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Resumen Biográfico

De chico, como a muchos otros niños y niñas, me
gustaban los dinosaurios, la pasaba memorizando
sus nombres y modos de vida, mirando por ho-
ras imágenes en revistas y libros sobre esos ani-
males del pasado. Luego me hice fanático de todos
los juegos y series que se vincularan a la diversi-
dad y evolución de los seres vivos y pasé todas
las clases de básica dibujando animales, criaturas
fantásticas y sus transformaciones. Recuerdo con
especial cariño El Futuro es Salvaje, un documen-
tal que me reveló a los 10 años la belleza de la
evolución y el poder de creación de nuevas formas
que tienen el tiempo y los organismos.

A diferencia de otros niños y niñas, jamás superé esa etapa, aśı que el último año
de media decid́ı seguir mi pasión y entré a estudiar bioloǵıa en la Universidad de Chile,
y puedo decir con tranquilidad y alegŕıa que tomé la decisión correcta. Con contadas
excepciones disfruté cada clase, terminando todos los d́ıas asombrado con la complejidad
y la belleza de los seres vivos, de su funcionamiento, sus interacciones y su historia. A lo
largo del pregrado pasé por laboratorios de inmunoloǵıa, bioloǵıa del desarrollo y neurobi-
oloǵıa, intentando encontrar mi lugar. Fue en este último donde realmente entend́ı lo que
significa ser biólogo y vivir una vida de investigación. Luego de cursar Evolución el último
semestre tomé la decisión de seguir esa ĺınea que, además de encontrarla fascinante, me
permit́ıa compatibilizar la bioloǵıa con mi interés por las matemáticas y la computación.
Gracias al apoyo de mi tutor y co-tutor de tesis pude entrar y cursar este postgrado en
bioloǵıa evolutiva y desarrollar el presente trabajo de investigación, haciendo un pequeño
aporte a nuestro entendimiento sobre los procesos de transformación histórica de los
organismos. Esta tesis me acompañó y creció conmigo en un intenso periodo de turbu-
lencia poĺıtica, pandémica y emocional y mirando para atrás sólo puedo estar agradecido
y orgulloso del camino recorrido.
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• mARN: ácido ribonucleico mensajero

• DFE: distribution of fitness effects

• FGM: Fisher’s geometric model

• PPI: protein-protein interaction

• MSD: mean squared displacement

• Pe: Péclet number

• KS: Kolmogorov-Smirnov

• GO: Gene Ontology

• CDS: coding sequence

• NCBI: National Center for Biotechnology Information

• nBLAST: nucleotide Basic Local Alignment Search Tool

• HOG: hierarchical orthologous group

• PAML: Phylogenetic Analysis by Maximum Likelihood

• dN : number of non-synonymous substitutions divided by the number of non-
synonymous sites

• dS: number of synonymous substitutions divided by the number of synonymous
sites

• Mya: million years ago

• GBIF: Global Biodiversity Information Facility

ix



• GOEA: Gene Ontology enrichment analysis

• PCA: principal component analysis

• HPD: highest posterior density

• β: slope of the linear regression between evolutionary rate and pleiotropy

x



1 Resumen

Las investigaciones sobre las variables que modifican la tasa de cambio evolutivo de las

macromoléculas han estado en el centro del estudio de la evolución molecular desde sus

inicios. En esta ĺınea la pleiotroṕıa, entendida como la capacidad de una mutación de

afectar múltiples rasgos fenot́ıpicos, ha sido tratada como un obstáculo para la acumu-

lación de nuevas mutaciones, disminuyendo la tasa evolutiva, debido a que aumenta la

probabilidad de que la mutación sea deletérea, a la vez que disminuye su probabilidad

de fijación. Si bien esto ha sido demostrado a un nivel teórico bajo condiciones es-

pećıficas, aún no hay una respuesta satisfactoria de por qué no se ha encontrado esta

clara relación negativa en la naturaleza ni tampoco se sabe cómo diferentes condiciones

y supuestos pueden cambiar este patrón. Aqúı hacemos uso del modelo geométrico de

Fisher para estudiar en profundidad los efectos de la pleiotroṕıa sobre la tasa evolutiva

e incorporar, por una parte, un seguimiento temporal del proceso evolutivo y, por otra,

el rol de la selección natural y la deriva genética sobre estos efectos, haciendo uso de

una descripción del modelo basado en ecuaciones diferenciales parciales. Adicionalmente,

evaluamos las predicciones del modelo a la luz la evolución de las secuencias codificantes

de 15 especies de pingüinos y expandimos nuestros resultados para encontrar procesos

biológicos significativos en la evolución de estas aves. En el modelamiento, aśı como en

el análisis genómico, encontramos que el efecto de la pleiotroṕıa sobre la tasa evolutiva

cambia dinámicamente a lo largo de una trayectoria evolutiva siguiendo tres etapas es-

tereot́ıpicas un efecto negativo inicial, una segunda etapa de efecto positivo de mayor

duración y una etapa final de efecto levemente negativo.
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2 Abstract

Research on the variables that modify the rate of evolutionary change of macromolecules

has been at the center of the study of molecular evolution since its inception. In this line

pleiotropy, understood as the capacity of a mutation to affect multiple phenotypic traits,

has been treated as a hindrance to the accumulation of new mutations, decreasing the

evolutionary rate, because it increases the probability of the mutation being deleterious

while decreasing its probability of fixation. While this has been demonstrated at a theo-

retical level under specific conditions, there is still no satisfactory answer as to why this

clear negative relationship has not been found in nature, nor is it known how different

conditions and assumptions can change this pattern. Here we make use of Fisher’s ge-

ometric model to study in depth the effects of pleiotropy on the evolutionary rate and

incorporate, on the one hand, a temporal follow-up of the evolutionary process and, on

the other hand, the role of natural selection and genetic drift on these effects, making

use of a description of the FGM based on partial differential equations. In addition, we

evaluated the model predictions in light of the evolution of the coding sequences of 15

penguin species and expanded our results to find significant biological processes in the

evolution of these birds. In our model, as well as in genomic analysis, we found that

the effect of pleiotropy on evolutionary rate changes dynamically along an evolutionary

trajectory following three stereotypic stages an initial negative effect, a second stage of

longer-lasting positive effect, and a final stage of slightly negative effect.
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3 Introducción general

3.1 Fundamentación teórica

“La historia evolutiva de los seres vivos es una historia de con-

servación y cambio, tanto de los linajes de organismos, como de los

linajes de sistemas que se intersectan con ellos en su realización estruc-

tural“ (Maturana and Mpodozis, 1992)

La participación de las protéınas en los procesos orgánicos es ubicua, por lo que el

cambio histórico de estas moléculas y de su sistema de herencia, mediado en parte

por la estructura de las macromoléculas de ADN, son de gran interés en el estudio de

la evolución biológica. Durante el devenir evolutivo de las especies ocurren múltiples

eventos mutacionales de carácter contingencial en sitios del ADN portado por individuos

dentro de una especie. Si las mutaciones ocurren en moléculas conservadas durante

la reproducción, ya sea de forma directa o por una relación de continuidad mediada

por la replicación del ADN, la reproducción de los organismos va a facilitar el proceso de

propagación de la forma mutante dentro de la especie. La propagación va a verse afectada

por múltiples factores que se pueden dividir en dos grandes grupos, aquellos factores que

son independientes de la mutación y están vinculados a fluctuaciones aleatorias durante

la ontogenia de los organismos (Wright, 1955) y aquellos factores que dependen del

efecto sobre el fenotipo asociado a la mutación y están vinculados a modificaciones en
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la sobrevida y reproducción (Darwin and Wallace, 1858), estos grupos están asociados

a los conceptos de deriva genética y selección natural, respectivamente. Existen tres

resultados posibles del proceso de propagación, en primer lugar, puede ocurrir, con alta

probabilidad que la mutación se pierda, en segundo lugar, puede ocurrir que la mutación

permanezca en una coexistencia estable con la forma ancestral, es decir, la mantención

de un polimorfismo dentro de la especie, o, como tercera opción, la forma mutante

puede reemplazar completamente a la forma ancestral en la población, evento llamado

fijación o sustitución (Kimura, 1962). Las diferencias que observamos entre las secuencias

de especies actuales son el resultado de múltiples eventos de fijación mediados por la

selección natural y la deriva genética.

Se habla de una mutación beneficiosa, deletérea o neutral en relación al efecto que

esta tiene sobre las tasas de natalidad y mortalidad de los organismos portadores al

compararlas con las de aquellos que poseen la forma nucleot́ıdica original (Doebeli et al.,

2017), lo cual se asocia tradicionalmente al concepto de fitness. Naturalmente, que

sea beneficiosa, deletérea o neutral no es una propiedad exclusivamente propia de la

mutación, sino que es también determinantemente dependiente del contexto en el que

ocurre. Excepciones a esto último se pueden encontrar, por ejemplo, en las mutaciones

que ocurren en sitios sinónimos de las secuencias codificantes (CDS). Estas mutaciones

tienen una mayor probabilidad de tener un efecto neutral independiente del contexto en

el que ocurran debido a la degeneración del código genético donde modificaciones en la

estructura nucleot́ıdica no van a generar modificaciones en la estructura primaria de las

protéınas, a pesar de que śı pueden tener efecto sobre otros elementos como el nivel de

expresión o su estructura terciaria debido a la concentración particular de cada tipo de

tARN, por ejemplo (Bailey et al., 2021). Que una mutación sea beneficiosa, deletérea

o neutral va a afectar su probabilidad de fijación por medio, únicamente, de procesos

selectivos, ya que los procesos de deriva genética son insensibles a tales propiedades. A
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nivel teórico y emṕırico se ha estudiado en detalle la distribución de estas propiedades

sobre todas las nuevas mutaciones que pueden ocurrir en un genoma, conocida como

la distribución de efectos sobre el fitness (DFE), intentando identificar la proporción de

sustituciones que son beneficiosas, deletéreas y neutrales (Garćıa-Dorado et al., 1998;

Vale et al., 2012; Rice et al., 2015; Joyce and Abdo, 2018; Charmouh et al., 2023, para

ver algunos ejemplos).

Una de las razones por las cuales conocer la DFE particular de una CDS es tan impor-

tante es debido a su efecto sobre la tasa evolutiva molecular (Wang and Zhang, 2009),

el ritmo al cual las secuencias acumulan mutaciones. Se ha identificado un gran número

de factores capaces de modificar la DFE de las CDS como, por ejemplo, la localización

subcelular, la posición en la red molecular o la estabilidad del producto proteico de la

CDS. Algunos de estos elementos caracteŕısticos pueden enmascarar el efecto fenot́ıpico

de las mutaciones, aumentando la proporción de mutaciones neutrales, mientras que lo

contrario ocurre con elementos que potencien el efecto de las mutaciones, donde van a

aumentar las mutaciones beneficiosas y deletéreas a expensas de las neutrales. Si bien

la DFE depende de varias variables como la complejidad del organismo y el contexto

genético, por nombrar algunos (Bataillon and Bailey, 2014), la proporción de mutaciones

deletéreas suele ser mucho mayor que la proporción de mutaciones beneficiosas, por lo

que los casos de selección natural purificadora (que disminuye la tasa evolutiva) van a

ser más comunes que los casos de selección natural direccional (que aumenta la tasa

evolutiva). Consecuentemente, aquellos factores que enmascaran los efectos fenot́ıpicos

de las mutaciones, como la participación de chaperonas, un alto contenido de puentes

de disulfuro o la presencia de una CDS idéntica, por ejemplo, van a tener el efecto de

acelerar la tasa evolutiva, ya que van a aumentar la cantidad de mutaciones neutrales,

aumentando la probabilidad de fijación promedio, lo que se puede pensar como una dis-

minución en el poder de la selección natural purificadora. Por ejemplo, los eventos de
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duplicación génica, ya sea tanto bajo escenarios de neofuncionalización como de subfun-

cionalización, evidencian una relajación de la selección natural purificadora gracias a que

los cambios en el funcionamiento de una secuencia producto de una mutación pueden

ser cubiertos por la copia (Pegueroles et al., 2013). Lo contrario ocurre con elemen-

tos que potencien el efecto fenot́ıpico de las mutaciones como, por ejemplo, el nivel de

expresión génica (Pál et al., 2001). Por múltiples motivos, pueden ocurrir errores de

plegamiento durante la traducción del mARN, donde una protéına mal plegada puede

generar interacciones protéına-protéına (PPI) no presentes en la protéına silvestre o, en

mayores concentraciones, puede generar citotoxicidad. Existen mutaciones que aumentan

la probabilidad de que ocurran errores en el plegamiento, causando un efecto deletéreo

para el organismo. En CDS que tienen un alto nivel de expresión, esto implicaŕıa un

incremento de la concentración de protéınas mal plegadas, causando mayores niveles de

citotoxicidad. Esta es una de las hipótesis por las cuales se piensa que existe una relación

negativa tan marcada entre la tasa evolutiva y el nivel de expresión (Zhang and Yang,

2015).

Si bien la primera reconciliación entre la genética Mendeliana y la bioloǵıa evolutiva

Darwiniana fue realizada a comienzos del siglo XX por los primeros mutacionistas (Stoltz-

fus and Cable, 2014), fueron los fundadores de la genética de poblaciones los que asen-

taron las bases del estudio evolutivo como lo conocemos actualmente. Su aproximación

fue teórica y matemática en naturaleza, en un contexto donde la gran cantidad de datos

necesarios para generar un correlato emṕırico era inconcebible (Casillas and Barbadilla,

2017). En ese contexto es en el que Fisher, en un par de párrafos, describe un modelo

(FGM) que permitió desarrollar una intuición sobre la relación entre la magnitud del

efecto fenot́ıpico de una mutación y la probabilidad de que sea beneficiosa (Fisher, 1930).

Casi un siglo después ese modelo se ha desarrollado extensamente, con aplicaciones a

una multitud de problemáticas evolutivas y con múltiples evaluaciones emṕıricas de sus
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predicciones (Rice, 1990; Hartl and Taubes, 1996; Orr, 2000; Wilke and Adami, 2001;

Martin et al., 2007; Gros et al., 2009; Manna et al., 2011; Lourenço et al., 2011; Blan-

quart et al., 2014; Hwang et al., 2017; Moutinho et al., 2022, para ver algunos ejemplos).

La definición de la DFE es fundamental para muchos de los modelos evolutivos actuales

y el FGM no es la excepción, sin embargo, a diferencia de otros modelos (véase por ejem-

plo Kingman, 1978), en el FGM la DFE no requiere ser especificada con anterioridad,

sino que emerge de los parámetros del modelo. Consecuentemente, este modelo ha per-

mitido ver el efecto de ciertas variables de interés evolutivo sobre la DFE. Sin ir más

lejos, la primera utilización del modelo, realizada por su autor en 1930, fue la de identi-

ficar el cambio en la probabilidad de que una mutación sea beneficiosa en función de su

magnitud de efecto fenot́ıpico, encontrando que la probabilidad es 0.5 cuando el efecto

tiende a cero y decayendo rápidamente a medida que la magnitud del efecto de la mu-

tación aumenta. Una conclusión relacionada y que ha sido extensamente confirmada es

la relación positiva entre la fracción de mutaciones beneficiosas y la adecuación biológica

de la especie (Hietpas et al., 2013).

En el FGM existe lo que se conoce como un espacio fenot́ıpico, un espacio n-dimensio-

nal donde cada eje corresponde a un rasgo de los organismos y cada punto en el espacio

corresponde a un fenotipo con una combinación única de rasgos. Allen Orr (2000) identi-

ficó que el número de dimensiones en el espacio fenot́ıpico es determinante en la definición

de la DFE, encontrando que la probabilidad de que una mutación sea beneficiosa decae

en función del número de dimensiones, conclusión que ha probado ser robusta a la modi-

ficación de los supuestos básicos de Orr (Welch and Waxman, 2003). Esta observación es

llamada el costo de la complejidad, donde complejidad corresponde al número de dimen-

siones del espacio fenot́ıpico, y sugiere que organismos simples van a experimentar una

mayor cantidad de mutaciones beneficiosas que organismos complejos. Asimismo, se ha

interpretado el costo de la complejidad como un costo en la tasa evolutiva, por ejemplo,

5



Haygood (2006) estudia el costo de la complejidad en estos términos, preguntándose

por la correlación entre complejidad y tasa mutacional, donde el aumento de este último

puede compensar el costo sobre la tasa evolutiva. Haygood observa que a medida que

aumenta la complejidad de los organismos, medida como el número de tipos celulares

distintos, aumenta el tamaño de sus genomas, esto tiene como consecuencia que ocurran

más eventos mutacionales, aumentando la tasa mutacional, lo cual aumenta la tasa de

fijación. Sin embargo, a medida que aumenta la complejidad, el tamaño efectivo de

las poblaciones suele disminuir, lo cual tiene el efecto opuesto sobre la tasa mutacional,

por lo tanto, el efecto final está mediado por el balance entre estos dos factores. De

forma neta, los autores indican que hay una aceleración apreciable sobre la ocurrencia de

mutaciones, sin embargo, esto parece no ser suficiente para compensar el efecto de la

complejidad sobre la tasa evolutiva. Si bien, el efecto directo de la dimensionalidad sobre

la tasa evolutiva se conoce en detalle, las posibles consecuencias del fenómeno del costo

de la complejidad bajo distintas condiciones no han sido exploradas extensamente. Por

ejemplo, Razeto-Barry et al. (2011) encontraron que el costo de la complejidad en un

ambiente con cambios periódicos va a producir el efecto opuesto, donde los organismos

más complejos acumulan mutaciones a una mayor tasa que los organismos más simples.

