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RESUMEN DE LA TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS, MENCIÓN COMPUTACIÓN
POR: DIEGO ANTONIO MALDONADO MUÑOZ
FECHA: 2023
PROF. GUÍA: SANDRA CÉSPEDES & JAVIER BUSTOS

ESTIMACIÓN DEL TAMAÑO DE RED PARA IOT DIRECTO A SATÉLITE
BASADO EN LORA

El paradigma emergente de la Internet de las Cosas Directo a Satélite (DtS-IoT) implica
que los nodos de la superficie terrestre se comuniquen directamente con satélites de órbita
terrestre baja (LEO), utilizando protocolos estándar de redes de área amplia de baja potencia
(LPWAN).

Uno de los principales retos a los que se enfrenta este paradigma es la ampliación del
control de acceso al medio (MAC) de un número limitado de nodos a miles dentro de la zona de
cobertura del satélite. Para resolver este problema, los esquemas de control de acceso al medio
pueden utilizar información a priori sobre el número de nodos que el satélite cubrirá a lo largo
de su órbita. Sin embargo, el desarrollo de soluciones técnicamente viables para la estimación
del tamaño de la red que sean a la vez precisas y exactas sigue siendo un reto de investigación
abierto. Este trabajo presenta la implementación, selección de parámetros y evaluación del
primer protocolo de estimación del tamaño de red compatible con LoRa/LoRaWAN que
aprovecha el estimador de información de colisión optimista (OCI) de a bordo.

Nuestra solución, LoRa-OCI (L-OCI), se integró en FLoRaSat, un simulador C++ de
eventos discretos DtS-IoT que integra modelos orbitales y de comunicación LoRa/LoRaWAN
realistas. A través de una amplia campaña de simulación, podemos determinar las config-
uraciones LoRa adecuadas para lograr un error cuadrático medio (RMSE) bajo y un bajo
consumo de energía. Además, nuestros resultados indican que el enfoque es relativamente
insensible a los parámetros LoRa cuando se evalúa el rendimiento agregado de un protocolo
Slotted ALOHA Game (SAG) provisto de estimaciones de L-OCI.
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The emerging paradigm of Direct-to-Satellite Internet of Things (DtS-IoT) involves Earth
surface nodes communicating directly with Low Earth Orbit (LEO) satellites, utilizing stan-
dard Low-Power Wide Area Networks (LPWAN) protocols.

One of the core challenges faced in this paradigm is scaling the Medium Access Control
(MAC) from a limited number of nodes to potentially thousands within the satellite’s coverage
area. To address this issue, medium access control schemes can utilize a priori information on
the number of nodes the satellite will cover along its orbit. However, developing technically
viable solutions for network size estimation that are both precise and accurate remains an
open research challenge. This work presents the implementation, parameter selection, and
evaluation of the first LoRa/LoRaWAN-compatible network size estimation protocol that
leverages the onboard Optimistic Collision Information (OCI) estimator.

Our solution, LoRa-OCI (L-OCI), was integrated into FLoRaSat, a C++ discrete-event
DtS-IoT simulator that integrates realistic orbital and LoRa/LoRaWAN communication
models. Through an extensive simulation campaign, we can determine appropriate LoRa
configurations to achieve low root mean square error (RMSE) and low power consumption.
Additionally, our results indicate that the approach is relatively insensitive to LoRa param-
eters when assessing the aggregated throughput of a Slotted ALOHA Game (SAG) protocol
throttled by L-OCI.
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Chapter 1

Introduction

Direct-to-Satellite Internet of Things (DtS-IoT) is a novel approach to integrated terrestrial
and spatial wireless communications where small low-energy nodes on Earth directly com-
municate with a Low Earth Orbit (LEO) satellite [1]. The use of small satellites, including
affordable CubeSats, enables the establishment of dependable and cost-effective networks
by relaying packets to ground stations or other satellites in cases where a constellation is
deployed [2]. This will lead to an expansion of the network’s coverage and support. Conven-
tional Low-Power Wide Area (LPWAN) technologies [3], such as LoRa, which are typically
employed in urban and rural applications, can be modified to support DtS-IoT networks [4].
Furthermore, adopting open standards like LoRaWAN facilitates the unrestricted deployment
of LoRa networks, as they comply with regional regulations. When coupled with CubeSats,
this approach offers an economical alternative for building satellite networks that is compet-
itive with available low-power, low-data rate satellite solutions (e.g., Argos [5], APRS [6],
S-AIS [7], and ADS-B [8]).

One of the primary obstacles encountered in DtS-IoT networks involves the scalability of
the network, particularly in situations where thousands of nodes must be served by a single
satellite. Using Intelligent Medium Access Protocols (MAC) is critical in addressing the un-
avoidable packet collisions and enhancing the network’s overall performance. Recent research
has shown that incorporating information on the network size, i.e., the number of nodes un-
der satellite coverage, into a purpose-built MAC protocol [9] can significantly enhance the
network’s performance in terms of throughput. However, obtaining this information is often
challenging, as the nodes are frequently deployed in harsh, remote environments and may be
isolated from one another [10].

This study aims to implement and evaluate a network size estimation mechanism for
DtS-IoT using the LoRa/LoRaWAN protocol stack. We employ the Optimistic Collision
Information (OCI) estimator introduced in [10] to achieve this goal. The selection of OCI is
based on its superior performance in terms of low Root Mean Square Error (RMSE) estima-
tion and power efficiency compared to other modern network size estimators. Nevertheless,
the simulations conducted in [10] relied on simplistic assumptions without considering any
underlying DtS-IoT protocol or communication model. The mechanism proposed in this the-
sis, named LoRa/LoRaWAN-based OCI (L-OCI), is designed to operate on a Frame Slotted
ALOHA approach, employing LoRa/LoRaWAN framing and Chirp Spread Spectrum mod-
ulation with the corresponding Spreading Factors (SFs) described in the LoRa/LoRaWAN
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specification [11]. Consequently, the approach can be implemented on standard commercial
IoT nodes. To assess the feasibility of OCI in a practical scenario, we offer a multi-objective
parameter selection algorithm for L-OCI. Also, we implemented L-OCI and conducted a
comprehensive simulation using the FLoRaSat simulator [12]. FLoRaSat was specifically
developed to simulate DtS-IoT networks, incorporating LoRa-based networks and realistic
orbital propagation and channel models.

1.1. Hypothesis
A network size estimation-based uplink transmission policy will improve the throughput of a
dense DtS-IoT network while minimizing the energy consumption compared to the previous
state-of-the-art models, closer to the omnipresent scheduler model who has complete traffic
knowledge.

1.2. Objectives
• Develop and improve a DtS-IoT simulator (FLoRaSat) to generate reliable traffic pattern

synthetic data

• Develop learning techniques to predict network size of end-devices

• Develop/Improve uplink transmission policies to rule channel allocation based on net-
work size knowledge

• Train the proposed learning models on the synthetic data to create useful knowledge on
the network in order to fit the best possible uplink transmission policies for the given
configuration

• Test and analyze the behavior of the proposed policy based on the optimization objec-
tives

1.3. Methodology
• Protocol Models: Engineer approach: detailed protocol models (i.e., physical, link and

network layers) are implemented to study the expected performance and resource con-
sumption of DtS-IoT by means of simulations in FLoRaSat. The model also includes a
core network module for the architecture axis.

