
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE INGENIERÍA MATEMÁTICA

ESTUDIO DE AGUJEROS NEGROS BINARIOS VIA EL EINSTEIN TOOLKIT

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS DE LA INGENIERÍA,
MENCIÓN MATEMÁTICAS APLICADAS

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL MATEMÁTICO

ENZO GIOVANNI IUBINI CORTEZ

PROFESOR GUÍA:
Claudio Muñoz Cerón

MIEMBROS DE LA COMISIÓN:
Tomas Andrade Weber
Jaime Ortega Palma
Paola Rioseco Yañez

Este trabajo ha sido parcialmente financiado por:
CMM ANID BASAL FB210005, Fondecyt 1231250, Fondecyt Exploración 13220060.

SANTIAGO DE CHILE
2023



RESUMEN DE LA TESIS PARA OPTAR AL GRADO
DE MAGÍSTER EN CIENCIAS DE LA INGENIERÍA,
MENCIÓN MATEMÁTICAS APLICADAS Y
MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERO CIVIL MATEMÁTICO
POR: ENZO GIOVANNI IUBINI CORTEZ
FECHA: 2023
PROF. GUÍA: CLAUDIO MUÑOZ CERÓN

ESTUDIO DE AGUJEROS NEGROS BINARIOS VIA EL EINSTEIN
TOOLKIT

En el contexto de la invención de la Relatividad General por Albert Einstein en 1915, la
reciente detección de ondas gravitacionales por el Observatorio de Ondas Gravitacionales por
Interferometría Láser (LIGO) ha proporcionado una ventana hacia la dinámica de sistemas
binarios de agujeros negros. Al utilizar técnicas computacionales avanzadas, específicamente
el software Einstein Toolkit, estudiamos la generación, propagación y detección de ondas grav-
itacionales. En el Capítulo 2, ofrecemos una introducción sencilla a los esquemas numéricos
como soluciones a ecuaciones en derivadas parciales, en particular, el esquema de diferencias
finitas. En los Capítulos 3 y 4, exploramos las ecuaciones de calor y onda, examinando su
comportamiento cuando se resuelven mediante técnicas numéricas. El Capítulo 5 ofrece una
visión rápida de los temas más importantes sobre la Relatividad Especial y la Relatividad
General, utilizando estos para resolver la ecuación de onda en un espacio-tiempo definido
como la solución de las ecuaciones de Einstein en presencia de un agujero negro, a saber,
el espacio-tiempo de Schwarzschild. En los últimos capítulos, exploramos el ámbito de las
técnicas numéricas para resolver las ecuaciones de Einstein. En el Capítulo 7, presentamos la
Relatividad Numérica como una forma de resolver las ecuaciones de campo computacional-
mente. Concluimos esta tesis estudiando el software Einstein Toolkit en el Capítulo 8, y
aplicando este software en el Capítulo 9 para simular la famosa fusión de agujeros negros
binarios GW150914, estudiando las trayectorias de los agujeros negros y las ondas gravita-
cionales emitidas.

i



RESUMEN DE LA TESIS PARA OPTAR AL GRADO
DE MAGÍSTER EN CIENCIAS DE LA INGENIERÍA,
MENCIÓN MATEMÁTICAS APLICADAS Y
MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERO CIVIL MATEMÁTICO
POR: ENZO GIOVANNI IUBINI CORTEZ
FECHA: 2023
PROF. GUÍA: CLAUDIO MUÑOZ CERÓN

ESTUDIO DE AGUJEROS NEGROS BINARIOS VIA EL EINSTEIN
TOOLKIT

In the wake of the invention of General Relativity by Albert Einstein in 1915, recent
detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observa-
tory center offered a window into the dynamics of binary black hole systems. By employing
advanced computational techniques, namely the Einstein Toolkit software, we study the gen-
eration, propagation, and detection of gravitational waves. In Chapter 2, we offer a simple
introduction on numerical schemes as solutions to partial differential equations, in particular,
the finite differences scheme. In Chapters 3 and 4, we explore the heat and wave equations,
examining their behavior when solved using numerical techniques. Chapter 5 offers a quick
overview on the most important topics on Special Relativity and General Relativity, using
these to solve the wave equation on a spacetime defined as the solution of the Einstein’s
equations in the presence of a black hole, namely, the Schwarszchild spacetime. In the last
chapters, we explore the realm of numerical techniques to solve Einstein’s equation. In Chap-
ter 7, we introduce Numerical Relativity as a way to solve the field equations computationally.
We end this thesis by studying the Einstein Toolkit software in Chapter 8, and applying this
software in Chapter 9 to simulate the famous binary black hole merger GW150914, studying
the trajectories of the black holes and the gravitational waves emitted.

ii



To my family, my friends...
to my dogs and to me.

Thank you all

iii



Agradecimientos

I must thank my proffessor, Claudio Muñoz, for giving me the opportunity to research
one of the most fascinating fields I have ever encountered in my mathematical carreer.

I must thank my co-proffessor, Tomas Andrade, for guiding me through the world of com-
puting and solving all my questions about black hole simulations, even allowing me to learn
how to use a supercomputer cluster.

I must thank the National Laboratory of High Performance Computing in Chile, for giv-
ing me the opportunity to work in their multiple clusters, and allowing me to finish my thesis.

I must thank my family, who always wanted me close even when I could not leave my
lonely appartment. They, who called every single day to check up on me. They, who always
encourage me to follow my dreams, whatever they be and wherever they would take me. And
they, who trusted in me and sent me to this big city to live on my own and pursue happiness,
wherever I find it.

I must thank my friends, who were always there when I needed them; when I needed to
vent, when I needed to be loved and heard, when I needed advice, and when I needed a
reason to not give up.

Finally, I must thank my dogs for always being in my mind. Giulia and Duna, giving me
the peace and love I needed in my darkest times.

iv



Tabla de Contenido

1. Introduction 1

2. Finite Difference schemes for PDEs 3
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Discretizing our domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3. Back and forward derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4. Creating new approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5. Derivatives in time and space . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6. Consistency and accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.7. Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. Numerical methods for the Heat Equation 9
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2. Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3. Analytical solution of the heat equation . . . . . . . . . . . . . . . . . . . . . 11

3.3.1. Homogeneous heat equation . . . . . . . . . . . . . . . . . . . . . . . 13
3.4. Finite Differences for the Heat Equation . . . . . . . . . . . . . . . . . . . . 16

3.4.1. Dirichlet Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . 18
3.4.2. Neumann Boundary conditions . . . . . . . . . . . . . . . . . . . . . 20

3.5. Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.1. Stability in L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6. Visualizing numerical schemes for the Heat equation . . . . . . . . . . . . . . 26

4. Numerical methods for the Wave equation 31
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2. Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3. Analytical solution of the wave equation . . . . . . . . . . . . . . . . . . . . 33
4.4. Finite differences for the wave equation . . . . . . . . . . . . . . . . . . . . . 34
4.5. Visualizing numerical schemes for the wave equation . . . . . . . . . . . . . . 36

5. Relativity and Gravitation 39
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2. Special Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1. The study of space and time . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.2. The Lorentz Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.3. Proper Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.4. 4-Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.5. 4-momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

v



5.2.6. Massless Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3. General Relativity and Differential Geometry . . . . . . . . . . . . . . . . . . 44

5.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.2. Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.3. Riemannian connection . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.4. Parallel transport and geodesics . . . . . . . . . . . . . . . . . . . . . 47
5.3.5. The Riemann curvature tensor . . . . . . . . . . . . . . . . . . . . . . 48
5.3.6. The Newtonian limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.7. The Einstein Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6. Numerical Relativity 53
6.1. Fitting a hypersurface into a Manifold . . . . . . . . . . . . . . . . . . . . . 53

6.1.1. Normal vector to our hypersurface . . . . . . . . . . . . . . . . . . . 54
6.1.2. Orthogonal projector . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2. Extrinsic curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2.1. Symmetry of the curvature tensor . . . . . . . . . . . . . . . . . . . . 57

6.3. Gauss-Codazzi relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.1. Gauss relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.2. Codazzi relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4. Lie Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.4.1. Derivation of the Lie derivative formula . . . . . . . . . . . . . . . . . 62

6.5. Lapse function and foliation kinematics . . . . . . . . . . . . . . . . . . . . . 66
6.5.1. Normal evolution vector . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.6. The shift vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.7. Evolution of the 3D metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.8. Ricci equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.9. 3+1 expression for the spacetime Ricci tensor and scalar curvature . . . . . . 73
6.10. 3+1 decomposition of the Einstein equation . . . . . . . . . . . . . . . . . . 75

6.10.1. Projection of the stress-energy tensor . . . . . . . . . . . . . . . . . . 75
6.10.2. Projection of the Einstein equation . . . . . . . . . . . . . . . . . . . 75

6.11. The 3+1 Einstein system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7. Wave on Schwarzschild 79
7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2. Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3. Schwarzchild Solution in Ingoing Eddington-Finkelstein Coordinates . . . . . 81
7.4. Initial Data for the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.5. A conserved mass for the model . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.6. Solution to the equations of motion . . . . . . . . . . . . . . . . . . . . . . . 88

7.6.1. Analyzing solutions for the equations of motion . . . . . . . . . . . . 93
7.6.2. Analysis of the scalar wave solution . . . . . . . . . . . . . . . . . . . 96

7.7. Solution to the conserved mass model . . . . . . . . . . . . . . . . . . . . . . 100

8. Using the Einstein Toolkit 101
8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.2. Installation and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.3. Overview of "Thorns" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.4. Components and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . 102

vi



8.4.1. Solver Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.4.2. Analysis and Visualization Tools . . . . . . . . . . . . . . . . . . . . 103
8.4.3. Setting Up a Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.5. Parfiles inside the Einstein Toolkit . . . . . . . . . . . . . . . . . . . . . . . 103
8.6. Running an example from the Einstein Toolkit site . . . . . . . . . . . . . . 106

9. Gravitational Waves 110
9.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9.2. Historical context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.3. Gravitational Waves in Einstein’s linearized theory . . . . . . . . . . . . . . 113

9.3.1. Gauge freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9.3.2. Application to gravitational radiation . . . . . . . . . . . . . . . . . . 117

9.4. Observation of Gravitational Waves . . . . . . . . . . . . . . . . . . . . . . . 122
9.4.1. The LIGO detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.4.2. The GW150914 signal . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.5. Using the NLHPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.5.1. Introduction to the NLHPC . . . . . . . . . . . . . . . . . . . . . . . 125
9.5.2. The SLURM system . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.5.3. The Eistein Toolkit inside the NLHPC . . . . . . . . . . . . . . . . . 126

9.6. Reproducing a quasi-circular binary merger . . . . . . . . . . . . . . . . . . . 127
9.6.1. Analyzing the parfile . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.6.2. Plot and analysis of the quasi-circular merger . . . . . . . . . . . . . 135

9.7. Reproducing the GW150914 merger . . . . . . . . . . . . . . . . . . . . . . . 139
9.7.1. Plot and analysis of the GW150914 merger . . . . . . . . . . . . . . . 140

10.Conclusion 142

11.Codes 143

Bibliografía 155

vii



Índice de Ilustraciones

3.1. Visual representation of a conductive rod, for which we find an equation to solve
for u(x, t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2. A comparison between an explicit numerical scheme solution with a CFL number
of 0.499, and real solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3. A comparison between an explicit numerical scheme solution with a CFL number
of 0.5, and its real solution. This is the highest value the CFL number can take
before numerical inestabilities are seen. . . . . . . . . . . . . . . . . . . . . . . 27

3.4. A comparison between an explicit numerical scheme solution with a CFL number
of 0.51, and its real solution. The CFL condition is not satisfied in this case,
and one can see how oscillations beging to grow as time evolves. . . . . . . . . 28

3.5. A comparison between an implicit numerical scheme solution with a CFL number
of 0.5, and its real solution. The CFL condition is satisfied in this case, and one
can see the scheme is stable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6. A comparison between an implicit numerical scheme solution with a CFL number
of 0.8, and its real solution. The CFL condition is not satisfied in this case, yet
the solution is stable nevertheless. . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1. A piece of string displaced from its equillibrium. We study its height about the
equillibrium at each position and time. . . . . . . . . . . . . . . . . . . . . . . 32

4.2. Wave equation solution of our v = ut variable, with id = 1. . . . . . . . . . . . 36
4.3. Wave equation solution of our w = ux variable, with id = 1. . . . . . . . . . . 37
4.4. Wave equation solution of our v = ut variable, with id = 0. . . . . . . . . . . . 37
4.5. Wave equation solution of our w = ux variable, with id = 0. . . . . . . . . . . 37
4.6. Wave equation solution of our v = ut variable, with id = −1. . . . . . . . . . . 38
4.7. Wave equation solution of our w = ux variable, with id = −1. . . . . . . . . . 38
6.1. Figure illustrating the congruence of our curves, all defined by our tangent vectors. 62
6.2. Two points along our µ coordinate defining a curve C . . . . . . . . . . . . . . 63
6.3. We study the way a vector field changes from P to Q. . . . . . . . . . . . . . 63
6.4. Representation of our lapse function and normal coordinate (red), our time

coordinate (green), and our shift vector (yellow). . . . . . . . . . . . . . . . . . 67
7.1. Solutions of Φ for different times. We start with our differentiated scalar pulse,

and it evolves, moves and grows towards the event horizon, leaving a trail behind. 94
7.2. Solutions of Π for different times. We start with our differentiated scalar pulse

plus a small term, and it evolves, moves and grows towards the event horizon,
leaving a trail behind. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.3. Difference between Φ and Π solutions for various time iterations. Since they
are not zero everywhere, we can assume they in fact are solutions for our two
variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

viii



7.4. Solution of our wave equation, where the initial scalar pulse’s ∆ has been set to
0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.5. Solution of our wave equation, where the initial scalar pulse’s ∆ has been set to
1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.6. Solution of our wave equation, where the initial scalar pulse’s ∆ has been set to 4. 98
7.7. Solution of our wave equation, where the initial scalar pulse’s ∆ has been set to

10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.8. Solution of our wave equation, where the initial scalar pulse’s ∆ has been set to

30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.9. The mass around the black hole for different time steps. . . . . . . . . . . . . . 100
8.1. Location of tutorials and documentation for the Einstein Toolkit . . . . . . . . 106
8.2. Gallery where some examples are presented and ready to be simulated . . . . . 107
8.3. 5 examples presented, each with its own tutorial and documentation to under-

stand the physics behind them. . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.4. Brief description of the simulation for the Multipatch wave equation . . . . . . 108
8.5. Brief description of the simulation . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.1. Basic display of how the spiraling of two massive objects could cause wave ripples

that travel through spacetime. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9.2. Einstein and Rosen, the first scientists to examine exact gravitational wave

solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.3. Both ′+′ and ′×′ polarizations. White dots represent the positions of our test

particles without the presence of gravitational waves, while black dots show their
position as the wave passes through. . . . . . . . . . . . . . . . . . . . . . . . 120

9.4. Simplified diagram of an Advanced LIGO detector. . . . . . . . . . . . . . . . 122
9.5. LIGO measurement of gravitational waves. . . . . . . . . . . . . . . . . . . . . 123
9.6. Diagram of a binary black hole merger , starting from a low frequency inicial

inspiral, followed by the merging just after maximum frequencies and ending
with a decay in the ringdown phase. . . . . . . . . . . . . . . . . . . . . . . . . 124

9.7. The trajectories over time of our quasi-circular binary black hole system. Start-
ing positions are -3 and 3, beginning their spiraling at increasing frequencies and
ending in their merging in the center. . . . . . . . . . . . . . . . . . . . . . . . 136

9.8. The real part and imaginary part of the gravitational wave strain for our quasi-
circular binary for (r, l, m) = (50, 2, 2). . . . . . . . . . . . . . . . . . . . . . . 137

9.9. The real part and imaginary part of the gravitational wave strain for our quasi-
circular binary for (r, l, m) = (50, 4, 4). . . . . . . . . . . . . . . . . . . . . . . 138

9.10. The real part and imaginary part of the gravitational wave strain for our quasi-
circular binary for (r,l,m)=(50,3,1). . . . . . . . . . . . . . . . . . . . . . . . . 138

9.11. Initial trajectories of the GW150914 merger in the x − y plane. The black
dotted line represents the heavier black hole, and the red dotted line represents
the lighter. This corresponds to about one full orbit of the two black holes,
equivalent to approximately two gravitational waves. . . . . . . . . . . . . . . 140

9.12. Final trajectories of the GW150914 merger in the x − y plane. The higher
frequency in this phase results in more visible orbits of the black holes, indicating
a faster spiral compared to the initial phase. . . . . . . . . . . . . . . . . . . . 141

9.13. Real part of the Ψ4 scalar associated with the dominant spherical harmonics
node (l, m) = (2, 2), simulated using parameters obtained from the GW150914
LIGO detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

ix



Capítulo 1

Introduction

Since Albert Einstein introduced Special Relativity in 1905, it has revolutionized our un-
derstanding of various physics phenomena by the introduction of its two famous postulates;
the invariancy of laws of physics on all inertial frames and the uniqueness of the speed of
light in vacuum for all observers. This quickly posed new questions regarding gravity: Did
it work instantaneously on all bodies, as Newton had predicted? How did it affect massless
particles? Soon enough, Einstein introduced the new theory of General Relativity along with
his famous Einstein’s Field Equations. These equations explained how the presence of matter
and energy affected the curvature of spacetime, giving rise to a new perspective on gravita-
tion. These equations predicted the existence of black holes, and the gravitational waves that
binary black hole systems emitted. All this was mere theory and inference, until the Laser
Interferometer Gravitational-Wave Observatory (LIGO), a key player in gravitational wave
detection, made the first direct observation of gravitational waves on 14 September 2015, a
signal appropriately named GW150914. In the concluding chapters, we will analyze specific
simulations of black hole binary mergings and draw insightful conclusions from our findings.

Throughout this paper, we will study numerical schemes and the relativistic physics to
understand the gravitational wave sygnal from the merger of a black hole binary. In par-
ticular, we use powerful computing tools to reproduce and understand the GW150914 data
obtained by the two LIGO observatories. This accounts to understanding where the idea
of black holes came from, how their evolution is governed by the Einstein Field Equations,
and how these are solved using approximate methods for gravitational-wave calculation; the
weak field approach and numerical relativity.

The Einstein Field Equations are a complex system of non-linear coupled wave equations,
for which we need numerical methods to solve. In Chapter 2, we give a brief description
of a fundamental Partial Differential Equation (PDE) numerical solving scheme, the Finite
Difference Scheme. We describe its formulation, how to apply it to a generic PDE, and how
to study its stability. These methods become particularly useful when we encounter PDEs
with no apparent analytical solution.

In Chapter 3 and Chapter 4, we apply finite difference schemes to two famous PDEs, the
heat equation and the wave equation. We focus on the different parameters these schemes
have, studying conditions for which our numerical methods will solve these PDEs as accu-
rately as we want. We will finish these chapters showing Python generated plots for each

1



relevant scheme, thus giving solid proof of the usefulness of these numerical approximations,
later to be used to solve much harder equations.

Chapter 5 provides a quick overview of Special Relativity and General Relativity to estab-
lish the theoretical foundation for understanding black hole binaries. We begin by explaining
the postulates and results of Special Relativity, followed by a focus on the new physics lan-
guage used to describe flat and curved spacetime—tensors and covariant derivatives. The
most important result of this chapter is the derivation of the Einstein Field Equations,
which can be further solved assuming special symmetries along 3-dimensional axes to get the
Schwarszchild metric, a solution describing black holes. This knowledge will be useful when
solving a project involving a scalar pulse defined by the wave equation in our Schwarszchild
spacetime in Chapter 7. We not only derive a first order system to solve the wave equation
on this curved spacetime, but explain how to use our finite differences numerical schemes to
study its solutions, along with new Python codes to detect masses of bodies on their way to
be engorged by our black hole.

Our spacetime equations combine all space and time indices to get a large number of
second-order partial differential equations for the metric, while our numerical schemes in-
volve a time derivative defining the change of our space at different time intervals. This
problem can be fixed by defining spacelike hypersurfaces and a timelike (or null) vector
piercing them describing the flow of time along these surfaces. The ambiguity on choosing
different families of hypersurfaces and different time directions is what we explain how to
solve on Chapter 6 by the use of Numerical Relativity. This branch of general relativity fo-
cuses on numerical methods and algorithms to solve astrophysical problems, which are later
applied on supercomputers to study black holes, gravitational waves, and neutron stars. To
this end, we finish this chapter making the link between numerical relativity and Einstein’s
Field Equations; this means defining a family of hypersurfaces and projecting our Equations
on each of them, and evolving our equations on time steps described by a time vector.

To solve these equations and study the gravitational wave emitted by black hole bina-
ries, we make use of a powerful computational tool; the Einstein Toolkit. This community-
driven software platform employs computational tools to solve equation systems involving
astrophysics and gravitational physics. In Chapter 8, we provide a full description of this
software, along with a brief tutorial on solving a simple example on the platform’s website:
the Multipatch Wave Equation.

Using all the tools on our disposal, we finally have the means to study gravitational
waves emitted by a black hole binary. To solve our complex system of equations, we were
supported by the National Laboratory of High Performance Computing (NLHPC) in Chile,
who allowed us to work on their supercomputers and get the data necessary to completely
simulate black hole binaries. We end our thesis by running specific codes to simulate two black
hole binary mergings; a quasi-circular collision with equal mass black holes, and a simulation
of the GW150914 signal. We further analyze the plots of the black hole trajectories and the
gravitational waves emitted, the latter by the decomposition of the Ψ4 scalar in spherical
harmonics.

2



Capítulo 2

Finite Difference schemes for PDEs

2.1. Introduction
Partial Differential Equations (PDEs) play a fundamental role in describing numerous phys-
ical phenomena and natural processes, ranging from heat conduction and fluid dynamics to
electromagnetic fields, quantum mechanics, and space-time evolution models of our universe.
Analytically solving these equations and obtaining a closed-form solution is often challeng-
ing, if not impossible, so many numerical methods have emerged as tools for approximating
solutions to these PDEs.

Among these various numerical techniques, finite difference schemes stand out as a
widely used and highly versatile approach to solving PDEs numerically. This method em-
ploys the straightforward concept of discretizing the continuous domain of the PDE into a
finite set of grid points, thereby transforming the original differential equation into a set of
mixed algebraic equations that can be solved computationally.

The aim of this chapter is to explore finite difference schemes for PDEs comprehensively.
We will present the underlying principles of finite difference approximations, analyze various
schemes used for different PDEs, and discuss their strengths and limitations. We will focus
on the discretization of both temporal and spatial domains, showing how these schemes can
handle parabolic, elliptic, and hyperbolic PDEs.

3



2.2. Discretizing our domain
Solving a partial differential equation often involves the differential of a function on various
of its independent variables. Let’s focus on a function u depending on time and space, that
is, u ≡ u(x, t), where x ∈ [0, 1] and 0 ≤ t ≤ T . In a specific PDE, when its partial derivative
is called, the equations require us to compute the derivative for each point in our domain,
which is often an open interval with infinite points. Asking our machine to solve this, with
no previous knowledge of differential equations and just a simple definition of a limit will
prove impossible due to the number of points. Therefore, our first intuition is to partition
our domain into a finite set of points. This means defining {x0, x1, ..., xn−1, xn} such that,

0 = x0 < x1 < ... < xn−1 < xn = 1.

If we define the mesh of our partition as max |xi − xi−1| : i ∈ {1, ..., n}, then we will show
that as this mesh tends to zero, our approximation converges to the real solution of the
PDE. This concept of mesh represents the maximum distance between adjacent points in our
partition.

In theory, we could define a grid with a varying mesh size (smaller where higher numerical
accuracy is needed and larger elsewhere). For simplicity, we will use a uniform partition,
where the intervals all have the same length h:

xi = x0 + i · h = x0 + i · xn − x0

N
for i = 1, ..., N,

where N is the number of intervals we divide our domain into.
Therefore, a common discretization of our domain (0, 1) ×R+ arises from introducing our

spatial step ∆x = 1/N and a temporal step ∆t > 0 as nodes of a regular grid:

(tn, xj) = (n∆t, j∆x) for n ≥ 0 and j ∈ {0, 1, ..., N}.

If u ≡ u(t, x) solves a particular PDE, we will denote as un
j the discrete approximated solution

at the points (tn, xj), and by u(t, x) as the exact solution.

2.3. Back and forward derivatives
Let u0 be a numerical approximation of some function u. We define the order of this
approximation as the highest integer n such that limh→0

u0−u
hn = 0, and we will say the

approximation is O(hn).
Let u be a n-times differentiable function. If we apply a Taylor series expansion around a

point xi, we get:

u(xi + h) = u(xi) + u′(xi)
1! h + u(2)(xi)

2! h2 + ... + u(n)(xi)
n! hn + Rn(h),

where Rn(h) is a remainder term such that limh→0
Rn(h)

hn = 0.
Let us derive an approximation for the first derivative of u by truncating the Taylor

polynomial.
u(xi + h) = u(xi) + u′(xi)h + R1(h).

4



Dividing across by h yields:

u′(xi) = u(xi + h) − u(xi) − R1(h)
h

≈ u(xi + h) − u(xi)
h

.

This is known as the first order approximation forward first derivative (FD1u′)
of u. It is certainly useful when u is defined in a neighborhood to the right of xi, but when
it is not, one can make use of a first order approximation backward first derivative
(BD1u′):

u′(xi) = u(xi) − u(xi − h) − R1(x)
h

≈ u(xi) − u(xi − h)
h

.

These both approximations are of order O(h), since the difference between the approxima-
tions and the real derivative (as seen in the function’s Taylor series expansion) R1(h) has the
property:

lim
h→0

R1(h)
h1 = 0.

2.4. Creating new approximations
Let us derive approximations for u′. Let u ∈ C2 with bounded second derivative, 0 ≤ h ≤ h0,
and consider the expansion given by the Taylor’s theorem:

u(x ± h) = u(x) ± hu′(x) + h2

2 u′′(ξ±).

Then one has

(FD1u′)
{∣∣∣u(x+h)−u(x)

h
− u′(x)

∣∣∣ ≤ Ch , C = maxξ∈[x,x+h]
|u′′(ξ)|

2 .

Additionally,

(BD1u′)
{∣∣∣u(x)−u(x−h)

h
− u′(x)

∣∣∣ ≤ Ch , C = maxξ∈[x,x+h]
|u′′(ξ)|

2 .

Now, if u ∈ C3, we can get higher order terms from our Taylor expansion,u(x + h) = u(x) + hu′(x) + h2

2 u′′(x) + h3

3! u′′′(ξ+),
u(x − h) = u(x) − hu′(x) + h2

2 u′′(x) − h3

3! u′′′(ξ−),

to derive a second order approximation centered first derivative (CD2u′) of u:

(CD2u′) :
∣∣∣∣∣u(x + h) − u(x − h)

2h
− u′(x)

∣∣∣∣∣ ≤ Ch2 , C = max
ξ∈[x,x+h]

|u′′′(ξ)|
3! .

Similarly, for u ∈ C4, we further expand our Taylor approximation,u(x + h) = u(x) + hu′(x) + h2

2 u′′(x) + h3

3! u′′′(x) + h4

4! uiv(ξ+),
u(x − h) = u(x) − hu′(x) + h2

2 u′′(x) − h3

3! u′′′(x) + h4

4! uiv(ξ−),

5



to derive a second order approximation centered second derivative (CD2u′′)

(CD2u′′)
{∣∣∣u(x+h)−2f(x)+u(x−h)

h2 − u′′(x)
∣∣∣ ≤ Ch2 , C = maxξ∈[x,x+h]

|uiv(ξ)|
4! .

Let us try to generalize this with an example. Suppose we need to find an approximation of
u′ using five points: u(x − 2h), u(x − h), u(x), u(x + h), u(x + 2h). This amounts to finding
the values γk for which:

u′(x) ∼ γ−2u(x − 2h) + γ−1u(x − h) + γ0u(x) + γ1u(x + h) + γ2u(x + 2h).

where we define this approximation as

S =
m∑

k=−m

γku(x + kh).

Using, again, our Taylor series expansion, we get:

γ0u(x) = γ0u(x),
γ±1u(x ± h) = γ±1u(x) ± γ±1hu′(x) + γ±1

h2

2 u′′(x) ± γ±1
h3

3! u′′′(x)
+γ±1

h4

4! uiv(x) + O(h4),
γ±2u(x ± 2h) = γ±2u(x) ± γ±22hu′(x) + γ±2

(2h)2

2 u′′(x) ± γ±2
(2h)3

3! u′′′(x)
+γ±2

(2h)4

4! uiv(x) + O(h4).

Therefore, since we are looking for an approximation of u′(x), then the following must hold:

u′(x) =
2∑

k=−2
γk︸ ︷︷ ︸

=0

u(x) ±
2∑

k=−2
khγk︸ ︷︷ ︸

=1

u′(x) +
2∑

k=−2

(kh)2

2 γk︸ ︷︷ ︸
=0

u′′(x)

= ±
2∑

k=−2

(kh)3

3! γk︸ ︷︷ ︸
=0

u′′′(x) +
2∑

k=−2

(kh)4

4! γk︸ ︷︷ ︸
=0

uiv(x) + O(h4).

This is a linear system of equations, whose solution satisfies |S − f ′(x)| ≤ Ch4 and can be
expressed in matrix notation:

1 1 1 1 1
−2h −h 0 h 2h

(−2h)2

2!
(−h)2

2! 0 h2

2!
(2h)2

2!
(−2h)3

3!
(−h)3

3! 0 h3

3!
(2h)3

3!
(−2h)4

4!
(−h)4

4! 0 h4

4!
(2h)4

4!





γ−2

γ−1

γ0

γ1

γ2

 =



0
1
0
0
0

 .

6



Solving this system yields our final solution for the desired approximation:

γ−2 = 1
12h

, γ−1 = − 8
12h

, γ0 = 0 , γ1 = 8
12h

, γ2 = − 1
12h

;

=⇒ u′(x) ∼ u(x − 2h) − 8u(x − h) + 8u(x + h) − u(x + 2h)
12h

.

2.5. Derivatives in time and space
The same logic applied on derivatives for multivalued functions is used for finite difference
approximation schemes.

This means, considering forward approximations for derivatives in time and space, the
equations read:

∂

∂t
u(t, x) ≈ u(t + ∆t, x) − u(t, x)

∆t
,

∂

∂x
u(t, x) ≈ u(t, x + ∆x) − u(t, x)

∆x
.

Similarly, for the centered second derivatives, the equations are:

∂2

∂t2 u(t, x) ≈ u(t + ∆t, x) − 2u(t, x) + u(t − ∆t, x)
∆t2 ,

∂2

∂x2 u(t, x) ≈ u(t, x + ∆x) − 2u(t, x) + u(t, x − ∆x)
∆x2 .

Here each approximation is made with respect to each variable, while keeping others constant.

2.6. Consistency and accuracy
A finite difference scheme is defined, for all possible indices n, j, by the following formula:

F∆t,∆x

(
{un+m

j+k }m−≤m≤m+,k−≤k≤k+

)
= 0,

where integers m−, m+, k−, k+ define the length of our stencil.

Our finite difference scheme is said to be consistent with our PDE F (u) = 0, if for every
solution u(t, x) sufficiently regular, the truncation error of the scheme, defined by

F∆t,∆x ({u(t + m∆t, x + k∆x)}m−≤m≤m+,k−≤k≤k+) ,

tends to zero, uniformly with respect to (t, x), when ∆t and ∆x tend to zero independently.

Also, the scheme is said to be accurate to order p in space and order q in time if the
truncation error tends to zero with O ((∆x)p + (∆t)q) as ∆t and ∆x tend to zero.

7



2.7. Stability
Usually, not every finite difference scheme works in a desired manner. Some schemes may
not actually represent our equation, and thus they will not give back a consistent solution,
for which we refer to the consistency and accuracy of the scheme. But sometimes our scheme
is actually consistent, but our solution begins oscillating in an unbounded manner, for which
we say our scheme is unstable. We give a mathematical definition for stability, beginning
with the definition of a norm. Let us define the following norm for a numerical solution
un = (un

j )1≤j≤N .

∥un∥p =
 N∑

j=1
∆x|un

j |p
1/p

for 1 ≤ p ≤ ∞.

A finite difference scheme is said to be stable if there exists a constant K > 0, that does
not depend on ∆t or ∆x, such that

∥un∥ ≤ K∥u0∥ for all n ≥ 0,

for every initial condition u0.

If this condition is not met for every step size ∆t and ∆x, but is blinded to particular
values of these step sizes, then the scheme is said to be conditionally stable.

We will be working with linear schemes, for which our PDE representing formula,

F∆t,∆x

(
{un+m

j+k }m−≤m≤m+,k−≤k≤k+

)
= 0,

is linear with respect to its arguments un+m
j+k . Stability for a linear scheme is easy to interpret,

since we can write these schemes as a matrix equation,

un+1 = Aun,

where A is a linear operator of RN . By iterating backwards, one gets that un = Anu0, so
stability of our scheme is equivalent to:

∥Anu0∥ ≤ K∥u0∥ ∀n ≥ 0, ∀u0 ∈ RN .

If we define our linear operator norm,

∥M∥ = sup
u∈RN ,u̸=0

∥Mu∥
∥u∥

,

then the stability of our scheme is equivalent to,

∥An∥ ≤ K ∀n ≥ 0,

which means that we ask that all powers of our matrix be bounded by some constant.

8



Capítulo 3

Numerical methods for the Heat
Equation

3.1. Introduction
We will begin by presenting an elementary discussion on an important partial differential
equation: the 1-D Heat equation. The Heat equation describes the distribution of heat in a
one-dimensional rod over time and is mathematically expressed as,

∂u

∂t
(x, t) = κ

∂2u

∂x2 (x, t), for x ∈ [0, L].

Here, L represents the length of the rod, and κ is a parameter reflecting the material prop-
erties affecting heat conduction.

As is customary with PDEs, solutions to this equation require initial conditions (the heat
distribution at the starting time) and boundary conditions (constraints on the heat at the
boundaries, either fixed values or constraints on the heat flow).

In this chapter, our focus will be on numerical schemes that allow us to compute ap-
proximated solutions, demonstrating their convergence to analytical solutions. The 1-D heat
equation is often the starting point for studying finite difference schemes due to its straight-
forward formulation, and its stability is relatively easy to analyze.

3.2. Derivation
We begin by deriving the equation for the temperature u(x, t) of a rod of length L, with a
diffusion coefficient κ and an external heat source H(x, t), at the point x and time t. We
need to make some assumptions to correctly pose this problem:

• The rod is made of homogeneous material.
• The rod is insulated perpendicular to it, so heat flows only in the x-direction.
• The rod is sufficiently thin, so the temperature within any cross-section is constant.

The first assumption, concerning the homogeneity of the material, is not necessary for the
original problem, but it simplifies our solution techniques.

9



From the principle of conservation of energy, the heat within a segment of the rod [x, x+∂x]
satisfies the following:

Net change inside [x, x + ∂x] = Net inward flux across boundaries at x and x + ∂x+
total heat generated inside [x, x + ∂x].

The total amount of heat in any segment [a, b] is given by:∫ b

a
cρAu(s, t) ds,

where c is the thermal capacity of the rod (specific heat), ρ is the density of the rod, and A
is the cross-sectional area of the rod—constants under our assumptions. The conservation
relation reads:

cρA
∫ x+∂x

x
ut(s, t) ds︸ ︷︷ ︸

Net change

= KA[ux(x + ∂x, t) − ux(x, t)]︸ ︷︷ ︸
Net inward flux across boundaries

+ A
∫ x+∂x

x
H(s, t) ds︸ ︷︷ ︸

Total heat generated inside

,

where H(x, t) describes the heat generated by an external source per unit length and per
unit of time.

Dividing both sides by A and applying the FTC to show that ux(b, t) − ux(a, t) =∫ b
a uxx(s, t) ds, we get:

cρ
∫ x+∂x

x
ut(s, t) ds =

∫ x+∂x

x
(Kuxx(s, t) + H(s, t)) ds.

Rearranging yields: ∫ x+∂x

x
ut(s, t) ds =

∫ x+∂x

x
(κuxx(s, t) + h(s, t)) ds,

where κ = K
cρ

and h(x, t) = 1
cρ

H(x, t) are the diffusivity of the rod and the heat source density,
respectively.

Since this equation holds on any arbitrary segment of the rod, it follows that the integrands
must be the same everywhere on the rod. Therefore, we finally obtain the 1-D heat equation:

ut = κuxx + h(x, t).

10



3.3. Analytical solution of the heat equation
We again consider a conductive rod of length L as seen in 3.1. To model this object, we
assume this rod is insulated along (0, L) and exchanging heat from its boundary point x = 0
and/or x = L. We also model an external heat source as h(x), this time not depending on t.

Figura 3.1: Visual representation of a conductive rod, for which we find an
equation to solve for u(x, t).

Our goal is to find the equation that defines u(x, t) being the temperature of the rod at
the point x and time t. Note that u is a function of two independent variables x, t, where
x ∈ [0, L] and t ≥ 0. The heat equation that describes u is:

ut(x, t) = κuxx(x, t) + h(x),

where κ > 0 is a positive constant that depends on the heat capacity, the density and other
properties of the rod.

For this problem to have a unique solution, we will need one initial condition and two
boundary conditions. The initial condition is usually described by an arbitrary function of
x.

Boundary conditions can vary according to the physical problem at hand, and these can
be of the following types:

1. Dirichlet boundary conditions (D)

2. Neumann boundary conditions (N)

3. Mixed boundary conditions (M)

11



The following are three examples, one of each boundary condition:

(D)


ut(x, t) = κuxx(x, t) + h(x)
u(x, 0) = f(x)
u(0, t) = a, u(L, t) = b,

(N)


ut(x, t) = κuxx(x, t) + h(x)
u(x, 0) = f(x)
ux(0, t) = c1, ux(L, t) = c2,

(M)


ut(x, t) = κuxx(x, t) + h(x)
u(x, 0) = f(x)
a1u(0, t) + b1ux(0, t) = c1

a2u(L, t) + b2ux(L, t) = c2.

We derive an analytical solution for the heat equation with Dirichlet boundary conditions.

To solve this equation, we need to understand the concept of the steady state solution
to a heat equation. This is a solution that remains unchanged with respect to t, that is, a
solution v(x) that satisfies the heat equation. This is equivalent to asking that0 = κv′′(x) + h(x)

v(0) = a, v(L) = b.

The above equation is simply solved by integration, and we can prove that, regardless of the
initial heat distribution u(x, 0) = f(x),

lim
t→∞

u(x, t) = v(x).

As seen in any basic ODE course, to find the particular solution to the original intial-boundary
value problem, we need to sum two solutions: the homogeneous and the particular solution.

First, let w(x, t) satisfy the homogeneous problem:
wt(x, t) = κwxx(x, t)
w(x, 0) = g(x)
w(0, t) = 0, w(L, t) = 0.

Next, we need a steady state solution satisfying the original problem. Let v(x) be this steady
state solution satisfying, 0 = κv′′(x) + h(x)

v(0) = a, v(L) = b.

12



Now we consider u(x, t) = v(x) + w(x, t). We first note that,

ut − κuxx = (v + w)t − κ(v + w)xx

= vt︸︷︷︸
=0

+wt − κvxx︸ ︷︷ ︸
=−h(x)

−κwxx

= wt − κwxx︸ ︷︷ ︸
=0

+h(x)

= h(x),

so u(x, t) satisfies the nonhomogeneous heat equation. The boundary conditions are also
satisfied: u(0, t) = v(0) + w(0, t) = a

u(L, t) = v(L) + w(L, t) = b.