Este hallazgo es interesante debido a que un ambiente variable es una suposición más

realista al momento de evaluar este fenómeno en poblaciones naturales. En el FGM la

variabilidad ambiental se modela por medio del cambio de posición del fenotipo óptimo

y es equivalente a modelar procesos evolutivos de diferente extensión de tiempo, esta

similitud se debe a que un ambiente muy variable corresponde a una sucesión de cami-

natas evolutivas de corta duración, mientras que un ambiente estable es equivalente a una

caminata evolutiva extensa en términos del número de eventos mutacionales ocurridos.

Fisher (1930) describe que la adecuación de una población a una situación o a

un ambiente puede ser entendida como la distancia entre dos puntos en un espacio,
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donde el número de dimensiones corresponde al número de aspectos sobre los cuales la

población puede estar más o menos adecuada al ambiente. En ese escenario, una mu-

tación corresponde a un desplazamiento en ese espacio y, por lo tanto, a un cambio en el

valor para cada uno de los aspectos. La propiedad de una mutación de tener efecto sobre

varios rasgos fenot́ıpicos de un organismo es llamada pleiotroṕıa, consecuentemente, una

interpretación biológica que se le da al número de dimensiones del espacio fenot́ıpico de

Fisher es el nivel pleiotrópico de una CDS (Gu, 2007). Interesantemente, al igual que el

costo de la complejidad, se ha propuesto que la pleiotroṕıa tiene el efecto de restringir la

tasa evolutiva (Hodgkin, 1998), particularmente por medio de la pleiotroṕıa antagónica,

la cual hace referencia al fenómeno donde una mutación puede tener un efecto beneficioso

en relación a un rasgo fenot́ıpico, pero el efecto pleiotrópico sobre otro rasgo es deletéreo,

generando un conflicto entre los efectos (Zhang, 2023). El costo de la complejidad puede

ser entendido entonces como la formalización en el FGM de la relación negativa entre la

pleiotroṕıa y la tasa evolutiva. Estudios sobre la base molecular de la pleiotroṕıa apuntan

a múltiples mecanismos mediante los cuales una mutación puede modificar varios rasgos,

por ejemplo, una mutación puede afectar un sitio regulador, como un enhancer, poten-

cialmente modificando la expresión de varias CDS independientes (Zhang, 2023). Uno

de estos mecanismos pareciera ser el más prominente y corresponde a la propiedad de un

producto proteico de participar en múltiples procesos biológicos, mediado por el número

de PPI y por el número de localizaciones celulares, pero no por el número de funciones

moleculares (He and Zhang, 2006).

El efecto negativo que se propone para la pleiotroṕıa es interesante porque tiene una

relación directa con uno de los principios fundamentales de la evolución molecular, “las

moléculas o partes de una molécula funcionalmente menos importantes evolucionan (en

términos de sustituciones mutacionales) más rápido que las más importantes“ (Kimura

and Ohta, 1974). Como tal, ha habido múltiples intentos de ver si la predicción relativa
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a la pleiotroṕıa se cumple en sistemas biológicos reales (He and Zhang, 2006; Ericson

et al., 2006; Salathé et al., 2006; Podder et al., 2009; Chakraborty and Ghosh, 2013;

Pritykin et al., 2015; Chesmore et al., 2016; Chakraborty et al., 2016; Fräısse et al.,

2019; Rennison and Peichel, 2022; Williams et al., 2022). Sin embargo, los resultados no

han sido concluyentes, por ejemplo, Fraisse y cols. descubrieron que, aunque los efectos

negativos de la pleiotroṕıa pod́ıan eludirse mediante cambios en la expresión génica,

los valores intermedios de pleiotroṕıa tend́ıan a tener un impacto muy negativo en la

respuesta a la selección natural direccional, mientras que Rennison y Peichel descubrieron

que regiones de interés evolutivo vinculadas a adaptación reciente estaban enriquecidas

en genes con pleiotroṕıa intermedia. Este complejo escenario se ha profundizado aún

más con la constatación de que, incluso en el modelo geométrico de Fisher, ha habido

resultados contrastantes (Razeto-Barry et al., 2011; Razeto-Barry and Maldonado, 2011).

En el presente proyecto de investigación proponemos profundizar nuestro conocimiento

sobre el efecto que tiene la pleiotroṕıa de las secuencias codificantes sobre sus tasas

de acumulación de mutaciones. Esta profundización estará focalizada en un análisis

temporal de las trayectorias evolutivas, intentando observar las distintas etapas de esta

relación pleiotroṕıa-tasa evolutiva y las condiciones bajo las cuales esta relación cambia,

tanto a nivel de modelamiento de procesos evolutivos como a nivel de análisis de datos

genómicos.

3.2 Hipótesis

El efecto de la pleiotroṕıa sobre la tasa de evolución molecular de las secuencias codifi-

cantes es dinámico en el tiempo.
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3.3 Predicciones

• El análisis temporal de una trayectoria evolutiva en el modelo geométrico de Fisher

va a revelar un efecto dinámico de la dimensionalidad sobre la tasa evolutiva me-

diada por cambios en la contribución relativa de la selección natural y la deriva

genética.

• La relación entre pleiotroṕıa y tasa evolutiva de secuencias codificantes de pingüinos

va a presentar un patrón temporal similar al efecto dinámico de la dimensionalidad

sobre la tasa evolutiva descrito para el modelo geométrico de Fisher.

3.4 Objetivos

3.4.1 Objetivo general

Determinar la relación entre la pleiotroṕıa y la tasa de evolución molecular a lo largo de

una trayectoria evolutiva.

3.4.2 Objetivos espećıficos

1. Cuantificar la contribución relativa de la selección natural y la deriva genética en

el modelo geométrico de Fisher.

2. Vincular la dimensionalidad con la contribución relativa de la selección natural y la

deriva genética en una trayectoria evolutiva.

3. Analizar el cambio temporal del efecto de la dimensionalidad sobre la tasa evolutiva.

4. Traducir las variables del modelo geométrico de Fisher a medidores biológicos.
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5. Evaluar la relación entre pleiotroṕıa y tasa evolutiva en la historia evolutiva de los

pingüinos.

3.5 Organización de la tesis

La presente tesis está estructurada entorno a la separación entre una aproximación de

modelamiento y una aproximación bioinformática. El primer caṕıtulo tiene tres secciones,

donde la primera corresponde al análisis de difusión, que fue el método escogido para

cumplir el objetivo espećıfico 1. Aqúı se puede encontrar el desarrollo de la ecuación

diferencial parcial utilizada para modelar el FGM y la evaluación del ajuste entre la

ecuación y las simulaciones. La segunda sección incorpora el primer y segundo objetivo

espećıfico haciendo utilización de una analoǵıa a los sistemas de part́ıculas estudiados en

disciplinas como la mecánica de medios continuos. Finalmente, la tercera sección trabaja

el tercer objetivo espećıfico por medio de simulaciones y la utilización de las herramientas

desarrolladas en las dos secciones anteriores. El segundo caṕıtulo corresponde al análisis

de secuencias codificantes de pingüinos y está dividido en dos secciones. La primera

sección aborda la problemática de la relación entre pleiotroṕıa y tasa evolutiva vinculada

a los dos últimos objetivos espećıficos. La segunda sección explora la relación establecida

entre la dinámica evolutiva encontrada para las secuencias codificantes de pingüinos y la

dinámica evolutiva de las simulaciones en el FGM con el propósito de inferir información

funcional relevante de la historia evolutiva de estos linajes. Hay una correspondencia

directa entre los dos caṕıtulos y la estructura del objetivo general, donde el primer caṕıtulo

se propone encontrar la forma espećıfica en la que cambia la relación entre pleiotroṕıa

y tasa evolutiva en el FGM y encontrar la explicación mecánica detrás de esos cambios,

mientras que el segundo caṕıtulo aborda la comparación de los resultados in silico con

los resultados en la historia evolutiva de los pingüinos.
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4 Fisher’s geometric model and the contribution of

drift and selection on the dimensionality-evolutionary

rate relation

4.1 Introduction

In this work, we focus on a particular type of molecular change that corresponds to

the change in the sequence in which nucleotides are ordered along the DNA molecule.

Mutations are one of the main sources of this type of variation, occurring first at the

individual level, followed by a process of propagation within the population throughout

the generations. This process depends on multiple factors, which can be broadly divided

into two classes, selective and drift processes. Three possible outcomes can occur from

the propagation process: fixation, loss, and maintenance of polymorphism, which corre-

spond respectively to the replacement of the ancestral form by the mutant, elimination

of the mutant and conservation of the ancestral form, and conservation of both in a

simultaneous coexistence (Kimura, 1962).

While there are complex mechanisms by which the occurrence of mutations can be

regulated, the mutational process depends mainly on cellular contingent events, therefore,

at an evolutionary timescale, the mutation rate by individual by site is taken to be

constant. After the first studies on molecular evolution on proteins, researchers were led

to believe that, just like the mutation rate, the substitution rate was also constant for

a given kind of protein, e.g., hemoglobin, irrespective of the lineage (Zuckerkandl and
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Pauling, 1962; Margoliash, 1963), contrarily to what was expected from neo-Darwinian

theory (Kimura, 1968; King and Jukes, 1969). A nourishing debate about the actual

processes involved in molecular change through evolutionary time started, having as

the main protagonist the neutral theory of molecular evolution (Kimura and Ohta, 1971;

Kimura, 1983). This theory states that most of the mutations fixed are neutral concerning

their fitness change effect and that their fixation is mainly due to genetic drift, thus the

substitution process is roughly independent of the selective processes and as such, of

the particularities of the “selection pressures“ that each lineage experiences. As different

proteins showed different rates of substitution, a new question arose, what properties that

can be attributed to a given coding sequence or protein affect the rate of accumulation

of mutations and in what way it affected it? Dickerson was one of the first researchers

to pinpoint some of them, like the total surface area of a protein that is occupied in

interaction with other molecules, crucial to its function, an example that Dickerson gives

is the case of histone H4, which interacts strongly with other histones and is surrounded

by the DNA strand, this degree of surface coverage is proposed to be partly responsible for

its extremely low evolutionary rate. On the other hand, Dickerson suggests that the high

evolutionary rate of molecules like fibrinopeptides and insulin peptide C is due to their

high dispensability as, at the time, it was thought that these molecules were only collateral

products of the processing of fibrin and insulin, respectively (Dickerson, 1971). Nowadays,

we know the effects of many other variables, and most of them are explained by how they

change the impact that new mutations have on the phenotype (Zhang and Yang, 2015;

Alvarez-Ponce, 2020). On one side, variables that buffer the structural consequences

of a sequence change have an accelerating effect, as is the case of the participation of

chaperones in the folding of proteins (Bogumil and Dagan, 2010). On the other side,

the variables that amplify the effects tend to increase the level of conservation of the

sequences, as is the case of the expression level, where mutations have much bigger
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effects upon misfolding because there are more products in the cell (Pál et al., 2001;

Drummond et al., 2005).

The theoretical framework that conceptualizes the molecular evolutionary process as

successive rounds of mutation and fixation (or loss) on a single locus dismissing sta-

ble polymorphisms has been called sequential fixation models, a type of origin-fixation

model (McCandlish and Stoltzfus, 2014). Fisher’s geometric model (FGM), defined

briefly by Ronald Fisher in 1930, lies within this type of models, which has been used to

answer a great variety of evolutionary questions concerning beneficial mutations (Hartl

and Taubes, 1996), epistasis (Wilke and Adami, 2001; Martin et al., 2007; Gros et al.,

2009; Hwang et al., 2017), dominance (Manna et al., 2011), fitness landscapes (Kopp

and Hermisson, 2009; Gordo and Campos, 2013; Blanquart et al., 2014), recombina-

tion (Peck et al., 1997), molecular evolution theory (Razeto-Barry et al., 2012), selection

pressure (Gros and Tenaillon, 2009), parallelisms (Chevin et al., 2010) and genotypic com-

plexity (Lourenço et al., 2011), among many others (Tenaillon, 2014). In the present

investigation we deal with an instance of this model with four major assumptions: the ef-

fective population size remains constant throughout the evolutionary process, phenotypic

change in the population is due to the structural changes at a single locus correspond-

ing to the coding sequence of a single product, the mutation rate at the target locus

is slow enough such that there cannot be more than two allelic forms at a given time

and, finally, we suppose the existence of an unimodal fitness landscape where its peak is

referred to as optimum. Interestingly, under these assumptions, the selection coefficient

distribution of the possible mutations is not predefined, as is the case for the house-of-

cards (HOC) model (Kingman, 1977, 1978), but it emerges from the random phenotypic

change caused by mutations and the fitness decay function.

Originally, Fisher (1930) used its model to make a point about the magnitude of phe-

notypic change of individual mutations and its place in meaningful evolutionary change.
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He showed that, as the mutation magnitude increases, the probability of it being favor-

able sharply decreases. This line of inquiry was retaken by Motoo Kimura (1983), who

showed that, while indeed small mutations share a higher probability of being favorable,

they also have on average a smaller impact on the population fitness, resulting in the

mutations of intermediate size of having the greatest probability of becoming fixed. Allen

Orr (1998) subsequently enriched these results further by pointing out that the findings

of Kimura were true only for the first mutation of an adaptive evolutionary process, but,

as the fitness of the population changes by the successive fixation of mutations, the mean

size of the mutations fixed decreases, shifting the curve found by Kimura toward smaller

magnitudes.

Orr also implemented the FGM to research the effects of the number of phenotypic di-

mensions on the evolutionary process, and he found that a mutation of a given magnitude

has a decreasing probability of being favorable as the dimensionality (number of dimen-

sions) of the phenotypic space increases (Orr, 2000), a phenomenon known as the cost of

complexity. In the same spirit as Orr (1998), we propose to extend these theoretical find-

ings by following the changes in the effect of dimensionality throughout the evolutionary

process. As ever-increasing degrees of organismal complexity are prevalent in evolution-

ary history, the cost of complexity poses an interesting challenge to evolutionary theory.

Much has been studied about possible mechanisms in which this cost is bypassed (Welch

and Waxman, 2003; Haygood, 2006; Wang et al., 2010; McGee et al., 2016) and how this

dimensionality can be measured (Gu, 2007; Tenaillon et al., 2007). These studies relate

directly to the study of pleiotropy and its effects on evolutionary dynamics, as pleiotropy

is defined as the phenomenon where changes in a single coding sequence can potentially

produce changes in multiple traits (Pavlicev and Cheverud, 2015; Zhang, 2023). The

relation between pleiotropy and dimensionality is usually treated as follows, a complex

organism has more traits that can change independently, so a given mutation experienced
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by the organism has the potential to change more traits than mutations occurring in sim-

pler organisms. If any change in a coding sequence can alter multiple independent traits

is a different matter, most of the earliest models assumed universal pleiotropy, i.e., any

coding sequence has access to change any trait in the organism, even so slightly (Zhang,

2023). Now, with more empirical data at hand, the main assumption is that of modular

pleiotropy, where a given coding sequence has access to change only a subset of traits in

the organisms (module) (Wagner et al., 2007), where the distribution of the number of

traits affected by a coding sequence is L-shaped (Wang et al., 2010), i. e. many coding

sequences can change a reduced number of traits, meanwhile, a small portion of them

can change multiple independent traits. Most of the theoretical work done on the cost

of complexity is based on the FGM, as its structure gives an intuitive way of modeling

pleiotropy, where each independent trait is modeled as a single axis in phenotypic space,

and modularity can be assessed by independent simulations.

The present extension on Orr’s work is motivated by the discrepancy in empirical

investigations on looking for a consistent negative effect of pleiotropy over the evo-

lutionary rate, as most empirical evidence points to a mild negative effect or to no

effect at all (He and Zhang, 2006; Ericson et al., 2006; Salathé et al., 2006; Podder

et al., 2009; Chakraborty and Ghosh, 2013; Pritykin et al., 2015; Chesmore et al., 2016;

Chakraborty et al., 2016; Fräısse et al., 2019; Rennison and Peichel, 2022; Williams et al.,

2022). Particularly illustrative is the case of the results of Chakraborty and Ghosh (2013)

and Chakraborty et al. (2016), where the former reports a positive relationship between

evolutionary rate and the number of associated biological processes of core and attach-

ment proteins from protein complexes, meanwhile in the latter when looking at disease

and non-disease associated genes, they found a significant negative correlation.

