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MODELADO DE TRANSFERENCIA DE CALOR EN ENTORNOS
SEVERAMENTE CONFINADOS

La energía geotérmica se posiciona como una solución sostenible a las fuentes de energía
tradicionales. Gran parte de los reservorios geotermales que se aprovechan son sistemas
dominados por el transporte advectivo de calor. Una celda de Hele Shaw puede servir para el
estudio a escala de laboratorio de lo que ocurre en un medio poroso, en donde la separación
entre placas tiene una relación directamente proporcional al coeficiente de permeabilidad
K de un medio poroso. Un estudio reciente utilizando un modelo en celdas de Hele Shaw
(HSM) (Letelier, Mujica, & Ortega, 2019) ha demostrado que la relación entre la separación
de las placas y la altura es importante a la hora de estudiar el comportamiento del sistema,
diferenciándose de los resultados obtenidos utilizando un modelo completamente darciniano.
Esto indica que en medios con un coeficiente de permeabilidad K importante, como podría
ser una falla geológica, los flujos no estarían bien representados solamente con la ley de Darcy.

La motivación de este estudio se centra en el desafío de inyectar un fluido frío en reservorios
geotermales, una práctica común para el mantenimiento de la presión y el volumen en tales
reservorios. Esta inyección podría alterar las propiedades termodinámicas del reservorio,
potencialmente conduciendo a disminuciones de temperatura o incluso a situaciones extremas
de apagón geotérmico. Debido a que el fluido frío es más denso, tiende a descender y mezclarse
con las capas límite del sistema. Sin embargo, antes de abordar este problema, es crucial
comprender la dinámica de estas capas límite. Los objetivos de este estudio son dobles:
i) validar el modelo HSM mediante la comparación con estudios previos en la literatura, y
ii) caracterizar capa límite térmica a partir de los números adimensionales que dominan el
problema.

El estudio utiliza el modelo de transporte de calor en celdas Hele-Shaw (Letelier et al.,
2019), que representa una falla geológica vertical a escala de laboratorio o un medio perme-
able en aproximación cuasi-2D. El transporte de calor se examina en términos de parámet-
ros adimensionales: el número de Rayleigh (Ra), que caracteriza el régimen de transporte
(convectivo o conductivo), el número de Prandtl (Pr), que representa la relación entre la
difusividad del momento y la difusividad térmica, y la anisotropía de la celda (ϵ), la relación
entre la apertura de la celda y la altura. La respuesta térmica del sistema se estudia mediante
el cálculo del número de Nusselt (Nu), que caracteriza el transporte de calor en un sistema
y corresponde a la relación entre la transferencia de calor por convección y por conducción
en la frontera del fluido.

Los principales hallazgos de este estudio son que i) El modelo logra reproducir resultados
fielmente hasta ϵ2Ra = 0.06 (preliminarmente), y ii) para regímenes de alto Prandtl (Pr > 1)
el transporte de calor no se afectado por cambios en este número, y que el número de Prandtl
se vuelve significativo para Pr < 1. La investigación aporta conocimientos valiosos sobre el
comportamiento de la convección térmica en geometrías confinadas y sus implicaciones para
la ingeniería de reservorios geotermales y la modelación de acuíferos.
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MODELING HEAT TRANSFER IN SEVERELY CONFINED
ENVIRONMENTS

Geothermal energy is emerging as a sustainable solution to traditional energy sources.
Thanks to technological advancements, it is now economically viable to extract energy from
the subsurface in previously inaccessible locations. A significant portion of exploited geother-
mal reservoirs are systems dominated by advective heat transport, and some of them feature
geological structural controls such as faults and/or fractures. A Hele-Shaw cell can be uti-
lized for the laboratory-scale study of phenomena occurring within porous or permeable
media, where the plate separation directly correlates with the permeability coefficient K of
the medium. Recent research using the Hele-Shaw model (HSM) introduced by Letelier et
al. (2019) has shown that the aspect ratio of the cell, the ratio between plate separation
and height, plays a crucial role in the system’s dynamics. This finding differs from results
obtained using a fully Darcian model, indicating that in highly permeable media, such as
geological faults, flows cannot be adequately represented solely by Darcy’s law.

The motivation behind this study lies in the challenge of injecting a cold fluid into geother-
mal reservoirs, a common practice for maintaining pressure and volume in such reservoirs.
This injection could alter the thermodynamic properties of the reservoir, potentially leading
to temperature decreases or even extreme geothermal shutdown situations. As the cold fluid
is denser, it tends to descend and mix with the boundary layers of the system. However, be-
fore addressing this issue, it is crucial to understand the dynamics of these boundary layers.
The objectives of this study are twofold: i) to validate the HSM model by comparing it with
previous studies in the literature, and ii) to characterize the thermal boundary layer based
on the dimensionless numbers that govern the problem.

The study utilizes the heat transport model for a Hele-Shaw cell (Letelier et al., 2019),
which represents a vertical geological fault at a laboratory scale or a quasi-2D permeable
medium. Heat transport is examined in terms of dimensionless parameters: Rayleigh number
(Ra), characterizing the transport regime (convective or conductive), Prandtl number (Pr),
representing the ratio between momentum and thermal diffusivity, and the anisotropy of the
cell (ϵ), the ratio between cell aperture and height. The thermal response of the system
is studied by calculating the Nusselt number (Nu), which characterizes heat transport in a
system and corresponds to the ratio of convective to conductive heat transfer at the fluid
boundary.

The main findings of this study are that i) The model exhibits results that align with
expectations up until ϵ2Ra = 0.06 (preliminarily), and ii) for high Prandtl regimes (Pr > 1),
the Prandtl number does not affect the total heat transport in the cell, but it becomes
significant for Pr < 1. The research contributes valuable insights into the behavior of thermal
convection in confined geometries and its implications for geothermal reservoir engineering
and aquifer modeling.
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Order and simplification are the first steps
toward the mastery of a subject.

Thomas Mann

iii



Agradecimientos

Quiero comenzar expresando mi profundo agradecimiento a mis padres, Sergio y Cecilia.
Gracias por ofrecer un apoyo incondicional a lo largo de mi vida. Mis logros son y siempre
serán el fruto de su inquebrantable esfuerzo y dedicación. Les estoy muy agradecido por
todo.

A mi hermana Daniela, quien ha sido mi compañera de viaje a lo largo de todos estos
años y ha demostrado ser un pilar fundamental en mi vida.

Un reconocimiento especial a mis abuelos, Eduardo y Adriana, cuya presencia constante
ha sido esencial para mí. Siempre han estado allí, brindando su amor y apoyo incondicional.

A mis tíos y primos, Eduardo, Paula, Josefa, Matías, Pía y Montse, les agradezco por
estar siempre a mi lado y ser parte de esta familia tan unida.

Montse, agradezco sinceramente por formar parte de mi vida en este último año y por
mostrarme una perspectiva del mundo que desconocía.

A mi Profesor Guía, Juvenal Letelier, le agradezco por presentarme este desafiante prob-
lema y por su disposición constante para guiarme y orientar mi trabajo. A Hugo Ulloa,
gracias por recibirme en Estados Unidos y por ser parte integral de esta experiencia única.

A mis amigos, Carlos, Diego, Felipe, Benjamín, Agustín, Ignacio y Fernando, les agradezco
por acompañarme durante mi tiempo en la universidad. Los momentos compartidos y los
recuerdos perdurarán en mi memoria.

Un agradecimiento especial a mis amigos de la salita: Felipe, Naro, Gabi, Kari, Fabián
y Alexis. Gracias por las risas, los almuerzos, los días de juegos de mesa y los after office.
Gracias Jacque por tener siempre la mejor dispocisión para ayudarme en cualquier cosa.

iv



Table of Content

1. Introduction 1
1.1. Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1. Geothermal energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2. Geothermal resources in Chile . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3. Reinjection in geothermal fields . . . . . . . . . . . . . . . . . . . . . 3
1.1.4. Representation of the problem and heat transfer . . . . . . . . . . . . 4
1.1.5. Contributions of this work . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Literature review 7
2.1. Fault-controlled geothermal systems and Reinjection in geothermal fields . . 7
2.2. Hele-Shaw Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3. Heat transfer in RBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4. Scientific question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5. Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.1. General objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.2. Specific objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7. Expected results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3. Modeling heat transfer in severely confined environments 31

4. Results 44
4.1. Exploring Hele Shaw Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1. Free Slip Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.2. No Slip Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5. Conclusions And Future Work 56
5.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Bibliography 59

v



List of Figures

1.1. Panoramic view of Cerro pabellón geothermal power plant in Chile. Figure from
Enel.cl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1. Non-magmatic geothermal system controlled by geological fault. Two types of
reservoirs can be observed, (1) where all the flow dynamics occur along the
same fault plane and (2) in which the fault acts as a leakage from the confined
hydrothermal reservoir (the fault acts as a hydraulic connection between zones).
Figure from Moeck (2014). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2. Geothermal system schematic of a doublet and its representation with the Hele
Shaw analogy. In the Hele Shaw representation there are boundary conditions
of constant temperature at top and bottom, free slip and no penetration. . . . 11

2.3. Nusselt vs Rayleigh results for various gamma values. It is worth noting that at
high Rayleigh numbers, the Nusselt number tends to collapse in a straight line
that fits the results for Γ = 1. Modified from Chong and Xia (2016). . . . . . 15

2.4. Nusselt vs Pr results for various gamma values. The black dashed line is the Pr
dependence of Nu estimated by Grossmann-Lohse theory. Modified from Chong
et al. (2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5. Nusselt vs Ra results porous media obtained by Hewitt et al., (2012). With gray
line Palm et al., (1972) theoretical results can be observed. The clear transition
between high Rayleigh and low Rayleigh regimes can be observed. . . . . . . 18

2.6. Nu vs Ra in porous media obtained by Otero et al. (2004). The data from the
run with increasing Ra is shown together with data for the run in which Ra was
decreased from Ra = 1255, indicated by stars. The heat transport for the 2-pair
and 3-pair steady roll solutions is shown by the dotted line. Figure from Otero
et al. (2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7. Scheme of the regimes studied by Wang and Bejan (1987). Modified from Wang
and Bejan (1987). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8. a) Hele-Shaw cell model with its respective boundary conditions. b) Dimension-
less representation of the problem. . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9. The Nu-Ra relationship obtained in this study is compared to findings from other
studies in the literature for models with ϵ = 0.001 and ϵ = 0.004. Differences
in scaling are observed for high Rayleigh numbers (Ra > 1350) due to the
incorporation of inertial and hydrodynamic dispersion corrections. Figure from
Letelier et al, (2019). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.10. The degree of mixing, which represents the extent of temperature homogeniza-
tion, was investigated as a function of the Rayleigh number in the Hele-Shaw nu-
merical experiments. The degree of mixing was computed and a fitting approach
was applied to establish the relationship between the two variables. Figure from
Ulloa and Letelier (2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vi



2.11. Nusselt vs advection time. An example of the Nusselt number calculation is
shown in the time window where statistically steady behavior is observed. This
simulation corresponds to Pr = 30, ϵ = 0.005, and Ra = 2000, conducted
in Dedalus3 with no-slip boundary conditions in the z-direction and periodic
boundary conditions in the x-direction. . . . . . . . . . . . . . . . . . . . . . 28

2.12. Difference between Boundary Conditions: a) Shows periodic boundary condi-
tions (PBC) in the x-direction and free slip conditions in the z-direction. b)
Shows periodic boundary conditions (PBC) in the x-direction and no-slip con-
ditions in the z-direction. c) Shows closed-box boundary conditions (CB) in the
x-direction with free slip conditions in the z-direction. . . . . . . . . . . . . . 30

4.1. Numerical simulation results with ϵ = 5 × 10−3, for two Pr values and three Ra
values. (a-c) show the temperature field for Pr =7 and (e-f) for Pr =100. It
can be seen that there are no major differences in the snapshots between the
two Prandtl numbers presented. . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2. Numerical simulation results with ϵ = 5 × 10−3, for three Pr values and one Ra
value. (a-c) show the temperature field and (e-f) show the scalar dissipation field. 45

4.3. ⟨Nu⟩τ as function of Ra for ϵ = 5 × 10−3. It can be observed that for the
simulated range, the dimensionless heat transport variation does not respond
to Prandtl number variations in range Pr ∈ [7, 100]. In addition, the results
obtained by Hewitt et al. (2012) for the porous medium model are plotted,
where the deviation from the Darcy regime studied by Letelier et al. 2019 is
observed. The insert shows the High-Rayleigh regime plot. The scaling law of
all data in the high Rayleigh regime is Nu∼ Ra0.65. In the Pr=7 simulation, the
values with higher Rayleigh begin to detach from the others, presumably due to
inertial effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4. Degree of mixing of the system as a function of Rayleigh number. Like the
Nusselt number, the value of this indicator does not respond to variations of the
Prandtl number in the range Pr ∈ [7,100]. . . . . . . . . . . . . . . . . . . . . 47

4.5. Nusselt number as a function of the Prandtl number for ϵ = 0.005. Comparison
between the results obtained in 3D free fluids by Chong et al. (2018) with no-
slip boundary conditions. Although the boundary conditions are different and
the results are not directly comparable, the decrease in Nusselt number for the
simulation with Pr = 0.5 occurs in both cases. . . . . . . . . . . . . . . . . . 48

4.6. The figure presents average temperature profiles in the statistically steady state.
Panel a) shows the profiles for three simulations with increasing Rayleigh num-
bers and the same Prandtl number, while panel b) demonstrates the impact of
varying the Prandtl number while maintaining a constant Rayleigh number. . 48

4.7. Comparison between periodic boundary conditions (PBC) and closed box bound-
ary conditions (CB) is shown. It can be observed that both the a) Nusselt
number and b) the degree of mixing are unaffected by the change in boundary
conditions. Interestingly, it appears that the degree of mixing in the system
does not respond to changes in Γ or ϵ. . . . . . . . . . . . . . . . . . . . . . . 49

4.8. Differences between discretizations that only satisfy the criterion of being smaller
than the Kolmogorov scale and those that satisfy being smaller than both the
Kolmogorov scale and π times the Batchelor scale (spectral scale). . . . . . . 50

vii



4.9. Benchmark of Dedalus3. a) shows the Benchmark with results obtained with
flow_solve in Ulloa & Letelier (2022) and b) shows the benchmark with results
obtained in this work with flow_solve. . . . . . . . . . . . . . . . . . . . . . . 51

4.10. The results obtained by Chong et al. (2016) when converting 3D Rayleigh to
the Rayleigh number used in porous media, Ra, for a range of Γ ∈ [1/128, 1/16],
are presented along with the results by Hewitt et al. (2012) for porous media
convection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.11. The Nusselt vs Rayleigh plot for Γ = 1/16 shows the comparison of results
obtained by Chong et al. (2016) and this work, also results obtained by Hewitt
(2012). In the inset plot, a departure from the data can be observed in a
linear scale at ϵ2Ra = 0.06. The graph on the right provides a comparison
between simulations conducted in this study, considering both free-slip and no-
slip boundary conditions. Simulations conducted using Dedalus3. . . . . . . . 53

4.12. Nusselt Number versus Rayleigh Number. Panels (a) and (b) show comparative
analysis of Chong 3D simulations and HSM results for Γ = 1/32 and 1/64,
respectively. Data by Hewitt, (2012) is displayed in stars. Simulations conducted
using Dedalus3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.13. Collapsing data in a universal curve. ϵ2Nu/Φscalar as a function of ϵ2Ra. . . . 55

viii



Chapter 1

Introduction

1.1. Introduction and motivation
1.1.1. Geothermal energy

Geothermal energy is generated from the internal heat produced by the earth (Barbier,
2002) and stored in places called geothermal reservoirs. It is positioned as a novel alternative
to traditional energy sources, such as natural gas, oil, and coal (K. Li et al., 2015). In
recent times, many countries are aiming to transition from a fossil fuel-dependent electricity
generation system to a sustainable one that relies on renewable resources. This shift is driven
by ongoing political discussions surrounding carbon dioxide emissions targets, global warming
limits set by the UN, and energy policy considerations (Christensen & Hain, 2017).

