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SIMETRIAS EN REDES NEURONALES SOBREPARAMETRIZADAS:
UNA MIRADA DE CAMPO MEDIO

Durante la dltima década, las Redes Neuronales Artificiales (NNs) han ganado gran populari-
dad por su éxito en aplicaciones practicas como la vision computacional y el procesamiento
de lenguaje natural; sin embargo, la comprension tedrica de estos modelos es ain escasa en
general. Esta tesis pretende mejorar esta comprensién, estudiando el proceso de aprendizaje
de las NNs para entender como estas aprovechan las simetrias de un problema para mejorar
su rendimiento y poder de generalizacion.

Nuestro trabajo aborda dos temas principales: el analisis del limite de Campo Medio (MF)
de las NNs, que provee una teoria para entender el entrenamiento de redes de ancho infinito
(viéndolo como un proceso no lineal, mds expresivo que otros regimenes sobreparametrizados
de la literatura); y el uso de técnicas como Data Augmentation, Feature Averaging o las NNs
Equivariantes para aprovechar las simetrias presentes en los datos de un problema.

El objetivo es comprender como se manifiestan las simetrias de los datos en el limite
MF del entrenamiento de la NN: ;Es también simétrico (en algin sentido) el proceso limite?
. Cémo se ve la dindmica limite cuando se emplean técnicas para aprovechar las simetrias? ;Se
logran mejores velocidades de convergencia global? ; Aparecen estrategias de aprovechamiento
de simetrias significativamente mejores que otras? Nuestro trabajo proporciona las bases
tedricas para responder a estas preguntas, y las aborda, en su mayoria, de forma efectiva.

La tesis se estructura en cuatro capitulos principales: una revision bibliografica tanto
del limite MF de NNs sobreparametrizadas, como del estudio de simetrias en NNs mediante
acciones de grupo en los Capitulos 2 y 3; seguido por nuestras contribuciones principales en
los Capitulos 4 y 5. Nuestros aportes incluyen la formalizacién de la nociéon de simetria en el
contexto de NNs sobreparametrizadas (permitiendo caracterizar las NNs equivariantes en el
contexto MF), la exploracién de propiedades de Transporte Optimo para medidas invariantes
(y concentradas en subespacios), la adaptacién de técnicas tradicionales de aprovechamiento
de simetrias al contexto MF, y el estudio exhaustivo de las propiedades de funcionales
simétricos, sus minimizadores y sus flujos de gradiente de Wasserstein (WGFs). En particular,
se demuestra que las funciones invariantes tienen minimizadores invariantes y producen
WGFs con trayectorias invariantes cuando se inicializan correctamente.

En resumen, esta tesis profundiza la comprension acerca de cémo influyen las simetrias de
los datos en el entrenamiento de las NNs (en el limite MF). Los resultados no solo contribuyen
al ecosistema de investigacion tedrica sobre redes neuronales, sino que también podrian dar
ideas précticas para nuevas arquitecturas de NN y/o nuevos mecanismos de optimizacion.
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SYMMETRIES IN OVERPARAMETRIZED NEURAL NETWORKS:
A MEAN FIELD VIEW

Over the last decade, Artificial Neural Networks (NNs) have gained widespread popularity
due to their success in practical applications ranging from computer vision to natural language
processing; the theoretical understanding of these models is, however, still largely unexplored.
This thesis aims to attack this problem by delving into the learning dynamics of NN,
particularly studying how they can leverage problem-specific symmetries to improve their
performance and generalization power.

Our investigation revolves around two main themes: the analysis of the Mean Field
(MF) limit of NNs, which provides a simplified framework for understanding the training
process of infinitely wide networks (in a non-linear and arguably more expessive fashion than
concurrent overparametrized regimes); and the use of symmetry-leveraging techniques (such
as Data Augmentation, Feature Averaging and Equivariant Architectures) to profit from the
symmetries present in the training data.

Our objective is to understand how data symmetries impact the MF limit of NN training:
Is the limiting process also symmetric (in some sense)? Do traditional symmetry-leveraging
techniques change the limiting dynamics? Do they yield tighter convergence rates for the
known global convergence results? Are some symmetry-leveraging strategies significantly
better than others? Our work provides the theoretical grounds for answering these questions,
and effectively addresses most of them.

The thesis comprises four main chapters: a literature review on the MF Limit of shallow
NNs and the group-theoretical understanding of symmetries in NNs in Chapters 2 and 3,
followed by the bulk of our novel contributions in Chapters 4 and 5. These include formalizing
the notion of symmetry in NN learning tasks (allowing us to characterize equivariant NNs
within the usual MF framework), exploring Optimal Transport properties of invariant (and
subspace-concentrated) measures, adapting traditional symmetry-leveraging techniques to the
MF setting, and thoroughly studying properties of symmetric functionals, their minimizers
and their Wasserstein Gradient Flows (WGFs). Notably, we show that invariant functionals
have invariant minimizers and produce invariant WGF trajectories when initialized correctly.

In summary, this thesis develops significant (and novel) theoretical contributions that
deepen our understanding of how data symmetries impact NN training at the MF level.
The findings not only contribute to the theoretical landscape of NN research but could also
eventually offer practical insights for novel NN architectures and optimization mechanisms.
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Chapter 1

Introduction

Despite their overwhelming success in practice, artificial neural networks (NNs) remain a
mystery from a theoretical point of view. At present, very few mathematical results exist
to explain their effectiveness. In this context, this thesis investigates the learning process of
NN, and how they can exploit a problem’s symmetries in order to improve their performance
and generalization power.

In particular, the data of a problem could be known to respect some sort of symmetry:
for instance, the task of detecting whether a dog is present (or not) in a given image should
be independent of the orientation of said image. We use group theory (more specifically
group actions to encode such symmetries in a mathematical fashion. In particular, the dog
detection task previously described would be defined as invariant with respect to the action
of the group of rotations of the plane (or simply, rotation-invariant). Analogously, if we cared
about the specific absolute position of the dog in the picture (with respect to the origin), this
would be a rotation-equivariant task, meaning that a rotation on the input is expected to
result in an equal rotation of the output of the task.

There are multiple techniques that allow NNs to take advantage of a problem’s symmetry;,
most notably we have (among many others) Data Augmentation (DA) and Feature Averaging
(FA). These techniques involve trying to drive the NN into respecting the symmetries, but
without necessarily harnessing this invariance to simplify the model at hand. NN Models
that are hardwired to respect the symmetries of a problem (for instance, through parameter-
sharing) correspond to what we call equivariant architectures of NNs (EA). These kinds of
architectures are actually widely used in practice, and many well-known NN models are based
upon this concept (such as CNNs, Transformers, GNNs, among many others).

On the other hand, we have what’s known as the Mean Field (MF) limit of NNs; a
theoretical framework that attempts to mathematically understand how NNs learn in an
overparametrized setting. This formalism considers NNs which can be taken to have infinite
width, in turn allowing for a conceptual simplification of their training process. The complex
optimization procedure driven by Stochastic Gradient Descent (SGD) for finite networks,
is replaced (in the limit) by a stochastic process driven by a partial differential equation
(PDE) that’s conceptually easier to solve. Particularly, under certain assumptions, it is
known that this mean field ltmit training process can converge to the global optimum of the



learning problem. Despite other interesting approaches for overparametrized models (such
as Random Features or the famous Neural Tangent Kernel), the MF limit seems to give
the most meaningful insight on how SGD makes the parameter distribution evolve towards a
global minimum during training.

With both the concept of the MF limit of NNs and the idea of exploiting the problem’s
symmetry to build better models, we can state this work’s objectives. We hope to understand
how data symmetries could have an impact on the MF limit of NN training. More specifically,
we seek to answer whether the limiting process could also be symmetric (in some sense)
whenever the input data is; whether the use of symmetry-leveraging techniques could allow a
model to profit from data symmetries at the MF level (e.g. Do the limiting dynamics change?
Do we get tighter convergence rates for the known global convergence results?); and whether
this allows us to significantly distinguish a preferred symmetry-leveraging strategy amongst
them (i.e. is there any one that’s significantly better than the rest?).

Providing satisfactory answers to these questions could eventually be useful for the
design and training of more efficient and accurate NNs in the future; potentially generating
a significant impact on a wide range of very relevant practical applications ranging from
computer vision to natural language processing.

With this in mind, throughout our work, we will provide the necessary theoretical grounds
for effectively addressing (and hopefully answering) most these questions. All in all, the main
contributions of our work are the following:

e We provide a unified framework under which the MF theory of shallow NNs can be
understood. In the process, we slightly extend some relevant results from the literature
to fit into this unified setting (e.g. see Theorem 1, Proposition 10, among others).

e We describe some of the main elements from the theory of symmetry-leveraging in
learning problems; notably, providing an extension of a known result regarding the
symmetrization gap (Lemma 10).

o We generalize the notion of an equivariant NN architechture to the setting of shallow NN
models used in the traditional MF theory. We prove that this definition is consistent,
and that it satisfies relevant properties in our context (see Section 4.1).

e We thoroughly describe the spaces of G-invariant probability measures and probability
measures concentrated on E¢ (subspace of G-equivariant parameters), along with some
of their interesting properties (Proposition 25, Lemma 13 and Proposition 26). We also
characterize G-invariant measures as equivalent to measures over G\ Z (Proposition 28).

e We prove key properties of differentials and integrals of equivariant functions (Section 4.3).

e We prove a variant of Jensen’s inequality (Proposition 32) and use it to show that
G-invariant functionals over the space of probability measures can be minimized over
the space of G-invariant measures (Proposition 33). We provide a counterexample of
the analogous result for measures concentrated on £ (Proposition 35), and a way to
avoid it when universality holds (Proposition 36).

e We translate the main symmetry-leveraging techniques to the MF setting (Proposition
40), and show that optimizing under DA or FA is esentially equivalent (Proposition 42).
We also provide a bound in the case of approzimately invariant data (Proposition 44).

2



e We prove that, when the initial condition (i.c.) is G-invariant, WGFs of G-invariant
functionals have G-invariant trajectories (Theorem 14). We prove that an analog holds
whenever the i.c. is concentrated on €Y (Theorem 15). We finally show that the DA
and FA training dynamics exactly coincide under a G-invariant i.c. (Corollary 14).

We will establish these contributions along the main chapters of this work, which we desribe
in the following paragraphs to provide the reader with a roadmap of this thesis:

Chapter 2 presents a thorough review of the literature on the topic of the Mean Field
(MF) Limit in the context Overparametrized Neural Networks (NNs), as well as
most relevant theoretical elements for defining such an object. Many known results from the
literature are presented, though some are adapted and generalized to make them fit into a
unified general setting we try to establish.

Chapter 3 presents the ideas behind the group theoretical understanding of symmetries
in the context of Neural Networks. It displays both relevant theoretical results from the recent
literature (concerning invariant/equivariant functions and measures), as well as some of the
most popular techniques used to leverage a problem’s symmetries in practical applications.
Beyond introducing many key elements from the literature, we also prove an extension of a
known result regarding the symmetrization gap of a learning problem.

Chapter 4 starts presenting the results from our own study of symmetries in the NN
context, with an Optimal transport (OT) and Mean Field view. In particular, a notion of
equivariant NN is introduced in the shallow NN/MF setting, with some of its basic properties
being proven. Many OT properties from invariant (and subspace-concentrated) measures are
proved, and similar work is done for the derivatives/integrals of equivariant functions. Finally,
functionals over the space of probability measures are heavily studied, particularly proving
that invariant functionals have minima that correspond to invariant measures (however, not
necessarily concentrated on the subspace of equivariant parameters).

Chapter 5 culminates our work by employing the discovered facts from all previous
chapters to prove properties of the WGF of G-invariant functionals. In particular, some usual
notions from Chapter 3 (notably, model symmetrization, DA, FA and EA) are reintroduced
in our setting and studied under this new lens. One of the main results states that the WGF of
an tnvariant functional remains invariant overtime whenever the initialization is invariant as
well. Furthermore, it is proven that whenever the initialization is concentrated on the subspace
of equivariant parameters, then the subsequent flux remains concentrated there overtime. A
similar result is derived in order to compare DA and FA under an invariant initialization.

Chapter 6 provides a natural conclusion to our work, gathering and summarizing the
bulk of our original contributions. It also contains a compilation of open questions to be
attacked in our future work.

Finally, the Annexes provide illustrative examples of our work, together with all the
relevant proofs and technical assumptions of the presented results. In particular, Annex A
contains a reading guide which provides further details about the structure and contributions
of this work. The interested reader shall look into it for a more complete description.



Chapter 2

Learning with Neural Networks

2.1 General Supervised Learning Problem

Given measurable spaces X (the space of features) and ) (the space of labels), we consider
data of the form (X,Y) € X x Y following a certain joint probability distribution = €
P(X x Y). The generic supervised learning problem, is one in which we try to find the best
possible model that will allow us to predict, from a given feature X, what the associated label
Y is.

More specifically, we fix a subset of all possible measurable functions from X to ),
F < M(X,)Y), (which we call the hypothesis set) from where we’ll pick our model. To
determine the fitness of a model f € F for the task at hand, we consider a given loss function
¢:)Y xY — Ry, which will measure, for a given sample (X,Y) € X x ), how far off our
model prediction, f(X), is from the real value of the label, Y.

To find a model that will work well for any sample drawn from w, we will try to minimize
the expected error, which we call the population risk (or also, generalization error), R. i.e.
for a given model f € F we will evaluate:

R(f) = Ex,y)~<[((f(X),Y)]

We say that a model which minimizes such risk “generalizes well” to any sample drawn from
the data distribution.

In practice, however, it will be impossible to have access to the law of the data (7); so a
good model must be found just from a given i.i.d. sample of data S = (X, Y%)7~,. That is,
we have to fix some algorithm A : | J (X x V)™ — F that will allow us to find, for any
sample S (of any size), a good model A(S) € F.

The most popular heuristic for such a problem is to simply choose the model that
minimizes the empirical risk with respect to the sample, Rg. i.e. for a given model
f € F and sample S, we will evaluate:

m

k=1

Rs(f) =

1
m

4



The hope is that, for a large amount of collected data, this quantity will approximate R. We
say that a model that minimizes Rg adjusts well to the data (which doesn’t necessarily mean
that it will generalize well).

With all these elements in mind, we can define a supervised learning problem more
precisely:

Definition 2.1 [Supervised Learning] Given a data distribution m € P(X x )), we aim
to find a model f € argminger R(f) (i.e. that generalizes well).

As, in practice, we don’t have access to the data distribution m, we approximate such a
solution by minimizing the empirical risk (with respect to a given sample S drawn from 7);

ie. fe arg minger Rg(f).

In practice, in order to have computable algorithms, we usually restrict ourselves to
hypothesis sets F that are parametric, and the optimization Rg is done through some
sort of gradient descent scheme such as Stochastic Gradient Descent (SGD) (we will
elaborate on the specifics of this method later on). This optimization of the empirical risk
is what’s known (in practice) as the training of a model. In particular, one of the most
popular approaches for solving supervised learning problems (specially in recent years) has
been to consider the class Fg of multilayer neural networks.

2.1.1 Multilayer Neural Networks

First, consider the following definition of what we will consider as a neural network in this
work:

Definition 2.2 [Fully-Connected Multilayer Neural Network] A neural network (NN)
with L € N hidden layers is a function between X = R% and Y = R, composed of a
collection of affine computing units combined with sequential nonlinear activation functions
(see illustration in Figure 2.1). Particularly, a fully-connected multilayer NN is such that,

for each layer { € [L] :={1,...,L}:
o A number of “neurons” Ny € N in the layer (such that Ny = dy and N = dp,).

e An activation function ¢© : RNe — RNe | which is often taken to be non-linear.

o “Parameters” 09 := (W, by) € RNe®Ner x RNe (which we’ll use to construct our “affine
computing units”).

We denote N := (N))k, and o = (¢9)L_,, which are the parameters that define the
architecture of the network. We similarly define ©(N) := [[7_, RN®Newt 5 RN and we
consider the vector containing all of the network’s parameters as = (1Y), € ©,(N).

Then, given a fized architecture, A = (N,0), a Neural Network with parameter 0 is
the function: ®; : RM — RNt such that for all x € RNo:

zo =, 1 = oWy + b)) Y0 e {1,... L}, & (x) =z

5



input layer hidden layer 1 hidden layer 2 output layer

Figure 2.1: Diagram of a Multilayer Neural Network (with L = 3). Image taken from [23].

Neural Networks correspond to a specific type of model, which has received increased
popularity over recent years due to its success on different kinds of complex tasks (from image
classification to natural language processing). In particular, they take part in the previously
described general supervised learning setting, as a specific kind of parametric hypothesis set
from where we shall pick the best possible model. More concretely, we consider the hypothesis
set of all possible multilayer neural networks, parametrized by © := |J; .y Unene O(N);
given by:

Fo:={P,: 006}

It is known, as shown in Hornik et al. [37], that this collection of neural network
models with arbitrary number of parameters possesses good properties of universal
approximation (i.e. any continuous function on a compact set can be approximated arbitrarily
well by using NNs). In particular, it is enough to consider neural networks with a single hidden
layer (L = 2 in our setting) to have such a universal approximation property.

As for the focus of our work, we will be interested in understanding the behavior of
Neural Network models during their training process (where data is used to adjust the
chosen parameters in order to minimize the empirical risk of the problem). In particular, it
will be interesting to assess how close this training process can get us from actually
minimizing the generalization error of the learning problem.

2.2 Mean Field Limit of Shallow Neural Networks

The problem of understanding the training of NNs is highly complex. We are seeking the
optimal parameter such that the resulting network will become a good model for predicting
the given data distribution. Unfortunately, the function 6 — E, [¢(®(X,0),Y )] we are trying
to optimize is highly non-convex, and thus no global minimization guarantees can be easily

deduced.

A strategy to escape the issue of non-convexity, is to take an asymptotic limit of the
neural network. More concretely, consider the following setting, which has been intensely
studied in the NN literature: (real-valued) neural networks with 1 hidden layer (i.e. L =2

6
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Figure 2.2: Figure taken from [75]. Here, a Bayesian Network of outputs 41,y is displayed;
as the amount of hidden layers increases, the output distribution (denoted p(yi,y2)) becomes
smoother (it actually becomes Gaussian; what’s known in the literature as a Neural Network
Gaussian Process).

in the model of Section 2.1.1). This is what’s usually referred to as the setting of shallow
NNs. Now, in order to establish some asymptotic result for these NN models, we can re-write
them (slightly changing the notation from previous section, and considering dy = d € N*,
di=NeN* d,=1and o0:R — R) as:

d) R - RY - R
1 N

where 0, (z;0;) = wio(A; - © +b;), 0; = (w;, A;, b;) € RP := R¥™2 and 6 := (0,)Y, € (RP)N.

This corresponds exactly to what was introduced in section 2.1.1, but rewritten in a way
as to emphasize the role of the N € N* hidden units in the single hidden layer. In particular,
we will be interested in taking the limit as N — oo, under which the behavior of the network
will become smoother in some sense. This idea is illustrated in figure 2.2, where one can see
how in the limit of infinitely-many hidden units the objects involved seem to become better
behaved (in some sense). In this way, one would expect to leverage the nicer properties of the
asymptotic network, in order to obtain better guarantees for the training of the finite-width
networks.

Some of the most usual infinite-width limits that have been studied in the literature are
the so-called Random Features (RF) of NNs (see Lee et al. [51], de G. Matthews et al.
[22], Novak et al. [64], Garriga-Alonso et al. [35]), the Neural Tangent Kernel (NTK) (see
Jacot et al. [41], Arora et al. [4], Li et al. [52]), and the Mean Field (MF) limit of NNs
(driven by Mei et al. [57], Sirignano and Spiliopoulos [78], Chizat and Bach [16], Rotskoff
and Vanden-Eijnden [72] and widely developed since then).

All these regimes allow us to connect the training of wide NNs with other mathematical
objects of interest, such as Gaussian processes (for RF), the theory of RKHS" (for the NTK)
or Wasserstein gradient flows (for the MF limit). The difference between the obtained
asymptotic regimes comes from the initial assumptions that have to be made when taking
the limit. In particular, very restrictive assumptions will lead to relatively limited asymptotic
regime for the network. For instance, the RF limit involves only training the last layer of

'Reproducing Kernel Hilbert Space, see Hofmann et al. [36] for a reference
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the network (making the problem convex, but undercutting the model’s expressivity); and
similarly, in the NTK limit, the asymptotic training dynamic, though simpler to theoretically
understand, is one of lazy training (i.e. the distribution of parameters does not globally
change overtime). Under the lens of such limitations, the MF limit appears as a reasonable
alternative, where the limiting training dynamic involves a significant evolution of the parameter
distribution (through a Wasserstein Gradient Flow), without many theoretical drawbacks.
This work will therefore focus on studying the MF limit of neural networks and its properties
(particularly under the lens of symmetries in the data distribution).

2.2.1 Theory of the Mean Field Limit of Shallow Neural Networks

The main theory to be considered in what follows, is that of the mean field (MF') limit of
shallow neural networks. Though some insights will be given for the multilayer case, the
extension of our results to the multilayer setting will be left as future work. The following
analysis of the state of the art on the topic is based on the original works (in which the topic
was introduced) of Mei et al. [57], Sirignano and Spiliopoulos [78], Rotskoff and Vanden-
Eijnden [72] and Chizat and Bach [16]. These are complemented by more recent extensions
of the original results, such as Mei et al. [58], Sirignano and Spiliopoulos [81], Chen et al.
[15], Bortoli et al. [9] and Descours et al. [24]; as well as the global convergence guarantees
(for the Langevin Dynamics of the reqularized problem), as in Hu et al. [38], Chizat [17],
Chen et al. [13] and Nitanda et al. [63]. This review tries to be as extensive as possible (with
necessary complements included in Chapter D), but further insight shall be sought in the
original material.

The macroscopic idea of the Mean Field limit for networks with 1 hidden layer is that,
under a suitable scaling limit (where both the width of the network and the number of SGD
iterations go to infinity), the training dynamics with SGD are asymptotically governed by a
non-linear PDE corresponding to a Wasserstein gradient flow for a convex risk function
in the space (Py(Z), Ws). Under the favorable regularization conditions of the problem (e.g.
considering the Langevin Dynamics of SGD), it can also be shown that the limit dynamic in
the Wasserstein space converges (as t — o) to the global minimum of the regularized
problem.

More specifically, let X be a subset of R? (the feature space), Z be a subset of R (the
parameter space) and ) be a subset of R (the label space). Consider a shallow NN given by:

Y x> Y
1 N
T - N;@(iv; 0:)

where N € N* is the number of hidden units, and o, : X x Z — ) is what the literature
on the topic refers to as the activation function (or simply unit). This naturally describes a
shallow NN (as introduced in the previous section) by setting o, (z;6;) = w;o(A;-x+b;), with
0; = (w;, Ay, b;) e RP .= R¥*2 = Z and 6 := (0;)Y, € (Z)". However, this description allows
for other settings of interesting models, as radial basis function networks, the deconvolution
of sparse spikes, density estimation via maximum mean discrepancy minimization (see [72,
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16, 82]). This model even serves to account for deeper Neural Networks (with a particular
structure) by defining o, appropiately (the reader shall seek further reference in Rotskoff
and Vanden-Eijnden [72]). Despite this flexibility, we will refer to the general model (with
arbitrary o, ) simply as the shallow NN model or the overparametrized NN model for the rest
of the work.

2.2.2 Universality

Notice that, for a given 0 = (0;)., € (£)”, the network @) can be seen as an integral against
the empirical measure associated with 6, )Y = % Zfil d9,. More specifically?:

Vre X, o) (z) = (o.(x;-),vp )

This immediately allows a connection to the theory of Barron Spaces, as described in multiple
papers following Barron [6]. Consider M®(Z) the space of (signed) Radon measures?
over Z with finite total variation, and define the space of functions that can be realized
as integrals of the unit against a measure in M*(Z) (sometimes denoted JF):

Fos(MS(Z)) = {(f: X - V| Iy e M5(Z), f() = f 0u( 2)1(d2))

Z

This functional space might seem somewhat restricted; however, as stated in Rotskoff
and Vanden-Eijnden [72] (and coming previously from Cybenko [20], Barron [6], Park and
Sandberg [67]), it has enough expressiveness to achieve universality, i.e. F,, (M%(Z)) is
actually dense in L*(X,Y;u). We will give a proof to a slightly stronger version of this
fundamental result, as it will be useful in the general setting we want to establish. For
this, consider the following assumptions (the original ones employed in Rotskoff and Vanden-
Eijnden [72] shall be found in section C.1):

Assumption 1 Let my € P(X), and X, Y and Z be subsets of general separable Hilbert
spaces. Consider that:

e Z is compact.

o Ty —a.s.Vr e X, o.(x,-) is continuous (which we denote o.(x, ) € C(Z,Y)).

The function & — Sup(, ez« z{0x(T; 2), 0u(2; 2'))y is in L' (X, R; mx)

0. 1s discriminating, in the sense that*:

[Vze Z, {9,04(:; 2122, pm0) = 0] = [9=0 7x — a.e. in X]

2 An alternative scenario would be to have Z = R x Z and for any (w;, 0;) € Z, 04 (x; (wy, 0;)) = w;cs (3 0;)
defining 7 = L w;85,, which is a signed measure on Z such that: Vo € X', ®) (x) = (dx(x;-),7)'). To
simplify notation we won’t state such a difference explicitly, but rather assume clarity from context.

3We consider signed radon measures, to allow for a free linear coefficient in front of o, letting the integral
{o4,7) be potentially unbounded even when o is bounded.

‘Note that the inner product in L?(X,Y;7wy) is introduced. It is defined as (f, DX YVirx) =

§2{f (), g(x))yma(dx)



Remark About these assumptions, we can say that:

e Assuming the compactness of Z (which might be seen as a strong assumption) isn’t
completely hurtful in this setting, as the universality result will give us a signed
measure to approximate the relevant functions. Therefore, despite this assumption
(together with continuity) forcing o.(x,-) to be bounded, the free signed coefficient
coming from the signed measure will allow us to be able to approximate even unbounded
target functions.

e As it is stated, the discriminating assumption for o, might be different from the usual
discriminating assumption employed in the literature, which states that a function

o : R — R is discriminating if Yy € M5(X):
f o(aTz +b)du(z) =0VaeR? VbeR — p=0
Rd
However, such an assumption is actually stronger that the one we're currently considering;:

Proposition 1 Consider traditional setting of shallow neural networks. i.e. Let X =
R4 Y =R® and Z = R® x R™>** x R®, and 0y : X x Z — Y be defined as:

Vre X, V0 = (w,a,b) € Z, 0.(x;0) := wo(a’z +b)

for o : R — R an activation function that’s applied pointwise (i.e. Yz € R®, (0(2)); =
o(z) Vie{l....,b}).
Assume that o is discriminatory in the sense that Yy € M®(X):

f o(a’z +b)du(z) =0VaeR? VbeR= =0
Rd

Then, o is discriminatory in the sense of assumption 1:
[Vze Z, (9,04(:; 2122, 9m0) = 0] = [9=0 7x — a.e. in X]

Proor. See Annex C.1. O

With Assumption 1 in place, we proceed to prove the following results (which are standard
in the neural network literature). The proof is esentially the same as in Rotskoff and Vanden-
Eijnden [72], only with a few variations accounting for the fact that we work with Bochner
Integrals. We do include the proofs for completeness:

Proposition 2 Under assumption 1, the space F,, (M®(Z2)) is a linear subspace of L*(X,Y; wx).
Proor. See Annex C.1. O

From there, we get the desired universality result:

Theorem 1 (Universality) Under assumption 1, F, ,(M®(Z)) is a dense subspace of
L*(X,Y;7x) (in the Bochner L*-norm topology).
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Proor. See Annex C.1. O

This result is a key part of the current theoretical understanding of NNs and their
approximation power: despite the simplicity of the shallow NN model, when o, and Z
satisfy good properties, any square-integrable function from X to ) can be approximated by
functions in F,, (M?(Z)). This result established with a general Z will be really useful, in
particular when considering parameters that constitute equivariant NNs (which will soon
be introduced).

Now, functions in F,, (M?®(Z)) aren’t by themselves the most interesting objects. We
want to know whether a given class of finite-width neural networks is universal or not. That
is, consider®:

N
Now(Z) := {f X >V I[3INeN, 3(c;,0:)L, SR x Z, f(-) = %ZQ’U*('%@@')}

It is clear that A, (Z) € F,,(M?(Z)) (by considering the empirical measure of the parameters:
* SN ¢idp,). As noted in Rotskoff and Vanden-Eijnden [72], any function in F,, (M*(Z2))
can be approzimated (pointwise) with a sequence of shallow NNs with finitely many units:

Proposition 3 Under assumption 1, for any f € F,,(M5(Z2)), there exists (cp, Op)nen S Rx
Z such that we can define a finite neural network: Vo € X, fo(x) = {ox(x,-), = 31 ¢:i0p,) =
LI cios(x;0;); that satisfies:

n—a0
_
fn Tx —a.s. f

If we further assume Ty to be compactly supported, this convergence holds in LP(my), ¥p =1
Proor. The proof is included in Annex C.1 for completeness. O]

This result shouldn’t be surprising, as it comes naturally from applying the LLN (though
making this explicit isn’t completely trivial). It also allows us to state a more down-to-earth
universality result:

Corollary 1 If assumption 1 holds and wx is compactly supported, then: N5, (Z) is dense
in L?(X,Y;mx).