From a theoretical point of view, what should be expected about the effects of the

evolutionary processes of selection and drift? Most molecular evolution in nature is sub-
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jected simultaneously to processes related to natural selection and genetic drift, but their

cause-effect relationships with variables like evolutionary rate or mutation magnitude, for

example, are quite different. Discerning between both is not an easy task but is necessary

to have a thorough description of the process. To address this issue, we again make use

of a common tool in population genetics, diffusion analysis (Kimura, 1955, 1962; Ewens,

2004), which we apply to the FGM to create a method to identify the changes in the

relative contribution of both processes. Here, diffusion analysis is meant to mean the

description of the evolutionary process as modeled by the FGM, as the time change (or

evolution in the mathematical sense) of the probability density function of the relative

position of the population in phenotypic space with respect to the optimal phenotype,

through a partial differential equation usually denoted as the Fokker-Planck equation or

Kolmogorov forward equation (Ewens, 2004). The use of this tool is justified by the

assumption that the nature of the FGM dynamics allows the evolutionary process to be

approximated as a continuous stochastic process. We make use of the analogy with

mechanical natural systems of particles moving in space, which provides us with intuitive

notions to treat different types of movement and regimes. Unlike most other instances

of application of this analysis in evolution, here we apply diffusion analysis not to the

traditional propagation of an allelic form inside a population throughout the generations,

but to the movement in phenotypic space of the population due to the successive fix-

ation events. A similar approach can be found for example in the work of McCandlish

et al. (2014) where the state variable corresponds to the fitness of the population, which

can be directly translated to the state variable used in this work, the Euclidean distance

between the population and the optimum phenotype. Nonetheless, a major difference

between both approaches is that McCandlish et al. based their approach on the HOC

model, whereas here we use directly the FGM in an origin-fixation fashion.

In the present chapter, we focus on the relationship between dimensionality and molec-
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ular evolutionary rate from a theoretical viewpoint, using diffusion analysis and computer

simulations to provide a better understanding of the changes in the relationship between

both variables and the role of natural selection and genetic drift in those changes.

4.2 Materials and Methods

4.2.1 Fisher’s geometric model

Simulations of the evolutionary trajectories of populations by the changes in a sequence

using the FGM (Fisher, 1930) were implemented in Python with a custom script. The

implementation proceeded as follows: a population’s phenotype is defined by an array of

n coordinates, where n is the number of dimensions of the phenotypic Cartesian space.

Each time interval a random mutation is generated by creating an array of n coordinates,

each drawn from a normal distribution of mean 0 and standard deviation 1 (Muller,

1959; Harman and V., 2010). This array is divided by its module to ensure that the

magnitude of the mutation is 1. The actual magnitude of the mutation is drawn from a

uniform distribution between 0 and 1 raised to the power of 1/n and multiplied by the

maximum mutation magnitude. The power of 1/n is incorporated to ensure that each

point in phenotypic space within reach of a mutation is equally likely to be selected, i.e.

uniform density. The position of the mutant is then calculated as the displacement of

the population’s position by the mutation vector. The fitness of the mutants and the

wild-type are calculated using a referential point in space, in this case, the origin of the

phenotypic space, and a fitness landscape of Gaussian decay as the Euclidean distance to

the optimum increases (Orr, 1998). Finally, we follow the derivation of Kimura (1962)

to find the ultimate probability of fixation of the mutation (q) given the population size

(N) and its selection coefficient (s). In Kimura’s equation, the probability of fixation

depends on the initial frequency and the time interval measured in generations, here we
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are interested in calculating this probability for an initial frequency of 1/N (one individual

of the species) and a time interval tending to infinity. This probability is calculated as

q =
1− e−2s

1− e−2Ns
, (4.1)

and, if this probability is greater than a random number drawn from a uniform distribution

in the unit interval, then we assume that the mutation fixates and the population’s

position in phenotypic space is updated. This process is repeated until the target number

of mutation events is achieved.

4.2.2 Fokker-Planck equation

Let us suppose that f(x, t) is the probability density function that describes the probability

of finding the population at a distance x from the referential point in phenotypic space

with the maximum fitness (optimum) at a time t (measured in any evolutionary significant

unit, as generations or million years, for example). Given the mutation rate µ we defined a

time interval τ corresponding to the inverse of µ, which corresponds to the expected time

it takes for a new mutation to arise. From the definition of τ we can define the probability

that a population changes its distance to the optimum from x− ζ to x during the time

interval τ . This probability (p(x− ζ, x)) is equal to the probability that a mutation that

generates a displacement of ζ in reference to the optimum occurs (m(x−ζ, x)) and that

such a mutation fixates (q(x− ζ, x)).

The probability of finding the population at a distance x after a time interval τ is equal

to the integral of the probability density function at position x− ζ times the probability

of jumping to the position x over all possible values of ζ, i.e. all possible phenotypic
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displacements within reach of a single mutation,

f(x, t+ τ)dx = dx

∫ ∞

−∞
f(x− ζ, t)m(x− ζ, x)q(x− ζ, x)dζ. (4.2)

Equation 4.2 can be expressed as a partial differential equation by using the Taylor

expansion around the point t for the function f approximated to the first derivative and

the Taylor expansion around the point x for the function fmq approximated to the second

derivative (see Appendix A.3),

∂f

∂t
=

1

2τ

∂2f

∂x2

∫ ∞

−∞
ζ2m(x, x+ ζ)q(x, x+ ζ)dζ − 1

τ

∂f

∂x

∫ ∞

−∞
ζm(x, x+ ζ)q(x, x+ ζ)dζ.

(4.3)

The geometrical properties of the FGM were thus incorporated in equation 4.3 in the

calculation of the probability of mutation. Every point inside the n-ball centered at the

population’s phenotype and with a radius equal to the maximum mutation magnitude

is equally likely to be generated in a mutational event, as a consequence the probability

of occurrence of any mutation of a given fitness effect is proportional to the area of

the n-dimensional cap (at the surface of the n-ball centered at the optimum phenotype

with a radius equal to the distance between the optimum and the mutant) formed by

its intersection with the n-ball centered at the population’s phenotype, where every

phenotype in the surface of this n-ball has the same fitness (Fisher, 1930). When the cap

area is normalized by the volume of the n-ball centered at the population’s phenotype,

it becomes equal to the probability that a mutation within the cap occurs during a

mutational event. The specific cases and formulas used for the numerical simulations are

specified in the Appendix A.2.
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Figure 4.1: Probability of mutation. The probability that a mutant with a given fitness

appears after a mutation event is equal to the surface of the n-dimensional cap belong-

ing to the n-sphere centered at the optimum phenotype with radius given by the defined

fitness (red sphere) formed by its intersection with the n-sphere centered at the popula-

tion’s phenotype with radius equal to the maximum mutation magnitude (blue sphere),

divided by the volume of the n-sphere centered at the population’s phenotype.

4.2.3 Numerical solution of the Fokker-Planck equation

To solve equation 4.3 the finite difference method was used (Arendt and Urban, 2020).

This method requires the discretization of time and space to compute the probability

density function as a system of linear equations. As the time is already discretized in

the FGM, with intervals corresponding to mutational events, only the spatial variable

was redefined as a finite number of equidistant points representing possible distances

to the optimum. The partial derivatives of f were approximated by a Crank-Nicolson

scheme (Crank and Nicolson, 1996), meanwhile, the two spatial extremes were treated

as Neumann boundary conditions. The Neumann boundary condition defines that the
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derivative of f at the border is equal to 0, this has the effect of a reflective border, which

is accurate for a population that overshoots the optimum, as well as for a population

infinitely far from the optimum where the probability of fixating a deleterious mutation

tends to zero. The Neumann boundary conditions were implemented with backward and

forward difference approximations at the near and far ends, respectively. With these

specifications, the transition matrix was created. For every calculation a space bin length

of 0.01 was chosen to avoid oscillations and the result was normalized to avoid mass loss

in long calculations. The corresponding formulas are exposed in Appendix A.3.

4.2.4 Statistical analysis

To test the equation solution against the distribution of distances obtained from simula-

tions in the FGM for a range of conditions we used the Kolmogorov-Smirnov test. The

null hypothesis of the test is that the simulated distances could have been drawn from

the distribution of the equation solution. On one hand, to research if the dimensionality

affects the goodness of fit, we evaluated different populations in equilibrium (xeq) as

calculated by equation 4.4 (Tenaillon et al., 2007):

xeq =

√
−2 ln

(
1− 1

2N − 1

)n
2

. (4.4)

On the other hand, we looked if, along an adaptive walk, there was a change in the

goodness of fit by simulating multiple populations in a 2-dimensional phenotypic space

starting at a distance 1.5 from the optimum. For each dimensionality condition a thou-

sand simulations were performed (results shown in Figure 4.4 from Section 4.3.1).
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4.2.5 Relative contribution of drift and selection

From the analysis of the evolutionary dynamics in the FGM with the Fokker-Planck equa-

tion, we derived a dimensionless number, known in the transport literature as the Péclet

number (Pe), to estimate the relative contribution of selection and drift. The value

assumed by the Pe given a set of conditions is a measure of the relative contribution

of the first and second terms in equation 4.3, where the first term corresponds to the

mean square displacement (MSD) associated with symmetric movement and diffusion,

meanwhile, the second term corresponds to the mean displacement associated with asym-

metric movement and advection. The Pe is a ratio which, when equal to 1, indicates

that advection and diffusion are equally important to explain the dynamics of the system.

Here we calculated the Pe as the mean displacement divided by the MSD of a population

in a given position, this ratio is then divided by the characteristic length of the system, in

this case, the maximum mutation magnitude was used (Gommes and Tharakan, 2020).

Each plot from Subsection 4.3.2 was constructed using equation 4.3, either directly by

evaluating the integrals as is done for Figures 4.5 and 4.6 (Subsection 4.2.2) or by solving

the Fokker-Planck equation by the finite difference method (Subsection A.3.2).

The Pe was calculated for a thousand equidistant points between 0 and 1.5 distance

from the optimum for each condition in Figure 4.7 to determine the distance in which

the Pe is equal to 1. Additionally, the mean position of a population in a given time was

used to calculate the time spent on a selection-driven regime. As the mean position is

a function that decreases monotonically with time until it gets into the equilibrium, in a

list of the mean positions in a trajectory of 10 million mutational events, a binary search

algorithm was performed to find the point in time when the population crosses the Péclet

number equal to 1.
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4.2.6 Relation between dimensionality and evolutionary rate

The β index used in Subsection 4.3.3 corresponds to the slope of the linear regression

between evolutionary rate and dimensionality. The molecular evolutionary rate was calcu-

lated differently depending on the figure, on one hand, for Figure 4.8 where it corresponds

to the number of successful fixations over the number of total mutational events in a

given time window. On the other hand, in Figures 4.9 and 4.10, the instantaneous evo-

lutionary rate was calculated as the mean fixation probability over all possible mutations

in a given point in phenotypic space.

4.3 Results

4.3.1 Diffusion analysis

The probability density function of the distance between the population and the optimum

defined by equation 4.3 shows a monotonically decreasing mean distance that approaches

asymptotically an equilibrium point. Meanwhile, starting from a distribution that is 0

everywhere except for the point at a distance of 1.5 from the optimum, as time progresses

the variance of the distribution shifts from a sustained increase to a sustained decreased

until it stabilizes at the equilibrium (Fig. 4.2). While no oscillations are observed in the

distribution, a mild loss of mass has to be corrected by normalizing each final solution.

This behavior mimics the bulk behavior of the FGM simulations as shown in Figure 4.3.

Based on the Kolmogorov-Smirnov test, the simulated data show a discordance with

the equation’s solution at the beginning and end of the adaptive walk for a population in a

two-dimensional phenotypic space (Fig. 4.4.A). It was found that the expected theoretical

distribution did not have a bad performance between 300 and 7000 mutational events,

where the null hypothesis could not be discarded. Concerning the effect of dimensionality
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in equilibrium, as expected from the performance of the equation’s solution for a high

number of mutational events, the theoretical distribution performed poorly, but with no

appreciable effect of dimensionality on its performance (Fig. 4.4.B).

Figure 4.2: Fokker-Planck equation numerical solution for a population of 500 individ-

uals starting at 1.5 from the optimum in a 2-dimensional phenotypic space and with a

maximum mutation magnitude of 0.02. Each curve shows the probability distribution of

the population at different times of the evolutionary trajectory.
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Figure 4.3: Exemplary comparison of the FGM simulations and the Fokker-Planck equa-

tion solution for a population with dimensionality 2, maximum mutation magnitude 0.02,

and starting position 1.5 from the optimum. The histogram data for a thousand simula-

tions is shown as green bars (count) and the discrete numerical solution for the Fokker-

Planck equation for spatial discretization of size 0.001 is shown as purple lines (prob-

ability). From left to right the data is shown after 30, 7,196, and 100,000 mutational

events.
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Figure 4.4: Kolmogorov-Smirnov test for the Fokker-Planck equation solution. A thou-

sand FGM simulations with common parameters specified below were implemented for

each dimensionality and the p-value of the Kolmogorov-Smirnov test was calculated. The

common parameters of the simulations are a population size of 500 individuals, a maxi-

mum mutation magnitude of 0.02, (A) phenotypic space of 2 dimensions and a starting

distance of 1.5 away from the optimum, and, (B) a starting distance corresponding to

Tenaillon’s equilibrium distance and a 100,000 mutational events. The horizontal line

illustrates the significance level of 0.05.

4.3.2 Relative contribution of drift and selection

Three evolutionary regimes distinct with respect to the evolutionary forces present were

tested by decomposing the Fokker-Planck equation in the mean square displacement

(diffusion term) and the mean displacement (advective term). Genetic drift and natural

selection were isolated by changing the probability of fixation formula. In Figure 4.5,

populations with no drift (population size tends to infinity), shown as green curves, on

average move towards the optimum along all the phenotypic space (positive values), with
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a decrease in the velocity of movement as the distance from the optimum decreases. Any

sort of movement reduces to zero at the position of the optimum. Populations with no

natural selection (the selection coefficient of every mutation tends to zero), exhibited as

purple curves, show movement as pictured by a not-null mean square displacement, but

this movement has no specific direction far from the optimum. Close to the optimum,

these populations show a strong movement away from it, reaching a maximum outward

displacement of −3.6 × 10−5 when its position is exactly the optimum phenotype posi-

tion. The populations under both forces (dark cyan curve) experience a shift in behavior

from following the trend of the populations under selection exclusively, with an average

movement towards the optimum, and adopting the behavior of escaping away from the

optimum when the distance is smaller, like the drift-exclusive populations, reaching a

mean displacement of −3.3 × 10−5 when the distance to the optimum is zero. In be-

tween both trends, an attractor can be found where the mean displacement of these

populations is zero.

The Péclet number is calculated for the three regimes as a function of the distance to

the optimum (Fig. 4.6). Natural selection-exclusive populations show a Péclet number

always greater than 1, which spikes to greater positive values as the population approaches

the optimum. On the other side, in drift-exclusive populations the Péclet number stays

close to zero throughout most of the phenotypic space, this trend shifts close to the

optimum at around a distance of 0.173, where the Péclet number crosses the critical value

of -1 and stays lower it until it reaches the optimum at a zero distance. A minimum

of -4.09 is observed around the distance of 0.02, which coincides with the maximum

mutation magnitude. Again, the mixed regime shifts its behavior, having both last cases

as upper and lower bound, respectively. The population reaches a Péclet number of 1 at

around the distance 0.124 and crosses the critical value of -1 at around 0.073 from the

optimum phenotype.
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As critical evolutionary variables, we studied the effect of dimensionality and maxi-

mum mutation magnitude on two complementary indicators of selection and drift relative

contribution to the evolutionary process. On one side, we estimated how much of the phe-

notypic space is dominated by selection and drift by the determination of the distance to

the optimum where the Péclet number of a mixed population (selection + drift) is equal

to 1 (Fig. 4.7.A), i. e. the point in phenotypic space where the contribution of selection

and drift is equal. We found that the dimensionality has a weak positive relation with

the distance of equal contribution, meaning that as the dimensionality increases, a bigger

part of the phenotypic space is dominated by genetic drift. On the other hand, the max-

imum mutation magnitude does not have a linear relationship with the distance of equal

contribution. For every dimension number, the minimum distance of equal contribution is

achieved at maximum mutation magnitudes of around 0.06, which is approximately 0.146

with 20 dimensions and 0.044 with 2 dimensions. Selection is less dominant throughout

the space for smaller and greater mutation magnitudes, more strongly with the former.