Geothermal energy offers several advantages in this regard, including low greenhouse gas
emissions, contributions to sustainable development, diversification of energy resources, and
improvements to existing energy systems (Christensen & Hain, 2017). It is noteworthy that
geothermal energy provides distinct advantages compared to other renewable sources like
solar or wind power. For instance, geothermal energy offers a stable production profile and
consistently high capacity factors exceeding 90% in many cases. Furthermore, geothermal
energy has a minimal ecological impact due to its independence from weather conditions and
its efficient use of space (K. Li et al., 2015).

The definition of a geothermal system has evolved over time. Initially, only the heat
transported by the circulation of steam or hot water close enough to the surface was taken
into account, i.e. only the heat transported by convection. However, it is now known that
heat is present in enormous and practically inexhaustible quantities in the earth’s crust, but
generally at depths too great to be exploited industrially (Barbier, 2002). Nowadays, thanks
to technological advances, the concept of enhanced or engineered geothermal systems (EGS),
which refer to technological reservoirs in which stored thermal energy can be extracted from
the subsurface even in areas of low or moderate thermal flux. This can be done, for example,
by injecting fluids or generating fractures, making it economically feasible to extract heat
from the subsurface. EGS has significantly increased the global geothermal potential, and
has evolved the definition of a geothermal system to any localized geological environment
where portions of the Earth’s thermal energy can be extracted from natural or artificially
induced circulating fluids and transported to a point of use (Moeck, 2014).
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The geological conditions in which the geothermal system is immersed such as lithology,
faults, fractures, stress field, diagenesis, geomechanics, geochemistry and fluid chemistry
control key parameters like high porosity/permeability zones, flow directions, temperature
distribution and overall system behavior during injection and production, which ultimately
determine whether geothermal fluids have the ability to migrate to shallower crustal levels
(Moeck, 2014). High heat fluxes through the earth’s crust generate surface manifestations like
hot springs, fumaroles, and mud pools. These manifestations provide valuable information
about the underlying flow paths and geological structures (Olvera-García et al., 2020). In
fault- or fracture-controlled geothermal systems, where convective heat transport dominates,
there is evidence of rapid fluid migration along these preferential flow pathways (Pruess &
Bodvarsson, 1984).

1.1.2. Geothermal resources in Chile
Chile is considered as one of the most important geothermal provinces in the world. Most

of the thermal zones are located along the Andes Mountains, and are associated with the
volcanism of the Quaternary period. The volcanic-geothermal activity is mainly controlled
by the subduction processes of the Nazca and Antarctic oceanic plates under the South
American continental plate (Lahsen, 1988).

Geothermal resources in Chile remain largely untapped, presenting a significant oppor-
tunity as a clean source for electricity generation. Currently, the country heavily relies on
imported fossil fuels for nearly 85% of its electricity production and over 75% of its overall
energy consumption. The Northern Chile geothermal zone boasts approximately 90 identi-
fied areas with hot springs, indicating the potential for geothermal development. Notable
progress in exploration has been made in the Colpitas, Apacheta, Pampa Lirima, and El
Tatio-La Torta geothermal prospects, representing the most advanced programs in the re-
gion (Lahsen et al., 2015). Exploiting these geothermal resources could contribute to reducing
Chile’s dependence on fossil fuels while simultaneously fostering a cleaner and more sustain-
able energy sector.

A notable example of the use of geothermal energy in Chile is the Cerro Pabellón plant
(Figure 1.1), which is located on the high plateau of the Atacama Desert in the Antofagasta
Region. It is the only operational geothermal power plant in South America and the highest
of its kind in the world, as it is located 4.500 meters above sea level. In 2022, its third 33 MW
generating unit came into operation, which added to the 48 MW of the two units already in
operation, gives Cerro Pabellón a total power of 81 MW and a total production of 600 GWh
per year, avoiding the emission of 470,000 tons of CO2 into the atmosphere 1.

Another example of a large geothermal field recently studied is El Tatio, located in north-
ern Chile on the western flank of the Andes, which is a system of geysers, hot springs, mud
pools and shallow hot springs, and may be a multiple reservoir, following a fault-controlled
convective system model (Letelier et al., 2021).

1 Data from enel.cl
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Figure 1.1: Panoramic view of Cerro pabellón geothermal power plant in
Chile. Figure from Enel.cl

1.1.3. Reinjection in geothermal fields
Prior to the 1980s, geothermal reservoirs were not managed efficiently, as extracted wa-

ter was often discharged into surface water bodies, leading to environmental risks and lower
energy recovery rates. In the 1980s, reinjection of wastewater into geothermal reservoirs was
introduced as an effective solution to this problem (Kamila et al., 2021). Wastewater rein-
jection also serves other purposes, such as maintaining system pressure, preventing intrusion
of fluids from other aquifers, and sustaining geothermal exploitation by providing neces-
sary recharge to maintain fluid volume conditions in the reservoir (Shortall, Davidsdottir, &
Axelsson, 2015).

Although geothermal energy is classified as renewable, its sustainability is not uncondi-
tional and can be compromised by several factors. For instance, injecting cooler water into the
reservoir can cause a phenomenon called geothermal breakthrough, in which the thermal and
pressure conditions of the system are altered due to the injection of cold fluids (Bödvarsson &
Tsang, 1982). This problem has been observed in several geothermal plants around the world
(Kamila et al., 2021). Numerical models have been developed to characterize the dynamics
of reinjection (Blöcher et al., 2010; Saeid et al., 2013; T. Li et al., 2016; H. Liu et al., 2020),
which provide information about the temperature drop of geothermal fluids over time and
different thermal dynamics. However, these simulations are not direct numerical simulations.

There are many questions regarding fluid reinjection that can be investigated. For exam-
ple, how the system respond to variations in the injection temperature, the vertical position
of the cold fluid injection, the distance between the reinjection well and the injection well,
determine the time it takes for a system to return to its natural state after a finite duration
(tiny) of cold fluid injection, among others. While this problem constitutes the central moti-
vation of this study, it is imperative to first comprehend the physics governing it, understand
its response to variations in fundamental physical parameters, and gain a more precise char-
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acterization of the fluid dynamics occurring under conditions without the injection of cold
water.

1.1.4. Representation of the problem and heat transfer
The study of the dynamics of geothermal reservoirs and what happens inside them is a

complex matter. First of all, porous media are opaque media, i.e. we cannot visualize the
processes that are occurring. In addition, most of these types of reservoirs have length and
depth scales of the order of meters, even kilometers. The time scales on which subsurface
processes occur are also high, on the order of days, even years or more. The geometries of
the aquifers are also complicated and far from ideal. Hence, studying geothermal reservoirs
is a challenge and a difficult problem to address.

A Hele-Shaw cell is a device commonly used in laboratory experiments to simulate the
fluid flow through a porous medium. It consists of two parallel flat plates separated by a
small gap, filled with a fluid (Nield & Bejan, 2012). The cell allows for direct visualization
of the fluid flow patterns, making it easier to study the influence of various factors, such
as fluid properties, pressure gradients, and geometrical features, on the flow behavior. The
separation between plates is directly related to the porosity in a porous medium (Saffman,
1986). Therefore, it is a useful tool for the study of flow in porous media.

The dynamics of heat transfer in the subsurface can be represented by the classic Rayleigh
Bénard fluid mechanics problem (RBC), which consists of a fluid confined between two paral-
lel plates at constant temperature, such that the temperature of the lower plate Tbot is greater
than the temperature of the upper plate Ttop. Due to buoyancy effects, when the temperature
difference between the plates exceeds a critical value Tcrit, the conductive motionless state is
unstable and convection occurs (Bodenschatz et al., 2000).

In classical free fluids RBC, there are 2 dimensionless numbers that dominate the problem
(Ahlers, Grossmann, & Lohse, 2009). First is the Rayleigh number Ra, which characterizes
the transport regime (convective or conductive) and is defined as the ratio between buoyant
and diffusive effects (all the mathematical formulation can be found in Chapter 2). The
second is the Prandtl number Pr which is the ratio of momentum diffusivity to thermal
diffusivity. This parameter measures the relative importance of the nonlinear terms in the
equations of motion. Also has a direct relationship with the boundary layers of the system,
since boundary layers are environments where conductive transport dominates. The system
response is mainly measured by the Nusselt number Nu, which is the ratio of convective to
conductive heat transfer at a fluid boundary.

RBC has also been studied in Hele Shaw cells. Letelier et al. (2019) demonstrated that
the separation between the cell plates affects the thermal response of the system. They
used a model that incorporates inertial corrections to Darcy’s law and the phenomenon of
hydrodynamic dispersion. The limits of this Hele Shaw cell model (HSM) are not yet clear.
As mentioned above, the separation of the plates in a Hele Shaw cell is directly related to
the permeability in a porous medium, therefore, the heat transfer dynamics may be affected,
for example, in a highly fractured medium with a high permeability coefficient.
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In RBC, the thermal boundary layer plays a key role in determining heat transfer (Ahlers
et al., 2009; King et al., 2013; Ulloa & Letelier, 2022). In porous media, Otero et al. (2004)
studied a model in 2D, found that for values of Ra ≥ 4π2 the system is unstable and large-
scale convective cells appear that enhance heat transport and that from Ra > 1200, instead
of convective cells, the formation of thermal plumes predominates. They also observed a
phenomenon of clustering of hot (or cold) mass in the boundary layer up to a certain break
point where the rise of the plumes begins. Hewitt, Neufeld, and Lister (2012) also in a
2D porous medium model, for high Rayleigh regimes (Ra ≥ 1300) recognizes three zones
of importance: The inner region, dominated by a predominantly vertical heat transport in
mega-plumes or columns whose wavelength is quite regular and Ra-dependent; The upper
and lower part of the domain where there are thin diffusive boundary layers, in which there
are intermittent short wavelength instabilities that drive the growth of proto-plumes; and
finally between the boundary layer and the inner region is a region where the dynamics are
characterized by rapid protoplume growth and mixing. Studying fluid mixing in Hele-Shaw
cells, Ulloa and Letelier (2022) conclude that megaplumes detach from the thermal boundary
layer and occupy most of the domain, creating preferential pathways to transport fluid from
top to bottom, homogenizing the temperature of the inner region and thus, increasing the
degree of mixing of the system. They also observed that the megaplumes have an impact
on the thermal boundary layers, reducing their size and forcing the emerging protoplumes
to diverge laterally and merge with the megaplumes. Furthermore, the authors propose a
method to quantify the degree of mixing in the system based on the height of the thermal
boundary layer. They suggest an expression to calculate the boundary layer height; however,
it is important to note that all numerical simulations and results presented in the study are
based on a Prandtl number (Pr) value of 7.

It is essential to understand how the system behaves under variations of the Prandtl num-
ber before addressing the reinjection problem. Because the injected fluid will have a lower
temperature than the ambient fluid and, consequently, the injected fluid will tend to sink to
the bottom of the domain and mix with the geothermal fluid. This mixing will affect the
dynamics of the boundary layer, which is closely related to the Prandtl number.

1.1.5. Contributions of this work
Based on the above, the questions to be solved are:

1. To what extent can the HSM retain the physics of 3D convection in confined environ-
ments?

2. What is the effect of the Prandtl number on the heat transport dynamics in Hele Shaw
cells?

The main objectives of this study is to thoroughly investigate and characterize the fluid
dynamics of the Hele Shaw Model. This includes determining the model’s limits of validity,
examining the system’s response to variations in the non-dimensional parameters governing
the equations, and analyzing the dynamics during the fluid reinjection process. These ob-
jectives are conceived with the aim of being able to characterize what the reinjection of cold
fluids would be like in highly confined environments.
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The organization of this document is as follows: Chapter 2 provides a literature review
on fault-controlled geothermal systems, reinjection in geothermal fields, the analogy of Hele-
Shaw cells and porous media, and heat transport in Rayleigh-Bénard convection. In addition,
scientific research questions, hypothesis, objectives, expected results, and the methodology
will be presented. Chapter 3 provides a brief introduction and the article under preparation
for submission. Chapter 4 presents additional results that were either not published or served
as the starting point for developing the paper. Finally, Chapter 5 concludes the document
with a summary of the findings, discussion of future work, and concluding remarks.
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Chapter 2

Literature review

2.1. Fault-controlled geothermal systems and Reinjec-
tion in geothermal fields

To begin with, gaining a thorough understanding and characterization of geothermal reser-
voirs is crucial. In this regard, the research conducted by Moeck (2014) proves to be highly
valuable. This study presents a comprehensive inventory of geothermal systems, categorized
based on geological factors rather than just temperature and thermodynamic properties.
Moreover, it introduces the concept of artificially enhanced geothermal systems (EGS), which
refers to sites where the ratio between fluid temperature and flow rate is insufficient for
economical utilization. To tackle this issue, technological solutions such as fluid injection
or fracture generation are employed to enhance natural permeability and achieve the de-
sired flow rate/temperature ratio. The most significant advantage of using this catalog is
that direct measurements through an active observation well are not necessary. Key geo-
logical conditions, such as porosity, permeability, fracture patterns, and proximity to the
heat source, play a pivotal role in determining the migration potential of geothermal fluids
towards shallower levels in the crust.

We are interested in geothermal environments where advective heat transport dominates,
as they are much more efficient compared to those dominated by conductive heat transport.
According to Moeck (2014), it is possible to find this type of reservoir in active volcanic fields
close to the magmatic chamber that act as a heat source, in places with active faults that
allow the rapid migration of fluids, or in places that combine both characteristics: recent
volcanic activity and active faults. An example of a fault-dominated reservoir can be seen
in Figure 2.1. Most of the geothermal reservoirs exploited today correspond to reservoirs
dominated by convective heat transport.
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Figure 2.1: Non-magmatic geothermal system controlled by geological fault.
Two types of reservoirs can be observed, (1) where all the flow dynamics
occur along the same fault plane and (2) in which the fault acts as a leak-
age from the confined hydrothermal reservoir (the fault acts as a hydraulic
connection between zones). Figure from Moeck (2014).