Proor. See Annex C.1. O

2.2.3 Learning Problem

Besides the good approximation properties of the shallow NN model from a functional
perspective, we are interested in its capabilities for solving a given statistical learning problem.

5Recall, as mentioned when introducing Barron Spaces, that the linear coefficient is included to allow
these models to be unbounded even when o, might be bounded. Further in the thesis, we will limit our scope
to probability measures over Z, and so our notation might be adapted (this will be made clear later on).
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Assume that we have a probability law 7 € P(X x ))) that models our data distribution
(i.e. our data samples will distribute as (X,Y) ~ 7). Let £: J) x Y — R be a loss function®,
typically taken to be conver (at least in one of its arguments). A really common choice in
the literature for such a function, is the quadratic loss ((y, ) = 1|y — 9|3

We are interested in obtaining a neural network model with good generalization power;
i.e. if we consider the population risk associated to a given measurable function f: X — Y

(a model, also denoted f e M(X,))) as:

R(f) = Exy)~«[0(f(X),Y)]

we are interested in finding a good set of parameters 6 € ZN (with N € N) such that the
obtained NN model will minimize the population risk R(®}).

Now, recall that the problem of finding infgezv R(®}’) is highly non-convex due to the
introduction of non-linearities through the activation function. Fortunately, in the setting of
shallow NNs we can reformulate it recalling that for any € Z¥ and z € X:

@y () = {oul; ), )

where v) = & 21]11 Jdp, is the empirical measure associated with 6. So, instead of seeing this
as an optimization problem over the space of parameters, we can see it as an optimization
problem over the infinite-dimensional space of probability measures, by considering the
population risk functional (with a slight abuse of notation) as R : P(Z) — R, given by”:

R(p) := Ex[({o4(X5-), 1), V)]

We then rephrase our problem as that of finding inf,cpz) R(1r). The advantage is that,
beyond the more abstract setting, the functional over probability measures may satisfy good
properties. For instance, it is standard to notice that:

Proposition 4 Let XY and Z be subsets of separable Hilbert spaces, m € P(X x )) and
0:Y xY —R. Consider R: M(Z) — R defined as R(p) := E [0({o.(X;"), ), Y)], Vu e
M(Z). If we suppose that { is convex on its first argument, then R is conver (as a
function), meaning that: YA € [0, 1], Vv,0 e M(Z)

ROw + (1— N)7) < AR(v) + (1 — N R(P)

Now, beyond the convezity of R in this setting, when the loss is chosen to be quadratic
(even when ) is a general separable Hilbert space), solving the learning problem becomes
essentially a problem of function approrimation. In particular, it is a known fact that
whenever 7|y has second order moments (and the quadratic loss is considered), the population
risk allows for the following decomposition:

Lemma 1 Let X, be subsets of separable Hilbert spaces, let m € P(X x Y) be such that |y
has finite second order moment, and consider the quadratic loss {(y,§) = 3|y — 9||3. Then,

6In general, it’s simply a function that allows to measure similarity between elements of ).
"We shall indistinctly consider it as a functional over the space of all positive Radon measures over
Z, M(2). ie. as R: M(Z) - R.
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for any measurable f : X — Y:

R(f) = Ec[|Y = F(XOI3] = Re + Ex[ | f*(X) = F(X)]3]

where f.(x) := E.[Y|X = ] and R, is the Bayes risk of the problem (R, = mingeax,y) R(f))-
Furthermore, f* € M(X,)Y) is the unique (7|x-a.e.) minimizer of R over M(X,)).

Proor. We include the proof (which is standard) in section C.2 for completion. O

As noted in Mei et al. [58], this decomposition allows (under suitable universality conditions)
for a dimensionless approximation bound (coming from Barron [6]) given by:

1 2
i%f R(®)) < Ry + N (ZTJ w”2|F*(w)|dw)

where F* is the Fourier transform of f*, and r = sup,cqupp(r|y) |Z/l2- In other words, when
universality conditions hold (such as those of theorem 1), we could (at least theoretically)
achieve an arbitrarily small population risk (up to R,). We state this result in the context
of universality of shallow NNs as defined in this work:

Lemma 2 Consider the quadratic loss and let m € P(X xY), s.t. |y has finite second order
moment. Let assumption 1 hold (in particular, F,,(M?®(Z)) is universal by Theorem 1),
then:
inf R(f)= inf R(y)= R.
fefa*l(rfl\/ls(z)) () 76/\1/1%(3)) ™

Now, if this minimum is attained at some u* € M>(Z), then
Ve X my-a.e., <0'*(£E, ),,LL*> = f*(.T) = EW[Y‘X = 33]
i.e. the optimal model can be realized in F, (M>(Z))

Remark 1. In what will follow, the analysis of the functional R : M*(Z) — R will be
restricted exclusively to probability measures over Z (i.e. R: P(Z) — R). This can
be done WLOG (as noted in Chizat and Bach [16] in what they refer to as the partial
1-homogeneous case) by considering Z=RxZand g, : X x Z — Y defined by:
o«(x,(c,0)) = cox(z,0) Vr e X, Ve e R, V0 € Z. Possible restrictions will appear at
instances where, for instance, we might assume Z to be compact (as in assumption 1);
however this won’t be the standard in the rest of our work. In any case, one shall notice
that: .

. }ilsf(z) R(v) Melg(fé) R(p)

We will make the distinction in the relevant cases (as is the case here), but we’ll drop
the (-) in upcoming sections.

2. The fact that the value of the infimum inf. (s z) R(7) might be attained is not at all
trivial: despite the fact that the lower semicontinuity of R is more or less well known
(we'll check it out later), checking some sort of coercivity condition for R is quite tricky,
and it might require for restrictive assumptions.
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In particular, if any infimizing sequence (Y, )nen is to be relatively compact in M®(Z2),
it must satisfy that 3IM > 0, Ing € N, Vn = ng, |v|rv < M. However, bounding
the sequence in this manner would make it impossible for [z — (o, (z,-), )] (With
bounded o, which is often assumed) to arbitrarily approzimate f* in L? as f* might
be unbounded in principle.

We suggest that for a compactly supported 7 € P(X x ) (which makes f* essentially
bounded), a potential result might follow by considering F,, (M3,(Z)), the space of
signed measures over Z with total variation bounded by some constant M > 0 (which
is a compact space, seen as a closed subset of P([—M, M| x Z))%. We were unable to
prove this for the time being, and will leave it to future work.

The even more difficult question of whether assuming universality (under potentially

more general conditions than Assumption 1) allows for this infimum to be attained (for
potentially unbounded o); is also still open and to be developed in future work.

. If we assume 7wy to be compactly supported, by corollary 1, we can adapt the proof to
ensure that the infimum is taken over the shallow neural networks of finite width. i.e.:

inf R(y)= inf R(f)=R.

VEMZ(Z)) feNoy(2)

. One could reasonable wonder whether some kind of converse statement holds true. That
is, if V7 € Po(X x V) there exists u € M5 (Z) such that Vo € X my-a.e., (o.(x,"),u*) =
f*(x) = EL[Y|X = z]; then, the class F,, (M?(Z)) is universal. We have tried to tackle
such question without significant results; so we will leave its exploration to future work.

As told in the previous observation, from this point onward, we will drift from the

universality analysis, and turn our focus into the properties of the convezified optimization
problem over the space of probability measures: inf,cpz) R(1t) := E-[€((0.(X;-), 1), Y)]. For
this, the context of Optimal Transport Theory (particularly, the idea of Wasserstein Spaces)
will be of key relevance. A good review of the general topic may be found in Santambrogio
[73], Villani [88] or Ambrosio et al. [1]. We do however include some essential definitions and
properties that shall be useful to our work.

2.2.4 Wasserstein Spaces

If P(Z) is the space of probability measures over a separable Hilbert space Z (with norm
| - |; we often consider Z = RP), let p > 1, and define the space of probability measures with
finite p-th moment as:

Pp(Z) = {M eP(2) : L 167 12(d6) < +oo}

This space can be endowed with the Wasserstein metric, defined Yy, v € P,(2) as:

Wl ) = [ i Ev[|X—Y|P]];

yell(p,v)

8Taking from the previous observation, it is equivalent to assuming Z to be compact and optimizing R
over the compact space P(Z).
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Where II(u, v) is the space of couplings between p and v. ie. (u,v) = {PeP(Zx 2) :
Px = p, Py = v}. It is a known result that the infimum involved in the definition of W,(u, v/)
is always attained at some (possibly non-unique) v € II(u, v) (see Villani [87], Chapter 1).
In Z = RP whenever at least one of the measures involved (e.g. 1€ P(Z)) gives zero mass
to Borel sets of Hausdorff dimension (at most) D — 1 (e.g. if p <€ Agp), then by Brénier’s
Theorem we know that the optimal coupling is unique and given by (Idx V¢)#u, where ¢
is some convex function such that Vp#u = v (see Villani [87], McCann [56]).

Beyond this properties, we have that Vu,v € P,(Z), Wi(u,v) < W,(u,v); and that for
p = 1, the Kantorovich-Rubinstein dual formulation holds (when g and v have bounded
support as shown in Ambrosio et al. [1]):

Wl (M7 V) = sup

IflLip<1

[ rowian - | f<e>u<de>\

It is a known fact (see Ambrosio et al. [1]) that for separable and complete Z, the space
(P,(Z),W,) is a complete and separable metric space (i.e. a Polish space). It is also
known that for (u,)neny S Pp(Z) and p € Py(2):

in 7
Wp(pn, ) —— 0 = Cas .
n—0 (tn)n has uniformly integrable p-moments

Having uniformly integrable p-moments corresponds to saying that Vn € N it holds that
lim, o, SZ\BT(O) |10]Pdp,(6) = 0. In particular, when Z is a (possibly infinite-dimensional)
separable Hilbert Space, this condition simplifies to:

Wy (pin, ) —— 0 = { Mn .
e limy, oo § 5 [0]7dpn(0) = § [0]Pdp(0)

Which is also equivalent to:

Wy (n, ) —— 0 <= Vf e C(Z,R) with p-growth, Jz fdu, — fz fdu

n—o0
Remark Notice that the space P,(Z) is locally compact if and only if Z is compact !

With these elements in place, we can first notice the following slight generalization of the
characterization of convergence in (P,(Z), W,):

Lemma 3 Let (pn)nen € Pp(Z) and p€ P,(2). Then:

Witn, ) —— 0 =

n—o0

VY (real) separable Hilbert space,Vf € C(Z,Y) with p-growth,

Where p-growth for a function f : Z — Y is defined as there existing constants C,C" > 0
such that ¥z € Z, ||f(2)|y < C + C'|z|%.

Proor. See Annex C.3. O
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From there, a property for the risk functional of a learning problem appears immediately:

Proposition 5 Let XY and Z be subsets of separable Hilbert Spaces, m € P(X x Y) and
¢:Y xY — R continuous and positive. Consider R : M(Z) — R defined as R(u) :=
E,[(({o«(X; ), V)], Y € M(Z), and let o, : X x Z — Y be continuous, with p-growth’
on its second argument (Vx € X, mx-a.e.) for some p € {0} U [1,0).

Then R : P,(Z) — R is lower semicontinuous (l.s.c.) in the topology of (Py(Z), W,).

Proor. The proof follows well known and uses standard arguments, but we include it for
completeness in section C.3. L]

Further insight into the learning problem can be drawn from understanding the problem
as one of Optimal Transport. In particular, interesting properties of NN training might come
from the study of Gradient Flows in Wasserstein Spaces.

2.2.5 Wasserstein Gradient Flows

This section is loosely based on the necessary elements described in Chizat and Bach [16], Hu
et al. [38], Chen et al. [13], Chizat [17]; however for a complete reference on the topic, Carmona
and Delarue [12] shall be considered.

Let Z be an arbitrary separable Hilbert space (results in the literature are actually stated
for Z = RP, but the aditional generality will be sensibly assumed), and R : P(Z) — R be
a functional over the space of probability measures (in our case, the population risk). We
consider the following relevant quantities:

Definition 2.3 (Linear Functional Derivative (First Variation)) For a functional R : P(Z) —
R, we can define what we call its linear functional derivative (Ifd), as a function:
0",
o

st VuveP(2), lim Az hpthy) = R L Z—f(ﬂ, B)d(v — 1)(0)

P(Z)x Z >R

h—0 h

and also (in order to avoid ambiguity on the definition): J Z—f(u, 0)du(f) =0
z

The function R’ : 1€ P(Z) — %(,u, 1) is also known as the first variation of R at p.

Definition 2.4 (Intrinsic Derivative) For a functional R : P(Z) — R we can also define its
intrinsic deriwative (or L-differential, as in [12]). Whenever g—ﬁ :P(2) x Z2 - R exists and
is differentiable on its second argument, the intrinsic derivative of R is defined as:

DR 8) = Vi (5000))

9Under the convention that p = 0 meaning the function is bounded
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In some contexts, authors don’t give a special name for the intrinsic derivative, and just
refer to the “first variation’s gradient”. This comes from the fact that, as stated in Chizat
and Bach [16], differentiability of g—f}(,u, -) might not be required for the theory to hold: it is
enough to be able to define a subdifferential set. As a reminder, note that:

Definition 2.5 (Subdifferentials) Let f : Z — R be any function (potentially non-convex):

e [Sub-gradient] A subgradient of f at zg € Z is any p € Z such thatVz € Z, f(z) =
f(20) + <P,z — 20) + o(2 — 20).

e [Subdifferential] For z € Z, we define the subdifferential of f at z, denoted 0f(z),
as the set of all subgradients of f at z. It is easy to verify that this set is closed and
conver.

i.e. as we'll see in what follows, it will be enough (in some settings) to just consider a
Wasserstein sub-gradient flow, where it’s enough to consider the subdifferential set of R'(u)
(which, in this setting, has a particular definition, similar to that of the usual subdifferential,
but involving the Wasserstein distance and transport plans'?).

To better illustrate the notion of the linear functional derivative and the intrinsic derivative,
consider the following examples:

Example 1. Animportant example (that will be useful later) is that of the KL Divergence.
Let p << v and Z—‘Ij be the corresponding Radon-Nykodym derivative; the KL Divergence
between p and v is defined as: D(ul|lv) = Slog(‘;—ﬁ(z))du(z). Fixing v € P(Z) and
working with R(p) = D(u||lv), we have that (modulo a constant that doesn’t depend
on z, see [62]):

OR du 1 dp

B 2) = log | 2 1 D -
) =tog (P46)) +1 and DRl ) 5V

2. Whenever R(u) := §, ¢(2)du(z) for some bounded continuously differentiable function
¢: Z — R, it is well known that :

(2)

Z—f(u, 2) = ¢(z) - fﬂﬁdu and D, R(u, z) = V.6(2)

(if ¢ is not differentiable, OR' (1) = d¢(+))

3. In particular, for the shallow NN learning setting, with Y < R:

?(u, 2) = E, [D1l({o.(X;"), 1), Y)o.(X, 2)] + (constant not depending on z)
v

DMR(#a Z) =E; [D1£(<0-* (X; ')a N>v Y)VZU*(X, Z)]

10The interested reader shall look for a reference in Ambrosio et al. [1]; we won’t introduce such a concept
since it will have limited usability in our context: we will mostly assume D, R(u,-) to be well defined (and
in particular, it will coincide with the usual subgradient). An extension of our results to the setting of
sub-Wasserstein Gradient Flows is definitely of interest for our future work.
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This known results can be extended to our setting (where X)) and Z are separable
Hilbert spaces), by applying a more general argument that passes through Bochner integrals.
In particular, as in Chizat and Bach [16], let H be a Hilbert Space, and consider that
R :P(Z) — R can be written as R(u) = L({®P, 1)), where ® : Z — H is a parametrization
of elements in ‘H; L : H — R is some loss functional, and the integral (®, ;1) is a Bochner
integral on H. This generalizes our shallow NN learning setting, as we might consider the
Hilbert Space H = L*(X,Y,7x), L : H — Rgiven by L(f) = E.[¢(f(X),Y)]and ® : Z — H
defined as V0 € Z, ®(0) = 0.(-;0). We recover R(u) := E; [(({o.(X;"), ), Y)] = LD, )

With this new setting in mind, we can prove the following result!!:

Proposition 6 Let H be a separable Hilbert Space and R(p) := L({®D, ), for some function
that’s Gateauz-differentiable L : H — R on every direction and of continuous differential;
and ® : Z — H such that Y e P(2), |[{P, u)|n < .

Then V0 e Z, Vue P(Z):

f}—fu@ 0) = DAL((®, 1)) (®(6)) = (VaL((®, 1)), D(0)>, — Cr

Dy R(p,0) = (Dp L, 1)) (De®(0)))" = Vo@(0)(Vi LD, 11)))

Where Cr,, := (V3 L(P, 11)),{ P, py)n is exactly the constant needed to avoid ambiguity in
the definition; (-)* denotes the adjoint operator and, in particular, Vo®(0) = (De®(0))* :
H — Z. When Z = RP this corresponds to the usual definition of the gradient.

Proor. See Annex C.4. O

In particular, for the more general shallow NN learning setting we just described (in which
the output space might not necessarily be R), we get that:

Corollary 2 Consider R(u) = E. [(({o.(X;"),n),Y)], which is a risk functional as in
proposition 6 when considering:

o The Hilbert space: H = L*(X, Y, 7x)

o L : H — R as L(f) = E[l(f(X),Y)], which is Gateauz-differentiable on every
direction in H if we assume £ :) x Y — R to be continuously differentiable on its first
argument, with square-integrable derivative. The differential can be explicitly computed
to be (and it is clearly continuous on H):

DyL(f)(h) = Ex [{V1L((f(X), V), h(X)),]

o &: Z > H defined as V0 e Z, ®(0) = 0.(-;0), which satisfies Y€ P(Z), (P, uy|n <
oo under the assumption of o, being bounded and continuous.

HRecalling that by Riesz Representation Theorem, any continuous linear functional f : # — R can be
represented by a unique vector hy € H such that Vo € H, f(x) = (hy,z)y. In particular, if f is differentiable,
Ve eH, D,f(x): H — R is a continuous linear functional and can be thus be represented by the gradient
vector: Vo, f(x) := hp, ¢(a), such that Yh € H, D, f(z)(h) = (Vo f(x), h)n
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OR

DMR(M7 0)

= Er [Vl ({04(X;-), 1), Y) , 04(X;0))y| + (constant not depending on z)
= Er [Vyou (X;0).Vil({0x(X; ), 1), V)]

Proor. Direct from proposition 6. In any case, the exact same proof used for proposition 6
works under the stated hypothesis. O]

The notion of the linear functional derivative and the intrinsic derivative are useful for
defining the notion of WGF in simple terms (as we’ll see right afterwards). They are also
key for exploiting the convexity of any functional R : P(Z) — R:

Definition 2.6 We say that a functional R : P,(Z) — R is of class C' if %‘j’(u, 1) is well

defined and bounded for every p € P,(Z), and the function (i, z) € Pp(Z) x Z2 — g—f(p, z) is
continuous.

Remark Notice that, for bounded o, and continuously differentiable ¢ with square-integrable
derivative, the example of corollary 2 is of class C!.

Lemma 4 (as in Hu et al. [38], Chizat [17]) Assume that R : P,(Z) — R is convex and of
class C*. Then, for any p, i € P,(Z), we have:

R() — R(u) > L ‘;ijm, Jd( — p)(2)

Proor. The proof is directly taken from Hu et al. [38], with a few minor details filled in for
completeness. It shall be found in Annex C.4. O

With these notions in mind, we can define what’s known in the literature as a Wasserstein
(sub-)Gradient Flow (we take the definition from Chizat and Bach [16], but more depth might
be found in Ambrosio et al. [1]). We will (for the moment) not require for R'(u) : 2 — R
to be differentiable, and only its subdifferential set OR'(y) (in this context, known as the
Wasserstein Subdifferential of R) will be required.

Definition 2.7 [Wasserstein (sub-)Gradient Flow] Let R : P(Z) — R be a functional
for which Ve Py(Z), R () = g—f(u, -) is defined and has a defined subdifferential. We define

a Wasserstein Gradient Flow (WGF) for R as any absolutely continuous trajectory
(Ht)epo.rp @ P2(Z) that satisfies, distributionally on [0,T [xZ :

Oy = — div (vgug)  where vy € —0R () YVt =0 a.e.

The first equation represents a mass conservation (continuity) equation, and the second
equation implies that the velocity follows the direction of the subgradient. Figure 2.3 provides
a pictorial representation of the idea behind this definition.
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< probability mass

Coopg:
Ordip,, teg

Figure 2.3: Pictorial representation of a Wasserstein gradient flow; taken from the GitHub
repository associated to [60]

Whenever R is convex and our intrinsic derivative is properly defined, the WGF dynamics
is written as*?:

Oupte = <(t) div (D R(pue, -) pie)

where ¢ : Ry — R, is a scalar that requlates the chosen velocity vector.

Remark Notice that this notion generalizes that of a particle gradient Flow; as any particle
gradient flow (U(t))i=0 € (Z™)%+ can be seen as a Wasserstein Gradient Flow by considering
the empirical measures i, = % D Oui )

Now, Chizat and Bach [16] prove that such a Wasserstein (sub)-Gradient Flow admits a
unique solution, as stated by the following result (the relevant assumptions shall be found in
chapter D).

Proposition 7 (Existence and uniqueness) Under assumption 7 and an initial condition
o € Po(2) such that pio(Qr,) = 1 for some Q,, = Z. Then, there exists a unique (i),
WGF for R starting from pg, that satisfies the equation for the velocity field:

vi() = (1) = Projoye (@(w); (u) = — | B f@dut ,§j®<u>>:|d

j=1
In particular, when R has an intrinsic derivative D, R, the velocity field corresponds precisely
to D/LR(:ut? )

As a WGF follows the negative gradient of our functional, it is intuitively expected that
the dynamics of u; (the solution of the WGF) will seek to minimize R. Unfortunately,
even when the functional R is convex, the stationary points of the dynamics do not
necessarily correspond to global minima of R. For such a thing to naturally happen,
it is necessary to impose some reqularization on the functional R (e.g. by adding an entropy
term). We will further develop this idea in the following sections.

As we'll see, the training dynamics of a shallow NN might be seen as a Wasserstein
Gradient Flow under the right scaling limit. To wrap around this point, the following
sections describes how the training of a NN takes place in practice.

2Notice that v; = —s(t)D, R, ") = —g(t)Vg‘;—f(ut, -) represents a wvelocity vector that precisely resides
in —0R' ().
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2.2.6 Stochastic Gradient Descent Dynamics

Recall the setting of the learning problem, in which we're trying to minimize a functional
R(p) = Ex[0({ox(X;"), u),Y)] using shalow NNs parametrized by ZV, with N € N. For
notational convenience, we will introduce the following function L,, : P(Z) — R, for z €
X, y € ), defined as:

Lx,y(ﬂ) = (<0*(Ilf, ')a ,u>> y)

This allows us to rewrite our functional as: R(p) := E, [Lxy(p)]. Also, seeing L,, as a
functional from P(Z) to R (for each x € X', y € ), we can use proposition 6 to write,

VYx e X, Y E V: .
C a;:y (Iua ‘9) = <V1£(<U*<x7 -)’ Iu>7 y)’ 0-*(3:’ (9)>)J

DuLu’C:y(,ua 9) = VOJ* (.I, 9) : V1£(<0—* (.’I?, ')7 :u>a y)
In particular, from corollary 2, we can see that (at least formally): D, R(0, u) = E; [D,Lxy (0, 1)].

Now, in the ideal case, if we perfectly knew the data distribution m, we could try to
achieve the optimization by doing regular gradient descent iterations (see Suzuki et al.
[82]):

e First, initializing Vi € {1,..., N}, 6° "% 1o € Po(2)

e On every iteration k € N, defining Vi € {1,..., N}:

07! = 0F — sy DuR(vy' . 07)

Where (s))en is a fixed step-size (also commonly known as learning rate), and we
employ D, R(v}),0F) = E.[010(P)(X),Y )V, (04(X;6F))], the exact gradient of the
function 6 — R(®)'), to update the parameter’s values.

However, in practice the law 7 is generally unknown, and only an i.i.d. data sample
{( Xk, Yi) }ren (distributed following ) is available. The method for training the Neural
Network is thus stochastic gradient descent (SGD). Unable to know the exact value
of R, we're forced to approximate it from our data. For instance, let N € N be fixed and
consider § € ZV our shallow NN’s parameter; with the first B € N samples we approximate:

, 1 &
R(®Y) ~ RNP(0; (X, Yi)ioy) = ] DU (X), Vi)
k=1
The literature usually just considers B = 1, and performs the following training loop:

e First, consider 119 € Py(Z) and initialize Vi € {1,..., N}, 60 "< g,
e On every iteration k € N, define ¥i € {1,..., N}:

where s is the learning rate. Notice that the eract gradient from before has been
replaced by a stochastic approximation (as it corresponds to the gradient of the empirical
loss evaluated on a single sample). Using our latest notation, we write the iteration as:

k+1 _ ok N N pk
0;"" =0 — sy DMLXkaYk<V9k79i)
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Over the years, as NN models have grown in popularity, many variations of this simple
training loop have been considered. Most remarkably, in the literature of mean field limits of
shallow NNs, authors have often considered some of the following variants:

1. Constant Learning Rate (see [57, 58, 78, 81, 9] among many others): We consider
VkeN, s = & for a > 0 a fixed learning rate (LR), which is scaled by the number of
hidden units.

2. Regularized Risk (see [16, 57, 17, 13, 63, 82, 38, 9] among many others): We consider
some regularization term on the population risk we're trying to minimize. We
consider the T-regularized population risk (with 7 > 0) as:

R™(1) = R(p) + 7V ()

where V' is a regularizer which will be assumed to be of the form V() = { rdu for
some potential function r : Z — R. Notable examples include the relatlve entropy
and the measure’s second moment V() = § |0]*du(6). This leads to a modified update
rule of the form:

05+ = 0F — s (010( P (X), Ye) Vo, (04(Xi; 7)) + TV ,r(6]))
Or, in our neater notation (defining L7, : P(Z) — R naturally'?) :

0+ = 07 — sy (DuLX, v, (vpr, 05))

3. Noisy SGD (see [57, 58, 82, 9] among many others): In order to ensure convergence
of the training dynamic, noise will have to be introduced in training; this usually takes

the form of an i.i.d. sequence &F RS N(0,Idz) such that the training loop becomes
(with the noise regularization parameter 5 > 0):

OFt = 0F — s 010(PN(Xy), Yi) Vi, (04 (Xi; 0F +4/28sy &

Under the constant LR regime, with sl = ~- the noise term significantly modifies
the training dynamics (even asymptotically, as it introduces a diffusion term on the
mean-field distributional dynamics). If the noise term was to be further divided by
N° (with 6 > 0) its influence would effectively vanish asymptotically; this particular
setting corresponds to the so-called weak-noise regime.

4. Random MiniBatch (see [24]): For every k € N consider By, a random element of N*,
and the corresponding batch of data {(X},Y),... (X§ ,Y{ )} (where (X, YF)jen
is an i.i.d. sample of data considered at each iteration, so that the batches are
independent over different iterations). This batch of data is used to better approximate

the population risk’s gradient; leading to the following loop:

By,
i+l = gk — 5N ]_;k DAL RY(XF), V)V, (0 (XF; 6F))
7j=1

The most common particular case is to take B to be constant and equal to B € N*.

ie. we define it as L] (1) = Lyy(p) + 7V (1), Y € P(Z) so that R (u) = Ex[L% v (1)]
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5. Different Learning Rates (see [9] and [57]): Consider the parameters ¢ € [0,1), v e
[0,1] and @ > 0; and define Y, = (aN©®~D)Y(=0 Under this regime, we consider

the learning rate to be:
an—l

1 )C
N
A

As noted in Bortoli et al. [9], such a learning rate appears naturally when studying
the dynamic (most notably, Oéév,v)- Most remarkably, depending on the value of v, the
limiting mean-field dynamic is different (in particular, for 0 < v < 1 it stays the same
as usual; but for v = 1 and aditional diffusion term appears in the limiting PDE). In
general, for the theory of Mei et al. [57] to work, it suffices to assume that the LR can
be written as si = e¢(ke) for some fixed € > 0 and a regular function ¢ : R, — R,.

VkeN, sy =

(k+

Considering all of these elements at once, we shall study the most general version of SGD
(noting that it suffices to make the corresponding parameters trivial in order to recover the
original training loop); i.e. Yk € N:

OFtt = oF — sp (BkZal (P (XF), Y]V, (U*(Xf,ﬁf))—i-TVgir(Hf)) +4/28sNeEr (2.2)

With 7, 3, > 0, By, random in N*, &F i N(0,Idz) and s = ec(ke) with ¢ : R, — R, a
sufficiently regular function. In our neater notation, this can be stated (simply) as:

o+t = ( Z D ka YE (e, 0 )) T4/ ENS (2.3)

As mentioned earlier, understanding how the parameter 0% := (0¥)¥, € ZV evolves by
following equation (2.2) directly, can be an exceedingly challenging problem to solve (specially
in the case of NNs). Fortunately, under the lens of shallow NNs, recasting the problem as
one of minimization over P(Z) and taking the limit (under the right scaling) as N — oo,
allows for stronger guarantees (as the limiting object has nicer behaviour). For instance, as
previously mentioned, we shall see how this SGD training dynamics can be understood as a
Wasserstein Gradient Flow in (P2(2), Ws).