On the other side, we calculated how many mutational events are needed for a population

to cross the distance of equal contribution, starting from a place dominated by selection

in an evolutionary trajectory (Fig. 4.7.B). Once again, there seems to be a direct effect

of dimensionality, increasing the time spent in a selection-dominant zone, meanwhile, the

maximum mutation magnitude minimizes the time spent in a selection-dominant zone

at intermediate magnitudes, but this time, the minimum is achieved at around twice the

maximum mutation magnitude encountered in the previous analysis, at a magnitude of

approximately 0.115. Meanwhile, the decrease in mutation magnitude has a much less

steep slope in time, for magnitudes over 0.32 there is a sharp increase in the time spent

in the selection-driven zone, where the populations failed to cross the equal contribution

distance in under 10 million mutational events. This threshold magnitude is increased

with the decrease in dimensionality.
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Figure 4.5: Theoretical movement of the populations in the phenotypic space as a func-

tion of the distance from the optimum. Mean squared displacement (A) associated

with the diffusive movement and mean displacement (B) associated with the advective

movement are calculated as the mean squared fixation magnitude and mean fixation

magnitude, respectively. The displacement is calculated for three formulas of fixation

probability; 1 − e−2s for positive selection coefficients, 0 otherwise (selection), 1/N

(drift), and 1− e−2s/1− e−2Ns (selection + drift). All calculations assume a maximum

mutation magnitude of 0.02, a phenotypic space of 10 dimensions, and a population size

of 500 individuals.
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Figure 4.6: Péclet number in symmetric logarithmic scale as a function of the distance

between the population and the optimum. The Péclet number is calculated for three

formulas of fixation probability; 1 − e−2s for positive selection coefficients, 0 otherwise

(selection), 1/N (drift), and 1 − e−2s/1 − e−2Ns (selection + drift). All calculations

assume a maximum mutation magnitude of 0.02, a phenotypic space of 10 dimensions,

and a population size of 500. The diffusion, positive advection, and negative advection

regimes are separated by horizontal lines at the critical values 1 and -1.
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Figure 4.7: Effect of the dimensionality and the maximum mutation magnitude on the

relative contribution of selection and drift in FGM trajectories with a population size of

500. (A) Heatmap showing the base 10 logarithmic distance from the optimum where

the contribution of both forces is the same. Values closer to the optimum correspond

to phenotypic spaces dominated by selection, and by drift otherwise. (B) Heatmap

showing the base 10 logarithmic time that a population starting at a distance 1.5 from

the optimum spends on average under a selection-driven regime. The black squares

show the conditions under which the population does not change regime after 10 million

mutational events.

4.3.3 Effect of dimensionality on the evolutionary rate

Three successive stages of dimensionality-evolutionary rate relation were found when

simulating 950 populations in the FGM (Fig. 4.8). The evolutionary rate could not

be calculated instantaneously but was approximated by taking the last 2,000 mutation

events and counting the successful fixations during that period. A linear regression was

performed for each time point to evaluate the association between dimensionality and

evolutionary rate. As a result, we found that this relation changes dramatically at different
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points in time from a significant negative relation to no relation at all, passing through a

significant positive relation. The magnitudes of the evolutionary rates also change, being

much greater at the start of the evolutionary process than at the subsequent stages.

Using the Fokker-Planck equation of the system, we calculated the differences in

evolutionary rate between populations with phenotypic spaces of different dimensionality,

summarized as the slope (β) of the linear regression between both variables, as a function

of time. Every population parameter is the same except for the number of dimensions

(Fig. 4.9). The same three stages were found, delimited by the change of sign of the

slopes, with the first stage characterized by being brief, lasting less than 13,000 mu-

tational events (Fig. 4.9) and by starting at strongly negative slopes (-0.00036). This

stage is followed by a stage of positive slopes, which lasts 136,000 mutational events,

approximately, and which reaches a maximum at around 30,000 mutational events. Af-

ter this, the dimensionality-evolutionary rate relation decreases decelerating, in this final

stage the slope value reaches a stable point at a value of −2.23× 10−6.

To have a detailed description of the changing relationship between dimensionality

and evolutionary rate we inspected the change in the position of the populations relative

to the optimal phenotype during an evolutionary walk (Fig. 4.10). The instantaneous

evolutionary rate landscape in panel A shows the dependence of the evolutionary rate on

the dimensionality as well as on the distance to the optimum, where the evolutionary rate

increases sharply with this distance for lower dimensionalities. The iso-temporal cohorts

of the 19 evolutionary walks, that started at a distance of 1.5 from the optimum, are

not parallel but deflect towards the optimum for populations evolving in low dimensional

phenotypic spaces. After 200,000 mutational events these differences in position are

reduced, stabilizing with values ever-increasing with dimensionality, but nonetheless, very

close to each other. Each cross-section represented by the isotemporal cohorts can be

interpreted as an instantaneous picture of the velocity of the populations. Given that
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in the figure time progresses from right to left, note that after the 10,000 mutational

events, the initial trend of negative relation between dimensionality and evolutionary rate

is reversed, from a difference given by an evolutionary rate of 0.0115 for the dimensionality

of 2 and 0.0053 for the dimensionality of 20 at 1,000 mutational events to the difference

given by an evolutionary rate of 0.00258 and an evolutionary rate of 0.00399, for the

same populations, respectively. This difference is again reduced after 200,000 mutational

events, where the evolutionary rate of the populations evolving in phenotypic spaces with

dimensionalities 2 and 20 are 0.00193 and 0.00189, respectively. Meanwhile, panel B

shows that the Péclet number has a stable value for a given evolutionary trajectory at

the beginning of the process and drops significantly at later stages. Interestingly, the

Péclet number is greater for populations evolving in high-dimensional phenotypic spaces.

At large distances from the optimum Figure 4.11 shows a negative relation between

the Péclet number and evolutionary rate for a given point in phenotypic space, a trend

that changes non-linearly as the distance to the optimum is reduced. For a given dimen-

sionality, Figure 4.11 shows with no exception that the evolutionary rate spikes after a

given Péclet number is reached, a value that is dimensionality-dependent.
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Figure 4.8: Evolutionary rate as a function of dimensionality on the FGM. 50 simulations

for each dimensionality from 2 to 20 dimensions were carried out for 200,000 mutational

events. The evolutionary rate is calculated as the proportion of mutations fixed during

an evolutionary time interval of 2,000 mutational events. The result of each simulation

is shown as transparent purple markers. From right to left the resulting evolutionary

rates are shown for three time windows starting at 0, 28,000, and 198,000 mutational

events. A linear regression is shown as a light purple line with the legend showing the

slope. Vertical bars show the standard deviation from the mean evolutionary rate for

each dimensionality.
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Figure 4.9: Relation between dimensionality and evolutionary rate as a function of evo-

lutionary time. (A) Fitness of two populations simulated in the FGM as a function of

evolutionary time. Both populations started at 1.5 from the optimum, with a maximum

mutation magnitude of 0.02 and a population size of 500. Maximum fitness (1.0) is

shown as a dashed line. (B) Evolutionary rate as a function of evolutionary time for the

same populations of the top panel. The neutral fixation probability (1/N) is shown as a

dashed line. (C) Slope of the linear regression (β) fitted to the data of evolutionary rate

against dimensionality as a function of evolutionary time. The purple markers show the

values of the slope at times spaced logarithmically. The standard deviation error for the

slope derived from the regression is shown as a light purple shadow. The places where

the slope is null are shown as vertical lines.
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Figure 4.10: Relation between dimensionality, evolutionary rate and the Péclet number as

a function of evolutionary time. (A) The heatmap shows the instantaneous evolutionary

rate as a function of the dimensionality of the phenotypic space and the distance from the

optimum. The white markers show the mean position of a population with a maximum

mutation magnitude of 0.02, a population size of 500, and a starting position of 1.5 from

the optimum at different moments in the evolutionary trajectory measured as the number

of mutational events calculated with the Fokker-Planck equation. The same points in

time for populations with different phenotypic space dimensionality are shown as white

curves. (B) The heatmap shows the Péclet number as a function of dimensionality and

the distance from the optimum. The black markers and curves are equivalent to the

white markers and curves of A.
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Figure 4.11: Relation between the Péclet number and the evolutionary rate. Each point

corresponds to a single simulation static in a given place in the phenotypic space, with

its dimensionality explicit in the color bar. There are six labeled groups of simulations,

grouped by their distance to the optimum, where d corresponds to the optimum distance.

Common population parameters correspond to a population of 500 individuals, and a

maximum mutation magnitude of 0.02.

4.4 Discussion

The Fokker-Planck equation provides a method to describe deterministically the time

evolution of the probability density function of the population’s distance to the phenotypic

optimum, avoiding the intricacies of handling the stochastic nature of the mutational

processes (Arendt and Urban, 2020). Evolution under the geometric model of Fisher

entails that no mutational event occurs when more than one allelic form is present in

the population, this absence of overlap between mutation-fixation rounds ensures the

Markovian nature of the system (Sella, 2009; McCandlish and Stoltzfus, 2014), where a
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given state only depends on the previous one, a condition indispensable for a diffusion

description. Even though the FGM system is continuous in (phenotypic) space, the

same generation of bounded non-overlapping cycles of mutation-fixation provides that the

system is discrete in time. This property may represent an unrealistic assumption when

looking at real data, given the sheer number of bases in a single genome, nonetheless when

considering only the phenotypic changes caused by mutations on one coding sequence,

which can be around 1 kb, the assumption turns out to be more realistic. The discrete

process is then approximated as a continuous stochastic process when doing the diffusion

analysis, as the discrete character of the model is compensated by the large number of

mutational events studied in these simulations.

Equation 4.3 has a general form that can describe a great family of systems, where

the only component that is specific to the FGM is the mutation function m(x, x + ζ).

The mutation function incorporates the geometrical considerations of the FGM, where

its specific form is derived thanks to the assumption that any point in phenotypic space

within the reach of a single mutation is equally likely to occur. This is not the case

for most implementations of the FGM (Orr, 1998; Razeto-Barry et al., 2011; Ram and

Hadany, 2015), as this assumption implies that the produced mutation magnitudes are

not uniformly distributed, so when comparing between simulations with the same max-

imum mutation magnitude, but different dimensionality, the mean mutation magnitude

increases with the number of dimensions. Nonetheless, this assumption simplifies the

calculation of the mutation functions, as the fraction of possible mutant phenotypes is

calculated with simple high dimensional geometric formulas (Li, 2011). To avoid mislead-

ing conclusions from simulations with this method of mutation generation, we repeated

every simulation using the method specified by Ram and Hadany (2015). As a result, we

were able to recover the three stages shown in Figure 4.9.C (data not shown), additionally

it was noted that our assumption reduces the differences in evolutionary rates between
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populations evolving in phenotypic spaces of different dimensionality, as a consequence,

the dimensionality-evolutionary rate relation has the same sequence of sign change, but

the magnitudes are much greater than the ones found with the method used originally in

this work. Consequently, it is concluded that our results are robust to this assumption.

Figure 4.3 shows that phenomenologically, the diffusion approach and the FGM sim-

ulations have the same behavior. This is further supported by the Kolmogorov-Smirnov

test (Fig. 4.4), which would have helped us discard this approach if the p-values stayed

at values smaller than 0.05. The low performance at the beginning of the adaptive walk

lasts around 300 to 400 mutational events, which corresponds to 3 to 4 fixation events.

This discrepancy could be related to the method used in Markov Chain Monte Carlo

(MCMC) runs known as the burn-in period, which corresponds to the discarding of the

first n iterations of a Markov process (Johansen, 2010). This is done to find a starting

point of high probability as, at the start of a run the system could be in a low probability

state, thus not reflecting its most common behavior (which is a problem in short runs).

This is the case of the FGM simulations, which start with an uncommon Dirac function-

like distribution, and take several mutational events to reach the expected Gaussian-like

distribution. We also were able to observe discrepancies in the state of equilibrium which

starts after around 30,000 mutation events, nonetheless, the dimensionality was not a

major cause of the solution’s performance (Fig. 4.4.B). The discrepancy can be due to

the method used to approximate the Fokker-Planck equation solution, the finite differ-

ence method, which requires a fine-tuning of the spatial discretization to have a good

performance. This method was preferred over the search for an analytical solution to

the Fokker-Planck equation because of the complexity of the resulting expression. The

equation found corresponds to an advection-diffusion equation with variable coefficients,

which means that not only the state variable (the probability density function of the

phenotype position) vary spatially, but also the mean square displacement and the mean
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displacement terms, corresponding in the transport phenomena literature to variable dif-

fusion coefficient and flux velocity.

The isolation of evolutionary forces to investigate the specific effects of natural se-

lection and genetic drift was achieved by changing the fixation function in our model,

a function responsible for the only part of the process where these forces participate,

as the mutation process is independent of selection and drift (Razeto-Barry and Vecchi,

2017). The classical fixation function derived by Kimura (1962) -by the use of diffusion

analysis- depends only on two variables, population size, and the selection coefficient,

as the third variable, initial allele frequency, is always the frequency of one individual in

the whole population (1/N). The selection-exclusive fixation probability can be obtained

at the limit of the population size going to infinity, a condition under which no genetic

drift occurs, the expression obtained is the traditional fixation function used in most of

the FGM simulations where drift is dismissed (Orr, 2000). This unrealistic situation is

rapidly reached with slight increases in population size and is a good approximation.

The same procedure was performed to isolate the effects of genetic drift, where the

selection coefficient for every mutation was supposed to be zero, turning the original

function into the classical function of neutral evolution posed by Wright. Realistic condi-

tions where this could happen in natural populations can occur, like with very flat fitness

landscapes, or what happens with most synonymous mutations, where the structural

change of the genetic molecules has no appreciable effect on the protein structures.

Equation 4.3 can be divided into two components, the advective and diffusive terms.

The first one is the sum of every mutation effect on optimum distance, multiplied by its

probability of mutation and fixation, which is equivalent to the mean change in optimum

distance experienced by a population at a certain point in phenotypic space. As this cor-

responds to a sum, every two opposing movements with the same probability of occurring

would nullify, effectively eliminating every symmetric displacement of the population with
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respect to the optimum, preserving only asymmetric movement. On the other side, the

diffusive component is the same as the first one, but all displacements are squared, so

opposing movements now would add up instead of canceling. This calculation is equiv-

alent to the calculation of the mean squared displacement (MSD), which is usually used

in the study of diffusion phenomena as a measure of random movement. The property

of incorporating asymmetric as well as symmetric movement means the MSD could be

non-zero even in the absence of diffusive processes.

In Figure 4.5 the selection-exclusive populations show positive mean displacement

and MSD for most of the phenotypic space. A non-negative mean displacement means

that populations evolving only under natural selection always move primarily toward the

optimum. This makes sense as we know that the fixation probability of any mutation

that decreases the fitness of the population is zero, so every possible displacement is

towards the optimum. This also implies that the registered non-zero MSD is exclusively a

consequence of this asymmetric and directed movement, as we can discard any symmetric

movement from the very definition of the selective processes. Consequently, we can

attribute nothing of the diffusive component to the selective force. As the population is

closer to the optimum the average displacement decreases linearly, this is a consequence

of the nature of the selection coefficient calculation, which depends on the ratio between

phenotypes’ fitness, added to the fact that the mutation magnitude is not a function

of the distance to the optimum. This means that, as the population is closer to the

optimum, the difference in fitness between the wild-type and the mutant is roughly

constant, but the total value of the wild-type and mutant fitness increases, decreasing

the value of the ratio. Accompanying this effect of distance, we know that the fraction

of beneficial mutations also decreases, from the limit of 50% very far from the optimum,

to 0% at the optimum as every possible mutation that changes the phenotype of the

population has a deleterious effect.
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On the other side, when analyzing the behavior of the drift-exclusive populations

(Fig. 4.5) we also find non-zero (and nearly constant at a value approaching 3.334 ×

10−8) MSD for most of the phenotypic space. We can discard that this MSD is due

to asymmetric movement because, throughout this section of the phenotypic space, the

mean displacement of these populations is about −2× 10−7 (away from the optimum),

which corresponds to an MSD of 4 × 10−14, where the registered MSD is six orders

of magnitude greater than this. As the population approaches the optimum, a strong

movement away from the optimum is shown. As the fixation probability of every mutation

under drift-exclusive conditions is the same, the only explanation for the asymmetric

movement to occur is in the mutation processes, which presents a bias away from the

optimum which increases as the distance to the optimum decreases, for the reasons

exposed in the previous paragraph. In summary, accounting for the behavior of both types

of populations studied, we can affirm confidently that any positive mean displacement

can be attributed exclusively to the action of natural selection, meanwhile, every diffusive

movement, as well as a mean negative displacement can be attributed exclusively to the

action of genetic drift.

The population which experiences the action of both forces simultaneously has an in-

teresting behavior as changes its dynamics as a function of optimum distance, resembling

both previously discussed populations. We can see that in the transition between one

behavior to the other, the population crosses a position where the mean displacement is

zero, which in the case of Figure 4.5 occurs at a distance from the optimum of around

0.095. Interestingly, if the position of the population changes from this point away from

the optimum, the mean displacement turns towards the optimum, and the exact opposite

occurs if the population moves from this zero point towards the optimum, moving away

from it on average. This means that we are looking at an attractor to where the popula-

tion is drawn, and which corresponds to the equilibrium distance, and consequently, the
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equilibrium fitness, known to not be equal to 1 due to the genetic load (Poon and Otto,

2000).

At transport phenomena research, we find the utility of dimensionless analysis to

correctly approximate difficult state equations that describe the complex dynamics of the

target systems. Avoiding the actual physical units of the variables at play by scaling them,

allows easier comparison between the terms of an equation and the subsequent neglect

of the smaller ones, in favor of having a simpler equation to solve (Rapp, 2017). In

the study of diffusion and matter transport, the traditional diffusion-advection equation,

equivalent to our Fokker-Planck equation, is converted into a dimensionless equation by

scaling the variables with a characteristic length, which in this case is taken to be the

maximum mutation magnitude. In the dimensional analysis of this equation, the Péclet

number (Pe) arises as the dimensionless number that weights the contribution of each

term, indicating which one can be neglected for the approximate solution to retain its

explanatory power of the system’s behavior. Great values of Pe mean that the diffusive

component can be neglected from the equation, and the solution can still be a good

description of the system’s dynamics, the opposite goes for Pe values close to zero.