The practice of re-injecting reservoir fluids has become common nowadays, but it hasn’t
always been the case. In the 1980s, water extracted from geothermal reservoirs was often
discharged into surface water bodies, posing environmental risks and affecting energy recov-
ery. This discharge of geothermal water into surface water bodies posed a threat to the
environment (Kamila et al., 2021). Geothermal waters generally contain components origi-
nating from two main sources. The first source is the magmatic fluids themselves, while the
second source is the alteration caused by hydrothermal fluids in the porous matrix or source
rock. For instance, in northern Chile, most thermal waters consist of brines with TDS (Total
Dissolved Solids) exceeding 1000 [mg/L] (Risacher, Fritz, & Hauser, 2011). Because of this,
wastewater injection in geothermal reservoirs was tested and put into practice.

Re-injection serves other purposes besides providing a solution for wastewater disposal.
High extraction rates or lack of reinjection of geothermal fluid can affect system pressure,
and a decrease in pressure can lead to intrusion of fluids from other aquifers into the reservoir
(Shortall et al., 2015). Therefore, reinjection maintains reservoir pressure under control. It
also provides the necessary recharge to maintain the fluid volume conditions in the reservoir
that will eventually sustain geothermal exploitation.

Reinjection of fluids into geothermal reservoirs can have negative consequences. Reinjec-
tion can lead to several undesirable effects on steam production, such as chemical (problems
with mineral deposition both in pipelines and in the porous matrix itself) or thermal break-
through and boil-off suppression. In addition, reinjection may raise public concern about
ground uplift, subsidence, and induced microseismicity (Kamila et al., 2021). The problem
addressed in this study is geothermal breakthrough. This occurs when initial thermal and
pressure conditions of the system are lost due to the injection of cold fluids. Also by injecting
cooler water, the temperature will spread and reach the extraction zone, thus reducing the
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temperature in the production wells and reducing the efficiency of the operation (Bödvarsson
& Tsang, 1982; Pruess & Bodvarsson, 1984).

Kamila et al. (2021) has conducted a thorough review of re-injection practices in geother-
mal power plants, highlighting instances and direct occurrences of geothermal breakthrough.
The paper highlights several instances of successful implementation of re-injection, includ-
ing, for example, the Hellisheidi power plant in Iceland, which has an installed capacity
of 303 [MW ] and generates equal amounts of power with an average reservoir tempera-
ture of 303 [◦C]. In this plant, full reinjection (100% wastewater reinjection) is achieved
through wells located at the reservoir’s edges. The injection temperature typically ranges
from 60−80 [◦C], but can increase to 120−173 [◦C] during thermal power plant maintenance,
resulting in a rapid enthalpy change in wells located near the reinjection wells. This is a clear
indication of thermal breakthrough. Moreover, it has been observed that the initial phase
of wastewater reinjection at the Hellisheidi plant resulted in approximately 2 [cm] of surface
displacement, which can be linked to the pressure increases due to reinjection (Juncu et al.,
2020). Another successful example is the Tuscarora plant in the USA, which also has a total
reinjection scheme. After experiencing thermal breakthrough, the plant realized that one
of the injection wells was strongly connected to the production zone, resulting in an initial
decline of 3.5 [◦C] per year. By changing the problematic injection well, the plant achieved
an almost immediate temperature recovery of 1.5 [◦C] and transitioned to a lower decline
trend of 1.7 [◦C] per year (Chabora, Lovekin, Spielman, & Krieger, 2015).

Pruess and Bodvarsson (1984) developed an analytical solution to determine the time delay
of the effects of cold water injection at a production point or well on vertical faults. The
problem is characterized by several assumptions: a known geometry involving two parallel
walls, a constant flow velocity, one-dimensional flow in a horizontal direction, heat conduction
occurring only perpendicular to the flow, and specified initial and boundary conditions. It
is obvious that this is a solution to an ideal problem where the assumptions may be far
from reality, however, the paper highlights the effect of lateral conduction of heat from the
reservoir rocks across the fracture faces on the faces. In an example given by the authors, the
times could be several times shorter (3 times shorter in the example) if this effect of lateral
heat conduction is not considered. Bödvarsson and Tsang (1982) also developed a similar
model but for horizontal fractures, they also performed numerical tests to see the effect of
the assumptions made, finding that not considering the heat conduction in the direction of
flow can lead to errors in the temperature distribution at very late times.

Several numerical models have been developed in order to characterize the dynamics oc-
curring at the time of reinjection (Blöcher et al., 2010; Saeid et al., 2013; T. Li et al., 2016;
H. Liu et al., 2020), obtaining as results the characterization of the temperature drop of
geothermal fluids in time and different thermal dynamics, depending on the context ana-
lyzed. Blöcher et al. (2010) made a 3D model of a geothermal research reservoir in Germany
that has a doublet, i.e. an injection well and an extraction well. The model includes a com-
plete hydrothermal coupling of several parameters, such as thermal conductivity and heat
capacity as a function of temperature, as well as fluid density and viscosity as a function
of pressure, temperature and mass concentration. The geological information available at
the site is very rich. A Darcy flow model is solved in FEFLOW. The result of the model
gives a time when the cold water front reaches the production wells (3.6 years) but it is
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also interesting that the pressure perturbations traveled much faster and reach farther. Also
that the hydraulic conductivity in the fractures depends strongly on the pore pressure of the
system and that is something that the software they use manages to capture, however, they
emphasize that the pore pressure can also vary due to the stress field, but that is something
that they cannot incorporate.

Another example is Saeid et al. (2013) numerical model of a doublet in a deep geothermal
reservoir that incorporates the wellbore, reservoir and surrounding soil components. The
model solves a Darcy model in COMSOL. One of the peculiarities of this study is that it
considers temperature-dependent viscosity and density variables. Among the results is the
sensitivity of the model to viscocity and porosity, the higher the viscosity the propagation of
the cold front slows down, and with the porosity, the higher the porosity of the matrix the
faster the geothermal breakthrough.

As shown above, there are many models of cold fluid reinjection in geothermal reservoirs,
which characterize the evolution of the temperature field as a function of time as well as the
response that would be produced in these to variations of different parameters. However,
none of these models are direct numerical simulations and almost all use a Darcy model to
describe flows in fractured or high-permeability zones, which can, as will be seen in later
sections, overestimate heat fluxes.

2.2. Hele-Shaw Model
A Hele-Shaw cell is a device commonly used in laboratory experiments to simulate the

fluid flow through a porous medium. It consists of two parallel flat plates separated by a
small gap, filled with a fluid. The gap between the plates can be considered as a simplified
representation of a porous medium, as the fluid flow in the gap is restricted and controlled
by the gap size and geometry, just like in a porous medium (Nield & Bejan, 2012).

The Hele-Shaw cell is particularly useful for studying the fundamental fluid flow and
transport phenomena in porous media, such as Darcy’s law, which describes the flow rate of
a fluid through a porous medium (Saffman, 1986). The cell allows for direct visualization of
the fluid flow patterns, making it easier to study the influence of various factors, such as fluid
properties, pressure gradients, and geometrical features, on the flow behavior. Moreover, the
Hele-Shaw cell is a cost-effective and versatile tool for conducting laboratory experiments on
porous media, as it can be easily customized to simulate different types of porous media,
such as sandstones, carbonates, or fractured media (Letelier et al., 2019; Ulloa & Letelier,
2022). Additionally, it allows for precise control of experimental parameters, such as the
flow rate, temperature, and pressure, making it possible to obtain accurate and reproducible
experimental results. In summary, the Hele-Shaw cell is a suitable laboratory model for
porous media, as it provides a simplified yet realistic representation of fluid flow in porous
media and allows for detailed experimental investigation of flow behavior and transport
phenomena.

Within a Hele-Shaw cell with a gap width of b, the relationship between the two-dimensional
averaged velocity u of a viscous fluid confined between the cell walls and the pressure p is
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governed by a set of equations 2.1. These equations are derived from the Navier-Stokes
equations and the continuity equation (Saffman, 1986):

u = b2

12µ
(−ρgk̂ − ∇p) ∇ · u = 0 (2.1)

Where µ is the dynamic viscosity of the fluid, ρ is the density of the fluid, g is the acceleration
of gravity and k̂ is the unit vector pointing in the same direction as gravity. The above
relationship is identical to Darcy’s law in a porous medium of permeability K = b2/12.
Evidently, this is an approximation that is valid when the ratio between the separation b
and the cell height H is small and gets worse as this ratio increases. Figure (2.2) shows a
representation of the Hele Shaw cell analogy.

Figure 2.2: Geothermal system schematic of a doublet and its representation
with the Hele Shaw analogy. In the Hele Shaw representation there are
boundary conditions of constant temperature at top and bottom, free slip
and no penetration.

Letelier et al. (2019) recently conducted an investigation into buoyancy-driven flows in
Hele Shaw cells, using a combination of perturbation techniques and numerical simulations
to examine the impact of Rayleigh number and cell anisotropy on flow behavior. Letelier et
al. (2019) derived a 2D model that takes into account both inertial corrections in the momen-
tum equation and mechanical dispersion in the scalar transport equation to describe thermal
convection in a Hele Shaw cell. The Hele Shaw Model (HSM), results from averaging the
Navier-Stokes equation and the advection-diffusion model for heat transport in the confine-
ment direction. The latter can be considered as a correction of the advection-diffusion model
for heat transfer and Darcy equation, incorporating inertial and dispersive terms proper to
the cell geometry.

Their findings revealed the presence of three distinct flow regimes, in agreement with
the ϵ2Ra parameter value: (i) the Darcy regime (ϵ2Ra −→ 0), in which the flow is two-
dimensional and can be accurately described using Darcy simulations; (ii) the Hele-Shaw
regime (ϵ2Ra ≪ 1), in which the flow remains two-dimensional but is influenced by gap-
induced dispersion, and (iii) the three-dimensional regime (ϵ2Ra ≫ 1), where the effects of
the third dimension become significant. The exact range of validity of the set of equations
introduced by Letelier et al. (2019) has not yet been established. In summary, the Hele-Shaw
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regime is an intermediate regime between two and three dimensions, but the mathematical
formulation is still two dimensional. It’s important to note that the source of hydrodynamic
dispersion in a Hele-Shaw cell differs from that in porous media. In the latter, flow path
tortuosity and friction with the solid matrix’s surface result in fluid and solute following
meandering paths. This mechanical dispersion causes additional mixing and dilution effects
and is responsible for the Ra dependent behavior of dissolution rate (Liang, Wen, Hesse, &
DiCarlo, 2018). In contrast, Hele-Shaw flow’s dispersion is produced by the presence of a
constrained third dimension (Taylor hydrodynamic dispersion).

It is worth noting that De Paoli, Alipour, and Soldati (2020) conducted experiments to
validate Hele-Shaw regime observed by Letelier et al. (2019) in numerical simulations, in
which different openings of the Hele-Shaw cell were tested. De Paoli et al. (2020) work
further refined the boundaries of the Hele-Shaw regime, defining them as being between
0 < ϵ2Ra < 1 and the three-dimensional regime 1 ≤ ϵ2Ra. Due to the fact that conductivity
is directly linked to cell anisotropy, a fractured porous medium could be in the Hele Shaw
regime, so estimating parameters and fluxes only with Darcy’s law could be giving erroneous
results. The effect it has on heat transport and the mathematical model is discussed in
Section 2.3.

2.3. Heat transfer in RBC
Heat transport by convection, i.e. fluid motion due to gravity acting on an unstable density

profile, is an interesting problem that appears in a large number of earth science problems.
For example, it is the mechanism responsible for the transport of heat in the atmosphere
by the upward transfer of heat absorbed in the soil. It is also responsible for the mixing of
water masses in the oceans (Gauthier et al., 1978). In porous media, heat from the Earth’s
core drives subsurface hydrothermal convection that can be harnessed as geothermal energy
(Letelier et al., 2019; Hewitt, 2020). Salt concentration gradients in the subsurface can also
drive convection (Evans & Nunn, 1989). Convection results in increased scalar transport and
also has an effect on fluid mixing.

Rayleigh Bénard Convection (RBC) consists of a fluid confined between two parallel plates
at constant temperature such that the temperature of the lower plate Tbot is higher than
the temperature of the upper plate Ttop. Due to buoyancy effects, when the temperature
difference between the plates exceeds a critical value Tcrit, the state of conductive immobility
is unstable and convection occurs (Bodenschatz et al., 2000). Clearly, the flow dynamics that
occur between these plates are not the same if we compare a free fluid with what happens
in a porous medium. In porous media, the presence of solid particles or other obstructions
can significantly affect the flow patterns and heat transfer characteristics (S. Liu et al.,
2020). The porous medium can act as a filter or restrictor, creating additional resistance to
fluid flow and affecting the onset and stability of the convective motion. Rayleigh-Bénard
convection in porous media has important applications in geosciences, such as the study of
natural convection in the Earth’s mantle (Mckenzie, Roberts, & Weiss, 1974; Yan, Ballmer,
& Tackley, 2020), and in engineering, such as the design of geothermal energy systems and
enhanced oil recovery (Blöcher et al., 2010; H. Liu et al., 2020).
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As discussed in Section 2.2, the Hele Shaw regime is an intermediate step between the
porous medium regime and a fully 3D problem. This is why remarkable results of RBC in
3D free fluids and in porous media will be reviewed.