2.2.7 SGD as a WGF': a Law of Large Numbers

Recall that, for a given 6 = (6,)Y, € (Z)", the associated network ®) can be seen as
an integral against the empirical measure associated with 6, v} = %Zf\; dp,. More
specifically:

Vre X, oY (z) = (ou(x;-), v}

And thus, our highly non-convex (and hard to solve) optimization problem:

inf R(®Y) = E.[0(D)(X),Y)]

0eZN
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18 recast as

Meiél(fz) R(V) =K, [€(<U* (X; ')7 H>7 Y)]

which is (whenever ¢ : Y x ) — R is chosen convex on its first argument) a convex
optimization problem on the space P(Z).

Furthermore, a classic result (as can be found in Mei et al. [57], or originally in Barron [6])
directly relates the optimum of the original problem against that of the convexified problem
over P(Z). A general version is established in Hu et al. [38]:

Theorem 2 (from Hu et al. [38]) Assume that the ‘;27]2% exists', is jointly continuous in both

variables, and there is L > 0 such that for any random variables 0y, no such that E[|n;]?] < oo,
1 =1,2, it holds that

E| sup 5_R(V ) +E| sup &(y W<t
I/EPQ(Z) 6# 77]1 VEPQ(Z) 5,&2 77717772 S .
Then:
inf R(Y) — inf R(u)| < 2Z
PeZN P (2) N

Proor. This theorem is entirely proven in [38], but they assume that the infimum is attained.
Luckily, no such assumption is needed, and for completeness we include the variant of the
proof in section C.5. O

A quite similar result is stated in Mei et al. [57] (Proposition 1) considering the quadratic
loss and assumptions directly related to that case; however, Hu et al. [38] state that theorem 2
generalizes the result from [57]. Now, recall that the general training dynamics is driven by
equation (2.2), i.e. Vk e N:

B
1 k
Ett = oF — s <§ DO DN(X]), YF) Vo, (0u(XF; 0)) + 7V, r(0F) | +1/2BsNEF (2.2)
ko

As parameters influence the population risk only via their empirical measure, it will be
interesting to see how it evolves along succesive SGD iterations. Slightly abusing notation,

denote the empirical measure of the parameters after each SGD iteration as: v} := é\,ﬁ =

1 N
N 21 595-

One of the main results of the Mean Field Theory of shallow NNs is the propagation of
chaos of the particle system. This means that, as individual NN parameters (particles) are
exchangeable (and thus, characterized by their empirical measure), each of their trajectories
following SGD should eventually (as N — o0) become statistically independent, and their law
shall tend to that of a fixed limiting process (corresponding to the WGF' of the population
risk).

M4Where ‘;Z@ :P(Z) x Z x Z - R is defined as the 1fd of g—f seen as a function over P(Z2).
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To get to this limiting process, some authors (such as Bortoli et al. [9]) pass through an
intermediate step, in which we could understand the SGD iterations as part of a continuous
gradient flow in the finite space Z~. For this, recall our notation L7 () := £ ({4 (,-), 1), y)+
Sz rdp such that the SGD iteration can be written as:

gt ( Dy ->) o e 23

Define X(u,0) := E, [(D,L% y(1,0) — D R™ (11, 6)) ® (DMLE(,Y(,M, 0) — D,R"(1,6))], where
® represents the outer product (or generally, the tensor product) between vectors in Z; this
is the covariance matriz of the vector D, L’ y(11,0) (with (X,Y’) ~ 7). Now, we can consider
the following continuous time SGD iteration for a set of parameters (6%)i=¢ := ((61)X)i=o0,

given by:
dot = ¢(t) lD R™(vY,0h)dt + 4/ V(0! vN)dB + \/%dB;'] (2.4)

where ((B)1=0)ien and ((B!)i=0)ien are independent families of independent Brownian motions
on Z. The derivation of this dynamic is rather heuristic and follows the ideas of Bortoli
et al. [9]; a more formal derivation (as well as some results comparing the continuous time
approximation to the original process) shall be sought in Fontaine et al. [33] (in the specific
case of the learning rate from point 5. in section 2.2.6'%). In many papers, such as Bortoli
et al. 9], the properties of this continuous time dynamic are studied as a proxy to the original
particle system, but without the issues that appear under discrete-time iterations. It is also
interesting to note that the covariance term dissappears in the mean field limit under some
standard conditions'®. Though some interesting insights can be obtained from studying such
a dynamic, we won’t dive into it in much detail.

We will now focus on the following limiting distributional dynamics (DD):

Orpty = <(t) [div ((DuR(pae, -) + 7Vor) pie) + BA] (2.5)

It’s not hard to notice that this distributional dynamics correspond to the Wasserstein
Gradient Flow minimizing the entropy-regularized convex functional:

RP() == R(p) + 7 j rdpi + BHA ()

where H, (1) := D(u||v) = {log(%(2))du(z) is the relative entropy (also known as the KL
divergence) between p and v (see section 2.2.5)17 (with 4 <€ v and Z—‘lf being the corresponding
Radon-Nykodym derivative). Notice that by setting 7,5 = 0 we recover the WGF for R.
Whenever = 0, this equation is often known to have a (unique) solution distributionally;
for § > 0 the solutions to this equation are actually strong.

Yie. For ( € [0,1), v e [0,1] and a > 0; define o, = (aN®=)/1=0 and consider: €Y, , = o,
sc(t) = (1 +¢)7¢, such that Vk e N, s = 54,v,a§<(k5g,u,a)

16 As noted in Bortoli et al. [9], for v € [0,1), this covariance term vanishes in the MF limit; but this doesn’t
happen in the v = 1 regime, making the MF dynamic behave differently.

1"While doing this literature review, we noticed that Suzuki et al. [82] writes R™” using the negative
entropy instead of the usual relative entropy, which we believe could be a typo. However, as most other
works from the literature agree on the use the relative entropy, this choice won’t affect our results at all.
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Equation (2.5) corresponds to what is known (in the literature) as a Fokker-Planck
equation. This is in direct correspondance with what is referred to as a McKean-Vlasov
Equation; a nonlinear SDE that describes the evolution of a type of parameter under the

training dynamics'®:

A2, = () |~ (DR, Z0) + 7Vr(Z) dt +\/25dB, | with g, = Law(Z)  (26)

Where (B;)i>o is a D-dimensional standard Brownian Motion. This equivalent formulation
(See Sznitman [83], Theorem 1.1 for a reference result) shall prove useful to characterize some
of the relevant results. Whenever § = 0, there is no longer a Langevin component, and we
shall simply refer to the SDE as the Mean Field Dynamics (MFD) or the McKean-Vlasov
Equation.

Finally, there’s also a way of seeing the DD of equation (2.5) through an ODE of
characteristics (which is detailed in papers such as Rotskoff and Vanden-Eijnden [72] and
Chen et al. [15]). Despite the inherent interest coming from such a description, we won't
delve much into its details.

With all of these elements in mind, the standard Propagation of Chaos result from
the literature (also known as a Law of Large Numbers) is stated as follows:

Theorem 3 (Propagation of Chaos; sketch) Let st = ec(ke) fore >0 ands: R, — R,
a sufficiently reqular function. Let T > 0 and let py € P2(Z) be an initial condition.

Consider the sequence of parameters, (0%)ren, obtained from following the SGD Dynamics
(equation (2.2)) starting from po; and let (v )ren be the associated empirical measure.
Similarly, consider (ji)i=0 S P2(Z) to be the unique solution of the distributional dynamics
(equation (2.5)) starting from pyg.

Consider the Skorokhod space of cadlag processes Dg([0,T]) (where E = P(Z)). Notice
that j1:= (pi)e=0 € D([0,T]) and define p™= := (V[Jtv/gj)t>o € Dg([0,T])

Under relevant technical assumptions involving regularity of o, and similar others;
and under the right scaling (of € with respect to N ), we have that:

N,e
M

N—0 H

e—0
where = denotes weak convergence in Dg([0,T1)*. Under the right conditions, this convergence
might be stronger (e.g. in Wasserstein-2 metric: Wo(u™¢ 1) — 0)

The previous result vaguely states the idea behind the usual Propagation of Chaos
result for the training dynamics of shallow NNs. Generally, the proof for such a result
essentially involves establishing the relative compactness of the sequence (V) yen (via tightness,
using the Prokhorov theorem) and identifying its limit in a unique way (independent of the
subsequence chosen). More technical insight might be found in Annex D, where some of the

18In this context, some authors also call it the Mean Field Langevin Dynamics (MFLD). We will
refer to it indistinctively
YNote that weak convergence to a constant implies convergence in probability, so a stronger result holds.

26



key technical assumptions for these kinds of results are included (notably those from Chizat
and Bach [16], Mei et al. [57], Sirignano and Spiliopoulos [78], Descours et al. [24] and Bortoli
et al. [9]).

For sake of completeness, we include some of the most frequently found versions of this
theorem. In particular, consider a quadratic loss function (¢(y,9) = |y —9[3), and following
a simple calculation (analogue to that of Mei et al. [57] or Rotskoff and Vanden-Eijnden [72])
we may see the population risk R : P(Z) — R can be rewritten as:

R(j) = Ry + 2JZ FO)dp(0) + | K000, 00). Ve P(2)
Where we define F/(0) = —E[(Y,0.(X,0))y], K(0,8) = E[{04(X,0),0.(X,0))y], and Ry =
E[|Y[3]. This is quadratic on p, making the problem conceptually simpler. Also, it can
be shown that K defines a positive definite kernel?. Under this form, we can define
what they refer to as the potential function ¥ : Z x P(Z) — R, given by: V(0,u) =
F(0)+§, K(0,0)du(0"), Y0 € Z, Ve P(Z). This is nothing else than the linear functional
derivative (halved), U(0, u) = %‘%(u;@).

With these commonly used elements from the literature, we can state this Propagation
of Chaos result more precisely (as before, the relevant technical assumptions shall be found
in Chapter D):

Theorem 4 ((Propagation of Chaos) as in [16, 57, 72, 78, 9, 24]) Under different settings
we have:

1. Consider the quadratic loss ((y,5) = |y — 9|*; let ex = % and ¢ =a >0 (i.e sy =&

is the simple learning rate).

(a) [Regular SGD] Let (0%)cn be obtained from following the simple SGD Dynamics
(equation (2.1)) starting from po; and let p := (p)i=0 S P2(Z) be the unique
solution®* of the simple distributional dynamics (equation (2.5) with T = 0,3 =0)
starting from pg. i.e. the DD given by (the Wasserstein gradient flow for R in

Po(RPY, W) ): ,
(P>(R%), W) Orpie = 2acdivg (s VoW (6; 1)) (2.7)
Consider that assumption 8 (1. or 2.) holds.

(b) [Noisy SGD] Let (0%)ien be obtained from following the noisy and regularized

SGD Dynamics (equation (2.2) with By, = 1 and r(0) = %|0|?) starting from

po; and let p = (u)i=o S P2(Z) be the unique solution®? of the distributional
dynamics (equation (2.5)) starting from g. i.e. the DD given by (the Wasserstein
gradient flow for R™° in (Py(RP), Ws) ):

Orpue = 20 [divy (VoW (0; pr) + TV 1) pe) + BAgpus]

Let assumption 8 (2.) hold.

*’Indeed, from the fact that Yy € M5(Z) (o4, 1)|* = §52 K(0,60)d(0)d~(0") (as seen in the proof of
proposition 2); the result follows from taking v = Zfil c;0, for arbitrary (¢, 2;)N, € (R x Z)N.

21The equation is satisfied in the weak sense, but whenever o admits density ug, then it holds in the
strong sense).

22Tn this case, the equation is satisfied in the strong sense.
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(c) [MiniBatch SGD] (as in Descours et al. [24]). Let (0%)ren be obtained from
following the minibatch SGD Dynamics (equation (2.2) with 7 = 0 and the noise
term divided by N° with § > 0) starting from po; and let p = (j1y)i=0 S Pa(Z) be
the unique solution of the corresponding distributional dynamics (equation (2.5))
starting from po (i.e. equation (2.7), the WGF for R in (Pa(RP), W) ). Further
assume that assumption 8 (3.) holds.

Assuming the sufficient technical conditions, the rescaled empirical training process
pl = (Vlj}f\rtj)tz() € Dg([0,T]) converges weakly (as N — o) to pu.

2. Consider € to be any loss function that’s conver (on its first argument). Let €
[0,1), v e [0,1] and a > 0; define oY, = (aN@)VO=O and consider: ey = o,
s(t) = (1+t)7C, such that Vk € N, s& = enc(key). Consider the SGD training dynamic
with fived batchsize B € N* starting from g, let u := (ul)¢=0 be the law of the solution
to the continuous time N -particle-system dynamic as in equation (2.4) (initialized i.i.d.)
and let p = (p)i=0 S Pa(Z) be the unique solution to the limiting distributional
dynamics (equation (2.5) with 7 = 1,5 = 0) starting from ug. Under assumption 8
(4.), we have that for any fized m € N, we have limy_, o Wo(ut ™Y, (1)) = 0,
where pt™N s the law of the first m particles in the N-particle-system continuous
time dynamic.

For more references, see Theorem 3 of Mei et al. [57], Theorem 1.2 of Sirignano and
Spiliopoulos [78], Theorem 2.6 of Chizat and Bach [16] or Proposition 3.2 Rotskoff and
Vanden-Eijnden [72]. Also: Theorem 1 of Bortoli et al. [9], Theorem 3 of Suzuki et al. [82],
Theorem 1 of Descours et al. [24] among many others.

Remark This kind of propagation of chaos result tells us that, in the asymptotic limit, each
unit (neuron) in the neural network loses its dependence on the rest of the neurons and
behaves “independently”, following the fixed law given by the process p (the solution to the
DD equation (2.5)). This is what naturally gives it the name of the Law of Large Numbers in
this setting: asymptotically, the evolution of our parameters evolves as a fixed process (the
mean field process).

Remark In the work of Mei et al. [57], it is mentioned that when the data has a law that
is invariant under the action of a certain group (e.g. w invariant under left rotations)?3, the
limiting dynamic also benefits from the same symmetry. In particular, this should allow us
to reduce the dimensionality of the problem, as we might only seek solutions of the DD, py,
that are invariant under the same group of symmetries. This assertion is not proven in any
way within Mei et al. [57], and it does not rely on any known results from the literature; it
seems to be more of a practical indication for solving the PDE in the limit. The goal of this
work is precisely to understand how the presence of symmetries of the data under the
action of groups can influence the training of NN models, particularly in the MF limit.

This classical propagation of chaos result can be also understood from the optic of
statistical independence (from where the name of propagation of chaos appears). The last
variant described in Theorem 4 focuses on this approach: as N grows, the evolution of a

23This notion will be clarified later in the document.
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Figure 2.4: Tllustration of the propagation of chaos result: As N grows large (and the SGD
iterations as well), all the network parameters tend to align with a fixed limiting distribution
(as with the LLN). Taken from Sirignano and Spiliopoulos [78].

fixed amount of particles m along the N-particle-system continuous time dynamic, becomes
really close to that of a set of m independent typical particles that all follow the mean field
process.

Analogously, the first variant from Theorem 4 can be stated as follows (see Theorem 1.6
of Sirignano and Spiliopoulos [78]):

Proposition 8 [Propagation of Chaos] Under the assumptions of Theorem 4, for T < oo and
t €[0,T], define the law of the first N particles along the rescaled SGD training dynamics as

pN = Law(@%mj, . ,G%th). Then, the sequence {pN}yen is p-chaotic 2.
Figure 2.4 can be useful to illustrate this idea of statistical independence.

As the propagation of chaos result mimics the LLN, one can follow the same spirit to
establish some kind of Central Limit Theorem for the training dynamics. More specifically, as
in the usual probabilistic setting, one desires to approrimate the training process’ behaviour,

for large N, as:
1

V[]thJ ~ et \/—Nm

where the so-called fluctuation process (1;)i=o is a Gaussian process with a specific variance-
covariance structure. The main results along these lines have been established in papers such
as Rotskoff and Vanden-Eijnden [72], Sirignano and Spiliopoulos [81], Chen et al. [15]; the
interested reader can find some reference results from the literature describing the CLT result
for the (rescaled) training process of shallow NNs in Section D.1.2.

Despite the interest such a result generates, the understanding of this aspect of the
training dynamic is still being developped in the literature (notably, Descours et al. [24]
is quite recent); notably there’s no clear references for expressing this result beyond the
quadratic-loss case. For this current work, we won'’t delve into the details of how this CLT is
established nor how the symmetries of the data translate into symmetries of the fluctuation
process. We will leave all these interesting questions for future work, and focus on the global
convergence results that characterize the mean field dynamics.

24This means that Vt € [0,T], Vf1,..., fr € C2(Z), imy_oo(f1 X == X fr, pN) = TF_ (s, u). i.e. When
observing a fixed number of particles, in the limit their joint law behaves like an i.i.d. sample from the fixed
limiting process p;
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2.2.8 Convergence to a Global Optimizer

Despite the good properties of the Mean Field Dynamics on the unregularized case, we fail to
get proper global convergence results: though the loss function decays along the dynamic
of p, this is not necessarily strict, and stationary points of the dynamics might not correspond
to global minima of the problem. What is known in the noiseless case is that whenever
p: converges (as t — o) in W, distance, it does so to a global minimum of the loss
function R. This is stated in the following result (whose technical assumptions are given in
chapter D):

Theorem 5 [Global Convergence/ (noiseless case) Consider g € P2(Z) and suppose that
assumption 9 holds. Let (j14)i=0 be a WGF of R initialized at py.

If (14)¢ converges to some iy € Po(Z) in Wy, then py is a global minimizer of R over

M(Z).

In particular, if (um(t))meniso s a sequence of classical gradient flows initialized in
supp(po) such that o converges weakly to uo then (limits can be interchanged):

Jim Rpm.e) = uin R(p).

i.e. the SGD Training dynamics converge (in long time) to the global minimum
of the learning problem.

As noted in Descours et al. [24], studying this noiseless problem is quite hard, and not
many results are known to hold. The introduction of noise and regularization becomes
fundamental in order to ensure that an optimum will be achieved through the dynamic.
Thus, a good framework for understanding the problem of global convergence could be
the one introduced at the beginning of section 2.2.7: the Mean Field Langevin Dynamics
(see Hu et al. [38], Chen et al. [13], Nitanda et al. [63] and Suzuki et al. [82] for some good
references).

Recall the setting of our regularized problem, consider the following standard assumption:

Assumption 2 The functional R : P(Z) — R is convex, bounded from below (e.g. by 0)
and it is of class C* (as in definition 2.6; in particular, it is also lLs.c.).

Given a convex functional R : P(Z) — R (e.g. for the learning problem: R(u) =
E.[0({os(X;"), ), Y)]), we define its regularized version (with parameters 7,5 > 0 and
ve P(Z) a.c. wrt to A, the lebesgue measure on Z) as:

RE%(0) i= R(o) + 7 [ rdu+ 5H, (1)

Where r : Z — R is a regularization term and H,(u) := D(ullv) = Slog(j—ﬁ(z))du(z) is
the relative entropy between p and v (with p <« v). When context is clear, we might
simply write it as R (usually when considering ¥ = \). An example in which v might not
necessarily be A comes from the setting of Hu et al. [38], in which v is chosen as the Gibbs
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Measure in Z. That is, the measure v whose density (wrt \) is given by:

g(x) = eV with U:Z2—->R st f e U@) d\(z) = 1,
z

Remark e To unify our notation, we’ll consider the case of v = X (Lebesgue measure) as
one in which U is chosen as U = 0 (even though strictly speaking this wouldn’t satisfy
the integrability condition).

e Notice that if we set 7 = 3, choose U(z) = r(z) and consider R%# (without a
regularization term; i.e. R%® = R(u)+ BH,(u)); it is the same as considering Ry ” with
the corresponding regularization term (i.e. RY” = R(u)+ S {rdu+BH(p)). With this
in mind, we can consider this setting in which Gibbs Measures are used as a particular
case of our previously described framework. We will however retain both r and U for
sake of completeness.

Now, consider some standard assumptions that might be taken about the Gibbs measure’s
potential (and also, equivalently, the risk regularizer):

Assumption 3 (Asin Hu et al. [38]) U : Z — R is assumed to be C*, with VU Lipschitz
continuous, and such that 3Cy > 0, IC}; € R such that*® Vx € Z : VU (z) -z = Cy|z|*+ C.
When required, we will also assume that r : Z — R satisfies these conditions.

The advantage of the reqularized problem is that R7” includes an entropy term, which
guarantees strict convexity, weak lower semicontinuity and compact sublevel sets?°
for R7#. In particular, it will admit a unique minimizer ;* 7" (or, for simplicity, just y*
when context is clear), as shown by the following proposition:

Proposition 9 (Existence and Uniqueness of the minimizer (regularized case)) Let R satisfy
assumption 2, and let v be the Gibbs measure with potential U. Then, R7® has a unique
minimizer, p*"%" € P(Z), absolutely continuous with respect to Lebesque measure \.
When U satisfies assumption 3, it also belongs to Pa(Z2).

Proor. This result is taken directly from Hu et al. [38]. We include the proof in section C.6
for completeness. n

Under our goal of minimizing R over P(Z) through the training dynamic, we will be forced
to pass through the regularized version of the problem if we want to achieve any sort of global
convergence guarantee. Unfortunately, even though we will gain global convergence of the
training dynamic, this will be to the global minimum of R7:?, which could in principle be
radically different to the minimizers of R in the original problem. Luckily, some proximity
might be expected between the regularized and unreqularized problem values, at least when
v is taken to be the Gibbs measure. This result is presented in a slightly modified version
from its original formulation in Hu et al. [38]; we make it more general in order for it to fit
in the general framework of the reqularized problem we just presented:

Z5Note that these conditions imply that 30 < C' < C s.t. Vo e Z, C'||lz|? = C < U(x) < C(1 + |z||?) (i-e.
U has quadratic growth) and |AU(z)| < C
26See Hu et al. [38] and Lynch et al. [54]
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Proposition 10 (I'-convergence, as in Hu et al. [38]) Let Z = RP. If R is W,-continuous,
v is a Gibbs measure whose potential U satisfies assumption 3 and the reqularizer r also
satisfies assumption 3, then RT7P T'-converges to R when 7,3 | 0. Particularly, given u* ™"
the minimizer of R7", we have

lim R(u*7%") = inf R(u).
7,8—0 (,LL ) HEP2(Z) <Iu)

In particular, every cluster point of (u*™%"), 5 is a minimizer of R.

Proor. To generalize the result from Hu et al. [38] (to the simultaneous limit of 7,3 — 0)
we employ essentially their same techniques and follow their exact same proof structure. In
any case, for completeness, we include it in Section C.6. O

Better still, as shown in Hu et al. [38], the minimizers of R7;#? can be characterized via
the following proposition:

Proposition 11 (from Hu et al. [38]) Let R satisfy assumption 2, and let v be the Gibbs
measure with potential U; let both U and r satisfy assumption 3. Then, the following are
equivalent:

o p* = argmingep(z) R) 7 (1)
o 1 is equivalent to A (Lebesque measure on Z) and

(;—R(u*, z) +1r(z) + Blog(u*(2)) + fU(z) is a constant X - a.s. Vz€ Z
0

where u* denotes the density of pu* wrt \.

Proor. It can be done straightfowardly from Hu et al. [38] as it’s a direct adaptation of their
result (Proposition 2.5). O

In particular, in this setting it appears convenient to define, for any measure p € P(2)
the probability measure i defined by its density wrt Lebesgue (slightly abusing notation):

e (=55 ) = Gr(a) - U () )

As noted in Nitanda et al. [63], Chen et al. [13], Proposition 11 tells us that the global
minimum p* satisfies a self-consistency condition: p* = p*

In a similar spirit to that of section 2.2.7, we may recall that the WGF in (P2(Z), Ws)
for R7? (with v the Gibbs measure of Z) corresponds to:

Orpre = s(t) [div (DR, -) + 7Vr + BVoU) 1) + BAp] (2.8)

From classic works on the mean field literature (e.g. from Sznitman [83]) it is known that
such an equation has a unique strong solution (under the right technical assumptions, see
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assumption 10 in Chapter D); in particular, it reqularizes the measure solutions, making them
have a density?’. This also holds for the corresponding McKean-Vlasov Equation, which is
written as:

dZ; = <(t) [— (DuR(1i, Z0) + TVr(Z,) + BVaU(Z0)) dt + \/%dBt] with i, = Law(Z,)
(2.9)

Where (B;);=0 is a D-dimensional standard Brownian Motion. As previously mentioned,
this McKean-Vlasov equation is what’s also referred to (in the literature) as the Mean
Field Langevin Dynamics (MFLD). Furthermore, as seen in theorem 3, it is expected
that the SGD training procedure will converge to this mean field training dynamic. It will thus
be desirable to relate the marginals of the MFLD to the global optimum of the regularized
problem.

A first remarkable result in the reqularized case is that the following free energy dissipation

formula holds (and it can be proven using Itd Calculus; the technical assumptions, once again,
shall be found in Chapter D).

Theorem 6 (from Hu et al. [38] and Chen et al. [13]) Let ug € Po(Z), and let assumption 3
and 10 hold; then:

2
DuR(u, =) + 7Vr(2) + 5%@) L AVU()| dulz)

0, LR ) = <o) |

zZ

where u; denotes the density of p, = Law(X}), the solution to equation (2.9). i.e. following
the MFLD makes the reqularized risk decrease at a known rate. This is known as the energy
dissipation equation.

Remark Notice that this equation can be rewritten using the Fisher divergence (or
relative Fisher Information) between two measures. This quantity is defined as:

o) = |

Then, almost by definition, we get:

Viog(? () du(z)

d

T (BD () = =326 ()] (| )

From this we could infer that the stationary points for the dynamic (i.e. those for which
the left hand side becomes null), must be fixed points for the (-) operator on Py(Z). In
particular, this can also serve as an alternative proof for proposition 11.

From the remark, we can see that theorem 6 implies that the MFLD converges to the
unique global optimizer of the regularized problem:

2TMoreover, assuming assumption 10 (see Hu et al. [38]), the solution is stable with respect to the initial
law; i.e. Yo, pug € P2(2), Vi > 0, 3C; > 0: Wa(u, 1y) < CeWa(po, 11g)-
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Theorem 7 (from Hu et al. [38]) Let R satisfy assumption 2; also assume that assumption 3
and 10 hold. Consider g € Up=2P,(Z) and let (j1:)i=0 be the solution to the MFLD starting
from py. Then, the equation has an invariant measure®®, L., that satisfies:

prop := arg min R () and  lim Wa(puy, ) = 0
HEP(Z) t—00

Remark Global Convergence Results such as theorem 6 or theorem 7 have been established
as early as in Mei et al. [57] (for the quadratic loss and under the simplest SGD dynamics).
However, settings such as those of [13, 38, 63, 82, 17] are of incredible interest to establish
essentially the same results under fundamentaly more general assumptions.

Making further technical assumptions on our regularized functionals leads to better
convergence results as well as a uniform-in-time propagation of chaos result (established
in Chen et al. [13]). Consider the following definition (which is prevalent in the MFLD
literature, see [17, 13, 63, 82]):

Definition 2.8 We say pu € P(Z) satisfies the Log-Sobolev Inequality with constant ¥ > 0
(in short, LSI(Y)), if for any smooth function ¢ : Z — R with E,[¢?] < 0, we have:

2
E,[¢”1og(¢°)] — E,[¢*] log(E,[¢%]) < EEN[HVWI%]-
This is equivalent to saying that, Vv € P(Z) s.t. v <& u:

dv

D) = L log(G(2))dv ) < o L

where D(v||p) is the KL divergence and I(p||v) is the Fisher divergence (or relative Fisher
Information).

(=) = o5 1(wlw)

Vlog(@(Z))

Remark Written like that, this inequality serves to ensure exponential convergence to minimizers
whenever y = e~V (for V some potential function) satisfies a LSI. In our setting, as done by
most authors in recent years, we need to assume it uniformly over Py(Z) to get the global
convergence results we desire.

Assumption 4 (Uniform LSI from [17, 13, 63, 82]) There ezists 9 > 0 such that Y €
Pa(2), [ satisfies LSI(V).

Remark This LSI is a recurrent element in the literature of WGF and Optimal Transport
in general (see, for instance, Otto and Villani [66]). In particular, it implies the Poincaré
Inequality:

1
Vo € CH(2), Vara(6) < oo EallVol)
Talagrand’s Ts-transport inequality follows as well:
Vv € Po(2), W5 (v, i) < D(v||f1)

Moreover, all these inequalities are stable under tensorization, which allows for properly
studying the Propagation of Chaos problem (as we’ll see right after).

28 A measure 4 is said to be invariant for the equation if Law(X,) = p for all ¢ > 0
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Beyond the characterization of the decay provided by Hu et al. [38], Chen et al. [13]
provide the following guarantee:

Theorem 8 (from Chen et al. [13] and Chizat [17]) Let assumptions 2, 4 and 10 hold. Then,
if for some ty = 0, g, has finite entropy and finite second moment; then YVt > t,,

D |p0) < RDP (1) — B (1) < (B (p11g) — B (p15) )& 2 o o0

where oy = p"%Y = arg min,ep(z) R7A(u). By Talagrand’s inequality this also amounts to
exponential Wy convergence of i to pie 2.

i.e. The value function following the MFLD converges exponentially fast to the optimum
value of the problem. This also implies an exponential convergence in relative entropy.