Since the initial condition equation implies

f(x) = u(x, 0) = v(x) + w(x, 0) = v(x) + g(x),

then, if we set g(x) = f(x) − v(x), we can first solve our ODE for v(x) to get g(x) and solve
our homogeneous PDE for w(x, t).

3.3.1. Homogeneous heat equation

Since our non-homogeneous heat equation can be split into a simple ODE and an homoge-
neous heat equation, we focus our attention on the latter. Let w(x, t) be a solution for the
homogeneous heat equation with Dirichlet boundary conditions, that is,

wt(x, t) = κwxx(x, t)
w(x, 0) = g(x)
w(0, t) = 0, w(L, t) = 0.

We will use the separation of variables technique to solve this. We first assume a solution
takes the form of a product of a purely spatial function and a purely temporal function. This
usually leaves us with a free parameter solution, which determines an unique solution when
setting the initial condition. Let w(x, t) be our solution, that is,

w(x, t) = X(x)T (t).

We can easily compute partial derivatives on this solution to get,

wt(x, t) = X(x)T ′(t) and wxx(x, t) = X ′′(x)T (t),

so our equation reads as 
X(x)T ′(t) = κX ′′(x)T (t)
X(x)T (0) = g(x)
X(0)T (t) = 0, X(L)T (t) = 0.

13



Diving both sides of our heat equation by κX(x)T (t) we get,

1
κ

T ′(t)
T (t) = X ′′(x)

X(x) .

Since both sides depend on different independent variables, we impose they must be equal
to a constant −λ2, where the negative sign is there just to make our calculations easier, and
doesn’t change the final solution. This gives us two equations:T ′(t) = −κλ2T (t)

X ′′(x) = −λ2X(x), X(0) = 0, X(L) = 0.

We must now consider three cases for −λ2 to be a real constant. If a case leads to a zero
solution, we will discard it as trivial.

Case 1: λ purely imaginary

In this case, we consider λ = iλ′, with λ′ a real constant. Our equation for X(x) would
yield a solution,

X(x) = c1 cosh (λ′x) + c2 sinh (λ′x).

Applying both boundary conditions yield,

0 = X(x) = c1, 0 = X(L) = c2 sinh (λ′x)

which lead to c1 = c2 = 0, so then X(x) ≡ 0. This leads to a trivial solution, so we discard
this case.

Case 2: λ = 0

In this case, our equation for X(x) reduces to,

X ′′(x) = 0.

This is a second order ODE, easily solved by integration, and yields,

X(x) = c1x + c2.

Applying both boundary conditions force c1 and c2 to be zero, yielding another trivial solu-
tion, so this case also does not work.

Case 3: λ purely real

For Case 3, the equation for X(x) produces the following solution,

X(x) = c1 cos (λx) + c2 sin (λx).

Applying both boundary conditions yield,

0 = X(x) = c1, 0 = X(L) = c2 sin (λx)

14



Since we are looking for non trivial solutions, we must have that c2 ̸= 0, so then,

sin (Lλ) = 0 =⇒ Lλ = nπ, n = 1, 2, 3, ..

which is an equation of λ for each possible value of n. Therefore, we can define λn = nπ
L

and
get our equation for Xn(x)

λn = nπ

L
Xn(x) = sin

(
nπx

L

)
, n = 1, 2, 3, ...

Plugging this λn to our equation for T (t) for each value of n, yields a family of solutions
Tn(t),

Tn(t) = cne−κλ2t,

Due to the antisymmetry of the sine function, it suffices to only consider positive values of
n, therefore our infinite solutions will be of the form:

un(x, t) = Bn sin
(

nπx

L

)
e−κ(nπ

L )2
t n = 1, 2, 3, ...

Our full solution will be a particular sum of these eigenfunctions, where the specific choice
of the Bn values will depend of our initial solution g(x), in particular:

u(x, t) =
∞∑

n=1
Bn sin

(
nπx

L

)
e−κ(nπ

L )2
t.

Where Bn are to be determined. To get an unique solution, that is, determine the values of
Bn, we set t = 0 and multiply both sides by a sine function of the n-th frequency. When
integrating, that sets every other sine product equal to zero and leaves us with an equation
easily integrable for Bn, that is,

Bn = 2
L

∫ L

0
g(x) sin

(
nπx

L

)
dx,

which are values that determine an unique solution for our homogeneous heat equation.

15



3.4. Finite Differences for the Heat Equation
For some initial conditions, the homogeneous heat equation is actually pretty easy to solve,
and may have few non-zero constant terms, leaving us with a neat solution. However, it may
happen that all Bn are non-zero, where the infinite sum determining the final solution has
no closed form, and this is only considering the homogeneous heat equation where there’s no
extra terms, but physics admits a great variety of equations that may arise, and we should be
prepared to solve, or at least visualize, each one of them. This is where numerical schemes con
in handy, allowing us to visualize solutions to every equation, even if it admits no closed form.

To delve further, we must start from the beginning, so let us use numerical schemes to
solve the homogeneous heat equation. Let u(x, t) solve this PDE with an initial condition
u0(x), that is, 

∂u
∂t

(x, t) − κ∂2u
∂x2 (x, t) = 0 for (x, t) ∈ (0, 1) × R+

∗

u(x, 0) = u0(x) for x ∈ (0, 1).

As mentioned before, our domain grid will be discretized by,

(xj, tn) = (j∆x, n∆t) for n ≥ 0, , j ∈ {0, 1, ..., N}.

where ∆x = 1/N , with N being a positive integer, and ∆t > 0.

Remembering our previous notation, we denote un
j as the approximation of u(x, t) at the

points (xj, tn), with our initial approximation vector being u0
j = u0(xj). Let us figure our

how to get these values and study them.

The finite difference schemes are not unique to an equation, this may have been obvious
by the fact that derivatives can be approximated to different orders with different schemes,
and those expressions would undoubtedly lead up to different schemes. It is important to
know the order to which our approximations will be computed, but when considering spatial
derivatives, it is ever more important to choose at which time these derivatives will be com-
puted.

Whenever we are studying a first derivative in time, we usually do a forward derivative
∂tu = un+1

j −un
j

∆t
, and so we are implicitly saying that we are ’standing’ at the n-th time. So

one may ask, are we computing the a spatial derivative at the n-th time, at the (n − 1)-th
time, a combination of both, or any other possible time? The answer is that one may choose
any possible time step, and study the scheme accordingly. We will talk about the most used
schemes as follows.

Whenever we are at the n-th time, and compute our spatial derivatives in this time step,
we call our equations an explicit scheme. For the homogeneous heat equation, it becomes,

un+1
j − un

j

∆t
− κ

un
j−1 − 2un

j + un
j+1

∆x2 = 0,

where the second spatial derivative is taken with respect to the current position n∆t, that

16



is, given our first stage by u0, the next one can be computed with the formula:

un+1
j = un

j + cun
j−1 − 2cun

j + cun
j+1

= cun
j−1 + (1 − 2c)un

j + cun
j+1,

where c = κ∆t
∆x2 is called our CFL number .

This means, beginning with our initial condition we can compute the next time step by
multiplying our vector by a matrix given by:



un+1
0

un+1
1

un+1
2
...
...

un+1
N−2

un+1
N−1

un+1
N



=



1 − 2c c 0 · · · · · · · · · · · · 0
c 1 − 2c c

. . . ...
0 c 1 − 2c c

. . . ...
... . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . ...
... . . . c 1 − 2c c 0
... . . . c 1 − 2c c

0 · · · · · · · · · · · · 0 c 1 − 2c





un
0

un
1

un
2
...
...

un
N−2

un
N−1
un

N



.

On the other hand, the implicit scheme, takes values at the next time step of the
discretization and forces them to solve the equations of the previous one. The scheme reads
as follows:

un+1
j − un

j

∆t
− κ

un+1
j−1 − 2un+1

j + un+1
j+1

∆x2 = 0,

and it solves the equation

un+1
j − cun+1

j−1 + 2cun+1
j − cun+1

j+1 = un
j

=⇒ −cun+1
j−1 + (1 + 2c)un+1

j − cun+1
j+1 = un

j .

We can check this scheme is well posed, and one can indeed compute values of un+1
j given

the values of un
j . In fact, the linear system can be written as



1 + 2c 0 0 · · · · · · · · · · · · 0
−c 1 + 2c −c

. . . ...
0 −c 1 + 2c −c

. . . ...
... . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . ...
... . . . −c 1 + 2c −c 0
... . . . −c 1 + 2c −c

0 · · · · · · · · · · · · 0 −c 1 + 2c





un+1
0

un+1
1

un+1
2
...
...

un+1
N−2

un+1
N−1

un+1
N



=



un
0

un
1

un
2
...
...

un
N−2

un
N−1
un

N



,

where this matrix is definite positive, therefore invertible.

17



These two schemes can be joined together by a convex combination of the two, where for
0 ≤ θ ≤ 1, we can obtain the θ-scheme,

un+1
j − un

j

∆t
= θκ

un+1
j−1 − 2un+1

j + un+1
j+1

∆x2 + (1 − θ)κ
un

j−1 − 2un
j + un

j+1

∆x2 .

We will note some important things about this scheme:

• For θ = 0, the scheme is explicit.

• For θ = 1, the scheme is implicit.

• For θ = 1/2, the scheme will be called Crank-Nicholson scheme.

• For other values of θ, the scheme can be given other names, such as the six points
scheme, given by θ = 1/2 − ∆x2

12κ∆t
.

These previous schemes will be called two-level schemes, since they only consider at most
two consecutive time indices. It is possible to work with multi-level schemes, for example,
the DuFort-Frankel scheme:

un+1
j − un−1

j

2∆t
+ κ

−un
j−1 + un+1

j + un−1
j − un+1

j+1

∆x2 = 0,

and the Gear scheme:

3un+1
j − 4un

j + un−1
j

2∆t
+ κ

−un+1
j−1 + 2un+1

j − un+1
j+1

∆x2 = 0.

The list is exhaustive and our job is to compare these schemes and use the one that’s most
efficient and accurate according to our needs.

From now on, we will be focusing on the implicit two level scheme and the explicit
two level scheme.

As we have mentioned in previous subsections, the initial condition is totally represented
in the values of u0

j that start our iterations. The conditions for our boundaries are, on the
other hand, given by the values of our iteration matrix. Each scheme can be used to solve
the equation given the requested boundary conditions, which we will study separatedly.

3.4.1. Dirichlet Boundary Conditions
Let us consider our usual heat equations with Dirichlet conditions on both sides, that is

u(t, 0) = 0 and u(t, 1) = 0.

It is important to note that since values at these boundaries must be preserved, then the
initial condition must also have these values. This means that whichever value our initial
condition has at our spatial domain border, then we can replace for the Dirichlet condition
in the corresponding border. It also means that the iteration matrix must be such that
the boundary value is preserved at every step. This can be easily done by replacing the
corresponding row of the matrices by an identity matrix row.

18



For the explicit scheme, the system of equations one must solve to solve for Dirichlet
boundary conditions are,



un+1
0

un+1
1

un+1
2
...
...

un+1
N−2

un+1
N−1

un+1
N



=



1 0 0 · · · · · · · · · · · · 0
c 1 − 2c c

. . . ...
0 c 1 − 2c c

. . . ...
... . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . ...
... . . . c 1 − 2c c 0
... . . . c 1 − 2c c

0 · · · · · · · · · · · · 0 0 1





un
0

un
1

un
2
...
...

un
N−2

un
N−1
un

N



,

while the implicit schemes solves a different system,

1 0 0 · · · · · · · · · · · · 0
−c 1 + 2c −c

. . . ...
0 −c 1 + 2c −c

. . . ...
... . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . ...
... . . . −c 1 + 2c −c 0
... . . . −c 1 + 2c −c

0 · · · · · · · · · · · · 0 0 1





un+1
0

un+1
1

un+1
2
...
...

un+1
N−2

un+1
N−1

un+1
N



=



un
0

un
1

un
2
...
...

un
N−2

un
N−1
un

N



.

These two schemes can be combined into a single θ-scheme, if we consider the following
matrices for the Dirichlet conditions on a θ-scheme,

19



Add(c, θ) =



1 0 0 · · · · · · · · · · · · 0

−cθ 1 + 2cθ −cθ
. . . ...

0 −cθ 1 + 2cθ −cθ
. . . ...

... . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . ...

... . . . −cθ 1 + 2cθ −cθ 0

... . . . −cθ 1 + 2cθ −cθ

0 · · · · · · · · · · · · 0 0 1



,

Bdd(c, θ) =



1 0 0 · · · · · · · · · · · · 0

cθ′ 1 − 2cθ′ cθ′ . . . ...

0 cθ′ 1 − 2cθ′ cθ′ . . . ...
... . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . ...
... . . . cθ′ 1 − c2θ′ cθ′ 0
... . . . cθ′ 1 − 2cθ′ cθ′

0 · · · · · · · · · · · · 0 0 1



,

where we have used the notation θ′ = 1 − θ. By combining the two schemes as mentioned
before, we get the θ-scheme in matrix form as,

Add(c, θ)Un+1 = Bdd(c, θ)Un,

where Un = (un
0 , un

1 , ..., un
N−1, un

N)T denotes the approximated solution at time n.

3.4.2. Neumann Boundary conditions

Now, we consider the heat equation with Neumann boundary conditions at both of its borders,
this means:

∂u

∂x
(t, 0) = c1 and ∂u

∂x
(t, 1) = c2.

For a first order approximation, we could easily use forward spatial derivatives at both points
un

0 and un
N :

un
1 − un

0
∆x

= c1 and un
N − un

N−1
∆x

= c2.

This allows us to solve for our respective values of un
0 and un

N . Sadly, this approximation is
only of first order wheras our scheme has a second order at the center points, and will make
us lose accuracy around the borders. To fix this, we can apply a second order approximation
at the border to get:

un
1 − un

−1
2∆x

= c1 and un
N+1 − un

N−1
2∆x

= c2.

20



This better approximation gives us accuracy, but adds cost to our code by introducing two
"ghost" points un

−1 and un
N+1. The equation for these ghost points are, respectively:

un
−1 = un

1 − 2c1∆x and un
N+1 = un

N−1 + 2c2∆x.

These equations are used to compute the centered derivative for the boundary points. To
show this, we will consider the explicit scheme equation for the left boundary point:

un+1
0 − un

0
∆t

= κ
un

1 − 2un
0 + un

−1
∆x2

=⇒ un+1
0 = un

0 + cun
1 − 2cun

0 + cun
−1

=⇒ un+1
0 = (1 − 2c)un

0 + cun
1 + c (un

1 − 2c1∆x)
=⇒ un+1

0 = (1 − 2c)un
0 + 2cun

1 − 2cc1∆x.

Similarly, the equation for the right boundary points would read,

un+1
N = (1 − 2c)un

N + 2cun
N−1 + 2cc2∆x.

This translates to the iteration matrix for the explicit scheme:



un+1
0

un+1
1

un+1
2
...
...

un+1
N−2

un+1
N−1

un+1
N


=



1 − 2c 2c 0 · · · · · · · · · · · · 0

c 1 − 2c c
. . . ...

0 c 1 − 2c c
. . . ...

... . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . ...

... . . . c 1 − 2c c 0

... . . . c 1 − 2c c

0 · · · · · · · · · · · · 0 2c 1 − 2c





un
0

un
1

un
2
...
...

un
N−2

un
N−1
un

N


+



−2cc1∆x

0
0
...
...
0
0

2cc2∆x


.

The same methods can be applied to the original implicit scheme, for which we will show the
final matrix form of the equation:



1 + 2c −2c 0 · · · · · · · · · · · · 0

−c 1 + 2c −c
. . . ...

0 −c 1 + 2c −c
. . . ...

... . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . ...

... . . . −c 1 + 2c −c 0

... . . . −c 1 + 2c −c

0 · · · · · · · · · · · · 0 −2c 1 + 2c





un+1
0

un+1
1

un+1
2
...
...

un+1
N−2

un+1
N−1

un+1
N


+



2cc1∆x

0
0
...
...
0
0

−2cc2∆x


=



un
0

un
1

un
2
...
...

un
N−2

un
N−1
un

N


.

To combine these two into a single θ-scheme, we will start from the beginning and make our
way up to it. We begin posing the original θ-scheme for the left boundary point and expand it
accordingly

21



un+1
0 − un

0
∆t

= θκ
un+1

1 − 2un+1
0 + un+1

−1
∆x2 + θ′κ

un
1 − 2un

0 + un
−1

∆x2

=⇒ (1 + 2cθ)un+1
0 − cθ′un+1

1 − cθun+1
−1 = (1 − 2cθ′)un

0 + cθ′un
1 + cθ′un

−1

=⇒ (1 + 2cθ)un+1
0 − cθun+1

1 − cθ(un+1
1 − 2c1∆x) = (1 − 2cθ′)un

0 + cθ′un
1

+ cθ′(un
1 − 2c1∆x)

=⇒ (1 + 2cθ)un+1
0 − 2cθun+1

1 + 2cc1θ∆x = (1 − 2cθ′)un
0 + 2cθ′un

1 − 2cc1θ′∆x

=⇒ (1 + 2cθ)un+1
0 − 2cθun+1

1 = (1 − 2cθ′)un
0 + 2cθ′un

1 − 2cc1(θ + θ′)∆x

=⇒ (1 + 2cθ)un+1
0 − 2cθun+1

1 = (1 − 2cθ′)un
0 + 2cθ′un

1 − 2cc1∆x.

Similarly, for our right boundary, we get:

un+1
N − un

N

∆t
= θκ

un+1
N+1 − 2un+1

N + un+1
N−1

∆x2 + θ′κ
un

N+1 − 2un
N + un

N−1
∆x2

=⇒ (1 + 2cθ)un+1
N − cθ′un+1

N−1 − cθun+1
N+1 = (1 − 2cθ′)un

N + cθ′un
N−1 + cθ′un

N+1

=⇒ (1 + 2cθ)un+1
N − cθun+1

N−1 − cθ(un+1
N−1 + 2c2∆x) = (1 − 2cθ′)un

N + cθ′un
N+1

+ cθ′(un
N−1 + 2c2∆x)

=⇒ (1 + 2cθ)un+1
N − 2cθun+1

N−1 − 2cc1θ∆x = (1 − 2cθ′)un
N + 2cθ′un

N−1 + 2cc2θ′∆x

=⇒ (1 + 2cθ)un+1
N − 2cθun+1

N−1 = (1 − 2cθ′)un
N + 2cθ′un

N−1 + 2cc1(θ + θ′)∆x

=⇒ (1 + 2cθ)un+1
N − 2cθun+1

N−1 = (1 − 2cθ′)un
N + 2cθ′un

N−1 + 2cc1∆x.

Therefore, our θ-scheme written in matrix notation can be represented by the following two
matrices that represent this scheme with Neumann boundary conditions,

22



Ann(c, θ) =



1 + 2cθ −2cθ 0 · · · · · · · · · · · · 0

−cθ 1 + 2cθ −cθ
. . . ...

0 −cθ 1 + 2cθ −cθ
. . . ...

... . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . ...

... . . . −cθ 1 + 2cθ −cθ 0

... . . . −cθ 1 + 2cθ −cθ

0 · · · · · · · · · · · · 0 −2cθ 1 + 2cθ



Bnn(c, θ) =



1 − 2cθ′ 2cθ′ 0 · · · · · · · · · · · · 0

cθ′ 1 − 2cθ′ cθ′ . . . ...

0 cθ′ 1 − 2cθ′ cθ′ . . . ...
... . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . ...
... . . . cθ′ 1 − 2cθ′ cθ′ 0
... . . . cθ′ 1 − 2cθ′ cθ′

0 · · · · · · · · · · · · 0 2cθ′ 1 − 2cθ′


and so our θ-scheme is condensed in the following equation,

Ann(c, θ)Un+1 = Bnn(c, θ)Un + Cnn,

where again Un = (un
0 , un

1 , ..., un
N ) and Cnn = (−2cc1∆x, 0, ..., 0, 2cc2∆x) is a constant vector that

deals with the conditions at the boundary.

23



3.5. Stability analysis
We have previously defined the condition for a linear scheme to be stable. Luckily, the scheme for
the heat equation is in fact linear, so we can apply them. Remember the condition is there exist a
constant K > 0, independent on ∆t and ∆x, such that,

∥un∥ ≤ K∥u0∥ ∀n ≥ 0, ∀u0 ∈ RN .

This condition was equivalent to asking that the following condition holds,

∥Anu0∥ ≤ K∥u0∥ ∀n ≥ 0, ∀u0 ∈ RN ,

which reduces to a matrix norm inequality,

∥An∥ ≤ K ∀n ≥ 0,

when considering the following matrix norm,

∥M∥ = sup
u∈RN ,u ̸=0

∥Mu∥
∥u∥

.

For simplicity, we will consider the L2 norm for the study of stability, allowing us to use tools as
Fourier analysis and Plancherel’s equality.

3.5.1. Stability in L2

The L2 norm is easy to study thanks to Fourier analysis. We will be assuming periodic border
conditions for our heat equation, since this helps us apply the Fourier transform without problem.
These conditions are better written as u(t, x + 1) = u(t, x), for all x ∈ [0, 1] and all t.

Since our vector un = (un
j )0≤j≤N is discretized, its Fourier transform would always be zero. To fix

this, we will "complete" this function by extending its values into the rest of the domain, therefore
getting a function un(x) defined on all [0, 1]. This means,

un(x) = uj
n if xj− 1

2
< x < xj+ 1

2
,

where xj+ 1
2

= (j + 1
2)∆x for 0 ≤ j ≤ N . Defined this way, our function un(x) belongs to L2(0, 1).

Thanks to Fourier analysis, every L2(0, 1) function can be decomposed into a Fourier sum,

un(x) =
∑
k∈Z

ûn(k) exp{2πikx},

where ûn(k) =
∫ 1

0 un(x) exp{(−2πikx)}. We also have Plancherel’s theorem applied to our functions,∫ 1

0
|un(x)|2dx =

∑
k∈Z

|ûn(k)|2.

A property of the Fourier transform is that when translate our function by a fixed value, its
Fourier transform can be studied in the same frequency by multiplying by an exponential according
to the following formula,

vn(x) = un(x + ∆x) =⇒ v̂n(k) = ûn(k) exp{(2πik∆x)}.

Let us begin studying the stability of the explicit scheme, defined by its formula:

24



un+1(x) = κ∆t

∆x2 un(x + ∆x) +
(

1 − 2κ∆t

∆x2

)
un(x) + κ∆t

∆x2 un(x − ∆x).

After applying Fourier transform to both sides, we get

ûn+1(k) = κ∆t

∆x2 ûn(k) exp{(2πik∆x)} + (1 − 2κ∆t

∆x2 )ûn(k) + κ∆t

∆x2 ûn(k) exp{(−2πik∆x)}

=
(

1 + κ∆t

∆x2 (exp{(2πik∆x)} − 2 + exp{(−2πik∆x)})
)

ûn(k).

We can show that e2ix + e−2ix − 2 = −4 sin2 (x). In fact, using Euler’s formula for complex
exponentials, we have eix = cos x + i sin x, therefore

e2ix + e−2ix − 2 = 2 cos (2x) − 2
= 2(cos2 (x) − sin2 (x)) − 2
= 2(cos2 (x) − 1) − 2 sin2 (x)
= −2 sin2 (x) − 2 sin2 (x)
= −4 sin2 (x).

Using the previous property, we finally get our formula for the Fourier transform of ûn+1(k),

ûn+1(k) =
(

1 + κ∆t

∆x2 (exp{(2πik∆x)} − 2 + exp{(−2πik∆x)})
)

ûn(k)

=
(

1 − 4κ∆t

∆x2 sin2 (πk∆x)
)

ûn(k).

We see that this formula is clearly linear, in other words

ûn+1(k) = A(k)ûn(k) = A(k)n+1û0(k) with A(k) = 1 − 4κ∆t

∆x2 sin2 (πk∆x).

For k ∈ Z, the stability condition is |A(k)| = 1 − 4κ∆t
∆x2 sin2 (πk∆x) ≤ 1, that is

2κ∆t sin2 (πk∆x) ≤ ∆x2.

For this condition to be satisfied for any value of k, we define our CFL condition to be,

2κ∆t ≤ ∆x2 ⇐⇒ κ∆t

∆x2 ≤ 1
2

If this condition is indeed satisfied, then by Plancherel’s formula we have,

∥un∥2
2 =

∫ 1

0
|un(x)|2dx =

∑
k∈Z

|ûn(k)|2 ≤
∑
k∈Z

|û0(k)|2 =
∫ 1

0
|u0(x)|2dx = ∥u0∥2

2,

which means that our explicit scheme is L2 stable.

On the other hand, if the stability condition is not met, then one could choose ∆x small enough,
and k0 big enough, and an initial condition with one non zero Fourier component û0(k0) ̸= 0 with
sin (πk0∆x) = 1, such that |A(k0)| > 1, so the transfored iteration matrix would grow exponentially

25



in each iteration. This translates in unbounded oscillations of our simulation.

Therefore, we have that the explicit scheme is stable if and only if the CFL condition κ∆t
∆x2 ≤ 1

2
is satisfied.

Let us now study the stability of the implicit scheme. Remembering that this scheme is,

−κ∆t

∆x2 un+1(x − ∆x) +
(

1 + 2κ∆t

∆x2

)
un+1(x) − κ∆t

∆x2 un+1(x + ∆x) = un(x),

we can apply Fourier transform to both sides to get

ûn+1(k)
(

1 + κ∆t

∆x2 (− exp{(−2πik∆x)} − exp{(2πik∆x)} + 2)
)

= ûn(k).

In other words,

ûn+1(k) = A(k)ûn(k) = A(k)n+1û0(k) where A(k) =
(

1 + 4κ∆t

∆x2 sin2 (πk∆x)
)−1

.

Since |A(k)| ≤ 1 always, then by Plancherel’s formula we have that the implicit scheme is L2 stable
for any choice of ∆t and ∆x, a property we will call unconditional stability. This means that
this scheme poses no conditions on our grid size for it to be stable, at the cost of being expensive
to compute, since it involves inverse matrices of huge dimensions.

3.6. Visualizing numerical schemes for the Heat equa-
tion

We will show that these schemes actually work in practice through one example. For this, we will
take a heat equation with a known solution, and check the plot of our numerical solution against
the real solution.

Let us consider the following heat equation with both Dirichlet boundary conditions,
4ut = uxx, 0 ≤ x ≤ 2, t > 0
u(t, 0) = 0
u(t, 2) = 0
u(0, x) = 2 sin

(
πx
2
)

− sin (πx) + 4 sin (2πx).

This equation can be solved via our previous methods to get exact solution,

u(x, t) = 2 sin
(

πx

2

)
exp

{(
−π2

16 t

)}
− sin (πx) exp

{(
−π2

4 t

)}
+ 4 sin (2πx) exp

{
(−π2t)

}
.

To study our numerical schemes in a detailed manner, we focus our attention on both explicit
and implicit finite difference schemes.

First, let us see how our explicit scheme finite difference solution is plotted against the real
solution of this PDE.

We know the CFL condition for our numerical scheme is that c = ∆t
(∆x)2 ≤ 1

2 . Let us check how

26



our numerical solution behaves against the real solution, so we can easily check it converges.

Figura 3.2: A comparison between an explicit numerical scheme solution
with a CFL number of 0.499, and real solution.

For a CFL number lower than 1
2 , as is seen in Fig. 3.2 where a CFL number of 0.499 is chosen,

we can see that the plot against our numerical solution is equal to the real one. This comes at the
cost of having to solve multiple equations, since for a small (∆x)2, we must have that ∆t ≤ 1

2(∆x)2,
which bounds our time step by a really small amount.

Figura 3.3: A comparison between an explicit numerical scheme solution
with a CFL number of 0.5, and its real solution. This is the highest value
the CFL number can take before numerical inestabilities are seen.

We can even plot the solution for a CFL value of exactly 0.5 in Fig. 3.3, and check that even for
extreme values of the CFL number the explicit scheme has no problem being stable and behaves
pretty well, being almost identical to our real solution. The hability to choose a high enough value of

27



CFL number to study more complex PDEs in a higher time interval, while simultaneously choosing
it sufficiently low to not lose stability, is what makes this value special. In this case, choosing a CFL
number of 0.1 or 0.5 makes no remarkable difference, since the cost of our simulations is really low,
but eventually one may encounter code where even the highest posible value for our CFL number
doesn’t allow us to solve it in reasonable time, but that’s a problem for the future. Let us now
study our solution for a slightly higher value of the CFL number.

Figura 3.4: A comparison between an explicit numerical scheme solution
with a CFL number of 0.51, and its real solution. The CFL condition is
not satisfied in this case, and one can see how oscillations beging to grow
as time evolves.

To end our analysis, we check our solutions for CFL numbers higher than 0.5. In Fig. 3.4 we
choose a value of 0.51, just slightly higher than our extreme value. Even if our value is extremely
close, as long as it is higher than 0.5 one can see that soon enough this scheme stops being stable,
up to the point where oscillations are so big that they don’t even fit our plots. In this case, a CFL
number of 0.51 violates our condition, so we expected the iteration matrix to be unbounded by our
Fourier analysis. For slightly smaller numbers, as long as it is strictly higher than 0.5, there will
always be a time step in which our solution will begin to oscillate unboundedly and diverge.

28



Let us now focus our attention to the behavior of the implicit scheme for this same equation,
and for different values of our CFL number.

Figura 3.5: A comparison between an implicit numerical scheme solution
with a CFL number of 0.5, and its real solution. The CFL condition is
satisfied in this case, and one can see the scheme is stable.

Let us now pick the highest value for our CFL number where we know it was stable for the
explicit scheme, and plot it as seen in Fig. 3.5. Picking this value of 0.5 shows the scheme is stable
and consistent as was the explicit scheme for this value. Our fourier analysis showed that no matter
what value for the CFL, the scheme would be stable nonetheless, so let us plot a solution using a
bigger value.

For an extreme value of 0.5 for the CFL number, the implicit scheme is very much stable, as we
would expect. What is interesting is what happens for higher values of the CFL number.

Figura 3.6: A comparison between an implicit numerical scheme solution
with a CFL number of 0.8, and its real solution. The CFL condition is not
satisfied in this case, yet the solution is stable nevertheless.

Fig. 3.6 shows that for higher values of the CFL number like 0.8, even if the CFL condition is
not satisfied by a big amount, one can easily see that the solution doesn’t oscillate and stabilizes

29



itself pretty well. This is what we mean when we say that the implicit scheme is unconditionally
stable; one may choose any value for the CFL number as big as one would like, and solutions should
never diverge in value. If one checked the time elapsed between these two simulations, however, the
implicit scheme is certainly slower. One must find a way to use this knowledge to optimize the time
our simulation will run in.

30



Capítulo 4

Numerical methods for the Wave
equation

4.1. Introduction
The 1-D wave equation is a linear second-order PDE which describes the propagation of oscillations
at a fixed speed. This equation is a good description of a wide range of phenomena, typically used
to model small oscillations about an equilibrium. Solutions to the wave equation play crucial roles
in electromagnetism, optics, gravitational physics, and heat transfer.

It is different to consider a one dimensional problem of waves on a string stretched in the x-axis,
and radial waves within a sphere. The latter make use of Fourier series, Laplace’s spherical har-
monics and their generalizations, but we will, for now, limit ourselves to the first case.

The 1-D wave equation has the following form,

1
c2

∂2u

∂t2 (x, t) = ∂2u

∂x2 (x, t),

where c is the speed at which the wave propagates.

Numerical schemes for this equation come in various forms, by taking different time values at
each equation, or even taking fractional time values. Most schemes used are also multi-level schemes,
taking into account two time steps in each equation. In this chapter we explore another important
one, the linearized wave equation scheme. This allows us to reduce the order of time derivatives,
while adding a variable to work with.

4.2. Derivation
We will focus on the context of a piece of string obeying Hooke’s law. Letting our string be stretched
on the x-axis, we define u(x, t) as the height of our string at the point x and time t. Let us start
considering the below diagram (Fig. 4.1) showing a piece of string displaced a small amount about
an equilibrium.

We will focus on the forces acting on a small mass element dm contained in a small interval dx,
allowing us to approximate the forces. For small displacements about the equilibrium, the horizon-
tal forces acting on this mass element is approximately zero.

31



Figura 4.1: A piece of string displaced from its equillibrium. We study its
height about the equillibrium at each position and time.

The vertical force acting on this mass element is,

∑
Fy = −T ′ sin θ2 − T sin θ1 = (dm)a = µdx

∂2u

∂t2 ,

where µ is the mass density µ = ∂m
∂x of the string.

On the other hand, since the horizontal force is approximately zero, we have T cos θ1 ≈ T ′ cos θ2 ≈
T , therefore,

−
µdx∂2u

∂t2

T
≈ T ′ sin θ2 + T sin θ1

T
= T ′ sin θ2

T
+ T sin θ1

T

≈ T ′ sin θ2

T ′ cos θ2
+ T + sin θ1

T cos θ1
= tan θ1 + tan θ2.

However, for small angles, we have that tan θ1 + tan θ2 = −∆∂u
∂x (since the tangent is approxi-

mately equal to the slope), where this difference is taken between x and x + dx.
Diving over dx, we get:

−
µ∂2u

∂t2

T
= tan θ1 + tan θ2

dx
= −

∂ ∂u
∂x

dx
.

Thus giving us the final equation:
1
c2

∂2u

∂t2 = ∂2u

∂x2 ,

where c is the wave velocity c =
√

T
µ .

32



4.3. Analytical solution of the wave equation
We begin considering an elastic string with fixed ends at x = 0 and x = L. The governing equation
for u(x, t), that is, the position of the string from its equilibrium, will be,

utt = c2uxx

u(t, 0) = u(t, L) = 0
u(0, x) = f(x)
ut(0, x) = g(x)

For this, we define new coordinates a = x−ct and b = x+ct, representing right and left propagation
waves, respectively. By solving for x and t, one gets that their derivatives are rewritten as:

∂

∂x
= 1

2

(
∂

∂a
+ ∂

∂b

)
=⇒ ∂2

∂x2 = 1
4

(
∂2

∂a2 + 2 ∂2

∂a∂b
+ ∂2

∂b2

)
∂

∂t
= c

2

(
∂

∂b
− ∂

∂a

)
=⇒ ∂2

∂t2 = c2

4

(
∂2

∂a2 − 2 ∂2

∂a∂b
+ ∂2

∂b2

)
.

Substituting in for the partial derivatives yields the new equation in coordinates a and b:

∂2u

∂a∂b
= 0.

Integrating twice yields the general solution:

u(t, x) = F (a) + G(b) = F (x − ct) + G(x + ct),

where F and G are two C2 functions.

To solve for F and G, one uses the initial conditions to get that:

u(0, x) = f(x) =⇒ F (x) + G(x) = f(x)
ut(0, x) = g(x) =⇒ cG′(x) − cF ′(x) = g(x).

Integrating the last equations yields:

cG(x) − cF (x) =
∫ x

− inf
g(ξ)dξ + c1.

This last equation allows us to solve the system for F and G, whose solution is given by:

F (x) = − 1
2c

(
−cf(x) +

(∫ x

−∞
g(ξ)dξ + c1

))
G(x) = − 1

2c

(
−cf(x) −

(∫ x

−∞
g(ξ)dξ + c1

))
.

Reeplacing this on our initial solution,

u(t, x) = F (x − ct) + G(x + ct),

yields the general solution, often called d’Alambert’s formula:

u(t, x) = 1
2[f(x − ct) + f(x + ct)] + 1

2c

∫ x+ct

x−ct
g(ξ)dξ.

33



4.4. Finite differences for the wave equation
For this section, we will focus on a specific form of the wave equation, which we will call the lin-
earized first order wave equation. This is the wave equation we will later use to solve for the
light waves on a black hole background.

For this, we consider the usual wave equation with the following boundary conditions:
utt = uxx

ut = ux at x = 0
ut = −ux at x = 1.

These new boundary conditions are often called Sommerfeld conditions, where at x = 0 and
x = 1, we demand that there be no radiation coming from the left or right respectively. To solve
this, we introduce two new variables v = ∂u

∂t and w = ∂u
∂x . Using these new variables, the equation

can be expressed as: 

∂
∂t

(
v

w

)
=
(

0 1
1 0

)
∂

∂x

(
v

w

)
vt = vx at x = 0
wt = wx at x = 0
vt = −vx at x = 1
wt = −wx at x = 1.

(4.1)

To solve this via finite differences, we begin creating a system of equations, using centered derivatives
on x and forward derivatives on t:

vn+1
j − vn

j

∆t
= θ

wn+1
j+1 − wn+1

j−1
2∆x

+ (1 − θ)
wn

j+1 − wn
j−1

2∆x
wn+1

j − wn
j

∆t
= θ

vn+1
j+1 − vn+1

j−1
2∆x

+ (1 − θ)
vn

j+1 − vn
j−1

2∆x
.

Leting φ = ∆t
2∆x , this is equivalent to the following system,

vn+1
j − c2θφwn+1

j+1 + θφwn+1
j−1 = vn

j + c2(1 − θ)φwn
j+1 − (1 − θ)φwn

j−1

wn+1
j − θφvn+1

j+1 + θφvn+1
j−1 = wn

j + (1 − θ)φvn
j+1 − (1 − θ)φvn

j−1.

For the boundaries, we will use second order forward and backward derivatives, which for a random
function are expressed as follows:{

f ′(x)forward = −3f(x)+4f(x+∆x)−f(x+2∆x)
2∆x

f ′(x)backward = 3f(x)−4f(x−∆x)+f(x−2∆x)
2∆x .

At the boundary x = 0, we will use the forward derivative for both v and w:
vn+1

0 −vn
0

∆t = θ
−3vn+1

0 +4vn+1
1 −vn+1

2
2∆x + (1 − θ)−3vn

0 +4vn
1 −vn

2
2∆x

wn+1
0 −wn

0
∆t = θ

−3wn+1
0 +4wn+1

1 −wn+1
2

2∆x + (1 − θ)−3wn
0 +4wn

1 −wn
2

2∆x .

34



Similarly, at x = 1, we use a backward derivative:
vn+1

N −vn
N

∆t = θ · −3vn+1
N −4vn+1

N−1+vn+1
N−2

2∆x + (1 − θ) · −3vn
N −4vn

N−1+vn
N−2

2∆x
wn+1

N −wn
N

∆t = θ · −3wn+1
N −4wn+1

N−1+wn+1
N−2

2∆x + (1 − θ) · −3wn
N −4wn

N−1+wn
N−2

2∆x .

All this leads to the following equations for the boundaries:

(1 + 3θφ)vn+1
0 − 4θφvn+1

1 + θφvn+1
2 = (1 − 3(1 − θ))φvn

0
+4(1 − θ)φvn

1 − (1 − θ)φvn
2

(1 + 3θφ)wn+1
0 − 4θφwn+1

1 + θφwn+1
2 = (1 − 3(1 − θ))φwn

0
+4(1 − θ)φwn

1 − (1 − θ)φwn
2

(1 + 3θφ)vn+1
N − 4θφvn+1

N−1 + θφvn+1
N−2 = (1 − 3(1 − θ)φ)vn

N + 4(1 − θ)φvn
N−1

−(1 − θ)φvn
N−2

(1 + 3θφ)wn+1
N − 4θφwn+1

N−1 + θφwn+1
N−2 = (1 − 3(1 − θ)φ)wn

N

+4(1 − θ)φwn
N−1 − (1 − θ)φwn

N−2.