One of the most important works on Rayleigh Bénard convection in 3D is the one done
by Ahlers et al. (2009). They made a compilation of theoretical, experimental and numerical
studies on 3D Rayleigh Bénard convection. The most commonly used mathematical approx-
imation consists of using the Oberbeck-Boussinesq approximation in which the density ρ of
the fluid depends linearly on the temperature:

ρ(T ) = ρ(T0) [1 − β(T − T0)] (2.2)

Where β is the thermal expansion coefficient. Most models also consider the coefficient of
thermal expansion β, kinematic viscosity ν, and thermal diffusivity κ to be constant. Then
the governing equations of RBC are (if we consider a closed container of height H):

∂iui = 0 (2.3)

∂tui + uj∂jui = −∂ip + ν∂2
j ui + βgδi3θ (2.4)

∂tθ + u∂jθ = κ∂2
j θ (2.5)

Where u(x, t) is the velocity field, p(x, t) is the pressure, θ is the temperature field relative
to some reference temperature, g is the gravitational acceleration, and δij is the Kronecker
delta. Here all variables are dimensional. Typical boundary conditions of the problem are
u = 0 at the walls (no slip condition), θ(z = −H/2) = ∆T/2 and θ(z = H/2) = −∆T/2,
at the sidewalls no lateral heat flow. The equations of motion are determined by 2 dimen-
sionless parameters, Rayleigh Number, Prandtl Number. In addition, there is an important
dimensionless number that is the aspect ratio of the geometry:

Ra3D = βgH3∆T

κν
Pr = ν

κ
Γ = b

H
(2.6)

The parameter b depends on the geometry in which the experiments are made. In a cubic
cell b represents the width, in a cylindrical cell b represents the diameter of the cell. Rayleigh
number Ra characterizes the transport regime (convective or conductive) and is defined as
the ratio between buoyant and diffusive effects, in addition, this number can be thought of
as the ratio of the timescale to diffuse a distance H to the timescale to convect over that
distance. The Prandtl number Pr is the ratio of momentum diffusivity to thermal diffusivity,
this parameter measures the relative importance of the nonlinear terms in the equations of
motion, also has a direct relationship with the boundary layers of the system (Bodenschatz
et al., 2000). The response of the system is measured with the Nusselt Number. The Nusselt
number (Nu) is a crucial dimensionless parameter used in fluid mechanics and heat transfer
to determine the principal response of a system, particularly in describing the convective heat
transfer between a fluid and a solid surface. This parameter provides a way to relate the
convective heat transfer coefficient to the thermal conductivity and the characteristic length
scale of the system, making it an essential tool for predicting the heat transfer rate from a
heated surface to a fluid or from a fluid to a cooled surface. It is calculated as:

Nu = ⟨uzθ⟩A − κ∂3⟨θ⟩A

κ∆TH−1 (2.7)
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Where ⟨·⟩A denotes the average over any horizontal plane and over time. The flow in
these systems reach a statistically stable state, which allows the investigation of heat fluxes
(Le Reun & Hewitt, 2021). The main idea is to find the relationship between the Nusselt
number and the dimensionless numbers that dominate the problem, i.e. the Rayleigh number,
the Prandtl number and the aspect ratio. Although it is known that there is a dependence
of the system on the aspect ratio, the old theories and the theory postulated by Grossmann
and Lohse do not incorporate a direct dependence.

The older scaling theories for the Nusselt number typically take the form of Nu = RaαPrβ.
The values of the exponents depend on the assumptions made, with the Rayleigh exponents
varying between 1/2 and 1/4, and the Prandtl exponents between 1/2 and -1/4. However,
these scaling laws did not offer a unified perspective and often did not agree with experimental
measurements. One of the major discrepancies was the dependence on the Prandtl number,
which differed significantly with observed data. To address this issue, Grossmann and Lohse
(2000) developed a unifying theory for estimating the Nusselt number, Nu(Ra,Pr), over a
wide range of dimensionless parameters.

Grossmann and Lohse’s theory divides the domain into two parts: the bulk and the
boundary layers, since the physics in each region is fundamentally different. The authors
emphasize the importance of the relative thickness between the thermal boundary layer and
the kinetic boundary layer. In regimes with low Prandtl numbers, the kinetic boundary layer
is contained within the thermal layer, while in high Prandtl regimes, the opposite is true,
leading to a different approach to modeling the thicknesses of the boundary layers. The
scaling of the Nusselt number depends on the dominant region and the relationship between
the boundary layers (all escalations factors can be reviewed in Grossmann and Lohse (2000)).

It is worth noting the concept of the Ultimate Regime or asymptotic heat transfer, which
occurs when the heat transfer and turbulence strength become independent of kinematic
viscosity and thermal diffusivity. This means that the thermal boundary layer and kinetic
boundary layer no longer significantly affect heat fluxes, and the flow is dominated by the
bulk. In this regime, Grossmann and Lohse’s theory proposes that if the thickness of the
kinetic boundary layer exceeds that of the thermal boundary layer (a high Pr regime), the
scaling of the Nusselt is Nu ∼ Ra1/3 (Grossmann & Lohse, 2001; Ahlers et al., 2009). For
low Pr regimes, where the opposite is true, the scaling is Nu ∼ Ra1/2Pr1/2. This highlights
the critical role played by boundary layer thickness and suggests that the Nusselt scaling
depends on the ratio of kinetic to thermal boundary layer thickness.

Additionally, Bhattacharya, Verma, and Samtaney (2021) conducted a study on 3D RBC
and found that the Prandtl number also influences the local heat flux fluctuations. A higher
Prandtl number leads to convection occurring through increasingly thinner thermal plumes,
resulting in stronger fluctuations and inhomogeneity in the heat flux.

Recently, two studies (Chong & Xia, 2016; Chong, Wagner, Kaczorowski, Shishkina, &
Xia, 2018) have shown that extreme one-dimensional confinement (i.e., very low Γ) can
lead to changes in the classical scaling laws. In Chong and Xia (2016), the behavior of
Rayleigh–Bénard convection in the severely confined regime was investigated using direct

14



numerical simulations (DNS), solving equations 2.3, 2.4 and 2.5 with the conditions of no
slip and impermeability applied to all walls and adiabatic conditions at the sidewalls, while
the top and bottom walls are maintained at a constant temperature. The authors defined
the severely confined regime as when the distance between the plates is only a few times the
thermal boundary layer thickness, which is significantly smaller than the standard geometrical
confinement for Rayleigh–Bénard convection. In this paper, the Prandtl number is fixed at
4.38, while Rayleigh is varied from 104 to 1011 and Γ is varied from 1 to 1/128.

The primary outcome of this paper is illustrated in Figure 2.3. The authors performed
simulations, which revealed that in the severely confined regime, plumes continue to dominate
heat transfer, but the plume structures undergo significant alterations. The heat transfer
efficiency was found to be higher than predicted by classical scaling laws. The authors also
observed that the heat transfer enhancement in the severely confined regime was due to the
formation of coherent structures near the walls, referred to as wall-to-wall megaplumes, when
the aspect ratio Γ was small. This behavior is similar to the creation of coherent structures
in a 2D free fluid that flows through obstacles which simulate a porous medium, improving
heat transport (S. Liu et al., 2020). Chong and Xia (2016) also demonstrated that for high
Ra regimes, the Nusselt number collapses into a straight line, regardless of the value of
Γ. Additionally, numerical simulations confirmed that the onset of convection agreed with
theoretical predictions derived for Hele Shaw cells (Bizon, 1997).

Figure 2.3: Nusselt vs Rayleigh results for various gamma values. It is worth
noting that at high Rayleigh numbers, the Nusselt number tends to collapse
in a straight line that fits the results for Γ = 1. Modified from Chong and
Xia (2016).

The other study, Chong et al. (2018), investigates the effect of varying the Prandtl number
on heat transport in confined media. The setup and boundary conditions are the same as in
the previous study. This time, a Rayleigh number of 108 is fixed, while the Prandtl number
is varied between 0.1 and 40, and Γ between 0.025 and 0.25. Figure 2.4 shows the Nusselt
number results. Among the main conclusions is that a very weak dependence on Nusselt is
observed for large Pr, a result also described by Ahlers et al. (2009) and Shishkina, Emran,
Grossmann, and Lohse (2017). Another characteristic they found is that when the ratio
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of the thermal boundary layer thickness λT to the momentum thickness λp is around one,
an optimal coupling is generated between the normal stress and temperature fluctuations,
leading to optimal heat transport. For Pr < 0.5, the Nusselt number is decreased. X. M. Li,
He, Tian, Hao, and Huang (2021) also reports a similar study in confined environments,
however the Γ values are too high to compare with a Hele Shaw model.

Figure 2.4: Nusselt vs Pr results for various gamma values. The black
dashed line is the Pr dependence of Nu estimated by Grossmann-Lohse
theory. Modified from Chong et al. (2018).

The two studies presented in detail, Chong and Xia (2016) and Chong et al. (2018) are
a fundamental pillar for this investigation. As seen in the previous section, a Hele-Shaw cell
is precisely an apparatus in which the width-to-height aspect ratio Γ is very low. The value
of these studies lies in the fact that the solved equations are in three dimensions, whereas the
Hele-Shaw model is a 2D model that incorporate information about the confined dimension.
Therefore, the results of these studies are useful for comparison and for establishing the limits
of the Hele-Shaw model.

On the other hand, the problem in porous media is slightly different, starting with the
equations that model the phenomenon. The flow in porous media is typically modeled
through continuum modeling, which involves averaging relevant quantities such as pressure,
density, and velocity over a representative volume that encapsulates many pores (REV) (Nield
& Bejan, 2012). This approach allows the flow to be described in terms of the mean volume
flux or Darcy velocity u. Instead of resolving the Navier-Stokes equation, in porous media,
Darcy’s law is valid, which relates the driving pressure and buoyancy forces to the viscous
drag imparted by the medium’s pore scale (Hewitt, 2020). Using the Oberbeck-Boussinesq
approximation the equations are:

∂iui = 0 (2.8)

µK−1u = −∂ip + ρgδi3 (2.9)

∂tT + u∂jT = κ∂2
j T (2.10)

Here K is the permeability of the medium, ρ is the fluid density and µ is the dynamic
viscosity. Unlike free fluids, here the only dimensionless control parameter is the Rayleigh
number. Although they have the same meaning, the mathematical formulation is different.
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Ra = β∆TgKH

κν
(2.11)

Because the system of equations is a little simpler to solve than that of free fluids, there are
more theoretical studies. Linear stability analysis shows that in a 2D Rayleigh-Bénard cell, if
the Rayleigh number is less than the critical Rayleigh number Racrit = 4π2, a vertically linear
and horizontally uniform temperature field is stable. This means that the effects of diffusion
and viscosity are too significant, and no flow occurs, resulting in the transfer of buoyancy
being entirely diffusive, above that Rayleigh number instability appears as convection (Nield
& Bejan, 2012).

Above the critical Rayleigh number, two distinct regimes can be identified: the low
Rayleigh regime and the high Rayleigh regime. Studies have investigated these regimes
in 2D porous media (Palm, Weber, O D D M U N, & Kvernvold, 1972; Otero et al., 2004;
Hewitt et al., 2012). In contrast to what occurs in free fluids, in the mathematical formula-
tion of porous media, there is no Prandtl number. This leads to fewer difficulties compared
to those for free fluids.

In the low Rayleigh regime, stable plumes form, and small instabilities grow in the vicinity
of boundary layers that are not strong enough to disrupt the system’s order. The Nusselt
number in this regime does not exhibit a clear scaling behavior. In porous media, for approx-
imately Ra > 1250, there is a decrease in heat transport due to the reordering of structures
caused by the growing significance of instabilities in the boundary layers (Hewitt, 2020). This
marks the transition between the low Rayleigh regime and the high Rayleigh regime.

In the high Rayleigh regime, the flow within the cell is dominated by vertical exchange
flow consisting of interleaving columns of hot and cold fluid with a horizontally varying
wavelength dependent on Ra. Heat is transferred through thin diffusive boundary layers at
the upper and lower boundaries, which are unstable and give rise to the growth of short-
wavelength and intermittent plumes. Between the relatively ordered interior flow and the
boundary layers, there is a region characterized by intense mixing and transient flushing of
these short-wavelength plumes, as heat is exchanged between the boundary layers and the
interior exchange flow. In the high Rayleigh regime, the scaling relationship is sublinear,
with Nu ∼ Ra0.9 (Otero et al., 2004; Hewitt et al., 2012). However, in the theoretical limit
as Ra tends to infinity, it is expected that the relationship between the Nusselt number
and the Rayleigh number approaches linearity, Nu ∼ Ra. This can be understood using
dimensional analysis, where heat transport is determined by the marginal stability of the
thermal boundary layers and the mean temperature gradient (Malkus, 1954). Figure 2.5
shows the results obtained by Hewitt et al. (2012). In 3D simulations in porous media
(Hewitt, Neufeld, & Lister, 2014), it has been observed that the scaling for high Rayleigh
regimes remains the same, i.e., Nu ∼ Ra, with the exception that the prefactors change in
the exact relationship (De Paoli, Pirozzoli, Zonta, & Soldati, 2022).
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Figure 2.5: Nusselt vs Ra results porous media obtained by Hewitt et
al., (2012). With gray line Palm et al., (1972) theoretical results can be
observed. The clear transition between high Rayleigh and low Rayleigh
regimes can be observed.

Otero et al. (2004) investigated the presence of a hysteresis effect on a 2D porous media
model, as evidenced by the star-marked curve in Figure 2.6. They conducted simulations
with descending Ra values, starting from an initial condition corresponding to a higher Ra
simulation. Within the range of 160 < Ra < 1000, three stationary convective cells are
favored, contrasting with the single pair observed in the ascending Ra simulations. The
Nusselt number exhibits a higher value in certain ranges and a lower value in others. In
this Ra range, the scaling of Nu is lower compared to the ascending Ra trajectory. As Ra is
reduced below 160, the solution transitions to the formation of two convective cells, leading
to a significant enhancement in heat transport. Finally, within the range of 50 < Ra < 76,
the solution favors the formation of a single convective cell, accompanied by an increase in
heat transport. This effect is important when analyzing results because, essentially, for the
same Rayleigh number, there are at least two states in which steady states can be reached,
leading to different Nusselt number outcomes.

The hysteresis effect also has been observed in laboratory experiments on porous media.
Murray and Chens (1989) conducted an experiment on a horizontal layer of porous medium
to study double diffusive convection involving both mass and heat transfer. They observed
hysteresis by increasing the Rayleigh number beyond the critical value and then decreasing it
below the critical value. This led to different paths in the heat fluxes, indicating the existence
of hysteresis loops in the system.
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Figure 2.6: Nu vs Ra in porous media obtained by Otero et al. (2004). The
data from the run with increasing Ra is shown together with data for the
run in which Ra was decreased from Ra = 1255, indicated by stars. The
heat transport for the 2-pair and 3-pair steady roll solutions is shown by
the dotted line. Figure from Otero et al. (2004)

The influence of the Prandtl number on flow behavior in porous media has been relatively
overlooked, primarily due to its absence in the classical Darcy formulation, as mentioned.
Jonsson and Catton (1987) conducted a study involving both numerical simulations and
experimental investigations in porous media with fluids of varying Prandtl numbers. They
observed that the results exhibited variations depending on the effective Prandtl number
(Pre), which is determined by the fluid properties and porous media properties, particularly
for values below Pre < 0.1. Below this limit, the Nusselt number decreases, indicating a
reduction in heat transport efficiency. Conversely, above this limit, the Prandtl number seems
to have no discernible effect on heat transport. The numerical simulations were performed
by adding the Darcy model with a Brinkmann term and the Forcheimer term.

