two convolutional layers
plus max pooling was considered as a single block, which in turn was replicated a number
of times that it was tuned. A final output, fully connected block, was also optimized by
tuning: number of layers, i.e., one, two, or three; and, number of neurons per layer, i.e., 16,
32, 64, 128, or 256. The output of the fully connected block was composed of four softmax
nodes, corresponding to the four mMRC scores or classes.

2.5. Implementation of Telephone and Web Application

A platform was designed and implemented to record the database. It was used to
test the proposed system in real-time. Figure 4 shows the deployed infrastructure, where
users can record their vocalizations with a telephone call (i.e., with a IVR server) or using
the phone with a web-based application, despite the fact that the results presented here
were obtained with speech data recorded with the IVR server only. The audio recorded
by each individual is stored in the cloud, and notifies the web service when it is available.
A daemon process checks if there is audio to be processed. If so, it is downloaded and
segmented with ASR technology to remove background noise or spurious signals, such
as other people´s speech, audio from TV or radio sets, etc. After ASR segmentation, the
features are extracted and processed with the neural-network-based systems to deliver the
estimated mMRC score, which in turn is returned to the user by making use of the IVR or
web-based application servers. In the database base recording mode, no mMRC score is
returned to the user.
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3. Results and Discussion

According to Figure 5a, where the results with time-independent features are pre-
sented, the highest accuracy (blue bars) corresponds to the combination of the classifiers
provided by the three types of phonetizations, i.e., 53%. The worst accuracy is delivered
by the one-to-thirty counting, i.e., 38%. This outcome is corroborated when the /ae-ae/
and /sa-sa/ classifiers are combined, giving an accuracy almost as high as the best one, i.e.,
52%. This result may suggest that the time-independent features give a slight increase in
accuracy, reaching a maximum of 53% when using the three types of phonetizations. Note,
the combination of classifier outputs will be denoted with ⊕. The lowest RMSE’s (red bars)
are obtained with /ae-ae/⊕/sa-sa/⊕one-to-thirty counting or with/ae-ae/⊕one-to-thirty
counting. Moreover, the time-dependent features provided a lower score dispersion de-
pending on the phonetization classifier fusions, but the highest accuracy and the lowest
RMSE also occurred when the scores from the three phonetizations were combined, as
depicted in Figure 5b, i.e., /ae-ae/⊕/sa-sa/⊕one-to-thirty counting. When the output of
the time-independent and time-dependent classifiers are combined (Figure 5c), the highest
accuracies took place with /ae-ae/⊕/sa-sa/ and with /ae-ae/⊕/sa-sa/⊕one-to-thirty
counting, which are 16% and 12% higher, respectively, than those obtained with time-
independent or time-dependent features using the same classifier combination. Similarly,
the lowest RMSE occurred with/ae-ae/⊕/sa-sa/⊕one-to-thirty counting, which in turn is
9% and 11% lower, than those obtained with time-independent or time-dependent features,
respectively, using the same classifier combination.

Figure 6a–c depicts FP and FN with time-independent and time-dependent features,
and the combination of both types of parameters, respectively. As can be seen in Figure 6a–c,
the score fusion provided by more than one phonetization usually gave lower FP and FN
than single vocalizations. In addition, the lowest average FN + FP across the three subplots
took place with the fusion of the three types of phonetization, which were 36%, 37%, 42%,
15%, 10%, and 23% lower than the average FN + FP with /ae-ae/, /sa-sa/, one-to-thirty
counting, /ae-ae/⊕/sa-sa/, /ae-ae/⊕one-to-thirty counting, and/sa-sa/⊕one-to-thirty
counting, respectively. Moreover, when time-dependent and time-independent features
are used in Figure 6c, average FN+FP with /ae-ae/⊕/sa-sa/⊕one-to-thirty counting were
61%, 58%, 59%, 36%, 26%, and 42% lower than FN+FP obtained with /ae-ae/, /sa-sa/, one-
to-thirty counting, /ae-ae/⊕/sa-sa/, /ae-ae/⊕one-to-thirty counting, and/sa-sa/⊕one-to-
thirty counting, respectively.
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Figure 7 shows AUC with the different combinations of vocalizations, when using
both the time-dependent and time-independent features. The results with AUC are similar
to those in Figures 5 and 6. The best results were achieved when using the combination
of phonetization classifiers. The combination of the three vocalizations gave the highest
AUC, which were 10%, 6%, 9%, 3%, 2%, and 2% higher than those obtained with /ae-
ae/, /sa-sa/, one-to-thirty counting, /ae-ae/⊕/sa-sa/, /ae-ae/⊕one-to-thirty counting,
and/sa-sa/⊕one-to-thirty counting, respectively.
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4. Conclusions

This paper proposed a system to assess dyspnea with the mMRC scale on the phone,
by making use of deep learning. The method models the spontaneous behavior of subjects
while pronouncing controlled vocalizations, which in turn were designed or chosen to cope
with the stationary noise suppression of cellular handsets leading to different rates of ex-
haled air, and to motivate different levels of fluency. Time-independent and time-dependent
engineered features were proposed and tested, and a k-fold scheme with double validation
was employed to pick the models with the highest potential generalization capabilities.
Moreover, score fusion methods were also explored, to optimize the complementarity
of the three types of controlled phonetizations and the features that were designed and
selected. The database was composed of 104 participants, where 34 corresponded to healthy
individuals and 70 were patients with respiratory conditions (44 COPD, 21 pulmonary
fibrosis, and five sequelae of COVID-19). The results presented here were obtained with the
subjects´ vocalizations that were recorded with telephone calls (i.e., with the IVR server).
Moreover, a prototype was developed and implemented with an ASR-based automatic
segmentation scheme, to estimate dyspnea online.

The system provided an accuracy of 59% (i.e., estimating the correct mMRC), a root
mean square error equal to 0.98, false positive rate of 6%, false negative rate of 11%, and an
area under the ROC curve equal to 0.97. These results are in the range of the accuracies
of clinical tests, which suggests that the technology presented here is a candidate to be
deployed in public health applications, and can detect dyspnea automatically by making
use of the telephone network with artificial intelligence, without any prior knowledge
or tests on subjects. The application of this technology could thus help to monitor the
population at risk of pneumonia by COVID-19, and to detect COVID-19 sequelae. Moreover,
it offers the opportunity to have a remote and reliable tool beyond the current pandemic. For
example, it could be employed for dyspnea screening in the general population, allowing
the opportunity of diagnosis and management of bronchopulmonary illnesses. Interestingly,
it could be helpful to monitor respiratory diseases, to evaluate the effect of pollution, to
monitor pre-existing or occupational diseases such as byssinosis in bakers, or those resulting
from high-risk pulmonary tasks such as work in large-scale mining or firefighting with
dangerous gasses, amongst other occupations with high respiratory compromise.

Patients with severe respiratory distress should have no problem performing con-
trolled phonetizations. In cases where the health status of the patient is so severe to the
point that it does not allow them to pronounce these controlled vocalizations (e.g., when
connected to an artificial respirator), the proposed system is clearly not applicable. Nonethe-
less it could be used to detect worsening respiratory distress before reaching an acute phase.
A weakness of this study corresponds to the subjacent hypothesis, that the manifestation of
dyspnea does not depend on the illness that causes it. Discriminating dyspnea depending
on its cause is out of the scope of this paper. However, the aforementioned hypothesis
seems reasonable. The aim of the technology presented here was to detect dyspnea in-
dependently of the underlying cause. Nevertheless, to determine if there are differences
in observed dyspnea with respect to gender, age, comorbidities, etc., can be proposed as
future research.
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