35



4.5. Visualizing numerical schemes for the wave equa-
tion

Considering our previous wave linearized system (4.1), we can impose some simple initial conditions
for our new variables. In this case, we will consider the following two initial conditions with v0 =
id · w0, where id = +1, 0, −1, and

w0(x, t) = e−( x−xc
∆ )2

,

that is, w0 is a simple Gaussian pulse.

We can check that our initial Gaussian amplitude has a value of 1, and we will set a value of
∆ = 0.05 for it to be sufficiently smooth throughout our space domain. For our simulation, we will
be using a Crank-Nicholson scheme (θ = 0.5) and a value of φ = 0.01. Let’s plot some evolution of
these values for our different values of id.

Let’s begin with a value of id = 1, in figures 4.2 and 4.3. It’s easy to see initial conditions are
indeed satisfied, and that it sets a perfectly symmetric problem; both variables follow a symmetric
system of equations and they have the exact same initial conditions. We can check how it perfectly
describes a wave that moves to the left, due to its positive velocity, and that it gets absorbed
completely at the left boundary, due to our Sommerfield boundary conditions.

Figura 4.2: Wave equation solution of our v = ut variable, with id = 1.

Our solution for id = 0 is a bit more interesting, and we see them in figures 4.4 and 4.5. We
notice, again, initial conditions are satisfied, and that waves are formed due to the coupling of our
equations. For v, waves are formed with opposite amplitudes and pushed to the sides, while w starts
as a Gaussian that splits into two equal smaller waves that are also pushed to the sides. Again, this
is the behavior we want for wave equations that get absorbed at the boundaries.

Finally, we plot our solutions for id = −1 at figures 4.6 and 4.7. Due to the opposite sign on
the initial conditions, it is expected that the waves formed behave the same, but with opposite
amplitudes. Again, they show waves moving towards the right boundary, and getting absorbed at
it.

While it is the most basic form and numerical scheme of our wave equation that we are studying,

36



Figura 4.3: Wave equation solution of our w = ux variable, with id = 1.

Figura 4.4: Wave equation solution of our v = ut variable, with id = 0.

Figura 4.5: Wave equation solution of our w = ux variable, with id = 0.

37



Figura 4.6: Wave equation solution of our v = ut variable, with id = −1.

Figura 4.7: Wave equation solution of our w = ux variable, with id = −1.

we will later on use this equation to describe waves in a curved spacetime. Watching these simple
wave equations, ones we actually know the behavior they must have throughout the domain, we can
deduce our scheme works. Again, since we’re working with a Crank-Nicholson scheme, we can be
reassured it will be stable by the implicitness of it. Having solved our wave equation, we can save
our scheme for when we need it, and continue working our way to the theory of waves in curved
spacetime.

38



Capítulo 5

Relativity and Gravitation

5.1. Introduction
In this section we begin our journey to explain where and how to derive Einstein’s field equations.
We begin studying the basics of Special Relativity, which is a theory that explains space and time
perception when looking at inertial frames of reference. Concepts seen throughout this section are
crucial to then look at General Relativity, which amounts to understanding how to fit gravity in
the previous theory.

This section wraps up the study of mass, time, space, energy, and gravity when looking at the
world from a relativistic point of view. We begin this chapter by looking at how Special relativity
started and its key concepts.

5.2. Special Relativity
Special Relativity is a theory of the relationship between space and time, published by Albert Ein-
stein in 1905. This theory heavily describes how time and space are felt different between different
observers moving at different velocities. It is described on Einstein’s paper "On the Electrodynam-
ics of Moving Bodies", where the incompatibility of Maxwell’s equations with Newtonian mechanics
proved something was being lost in the study of small velocity moving objects.

This theory is based on two postulates, the two of which require some knowledge about inertial
observers. An inertial reference frame is a reference frame in which the first law of classical
mechanics holds, that is, a mass object on which no external forces act, either remains at rest or
move with constant speed. An inertial observer is any observer at rest with respect to an inertial
reference frame. Having understood this, we list the two postulates:

1. Any inertial observer perceives the same laws of physics.
2. The speed of light in vacuum detected by an inertial observer has always the same value.
This value is a constant called the speed of light and will be denoted by c from this point on. It

is intriguing how the notion of relativity and symmetries naturally arise from these two postulates;
if all inertial observers perceive the same laws of physics, then there’s no preferred reference frame
to study the world in. Similarly, the second postulate will affect the perception of time and space
on a given reference frame, thus making these notions relative to the inertial observer we pick to
make measurements from. Many experiments have yielded that the speed of light value is indeed
constant in vacuum, the most famous being the Michelson-Morley experiment. Its accepted value
is c = 299.792.458 m/s.

39



5.2.1. The study of space and time
Let us consider an inertial observer, whose frame of reference’s origin is located at O. An event is a
position in spacetime, and it requires four components: three for the location in space, plus one for
the position in time. It is usually represented by a set of coordinates (t, x, y, z) as measured by O.
Let us now consider two events labeled by Cartesian coordinates (t1, x1, y1, z1) and (t2, x2, y2, z2).
We call the lapse of time measured by O as ∆t = t2 − t1 and the space between the two events in
the x axis, measured by O, as ∆x = x2 − x1. We define ∆y and ∆z the same way. The spacetime
interval of these two events will be defined by

∆s2 = −(c∆t)2 + ∆x2 + ∆y2 + ∆z2.

Let there be another inertial observer O′ moving at constant speed v with respect to O. This
observer will measure a new set of coordinates (t′

1, x′
1, y′

1, z′
1) and (t′

2, x′
2, y′

2, z′
2) for each event. If

O′ and O are moving side to side in the x-direction, we can use the second postulate that affirms
both observers measure light travelling at the same constant speed c, therefore one can prove their
coordinates will be related by

ct′ = γ(ct − v
x

c
), x′ = γ(x − vt), y′ = y, z′ = z.

Where γ = 1√
1−( v

c )2
is called the Lorentz factor. It can be proven that this coordinate transfor-

mation preserves our quantity ∆s2. This means that

−(∆ct)2 + ∆x2 + ∆y2 + ∆z2 = ∆s2 = −(∆ct′)2 + ∆x′2 + ∆y′2 + ∆z′2.

Coordinate transformations that preserve ∆s2 will be called Lorentz transformations.
The spacetime of special relativity is topologically R4 when endowed with this measure of distance

between events, and it will be referred to as a Minkowski space. The invariant interval provides an
observer-independent characterization of distances between events. Thanks to this, we can group
events based on the sign of their spacetime interval:

• Two events whose separation is ∆s2 < 0 are said to be *timelike* separated. This implies
∆x2 + ∆y2 + ∆z2 < (c∆t)2, indicating that a signal can travel from one event to another—a
term often referred to as *causality*.

• Two events whose separation is ∆s2 > 0 are said to be *spacelike* separated. Due to the
previous points, these events cannot have a causal relationship, and no observer can travel
from one event to another.

• Two events whose separation is ∆s2 = 0 are said to be *lightlike* separated. This implies
∆x2+∆y2+∆z2

∆t2 = c2, meaning that events with null separation are connected by signals travelling
at the speed of light. This is, in fact, the spacetime interval of light-separated events.

5.2.2. The Lorentz Group
The spacetime interval was previously defined as a measure of distance in a Minkowski spacetime
which is invariant under a Lorentz transformation. Let us try to characterize these transformation
and see what their general form is.

Let us sit in a fixed frame O. The coordinates of an event are written in terms of a four vector
X. Its components will be usually noted as

Xµ = (ct, x, y, z) µ = 0, 1, 2, 3.

40



The invariant distance between the origin and this event will be

∆s2 = −(ct)2 + x2 + y2 + z2.

We can see this as an inner product, defined as

X · X ≡ XT ηX = XµηµνXν ,

where the usual Einstein notation is applied. In this space, the matrix η is given by

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

This matrix that defines the inner product is often called a metric, and this particular metric is the
Minkowski metric.

A Lorentz transformation can be thought of as a matrix Λ, that rotates coordinates from a frame
O to coordinates in a frame O′, such that

X ′ = ΛX.

In index notation, this means X ′µ = Λµ
ν Xν . The solutions for these equations can be shown to

be rotations in 3-dimensions (that is, only in the space dimensions of our four-vector), and boosts
between time and space.

5.2.3. Proper Time
Time is a quantity that is measured differently between various observers, but there is a way to
uniquely determine the time lapse between events that is unique to them, and that is the proper
time.

Whenever we can describe the trajectory of a particle in an inertial frame we use x(t) and dx
dt (t)

for the position and velocity respectively, and thus one could ask what would be the best time
(relative to an observer) to parameterize our equations with.

Let us consider a particle at rest in the origin of an inertial frame of reference O, and two events
measured by it such that ∆x = 0. The invariant interval is therefore:

∆s2 = c2∆t2

The invariant interval between two events is proportional to the time experienced by the particle.
Since it is true for the particle’s frame, it must be true for all of them. This time is called the proper
time and we denote it by τ . In all frames, it is given by

∆τ =
(

−∆s2

c2

)1/2

,

where one can easily note that this quantity is real as long as the events are timelike, that is, the
particle does not travel faster than the speed of light. Since all frames agree on the proper time
between events, it provides a much better way to parameterize our equations of motion, that is
x(τ),t(τ) and u(τ).

This raises the question, how do we use the proper time if we can’t always move alongside our
test particle? Indeed, the only information we have is the velocity of our particle (its frame of
reference), and we need a way to make use of this.

41



Let us determine the time experienced by a particle moving along a general trajectory. Along a
infinitely small segment, it experiences a proper time (as measured by us), such that

ds2 = −(cdτ)2 = −(ct)2 + dx2.

This implies that

dτ =

√
dt2 − dx2

c2 = dt

√
1 − 1

c2

(
dx

dt

)2
= dt

√
1 − u2

c2 ,

from which we get
dt

dτ
= γ.

From this, the proper time elapsed between two events can be easily computed by standing in any
inertial frame, knowing the velocity of the co-moving frame and the time measured between these
two events, and summing these infinitesimal small proper times, that is

τ =
∫

dτ =
∫ 1

γ
dt.

5.2.4. 4-Velocity
It is no surprise that since there’s a special way to parameterize our equations, they get their own
names and unique properties. Let us begin considering a general trajectory in spacetime

X(τ) =
(

ct(τ)
x(τ)

)
.

From this equation, we define the 4-velocity as,

U = dX

dτ
=
(

c dt
dτ

dx
dτ

)
=
(

c dt
dτ

dt
dτ

dx
dt

)
.

Using the previous equations for our τ parametrization, and that u = dx
dt , we then get that

U = γ

(
c

u

)
.

Since our proper time dτ is invariant, this means whenever two set of coordinates are transformed
by a Lorentz transformation matrix Λ, that is, X ′ = ΛX, then the observer in the O′ frame will
measure

U ′ = ΛU.

This is, the 4-velocity is also transformed by the same Lorentz transformation. Quantities that are
transformed only by Lorentz transformations are called 4-vectors.

Since our 4-velocity is also a 4-vector, we can apply previous analysis to get this vector’s norm,
and see that it is also invariant,

U · U = γ

(
c

u

)
· γ

(
c

u

)
= γ2(c2 − u2) = γ2 c2

γ2 = c2,

a value agreed on by all inertial frames.

42



5.2.5. 4-momentum
Just as the 4-velocity, the 4-momentum is defined similarly,

P = mU =
(

mγc

mγu

)
,

where m is the particle’s mass. It will turn out that P is a quantity that is conserved. We note
that the spatial components show the relativistic generalisation of the 3-momentum,

p = mγu.

We note that as the particle’s speed approaches c, the momentum diverges, because of the formula
for γ. Since momentum is conserved, this gives us a bound for a massive particle’s speed. Indeed,
one can think of mγ as the relativistic mass of the particle, and it diverges as the particle approaches
the speed of light.

One thing that is usually done is considering the time component of the 4-momentum P 0, and
expanding it in a Taylor’s series,

P 0 = mc√
1 − u2/c2 = 1

c

(
mc2 + 1

2mu2 + ...

)
.

The first term is a constant, while the second term actually looks like the non-relativistic kinetic
energy of the particle. This suggests that the right interpretation of P 0 is the energy of the particle
over c, though proving that requires more depth on the subject, but the interpretation will turn out
to be correct, so

P =
(

E/c

p

)
.

The expansion for P 0 shows that,
E = cP 0 = mγc2.

Again, we recognize a bound for the particle’s speed. As the particle’s speed approaches c, its
energy (and thus the energy required to make it go faster) gets infinitely bigger.

For a stationary particle, all its energy is contained in its rest mass, giving us Einstein’s famous
equation

E = mc2.

If we place ourselves on a particle’s rest frame, we get P = (mc, 0, 0, 0), therefore,

P · P = −(mc)2.

Also, for a moving particle, we already know that

P · P = −E2

c2 + p2.

Since the 4-momentum is invariant, we can equate these two equations to get the following equation,

E2 = p2c2 + m2c4,

an equation mostly used for particle collisions and general systems where energy is conserved.

43



5.2.6. Massless Particles
All our previous discussion is built on the notion of a trajectory’s proper time, where it was defined
for timelike trajectories. But for lightlike trajectories, proper time is zero, and all our notions of
velocity, momentum and energy begin to fall apart. Let us focus our attention in massless particles,
the ones capable of travelling at the speed of light (thanks to our previous discussion on energy of
massive particles), and study their trajectories.

We can sidestep the need for an analysis on proper time by looking at the 4-momentum of a
massless particle. Indeed, since m = 0, then the 4-momentum must be null for their trajectories,
that is,

P · P = 0.

But particles with zero 4-momentum (and therefore ∆s2 = 0 and dτ = 0) necessarily follow the
trajectory of a light ray.

We know of two types of massless particles: the photon and the graviton. The photon is heavily
studied in various subjects since they are easy to capture and experiment with. Not a big surprise,
since it is what allows us to see everything around us. On the other hand, gravitons are the
quantum particles that we use to explain the presence of gravitational waves in our Universe.
These are generated by accelerated masses of an orbital binary system, and were first detected on
14 September 2015 by the Laser Interferometer Gravitational-Wave Observatory (LIGO). On the
next chapters we explain the existence of these waves and the physics behind them.

5.3. General Relativity and Differential Geometry

5.3.1. Introduction
In 1915, Albert Einstein finished developing his theory of gravitation, also called General Relativ-
ity. According to this theory, the observed gravitational interaction between masses is not due to
their induced "gravitational field", but because of the wrapping of space and time which alter the
trajectory of free fall of moving objects around them. This theory is easily noticed by the sight
of bent light ray trajectories around extremely massive objects, on which Newton’s law of gravity
would not work, since it requires mass for a force to exist.

General relativity also predicts the effects of gravity, such as gravitational waves, gravitational
lensing and gravitational time dilation. It provides the foundation for our current understanding
on black holes; regions of space where mass is so dense that the gravitational attraction they create
is so strong that not even light escapes.

Two physical facts are what inspired Einstein to come up with this theory:
• The principle of general covariance, which essentially says that physical phenomena does

not depend on a particular frame. Even though physical laws may take different forms in
different reference frames, it should be possible to express them in frame-independent formulas.
The objects that will represent these formulas will be tensor fields.

• The fact that Newtonian gravitational acceleration is the gradient of a scalar field. This fact
expresses the Newtonian equivalence of inertial and gravitational mass.

In this theory, gravity can be seen as a tensor field and, in the absense of external forces, motion
of test particles is determined by this tensor field, and not on the mass of the particle. The space
where these tensors live are 4-dimensional Lorentzian manifolds (V, g) called the spacetime. The
trajectory of test particles correspond to the geodesics of the metric g.

44



One always begins explaining this theory with the weak equivalence principle. This corresponds
to the fact that in general Lorentzian spacetimes, geodesic equations are locally the same as in
Minkowski spacetime. This means that in small enough regions of spacetime, the effect of gravity
and all laws of motion for freely falling particles are the same as in unaccelerated reference frames.
It can be also stated as "At every point in spacetime on an arbitrary gravitational field, it is possible
to choose a locally inertial coordinate system such that, within a small enough region, laws of nature
take the same form as in unaccelerated Cartesian coordinate systems.

To further understand this theory, specially the wrapping of space and time, we need some
tools that will help describe the geometry of curved spaces on higher dimensions. This area of
mathematics is called differential geometry.

5.3.2. Tensors
Spacetime is defined as a 4-dimensional differential manifold M endowed with a Lorentzian metric
g. The metric is a structure that allows defining distances and angles on a manifold. More precisely,
a metric at a point x ∈ M is a bilinear form defined on the tangent space at x, that is, a bilinear
function that maps pairs of vectors to a real number. We call the pair (M, g) a psudo-Riemannian
manifold.

In these spaces, we can define tensors, which are algebraic objects that describe multilinear
relationships between objects in this space. They are mappings between different objects such as
vectors, scalars and other tensors as well. A crucial property of tensors is that they are frame-
independent. This means that one can define a tensor in a specific set of coordinates, and uniquely
transform it to a tensor on another set of coordinates, thus forming an equivalence class.

A covariant p-tensor can be defined on a point x ∈ M as a p multilinear form on the p direct
product of the tangent space TxM, whereas contravariant p-tensors are p multilinear forms on p
direct products of the cotangent space T ∗

x M. For instance, a contravariant 2-tensor T at x ∈ M
can be thought of as a 2-dimensional matrix that allows for coordinate transformations from (M, ϕ)
to (M, ϕ′):

Ti′j′ = ∂xh

∂xi′

∂xk

∂xj′ Thk,

where Einstein’s summation convention is applied.
Covariant 2-tensors at x, also called 2-forms, live on the space denoted as T ∗

x ⊗T ∗
x , whose natural

basis associated with local coordinates xi is denoted by dxi ⊗dxj . Thus, T is given by the expression

T = Tijdxi ⊗ dxj .

As mentioned before, this tensor is a direct product of the tangent space, meaning that it takes two
vectors and produces a real number:

T (v, w) = Tij(dxi ⊗ dxj)(v, w) = Tijv
iwj .

The fundamental tensor in general relativity is the metric tensor, a covariant 2-tensor. We men-
tioned that the metric tensor allows us to compute distances between objects in our manifold.
Indeed, this tensor induces an inner product inside our manifold that takes the form:

g(v, w) = gµν(dxµ ⊗ dxν)(v, w) = gµνvµwν ,

where it can be easily shown that this tensor is symmetric, that is, gµν = gνµ

One can abbreviate the basis dxµ ⊗dxν as dxµdxν whenever it causes no confusion, and therefore

45



define the infinitesimal line element as:

ds2 = gµνdxµdxν .

This interval imparts information about the causal structure of our spacetime:
• Whenever ds2 < 0, the interval is timelike, and one has the formula for the incremental proper

time
dτ =

√
−ds2.

• If ds2 = 0, the interval is lightlike and can only be traversed by massless particles moving at
the speed c.

• When ds2 > 0, the interval is spacelike. Massive objects cannot traverse these intervals of
spacetime, and one can define the proper length as:

dl =
√

ds2.

The metric tensor plays a key role in the manipulation of indices, the coefficients gµν of the metric
tensor g provide a link between the covariant and contravariant components of other tensors. It has
the following properties:

1. gµνAν = Aνgµν = Aµ.
2. gµνAν = Aνgµν = Aµ.
3. gµνgνλ = δλ

µ.

5.3.3. Riemannian connection
The partial derivative operator ∂µ acting on components of tensor fields are not intrinsic operators
on a manifold, since the mapping it provides depends on the coordinate system used. We therefore
try to define a covariant derivative operator ∇, that performs the same function of the partial
derivative, but is independent of coordinates. We require ∇ to be a map from (k, l) tensor fields
to (k, l + 1) tensor fields, where (k, l) represents the rank or order of the tensor, and to satisfy two
properties:

1. Linearity: ∇(T + S) = ∇T + ∇S ,
2. Leibniz product rule: ∇(T ⊗ S) = (∇T ) ⊗ S + T ⊗ (∇S).
These conditions actually provide a form for the covariant derivative. If we consider a vector

V ν and get its covariant derivative, we arrive to some coefficients called connection coefficients Γp
µσ,

which do not transform as tensor fields themselves, but help transform a partial derivative into a
tensor field. These are used in the general form:

∇µV ν = ∂µV ν + Γν
µλV λ.

This gives us idea of how the covariant derivative looks like; a partial derivative plus a correction
coefficient, but this doesn’t help us see how it would act on different tensor fields, specially on higher
order ones. For this purpose, we must introduce two new rules that are crucial for understanding
how the covariant derivative acts on different tensor fields:

1. Commutes with contractions: ∇µ(T λ
λρ) = (∇T )µ

λ
λρ,

2. Reduces to partial derivatives on scalar functions: ∇µϕ = ∂µϕ.
These two new properties of the covariant derivative (that we have imposed) actually shows us

how the covariant derivative looks on any tensor field. Basically, for each upper index we introduce
a term with a single +Γ, and for each lower index a term with a single −Γ,

46



∇σT µ1µ2...µk
ν1ν2...νl

=∂σT µ1µ2...µk
ν1ν2...νl

+ Γµ1
σλT λµ2...µk

ν1ν2...νl
+ Γµ2

σλT µ1λ...µk
ν1ν2...νl

+ ...

− Γλ
σν1T µ1µ2...µk

λν2...νl
− Γλ

σν2T µ1µ2...µk
ν1λ...νl

− ....

This gives us how the covariant derivative acts on any tensor, but it does not yet gives us a
definite form. One could define a large number of connection and get distinct notions of covariant
differentiation. However, this is no concern since we impose the last two conditions to get our
connection used in general relativity:

1. Torsion-free connection (symmetric on lower indices): Γλ
µν = Γλ

νµ,
2. Metric compatibility: ∇pgµν = 0.
These conditions let us arrive to an unique connection, called by many names such as Christof-

fel connection, Levi-Civita connection, and sometimes the Riemannian connection, and has the
following form in terms of the metric:

Γσ
µν = 1

2gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν).

5.3.4. Parallel transport and geodesics
An important thing about manifolds is that vectors are elements of tangent spaces at each individ-
ual point. This means that it makes no sense to compare a vector defined at two different points,
without observing how tangent spaces are transformed from one point to another. When working
with flat spaces, the notion of "moving a vector from one point to another while keeping it constant"
is natural to all of us, we have always worked with vectors in that way, but in curved spaces it is
not that simple.

The concept of moving a vector along a path while keeping it constant is known as parallel
transport. This is defined whenever we have a connection. One important difference between flat
and curved spaces is that, while flat spaces keep vectors constant when moving them along a path,
curved space parallel transport gives different results depending on the path taken.

Let us work how to solve this issue. Suppose we have a curve on our manifold xµ(λ). The
requirement for a tensor T to be constant along this curve in flat space is dT

dλ = dT
dxµ

dxµ

dλ = 0. We
can therefore define a covariant derivative along our curve to be given by:

D

dλ
= dxµ

dλ
∇µ,

and define the parallel transport of a tensor T along the path xµ(λ) to be the condition that,
along this path, (

D

dλ
T

)µ1µ2...µk

ν1ν2...νl
= 0.

This is the equation of parallel transport, ensuring that the tensor T remains constant along the
path xµ(λ). For a vector, it takes the form

d

dλ
V µ + Γµ

σρ

dxσ

dλ
V ρ = 0.

One can clearly note that this equation depends on the connection chosen. Whenever we have a
metric compatible connection, we clearly have that the metric is parallel transported along any path
(its covariant derivative is everywhere zero), so that we can see that the inner product of parallel

47



transported vectors is preserved:

D

dλ
(gµνV µW ν) =

(
D

dλ
gµν

)
︸ ︷︷ ︸

=0

V µW ν + gµν

(
D

dλ
V µ

)
︸ ︷︷ ︸

=0

W ν + gµνV ν

(
D

dλ
W ν

)
︸ ︷︷ ︸

=0

= 0,

so then all notions of angles and norms are also preserved.

Once we understand parallel transport, the next step is to get to geodesics. Geodesics are the
notion of straight lines in curved spaces. They make use of the fact that straight lines are paths
that parallel transport their own tangent vectors.

Suppose we have, again, our curve xµ(λ). The tangent vector to this curve is dxµ

dλ , so the condition
for parallel transportation reads,

D

dλ

dxµ

dλ
= d2xµ

dλ2 + Γµ
ρσ

dxρ

dλ

dxσ

dλ
= 0︸ ︷︷ ︸

∗

.

Here, the terms represent the acceleration of the curve d2xµ

dλ2 the the influence of the connection
coefficients Γµ

ρσ on the curve’s tangent vector. The geodesic equation, denoted by (*), represents
the condition for parallel transporting the tangent vector of a curve along the curve itself. It is a
second-order differential equation that characterizes the path of objects in ’free fall’ within our
manifold.

The preservation of the inner products of vectors (in particular, these tangent vectors) while
parallel transported imply that the character of timelight/lightlight/spacelike curves never change,
since they are characterized by the inner product of the tangent vector of the path with itself. One
can also prove that timelike geodesics are curves that maximize proper time between two events.

5.3.5. The Riemann curvature tensor
While in flat spaces, parallel transport around a closed loop leaves the object unchanged, in curved
spaces this does not necessarily happen. How much objects are transported around closed infinites-
imal loops is what we will use to characterize the curvature of our manifold. For this purpose,
we define the Riemann curvature tensor. To speak mathematically, curvature will signal the non-
commutativity of covariant derivatives.

For this, we consider a commutation (∇α∇β − ∇β∇α)vλ of two covariant derivatives (character-
ized by the spacetime connection ∇) of a vector v. This is a rank (1,2) tensor which we can prove
depends linearly on v, therefore there exist coefficients (4)Rγ

µαβ such that

(∇α∇β − ∇β∇α)vγ ≡ (4)Rγ
µαβvµ.

These coefficients form a rank (1,3) tensor called the Riemann curvature tensor.
Expanding covariant derivatives with our chosen Riemann connection, we can derive a formula

for this tensor, yielding

(4)Rγ
µαβ = ∂αΓγ

βµ − ∂βΓγ
αµ + Γγ

αρΓρ
βµ − Γγ

βρΓρ
αµ.

Clearly when a space is flat, the Riemann tensor vanishes (since Christoffel symbols would be zero
everywhere). However, one can also prove that if the Riemann tensor vanishes on a domain of the
manifold, then the metric is locally flat in this domain.

Since our goal is to work with Riemann tensor components, we would be talking of a total of
4 × 4 × 4 × 4 = 256 components, and that would be a lot of different equations to solve. Luckily,

48



the Riemann tensor has a few symmetries that allow us to get a minimal number of independent
components. They are listed as follows:

• Antisymmetry on its last two indices:

(4)Rγ
µαβ = −(4)Rγ

µβα,

• Antisymmetry on its first two indices:

(4)Rγ
µαβ = −(4)Rµ

γαβ,

• Sum of cyclic permutation of lower indices vanishes:

(4)Rγ
µαβ + (4)Rγ

αβµ + (4)Rγ
βµα = 0,

• Symmetry on permutations of the first two indices with the last two indices, when all indices
are lowered:

(4)Rλµαβ = (4)Rαβλµ.

These are all non independent equations (some imply the others), but they are nonetheless
all true. Given these relationships, we can prove the Riemann curvature tensor is left with 20
independent components.

In addition to the algebraic symmetries of this tensor, there’s a differential identity it obeys. If
we consider the covariant derivatives of this tensor we obtain the Bianchi identities:

∇λ
(4)Rρσµν + ∇ρ

(4)Rσλµν + ∇σ
(4)Rλρµν = 0.

We will often need to take contractions of the Riemann tensor, but due to the number of symmetries
and anti-symmetries, most of these contractions are zero. The only non zero contraction gives us
the Ricci tensor :

(4)Rµν := (4)Rλ
µλν ,

where the symmetries of the Riemann tensor show this tensor is also symmetric.

Using the metric, we can take one further contraction and form the Ricci scalar :

(4)R := gαβRαβ = Rα
α.

Let us take our Bianchi identities and contract twice,

0 = gνσgµλ(∇λ
(4)Rρσµν + ∇ρ

(4)Rσλµν + ∇σ
(4)Rλρµν)

= gνσgµλ(∇λ
(4)Rρσµν + ∇ρ

(4)Rµνσλ + ∇σ
(4)Rλρµν

= gνσ(∇µ(4)Rρσµν + ∇ρ
(4)Rλ

νσλ + ∇σ
(4)Rµ

ρµν)
= gνσ(∇µ(4)Rρσµν − ∇ρ

(4)Rλ
νλσ + ∇σ

(4)Rµ
ρµν)

= gνσ(∇µ(4)Rσρνµ − ∇ρ
(4)Rνσ + ∇σ

(4)Rρν

= ∇µ(4)Rν
ρνµ − ∇ρ

(4)R + ∇ν (4)Rρν

= ∇µ(4)Rρµ − ∇ρ
(4)R + ∇ν (4)Rρν

= 2∇µ(4)Rρµ − ∇ρ
(4)R.

Equivalently,
∇µ(4)Rρµ = 1

2∇ρ
(4)R.

49



Transforming ∇ρ into gρµ∇µ, we get:

∇µ(4)Rρµ = 1
2gρµ∇µ(4)R.

Linearity of the contravariant derivative leads us to our final equation:

∇µ

(
(4)Rρµ − 1

2gρµ
(4)R

)
= 0

We then define the Einstein tensor as

(4)Gµν = (4)Rµν − 1
2gµν

(4)R,

and so, with a subtle change of indices, the above equation is equivalent to

∇ν (4)Gµν = 0.

This result brings us one step closer to obtaining Einstein’s equations.

5.3.6. The Newtonian limit
As we have mentioned earlier, geodesics are the paths that free particles move along in curved
spacetime. This way of looking at gravity changes the whole paradigm of how gravity works, but
we know that when looking at small bodies (compared to huge stars and black holes), then gravity
is a good theory to work with. Thus we would like to know how the geodesic equation related to
Newtonian gravity, defining thus the Newtonian limit.

Let us begin remembering the geodesic equation:

d2xµ

dλ2 + Γµ
ρσ

dxρ

dλ

dxσ

dλ
= 0.

To define the Newtonian limit, we impose three requirements: the particles move slowly (with
respect to the speed of light), the gravitational field is weak (considered as a perturbation of flat
space), and the field is static.

Taking the proper time τ as an affine parameter, we check that moving slowly means that:

dxi

dt
≪ 1 =⇒ dxi

dτ
≪ dt

dτ
.

The geodesic equation with this affine parameter thus becomes,

d2xµ

dτ
+ Γµ

00

(
dt

dτ

)2
= 0.

The field being static allow us to not consider partial derivatives of the metric, thus our equations
for the Christoffel symbols become,

Γµ
00 = 1

2gµλ(∂0gλ0 + ∂0g0λ − ∂λg00) = −1
2gµλ∂λg00.

The weakness of the gravitational field also allow us to decompose the metric into its Minkowski
form plus a small perturbation around it:

gµν = ηµν + hµν , ∥hµν∥ ≪ 1,

50



where ηµν is the canonical form of the metric and everything is expressed in Cartesian coordinates.
To get the inverse metric, we can see that the inverse of (I + A) is (I − A) when A2 is small, that
is, gµν = ηµν − hµν . Therefore we have that,

Γµ
00 = −1

2ηµλ∂λh00,

to first order in h.
The geodesic equation can then be rewritten as

d2xµ

dτ 2 = 1
2ηµλ∂λ

(
dt

dτ

)2
.

Since the field is static, we have that ∂0h00 = 0, therefore the µ = 0 component of this equation
is

d2t

dτ 2 = 0.

This just means dt
dτ is constant. Let now examine spacelike components of the geodesic equation:

d2xi

dτ 2 = 1
2

(
dt

dτ

)2
∂ih00.

Diving both sides by ( dt
dτ )2, we get that

d2xi

dt2 = 1
2∂ih00.

Remembering that in Newton’s theory of gravitation we have that there exists a potential such that

mai = m
d2xi

dt2 = ∂iΦ,

we can compare it to the previous equation to get that,

h00 = −2Φ,

and consecutively,
g00 = −(1 + 2Φ).

This means that the curvature of spacetime is sufficient to describe gravity in the Newtonian limit
as long as the metric takes the previous form, and that for a single gravitating body we can recover
the formula

Φ = −GM

r
.

5.3.7. The Einstein Equations
We will be trying to find an equation that supersedes the Poisson equation for the Newtonian
potential:

∇2Φ = 4πGρ,

where ∇ is the Laplacian in space and ρ is the mass density. We know that the left-hand side is
a second order differential operator acting on the gravitational potential, and the right-hand side
is a measure of mass distribution. What we would like to get is a tensor generalization of the
above equation. A tensor generalization of the mass density is the energy-momentum tensor Tµν .
We could guess that the gravitational potential should be therefore replaced by the metric tensor.

51



Using that for the metric in the Newtonian limit we have that g00 = −(1 + Φ), and that T00 = ρ,
we see that in this limit we are looking for the equation that predicts

∇2h00 = −8πgT00,

but with all tensorial elements. We remember we have a known tensorial object that involves second
order derivatives of the metric, and that is the Riemann tensor Rrho

σµν . Since it does not have
the right number of indices, we contract it to form the Ricci tensor Rµν . We could guess that the
gravitational field equations are,

Rµν = κTµν ,

for some value of κ, but this does not hold when ∇µRµν ̸= 0, since by the conservation of energy-
momentum in curved spacetime we always have ∇µTµν = 0. On the other hand, we do know another
tensorial equation whose divergence vanishes, and that is the Einstein tensor Gµν = Rµν − 1

2Rgµν .
We can then guess that the equation for the metric is:

Gµν = κTµν .

We can check that this equation does reproduce gravity in the Newtonian limit, that is,

∇2h00 = −κT00,

when κ is set to 8πG. Having found our proportionality constant thanks to the Newtonian limit,
we arrive to Einstein’s equations for general relativity:

Rµν − 1
2Rgµν = 8πGTµν .

52



Capítulo 6

Numerical Relativity

General relativity states that the Universe is a 4-dimensional curved spacetime, with the Einstein
Equations describing its dynamics. To solve these equations numerically, it would be hard to
consider a time evolution when there is no a priori concept of "flow of time". To do such, we will
need to adopt a different strategy.

Throughout this chapter, we will consider a spacetime (M, g), where M is a 4 dimensional real
smooth manifold and g is a Lorentzian metric on M. At any given point p ∈ M, we denote Tp(M)
as the tangent space of p. Its dual space of all linear forms at p will be denoted by T ∗

p (M). Naturally
we have:

T (M) ≡
⋃

p∈M
Tp(M) T ∗(M) ≡

⋃
p∈M

T ∗
p (M).

Since we will be dealing with manifolds and hypersurfaces, we will deal with indices separately:
Greek indices run in {0, 1, 2, 3}, and lower case Latin indices run in {1, 2, 3}.

6.1. Fitting a hypersurface into a Manifold
We begin considering a space-time given by a 4-dimensional manifold M with a metric gµν defined
on it. The coordinates in this manifold will be denoted by xi. We define the embedding of 3-
dimensional hypersurfaces (Σt)t∈R as the foliation of M by this family of hypersurfaces such that:

M =
⋃
t∈R

Σt.

For it to define an embedding, we demand that the hypersurface does not intersect itself. A
hypersurface can be defined as a set of points for which a scalar field on M, t for instance, is
constant. This means that if Σn represents our n-th hypersurface, then:

∀p ∈ M, p ∈ Σn ⇐⇒ t(p) = n. (6.1)

From now on we will talk about a single hypersurface Σ whenever there’s no reason to talk about
a specific one.

The metric g = gµν on M induces a metric γ = γij on Σ as given by:

γij = gij ,

representing the values of g which are only in Σ.

53



6.1.1. Normal vector to our hypersurface

Taking t as our scalar field on M that defines our hypersurface Σ (6.1), then the gradient 1-form dt
is normal to Σ. This means that for every vector v tangent to Σ, we have (dt)µvµ = 0. Using this,
we have that the vector ∇⃗t whose components are ∇µt = gµν∇νt = gµν(dt)ν , is a vector normal to
Σ.

For spacelike hypersurfaces, we will define our unit normal vector n as the vector colinear to ∇⃗t
such that:

n · n = −1, (6.2)

and its components as (n)µ = nµ.

6.1.2. Orthogonal projector
When working with our equations, our goal will be to study variables within our hypersurface itself,
and later check how they change as the hypersurface changes. For this, we will derive an operator
that will take tensors from Tp(M) to Tp(Σ).

Taking n as the vector normal to our hypersurface, we can decompose each tangent space Tp(M)
into a direct sum as follows:

Tp(M) = Tp(Σ) ⊕ ⟨n⟩,

where ⟨n⟩ stands for the subspace generated by the vector n.
We can define the orthogonal projector onto Σ as the operator associated with the previous

decomposition, that is:

γ⃗ : Tp(M) −→ Tp(Σ)
v 7−→ v + (n · v)n.

By the normalization condition on n (6.2), this projection satisfies

γ⃗(n) = 0 and ∀v ∈ Tp(Σ), γ⃗(v) = v.

Since it is clearly a linear operator, this means that it transforms every vector into one whose
components lay completely on Σ. If we express our vector v in terms of a basis (eα) of Tp(M), that
is,

v = vαeα,

then our projection operator acts the following way on the components of v:

(viei)α = γα
β(vβ)

= vα + (vβnβ)nα

= vβδα
β + vβnαnβ

= vβ(δα
β + nαnβ).

We therefore have the components of γ⃗ with respect to any basis (eα):

γα
β = δα

β + nαnβ.

This operator can also be used to induce a metric on Tp(M) (in contrast to γij = gij that only
works for vectors in Σ). Indeed, we can lower the index of this orthogonal projector to get:

γαβ = gαµγµ
β = gαβ + nαnβ. (6.3)

54



We can see this metric works by checking that if v and u are vectors tangent to Σ, then:

γ(u, v) = g(u, v) + nαuα︸ ︷︷ ︸
=0

nβvβ︸ ︷︷ ︸
=0

= g(u, v),

by the orthogonality of n.
On the other hand, if we have that u = λn, then:

γ(u, v) = λg(n, v) + λ (nαnα)︸ ︷︷ ︸
=−1

(nβvβ) = λ(g(n, v) − nβvβ︸ ︷︷ ︸
=g(n,v)

) = 0.

On a last note, we will use this projection operator to project any tensor on M. Given a rank (p, q)
tensor T on M, we denote by γ⃗T another tensor on M such that its components in any basis (eα)
of Tp(M) are expressed in terms of those of T by:

(γ⃗T )α1...αp
β1...βq = γα1

µ1 ...γαp
µpγν1

β1 ...γνq
βq T µ1...µp

ν1...νq .

We notice that for any tensor T , γ⃗T is tangent to Σ.

Using our induced metric γµν (6.3), we can project our 4D tensors on the Einstein equations
straightforwardly onto 3D spatial slices. For instance, the 3D Christoffel symbols:

Γα
βδ = 1

2γαµ(γµβ,δ + γµδ,β − γβδ,µ),

and consequently the 3D Riemann tensor

Rα
βρσ = ∂ρΓα

σβ − ∂σΓµ
ρβ + Γα

ρλΓλ
σβ − Γα

σλΓλ
ρβ,

the 3D Ricci tensor
Rαβ = Rδ

αδβ,

and the 3D Ricci scalar
R = Rδ

δ.

It is important to note that these are all tensors on Σ, in the sense that components that are on
n are transformed into 0, but they are still expressed in the 4 dimensional basis, hence the Greek
indices.

55



6.2. Extrinsic curvature
One may wonder where’s the information of the 4D Riemann curvature tensor that is not present in
our 3D one, that is, how does one explain the curvature of our spacetime manifold just by looking
at our hypersurfaces {Σt}t. We therefore need to study the way a hypersurface is embedded in a
higher dimentional space.