Wang and Bejan (1987) demonstrated that the spread of the experimental data could
be significantly reduced by considering the effect of fluid inertia by taking into account the
quadratic drag included in the Forcheimer term, which becomes increasingly significant as the
Rayleigh number increases. They utilize a dimensionless number Prp, obtained by multiplying
the effective Prandtl number by the Darcy number, to analyze the equations. Upon examining
the magnitudes of the terms in the equations, the authors identify three distinct regimes. The
first is the subcritical (conduction) regime, characterized by Ra < 40, where Nu = 1. The
second is the Darcy convection regime, with 40 < Ra < Prp, where Nu follows the classical
Darcy scaling, depending only on Rayleigh number. The third regime is the Forcheimer
convection regime, occurring for Ra > Prp, where Nu decreases in comparison to the Darcy
regime, depending on Ra and Prp. Figure 2.7 illustrates a schematic representation of these
regimes. This is similar to what was obtained by Letelier et al. (2019) when investigating
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the effect of incorporating inertial and hydrodynamic dispersion corrections. However, these
corrections and the Forchheimer term are quite different.

Figure 2.7: Scheme of the regimes studied by Wang and Bejan (1987).
Modified from Wang and Bejan (1987).

Another effect that is important to note in porous media is dispersion. Dispersion in porous
media is a significant phenomenon that has been widely studied in the literature (Bear, 1967;
Sahimi & Imdakm, 1988; Puyguiraud, Gouze, & Dentz, 2021). However, previous works
often neglected this effect in their investigations (Otero et al., 2004; Hewitt et al., 2012).
In general, the dispersion of substances or particles in a porous medium is attributed to
two main factors: molecular diffusion and convective dispersion, also known as mechanical
dispersion. The combined effect of these processes is referred to as hydrodynamic dispersion
(Nguyen & Papavassiliou, 2020). The dispersion process is influenced by various factors,
including the pore structure, flow velocity, molecular diffusion, and molecular interactions.
Although hydrodynamic dispersion is a macroscopic phenomenon, its underlying causes lie in
the complex microstructures of the porous media and the non-uniform microscopic movement
of the fluid. To fully understand hydrodynamic dispersion, a microscopic analysis of the
system is necessary (Sun, 1996).

Wen, Chang, and Hesse (2018) conducted a study on a Darcy model with longitudinal
and transverse dispersion. They discovered that in a sufficiently wide domain, the dynamics
of the system are governed by three key parameters: the molecular Rayleigh number Ram

(same as 2.11), the dispersive Rayleigh number Rad, and the dispersivity ratio r. When
mechanical dispersion dominates as the primary dissipative mechanism, the convective flux
is mainly controlled by Ram, while the convective pattern is determined by Rad. This implies
a decoupling between convective flux and pattern during porous media convection with dis-
persion. Furthermore, the study by Wen et al. (2018) confirmed that the linear flux scaling
relationship, F ∼ Ram, obtained in previous works remains valid even in the presence of
hydrodynamic dispersion. However, it was found that the prefactor of this relationship is
determined by Rad, the dispersive Rayleigh number. This indicates that while mechanical
dispersion dominates as the primary dissipative mechanism, the convective flux is still gov-
erned by Ram, but the magnitude of the flux is influenced by Rad. Therefore, Rad plays
a crucial role in determining the specific value of the prefactor in the linear flux scaling
relationship.
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As discussed in Section 2.2, the Hele Shaw model is particularly suitable for studying
porous media with a high permeability coefficient, such as fractured media. In the case of a
vertical fracture, Murphy (1979) investigates natural convection of water in a vertical fracture
or fault where the temperature increases with depth on a Darcy model. The heat transport
process is influenced not only within the water itself but also by heat exchange with the
surrounding rock mass. The findings from a linear stability analysis reveal that the critical
Rayleigh number, Rac, which characterizes the onset of convection, is time-dependent and in
general, is several orders of magnitude higher than the value that would apply to a porous
bed without the influence of the surrounding rock mass.

Malkovsky and Magri (2016) conducted research on the onset of thermal convection in a
single-phase fluid with temperature-dependent viscosity in a vertical permeable fault. The
study utilized a 3D Darcy model and employed linear stability analysis and numerical sim-
ulations. It was observed that the decrease in the critical Rayleigh number is influenced
by the dimensionless number that represents the viscous property of the fluid. Interest-
ingly, the destabilizing effect of temperature-dependent viscosity on thermal convection in
the fault was found to be independent of the fault width. The study also revealed that in
faulted geothermal systems, thermal convection can occur within faults with permeability
up to 4 times lower than that of a fluid with constant viscosity. Moreover, the variable fluid
viscosity effects dominate over the stabilizing thermal feedbacks of the surrounding rocks,
even when there is enhanced heat exchange between the fault and conductive rocks due to
thermal conductivity heterogeneity. This research highlights the significance of fluid viscos-
ity effects in faulted sedimentary basins, suggesting that thermal convection may have been
underestimated in previous studies that neglected these effects.

The studies conducted by Murphy (1979) and Malkovsky and Magri (2016) provide valu-
able insights into the intricate nature of real-world situations, emphasizing the complexity
and multitude of variables and effects involved. They serve as a reminder of the significance
of avoiding oversimplified upscaling approaches when working with data obtained from lab-
oratory experiments or numerical simulations that rely on idealized assumptions. Failing
to account for the intricate ways of the real system can result in misleading or inaccurate
outcomes.

The phenomenon of Rayleigh-Bénard convection (RBC) has also been investigated in
the context of Hele-Shaw flow. Notably, Aniss, Souhar, and Brancher (1995) conducted
an important study in this area. They employed dimensional analysis and the Hele-Shaw
approximation, utilizing classical asymptotic methods. As a result, they were able to identify
two distinct nonlinear formulations of the original problem, with each formulation dependent
on the Prandtl number’s order of magnitude. This finding highlights the Prandtl number’s
control over the weakly nonlinear aspects and the thermal-hydrodynamic characteristics of
modes. Aniss et al. (1995) further concluded that as the aspect ratio Γ approaches zero,
the analogy between 2D porous media and Hele-Shaw cells becomes more rigorous. The
influence of the Prandtl number becomes pronounced when it is low, particularly the authors
set it when Pr = O(Γ2) is considered. In this scenario, the nonlinear contributions v · ∇T
from the energy equation result in the persistence of advection terms v · ∇v in the equations
of motion for the Hele-Shaw approximation. Therefore, it becomes misleading to draw an
analogy between flow in porous media and flow in the Hele-Shaw cell. Consequently, the
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Prandtl number plays a crucial role in determining the amplitude equation and influencing
its coefficients.

Recently, Letelier et al. (2019) conducted a study that investigates the significance of
dispersive terms and perturbative corrections in Hele Shaw cells on Rayleigh Benard Con-
vection. This work focuses on establishing a physical model by applying perturbative cor-
rections to the Navier-Stokes equations in a quasi-3D domain. This model is derived from
fundamental physical principles, specifically the continuity equation, Navier-Stokes equation,
and advection-diffusion equation, which are averaged within the gap of the Hele-Shaw cell.
In Figure 2.8, a schematic diagram of the conceptual model can be observed. As mentioned
before, direct analogies can be made between Hele-Shaw cells and porous media, specifically
incorporating corrections that account for hydrodynamic dispersion and inertial effects in
Darcy’s law. The dimensionless equations are presented below:

∂iui = 0 (2.12)

ϵ2 Ra
Pr

(6
5∂tu + 54

35uj∂jui

)
= −∂ip − ui + Tδi3 + 6

5ϵ2δ2
j ui − 2

35ϵ2Ra(uj∂jT )δi3 (2.13)

∂tT + ui∂iT = 1
Ra∂2

i T + 2
35ϵ2Ra ∂j((ui∂iT )uj) (2.14)

The study investigates the scaling behavior of the Nusselt number and the thermal dissi-
pation rate as a function of dimensionless parameters, including the Rayleigh number, cell
anisotropy ϵ (ϵ = Γ/

√
12), and Prandtl number. As depicted in the equations, unlike in

3D free convection or porous media, the Hele-Shaw Model (HSM) set explicitly includes a
dimension parameter associated with the geometry, denoted as ϵ. The Hele-Shaw equations
are applicable when ϵ is small, Pr is greater or equal to 1, and ϵ2Ra is much smaller than
1. As ϵ approaches zero, and with a fixed Ra, the model simplifies to the Darcy equations
coupled with the advection-diffusion model. The exact range of validity of this set of equa-
tions is still not clear. Numerical simulations were conducted to analyze the fluid dynamics
of heat transport using a 2D model specifically designed for vertical Hele-Shaw geometries.
The findings highlight that incorporating mechanical dispersion and inertial effects in the
porous media model yields new scaling relationships for heat transport and total thermal
dissipation in the high-Ra regime, particularly valid for cases where ϵ2Ra << 1.
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Figure 2.8: a) Hele-Shaw cell model with its respective boundary conditions.
b) Dimensionless representation of the problem.

The main result is shown in Fig 2.9. It can be observed that for low Rayleigh regimes, for
the two simulated cell anisotropies, the perturbative and hydrodynamic dispersion corrections
do not affect the heat transport, emulating the same results obtained for porous media.
However, starting from Ra ∼ 1350, there is not only a deviation of the results from those
of porous media but also between the two simulated cell anisotropies. This demonstrates
that heat transport, or consequently, the Nusselt number, depends on the anisotropy and
is affected by hydrodynamic dispersion and perturbative corrections. In particular, as ϵ
increases, there is a greater amount of dissipated heat, increasing the importance of the
added corrections, which causes the scaling of the Nusselt number decreases as a function of
ϵ. Letelier, Herrera, Mujica, and Ortega (2016) and Noto, Ulloa, and Letelier (2023), in the
context of laboratory experiments in Hele-Shaw cells, observe that one-dimensional spatial
confinement has an effect on overall heat transport. This provides support for the use of
this model and motivates a better understanding of the physics of heat transport in confined
environments.
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Figure 2.9: The Nu-Ra relationship obtained in this study is compared to
findings from other studies in the literature for models with ϵ = 0.001 and
ϵ = 0.004. Differences in scaling are observed for high Rayleigh numbers
(Ra > 1350) due to the incorporation of inertial and hydrodynamic disper-
sion corrections. Figure from Letelier et al, (2019).

The study conducted by Ulloa and Letelier (2022) aimed to investigate energy transfer
rates and mixing of thermally driven flows in Hele-Shaw cells. One notable finding was the
establishment of a close relationship between the degree of mixing (χ), which characterizes
the extent of temperature homogenization within the inner domain resulting from mixing,
and an estimate of the thickness of the thermal boundary layer (Figure 2.10). This finding
suggests the potential for parameterizing the degree of mixing based on the characteristics
of the thermal boundary layer. It is important to note that a constant Prandtl number of 7
was maintained throughout the study. However, it is widely acknowledged that the Prandtl
number plays a critical role in determining the characteristics of the thermal boundary layer
(TBL).
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Figure 2.10: The degree of mixing, which represents the extent of tem-
perature homogenization, was investigated as a function of the Rayleigh
number in the Hele-Shaw numerical experiments. The degree of mixing was
computed and a fitting approach was applied to establish the relationship
between the two variables. Figure from Ulloa and Letelier (2022).

They also do a characterization of the dynamics, they conclude that megaplumes de-
tach from the thermal boundary layer and occupy most of the domain, creating preferential
pathways to transport fluid from top to bottom, homogenizing the temperature of the inner
region and thus, increasing the degree of mixing of the system. They also observed that the
megaplumes have an impact on the thermal boundary layers, reducing their size and forcing
the emerging protoplumes to diverge laterally and merge with the megaplumes.

2.4. Scientific question
The literature review highlights several important questions that require further investi-

gation. In the present work, we aim to address the following key questions:

1. To what extent can the HSM retain the physics of 3D convection in confined environ-
ments?

2. What is the effect of the Prandtl number on the heat transport dynamics in Hele Shaw
cells?

2.5. Hypothesis
Based on the literature review and the articles by De Paoli et al. (2020) and Letelier et al.

(2019), it is clear that the Hele-Shaw regime exists. However, there is a difference between
the regime limit and the limit obtained by the presented mathematical model. Therefore,
based on the articles and simulations by Letelier et al. (2019) and Ulloa and Letelier (2022),
the validity of the Hele-Shaw model should be for ϵ2Ra = 0.05.

Regarding the effect of the Prandtl number, it only appears in the inertial terms. Based
on the articles by Letelier et al. (2019) and Ulloa and Letelier (2022), the main reason for the
decrease in heat transport as the cell gap increases is dispersion. Moreover, as the Prandtl
number increases, the HSM becomes more similar to a Darcy model. This is also observed
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in simulations with free fluids in 3D, not only in confined environments (Chong et al., 2018)
but also in unconfined environments (Ahlers et al., 2009). Taking this into account, it is
possible to consider that the Prandtl number has an effect up to a certain value, and for
values greater than this, it may no longer be significant.

2.6. Objectives
2.6.1. General objective

This thesis work has a clear objective to study and characterize the Hele-Shaw model
(HSM), thoroughly examine their limits and scope, and investigate the behavior of the sys-
tem under variations of the dimensionless numbers governing the problem, particularly the
Prandtl number.

2.6.2. Specific objectives
In order to achieve the general objectives, there are three specific objectives:

• To determine the validity range of the Hele-Shaw cell model derived by Letelier et al.
(2019), a comparison will be made with the results obtained by Chong and Xia (2016),
which correspond to 3D simulations of free fluids in highly confined environments.

• Characterize the thermal boundary layer based on the dimensionless numbers Ra, Pr,
and the cell anisotropy ϵ, by calculating the Nusselt number Nu and constructing scalings
as functions of these dimensionless numbers, with a specific focus on the effect of the
Prandtl number.

2.7. Expected results
The main outcome of this work is to validate the Hele-Shaw model (HSM) by comparing

the results obtained from this 2D model with those from 3D literature. Furthermore, it aims
to comprehend the influence of the Prandtl number in this set of equations, contributing to
a deeper understanding of the fluid dynamics of this model.