• Abstract Models: Computer Science approach: system-level models are developed to
abstract the network elements and time-dependent resources to then enable optimized
decision making based on Mixed Integer Linear Programming (MILP) or Markov Deci-
sion Processes (MDP) models.

1.4. Organization of the thesis
This thesis is organized as follows: Chapter 2 introduces the background topics and work
laying the foundation of this thesis, in Chapter 3 the proposed technique L-OCI is described,

2



Chapter 4 present the simulation tool FLRoRaSat used to evaluate the proposed L-OCI,
then the results are presented and discussed in Chapter 5 and, finally, the conclusion of this
thesis is given in Chapter 6.

3



Chapter 2

Background

In this Chapter the basic concepts of LoRa and LoRaWAN are presented. Then a brief
introduction to space technologies is given, with emphasis on low cost spacecraft who are
candidates to enable the extension of IoT to space. Finally, a detailed description of the OCI
network size estimator is presented, laying a foundation for this thesis.

2.1. Long Range (LoRa)
Since LoRa is a proprietary radio communication technique, details on the exact modulation
and demodulation process are not publicly available, yet it is one of the most popular wireless
platforms for the IoT both in real life applications and research, together with NB-IoT.

The adaptability of LoRa to different scenarios makes it a promising candidate for the
DtS-IoT paradigm. In fact, it has been achieved the world record distance of 832 kilometers
for a LoRa packet transmission1.

A typical LoRa radio comes with 5 configuration parameters

• Transmission Power (TP)

• Carrier Frequency (CF)

• Spreading Factor (SF)

• Bandwidth (BW)

• Coding Rate (CR)

The selection of configuration parameters will have a significant impact on the network.
For instance, the transmission time of a payload of 10 bytes can be up to 50 times more
depending on the specific set of parameters. The transmission time (or Time on Air) is of
great importance when evaluating specific scenarios for LoRa-based IoT networks and it can
be calculated according to the following set of equations:

1 LoRa world record distance note.
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Tsym = 2SF

BW
(2.1)

Tpreamble = (npreamble + 4.25)Tsym (2.2)

npayload = 8 + max

⌈8PL− 4SF + 28 + 16CRC − 20H

4(SF − 2DE)

⌉
(CR + 4), 0

 (2.3)

Tpayload = npayload · Tsym (2.4)

Tpacket = Tpreamble + Tpayload (2.5)

Equation 2.5 corresponds to the total Time on Air of a LoRa transmission, considering
both the preamble and payload time (refer to the LoRAWAN specification [13] for a de-
tail description of packets). Equations 2.1, 2.2, 2.3 and 2.4 depend on the following extra
parameters (on top of the aforementioned configuration parameters):

• PL: payload size in byte

• H: header status, 0 is enabled and 1 is disabled

• DE: Low Data Rate Optimize, 0 is disabled and 1 is enabled

• CRC: Cyclic Redundancy Check, 0 is disabled and 1 is enabled

• npreamble: number of symbols in preamble

It is also important to remember the Friis transmission equation for the specific case when
considering a free space path loss 2.6. With this simplification on the proposed model it is
possible to calculate the maximum range for a given combination of the following parameters:

Pr

Pt

= GtGr

(
λ

4πd

)2

(2.6)

• Pr: power at the receiver

• Pt: power at the transmitter

• Gr: receiver antenna gain

• Gt: transmitter antenna gain

• λ: wavelength of the carrier signal (related to CF according to λ · CF = c)

• d: distance traveled by the signal

• c: speed of light on vacuum
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LoRa operates on license-free frequency bands regulated by the corresponding spectrum
agencies for each region of the world and, thus, restraining some of the configuration param-
eters aforementioned differently. In this work, the focus is on the regional parameters set for
the European region.

2.2. Long Range Wide-Area Network (LoRaWAN)
LoRaWAN is the data link layer built on top of the physical layer provided by LoRa. The
LoRaWAN specification [13] is developed and maintained by the LoRa Alliance, an open
non-profit organization whose goal is to promote the use of LoRaWAN for IoT applications.

LoRaWAN defines three operation modes: Class A, Class B and Class C, in order to
enhance adaptability of the network to different use scenarios. The communication strategy
of each mode is depicted in figure 2.1.

Figure 2.1: LoRaWAN Classes, image from [14]

In all three modes of operations, the node can begin an uplink transmission (in red) when-
ever it wants, respecting the restriction on the duty cycle given by the regional parameters.
After a transmission, the node opens two reception windows (in green) in order to receive
a downlink transmission sent by the network server through the designated gateway. This
base operation mode constitutes the Class A mode, which is the most energy efficient one
but restraining the node to receive downlink messages only after it has sent an uplink trans-
mission, impacting negatively the downlink throughput specially when the usage scenario
requires the node to constantly receive instructions from the network server.

In order to improve the downlink throughput, Class B operation mode defines periodic
reception windows (in blue) allowing the gateway to transmit downlink messages even if the
node does not have uplink messages to sent. This requires synchronization between the node
and the gateway, achieved through a periodically scheduled beacon message broadcasted by
the gateway. With this approach, the downlink throughput can be improved at the expense
of energy efficiency due to the opening of extra reception windows.

Lastly, in scenarios where energy constraints are not a problem for nodes, Class C allows
the node to receive downlink messages whenever it is not transmitting an uplink message (in
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yellow).

2.2.1. LoRaSync and Class S
The main issue with the classes defined in the LoRaWAN specification is the scalability of the
network since a node can begin a transmission at any moment as the LoRaWAN specification
implements a pure ALOHA protocol for the Medium Access Control [15]. A way to improve
the uplink throughput is using a Time Division Multiple Access (TDMA) technique such as
a slotted ALOHA, where a node can start a transmission only at the beginning of a time
slot.

In [16], the authors propose the new Class S as an extension of LoRaWAN Class B, based
on the slotted ALOHA technique and which they further improve in [17] by defining a beacon
skipping mechanism and more robust slots when facing synchronization errors between node
and gateway due to clock drift. This improved version, named LoRaSync, is described in
[17].

Since LoRaSync is based on Class B, the periodic downlink reception windows are sched-
uled upon beacon reception. The beacon is also used to synchronize the uplink slots whose
length is determined by the maximum clock drift δmax and the maximum Time on Air
ToAmax. The authors prove this MAC technique improves scalability of the network by
reducing collision in the uplink channel and thus it has been chosen for the implementation
of the OCI technique.

The slot time Tslot is defined by equation 2.7. The number of slots nslots that can be fit
inside the Beacon Window Twindow is given by equation 2.9. The floor() function ensures the
last slot will not overlap with the Beacon Guard.