For this, we define the extrinsic curvature tensor Kαβ, which describes how the hypersurface
curves within the spacetime. It contains information about the rate of change of the spatial metric
as one moves along the normal direction of the hypersurface, capturing all the bending, stretching,
and shearing as it evolves within the spacetime.

Remembering the definition for the spatial projection operator γµ
ν = δµ

ν +nµnν , we can project
the components of a rank 2 tensor to its spatial projections in the following way:

PTαβ := γµ
αγν

βTµν ,

so the definition of the extrinsic curvature tensor is:

Kαβ := −P∇αnβ.

We apply this definition to calculate the value of this tensor.

Kαβ = −P∇αnβ = −γµ
αhν

β∇µnν

= −[δµ
α + nµnα][δν

β + nνnβ]∇µnν

= −[δµ
αδν

β + δµ
αnνnβ + nµnαδν

β + nµnαnνnβ]∇µnν

= −[(∇αnβ) + nνnβ(∇αnν) + nµnα(∇µnβ) + nµnνnαnβ(∇µnν)]
= −[∇αnβ + nµnα(∇µnβ) + nνnβ(∇αnν) + nµnνnαnβ(∇µnν)︸ ︷︷ ︸

Let us work out this part

].

We notice there’s two nν(∇λnν) terms on that this last sum. We can think of this as the normal
projection of the covariant derivative of the normal vector. Since this vector is normalized, its
derivative will always be tangential to hypersurface, so the normal projection will be zero. We can
actually prove this:

Beginning with the fact that the normal vector is normalized, nνnν = −1.

0 = ∇λ(nνnν) = nν∇λnν + nν∇λnν

= nν∇λnν + nν∇λ(gµνnµ)
= nν∇λnν + gµνnν∇λnµ (by metric compatibility)
= nν∇λnν + nµ∇λnµ

= 2nν∇λnν (by equating dummy indices).

The above equations finally prove that nν∇λnν = 0.

56



This leads us to finally conclude that:

Kαβ = −P∇αnβ = −hµ
αhν

β∇µnν

= −[∇αnβ + nµnα(∇µnβ) + nνnβ(∇αnν) + nµnνnαnβ(∇µnν)︸ ︷︷ ︸
Let us rearrange the relevant terms

]

= −[∇αnβ + nαnµ(∇µnβ) + nβ nν(∇αnν)︸ ︷︷ ︸
= 0

+nαnβnµ nν(∇µnν)︸ ︷︷ ︸
=0

]

= −[∇αnβ + nαnµ(∇µnβ)].

So our equation for the extrinsic curvature is:

Kαβ = −[∇αnβ + nαnµ(∇µnβ)]. (6.4)

It is clear that Kαβ is a purely spatial tensor, that is, nαKαβ = 0. It can also be shown to be a
symmetric tensor. Combining these two facts, it is clear that

K00 = K0i = 0.

Because of this, we will generally consider only spatial components Kij .

6.2.1. Symmetry of the curvature tensor
We remember our extrinsic curvature tensor equation reads:

Kαβ = −P∇αnβ = −(∇αnβ + nαnµ∇µnβ),

where ∇α represents the covariant derivative represented using Christoffel symbols as:

∇αnβ = ∂αnβ − Γλ
αβnλ.

Let us prove Kij is a symmetric tensor

Beginning with our formula for Kij :

Kij = −∇inj + nin
λ∇λnj .

We consider two non-zero vector fields X and Y tangent to our hypersurface. By definition, we
notice that:

ncX c = gcdncX c = g(n, X ) = 0,

ncYc = gcdncYc = g(n, Y) = 0.

Then let us consider:

X iYjKij = −X iYj∇inj + X iYjnin
λ∇λnj

= −X iYj∇inj + Yj X ini︸ ︷︷ ︸
=0

nλ∇λnj

= −X iYj∇inj .

We also use the fact that,

0 = ∇i(Yjnj) = Yj∇inj + nj∇iYj ,

57



to conclude that,
Yj∇inj = −nj∇iYj .

So our equation becomes,

X iYjKij = −X iYj∇inj

= X inj∇iYj

= njX i∇iYj

= nj(X i∇iY)j

= gijn
j(∇X Y)j

= g(n, ∇X Y).

Where we have used that the derivative of a vector vi with respect to a vector field Z is
∇Zvi = Zk∇kvi.

Our previous calculations all lead us to our result:

X iYj (Kij − Kji) = X iYjKij − X iYjKji

= X iYjKij − X jY iKij

= g (n, ∇X Y) − g (n, ∇YX )
= g (n, ∇X Y − ∇YX )
= g (n, [Y, X ])
= 0,

(6.5)

since the commutator of X and Y is also on the hypersurface.

This last result (6.5), called the Frobenius theorem, is easy to establish:

∇t · [X , Y] = ⟨dt, [X , Y]⟩
= ∇µt[X ν∇νYµ − Yν∇νX µ]
= ∇µtX ν∇νYµ − ∇µtYν∇νX µ

= X [∇ν((∇µ)tYµ︸ ︷︷ ︸
=0

) − Yµ∇ν∇µt] − Yν [∇ν((∇µt)X µ︸ ︷︷ ︸
=0

) − X µ∇ν∇µt]

= X µYν(∇ν∇µt − ∇µ∇νt) = 0,

where the last equality is the result of our connection being torsion-free.
Using the fact that these vector fields are non-zero, we can conclude that the (Kij − Kji) term

vanishes, that is, Kij is symmetric.

58



6.3. Gauss-Codazzi relations
The next step is to work with our Einstein equation,

(4)Gµν ≡(4) Rµν − 1
2

(4)Rgµν = 8πTµν ,

for which we will decompose our 4-D Riemann tensor in terms of quantities relative to our spacelike
hypersurface, namely the induced metric γ and extrinsic curvature tensor K.

For this, we define our Gauss-Codazzi relations, which constitute the basis for the 3+1 for-
malism of general relativity.

We start by defining the projection of a covariant derivative, which is a tensor field itself, there-
fore our previous calculations and definitions apply. Given a tensor field in T in Σ, we define its
covariant derivative with respect to the connection of the metric γ as DT , as to be distin-
guished from ∇T which is the covariant derivative with respect to the spacetime connection
of the metric g.

As explained in previous chapters, DT is expressible in terms of ∇T according to the formula:

DT = γ⃗∇T,

with a component version formula as given by:

DρT α1...αp
β1...βq = γα1

µ1 ...γαp
µpγν1

β1 ...γνq
βq γσ

ρ ∇σT µ1...µp
ν1...νq .

6.3.1. Gauss relation
We begin considering the Ricci identity defining the three-dimensional Riemann tensor, which mea-
sures the difference of two covariant derivatives with respect to the three-dimensional connection D,
associated with the three-dimensional metric γ on Σ. The four-dimensional version of this identity
(where indices range from 0 to 3) is:

(DαDβ − DβDα)vγ ≡ Rγ
µαβvµ.

where we will consider v to be a generic vector from the vector field tangent to Σ. Noticing that
Dβvγ is a tensor itself, we can relate the D derivative to the ∇ derivate with our previous formula
to get:

DαDβvγ = Dα(Dβvγ) = γµ
αγν

βγγ
ρ∇µ(Dνvρ) = γµ

αγν
βγγ

ρ∇µ(γσ
νγρ

λ∇σvλ).

We expand this formula by using that the derivative of the projection operator is,

∇νγσ
ν = ∇µ(δσ

ν + nσnν) = ∇µ(nσnν) = (∇µnσ)nν + nσ(∇µnν).

We will use the following facts about the projection operator:
• The projection operator is orthogonal to the normal vector,

γν
βnν = γν

βnβ = 0.

• The projection operator is idempotent,

γγ
ργρ

λ = γγ
λ.

59



• The explicit formula for the extrinsic curvature,

γµ
αγν

β∇µnν = −Kαβ.

Let expand the aforementioned formula:

DαDβvγ = Dα(Dβvγ)
= γµ

αγν
βγγ

ρ∇µ(Dνvρ) = γµ
αγν

βγγ
ρ∇µ(γσ

νγρ
λ∇σvλ)

= γµ
αγν

βγγ
ρ

(
(∇µγσ

ν) γρ
λ∇σvλ + γσ

ν (∇µγρ
λ) ∇σvλ + γσ

νγρ
λ

(
∇µ∇σvλ

))
= γµ

αγν
βγγ

ρ

([
(∇µnσ)nν + nσ(∇µnν)︸ ︷︷ ︸

γν
βnν=0

]
γρ

λ∇σvλ

+ γσ
ν

[
(∇µnρ)nλ︸ ︷︷ ︸

γγ
ρnρ=0

+nρ(∇µnλ)
]
∇σvλ + γσ

νγρ
λ

(
∇µ∇σvλ

))
= γµ

αγν
βγγ

ρ(nσ(∇µnν)γρ
λ∇σvλ + γσ

ν(∇µnρ) nλ∇σvλ︸ ︷︷ ︸
=−vλ∇σnλ

+ γσ
νγρ

λ

(
∇µ∇σvλ

)
)

= γµ
αγν

βγγ
λ(∇µnν)nσ∇σvλ

− γµ
α γσ

β︸︷︷︸
=γσ

λγλ
β

γγ
ρvλ(∇µnρ)∇σnλ + γµ

αγσ
βγγ

λ∇µ∇σvλ

= γγ
λ γµ

αγν
β(∇µnν)︸ ︷︷ ︸

−Kαβ

nσ∇σvλ

− γµ
αγγ

ρ∇µnρ︸ ︷︷ ︸
=−Kα

γ

γσ
λγλ

β∇σnλ︸ ︷︷ ︸
=−Kβλ

vλ + γµ
αγσ

βγγ
λ∇µ∇σvλ

= −Kαβγγ
λnσ∇σvλ − Kγ

αKβλvλ + γµ
αγσ

βγγ
λ∇µ∇σvλ.

To form DαDβvγ − DβDαvγ , we can check the first term vanishes by the symmetry of Kαβ, so
then what remains is,

DαDβvγ − DβDαvγ = (KαµKγ
β − KβµKγ

α) vµ + γρ
αγσ

βγγ
λ(∇ρ∇σvλ − ∇σ∇ρvλ).

Now, we have that for our 4-dimensional connection, the Ricci identity reads:

(∇ρ∇σ − ∇σ∇ρ)vλ = (4)Rλ
µρσvµ.

Therefore,

DαDβvγ − DβDαvγ = (KαµKγ
β − KβµKγ

α) vµ + γρ
αγσ

βγγ
λ((4)Rλ

µρσvµ).

Ultimately, what we are looking for is a formula for the projection of (4)Rλ
µρσ on all its indices.

For this, we can use that vµ = γµ
σvσ to introduce the projection operator, but this will change the

index over v, and we need them all to be equal. Rearranging free indices so all v’s have the same
upper index, we arrive to the equation:

γµ
αγν

βγγ
ργσ

λ
(4)Rρ

σµνvλ = Rγ
λαβvλ + (Kγ

αKλβ − Kγ
βKαλ)vλ.

Since v can be replaced by any vector on Tp(M), we arrive to the Gauss relation, which relates

60



the projection of the 4-dimensional Riemann curvature tensor (the one induced by the metric g) to
the 3-dimensional Riemann curvature tensor (induced by the metric γ) and the extrinsic curvature:

γµ
αγν

βγγ
ργσ

λ
(4)Rρ

σµν = Rγ
λαβ + (Kγ

αKλβ − Kγ
βKαλ). (6.6)

6.3.2. Codazzi relation
We now derive a formula for the 3 projections in space and 1 projection in time of the 4-dimensional
Riemann tensor. For this, we consider the 4-dimensional Ricci identity applied to the normal vector
n:

(∇α∇β − ∇β∇α)nγ = (4)Rγ
µαβnµ.

Projecting this relation onto Σ, we get:

γµ
αγν

βγγ
ρ

(4)Rρ
σµνnσ = γµ

αγν
βγγ

ρ(∇µ∇νnρ − ∇ν∇µnρ).

We will begin projecting the first term on the right hand side of the equation. For this, we
will define a = ∇nn, and use an equation that extends the definition of the extrinsic curvature to
vectors defined on Tp(M) as Kαβ (in contrast to our usual definition, that only works for vectors
on Tp(Σ) denoted by Kij :

∇βnα = −Kαβ − aαnβ.

Using this last definition, we get:

γµ
αγν

βγγ
ρ∇µ∇νnρ = γµ

αγν
βγγ

ρ∇µ(−Kρ
ν − aρnν)

= −γµ
αγν

βγγ
ρ(∇µKρ

ν + (∇µaρ)nν︸ ︷︷ ︸
γν

βnν=0

+aρ(∇µnν)

= −DαKγ
β + aγKαβ,

where we have used the definition of K to get γµ
αγν

β∇µnν = −Kαβ.

By permutating indices α and β, and using the symmetry of K, we get the Codazzi relation,
which relates the mixed projection of the 4-dimensional Riemann tensor to the 3-derivatives of the
extrinsic curvature:

γγ
ρnσγµ

αγν
β

(4)Rρ
σµν = DβKγ

α − DαKγ
β. (6.7)

61



6.4. Lie Derivatives
In numerical relativity, a useful strategy for simplifying the field equations system is to focus on
solutions with some kind of symmetry. By adapting the coordinate system to a given symmetry of
the solution, we can reduce the number of relevant coordinates, thus making our model much easier
to handle.
For example, in the case of axial symmetry, we can take the azimuthal angle ϕ to be one of our four
spacetime coordinates. In this adapted coordinate system ones has

∂ϕgµν = 0,

thus making all our relevant tensors be also symmetrical with respect to this parameter.

From a group-theoretical point of view, we can identify ϕ with the parameter labelling a continu-
ous group of transformations, usually known as a ’Lie group’. These transformations are interpreted
as mappings from a spacetime point P into a continuous set of points. These set of points define
an orbit of the group.

We recall that the Einstein Equations are tensor equations, thus we need to explore ways to
describe the evolution of these tensors along important spacetime curves, in particular, we want
to study the change of these tensor fields along orbits of symmetry parameters as described in our
spacetime models. This means finding a way of expressing derivatives not along certain parameters,
but along curves defined in a way that help us reduce the difficulty of our equations. In this way
we start defining the Lie derivatives.

6.4.1. Derivation of the Lie derivative formula

We consider a manifold on which some vector field, ui(x) is defined, as seen in Fig. 6.1. The integral
curves of this vector field are given by xi(λ, µ), such that at all points they have a tangent vector
given by:

∂xi

∂λ
= ui(x).

Clearly each point of the manifold has only one curve passing through it, thus we say that the
curves form a congruence.

Figura 6.1: Figure illustrating the congruence of our curves, all defined by
our tangent vectors.

62



We now define a curve C with parametrization xi(λ) and tangent vector,

ξi = dxi

dλ
,

and two points on C that are infinitesimally separated, P (x) and Q(x + dx). Fig. 6.2 illustrates
this nicely, where the curve’s tangent vectors defined by ui(x) lie along xi(λ). In this case ui is
treated as a coordinate in our space.

Figura 6.2: Two points along our µ coordinate defining a curve C

We can now define another vector field vi(x) in the region of the curve C. We will evaluate how
this vector vi(x) changes as it moves along the curve C. An example is given in 6.3, where a specific
vector at P is distorted on our whole space when changing its origin to an arbitrary point Q. This
change is of course studied infinitesimally, hence Q is located at x + dx.

Figura 6.3: We study the way a vector field changes from P to Q.

First, we consider what happens to the vector at the point Q in terms of its value at the points

63



P . We do this by considering a new set of primed coordinates x′ which represent an infinitesimal
coordinate transformation. That is, from P(x) to Q(x + dx) = Q(x′), we have:

x′i = xi + dxi = xi + dxi

dλ
dλ = xi + ξidλ.

Now, tensor transformation law forces:

v′i(x′) = ∂x′i

∂xj
vj(x).

Combining these two results, we get:

v′i(x′) = ∂x′i

∂xj
vj(x)

= ( ∂xi

∂xj
+ ∂ξi

∂xj
dλ)vj(x)

= (δi
j + ∂jξ

idλ)vj(x)
= vi(x) + ∂jξ

ivj(x)dλ.

Since this new point x′i represents the point Q on the curve, we can write:

v′i(Q) = vi(P ) + ∂jξ
ivj(P )dλ.

Now, we can do a first order Taylor expansion to express vi at Q:

vi(Q) = vi(x + dx) ≈ vi(x) + dxj∂jv
i(x)

≈ vi(P ) + ξj∂jv
i(P )dλ.

Finally, we define the Lie derivative as the infinitesimal change of vi as it moves from P to Q. That
is, the change between v′i(Q) and vi(Q).

Lξ⃗vi(P ) = lim
dλ→0

vi(Q) − v′i(Q)
dλ

= lim
dλ→0

v′i(Q) = vi(P ) + ∂jξ
ivj(P )dλ − (vi(P ) + ξj∂jv

i(P )dλ)
dλ

= ξj∂jv
i(P ) − vj(P )∂jξ

i.

Finally, considering the equation for the covariant derivative of a vector reads:

∇jw
i = ∂jw

i − Γi
jkwi ⇐⇒ ∂jw

i = ∇jw
i + Γi

jkwi.

We notice that replacing this in our Lie derivative equation, the Christoffel symbols cancel out
thanks to a dummy index rearranging and using the fact that the connection is, in this case,

64



symmetric on both lower indices:

Lξ⃗vi(P ) = ξj∂jv
i(P ) − vj(P )∂jξ

i

= ξj(∇jv
i(P ) + Γi

jkvk(P )) − vj(P )(∇jξ
i + Γi

jkξk)
= ξj∇jv

i(P ) − vj(P )∇jξ
i + (ξjvk(P )Γi

jk − ξkvj(P )Γi
jk)

= ξj∇jv
i(P ) − vj(P )∇jξ

i + (ξjvk(P )Γi
jk − ξjvk(P )Γi

kj)
= ξj∇jv

i(P ) − vj(P )∇jξ
i + (ξjvk(P ))(Γi

jk − Γi
kj)

= ξj∇jv
i(P ) − vj(P )∇jξ

i.

With this in mind, one can show that given a vector field ξ, we can compute the Lie derivative
for any tensor:

• For a scalar function ϕ:
Lξ⃗ϕ = ξµ∇µϕ = ξµ∂µϕ,

since the covariant derivative reduces to a normal derivative on scalars.
• For a V µ vector field, the Lie derivative is given by the commutator:

Lξ⃗V µ = ξν∇νV ν − V ν∇νξµ = [ξ, V ]µ.

• For a ωµ 1-form:
Lξ⃗ωµ = ξν∇νωµ + ων∇µξν .

• For a generic T µ
ν tensor of (1,1) rank:

Lξ⃗T µ
ν = ξλ∇λT µ

ν − T λ
ν∇λξµ + T µ

λ∇νξλ.

In particular, for the metric tensor we have:

Lξ⃗gµν = ξλ∂λgµν + gµλ∂νξλ + gλν∂µξλ.

Likewise, we have:

∇µξν + ∇νξµ = ∂µξν + ∂νξµ − 2Γλ
µνξλ

= ∂µξν + ∂νξµ + ξλ∂λgµν − ξλ∂µgνλ − ξλ∂νgµλ

= ξλ∂λgµν + gνλ∂µξλ + gµλ∂νξλ,

from which we find that:
Lξ⃗gµν = ∇µξν + ∇νξµ.

65



6.5. Lapse function and foliation kinematics
We have previously defined Σt as the set of points for which a scalar field t is constant. With this,
the unit vector n normal to our hypersurface Σt is collinear to ∇⃗t, for which we may write:

n := −N∇⃗t,

where
N := (−∇⃗t · ∇⃗t)−1/2.

The value of N just ensures n is an unit vector, and the sign ensures that n is future-oriented. The
scalar field N will be called from now on the lapse function.

6.5.1. Normal evolution vector
It is certainly useful to have an expression for an unit vector given any scalar field generating it,
but we may also need to adapt this vector so it successfully takes points from one slice to another,
as these may be differently separated for different scalar fields. For this we define the normal
evolution vector :

m := Nn.

An important fact about this vector is that one has

⟨dt, m⟩ = N⟨dt, n⟩ = N2 (−⟨dt, ∇⃗t⟩)︸ ︷︷ ︸
=N−2

= 1

A geometrical consequence of this relation is that one can move between two hypersurfaces Σt

and Σt+δt by a small displacement of δtm of each point of Σt. Indeed, let us consider a point p of
Σt and displace it infinitesimally by δtm to get the point p′ = p + δtm, then

t(p′) = t(p + δtm) = t(p) + ⟨dt, δtm⟩ = t(p) + δt ⟨dt, m⟩︸ ︷︷ ︸
=1

= t(p) + δt,

so then p′ ∈ Σt+δt.

66



6.6. The shift vector
We have the illusion of living in a 3D space, where its easy to tell computer to perform step by
step simulations. So our recipe involves decomposing our 4 dimensional manifold into space-like
3-dimensional hypersurfaces. After this, what we will need is to transform all tensorial equations
(valid for any coordinates) into PDEs easy to solve on our computers, and for this we will need to
introduce a coordinate system on our manifold.

Given our spacetime manifold M, described by a 4-metric gµν , we foliate it via our previously
described hypersurfaces {Σt}, where t is now the parameter that defines ∂t = ∂

∂t . This vector is now
not necessarily normal to our hypersurfaces, but rather a vector tangent to the lines of constant
spatial coordinates. We will need these We also define our spatial coordinates (xi) = (x1, x2, x3)
and their corresponding basis vectors ∂i = ∂

∂xi . These vectors (∂α) = (∂t, ∂i) denote the natural
basis of Tp(M) associated with coordinates (xα).

One can check that this ∂t vector is also dual to dt, as is the normal evolution vector m. This
means that ⟨dt, ∂t⟩ = ⟨dt, m⟩ = 1, so ∂t also drags the hypersurfaces Σt as m does. These vectors,
however, often differ and only coincide if the lines xi = constant are orthogonal to the hypersurfaces
Σt.

The difference between ∂t and m is called the shift vector and will be denoted by β:

∂t = m + β.

Clearly ⟨dt, β⟩ = 0, so then β is tangent to Σt. Since we are most interested in the normal vector,
it is often useful to rewrite our equation in terms of n:

∂t = Nn + β.

Figura 6.4: Representation of our lapse function and normal coordinate
(red), our time coordinate (green), and our shift vector (yellow).

Let us start remembering that proper time between two events is the time as measured by a
clock moving with an observer between these two events. We denote the proper time as τ . The
lapse function N now measures proper time between two hypersurfaces by traversing them along
the coordinate t.

dτ = N(t, xi)dt.

67



We now consider a specific foliation and take two adjacent hypersurfaces Σt and Σt+dt. The
geometry of the region between these two hypersurfaces can be now determined from three ingre-
dients:

• The three-dimensional metric γij which measures proper distances within the hypersurface
itself:

dl2 = γijdxidxj .

• The lapse function N(t, xi) which measures proper time elapsed by an observer moving along
the direction normal to the hypersurface (an Eulerian observer):

dτ = N(t, xi)dt.

• The relative velocity vector βi(t, xj), also called the shift vector between Eulerian observers
and lines that correspond to constant spatial coordinates:

xi
t+dt = xi

t − βi(t, xj)dt.

These elements constitute the ADM formalism of numerical relativity. Let us see how to write
the space-time line element in terms of the new ADM variables. The line element between two events
p(xi, t) and p′(xi + dxi, t + dt), can be decomposed into two parts: the square of the distance over
the hypersurface containing p, minus the square of the proper time between hypersurfaces:

ds2 = γij(dxi + βidt)(dxj + βjdt) − (Ndt)2

= (−N + βiβi)dt2 + 2βidxidt + γijdxidxj ,

where βi = γijβ
j .

We can calculate the spacetime metric and its inverse using this line element:

gµν =
[
−N2 + βkβk βi

βj γij

]
,

gµν =
[
−1/N2 βi/N2

βj/N2 γij − βiβj/N2

]
.

one can check that our normal vector in the ADM formalism satisfies:

nµ = 1
N

tµ − 1
N

βµ

= 1
N

(1, 0⃗) − 1
N

(0, βi)

= (1/N, −βi/N).

Similarly, lowering our index with our metric gµν , it is easy to show that:

nµ = (−N, 0⃗).

It is easy to see that this vector is also normalized, so we can summarize its components below:

nµ = (1/N, −βi/N), nµ = (−N, 0), nµnµ = −1.

68



6.7. Evolution of the 3D metric
Substituting the explicit form of the normal vector nµ =

(
1
N , −βi

N

)
and nµ =

(
−N, 0⃗

)
, plus our

formula for the covariant derivative in terms of Christoffel symbols in the definition of the extrinsic
curvature, we get:

Kij = − (∇inj + nin
µ∇µnj)

= −
([

∂inj − Γλ
ijnλ

]
+ nin

µ
[
∂µnj − Γλ

µjnλ

])
= Γ0

ijn0

= −NΓ0
ij .

The term Γ0
ij can be easily computed from the metric:

Γ0
ij = 1

2g0µ (∂igµj + ∂jgiµ − ∂µgij)

= 1
2
[
g00 (∂ig0j + ∂jgi0 − ∂0gij) + g0k (∂igkj + ∂jgik − ∂kgij)

]
= 1

2

[
− 1

N2 (∂iβj + ∂jβi − ∂tγij) + βk

N2 (∂iγkj + ∂jγik − ∂kγij)
]

= 1
2N2

[
(∂tγij − ∂iβj − ∂jβi) + βlq

lk (∂iγkj + ∂jγik − ∂kγij)
]

= 1
2N2

[
(∂tγij − ∂iβj − ∂jβi) + 2βlΓl

ij

]
= 1

2N2 (∂tγij − Diβj − DJβi) .

Therefore, our equation for the extrinsic curvature using the ADM variables is:

Kij = 1
2N

(−∂tγij + Diβj + Djβi) .

This gives us an evolution equation for the 3-dimensional metric:

∂tγij = −2NKij + ∇iβj + ∇jβi.

Remembering our equation for the Lie derivative of the 4-dimensional metric tensor,

Lξ⃗gµν = ∇µξν − ∇νξµ,

we can derive the same result for the derivative of the induced 3-dimensional metric tensor:

Lξ⃗γij = Diξj − Djξi.

This means that our previous equation reads:

∂tγij = −2NKij + Lβ⃗γij ,

=⇒ (∂t − Lβ⃗)γij = −2NKij ,

=⇒ (Lt − Lβ⃗)γij = −2NKij , since ∂t = Lt

=⇒ LNnγij = −2NKij , since t − β = Nn

=⇒ Lmγij = −2NKij , since m = Nn.

(6.8)

69



6.8. Ricci equation
We have worked out our projection of the spacetime Riemann tensor fully onto Σt, yielding the
Gauss equation (6.6). We have also projected three times onto Σt and once along n, yielding the
Codazzi equation (6.7). These decompositions involve only fields tangent to Σt and derivatives in
directions parallel to Σt, so it was natural to define them for a single hypersurface. We will now
form a projection of the spacetime Riemann tensor twice onto Σt and twice along n. This will be
the last non trivial projection of the spacetime Riemann tensor.

To begin our analysis, we will first derive some important relations. Taking our previously
defined a = ∇nn vector, let us work out its components.

aµ = nλ∇λnµ = −nλ∇λ(N∇µt)
= −nλ(∇λN) (∇µt)︸ ︷︷ ︸

=−nµ/N

−Nnλ ∇λ∇µt︸ ︷︷ ︸
=∇µ∇λt

= 1
N

nµ∇λ∇λN + Nnλ∇µ(− 1
N

nλ)

= 1
N

nµnλ∇λN + Nnλ((− 1
N

)∇µnλ + nλ∇µ(− 1
N

))

= 1
N

nµnλ∇λN + Nnλ(− 1
N

)∇µnλ + nλnλ N∇µ(− 1
N

)︸ ︷︷ ︸
− 1

N
∇µN

= 1
N

nµnλ∇λN − nλ∇µnλ︸ ︷︷ ︸
=0

− 1
N

(∇µN) nλnλ︸ ︷︷ ︸
=−1

= 1
N

(∇µN + nµnλ∇λN)

= 1
N

γλ
µ∇λN

= 1
N

DµN

= Dµ ln N.

Therefore, using our formula that relates the 4 dimensional extrinsic curvature to the spacetime
derivative of the normal vector (6.4), we can replace the a vector to get:

∇βnα = −Kαβ − aαnβ

= −Kαβ − Dα ln Nnβ.

Having derived this equation, we can now take the 4 dimensional Ricci identity, and project
twice onto Σt and once along n:

γαµnσγν
β(∇ν∇σnµ − ∇σ∇νnµ) = γαµnσγν

β
(4)Rµ

ρνσnρ.

70



We can now use our derived equation to further work with these derivatives:

γαµnσγν
β

(4)Rµ
ρνσnρ = γαµnσγν

β[∇ν(−Kµ
σ − Dµ ln Nnσ) − ∇σ(−Kµ

ν − Dµ ln Nnν)]
= γαµnσγν

β[− ∇νKµ
σ︸ ︷︷ ︸

nσ∇νKµ
σ=−Kµ

σ∇νnσ

−( ∇νnσ︸ ︷︷ ︸
nσ∇νnσ=0

)Dµ ln N

− nσ︸︷︷︸
nσnσ=−1

(∇νDµ ln N) + ∇σKµ
ν

+ (∇σnν)︸ ︷︷ ︸
nσ∇σnν=Dν ln N

Dµ ln N + nν︸︷︷︸
γν

βnν=0

(∇σDµ ln N)]

= γαµγν
β[Kµ

σ∇νnσ + ∇νDµ ln N + nσ∇σ Kµ
ν︸︷︷︸

γαµKµ
ν=Kαν=γµ

αKµν

+ Dν ln NDµ ln N ]
= −KασKσ

β + DβDα ln N + γµ
αγν

βnσ∇σKµν

+ (Dα ln N)(Dβ ln N)

= −KασKσ
β + Dβ( 1

N
DαN) + γµ

αγν
βnσ∇σKµν

+ (Dα ln N)(Dβ ln N)

= −KασKσ
β + [(DαN)(Dβ

1
N

) + 1
N

DβDαN ]

+ γµ
αγν

βnσ∇σKµν + (Dα ln N)(Dβ ln N)

= −KασKσ
β + [ 1

N
(DαN) 1

1/N
(Dβ

1
N

) + 1
N

DβDαN ]

+ γµ
αγν

βnσ∇σKµν + (Dα ln N)(Dβ ln N)

= −KασKσ
β + [−(Dα ln N)(Dβ ln N) + 1

N
DβDαN ]

+ γµ
αγν

βnσ∇σKµν + (Dα ln N)(Dβ ln N)

= −KασKσ
β + 1

N
DβDα ln N + γµ

αγν
βnσ∇σKµν .

We can see that the γµ
αγν

βnσ∇σKµν term is related to LmKαβ. For this, let us derive an
expression for the gradient of m. Indeed, ∇m = ∇(Nn) = N∇n + n ⊗ ∇N . Since we already
have an expression for ∇n, we get:

∇βmα = N∇βnα + nα∇βN

= −NKαβ − N(Dα ln N)nβ + nα∇βN

= −NKαβ − (DαN)nβ + nα∇βN.

We can easily raise indices to get our equation for ∇βmα:

∇βmα = −NKα
β − (DαN)nβ + nα∇βN.

71



With this in mind, we get that the Lie derivative of K along m is:

LmKαβ = mµ∇µKαβ + Kµβ∇αmµ + Kαµ∇βmµ

= Nnµ∇µKαβ + Kµβ(−NKµ
α − (DµN)nα + nµ∇αN)

+ Kαµ(−NKµ
β − (DµN)nβ + nµ∇βN)

= Nnµ∇µKαβ − (NKµβKµ
α + NKαµKµ

β)︸ ︷︷ ︸
KµβKµ

α=γµνKµβKνα=KανKν
β

−Kµβ(DµN)nα

− Kαµ(DµN)nβ + (Kµβnµ∇αN + Kαµnµ∇βN)︸ ︷︷ ︸
Kµβnµ=Kαµnµ=0

= Nnµ∇µKαβ − 2NKαµKµ
β − Kµβ(DµN)nα − Kαµ(DµN)nβ.

We can project this equation onto Σt by applying the projection operator γ⃗ on both sides. Using
the fact that LmK lies on Σt (that is, γ⃗LmK = LmK), we get that

LmKαβ = Nnσ∇σKαβ − 2NKασKσ
β − Kσβ(DσN)nα − Kασ(DσN)nβ

= γµ
αγν

β(Nnσ∇σKµν − 2NKµσKσ
ν − Kσν(DσN)nµ − Kµσ(DσN)nν)

= Nγµ
αγν

βnσ∇σKµν − 2NKαµKµ
β

So replacing this expression for γµ
αγν

βnσ∇σKµν on our previous projection, we get successively

γαµnσγν
β

(4)Rµ
ρνσnρ = −KασKσ

β + 1
N

DβDα ln N + γµ
αγν

βnσ∇σKµν

= −KασKσ
β + 1

N
DβDα ln N + 1

N
LmKαβ + 2KασKσ

β,

leading us to our final result,

γαµnργν
βnσ(4)Rµ

ρνσ = 1
N

LmKαβ + 1
N

DαDβN + KαµKµ
β. (6.9)

This relation is called the Ricci equation and constitutes the last non trivial decomposition of
the Riemann tensor. This one, together with the Gauss equation (6.6) and the Codazzi equation
(6.7), completes the 3+1 decomposition of the spacetime Riemann tensor

72



6.9. 3+1 expression for the spacetime Ricci tensor and
scalar curvature

Taking our previously defined Gauss relation,

γµ
αγν

βγγ
ργσ

λ
(4)Rρ

σµν = Rγ
λαβ + (Kγ

αKλβ − Kγ
βKαλ),

we can contract on the indices γ and α, using that γµ
αγα

ρ = γµ
ρ = δµ

ρ + nµnρ, we obtain the
following expression, called the contracted Gauss relation:

γµ
αγν

β
(4)Rµν + γαµnνγρ

βnσ(4)Rµ
νρσ = Rαβ + KKαβ − KαµKµ

β. (6.10)

We notice that we already have an expression for the spacetime Riemann tensor projection term,
and replacing it on our contracted Gauss equations (by changing corresponding free indices so they
fit) yields an expression for the projection of the spacetime Ricci tensor :

γµ
αγν

β
(4)Rµν = − 1

N
LmKαβ − 1

N
DαDβN + Rαβ + KKαβ − 2KαµKµ

β.

By taking the trace of this equation with respect to the metric γ, which means contracting with
γαβ, yields,

γαβγµ
αγν

β
(4)Rµν = γµν (4)Rµν

= − 1
N

γαβLmKαβ − 1
N

γαβDαDβN + γαβRαβ

+ KγαβKαβ − 2γαβKαµKµ
β

= − 1
N

γijLmKij − 1
N

DiD
iN + R + K2 − 2KijK

ij .

By replacing γµν (4)Rµν = (gµν + nµnν)(4)Rµν = (4)Rť(4)Rµνnµnν and noticing that,

−γijLmKij = −Lm(γijKij) + KijLmγij

= −LmK + KijLmγij ,

with an equation for Lmγij being:

0 = Lmδj
i

= Lm(γikγkj)
= γikLmγkj + γkjLmγik

= γilγikLmγkj + γilγkjLmγik

= δl
kLmγkj + γilγkjLmγik

= Lmγlj − 2NγilγkjKik

Therefore, plugging this into our previous equation yields

−γijLmKij = −LmK + 2NKijK
ij .

Leading us to our equation for the spacetime scalar curvature:

(4)R + (4)Rµνnµnν = R + K2 − 1
N

LmK − 1
N

DiD
iN.

73



If we used to Gauss relation and contracted it twice, it can be proven yields a result that allows us
to get rid of the Ricci tensor term (4)Rµνnµnν . This gives us a final equation that only involves the
spacetime scalar curvature:

(4)R = R + K2 + KijK
ij − 2

N
LmK − 2

N
DiD

iN.

74



6.10. 3+1 decomposition of the Einstein equation
Let us consider the Einstein tensor equation on a spacetime (M, g):

(4)Rµν − 1
2

(4)Rgµν = 8πTµν . (6.11)

As mentioned in previous chapter, we will consider a globally hyperbolic spacetime and consider
a foliation (Σt)t∈R of M by a family of spacelike hypersurfaces.

6.10.1. Projection of the stress-energy tensor
To fully project the Einstein equation, we need to consider projections of the stress-energy tensor
Tµν . For this, we will define:

• The double timelike projection of the stress-energy tensor, called the matter energy density:

E = nµnνTµν .

• The mixed time and spatial projection, called the matter momentum density:

pα = −nνγν
αTµν .

• The double spatial projection, called the matter stress tensor :

Sαβ = γµ
αγν

βTµν .

• The trace of Sαβ with respect to the metric γ, or equivalently with respect to the metric g:

S = γijSij = gµνSµν .

An important formula is one that recovers T from E, p and S. A consequence of this formula
proves that:

T = S − E.

6.10.2. Projection of the Einstein equation
The final step in numerical relativity is to use all our previous equations to derive how to Einstein’s
field equations work when looking at them in their projected form. Since we study all possible non
trivial projections, these would give us an equivalent form of the full Einstein’s equations. We will
consider the Einstein’s equations in their equivalent form,

(4)Rµν = 8π

(
Tµν − 1

2Tgµν

)
. (6.12)

(1) Full projection onto Σt

We apply our projection operator to our equivalent Einstein field equations on both sides,

γ⃗(4)Rµν = 8π

(
γ⃗Tµν − 1

2T γ⃗g

)
.

This yields,

− 1
N

LmKαβ − 1
N

DαDβN + R + KKαβ − 2KαµKµ
β = 8π

[
Sαβ − 1

2(S − E)γαβ

]
.

75



Since each term is a tensor field tangent to Σt, we can restrict indices to only spatial indices
without loss of generality. By rearranging terms we get finally:

LmKij = −DiDjN + N(Rij + KKij − 2KikKk
j + 4π[(S − E)γij − 2Sij ]). (6.13)

(2) Full projection perpendicular to Σt

We begin taking our previously contracted Gauss relation (6.10):

γµ
αγν

β
(4)Rµν + γαµnνγρ

βnσ(4)Rµ
νρσ = Rαβ + KKαβ − KαµKµ

β.

and taking its trace with respect to γ. Noticing that

γαβγαµγρ
βnσ(4)Rµ

νρσ = γρ
µnνnσ(4)Rµ

νρσ = (4)Rµ
νµσ︸ ︷︷ ︸

=(4)Rνσ

nνnσ + (4)Rµ
νρσ︸ ︷︷ ︸

=0

= (4)Rµνnµnν ,

we obtain the scalar Gauss relation,

(4)R + 2(4)Rµνnµnν = R + K2 − KijK
ij .

We notice the left hand side is just two times the perpendicular projection of the Einstein equation,
which is,

(4)Rαβnαnβ − 1
2

(4)R gαβnαnβ︸ ︷︷ ︸
=−1

= 8π Tαβnαnβ︸ ︷︷ ︸
=E

Leading us to the so called Hamiltonian constraint:

R + K2 + KijK
ij = 16πE. (6.14)

(3) Mixed projection

Now, we take the Codazzi relation,

γγ
ρnσγµ

αγν
β

(4)Rρ
σµν = DβKγ

α − DαKγ
β,

and contract it on the indices α and γ. This yields,

γµ
ρnσγν

β
(4)Rρ

σµν = DβK − DµKµ
β.