Proor. The result in Chen et al. [13] is established in the setting with 7 = 0,5 = 1 and
¢ = 1; however, from the insight taken from Chen et al. [13], Chizat [17] (among others) one
can show that, in its most general form, the result holds as stated. O

All the results we’ve stated speak to the ability of the limiting Mean Field process to
converge in large time to the unique minimizer of the regularized problem (the so-called
global convergence results). Now, could we directly relate this global convergence to the
original discrete SGD dynamics with finitely many particles? i.e. can we quantify how the
the reqularized SGD training dynamics approaches the global optimum of the regularized
population risk R7#? Works such as Chizat [17], Chen et al. [13], Nitanda et al. [63]
provide interesting results (such as a uniform-in-time propagation of chaos), but centered in
the non-stochastic Gradient Descent Training. SGD results mainly come from the recent
developments by Suzuki et al. [82].

In any case, we will now revisit some Propagation of Chaos results, under the lens of the
regularized dynamics. We know that a distribution over N particles (i.e. a random variable
Z = (Z")N,) can be expressed by its law V) € P(ZV). As we've already seen, the idea
behind the propagation of chaos results basically states that, as the number of particles N
increases, particles behave as if they are independent; in some sense, the joint distribution
of the N particles (1) € P(ZN)) approaches a product measure (@ for some i € P(Z)).
This is exactly what the last variant of theorem 4 demonstrates for the continuous-time SGD
training process (which approaches independent realizations of the mean field dynamics). In
a similar way, Chen et al. [13] establish a uniform-in-time propagation of chaos result for the
(continuous-time) particule system®® that follows the MFLD equation (2.6). Though they
have stronger results, the following corollary illustrates the point pretty well:

Corollary 3 (from Chen et al. [13]) Assume R satisfies assumptions 2 and 10 (2.) and
assumption 4. Suppose mg € Ps(Z), mg has finite entropy, and mY = m®" (initialization is

29Thus, under the right technical assumptions, it also amounts to Theorem 4 of Mei et al. [57]
30i.e. the particles Z = (Z)X; are initialized i.i.d. and they follow, for every i € {1,..., N}

dZi = o(t) [_ (DLRWY, Zi) + 7Ver(Zi)) dt + \/%dBt]
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i.i.d.). Then there exist constants C,rk, Ny > 0, depending on 9, ME ME my, and D (as
in Z =RP), such that:

1
sup < W5(mg',m™) < ——

for every N = N
te[0,00) N N* °

If additionally R is such that sup,ep,(z)sup,ez |V D R(u, x)| < +00 for k = 2,3, we also
have:

1
sup ~D(m][mPV) < <

for every N = Ny
te[0,00) N~

upon redefining the constants C, k, Ng > 0.

Beyond the continuous time Gradient Descent Dynamics, we can get bounds (as in Suzuki
et al. [82]) relating the noisy discrete time SGD dynamics (as given by equation (2.2)) to
the optimum of the regularized problem. First, we might desire to adapt our risk functional
R™# : P(Z) — R in order to evaluate this N-particle system. Under this lens, it’s natural
to define the risk associated to the whole particle system as R™V™% : P(ZV) — R such that
YuN) e P(ZN):

RYTA(u) = NEy o0 [R7 ()] + BHA(u™)
Knowing that in the regularized case there is a unique minimum to which we can converge,

we might wonder if RN (™)) will be close (or not) to NR™(u*). Indeed, from theorem 2,
one could get the following bound:

1 C
0< inf —RNA(uM) - RA(u*) < =22
oo N (1) (W) < —
for some constant C.3 > 0. Thanks to the following result, we could understand that,
propagation of chaos might be achieved as long as we’re able to control the difference in risk:

Lemma 5 (from Suzuki et al. [82]) Assume assumption 2, assumption 3, assumption 4 and
that I, Ao > 0 and ¢, > 0 such that Yoz € Z M\Idz < VV'r(z) < X\Idz (in the matrix
order), x"'Vr(z) = M|z|?, and 0 < r(z) < Ao(cr + |z[?), and Vr(0) = 0. Then:

2

W™, 1) < go(RYTO () = NRY ().

In particular, results along the following lines have been established:

Theorem 9 (Sketch, from Suzuki et al. [82]) Let u* be the optimum of the regularized problem
and (O )ren be the parameters trained using equation (2.2) (with o > 0 a constant learning

rate). Assume assumptions 11 to 13 and fad < 1, a < 4’\712. Then: ~E [RN’Tﬁ(u;N))] -

R™P(u*) < e=Crsok [%E [RN’T’ﬁ(u,(CN))] — RT’B(M*))] + constants

We won’t dive into excessive details for such results, as they have been recently developped,
and escape a bit from the main focus of the current work.

Many extensions of the setting presented here have been studied in the literature (notably,
the annealed dynamics from [17], among many others). We will, however, not dive any further
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into them in this review, as sufficient detail of the key elements of the MF theory of shallow
NNs have been provided; further insight shall be sought in the original material.

2.2.9 Applicability to the NN setting

Among the sea of different frameworks and results provided in the previous section, one may
wonder whether the relevant hypothesis for some of the key results (which were given in
their most general forms) hold in the setting of the shallow NNs that appear in practice.

The first restriction most of these results face, is that they will require o, to be bounded
in order to work. This will, unfortunately, go against properties such as the approzximation
power of NNs (in particular, their wuniversality). The standard assumption will be the
following;:

Assumption 5 (Standard Assumptions on shallow NNs) A standard NN setting will be the
following:

1. Let X =R and Y = R and Z = R*b x R4*b x Rb,
2. Let o, : X x Z — Y be of the form:

V0= (W,A,B)e Z; Vo e X, o,(1;0) = o(W)o(ATz + B)

where o : R — R is an activation function (which is applied pointwise) and ¢ : R —
[—M, M] is a truncation function (also applied pointwise), with M < +o. o and
 are assumed to be at least continuously differentiable.

3. Let m € P(X x ) be the data distribution, with finite second moment>'.
4. Let 0 :)Y x)Y — R be a convex and smooth loss function, such that £ = 0.

5. With all of these elements, consider R : P(Z) — R given by, Yu € P(Z), R(u) =
E?T[K«O-*(X? ‘)v :u>’ Y)]

These assumptions ensure (together with stronger impositions) that:

Corollary 4 Suppose assumption 5 holds:

o Further assume Y0 € Z, 0,(-,0) € L*(n|x) and 3C > 0, V0 € Z, |0.(-,0)|12(r)2) <
C(1+160*). Then R : P(Z) — R is convex, C' and bounded from below (i.e.
assumption 2 holds).

o Further assume ((y,9) = |y—1|3 (quadratic loss), r(0) = 0| (quadratic regularization)
and also that o and ¢ have bounded derivatives to up to fourth order. Also suppose
that o is sigmoidal (i.e. continuous, non decreasing, 0 at —o0 and 1 at +00). Then
assumption 10 (2.) hold as well:

31 An alternative, stronger, but standard hypothesis is to suppose 7 compactly supported
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- DZRT has bounded 2-norm, making D, R" (-, z) Wi-Lipschitz with constant M
1/2
(1 leo + elloollo’ oo (1 + §xPra(da)) ™.

— By boundedness of the derivatives of o and ¢, the rest of the bounds follow as well.

Furthermore, by the boundedness of ¢ and the fact that m € Py(X x Y), assumption 4
holds with ¥ = 7 exp (=2(Ex[[Y[] + |¢leo) []0) -

Remark The truncation function ¢ : R — [-M, M], introduced to make o, bounded
(in order to ensure minimal results), hinders on the ability of shallow NNs to approximate
arbitrary functions. As noted previously, if M < 400, any h € F,, (P2(Z)) will satisfy that
|hlls < M. Thus, we will never be able to perfectly approximate unbounded functions®?.

Despite this, Chen et al. [13] observe that Barron’s theorem (see Barron [6]) might be
used to validate the results even under truncation. Indeed, if f* = E;y|x— is such that 3F™*
complex-valued measure (which we call its fourier transform), 3K, > 0:

Yo e BOK), @) = £10)+ | (47~ DF*()
Rd
If M > K, Sz |w||F(dw)| + |f(0)|, and ey, c— € R such that ¢(c;) = M and p(c_) = —M;
then, for every 7|y € P(B(0, K,)), the best approximation error is zero; i.e.

inf — D21y =0
ser 1 o) | = @[ r2(r)

2.3 Mean Field Limit in Deep Neural Networks

From the previous section, it becomes clear that the understanding of the Mean Field limit
of single-layer NNs is in a quite advanced stage. The next natural step in this context is to
dive into how these results and behaviours change when considering deep neural networks
(i.e. with more than one hidden layer).

As we've previously signaled, some of the deep neural network architectures can be
expressed in the form: %le\il 04(+,0;) for some descriptor o, : X x Z — ) (see Rotskoff
and Vanden-Eijnden [72] for further reference). However, a true mean field understanding of
deep neural networks, to their full extent, is part of the literature’s ongoing work.

In particular, the works of Aratjo et al. [2] and Sirignano and Spiliopoulos [79] began
the analysis in that direction, managing to prove some relevant results, but with multiple
technical difficulties that each overcame in different ways.

In the case of Sirignano and Spiliopoulos [79], they study 2-hidden-layer networks (WLOG
as it’s sufficient to understand the general case), of the form:

IS A
@Nl,Nz X, 9 Z C’l (F Z WQ’Z’]O'(WL] . $)>
153

32This contrasts the case of M = +o0 and 7|y compactly supported, when we know, by corollary 1, that
the infimum of the problem is zero
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Figure 2.5: Illustration of the Paths of weights in a multilayer neural network: these are the
basic units that are studied in the Mean Field limit of deep neural networks. Taken from
Aratjo et al. [2].

where the parameters are § = (C*,... CN2, W2LL  W2NuNe Ll LN Dand they
are updated following the usual SGD. Unfortunately, for technical reasons, they are forced
to consider rescaled learning rates in the form: agl’NQ = %, a%ﬁNQ =1, a{,\(}’éNQ = Ny (all of
which are very rarely used values in practice). For the same reason, the limit of infinite width
that they consider must be taken one layer at a time (i.e. limp, o Imp, oo Py n, (23 604)).
This introduces its own technical difficulties and, above all, is very unintuitive from the

perspective of applications.

On the other hand, Aratjo et al. [2] manage to relax the assumptions of Sirignano and
Spiliopoulos [78], at the cost of freezing the first and last layers of the network (i.e. having
them not be trained in the SGD iterations; similar to random features) and having all layers
scale according to the same value of N. This is clearly restrictive in terms of applications, but
it avoids the problem of having ‘2 different scalings’ between the external layers (according
to N) and the internal layers (according to N?) within multilayer networks. Unfortunately,
this introduces other technical problems related to the continuity of a conditional probability
distribution.

Both papers try to attack the problem in a similar fashion as in the shallow NN case:
they seek for a limiting mean field process that could potentially approximate the SGD
training dynamic, establishing their well-posedness, as well as relevant propagation of chaos
(and eventually global convergence) results. Unfortunately, in the setting of deep NNs, the
weights cannot become statistically independent in the large N limit (due to the
interconnection between layers). Therefore, a proper analysis of how propagation of chaos
takes place in the multilayer case must be done with the so-called paths of weights in the
network. This idea is illustrated in Figure 2.5.

A more modern understanding of the mean field limit of deep neural networks has been
recently established in Nguyen and Pham [61]. They make use of what they refer to as
neuronal embeddings and manage to establish both a relevant mean field regime (characterized
by a system of ODEs) as well as some global convergence guarantees; all while not having
to assume convezity of the loss function (which is crucial in all the theory described in
section 2.2). Despite the undeniable interest of such an approach, the techniques employed
in Nguyen and Pham [61] are rather heuristical and they also escape from the realm of our
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current research on the topic; we will therefore refrain from diving further into its details.

More generally, the increased complexity and the limited literature related to the Mean
Field limit of multilayer neural networks have kept us from delving deeper into these ideas.
Without a doubt, one of our objectives for future work is to better understand this MF limit
of deep NN, particularly under the lens of symmetries. We advise the interested reader to
seek further details in the relevant literature.
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Chapter 3

Exploiting Symmetries with Neural
Networks

In recent times, Deep Learning models have revolutionized the technological industry. However,
the deep models that have seen the most success, don’t exactly correspond to the fully
connected ‘shallow’ NNs considered in the previous section. The most successful NN architectures
in practice (such as CNNs, RNNs, Transformers and GNNs) are those that leverage the
intrinsic properties of data to reduce their complexity.

Example [Invariant and Equivariant Tasks] To illustrate the idea behind our depiction
of symmetries in the learning framework, we consider two examples of tasks which inolve
some kind of symmetry that we might want to exploit:

e If we wanted to detect the presence (or absence) of a dog in an image, it shouldn’t matter
to us in which orientation the image arrives (see Figure 3.1 for some orientations): the
underlying classification function we want to discover (i.e. the way of associating an
image to a label) does not depend on the orientation of the photograph; for all possible
orientations, a dog should be detected. This is what we call an invariant task.

e Analogously, if instead of classifying whether a dog is present (or not) in an image, we
were interested in detecting the position of the dog’s nose in the image, simmetry also
plays a role. When rotating the image by a certain amount (e.g. 90°) the detected nose
position should rotate by an equal amount. That is, our underlying “nose-detection”
function should commute with the symmetric transformation. This is what we call an
equivariant task.

With this in mind, it seems natural that a good NN model should be capable of understanding
and exploiting these symmetries present in the data to achieve better results on the given task.
More precisely, the NN architecture considered for the problem should take the symmetry
into account.

In this work, we will focus on understanding the different symmetry-leveraging techniques
that are commonly used in the literature to exploit a problem’s symmetry. These include ideas
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Figure 3.1: Illustration of possible orientations of a photograph under the action of group
G = Dy.

such as Data Augmentation (DA), Feature Averaging (FA), and the recently popularized so-
called Equivariant Architectures (EA) of neural networks. This all falls within the context of
Geometric Deep Learning (GDL) [10] and, in particular, equivariant architectures account
for a significant portion of the most popular architectures today (CNNs [34], Transformers
[86], GraphNNs [74], among many others).

In what follows, a brief overview of results on the theory of Geometric Deep Learning will
be given. Particularly, ideas from Bronstein et al. [10],Kondor and Trivedi [47],Cohen et al.
[19], Finzi et al. [30], Finzi et al. [31],Elesedy and Zaidi [28] and Flinth and Ohlsson [32] will
be discussed. Deep Learning Literature is rapidly and constantly moving, so possibly some
interesting elements from the literature are being left out: a more complete view might be
found by going through the original material.

3.1 Symmetries as Group Actions

A first thing we notice in our example, is that the symmetries of the data are being encoded
as an action of a group G over the features and labels.

Let X, Y and Z be general topological spaces endowed with their Borel o-fields (often
they will be separable Hilbert spaces or even, as for the practical implementation of NNs,
just X = RY, Y = R¢ and Z = RP). Consider a topological group (G, Tg) ! endowed with
its Borel o-field.

We say that G acts on Z (on the left), which we denote G C Z, whenever there exists a

'Recall that this means that, under the topological structure given by 7, the group operations
(multiplication and inversion) are continuous
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map:

T:-GxZ — Z
(9,2) — T(g,2)

that satisfies T'(eq, 2) = zand T(g1, T (g2, 2)) = T(91.92, 2), Y1, 92 € G, Vz € Z. Equivalently,
this amounts to having a group homomorphism between G and Sym(Z) (this is why we
usually denote T'(g,-) by T,). The action is said to be faithful when this homomorphism is
injective; it is said to be free whenever Vz € Z the stabilizer? of z is trivial, i.e. G, = {eg}.
We denote by Gz the orbit of z € Z by G (i.e. {9z : g € G}). The orbit space, denoted
G\Z is the set of all orbits of points in Z. There exists a canonical projection map
p: Z — G\ Z that associates, to every z € Z its associated orbit Gz € G\Z. G\ Z is usually
endowed with the quotient topology (7ez := {A < G\Z : p'(A) € Tz}, the smallest
one making p continuous?).

We say that G acts continuously on Z whenever T' is continuous (with respect to
the product topology) 4. It is clear that, a continuous action, G C Z, acts on Z via
homeomorphisms (Vg € G, T, : Z — Z is an homeomorphism). We might further assume,
when Z is metric, that G acts on Z via isometries (i.e. Vg€ G, T, : Z — Z is an isommetry
of Z). Finally, we say that the action G C Z is proper if for every pair of compact sets
Ky, Ky € Z the set G, i, = {g€ G : Ty(K1) n Ky # &} is compact (in G)°.

We hereby state some remarkable properties of group actions:

Proposition 12 (Properties of Continuous Group Actions (see [25, 68, 26, 8])) Let G C Z
be a continuous group action; then:

1. p: Z — G\Z is continuous but also an open map (i.e. YU € Tz, p(U) € Tenz)

2. If Z and G are Hausdorff and G C Z properly, thenVz e Z,Gz < Z s closed and also
G\Z is Hausdorff. If Z is also locally compact®, then G\Z is locally compact as
well.

3. If G is compact, then it acts properly on any Hausdorff Z.

4. The following are holds when both G and Z are Polish spaces (i.e. separable and
metrizable by a complete metric); and G is locally compact while Z is Hausdorff:

[G\Z is Ty] <= Tz generates Benz <= Each orbit is Gs in Z
If further G and Z are first countable 7, these are also equivalent to:

<= 3s: G\Z — Z a Borel cross-section of p <= p admits a Borel transversal

2Recall that the stabilizer subgroup of an element z € Z is given by G, := {ge G : T,.z = z}

3Similarly, one may define the natural Borel o-field on G\Z as Bez := {Ac G\Z : p~'(A) € Bz}

4Similarly, we say G' acts measurably on Z whenever T is measurable (wrt the product o-field)

®Equivalently, if the graph application (g,2) € G x Z — (2,T.z) € Z x Z is proper.

6 A potential problem with assuming local compactness would be that if Z was a t.v.s., this would force
it to be finite-dimensional.

i.e. each point has a countable basis of open sets
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Figure 3.2: Ilustration of an Equivariant Function. Taken from Kumagai and Sannai [48]

The standard assumption we will make is that G is locally compact, second countable and
Hausdorff (denoted lesH). Under these conditions, it is well known (see Drutu and Kapovich
[25]) that G admits a (left)-Haar measure \¢ € M(G) (i.e. a left-invariant measure on
(G that’s finite on every compact set, outer regular on Borel sets and inner regular on open
sets). In particular, whenever G is compact, we know that Ag can be normalized (and it
is unique and also right G-invariant); in this case, it is to be interpreted as the uniform
distribution on G.

For our study of the symmetries of NNs, the following notion of an Invariant (or
Equivariant) map will be key:

Definition 3.1 [Invariant/Equivariant Functions] Let G C X (via T) and G C'Y
(via TY ). We say that f : X — Y is G-equivariant if

Vge G : fngszgyof
If TY = 1dy (trivial action), we say that f is G-invariant.

The idea behind equivariance is well represented in Figure 3.2: an equivariant function,
under transformations in its input, undergoes the same transformations in its output.

An interesting particular case of the last definition appears for multivariable functions:

Definition 3.2 [Jointly Invariant/Equivariant Functions] Let G C X; (via T™),
G C Xy (via T*2) and G C Y (via TY). We say that f : X, x Xy — Y is jointly G-
equivariant if

Vg S G, le € Xl; va S XQ . f(T;ﬁ.iUl, Tf2..1'2) = Ty.f(xl,mg)

g

If TY = 1dy (trivial action), we say that [ is jointly G-invariant.

44



We may also call such functions G-equivariant/invariant on both arguments, or even
Just plainly G-equivariant/invariant®. An analogous definition still holds for an arbitrary
(finite) amount of input arguments.

Beyond the general definitions, we will now restrict ourselves to the setting of compact
groups that act over (separable) Hilbert spaces via representations (i.e. linear maps)?’.

Definition 3.3 [Group Action via Representations] Let G be a compact group with
normalized Haar measure \g, and let Z be a (separable) Hilbert space.

We say that G acts on Z linearly via the representation p (denoted G C, Z) when p
1s a group homomorphism
p:G— GL(Z)

i.e. it associates each g € G to a linear and bounded invertible operator p(g) € GL(Z), also
satisfying the relation Yg,h € G, p(gh) = p(g)p(h). This is esentially the definition of a
continuous group action, but py : Z — Z is not only a homeomorphism: it is also linear.

One may further assume that the considered representation is orthogonal (or unitary).
That is, for all g € G, p(g) is a unitary operator (p(g)p(g)* = Idz).

Example Despite assuming a compact group and orthogonal representations might seem
somewhat restrictive, many well known examples can be placed in this setting:

e The trivial representation (where Vg € G, p(g) = Idz) is the simplest (yet most
common) example.

e S, acting on R" by permutation of the coordinates. This also extends to an action on
R™ via simultaneous permutation of coordinates.

e 72 acting on images in R™*" via translations (cyclic rotation of coordinates).
e (; acting on images in R™™" via 90° rotations.

e An infinite-dimensional example (which appears widely in the literature) is that of the
action of any compact G over L*(G). It is given, for all f € L*(G), g,h € G, by
(p(9).f)(h) = f(g~th); which is indeed a linear and bounded map.

As an illustration, consider figure 3.1, where the group G = D, is acting on the space of
images R? by 90° rotations and vertical flips. This can be understood via the representation

()

Remark Notice that, as long as G is compact, any representation G C, Z can be cast as an
orthogonal representation. To achieve this one may consider an equivalent inner product

8Being G-jointly equivariant is essentially the same as being G-equivariant with respect to the actions:
G C (X x Xy) (via T x T*2) and GCY (via TY)

9This shall be enough, as it’s the most used setting in the literature. In particular, in the NN setting,
usually the features and labels are respectively X = R and )) = R®. A potential extension to group actions
via isometries (on simply metric Z) could potentially be pursued in future works.
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on Z given by {(a,bye = §,{psa,psbyzdrc(g), Va,b € Z. This makes p unitary and it is
known (see Elesedy and Zaidi [28]) as the Weyl trick.

Remark After having introduced the main framework that will be considered to model
symmetries, one could naturally notice the several limitations involved. Having symmetries
encoded as group actions immediately implies that every transformation must have an inverse.
In particular, transformations such as “introducing noise into an image” or “blocking parts
of the image” (among many others), fall outside our current theoretical framework. In order
to tackle these limitations without losing too many of the advantageous properties of group
theory, some wvariants of the framework have emerged in the literature:

e Partial Symmetries: It accounts for the possibility of having the objects NOT being
invariant for every group transformation, but rather just for subset of them.

e.g. the detection of a digit on an image is not a rotationally invariant task, as 6 and 9
may be confused under a 180° rotation. However, it is partially rotationally invariant,
as we might only consider rotations of < 90° to avoid confusions (and still profit from
the symmetric properties).

e Approximate Symmetries: It accounts for the possibility of having the objects not
be perfectly invariant for every group transformation. This means that the objects
might be invariant up to a small error: e.g. compressing and reconstructing an image
will leave it invariant, except for potentially a small error due to a lossy reconstruction
(under approximate invariance, these differences can be deemed not relevant). We will
develop this idea further in the following sections.

Despite the inherent interest of these variants of the framework, we will not consider them
into any more detail, leaving their exploration (particularly in our setting) as future work.
The interested reader might look at Petrache and Trivedi [69] for some deeper analysis.

3.2 Theory of Invariant Measures

To develop our theory, we will assume that our data is symmetric in some sense. It is
therefore highly relevant to understand how exactly the symmetries with respect to a group
can be encoded into probability laws. Most of the notions described here are extracted from
Kallenberg [44, 45] and Bloem-Reddy and Teh [7].

3.2.1 Base Results

Consider G to be a lcsH group, with (left)-Haar measure \g, that acts measurably'® on a
space Z. We start by recalling some key definitions; such as that of a kernel (as described in
Kallenberg [45]):

10Recall that this corresponds to the map degining the action, (g,z) € G x Z +— g.x € Z being measurable.
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Definition 3.4 (Kernel) Let (Ey,&1) and (Eq, &) be two measurable spaces. A kernel ¢
from Ey to Ey (usually denoted ¢ : By — E3) is a function ¢ : By x & — [0, 0] such that:

e VA€ &, x € Ey— ¢(x,A) is a measurable function.

o Yz e Ey, p(x,-) is a measure on (Ey,&).

FEquivalently, one may define a kernel as being a measurable function ¢ : By — M(Es) (i.e.
such that it associates every point in Ey with a measure over (Ea,&s)).

Also recall the definition of the pushforward of a measure:

Definition 3.5 Let (Ey, &1, 1) be a probability space and (Es, &) be a measurable space.
Consider a measurable function T : (Ey1, &1, 1) — (B9, &); then, the pushforward measure
of p by T, Ty € P(E2, &), is defined as:

(Typ)(C) = p(T~H(C)), ¥C € &

Following from this definition, we get (extending from simple functions to integrable
functions) the well-known change of variables formula:

Lemma 6 For any f : By — R, f € LY(Fy, &, T#u) < foT e LY Ey,&E,u) In that
case, we have:

; F)d(T#u)(y) = ; f(T(x))dp(x)

A direct corollary following from this is that:

Lemma 7 Let p € P(Z) and let Z be a random variable with distribution p. Consider
T : Z — Z a measurable map, and consider the random variable Z := T(Z), whose law we
denote v. Then, v = THpu

Considering the group action G' Cy; Z, we define (by slightly abusing notation):

o Vge G, My:2ze Z— MyzeZ
o V2eZ, T,:9geG—> Myze Z

We say a set A € Bz is G-invariant if Vg € G, Mg_lA = A; and we denote the o-field of
G-invariant sets as Z$. We say a measure p € M(Z) is G-invariant if Vg € G, M #u = p;
and we denote the set of all G-invariant measures over Z as M%(Z2). i.e.

ME(Z)={pe M(2) : Vge G, M4 = u}

Analogously, we say that a kernel ¢ : Z — Z is G-invariant if

VQEG, VZ€Z7 @Mg.zzsozoMg_l
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For readability, we will consider G' to be a compact group as we present the following
results. More generality may be found in Kallenberg [45].

The following definition is key for understanding how any G-invariant measure is characterized.

Definition 3.6 (Orbit Measure) Given a compact group G (with normalized Haar measure
A¢) acting on a space Z, we define the orbit measure kernel ¢ : Z — Z as:

Ve Z, @, :=AgoT."
Remark Notice that this orbit measure kernel satisfies Vz, Z € Z:

e ¢, is a o-finite probability measure.
e Whenever Gz = GZ (they are in the same orbit) ¢, = ¢
e Whenever Gz # GZ (different orbits) ¢, L ¢

e . concentrates on Gz.

¢ Z — Z is a G-invariant kernel, as it satisfies:

Vze Z, VgeG:apzoM;:st:sOMg.z

Intuitively, this means that for any z € Z, ¢, is a uniform probability distribution on the
orbit Gz (therefore the name of orbit measure).

These orbit measures allow us to establish (following Kallenberg [45]) the renowned
ergodic decomposition theorem for invariant measures:

Theorem 10 (Theorem 7.3 from Kallenberg [45]) Let G be a compact group acting on Z
and @ the corresponding orbit measure kernel. Let v € M(Z) be a o-finite measure, then:

ve MY(2) < Jue M(p(2)),o-finite s.t. v = J mdp(m)

»(2)

In this case, the measure | is unique and it satisfies:
Vi: M(Z) - Ry measumble,ffdu = jf(gom)dy(x)

pal()d() = f mdp(m)

In particular, v = f
»(Z2)

Z

In short, this theorem tells us that any invariant measure over Z can be seen as a
mix of orbit measures. Other key base results that will be relevant in what follows are
related to Invariant Disintegrations and Radon-Nikodym derivatives:

First, the following disintegration theorem:
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Theorem 11 (Theorem 7.6 from Kallenberg [45]) Let G be a measurable group with Haar
measure \g acting measurably on Z and ), where Y is Borel. If n € M%(Z x Y) and
v e MY Z) are two o-finite measures such that n(- x Y) <& v; then there erists a G-
invariant kernel ¢ : Z — Y such that: n = v® ¢. 1.e. Vf: Z x )Y — R, measurable, we
have:

| sy = | | e

On the other hand, we can characterize G-invariant measures that are absolutely continuous
with respect to a G-invariant measure as thos that have a G-invariant density function.

Theorem 12 (Theorem 7.8 from Kallenberg [45]) Let G C Z measurably and let p,v €
MY (Z) be o-finite. Then:
dp

pKLrvonBz «— p<&vonli < 3h:Z - R, G-invariant and measurable : h = T
v

3.2.2 Applicability in the Learning Framework

Consider that our data arrives following a fixed distribution 7 € P(X x )). Our underlying
assumption will be that the data is symmetric in some sense. We will encode this through
the G-invariance of the joint law.

Definition 3.7 [Invariant Laws] Let G be a compact group acting on X and Y via
representations (p* and p¥ respectively)

e Recall that, given a probability measure u € P(X), we say that p is G-invariant if
Vg e G, u=p)#pu.
In particular, if X is a random variable with law w, this can also be written as:

(d)

X =py XVgeG

and X is said to be G-invariant in law.

e Similarly, a probability measure w € P(X x Y) is said to be (jointly) G-invariant when
it is so with respect to the joint action G C (X x V) via p* x p”.

In particular, if a r.v. (X,Y) has law m € P(X x )), then

d
(X,Y) L (pF X, YY) Vg e G

which means that the pair (X,Y) is jointly G-invariant in law (or also, G-equivariant
in law). As a consequence, each marginal (7|x and 7|y ) is G-invariant as well.