Tslot = 2δmax + ToAmax (2.7)

Tbeacon = Treserved + Twindow + Tguard (2.8)

nslots =
⌊

Twindow

Tslot

⌋
(2.9)

2.3. Space technologies
2.3.1. Satellite Orbits
The DtS-IoT approach studied in this work is one where the IoT devices communicate with
satellite located in the Low Earth Orbit (LEO), orbiting the Earth at around 600 kilometers
of altitude and with speeds over the 7 kilometers per seconds. Compared to navigation
satellites in the Medium Earth Orbit, such as GPS, or telecommunication satellites located
at the Geostationary Orbit (see figure 2.2), LEO satellites have a much reduced view of the
Earth and thus range. The distance to the horizon for a LEO satellite at 600 kilometers is
of around 2800 kilometers. However, the proximity to Earth comes with reduced launching
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costs so deploying a constellation of LEO satellites can help solve the problem of coverage. In
LEO we can find the International Space Station (ISS), the Hubble telescope and the Iridium
satellite constellation (figure 2.2).

Figure 2.2: Satellite navigation orbits comparison, taken from Wikipedia

In order to predict a LEO satellite’s orbit and accurately determine its position at a
certain time, mathematical models have been developed and refined. In particular for LEO
satellites, the orbital propagation model SGP4 [18] is widely used to this end. To obtain a
more complete and accurate model of a DtS-IoT scenario, using SGP4 inside the simulation
is desired.

2.3.2. The CubeSats Standard
The space sector has been revolutionized in the new millennium due to the development
and rapid adoption of the so called CubeSat [19], a standardized nano satellite originally
designed for LEO orbits. The CubeSat is composed by one or more basic units, a cube
of a size 10x10x10 centimeters and a weight of around 1.33 kilograms. The reduced size
and standard design helped to considerable decrease the costs and times of all the satellite
development phases, from design, manufacture, and testing until launch in orbit. Its use as
spatial vehicle for new technologies and space science has been adopted by all actors in both
public and private sectors and prompted the inclusion of new actors such as universities and
developing countries [20]. The CubeSat is then an ideal candidate for the deployment of
DtS-IoT networks.

8
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2.4. Optimistic Collision Information-Based estima-
tor (OCI)

OCI [10] is a network size estimator for DtS-IoT networks designed under the principle of
reducing the computational complexity required while maintaining a low estimation error
compared to other State of the Art estimators. As mentioned in the previous Chapter 1, one
of the main goals of this work is the implementation of the OCI estimator in the FLoRaSat
simulator in order to test its performance on a more realistic scenario.

The OCI estimator was conceived to work based on a Frame Slotted ALOHA (FSA) logic
with a beaconing system for time synchronization between the gateway and the nodes. The
model is depicted in the figure 2.3, showing the slotted uplink. The assumptions in [10] are
the following:

1. The communication between the nodes and the satellite follows a FSA logic

2. Nodes are randomly distributed under the satellite footprint. The set of nodes under
the satellite footprint is called a cluster and there is one for each frame

3. A cluster is stable for the duration of a frame

4. The nodes do not remain idle, they will all transmit on each frame. By design, this is
equivalent to assume all nodes in the cluster receive the corresponding beacon

5. Time synchronization between nodes and the satellite is available

6. Failures in decoding can either be due to collisions or to insufficient received signal power

7. Upon beacon decode, every node will choose a slot to transmit in with probability 1
w

,
where w is the number of uplink slots of a frame

9



Figure 2.3: DtS-IoT network operating under a Frame Slotted ALOHA
logic, adapted from [1]

Given a frame, the satellite determines the status of each uplink slot according to three
possible values: 1. the slot is IDLE when there are no reception attempts, 2. the slot is
SUCCESSFUL when there is a successful signal decode, and 3. the slot is COLLIDED when
two or more nodes attempt to transmit on the same slot. It is important to notice that since
transmission can also fail due to low power, the satellite can perceive a slot as IDLE even
when two or more nodes chose to transmit on the same slot. The slot status data corresponds
to the input data of the OCI estimator. For each frame, a tuple i, c, s is determined, where
i is the number of IDLE slots, c is the number of COLLIDED slots, and s is the number of
SUCCESSFUL slots.

The estimator operates in two phases. During the first one, named the estimation phase,
slot status data is collected for a varying number of nodes. With this data, OCI performs
a naive estimation of the actual number of nodes, Nn, under the footprint (or cluster size)
of the satellite assuming no more than two nodes are involved in every collision. The naive
estimation ϕ of Nn is calculated as ϕ = s + 2c. Figure 2.4 shows the naive estimation as
a function of the cluster size Nn for different frame lengths in terms of slots w. The naive
estimation quickly underestimates the number of nodes when Nn > w due to the assumption
of neglecting high order collisions. Hence, the naive estimation always converges to 2w.
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Figure 2.4: Naive estimations for frames with different number of slots w

To solve the underestimation without knowing the order of the collisions, the authors in
[10] propose to create a function that maps the naive estimations curve into the real node
value curve. This method requires bijectivity between the naive estimations and the real
value of nodes and, therefore, the frame length w shall be long enough so that the naive
estimation has no repeated values for the simulated domain. This function is created by
means of two polynomial fits. The first one is used to smooth the naive estimation curve,
while the second one maps the resulting curve of the first fit to the curve of the real number
of nodes.

After determining the polynomial’s coefficient of the second fit, the OCI mechanism enters
to the operational phase, during which it applies the function to the naive estimation to get
the OCI estimation of the real value. The algorithm for this phase is described in detail in
[10].
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Chapter 3

Lora-based OCI estimator (L-OCI)

One cannot directly use the OCI estimator as defined in [10] in LoRa-based networks without
extending the MAC layer specified by LoRaWAN. Specifically, a protocol based on a TDMA
technique with time-slotted frames and a time synchronization system must be added to the
MAC layer. For L-OCI, we leverage LoRaSync [17], which we find is an appropriate Class
B variant technique that satisfies the synchronization requirements of OCI and DtS-IoT.
LoRaSync extends LoRaWAN Class B by adopting a beaconing mechanism that enables
time synchronization and scheduling uplink slots during the beacon window. The structure
of the beacon period is divided into three phases.
Phase 1: Beacon Reserved

During this phase, the gateway broadcasts the beacon, and ground nodes decode it. To
optimize energy usage, it is important to avoid persistent reception in resource-constrained
nodes. Therefore, it is necessary to use appropriate techniques, such as in [21], to estimate
the satellite visibility. Then, a node may determine the optimal time to open the reception
window. Once the beacon is received, the node will be synchronized on a frame level.
Phase 2: Beacon Window

Uplink slots (UL) are slotted in time during this phase. An UL includes a maximum clock
offset threshold time δmax at the beginning and at the end of the slot and a maximum time
on air ToAmax in between, which depends on the LoRa parameters and the payload size. The
parameter δmax provides the required time synchronization contention guards for the beacon
and clock drifts in DtS-IoT. Note that the downlink mechanism defined by LoRaWAN Class
B still exists but is not depicted here since user data downlinks are unnecessary for L-OCI
estimation. Every node who receives the beacon will transmit on a random slot, chosen
following an uniform distribution.
Phase 3: Beacon Guard

Finally, the beacon period ends with the guard phase, allowing the gateway to decode the
last transmissions.