Analogously, using this property of Pe, we use it as an indicator of the contribution of

each force to the system’s behavior, where great positive values of Pe mean that we can

neglect the contribution of drift, and the system closely resembles a selection-exclusive

population. Meanwhile, values of Pe close to 0 or great negative values suggest that we

can neglect the selective processes, in favor of explaining the populations’ dynamic under

drift-exclusive conditions. We found that the Pe changes as a function of the distance to

the optimum, where greater distances favor values greater than 1, and smaller distances

favor Pe values less than 1. As expected, the distance at which the critical value of Pe = 1

is achieved moves as a function of different evolutionary variables, for example, as the

population size decreases, this threshold moves further away from the optimum, meaning
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a more prevalent contribution of genetic drift to the evolutionary process throughout the

phenotypic space (data not shown).

We explored the change in the relative contribution of both evolutionary forces related

to the Péclet number as a function of two evolutionary variables of particular relevance,

dimensionality, and maximum mutation magnitude. This was done with respect to two

complementary approaches, a spatial and a temporal approach in the context of an adap-

tive walk (Orr, 1998). Figure 4.7.A answers the question of how much of the phenotypic

space is dominated by drift and how much is dominated by selection, while Figure 4.7.B

answers the question of how much time a population in an evolutionary trajectory spends

in a selection-dominated zone of the phenotypic space, and how much time in a drift-

dominated zone. In general, both patterns seem to be opposite, while most of the

phenotypic space is drift-dominated in trajectories with high dimensionality and low mu-

tation magnitude, populations evolving under those conditions take the longest to enter

the drift-dominated zone (except for high dimensionality and high mutation magnitude).

The exact opposite can be said of spaces with low dimensionality and intermediate mu-

tation magnitude, where most of the phenotypic space is selection-dominated, and the

populations rapidly enter the drift-dominated zone. The reason behind these results is

related to the famous analysis of Kimura over the magnitude of the mutations fixed in

evolution. He corrected the argument of Fisher in favor of micromutationism by indicating

that the magnitude of a mutation not only changes its probability of being favorable, as

we have seen already but also decreases the absolute value of its selection coefficient (Orr,

1998). Therefore, for a favorable mutation, a smaller mutation magnitude also implies

a smaller selection coefficient, and so, a smaller probability of fixation. So there exists a

range of intermediate mutation magnitudes where both effects are balanced, where the

probability of fixation is maximal, and consequently, the evolutionary rate is maximal.

This same reasoning applies to the relative contribution of selection and drift, where the
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main variable that changes due to the change in mutation magnitude is the selection

coefficient (it does not affect population size), which is central to the balance between

selection and drift. So, the regions dominated by selection are also the regions with the

fastest evolving populations, providing that these populations transition faster from the

starting selection-dominated zone into the drift-dominated equilibrium zone.

From this analysis, one can say that natural selection accelerates the accumulation

of mutations over the basal rate provided by neutral processes. Where is the effect of

purifying natural selection which is supposed to have a conservative effect causing the

slow-down of the evolutionary rate? Natural selection is going to have a negative net

effect on the evolutionary rate when most of the mutations are deleterious, which happens

close to the optimum, but as we discussed already, close to the optimum the mutant

and wild-type fitness are very high, causing a drastic decrease in the magnitude of the

selection coefficients, decreasing not only the number of beneficial fixations favored by

directional natural selection but also decreasing the deleterious fixations disfavored by

purifying natural selection. Consequently, in the equilibrium, close to the optimum, the

rate of evolution very closely resembles the neutral rate of evolution, as can be noted

in Figure 4.9.B, where the probability of fixation in equilibrium is approximately 0.002,

the reciprocal of their population size (500 individuals). Then, it is to be expected that

smaller mutations have lower selection coefficients, so the evolutionary rate decreases,

but mutations too large are very rarely beneficial, so the fixation rate is also small, as is

shown by the black squares in Figure 4.7, where the populations take at least 10 million

mutational events to cross the Péclet threshold.

Here we tried to contribute to the general discussion in evolutionary biology about

the opposition between natural selection and genetic drift, nonetheless, the restrictions

of the model do not allow us to explore the effects of neutral networks (Manrubia and

Cuesta, 2015), constructive neutral evolution (Brunet and Doolittle, 2018) and neutral
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exploration of rugged and multimodal fitness landscapes. In the same vein, the prohi-

bition of polymorphisms in the model causes us to be unable to investigate the effects

of the standing genetic variation and the facilitation of mutation combinations in the

genesis of biological traits through natural selection (Beatty, 2016) against the effects

of macromutations (Orr and Coyne, 1992), which poses the question about the creative

nature of selection in the evolutionary process (Razeto-Barry and Frick, 2011).

As shown in Figure 4.8, the evident negative effect of dimensionality over the pace

of substitution accumulation is not sustained during an evolutionary bout of 200,000

mutations. When looking at three particular points in the evolutionary history of 950

simulated populations, three radically different associations between dimensionality and

evolutionary rate are revealed, where only the first one shows the usually expected nega-

tive effect of dimensionality see Section 4.1). From the start of the evolutionary walk, we

can see that, even for remarkably favorable conditions to fixate mutations, only around

1% of them are fixed in the most rapidly evolving populations, and this rate only de-

creases as time progresses. This low evolutionary rate makes it difficult to have good

statistics about the behavior of these simulated populations, as a low number of fixations

may undermine an accurate representation of their evolutionary rate. For this reason,

we chose a big window of time to record the fixation events, with the disadvantage

of losing temporal resolution of the relationship between dimensionality and evolution-

ary rate. This approach resembles the real constraint of estimating the evolutionary

rate of real coding sequences, where the instantaneous evolutionary rate is not known,

but must be estimated through the changes recorded during a given interval of time,

which, in most cases, implies having a mean evolutionary rate between different stages

of dimensionality-evolutionary rate relation.

We used the Fokker-Planck equation to visualize the changing relation between di-

mensionality and evolutionary rate in a greater temporal resolution using the mean fixation
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probability over all mutations possible for a given population’s phenotype as an equivalent

measure of instantaneous evolutionary rate. For a period of 250,000 mutational events,

we used the slope of the linear regressions (β) between dimensionality and instantaneous

evolutionary rate as an index of the dimensionality effect, even though we have no reason

to expect a linear relation over any other kind of relationship defined by a more complex

function (see Razeto-Barry and Maldonado (2011)). As shown by Figure 4.9, we have a

continuous change of β related to the velocities by which the example evolving popula-

tions reach their corresponding equilibrium states. Here we can see the sustained increase

in fitness of both populations due to the fixation of primarily beneficial mutations, which

reduces the distance between population and optimal phenotype. Even though both pop-

ulations start at the same distance from the optimum, shown by the same initial fitness,

populations evolving in low-dimensional phenotypic spaces have a much greater initial

evolutionary rate than the other populations, a difference responsible for the initial slope

of -0.00036. This trend immediately starts to decrease until reaching a maximum after

changing sign, which can be associated with the arrival of the populations evolving in

low dimensional spaces to their respective equilibriums, as the exemplary simulation with

two dimensions in igure 4.9. After that happens, the stability of the simulations with low

dimensional spaces causes the sustained decrease in the difference between populations,

as every population is on average decreasing its distances to the optimum and decreasing

its evolutionary rate. This latter point is again a consequence of the decrease in the

proportion of beneficial mutations among all possible mutations and a consequence of

the decrease in selection coefficient magnitudes due to the increase in fitness, making the

effect of selective processes less prevalent, in favor of a major contribution of the neutral

fixation of mutations. Interestingly, we do not have a null relationship at the third stage,

but a significant, though considerably small negative association between pleiotropy and

evolutionary rate. Even though the magnitude of this relation is not comparable to the
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magnitudes of the minimum and maximum of the first and second stages, respectively,

it is consistent in time. This could be due to the imbalance of two properties of the

FGM as dimensionality modifies the proportion of beneficial and deleterious mutations,

increasing the genetic load for higher dimensions, decreasing the equilibrium fitness, and

at the same time decreasing the instantaneous evolutionary rate. Both properties have

opposite effects, so the results suggest that the latter property has a stronger contri-

bution, generating a mild negative effect of dimensionality over the evolutionary rate at

equilibrium.

To have a clearer view of the mechanics behind this phenomenon, we calculated

the mean phenotypic position as a function of time for each evolutionary walk with dif-

ferent dimensionalities using the Fokker-Planck equation and contrasted them against

the theoretical instantaneous evolutionary rate and the Péclet number. In Figure 4.10,

every population starts at a distance of 1.5 from the optimum, and after 1,000 muta-

tional events, we recorded their average position relative to the optimum. We can see

that even after only 1000 mutational events, which only corresponds to around 7 to 12

substitutions, the simulations in phenotypic spaces with low dimensionality are already

ahead of the other simulations. This difference only increases with time as shown by the

subsequent snapshots of their trajectories from 5,000 to 30,000 mutational events. As

this happens, their instantaneous evolutionary rate drops crossing to the second stage

described previously. Interestingly, during the evolutionary bout, these results show that

there is a point around the 10,000 mutational events where an intermediate number of

dimensions, between 4 and 12, are the fastest evolving populations, fact that was ob-

scured in previous analysis looking only at the linear regressions, and making evident that

we are not to expect a linear relationship. It is evident from Figure 4.10, particularly in

low dimensional trajectories, that there is a point where the mean stops moving, this

happens after around 50,000 mutational events for populations with 2 and 3 dimensions
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but takes much longer for higher dimensional spaces.

Concerning the Péclet number, Figure 4.10.B shows that a higher Pe does not imply

a higher evolutionary rate, which could be the expected result since the evolutionary rate

decreases along an evolutionary trajectory because the contribution of natural selection

decreases. From Figure 4.11 we can see that far from the optimum, a bigger Pe is

associated with a lower evolutionary rate when the dimensionality varies. As the dimen-

sionality does not affect the genetic drift’s effect on the probability of fixation, the only

possible explanation is the role of natural selection in the decrease in evolutionary rate.

This suggests that at the start of an evolutionary trajectory, the negative or purifying

natural selection is going to play a key role in the reduction of the evolutionary rate

exhibited by populations evolving in high dimensional phenotypic spaces. As we have

seen, Fisher’s geometric model predicts a dynamic relationship between dimensionality

and evolutionary rate dependent on the number of mutations fixed and the distance

between the population’s phenotype and the optimum phenotype. This dependency is

captured by the concept of time when the different evolutionary trajectories start at the

same distance to the optimum. Far from the optimum the Péclet number indicates a

negligible contribution of genetic drift, as a consequence, after a sudden change in the

optimum’s position or the population’s phenotype, the evolutionary trajectory of the pop-

ulation starts at a zone in phenotypic space dominated by natural selection. However, as

shown in Figure 4.11, this contribution of natural selection constrains the rapid fixation

of mutations in high dimensional phenotypic spaces and facilitates that populations in

low dimensional spaces spend less time in selection-dominated regimes, entering sooner

to the drift-dominated zone, which has an evolutionary rate close to the neutral expec-

tation. As a result, a changing pattern of the dimensionality-evolutionary rate relation

emerges, which was divided into three major stages in this research, a strongly negative

relationship, a long and positive relationship, and an almost null relationship.
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5 Empirical insights on the pleiotropy-evolutionary rate

relation

5.1 Introduction

Evolutionary biology has a rich collection of mathematical and computational tools used

from population genetics to phylogenetic inference. Within these tools, we find a great

body of research concerning the modeling of evolutionary processes spanning a wide

variety of phenomena, a method of investigation that has been increasing since the

90s (Morozov, 2013). Ronald Fisher, whose work was seminal for the development

of population genetics, devised a simple model that bridged genetic and phenotypic

changes (Fisher, 1930) which has been used more and more often in the evolutionary

literature (Tenaillon, 2014). Fisher’s geometric model (FGM) has four major components:

(i) it conceptualizes the phenotype as a collection of independent trait values, where the

set of all possible phenotypes forms a phenotypic space, with a dimensionality equal to

the number of traits, (ii) changes in the position of a population in this space are caused

by mutations fixed in the population, therefore, such mutations correspond to vectors of

displacement with direction (what trait(s) does the mutation affect) and magnitude (how

much does the trait(s) change), the generation of such vectors must follow some rules

related to the random nature of the mutation process, for example, the direction must be

a random variable uniformly distributed, (iii) it assigns every point in phenotypic space a

fitness value (a positive real number) calculated with two objects, a reference point which

has the maximum fitness value and is considered the optimum phenotype, and a fitness
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decay function, which typically has as input the euclidean distance between the population

and reference points and, finally, (iv) it controls the movement of the population in space

by the acceptance or rejection of displacement vectors by the calculation of a fixation

probability which typically depends on the population size, a positive integer assigned

to the population, and on the selection coefficient of the displacement vector, which

depends of the fitness value of the points before and after the displacement. The strong

simplifications assumed by the FGM (Martin and Lenormand, 2006b) coupled with its

easily interpretable and robust predictions have led to multiple test attempts in real-world

biological systems (Burch and Chao, 1999; Martin and Lenormand, 2006a; Velenich and

Gore, 2013; Weinreich and Knies, 2013; Perfeito et al., 2014; Blanquart and Bataillon,

2016; Moutinho et al., 2022).

One of its major predictions concerns what Allen H. Orr coined as the cost of com-

plexity (Orr, 2000). He noticed that, as the number of dimensions in phenotypic space

increases, the fraction of randomly generated vectors of a given size that could reduce the

distance between the population and reference points decreases. This means that, as we

encounter organisms with an increasing number of traits, such as the difference between

a single-cell bacteria and a multicellular chordate, it should be less likely to encounter

a mutant individual with greater fitness than the wild-type population. An alternative

interpretation can be made by equating the dimensionality with the number of indepen-

dent traits that a mutation can potentially change, which is determined by the location

of the mutation, i.e. the particular genetic structure where it occurs. If the structure

corresponds to a protein-coding sequence, then the number of independent traits po-

tentially affected by a given mutation on that sequence is defined by its pleiotropy (Gu,

2007; Razeto-Barry et al., 2011). On the other hand, the probability of a new mutation

of a given size affecting the phenotype of being favorable impacts directly on the evolu-

tionary rate of molecular change, as this rate is defined as the proportion of mutations
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that get fixed, fewer mutations being favorable means that the probability of fixation

decreases (Orr, 1998). Therefore, another interpretation of the cost of complexity is

that more pleiotropic sequences are going to evolve (accumulate mutations) at a lower

rate than less pleiotropic sequences. This interpretation is interesting because it has a

direct relation to one of the founding principles of molecular evolution, “functionally less

important molecules or parts of a molecule evolve (in terms of mutant substitutions)

faster than more important ones“ (Kimura and Ohta, 1974). As such, there have been

multiple attempts to see if the prediction holds in real biological systems (He and Zhang,

2006; Ericson et al., 2006; Salathé et al., 2006; Podder et al., 2009; Pritykin et al., 2015;

Chesmore et al., 2016; Chakraborty et al., 2016; Fräısse et al., 2019; Rennison and Pe-

ichel, 2022; Williams et al., 2022). Although, most of them tend to show evidence that

the cost of complexity is effective for pleiotropy measurements, usually the conclusions

need to be nuanced in different directions, for example, Fräısse et al. found that although

the negative effects of pleiotropy could be circumvented by changes in gene expression,

intermediate values of pleiotropy tended to have a much negative impact on the response

to directional natural selection, meanwhile Rennison and Peichel found that regions of

evolutionary interest concerning recent adaptation where enriched in genes with interme-

diate pleiotropy. This complex setting has been deepened further by the realization that

under high environmental variability, the number of dimensions in Fisher’s phenotypic

space increases the rate of substitution (Razeto-Barry et al., 2011; Razeto-Barry and

Maldonado, 2011), finding that has also received empirical support (Chakraborty and

Ghosh, 2013).

The availability of genomic data has instantiated a new era in population genetics and

evolutionary biology in general (Casillas and Barbadilla, 2017), as now we can test the

vast theoretical literature on model and non-model organisms, with varying degrees of

diversity, within-population genetic data and eco-evolutionary history information. One
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such non-model group with a rich evolutionary history is penguins, grouped under a

monophyletic clade known as Spheniscidae, comprehending almost 20 extant species.

The last common ancestor of the crown group is estimated to have lived during the

early Miocene 21.9 Mya in a sub-Antarctic environment (Vianna et al., 2020), radiating

afterward to Antarctic and temperate zones of the Southern Hemisphere, with even a

species crossing into equatorial waters, the Galapagos penguin. This biogeographic range

makes the evolutionary history of penguins marked by the cycles of glaciation, as well as

the particularities of the Antarctic and sub-Antarctic currents and fronts (Vianna et al.,

2020). Added to the fact that penguins are the only extant birds that have lost completely

their ability to fly and have made diving in oceanic waters a constitutive part of their way

of life, makes them an interesting group for evolutionary studies (Frugone et al., 2019;

Pertierra et al., 2020; Cole et al., 2020; Pirri et al., 2022).