Remark The work by Bloem-Reddy and Teh [7] extensively characterizes the notions of

equivariance in law and other similar concepts that are fundamental in the context of GDL.
In particular, the following result is shown:
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Theorem 13 (from Bloem-Reddy and Teh [7]) If G is a compact group acting measurably on
X and Y (Borel spaces); and also, there exists a measurable representative equivariant
T : X — G (i.e. measurable G-equivariant function, ¥g € G, 7(g9.x) = g.7(x)). Let m €
P(X xY) and suppose 7|y is G-invariant. Then: 7 is (jointly) G-invariant if and only if

If 1 [0,1]xX — Y measurable G-equivariant s.t. (X,Y) <= (X, f(n, X)), n ~U([0,1]) L X

In other words, understanding the law of the pair 7 can always be reduced to approximating
a G-equivariant function, modulo uniform and independent noise.

They also delve into the relevance of maximal invariant statistics!! for determining good
properties of equivariant distributions. Remarkably, for 7 a measurable representative
equivariant, M, : X — X defined by M, (z) = 7(z)"'.x is a maximal invariant (see
Lemma 8 in [7]'2).

As we're working over vector spaces, we would like to adapt this noise outsourcing
characterization of theorem 13 into an additive version. Fortunately, we can always do that
in the setting where ™ € PY(X x Y):

Proposition 13 Let G be a compact group acting measurably on X (Borel space) and Y
(separable Hilbert space). Let m € P(X xY) be (jointly) G-invariant and such that E.[||Y[?] <
0. Then:

1f* 1 X - Y measurable G-equivariant s.t. (X,Y) = (X, f*(X) + €)

where & is a centered r.v. with finite variance, and such that Yh : X — Y measurable,

E[(€, h(X))y] = 0.

Proor. This proof is based on rather standard arguments. It is however original (as far as
we know), so we include it entirely in section C.7. ]

Remark Actually, the core of proposition 13 is proving that f*(z) = E[Y|X = z] must be
a (my-a.e.) G-equivariant function.

With these ideas in mind, when dealing with data that is jointly G-invariant in law, a
natural idea would be to seek a way to leverage the symmetries in network training. The
following section contains the key idea of model symmetrization that appears vastly in the
literature.

3.3 Symmetrization of Models

Under the setting of group representations of a compact group G, any map can be turned
into a G-invariant/equivariant map via the following symmetrization operator:

H'Which are statistics M : X — S (with S some borel space) such that M(g.z) = M(z) Vo € X, Vg e G
and Va,Z € X, whenever Gz = Gz, M (x) = M(Z)

12They also show a way of easily constructing G-equivariant maps from a representative equivariant: for
any f: X — Y just define 7(z).f(7(x)"1.x)
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Definition 3.8 (Symmetrization (Orbit Averaging)) Let G be a compact group of
(normalized) Haar measure \g, such that G C,x X and G C,» Y. Let M(X,)) be the set

of all measurable maps from X to Y; and MCE(X,Y) < M(X,Y) the set of those that are
G-equivariant.

We define the following symmetrization operator Q : M(X,Y) — MY (X, V) by its action

over any measurable f : X — Y:

(@@ = | ot a)ihato)

By the G-invariance of Aq, the resulting function (Qf ) is exactly G-equivariant (with respect
to the corresponding actions).

In particular, for the invariant case (p” = Idy ), the same operator is denoted by S (and
defined as: (Sf)(x) = §, f(py -x)dra(g), which always yields a G-invariant map)*®.

Proposition 14 (Properties of the Symmetrization Operator (from Elesedy and Zaidi [28]))
Consider a compact group G that acts on X and Y (via p* and p¥ respectively). Let wx be
a measure on X.

1. Vfe M(X,Y) we have that: f is G-equivariant <= Qf = f.

2. Q has two eigenvalues: 0 and 1.
Further assume that p¥ is a unitary representation and wx is G-invariant. Then:

3. Whenever f € L*(X,Y;7x), we have that Qf € L*(X,YV;7x).

4. Q 1is self-adjoint.
i.e. Q is the orthogonal projection from L?(X,Y;7x) onto L%(X,);mx)

These properties of Q allow for the following decomposition lemma (from Elesedy and
Zaidi [28)):

Lemma 8 (Equivariant Decomposition from Elesedy and Zaidi [28]) Let G be a compact
group acting on G Cpx X and G C,x Y (with 0> unitary); and let Ty be a G-invariant
measure on X .

For any U < L*(X,Y;wx) closed under Q, U admits an orthogonal decomposition
into symmetric and antisymmetric parts: U = Ty @I}, where Iy = {f € U
f is G-equivariant} and Iir := {f e U : Qf =0}

Having noticed that the symmetrization operator Q acts as an orthogonal projection; it
is natural to ask how much one might win from such symmetrization. As in Elesedy
and Zaidi [28], we can define:

13Strictly speaking, the action of G over X doesn’t need to be linear: the operator shall be well defined
(i.e. yielding a G-equivariant measurable function) as long as at least the action on Y is kept linear.
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Definition 3.9 (Symmetrization Gap (from Elesedy and Zaidi [28])) Let G be a compact
group acting on G C,x X and G Cpx Y (with pY unitary); and let m € P(X x V). Define,
for any f € L*(X,Y;7|x), the generalization gap as:

A(f, QF) = Ex[l(f(X),Y)] = E-[£((Qf)(X),Y)]

It quantifies the difference in population risk between a model and its symmetrized version.

From this definition, Elesedy and Zaidi [28] prove the following result (under the quadratic
loss):

Lemma 9 (Symmetrization Gap Characterization (from Elesedy and Zaidi [28])) Let G be a
compact group acting on G C,x X and G C,x Y (with pY unitary); consider the quadratic
loss and let m € P(X x Y) be such that w|x is G-invariant. Also, assume that there exists
f*: X = Y G-equivariant such that (X,Y) ~ 7 satisfies: Y = f*(X) + £ with & centered of

finite variance and independent of X. Then, the generalization gap satisfies:

A(f,Qf) = Ea[|Y = f(XOB] = Ec[IY = (@NHX) 3] = I/,

We can actually improve this result and make it more general by using proposition 13
and drawing inspiration from a recent paper by Huang et al. [40]:

Lemma 10 (Symmetrization Gap Characterization) Let G be a compact group acting on
G C,x X and G G, Y (with p¥ unitary); consider the quadratic loss and let € P(X'x))
be such that E.[|Y]?] < .

Assume that w|x is G-invariant, but 7 is only H-invariant with respect to some H < G
(closed). Then, the generalization gap satisfies:

A(f,Qaf) = Ea|[Y = fF(X)B-E[IY —(Qaf)(X) 3] = —2(f*, farr2eyimar 1 16 72 e yim)

where f*(x) = E [Y|X = x| is the conditional expectation function of Y wrt X, and we
denote f& = f — Qg f.

In particular, if 7 is G-invariant as well, we get A(f, Qqf) = ||féH%2(X Vir)

Proor. As far as we know, the result (as is stated, in its most general form) hasn’t been
proven in the literature. The proof is, however, really similar to that employed in Elesedy
and Zaidi [28] and Huang et al. [40] for their corresponding statements. We do, however, draw
from proposition 13 in order to state the result for an arbitrary = that’s square integrable.
Our proof of the statement shall be found in section C.8. n

Remark What Lemma 10 esentially tells us is that, if we try to symmetrize a model with
respect to a group that has “more symmetries” than what are actually observable in our
data (i.e. 7 in itself is only H-invariant, but we symmetrize with respect to G > H); we can
either win or lose generalization power according to the interplay between the two presented
terms. In particular, if 7 is G invariant, there’s a strict generalization benefit from choosing a
symmetric model to tackle our learning problem (which gives the name to the paper Elesedy
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and Zaidi [28]). In particular, whenever fZ is non-zero (on a strictly positive m|y-measure
set) there’s a strict gain in generalization power from using the symmetrized version of the
model.

Beyond these theoretical elements, the focus of the related literature has been, in general,
on leveraging the symmetries of the data in some way during training, in order to get better
models. Model symmetrization is one key alternative, but many others exist.

3.4 Techniques for Leveraging Symmetries

There are three main objects of study in the literature when it comes to leveraging the
G-invariance of data: Data Augmentation (DA), Feature Averaging (FA), and more
recently, the use of Equivariant Architectures (EA). The first two techniques have been
extensively studied in the context of neural network learning (see Lyle et al. [53], Chen
et al. [14], Huang et al. [39] for a comparison between both, and Mei et al. [59], Li et al.
[52], Dao et al. [21] for applications in the context of NTK). On the other hand, equivariant
architectures of NNs have been studied on their own right (see Kondor and Trivedi [47],
Cohen et al. [19], Maron et al. [55], Yarotsky [92], Zaheer et al. [93], Weiler and Cesa [90],
Wood and Shawe-Taylor [91], Shawe-Taylor [76, 77] among many others). Comparisons
between all three methods are scarce and their appearence in the setting of the Mean Field
Limit of NNs is practically non-existent. This work, in part, aims to discover how these
different techniques can be compared and how they might influence the MF limit of NNs.

Recall that, in our learning setting, as described in section 2.1, we have i.i.d. data coming
with a distribution 7 € P(X x )) and we try to find a model f € M(X,)) such that
R(f) = E.[¢(f(X),Y)] will be minimized (where ¢ : ) x J — R is a loss function that’s
often assumed convex). Let ®;7 : X — Y be a NN model with architecture (N, o) and
parameter # € © (as described in section 2.1.1). The different techniques considered in the
literature amount to different approaches to this problem:

3.4.1 Data Augmentation (DA)

Data augmentation is one of the most used regularization techniques when training NN
models. It is, in part, due to the ease of implementation, but also due to its flexibility (the
applied transformations may not have any kind of group structure).

Under this setting we do not modify the architecture of the NN. Instead, we penalize
it during training, in order to teach it the symmetries of the problem. It is thus a trained
equivariance (NOT necessarily enforced). In this setting we talk about a generic model
f X — Y which could, in particular, be one of NNs as described above.

Essentially, we train the NN to minimize an averaged version of the risk:

RO = || Bosryoo (), 75 ¥ Ao
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where \g is the normalized Haar measure of G. Actually, when m € P(X x ) is assumed
(jointly) G-invariant RY(f) = R(f) so there’s no difference between both problems.

In practice, DA consists in symmetrizing the empirical risk (that’s what we actually
optimize during training); and so, for a given sample of i.i.d. data (X, Yi)2_,, instead of
optimizing R(f) = & S U(f(Xy), Vi), we optimize the augmented empirical risk:

RO(f) = %; Laﬂp; X007 Yi)dAa(g)

In practice, as most of the time integrating over G is intractable, we also approximate this
using an 1.i.d. sample of group elements ((g¥)2¢)E_| ~ \g; we optimize:

RG.(f) =

Despite the fact that this technique has no guarantee of obtaining an equivariant model
at the end of training (it only penalizes models intelligently) it is still highly relevant in
practical applications.

Regarding theoretical results about this method, Chen et al. [14] dives deeply into establishing
a group theoretic framework in which the advantages of DA with respect to other techniques
can be studied (Lyle et al. [53] provides complementary results that shall also be considered).

The main result from these papers is that the average over G in the augmented risk serves
to reduce the variance of the ERM estimator compared to a NN without such augmentation.
Consider the following lemma from Chen et al. [14]:

Lemma 11 (Exact Invariance Lemma from Chen et al. [14]) Let G be a compact group with
Haar measure A\g and m € P(X x Y) a G-invariant law (with p¥ the trivial action). Let
h: X — Y be an arbitrary measurable function, such that [(x,g) — (h(g.x))] € L*(7|x x pg).
Define h® := (Sh) as the orbit average of h. Then:

1. Vo e X, h%(x) = E[h(Z)|Z € p(z)] i.e. the symmetrized model is given by the
conditional expectation of h given the corresponding orbit**.

2. By the law of total expectations, we get that: Ex i, [R(X)] = Exn, [P (X)]

3. By the law of total variance, the covariance of h(X) is as follows:
Vary . [h(X)] = Varx ) [h9(X)] + Exq, [ Varyog [h(g-X)]]

4. For any convex function ¢ : R > R, Ex i, [p(h(X))] = Exrl[p(h%(X))]

From here, a simple, yet insightful, proposition follows, depicting how the augmented risk
is (in general) a better approximator of the population risk than the non-augmented version:

1 This is what, in the literature, is usually referred to as the Rao-Blackwellization of estimators in this
context.
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Proposition 15 (Improvement of Invariance, from Lyle et al. [53]) If 7 is jointly G-invariant
and f : X — Y is such that ((f(-),-) € L*(w) (also, suppose that { is jointly G-invariant);
then:

o The augmented empirical risk is unbiased with respect to the normal empirical risk:

RE(f) = E(x,.vi) []%G(f)] = E(Xk’yk)le[}?(f)] = R(f) (i-e. it is unbiased)

e The variance of the augmented risk is lower than the non-augmented one.

B
k=1

~

Varx, v, [RE(f)] < Var, yoe [R(f)]

All in all, this means that the augmented empirical risk gives a better estimate of the real
population risk than the non-augmented one (so, one should expect a more effective minimization).

Deeper results concerning DA have been found over the years. For example, some PAC-
Bayes bounds have been established in this context (see Lyle et al. [53]). Many other
interesting results concerning DA exist, and we won’t be able to cover them all in this
work: the original material shall be sought for deeper insights.

3.4.2 Feature Averaging (FA)

Feature Averaging is another quite popular technique for leveraging symmetries in our NN
models. In short, FA consists simply on symmetrizing the original model f : X — ) in
order to obtain an explicitly equivariant model.

In the case of a NN, CIDéV’U, the feature-averaged model corresponds to considering

B = [ 2@ el = (@)

where \g is the normalized Haar measure of G.

On the one hand, FA ensures that the obtained model will be equivariant (as shown in
proposition 14). Unfortunately, this comes at the cost of being higly inefficient in terms
of the number of parameters/computations to be performed. No reduction in the number
of parameters is being performed nor is the symmetry being encoded in the architecture in
any way. It is rather an arbitrary model that is being forced into being G-equivariant by
averaging over all possible transformations of the input.

Despite this observation, the following result by Elesedy and Zaidi [28] shows that FA is,
in some sense, the best possible way of forcing the model to be G-equivariant:

Proposition 16 (FA as Least Squares, from Elesedy and Zaidi [28]) For any f € L*(X,Y;7|x),
FA with Q maps f to f, the (m|x-a.e.) unique solution to the least squares problem:

[ =arg w min |f = 5\\%2(x,y;w\x)
L2(X, V7| y)
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On the other hand, similar to the case of DA, wvariance reduction results have been
established:

Proposition 17 (Prop.5 from Lyle et al. [53]) If m is G-invariant and ¢ : R x R — R,
15 a convex loss function in its first argument that’s also jointly G-invariant. Then, for all
fX -0, ) ) )

Ry(Qf) = RY(Qf) < Ra(f)

i.e. The risk of any symmetrized model is lower than that of the original one.

Moreover, if £(f(-),-) € L*(r); then: Var(thk)kB:l[]%(Qf)] < Varx, v [}?G(f)]

B
k=1

i.e. the variance of the FA risk estimator is lower than that of the DA one. This amounts
simply to stating that through FA a better estimate of the population risk shall be found (and
hopefully this will help the minimization process).

Beyond this, Lyle et al. [53] establish a quantitative advantage (in terms of the KL
divergence of their PAC-Bayes bound) as well as quantify the symmetrization gap between
FA and non FA models. A similar result is established in Elesedy and Zaidi [28], in which they
prove that the Rademacher complexity'® of a class of models F is larger than the complexity
of the class containing only the symmetrized version of the models in F; furthermore, this
advantage is quantifiable in terms of the complexity of the class of antisymmetrized versions
of models in F.

In some specific cases, Elesedy and Zaidi [28] are able to quantitatively calculate the
generalisation gap from considering a G-equivariant model. For example, in the case of a
linear regression model, where the predictors are of the form fy (z) = W1z with W e R¥x¢,
they are able to establish that:

A(fw, Qfw) = H\/]EX””‘X (XX er

where W+ is the orthogonal component of W with respect to the intertwining average®. We
notice from this particular example that, in the linear setting, doing FA amounts, esentially,
to considering an equivariant “architecture” for the linear model (as we’ll see in the following
section, many elements of the theory resemble this particular example).

In general, many other results exist for FA models, and further insights might be sought
in the extense literature.

Remark What's particularly been a recurrent interesting question in the literature is about
the comparison between DA and FA as “Symmetry-Leveraging mechanisms”. Works like
Chen et al. [14] and Lyle et al. [53] delve into this comparison and establish that, at least
theoretically, FA has an advantage over DA when the loss function /¢ is convex; also, both
methods are better than not using anything other than the original NN model.

15For deeper insight into its definition and the formal statement of the theorem, we advise to look into
Elesedy and Zaidi [28]
6The intertwining average is defined as W := {, ijpg)_ldAg(g), so that W+ =W — W&
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However, these results rely merely on the convexity of the loss function, and better
approximations to the problem have been made over the years. For instance, Dao et al.
[21] prove that DA corresponds, in a first order approximation, to doing FA; and in a
second order approximation, to minimizing a wvariance-regularized version of the objective.
In a similar fashion, Li et al. [52] prove that, in the context of kernel classifiers, optimizing
a kernel model using an augmented dataset (i.e. DA) will yield the exact same result as
optimizing a symmetrized model on the original dataset (i.e. FA). In particular, in the
context of kernel classifiers, an explicitly invariant model is achieved through DA despite
there being no explicit constraint to ensure this. This fact is also noted by Lyle et al. [53]
when studying linear regression models under DA. All in all, DA and FA aren’t so different,
at least in the context of linear (or linearized) regressions.

Finally, the symmetry-leveraging technique that has been most popularized in recent
years (following the ideas of Bronstein et al. [10]) is that of equivariant architectures
(EA) which we’ll review next.

3.4.3 Equivariant Architectures (EA)

As mentioned in previous chapters, Equivariant Architectures (EA) such as CNNs, Transformers,
GNNs, PointNets, among many others; have been gaining an increasing popularity over
recent years, specially due to their great success at introducing an inductive bias on the
network architecture, allowing the model to profit from the data’s symmetry (e.g. CNNs
on traslation-invariant images; GNNs on permutation-invariant graphs, etc.). In short,
equivariant architectures assume that a certain set of symmetries to hold, and they are
built in such a way that allows to simplify the model (usually, through imposing parameter
sharing within each layer) withouth damaging the model’s generalization power.

Following the formalism of Flinth and Ohlsson [32], let’s say we can define a multilayer
NN model as 4 : Xy := X - X > X, — -+ — Xy =: Y such that:

ro =x, i1 = 0;(Ajz;) Vie{0,...,L — 1}, Pu(x) =z

Where Vi € {0,...,L — 1}, A; : X; — X1 are the linear maps between the hidden vector
spaces (X;)E,, and o; : X;,1 — X, are the (non-linear) activation functions.

Let Hom(X;, X;;1) be the set of linear maps between X; and X;,; and consider £ =
L' Hom(X;, X;y1). Then, the network is ezactly parameterized by A = (A;)=; € L; that
is, knowing the parameters of each linear layer (i.e. the matriz’s parameters) is enough to
reconstruct the action of the network.

Now consider a compact group G such that G C,, A; for all i € {0,...,L} (such that
po = px and pr, = py). We say that an NN model has an equivariant architecture (EA; or
simply, that it is an equivariant NN) whenever each intermediate layer is an equivariant map
X; — X;11. In other words, we impose that

pi+1(9)-Tiv1 = 0i(Ai.pi(g).x:), Vg e G, Vie {0,..., L —1}
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Figure 3.3: Illustration of a basis in the matrix space Homg for different groups. Cells of
the same color are essentially shared parameters. This figure was taken from Finzi et al. [31].

Consider the space Homg (X, X;11), which corresponds to all G-equivariant linear maps
between X; and Xy (i.e. A; : X; — X1 such that p;41(9).Aix = Aipi(9).z, Vg € G, Vx €
X;). Clearly, if all activation functions o; are G-equivariant'”; and each linear layer A; lives in
Hom (X}, X;.1); the resulting model will be a NN with EA (i.e. each layer is an equivariant
map). In particular, we can consider what we refer to as the equivariant parameter space,
given by:

EY = ' Home(X;, X1 1)

This allows to simplify our description, since whenever the parameter vector A lives in £
(and the activations are all G-equivariant), the resulting NN will be equivariant. The space of
equivariant parameters has been widely studied in the Geometric Deep Learning literature,
seeking to understand its universality properties (see Yarotsky [92], Zaheer et al. [93], Maron
et al. [55]) and simpler ways to characterize it (see Cohen et al. [19], Kondor and Trivedi
[47], Weiler and Cesa [90], Aronsson [3], Lang and Weiler [49]).

In particular, it is shown that £% corresponds to the space of all mappings that can
be written as a group convolution against kernels with good equivariance properties (see
theorems 3.2, 3.3, and 3.4 of [19], theorem 1 of [47], or theorem 4.1 of [49])*®.

Another way of understanding EAs is by seeing the equivariant linear maps as simple
matrices where some of their entries are shared (see Wood and Shawe-Taylor [91], Ravanbakhsh
et al. [71], Finzi et al. [31]). That is, the “group convolution” that takes place from one
layer to the next, is achieved with a single matrix multiplication (where various of the matrix
parameters are repeated). As we’re working with group representations; solving the constraint
pir1(9).Aipi(g71) = A; Vg e G, Vie {0,..., L — 1} amounts to solving a simple linear system
(as described in Finzi et al. [31]). Figure 3.3 illustrates how this parameter sharing looks
like for matrices under different symmetry groups. This characterization of G-equivariant
linear maps explicitly shows that equivariant networks have fewer parameters than their
fully-connected counterparts (as multiple parameters are shared within the same layer). On
the other hand, this description allows us to embed an equivariant NN into an ambient space

17A simple (and widely used) example of such activation functions are the coordinate-wise application of
some 7eal activation function o : R — R.

18¢.g. Cohen et al. [19] essentially says that Homg (V1, V2) (for V1 and Va two vector spaces) is isomorphic
(under the right homogeneity conditions) to the space of bi-equivariant kernels of G (which build the
convolution):

ICG = {Ii G — HOI’H(Vl,VQ) : Vg € G, Vhl € Hl, th € HQ : H(hgghl) = pg(hg):‘{(h)pl(hl)}
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corresponding to that of a fully-connected NN: the equivariant architecture lives in a closed
linear subspace (£¢) of the whole parameter space (L£). This idea will ease the “translation”
of the setting of EA to the MF study of NNs.

As to how equivariant architectures are implemented in practice (in a flexible way, allowing
or many potentially different groups), Finzi et al. [30] and Finzi et al. [31] shed some light
into how we can characterize £ by a linear system (which can be solved using tensor algebra)
and also how an EA for a possibly infinite group might be approximated (e.g. implementing
group convolutions through Monte Carlo sampling [30]). Recent works such as Puny et al. [70]
also try to simplify the group averaging procedure by only applying it over a G-equivariant
frame (subset of all group elements).

The idea of finding the parameters of £ by solving a linear system is also tackled in Flinth
and Ohlsson [32]. Particularly, from our formulation of EA networks we can define, from the
action of G on each Aj;, an action of G on Hom(X;, X;,1). Indeed, for all A; € Hom(X;, X;,1)
and g € G, we consider:

pi(9)-Ai == pis1(9)Aipi(g) ™"
From here, we can construct a G-action on the entire parameter space, £, by simply defining:

VAeL: plg).A:= (pi(g)-A)iso

In other words, from actions on the latent spaces of the network, we can generate an action
on the network itself (via its parameter A = (A4;)%, € £). Furthermore,

Proposition 18 (Characterization of £ (from Finzi et al. [31] and Flinth and Ohlsson [32]))
Let GC,, &;, Vi€ {0,...,L} and define G C; L as in the previous paragraph. Then:

Acll — VYgelG;p(g)A=A
In other words: £ ={Ae L : Yge G; p(g).A = A}.

This simple fact will be crucial for our study of EA networks in the following sections
(specially related to how we introduce them in the MF limit of shallow NNs). One can
immediately notice (as the linear representations of G acting on each underlying latent space
are continuous; and thus p is continuous as well), that £¢ = e Ker(p(g) —1d.) is a closed
linear subspace of L (as it is an arbitrary intersection of closed linear subspaces). We can
then define the orthogonal projection Pec onto £: consider \g the unique normalized Haar
measure on G (a compact group), and notice that the projection has the form:

PgGZ —>5G
HJ ) Adra(g)

Proor. See Flinth and Ohlsson [32]. For completeness, we include the proof in Annex C.9. [

One might notice the resemblance with the intertwining average described in the linear
regression example from section 3.4.2. Actually, Elesedy and Zaidi [28] go beyond such an
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example, and try to tackle the case of shallow NNs using similar techniques. In particular,
consider a single-layer NN (®y,(x) := o(Wx)) with o being C-Lipschitz and applied pointwise
such that p¥ commutes with 0. They can prove (for u = N(0,1d4)) that:

it B [0y (X) - s3] < 20

L2 (R4 RC; 1)

i.e. the closest possible G-equivariant model from the original ®,, is at a distance bounded by
the anti-symmetric component of the weights (suggesting that |W=|% might an interesting
penalization term to include during the training of neural networks).

On a different branch, Lawrence et al. [50] study the training dynamics of linear'® G-
equivariant models; analogously, Mei et al. [59] bring certain ideas from invariant networks
into the context of random features and NTK (where they are able to extract some quantitative
guarantees). In general, new advancements in the theory of EAs are constantly being made
by researchers; however, despite the heavy interest in the literature for such models, the
comparison between DA, FA, and the use of EA has not been too extensively developed.

Very recently, Flinth and Ohlsson [32] have studied how the (continuous-time) training
dynamics of network models with equivariant architectures behave, comparing stationary
points and local/global minima for different training strategies (in particular, DA, EA and
the vanilla training). Notably, beyond the DA and FA risk functionals that people usually
try to minimize (RY and R4 respectively), they introduce the equivariant risk of a model,
as (for R : £ — R the original risk functional)

RFA(A) = R(Pec.A) YAe L

which would be the risk associated to a model if its parameters were to be projected onto the
space of explicitly equivariant parameters. In their paper, Flinth and Ohlsson [32] prove that
(under reasonable assumptions) YA € £Y we have VRY(A) = PeaVR(A) = VR(Psc.A);
implying that the space £ is invariant under the gradient flow of R. Similarly, it allows
them to relate the stationary points of the dynamic of R* to those of R®".

As we’ll see in upcoming sections, similar results will arise in the study of the MF limit
of shallow NNs. In general, the goal of our work is to bridge the ideas from the world of
equivariance in neural networks to the Mean Field context, aiming to understand the impacts
of the different techniques considered (DA, FA, or EA) on the properties of the MF' limit.

Remark Many other symmetry-leveraging techniques are continuously being proposed and
exploited in the deep learning literature, far beyond the scope of our review. A remarkable
example that recently appeared in the literature is the idea of canonicalization introduced
in Kaba et al. [42]. It esentially establishes an architecture divided in two steps: first, a
canonicalization function, that tries to place the input image into a canonical orientation
(similar to how the representative equivariant of Bloem-Reddy and Teh [7] worked); then
a simple unconstrained NN able to perform the task over canonically-oriented input data;
and finally the canonicalization’s “inverse” in output space (to make the model equivariant).
This idea has a really interesting potential (as it has not been extensively studied in the
literature), so it shall be looked upon in future work. Kim et al. [46] also provide interesting

19i e. without activation functions, a really commonly used proxy for studying NNs.
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variants of the same idea; and many other techniques shall be found in the ever-growing
literature on NNs.
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Chapter 4

Symmetry in the study of “shallow”
Neural Networks

In this section, we will address some of the specifics of truly studying symmetries for the MF
Limit of shallow NNs.

Let X and Y be separable Hilbert Spaces (most commonly, for real-world NNs, we will
take X = R? and ) = R we’ll however define the ideas in general). Let’s assume that some
compact group G acts on our feature and label spaces; ie. G C, X and G C; V. We can
suppose these representations to be orthogonal' (as in Mei et al. [59], Flinth and Ohlsson
[32]; as already discussed, given that G is compact, this assumption is not truly restrictive).
When no confusion is possible, for ease of notation we will write p, := p(g) for all relevant
group representations.

Suppose we have data (Xj, Yi)ren i 7, and further assume that its law, m, is jointly

G-invariant; i.e. for (X,Y) ~m (X,Y) @ (pg-X,pg.Y) Vge G

Based on this action of G on the data space X x ), we want to be able to understand
some properties of the associated Mean Field limit (compared to the cases without such
symmetry). As the most widely studied case in the literature is that of shallow NNs; we will
begin by analyzing this type of model.

Recall that, archetypically, a shallow NN can be written as follows: let X < R? and
Y < R, and define the shallow NN to be:

TARE N
1 N
x> N;a*(ﬂc; 0;)

where o, : X x RP — Y is the so-called activation function of the network, considered to be
ou(2;0;) = wio(A; -z + b;), with 0; = (w;, A;,b;) € RP := R¥2 and 6 := (0,), € (RP)N.

1 As mentioned in section 2.2 many interesting evamples admit a unitary representation (G = S, on
X=R" G=8,onX =R" G = Z2 or G = Cy (rotations) on X = R™*" among many others).
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4.1 Defining Symmetries in the Parameter Space

In terms of equivariant NNs, the archetypical shallow NN doesn’t allow for very interesting
EA. Such a network is esentially a function ®) : R? — RY — R, and so, as not many
orthogonal representations are available on R, this won’t lead to very interesting equivariant
models. On the other hand, as the exchangeability of the N hidden units of the NN is a
crucial condition when taking the MF limit (or else, there wouldn’t be a propagation of
chaos), the only meaningful action of G on RY has to be the trivial one (prpy = Idy)?. In
part due to this, EA networks in this setting get easily reduced to being trivial. As we will
see later, if we take G = O(d) acting on R via matrix multiplication and trivially on R, then
any EA will have A; = 0, Vi € {1,..., N} and thus the output of the NN won’t depend on
the input at all. We are therefore in need of a more interesting definition of a shallow neural
network in order to make the MF limit also interesting from the viewpoint of EAs.