At the end of the Beacon Guard, the L-OCI data is collected, which corresponds to the
number of slots labeled as IDLE slots i, the ones labeled as SUCCESSFUL s, and the ones
labeled as COLLIDED c, for a given number of nodes n attempting to transmit during
the frame. A series of (n, i, s, c) tuples is obtained for increasing values of n to build the
OCI training dataset, from which the naive estimation vector is obtained and then the OCI
estimator is calculated. Having collected a dataset for training and another for the test phase
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for a maximum number of nodes N , the procedure to obtain the OCI estimation vector is
detailed in algorithm 1.

Algorithm 1 details the OCI mechanism. The first step is to obtain the naive estimations
from the training data set, then obtain the OCI estimator by means of two polynomial fits,
and lastly, apply the estimator/polynomial to the naive estimation obtained from the test
data set.

The number of slots w in the frame is a crucial parameter for L-OCI, as illustrated in
Fig. 2.4. It is calculated as w = ⌊Twin/Tslot⌋, where Twin is the beacon window time, and
Tslot is slot duration. Therefore, w depends on the frame length, the maximum time-on-air
(ToAmax), and the underlying LoRa parameters. The choice of SF and BW parameters of
LoRa, and the frame length influence the non-trivial trade-off that determines the optimal
operation of L-OCI. A higher SF (e.g., SF12) increases communication range and ToAmax

but reduces the number of slots in the frame, which can limit the number of transmission
opportunities. Conversely, a lower SF like (e.g., SF9) reduces both communication range and
ToAmax, allowing more slots in the frame but reducing communication range. An optimal
L-OCI parameter selection mechanism is proposed in section 3.2.

Algorithm 1: OCI algorithm
Input: number of nodes N , training dataset trainOCIdata, test dataset

testOCIdata
Output: OCIestimations vector

1 Initialize empty 1D arrays trainNumNodes and trainNaiveEstimations;
2 for each [n, i, s, c] ∈ trainOCIdata do
3 append n to trainNumNodes;
4 append (s + 2c) to trainNaiveEstimations;
5 end for
6 Adjust a 7-degree polynomial p1 with [trainNumNodes, trainNaiveEstimations];
7 naiveSmooth← p1(trainNumNodes);
8 Adjust a 4-degree polynomial p2 with [trainNumNodes, naiveSmooth];
9 Initialize empty 1D arrays testNumNodes and testNaiveEstimations;

10 for each [n, i, s, c] ∈ testOCIdata do
11 append n to testNumNodes;
12 append (s + 2c) to testNaiveEstimations;
13 end for
14 OCIestimation← p2(testNumNodes);
15 Return OCIestimation

3.1. Performance evaluation
A way to measure the performance of the estimation, the Root-Mean-Square Error (RMSE)
is used, as proposed also by the authors of OCI. The RSME is calculated as
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ϵrsme =

√√√√ K∑
k=1

ϕk − nk

K
(3.1)

, where K is the number of clusters, nk is the real number of nodes in the cluster, and ϕk

is the estimation of nk.

The performance of OCI is also measured in terms of the computational costs required to
obtain the estimation ϕk during the estimation phase only, assuming the function calculated
during estimation phase is already stored in the gateway. This aspect will not be considered
in this study since the mathematical method underlying OCI remains the same.

The Slotted Aloha Game (SAG) [9] is a MAC protocol proposed for satellite networks using
FSA communication, thus suitable for OCI and L-OCI. SAG gives a transmission probability
to each node based on the number of slots and the currently active nodes in the network
(estimated with OCI or L-OCI). If there are fewer nodes than slots, the probability is set
to 1, meaning all nodes will attempt to transmit during the frame. If there are more nodes
than slots, the probability is adjusted so that the number of nodes attempting to transmit is
close to the number of slots. SAG aims to achieve the maximum theoretical throughput with
arbitrarily large node populations. The throughput is calculated as the number of successful
transmissions in a frame divided by the time length of the frame in slots.

3.2. Parameters selection
There are several parameters involved both in LoRa and LoRaSync. In this work, the pa-
rameters selected to be object of study are the Spreading Factor (SF), the Bandwith (BW),
and the number of slots w within a frame. We propose a heuristic to determine the best
combination of parameters x = (SF, BW, w) for a given cluster size nk. To quantify what
would be an optimal solution we propose a Multi-objective Optimization Problem (MOP)
based on two objectives for the OCI estimator; first, to minimize the energy expended to ob-
tain the estimator (polynomial coefficients), and secondly, to minimize the estimation error
of L-OCI. The problem is formalized as follows:

minimize F(x) = (f1(x), f2(x))T , s.t. x ∈ Ω (3.2)

, where Ω is the decision space. In this MOP, the objective function f1(x) is defined as
the total energy spend in decoding failed transmissions by the satellite, either because of a
collision or insufficient received signal power, during the L-OCI estimation phase. On the
other hand, f2(x) is defined as the estimation error achieved during the L-OCI test phase.

The calculation of F (x) requires L-OCI to be implemented within the algorithm solving
the MOP. For this purpose, L-OCI simulation is based on a geometric simplification of the
DtS-IoT allowing the model to integrate space-time constraints for the transmissions, in
contrast to the arbitrary effective detection parameter of the original OCI simulation used
in [10].

Algorithm 2 described this model, where a number of nodes N at random positions com-
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pete for a frame composed by w slots. The output are the total lost transmissions, low
power and collided and the successful, idle and collided slots. Algorithm 3 solves the MOP
described in 3.2 for given a maximum expected network size and a deployment radius. The
outputs are the average lost power and the estimation error.

Consider a single node deployed on ground and a satellite emitting its beacon at time
t = 0. This scenario is depicted in figure 3.1, where the red circle represents the coverage of
the satellite given a combination of LoRa parameters and the blue circle represents the node
deployment area, both centered on the projection on Earth of the satellite.

Figure 3.1: Simplified 2D scenario

The coverage radius Rcov(SF, BW ) does not depend on the number of slots w and it is
calculated from the maximum range yielded by the combination of {SF, BW}. The node
deployment radius RA is such that 0 < RA <= Rcov. We consider a 2D space as a simpli-
fication of the 3D Earth model. Consider a node in position (r, θ) (in green) and assuming
the satellite moves upwards at a constant speed vs, the coverage time for the node can be
estimated by equation 3.4

Rcov · cos(θ̄) = r · cos(θ) (3.3)

tsupport(SF, BW ) = d

vs

= Rcov · sin(θ̄) + r · sin(θ)
vs

(3.4)
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On the other hand, following a FSA scenario where the node chooses a random slot
s ∈ [0, w], following an uniform distribution, to transmit upon beacon decode, the node would
have finished its transmission at the beginning of the slot s + 1. The end of transmission
time, tend, can be calculated by equation 3.5 as follows.

tend(SF, BW, w) = Treserved + (s + 1) · Tslot(SF, BW ) (3.5)

Finally, we define the case of failed transmission due to low received power if the condition
given by equation 3.6 does not hold, so the node misses its oportunity to reach the satellite
during coverage time.

tendT X(SF, BW, w) < tsupport(SF, BW ) (3.6)

The results of the MOP optimization are presented in Chapter 5. In the next Chapter 4,
the FLoRaSat simulator is presented.
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Algorithm 2: FSA simulation algorithm
Input: number of nodes N , node positions positionData, number of slots w, number

of simulations runs, airtime AT , coverage radius Rcov

Output: average lost transmissions, average IDLE slots, average SUCCESSFUL;
slots, average COLLIDED slots