Here we test the hypothesis of the cost of complexity under the evidence that the

pleiotropic effect changes as a function of evolutionary time (see Chapter 4) using ge-

nomic data of 15 penguin species and, given the establishment of a relation between their

evolution and the FGM, deduce relevant features about their history of diversification and

change.

5.2 Materials and methods

5.2.1 Genomic data

Extracted coding sequences (CDS) from the genomes of 15 penguin lineages performed

by Vianna et al. (2020), were used for this study. A predicted protein name for the

putative product was assigned for each of the 6,975 CDS employing nBLAST from NCBI.

Best matches were stored as plausible coded protein names.
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5.2.2 Pleiotropy

The pleiotropy was approximated for every CDS of the emperor penguin by the search of

Gene Ontology (GO) terms from the biological processes’ ontology. The putative amino

acid sequences of each CDS were obtained by translating the nucleotide sequences using

Biopython’s Seq module (Cock et al., 2009). To avoid missing GO terms associated

with the target CDS because of the terms not being attributed directly to the emperor

penguin’s proteins, under the assumption of conservation of function, an orthologous

search was performed to look for the GO terms associated with a whole orthologous

group. This was performed using the Orthologous Matrix (OMA) database (Kaleb et al.,

2019), which maps the protein sequence to hierarchical orthologous groups (HOG) in

the database. Once the HOG membership was defined, the set of GO terms from the

biological process ontology associated with each ortholog of the target sequence was

retrieved. To avoid biological processes that do not correspond to processes that occur

in the penguin system, we downloaded the annotations for all Spheniscidae (143,622

annotations) from QuickGO (Binns et al., 2009) to use as a filter pool for the terms

associated with every CDS, only the terms present in the filter pool are considered valid

terms. The hierarchical structure of the GO ontologies allows the ancestor terms to be

defined corresponding to broader biological processes and descendant terms which define

increasingly specific processes as the distance to the root of the ontology increases. All

level 2 (terms whose link to the root is mediated by a single other term) ancestors

or descendants for every associated term were determined using the Python module

GOATOOLS (Klopfenstein et al., 2018). To determine the total number of processes of

level 2 associated with each CDS an adjacency matrix was constructed for every term

assigned to a CDS, where a pair of terms have an adjacency value of 1 if they share at

least one level 2 ancestor or descendant in common and a 0 if they do not. With the
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adjacency matrix, a procedure of Markov clustering (Van Dongen, 2008) was performed

with inflation and expansion values of 2 for each CDS, yielding the final number of clusters

taken as the approximation of pleiotropy. As a result of this procedure, we obtained a

reduction to 15.7% of the original number of associated terms for each CDS on average.

5.2.3 Evolutionary rate and selection signature

The molecular evolutionary rate was approximated using PAML (Yang, 2007), which has

different programs to calculate the substitution rates using maximum likelihood models.

For the gene age analysis (see Subsection 5.2.4), we used the CODEML program which

implements codon substitution models to obtain the average values of dN and dS (num-

ber of non-synonymous substitutions over the number of non-synonymous sites and the

number of synonymous substitutions over the number of synonymous sites, respectively)

over the whole sequence and all the branches of the provided penguin phylogeny. For the

pairwise comparison between penguin lineages, we used the YN00 program which calcu-

lates the dN and dS between each pair of sequences. Every evolutionary rate index was

transformed by a Box-Cox procedure. For a conventional search of genes under positive

natural selection, the CODEML results were used. As a conservative test, we calculated

the likelihood difference between two models, M1a and M2a, where the second model

assumes that there exist some sites that have a dN/dS ratio greater than 1 (positive

natural selection). Every CDS where we rejected the model without positive natural

selection, by a criterion based on the critical χ2 value (Jeffares et al., 2015), was selected

for the Gene Ontology Enrichment Analysis (GOEA) performed with GOATOOLS.

5.2.4 Gene age

To assign a putative age to each CDS a phylostratigraphic analysis was performed (Domazet-

Loso et al., 2007) using the “phylostratr” R package (Arendsee et al., 2019). To visualize
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the general pattern of change while accounting for the uneven sample size of each phy-

lostratum, random groups of consecutive strata of size from 1 to 5 were determined and

merged, and the resulting slope of the linear regression was positioned at the gene age

of the older phylostratum.

5.2.5 Environmental data

Mean ocean conditions for each of the penguin species were inferred from their global

distributions. Ocean geospatial gridded information was taken from BIO Oracle repository

(version 2.2) with “SDMpredictors” and “Leaflet” R software packages. The following

Present Time Ocean Surface layers were downloaded: mean temperature, mean current

velocity, mean ice cover, mean ice thickness, mean phosphate, mean nitrate, max salinity,

mean silicate, mean iron, mean chlorophyll, and mean net primary productivity. Species

occurrences were downloaded from GBIF (Global Biodiversity Information Facility). A

set of 10,000 random spatial independent occurrences per species at a resolution of

arcdegrees with 2 digits were bound to the geospatial information conditions with the R

package “spocc” and “raster”. Occurrences with missing values were omitted. Lastly,

the mean value among all occurrences per species for each of the ocean parameters was

then calculated. To visualize the differences in oceanic environmental variables between

species we performed a principal component analysis (PCA) of two dimensions.

5.2.6 Significant biological processes

For every pairwise comparison of lineages of the same genus based on the pairwise dN , a

separate linear regression for every set of genes that shared a common biological process

was performed. After a false discovery correction, biological processes with a linear

regression p-value less than 0.05 were retrieved irrespective of the sign of the slope.

For the environmental analysis, a linear regression was performed between the absolute
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difference in every given environmental variable and the slope of the linear regression

between pleiotropy and evolutionary rate for every term. The biological processes with

a p-value less than 0.05 were retrieved for a GOEA. The clustering and visualization of

GO terms were performed using the GO-Figure! (Reijnders and Waterhouse, 2021) using

a similarity threshold of 0.4.

5.3 Results

5.3.1 Temporal analysis

We detected the three stages of pleiotropy-evolutionary rate relation change along the

evolutionary history of the penguin lineage through phylostratigraphic analysis (Fig. 5.1).

The non-synonymous evolutionary rate of the CDS originated at most during the radia-

tion of Spheniscidae show a negative trend when plotted as a function of their pleiotropy,

though the p-value of the linear regression is 0.133. This result suggests that the CDS

originated between this point and the diversification of Aves around 167 Mya are tran-

sitioning between the first two stages. All data points between the transition time and

1000 Mya either do not show a significant relation between pleiotropy and evolutionary

rate or have a positive relationship. Specifically, the points showing a p-value smaller

than 0.05 and a positive slope are the phylostrata corresponding to the diversification of

Archelosauria, Gnathostomata, Vertebrata, and Deuterostomia. Figure 5.1 also suggests

that genes older than around 800 Mya already reached the third and last stage of equilib-

rium, where the two older phylostrata have p-values smaller than 0.05 with a regression

with a negative slope. No point, except the older phylostratum corresponding to the

last universal common ancestor, showed a significant correlation between synonymous

evolutionary rate and pleiotropy.

The analysis of the pleiotropy-evolutionary rate relation as a function of the time
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of divergence between pairs of penguin species is achieved by calculating the pairwise

evolutionary rate (Fig. 5.2). This analysis showed a negative relation between pleiotropy

and evolutionary rate for pairs that diverged less than 10 Mya (pairs of the same genus).

Meanwhile, at the four points in time corresponding to the divergence of Aptenodytes

from the rest, Pygoscelis from the rest, Eudyptes from the rest and, finally, Spheniscus

from Eudyptula, we found significant positive correlations between pleiotropy and pairwise

evolutionary rate. Between the pairs that show a significant negative correlation, we

found all pairs of banded penguins, except for the sister species Humboldt and Galapagos

penguins. We also found significance for the pair of great penguins and for four pairs of

crested penguins (erect-crested/fiordland, erect-crested/macaroni, erect-crested/eastern

rockhopper and macaroni/northern rockhopper).

By the use of PCA, we created two principal components that together explain more

than 77% of the variance for the oceanic conditions between penguin species. We can

see three major relationships between variables, the ice-related variables, the three oxides,

and the relation between net primary productivity and maximum salinity. By grouping

the penguin species by genus, we can see that there is almost no superposition between

genera, where the brush-tailed penguins are the ones most separated from the rest,

meanwhile, the little penguin finds itself inside the Spheniscus polygon.
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Figure 5.1: Pleiotropic effect on evolutionary rate as a function of gene age. Gene age

is estimated as the divergence time of the oldest clade of each group of phylostrata,

the time between the Eukaryota and Cellular Organisms phylostrata is skipped. The

slope of the linear regression between the pleiotropy and the evolutionary rate (β) is

calculated for synonymous (dS) and non-synonymous (dN) sites, corrected with a Box-

Cox transformation. The error bars correspond to the standard deviation for the slope

calculation of the linear regression. The results of the random group sorting are shown

as translucent curves with filler between the error bars. 100 instances of group sorting

are superimposed in the figure.
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Figure 5.2: Pleiotropic effect on evolutionary rate as a function of divergence time be-

tween species. The slope of the linear regression between the pleiotropy and the evo-

lutionary rate (β) is calculated for the non-synonymous sites corrected with a Box-Cox

transformation. The vertical error bars correspond to the standard deviation for the

slope calculation of the linear regression. The horizontal error bars correspond to the

HPD 95% for the divergence time estimations. Different colors for the p-value of the

linear regressions are used.
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Figure 5.3: Bidimensional principal component analysis for 11 mean oceanic variables for

the corresponding distributions of each of the 15 penguin species. The first and second

component explains the 63.3% and 13.8% of the variance, respectively. The members

of the same genus are shown with grey polygons.

5.3.2 Functional analysis

When comparing genes with signals of natural selection processes, we found that most

of the biological processes enriched in CDS with high dN/dS are also found when looking

for significant relationships between pleiotropy and evolutionary rate, this is the case for

8 groups of biological functions related to response to stimulus and gene expression, lipid

metabolism, and hemostasis. On the other hand, only two groups of biological processes

were found to be absent in the second analysis, which corresponds to the regulation of the

immune response and sensory perception-related terms. Most of the biological processes

shown were retrieved only from the pleiotropy-evolutionary rate analysis.
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Using the linear regressions between pleiotropy and evolutionary rate in disaggre-

gated data based on common biological processes, we determined the set of GO terms

that show signs of evolutionary relevance in the pairwise intragenus comparisons. In the

Spheniscus genus only five biological processes showed a greater sign of change, such

as learning-related terms and glycosylation-related terms. For Aptenodytes, we found

relevant changes in genes related to the development of the pancreas and chondrocytes,

as well as in processes of glycosylation and response to starvation. We found for the

Eudyptes genus an enrichment in relevant biological processes such as a variety of trans-

port processes, cellular motor behavior, and ossification. In the case of the brush-tailed

penguins, a big fraction of biological processes shows signs of greater change in the phe-

notypic optimum, where we find the processes related to heart contraction, catecholamine

metabolism, and organic substance transport related to pigmentation.

An analysis of the relation between pleiotropy and evolutionary rate by environmental

variable also suggests relevant biological processes. We found that for most of the

environmental variables, about 10 to 20 groups of biological processes were formed using

a similarity threshold of 0.4. Between the three points in penguin evolution analyzed, we

found a lot of variability, where the most important variables changed drastically. For the

differences found between the great penguins and the rest of the lineages, we found that

the oxides, as well as the net primary productivity, are correlated with more groups of

biological processes, meanwhile, the difference in chlorophyll levels hardly had any effect

on any biological process. For the differences between crested penguins and banded and

little penguins, we found much less biological processes, and a relative absence of effect

of the oxides when compared to the effect of temperature and net primary productivity.

This was also the only group that had an environmental variable with no effect on

any biological process, maximum salinity. Finally, we found that the most prominent

variables for the differences found between the brush-tailed penguins and the penguins
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from Eudyptes, Spheniscus, and Eudyptula, are the ice-related variables (ice cover and

thickness) which show almost 50 biological process groups affected significantly by the

change in oceanic ice cover and thickness.

Figure 5.4: Comparison between the biological processes enriched in genes with high

selection signal calculated conventionally by the dN/dS ratio and the biological processes

that show a significant relationship between pleiotropy and evolutionary rate along the

penguin evolutionary tree.

63



1. Protein biosynthetic,
glycosylation and
catabolic processes
2. Response and
regulation of gene
expression
3. Response to bacterium
4. Vesicle and protein
localization and transport
5. Carbohydrate
metabolic process
6. Regulation of catalytic
activity
7. Nitrogen compound
metabolic process
8. mRNA processing
9. Immunity, defense and
response to external
stimulus

10. Cellular response to
amino acid stimulus
11. Cell cycle
12. Regulation of
transcription elongation
13. Nucleic acid polymers
repair and metabolism
14. Gene expression
15. Cellular process
16. Methylation
17. Chromosome and
chromatin organization
18. Development
19. Cyclic nucleotide
metabolic process
20. Lipid metabolic
process
21. Regulation of immune
response

22. Protein-containing
complex localization
23. Electron transport
chain
24. Cell division
25. Protein folding
26. Regulation of histone
modification
27. Cellular catabolic
process
28. Sensory perception
29. Chromosome
segregation
30. Regulation of cell
death
31. Hemostasis and
coagulation
32. Cytoplasmic
translational initiation
33. Membrane fission
34. Regulation of cell
differentiation
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Figure 5.5: Biological processes that show a significant relation between pleiotropy and

evolutionary rate for the pairwise comparison between penguins of the same genus. Each

point corresponds to a group of biological processes with high semantic similarity. The

color changes with the p-value of the linear regression, and the size corresponds to the

number of biological processes grouped. The ten groups with the smallest p-value are

labeled and shown below as their respective representative terms.
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Pygoscelis
1. Positive regulation of
heart contraction
2. Catecholamine
metabolic process
3. Organic substance
transport
4. DNA recombinase
assembly
5. Amino acid
biosynthetic process
6. Regulation of catalytic
activity
7. RNA processing
8. Regulation of
transcription by RNA
polymerase II
9. Cell cycle
10. Protein ubiquitination

Aptenodytes
1. Chondrocyte
development
2. Neutral amino acid
transport
3. Fucose metabolic
process
4. Response to starvation
5. Cellular process
6. Regulation of
transcription by RNA
polymerase II
Spheniscus
1. Regulation of neuronal
synaptic plasticity
2. Ribosome disassembly
3. Hexose transmembrane
transport
4. Regulation of neuron
apoptotic process
5. Regulation of
multicellular organismal
process

Eudyptes
1. Transport
2. Regulation of
mitochondrial membrane
potential
3. Cilium organization
4. DNA replication
5. Bone morphogenesis
6. Endosomal vesicle
fusion
7. Regulation of
microtubule-based
movement
8. Reverse cholesterol
transport
9. Nuclear-transcribed
mRNA catabolic process
10. Proteoglycan
biosynthetic process
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Figure 5.6: Number of biological processes that show a significant change of the

pleiotropy-evolutionary rate relation as a function of environmental difference for 11

oceanic variables for comparisons of three groups. A/P+E+S+E compares pairs formed

by one Aptenodytes penguin and any other penguin. P/E+S+E compares pairs formed

by one Pygoscelis penguin with a penguin of Eudyptes, Spheniscus, or Eudyptula. E/S+E

compares pairs formed by one crested penguin with one banded or little penguin.
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5.4 Discussion

We examined significant milestones in penguin evolution aiming to investigate the changes

in the pleiotropy-evolutionary rate relation. To ascertain the approximate phylogenetic

origin of penguin coding sequences, we identified 20 major clades, referred to as phy-

lostrata, all of them encompassing the emperor penguin as the focal lineage. The earliest

phylostratum identified is the clade encompassing all three domains of life, where we did

not differentiate genes that originated before the split of Bacteria from the genes that

originated along the split between Archaea and Eukarya, finally encompassing genes that

originated along a broad time window around 3.5 billion years ago. Each coding sequence

was subjected to a comprehensive similarity search across the annotated genomes of 76

prokaryote organisms, the only phylostratum where more than 5 lineages were chosen.

This phylostratum exhibited the largest number of associated CDS, with 4,704 protein

sequences originating in this period, of which 3,520 were retained post-pleiotropy and

evolutionary rate analyses. From that point on, the total number of CDS allocated in

each phylostratum displayed a non-monotonic decline, dropping from 2,343 at the Eu-

karyota phylostratum, to the hundreds from the Opisthokonta to the Gnathostomata,

to tens in the most recent phylostrata. Notably, an examination of the time intervals

between phylostrata revealed that the periods encompassing the origins of animals and

jawed vertebrates showed the highest number of coding sequence origin events per million

years, with approximately 51 and 39 penguin genes originating per million years, respec-

tively, results that lie under previous work on gene birth rates (Fernández and Gabaldón,

2020; Tan et al., 2021).