Let us work out the LHS term:

γµ
ρnσγν

β
(4)Rρ

σµν = (δµ
ρ + nµnρ)nσγν

β
(4)Rρ

σµν

= nσγν
β

(4)Rσν + γν
β

(4)Rρ
σµνnρnσnµ

= nσγν
β

(4)Rσν + γν
β[(4)Rρ

σµν(gραnα)(gσλnλ)]nµ

= nσγν
β

(4)Rσν + γν
β[(4)Rα

λ
µνnσnλ]nµ

= nσγν
β

(4)Rσν + γν
β[(4)Rσ

ρ
µνnσnρ]nµ

= nσγν
β

(4)Rσν + γν
β [−(4)Rρ

σµνnσnρ]︸ ︷︷ ︸
(4)Rρ

σµν=−(4)Rρ
σµν=0

nµ

= nσγν
β

(4)Rσν .

Therefore, we have the contracted Codazzi relation:

nσγν
β

(4)Rσν = DβK − DµKµ
β.

76



We now project the Einstein equation in its first form once onto Σt and once perpendicular to
it, and notice the LHS is actually the contracted Codazzi relation, while the RHS is the matter
momentum density:

(4)Rαβnαγβ
µ − 1

2
(4)R gαβnαγβ

µ︸ ︷︷ ︸
=0

= 8πTαβnαγβ
µ

=⇒ (4)Rαβnαγβ
µ = 8πTαβnαγβ

µ

=⇒ DµK − DλKλ
µ = −8πpµ

=⇒ DjK
j
i − DiK = 8πpi. (since these tensors are tangent to Σt)

(6.15)

This last equation is called the momentum constraint.

6.11. The 3+1 Einstein system
We have now derived all the equations necessary to solve the Einstein system. Indeed, the four
constraint equations ((6.14) and (6.15)) are the necessary and sufficient integrability conditions for
the embedding of the spacelike hypersurfaces (Σ, γµν , Kµν) in the 4D spacetime (M, gµν), and the
evolution equations defined by (6.8) and (6.8) allow us to evolve our unknowns and get the following
Einstein system,

(
∂
∂t − Lβ

)
γij = −2NKij(

∂
∂t − Lβ

)
Kij = −DiDjN + N [Rij + KKij − 2KikKk

j + 4π((S − E)γij − 2Sij)]
R + K2 − KijK

ij = 16πE

DjK
j
i − DiK = 8πpi.

The covariant derivatives can be expressed in terms of partial derivatives and Christoffel symbols
in the following way:

DiDjN = ∂2

∂xi∂xj
− Γk

ij
∂N

∂xk
,

DjK
j
i = ∂Kj

i

∂xj
+ Γj

jkKk
i − Γk

jiK
j
k,

DiK = ∂K

∂xi
.

Lie derivatives can also be expressed in terms of partial derivatives:

Lβγij = ∂βi

∂xj
+ ∂βj

∂xi
− 2Γk

ijβk,

LβKij = βk ∂Kij

∂xk
+ Kkj

∂βk

∂xi
+ Kik

∂βk

∂xj
.

For completeness, we also mention the expression of the Ricci tensor, scalar curvature and

77



Christoffel symbols in terms of partial derivatives of the metric:

Rij = ∂Γk
ij

∂xk
− ∂Γk

ik

∂xj
+ Γk

ijΓl
kl − Γl

ikΓk
lj ,

R = γijRij ,

Γk
ij = 1

2γkl

(
∂γlj

∂xi
+ ∂γil

∂xj
− ∂γij

∂xl

)
.

One usually works with systems where matter source terms (E, pi, Sij) are given, so the Einstein
system constitutes a second-order non-linear PDE system of the unknowns (γij , Kij , N, βi).

78



Capítulo 7

The Wave Equation on the
Schwarzschild Background

7.1. Introduction
We begin with the verification of some equations of motion, with our end goal being usage of
finite-difference codes to study the spherically-symmetric dynamics of a massless scalar field on
a Schwarzschild background, so the spacetime will be completely known a priori. We focus on
the physics describing the absorption and/or scattering of spherically-symmetric pulses of scalar
radiation which fall onto a black hole. The domain of our simulations will exclude the interior of a
black hole by limiting the spatial domain to the region r ≥ 2M . Since r = 2M is null, no special
boundary conditions are needed for this scalar field; we will apply the equations of motion (the
covariant wave equation) up to and including r = 2M .

7.2. Wave Equation
Let the general 3+1 form of the Schwartzchild spacetime be:

ds2 =
(
−α2 + a2β2

)
dt2 + 2a2βdtdr + a2dr2 + r2

(
dθ2 + sin2 θdϕ2

)
,

where α ≡ α (r) and a = a(r). In 3+1 language, α is known as the lapse function, while β is the ra-
dial component of the shift vector, i.e. βi = (β, 0, 0), βi ≡ γijβ

j =
(
a2β, 0, 0

)
, where γij is the usual

metric of spacelike hypersurfaces defined by t = const, that is to say γij ≡ diag
(
a2, r2, r2 sin2 θ

)
.

Let us show the null geodesics of this metric is are given by(
dr

dt

)
±

= −β ± α

a
.

We start noting that we are working with a spherically symmetric metric, so the angular com-
ponents are not taken into account for the study of dr

dt . So we view ds2 as a tensor field on R2 that
assigns to each point a bilinear function of the following general form:

(t, r) 7→ f (t, r) dt ⊗ dt + g (t, r) dt ⊗ dr + h (t, r) dr ⊗ dt + k (t, r) dr ⊗ dr.

For this problem, we will consider the ∂
∂t vector in R2. To see this is in fact a vector in R2, we note

that:
∂

∂t
= dt

dt

∂

∂t
+ dr

dt

∂

∂r
=
(

1,
dr

dt

)
.

79



Therefore, our tensor field can be viewed as a quadratic form that assigns two vectors, −→a =
(a1, a2),

−→
b = (b1, b2), a quadratic form,

[
a1 a2

] [−α2 + a2β2 a2β

a2β a2

] [
b1

b2

]
.

Taking our two vectors to be equal to ∂
∂t , we get the following tensor equation:

ds2 =
[
1 dr

dt

] [−α2 + a2β2 a2β

a2β a2

] [
1
dr
dt

]
,

which finally solves

ds2
( ∂

∂t
, ∂

∂t ) =
(
−α2 + a2β2

)
+ 2a2β

dr

dt
+ a2

(
dr

dt

)2
.

Since we are looking for null geodesics, we impose ds2 = 0, so we are left with:

0 =
(
−α2 + a2β2

)
+ 2a2β

dr

dt
+ a2

(
dr

dt

)2

= −α2 +
(

aβ + a
dr

dt

)2
.

That finally gives us a solution (
dr

dt

)
±

= −β ± α

a
.

This equations will help us solve for the radial velocities of our wave given some lapse function
and shift vector that will determine our hypersurfaces. The two signs correspond to both ingoing
and outgoing pulses. When studying these pulses around our black hole, this function will give us a
way to solve for the speed of light far away from the event horizon, giving us a boundary condition
when simulating in a finite spatial grid.

∇a∇aϕ(r, t) = 0, (7.1)

can be written as the pair of first-order-in-time equations:{
∂tΦ = ∂r(βΦ + α

a Π)
∂tΠ = 1

r2 ∂r(r2(βΠ + α
a Φ))

where, {
Φ(r, t) ≡ ∂rϕ

Π(r, t) ≡ a
α(∂tϕ − β∂rϕ)

When solving for the covariant wave equation, one can expand using our connection and partial
derivatives. This quickly leads us to its alternate version,

1√
−g

∂

∂xν

(√
−ggνµ ∂ϕ

∂xµ

)
= 0,

where g is the determinant of the 4-matrix, and where the components gµν of the inverse 4-metric

80



are given by:

gµν =


−α−2 βα−2 0 0
βα−2 a−2 − β2α−2 0 0

0 0 r−2 0
0 0 0 r−2 sin−2 θ

 .

We can compute the value of
√

−g by solving the determinant of our metric, and get the value of√
−g = aαr2 sin θ, and since it is positive, we can cancel it and only study the derivatives.

0 = ∂t

(√
−g

(
gtt∂tϕ + grt∂rϕ

))
+ ∂r

(√
−g

(
gtr∂rϕ + grr∂rϕ

))
= aαr2 sin θ∂r

(
−1
α2 ∂tϕ +

(
1
a2 − β2

α2

)
∂rϕ

)

+ ∂r

(
aαr2 sin θ

(
β

α2 ∂tϕ +
(

1
a2 − β2

α2

)
∂rϕ

))

= sin θ

(
ar2∂t

(−1
α

∂tϕ
β

α
∂rϕ

)
+ ∂r

(
r2
[
β

(
a

α
(∂tϕ − β∂rϕ)

)
+ α

a
∂rϕ

]))
= sin θ

(
−r2∂t

(
a

α
(∂tϕ − β∂rϕ)

)
+ ∂r

(
r2
(

βΠ + α

a
Φ
)))

= sin θ

(
−r2∂tΠ + ∂r

(
r2
(

βΠ + α

a
Φ
)))

.

Dividing by sin θ and rearranging terms we end up with the evolution equation:

∂tΠ = 1
r2 ∂r

(
r2
(

βΠ + α

a
Φ
))

.

Finally, to describe the evolution of Φ we use the commutation of partial derivatives:

∂tΦ = ∂t∂rϕ

= ∂r (∂tϕ)

= ∂r

(
β∂rϕ + α

a

a

α
(∂tϕ − β∂rϕ)

)
= ∂r

(
βΦ + α

a
Π
)

,

leaving us with the desired system of first-order-in-time equations.

7.3. Schwarzchild Solution in Ingoing Eddington-Finkelstein
Coordinates

We now consider the Schwarzschild form of the original metric, bearing in mind we will be restricting
attention to r ≥ 2M :

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1
dr2 + r2dΩ2.

We now define the "Regge-Wheeler tortoise coordinate", r∗:

r∗ ≡ r + 2M ln
(

r

2M
− 1

)
,

81



then u and v defined by {
u ≡ t − r∗

v ≡ t + r∗,

are outgoing (u) and ingoing (v) null coordinates.

We will show that adopting a timelike coordinate, t̃, based on the ingoing null coordinate, v,
defined as

t̃ = v − r = t + 2M ln
(

r

2M
− 1

)
,

then the Schwarzschild metric takes the ingoing Eddington-Finkelstein form

ds2 = −
(

1 − 2M

r

)
dt̃2 + 4M

r
dt̃dr +

(
1 + 2M

r

)
dr2 + r2dΩ2. (7.2)

By definition we have t̃ = t + 2M ln
(

r
2M − 1

)
, then differenciating both sides yields,

dt = dt̃ −
(

r

2M
− 1

)−1
dr,

which is a 1-form on its own. We can ’square both sides’ since we are working with tensors and
luckily they have the algebra required to do so, so we compute dt2 as,

dt2 = dt̃2 − 2
( 2

2M
− 1

)−1
dt̃dr +

(
r

2M
− 1

)−2
dr2.

Replacing these tensors on our original spacetime interval, we get the desired equation,

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1
dr2 + r2dΩ2

= −
(

1 − 2M

r

)[
dt̃2 − 2

( 2
2M

− 1
)−1

dt̃dr +
(

r

2M
− 1

)−2
dr2
]

+
(

1 − 2M

r

)−1
dr2 + r2dΩ2

= −
(

1 − 2M

r

)
dt̃2 + 4M

r
dt̃dr +

(
1 + 2M

r

)
dr2 + r2dΩ2.

We will show that in the limit r → ∞, the wave equation can be written:

∂tt (rϕ) = ∂rr (rϕ) .

Clearly the limit to the black hole solution when r → ∞ is the Minkowski metric in spherical
coordinates, that is,

ds2 = −dt2 + dr2 + r2dΩ2.

So we recognize the determinant of the metric being g = −r4 sin2 θ, so
√

−g = r2 sin θ. Then,

82



applying the formula used in problem 2:

0 = 1√
−g

∂

∂xν

(√
−ggνµ ∂ϕ

∂xµ

)
= 1√

−g

(
∂t

(
−

√
−g∂tϕ

)
+ ∂r

(√
−g∂rϕ

))
= 1

r2 sin θ

(
∂t

(
−r2 sin θ · ∂tϕ

)
+ ∂r

(
r2 sin θ · ∂rϕ

))
= −∂ttϕ + 1

r2 ∂r

(
r2∂rϕ

)
= −∂ttϕ + 1

r2

(
2r∂rϕ + r2∂rrϕ

)
= −∂ttϕ + 1

r
(∂rϕ + ∂rϕ + r∂rrϕ)

= −∂ttϕ + 1
r

(∂rϕ + ∂r (r∂rϕ))

= −∂ttϕ + 1
r

(∂r (ϕ + r∂rϕ))

= −∂ttϕ + 1
r

(∂r (∂r (rϕ)))

= −∂ttϕ + 1
r

∂rr (rϕ) .

Rearranging terms leave us with the final equation

∂tt (rϕ) = ∂rr (rϕ) .

The outgoing solution of this equation can be thought as radial pulses, ie:

(rϕ) (r, t) = g (c+t − r) .

Now, from our first problem we have that(
dr

dt

)
+

= c+ = −β + α

a
,

so that, asymptotically, we should expect

(rϕ) (r, t) = g

((
−β + α

a

)
t − r

)
,

which we can also express as

∂t (rϕ) +
(

−β + α

a

)
∂r (rϕ) = 0.

So we will solve the wave equation on the finite spatial domain 2M ≤ r ≤ R, to finally impose this
last equation a a boundary condition at r = R.

83



7.4. Initial Data for the Simulation
To solve the coupled equations, we must supply initial conditions{

Φ (r, 0) = Φ0 (r)
Π (r, 0) = Π0 (r)

.

We will assume that the initial configuration of the scalar field itself, ϕ(r, 0) = ϕ0(r) describes some
"pulse" shape, such as a Gaussian:

ϕ0 (r; A, r0, ∂) = A exp
{(

−
(

r − r0

∆

)2
)}

, (7.3)

for some A, r0 and ∆ adjustable parameters. To get an initial condition for our system of equations,
we need a way to get an initial condition for the time derivative of our scalar pulse, that is, ∂tϕ(r, 0),
but we cannot derive this from ϕ0. To solve this, we use the fact that (rϕ)(r, t) initially solves an
ingoing wave equation, thus,

∂t (rϕ) (r, 0) − ∂r (rϕ) (r, 0) = 0.

From the above equations, we derive initial conditions Φ0(r) and Π0(r), in terms of ϕ0(r) and
ϕ′

0(r). We can use limits to get the initial condition for Φ, indeed,

Φ0(r) = Φ(r, 0)
= (∂rϕ)(r, 0)

= lim
h→0

ϕ(r + h, t = 0) − ϕ(r, t = 0)
h

= lim
h→0

ϕ0(r + h) − ϕ0(r)
h

= ϕ′
0(r),

so all we need is to get an initial condition for Π(r, t). Making use of our above approximation,
we derive an explicit equation for ∂tϕ(r, 0),

∂t (rϕ) (r, 0) = r∂t (ϕ) (r, 0)
= ∂r (rϕ) (r, 0)
= ϕ(r, 0) + r (∂r(ϕ)) (r, 0)
= ϕ0(r) + rϕ′

0(r).

Therefore, an initial condition for Π(r, t) can easily be computed in terms of our initial scalar
pulse ϕ0 as:

Π0(r) = Π(r, 0)

= a

α
(∂tϕ(r, 0) − β∂rϕ(r, 0))

= a

α

(
[1
r

ϕ0(r) + ϕ′
0(r)] − βϕ′

0(r)
)

= a

α

(1
r

ϕ0(r) + (1 − β)ϕ′
0(r)

)
.

84



7.5. A conserved mass for the model
We recall the stress energy tensor, Tab, for the scalar field satisfying the wave equation is

Tab = ∇aϕ∇bϕ − 1
2gab∇cϕ∇cϕ.

We consider a foliation, Σt, of spacetime with an associated unit normal field na. Let us assume
that the spacetime has a timelike Killing vector field, ta. Then we can define an energy-momentum
4-vector,

Ja ≡ T abtb.

Which is conserved,

∇aJa = ∇a

(
T abtb

)
=
(
∇aT ab

)
tb + T ab (∇atb) =

(
∇aT ab

)
︸ ︷︷ ︸

=0

tb + T ab ∇(atb)︸ ︷︷ ︸
=0

= 0,

by virtue of the conservation of T ab and Killing’s equations. If we integrate ∇aJa over a spacetime
volume and apply Gauss’s theorem:∫

V
∇aJa =

∫
∂V

Jana = 0 = 0,

where ∂V is the (three-dimensional) boundary of the integration region, na is the normal vector
to ∂V , and both integrals are taken with respect to the natural volume elements on the respective
manifolds. If we now take our "Gaussian pillbox" to be the region bounded by any two hypersurfaces,
Σt, Σt′ , then assuming Jana → 0 at spatial infinity (the timelike part of the pillbox), we have:∫

Σt

Jana −
∫

Σt′
Jana = 0,

and since t and t′ are chosen to be any value of our time coordinate, we can easily deduce that,

m∞ =
∫

Σt

Jana = constant,

which means that our quantity m∞, is the mass density integrated at each hypersurface, is constant.
Using our current 3 + 1 metric, we have:

m∞ =
∫

Σt

Jana

=
∫

T µνtνnµdΣ

=
∫

T µ
ν tνnµdΣ

=
∫

(−αT t
t )(ar2 sin2 θ)drdθdϕ

= 4π

∫
−r2αaT t

t dr,

where we have used tµ = (1, 0, 0, 0) and nµ = (−α, 0, 0, 0). For the purposes of monitoring our
calculation, it is convenient to define a space- and time-dependent "mass aspect" function, m(r, t),
via

m(r, t) =
∫ r

2M

dm

dr̃
(r, t)dr̃,

85



dm

dr
≡ −4πr2αaT t

t .

This function is not time-independent since we are integrating on subsets of our hypersurface, and
thus we can calculate the mass thanks for our formula for the energy-momentum tensor Tab of
our scalar field satisfying the wave equation. Let us begin getting an explicit value of dm/dr to
integrate.

We begin noting that the covariant derivative of any scalar field simplifies to the normal deriva-
tive, that is, ∇µϕ = ∂µϕ. Also, since ϕ ≡ ϕ(r, t), derivatives with respect to angular components
will always be zero.

86



Let us get an expression for αaT t
t :

αaT t
t = αa

(
gµtTµt

)
= αa

(
gttTtt + gtrTtr

)
= αa

(
gtt

[
(∂tϕ)2 − 1

2gtt∇cϕ∇cϕ

]
+ gtr

[
∂tϕ∂rϕ − 1

2gtr∇cϕ∇cϕ

])

= αa

gtt(∂tϕ)2 + gtr∂tϕ∂rϕ − 1
2 (gttgtt + gtrgtr)︸ ︷︷ ︸

=gµtgµt=δt
t=1

[∇cϕ∇cϕ]


= αa

(
gtt(∂tϕ)2 + gtr∂tϕ∂rϕ − 1

2 [∇cϕ∇cϕ]
)

= αa

(
− 1

α2 (∂tϕ)2 + β

α2 ∂tϕ∂rϕ − 1
2 [∇cϕ∇cϕ]

)
= −

(
a

α
(∂tϕ)2 − aβ

α
∂tϕ∂rϕ + αa

2 [∇cϕ∇cϕ]
)

= −
(

a

α
(∂tϕ)2 − aβ

α
∂tϕ∂rϕ + αa

2
[
∇tϕ∇tϕ + ∇rϕ∇rϕ

])
= −

(
a

α
(∂tϕ)2 − aβ

α
∂tϕ∂rϕ + αa

2
[
gtµ∇µϕ∇tϕ + grν∇νϕ∇rϕ

])
= −

(
a

α
(∂tϕ)2 − aβ

α
∂tϕ∂rϕ + αa

2
[
gtt(∇tϕ)2 + ť2gtr∇tϕ∇rϕ + grr(∇rϕ)2

])
= −

(
a

α
(∂tϕ)2 − aβ

α
∂tϕ∂rϕ + αa

2
[
gtt(∂tϕ)2 + ť2gtr∂tϕ∂rϕ + grr(∂rϕ)2

])
= −

((
a

α
+ αa

2 gtt

)
(∂tϕ)2 + αa

2 grr(∂rϕ)2 +
(

−aβ

α
+ αagtr

)
∂tϕ∂rϕ

)

= −


(

a

α
+ αa

2 (− 1
α2 )

)
(∂tϕ)2 +

(
αa

2

(
1
a2 − β2

α2

))
(∂rϕ)2

+ (−aβ

α
+ αa( β

α2 ))∂tϕ∂rϕ


= −

((
a

α
− a

2α

)
(∂tϕ)2 +

(
α

2a
− aβ2

2α

)
(∂rϕ)2 + (−aβ

α
+ aβ

α
)∂tϕ∂rϕ

)

= −
((

a

2α

)
(∂tϕ)2 +

(
α

2a
− aβ2

2α

)
(∂rϕ)2 + (− a

2α
+ a

2α
)2β∂tϕ∂rϕ

)

= −
((

a

2α

)
(∂tϕ)2 +

(
α

2a
+ aβ2

2α
− aβ2

α

)
(∂rϕ)2 + (− a

2α
+ a

2α
)2β∂tϕ∂rϕ

)

= −


(

a

2α

) [
(∂tϕ)2 − 2β∂tϕ∂rϕ + (β∂rϕ)2

]
+
(

α

2a
− aβ2

α

)
(∂rϕ)2

+ a

2α
2β∂tϕ∂rϕ


= −

((
a

2α

)
(∂tϕ − β∂rϕ)2 +

(
α

2a
− aβ2

α

)
(∂rϕ)2 + a

α
2β∂tϕ∂rϕ

)

= −
((

α

2a

)(
a

α

)2
(∂tϕ − β∂rϕ)2 +

(
α

2a
− aβ2

α

)
(∂rϕ)2 + a

α
2β∂tϕ∂rϕ

)

= −
(

α

2a

[
a

α
(∂tϕ − β∂rϕ)

]2
+
(

α

2a

)
(∂rϕ)2 + β(∂rϕ)(∂tϕ − β∂rϕ)

)

= −
(

α

2a

[
Π2 + Φ2

]
+ βΦΠ

)
. 87



So that finally, we end up with an expression for our mass radial density,

dm

dr
= −4πr2αaT t

t

= −4πr2 ·
[
−
(

α

2a

[
Π2 + Φ2

]
+ βΦΠ

)]
= 4πr2

(
α

2a

[
Π2 + Φ2

]
+ βΦΠ

)
.

We notice that to integrate this expression, we must first solve our equation to get our values
for Π and Φ, which is what we will do in the next section.

7.6. Solution to the equations of motion
Let us write a program that solves the wave equation on a Schwarzschild background in IEF coor-
dinates. This means that we will solve the system,

∂tΦ = ∂r(βΦ + α
a Π)

∂tΠ = 1
r2 ∂r(r2(βΠ + α

a Φ))
Φ(r, t) ≡ ∂rϕ

Π(r, t) ≡ a
α(∂tϕ − β∂rϕ),

where α = α(r) =
(

r
r+2M

)1/2
, a = a(r) =

(
r

r+2M

)−1/2
and β = β(r) = 2M

r+2M .

We will begin changing our notation so our code looks tidier. Our new variables are X(r, t) ≡
Φ(r, t) and Y (r, t) ≡ Π(r, t). This also helps us work on our Python script, for which we work better
with one-letter named variables, hence X and Y .

Our new system with its initial conditions are, in terms of X and Y ,

X(r, t) , Y (r, t) ∈ [2M, R] × [0, T ]
∂tX = ∂r(βX + α

a Y )
∂tY = 1

r2 ∂r(r2(βY + α
a X))

X(r, 0) = ϕ′
0(r)

Y (r, 0) = a
α

(1
r ϕ0(r) + (1 − β)ϕ′

0(r)
)

,

and finally, we replace for our values of α(r),a(r) and β(r),
∂tX = ∂r( 2M

r+2M X + r
r+2M Y )

∂tY = 1
r2 ∂r( 2Mr2

r+2M Y + r3

r+2M X))
X(r, 0) = ϕ′

0(r)
Y (r, 0) = r+2M

r2 ϕ0(r) + ϕ′
0(r)

.

Now, to solve this system, we use a finite differences scheme on the spatial-temporal grid [2M, R] ×
[0, T ].

We will assume r lies between p and q, and use this to create our partition and define a function

88



that will give us our value of r for each i. That is,

0 < p ≤ r ≤ q =⇒ π(i) ≡ p + i

(
q − p

N

)
= p + i∆r i ∈ {1, ..., N − 1}.

To use better notation, we define two functions that represent implicit and explicit discretization.fx(X, Y )n
i =

[
2M
π(i)X

n
i + π(i)

π(i)+2M Y n
i

]
fy(X, Y )n

i =
[

2Mπ(i)2

π(i)+2M Y n
i + π(i)3

π(i)+2M Xn
i

] .

Our plan is to use the Crank-Nicholson scheme, but we will generalize to a θ-scheme and re-
place θ = 1/2 when needed. Also, our spatial derivatives will be O(h2) centred finite difference
approximations in the interior of the domain, with O(h2) forwards and backwards approximations
for spatial derivatives at the boundaries.

Center terms:
From now on, we will adopt a new variable θ′ ≡ (1 − θ), that will represent the explicit part

of our discretization scheme. This helps to make our equations a bit smaller. Our θ-scheme for
discretization finally reads,

Xn+1
i −Xn

i

∆t = θ

[
fx(X,Y )n+1

i+1 −fx(X,Y )n+1
i−1

2∆r

]
+ θ′

[
fx(X,Y )n

i+1−fx(X,Y )n
i−1

2∆r

]
Y n+1

i −Y n
i

∆t = θ · 1
π(i)2

[
fy(X,Y )n+1

i+1 −fy(X,Y )n+1
i−1

2∆r

]
+ θ′ · 1

π(i)2

[
fy(X,Y )n

i+1−fy(X,Y )n
i−1

2∆r

] .

Let us write the equation for the pentadiagonal matrix equation that will be used to calculate the
center terms (since boundary points are to be calculated with forward and backwards schemes)

To help with notation, we define our CFL number to be φ = ∆t
2∆r . Luckily, since we will be using

a Crank-Nicolson scheme, our solution will be stable for any value of φ, though we will be fair in
our simulations and set it to be small nevertheless. The equations are,



Xn+1
i − θφ

2M

π(i + 1)Xn+1
i+1 + θφ

2M

π(i − 1)Xn+1
i−1

− θφ
π(i + 1)

π(i + 1) + 2M
Y n+1

i+1 + θφ
π(i − 1)

π(i − 1) + 2M
Y n+1

i−1

=
Xn

i + θ′φ
2M

π(i + 1)Xn
i+1 − θ′φ

2M

π(i − 1)Xn
i−1

+ θ′φ
π(i + 1)

π(i + 1) + 2M
Y n

i+1 − θ′φ
π(i − 1)

π(i − 1) + 2M
Y n

i−1,

Y n+1
i − θφ

π(i)2
2Mπ(i + 1)2

π(i + 1) + 2M
Y n+1

i+1 + θφ

π(i)2
2Mπ(i − 1)2

π(i − 1) + 2M
Y n+1

i−1

− θφ

π(i)2
π(i + 1)3

π(i + 1) + 2M
Xn+1

i+1 + θφ

π(i)2
π(i − 1)3

π(i − 1) + 2M
Xn+1

i−1

=
Y n

i + θ′φ

π(i)2
2Mπ(i + 1)2

π(i + 1) + 2M
Y n

i+1 − θ′φ

π(i)2
2Mπ(i − 1)2

π(i − 1) + 2M
Y n

i−1

+ θ′φ

π(i)2
π(i + 1)3

π(i + 1) + 2M
Xn

i+1 − θ′φ

π(i)2
π(i − 1)3

π(i − 1) + 2M
Xn

i−1.

89



This is equivalent to a matrix equation:

AZn+1 = BZn where Z = [X, Y ]T .

Boundary terms:
We recall that the forward and backward O(h2) approximations are:{

f ′(x)forward = −3f(x)+4f(x+∆x)−f(x+2∆x)
2∆x ,

f ′(x)backward = 3f(x)−4f(x−∆x)+f(x−2∆x)
2∆x .

This leads us to the final equations for i = 0

Xn+1
0 + θφ

6M

π(0)Xn+1
0 − θφ

8M

π(1)Xn+1
1 + θφ

2M

π(2)Xn+1
2

+ θφ
3π(0)

π(0) + 2M
Y n+1

0 − θφ
4π(1)

π(1) + 2M
Y n+1

1 + θφ
π(2)

π(2) + 2M
Y n+1

2

=
Xn

0 − θ′φ
6M

π(0)Xn
0 + θ′φ

8M

π(1)Xn
1 − θ′φ

2M

π(2)Xn
2

− θ′φ
3π(0)

π(0) + 2M
Y n

0 + θ′φ
4π(1)

π(1) + 2M
Y n

1 − θ′φ
π(2)

π(2) + 2M
Y n

2 .

For i = N , that is, our boundary condition at r = R, we will use that in the limit r → ∞ the
wave equation becomes,

∂tt(rϕ) = ∂rr(rϕ).

The outgoing solution of this equation is:

(rϕ)(r, t) = g(t − r),

where one considers the characteristic speeds for ingoing and outgoing solutions (which we have
been implicitly assuming to be equal to one, that is, c2

+ = c2
− = c2 = 1), and introduce them into

our equation,

(rϕ)(r, t) = g(c+t − r),

where,
c+ = −β + α

a
= r − 2M

r + 2M
.

The above equations can also be expressed as:

∂t(rϕ) +
(

−β + α

a

)
∂r(rϕ) = 0.

This will be imposed as a boundary condition on r = R.

We notice that for r → ∞, the spherical wave equation becomes{
∂tΦ(r, t) = ∂rΠ(r, t)
∂tΠ(r, t) = ∂rΦ(r, t)

,

with Φ = ∂rϕ, and Π = ∂tϕ. Again, we use our new variable names Φ ≡ X and Π ≡ Y for the next

90



equations. Using the above formula for the boundary condition at r = R, we get that,

r∂tϕ +
(

−β + α

a

)
[ϕ + r∂rϕ] = 0.

Dividing by r, we get that,
∂tϕ +

(
−β + α

a

)[1
r

ϕ + ∂rϕ

]
= 0,

which, for big enough r, leaves us with the approximation,

∂tϕ +
(

−β + α

a

)
∂rϕ = 0.

Considering our change of variables, we represent this as:

Y +
(

−β + α

a

)
X = 0.

Let us begin differentiating with respect to t. Using the fact that ∂tX(r, t) = ∂rY (r, t), we get
an equation for Y ,

∂tY +
(

−β + α

a

)
∂tX = ∂tY +

(
−β + α

a

)
∂rY = 0.

Now, using the fact that ∂tY (r, t) = ∂rX(r, t), we get an equations for X,

∂tY +
(

−β + α

a

)
∂tX = ∂rX +

(
−β + α

a

)
∂tX = 0.

Finally, using that
(
−β + α

a

)
= r−2M

r+2M , we get the system of equations at the boundary r = R:{
∂tX = − r+2M

r−2M ∂rX,

∂tY = − r−2M
r+2M ∂rY.

We will use an O(h2) backward approximation at this point, therefore our equation reads.
Xn+1

N −Xn
N

∆t = CN
(
−R+2M

R−2M

[3Xn
N −4Xn

N−1+Xn
N−2

2∆r

])
,

Y n+1
N −Y n

N

∆t = CN
(
−R−2M

R+2M

[3Y n
N −4Y n

N−1+Y n
N−2

2∆r

])
.

Where our CN(·) function does a Crank Nicholson θ-scheme, and will just serve to make our equa-
tion tidier.

Let us save some notation using c ≡ −R+2M
R−2M .

Finally, using that R ≡ q in our code (our last value of r), that φ ≡ ∆t
2∆x and making the full

θ-scheme equation, and simplifying all terms, our equation at the boundary will finally read as:

91





(1 − 3cθφ)Xn+1
N + 4cθφXn+1

N−1 − cθφXn+1
N−2

= (1 + 3cθ′φ)Xn
N − 4cθ′φXn

N−1 + cθ′φXn
N−2,

(1 − 31
c

θφ)Y n+1
N + 41

c
θφY n+1

N−1 − 1
c

θφY n+1
N−2

= (1 + 31
c

θ′φ)Y n
N − Y

1
c

θ′φY n
N−1 + 1

c
θ′φY n

N−2.

We develop our finite difference scheme using all the equations and approximations computed on a
Python script, which is added at the ’Codes’ section at the end of this thesis.

92



7.6.1. Analyzing solutions for the equations of motion
We now focus on running our finite differences scheme to solve the previous equations of motion.
Firstly though, it is important to study what should happen in our simulations. The wave equation
in this form is something we have previously studied, but in a non-flat background it should take
a different form due to the curvature of the geodesics governing the scalar pulses. Let us begin
noticing a couple things from our equations, which we recall are,

∂tΦ = ∂r(βΦ + α
a Π)

∂tΠ = 1
r2 ∂r(r2(βΠ + α

a Φ))
Φ(r, t) ≡ ∂rϕ

Π(r, t) ≡ a
α(∂tϕ − β∂rϕ)

Φ(r, 0) = ϕ′
0(r)

Π(r, 0) = a
α(1

r ϕ0(r) + (1 − β)ϕ′
0(r)),

where α = α(r) =
(

r
r+2M

)1/2
, a = a(r) =

(
r

r+2M

)−1/2
and β = β(r) = 2M

r+2M .
First, we notice as r → ∞, get get that α

a ∼ 1 and β ∼ 1
r . This approximates our equation to

the following system: 

∂tΦ ∼ ∂r(1
r Φ + Π)

∂tΠ ∼ ∂r(1
r Π + Φ))

Φ(r, t) ∼ ∂rϕ

Π(r, t) ∼ ∂tϕ − 1
r ∂rϕ

Φ(r, 0) ∼ ϕ′
0(r)

Π(r, 0) ∼ 1
r ϕ0(r) + ϕ′

0(r).

So for big r, this system resembles our usual wave equation, but for small r we can see extra
terms are taken into account. Also, if we choose an initial condition ϕ0(r) with approximately
compact support in big r, then both Π and Φ will start as ϕ′

0(r).

Let us generate a Python script that solves our original system, with initial condition depending
on

ϕ0(r; A, r0, ∆) = A exp
{

(−(r − r0

∆ )2)
}

,

ϕ′
0(r; A, r0, ∆) = −2A

r − r0

∆2 A exp
{

(−(r − r0

∆ )2)
}

.

So our initial conditions for Φ and Π are:

Φ(r, 0) = ϕ′
0(r),

Π(r, 0) = a

α
(1
r

ϕ0(r) + (1 − β)ϕ′
0(r)).

93



We run our Python code, setting A = 1, r0 = 50, ∆ = 1, and T = 70 (T was chosen so that
the pulse touches the event horizon eventually), and plot the results for both the Φ (Phi) wave
(Fig. 7.1) and the Π (Pi) wave (Fig. 7.2).

Figura 7.1: Solutions of Φ for different times. We start with our differ-
entiated scalar pulse, and it evolves, moves and grows towards the event
horizon, leaving a trail behind.

The metric near the black hole distorts the pulse, and increases the wavelength as it gets closer
to the event horizon, thus reducing its frequency due to gravitational redshift.

The pulse does not travel in usual wave motion. Remembering that the initial condition for
Φ was the spatial derivative of a Gaussian pulse, the scalar pulse is actually over the r-axis. By
noticing what happens as r approaches the event horizon, different frequencies of the r derivative
start to appear, which would distort our spatial pulse by spreading it apart in a wave-like manner.

94



Figura 7.2: Solutions of Π for different times. We start with our differenti-
ated scalar pulse plus a small term, and it evolves, moves and grows towards
the event horizon, leaving a trail behind.

95



The results look pretty similar to one another. This is because both equations are approximately
symmetrical for big r (which in our domain 2M < r one could say r is still ’big’), and because the
initial condition correction term is a Gaussian term divided by r, but since this term has its support
for already big r (that is, r around r0 = 50), then it changes little of our equation.

We can check there has been no mistake in plotting both solutions by showing some plots of
their absolute difference, and checking if they in fact are the same solutions.

Figura 7.3: Difference between Φ and Π solutions for various time iterations.
Since they are not zero everywhere, we can assume they in fact are solutions
for our two variables.

The initial difference is of really low order, and thus almost not noticeable by eye in our first
plots. As time evolves, the differences grow and we can check that, effectively, the solutions are
different.

7.6.2. Analysis of the scalar wave solution
For the analysis of the mass function, we will work with our initial Gaussian wavepacket being
really narrow in space, thus having a value of ∆ = 1, but let’s devote some time into analyzing our
original solution ϕ(r, t). Let’s begin remembering we are studying our covariant wave equation 7.1
on a Schwarzschild metric background written in ingoing Eddington-Finkelstein coordinates (7.2).
The regularity of this metric at the event horizon (r = 2M) makes numerical simulations more
stable near the horizon.

Let’s notice what happens for numerical solutions when the wavepacket is very narrow, as in
figures 7.4 and 7.5. The pulse begins to ’wiggle’ really fast as soon as it starts moving towards
the event horizon of our black hole. When this narrow wavepacket propagates through a region of
spacetime with varying gravitational potential, different parts of the wavepacket experience vastly
different potentials as they traverse different radial positions, making it wiggle due to the inter-
ference caused by these rapid changes on potential. We also see how the amplitude of our pulse
increases as it gets near the black hole. In the vicinity of the event horizon, an observer would
perceive an increase in the apparent amplitude of the wave due to the redshifting. The wave might
appear to be growing in amplitude, a behavior sometimes referred as ’superradiance’. As the wave
crosses the event horizon (where no boundary conditions were imposed, just the usual wave equation

96



with boundary derivatives, which we can do by the regularity of our metric at this boundary), it is
essentially entering a region from which no signals escape, effectively being absorbed by the black
hole and disappearing. Let’s also notice no waves are being bounced off our black
hole, a matter that makes sense in the context of the scheme we are studying, in which our coordi-
nates forces our pulse to be as ingoing as possible.

Figura 7.4: Solution of our wave equation, where the initial scalar pulse’s
∆ has been set to 0.5.

Figura 7.5: Solution of our wave equation, where the initial scalar pulse’s
∆ has been set to 1.

What happens for higher values of ∆ is quite interesting. By having a bigger value of ∆, we
notice that our initial conditions for Φ and Π (7.3) begin as a low amplitude wave. Since this works
approximately as a normal wave equation, this low amplitude wave moves throughout spacetime,
and since Φ ∂rϕ, this means that our wavepacket experiences small change throughout. Let’s plot
different time steps, from the initial condition up until the wave is almost fully engorged by the
black hole, in figures 7.6, 7.7 and 7.8, where our values for ∆ are 4, 10 and 30 respectively.

As seen in these figures, the wavepacket is wider and more spread out in its position space. These

97



Figura 7.6: Solution of our wave equation, where the initial scalar pulse’s
∆ has been set to 4.

Figura 7.7: Solution of our wave equation, where the initial scalar pulse’s
∆ has been set to 10.

wavepackets are indeed affected by the gravitational potentials of our black hole, but its width influ-
ences its sensitivity to local changes in the potential. The apparent smoothness in the evolution of a
wider wavepacket is a result of reduced sensitivity to rapid variations of the gravitational potential.
As discussed above, the wave moves towards the black hole almost describing a flat wave solution
(due to large values of ∆), reducing the impact of rapid variations of the curvature of spacetime
described by the metric behind our equation.