1 lowPowerRate← 0, collidedRate← 0;
2 avgIdleSlots← 0, avgCollisionSlots← 0, avgSuccessfulSlots← 0;
3 for r = 0 to runs− 1 do
4 collided← 0, lowPower ← 0;
5 Initialize 1D array transmissionsPerSlot with size=w and all values set to 0;
6 for (r, θ) ∈ positionData do
7 Select a random slot s ∈ [0, w − 1] to transmit;
8 if coverageT ime(r, θ, Rcov) <= endTransmissionT ime(s, w, AT ) then
9 lowPower ← lowPower + 1;

10 else
11 if transmissionsPerSlot(x) > 0 then
12 collided← collided + 1;
13 end if
14 transmissionsPerSlot(x) = transmissionsPerSlot(x) + 1;
15 end if
16 end for
17 for j = 0 to w − 1 do
18 if transmissionsPerSlot(j) == 0 then
19 avgIdleSlots← avgIdleSlots + 1;
20 else if transmissionsPerSlot(j) == 1 then
21 avgSuccessfulSlots← avgSuccessfulSlots + 1;
22 else
23 avgCollisionSlots← avgCollisionSlots + 1;
24 end if
25 end for
26 lowPowerRate← lowPowerRate + (lowPower/N);
27 collidedRate← collidedRate + (collided/N);
28 end for
29 avgLost← lowPowerRate + collidedRate;
30 Return [avgLost, avgIdleSlots, avgSuccessfulSlots, avgCollisionSlots]/runs
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Algorithm 3: F (x) algorithm
Input: number of nodes N , deployment radius RA, number of simulations runs,

nodeStep, decision vector x
Output: F (x) = (f1(x), f2(x))

1 Initialize N node positions (ri, θi) randomly and uniformly over the area defined by
RA and store data in a 2D array trainNodePositions;

2 Initialize empty arrays trainOCIdata and testOCIdata;
3 Repeat the previous step to get the test set testNodePosisions;
4 SF ← x(0), BW ← x(1), w ← x(2);
5 AT ← getAirtime(SF, BW );
6 Rcov ← getCoverageRadius(SF, BW );
7 nodes← nodeStep;
8 while nodes <= N do
9 simulate FSA with nodes, trainNodePositions and append to trainOCIdata;

10 simulate FSA with nodes, testNodePositions and append to testOCIdata;
11 nodes← nodes + nodeStep;
12 end while
13 avgLost← lost transmissions value for N nodes from trainOCIdata;
14 avgLostPower ← transmissionPower × AT × avgLost;
15 rsme← getRSME(trainOCIdata, testOCIdata);
16 Return (avgLostPower, rsme)
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Chapter 4

The FLoRaSat simulator

4.1. Overview

Simulations are key to test any theoretical models, the more precise the simulation is, the
better is the validation of the assumptions made. This is in line with the objective of this
work which is, as mentioned before, test the OCI estimator in a more realistic scenario.

4.1.1. The OMNeT++ and INET frameworks

OMNeT++ [22] was the chosen framework to simulate DtS-IoT networks due to its extensive
use in research in the field of networks and active community [23]. As described in [23], it “is
an extensible, modular, component-based C++ simulation library and framework, primarily
for building network simulators”. Moreover, on top of OMNeT++ there is the INET frame-
work [24], “an open-source OMNeT++ model suite for wired, wireless and mobile networks”,
which has grown large enough over the years to be one of the essentials libraries for build-
ing network simulators in OMNeT++. It contains models for the Internet stack, routing
protocols, link layer protocols, support for the wireless physical layer, node mobility, visual-
ization and more. Both frameworks provide extensive manuals and guides which facilitate
the development and provide insightful tutorials.

4.1.2. FLoRa, OS3, and leosatellites frameworks

FLoRa is an open-source framework for LoRa simulations in OMNeT++ [25]. It implements
the physical and medium access control layers of LoRa and so, it provides the bedrock for the
FLoRaSat simulator. The architecture of FLoRaSat is largely based on FLoRa but various
modifications had been done in order to adapt it to simulate a DtS-IoT scenario since FLoRa
was designed and tested on traditional IoT scenarios, i.e. terrestrial deployments where the
LoRa gateway is on a fixed position and has no energy or communication constraints.

Because of the previous remark, a mobility model for the gateway had to be implemented
in OMNeT++ to simulate the orbital dynamics of a satellite. To solve this issue, FLoRaSat
relies on two other frameworks which implement the orbital dynamics models in OMNeT++.
The first one is the Open Source Satellite Simulator (OS3) [26], where the authors implement
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the SGP4 and SDP4 orbital propagation models and provide the necessary modules to define
orbits of objects given their TLE data. There were two main issues encountered with this
framework during its integration to build FLoRaSat; first, OS3 was implemented on the
outdated INET2 version, and second, it did not provide a mean to define orbits through
their orbital parameters.

The issues with the OS3 framework were addressed in [27]. The authors provided an up-
dated and extended version up to date with the current INET4. The leosatellites framework
provides a mean to define orbits through its orbital parameters while still supporting the TLE
orbit modules. Note that the scenario studied by the author in [27] focuses on Inter Satellite
Links (ISL), i.e. communication between satellites, and on massive satellite constellations
defined by the number of orbital planes and the number of satellites on each plane.

Summarizing, FLoRaSat is built on top of this three frameworks, and all of them rely
on the INET framework. But still, a lot of effort in adapting each framework to support
a DtS-IoT scenario and also in unifying all of the modules to work together was needed.
The result is an open-source powerful simulation tool providing a wide range of research and
test opportunities on different topics concerning DtS-IoT scenarios. Some of the supported
functionalities are the following:

• Physical layer: opportunity to develop and test new modulation techniques such as the
LR-FHSS, designed to address long range communication like satellite links [28]

• Link layer: novel medium access protocols can be implemented and studied, for both
nodes and gateways

• Network and Transport layers: routing algorithms for satellite constellations can be
implemented and tested

• Application layer: support of end applications on the node and sever part of a LoRaWAN
network

• Channel models: testing of more accurate channel models is an important aspect to
consider given the long distance links through the atmosphere in DtS-IoT

4.2. FLoRaSat architecture
This section presents a more detailed but not extensive description of the FLoRaSat frame-
work focused on the main interacting modules on a typical Dts-IoT scenario plus a short
simulation guide.

4.2.1. Physical layer implementation
The physical layer in FLoRaSat corresponds to the LoRa physical layer implemented in
FLoRa. The original source code required little to no modifications. The layer is depicted in
the figure 4.1. In this diagram, there is a distinction between .ned modules (rectangles with
round corners) and C++ classes (ovals).
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Figure 4.1: LoRa physical layer diagram in FLoRaSat

The main interacting modules in this layer are the Node and Gateway radios (LoRaRa-
dio and LoRaGWRadio, respectively) and the medium module (LoRaMedium). Both radio
modules contain three submodules, the antenna module, the receiver module (LoRaReceiver)
and the transmitter module (LoRaTransmitter), and inside the latter is where the modu-
lation takes place, defined by LoRaModulation. The channel module or medium module
(LoRaMedium) contains various submodules defining the channel properties and other cache
modules.