4.1.1 Making the Parameter Space Interesting

An idea for making the group action on the space of parameters more interesting is to consider
a higher dimensional label space and a more compler intermediate (or hidden) space. Let
X =R?and Y = R Let b e Nand G G, R’ (i.e. we also have a representation of G on
R’ given by ). Given N € N, we will now have N - b hidden units, in a NN that will be
of the form (using the notation of Flinth and Ohlsson [32]): ®5 : R? — RN — R with
B =(W,A) e L := Mexpn(R) x Mpnyxa(R), such that?:

Oy (z) = %WO‘(AX)

Where we can write this expression by blocks

Ay
W=Wi,...,Wyx), and A= :

AN
with (Wy, Ay) € R® x R®*?, This translates to:

1 N
N () = ~ > Wio(ArX)
k=1

To simplify the notation of the parameters, we will consider W}, = wy, € R®*® and Ay = al,
with a;, € R¥™?; so that we can define a parameter 0y, := (wy, az,) € R x R¥xb = Rle+d)xb ~
R+ —: RP we will denote the vectorized version of parameters as (wy, @) € R® x R,

2Otherwise, parameters building an equivariant network under such an action would be shared between
hidden units (making them not exchangeable and yielding propagation of chaos impossible).

3 Assuming, for simplicity, that there is no bias and that the second layer is normalized by the number of
units N
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We define § = (6;)Y_,, and this allows us to write the network (using the typical shallow NN

notation) as:
Z WO &kx Z o.(x;0;)

where we have defined an activation function o, : X x RP — Y as o.(z;0;) = wyo(alz),
with 0 := (wg, a) € R*? x R™*? ~ R, The advantage of writing the network in this format
is that the transition to the mean field limit should happen without major issues.

4.1.2 Making a (somewhat) interesting group representation

In the MF limit of the network, the evolution of a typical parameter 6 € RP is studied.
Given that 7 is (jointly) G-invariant, we would like to draw conclusions about this typical
parameter; for instance, whether its distribution p inherits from 7’s G-invariance in some
way. To answer this, it becomes necessary to extrapolate, from the actions on X and ), an
action G CRP (or equivalently, on £) that is consistent with the behaviour of the data.

The natural definition for such an action G C £ was given in the previous chapter (see
proposition 18; based on the ideas of [32, 31]); but it requires having some action of G on
every hidden layer as well (i.e. on R* in our case).

The solution that will (for the time being) allow us to obtain a result without significantly
modifying the ideas from the MF context will be to set the action G G5 RN? by the (orthogonal)
representation p. := Idy®n. (where ® is the Kronecker product and Idy is the identity matrix
of RY). The tensorization by Idy is there to ensure the required exchangeability between
the NN hidden units in order to take the MF limit. In other words, it means that p will
act independently on each separate hidden unit (which will now be a block of size b in R

thanks to our new definition). i.e. if we have Z = (Zy,..., Zx) € R and we consider it’s
Zy

vectorization Z = | € R, then, by properties of the Kronecker product:
Zn

77921
peZ = (Idy ® ny)Z = vec(nyZldn) = vec(n,Z) = vec((ngZy, ..., NgZn)) = :

NgZN
This means that  acting on R*Y consists of n acting on each block component independently*.
A similar calculation also works for matrices in M, ) (R).

The idea of not mixing up the NN’s units with the intermediate group action aims at
having a single common space Z = RP (shared among all units, as with the traditional MF
limit) where the behaviour of a type parameter might be studied. In particular, it is precisely
what’s needed for the expression @) (z) := %Zi\;l wio(al X) to make sense as N — oo,
allowing us to interpret it as a LLN for the ezchangeable units (see theorem 3). The study

4Note that when b = 1, this network architecture corresponds to the usual shallow NN from section 2.2.
In that case, n is an action on R, which we’ll assume reduces to the trivial action: n = 1 and p := Idy
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of more interesting group actions over R" is definitely an open problem to tackle as future
work.

Despite this limitation, as we've expanded the usual setting of shallow NNs, (with all our
hidden units living in a more interesting space), we are able to consider relatively interesting
equivariant network architectures, such as shallow and (very) wide CNNs, DeepSets, GNNs,
among others®.

Equipped with these actions G C, R?, G C; R"?, and G C; R¢, we can define (as in [32]),
for (W, A) € L:

(1541 ) (14105 )
Po(9)-A = pgAp, = (ldy@m)Ap] = |+ |of=|
77914 ngANpg

pi(g) W = ﬁgWﬁ;I = pgW(Ildy ® 779>T = ﬁg<W177§a S WnﬁgT) = (ﬁngga e aﬁanngT)

This leads to the complete action of G over the set of parameters of the network as:

Py (W, A) = (p1(9)- W, p(9)-A)

Now, given the this action behaves independently on each unit block of the A and W, we can
extend 7 to each of these components (W)Y, and (Ag)Y_, of W and A respectively®. For
each ke {1,..., N}, VgeG:

ﬁ(g)(ka Ak) = (ﬁng'ﬂga ngAkpg)
= (pgwrny , (pgarny)")

This definition is consistent with the one above, since the actions of p,(g) and p,(g) are
naturally by blocks.

Remembering that Vk € {1,..., N}, wy € R®? and a; € R, p, actually defines an

action over R(¢*9*? (here, we use block notation to describe (Zk) g R(c+d)xby.
k

A T A
= (we) _ (Pewitly \ _ (Pg O\ (wr) 1 _ g (Wk) T
o (o) = Gt )= (i ) (i) = ()

where we’ve defined the block matrix: Mg = (Pog p0> € M (ctb)x (c+b) (R).
g
By wvectorizing our parameter 6, = (Zk) into 0 € RP , we see that the action of p,,
k
thanks to the properties of &, corresponds to:

ﬁggk = VGC(MgGWZ) = (1y® Mg)gk = Mggk

5This setting makes sense as long as there’s a linear unit that’s infinitely repeatable, and thus
interchangeable (such as a single convolution kernel that could potentially have infinitely many channels).
This are referred to as networks with tensor order 1 in Maron et al. [55].

6This is why it’s natural to consider G Cs RN with p. := Idy ®1.; so that each fundamental unit 0;, € RP
will be acted upon in the same way by G. Possibly, for a more interesting action p, a more intricate network
structure will be needed.
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i.e. the acion of G over R” corresponds to multplying with a matrix of the form M, := 779®M g

We can see, in particular, that this action p over RP is orthogonal. This is due to the
fact that M, € O(c+ d), as can be seen from the following calculation:

“AT_ﬁgO.ﬁz;O_ﬁgﬁZ 0 _
MgMg _(O Pg> (0 PgT a 0 PngT = e

On the other hand, by properties of the Kronecker product, we have:
MgMgT = (ng®Mg)(ng®Mg)T = (779®Mg)(77§®MgT) = (779773)®(M9Mf) = Idy®Id(c1q) = Idp
so that indeed, Vg € G, M, € O(D). i.e. G Cy; R” orthogonally.

After this calculations, we've managed to succesfully construct an action G Cp; RP (via
an orthogonal representation). With this in place, we can now determine whether the type
parameter, in the MF limit, will inherit some interesting symmetries from the G-invariance
of the data distribution.

First, as noted at the end of Chapter 3, the action of G on the parameter space that we
have defined (following [32, 31]) leads to the following characterization:

Definition 4.1 (Space of Equivariant Neural Network Parameters) Let G Cy; RY, we define:
E9:={0eRP : Yge G, M, 0 =0}
This s the space of NN parameters that are left fized under the action of G via M.

In particular, the following characterization will be key for our purposes in upcoming
sections:

Proposition 19 For any 0 = (0;)Y, € (RP)N | we have that:
dY : R - R™ — RC defines a G-equivariant NN <= VYie {l1,... N}, 0, E°

Proor. The proof’s direct from the definition of the group actions employed. In any case, a
simple proof is presented in Annex C.10. O]

4.1.3 Generalization is key

Both previous sections provide a key motivation for what will follow: starting from the most
down-to-earth example of a shallow NN, we arrived at a characterization (proposition 19)
of equivariant shallow NNs that merely depends on some equivariant subspace £ (and, in
particular, doesn’t heavily rely on the underlying description of the network)”.

This allows us to actually generalize the ideas, hiding the (potential) complexity of the
NN definition (in terms of layers, activation functions, pooling, truncation, etc.) behind the

"We consider such motivation as a key piece to understanding our work and its applicability; that’s why
we include both sections in the body of our work, rather than relegating them to an annex
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all-purpose activation function o, : X x Z — Y that’s usually considered in the Mean Field
literature.

We could then simply start by considering some (orthogonal) representation M of a
compact group G acting on some space Z (a separable Hilbert Space we will refer to as the
parameter space; in the previous example we had Z = RP); i.e. G Cy; Z£. We can then
define, as in definition 4.1, the equivariant parameter space for our networks as:

EY:={0eZ : Vge G, M,.0 =0}

Then, we can directly define the notion of an equivariant shallow NN:
Definition 4.2 (General Definition of an Equivariant Neural Network) Let a compact group
G act on a separable Hilbert space Z through an orthogonal representation G Gy Z. Let

0+ X x Z — Y be an actiwvation function. We will say f : X — YV is a G-equivariant

shallow NN if:
o= d) = iia*(-ﬂi)
0 N r )

For some N € N and 0 = (0;,), € (Z)V such that Vi € {1,...,N}, 0; € EY. Coherently
with what we introduced in section 2.2.2, we will denote the set of equivariant shallow NNs

as Ny, (E9).

As seen in Chapter 2, any shallow neural network can be seen as an integral against the

empirical measure of the parameters; i.e. for 8 € ZV consider v}’ := % Dimq 0p,, and we have

O (z) = (o4(z;-),v)’). Particularly, in this context we get the following characterization:
Proposition 20 @) is G-equivariant <= v} concentrates in EC (i.e. v)¥(EY) = 1).

In the more general context of minimizing in the space of probability measures (as seen
in Chapter 2), we will be particularly interested in considering measures that concentrate on
EY (a notion we will develop further in upcoming sections).

Just as we saw in section 3.4.3, £¢ = ﬂgeG Ker(M, —1dz) is a closed linear subspace of
Z, and the orthogonal projection Pec onto £ can be explicitly defined as:

Peo : 2 — EC
0 — J M,.0d\a(g)
G

where \g is the unique normalized Haar measure on G.

Considering this definition, a first question one may ask is whether these equivariant NNs
(as in definition 4.2) are themselves equivariant models. The affirmative answer comes under
the assumption that o, respects the symmetry in some sense:

Proposition 21 Let G' be a compact group such that: G C, X, G Cy Z and G C; V. Let
oy 1 X x Z — Y be a jointly G-equivariant function. Then Y0 € (E€)N,

@) is a G-equivariant function.

67



More generally, V€ P(EY), f = 1§, 0.(:;0)du(0) is a G-equivariant function.

Proor. We can provide a proof of the first part only requiring the definitions we’ve already
introduced (and it shall be found on section C.10). The second part requires elements that
will be introduced in upcoming sections. O

We might then wonder whether the condition of having o, being jointly G-equivariant is
at all reasonable. Fortunately, for the example presented in section 4.1.2 this is indeed the
case:

Proposition 22 Let X = R?, Z = RP = R+ Y — Re and let G be a compact group
such that G C, X, G G, R®, G C; Y. Consider the activation function of shallow NNs
oy X x Z — Y given (for 0 = (w,a)) by o.(x,0) = wo(a’x), with o : R® — R’ being G-
equivariant to the action of n (e.g. in many cases it is enough for o to be applied pointwise).
Then:

0y : X X Z—Y s jointly G-equivariant

Proor. See Annex C.10. O

In particular, this allows to say that the previous proposition 19 is actually a consequence
of proposition 22 and definition 4.2. Now, as hinted by the last part of proposition 21, the
properties of equivariant neural networks come from the underlying activation function o,
and the measures involved in their definition.

In particular, beyond measures in P(E), any G-invariant measure p € MY (Z) yields a
G-equivariant model f = § 0.(-;0)du(6) (when o, is jointly G-equivariant; see proposition 37).
It is then crucial for our purposes to understand the interplay between G-invariant probability
measures and measures concentrated in £¢. In the following section we will dive a bit deeper
into the study of these two quite interesting measure spaces.

4.2 Wasserstein Spaces and Invariance

Recall the setting of Wasserstein Spaces described in section 2.2.4 (based on Santambrogio
[73] and Ambrosio et al. [1]). Let Z be a Hilbert space with norm ||- || (often simply Z = RP).
Consider P(Z) the space of probability measures over Z and, for p € N*, P,(Z) := {u €
P(Z) : §,10Pu(df) < +oo} the space of probability measures with finite p-th moment. This
space, endowed with the p-th Wasserstein metric® W, is what we call the p-th Wasserstein
Space.

From here, also consider a compact group G such that G Cy; Z (via the representation
M). Recall that MY(Z) is the set of G-invariant measures over Z; and define:

PI(Z) = {nePy(Z) : Vge G, My#u=p}=MZ)nP,(2)

$Which is defined as: W, (u,v) := [inf e By [| X — YHP]]%, Y, v e Pp(Z) and II(p, v) the space of
couplings between p and v
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which is the set of G-invariant probability measures with finite p-th moment. We will be
interested in projecting any measure in P(Z) onto P%(Z); for this purpose, we introduce the
symmetrization of a measure:

Definition 4.3 (Symmetrization of a Measure) Let G be a compact group, with Haar
measure A\g, and such that G Cyr Z. For € P(Z), we define its symmetrization with respect
to G, u® e P(2), as:
VB e Bz, u“(B) := J w(M7H(B))d\
G

g

Or, equivalently, Vf : Z — R positive and measurable:
Fi% = | < o My drlo)

Proposition 23 Vu e P(Z), u® is a well defined probability measure over Z and satisfies:

1. Vge G, Yue P(2), (My#p) = p
2. Va,be R, Yu,ve P(Z), (ap+ )¢ = ap’ + bv°

Proor. See Annex C.11, or just see Kallenberg [44] for more about intensity measures. [

Remark Notice that u© is actually the intensity measure associated to the random measure
w > My, #1, where g is a G-valued random variable with law Ag. It is thus naturally well
defined. More information about this fact, and other measure-theoretic insights can be found
in Kallenberg [45].

We will also be interested in considering probability measures that concentrate their
weight on a fixed subspace of parameters. We will define, for any measurable £ € Z, the set
of measures that concentrate on € (and those with finite p-th moment)?:

PE(Z)={neP(Z) : W(€) =1} =P(E), and PL(Z):=Py(Z) nP*(Z) = Py(&)

Whenever € is a closed linear subspace of Z, we can consider the orthogonal projection'®
onto £, Pe : Z — £. For any p € P(Z), we denote its pushforward by Pe as ué := Pe#p.
We can get an interesting characterization of P¢(Z) in terms of Ps:

Lemma 12 Let p € P(Z) and € be a closed linear subspace of Z with an associated
orthogonal projection Pe : Z — &. Then:

Proor. See Annex C.11. ]

9We will interchangeably denote these spaces both by 775 (Z2) and P,(€); the first notation highlights the
fact that £ is part of a larger ambient space Z, while the second one emphasizes the fact that these probability
measures only assign mass to £.

0Recall that the orthogonal projection is the bounded operator (continuous linear map) that satisfies
P? = Pg and (Pex,y) = {(x, Pey), Vz,y € Z
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In our case, this will be interesting in the setting of equivariant architectures for neural
networks. Recall the definition of the set of equivariant shallow NNs:

E9:={0eZ : M,0=0, YgeG}

This is the space of parameters that will constitute a G-equivariant shallow neural network.
In particular, the space PSG(Z) has all probability measures that only assign weight to
explicitly G-equivariant architectures. Analogously, P%(Z) contains all probability measures
corresponding to symmetrized models of NNs. It is therefore clear that both PZ‘EG (Z) and
Pf (Z) will be fundamental to grasp a complete understanding of our problem.

We can now check some properties satisfied by these spaces (considering £ a generic closed
linear subspace of Z). First, by noticing that the Wasserstein metric is a convex function on
its individual arguments. i.e.

Proposition 24 Given a fized € P,(2), the function v € Py(Z) — W,(v, u) is convex and
continuous. Also, whenever Z = RP, u << X and p > 1, it is strictly convez.

Finally, if G Cy Z orthogonally, the function W, : P,(2) x Py(Z) — R is jointly G-
invariant (in the sense of Definition 4.4).

Proor. See Annex C.11. O

Proposition 25 Let G be a compact group with Haar measure Ag. Let £ be a closed linear
subspace of Z with orthogonal projection Pe. Let pn € Py(Z). We have that:

1. PE(Z) and PS(Z) are closed (under the topology induced by W,) and convex subspaces
of Pp(2).
2. pf € PE(Z) and pn® € PY(2)

3. u€ is a projection of ju onto PE(Z); in the sense that it minimizes W,(p, -) over P5(Z).
If Z =RP, u < X and p > 1, then it is the unique such projection.

4. nePHZ) «— p=pc and pe PE(Z) «— p=p°
Proor. See Annex C.11. O

Remark Notice that, by the last point, a measure p € P(Z) is G-invariant (i.e. Vg €
G, My#p = p) iff u© = p. Therefore, it is also equivalent to the fact that'!:

G" < G with A\g(G") =1s.t. Vge G, My#u=pu

Remark Notice that we don’t show that u“ is a projection of u € P(Z) onto PY(Z).
Unfortunately, the same techniques employed in proposition 25 for ¢ don’t work in the case
of u%. Intermediate results such as proposition 23, proposition 24 and proposition 25 have
emerged in our search for such proof. Unfortunately, for the time being we leave this to
future work.

HIndeed, G-invariance clearly implies this last property; and whenever this property holds, then for any
measurable f 2 - Ra <fa IU'G> = Sc;<fa Mg#/u'>d)‘G(g) = SG/<fa Mg#y’>d>‘G(g) = SG'<fa :U’>d)‘G(g) = <fa ,u‘>
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In particular, the measure spaces we're interested in satisfy:

Lemma 13 Let G be a compact group with Haar measure A\g, such that G Cy Z; let
EY < Z be the linear subspace of elements invariant to the action of G over Z, and Pec be
the orthogonal projection onto it. We have the following properties:

. PE(2) < PO(2)
o VueP(2), u = (u9)* = (u*)°

Proor. See Annex C.11. O

Remark Notice that we have provided some sort of canonical way of transforming any
measure 4 € P(Z), to make it satisfy the properties we desire: we can either make it G-
invariant or concentrated on £. An interesting question that immediately arises is about
how we can quantify the distance between p and its transformed version.

This is still an open question in our work (which we hope to tackle in the future); but
for the moment we know the following estimate holds: In Z = RP, with 4 << X and p > 1,
as Wy(+, ) is strictly conver and admits a first variation (see Santambrogio [73], proposition
7.17), by a variant of Jensen’s inequality (which we’ll introduce in proposition 32), we know
that:

W, (1. ) < f W, (M, . 1)dA(9)

A similar estimate for ,ugG is yet to be found.

Now, one might also notice that absolute continuity plays a heavily important role in some
of the previous results. In particular, one might be interested in looking at some properties
related to the densities of measures in our spaces of interest. Consider Z = R, and consider
A to be the Lebesgue measure over RP. Notice, as it is well known:

Lemma 14 For any linear automorphism A : RP — RP we have that: A#\ = | det(A)|A.

In particular, if A is such that |det(A)| =1 (e.g., if Ae O(D)), we have: AH#\ = X

Proposition 26 Let G be a compact group with Haar measure \g, such that G Cy Z
orthogonally. Let M be non-trivial, and let X be the Lebesque measure over Z = RP. Let
p € P(Z) be such that p <& X; in particular it has a (measurable) density v : Z — Ry, (with
respect to \).

e [Case of P(EY)] We have:
ugG has a density wrt Aec 1= Pga#\ (restricted to £)

In particular, as £ is a strict subspace of Z, /fG € PgG(Z) 15 degenerate and doesn’t
have a density with respect to .
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e [Case of PC(Z)] We have:

u€ € PY(2) has density u® = J uo MydAa(g) wrt A
G

As a consequence:

pePYZ2) < uis G-invariant (A — a.s.)
Proor. See Annex C.11. ]

Now, from the theory of invariant measures developped in Kallenberg [45] (which is
partially described in section 3.2.1), we can extract even more information about the space
PY(Z), as we will see in the following section.

4.2.1 Invariant Measures as Orbit Measures

Recalling some of the key measure-theoretic results from section 3.2.1; let G be a compact
group acting on a (separable) Hilbert Space Z via a representation M. From the ergodic
decomposition theorem for invariant measures (theorem 10) we know that any G-invariant
measure on Z can be seen as a mixture of orbit measures (which fill each orbit with uniform
weight). It is thus natural to ask whether any measure in P%(Z) might be simply understood
as a measure on the orbit space G\Z. With the following results we will show that this is
indeed the case (under relatively natural assumptions).

As orbit measures are invariant, we can actually precisely reduce ourselves to the orbit
space G\Z. For this to make sense in this context, assume the conditions for proposition 12
(point 4.) hold; in particular'? let Bez = o(Taz). Let p : £ — G\Z be the natural
projection and s : G\Z — Z be a (Borel-measurable) cross-section for p (i.e. such that
pos =ldg z; it exists thanks to proposition 12)

Proposition 27 As z€ Z — ¢, € M(Z), is a G-invariant function, there exists a unique

P G\Z — M(2Z) that is measurable and satisfies p, = Py, Vv € Z. In particular,
?: G\Z — Z is a kernel (we call it the factorized orbit measure kernel).

Proor. See Annex C.11. O

Corollary 5 Let G be a compact group acting on Z and let ¢ : G\Z — Z be the factorized
orbit measure kernel. For every v e MY(Z), there exists a unique v € M(G\Z) such that:

o= | w0

In particular, v = pyv

2Recall that Beyz :={B<=G\Z : p'(B)eBz} and Te\z = {B< G\Z : p }(B) € Tz}
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Proor. See Annex C.11. O

This allows us to put the sets PY(Z) and P(G\Z) in direct correspondance.

Proposition 28 Let G be a compact group acting on Z a separable Hilbert Space via a
representation M. Let them satisfy the conditions of proposition 12 (point 4.). Consider the
map:

U PYZ) - P(G\2)
= pH#u

Then, W is a bijection between P (Z) and P(G\Z) (whose inverse is defined as i — (s#11)% ).
Moreover, ¥ is continuous and has measurable inverse. That is, V s actually a bimeasurable
bijection.

If we further assumed s : G\Z — Z to be a continuous map, then U would be a
homeomorphism between both spaces.

Proor. See Annex C.11. O

Also notice, as a particular case, that:

Corollary 6 Under the same hypothesis of proposition 28, pl|ec : EY — G\Z is injective.
Let £C := p(EY); we have that: W|pecy : P(EY) — P(EC) is a bimeasurable bijection (and
also, if s : G\Z — Z is continuous, it is a homeomorphism,).

Proor. It follows directly from the fact that, Vz € €9 G.z = {z}, so that s(p(z)) = z; and
the use of proposition 28. O]

Remark These results will allow us to reduce our problem from searching a probability
measure over the whole space Z, to simply finding one over G\ Z.

This might not seem like a great advantage, but in many cases the space G\Z has a
smaller dimension than Z. In the remarkable example given by Mei et al. [57], they use this
fact to reduce a problem on R” under an O(D)-symmetry, into simply a problem over R
(which is homeomorphic to O(D)\R?). After having solved the unconstrained problem on
R, they obtained a measure over the whole space by making it uniform over each orbit.

In other words, one can reduce the problem just to G\ Z (potentially on smaller dimension),
solve it over P(G\Z) (unconstrained) and then fill the rest of the space uniformly using the
orbit measures in order to retrieve a solution to the original problem. i.e. from an interesting
measure i € P(G\Z) we apply U1 : P(G\Z) — PY(Z), defined as V"1(n) = (s#m)“
(which corresponds exactly to this uniform way of filling the rest of the space) to recover the
natural symmetric extension of such a measure on the whole space PY(Z).

13Continuity of the cross-section is, however, a really strong assumption to make
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This sort of approach has many potential advantages (as noted by the really interesting
work by Chossat [18]), and it shall be explored more deeply in the upcoming sections, as well
as in future work.

Remark From corollary 6, it seems like the dimensionality reduction discussed in the previous
remark won’t be effective for £ (as it injects into its image in G\ Z). Points in £ are the
only ones whose orbits are exactly singletons.

Before going on along these lines, we weill consider some key results that will be really
useful for the theory that follows.

4.3 Differentials and Integrals of Equivariant Functions

In this work, the notion of G-equivariant function will have a crucial role in the understanding
the symmetric properties of shallow NNs. Most remarkably, we have seen that quite reasonable
variants of o, are actually jointly G-equivariant (see Proposition 22). It is then crucial to
understand how gradients and integrals of such functions behave, as they will be the explicit
drivers of our training dynamic. In some sense, the gradient/integal of an equivariant function
will still be (in some sense) equivariant.

The following lemma characterizes the differential of jointly equivariant functions with
respect to the action of some group G.

Proposition 29 Let XY and Z be (separable) Hilbert Spaces and G be a lesH group. Let
GC, X, GC; Z, GCy Y via some representations X, X and X respectively.

Let f : X x Z — Y be jointly G-equivariant with respect to these actions (i.e. Vg €
G, Vo € X, Vz € Z, x,.f(x,2) = f(xg.%,Xg-2)) and Fréchet-differentiable on its first
argument. Then'*:

Vge G, Yxe X, Vze Z, D,f(xy%, Xg-2) = Xg-Duf(2, z)xgl
Proor. See Annex C.12. O

This, in particular, allows us to characterize the differential of G-equivariant functions.

Corollary 7 If G C, X, G Cy YV, and f : X — Y is a G-equwariant and Fréchet-
differentiable function, then:

Vge G, Vx e X, D,f(xgx)= )Zngf(:v)Xg

Proor. See Annex C.12. O

14This condition could also be described as saying that: D,f : X x Z — BL(X;)); (,2) — D, f(z,2) is
a G-equivariant map (with respect to the right group actions).
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We can also get some interesting integral properties of jointly G-equivariant functions.

Proposition 30 Let X,) and Z be (separable) Hilbert Spaces and G be a lesH group. Let
GC, X, GC; Z, GCy Y via some representations X, X and X respectively.

Let f : X x Z — Y be a jointly G-equivariant function (with respect to these actions).
Consider a measure i € P(Z) and let f be Bochner integrable on its second arqument with
respect to . Then's:

Vo e X, Vg e G, Xof(x;), ) = f (Xgm: ), Xg#11)

Proor. See Annex C.12. O]

4.4 Optimizing a Symmetric Functional

Recall that, after convexifying our original learning problem, we were faced with the task of
optimizing a functional over the space of probability measures, R : P(Z) — R. In particular,
with the setting described in section 2.2.4, and all the properties we have established along
this chapter, we would expect to be able to extract interesting properties of our problem
when we assume R to be symmetric in some sense. The natural way to do so is through the
following definition:

Definition 4.4 Let G be a compact group acting over Z (a separable Hilbert) via the
representation M. We say a functional R : P(Z) — R is G-invariant whenever Yg € G, Y €

P(2): R(My#p) = R(p)

As an extension of the previous section, under the lens of G-invariant functionals, we have
the following result about linear functional derivatives and intrinsic derivatives:

Proposition 31 Let R : P(Z) — R be G-invariant and of class C'. Then: Y0 € Z, Yu €
P(2), Vge G :
OR OR

E(Mg#u, M,.0) = %(M,Q) and D, R(My#u, M,.0) = M,.D,R(,0)

i.€. g—ﬁ is jointly G-invariant and D, R jointly G-equivariant.

Proor. See Annex C.13. O

In particular, we would like for G-invariant funtionals to achieve their minimum at least
within the set PY(Z). For this purpose, the following version of Jensen’s Inequality will be
key:

15This could also be understood as saying that: the map (z,u) € X x P(Z) — {f(z;-),u) € Y is G-
equivariant (with respect to the good G-actions).
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Proposition 32 (Jensen’s Inequality) Let R : P(Z) — R be such that Lemma 4 holds
(e.g. it is enough to take R conver and of class C*). Let A € P(S) and {jis}ses S P(Z);
and define L € P(Z) as the intensity measure'®: [i(-) = §us(-)d\(s) € P(Z). Then, a
Jensen-like inequality is satisfied:

R() < f R(jue)dA(s)

Proor. See Annex C.13. O

Remark To our knowledge, such a result is novel in this context (of functionals over the
space of probability measures); however, the proof is somewhat standard and it wouldn’t be
surprising to find a previous statement of the same result deep in the literature. The question
about what happens when there’s equality in the above expression is open (to our knowledge)
and left for future work!”.