There’s another thing that we can notice about these figures. When the wave arrives to the
event horizon, it begins to change sign (in the y-axis, which can be understood as the displace-
ment value of the wave). This can be associated with the gravitational redshift near the event
horizon. When the wave crosses the event horizon, the redshift can cause a phase shift in the
wave, leading to a change in the sign of the amplitude, transitioning its behavior as it enters the
strong gravitational field near the black hole. This effect is not seen clearly on our last figure 7.8,

98



Figura 7.8: Solution of our wave equation, where the initial scalar pulse’s
∆ has been set to 30.

since the wave is initially so scattered throughout space, that the curvature around the spacetime
averages the effect throughout our pulse, making it seem as it just enters the event horizon smoothly.

One last thing to note, is the strange flat vertical line that begins to form while our pulse is
entering the black hole. These are numerical ’errors’ due to the big spatial discretization used near
the black hole for our finite differences scheme. Our original wave Φ = ∂rϕ moves toward the black
hole growing largely in amplitude, and when we are integrating this big value in our space direc-
tion (the radial axis), it translates to extreme variations of the amplitude of ϕ. When considering
smaller meshes in our spatial dimension, one could expect smoother growing waves close to the
event horizon, which are the remains of our pulse closely entering our black hole.

In conclusion, the metric governing our wave equation forces two things: (1) our pulse be ingo-
ing, and (2) the pulse be regular near and in the event horizon. These are characteristics of our
specific wave equation numerical scheme, and its plots can be explained using the background met-
ric’s characteristics. We can therefore relate the behavior of our wave simulations, with what the
background original metric represents. For narrow wavepackets, the redshift caused by rapid gravi-
tational potential variations (due to our initial conditions for our first-order-in-time wave equation
system), cause a ’wiggling’ of our wave, changing its sign constantly and finally making its amplitude
grow bigger near the event horizon. For more spread out wavepackets, the initial conditions again
play a role on explaining the dynamics of our wave, making local changes really small. Physically,
the wider wavepackets experience an averaging of the local gravitational potential variations, thus
making them move smoothly towards the black hole.

99



7.7. Solution to the conserved mass model
We recall that we have an expression for dm

dr in terms of Φ and Π, which is

dm

dr
= 4πr2

(
α

2a

(
Φ2 + Π2

)
+ βΦΠ

)
.

We can integrate our solutions numerically, to get an approximation of what our conserved mass
is at each time step, and study it around our black hole. Let us graph our integrated function
m(r, t) at different time iterations (Fig. 7.9). The first six iterations correspond to the scalar pulses
plotted in the previous section, while the other three correspond to extra time steps that are added
to understand the physics behind the problem.

Figura 7.9: The mass around the black hole for different time steps.

Let us begin exploring just what do we mean by ’mass around the black hole’. When the scalar
pulse was emitted, we can derive its mass in terms of its momentum, which we know. By studying
each graph, for a fixed time, we notice that one can compute how much of the initial mass can
still be measured at each distance from the black hole. Whenever Φ and Π are non-zero (that is,
starting from our Gaussian pulse and watching it bend toward the black hole, leaving a small trail
behind), terms will be contributing for the mass function. As the pulse moves toward the black
hole, the mass recovered (or better said, measurable) from the pulse will depend on smaller r each
time. For big enough r, the mass function converges towards the total mass of the scalar pulse that
we can measure, that is, the mass that hasn’t been absorbed by the black hole.

Comparing results for our plots of Φ and Π waves, we notice that for the first 5 time steps, the
waves do not yet reach the event horizon. Also, it does not matter that the waves are stretched and
leaving lower amplitude waves; we check that the total mass is always the same for those 5 time
steps. At the 6th time step however, we check that both Φ and Π waves get to the event horizon
and start entering it. Although it reaches the end of our simulation domain, boundary conditions
were set to explain the physics of what would happen to a wave entering it. As soon as the waves
start to touch the event horizon, we notice that the total mass recovered starts diminishing, that
means that it has entered the point of no return. Further time steps are plotted to check that, as
time passes, less and less mass is to be recovered, until it must finally reach a value of 0.

100



Capítulo 8

Using the Einstein Toolkit

8.1. Introduction
The Einstein Toolkit is an open-source community-driven software framework for the numerical
simulation of astrophysical systems, particularly in the field of general relativity. It provides a set
of tools and libraries that enable researchers to develop and run simulations of phenomena such as
black hole collisions, neutron star mergers, and gravitational waves.

This software is based on the Cactus framework, where a collection of scripts called ’thorns’ are
selected for each algorithm we would desire. The toolkit is designed to be flexible, allowing users
to customize and extend its functionality according to their specific research needs.

The primary purpose of the Einstein Toolkit is to provide a comprehensive and flexible environ-
ment for conducting research in relativistic astrophysics. By bringing together numerical methods,
high-performance computing, and advanced visualization techniques, the toolkit empowers scien-
tists to explore the world of black holes, neutron stars, gravitational waves, and other fundamental
aspects of the universe.

8.2. Installation and Setup
The Einstein Toolkit can be either used in the tutorial server, or installed in one’s own computer.
Considering that we will make much use of this code, we will prefer installing it in our own work-
station.

The main requirements our machine needs are:
• Client tools for Source Code Repositories: SVN and git (used by the GetComponents

utility, which we will talk about later).
• Compilers: C, C++ and Fortran 90.
• MPI Implementation: The message passing interface is a standardized means of exchanging

messages between multiple computers running a parallel program across distributed memory.
This is needed for the Carpet driver.

• Standard development tools: Programs for data management like Python, Perl, etc.
• Operating System: Cactus and the Einstein Toolkit is supported on all commonly used

variants of Unix (Linux, MacOSX, AIX). On Microsoft Windows machines the Einstein Toolkit
can be partially used with the cygwin environment, although this is not regularly tested and
we will not be using it.

101



The installation guide can be easily found the Einstein Toolkit community site, and it can be
worked in our laptop’s terminal, or in a Jupyter notebook for easier visualization.

8.3. Overview of "Thorns"
One of the Einstein Toolkit is most important aspects involve its thorns. These are special files,
self-contained modules that implement specific physics, numerical methods, or analysis tools.

Many thorns are already made by the community and ready to be used, but we are also able
to create new thorns suitable to our needs. We start listing the main components of a new Cactus
thorn:

• a Cactus thorn must have a name.
• a Cactus thorn must live in an arrangement.
• a Cactus thorn must have four ccl (Cactus Configuration Language) files:

– interface.ccl
– schedule.ccl
– param.ccl
– configuration.ccl

• a Cactus thorn must have a src (source) directory.
• a Cactus thorn must have a file in that source directory.

After all files are set up, we can end making a final file called "make.code.dfn". This file tells
Cactus the names of the source code files to compile. In the case of evolution equation thorns,
for example, our source code files would be: init.c , evolve.c and boundary.c . These files would
contain all the information about initial conditions, evolution equation and boundary conditions,
respectively.

8.4. Components and Functionality
The Einstein Toolkit comprises a vast collection of components and modules designed to simulate
and analyze relativistic and astrophysical phenomena. These components provide researchers with
tools necessary to explore general relativity. We highlight some key components and their associated
functionality.

8.4.1. Solver Modules
These modules enable the numerical integration of Einstein’s field equations and other relevant
equations governing relativistic astrophysics. Examples of solver modules available in the toolkit
include:

• EinsteinEvolve: This one forms the core of the Einstein Toolkit, providing solvers for evolving
Einstein’s equation. It employs finite difference or finite volume methods, with adapted mesh
refinement and numerical techniques to solve for the dynamics of spacetime.incorporates

• HydroBase: This modules solvers for hydrodynamics, who play crucial roles in modelling
phenomena involving fluids (accretion disks, supernovae, neutron star mergers, etc.).

• GWBase: This module helps work with gravitational wave astronomy. It facilitates the study
of gravitational waveforms produced by compact object mergers.

102



8.4.2. Analysis and Visualization Tools
The Einstein Toolkit provides analysis and visualization tools to help researchers interpret and ex-
tract important information from simulation data. Some of these visualization components include:

• Carpet: This is a framework for adaptive mesh refinement (AMR), allowing researchers to
work with high spatial resolution in regions of interests (like the event horizon in a black hole
simulation), while using computational resources efficiently elsewhere. It refines the grid based
on different criteria, such as presence of shocks or strength of gravitational fields.

• VisIt: This powerful tool offers visualization capabilities for large-scale simulation data. It
generates interactive visualizations and custom plots, all needed to successfully understand
the data gained in our simulations.

8.4.3. Setting Up a Simulation
We need to configure the Einstein Toolkit according to our specific research requirements. This is
done by selecting (if not creating) different files that will be used on the Cactus framework.

Many of the required files have the Cactus Configuration Language (CCL) extension, and are
used to define the parameters and setting for our simulations. Below is a list of the most important
".ccl" files:

• cactus-config.ccl: This file sets up the overall framework configuration, that is, how the
Einstein Toolkit actually runs in our computer.

• schedule.ccl: As the name suggests, it specifies the schedule of our simulation, defining the
order in which functions are executed during the simulation.

• param.ccl: This file contains parameter definitions specific to the simulation we are trying to
set up. Here we find information about our numerical parameters, physical constants, initial
conditions, boundary conditions, and other settings relevant to our simulation.

• thornlist.ccl: Here we find the thorns used in our simulation. This helps to configure which
thorns will be active and what are their dependencies.

• interface.ccl: Here is where the interface between different thorns is defined. This helps to
specify how data is exchanged between modules.

8.5. Parfiles inside the Einstein Toolkit
After all other files and directories are created, we make use of a final file called the ’.par’ file. These
serve as a centralized file where various thorns (modules) within the toolkit read their respective
parameters and settings. They will be used to include initial conditions, boundary conditions, nu-
merical parameters, and to specify the behavior of the thorns involved in the simulation.

These files also ensure the integration of multiple thorns, while also allowing them to interact
and work together by sharing its parameters among all modules.

Below we show an example of a .par file used to run a Heat Equation code.

1 %%writefile {par_dir}/heat_eqn.par
2 Cactus::cctk_run_title = "scalar"
3 Cactus::cctk_full_warnings = yes
4 Cactus::highlight_warning_messages = no
5 Cactus::terminate = "time"
6 Cactus::cctk_final_time = 5.0

103



7

8 ActiveThorns = "Carpet CarpetLib CarpetInterp CarpetReduce CarpetSlab"
9 Carpet::verbose = no

10 Carpet::veryverbose = no
11 Carpet::schedule_barriers = no
12 Carpet::storage_verbose = no
13 #Carpet::timers_verbose = no
14 CarpetLib::output_bboxes = no
15

16 Carpet::domain_from_coordbase = yes
17 Carpet::max_refinement_levels = 1
18

19 driver::ghost_size = 1
20

21 Carpet::init_fill_timelevels = yes
22

23 ActiveThorns = "NaNChecker"
24 NaNChecker::check_every = 1 # 512
25 #NaNChecker::verbose = "all"
26 #NaNChecker::action_if_found = "just warn"
27 NaNChecker::action_if_found = "terminate"
28 NaNChecker::check_vars = "
29 HeatEqn::U
30 "
31

32 ActiveThorns = "Boundary CartGrid3D CoordBase SymBase"
33 CoordBase::domainsize = "minmax"
34 CoordBase::spacing = "numcells"
35

36 CoordBase::xmin = -10.0
37 CoordBase::ymin = -10.0
38 CoordBase::zmin = -10.0
39 CoordBase::xmax = +10.0
40 CoordBase::ymax = +10.0
41 CoordBase::zmax = +10.0
42 CoordBase::ncells_x = 40
43 CoordBase::ncells_y = 40
44 CoordBase::ncells_z = 40
45

46 CoordBase::boundary_size_x_lower = 1
47 CoordBase::boundary_size_y_lower = 1
48 CoordBase::boundary_size_z_lower = 1
49 CoordBase::boundary_size_x_upper = 1
50 CoordBase::boundary_size_y_upper = 1
51 CoordBase::boundary_size_z_upper = 1
52

53 CartGrid3D::type = "coordbase"
54

55 ActiveThorns = "Time"
56 Time::dtfac = 0.0125
57

58 ActiveThorns = "InitBase"

104



59

60 ActiveThorns = "HeatEqn"
61

62 ActiveThorns = "IOUtil"
63 IO::out_dir = $parfile
64 IO::checkpoint_dir = $parfile
65 IO::checkpoint_ID = no
66 IO::checkpoint_every_walltime_hours = 6.0
67 IO::checkpoint_on_terminate = yes
68 IO::recover = "autoprobe"
69 IO::recover_dir = $parfile
70

71 ActiveThorns="CarpetIOHDF5"
72 IOHDF5::out2D_every = 16
73 IOHDF5::out2D_xz = no
74 IOHDF5::out2D_yz = no
75 IOHDF5::output_buffer_points = yes
76 #IOHDF5::one_file_per_group = yes
77 IOHDF5::output_symmetry_points = no
78 IOHDF5::compression_level = 1
79 IOHDF5::use_checksums = yes
80 IOHDF5::out2D_vars = "
81 HeatEqn::U
82 Grid::Coordinates{out_every=1000000000} #we only want this to print once
83 "
84 IOHDF5::checkpoint = no

Notice how it includes important parameters of the simulation, while also specifying which thorns
will be used to ensure a correct simulation.

Finally, ".par" files can be downloaded from uploaded code in sites such as Github. These would
be ready to be ran and worked with in our own terminal. To modify these files, one can open any
".txt" file compiler and change the necessary parameters, and allocating the file accordingly.

105



8.6. Running an example from the Einstein Toolkit
site

Let us begin showing how to run an example from scratch. The Einstein Toolkit community website
has all the documentation needed to correctly install the toolkit in your computer, and to under-
stand how everything works. The first thing to do, is of course check if your computer has all the
requirements necessary to be able to run code. In our case, we will be working inside Ubuntu, a
Linux distribution that works best with the Einstein Toolkit. We will be also be working inside a
jupyer notebook, that will help us better visualize what is happening inside our terminal.

We start going to the Einstein Toolkit community website, https://einsteintoolkit.org/, where
we will easily spot two titles: ’Get Started’ and ’Documentation’ (Fig. 8.1).

Figura 8.1: Location of tutorials and documentation for the Einstein Toolkit

At Get Started, we can find a tutorial, that details how to correctly install the libraries needed
for the code. One can either select ’First Steps’ or ’Download’. Downloading the notebook in our
laptop is easy enough, so when clicking on ’Download’ we will be greeted with a read only version of
a Jupyter Notebook. This notebook details everything needed to type in different cells of a Jupyter
notebook to correctly install the Einstein Toolkit in our machine.

After running every cell with no error, we can assume the Einstein Toolkit works correctly in
our computer and therefore we can work with any .par file that is presented to us.

Let us work with a specific example: the Multipatch Wave Equation.

We come back to the Einstein Toolkit website to find an image gallery (Fig. 8.2) in the top left
corner,

Inside this gallery (Fig. 8.3) we will find various examples. Since some of them take days to run,
we will work with a simple example, and click on Multi Patch Scalar Wave Equation:

After clicking on this section, we notice a brief description (Fig. 8.4) of the code at hand, which
helps set up context of what the parfile is doing internally. Parfiles usually only contain thorns
and values of parameters, so it is important to know what is it that we are trying to solve. In this
case, the description tells us that the parfile solves the wave equation on a Kerr background. It
specifies that it has certain symmetry on its Cartesian coordinates axes, and one can check it does
actually use symmetry thorns. Also, one must also know what it is that the simulation shows. In
this case, starting from an spherical harmonic with (l, m) = (2, 2) in angular directions, it shows
the amplitude of waves outside of the event horizon.

106

https://einsteintoolkit.org/
https://einsteintoolkit.org/


Figura 8.2: Gallery where some examples are presented and ready to be
simulated

Figura 8.3: 5 examples presented, each with its own tutorial and documen-
tation to understand the physics behind them.

107



Figura 8.4: Brief description of the simulation for the Multipatch wave
equation

108



Just below the description, some important information for our simulation is given, like the one
seen in 8.5. The parfile is available for all to download and change as needed. Also, within the
Cactus framework one needs to execute a script that calls this parfile, gives the simulation a name,
and begins to create all directories necessary for Cactus to run the simulation. This is all done
with the ’simfactory/bin/sim’ script, which is inside the ’Cactus’ folder in the given path. Also, not
every simulation can be ran in any cluster, since some need bigger RAM and resources to not run
out of memory. In this case, the simulation can run in our laptop, and results can be tested.

Figura 8.5: Brief description of the simulation

Finally, results are also given for each simulation example. One can download these, and follow
the respective tutorials to plot relevant variables. In this case, one can use the ’VisIt’ program to
view a 3-D representation of the wave equation. More variables are available for every simulation,
all which need some understanding of the parfile to know what is it that is being given by the
toolkit.

109



Capítulo 9

Gravitational Waves

9.1. Introduction
Since the formulation of the field equations of general relativity in 1916, Albert Einstein found that
when linearizing the weak-field equations, the solutions had wave behavior. These were transverse
waves that travel at the speed of light, and are fundamentally different from other type of waves, for
example: while electromagnetic waves propagating in space and time are created by the acceleration
of electric charges, gravitational waves are created by the acceleration of mass, and are waves of the
spacetime fabric itself.

All objects with mass moving accelerating through spacetime, in theory, generate gravitational
waves. However, to truly be able to observe and measure their effects, the sources studied are
usually accelerating masses of huge binary stars and black hole mergings. An example of this is
depicted in Fig. 9.1.

Figura 9.1: Basic display of how the spiraling of two massive objects could
cause wave ripples that travel through spacetime.

The significance of gravitational wave detection extends beyond confirming a prediction of Gen-
eral Relativity. Gravitational waves offer a new tool for probing the universe’s most energetic
events. One notable example is the observation of the binary neutron star merger GW170917. This
event, detected in both gravitational waves and gamma-ray bursts, marked the beginning of multi-
messenger astronomy. It provided valuable information about the origin of heavy elements in the
universe and confirmed that such mergers can be observed through multiple channels.

The most known example of gravitational wave detectors is the first one, detected on September

110



14, 2015, by the Laser Interferometer Gravitational-Wave Observatory (LIGO).

9.2. Historical context
Recent detection of gravitational waves by the LIGO and Virgo team in 2015 has baffled the physics
community as a huge achievement of experimental physics. They not only confirmed black holes
existed, but also showed there are binary black hole systems and that they collide to form larger
black holes. Though a massive breakthrough for researchers now, the theory behind these waves
was not always fully supported by the scientific community. In fact, it was not until the beginning
of the 1960s that the experimentalists were given the green light to start designing detectors, for
which there was no previous reason to convince anyone that this theory held any weight.

Gravitational waves were solutions to the Einstein field equations when approximating metrics
as we, the observers, are at approximately spatial infinity from the black hole mergers. Hence
one could approximate solutions to be small perturbations of flat metric and arrive to these wave
ripples of spacetime travelling at the speed of light. The fundamental problem in Einstein’s time
is that not every theory can be proven without experimental teams working on it, and it requires
great effort and money to do so. Therefore, the scientific community had to prove, at least, that
gravitational waves were something that was worth looking into, and that it had no dead end in sight.

Because of this, Einstein was faced with a number of questions: What is the definition of a plane
gravitational wave? Does this plane defined wave exist as a solution of the full Einstein field equa-
tions? Do these waves carry energy? What is a definition of a gravitational wave with nonplanar
front? What is the energy of such waves? Do there even exist solutions to the full Einstein system
satisfying this definition? Does the full theory admit solutions corresponding to the gravitational
waves emitted by bounded sources?

Figura 9.2: Einstein and Rosen, the first scientists to examine exact gravi-
tational wave solutions.

Answering all these questions would, of course, give reason to develop strategies to look further.
Nevertheless, since the prediction of Einstein in 1916, the very definition of a gravitational wave
in the nonlinear Einstein theory was not provided until Einstein’s death. If so, what approach
did scientists have to convince the community to begin research? For this, we look into the first
question, what’s the definition of a plane gravitational wave?

The first approach was simple, a gravitational plane wave is a spacetime metric, which in some
coordinates (t, x, y, z), with t of course being timelike, has metric function perturbations depending
on u = t − x only. This would then mean that the perturbation satisfies the wave equation in flat
metric (by approximating the general metric to first order and eliminating higher order terms) and

111



could then be called gravitational waves. This approach was tried but failed, as seen in the following
example:

Let us consider the metric:

gµν = (ηµν + hµν)dxµdxν

= ηµνdxµdxν + cos (t − x)(2 + cos (t − x))dt2

− 2 cos (t − x)(1 + cos (t − x))dtdx + cos2(t − x)dx2.

We clearly see that the terms corresponding to the perturbation are oscillatory, and travelling
at the speed of light c = 1 along the x-axis. Clearly the coefficients hµν satisfy the wave equations
(by depending on the null coordinate u = t − x). One can also show that the full metric g had Ricci
curvature 0, thus providing a solution of the vacuum Einstein equations Rµν = 0 in the fully non-
linear theory. The problem is, this was actually not a gravitational wave! If we take our Minkowski
flat metric ηµν = dt̃2 − dx2 − dy2 − dz2, and changed our time coordinate to t̃ = t + sin (t − x), we
would recover our metric g. Because of this, our original metric gµν is just the flat metric written
in different coordinates, thus not corresponding to a gravitational wave. This posed a problem to
physicists: gravitational waves were not solutions of the Einstein field equations that had wave-like
behavior, and so a different mathematical precise definitions had to be given.

It was hard for anyone to continue working on this theory, since in 1937, twenty years after the
formulation of the concept of a plane wave, Albert Einstein and Nathan Rosen (Fig. 9.2) worked to
definitively prove that physically acceptable plane gravitational waves were not admitted by Ein-
stein’s theory of General Relativity, in fact, after having found one solution of the vacuum Einstein
equation representing a plane wave, they observed that it had singularities and should not be con-
sidered physical. Einstein-Rosen’s paper was later shown to Howard P. Robertson for an anonymous
revision, who recognized said singularities arise from a wrong choice of coordinates, and then sug-
gested they use cylindrical coordinates instead, thus generating cylindrical waves. This story could
be further expanded to talk about the gossip it generated amongst the science community, where
Robertson’s notes angered Einstein and made him switch the publication magazine, but what’s
really important is that it discouraged physicists to prove the existence of physical gravitational
plane waves.

It wasn’t until 1957 where Bondi, Felix Pirani, and Robinson wrote papers describing found
singularity-free solutions of gravitational plane waves that carried energy. The answers to our first
questions were finally here: A gravitational plane wave is a spacetime that satisfies vacuum Ein-
stein’s equations Rµν = 0 and has a 5-dimensional group of isometries. The motivation came from
the isometries of plane electromagnetic waves, and it was later proven that the isometries found
on these plane gravitational waves were isomorphic to those of the electromagnetic waves. A sad
realization was that these waves had already been discovered in 1925 by a mathematician H. W.
Brinkmann who came up with pp-waves (plane-fronted waves) that explained massless radiation,
and for which a special case were our gravitational plane waves. However, it was purely mathemat-
ical work and it wasn’t fully understood in its time.

The final questions were finally answered by Felix Pirani and Andrzej Trautman by the 1960s.
Pirani suggested specific conditions that a gravitational wave spacetime must satisfy for gravitational
waves to exist, giving rise to a purely geometric definition of this spacetime. He argued gravitational
radiation would be detectable when these conditions are met, and hinting how to define what
radiation is in general relativity. Trautman made the final move by answering all previous questions
in his two papers submitted to Bulletin de l’Academie Polonaise des Sciences. In these papers,
he defines boundary conditions to be imposed on gravitational fields due to isolated systems of
matter, and consequently proposes a 4-momentum P µ(σ) of a gravitational field attributed to every

112



space-like hypersurface σ of a spacetime satisfying the previously mentioned radiative boundary
conditions. If solutions satisfied all previous conditions, and also that pµ = P µ(σ1) − P µ(σ2), we
could finally know that the waves carried energy. In fact, these solutions were finally found by
Robinson and Trautman, and the green light was finally given to begin research on gravitational
waves.

9.3. Gravitational Waves in Einstein’s linearized the-
ory

We begin trying to understand what ’linearized gravity’ is and how it is applied to General Relativ-
ity to predict gravitational waves. While trying to study star binaries and black hole collisions, one
may try to approximate their effects (on our frame of reference) by thinking that they perturbate
our current flat metric ηµν by a small amount hµν . Of course the Earth affects the spacetime around
us, but at this scale one can say that our metric is basically flat. Using this, instead of working
with the whole spacetime metric gµν to solve Einstein’s field equations, one works with hµν which
we already know is small. Let us show that our hµν tensor admits wave solutions.

Recall that the Einstein field equations describing the geometry of spacetime are:

Rµν − 1
2Rgµν = 8πGTµν .

We then assume that the metric that solves the equation takes the form,

gµν = ηµν + hµν ,

where clearly ∂σηµν = 0, and ∥hµν∥ ≪ 1. We restrict ourselves to coordinates in which ηµν =
diag(−1, +1, +1, +1). By assuming hµν is small, we are implicitly setting hµν ∼ ϵhµν , so all terms
of higher than first order in this quantity are to be ignored. These formulae allow us to simplify
the equations by only working on derivatives of hµν and eliminating all higher order terms. A
substitution of the general spacetime metric for this perturbative approximation in the formula for
the Ricci tensor yields:

Rµν = 1
2(∂σ∂µhσ

ν + ∂σ∂νhσ
µ − ∂µ∂νh − 2hµν),

where h = ηµνhµν is the trace of the perturbation, and 2 = ηµν∂µ∂ν is the D’Alambert operator in
flat space.

We notice we have raised indices on our perturbation. The formula for the inverse metric can
be easily derived as follows.

First, we assume the metric gµν will take the same form of flat space ηµν plus a small perturbation
h′µν . We derive the form of h′µν in the following way:

113



gσµgµν = δν
σ =⇒ (ησµ + hσµ)(ηµν + h′µν) = δν

σ

=⇒ ησµηµν + ησµh′µν + hσµηµν + hσµh′µν︸ ︷︷ ︸
≈0

= δν
σ

=⇒ ην
σ + h′ν

σ + hν
σ = δν

σ

=⇒ δν
σ + h′ν

σ + hν
σ = δν

σ

=⇒ h′ν
σ + hν

σ = 0 / · ησµ

=⇒ h′µν = −hµν .

Therefore, our equation for the linearized inverse metric is:

gµν = ηµν − hµν .

Combining this with the equation for the Ricci scalar,

R = ηµνRµν = ∂µ∂νhµν − 2h,

allows us to reduce the left side of the field equation to

Rµν − 1
2Rgµν = 1

2(∂σ∂µhσ
ν + ∂σ∂νhσ

µ − ∂µ∂νh − 2hµν − ηµν∂ρ∂λhρλ + ηµν2h).

We have obtained the linearized form of the Einstein field equations, expressing the perturba-
tions to the spacetime metric caused by the presence of matter and energy. Now, let’s delve into
the physical interpretation of these equations in the context of gravitational waves.

Gravitational waves are ripples in spacetime, propagating outward at the speed of light. In our
linearized theory, the metric perturbation hµν encapsulates the effect of these waves on our flat
background spacetime, represented by ηµν . The key components of our linearized field equations
are associated with the dynamics of these perturbations.

The term ∂σ∂µhσ
ν +∂σ∂νhσ

µ captures the spatial derivatives of the metric perturbation, signify-
ing the stretching and squeezing of space as gravitational waves pass through. The trace h = ηµνhµν

represents the overall amplitude of the wave, providing insight into the strength of the gravitational
disturbance. Additionally, the appearance of the D’Alambert operator 2 in the equations reflects
the wave-like nature of gravitational perturbations. It describes how these waves propagate through
spacetime, akin to the behavior of electromagnetic waves.

Since we are still in the grounds of General Relativity, these equations are valid in any choice of
coordinates. This will give us some freedom in the selection of our system from which we will study
gravitational waves.

9.3.1. Gauge freedom
In classical Newtonian mechanics, the motion due to a force field is governed by f = ma. Whenever
we have f = −∇Φ, the particle’s equation is,

m
d2xi

dt2 = −∂iΦ.

114



This is a second-order differential equation for xi(t), which we can rewrite as a system of first-order
equations by introducing the momentum p:

dpi

dt
= −∂iΦ

dxi

dt
= 1

m
pi.

This helps us set an initial-value problem, specifying a state (xi, pi), which serves as a boundary
condition with which the above system is uniquely solved. As seen in previous methods, a first-
order in time system of equations allows us to specify coordinates and momenta at some time t,
and evolve it forward to an infinitesimal amount t+δt, thus obtaining the entire solution by iteration.

We we would like is to formulate the analogous problem in general relativity. Recall Einstein’s
equations are Gµν = 8πGTµν , where both sides are covariant; there’s no preferred notion of ’time’.
One can nevertheless pick a spacelike hypersurface Σ, specify initial data on that hypersurface, and
see how it would evolve to the next hypersurface (as seen in the chapter on Numerical Relativity).

Since our unknown in General Relativity is the metric gµν , we guess that we should consider the
values gµν |Σ of the metric on the hypersurface to be the ’coordinates’, and time derivatives ∂tgµν |Σ
(after specifying the time coordinate) to be the ’momenta’. Recall the equations Gµν = 8πGTµν

involve second derivatives of the metric. However, the Bianchi identity tells us that the contravariant
Einstein tensor is conserved, that is, ∇µGµν = 0. This equation can be rewritten as

∂0G0ν = −∂iG
iν − Γµ

µλGλν − Γν
µλGµλ.

We notice that the right hand side has no third-order time derivatives, meaning that the components
G0ν cannot have second-order time derivatives. This means that the four equations

G0ν = 8πGT 0ν ,

cannot be used to evolve initial data (gµν , ∂tgµν)|Σ. They are thus constraints on this initial data,
setting conditions on combination of the metric and its time derivative on the hypersurface. The
remaining equations,

Gij = 8πGT ij ,

are the dynamical evolution equations for the metric. These are six equations for the ten unknown
functions gµν(xσ), so the solution involves a fourfold ambiguity. This is the freedom to choose four
coordinate functions throughout spacetime.

All up to this point tells us we must determine the evolution of the metric, up to an unavoid-
able ambiguity in fixing the remaining components g0ν . This is analogous to electromagnetism,
where one cannot determine the evolution uniquely since there’s always freedom to perform a gauge
transformation Aµ → Aµ + ∂µλ. In General Relativity, coordinate transformations will play a role
reminiscent of gauge transformations in electromagnetism, introducing ambiguity into the time evo-
lution. This we will call our gauge freedom.

Physically, gauge freedom implies that different observers might use different coordinates to de-
scribe the same gravitational wave, yet they will all agree on the observable effects of the wave.
This freedom to choose coordinates reflects the inherent flexibility in our mathematical description
of the gravitational field.

To cope with this problem we can simply "choose a gauge". A popular choice in the harmonic

115



gauge, in which
2xµ = 0.

Remembering that xµ are just functions, not components of a vector, thus covariant derivatives
reduce to partial derivatives. So our equation can be expanded as follows:

0 = 2xµ

= ∇σ∇σxµ

= ∇σ(∂σxµ)
= gρσ∇ρ(∂σxµ)
= gρσ(∂ρ∂σxµ − Γλ

ρσ∂λxµ)
= gρσ∂ρ∂σxµ − gρσΓλ

ρσ∂λxµ

= gρσ∂ρδµ
σ − gρσΓλ

ρσδµ
λ

= −gρσΓµ
ρσ.

By expanding the Christoffel symbol, this condition can be translated into a second-order differ-
ential equation for the previously unconstrained metric components g0ν . This finally fixes our gauge
freedom, in that we can now solve for the evolution of the entire metric in harmonic coordinates.

Let us use this gauge in our weak field approximation. We have already shown that the gauge
specified by 2xµ = 0, was equivalent to,

gρσΓµ
ρσ = 0.

In the weak field limit this becomes,

1
2ηρσηµλ(∂ρhσλ + ∂σhλρ − ∂λhρσ) = 0,

which reduces to,
∂µhµ

λ − 1
2∂λh = 0.

In this gauge, the linearized Einstein equations Gµν = 8πGTµν simplify to,

2hµν − 1
2ηµν2h = −16πGTµν ,

while the vacuum equations Rµν take the form,

2hµν = 0,

which is the conventional relativistic wave equation. These equations determine the evolution of a
disturbance in the gravitational field in vacuum in the harmonic gauge.

One often works with a different description of the metric perturbation. We define the "trace-
reversed" perturbation h̄µν by,

h̄µν = hµν − 1
2ηµνh.

The name comes from that fact that h̄µ
µ = −hµ

µ. In terms of h̄µν , the harmonic gauge condition
becomes,

∂µh̄µ
λ = 0,

116



and the full field equations become,

2h̄µν = −16πGTµν .

9.3.2. Application to gravitational radiation
Let us apply the weak-field limit with our harmonic gauge to study gravitational radiation. We
begin considering the linearized equations in vacuum,

h̄µν = 0.

The D’Alembertian in flat space has the form 2 = −∂2
t + ∇2, so the field equation above is in

the worm of a wave equations for h̄µν . To get solutions to this equations, we propose an ansatz of
complex valued wave solutions, given by

h̄µν = Cµνeikσxσ

,

where Cµν is a constant, symmetric, (0,2) tensor, and kσ is a constant vector known as the wave
vector. To check conditions it be a solution, we plug in:

0 = 2h̄µν

= ηρσ∂ρ∂σh̄µν

= ηρσ∂ρ(ikσh̄µν)
= −ηρσkρkσh̄µν

= −kσkσh̄µν .

This forces a condition on our wave vector, since we are focusing on solutions where h̄µν is not
zero everywhere, we must have,

kσkσ = 0.

This is loosely translated into the statement that gravitational waves travel at the speed of light.
The timelike component of the wave vector is often referred to as the frequency of the wave, so we
write kσ = (ω, k1, k2, k3). The condition that the wave vector be null then becomes,

ω2 = δijk
ikj .

The free parameters that specify the wave are then: ten numbers for the Cµν coefficients and three
for the null wave vector kσ. We begin imposing the harmonic gauge condition:

0 = ∂µh̄µν

= ∂µ(Cµνeikσxσ )
= iCµνkµeikσxσ

,

which is only true if,
kµCµν = 0.

This means that the harmonic gauge conditions forces the wave vector be orthogonal to Cµν . These
are four equations, which reduce our ten independent components of Cµν to six.

Even setting the harmonic gauge conditions, we can still make a coordinate transformation by
setting xµ → xµ + ζµ, which will still satisfy the harmonic gauge condition as long as 2ζµ = 0.

We then have another wave equation for ζµ, so once we choose a solution, we will have used up

117



all of our gauge freedom. We choose the solution,

ζµ = Bµeikσxσ

,

where kσ is the previous wave vector and Bµ are constant coefficients.

We claim that this remaining freedom allows us to convert from whatever coefficients C
(old)
µν that

characterize our gravitational wave to a new set of coefficients C
(new)
µν , such that

C(new)µ
µ = 0 and C(new)

0ν = 0.

Let us see how this is possible by solving for our Bµ coefficients. Under our xµ → xµ + ζµ

transformation, the change on our perturbation can be written

h(new)
µν = h(old)

µν − Lζhµν

= h(old)
µν − Lζgµν

= h(old)
µν − ∂µζν − ∂νζµ,

which induces a change in the trace-reversed perturbation,

h̄(new)
µν = h(new)

µν − 1
2ηµνh(new)

= h(old)
µν − ∂µζν − ∂νζµ − 1

2ηµν(h(old) − 2∂λζλ)

= h̄(old)
µν − ∂µζν − ∂νζµ + ηµν∂λζλ.

Using the specific form of our perturbation h̄µν = Cµνeikσxσ and for our translation vector
ζµ = Bµeikσxσ , we obtain that:

C(new)
µν = C(old)

µν − ikµBν − ikνBµ + inµνkλBλ.

Imposing our condition C(new)µ
µ = 0, we get that

0 = C(old)µ
µ + 2ikλBλ =⇒ kλBλ = i

2C(old)µ
µ.

Imposing our other condition C(new)
0ν = 0, we start setting ν = 0:

0 = C
(old)
00 − 2ik0B0 − ikλBλ

= C
(old)
00 − 2ik0B0 + 1

2C(old)µ
µ,

or,
B0 = − 1

2k0
(C(old)

00 + 1
2C(old)µ

µ).

Next, imposing for ν = j, we get:

0 = C
(old)
0j − ik0Bj − ikjB0

= C
(old)
0j − ik0Bj − ikj [−

i

2k0
(C(old)

00 + 1
2C(old)µ

µ)],

118



or,
Bj = i

2(k0)2 [−2k0C
(old)
0j + kj(C(old)

00 + 1
2C(old)µ

µ)].

Assuming we have performed this transformation, we will refer the new components C
(new)
µν simply

as Cµν .

Let us summarize what we’ve done. We began with ten independent components in the sym-
metric matrix Cµν . Choosing the harmonic gauge, brought the number of independent components
down to six. Using the remaining gauge freedom led to (1) C(new)µ

µ = 0 and the four conditions
(2) C(new)

0ν = 0. (So 6 minus 1 minus 4 = 1). But when ν = 0, we get that (2) implies the one
of original four constraints kµCµν = 0, adding one additional constraint. So then we have a total
of two independent components. This means we have used all our possible freedom, and these two
numbers can represent the physical information characterizing our plane wave in this gauge. We
can see this explicitly by choosing our spatial coordinates such that the wave is travelling in the x3

direction, that is:
kµ = (ω, 0, 0, k3) = (ω, 0, 0, ω),

where k3 = ω since the wave vector is null. In this case, kµCµν = 0 and C0ν = 0 together imply
that,

C3ν = 0.

Therefore the only nonzero components of Cµν are therefore C11, C12, C21 and C22. Since Cµν is
traceless and symmetric, we can actually write the matrix as:

Cµν =


0 0 0 0
0 C11 C12 0
0 C12 −C11 0
0 0 0 0

 .

This means that for a plane wave in this gauge travelling in the x3 direction, the two components
C11 and C12 (along with the frequency ω) completely characterize the wave.

We are finally close to exploring the true nature of these gravitational waves. For this, let
us consider the motion of test particles in presence of a wave. To obtain coordinate-independent
measures of the wave’s effect, we will consider the relative motion of nearby particles, as described
by the geodesic deviation equation. Let us consider nearby particles with four-velocities described
by a single vector field Uµ(x) and a separation vector Sµ. The geodesic deviation equation then
becomes:

D2

dτ 2 Sµ = Rµ
νρσUνUρSσ.

We want to compute the left-hand side to first order in hµν . If we take our test particles to be
moving slowly (since we are studying the effects of the gravitational waves in their weak field limit),
then we can express the four-velocity as an unit vector in the time direction plus correction of
order hµν and higher, but the Riemann tensor is already first order, so the correction to Uν can be
ignored, and so,

Uν = (1, 0, 0, 0).

Therefore we only need to compute Rµ
00σ, or equivalently Rµ00σ. From the equation of the weak

field approximation of the Riemann tensor, we have

Rµ00σ = 1
2(∂0∂0hµσ + ∂σ∂µh00 − ∂σ∂0hµ0 − ∂µ∂0hσ0).

119



But we have already computed values for hµ0,

hµ0 = Cµ0eikσxσ

= 0,

since Cµ0 = 0. The equation for the Riemann tensor then becomes

Rµ00σ = 1
2∂0∂0hµσ.