2.8. Methodology
The framework considers a vertical Hele-Shaw cell in which an incompressible Boussinesq

fluid is heated from below and cooled from the top. The dimensions of the cell in the y∗, x∗

and z∗ directions are denoted as b, L and H, respectively. The ratio b/H is small enough to
treat the geometry as quasi-2D (Q2D), meaning that the flow is mainly confined to the cell
plane (x-z). The density of the fluid, denoted as ρ∗, varies with temperature T ∗ according
to the linear constitutive relation (ρ∗ − ρc) /ρc = α (T ∗ − Tc), where ρ∗(Tc) = ρc is the
reference density at Tc and α is the thermal expansion coefficient of the fluid. We define the
Boussinesq density component as ρ̃∗ = ρ∗ − ρc and the modified pressure as p̃∗ = p∗ + ρcgz∗.
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The momentum diffusivity (µ) and thermal diffusivity (κ) are assumed to be constant. The
non-dimensional form of the dimensional variables {x∗, t∗, v∗, p̃∗, T ∗, ρ̃∗} is:

x = x∗

H
, t = t∗

H/uc

, v = v∗

uc

, p = p̃∗

pc

, T = T ∗ − Tc

∆T
, ρ = ρ̃∗

α∆T
= −T , (2.15)

With x = x x̂ + z ẑ the position, v = u x̂ + w ẑ the velocity field, ∆T = Th − Tc > 0
the temperature difference between the top (Tc) and bottom (Th) boundaries of the cell, g
the gravitational acceleration, uc = α∆TgK/µ the characteristic velocity and pc = α∆TgH
the characteristic pressure, where K is the permeability of the porous medium defined as
K = b2/12. Therefore, the nondimensional HSM (Letelier et al., 2019) – corrected up to
O(ϵ4) – is the following:

∂ivi = 0 , (2.16a)
∂T

∂t
+ vi ∂iT = 1

Ra ∂2
i T + ϵ2Ra

{ 2
35 ∂j

(
(vi ∂iT ) vj

)}
, (2.16b)

vi = −∂ip + T δiz − ϵ2
{

Ra
Pr

(
6
5

∂vi

∂t
+ 54

35 vj ∂jvi

)
− ∂2

j vi + 2
35Ra (vj ∂jT ) δiz

}
. (2.16c)

These equations are the same as those presented in 2.12, 2.13 and 2.14; however, this way
of writing them further highlights the analogy with a Darcy model incorporating inertial
and dispersive terms proper to the cell geometry. The dimensionless numbers governing the
problem are defined as follows:

Ra = α∆TgKH

ρcκcνc

(2.17)

Pr = ν

κ
(2.18)

ϵ =
√

K

H
= b

H
√

12
= Γ√

12
(2.19)

Global heat transport can be analyzed by using the Nusselt number, which is defined as
follows (Letelier et al., 2019):

Nu = − ∂⟨T ⟩h

∂z

∣∣∣∣∣
z=0

(2.20)

Where <>h denotes average in the horizontal direction. Another parameter of interest
is the degree of mixing in the system (χ), which indicates how well-mixed the cell domain
is. It takes a value of 0 if the system is completely stratified (in a conductive state) and 1
if the system is fully mixed. However, it is physically impossible for the degree of mixing to
reach a value of 1 due to the presence of thermal boundary layers. The degree of mixing is
calculated as follows (Ulloa & Letelier, 2022):

χ = 1 − 12σ2 (2.21)

Where σ = ⟨T 2⟩h − ⟨T ⟩2
h. The last important parameter to be calculated in this study is
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the thermal dissipation rate. The thermal dissipation rate is analogous to the widely studied
scalar dissipation rate in fluid mixing and quantifies the level of irreversibility associated with
heat transfer processes (Ulloa & Letelier, 2022). It is calculated as follows:

ϑ = 1
Ra(∂iT )2 + 2

35ϵ2Ra(∂i(viT ))2 (2.22)

However, the above expressions are time-dependent. To calculate a representative number,
the temporal average ⟨Nu⟩τ , ⟨χ⟩τ and ⟨ϑ⟩τ will be computed using the formula 2.23 and 2.24.
Figure 2.11 illustrates an example of statistically stable steady state Nusselt number.

⟨Nu⟩τ = 1
T

∫ τ0+T

τ0
Nu(t′)dt′; τ0 >> 1 (2.23)

⟨χ⟩τ = 1
T

∫ τ0+T

τ0
χ(t′)dt′; τ0 >> 1 (2.24)

⟨ϑ⟩τ = 1
T

∫ τ0+T

τ0
ϑ(t′)dt′; τ0 >> 1 (2.25)

Figure 2.11: Nusselt vs advection time. An example of the Nusselt number
calculation is shown in the time window where statistically steady behavior
is observed. This simulation corresponds to Pr = 30, ϵ = 0.005, and Ra =
2000, conducted in Dedalus3 with no-slip boundary conditions in the z-
direction and periodic boundary conditions in the x-direction.

The equations will be solved using two spectral solvers: flow_solve (Winters & de la
Fuente, 2012) and Dedalus (Burns, Vasil, Oishi, Lecoanet, & Brown, 2020). These solvers
will be employed to integrate the HSM equations 2.16 in both time and 2D space. The
numerical methodology employed in this study involves two main approaches for discretiza-
tion: trigonometric and Fourier expansions using flow_solve, and Fourier expansions and
Chebyshev polynomials in Dedalus. The time step is carefully chosen to satisfy the Courant-
Friedrichs-Lewy (CFL) condition, ensuring numerical stability and convergence. For all sim-
ulations, the CFL value remains below 0.01. The implementation of the flow_solve solver
involves FORTRAN and MPI libraries for parallel computing. Within flow_solve, time inte-
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gration is achieved using a third-order Adams-Bashforth scheme for advective and buoyant
terms, complemented by the implicit fourth-order Adams-Moulton method for the diffu-
sive scheme. In contrast, Dedalus, implemented in Python3, employs a 3rd-order 4-stage
DIRK+ERK scheme and a 4th-order semi-implicit BDF scheme (Burns et al., 2020) for time
integration. It is noteworthy that employing these different methods for time integration
results in no significant changes in simulation time or alterations in the final results. This
cross-validation ensures the reliability and accuracy of the numerical simulations throughout
the study.

The lateral boundary conditions at x = 0 and x = L′ will be set as periodic, where
L′ represents the cell aspect ratio L : H. For the top and bottom boundaries, Dirichlet
conditions will be imposed on the temperature, with T (z = 0) = 1 and T (z = 1) = 0.
Regarding the velocity, two scenarios will be explored: free-slip and no-slip conditions (Fig.
2.12). Additionally, with free-slip boundary conditions, closed-box (CB) boundary conditions
were also tested, which means that there is no penetration in the x-direction. All simulations
will resolve the smallest physical scale of the problem, namely the Batchelor scale for Pr > 1
or the Kolmogorov scale for Pr ≤ 1 (Gr˜tzbach & Karlsruhe, 1983). The analyses will be
conducted after the quasi-steady state has been achieved.

To compare with the results of Chong and Xia (2016) , three different cell apertures will
be used: Γ = 1/16, 1/32, and 1/64. The Prandtl number will be kept fixed at 4.38, while the
Rayleigh numbers will be varied in each case until the data deviate from the 3D simulations
of Chong and Xia (2016). To explore the influence of the Prandtl number in the system, a
fixed Rayleigh number will be chosen, and the Prandtl numbers will be varied in the range
of [0.1, 100].
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Figure 2.12: Difference between Boundary Conditions: a) Shows periodic
boundary conditions (PBC) in the x-direction and free slip conditions in
the z-direction. b) Shows periodic boundary conditions (PBC) in the x-
direction and no-slip conditions in the z-direction. c) Shows closed-box
boundary conditions (CB) in the x-direction with free slip conditions in the
z-direction.
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Chapter 3

Modeling heat transfer in severely
confined environments

Below, we present the draft for the article titled “Modeling Heat Transfer in Severely Confined
Environments”, which is currently under preparation for submission to the journal Physical
Review Fluids:
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Abstract9

The two-dimensional (2D) Hele-Shaw equations [1] has been recently introduced to model con-10

vection in severely confined environments. Yet, the system’s parameters must still be bounded for11

sound application. In this paper, we assess the applicability of the Hele-Shaw model in accurately12

simulating thermal convection in severely confined three-dimensional (3D) systems. For this, we13

investigate the canonical problem of Rayleigh-Bénard convection in terms of the Rayleigh number,14

the Prandtl number, and the geometric aspect ratio of the fluid space. Here, we report the con-15

ditions under which the Hele-Shaw model successfully reproduces global quantifies of convection,16

encompassing the Darcian and Hele-Shaw regimes and the transition towards fully 3D environ-17

ments. Our results provide insights into scenarios where the Hele-Shaw model reliably captures18

the essential convection features, providing a robust framework for investigating heat transfer in19

confined geometries and reconciling reported experimental data in Hele-Shaw cells.20

Thermal convection, a fundamental phenomenon of the very fabric of nature, unfolds21

across myriad environments, each with distinctive degrees of confinement and spatiotemporal22

scales [2–6]. These environments range from unbounded 3D systems, such as the atmosphere,23

oceans, and lakes, where the horizontal scales of convective cells are much smaller than the24

environment’s extent, to highly constrained porous and fractured media beneath the Earth’s25

surface. Understanding convection in confined spaces is therefore crucial for characterizing26

natural and engineering systems [7–11].27

Recently, the so-called Hele-Shaw model (HSM) [1] has been introduced to model and28

investigate the fluid dynamics of convection in environments where one dimension is greatly29

clenched [12–16]. Derived from the 3D Navier-Stokes equations (NSE) under the Boussi-30

nesq approximation, the HSM is a 2D set of equations for momentum and heat transfer31

that captures the macroscopic physics observed in permeable media flow while integrating32

perturbative corrections that quantify weak inertial and dispersive effects [17–19].33

Thus, HSM is conceptualized as a mathematical bridge between the NSE and the Darcy34

equations (DE) for porous media in which inertia vanishes. Recent laboratory studies have35

validated numerical results obtained from the HSM [13, 14, 20], yet no study has constrained36

the magnitude of the perturbation parameters. This letter reports a numerical investigation37

that establishes the extent to which the HSM can be applied for modeling heat transfer in38
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severely confined 3D environments.39

In the case of porous and severely confined media, the relevant parameter controlling the40

fluid dynamics is the ‘Rayleigh-Darcy number’ Ra = α∆TgKH/νκ, being α the thermal41

expansion coefficient of the fluid, ∆T the temperature contrast, g the gravity acceleration,42

K the permeability, H the thickness of the porous layer, ν the momentum diffusivity and43

κ the thermal diffusivity [21]. For fluids with constant diffusivities, the coupling between44

the fine-to-large structures, and vice-versa, is notably linked by the elegant linear relation45

Nu ∼ Ra [22] valid for the ultimate regime, i.e. Ra ≳ 104, with Nu the Nusselt—non-46

dimensional heat flux. On the other hand, Letelier et al. [1] proposed the HSM to study47

convection in Hele-Shaw cells heated from below and top (HS-RBC) that mimic, for instance,48

heat transport through fractures within the lithosphere [23? ]. The perturbative corrections49

to the Darcy law included in the HSM are weighted by the ratio between the root square50

of the cell’s permeability K = b2/12 (function of the slot width b) and cell’s height H,51

ϵ =
√
K/H—the anisotropy ratio. Utilizing the HSM, Letelier et al. [1] reported sub-linear52

relations Nu ∼ Raγ(ϵ), being 1/3 ≤ γ(ϵ) ≤ 0.9 for moderate Ra [24]. The authors showed the53

significant control that ϵ exerts on the net heat flux: the decrease of ϵ leads to the increase54

of γ and Nu. A sound construction of the above scaling law is relevant for modeling heat55

transfer in geothermal reservoirs, as standard Darcy models may not adequately resolve56

convection occurring through faults and fractured media [25–27].57

A fundamental quest is characterizing the transition from quasi-2D (Q2D) to 3D con-58

vection. Chong and Xia [3] investigated the effect of cell confinement on heat transfer and59

flow topology by performing 3D numerical experiments that varied the domain geometry60

from fully 3D to a Q2D configuration. The authors adopted the ‘standard Rayleigh number’61

Raf = α∆TgH3/νκ, the Prandtl number Pr = ν/κ and the width-to-height aspect ratio62

Γ = b/H =
√
12 ϵ to examine the system response. A remarkable finding was that the large63

convective cell observed in 3D RBC transformed into coherent wall-to-wall megaplumes for64

Γ small, analogue to the convective structures found in porous media convection [24, 28].65

The last result leads us to the following question: To what extent can the HSM retain the66

physics of 3D convection in confined environments?67

Through direct numerical simulations and comparison with the results by Chong and68

Xia [3], we demonstrate that the HSM resolves from porous media to 3D thermal convection69

dynamics in the ‘Hele-Shaw regime’ when “ϵ2Ra ≤ 0.1”. Additionally, utilizing the Rayleigh-70
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Darcy number, we show that (i) the onset of convection from Chong and Xia’s data is71

Rac = 4π2 — the theoretical value predicted for porous media convection — and (ii) Nu72

increases dramatically as ϵ decreases.73

FIG. 1. Example of figure to continue writing. Nusselt number versus Rayleigh-Darcy number. (a)

Numerical results of RBC by Chong and Xia [3] for a range of Γ ∈ [1/128, 1/16] along with results

by Hewitt et al. [24] for porous media convection. (b) Close-up for low-Nu and low-Ra; comparison

between fully 3D numerical simulations and 2D HSM for Γ = 1/16.

Our framework considers an incompressible Boussinesq fluid within a vertical Hele-Shaw

cell heated from below and cooled from top. The slot width, horizontal length and vertical

height are b, L and H in the y∗, x∗ and z∗ directions, respectively. The ratio b/H is small

enough to consider this geometry as Q2D, i.e., the flow is preferentially developed along the

cell plane (x-z). The fluid density ρ∗ varies with the temperature T ∗ following the linear

constitutive relation (ρ∗ − ρc) /ρc = α (T ∗ − Tc), with ρ∗(Tc) = ρc a reference density and

α the fluid thermal expansion coefficient. We define the Boussinesq density component as

ρ̃∗ = ρ∗ − ρc and the modified pressure as p̃∗ = p∗ + ρcgz
∗. Momentum (µ) and thermal (κ)

diffusivities are assumed constant. The non-dimensional form of the dimensional variables

{x∗, t∗,v∗, p̃∗, T ∗, ρ̃∗} is

x =
x∗

H
, t =

t∗

H/uc

, v =
v∗

uc

, p =
p̃∗

pc
, T =

T ∗ − Tc

∆T
, ρ =

ρ̃∗

α∆T
= −T , (1)

with x = x x̂ + z ẑ the position, v = u x̂ + w ẑ the velocity field, ∆T = Th − Tc > 0 the74
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temperature difference between the top (Tc) and bottom (Th) boundaries of the cell, g the75

gravitational acceleration, uc = α∆TgK/µ the characteristic velocity and pc = α∆TgH the76

characteristic pressure. Therefore, the nondimensional HSM [1] – corrected up to O(ϵ4) – is77

the following:78

∂ivi = 0 , (2a)

79

∂T

∂t
+ vi ∂iT =

1

Ra
∂2
i T + ϵ2

{
2

35
Ra ∂j

(
(vi ∂iT ) vj

)}
, (2b)

80

vi = −∂ip+ T δiz − ϵ2
{
Ra

Pr

(
6

5

∂vi
∂t

+
54

35
vj ∂jvi

)
− ∂2

j vi +
2

35
Ra (vj ∂jT ) δiz

}
. (2c)

The model (2) results from averaging the NSE and the advection-diffusion model for heat81

transport in the spanwise ŷ direction, integrating no-slip and no-flux boundary conditions at82

the vertical walls [1]. The latter can be considered as a correction of the advection-diffusion83

model for heat transfer (2b) and Darcy equation (2c), incorporating inertial and dispersive84

terms proper to the cell geometry.85

We employ the spectral solvers flow solve [29] and Dedalus [30] to integrate the HSM86