By linear regression analysis for each phylostratum, we managed to get an estimation

of the effect of pleiotropy on the evolutionary rate for each CDS by age. The data

suggest a confirmation of the expected behavior of the relationship, where we can see

68



the three stages with minor deviations (see Chapter 4). On one side, genes allocated

at the diversification of crown Spheniscidae and genes present in the emperor but not

in the king genome show a negative tendency (-0.028 and -0.044, respectively), with

a p-value of 0.29 and 0.16, respectively, high p-values that can be attributed to the

small sample sizes. On the other side, before a 1000 Mya, we do recover the second

stage, with deviations from the positive tendency that can be attributed again to low

sample sizes (Archosauria and Amniota with 5 and 15 CDS, respectively). Interestingly,

the third stage is indeed significantly negative, but very close to zero, just as predicted

by the model, where CDS with higher pleiotropy have a lower fitness equilibrium but

experience a higher dimensional penalty on the evolutionary rate. As most effects of

pleiotropy on evolutionary rate are mediated by the acceleration of mutation fixations by

selective processes, it is to be expected that sites less prone to selection, as synonymous

sites, have a weaker effect of pleiotropy on evolutionary rate, with a certain similarity to

the relation encountered in non-synonymous sites at equilibrium where drift is the major

contributor to the evolutionary process. As the effect is very close to zero relative to its

variation, its statistical significance is more sensible to sample size, so is to be expected

that we only find a small p-value on phylostrata with large sample sizes, as is the case

of the phylostratum corresponding to cellular organisms.

If we interpret the results shown in Figure 4.9 as a reflection of the dynamics predicted

by the FGM, as described in previous sections, we are to assume that, in general, the

fastest evolving sequences take about 500 My to reach their optimum, meanwhile, the

slowest take twice as much. Is hard to believe that a given sequence takes that long to

reach its optimum, knowing that the processes of adaptation can be quite fast. To explain

this, first is necessary to consider that the change in stage of relation between pleiotropy

and evolutionary rate is given by the change from an adaptive walk state, dominated by

selection processes, into the equilibrium state, dominated by the fixation of mutations
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primarily by genetic drift. The extended adaptive walk observed can be caused by the

continuous displacement of the optimum (Trubenová et al., 2019), instead of having a

fixed phenotypic optimum as in the FGM simulations, this is most probably the case

given that these sequences have been part of the genomes of multiple lineages, with very

different ways of living. An alternative hypothesis is the shifting balance theory (Wright,

1932), which could explain the time dilation due to the exploration of multiple local

maxima before reaching the global maximum. Although the fitness landscape changes

along the multiple changes of the lineages, there is nonetheless a phenomenon of slow-

down which appears to be affected by the pleiotropic level, in the same way as if the

phenotypic optimum were fixed. Another important thing to note is that the evolutionary

change recorded for each coding sequence corresponds to the change experienced during

the last ∼21.9 My of penguin evolution, and the different phenotypic optimums related

to their biological functions are recorded only for biological processes present in penguin

systems, so any structural and functional change particular of a lineage different from

penguins is going to be neglected by the analysis.

To see the first stage of negative correlation in more detail, we used the divergence

dates of the species of penguin and their pairwise evolutionary rate. Effectively, there

seems to be a clear effect of the evolutionary time on this relation as shown by Fig-

ure 5.2, where an initial negative relation is then succeeded by a positive relationship.

The sister clades with the most recent divergence time correspond to the pair of banded

penguins Humboldt and Galápagos, around 1.23 Mya, and even though the tendency

is negative, not much of the genome has had time to change relative to other pairs,

this means that we only have a few sequences to register the effect of pleiotropy on

the evolutionary rate. This low sample size is most probably the reason for the high

p-value of the linear regression. For the case of intergenic comparisons, we get positive

correlations for every cladogenesis event, which is a sign that at least after around 12.58
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Mya, the most pleiotropic sequences are already accumulating mutations faster than less

pleiotropic ones. Interestingly, when comparing the means of the points obtained for the

divergences of Eudyptula/Spheniscus and Eudyptes/Spheniscus+Eudyptula against Py-

goscelis/Eudyptes+Spheniscus+Eudyptula and Aptenodytes/rest, we obtained that the

first group statistically has a significantly greater mean than the second group. This

could suggest that we are looking at the peak of the curve, which corresponds to the

time of arrival of the less pleiotropic sequences to their equilibrium. This happens at

around 15.42 My, which is significantly faster than the time seen in Figure 5.1 which is of

the order of half a thousand million years. This discrepancy cannot be attributed to the

difference between the mean non-synonymous substitution rate over site and branch and

pairwise non-synonymous substitution rate, as the second is on average smaller than the

former. Some hidden variables may exist that influence the evolutionary process between

the penguins of the second group which buffers the effect of the pleiotropy over the

evolutionary rate. One plausible hidden variable is the ecological distance between the

penguins of the second group, relative to the ecological distance between the penguins

of the first group. If the great penguins and the brush-tailed penguins have a greater

ecological distance with Spheniscus, Eudyptula, and Eudyptes, than the difference within

these last genera, then the sequences of the second group start their evolutionary trajec-

tories further from the optimum, this shifts to the right the curve of stages, having the

effect of appearing with a lower mean that an earlier group.

This suggestion is supported by Figure 5.3, which shows an approximate visualiza-

tion of the differences between lineages as the differences in oceanic conditions where

they are distributed. A greater ecological distance can be an approximate indicator of a

greater change in the way of living of each lineage, which under the FGM corresponds to

being further from the optimum, shifting the curve to the right. This is the case for Py-

goscelis and Aptenodytes, which are secluded to the positive values of the first principal
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component (involving mostly NPP, oxides, and temperature-related variables), far from

Eudyptes, Spheniscus, and Eudyptula penguins, with the only exception being the strong

resemblance between the environmental conditions of king and macaroni penguin. The

difference between Eudyptes and Spheniscus is much less pronounced, meanwhile, Eudyp-

tula is positioned inside the big Spheniscus polygon, indicating relatively mild differences

in environmental conditions.

As a lineage changes its relationship with its environment, it is to be expected a

shift in the particular combinations of trait values that yield the highest birth rates

and lowest death rates. This optimum shift is greater as the change in the way of

living of the lineage is greater, having effects on the accumulation of mutations in their

different CDS. As in the FGM, this shift occurs along specific dimensions, corresponding

to different phenotypic traits and biological processes, is to be expected that different

sequences experience optimum shifts as long as the shift involves biological functions in

which they participate. This is relevant because, from an equilibrium state of low fixation

rate dominated by drift, a discrete set of CDS is going to be affected by an optimum

change, starting a new evolutionary path away from the equilibrium. For a given time

into the evolutionary process, the slope of the linear regression between pleiotropy and

evolutionary rate is informative of the magnitude of the optimum shift, suggesting possible

relevant biological functions that change the most during the evolution of a lineage. A

huge change is going to throw the optimum very far from the phenotype of the population,

starting the negative effect of pleiotropy on the evolutionary rate. Milder changes can

move the optimum to distances where the first stage of the pleiotropy-evolutionary rate

relation is negligible, so we visualize a positive effect of the pleiotropy of the sequences

on their evolutionary rate. Finally, if the biological process stays the same and there is

no phenotypic optimum shift, the sequences stay at the equilibrium zone, showing no

noticeable relation between pleiotropy and evolutionary rate.
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Using this reasoning, we retrieved all biological processes that show a significant effect

of pleiotropy on the evolutionary rate when using the mean evolutionary rate across all

sites and branches of the selected lineages. We found that no biological process showed

a significant negative relation between pleiotropy and evolutionary rate, which suggests

that this phase of the evolutionary process is relatively fast. To compare our analysis, we

performed a conventional search of selection signature, detecting genes under positive

selection and performing a GOEA to identify the relevant biological processes. We found

a good superposition between both analyses, even though only one biological process

term was shared between both (response to external stimulus), most of the processes

detected by selection signature were grouped with processes with a significant effect of

pleiotropy on the evolutionary rate. As did previous works (Vianna et al., 2020), we

found selection signatures on functions related to blood, particularly related to response

to injuries such as hemostasis and coagulation, but we did not find much evidence for

this biological processes using the pleiotropy-rate method, where we only found pro-

cesses broadly related to these, like calcium transport, the same occurs with immune

and sensory-related functions, which are two general functions that are known to be

consistently subjected to positive natural selection across the bird lineage (Shultz and

Sackton, 2019). On the other side, in good agreement with previous studies, both analy-

ses showed the relevance of processes involved in lipid metabolism, particularly important

for this temperature-related clade and multicellular developmental processes, previously

described to have strong selection signatures (Vianna et al., 2020; Pirri et al., 2022). For

the most part, it seems that the pleiotropy-rate method is much less conservative, and

highlights a broad array of cellular processes, a method that could be enriched highly by

looking at the molecular differences between penguins and their sister group.

To extend this analysis further, we looked at the most relevant biological processes

in the evolution of each of four genera, Aptenodytes (the great penguins), Pygoscelis
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(brush-tailed penguins), Eudyptes (crested penguins) and Spheniscus (banded penguins).

As shown in Figure 5.5 the results are highly influenced by the time of divergence of the

lineages (in lineages that diverge further ago we are going to be able to detect more

biological processes) and by the number of lineages (more lineages increase the number

of comparisons and so the sample size, increasing the probability of significance). As

a result, we found a lot more processes relevant in the evolution of Eudyptes and Py-

goscelis, the former having a high number of species in the analysis and a long time of

divergence and the latter having the oldest divergence times even though it has a small

number of species. On the other side, Aptenodytes has only two species that diverged

relatively recently, meanwhile, the four species of Spheniscus showed the most recent

divergence times. Starting with Spheniscus, we found mainly two processes relevant to

their evolution, the first one being processes related to the transport of sugars involved

in glycosylation, fundamental for processes such as spermatogenesis, sperm maturation,

competence between oocyte and sperm and fertilization, processes which are found to

have changed drastically during the evolution of this group as shown in new studies (data

not published). The second relevant processes that we found were related to learning

processes such as the regulation of synaptic plasticity and rearrangement of nervous archi-

tecture. For the great penguins, we found relevant differences in pancreas development

as well as response to starvation and sugar metabolic process, these results can shed

light on the differences between the life cycle of king and emperor penguins, the latter

living in much harsher conditions throughout the year. In Pygoscelis, we found many

processes related to the metabolism of neurotransmitters like adrenaline, dopamine, and

serotonin, as well as immunity-related processes similar to the ones detected by selection

signal analysis. We also found that evolution under positive natural selection could have

happened at genes related to the circulatory system, processes already determined to

be subject to selection due to the diving behavior in cold waters of brush-tail penguins.
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Finally, the crested penguins showed a huge number of relevant processes spanning a

wide number of functions, like temperature homeostasis, mannosylation, and neurophys-

iological processes like forebrain development and sodium and potassium transmembrane

transport, related to the propagation of the nerve impulse. Interestingly, we found many

processes related to the tendency of rockhoppers to experience falls, such as angiogenesis

and bone morphogenesis, as well as the balance-related process of inner ear development.

Finally, we investigated if some biological processes show a greater change in phe-

notypic optimum, suggested by a change in slope, as a function of a change in a given

oceanic condition. To test this, we could not use all the pair comparisons at the same

time because, as we saw earlier, the time of divergence between pairs affects greatly the

change in slope. To avoid this effect, we made three comparisons each sharing a common

divergence time, each comparison is characterized by the split of the penguin tree and the

generation of an independent genus but is worth noting that the results are not particular

to that given genus, but are results related to the difference between two specific groups

of penguins. We don’t see much difference in the variables of temperature, net primary

productivity, and current velocity, all being fairly equal between the three groups and

along the mean number of biological processes associated with them. For the case of the

salts and oxides, we found a much greater relevance of these environmental variables for

the A/P+E +S+E group and a much less significance for the E/S+E group. This last

result is quite unexpected because Eudyptes penguins usually live in waters much richer

in these compounds than Spheniscus and Eudyptula. The iron levels have consistently a

lower number of biological processes associated which makes sense looking at Figure 5.3,

as iron varies primarily along the second principal component, the axis along which there

is not much phylogenetic disaggregation. Finally, we can see two linked major outliers

in this analysis for the group P/E+S+E, which are the ocean ice variables, this result

could be the effect of a strong phylogenetic signal, because of the shape of the curve
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of these variables and the distribution of taxa along the curve, we can see that most of

Pygoscelis lie at the far high levels of ice thickness and cover, with a fast descent into

the levels experienced by other penguins, a lot of which are cero. This is not the case

for most other variables, which show more evenly distributed values along the different

clades and a milder slope, reducing the phylogenetic signal of the analysis.

Even though we found certain differences between environmental variables in bio-

logical process composition, those differences are not only due to the oceanic variable

identity but they are also confounded by the phylogenetic conservation of traits. As an

example, we found that the biological processes most directly related to the temperature

at the A/P+E+S+E group that was effectively enriched for that variable and were not

found for other variables were three terms related to fatty acid elongation, all other ex-

clusive terms enriched for temperature in these group were terms not directly linked to

temperature like defense response to virus, mature ribosome assembly, vesicle docking,

reproductive structure development, and DNA repair. These results could be misleading

as the number of lineages is small and the effects of ecology and evolution could be easily

confounded.
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6 Conclusiones generales

En esta tesis se estudió el efecto de la pleiotroṕıa sobre la tasa de acumulación de muta-

ciones en simulaciones basadas en el modelo geométrico de Fisher y en secuencias codifi-

cantes de especies de la familia Spheniscidae. Se utilizó una amplia gama de herramientas

computacionales incluyendo la resolución numérica de ecuaciones diferenciales, el mode-

lamiento de procesos evolutivos, la obtención de información a partir de bases de datos y el

análisis bioinformático de información genómica. Con esta aproximación se encontró que

la pleiotroṕıa tiene un efecto sobre la tasa evolutiva que es dinámico en el tiempo y está

estructurado en tres etapas, una etapa de efecto negativo, donde las secuencias menos

pleiotrópicas acumulan mutaciones más rápido, una etapa de efecto positivo, donde las

secuencias más pleiotrópicas se mantienen en la fase de caminata adaptativa mientras

que las menos pleiotrópicas entran a la fase de equilibrio y una etapa de efecto nulo,

donde todas las secuencias se encuentran en el equilibrio. Adicionalmente, se estudió el

rol que cumple la selección natural y la deriva genética en esta sucesión de eventos y se

extendieron los resultados para hacer un análisis funcional de la historia evolutiva de los

pingüinos.

Los resultados de esta investigación apoyan el rol determinante que tiene la pleiotroṕıa

sobre la tasa con la cual se incorporan cambios moleculares a los linajes. La participación

de los productos proteicos en un elevado número de procesos biológicos va a restringir a

corto plazo su tasa evolutiva por medio de la reducción en la porción de nuevas muta-

ciones de carácter beneficioso. La fase de caminata adaptativa está caracterizada por la

contribución predominante de la selección natural direccional y purificadora, la fijación de

un mayor porcentaje de mutaciones beneficiosas y un incremento sostenido del fitness de
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la población (relativo a los rasgos particulares estudiados). En el caso de las secuencias

codificantes de los pingüinos, los resultados bioinformáticos y de modelamiento sugieren

que esta fase se extiende por una escala temporal de millones de años, lo cual puede ser

indicio de óptimos fenot́ıpicos móviles. A largo plazo, la disminución progresiva de la tasa

evolutiva y la presencia de una zona de equilibrio dominada por la deriva genética, va a

producir que las secuencias de menor pleiotroṕıa comiencen a acumular mutaciones más

lento que las secuencias más pleiotrópicas que siguen en la fase de caminata adaptativa.

Finalmente, llega un momento en el proceso evolutivo de las secuencias donde ha pasado

tanto tiempo que incluso las secuencias más pleiotrópicas han llegado al equilibrio, lo

cual disminuye sustancialmente el efecto de la pleiotroṕıa sobre la tasa evolutiva. Encon-

tramos que un gran porcentaje del genoma de los pingüinos se encuentra en esta etapa.

Adicionalmente, tomando en consideración los eventos recientes de especiación, los re-

sultados apoyan un modelo donde, durante la especiación, ocurre el desplazamiento de

los fenotipos óptimos para procesos biológicos espećıficos, desplazamiento que se puede

inferir a partir de la etapa de la relación pleiotroṕıa-tasa evolutiva en la que se encuen-

tren secuencias codificantes que participen de tales procesos. Espećıficamente, pudimos

rescatar para distintos géneros, por ejemplo, procesos vinculados con aprendizaje, vida

en terrenos rocosos y conductas de riesgo, periodos de depleción de alimentos, repro-

ducción y buceo en aguas heladas. Estos resultados apoyan la noción de que los supuestos

asumidos por el modelo geométrico de Fisher son buenas aproximaciones a los procesos

naturales o, alternativamente, que los resultados del modelo geométrico de Fisher son

robustos a la modificación de sus supuestos básicos, como ya se ha descrito. Esto es in-

teresante, ya que la modelación nos permite acceder a niveles de explicación cient́ıfica que

no suelen estar a disposición en el estudio evolutivo de linajes como los trabajados acá.

En particular, pudimos acceder a un entendimiento en detalle de los procesos de acumu-

lación de mutaciones y cómo las fases de las trayectorias evolutivas, caminata adaptativa
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y equilibrio, y la influencia dinámica de la selección natural y de la deriva genética, dan

origen a las tres etapas. Por medio del análisis de difusión encontramos que la selección

tiene principalmente un rol de acelerador del proceso evolutivo, sin embargo, este efecto

causa que las secuencias entren antes en las zonas de equilibrio dominadas por deriva.