An end-to-end LoRa communication follows these steps:

1. Before the simulation starts, radios are registered at the LoRaMedium module who
keeps track of their positions.

2. The LoRaTransmitter creates a transmission (LoRaTransmission) and sends it to the
broadcast channel.

3. The LoRaMedium computes when and where the transmission will reach the potential
receivers and how they will receive it. The module applies the channel properties to the
signal and creates a Signal object for each receiver. The Signal object encompasses all
the necessary information to process a reception.

4. The LoRaReceiver module receives the Signal object from the medium and process the
information.
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The LoRaMedium module is of great importance since it not only simulates the channel
properties but also manages all the transmissions taking place during the simulation. During
the implementation of FLoRaSat, this module required a major adaptation to support the
new mobility module defining the movement of gateways (satellites).

4.2.2. Link layer implementation

The physical layer diagram in figure 4.1 shows the radio modules LoRaRadio and LoRaG-
WRadio are in fact submodules of the Network Interface Controller LoRaNIC and LoRaG-
WNIC modules, respectively. The second submodule of each NIC module is the Medium
Access Control (MAC) module. The MAC modules implement the link layer defined by
LoRaWAN for both the nodes (LoRaMac) and the gateways (LoRaGWMac).

The FLoRa framework provides the implementation of LoRaWAN classes A and B on the
node side. However, the implementation of the Class B, on the gateway side, is not complete
since it lacks support for the scheduled downlink slots. Nevertheless, the module does provide
support for beaconing mechanism. This issue has not been addressed yet in the FloRaSat
implementation but it does not constitutes a problem for this work since the OCI estimation
is based only on uplink communication. A brief description on the implementation of Classes
A and B provided by FLoRa and the proposed Class XS is given next, focused on the node
side.

4.2.2.1. LoRaWAN Class A

The internal definition of each Class is by means of a Finite State Machine (FSM), imple-
mented using the FSM library provided by INET. Figure 4.2 shows a flow chart diagram
describing the Class A on the node side.

Figure 4.2: LoRaWAN Class A flow chart
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On the gateway side, an FSM is not needed since the logic is simpler. The gateway duty
is to always listen for incoming uplink transmission and to forward the traffic to the network
server.

4.2.2.2. LoRaWAN Class B

Figure 4.3 shows a flow chart diagram describing the Class B on the node side. It is an
extension of the FSM describing Class A as specified by the LoRaWAN standard [14].

Figure 4.3: LoRaWAN class B flow chart

Again, an FSM is not needed on the gateway side. The gateway’s duties are two: first, to
broadcast periodic beacons, and second, set the radio to reception mode whenever it’s not
transmitting, and then forward the uplink traffic to the network server.

4.2.2.3. LoRaWAN Class XS

In order to perform the OCI estimation mechanism in FLoRaSat, this works includes the
implementation of a modified version of the Class S proposed in [16]. The new version, named
Class XS, implemented as an extension of the Class B provided by FLoRa, which lacks the
downlink support. Figure 4.4 shows a flow chart diagram describing the Class XS on the
node side.
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Figure 4.4: LoRaWAN Class XS flow chart

Once again, FSM was not required on the gateway side. However, at the end of each uplink
slot, the gateway collects the core data for the L-OCI mechanisms, recording the number of
successfully decoded signals, the total number of reception attempts, and the number of
received signals with power below the gateway’s sensitivity.

4.2.3. Satellite orbit definition
A single satellite or a constellation can be deployed in FLoRaSat by defining the orbital
parameters describing the orbit. The parameters are given in the initialization file and during
simulation the orbital propagator model is executed. The definition is straightforward and
the parameters can be directly obtained from a TLE [29] or by orbit design.

4.2.4. Network architecture
A network is the main module of an OMNeT++ simulation. It defines the modules present
in the environment, the connections between them by means of a channel module or the
medium module where they can propagate their wireless transmissions. A generic DtS-IoT
network is shown in Figure 4.5. Several networks can be included in a single initialization
file.
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Figure 4.5: DtS-IoT scenario scheme in FLoRaSat
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Chapter 5

Simulations and results

This section presentes the general simulation scenario used as a base for all the experiments
performed in this thesis. It also presents the suite of experiments whose main objective is to
asses the impact of the LoRa parameters selection on the network size estimation and the
network performance.

5.1. Simulation scenario
The basic scenario is depicted in figure 5.1. We focus on a single satellite acting as a LoRa
gateway relaying all packets sent from the nodes on the ground to the network server through
the ground station. However, the satellite to ground station link is modeled as simple link
with a fixed delay of 20 milliseconds and no channel saturation since it is not the focus of
this work.

The satellite’s orbit is a typical polar LEO orbit with an inclination of 98 degrees and an
altitude of around 600 kilometers. The nodes are deployed randomly and uniformly over a
circular region given a center in latitude, longitude coordinates, and a deployment radius. As
mentioned in the previous sections, the L-OCI estimation requires a slotted communication
and thus, the nodes and gateway use the Class XS operation mode for LoRa communication
described in Chapters 2 and 4. Taking this into consideration, the scenario is set such that
the satellite is positioned just above the deployment center at the beginning of the simulation.
For all scenarios, the deployment radius is 475 kilometers, which is enough to cover the nodes
deployed on ground when using the configuration parameters yielding the smallest coverage
radius used in the simulations present in this chapter (i.e SF9 BW125).
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Figure 5.1: DtS-IoT study scenario

As for the LoRa parameters, the focus of this work is on variation of Spreading Factors (SF)
and Bandwidths (BW), while the other parameters were selected following the specifications
given by LoRaWAN for the European region [30] 2. The fixed parameters are shown in the
table 5.1.

Tabla 5.1: DtS-IoT study scenario global parameters [30]

Parameter Value
Node antenna gain 5 [dBi]

Satellite antenna gain 0 [dBi]
Node Transmission Power (TP) 14 [dBm]

Satellite Transmission Power (TP) 3.5 [dBm]
Center Frequency (CF) 863 [MHz]

Coding Rate (CR) 4
Payload size (PL) 20 [bytes]

Beacon Reserved Time (Treserved) 2.12 [s]
Beacon Guard Time (Tguard) 3 [s]

Max Clock Drift (δmax) 0.01 [s]

2 even though in the depicted scenario the simulation is performed over the South America region, this does
not interfere with the European regional parameters for LoRa
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Based on these parameters and using the equations provided in 2.1 (i.e. assuming a free
space path loss channel model) it is possible to calculate the time on air (airtime) of a LoRa
transmission and the maximum range of communication (range) for a certain combination of
(SF,BW) parameters. The sensitivity values were obtained from a typical LoRa transceiver
[31]. The airtime and range are shown in figure 5.2.

Figure 5.2: Comparison of SF/BW configurations

Considering a satellite deployed at 600 km, the (SF,BW) configurations shown in red
are those with a range shorter than the altitude of the satellite and thus they represent an
impossible configuration. The ones in yellow are possible configurations but with limited
range, while the ones in green are preferable configurations in terms of communication range.
Therefore, in the following experiments, the red configurations are discarded as well as the
column corresponding to a bandwidth of 500 kHz because it is not supported in Europe
by the LoRaWAN specification [30]. Additionally, all nodes and the gateway use the same
configuration parameters on a single simulation run.