Meanwhile, for slow moving partials we have τ = x0 = t to lowest order, so the geodesic deviation
equation becomes:

∂2

∂t2 = 1
2Sσ ∂2

∂t2 hµ
σ,

where we can compute that hµ
σ = ηµλhλσ = hµσ, whenever µ, σ ∈ {1, 2}. Since we know the wave

is travelling in the x3 direction, we will have hµ
σ will only be nonzero when µ, σ ∈ {1, 2}. Therefore

only S1 and S2 will be affected.

Figura 9.3: Both ′+′ and ′×′ polarizations. White dots represent the posi-
tions of our test particles without the presence of gravitational waves, while
black dots show their position as the wave passes through.

Since our wave is characterized by the two numbers C11 and C12, we will from now on rename
them as C+ = C11 and C× = C12. Let us consider their effects separately.

When C× = 0, we have the equations

∂2

∂t2 S1 = 1
2S1 ∂2

∂t2 (C+eikσxσ ) and ∂2

∂t2 S2 = −1
2S2 ∂2

∂t2 (C+eikσxσ ).

These can be solved to yield, to lowest order,

S1 = (1 + 1
2C+eikσxσ )S1(0) and S2 = (1 − 1

2C+eikσxσ )S2(0).

This means that particles initially separated in the x1 direction oscillate back and forth in the x1

direction, and likewise for those with x2 separation. If we start with a ring of particles in the x − y
plane, they bounce back and forth in the shape of a ” + ”, as seen in Fig. 9.3.

The equivalent analysis for the case when C+ = 0 and C× ̸= 0 would yield the solution,

S1 = S1(0) + 1
2C×eikσxσ

S2(0) and S2 = S2(0) + 1
2C×eikσxσ

S1(0).

120



In this case, the ring of particles bounce back and forth in the shape of an ” × ”, thus explaining
why we have labelled these constants this way. This whole analysis therefore explains how a gravi-
tational wave affects the spacetime it travels through in their weak field limit.

Now, how to these theoretical considerations connect to actual observations? In experiments
such as LIGO, which is designed to detect gravitational waves, the impact of these waves on test
masses in crucial. Gravitational waves passing through the Earth cause tiny, periodict stretching
and squeezing effects on spacetime. The geodesic deviation equation, as we’ve derived, describes
the behavior of these particles induced by gravitational waves.

121



9.4. Observation of Gravitational Waves
Not long after having confirmed the theory behind gravitational waves, experiments began with
Weber and his resonant mass detectors in the 1960s. Interferometric detectors were also suggested
in the early 1960s and further developed on the 1970s. These showed a lot of promise by being
studied for their noise and performance, which led to proposals for long-baseline broadband laser
interferometers with the potential for increased sensitivity. It wasn’t until the early 2000s that the
first detectors were completed, including TAMA 300 in Japan, GEO 600 y Germany, the Laser
Interferometer Gravitational-Wave Observatory (LIGO) in the United States, and Virgo in Italy.
These detectors worked together to make joint observations from 2002 through 2011. In 2015,
Advanced LIGO became the first of a significantly more sensitive network of advanced detectors to
begin observations of a higher variety of gravitational-wave sources.

9.4.1. The LIGO detectors
The LIGO sites, situated in Washington (LIGO Hanford) and Louisiana (LIGO Livingston), are
separated by a distance of 3.002km. They each operate a single Advanced LIGO detector, which is a
modified Michelson interferometer that measures gravitational-wave strain as a difference in length
of its orthogonal arms. The idea of how these work is pretty simple and illustrated in figure 9.4;
each arm is formed by two mirrors acting as test masses, and are separated by Lx = Ly = L = 4km.
A passing gravitational wave would then alter the length of these arms, where the difference is mea-
sured as ∆L(t) = δLx − δLy = h(t)L, where h is the gravitational-wave strain amplitude projected
onto the detectors. By measuring the length variation, one can notice a difference on the phase
of the two light fields returning to the beam splitter, transmitting measurements that can then be
used to effectively make assumptions on how and where the gravitational wave was produced.

Figura 9.4: Simplified diagram of an Advanced LIGO detector.

The strain of a gravitational wave is the amount by which distances are stretched and compressed
by a passing gravitational wave, relative to the original length; thus, it is a dimensionless number.
The LIGO detectors, being receptors of such sensitive data as are gravitational waves, whose strain
is of the order of 10−21, must achieve sufficient sensitivity to (1) be able to measure gravitational
waves and (2) be able to differenciate noise from relevant data, as is noise, light refraction between
the mirrors, ground vibrations, etc. The detectors included several enhancements to the basic
Michelson interferometers. These include adding mirrors to amplify the effects of a gravitational

122



wave, operating in a vacuum to reduce light refraction, and optimizing the gravitational-wave signal
extraction by broadening the bandwidth of the arm cavities. To reduce seismic noise, test masses
(ones emitting the light beams) are suspended on quadruple-pendulum systems, minimizing low
frequencies. To minimize additional noise sources, all components, except the laser source, are
mounted on vibration isolation stages in ultrahigh vacuum.

9.4.2. The GW150914 signal
On September 14, 2015 at 09:50:45 UTC, the LIGO Hanford, WA, and Livingston, LA, observato-
ries detected the coincident signal of GW150914 (Fig. 9.5). Subsequent to the initial detection, the
data were successfully acquired and reported. Matched-filter analyses that use relativistic models
of compact binary waveforms cataloged GW150914 as the most significant event from each detector
for the observations reported.

One might wonder why there is no mention of observations from the Virgo and GEO 600 detec-
tors for this event. Unfortunately, Virgo was being upgraded at that moment, and GEO 600 was
not sufficiently sensitive to detect this event. Luckily, two detectors operating was enough to locate
the source position with 90% credibility.

Figura 9.5: LIGO measurement of gravitational waves.

Basic features of GW150914 point to it being produced by the spiraling and merging of two
black holes. Over 0.2s, the signal undergoes a remarkable transformation, increasing in frequency

123



and amplitude across approximately 8 cycles, ranging from 35 to 150Hz. This progression occurs at
velocities extremely close to the speed of light, where the amplitude of the wave reaches a maximum
and then decays in the black hole ringdown, as visually depicted in Fig. 9.6. This evolution is
explained by a two body problem in general relativity; the inspiral of two orbiting masses m1 and
m2, due to gravitational-wave emission. What explains the motion at lower frequencies is the chirp
mass:

M = (m1m2)3/5

(m1 + m2)1/5 = c3

G

[ 5
96π−8/3f−11/3ḟ

]3/5
,

where f and ḟ are the observed frequency and its time derivative.

The chirp mass of a compact binary system is a scalar that determines the leading-order orbital
evolution of the system as a result of energy loss from emitting gravitational waves. It also deter-
mines the frequency evolution of the gravitational wave signal emitted during a binary’s inspiral
phase. When analyzing gravitational wave data, it is easier to measure the chirp mass than the
two masses individually. By estimating f and ḟ from the matched-filtering analysis of the LIGO
detection, a chirp mass of M ≈ 30M⊙ is obtained, suggesting that the total mass M = m1 + m2 is
approximately 70 ≥ M⊙. This bounds the sum of the Schwarzschild radii of the binary components
to approximately 2GM/c2 ≥ 210km. Since the gravitational wave frequency was 150Hz at its peak,
we would need an orbital frequency of 75Hz. To reach this, objects must’ve been very close and very
compact. Equal Newtonian point masses orbiting at this frequency (and having said chirp mass)
would only be approximately 350km apart. While a pair of neutron stars would have been compact
enough, they would not have had the required mass. On the other hand, a black hole neutron star
binary would have a very large total mass, and thus, it would merge at a much lower frequency.
This leaves black holes as the only objects compact enough to reach orbital frequency of 75Hz with-
out contact. Furthermore, the decay of the waveform on the merging ringdown is consistent with
damped oscillations of a black hole relaxing to a stationary Kerr configuration, leaving this as the
only candidate to have formed the famous GW150914 gravitational wave detection.

Figura 9.6: Diagram of a binary black hole merger , starting from a low
frequency inicial inspiral, followed by the merging just after maximum fre-
quencies and ending with a decay in the ringdown phase.

124



9.5. Using the NLHPC
For all simulations we are in need of high power computing, and for this we were given an account in
the National Laboratory for High Performance Computing (NLHPC) cluster, who helped us finish
this thesis successfully.

9.5.1. Introduction to the NLHPC

The NLHPC is a Chilean initiative that aims to provide high-performance computing (HPC) re-
sources and support various scientific research and projects. It focuses on advancing computational
research across a great variety of disciplines. It is currently located at the Center for Mathematical
Modeling (CMM) in the University of Chile, being to date Chile’s most powerful supercomputer
available to researchers throughout the country.

We translate and quote NLHPC’s mission:
’The consolidation of a national HPC facility by offering high-quality services and advanced train-

ing to respond to the high demand for scientific computing, developing connections between research
groups, industry, and the public sector.’

The NLHPC system uses two different different clusters, Guacolda and Leftraru. Leftraru was
the first cluster to begin operating in 2014, Guacolda coming in second in 2019 to expand the cen-
ter’s processing capacity by five times, reaching 266 teraflops and 5236 cores, with a hard drive of
274 terabytes and a RAM of 23 terabytes.

To begin using the NLHPC, one must enter its website http://www.nlhpc.cl and request an
account. After being accepted, one is given a specific username. For these simulations, the account
used is ’eiubini@leftraru.nlhpc.cl’.

Accessing the NLHPC clusters requires the use of a terminal, preferably an Ubuntu bash terminal.
One uses the SSH protocol to log in remotely. With our specific account, the bash command needed
would be:

1 $ ssh eiubini@leftraru.nlhpc.cl

After typing our password, we are finally inside the cluster, and free to use its features.

9.5.2. The SLURM system
Since there’s a lot of researchers working on the NLHPC’s clusters, they need a system that manages
resources given to each user. It is central to the cluster’s accessibility and one must learn how to
use it to follow ones simulations.

SLURM (Simple Linux Utility for Resource Management) is an open-source job scheduling and
cluster management system, fault-tolerant, and highly scalable for both large and small Linux clus-
ters. As a cluster workload manager, Slurm servers three key functions: First, it allocates exclusive
and/or non-exclusive access to resources (compute nodes) to users for a specified period, allowing
them to perform their work. Second, it provides a framework for initiating, executing, and mon-
itoring jobs (typically parallel jobs) on the allocated set of notes. Finally, it arbitrates resource
contention by managing a queue of pending jobs. If you wand to launch tasks within Leftraru, you
must do so through Slurm.

125

http://www.nlhpc.cl


SLURM manages user jobs with the following key characteristics:
• Requested resource set:

– Number of coputing resources: nodes (including all their CPU’s and cores) or CPPU’s
(including all their cores) or only cores.

– Amount of memory: per node or per CPU.
– Time needed for user tasks to complete their work.

• Requested node partition (job queue).
• Requested Quality of Service (QoS) granting specific access to users.
• Requested account with limited resources.
The SLURM system manages different partitions in the NLHPC cluster, each one requested

and used according to specific needs of our simulation. NLHPC expects responsibility in the use of
these clusters, requesting small clusters for low-cost simulations and allowing others to request more
powerful clusters if they need it. The partitions SLURM manages (up to date) are as following:

• general: 48 nodes, 44 CPUs each, 187GB RAM
• largemem: 9 nodes, 44 CPUs each, 765GB
• gpus: 2 nodes, 44 CPUs each, 187GB RAM, with 4 GPUs Nvidia Tesla V100
• slims: 132 nodes, 20 CPUs each, 46GB RAM
• debug: 4 nodes, 20 CPUs each, 59GB RAM, destined for jobs lasting no more than 30 minutes.
By default, users submit jobs to a specific partition called debug (designated for all users) and

under a specific account (predefined by the user). When submitting a job to the SLURM system, it
is assignated a specific Job ID, a number that grants access to the full time status of our simulation.

Also, SLURM has 5 basic commands used to perform most of the cluster’s fundamental opera-
tions:

• srun: This command executes a specific command or script in designated nodes.
• sbatch: This command sends scripts to the squeue, allowing the user to monitor the script

even when exiting the shell.
• squeue: This command displays our job’s status, letting us algo know which nodes are assigned,

Job ID, and current time running.
• scancel: This command erases a job running in the system.
• sinfo: This command displays the status on all the cluster’s nodes, showing which nodes are

available or in use.

9.5.3. The Eistein Toolkit inside the NLHPC
Since the Einstein Toolkit is an open-source framework, one must first install it inside the NLHPC.
This must be done by someone familiar with the cluster, since they can be a little tricky to work with.

Fortunately, the ET was successfully installed previous to our simulations, but our best bet
to download it in any cluster is to go to the Einstein Toolkit download tutorial, and follow the
installation guide. In this case, the code needed to be executed inside our cluster is:

1 curl -kLO https://raw.githubusercontent.com/gridaphobe/CRL/master/GetComponents
2 chmod a+x GetComponents
3 ./GetComponents --parallel --shallow https://bitbucket.org/einsteintoolkit/manifest/raw/

↪→ master/einsteintoolkit.th

If this does not work, further assistance should be requested by the NLHPC support team.

126

http://www.einsteintoolkit.org/download.htlm


9.6. Reproducing a quasi-circular binary merger
The Einstein Toolkit possesses all the tools to simulate the dynamics of black hole binaries: their
inspiral, merger, the resulting gravitational wave emission, and even the quasi-normal modes in
their ringdown phase. By working with a specific parfile, corresponding to the evolution of a system
of two black holes, one can adjust parameters to explore different possible mergings.

Several parameters are available for adjustment:
• **Initial conditions:** Specify the masses of each black hole, their initial separation, their

initial momenta (which sets the motion of the system), and also their initial spin.
• **The eccentricity of the binary orbit**
• **Grid resolution:** Allows for more detailed simulations. Users can specify higher resolutions

near the black holes, with easy-to-set parameters for precision.
• **Simulation Time Steps**
• **Physical parameters:** Include the equation of state, aiding simulations involving matter.

This is particularly relevant for modeling systems beyond black hole binaries, such as neutron
star binaries (NS-NS or NS-BH systems).

• **Simulation Domain Size Parameters:** Important to prevent radiation in the spatial bound-
aries from reflecting and affecting the central system’s motion.

• **Numerical Techniques Parameters:** Related to the numerical methods used to solve the
Einstein field equations.

• **Output Intervals:** Specify the quantity and type of data to be displayed.
We will start with an initial simulation of a quasi-circular binary, understanding the parfile used

and the parameters set to analyze relevant output. Following this, we will conduct a simulation of
the first gravitational wave detection, GW150914, on a supercomputer cluster. This process involves
analyzing the parameters set and comparing the simulated results with the actual detection.

9.6.1. Analyzing the parfile
The following parfile is an example of a black hole binary that takes about 20 hours using 40 CPUs
in a cluster to compute. To know what our simulation is doing, we analyze our Einstein Toolkit
parfile. All code inside this parfile is important on its own, but there are some we will focus on to
discuss how it changes our simulation.

Each parfile found or made can be different on its own, since they’re coded by programmers.
While every line in the parfile is essential, we specifically focus on those not prefixed with a ’#’
sign. Cactus interprets lines with ’#’ as comments, excluding them from the software’s reading.

1 #==============================================================================
↪→

2 # BBH: TwoPunctures - Mclachlan
3 #==============================================================================

↪→
4 # Changed output options wrt to example file
5 #------------------------------------------------------------------------------
6 # Cactus parameters:
7 #------------------------------------------------------------------------------
8 #Cactus::cctk_run_title = "BBH"
9 #Cactus::cctk_full_warnings = "yes"

10 #Cactus::terminate="runtime"
11 #Cactus::max_runtime= 5120

127



12

13 TerminationTrigger::max_walltime = 12.0
14 TerminationTrigger::on_remaining_walltime = 30 # minutes
15 TerminationTrigger::output_remtime_every_minutes = 60
16 Cactus::terminate = time
17 Cactus::cctk_final_time = 200

The initial segment of the parfile is dedicated to configuring the essential parameters that govern
the simulation. One crucial aspect established in the parfile is the final time of the simulation. This
parameter, denoted as "cctk_final_time" determines the duration of the simulation run. Care must
be taken to set an appropriate final time, as an excessively large value may lead to undesired effects,
such as the gravitational waves generated ’bouncing’ off the simulation boundaries.

To mitigate this issue, one common strategy is to adjust the spatial domain of the simulation. By
ensuring that the spatial domain is sufficiently big, the gravitational waves can propagate without
encountering the boundaries too soon. In the provided example, the final time is set to 200,
representing the time duration of the simulation. It is worth noting that this value is carefully
chosen to balance between the capturing the relevant dynamics of the system, and preventing
unwanted reflections.

Additionally, within the parfile, there is typically a comment indicating the maximum permissible
value for the final time. In this specific case, the comment specifies that our simulation’s maximum
allowable final time is set at 5120. .

1 #------------------------------------------------------------------------------
2 # Activate all necessary thorns:
3 #------------------------------------------------------------------------------
4

5 ActiveThorns = "Boundary CartGrid3D CoordBase Fortran InitBase IOUtil LocalReduce
↪→ SymBase Time"

6 ActiveThorns = "AEILocalInterp LocalInterp"
7 #ActiveThorns = "MoL ReflectionSymmetry RotatingSymmetry90 RotatingSymmetry180

↪→ Slab SpaceMask SphericalSurface"
8 ActiveThorns = "MoL ReflectionSymmetry RotatingSymmetry180 Slab SpaceMask

↪→ SphericalSurface"
9 #ActiveThorns = "MoL ReflectionSymmetry Slab SpaceMask SphericalSurface"

10 ActiveThorns = "Carpet CarpetInterp CarpetIOASCII CarpetIOHDF5 CarpetIOScalar
↪→ CarpetLib CarpetIOBasic CarpetReduce CarpetRegrid2 CarpetSlab CarpetTracker
↪→ CarpetMask LoopControl SystemTopology"

11 #ActiveThorns = "Formaline NaNChecker TerminationTrigger TimerReport"
12 ActiveThorns = "NaNChecker TerminationTrigger TimerReport"
13 ActiveThorns = "ADMbase ADMcoupling ADMmacros CoordGauge StaticConformal"
14 ActiveThorns = "PunctureTracker"
15 ActiveThorns = "TmunuBase"
16 ActiveThorns = "QuasiLocalMeasures"
17 #ActiveThorns = "ADMConstraints"
18 #ActiveThorns = "BLAS LAPACK GSL HDF5"
19 ActiveThorns = "TwoPunctures"
20 ActiveThorns = "SummationByParts"
21 ActiveThorns = "GenericFD NewRad"
22 ActiveThorns = "ML_BSSN ML_BSSN_Helper ML_ADMConstraints"
23 ActiveThorns = "Dissipation"
24 ActiveThorns = "AHFinderDirect"
25 ActiveThorns = "WeylScal4 Multipole"

128



26 ActiveThorns = "SystemStatistics"

Next, we tell Cactus which thorns it will use on our simulations. We will give a brief explanation
of some relevant thorns, though it is important to mention that each thorn plays a part on our
coding.

• **MoL thorns:** These thorns correspond to Method of Lines thorns, which is a numerical
scheme to solve evolution equations. There are several MoL schemes, so one must later specify
which one to use.

• **Symmetry thorns:** When working with symmetrical problems (like our spherically sym-
metric black hole, for instance), these thorns are in charge of reducing our computational work
when applicable.

• **NaNChecker:** This thorn makes sure our simulation ends or warns us when there are NaN
(Not a Number) characters found, for example, when gradients explode or divisions by 0 are
being made.

• **PunctureTracker:** This one is part of the thorns we will use most. This thorn keeps track
of our black hole punctures (singularities) position and momentum in our grid, and its used
to evolve to the next time step in our simulation.

• **QuasiLocalMeasures:** This thorn holds a data array of 111 columns. Some important
columns are: coordinate spins, areas of the black holes, radii of the black holes, energy of each
black hole, etc. It implements the calculation of mass and spin multipoles from the isolated
and dynamical horizon formalism. It takes as input a horizon surface, or any other surface
that the user specifies, and calculates useful quantities such as the Weyl or Ricci scalar, in
addition to physical observables such as mass and momenta.

• **WeylScal4:** This thorn contains the Weyl scalars, which is a set of five complex scalars
Ψ0, ..., Ψ4 which encode the independent components of the Weyl tensor on a 3+1 spacetime.
We will discuss how these are related to our gravitational wave radiation later.

1 #------------------------------------------------------------------------------
2 # Run parameters:
3 #------------------------------------------------------------------------------
4

5 #------
6 # Grid:
7 #------
8

9 Time::dtfac = 0.25
10 MoL::ODE_Method = "rk4"
11 MoL::MoL_Intermediate_Steps = 4
12 MoL::MoL_Num_Scratch_Levels = 1
13

14 CartGrid3D::type = "coordbase"
15 CartGrid3D::domain = "full"
16 CartGrid3D::avoid_origin = "no"
17

18 CoordBase::domainsize = "minmax"
19 CoordBase::spacing = "gridspacing" # "gridspacing" or "numcells"
20

21 # On a workstation (Total required memory: ~1.9GB):
22 #CoordBase::xmin = 0.00

129



23 #CoordBase::ymin =-12.00
24 #CoordBase::zmin = 0.00
25 #CoordBase::xmax = 12.00
26 #CoordBase::ymax = 12.00
27 #CoordBase::zmax = 12.00
28 #CoordBase::dx = 0.40 # dx or ncells_x
29 #CoordBase::dy = 0.40 # dy or ncells_y
30 #CoordBase::dz = 0.40 # dz or ncells_z
31

32 # On a HPC (Total required memory: ~6.5GB):
33 CoordBase::xmin = 0.00
34 CoordBase::ymin =-120.00
35 CoordBase::zmin = 0.00
36 CoordBase::xmax = 120.00
37 CoordBase::ymax = 120.00
38 CoordBase::zmax = 120.00
39 CoordBase::dx = 1.50 # dx or ncells_x
40 CoordBase::dy = 1.50 # dy or ncells_y
41 CoordBase::dz = 1.50 # dz or ncells_z

Within this section, we instruct our MoL thorn on the specific numerical evolution method
it should employ. For the current simulation, we opt for the widely-used Runge-Kutta 4 (rk4)
method. It’s noteworthy that many parfiles provide guidance on configuring simulations to match
the computational capabilities of the hosting machine. In our case, these simulations are executed
on the NLHPC, and adhering to the advice in the parfile becomes very important. Consequently,
we uncomment the relevant lines tailored to the NLHPC environment.

Furthermore, the parfile configures the spatial grid for our simulations. In this instance, we set
up a cubic grid with dimensions of 120 units on each side. The initial spatial step size is established
at 1.5, setting up parameters for the discretization of the spatial domain. This step size is chosen
to balance computational efficiency and precision.

1 CarpetRegrid2::regrid_every = 32
2 CarpetRegrid2::num_centres = 2
3

4 # On a workstation (Total required memory: ~1.9GB):
5 #CarpetRegrid2::num_levels_1 = 6
6 #CarpetRegrid2::position_x_1 = +3.0
7 #CarpetRegrid2::radius_1[ 1] = 2.8
8 #CarpetRegrid2::radius_1[ 2] = 2.0
9 #CarpetRegrid2::radius_1[ 3] = 1.2

10 #CarpetRegrid2::radius_1[ 4] = 0.6
11 #CarpetRegrid2::radius_1[ 5] = 0.3
12 #CarpetRegrid2::movement_threshold_1 = 0.16
13

14 #CarpetRegrid2::num_levels_2 = 6
15 #CarpetRegrid2::position_x_2 = -3.0
16 #CarpetRegrid2::radius_2[ 1] = 2.8
17 #CarpetRegrid2::radius_2[ 2] = 2.0
18 #CarpetRegrid2::radius_2[ 3] = 1.2
19 #CarpetRegrid2::radius_2[ 4] = 0.6
20 #CarpetRegrid2::radius_2[ 5] = 0.3
21 #CarpetRegrid2::movement_threshold_2 = 0.16

130



22

23 # On a HPC (Total required memory: ~6.5GB):
24 CarpetRegrid2::num_levels_1 = 7
25 CarpetRegrid2::position_x_1 = +3.0
26 CarpetRegrid2::radius_1[ 1] = 64.0
27 CarpetRegrid2::radius_1[ 2] = 16.0
28 CarpetRegrid2::radius_1[ 3] = 8.0
29 CarpetRegrid2::radius_1[ 4] = 4.0
30 CarpetRegrid2::radius_1[ 5] = 2.0
31 CarpetRegrid2::radius_1[ 6] = 1.0
32 CarpetRegrid2::movement_threshold_1 = 0.16
33

34 CarpetRegrid2::num_levels_2 = 7
35 CarpetRegrid2::position_x_2 = -3.0
36 CarpetRegrid2::radius_2[ 1] = 64.0
37 CarpetRegrid2::radius_2[ 2] = 16.0
38 CarpetRegrid2::radius_2[ 3] = 8.0
39 CarpetRegrid2::radius_2[ 4] = 4.0
40 CarpetRegrid2::radius_2[ 5] = 2.0
41 CarpetRegrid2::radius_2[ 6] = 1.0
42 CarpetRegrid2::movement_threshold_2 = 0.16

This section of our parfile holds significant importance as it contains very relevant details for our
simulation. Initially, it specifies the number of black holes in our system, determining the quantity
of centers to be studied. In this particular case, we consider two black holes.

The specialized thorn, CarpetRegrid2, allows us to change our grid depending on where the
black holes are located. The line CarpetRegrid2::num_levels_1 = 7 indicates that it will make 7
different grid resolutions (and could be different for each black hole, as seen in the two different
blocks of code). Starting from the box containing the black hole, it will make our spatial grid 64x
thinner, then 16x thinner, and so on until it reaches most outside levels.

An important line is CarpetRegrid2::position_x_1 = +3.0, which specifies the starting position
of the black hole. In this parfile we work with a quasi-circular binary, in which both masses will
be equal, and momenta will just differ on initial direction, one going strictly upwards on our plane
and the other backwards. Therefore, we start with a symmetric starting positions of +3 and −3.
Other black hole configurations might need different starting positions so as to not lose our black
holes from our simulation domain.

1 #------------------------------------------------------------------------------
2 # Analysis:
3 #------------------------------------------------------------------------------
4 AHFinderDirect::find_every = 32
5

6 #AHFinderDirect::run_at_CCTK_ANALYSIS = "yes"
7 #AHFinderDirect::run_at_CCTK_POSTSTEP = "no"
8 AHFinderDirect::run_at_CCTK_POST_RECOVER_VARIABLES = "no"
9

10 AHFinderDirect::move_origins = "yes"
11 AHFinderDirect::reshape_while_moving = "yes"
12 AHFinderDirect::predict_origin_movement = "yes"
13

131



14 # Hermite to order 3 to avoid discontinuities in the metric spatial derivatives:
15 #AHFinderDirect::geometry_interpolator_name = "Hermite polynomial interpolation"
16 #AHFinderDirect::geometry_interpolator_pars = "order=3"
17 #AHFinderDirect::surface_interpolator_name = "Hermite polynomial interpolation"
18 #AHFinderDirect::surface_interpolator_pars = "order=3"
19 AHFinderDirect::geometry_interpolator_name = "Lagrange polynomial interpolation"
20 AHFinderDirect::geometry_interpolator_pars = "order=4"
21 AHFinderDirect::surface_interpolator_name = "Lagrange polynomial interpolation"
22 AHFinderDirect::surface_interpolator_pars = "order=4"
23

24 AHFinderDirect::output_h_every = 0
25

26 AHFinderDirect::N_horizons = 3
27

28 AHFinderDirect::origin_x [1] = +3.0
29 AHFinderDirect::initial_guess__coord_sphere__x_center[1] = +3.0
30 AHFinderDirect::initial_guess__coord_sphere__radius [1] = 0.25
31 AHFinderDirect::which_surface_to_store_info [1] = 0
32 AHFinderDirect::set_mask_for_individual_horizon [1] = no
33 AHFinderDirect::reset_horizon_after_not_finding [1] = no
34 AHFinderDirect::track_origin_from_grid_scalar [1] = yes
35 AHFinderDirect::track_origin_source_x [1] = "PunctureTracker::pt_loc_x[0]"
36 AHFinderDirect::track_origin_source_y [1] = "PunctureTracker::pt_loc_y[0]"
37 AHFinderDirect::track_origin_source_z [1] = "PunctureTracker::pt_loc_z[0]"
38 AHFinderDirect::max_allowable_horizon_radius [1] = 3
39

40 AHFinderDirect::origin_x [2] = -3.0
41 AHFinderDirect::initial_guess__coord_sphere__x_center[2] = -3.0
42 AHFinderDirect::initial_guess__coord_sphere__radius [2] = 0.25
43 AHFinderDirect::which_surface_to_store_info [2] = 1
44 AHFinderDirect::set_mask_for_individual_horizon [2] = no
45 AHFinderDirect::reset_horizon_after_not_finding [2] = no
46 AHFinderDirect::track_origin_from_grid_scalar [2] = yes
47 AHFinderDirect::track_origin_source_x [2] = "PunctureTracker::pt_loc_x[1]"
48 AHFinderDirect::track_origin_source_y [2] = "PunctureTracker::pt_loc_y[1]"
49 AHFinderDirect::track_origin_source_z [2] = "PunctureTracker::pt_loc_z[1]"
50 AHFinderDirect::max_allowable_horizon_radius [2] = 3
51

52 AHFinderDirect::origin_x [3] = 0
53 AHFinderDirect::find_after_individual_time [3] = 100.0
54 AHFinderDirect::initial_guess__coord_sphere__x_center[3] = 0
55 AHFinderDirect::initial_guess__coord_sphere__radius [3] = 1.0
56 AHFinderDirect::which_surface_to_store_info [3] = 2
57 AHFinderDirect::reset_horizon_after_not_finding [3] = no
58 AHFinderDirect::max_allowable_horizon_radius [3] = 6

Now focusing on the analysis segment of our parfile, we look into the functionality of the AHFind-
erDirect thorn. This thorn employs numerical methods to computationally determine the locations
of black hole event horizons. The term ’AH’ in AHFinderDirect stands for Apparent Horizon, rep-
resenting the boundary beyond which even light cannot escape the gravitational pull of a black hole,
as calculated by computer formulae.

132



One noticeable aspect of this analysis is the inclusion of lines containing the term ’guess.’ These
lines reveal a dynamic process wherein the thorn strategically refines its search for the apparent
horizons (with the help of the PunctureTracker thorn). The PunctureTracker thorn keeps track
of the black hole centers, enabling AHFinderDirect to make informed ’guesses’ about the probable
locations of event horizons.

1 PunctureTracker::track [0] = "yes"
2 PunctureTracker::initial_x [0] = 3.0
3 PunctureTracker::which_surface_to_store_info[0] = 0
4 PunctureTracker::track [1] = "yes"
5 PunctureTracker::initial_x [1] = -3.0
6 PunctureTracker::which_surface_to_store_info[1] = 1
7

8 QuasiLocalMeasures::num_surfaces = 3
9 QuasiLocalMeasures::spatial_order = 4

10 QuasiLocalMeasures::interpolator = "Lagrange polynomial interpolation"
11 QuasiLocalMeasures::interpolator_options = "order=4"
12 QuasiLocalMeasures::surface_index [0] = 0
13 QuasiLocalMeasures::surface_index [1] = 1
14 QuasiLocalMeasures::surface_index [2] = 2
15

16 Multipole::nradii = 4
17 Multipole::radius[0] = 30
18 Multipole::radius[1] = 40
19 Multipole::radius[2] = 50
20 Multipole::radius[3] = 60
21 Multipole::ntheta = 120
22 Multipole::nphi = 240
23 Multipole::variables = "WeylScal4::Psi4r{sw=-2 cmplx=’WeylScal4::Psi4i’ name=’psi4’}"
24 Multipole::out_every = 4
25 Multipole::l_max = 4
26

27 WeylScal4::fd_order = "4th"

The next section of the analysis output focuses on various thorns:

We set the PunctureTracker to effectively track the black hole positions throughout the simula-
tion, and give this information to other thorns.

For Multipole, we specify the number of radii in which we will calculate the Weyl scalar, speci-
fying each of their sizes. This helps to better analyze how the gravitational waves (as studied with
the Weyl scalar Psi4) travels outside the black hole.

We note that the Weyl scalar is calculated up to 4th order in WeylScal4::fd_order = "4th". The
Einstein Toolkit currently calculates the Weyl scalar up to 8th order, but the calculations get pretty
messy, and it is not really necessary to look much further to higher orders when working on binary
systems.

1 #------------------------------------------------------------------------------
2 # Checkpoint/Recovery:
3 #------------------------------------------------------------------------------
4 IOHDF5::checkpoint = "yes"

133



5 IO::checkpoint_ID = "yes"
6 IO::recover = "autoprobe"
7 IO::checkpoint_every_walltime_hours = 6.0
8 # IO::out_proc_every = 2
9 IO::checkpoint_keep = 3

10 IO::checkpoint_on_terminate = "yes"
11 IO::checkpoint_dir = "../checkpoints"
12 IO::recover_dir = "../checkpoints"
13 IO::abort_on_io_errors = yes
14 CarpetIOHDF5::open_one_input_file_at_a_time = yes

The final part of the parfile just specifies certain checkpoint settings. Since simulations take so
much time, one usually allows the computer to store checkpoints. If anything went wrong with our
simulation in say, two days, we could resume the simulation starting from the last checkpoint, and
not lose relevant data.

134



9.6.2. Plot and analysis of the quasi-circular merger
After running the script, we have retrieved from the simulation the positions of our binary black hole
system in the x − y plane, and subsequently plotted them in Fig. 9.7. Positions of both black holes
in Cartesian coordinates are all stored in an ASC file called ’puncturetracker-ptloc..asc’, along with
several other parameters. The trajectories are both retrieved using the following Python function,
which specifies the columns of each parameter plotted, namely; time and (x, y, z) positions for the
two black holes,

1 def get_trajectories(path):
2

3 ascii_grid = np.loadtxt(f’{path}puncturetracker-pt_loc..asc’)
4

5 idx = [8, 22, 23, 32, 33, 42, 43]
6 cols = [’t’, ’x1’, ’x2’, ’y1’,’y2’,’z1’,’z2’]
7 id_dict = dict(zip(cols, idx))
8

9 t = ascii_grid[:,id_dict[’t’]]
10 trajectory1 = ascii_grid[:,id_dict[’x1’]], ascii_grid[:,id_dict[’y1’]]
11 trajectory2 = ascii_grid[:,id_dict[’x2’]], ascii_grid[:,id_dict[’y2’]]
12

13 return t, trajectory1, trajectory2

Since files contain such variety of parameters, it is important to check which variables are being
plotted. Most of this information can be checked going to the respective output file and checking the
column names, where some previous conventions for names must be known, such as p for momenta,
or m for masses.

Since no momentum outside this plane was initially given, and neither was spin for our black
holes, the it makes sense to only study the system solely on this plane. Units for the distance
are given in terms of the solar mass, and taking remaining constants to be equal to one, that is,
G = c = 1.

As specified in the parfile, starting positions for our black holes are set on +3 and −3 according to
our labelling. Initial momentums for both black holes specified before are given by P+ = +0.13808
and P− = −.13.808 respectively. These values contribute to the symmetry of our system, which
makes our black holes orbit in a circular manner until their collision and merging.

Having shown the trajectories of our binary black hole system, we now turn our attention to
the analysis of gravitational waves. The positions of the black holes in the x − y plane have been
plotted, providing information of their motion over time (Fig. 9.7). To get further understanding of
the astrophysical phenomena, we examine the gravitational waves emitted during the quasi-circular
merger.

These plots do not represent in the slightest how fast they would be orbiting each other, neither
the gravitational waves produces by this spiraling. For this, we look at files called mp_psi4_l{l}_m{m}_r{r},
where parameters inside brackets are replaces by their namesake value. In this case, (l, m) represent
the respective coefficient in the spherical harmonics decomposition of the Ψ4 scalar, and r represents
the radius at which this scalar is computed. which in the asymptotic limit completely describes the
outgoing gravitational radiation field. This means that far from a source, a gravitational wave is
locally plane, and Ψ4 is directly related to the metric perturbation in a ’traceless-transverse’ gauge
of our perturbation tensor hµν as,

Ψ4 = ∂2
t (h+ − ih×).

135



Figura 9.7: The trajectories over time of our quasi-circular binary black
hole system. Starting positions are -3 and 3, beginning their spiraling at
increasing frequencies and ending in their merging in the center.

In an asymptotically flat spacetime using appropriate coordinates, we can prove that Ψ4 falls
off as r−1, thus gravitational waves are often described not by Ψ4 but by rΨ4, which should be
evaluated for big enough r. This notation is introduced on our code to read and define the Ψ4
scalar,

1 def read_psi4(path, r, lm = (2,2)):
2

3 l,m = lm
4 gw_data = np.loadtxt(f’{path}mp_psi4_l{l}_m{m}_r{r}.asc’)
5

6 t = gw_data[:,0]
7 re_psi4 = gw_data[:,1]
8 im_psi4 = gw_data[:,2]
9

10 psi4 = float(r)*np.array(re_psi4 + 1j*im_psi4)
11

12 return t, psi4

The Ψ4 scalar is defined on our whole spacetime, but using our methods we can derive an
equation to get its expression into a form involving hypersurface quantities only.

After this, Ψ4 is decomposed into spin-weighted spherical harmonics,

Ψ4 =
∑

l≥2,|m|≤l

Ψlm
4 −2Y lm.

Normally, the dominant part of the gravitational wave signal is in the lowest modes, with l = 2.
The other modes are also important to gravitational-wave data analysis, recoil calculations, etc, but

136



as we will notice, they are of far lower order than l = 2.

Let us begging plotting (Fig. 9.8) the strain of the gravitational waves at a radius of r = 50.
The spherical harmonics nodes which are dominant for a binary are (l, m) = (2, 2), for which we
plot both the real part and the imaginary part; the real part corresponding to the amplitude and
the imaginary to a shift.

Figura 9.8: The real part and imaginary part of the gravitational wave
strain for our quasi-circular binary for (r, l, m) = (50, 2, 2).

It is important to know that the initial wiggle on our simulation is not physical; numerical errors
arise when applying an initial momentum to our system, which rapidly stabilizes. We notice that
at the 100 time mark, low frequency waves begin to appear, which grow quickly to high frequency
and high amplitude waves. These correspond to the faster spiraling of our system until the black
holes are so close together that they begin to lose energy, and so the amplitude starts decreasing, all
this while the black holes continue to spiral around each other at high speeds. After the merging,
although the resulting merged black hole could be moving in spacetime, there are no gravitational
waves being formed by a binary system, so we consider the ringdown phase as the part in the graph
where there the amplitud goes back to zero.

Let us show how other values for (l, m) contribute to the Ψ4 scalar. Let us consider a higher
order node, in this case, (l, m) = (4, 4) at the same radius r = 50, plotted in Fig. 9.9. We notice
these nodes contribute to high frequencies, but at a much lower amplitude that the dominant node
(2, 2). By being even numbered nodes and considering the highest value of m for this particular l,
the strain although small, still contributes to the overall gravitational wave.

These are of the same order of the dominant node, but are not completely necessary to the study
of gravitational waves unless we make a more detailed visualization of gravitational waves. One can
also plot all possible values of (l, m) up to l = 8. Higher values of l are usually not relevant to any
kind of study on gravitational waves, since they are of such low order that they are insignificant.
Other value of pairs can algo be neglected, as seen in the following plot (Fig. 9.10) where we choose
the values (l, m) = (3, 1),

A natural question might be how well our simulated results align with theoretical expectations

137



Figura 9.9: The real part and imaginary part of the gravitational wave
strain for our quasi-circular binary for (r, l, m) = (50, 4, 4).