In any case, thanks to this Jensen inequality, we get the following general result:

Corollary 8 If R : P(Z) — R is conver, C'-reqular and G-invariant in the sense of
definition 4.4, then Yu € P(Z2):
R(u%) < R(n)

Proor. Direct from the definition of (-)¢. O

This, in turn, leads to the following general result for conver G-invariant functionals:

Proposition 33 (Optimality of Invariant Measures) Whenever R is convexr, C' and G—
wnvariant, it holds that:

inf R(u)= inf R
ot (1) ant (1)

In particular, if . € argmingep(z) R(p), then p§ € argmingep(z) R(1) as well.

Proor. See Annex C.13. O

Remark Notice that if there was a unique minimizer p, of R over P(Z), then it would
have to satisfy: pu, = u$ € PY(Z), thus forcing the unique solution to be G-invariant. Also,
understanding what happens when there’s equality in proposition 32 might give us insight
into the structure that pu* would have in such a case.

In the following section we will see that, under the right conditions, the population risk
on a learning problem, R(u) = E.[¢({o«(x,-),1)),Y)], will be G-invariant (in the sense of
definition 4.4.

167f X ~ X e P(S), it is the intensity measure of the random measure px
1TPossibly even the C! restriction might be lifted by employing properties of the subdifferential of R instead
of its linear functional derivative.
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Example Some other remarkable examples of G-invariant functionals over P(Z) include:

1. Let V() = §;7r(0)du(0) with r : Z — R a G-invariant regularization functional (e.g
r(0) = ||0||* for orthogonal representations). Indeed, notice that for g € G:

v = |

Z

F(0)d(M,#1)(6) = Lr(MgG)du(H) - j F(6)du(6) = V(n)

thanks to the G-invariance of r. i.e. V is G-invariant.

2. Consider the relative entropy H, (1) = §, log(j—‘lf)du with y < v and v e MY (Z) (e.g.
v = X for orthogonal representations). Fix some g € G it is a known fact!'® that, as v

is G-invariant, %(aj) = 9(M1z). Therefore:

() = [1ow (U2 0)) ot 0) = [1og (001,20 ) a0

= Jlog (%(Mglj\/[g&)) dp(0) = H,(n)

Which proves that H, is G—invariant (whenever the reference measure v is as well).

3. In particular, recalling the definition of our regularized risk R™? : P(Z) — R, which is
Ve P(2):
R = R(w)+ 7 [ rdu-+ 5H, 1)

Whenever R: P(Z) - R, r: Z - Rand v € M(Z) are G-invariant (in their respective
sense); then R™ is G-invariant.

This example shows that, when the good conditions are satisfied, a minimum for the reqularized
problem (or unregularized if we take 7, 3 = 0) can be found within PY(Z).

From the correspondence established in proposition 28, one might even reduce the problem
further: as we know that PY(Z) and P(G\Z) are in correspondence (through the bijection
U PY(Z) - P(G\Z)), we expect to be able to minimize by considering only measures over
the orbit space G\Z. This actually holds, as shown by the following proposition:

Proposition 34 Let G be a compact group acting on Z a separable Hilbert Space via a
representation M. Let them satisfy the conditions of proposition 12 (point 4.). Then:

inf R(u)= inf R((s#n)°
ot (1) o ((s#1m)7)

Proor. See Annex C.13. O

8Indeed, for positive and measurable f : Z — R, denoting u = %, we have that (thanks to the
G-invariance of v): (f, My#u) = § f(M,2)u(=)du(z) = § f(z)u(M; " 2)dv(2)
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This might not seem as much of an improvement, but at least conceptually, when R is
convex, C' and G-invariant, this allows us to solve a smaller problem, over P(G\Z) rather
than over the entire space P(Z). In particular, we only need to look at: R : P(G\Z) — R
defined by R(f1) = R((s#%)¢) and solve:

et 5 )

Remark A common example, that appears in [57], is one with G Co(py R”, for which this
reduction amounts to reducing the problem onto the ray R, =~ G\Z. In particular, this
reduction to the orbit space might also allow for a dimensionality reduction that could be
potentially helpful (e.g. the involved ODEs of the MF training dynamic might be easier to
solve numerically in a smaller dimension. See Chossat [18] for other reference ideas about
this approach).

Example Notice that, for the relevant elements that appear in the theory of WGF'; as well
as for the learning problem, we get the following results:

1. Consider V(i) = §r(0)du with r : Z — R G-invariant. Then:

Vistn®) = [ ro)itsn®o) = | [ ronodestn e

As r is G—invariant, we have:
S (Mg0)d(s d\g r(0)d(s#m)(0) = r(s(0))dnu(f
Vil#n) = | | ronods#m @i = | rode#mo = | @)

So, if we define 7 : G\Z — R to be: 0 — r(s(f)) we can further define:

V@) = V((s#0)°) = L\erw»aﬁ(@) - L\Z 7(@)dp(d)

In particular the regularization term, restricted to extensions of measures in G\ Z, can

be seen directly as an analogous reqularization term defined directly for measures over
G\Z1.

2. Consider H,(u) = § log d—”)d,u with y <« v and v € M%(Z). We have that:

H(s#7)°) = [ 1o (@) A7)

As (s#m)% and v are G-invariant, we get from theorem 12 that f(6) := @(6) is
G-invariant (it can be chosen that way WLOG a.s. uniquely). This implies (through
the classic factorization theorem) that 3!f : G\Z — R, such that

Vze Z, f(z) = f(p(z)) or, equivalently, VZe G\Z, f(s(z)) = f(Z)

YNotice that this new regularization term 7 will be, in general, less regular than the original 7; unless
s: G\Z — Z is sufficiently regular
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As intuition tells, we get that: f = d—ﬁ with 7 = p#v. Indeed, let A € Bz and recall
that, for p := (s#u) we have ¥ (u ) p#i = [i. So, in particular (using the fact that
f is the density of u and the definition of f), we get:

A = (A = | s = | Tee)a)

By the definition of the pushforward measure?® we finally recover

(A) = le)f(p( J f@dp#v)(z J fdv

which allows us to conclude that 7 << 7 and % = f.

Now, consider (for f = S#“ de#B) L

A(s#7)%) = [ 0 Es#n ) = | | Tos(r(2)adelo)ils#7) )

As f is G-invariant, we get:
H((s#0)) = | log(FNds#n)e) = [ los(f)dls#m(2)
z s(G\2)
Again, by definition of pushforward measures (and using the injectivity of s):
HA#m%) = | los(f(s(z))dnlz) = | log(f(s(2))dn(2)
s1(s(G\2)) G\2

Finally, by the property f(Z) = f(s(%)):

H, (s#7)°) = L\Z log(F(2)dn(z) = To(p)

So again, the entropy regularization term (with respect to v € MY(Z)), restricted to
extensions of measures in G\ Z, can be seen directly as an entropy term defined directly
for measures in G\ Z (with respect to the projection p#v).

3. In learning setting, consider: R(u) := E [l({o4(X,"),1)),Y)] with 0, : X x Z - Y
a jointly G-equivariant function (with respect to G C, X, G Cy Z, G C; V); then,
Ve X, ne P(G\2):

(o, ), (s#)) = f L\z 04 (2, Mys(2))dE(Z)dAc(g)

By proposition 30 = J f ﬁga*(pglm,S(Z))dﬁ(z)d/\(;(g)
oz

By Fubini = | | (o' s2)AG0) ()
G\2

- L\Za—mz)dn(z)

20Recall that for f: X; — Xo: sz gd(f#u) = Sf_l(Xz)(gof)d,u
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Where we've defined 7, : X x G\Z — ) by

Tx(2,2) = JG ﬁga*(pglx, s(Z))dAa(g)

Notice the striking ressemblance between &, and the symmetrization operation typical
to FA (we’ll comment further about this connection in upcoming sections). We conclude
that:

R((s#m)) = Ex[(({ou(X, ), (s#7)9)), Y)] = Ex[(((o(x, ), 7)), Y] =: R(m)

So, similar as before, the risk we will effectively be minimizing (over P(G\Z)) corresponds
to the same form, only with slight modifications.

4. Thus, in general, as we’ve proven (under the right assumptions of G-invariance of r, v
and R) min,epz) Ry (1) = mingep(c z) Ry? (72), where Ry can be seen directly as
the functional to minimize, as it has (essentially) the same structure as an unrestricted
problem over P(G\Z). In particular, based on all previous examples, we can understand
this problem directly over G\ Z (with the corresponding modified functionals R,V and
Hy) in a rather straightforward manner.

From proposition 33 and proposition 34, one might expect that a similar result shall hold
for the space P(£Y). Unfortunately, as the following counterexample shows, in general

inf R inf R
By 00 = il )

Proposition 35 There are instances of the learning problem (as introduced in section 2.2.3;
with R(p) = By [(({o.(X;-), 1), Y)]), considering a finite group G acting on X = R% ) =R
and Z = RYY yig orthogonal representations, having the data distribution 7 being G-
invariant (and compactly supported), the activation function o, being jointly G-equivariant,
C* and bounded; and using the quadratic loss £, such that:

min R < min R(v
HeP(Z) ) vePeY (2) )

Proor. See Annex C.13. O

A similar question was asked at the end of Elesedy and Zaidi [28] (related to their
result on shallow NNs that we referenced in section 3.4.3), suggesting that it was an open
problem. This counterexample suggests that, if equivariant architectures are chosen to be
too restrictive, a potentially important cut in generalization power might be undergone: in
general, we won’t attain an optimum of R within the space P(£%).

A rather simple way of solving this issue is assuming that the class F, (P(EY)) is
universal, in which case the best possible value of the learning problem will always be optimal:

Proposition 36 Consider the learning problem (R(u) = E, [(({o«(X;"),1),Y)]) under a
quadratic loss, for a data distribution ™ € P (X x V). Assume that F, (P(EY)) is universal
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on L% (X,YV;m|x) (this in particular implies that F, (P(Z)) is universal as well on that
space). Then:
inf R(p)= inf R(v)=R,

peP(Z) vePEl(2)

ProoF oF ProposiTION 36. As done in Lemma 2, using Lemma 1 we can extract that

R(p) = Ex[[[Y = {ou(X; ), i3] = Re + Ex[|f*(X) = {ou(X51), 3]

where fi(z) := E;[Y|X = z] and R, is the Bayes risk of the problem. From Proposition 13,
we know that f* e L%(X,Y;n|x), and so by universality of F,_(P(£Y)) onto that space (as
well as that of F,,(P(Z))), we conclude directly as in Lemma 2. O

Remark As stated in theorem 1, there are conditions on £¢ and o, that would eventually
allow us to satisfy assumption 1 and have the desired universality result (on L%(X,Y;m|x)).
On the other hand, Maron et al. [55], Yarotsky [92], Zaheer et al. [93] among others have been
able to provide conditions for equivariant NNs (of different kind) to be universal on the set of
G-equivariant functions from X to ). Particularly, as noted in Maron et al. [55], equivariant
NNs of tensor order 1 (as are the ones presented in our setting of section 4.1.2) are unable to
achieve universality for certain types of group actions (see Theorem 2 from [55]). Bridging
this gap (eventually allowing for arbitrary order tensors in our MF formulation) is part of
our future challenges to make our approach more broadly applicable. In any case, first order
universality (which is what we hope to have in our setting) has been established for relevant
examples such as Deep Sets ([93, 92]) and CNNs ([92]) (for illustrative purposes, an example
of a DeepSet architecture is presented in section B.1).

Remark A really interesting question at this point is whether under this setting (where
universality holds) any sort of explicit relation can be established between the minimizers of
both problems (if they explicitly exist).

For instance, one might wish that the optimum p* € argmingepz) R(p) and v* €
argmin, _pec R(v) could satisfy (1*)€¢ = v*. With this in place, there could be an explicit
way of finding equivariant optima (and with uniqueness of the minimizer, this would force
the global optimum to be concentrated on £%). However, for such a relationship to hold,
really constraining conditions must be assumed, and it’s not clear under which context it
would even be reasonable. Conversely, one could ask whether there is a canonical way of
extending v* to make it non-degenerate on Z and also optimal for the global problem (as
©*). Is there some measure 7 over (£%)* such that v ® 7 = *? A deeper exploration of this
topic could shed light onto whenever the training of explicitly equivariant NN models could
have explicit advantages (and no loss of information) over fully-connected NN models. This
is definitely something to tackle as part of our future work.

The following chapter will bring together multiple of the theoretical elements presented
until this point, in order to explore the different forms of exploiting symmetries in the setting
of NNs under our new lens. In particular, we will use them to study how the MF dynamics
relates with the potential G-invariance of our functionals of interest.
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Chapter 5

Symmetries of the Mean Field
Dynamic

The main objective of this work is to try and leverage the properties described on the previous
chapters, in order to explore the symmetries that the MF Limit (on a learning problem) may
have when the input data is also symmetric.

Most notably, as mentioned in 2.2.7, Mei et al. [57] suggest that training with G-invariant
data should lead to a mean field limit that is also G-invariant in some sense. In what follows,
we will precisely detail what this statement refers to, and shall demonstrate its truth in an
even stronger sense that what was initially proposed by Mei et al. [57]. Moreover, we will
study the ramifications of these ideas to the study of DA, FA and EA of Neural Networks.

Recall the setting of the MF Limit of shallow NNs as described in Chapter 2. We will let
X,Y and Z be separable Hilbert spaces and G a compact group that acts on all three spaces
via orthogonal representations G C, X, G C; Y and G Cy Z. We'll often just consider
Z = RP. We will consider, as most of the literature, shallow NNs that depend solely on an
activation function o, : X x Z — Y; ie.: for 0 = (0;)X, € Z¥ the function &) : X — Y
given by:

N 1o
o, (x) = NZU*(J]; 0;), Yre X

i=1

Recall that, if we define the empirical measure of § by v} := % Zf\il dp,, wWe have:
g () = (ou(a3-), 1)

Also recall that we defined (definition 4.2) a shallow NN to be equivariant if Vi e {1,..., N},
0; € £; or, equivalently, iff v} € P (2).

5.1 Symmetrizing NN Models

As we saw in proposition 21, shallow equivariant NNs yield G-equivariant models whenever
o4 X x Z — ) is jointly G-invariant (and actually, this is true for all models of the form
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f=1;0.(0)du(8) with € P(£9)). In reality, this isn’t a property exclusive to measures
in P(£Y), as the following holds true (and its proof is exactly the same as for proposition 21):

Proposition 37 Let 0, : X x Z — Y be jointly G-invariant. Then Yu € PY(Z) f =
§20:(-:0)du(8) is a G-equivariant function.

With such a result under our radar, we might ask ourselves whether the space P(E%) is
special at all in the setting of shallow NNs. For instance, one may ask whether a network
obtained from proyecting a given parameter onto £ (i.e. for any # € Z, the NN given by!
@gg »0) has anything to do with the symmetrization of the original NN model, as defined in

definition 3.8 (i.e. Q®)). That is to say: if we consider the version of a model that uses
the closest possible equivariant parameter and compare it to the symmetrized version of the
original model (as from definition 3.8); are these two objects related in any way? One can
actually check the following:

Proposition 38 Let G be a compact group such that: G C, X, G Cy 2 and G C; Y. Let
s X x Z =Y and, for pe P(2) define f, : X — Y by fu.(x) = {o.(-,x), ). Then, the
symmetrization of f, (as in definition 3.8) is given by, Vx € X:

(Qfu) (@) = (o5 (z, ). )
where 0§ 1 X x Z — Y is defined as: 0S(x,0) := §, pg.0x(pg.x,0)dAc(g).
Furthermore, if we assume o, to be jointly G-equivariant, we get:
(Qf)(x) = fuo(z) = (oula,-), n)

Where u® represents the symmetrization of measure ju (as in definition 4.3). In particular,
simetrizing a model from F,, (P(Z)) in the usual sense corresponds to considering the model
given by the symmetrized version of the measure (which lives in F,, (P%(Z))).

Proor. See Annex C.14. O

Example (Symmetrizing a NN) Consider a NN model: ®) with § € ZV; which is Vx € X
given by ®Y (z) = (o.(z,"), v}").

Notice that Vg € G and measurable f : Z — R,
| N
My = [ FOLO©) = 3 3 F8)
i=1

Thus,

(f, (v = f ZfMé’d/\G if (M,0;)dM\¢(9)

Recall that for § € Z, T, : G — Z given by Ty(g) = M,.0 allows us to define the orbit

'Where we understand, for 8 € ZV Pec 8 := (Pect;)Y,
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measure as g = Ty# g, so we have:

G = 3 3 [ e = £ X [ e

SRS YT DERUES ye

That is, (v))¢ = % Zf\il ©p,. S0, essentially, a symmetrized NN corresponds to integrating
the activation’s value over each individual parameter’s orbit. In particular, for a finite group
G, this is equivalent to a network with (at most) N - |G| parameters. In other words, the
network has one parameter for each orbit element (in some sense, the network memorizes all
data orientations). This is in sharp contrast with (v)V)€% = v o = N Ly, P.c.6;» Which
only admits explicitly G-invariant parameters (with < N dlstlnct parameters).

To answer our previous question, the object that naturally appears as the symmetrized
model for a NN has (in principle) nothing to do with the space of equivariant parameters
EY. Moreover, in general there will be values of § € Z such that @]I};Ga # Q@Y. This leads
(to some extent) to the problem that inspires the counterexample of proposition 35: when
EC is too restricted, it will turn the corresponding NN model actually away from it’s optimal
version?.

5.2 Networks that exploit Symmetry

Consider a probability distribution = € P(X x ) (for this part, not necessarily G-invariant)
from which we’ll draw i.i.d. samples of data of the form (X,Y) € X x Y; and a smooth
loss function ¢ : Y x Y — R, convex on its first argument, that we’ll use to evaluate model
predictions. As seen in Chapter 2, we want to find an optimal set of parameters® 0 €
ZN that minimizes the population risk (i.e. generalizes well) R(f) = E, [¢(®)(X),Y)] =
Er [€((ox(X;-), ), Y)]. As seen in Chapter 2, such a function is highly non-convex, so we
recur to the convezification of the problem in which we seek to solve:

min R(p) := Ex [(({0x(X; ), 1), Y] (5.1)
HEP(Z)
Also, recall the notation introduced in section 2.2.6, where we defined, for x € X, y € Y,
L,,:P(Z)— Rgivenby: L, (1) := € ({ox(x,"), 1), y). So that we can rewrite our functional
as: R(u) := E.[Lxy(u)], and also*: D,R(, ,u) E.[D,Lxy(0,1)].

The study of the MF Limit ultimately tries to justify that a solution to this problem may
be found through an SGD training dynamic. In our setting, we will further try to study how
symmetries intervene in such MF limit.

2Recall that, in our counterexample of proposition 35 @ggce = (, in sharp contrast with the symmetrized
version of such model
3Having fixed the network architecture with N and o

*Since we have Vz € X, S Y, that %(eaﬂ) = <V1€(<0'*(.’IJ, '),M>,y),0*($79)>)} and DuLm,y(97M) =
VQO'* (ZL', 0) : V1€(<0* (ZL’, ')7 :u>7 y)
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For this purpose, the following proposition tells us that, under the right conditions, we
might place our problem under the lens of the G-invariant functionals over P(Z) as described
in section 4.4.

Proposition 39 Let the data distribution 7 be jointly G-invariant, ¢ be jointly G-invariant;
and oy be jointly G-equivariant. Then, the functional R : P(Z) — R defined as R(u) =
E. [0({o:(X;"), ), Y)] is G-invariant (in the sense of definition 4.4).

If we further let £ be convex and smooth; and o, be smooth and bounded, then R is
also convex and C*. In particular, for any p € P(Z) we have R(u%) < R(u). Therefore,
infep(zy R(p) = infepc(z) R(p) and, whenever p, € P(Z) achieves this minimum, then
pS e PY(Z) achieves it as well.

Proor. See Annex C.15. O

Remark As previously noted, the conditions for proposition 39 to hold aren’t overly restrictive
in the setting of NN models, since:

e Assuming 7 € PY(X x ) is standard in the literature concerning symmetries of NNs.

e A loss function such as the quadratic loss ({(y,4) = 3|ly — §||* or any other L” norm
for that matter) is known to be G-invariant under orthogonal representations.

e From proposition 22 we know that under a standard setting of shallow NNs, o, :
X x Z — Y is jointly G-equivariant (with respect to the actions G C, X, G C;

Remark Notice, once again, that if there was a unique minimizer ., for problem (5.1), then
it would have to satisfy: u, = u& € P¢(Z), forcing the unique solution to be G-invariant.

The question of what happens whenever there’s the equality R(u“) = R(u) is unfortunately
still open. We know that this happens when my-a.s. for all + € X we have Vg,h €
G @ {ou(x;-), My#p,) = {ox(x;-), MpF#p,). This is, however, not enough to ensure that
s € PY(Z) (which is what we would ultimately want to have).

Remark As mentioned previously, it is interesting to ask whether a global solution to
problem (5.1) can be found within the space P(£); meaning that it could potentially be
approximated only by using equivariant shallow NNs (by a procedure as in proposition 3).
Unfortunately, as shown in proposition 35 this is (in general) not the case: the problem that
naturally appears, even in simple settings, is that when too strong equivariance is imposed
on the network’s architecture, a lot of the network’s ezpressive power is lost (e.g. in the
counterexample of Proposition 35, we have V0 € (£9)", ®) = 0). In particular, the problem
may rely on the fact that in such context the class F,, (P(EY)) (of equivariant NNs) is
decidedly not universal (in contrast to what might happen with free shallow NNs).

When universality is assumed, from proposition 36, one would expect to have a G-
equivariant NN as a solution to our learning problem (or, at the least, arbitrarily close). If we
assumed that some v* € P(€Y) achieved the minimum of problem (5.1), the question would
now be whether such an optimal measure will be achieved (or not) through the optimization
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dynamics. These interesting questions are partially tackled in the following sections; however,
some still remain open and left for future work.

Before directly tackling the properties of the mean field dynamic of NN training, we make
a digression to introduce some elements from the three main settings introduced in section 3.4
for leveraging symmetries during NN training (DA, FA and EA); now observed under the
lens of the properties introduced in chapter 4.

5.2.1 DA, FA and EA revisited

We refer the interested reader to section 3.4 for an introduction of the concepts to be presented
throughout the following section.

Recall that under the setting of DA, the idea is to symmetrize the loss function in order
to penalize models that differ from being equivariant. However, nothing forces the resulting
model to be explicitly equivam’ant in any sense. More specifically, we seek to minimize the
symmetrized loss function: R (0 SG [ (@N (pg-X), ﬁg.Y)] dAg(g), which we can see as
a functional over probability measures (i.e. convezified) as

RO(u) = L CO(pe-X, ), 10, oY )] dAc(g) = LE” (2, x50 (1)] dAa(9)

Analogously, under the FA setting, instead of dealing with the loss function, we are rather
symmetrizing the model at hand. With this, we explicitly ensure that our models will always
stay equivariant, though we might end up being inefficient (e.g. in the amount of network
parameters) under such a choice. More explicitly, recall that instead of considering our vanilla
NN model @), we take the symmetrized version:

YA (z) = f P18 (0, 1)dNc(g) = (Q(®)))(x)
G

So that, using proposition 38, CIDéV’FA(x) = (0¥(z,-),v)). In particular, the FA problem
of minimizing: RF4(9) = E, [6 ((IDéV FAX), Y>] can be convexified into that of minimizing
(over P(2)):

R™ () == Eq [€ (05 (X, ), ), Y)]
Finally, inspired by the work of Flinth and Ohlsson [32], one could think of EA as the quest
for optimizing®: RF4(9) = E, [E <¢>]FYEG9(X), Y)] = E, [¢ ({o4(X,"), Pec#1}'),Y)] so that
the convexified population risk reads:

REA(1) := B [0 ((0u(X, "), Pea#tp), Y)]

Putting all of this together, under the suitable hypothesis for GG, o, and ¢, we get that:

®Notice that we use the fact that Peo#v) = % Zivzl Pec#by, = + Zfil [y
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Proposition 40 Let G be a compact group acting on X,Y, Z separable Hilbert spaces. Let
oy be jointly G-equivariant and £ jointly G-invariant. Then:

RO) = | ROL#0dGle). R0 = R(:) and B (0) = Ru*)

In particular, RS, RF4 and RP4 are G-invariant functionals over P(Z) (as in definition 4.4)
Proor. See Annex C.15. O]

The expression for R“ is developed following the line established by Flinth and Ohlsson
[32], where a similar calculation is carried out for R(#). One shall notice that most of the
upcoming theory doesn’t rely on the specific structure underlying R; it works as long as R®,
RF4 and RF4 are defined as functions of R as in proposition 40°. From this point onward,
we assume that o, is jointly G-equivariant and ¢ is jointly G-invariant. With the expressions
of proposition 40 at hand, we can check that:

Proposition 41 If R : P(Z) — R is a convexr and C' functional, then R, RF4 and R4
are convex and C' as well, with linear functional derivatives given by:

ORC R ORFA R
= = | =(M,.0,M = | =(Mm,.0 ¢
o (0, 1) . 6u< -0, My#11)dAa(g), % (0, 1) . 8u( 5.0, 17 )dAa(9)
ORFA OR
and W(e,ﬂ) = @(chﬂ,lfc)

And intrinsic derivatives given by (when well defined):

D,R%(u,0) = JG M) .DyR(My# i, My.0)dAc(g)

D, R"(u,0) = f MT.D,R(u¢, M,.0)drc(g) and D,RFA(0, ) = Pie.D,R(Pgc.0, 1)
G

In particular, we have Yy € P(Z), RF4(u) < R%(p)
Proor. See Annex C.15. O

From the last part of proposition 41, one might be tempted to say that FA generally
allows for better models to be found. However, as RY and R4 are conver, C' and G-invariant
functionals (from proposition 40 and proposition 41), thanks to Proposition 33 we can see
that:

inf R%(u) = inf RC d inf R"(u)= inf R4
om0 = df ) BTG and b R = I B W)

i.e. these functions can be optimized merely within the realm of G-invariant probability
measures. This becomes truly relevant when noticing that Vu € P(2):

R(p) = R%(n) = R™ ()
So that the following holds:

Sie. Given R:P(Z) — R define RE(-) = {, R(My#-)dA\g(g), RFA(-) = R((-)¢) and RFA() = R((-)€%)
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Proposition 42 Assume that R : P(Z) — R is a convezx and C', then:

inf RYu)= inf R%u)= inf R(u)= inf R(u)= inf RFA
ant () o () ot () ot () ant (1)

In particular, whenever R s also G-invariant, from proposition 33 we get:

inf R(u)= inf R(u)= inf R%u)= inf RFA
ant (1) ot (1) anf (1) anf (1)

Proor. Direct from the previous paragraph and proposition 33. O

Remark The first part of proposition 42 tells us that finding the optimal measure for the
DA and FA problems corresponds, in practice, to minimizing the original functional R over
the space of P%(Z). In particular, the best model we can expect to find from using either
DA or FA will lead to essentially the same risk value, which is the best that can be done by
minimizing R whilst only considering symmetric models.

The latter part says that optimizing the original risk functional (without any sort of
regularization nor symmetrization of any kind) will lead to a model that’s at least as good
as one coming from DA or FA.

We have left RP4 outside our analysis, as it unfortunately doesn’t necessarily satisfy
Vu € PY(Z), R(u) = RFA(u) (therefore not allowing for an analog of proposition 42 to
hold). The best we can do in this case is to notice that’:

inf RFA(u) = inf R(u)> inf R(p)= inf RF4u)= inf R®
ant (1) o () o (1) ant (1) ant (1)

and, as noted in proposition 35, this inequality can be strict in the general case.

Despite the interesting insight that can be obtained from proposition 42, the second set
of equalities is somewhat to be expected. Indeed, the following natural characterization of
G-invariance for R tells us that whenever the original functional R is G-invariant, DA does
esentially nothing (as the risk functional is already symmetric; this was already noticed in
section 3.4).

Proposition 43 A funcional R : P(Z) — R is G-invariant if and only if R = RY

Proor. See Annex C.15. O

Going back to the case of proposition 42 in which R is not required to be G-invariant®
we will, in general, have the following inequalities (which might be strict in general):

inf R(u)< inf R(u)< inf R
ant (1) ot (1) JRL (1)

"From the fact that Y € P(€F), v£° = v, so that R(v) = REA(v), and that Yu € P(Z), uf° e P(EY),
so that RFA(p) = R(MEG) > min,epgey R(v)
8¢.g. in the learning setting with a data distribution 7 € P(X x Y)\P%(X x V))
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An interesting question that immediately arises is whether the first two values are close to
each other (or not)?. In the specific case of the learning problem, one could particularly be
interested in quantifying how far the risk R is from being G-invariant whenever the data
distribution m € P(X x )) is approximately G-invariant'®. In particular, following the
work of Chen et al. [14], Lyle et al. [53] (as in lemma 11), one gets the following bound (with
a simple proof that we’ll restate for completeness):

Proposition 44 Let L* : X x Y — R be given by L*(-,-) = L..(n) and set V(z,y) €
X x Y, VgeG, g.(z,y) = (pg-x, pg.y). Then Ve P(2):

IR(u) — R9()| < L Wi (LM g, L) dAc(g)

Furthermore, whenever there exists a constant C > 0 such that Y € P(Z), L* is C-Lipschitz,
then:

sup |R(p) — RE(u)| < OJ Wi(g#m, m)dAa(g)
pueP(Z) G

In particular, it is enough to suppose ¢ and o, to be Lipschitz for this to hold.