In addition to the (SF,BW) parameters for the LoRa modulation, the third parameter
under study is the beacon period time (Tbeacon, here as BCN). When fixing the values for
(SF,BW) then the number of slots w in the frame is given by equation 2.9. For a given
number of nodes competing in a single frame, the more slots are available, the less collisions
will occur. However, given the high speed satellite’s orbit, the longer the frame is, the higher
the probability of packets loss due to low sensitivity will be.
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In summary, the control variables of the analysis are the spreading factor (SF), the band-
width (BW) of LoRa in kHz, and the beacon period (BCN) in seconds, in addition to the
network size. At the same time, the remaining parameters comply with the LoRa Alliance
specification for the European region [30]. We determine the time on air (airtime) and the
maximum range of communication (range) for a LoRa transmission based on the values of
(SF, BW ). The channel model assumed is a free space path loss model, and we consider the
received sensitivity values from a typical LoRa transceiver, Semtech’s SX1272 [31]. We run
30 simulation repetitions with different seeds for each input set (SF, BW, BCN).

As mentioned in section 2.4, the input data for L-OCI is the slot status count calculated
for a frame. Figure 5.3 shows an example of the status of each slot for a single frame and
Table 5.2 shows the logic for determining the slot status.

Tabla 5.2: Slot status

. successful == 0 successful == 1
attempted == 0 IDLE (case 0) impossible
detectable == 0 IDLE (case 1) impossible
detectable == 1 COLLISION (case 4) SUCCESSFUL (case 2)
detectable >= 2 COLLISION (case 4) COLLISION (case 3)

Figure 5.3: Slot status calculated for a frame

According to table 5.2, there are two possible cases for a single slot: in the fist case,
no transmission was decoded successfully (successful==0), whereas in the second case one
and only one transmission was decoded (successful==1). The different causes for this two
possibilities are explained as follows. If there are no reception attempts during the slot time
(attempted==0), then the slot is IDLE. The rest of the cases assume that there is at least
one reception attempt. If there are no detectable transmissions (detectable==0), meaning
that all arriving transmission have insufficient power to be decoded, then the slot is IDLE.
Note that for both of the previous cases it is impossible to have a successful decoding.

If there is only one detectable transmission (detectable==1) then the slot is in COLLI-
SION (case 4) if no transmission was decoded during the slot but if there was, then the
slot is SUCCESSFUL. Lastly, if there are more than two detectable transmission then the
slot is in COLLISION (case 4) if no transmission was decoded during the slot but if there
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was, then the slot is also in COLLISION (case 5). We make the distinction between the
two cases with COLLISION status to emphasize the capability of the FLoRaSat simulator
of modeling the capture effect by decoding the first signal to arrive to the gateway, since all
nodes share the same LoRa parameters, then it is also the most powerful signal, while the
following transmissions to arrive are discarded.

5.2. Simulation Results
5.2.1. Testing L-OCI limits
In a first experiment, we use the parameters (SF = 9, BW = 125, BCN = 256), yielding
w = 939 slots in the frame, and we vary the number of nodes from 0 to 2000 in increments
of 40 nodes. The transmissions outcome is shown in Figure 5.4, with each possible outcome
as the ratio to the total amount of transmissions (or node number since they all transmit
once). It is evident how the long beacon period impacts the network given the large amount
of lost transmissions due to low power.

Figure 5.4: Transmissions outcome

The naive estimation and naive smoothed curves are shown in figure 5.5. Is is noted how
the below-sensitivity transmissions impact the naive estimation since the IDLE slot are not
considered, producing a significant underestimation for smaller networks.
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Figure 5.5: Naive estimation

For the test phase, we vary the number of nodes from 5 to 2045 in increments of 60 nodes,
while the input set (SF, BW, BCN) remains the same. The L-OCI estimations obtained are
shown in figure 5.6 and compared to the naive curve for the test phase. The estimation error
in terms of RSME for the OCI curve compared to the real value curve is equal to 8.56.

Figure 5.6: L-OCI estimations
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It is noted how L-OCI achieves a low estimation error even in scenarios with low detection
rate. This result was also stated by the original authors of OCI but their results only
considered up to 25% packet loss [10].

Now, we consider a scenario that does not meet the bijectivity requirement for L-OCI.
We consider the parameters (SF = 9, BW = 125, BCN = 256) but for the estimation phase
we vary the number of nodes from 1 to 1001 in increments of 40 nodes and then, for the test
phase, we vary the number of nodes from 5 to 2045 in increments of 60 nodes. The L-OCI
estimations obtained are shown in figure 5.7. As expected, L-OCI fails to estimate outside
of its domain, which confirms the need of a bijective function.

Figure 5.7: L-OCI estimations for experiment a

In a second experiment we show the impact of using an L-OCI estimator trained on a
different number of slots w. For the estimation phase we consider the parameters (SF =
11, BW = 125, BCN = 128) , yielding w = 140 slots in the frame, and we vary the number
of nodes from 1 to 301 in increments of 5 nodes. An L-OCI estimator is obtained to be used
on different test scenarios.

The first test scenario uses the same input set (SF, BW, BCN) as in the training phase and
we vary the number of nodes from 5 to 305 in increments of 5 nodes. The L-OCI estimations
are shown in figure 5.8 to the left. The RSME obtained in this case is 2.33. The second test
scenario uses the parameters (SF = 12, BW = 125, BCN = 128), yielding w = 70 slots in
the frame. We also vary the number of nodes from 5 to 305 in increments of 5 nodes. The
L-OCI estimations are shown in figure 5.8 to the right. The RSME obtained is 42.17.
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(a) Test scenario with w=140 (b) Test scenario with w=70

Figure 5.8: L-OCI estimator trained with w=140 slots

It is clear from the results that the L-OCI estimator obtained cannot be used in the second
test case due to the different naive curve obtained caused by using a different number of slots
in the frame. An L-OCI estimator should then only be used on test scenarios having the
same number of slots as in the training phase used.

5.2.2. Sensitivity to LoRa parameters
In this experiment we show the impact of using an L-OCI estimator trained on different sets
of parameters but all having the same number of slots w=167. We consider several estimation
phases using a frame with w slots to obtain different L-OCI estimators to be used on a single
test phase. The estimation phase input parameters are shown in table 5.3. We vary the
number of nodes from 1 to 501 with increments of 10 nodes for all cases.

Tabla 5.3: Estimation phase input parameters (w=167) and RSME error
achieved during the test phase

SF BW BCN RSME
9 125 50 29.693
10 125 91 5.556
11 250 80 5.586
11 125 152 5.747
12 125 295 17.909

The transmission outcome for the training phase scenarios is shown in figure 5.9. It is
noted that the cases with the highest number of lost transmissions due to low power are the
ones with SF=9 and SF=12, which correspond to the cases with the shortest range and the
longest satellite displacement during the frame, respectively.
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(a) Below sensitivity

(b) Collided

(c) Successful

Figure 5.9: Transmissions outcome during estimation phase

The test phase input parameters are (SF = 10, BW = 125, BCN = 91), same as one of
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the training phase scenarios, and we vary the number of nodes from 5 to 505 with increments
of 10 nodes. The L-OCI estimations obtained are shown in figure 5.10 while the RSME
error values obtained are shown in table 5.3. The results show the lowest estimation error is
obtained when the training and test phase use the same input parameters. However, in other
two cases having similar transmission outcomes the error curves obtained are comparable.
Therefore, the results indicate that L-OCI estimator could still be used on a scenario with
different study parameters but having the same number of nodes and similar communication
conditions.