(2) in time and the 2D space. The lateral boundary conditions at x = 0 and x = L′ are87

periodic, with L′ = L/H the cell aspect ratio. On the top and bottom boundaries, we impose88

Dirichlet conditions for the temperature, T (z = 0) = 1 and T (z = 1) = 0, whereas for the89

velocity, we explore two scenarios for velocity, free-slip and no-slip conditions (see schematic90

in Fig. 1). The free-slip scenarios were run using flow solve; these numerical experiments91

are analogue to those in [31], so we refer the reader to [31] for detailed information about92

the numerical implementation. In contrast, no-slip scenarios were run using Dedalus.93
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FIG. 2. Nusselt number versus Rayleigh-Darcy number. (a) Numerical results of RBC by Chong

and Xia [3] for a range of Γ ∈ [1/128, 1/16] along with results by Hewitt et al. [24] for porous

media convection. (b) Close-up for low-Nu and low-Ra; comparison between fully 3D numerical

simulations and 2D HSM for Γ = 1/16. The upper red dashed line shows the fitting curve for

porous media results by Hewitt et al. [24] (Nu ∼ Ra0.9). The lower red dashed line shows the

fitting curve for 3D results with Γ = 1/16 and Ra > 103 by Chong and Xia [3]

Fig. 2a presents a mapping of the 3D numerical simulations conducted by Chong and94

Xia [3] in terms of the Nusselt number (Nu) and the Rayleigh-Darcy number, expressed as95

Ra = ϵ2Raf , where the anisotropy ratio and the standard Rayleigh number are considered.96

Detailed information on the computation of Nu can be found in Chong and Xia [3]. On the97

other hand, for the HSM, we calculate the Nusselt number as Nu = ∂⟨T ⟩h
∂z

∣∣
z=0

utilizing the98

dimensionless horizontal average ⟨f⟩h = (1/L′)
∫ L′

0
f dx. The dataset includes various aspect99

ratios (Γ =
√
12 ϵ) representing a range of confinements, from low confinement (Γ = 1/16) to100

high confinement (Γ = 1/128). The results demonstrate that regardless of the aspect ratio101

Γ, the data collapse when Ra approaches 4π2, the critical value for the onset of convection102

in porous media —the Darcian regime [1]. Depending on the degree of confinement, for103

intermediate Rayleigh values (102 < Ra < 103) the data shows deviations from the curve104

obtained for porous media, a regime associated to weak contributions from ŷ direction105

(confinement) in heat transfer —the Hele-Shaw regime [1]. However, for higher Rayleigh106

6



numbers (Ra > 103), the trajectories of the curves diverge significantly from each other.107

One of the notable effects of varying the degree of confinement is observed in the power108

law relationship between Nu and Ra. In the limit cases of porous media [22] or extreme109

confinement [1], heat efficiently transfers from wall-to-wall following the scaling law Nu ∼110

Ra0.9 [24]. As the system becomes more three-dimensional, i.e., with larger values of Γ, the111

exponent of the scaling law converges towards its theoretical value of 1/3 for intermediate112

values of the classic Rayleigh number [32] or high-Ra scenarios [3, 31]. On the other hand,113

Fig. 2b presents numerical results of the HSM (shown as circles) for Γ = 1/16 and utilizing114

no-slip boundary conditions for the bottom and top walls, demonstrating its performance115

in comparison to fully 3D results [3] and porous media data [24]. We observe that the HSM116

accurately represents the fully 3D outcomes when the Rayleigh number (Ra) is low. However,117

as the Ra value increases, a noticeable discrepancy emerges between the two models. The118

inset of Fig. 2b provides further insight, revealing that the HSM begins to overestimate the119

heat transfer rate relative to the 3D results for Γ2Ra ∼ 0.7 or ϵ2Ra ∼ 0.06. The latter120

represents a conservative estimation of the validity of the HSM for Γ = 1/16, recovering121

Chong and Xia’ data [3] when Ra ≲ 180.122

FIG. 3. Nusselt Number versus Rayleigh-Darcy Number. Panels (a) and (b) show comparative

analysis of Chong and Xia [3] 3D simulations and HSM results for Γ = 1/32 and 1/64, respectively.

Data by Hewitt et al. [24] is displayed in stars.
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Fig. 3 illustrates the relationship between the Nusselt number and the Rayleigh-Darcy123

number for two different geometrical aspect ratios, Γ = 1/32 and Γ = 1/64. Similar to124

Figure 2, it displays the 3D numerical results by Chong and Xia [3], the results obtained125

from the Darcy model [24], and our findings using the HSM. The curves generated by these126

models exhibit complete overlap within the range of Rac ≤ Ra < 500. However, for larger127

values of Ra, the Darcy model results deviate from the trend observed in the 3D NSE and128

the HSM, which remain in agreement until approximately Ra ∼ O (103). In the inset of129

Fig. 3(a), we observe that the divergence between the HSM and the 3D NSE occurs within130

the range of 0.06 ≤ ϵ2Ra ≤ 0.1. This threshold for ϵ2Ra is also evident in environments with131

Γ = 1/64, as demonstrated in Fig. 3(b).132

FIG. 4. Collapsing data in a universal curve. ϵ2Nu/Φscalar as a function of ϵ2Ra. Shaded areas

highlight the different dynamic regimes.

Letelier et al. [1] found a theoretical relationship between the Nusselt number (Nu), which133

characterizes convective heat transfer, and the rate of destruction of thermal fluctuations,134

denoted as Φscalar, associated with irreversible thermal mixing [31]. They discovered that135

Nu = RaΦscalar. The latter expression generalizes the results obtained by Otero et al. [33]136

and Hewitt et al. [24], for porous media, allowing a characterization of heat transfer rate137

in 3D severely confined environments. In Fig. 4, we present the behavior of ϵ2Nu/Φscalar138

with respect to ϵ2Ra, the fundamental quantity that determines the ability of the Hele-Shaw139

model (HSM) to capture the dynamics of thermal convection in confined geometries. Re-140
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markably, we reobtain the same linear power-law relationship predicted by theory [1]. This141

canonical relationship is not exclusive to thermal convection but has also been discovered142

in the problem of solutal convection [34–39], in the context of CO2-brine mixing in highly143

confined environments [16]. For the analogue problem of CO2-brine mixing, the ratio be-144

tween the boundary mass flux (represented by the Sherwood number, Sh) and the rate of145

mixing between the dissolved carbon dioxide and brine (denoted as Φscalar) also follows a146

linear power law with Ra. We propose that the ratio Nu/Φscalar serves as a fundamental147

quantity that enables a deeper understanding of the underlying physics of thermal convec-148

tion through a wide range of confinement degrees. While we acknowledge the challenges in149

quantifying Φscalar through laboratory experiments, establishing a sound characterization150

of the relationship Nu ∼ Raγ(ϵ) via numerical and laboratory experiments [3, 15] across151

various environments would allow us to infer the rate of mixing driven by convection in the152

bulk Φscalar ∼ Raγ(ϵ)−1. This knowledge would have practical applications in natural and153

engineering science, such as in geothermal and petroleum reservoir engineering [27, 40–43]154

and carbon dioxide sequestration [44–46].155

Our findings suggest that the parameter ϵ2Ra exhibits a range of values rather than156

a single value to determine the upper limit of validity for the Hele-Shaw Model (HSM).157

Specifically, we demonstrate that the HSM accurately captures the overall characteristics of158

the fully 3D results within the range of ϵ2Ra values approximately between 0.06 and 0.1.159

This empirical observation establishes an upper threshold for the nondimensional quantity160

ϵ2Ra when investigating heat transfer rates in 3D confined environments using the HSM.161

By identifying this threshold, we provide a practical guide to utilize the HSM as a reliable162

modeling framework in the study of thermal convection in severely confined environments.163
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Chapter 4

Results

The following section presents a compilation of other results obtained in this study, some of
which served as an initial starting point for the results published in the paper, while others
explore different aspects of the Hele-Shaw regime. This chapter is divided into two subsections
according to the temporal development of the work. There is a subsection presenting the
results with free-slip boundary conditions, while another subsection focuses on the results
with no-slip boundary conditions. In the latter subsection, a comparison between the results
of both boundary conditions is also provided.

4.1. Exploring Hele Shaw Regime
4.1.1. Free Slip Simulations

In Figure 4.1, the temperature field resulting from the numerical simulations can be ob-
served. It is clear that as the Rayleigh number increases, there is greater chaos in the system,
transitioning from a stable system to a more chaotic one, a phenomenon observed in both
porous media (Otero et al., 2004; Hewitt et al., 2012) and Hele-Shaw cells (Letelier et al.,
2019). Additionally, there is little qualitative difference when changing the Prandtl number
of the system. Although a difference can be observed between subplot b) and d), this can
be attributed to the findings described by Bhattacharya et al. (2021), where higher Prandtl
numbers result in increased flow inhomogeneity and higher fluctuations. It is also possible
that the transition between the low and high Rayleigh regime is influenced by the Prandtl
number. However, in terms of heat transport (Fig 4.3), the results are practically the same.

Figure 4.2 shows the temperature field and scalar dissipation rate for different Prandtl
numbers. While there is no clear difference between the subplots for Pr = 7 and Pr = 100,
the case with Pr = 0.5 exhibits distinctive features. Firstly, the temperature field appears to
be more organized, with thicker and more coherent plumes, as also observed by Bhattacharya
et al. (2021) in 2D free-flowing fluids as Prandtl number decreases. The scalar dissipation
rate map also shows slight variations, likely influenced by the aforementioned effects. This
difference is reflected in the Nusselt number of this simulation (Fig 4.5).
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Figure 4.1: Numerical simulation results with ϵ = 5 × 10−3, for two Pr
values and three Ra values. (a-c) show the temperature field for Pr =7 and
(e-f) for Pr =100. It can be seen that there are no major differences in the
snapshots between the two Prandtl numbers presented.

Figure 4.2: Numerical simulation results with ϵ = 5 × 10−3, for three Pr
values and one Ra value. (a-c) show the temperature field and (e-f) show
the scalar dissipation field.

One of the most important results is shown in Figure 4.3. It can be observed that for the
three plotted Prandtl numbers, namely Pr = 7, Pr = 30 and Pr = 100, the heat transport
appears to be unaffected, yielding identical results until very high Rayleigh numbers (∼ 6000),
where the series for Pr = 7 starts to deviate slightly. As mentioned in the literature review,
in this model, the only term containing the Prandtl number is the inertial correction, which
scales with ϵ2Ra/Pr. Therefore, both the invariance of the results and this detachment can
be explained based on this term. As the Prandtl number increases, the inertial component
becomes less important, resembling more and more a Darcy model where the Prandtl number
either does not exist or is infinite. However, when this factor is sufficiently large, the inertial
terms begin to contribute, as is the case when ϵ2Ra/Pr ∼ 0.02. This limit is merely an
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estimate that can serve as an initial stepping stone to explore the behavior of inertial effects
in the HSM. The characteristic change in slope between the Darcy regime and the Hele-Shaw
regime (Letelier et al., 2019; De Paoli et al., 2020) is also observed, in this case the scaling
law for ϵ = 0.005 is Nu ∼ Ra0.85.

Figure 4.3: ⟨Nu⟩τ as function of Ra for ϵ = 5×10−3. It can be observed that
for the simulated range, the dimensionless heat transport variation does not
respond to Prandtl number variations in range Pr ∈ [7, 100]. In addition,
the results obtained by Hewitt et al. (2012) for the porous medium model
are plotted, where the deviation from the Darcy regime studied by Letelier
et al. 2019 is observed. The insert shows the High-Rayleigh regime plot.
The scaling law of all data in the high Rayleigh regime is Nu∼ Ra0.65. In
the Pr=7 simulation, the values with higher Rayleigh begin to detach from
the others, presumably due to inertial effects.

Figure 4.4 shows the degree of mixing of the system as a function of the Rayleigh number.
Similar to the Nusselt number, the system is not affected by changes in the Prandtl number
within the range of Pr ∈ [7, 100]. This suggests that the thermal boundary layers are similar,
as both the Nusselt number (Fig 4.3) and the degree of mixing do not respond, since the
degree of mixing should ideally respond to changes in the thickness of the thermal boundary
layer. This is consistent with the estimation that the thermal boundary layer is approximately
inversely proportional to the Nusselt number (Grossmann & Lohse, 2000; Ahlers et al., 2009;
King et al., 2013). Additionally, it is observed that higher Rayleigh numbers correspond to
greater mixing in the system, which aligns with the findings of Ulloa and Letelier (2022).
Also, a similar scaling law for the degree of mixing is obtained, showed in the Figure 4.4.
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Figure 4.4: Degree of mixing of the system as a function of Rayleigh number.
Like the Nusselt number, the value of this indicator does not respond to
variations of the Prandtl number in the range Pr ∈ [7,100].

Only one Prandtl number below 1 was simulated, as shown in Figure 4.5. It is observed
that there is indeed a decrease in heat transport, which is consistent with reductions reported
in highly confined 3D free fluids (Chong et al., 2018). Although the results are not directly
comparable due to differences in boundary conditions, there is a clear trend that under a
certain Prandtl number, it starts to become important, decreasing heat transport. This trend
is also observed in unconfined 3D free fluids (Ahlers et al., 2009). This suggests that for low
Prandtl numbers, approximately Pr < 1, inertial effects start to impact the heat transport
dynamics in the cell, reducing the effectiveness of heat transport. However, as mentioned
earlier, it is better to take into account the effect of ϵ2Ra/Pr. In this case ϵ2Ra/Pr ∼ 0.12,
which falls outside the limit found in Figure 4.3.

Figure 4.6 displays the profiles of average temperature in the statistically steady state
for ϵ = 0.005. It can be seen that as the Rayleigh number increases, the core of the cell
exhibits a more homogeneous temperature distribution, as observed in the degree of mix-
ing (Fig 4.4). Additionally, differences in these profiles can be observed when varying the
Prandtl number, with a slight distinction between the profile for Pr = 0.5 and the profiles
for Pr = 7 and Pr = 100. This confirms the notion that the thermal boundary layer remains
practically invariant within the range of Pr ∈ [7, 100]. However, for lower Prandtl numbers,
the thermal boundary layer begins to thicken, creating greater resistance to heat transport
and consequently lowering the Nusselt number.
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Figure 4.5: Nusselt number as a function of the Prandtl number for ϵ =
0.005. Comparison between the results obtained in 3D free fluids by Chong
et al. (2018) with no-slip boundary conditions. Although the boundary
conditions are different and the results are not directly comparable, the
decrease in Nusselt number for the simulation with Pr = 0.5 occurs in both
cases.