En este modelo, encontramos que el rol de la selección purificadora en la determinación

de la tasa evolutiva es muy reducido, causando que encontremos que la tasa evolutiva

ḿınima, experimentada por las secuencias en equilibrio, coincida en general con la tasa

evolutiva neutral.

Este trabajo abordó un desaf́ıo central para la bioloǵıa evolutiva en esta era des-

bordante de datos, el diálogo entre los estudios teóricos y la información de sistemas

biológicos reales. Pudimos implementar satisfactoriamente un modelo de evolución

molecular y utilizar las predicciones y explicaciones derivadas de él para hacer un aporte

a la investigación de la historia evolutiva de un linaje tan interesante como son los

pingüinos.
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A Appendix

A.1 Fisher’s Geometric Model

Fisher’s geometric model was introduced by Ronald Fisher in 1930 in the section The

nature of adaptation in his book The Genetic Theory of Natural Selection. His model

is an abstraction of the process of adaptation of populations and can be divided into

four major parts: population and phenotypic space, mutations, fitness landscape, and

the fixation process.

−→a is the vector with n elements that define a species’ phenotype in a given time

situated inside an n-dimensional space (Rn),

−→a =



x1

x2

...

xn


,

with n being the number of phenotypic traits.

The species can change its phenotype in a process of mutation-fixation, where new

mutations (−→m) arise randomly with a given maximum magnitude (R), corresponding to

the maximum phenotypic distance (phenotypic difference) between a wild-type phenotype

and a mutant phenotype. To ensure that any mutation is equally possible, the direction

of the mutation (−→z ) is defined by selecting the change in each trait from a normal

distribution with mean 0 and standard deviation 1 (N(0, 1)). Then the actual magnitude
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(r) is calculated by multiplying the maximum magnitude and a random number p drawn

from a uniform distribution in the unit interval (U(0, 1)) raised to the power of 1/n.

Therefore, the phenotype of a mutant −→a MT from a given wild-type phenotype −→a WT is

updated as follows:

−→z =



z1

z2
...

zn


, zi ∼ N(0, 1)

r = Rp1/n, p ∼ U(0, 1)

−→m = r
−→z

||−→z ||
−→a MT = −→a WT +−→m.

The fitness of every state in the population is calculated in reference of an optimal

phenotype (−→o ) based on a Gaussian decay as a function of the Euclidean distance between
−→a and −→o . Based on the fitness of the wild-type (wWT ) and mutant form (wMT ), a

selection coefficient (s) is calculated,

w−→a = e−
||−→o −−→a ||2

2

s =
wMT

wWT
− 1.

Given the selection coefficient of each mutation and the population size (N), the

probability of fixation of the mutation is calculated as follows,

q =
1− e−2s

1− e−2Ns
.
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A.2 Geometric Mutation

To calculate the probability that a mutation with a given effect in fitness arises, the

area of the n-dimensional cap form by the intersection between the two n-balls shown in

Figure A.1 is calculated.

Figure A.1: Calculation of the mutation probability in Fishe’s geometric model.
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A.2.1 Cap height

Figure A.2: Cap height for the smallest section. A two-dimensional slice of Figure A.1
is depicted. The segments a and o make a 90º angle. e is perpendicular to d, creating
the segments b and c. h corresponds to the height of the cap and goes from the contact
point between e and d to the intersection between d and the circumference centered at
O.

The area’s calculation requires knowing the height of the cap or the height of the comple-

mentary portion of the n-ball, depending on the distance between the species phenotype

and the optimum phenotype, as well as the maximum mutation magnitude. The height

of the cap (h) is calculated using the maximum mutation magnitude (a), the distance

from the optimum of the mutant (o) and of the wild-type (d).

We have a triangle with sides a, o and d, where the height to d is e, which breaks d

in two, b and c, so we have the following relation defining b and c

d = b+ c. (A.1)
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Because e is the height on d, then, by the Pythagorean relation, we obtain

o2 = b2 + e2 (A.2)

a2 = c2 + e2. (A.3)

Merging equations A.2 and A.3 we get,

o2 − a2 = b2 − c2,

and so,

c =
√
b2 + a2 − o2,

which is used to reformulate the expression for b in equation A.1,

d = b+
√
b2 + a2 − o2.

As d− b is never negative we get

b =
d2 − a2 + o2

2d
.

Finally, as h is equal to o− b and, as b is the projection of o on d, o ≥ b, then h ≥ 0,

h = o− d2 − a2 + o2

2d
,

then we get

h =
a2 − (d− o)2

2d
. (A.4)

For the height of the complementary cap, the formula is derived as follows.
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Figure A.3: Cap height for the biggest section. Two-dimensional representation of Fig-
ure A.1 if the center of the intersected n-ball lies within the intersecting n-ball. e is
perpendicular to c, which is divided by the center of the intersected circle forming the
segments b and d. h corresponds to the height of the cap denoted by the segmented
line, defined by the intersection between both circles.

The height of the cap (h) is calculated using the maximum mutation magnitude (a),

the distance from the optimum of the mutant (o) and of the wild-type (d), as follows,

c = d+ b. (A.5)

The Pythagorean relations hold,

o2 = b2 + e2 (A.6)

a2 = c2 + e2. (A.7)

Merging equations A.2 and A.3 we get,

o2 − a2 = b2 − c2
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and so,

c =
√
b2 + a2 − o2,

which is used to reformulate the expression of c in equation A.5

d+ b =
√
b2 + a2 − o2

getting

b =
a2 − d2 − o2

2d
.

Finally, as we can see that h is equal to o− b and, as b is the projection of o, o ≥ b,

then h ≥ 0,

h = o− a2 − d2 − o2

2d
,

then we get

h =
(d+ o)2 − a2

2d
. (A.8)

A.2.2 Formulas for area and volume in hyperdimensional geometry

The volume of a n-ball of radius a is calculated as

V(a,n) =
πn/2

Γ
[
n
2
+ 1
]an,
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where Γ is the gamma function. And the surface area of a n-ball of radius o is calculated

as

A(o,n) =
2πn/2

Γ
[
n
2

]on−1.

The surface area of the cap of a n-ball of radius o with height h is

Acap
(o,n) =

1

2

2πn/2

Γ
[
n
2

]on−1I

[
2oh− h2

o2
;
n− 1

2
,
1

2

]
,

where I is the regularized incomplete beta function.

For the first case where the distance between the population and the optimum d is

more than the maximum mutation magnitude a, the probability of mutation that changes

the position of the population from d to o is

md→o =
Acap

(o,n)

V(a,n)

=
1

2

2πn/2

Γ
[
n
2

]on−1I

[
2oh− h2

o2
;
n− 1

2
,
1

2

]
Γ
[
n
2
+ 1
]

πn/2an

=
Γ
[
n
2
+ 1
]
on−1

Γ
[
n
2

]
an

I

[
2oh− h2

o2
;
n− 1

2
,
1

2

]
.

The gamma function has the following property

Γ [x+ 1]

Γ [x]
= x,

so the final form is

md→o =
non−1

2an
I

[
2oh− h2

o2
;
n− 1

2
,
1

2

]
. (A.9)

If the d is less than a then we have three cases as shown in Figure A.4.
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Figure A.4: Optimum distance cases

1. If 0 ≤ o ≤ |a− d|, then

md→o =
A(o,n)

V(a,n)

=
2πn/2

Γ
[
n
2

]on−1Γ
[
n
2
+ 1
]

πn/2an

=
2Γ
[
n
2
+ 1
]
on−1

Γ
[
n
2

]
an

,

and so,

md→o =
non−1

an
. (A.10)

89



2. If |a − d| ≤ o ≤
√
a2 − d2, where Acap

(o,n) is the surface area of the small cap that

is outside of the reach of the wild-type, so

md→o =
A(o,n) − Acap

(o,n)

V(a,n)

=

(
2πn/2on−1

Γ
[
n
2

] − 1

2

2πn/2on−1

Γ
[
n
2

] I

[
2oh− h2

o2
;
n− 1

2
,
1

2

])
Γ
[
n
2
+ 1
]

πn/2an

=

2πn/2on−1 − πn/2on−1I
[
2oh−h2

o2
; n−1

2
, 1
2

]
Γ
[
n
2

]
 Γ

[
n
2
+ 1
]

πn/2an

=

πn/2on−1(2− I
[
2oh−h2

o2
; n−1

2
, 1
2

]
)

Γ
[
n
2

]
 Γ

[
n
2
+ 1
]

πn/2an
,

and so,

md→o =
non−1

an

(
1− 1

2
I

[
2oh− h2

o2
;
n− 1

2
,
1

2

])
. (A.11)

3. If
√
a2 − d2 ≤ o ≤ d+ a, the case is similar to the equation ??, where we have

md→o =
Acap

(o,n)

V(a,n)

,

and so,

md→o =
non−1

2an
I

[
2oh− h2

o2
;
n− 1

2
,
1

2

]
. (A.12)

A.3 Fokker-Planck Equation

A.3.1 Diffusion analysis

The derivation of the Fokker-Planck equation proceeds as usual (see Gommes and

Tharakan (2020) to see an example). Let’s say that the position of a species is measured
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as its Euclidean distance to the optimum phenotype, which behaves as a random variable

X(t), which depends on the occurrence and fixation of new mutations, which, in turn,

depend only on the current position of the species, i.e. the process is memoryless in the

Markovian sense. The probability that the species moves a distance ζi to the optimum

depends on the probability that a mutation that causes such displacement occurs mi

(considering that multiple mutations can produce the same change in distance to the

optimum) and on the probability that such mutation gets fixed in the population qi (all

mutations that make the same change in distance from the optimum have the same

probability of fixation).

Then the random variable X(t) obeys the following probabilistic law:

X(t+ τ) = X(t) + ∂X, where

∂X = ζi with probability miqi.

This is true for every ζi except for ζi = 0, which has a probability equal to m0q0 plus

the complement of the sum of the probability of every other possible displacement. That

probabilistic law is only true if τ is the time interval equal to the expected time for a

mutation to occur in an origin-fixation model. Consequently, the biggest step away from

the optimum that a population can make in a τ interval corresponds to the maximum

mutation magnitude (R). If the distance to the optimum is bigger than the maximum

mutation magnitude, then the maximum value of ζ is R. If this is not the case, then the

biggest step towards the optimum is the actual distance to the optimum, denoted here

as d.

If f(x, t)dx is the probability density function of the distance to the optimum, then:

f(x, t+ τ)dx = dx

∫
f(x− ζ, t)m(x− ζ, x)q(x− ζ, x)dζ,
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with the integral bounded between −R and min(d,R), which can be interpreted as

if multiple populations were moving in Fisher’s phenotypic space, then the number of

populations in position x at time t + τ depends on the number of populations that are

in position x − ζ at time t and that move a distance ζ in that given interval of time,

considering all of those that stayed in position x.

Both the right-hand side and the left-hand side of the equation can be expressed

approximately as a truncated Taylor series, specifically,

f(x, t+ τ) ≃ f(x, t) +
∂f

∂t
τ,

f(x− ζ, t)m(x− ζ, x)q(x− ζ, x) ≃ f(x, t)m(x, x+ ζ)q(x, x+ ζ)− ∂fmq

∂x
ζ +

1

2

∂2fmq

∂x2
ζ2.

Given that ∫
m(x, x+ ζ)q(x, x+ ζ) = 1,

the replacement on both sides yields the following equation:

∂f

∂t
=

1

2τ

∂2f

∂x2

∫
ζ2m(x, x+ζ)q(x, x+ζ)dζ− 1

τ

∂f

∂x

∫
ζm(x, x+ζ)q(x, x+ζ)dζ. (A.13)

A.3.2 Finite difference method

The equation is solved numerically by the finite difference method which requires the

discretization of time and space. The space is divided into L equidistant points, each

defined by the index i from i = 0 to i = L− 1. The terms A and B are defined so that

equation A.13 can be rewritten as

∂f

∂t
= A

∂2f

∂x2
+B

∂f

∂x
.

The operators are approximated using the Crank-Nicolson scheme where i is the
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spatial variable and j is the temporal variable:

∂f

∂t
≈ fi,j+1 − fi,j

∆t
,

∂2f

∂x2
≈ fi−1,j+1 − 2fi,j+1 + fi+1,j+1 + fi−1,j − 2fi,j + fi+1,j

2∆x2
,

∂f

∂x
≈ fi+1,j+1 − fi−1,j+1 + fi+1,j − fi−1,j

4∆x
.

Then the following factors are defined

ω =
1

∆t
, α =

A

2∆x2
, β =

B

4∆x
.

The replacement results in the following formula

ωfi,j+1 − ωfi,j =αfi−1,j+1 − 2αfi,j+1 + αfi+1,j+1

+ αfi−1,j − 2αfi,j + αfi+1,j

+ βfi+1,j+1 − βfi−1,j+1 + βfi+1,j

and, by rearranging all j + 1 terms to the left side and all j terms to the right side we

get

(−α + β)fi−1,j+1+(ω + 2α)fi,j+1 + (−α− β)fi+1,j+1

= (α− β)fi−1,j + (ω − 2α)fi,j + (α + β)fi+1,j.

This is correct except for the borders of the system (i = 0, i = L−1), where i = −1

and i = L lie outside of the defined discretized space. To get the correct expression

for those two points a Neumann boundary condition (i.e. the derivative at the border

is 0) is used. This is justified by the fact that close to the optimum we encounter an

overshoot phenomenon and far from the optimum the probability of fixation of deleterious
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mutations tends to 0. The derivatives are approximated by the forward and backward

differences:

f0 − f−1

∆x
= 0 → f−1,j+1 = f0,j+1, f−1,j = f0,j,

f1 − f0
∆x

= 0 → f0,j+1 = f1,j+1, f1,j = f0,j,

fL − fL−1

∆x
= 0 → fL,j+1 = fL−1,j+1, fL,j = fL−1,j,

fL−1 − fL−2

∆x
= 0 → fL−1,j+1 = fL−2,j+1, fL−2,j = fL−1,j.

As a consequence, in i = 0:

(−α+ β)f−1,j+1 + (ω + 2α)f0,j+1 + (−α− β)f1,j+1 = (α− β)f−1,j + (ω − 2α)f0,j + (α+ β)f1,j

(−α+ β)f0,j+1 + (ω + 2α)f0,j+1 + (−α− β)f0,j+1 = (α− β)f0,j + (ω − 2α)f0,j + (α+ β)f0,j

ωf0,j+1 = ωf0,j ,

and for i = L− 1:

(−α+ β)fL−2,j+1 + (ω + 2α)fL−1,j+1 + (−α− β)fL,j+1 = (α− β)fL−2,j + (ω − 2α)fL−1,j + (α+ β)fL,j

(−α+ β)fL−1,j+1 + (ω + 2α)fL−1,j+1 + (−α− β)fL−1,j+1 = (α− β)fL−1,j + (ω − 2α)fL−1,j + (α+ β)fL−1,j

ωfL−1,j+1 = ωfL−1,j .

94



From these equations, we obtain a matrix expression on the function f for two points

in time, where MB and MF correspond to the backward and forward matrices, respec-

tively, defined as

MB =



ω 0 0 . . . 0 0 0

−α + β ω + 2α −α− β . . . 0 0 0

0 −α + β ω + 2α . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . ω + 2α −α− β 0

0 0 0 . . . −α + β ω + 2α −α− β

0 0 0 . . . 0 0 ω



,

and

MF =



ω 0 0 . . . 0 0 0

α− β ω − 2α α + β . . . 0 0 0

0 α− β ω − 2α . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . ω − 2α α + β 0

0 0 0 . . . α− β ω − 2α α+ β

0 0 0 . . . 0 0 ω,



,
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and so we have

MB



f0,j+1

f1,j+1

f2,j+1

...

fL−3,j+1

fL−2,j+1

fL−1,j+1



= MF



f0,j

f1,j

f2,j
...

fL−3,j

fL−2,j

fL−1,j.



.

With this expression and given an initial condition, for example, fi0,0 = 1 for some i0

between 0 and L− 1, and fi,0 = 0 for every i ̸= i0, we can find the probability of finding

the population for each spatial point along the whole spatial range in a given time t∗



f0,t∗

f1,t∗

f2,t∗

...

fL−3,t∗

fL−2,t∗

fL−1,t∗



= (M−1
B MF )

t∗



f0,0

f1,0

f2,0
...

fL−3,0

fL−2,0

fL−1,0



.
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Trubenová, B., Krejca, M., Lehre, P., and Kötzing, T. (2019). Surfing the seascape:

adaptation in a changing environment. Evolution, 73:1356–1374.

Vale, P., Choisy, M., Froissart, R., Sanjuán, R., and Gandno, S. (2012). The distribution

of mutational fitness effects of phage ϕX174 on diffeerent hosts. Evolution, 66:3495–

3507.

Van Dongen, S. (2008). Graph clustering via a discrete uncoupling process. Siam Journal

on Matrix Analysis and Applications, 30:121–141.

Velenich, A. and Gore, J. (2013). The strength of genetic interactions scales weakly with

mutational effects. Genome Biology, 14:R76.

Vianna, J., Fernandes, F., Frugone, M. J., Figueiró, H., Pertierra, L., Noll, D., Wang-
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