Figure 5.10: Comparison of multiple L-OCI estimators

5.2.3. Impact of L-OCI on the throughput
In this experiment, we show the impact of using the L-OCI estimations to support a MAC
protocol. We selected the Slotted ALOHA Game protocol, presented in [9]. The focus of
this analysis is on the throughput obtained during the test phase, calculated as the number
of successful transmissions in a frame divided by the time length of the frame, and how it
reflects the RSME of L-OCI estimations.

Consider the L-OCI estimations obtained from the previous experiment 5.2.2, in particular
the ones with SF values 9, 10, and 12, and a BW of 125 kHz. Figure 5.11 shows the throughput
obtained during test phase when feeding the L-OCI estimations to the Slotted ALOHA Game
MAC protocol. We compare the results with the pure FSA scenario, in which the protocol
does not adapt to the estimated size of the network.
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Figure 5.11: Throughput for three scenarios with different L-OCI network
size estimation feedback

The first thing to notice is that the theoretical limit of the pure Slotted ALOHA scheme
(red horizontal line) is surpassed, given that in FLoRaSat collisions are not destructive and,
therefore, the first signal to arrive during a certain slot is decoded successfully but the rest
are labeled as collided transmissions.

The throughput of the pure FSA scenario reaches a maximum level between 200 and 300
nodes, higher than in the scenarios with FSA Game MAC control, but it starts decreasing
steadily after that point. Using FSA Game, the throughput attains and average maximum
value and it is maintained thereafter regardless of the number of nodes. The average through-
put values observed after 200 nodes are: 46.5% for the SF9 scenario, 48.1% for SF10, and
46.8% for SF 12. The highest average throughput obtained is when using the L-OCI estima-
tion obtained with SF10 for the FSA Game, which is also the one who achieves the lowest
RSME (see table 5.3), however, the difference in throughput with respect to the other 2
scenarios using L-OCI estimations with higher RSME, i.e. SF9 and SF12, is minimal. More-
over, the scenario using the estimations with the highest error (SF9) achieve a slightly better
throughput than the scenario using the estimation obtained with SF12.

5.2.4. Error and Energy trade-off
In this experiment, we study the estimation error measured in RSME and how it increases
with the number of nodes and the number of slots. We select SF=12 and BW=125 for LoRa
while BCN is chosen in function of the number of slots desired. A series of estimation phases
and corresponding test phase are performed. For each pair, the number of slots wi is fixed
and the number of nodes is increased up to an arbitrary limit given by the naive estimation.
The procedure is the following:

• Train a L-OCI estimator with input parameters (SF = 12, BW = 125, BCNi). Then
vary the number of nodes from 5 to endi with a step of stepi
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• For the test phase, fix the input parameters (SF, BW, BCN). Then vary the number of
nodes from 3 to endi − 2 with a step of stepi

• Calculate the RSME error of the L-OCI estimations obtained. The error is a function
of the number of nodes endi and the number of slots wi

• Repeat steps 1 to 3 increasing endi until reaching the limit for the naive estimations so
they do not have repeated values

• Repeat steps 1 to 4 changing the number of slots wi

This procedure allows us to obtain a series of RSME curves in function of the number of
nodes, where on each point, the test phase includes up to (almost) the same amount of nodes
used for training. The results are shown in figure 5.12

Figure 5.12: RSME for SF12 BW125 and different slot number w

Some interesting discussions come from the results. Consider for instance we aim to
estimate a network of up to 600 nodes, so it would be possible to use a frame with w=300
slots to have a low estimation error, or even more slots. However, the more slots a frame has,
the longer the frame and the more the satellite moves, increasing the probability of having
lost transmissions due to low reception power. Even though L-OCI can still achieve a low
estimation error under this scenario, it was demonstrated that the L-OCI estimator obtained
is tied to its behavior during estimation phase, so if a low number of successful transmissions
is obtained then the results will be replicated during test phase and the estimation obtained
may not be as useful to assist a MAC protocol. On the other hand, one could choose to use
a frame with w=175, compromising estimation error. This reduces the probability of lost
transmission, but, at the same time, increasing the probability of collisions.

The following experiment evaluates the effectiveness of the MOP heuristic proposed in
Section 3.2 for optimizing energy consumption and estimation error in LoRa networks. The
wasted power and RSME are jointly analyzed in Fig. 5.13, where the former is calculated as
the power spent by a node in non-successful transmissions.
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A parameter selection campaign was conducted for 100, 500, 1000, and 1500-node network
sizes. Results show that wasted energy and estimation error increase with the number of
nodes in the network. Moreover, the most energy-efficient solutions were obtained using
SF = 9 and BW = 125 for all cases. For instance, the Pareto curve for a network of 500
nodes suggests that a parameter set with SF = 9 and BW = 125 can achieve an estimation
error of RSME = 5 and a wasted energy per node of 16mW . To further reduce the error,
switching to SF = 11 and BW = 250 is required, resulting in a reduced error of RSME = 2.5
but increased wasted energy to 27mW per node (see red arrow in Fig. 5.13). The results
demonstrate the effectiveness of the MOP heuristic for optimizing energy utilization and
estimation error in LoRa networks. Furthermore, in light of the observations in the previous
experiment, the marginal improvement in error might not be justified in terms of throughput
due to the significant increase in energy consumption.

Figure 5.13: Pareto curves for different network sizes obtained from MOP

38



Chapter 6

Conclusion

In this work, we proposed L-OCI: a LoRa/LoRaWAN realization of the Optimistic Collision
Information (OCI) for Direct-to-Satellite IoT (DtS-IoT). We evaluated L-OCI in realistic
LoRa-based DtS-IoT networks providing the first evidence of the expected performance of
the approach. An extensive simulation campaign showed that L-OCI maintains low error
estimations and power efficiency, even in scenarios with a high packet loss rate. Also, L-OCI
proved insensitive to SF = 10 and SF = 11 regarding RSME and throughput, suggesting a
single estimator can fit both use cases. However, in resource-full satellites, multiple estimators
could co-exist for optimal performance. Furthermore, our analysis showed that SF = 9 and
BW = 125kHz are appealing candidates for improving energy efficiency if the link budget
can be closed under such parameters.

The study found that L-OCI is well-suited for LoRa-based DtS-IoT networks, but the mod-
ulation parameters and beacon period also impact communication. Multiple OCI estimators
may be required for optimal performance, but when resources are limited, a single estimator
can support diverse parameters with minimal error and negligible impact on throughput. SF9
provides optimal energy utilization at the expense of reduced error, but higher SF may be
necessary for tighter link budgets. Future work includes an extended analysis with different
orbital parameters, more training parameters for L-OCI, and L-OCI extensions considering
multiple SFs in the same frame.
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