Figura 9.10: The real part and imaginary part of the gravitational wave
strain for our quasi-circular binary for (r,l,m)=(50,3,1).

or observational data from actual binary black hole mergers detected by gravitational wave obser-
vatories. While our simulated system provides a controlled environment for studying gravitational
waves, comparisons with observed events can validate the accuracy of our model and contribute to
a more thorough understanding of these phenomena.

138



9.7. Reproducing the GW150914 merger
Finally we have all the tools necessary to study the merging of the first-ever detected binary black
hole system, the GW150915 signal. This simulation’s parfile is already available in the Einstein’s
Toolkit website, with tutorials on how to plot relevant data, as well as multiple programs to visualize
data as one would desire. For the purposes of this thesis, we focus on the black hole trajectories
and their gravitational waves’ strain.

This simulation has a cost of 8700 core hours, which amounts to approximately 2.8 days on
128 cores, according to the Einstein Toolkit computational details of this simulation. Also, a total
memory of 98 GB is needed, thus we must have a high performance computing at hand so as to not
run out of memory and finish our simulations at reasonable time. This merging uses the same parfile
we have used before, but with data that has already been recovered from the LIGO measurements.
This means that we will use parameters which were already observed from the GW150914 merger,
and try to reproduce this signal using our computational code.

Throughout the simulation, we use normalized units where G = c = 1. This choice simplifies the
equations and results in dimensionless quantities. For clarity, all physical parameters are expressed
in terms of these dimensionless units, unless specified otherwise.

We notice some important parameters for this simulation, all of which are specified on the parfile.
These are,

• Physical parameters :

– An initial separation D of 10M ,
– A mass ratio q = m1/m2 = 36/29,
– A spin of χ1 = a1/m1 = 0.31 for our first black hole,
– A spin of χ2 = a2/m2 = −0.46 for our second black hole.

• Physical properties:

– A number of orbits of 6,
– A time from the beginning of the simulation until the merging of 899M (in normalized

units G = c = 1),
– The mass of our final black hole 0.95M ,
– The spin of our final black hole 0.69.

The choice of parameters reflects the observed characteristics of GW150914. For instance, the
specified mass ratio and spins align with LIGO’s findings, and the time parameters indicate the du-
ration of the simulated merger, resulting in a final black hole with specific mass and spin properties.

As seen by the physical parameters, the LIGO analysis indeed found that the merger consisted
of a 36+29 solar mass binary black hole system, with a remnant of a 62 solar mass black hole, while
the remaining 3 solar masses were radiated as gravitational waves. This simulation evolves the last
6 orbits and merger of a binary black hole merger with parameters to match the GW150914 event.
These properties allow us to begin our simulation up until the merging occurs.

139



9.7.1. Plot and analysis of the GW150914 merger

These simulations were ran on a high performance cluster (NLHPC) using 100 cores. We plot the
initial trajectories of the two black holes in Fig. 9.11, starting with an initial separation of 10M .
The black dotted line represents the heavier black hole, and the red dotted line represents the lighter.

Figura 9.11: Initial trajectories of the GW150914 merger in the x−y plane.
The black dotted line represents the heavier black hole, and the red dotted
line represents the lighter. This corresponds to about one full orbit of the
two black holes, equivalent to approximately two gravitational waves.

It is important to notice we are plotting results in the x − y plane. Due to spin and momentum
initial conditions, the system should be moving through all space axes, and it is possible to graph
them all in whichever program is able to read the corresponding files. For the sake of simplicity, we
focus on x − y movements of both black holes. After 6 orbits around each other, our simulations
show how the binary collides and merges, as seen in the following plot (Fig. 9.12) depicting the final
trajectories just before the merging.

The final black hole has three solar masses less than what the system had initially. All the rem-
nant energy would come out in the form on gravitational waves. In the following plot, we plot the
Ψ4 scalar as seen by a radius of r = 500, far away from the collision. We again plot the dominant
spherical harmonics node in the black hole binary, which is (l, m) = (2, 2), which better describes
the gravitational waves formed by the system. This famous signal’s simulation is plotted below in
Fig. 9.13.

These waveforms are usually compared to the ones observed by the LIGO detectors, and results
have shown that numerical relativity is very accurate when predicting gravitational wave behavior
for binary systems. A visual representation of this comparison is usually seen in any article about
the famous LIGO GW150914 detection (Fig. 9.5).

140



Figura 9.12: Final trajectories of the GW150914 merger in the x − y plane.
The higher frequency in this phase results in more visible orbits of the black
holes, indicating a faster spiral compared to the initial phase.

Figura 9.13: Real part of the Ψ4 scalar associated with the dominant spher-
ical harmonics node (l, m) = (2, 2), simulated using parameters obtained
from the GW150914 LIGO detection.

141



Capítulo 10

Conclusion

The research done in this project aimed to work our way up from basic numerical schemes to solve
partial differential equations, to the formulation of the equations describing binary black hole colli-
sions, and consequently investigating the numerical schemes behind the numerical approximations
done to solve these systems of equations. With all this knowledge, we managed to solve for the evo-
lution of the black hole binary system, and plot both their trajectories and the Ψ4 scalar describing
the gravitational waves generated.

To solve the complex systems of equations that govern the movement of two black hole spiraling
towards one another, we made use of an open-source programming tool called the Einstein Toolkit.
The methodology for the use of this program was deeply studied to understand all the way from
basic examples to the most important one, which was the simulation of the famous GW150914
gravitational wave signal.

The physics behind this project was all General Relativity, describing both the metric and cur-
vature of spacetime due to the presence of a black hole, and the way that we receive the signal due
to gravitational waves emitted by a black hole binary. To solve these equations, we also explored
Numerical relativity; numerical schemes necessary to study curved spacetime where the flow of time
is not unique to all points in our domain space. These schemes are used by the Einstein Toolkit
internally to solve all equations derived in this project.

In the need of more computational resources to solve our equations, we were provided with an
account on the National Laboratory for High Performance Computing (NLHPC) in Chile, and sub-
mitted all simulations to be solved in this cluster. All results were later plotted and studied on a
Jupyter Notebook using Python.

In conclusion, we were able to study the way different parameters affect the spiraling and merging
of a black hole binary, as well as the way gravitational waves are emitted through it and later detected
at distances really far away, where all waves are merely seen as perturbations of a flat metric. This
opens field for new studies, such as higher order wave perturbations, spinning and/or charged black
hole systems, quasinormal modes of the ringdown of our black hole merging due to the damping
by the emission of gravitational radiation, and further different ways to detect the huge number of
astrophysical phenomena that may be happening in our Universe.

142



Capítulo 11

Codes

We present this section so anyone may make use of the scripts generated for our simulations. These
codes are all to be used with Python, and libraries added when necessary.

0. A code that creates matrices to solve for our first-order-in-time wave equation, with a value
for the wave speed (which can be set to 1 to get a symmetrical problem). It later solves for the
wave equation variables v = ut and w = ux. To obtain u one may need to integrate numerically,
although for most energy problems this may not be necessary.

1 def pi(i,N,xmin,xmax):
2 #function that partitions xmin and xmax in N+1 parts
3 return xmin+i*((xmax-xmin)/N)
4

5

6

7

8 def A_wave(N,theta,varphi,c_speed):
9 # Create A 7-diagonal sparse matrix with size 2N

10

11 #we create 4 submatrices and stack them using scipy.sparse.v(h)stack
12 #we will create the four matrices separately and stack them accordingly
13 #we wil name them by quadrant
14

15 ones = np.ones(N)
16 zeros = np.zeros(N)
17 offset = [-1,0,1]
18 zeros_m = np.zeros(N-1)
19

20 ###### quadrant I
21 f_I_plus = np.ones(N-1)*-theta*(c_speed**2)*varphi
22 f_I_minus = np.ones(N-1)*theta*(c_speed**2)*varphi
23

24 k1 = np.array([f_I_minus,zeros,f_I_plus], dtype= object)
25 A1 = sp.sparse.diags(k1,offset).toarray()
26 #boundary derivatives
27 A1[0][0] = 0
28 A1[0][1] = 0
29 A1[0][2] = 0
30 A1[-1][-1] = 0
31 A1[-1][-2] = 0

143



32 A1[-1][-3] = 0
33

34

35 #quadrant II
36

37 k2 = np.array([zeros_m,ones,zeros_m], dtype= object)
38 A2 = sp.sparse.diags(k2,offset).toarray()
39

40 A2[0][0] = 1+ 3*theta*varphi
41 A2[0][1] = -4*theta*varphi
42 A2[0][2] = theta*varphi
43 A2[-1][-1] = 1+3*theta*varphi
44 A2[-1][-2] = -4*theta*varphi
45 A2[-1][-3] = theta*varphi
46

47

48 #quadrant III
49 f_III_plus = np.ones(N-1)*-theta*varphi
50 f_III_minus = np.ones(N-1)*theta*varphi
51

52 k3 = np.array([f_III_minus,zeros,f_III_plus], dtype= object)
53 A3 = sp.sparse.diags(k3,offset).toarray()
54

55 A3[0][0] = 0
56 A3[0][1] = 0
57 A3[0][2] = 0
58 A3[-1][-1] = 0
59 A3[-1][-2] = 0
60 A3[-1][-3] = 0
61

62

63 #quadrant IV
64

65

66

67 k4 = np.array([zeros_m,ones,zeros_m], dtype= object)
68 A4 = sp.sparse.diags(k4,offset).toarray()
69

70 A4[0][0] = 1+ 3*theta*varphi
71 A4[0][1] = -4*theta*varphi
72 A4[0][2] = theta*varphi
73 A4[-1][-1] = 1+ 3*theta*varphi
74 A4[-1][-2] = -4*theta*varphi
75 A4[-1][-3] = theta*varphi
76

77

78

79 #stack matrices by quadrant
80 horiz1 = np.hstack((A2,A1))
81 horiz2 = np.hstack((A3,A4))
82 vert = np.vstack((horiz1,horiz2))
83

144



84 A = csr_matrix(vert)
85 return A
86

87

88 def B_wave(N,theta,varphi,c_speed):
89 # Create A 7-diagonal sparse matrix with size 2N
90

91 #we create 4 submatrices and stack them using scipy.sparse.v(h)stack
92 #we will create the four matrices separately and stack them accordingly
93 #we wil name them by quadrant
94

95 ones = np.ones(N)
96 zeros = np.zeros(N)
97 offset = [-1,0,1]
98 zeros_m = np.zeros(N-1)
99

100 ###### quadrant I
101 f_I_plus = np.ones(N-1)*(1-theta)*(c_speed**2)*varphi
102 f_I_minus = np.ones(N-1)*-(1-theta)*(c_speed**2)*varphi
103

104 k1 = np.array([f_I_minus,zeros,f_I_plus], dtype= object)
105 B1 = sp.sparse.diags(k1,offset).toarray()
106 B1[0][0] = 0
107 B1[0][1] = 0
108 B1[0][2] = 0
109 B1[-1][-1] = 0
110 B1[-1][-2] = 0
111 B1[-1][-3] = 0
112

113

114 ###### quadrant II
115 k2 = np.array([zeros_m,ones,zeros_m], dtype= object)
116 B2 = sp.sparse.diags(k2,offset).toarray()
117

118 B2[0][0] = 1- 3*(1-theta)*varphi
119 B2[0][1] = 4*(1-theta)*varphi
120 B2[0][2] = -(1-theta)*varphi
121 B2[-1][-1] = 1- 3*(1-theta)*varphi
122 B2[-1][-2] = 4*(1-theta)*varphi
123 B2[-1][-3] = -(1-theta)*varphi
124

125

126 ###### quadrant III
127 f_III_plus = np.ones(N-1)*(1-theta)*varphi
128 f_III_minus = np.ones(N-1)*-(1-theta)*varphi
129

130 k3 = np.array([f_III_minus,zeros,f_III_plus], dtype= object)
131 B3 = sp.sparse.diags(k3,offset).toarray()
132

133 B3[0][0] = 0
134 B3[0][1] = 0
135 B3[0][2] = 0

145



136 B3[-1][-1] = 0
137 B3[-1][-2] = 0
138 B3[-1][-3] = 0
139

140 ###### quadrant IV
141 k4 = np.array([zeros_m,ones,zeros_m], dtype= object)
142 B4 = sp.sparse.diags(k4,offset).toarray()
143

144 B4[0][0] = 1- 3*(1-theta)*varphi
145 B4[0][1] = 4*(1-theta)*varphi
146 B4[0][2] = -(1-theta)*varphi
147 B4[-1][-1] = 1- 3*(1-theta)*varphi
148 B4[-1][-2] = 4*(1-theta)*varphi
149 B4[-1][-3] = -(1-theta)*varphi
150

151 #stack matrices by quadrant
152 horiz1 = np.hstack((B2,B1))
153 horiz2 = np.hstack((B3,B4))
154 vert = np.vstack((horiz1,horiz2))
155

156 B = csr_matrix(vert)
157 return B
158

159 amp= 1
160 xc = 0.5
161 xwid = 0.1
162 idsignum = 1
163

164

165 def solve_wave(N,theta,c_speed,varphi,xmin,xmax,tmin,tmax,V_0,W_0):
166 #solve an AZ^{n+1}=ZU^{n} system, with initial condition
167 #Z[0] = [X[0],Y[0]], CFL number s, with a theta-scheme finite
168 #difference
169 #and diffusion coefficient a
170

171 #spatial step size
172 dx = (xmax-xmin)/N
173

174 #temporal step size
175 dt = 2*varphi*dx
176

177 #number of spatial and temporal points in our grid
178 totalx = int(N+1)
179 totalt = int(np.floor((tmax-tmin)/dt) + 1)
180

181 #division of our spatial and temporal grids
182 x=np.linspace(xmin, xmax, totalx)
183 t=np.linspace(tmin, tmax, totalt)
184

185 #initialize final approximation
186 z=np.zeros((totalt,2*totalx))
187

146



188 #impose initial condition
189 #current x is pi(j,N,xmin,xmax)
190 for j in range(totalx):
191 z[0][j] = V_0(pi(j,N,xmin,xmax))
192 z[0][j+totalx] = W_0(pi(j,N,xmin,xmax))
193

194 #compute matrices
195 A_m = A_wave(N+1,theta,varphi,c_speed)
196 B_m = B_wave(N+1,theta,varphi,c_speed)
197 step = inv(A_m)*B_m.toarray()
198 step[np.abs(step)<0.00001] = 0
199 #compute next time step from previous one
200 for i in range(totalt-1):
201 Unext = step.dot(z[i].transpose())
202 Unext = np.array(Unext)
203 for j in range(2*totalx):
204 z[i+1][j]= Unext[j]
205

206

207 return x,t,z

1. Create matrices to solve our Φ and Π wave equations

1 import numpy as np
2 from scipy.sparse import diags, kron, csr_matrix, csc_matrix
3 from scipy.sparse.linalg import spsolve, norm, inv, eigsh
4 import matplotlib.pyplot as plt
5 from matplotlib import rc
6 rc(’text’, usetex=False) # para usar latex en matplotlib
7 import scipy as sp
8 from mpl_toolkits.mplot3d import Axes3D
9 import pandas as pd

10

11 def pi(i,N,p,q):
12 #function that partitions p and q in N+1 parts
13 return p+i*((q-p)/N)
14

15 def A_project(N,M,theta,varphi,p,q):
16 # Create A 7-diagonal sparse matrix with size 2N
17

18 #we create 4 submatrices and stack them using scipy.sparse.v(h)stack
19 #we will name them by quadrant, and stack them acoordingly
20

21 ones = np.ones(N)
22 zeros = np.zeros(N)
23 offset = [-1,0,1]
24 c = -(q+2*M)/(q-2*M)
25

26 ###### quadrant I
27 f_I_plus = np.ones(N-1)
28 f_I_minus = np.ones(N-1)
29 for k in range(N-1):

147



30 f_I_plus[k] = -theta*varphi*(pi(k+1,N,p,q)/(pi(k+1,N,p,q)+2*M))
31 f_I_minus[k] = theta*varphi*(pi(k-1,N,p,q)/(pi(k-1,N,p,q)+2*M))
32

33 k1 = np.array([f_I_minus,zeros,f_I_plus], dtype= object)
34 A1 = sp.sparse.diags(k1,offset).toarray()
35 #boundary derivatives
36 A1[0][0] = theta*varphi*3*pi(0,N,p,q)/(pi(0,N,p,q)+2*M)
37 A1[0][1] = -theta*varphi*4*pi(1,N,p,q)/(pi(1,N,p,q)+2*M)
38 A1[0][2] = theta*varphi*pi(2,N,p,q)/(pi(2,N,p,q)+2*M)
39 A1[-1][-1] = 0
40 A1[-1][-2] = 0
41 A1[-1][-3] = 0
42

43

44

45 #quadrant II
46 f_II_plus = np.ones(N-1)
47 f_II_minus = np.ones(N-1)
48

49 for k in range(N-1):
50 f_II_plus[k] = -theta*varphi*(2*M/pi(k+1,N,p,q))
51 f_II_minus[k] = theta*varphi*(2*M/pi(k-1,N,p,q))
52

53

54 k2 = np.array([f_II_minus,ones,f_II_plus], dtype= object)
55 A2 = sp.sparse.diags(k2,offset).toarray()
56 A2[0][0] = 1+(theta*varphi*6*M)/(pi(0,N,p,q))
57 A2[0][1] = -(theta*varphi*8*M)/pi(1,N,p,q)
58 A2[0][2] = (theta*varphi*2*M)/pi(2,N,p,q)
59 A2[-1][-1] = 1-3*c*theta*varphi
60 A2[-1][-2] = 4*c*theta*varphi
61 A2[-1][-3] = -c*theta*varphi
62

63 #quadrant III
64 f_III_plus = np.ones(N-1)
65 f_III_minus = np.ones(N-1)
66

67 for k in range(N-1):
68 f_III_plus[k] = -(theta*varphi/pi(k,N,p,q)**2)*((pi(k+1,N,p,q)**3)/
69 (pi(k+1,N,p,q)+2*M))
70 f_III_minus[k] = (theta*varphi/pi(k,N,p,q)**2)*((pi(k-1,N,p,q)**3)/
71 (pi(k-1,N,p,q)+2*M))
72

73 k3 = np.array([f_III_minus,zeros,f_III_plus], dtype= object)
74 A3 = sp.sparse.diags(k3,offset).toarray()
75 A3[0][0] = (theta*varphi*3*pi(0,N,p,q)**3)/(pi(0,N,p,q)+2*M)
76 A3[0][1] = -(theta*varphi*4*pi(1,N,p,q)**3)/(pi(1,N,p,q)+2*M)
77 A3[0][2] = (theta*varphi*pi(2,N,p,q)**3)/(pi(2,N,p,q)+2*M)
78 A3[-1][-1] = 0
79 A3[-1][-2] = 0
80 A3[-1][-3] = 0
81

148



82 #quadrant IV
83 f_IV_plus = np.ones(N-1)
84 f_IV_minus = np.ones(N-1)
85

86 for k in range(N-1):
87 f_IV_plus[k] = (-theta*varphi/pi(k,N,p,q)**2)*((2*M*pi(k+1,N,p,q)**2)/
88 (pi(k+1,N,p,q)+2*M))
89 f_IV_minus[k] = (theta*varphi/pi(k,N,p,q)**2)*((2*M*pi(k-1,N,p,q)**2)/
90 (pi(k-1,N,p,q)+2*M))
91

92

93 k4 = np.array([f_IV_minus,ones,f_IV_plus], dtype= object)
94 A4 = sp.sparse.diags(k4,offset).toarray()
95 A4[0][0] = 1+(theta*varphi*6*M*pi(0,N,p,q)**2)/(pi(0,N,p,q)+2*M)
96 A4[0][1] = -(theta*varphi*8*M*pi(1,N,p,q)**2)/(pi(1,N,p,q)+2*M)
97 A4[0][2] =(theta*varphi*2*M*pi(2,N,p,q)**2)/(pi(2,N,p,q)+2*M)
98 A4[-1][-1] = 1-3*(1/c)*theta*varphi
99 A4[-1][-2] = 4*(1/c)*theta*varphi

100 A4[-1][-3] = -(1/c)*theta*varphi
101

102

103

104 #stack matrices by quadrant
105 horiz1 = np.hstack((A2,A1))
106 horiz2 = np.hstack((A3,A4))
107 vert = np.vstack((horiz1,horiz2))
108

109 A = csr_matrix(vert)
110 return A
111

112

113

114

115

116 def B_project(N,M,theta,varphi,p,q):
117 # Create A 7-diagonal sparse matrix with size 2N
118

119 #we create 4 submatrices and stack them using scipy.sparse.v(h)stack
120 #we will name them by quadrant, and stack them acoordingly
121

122 ones = np.ones(N)
123 zeros = np.zeros(N)
124 offset = [-1,0,1]
125 c = -(q+2*M)/(q-2*M)
126

127 ###### quadrant I
128 f_I_plus = np.ones(N-1)
129 f_I_minus = np.ones(N-1)
130 for k in range(N-1):
131 f_I_plus[k] = (1-theta)*varphi*(pi(k+1,N,p,q)/(pi(k+1,N,p,q)+2*M))
132 f_I_minus[k] = (-(1-theta)*varphi*(pi(k-1,N,p,q)/(pi(k-1,N,p,q)+2*M)))
133

149



134 k1 = np.array([f_I_minus,zeros,f_I_plus], dtype= object)
135 B1 = sp.sparse.diags(k1,offset).toarray()
136 #boundary derivatives
137 B1[0][0] = -(1-theta)*varphi*3*pi(0,N,p,q)/(pi(0,N,p,q)+2*M)
138 B1[0][1] = +(1-theta)*varphi*4*pi(1,N,p,q)/(pi(1,N,p,q)+2*M)
139 B1[0][2] = -(1-theta)*varphi**pi(2,N,p,q)/(pi(2,N,p,q)+2*M)
140 B1[-1][-1] = 0
141 B1[-1][-2] = 0
142 B1[-1][-3] = 0
143

144

145

146 #quadrant II
147 f_II_plus = np.ones(N-1)
148 f_II_minus = np.ones(N-1)
149 for k in range(N-1):
150 f_II_plus[k] = ((1-theta)*varphi*(2*M/pi(k+1,N,p,q)))
151 f_II_minus[k] = (-(1-theta)*varphi*(2*M/pi(k-1,N,p,q)))
152

153 k2 = np.array([f_II_minus,ones,f_II_plus], dtype= object)
154 B2 = sp.sparse.diags(k2,offset).toarray()
155 B2[0][0] = 1-((1-theta)*varphi*6*M)/(pi(0,N,p,q))
156 B2[0][1] = +((1-theta)*varphi*8*M)/pi(1,N,p,q)
157 B2[0][2] = -((1-theta)*varphi*2*M)/pi(2,N,p,q)
158 B2[-1][-1] = 1+3*c*(1-theta)*varphi
159 B2[-1][-2] = -4*c*(1-theta)*varphi
160 B2[-1][-3] = c*(1-theta)*varphi
161

162 #quadrant III
163 f_III_plus = np.ones(N-1)
164 f_III_minus = np.ones(N-1)
165 for k in range(N-1):
166 f_III_plus[k] = (+(1-theta)*varphi/pi(k,N,p,q)**2)*((pi(k+1,N,p,q)**3)/
167 (pi(k+1,N,p,q)+2*M))
168 f_III_minus[k] = (-(1-theta)*varphi/pi(k,N,p,q)**2)*((pi(k-1,N,p,q)**3)/
169 (pi(k-1,N,p,q)+2*M))
170

171

172 k3 = np.array([f_III_minus,zeros,f_III_plus], dtype= object)
173 B3 = sp.sparse.diags(k3,offset).toarray()
174 B3[0][0] = -((1-theta)*varphi*3*pi(0,N,p,q)**3)/(pi(0,N,p,q)+2*M)
175 B3[0][1] = +((1-theta)*varphi*4*pi(1,N,p,q)**3)/(pi(1,N,p,q)+2*M)
176 B3[0][2] = -((1-theta)*varphi*pi(2,N,p,q)**3)/(pi(2,N,p,q)+2*M)
177 B3[-1][-1] = 0
178 B3[-1][-2] = 0
179 B3[-1][-3] = 0
180

181 #quadrant IV
182 f_IV_plus = np.ones(N-1)
183 f_IV_minus = np.ones(N-1)
184

185

150



186 for k in range(N-1):
187 f_IV_plus[k] = (+(1-theta)*varphi/pi(k,N,p,q)**2)*((2*M*pi(k+1,N,p,q)**2)/
188 (pi(k+1,N,p,q)+2*M))
189 f_IV_minus[k] = (-(1-theta)*varphi/pi(k,N,p,q)**2)*((2*M*pi(k-1,N,p,q)**2)/
190 (pi(k-1,N,p,q)+2*M))
191

192 k4 = np.array([f_IV_minus,ones,f_IV_plus], dtype= object)
193 B4 = sp.sparse.diags(k4,offset).toarray()
194 B4[0][0] = 1-((1-theta)*varphi*6*M*pi(0,N,p,q)**2)/(pi(0,N,p,q)+2*M)
195 B4[0][1] = +((1-theta)*varphi*8*M*pi(1,N,p,q)**2)/(pi(1,N,p,q)+2*M)
196 B4[0][2] =-((1-theta)*varphi*2*M*pi(2,N,p,q)**2)/(pi(2,N,p,q)+2*M)
197 B4[-1][-1] = 1+3*(1/c)*(1-theta)*varphi
198 B4[-1][-2] = -4*(1/c)*(1-theta)*varphi
199 B4[-1][-3] = (1/c)*(1-theta)*varphi
200

201 #stack matrices by quadrant
202 horiz1 = np.hstack((B2,B1))
203 horiz2 = np.hstack((B3,B4))
204 vert = np.vstack((horiz1,horiz2))
205

206 B = csr_matrix(vert)
207

208

209 return B

2. Function that takes relevant parameters, takes our initial condition of:

ϕ0(r; A, r0, ∆) = A exp
{

(−(r − r0

∆ )2)
}

ϕ′
0(r; A, r0, ∆) = −2A

r − r0

∆2 A exp
{

(−(r − r0

∆ )2)
}

,

and solves the equation for a θ-scheme, with CFL condition ∆t
2∆x = φ, in a domain [p, q] discretized

in N steps, in a Schwarzchild metric where rS = 2M , from time tmin to time tmax.

1 #adjustable parameters
2 A = 1
3 r_0 = 50
4 Delta = 1
5

6 #phi_0’s
7 phi0 = lambda r: A*np.exp( -( (r-r_0)/Delta )**2 )
8 drphi0 = lambda r: -2*(r-r_0)/(Delta**2) * A*np.exp( -( (r-r_0)/Delta )**2 )
9

10 #initial conditions
11 X_0 = lambda r: drphi0(r)
12 Y_0 = lambda r: ((r+2*M)/r**2) * phi0(r) + drphi0(r)
13

14

15 def solve_phi(N,M,theta,varphi,p,q,tmin,tmax):
16 #solve an AZ^{n+1}=ZU^{n} system, with initial condition
17 #Z[0] = [X[0],Y[0]], CFL number s, with a theta-scheme finite

151



18 #difference
19 #and diffusion coefficient a
20

21 #spatial step size
22 dr = (q-p)/N
23

24 #temporal step size
25 dt = 2*varphi*dr
26

27 #number of spatial and temporal points in our grid
28 totalr = int(N+1)
29 totalt = int(np.floor((tmax-tmin)/dt) + 1)
30

31 #division of our spatial and temporal grids
32 r=np.linspace(p, q, totalr)
33 t=np.linspace(0, 1, totalt)
34

35 #initialize final approximation
36 z=np.zeros((totalt,2*totalr))
37

38 #impose initial condition
39 #current r is pi(N,i,p,q)
40 for j in range(totalr):
41 z[0][j] = X_0(pi(j,N,p,q))
42 z[0][j+totalr] = Y_0(pi(j,N,p,q))
43

44 #compute matrices
45 A_m = A_project(N+1,M,theta,varphi,p,q)
46 B_m = B_project(N+1,M,theta,varphi,p,q)
47 step = inv(A_m)*B_m.toarray()
48 #compute next time step from previous one
49 for i in range(totalt-1):
50 Unext = step.dot(z[i].transpose())
51 Unext = np.array(Unext)
52 for j in range(2*totalr):
53 z[i+1][j]= Unext[j]
54

55

56 return r,t,z

3. The following cell solves the wave equation for appropiate parameters, and later animates
both Φ and Π wave functions for several time steps. The command frames specifies how many time
iteration our animations must have (in this case, for tmax = 70, we had 10500 time iterations).

1

2 N=300
3 M=1
4 theta=0.5
5 varphi=0.01
6 p=2*M
7 q=100
8 tmin= 0

152



9 tmax= 70
10

11 z = solve_phi(N,M,theta,varphi,p,q,tmin,tmax)
12

13 #remember z[0] is r, z[1] is t, and z[2] is the matrix solution
14 #z[2][0] is the solution X,Y, so X is z[2][0][0:N+1]
15

16

17 # Function animation
18 %matplotlib notebook
19 import matplotlib.pyplot as plt
20 from matplotlib.animation import FuncAnimation
21 fig, ax = plt.subplots()
22

23 line, = ax.plot([])
24 ax.set_xlim([0,100])
25 ax.set_ylim([-1.5,1.5])
26 ax.set_xlabel(’r’)
27

28 wave = ’Phi’ #change between Phi and Pi
29 ax.set_title(’Animation for ’+str(wave))
30

31

32 def animate(i):
33

34 if wave==’Phi’:
35 y = z[2][i][0:N+1] # Animate Phi
36 elif wave==’Pi’:
37 y = z[2][i][N+1:] # Animate Pi
38

39 line.set_data((z[0],y))
40 return line
41

42 anim = FuncAnimation(fig, animate, frames=10500, interval=1)
43 plt.show()
44

45

46 def solve_mass(N,M,theta,varphi,p,q,tmin,tmax,Delta):
47 A = 1
48 r_0 = 50
49

50 #phi_0’s
51 phi0 = lambda r: A*np.exp( -( (r-r_0)/Delta )**2 )
52 drphi0 = lambda r: -2*(r-r_0)/(Delta**2) * A*np.exp( -( (r-r_0)/Delta )**2 )
53

54 #initial conditions
55 X_0 = lambda r: phi0(r)
56 Y_0 = lambda r: ((r+2*M)/r**2) * phi0(r) + drphi0(r)
57

58 z = solve_phi(N,M,theta,varphi,p,q,tmin,tmax)
59

60 r = z[0]

153



61 t = z[1]
62

63 Phi = z[2][0:,0:501]
64 Pi = z[2][0:,501:]
65

66 totalr = len(r)
67 totalt = len(t)
68

69 N = totalr-1
70 dr = (q-p)/N
71

72 m = np.zeros((totalt,totalr))
73

74 for i in range(totalt):
75 m[i,0] = 0
76

77

78 for j in range(totalr-1):
79 actual_r = pi(j,N,p,q)
80 alpha_over_2a = (actual_r/(2*actual_r + 4*M))
81 beta = (2*M)/(actual_r + 2*M)
82 for i in range(totalt):
83 m[i,j+1] = m[i,j]+ 4*np.pi*(actual_r**2)*(alpha_over_2a*(Phi[i,j]**2 + Pi[i,j]**2)

↪→ +beta*Phi[i,j]*Pi[i,j])*dr
84

85 return m

4. We add a code to solve the mass function, given all previous parameters. This gives us a 2D
array, to be studied however one find useful.

1 def solve_mass(N,M,theta,varphi,p,q,tmin,tmax,Delta):
2 A = 1
3 r_0 = 50
4

5 #phi_0’s
6 phi0 = lambda r: A*np.exp( -( (r-r_0)/Delta )**2 )
7 drphi0 = lambda r: -2*(r-r_0)/(Delta**2) * A*np.exp( -( (r-r_0)/Delta )**2 )
8

9 #initial conditions
10 X_0 = lambda r: drphi0(r)
11 Y_0 = lambda r: ((r+2*M)/r**2) * phi0(r) + drphi0(r)
12

13 z = solve_phi(N,M,theta,varphi,p,q,tmin,tmax)
14

15 r = z[0]
16 t = z[1]
17

18 Phi = z[2][0:,0:N+1]
19 Pi = z[2][0:,N+1:]
20

21 totalr = len(r)
22 totalt = len(t)

154



23

24 N = totalr-1
25 dr = (q-p)/N
26

27 m = np.zeros((totalt,totalr))
28

29 for i in range(totalt):
30 m[i,0] = 0
31

32

33 for j in range(totalr-1):
34 actual_r = pi(j,N,p,q)
35 alpha_over_2a = (actual_r/(2*actual_r + 4*M))
36 beta = (2*M)/(actual_r + 2*M)
37 for i in range(totalt):
38 m[i,j+1] = m[i,j]+ 4*np.pi*(actual_r**2)*(alpha_over_2a*(Phi[i,j]**2 + Pi[i,j]**2)

↪→ +beta*Phi[i,j]*Pi[i,j])*dr
39

40 return m

5. This cell takes an i_grid, which is an array of time iteration, and plots the mass function for
each time iteration. One may change the value of these time iterations as necessary.

1 i_grid = np.array([0,1500,3000,4500,6000,7500,8000,9000,10500])
2

3 dr = (q-p)/N
4 dt = 2*varphi*dr
5 current_t = lambda x: tmin + x*dt
6

7 fig = plt.figure(figsize=(9, 5))
8

9 for i in i_grid:
10 plt.plot(pi(j_grid,N,p,q),m[i,j_grid],label=’t=’+str(round(current_t(i),2)))
11

12 plt.legend()
13 plt.xlabel(’Distance from singularity’)
14 plt.ylabel(’Total mass recovered’)
15 plt.title(’m(r,t) for different time values’)

155



Bibliografía

[1] Carrol, Sean M. Spacetime and geometry: An introduction to general relativity, Harlow: Pearson,
2013.

[2] Bishop, Nigel T.; Rezzolla, Luciano. Extraction of Gravitational Waves in Numerical Relativity,
arXiv:1606.02532, 2016.

[3] Choquet-Bruhat, Yvonne. General Relativity and the Einstein Equations, Oxford: Oxford Uni-
versity Press, 2009.

[4] Guzmán, F. S. Solución de la ecuación de onda como un problema de valores iniciales usando
diferencias finitas, Michoacán: Revista mexicana de física, 2010.

[5] Ansorg, Marcus and Brügmann, Bernd and Tichy, Wolfgang. A single-domain spectral method
for black hole puncture data, Phys. Rev. D, 2004.

[6] Baiotti, Luca; Hawke, Ian; Montero, Pedro J.; Löffler, Frank; Rezzolla, Luciano; Stergioulas,
Nikolaos; Font, Jose A.; Seidel, Ed. Three-dimensional relativistic simulations of rotating neutron
star collapse to a Kerr black hole, Phys, Rev. D, 2005.

[7] Choustikov, Nicholas. The Einstein Toolkit: A student’s guide, arXiv:2011.13314, 2020.
[8] Gourgoulhon, Éric. 3+1 Formalism and Bases of Numerical Relativity, arXiv:0703035v1, Labo-

ratoire Univers et Théories, 2007.

156


	Resumen
	Resumen
	Agradecimientos
	Tabla de Contenido
	Índice de Ilustraciones

	1 Introduction
	2 Finite Difference schemes for PDEs
	2.1 Introduction
	2.2 Discretizing our domain
	2.3 Back and forward derivatives
	2.4 Creating new approximations
	2.5 Derivatives in time and space
	2.6 Consistency and accuracy
	2.7 Stability

	3 Numerical methods for the Heat Equation
	3.1 Introduction
	3.2 Derivation
	3.3 Analytical solution of the heat equation
	3.3.1 Homogeneous heat equation

	3.4 Finite Differences for the Heat Equation
	3.4.1 Dirichlet Boundary Conditions
	3.4.2 Neumann Boundary conditions

	3.5 Stability analysis
	3.5.1 Stability in L2

	3.6 Visualizing numerical schemes for the Heat equation

	4 Numerical methods for the Wave equation
	4.1 Introduction
	4.2 Derivation
	4.3 Analytical solution of the wave equation
	4.4 Finite differences for the wave equation
	4.5 Visualizing numerical schemes for the wave equation

	5 Relativity and Gravitation
	5.1 Introduction
	5.2 Special Relativity
	5.2.1 The study of space and time
	5.2.2 The Lorentz Group
	5.2.3 Proper Time
	5.2.4 4-Velocity
	5.2.5 4-momentum
	5.2.6 Massless Particles

	5.3 General Relativity and Differential Geometry
	5.3.1 Introduction
	5.3.2 Tensors
	5.3.3 Riemannian connection
	5.3.4 Parallel transport and geodesics
	5.3.5 The Riemann curvature tensor
	5.3.6 The Newtonian limit
	5.3.7 The Einstein Equations


	6 Numerical Relativity
	6.1 Fitting a hypersurface into a Manifold
	6.1.1 Normal vector to our hypersurface
	6.1.2 Orthogonal projector

	6.2 Extrinsic curvature
	6.2.1 Symmetry of the curvature tensor

	6.3 Gauss-Codazzi relations
	6.3.1 Gauss relation
	6.3.2 Codazzi relation

	6.4 Lie Derivatives
	6.4.1 Derivation of the Lie derivative formula

	6.5 Lapse function and foliation kinematics
	6.5.1 Normal evolution vector

	6.6 The shift vector
	6.7 Evolution of the 3D metric
	6.8 Ricci equation
	6.9 3+1 expression for the spacetime Ricci tensor and scalar curvature
	6.10 3+1 decomposition of the Einstein equation
	6.10.1 Projection of the stress-energy tensor
	6.10.2 Projection of the Einstein equation

	6.11 The 3+1 Einstein system

	7 Wave on Schwarzschild
	7.1 Introduction
	7.2 Wave Equation
	7.3 Schwarzchild Solution in Ingoing Eddington-Finkelstein Coordinates
	7.4 Initial Data for the Simulation
	7.5 A conserved mass for the model
	7.6 Solution to the equations of motion
	7.6.1 Analyzing solutions for the equations of motion
	7.6.2 Analysis of the scalar wave solution

	7.7 Solution to the conserved mass model

	8 Using the Einstein Toolkit
	8.1 Introduction
	8.2 Installation and Setup
	8.3 Overview of "Thorns"
	8.4 Components and Functionality
	8.4.1 Solver Modules
	8.4.2 Analysis and Visualization Tools
	8.4.3 Setting Up a Simulation

	8.5 Parfiles inside the Einstein Toolkit
	8.6 Running an example from the Einstein Toolkit site

	9 Gravitational Waves
	9.1 Introduction
	9.2 Historical context
	9.3 Gravitational Waves in Einstein's linearized theory
	9.3.1 Gauge freedom
	9.3.2 Application to gravitational radiation

	9.4 Observation of Gravitational Waves
	9.4.1 The LIGO detectors
	9.4.2 The GW150914 signal

	9.5 Using the NLHPC
	9.5.1 Introduction to the NLHPC
	9.5.2 The SLURM system
	9.5.3 The Eistein Toolkit inside the NLHPC

	9.6 Reproducing a quasi-circular binary merger
	9.6.1 Analyzing the parfile
	9.6.2 Plot and analysis of the quasi-circular merger

	9.7 Reproducing the GW150914 merger
	9.7.1 Plot and analysis of the GW150914 merger


	10 Conclusion
	11 Codes
	Bibliografía