Figure 4.6: The figure presents average temperature profiles in the statis-
tically steady state. Panel a) shows the profiles for three simulations with
increasing Rayleigh numbers and the same Prandtl number, while panel b)
demonstrates the impact of varying the Prandtl number while maintaining
a constant Rayleigh number.

Closed-box boundary conditions (CB) were also tested, meaning no penetration in the
x-direction while continuing with free slip in both the z and x directions. The aspect ratio
chosen for these simulations was L : H = 1 : 1. In Figure 4.7, the results for these simulations
are compared with the results obtained with periodic boundary conditions (PBC). It can be
observed that neither the Nusselt number nor the degree of mixing of the system respond to
this change in boundary conditions. This is intriguing because not only was a no-penetration
restriction added but also the cell’s aspect ratio was changed. This could indicate that
performing simulations with an aspect ratio of L : H = 1 : 1 and periodic boundary conditions
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would yield the same results as before, which could not only reduce the computational cost of
the simulations but also be helpful to experimental physicists working with Hele-Shaw cells
in the laboratory.

Furthermore, in Figure 4.7, two series for different Γ (or ϵ) values are shown. In subplot
a), it can be observed that heat transport is affected by the ratio between the cell’s aperture
and height, decreasing as Γ increases due to the effect of corrections made to the Darcy’s law.
It is very interesting that the degree of mixing of the system (subplot b)) does not vary when
Γ changes and follows the same behavior described in Figure 4.4. Hence, the degree of mixing
does not respond to changes in the boundary conditions (from CB to PBC) or changes in Γ.
Presumably, it also does not respond to variations in the Prandtl number between [7, 100].

Figure 4.7: Comparison between periodic boundary conditions (PBC) and
closed box boundary conditions (CB) is shown. It can be observed that
both the a) Nusselt number and b) the degree of mixing are unaffected by
the change in boundary conditions. Interestingly, it appears that the degree
of mixing in the system does not respond to changes in Γ or ϵ.

Finally, the effect of increasing the grid size beyond the established criteria was studied.
Simulations were performed that only met the criterion of having spacing smaller than the
Kolmogorov scale, disregarding the Batchelor scale. In Figure 4.8, the obtained results can be
seen, and it is interesting to note that for the simulation with the highest Rayleigh number,
the difference, especially for the simulations with Pr=100, reaches up to a 25% overestimation
of the heat flux. This highlights the importance of the chosen criteria and how crucial it is
to adhere to them.
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Figure 4.8: Differences between discretizations that only satisfy the criterion
of being smaller than the Kolmogorov scale and those that satisfy being
smaller than both the Kolmogorov scale and π times the Batchelor scale
(spectral scale).

4.1.2. No Slip Simulations
One of the objectives of this work is to define the limits of the HSM accurately. For this

purpose, the study conducted by Chong and Xia (2016) is a valuable reference, as it solves the
motion and transport equations in 3D. However, a crucial difference exists between Chong
and Xia (2016) simulations and the exploration already conducted in this study, which lies in
the boundary conditions. While flow_solve allows the implementation of no-slip boundary
conditions, it is not an easy task. Therefore, the model was implemented in Dedalus3, a
software that allows for easy interchangeability of boundary conditions for the problem in ẑ
direction.

The first step was to perform a benchmark flow_solve using free-slip boundary conditions.
The results are shown in Figure 4.9. Subplot a) presents a comparison between the results
published in Ulloa and Letelier (2022) and the results obtained with Dedalus3, while subplot
b) shows the comparison between the results simulated with flow_solve in this study and the
simulations conducted with Dedalus3. It is evident that the implementation of the model in
Dedalus3 and the software itself work effectively, successfully reproducing the results already
observed.
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Figure 4.9: Benchmark of Dedalus3. a) shows the Benchmark with results
obtained with flow_solve in Ulloa & Letelier (2022) and b) shows the bench-
mark with results obtained in this work with flow_solve.

Figure 4.10 presents the 3D simulations conducted by Chong and Xia (2016) in highly
confined environments (same as in Fig 2.3), but using the Rayleigh number (Ra) commonly
used in porous media. Several interesting aspects can be observed in this figure. Firstly,
regardless of the confinement degree, all data collapse at the same point when the Rayleigh
number approaches 4π2, which is the critical value for the onset of convection in the Darcy
regime (Nield & Bejan, 2012). Secondly, for high Rayleigh values, the Nusselt numbers tend
to follow the classical scaling of 3D free fluids (Ahlers et al., 2009) (this can be better observed
in Fig 2.3), with a scaling law of Nu ∼ Ra1/3, which is clearly different from what happens in
the Darcy model (Hewitt et al., 2012). In the Darcy regime, within this range of Rayleigh,
heat is efficiently transported from wall to wall following a scaling law of Nu ∼ Ra0.9.

The truly interesting aspect for this work occurs between the onset of convection and
sufficiently high Rayleigh values. In this range, the data exhibit a deviation from the results
of porous media associated with weak contributions that occur in the confinement direction.
Additionally, the scaling laws in these regimes are variable and depend on Γ (the cell aspect
ratio). This is the Hele-Shaw regime (Letelier et al., 2019; De Paoli et al., 2020). Therefore,
is it possible to reproduce these results using the set of 2D equations derived by Letelier
et al. (2019)? While it is currently impossible with Dedalus3 to impose no-slip boundary
conditions on all four walls of the cell as done by Chong and Xia (2016), it is possible to
impose no-slip conditions in the z-direction while maintaining periodicity in the x-direction.
Due to the differences in boundary conditions, the results could also show a clear dependence
of the system’s response to variations in the aspect ratio L:H. These simulations serve as a
first approximation to validate the model.

51



Figure 4.10: The results obtained by Chong et al. (2016) when converting
3D Rayleigh to the Rayleigh number used in porous media, Ra, for a range
of Γ ∈ [1/128, 1/16], are presented along with the results by Hewitt et al.
(2012) for porous media convection.

Figure 4.11 presents the results obtained with Dedalus3 using periodic boundary condi-
tions in the x-direction and no-slip conditions in the z-direction, compared to Chong and Xia
(2016) 3D closed-box simulations with no-slip conditions on all walls with L : H = 1 : 1. It
can be observed that the HSM can accurately reproduce the 3D results up to an ϵ2Ra = 0.06.
However, beyond this limit, the HSM results start to deviate, overestimating the heat fluxes.
Later, for a Γ = 1/16, regardless of the difference in boundary conditions, the HSM is capable
of reproducing 3D results up to ϵ2Ra = 0.06.

The discrepancy in boundary conditions is intriguing and warrants discussion. It is pos-
sible that simulating with closed-box and no-slip boundary conditions could lead to the
HSM reproducing more values accurately. On the other hand, for low Rayleigh numbers,
particularly in Darcian regimes, boundary conditions may not significantly impact the re-
sults. However, in Hele Shaw regimes, due to the increase in flow velocity, no-slip boundary
conditions become increasingly important. This is also evident in Figure 4.11, where the com-
parison between free-slip and no-slip simulations in the z-direction is shown, as the Rayleigh
increases, the greater the difference between simulations with non-slip and free slip boundary
conditions. Furthermore, when comparing 3D simulations to the HSM results, it becomes
evident that as the Rayleigh number increases, the disparity in Nusselt values becomes more
pronounced.
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Figure 4.11: The Nusselt vs Rayleigh plot for Γ = 1/16 shows the compar-
ison of results obtained by Chong et al. (2016) and this work, also results
obtained by Hewitt (2012). In the inset plot, a departure from the data
can be observed in a linear scale at ϵ2Ra = 0.06. The graph on the right
provides a comparison between simulations conducted in this study, consid-
ering both free-slip and no-slip boundary conditions. Simulations conducted
using Dedalus3.

Figure 4.12 presents the results for Γ = 1/32 and Γ = 1/64, along with the results obtained
by Chong and Xia (2016) and Hewitt et al. (2012) in the context of porous media. For low
Rayleigh numbers, both our simulations in 2D (HSM) and the 3D simulations, as well as
the porous media simulations, overlap. As the Rayleigh number increases, the results from
the HSM and 3D simulations deviate from those of Hewitt et al. (2012), transitioning to the
Hele-Shaw regime. Interestingly, it seems that the limit reached by the HSM is dependent
on Γ, as it is observed that for Γ = 1/32, the limit appears to be up to ϵ2Ra = 0.1, showing
only a slight deviation as the Rayleigh number increases. This is confirmed with the case
of Γ = 1/64, where it is evident that the model can faithfully reproduce the results up to
ϵ2Ra = 0.1. The computational cost of the simulations makes it difficult to further increase
the Rayleigh number in both cases.

Letelier et al. (2019) found a theoretical relationship between the Nusselt number (Nu),
which characterizes convective heat transfer, and the rate of destruction of thermal fluctua-
tions, denoted as Φscalar, associated with irreversible thermal mixing (Nu = RaΦscalar) (Ulloa
& Letelier, 2022). Figure 4.13 shows the behavior of ϵ2Nu/Φscalar with respect to ϵ2Ra, the
fundamental quantity that determines the ability of the HSM to capture the dynamics of
thermal convection in confined geometries. Remarkably, the same linear power-law relation-
ship predicted by theory is obtained. It is important to highlight again that the boundary
conditions of the problem are not the same; Therefore, these may not be the actual limits of
the Hele-Shaw mathematical model, however, they serve as a starting point for a deeper study
of this model and open questions such as: Will the geometric aspect ratio L:H be important
when it comes to to study the heat fluxes in these systems? Or will the point at which the
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results start to drift away from the 3D results be dependent on this geometric aspect ratio of
the cell?, Are the limits dependent on Γ? What about Prandtl?.

Furthermore, it is crucial to emphasize the significance of the Hele-Shaw model. As
seen in the previous chapter, many numerical models of geothermal reservoirs, geothermal
shutdowns, or flows in porous media use the classical Darcy formulation, regardless of whether
they are located in highly permeable regions, such as geological fault zones. This can lead
to an overestimation of heat flows and potentially result in misguided decision-making.

Figure 4.12: Nusselt Number versus Rayleigh Number. Panels (a) and (b)
show comparative analysis of Chong 3D simulations and HSM results for
Γ = 1/32 and 1/64, respectively. Data by Hewitt, (2012) is displayed in
stars. Simulations conducted using Dedalus3.
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Figure 4.13: Collapsing data in a universal curve. ϵ2Nu/Φscalar as a function
of ϵ2Ra.
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Chapter 5

Conclusions And Future Work

5.1. Conclusions
In this section, we present a comprehensive summary of the key findings and outcomes

obtained from our investigation using the Hele-Shaw model (HSM) for thermal convection
in confined geometries. Through detailed numerical simulations, we have explored the be-
havior of heat transport and mixing dynamics under varying Rayleigh, Prandtl numbers and
cell anisotropy ϵ, as well as different boundary conditions. Our study aimed to shed light
on the intricate interplay between fluid flow, temperature distribution, and heat transport
in confined environments, providing valuable insights for various practical applications in
geothermal reservoir engineering and aquifer modeling.

The following conclusions highlight the significant observations and implications drawn
from our analyses, which contribute to a deeper understanding of the thermal convection
phenomena within Hele-Shaw cells or severely confined fluid environments like faults. These
conclusions offer important guidance for future research directions and potential extensions
of the HSM. The conclusions of this work are the following:

• With free-slip boundary conditions, in a range of Ra ∈ [4π2, 10000] and Pr ∈ [7, 100],
with ϵ = 0.005, there are no major changes in heat transport varying the Prandtl
number, as evidenced by the Nusselt number. The system’s mixing degree behavior also
shows no sensitivity to variations in Prandtl number.

• There is evidence of reduced heat transport for a simulation with a Prandtl number
Pr < 1 specifically when ϵ2Ra/Pr ∼ 0.1. This could serve as a starting point to study
the effect of inertial corrections on the system.

• For free-slip boundary conditions, the aspect ratio L : H = 2 : 1 with Fourier boundary
conditions in x̂ direction yields the same results as an aspect ratio of L : H = 1 : 1 with
no-penetration boundary conditions.

• With free-slip boundary conditions, the system degree of mixing behavior appears to be
minimally sensitive to changes in ϵ, at least in a range of ϵ ∈ [0.0045, 0.018].

• The HSM is able to reproduce a range of 3D results even with different boundary con-
ditions in the x-direction. This may indicate that for sufficiently low Rayleigh numbers,
the x-direction boundary conditions are less significant. This provides a strong step
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towards validating the model. The limit in this case extends up to ϵ2Ra = 0.06. It is
emphasized that performing closed-box simulations with no-slip boundary conditions on
all walls is crucial for model validation, ideally comparing with laboratory experiments
as well.

• The HSM predicts a decrease in heat transport as the permeability of a medium becomes
significant. This is important as many current models solely rely on the Darcy model.

• Dedalus is a valuable open-source tool that is relatively easy to use and can be instru-
mental in expanding the HSM’s applications, such as engineering geothermal reservoirs
and modeling aquifers, among others.

5.2. Future Work
The project has made significant advancements, but there are still several key tasks that

remain to be completed:

• Explore inertial corrections and their accuracy: Investigate the impact of inertial cor-
rections on the model’s predictions and assess their accuracy in capturing the system’s
behavior accurately.

• Conduct a detailed analysis of the lower Prandtl number (Pr < 1) regime: Further
investigate and analyze the system’s dynamics in scenarios with lower Prandtl numbers
to gain deeper insights into the heat transfer processes.

• Analyze cell aspect ratio effects with no-slip boundary conditions: Study the influence
of different cell aspect ratios when employing no-slip boundary conditions to better
understand their effects on heat transfer characteristics.

• Investigate closed box no-slip boundary conditions and their limitations: Assess the ap-
plicability and limitations of using no-slip boundary conditions in closed-box simulations
and identify potential challenges.

• Study the transition between the low and high Rayleigh regime while varying Prandtl
number and ϵ. Investigate how changes in these parameters influence the system’s be-
havior during the transition, and analyze any potential trends or critical points that may
arise. This investigation will provide valuable insights into the sensitivity of the model
to different parameter combinations and enhance our understanding of the system’s
dynamics in varying regimes.

• Compare the HSM with a Forcheimer model: Perform a comparison between the Hele-
Shaw model and the Forcheimer model to explore any potential links between inertial
corrections and the quadratic term.

• Enhance the Dedalus3 code: Improve the Dedalus3 code to enable seamless integration
and compatibility with the flow_solve files, making the analysis and simulations more
convenient and user-friendly.

• Investigate the injection of a cooler fluid: Study the system’s response when a cooler
fluid is injected, to gain insights into heat transfer processes and potential cooling effects.
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• Develop an upscaling framework for real-life applications: Work on establishing a method-
ology to upscale the model results for practical use in real-life scenarios, such as geother-
mal reservoirs.

Overall, the project has made substantial progress, and addressing these remaining tasks
will lead to a comprehensive and insightful study of the Hele-Shaw model and its applicability
in various scenarios.
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