Proor. See Annex C.15. O

Remark This proposition has two quite major drawbacks. On the one hand, in order to have
the interesting bound relating R and R uniformly over P(Z); we need to require too much
of both ¢ and o, (e.g. even the quadratic loss isn’t globally Lipschitz over Z). On the other
hand, the obtained bound isn’t exactly the one to be expected: as shown in proposition 25,
7€ P(X x ) is G-invariant if and only if 7 = 7%; and one might therefore expect a bound
involving Wi (r, 7¢) (which represents the distance to G-invariance more clearly) instead of
the one we get. Despite this criticism, the current bound still allows for significant analysis:
thanks to the remark done after proposition 25, we know that the bound becomes 0 if and

only if m e PE(X x Y).

Remark Proposition 44, in the strongest case, allows us to control, from the approrimate
invariance of w, how far DA (and FA) (in the best case) are able to get to the real optimum
of R (which is in principle NOT exactly G-invariant). In particular, if 7 € P(X x ) is such
that for some € > 0: §, Wy (g#m, m)dAg(g) < €; then, by proposition 44, we directly have:

sup |R(u) — R°(n)| < Ce

HEP(Z)
In particular, any infimizing sequence for R, (i )nen € P(Z) will satisfy:

inf R%(u) < R%(u,) < R(u,) + C
anf (1) (fn) () + Ce

9We know that, in general, the third value can be strictly larger than the other two; though the question
of under which conditions we can ensure it will be close to them is definitely of high interest for future work.

10See chapter 3 for a broad idea about approzimate equivariance; also Chen et al. [14] provides a good
reference for the result presented.
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so that, by taking the limit, we get: inf,cp(z) R%(1) — inf ,ep(z) R(1) < Ce or, in particular:

f R(p)— inf R <C
Me;?%(z) () uel7131(2) <'u) ©

i.e. whenever 7 is close to being G-invariant, not much will be lost by optimizing directly over
PY(Z) (or, in other words, the inductive bias introduced by the use of DA or FA shouldn’t
really harm the optimization procedure).

On a different note, by proposition 43 (or section 3.4), we know that whenever R is
G-invariant, R = R®, and so DA changes nothing about the problem itself. One may
then ask oneself: why has DA become such a popular approach for exploiting a problem’s
symmetries, despite it changing nothing of the population risk? The answer is that the SGD
training dynamic might change under DA, potentially allowing for a more effective training
of the NN. In particular, recall that the usual (simple)!! SGD training dynamic for a sample

(Xk, Yiren <" 7, learning rate sV and parameters 0¥ = (0F) | of empirical measure v (for
each iteration k € N); can be written as:

k+1 _ pk N N pk
9@' - Qz — Sk D,UtLkaYk(Vk 781)

In the particular case of DA, FA and EA, these iterations would take the following form:

it = 6F — sy D, LSy, (vp,0F) = 0F — s3 L DLy, xyp0v.Wa' - 05)dAG(g) (5.2)

01+ = 6F — sy D, LYy, (v, 0F) = 0F — sy L DyLp, 5,3 (V) 08)dAG (g) (5.3)

and
O+l = F — SN D, LEA, (U, 0F) = 05 — SN Pea DL, v (hY)57, Peal) (5.4)

respectively. At the training level, these iterations are (indeed) different from the usual SGD
training dynamics, and we would expect them to produce some kind of advantage when the
data is known to be G-invariant.

On the other hand, at the level of the MF training dynamics only the population risk R
intervenes, meaning that the DA and the vanilla distributional dynamics (corresponding to
the WGF of R® and R respectively) will exactly coincide. Furthermore, we will see in the
upcoming section that whenever the initial condition for the dynamics is G-invariant (i.e.
o € PE(Z)), this will also coincide with the WGF of RF4.

With all of this, it seems like, when R is known to be G-invariant, the MF dynamic will be
mostly unaffected by the use of DA and FA. Therefore, one should expect the advantages of
DA and FA to play a role mostly in the transition between the discrete SGD Dynamics and
the MF limit process: maybe propagation of chaos (as in theorem 3) occurs faster when these
techniques are employed during training!?; or maybe other similar quantitative advantages
can be derived. Unfortunately these last questions have proven hard to tackle, and so truly

"The argument easily adapts to equation (2.2)
12For instance, one might expect to improve the POC bounds by some factor depending solely on the group.
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understanding what the advantages of DA and FA look like concretely is an open question
that we will have to leave for future work.

In the following section we will dive deeper into the properties of the NN training dynamic
(a WGF at the MF level), whenever the functional involved is assumed to be symmetric. We
suggest reviewing chapter 2 for a deeper dive into the different MF Limit results from the
literature.

5.3 Symmetries for a WGF

Let R: P(Z) — R be some risk functional (e.g. that of the learning problem). We will study
the formal setting of the reqularized risk minimization, with:

R™ () = R(p) + Tfrdu + BHx(1)

Where r : 2 — R is a regularization term and H,(u) := D(u||v) = §log(%(z))du(z) is
the relative entropy between p and v (with p << v). Notice that we consider the Lebesgue
measure A\ for our entropy regularization term. Recall from section 2.2.7 that the WGF
associated to this functional, which is what ultimately the MF limiting process for SGD
training will follow, is given by (in the case of a general learning rate of the form s =
ens(ken)):

Oepe = S(8) [div ((DpR (e, ) + 7Vor) pe) + BAL] (2.5)
Notice that by setting 7, 5 = 0 we recover the WGF for R. Whenever § = 0, this equation

is often known to have a (unique) solution distributionally; but for 5 > 0 the solutions to

this equation are actually strong. This equation (2.5) is actually equivalent to the following
McKean-Viasov nonlinear SDE":

dZ, = <(t) [— (DR (i1, Z2) + 7Vgr(Z,)) dt + «/det] with y; = Law(Z)  (2.6)
Where (B;)t=o is a D-dimensional standard Brownian Motion.

The following (general) result holds:

Proposition 45 Let G be a compact group acting orthogonally on the (separable) Hilbert
space Z (via the representation M ). Let R : P(Z) — R be a G-invariant functional, such
that the following WGF (distributional dynamics) is well defined and has a unique (weak)
solution:

Oepte = < (1) [div (D R(p, ) o)
If the initial condition satisfies pg € P (Z), then: A-a.s. Yt =0, p, € PS(Z)
Proor. See Annex C.16. O

This, in particular, lets us conclude the following;:
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Theorem 14 Let Z = RP, and let G be a compact group acting orthogonally on via the
representation M. Consider a functional R : P(Z) — R that’s conver and of class C* and
such that assumption 7 holds (or any other such that the WGF is well defined and has a
unique solution, such as assumption 10). Then, Vg € Po(Z):

1. The DD associated to R : P(Z) — R, Oy = s(t) [div (D, R(pue, ) )] has a unique
(weak) solution.

2. The DD for functional R™(u) = R(u) + 7 {rdu (with 7 > 0 and regularizer v : Z — R):
Oepte = <(t) [div (DR (pue, -) + V1) pit)| has a unique (weak) solution.

3. The DD for functional R}P(p) = R(u) + 7 $rdp + BH, (i) (with 7,8 > 0, regularizer
r:Z— R and v e P(2) the Gibbs measure (v <& \) of potential U : Z — R):

Oepte = <(t) [div (DR (pue, -) + Vg + BVoU) pt) + BApe] has a unique strong solution.

Assume R,r and U to be G-invariant functions. If the initial condition satisfies o € PS(Z),
then: A\-a.s. VYt = 0, u, € PS(Z).

In the case of strong solutions (of density wrt A given by (uy)i=o0), this means that Vt >
0, up = uf = §,u(My.-)d\c(g) (i.e. Souy = uy, with S the symmetrization operator defined
in definition 3.8).

Proor. See Annex C.16. O

Remark Many interesting remarks are in place:

1. This result tells us exactly what we expected (and what was famously hinted by Mei
et al. [57] acquires a concrete meaning): if the functional we work with is G-invariant,
then the trajectory of the WGF will be G-invariant as well. In particular, when solutions
are strong (and have a density), this density is a G-invariant function (A-a.s. on Z).
This in turn allows us to solve the Fokker Planck PDE by only looking for G-invariant
solutions (i.e. we restrict our search to functions that respect the symmetry of the
problem). This can potentially help us reduce the dimensionality of the problem (as
remarkably done by Mei et al. [57] for the action of O(D) on R, allowing them to look
for solutions only as densities of measures over R ).

2. Notice that, transporting these ideas to the learning setting, for the usual functional
R(p) = E; [0({o+(X;+), 1), Y)], the result is valid for an arbitrary Neural Network,
without employing any kind of symmetry-leveraging technique (i.e. no DA, FA or EA
is required). The only requirement is for the data distribution 7 to be G-invariant. In
some sense, by taking the MF limit (in which both the amount of hidden parameters
and the SGD iterations go to infinity), the resulting process has already incorporated
the symmetries from the data (from the infinite SGD iterations considered when taking
the MF limit), and the result is a limiting dynamic that respects the G-invariance of
the initial distribution all along the training process.

3. The condition of having uy € P§(Z) isn’t truly restrictive from the point of view of
applications. In reality, the training process of NNs is usually initialized with an i.i.d.
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Gaussian distribution (i.e. N (0,Idp)) which, in particular, is G-invariant with

respect to any orthogonal representation. This comes also with the disadvantage that:
the fact that V¢ > 0, pu, € P¢(Z) might not be very informative about the nature of
the distribution at play (notably, it could not truly improve, and remain i.i.d. gaussian
along the entire training process). Now, understanding whether this is the case (or not)
during training is a clearly open question that we shall tackle in future work.

Now, recalling chapter 2, there are also conditions under which the MF dynamic for the
regularized problem satisfies global convergence. For leveraging such a result in our context,
we consider the following general proposition:

Proposition 46 Let (u1)i=0 S Pp(Z) be a flow of measures such that Wy, (pu, i) — 0 for
—00

some 1. € Pp(Z) (i.e. it converges in the Wasserstein metric). Then, we must have:

o If (11)i=0 € PY(Z), then p, € PPG(Z)
o If (fie)i=0 S 7’5(3); then ju, PS(Z)

Proor. Direct from Proposition 25. O

Remark Proposition 46 has a particularly useful consequence: it guarantees that, whenever
the WGF' converges to some measure ju, € P2(Z), as long as the WGF stayed within a given
space (either PY(Z) or P(£Y)) during the dynamic, then p, will have to still lie within in
the same space.

This leads to the following particularly interesting result:

Corollary 9 Let R : P(Z) — R be G-invariant, let o € PS(Z) and suppose that assumption 9
holds. Consider the WGF of R initialized at po, (p1¢)¢=0. By theorem 5, we know that if (pu;);
converges to some iy, € Pao(Z) in Wa, then py is a global minimizer of R over P(Z). In
particular, by theorem 14 together with proposition 46, we know that u, € PS(Z).

Proor. Direct from theorem 14 and proposition 46. O]

Remark In particular, when the dynamic converges (starting from py € P§(Z2)), the optimum
that’s achieved through the dynamic corresponds also to a G-invariant measure (and, in
particular, realizes min,cpc(z) R(1)).

Remark In the regularized case, though the same result holds, not much insight is obtained,
since we already knew (from proposition 33 together with the uniqueness from proposition 9),
that the optimum that can be attained has to be G-invariant.

Now, we know that a given Fokker-Planck equation (the DD) always has an associated
McKean-Vlasov non-linear SDE. Under the good conditions, we know that both systems
are in correspondence (and the existence/uniqueness of solutions translates from one to the
other). In particular, we highlight the following result:
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Corollary 10 Under the assumptions of theorem 14, let py € P2(Z) and consider the
McKean-Viasov non-linear SDE for the functional R7°, given by:

dZ, = <(t) [— (DuR(1. Z) + 7Vr(Z) + BVoU(Z,)) dt + \/ﬁdBt] with 1 = Law(Zy)

IfR:P2) >R, r:Z->Rand U : Z — R are G-invariant functions and the initial
condition satisfies pg € PS(Z); then the unique solution (strong if B > 0) of the system
satisfies: A-a.s. Yt = 0, p; € PS(Z) (also, when B > 0, the density functions are G-
invariant).

Proor. Direct from the correspondence between the Fokker-Planck equation and the McKean-
Vlasov SDE (see Sznitman [83]) and theorem 14.

We do however provide an independent proof in section C.16. O

In particular, cases which haven’t been explicitly covered in the above description (such
as the v = 1 case of Bortoli et al. [9]), also benefit from such result:

Corollary 11 Consider the setting of Bortoli et al. [9] (under assumption 8 4.), let ¢ €
[0,1), v e [0,1] and o > 0; define o, = («aN@NYID and consider: ey = o, <(t) =
(1 + )7, such that Vk € N, si = enc(key). Also, consider a fived batchsize B € N*, an
initial measure u° € Po(Z), and fir v = 1. Under this setting, the McKean-Vlasov dynamic
reads:

dZ; = s(t) | = (DuR(jus, ) + 7Vr(Zy)) dt + (@\/i(ut, Zt)> dB; + \/ﬁdét] (5.5)

Where py = Law(Zy), (By)iso and (Bt)t;o are (independent) D-dimensional Brownian Motions,
and X(p,0) = B [(DuLky (1, 0) — DR (11,0)) ® (DpL% y (1, 0) — DR (11, 0)) ], where ®

represents the outer product (or generally, the tensor product) between vectors in Z = RP.

As shown in Section D.1.3 (from Bortoli et al. [9]), it is known that this system has a
unique (in a trajectory-wise sense) strong solution. Moreover, if g € PS(Z), Vt =0, ;€
P5(2)

With these results at hand, one might be tempted to ask whether a similar result holds
but replacing P¢(Z) with P(£Y). The answer is rather mized, since, on the regularized
case, we have that R7%(u) < oo = p has a density with respect to A. In particular, if
G Cuy Z is non-trivial, then £¢ is a strict subspace of Z and, by proposition 26, Vi € P(£Y),
p doesn’t have a density wrt A. In other words, initializing the WGF of R7# at g € P(EY)
(which, by the way, would mean starting with R7%(ug) = o), by the reqularizing effect of
the entropy, implies that V¢t > 0, p; would have a density wrt A, and hence u; ¢ P(E).
Nevertheless, in the noiseless setting, we do get the following positive result:

Theorem 15 Let R: P(Z) — R a convex, C' and G-invariant functional, and r : Z — R
a G-invariant function; such that assumption 10 (or assumption 8 4.) holds. Consider the
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McKean-Vlasov dynamic of R™ = R + 7(r,-) (which has a pathwise-unique solution
according to Bortoli et al. [9])'3:

dZ; = s(t) [— (DuR(p, -) + 7Vr(Z,)) dt] and Law(Zy) = p° (initial condition)  (5.6)
where pi; = Law(Z;) and 11° € Po(RP) is a fived initial condition. If u° € Py(EY), then

V=0, g € Po(EY)

Proor. See Annex C.16. O

Remark Once again, multiple remarks are in place:

1. The result of theorem 15 can be actually made stronger, as we have the following
equivalence:

[P(Vte[0,T),Z € EY) =1] « [Vt e [0,T], m(EY) = 1]

This follows from a continuity argument for the solutions of the SDE. The proof shall
be found in Annex C.16.

2. Once again, Theorem 15, translated to the learning problem, proves that, when the
training data is symmetric, even a wvanilla shallow NN can manage to respect the
symmetry that’s imposed in the initial condition.

More remarkably, the theorem actually states the following: in the mean field limit,
a neural network that began its training concentrated in the space of G-invariant
parameters, will actually stay concentrated in £ all throughout its training, despite
the fact that there is no constraint on the network whatsoever during training. That
is: during training any given parameter could be updated, but thanks to the symmetries
of the problem, they are only updated in a way such that they remain (all throughout
training) within £%. Once again, the macroscopic vision provided by the mean field
limit (where SGD iterations and hidden units have been sent to o), makes the symmetries
(which are seen at training time only through samples of the data) explicit for the
asymptotic training dynamic.

3. Unfortunately, if ug € Po(EY), as £9 is (in general) a lower dimensional subspace, the
conditions of assumption 9 do not hold in this setting (since py cannot separate many
sets). Therefore, an analogue of corollary 9 isn’t straightforward to establish. In any
case, even if it were possible to establish such a result, the fact that by proposition 35
we might have inf,cpge) R(v) > inf ep(z) R(p), implies that the WGF starting from
o € P(EY) could not converge in (Py(Z),Ws) (in such a particular example). If the
dynamic did converge, the limit would have to be some v, € P(EY) (by Proposition 46)
that, at the same time, should be a global minimizer of R over P(Z); a contradiction.

4. This result bears some resemblance to the findings of Flinth and Ohlsson [32] (e.g., their
Corollary 1), where they discuss the stability of the space £¢ under the gradient flow
of the augmented risk [0 — RS(#)] (which arises from the use of Data Augmentation).

13Notice that this is actually an ODE with the only randomness involved in the initial condition
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Essentially, it implies that if we start with parameters in £, then the dynamics will
never take us out of it. Our result shares a similar flavor for the dynamics in the MF
limit.

5. In many ways, the consequence of theorem 15 is significantly stronger than that of
theorem 14 (telling us that the dynamic will respect symmetry in a much stricter way
than anticipated). However, finding an initial condition pu° € P(£Y) isn’t as simple
as in the case of theorem 14 (where a simple iid gaussian was enough). The question
of actually computing what the space £ looks like is itself a really interesting and
complex question (which has been recently tackled by Finzi et al. [31]). In particular,
it may involve significant computational burden which might not be desired.

Beyond all of this, the most significant limitation (in our context) from considering piy €
P(EY), is that £ is a degenerate subspace which might not satisfy all the properties
we desire (at least, seen as a subspace of Z). Overcoming this limitation is one of the
big challenges that will have to be studied in our future work.

One might desire to extend the result of theorem 15 to a noisy setting, where guarantees
of convergence could be established. However, as noted in a previous remark, this can’t be
done through the addition of entropy over the entire space Z. The solution is to consider an
entropy regularizer against a measure concentrated on EC.

More specificaly, consider the following SGD training dynamic for (6%) € Z¥ and 7, 8 > 0:

gr+l = gF — 5N ( ZD LXkYk Ve, »)) +@ch€f

Where s = eyc(key) is the learning rate and (£F) “%" A7(0,Idp). Notice that we are
projecting the noise onto the subspace £ (using the orthogonal projection Pgc), in order
to restrict the exploration within the realm of equivariant parameters. We will call this the
projected noisy SGD training dynamics. One can infer that, under this training regime, the
corresponding mean-field limit dynamic (i.e. the McKean-Vlasov equation) is written as:

dZ; = ()= (DuR (s, -) + 7Ver(Z)) dt + /2BPecdB;] with Law(Z) = (5.7)

With (B;)i>0 a D-dimensional Brownian motion. This corresponds to a WGF of an entropy-
regularized functional with respect to a measure concentrated in £9. We can prove an
analogue of Theorem 15 in this context:

Theorem 16 Let R : P(Z) — R a convez, C' and G-invariant functional, and r : Z — R
a G-invariant function; such that assumption 10 (or assumption 8 (4.)) holds. Consider
the Projected Mean Field Langevin Dynamic given by equation (5.7) (which has a pathwise-
unique solution according to Bortoli et al. [9]). Let 1i° € Po(RP) be a fized initial condition.
If u° € Po(EY), then

V=0, g € Po(EY)

Proor. The proof is esentially the same as for theorem 15; only that we can now invoke
the pathwise uniqueness even with the presence of noise, thanks to the appearence of the
projection Pgc in front of the stochastic integral.
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We refer the reader to Annex C.16 for the fleshed out details. O

Remark In this case, theorem 16 has the advantage of allowing us to incorporating noise
into our training dynamic, while still leaving the resulting process (p)i=0 concentrated on
EY (if the initial condition satisfied that as well).

On the other hand, this result was to be expected, since we are explicitly forcing our noise
to live in £9 (and so, we rely on exactly the same principle employed in theorem 15, whilst
explicitly introducing a bias by making the noise not leave such space).

One shall also notice that in this case still all of the network parameters are trainable
(the only thing we are projecting is the noise); but analogously to theorem 15, the projected
MFLD is well behaved enough to maintain the parameters within £°.

To close off this section, one may wonder whether seeing £ as a subspace of an ambient
space Z makes any sense at all: why not consider some Z = £ directly? Indeed, the
general setting under which our theory has been developed allows straightforwardly for such
an extension:

Corollary 12 Let Z = £ < Z = RP be the space of G-equivariant parameters (in this
case, regarded directly as a vector space E¢ = RP ). Notice that G acts trivially on this space,
so no considerations of G-invariance will be needed. Consider a functional R : P(Z) — R
that’s convez and of class C' and such that assumption 7 holds (with Z instead of Z). Then,
Vo € Pa(Z), the DD for functional RLP(n) = R(p) + 7 §rdu + BH, (1) (with 7,8 > 0,
reqularizer r : Z — R and v € P(2) the Gibbs measure (v <& \) of potential U : Z >
R): Oy = <(t) [div (D, R(pur, -) + 7Ver + BVoU) i) + BApe] has a unique strong solution
(1te)i=0 S PS(Z). Further assume that Z satisfies assumption 4. By theorem 8, there is
global W convergence to the optimum of the problem inf p 2 R(p)

Proor. This comes directly from the standard results presented in chapter 2. O

Remark Actually, the really interesting version of this is when we apply it in the following
setting: Let Z = R” and Z = £ and let R : P(Z) — R be the convex and C! functional
we are trying to optimize. Then we can apply corollary 12 to the convex and C' functional
Rlpec) : P(EY) — R. In particular, from theorem 5, if the WGF (1t)i=0 S P2(E) of R
converges in Wy to some measure y, € P(EY), then such measure achieves the infimum of
the problem, inf,cpscy R(v) (which, we recall, could be quite far away from the actual global
minimum). A truly interesting question, which we haven’t been able to tackle yet, is whether
this value will be too far off the actual global infimum.

In the case where proposition 36 holds, solving the problem directly over £ could actually
be much more convenient, since we are working over a space of reduced dimensionality.
We haven’t, however, managed to fully grasp what the precise theoretical and practical
advantages of working on a lower-dimensional space are. This shall be tackled as part of our
future work.

On the other hand, the global convergence results obtained will give us a guarantee of
convergence of the WGF ()0 of (R|pec))i” to its global minimum, i.e. inf,cpecy R(1) +
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7{r,uy + SH, (). Thanks to proposition 10, one should expect that with arbitrarily small
regularization parameters, this quantity should (in some sense) approrimate the value of
inf,epcey R(v). Under the setting of proposition 36, this could also allow for an interesting
comparison between the optimizers of (R|pec))i” and R}? as they approach the common
value of R*. Unfortunately, this will also have to be left for future work.

We will finalize this chapter with a small digression about how different techniques for
leveraging symmetry behave under the MF training dynamic.

5.3.1 Neural Networks that Exploit Symmetry

From the insights obtained from previous sections, we have seen that vanilla NNs are able to
learn the invariance directly from training with symmetric data. It is therefore interesting to
ask whether DA of FA give any advantage over these vanilla NNs in terms of the MF Limit.

As noted in section 5.2.1, whenever the original functional R : P(Z) — R is G-invariant
(e.g. when 7 € PY(X x ))), there’s actually no difference at all between R and R®. Thus,
at least at the level of the MF training dynamic, there is no explicit gain from doing DA
in this case. On the other hand, FA is not ezactly equal to R, even when R is G-invariant,
so one might expect to find some difference at the level of the WGF. However, the following
proposition (coming directly from our results on section 5.3) argues strongly against this:

Corollary 13 Let R: P(Z) — R be a convex, C' and G-invariant functional; and let RF4
be its FA version (i.e. RFA(u) = R(u®), Vue P(2)).

Assume the conditions for theorem 14 hold. Then, if uo € PS(Z), the WGF dynamics
of RFA and R starting at jo coincide.

Proor. See Annex C.16. O

Remark Some remarks are in place:

1. This result, despite seeming simple (as from section 5.2.1 we already knew that R, RY
and RF4 coincide on P%(Z)), provides a really interesting insight into the relationship
between these functionals:

We manage to prove that, whenever the dynamic lies completely within P%(Z), the
natural conclusion follows, which is that the entire dynamic for R¥4 and R looks ezactly
the same. However, this isn’t entirely obvious a priori. What’s truly remarkable (as
well as intuitive) is that the proof crucially requires R to be G-invariant. In particular,
this speaks to the fact that, even knowing that R = RF4 on PY(Z) and even if
both dynamics are launched from the same pg € PY(Z); if R isn’t G-invariant, the
processes won't necessarily coincide overtime. In particular, this is because R4 is
always a G-invariant functional (and therefore such a dynamic will always stay G-
invariant overtime); whereas if R isn’t G-invariant, nothing guarantees that the WGF
process will stay within PY(Z).

98



2. Corollary 13 could actually be rephrased as follows:

Corollary 14 Let R : P(Z) — R be a conver, C* functional. Let R® and R4
be its DA and FA wversions respectively (i.e. RE(u) = §, R(My#p) and R () =
R(u%), Yu e P(Z) respectively).

Assume the conditions for theorem 14 hold. Then, if uo € PS(Z), the WGF dynamics
of RF4 and RY starting at pgy coincide. In particular, whenever R is G-invariant, they
are both equal to the WGF process for R starting at .

The true connection is actually at the level of RY and R4 (in general): both are
G-invariant functionals that coincide within the class P¢(Z). The conclusion is what’s
expected: launching them both from the same G-invariant measure leads to the exact
same dynamic overtime.

3. Naturally, as R¥4 projects measures onto P(£¢) (and more crucially, doesn’t coincide
with the others over PY(Z)), we can’t expect the same result to hold. Unfortunately,
to our knowledge, even if yy € P(EY), the dynamics of R and RP4 won’t necessarily
coincide. Despite this, a connection between the dynamics of R|pscy and RFA seems
more promising, and shall be studied in future work.

Another immediate result is the following:

Corollary 15 Even if R : P(Z) — R is conver, C', but not necessarily G-invariant, R,
RFA and RF4 are all G-invariant (by proposition 40). Thus, if the right conditions are
assumed, all of theorem 14, theorem 15, theorem 16, corollary 9, corollary 10 and corollary 12
will hold true.

Proor. Direct. O

Finally, in this work we have studied multiple of the different objects related to both the
mean field limit of shallow NNs and the geometric deep learning analysis of symmetries in
NN models. We have succesfully managed to put both theories under a common umbrella,
in such a way that important properties and behaviours can be thoroughly understood from
either viewpoint. In general, the results we present are novel, and hopefully they shall
constitute a significant contribution to the ever-growing literature of Machine Learning and
Neural Networks (at least at a theoretical level). Many questions are still left open (as has
been mentioned throughout this work), and they shall be an unavoidable part of our future
challenges to tackle.
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Chapter 6

Conclusion

This thesis has gone to great depths to explore the intricate relationship between symmetries
in data and their effect on the training process of overparametrized NNs. We have explored
both the dynamics of NN training under the lens of the MF limit, and the use of symmetry-
leveraging methods to profit from a problem’s symmetries. Having established these theoretical
grounds, we have been able to provide interesting and relevant contributions that improve
the current understanding of symmetries in NN training.

We have presented an as-thorough-as-possible description of most of the key elements
concerning the MF Limit of overparametrized Neural Networks. More importantly, we
provide a unified description of the general setting that should allow newcomers to grab a hold
of the topic with relative ease. We have described many commonly well-known theoretical
properties from overparametrized neural networks, but reinterpreting them in our context and
providing additional insights for the purpose of our work. Take, for instance, our extension
of the well-known universality result (see Theorem 1, Proposition 3, Corollary 1) or our
perspective on the usual discriminatory assumption in Proposition 1. Similarly, results such
as Lemma 4, Proposition 9 and Proposition 10 (among many others from the literature) have
been restated in our setting, with minimal modifications to the original proofs, to fit into the
general framework of our work.

We have also presented an intense dive into some elements of group theory (and group
actions) that allow for easily describing some of the main symmetries that are commonly
encountered in real world problems. We have also complemented some of the literature’s
results on invariant/equivariant functions and measures; most remarkably, Proposition 13
is given an original proof an it is used to extend a well-known literature result (about the
symmetrization gap of a learning problem) in Lemma 10. Similarly, we have been able to
describe some of the main symmetry-leveraging techniques from the literature (in this setting),
later translating their definition into the more general Mean Field framework.

In the bulk of our contributions, we managed to establish many interesting insights for
the problem at hand, slowly building a theoretical background throughout Chapters 4 and 5
to reach the main results by the end of our work.

For instance, through an example, we introduce a novel way to construct equivariant NNs
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in the MF setting of shallow NNs (see Proposition 19). This, in turn, allows us to generalize
the definition of such models (see Definition 4.2) and to grasp its properties from an abstract
high-level perspective (see Proposition 20 and Proposition 21). This renewed definition from
a broader perspective, led us to explore specific properties of the objects involved: invariant
measures and equivariant functions.

Through a series of mostly original results (Lemma 12, Proposition 24 and specially
Proposition 25, Lemma 13 and Proposition 26) we manage to grasp specific OT properties
of invariant measures and measures concentrated on the subspace of equivariant parameters.
We proceed analogously for the derivatives and integrals of equivariant functions; providing
(mostly original) key properties in Proposition 29 and Proposition 30. On a parallel note,
we draw from classic Ergodic Theory to reinterpret invariant measures simply as probability
measures over the orbit space (with classic results such as Proposition 27 and Corollary 5
serving to establish Proposition 28 and Corollary 6).

On a similar note, invariant functionals over the space of probability measures are studied
and heavily developed. For instance, an interesting variant of Jensen’s inequality is proved
with relatively standard arguments (Proposition 32) and it is then used (together with
Proposition 31 and Corollary 8) to establish one of the main results, stating that invariant
functionals can be minimized by only considering symmetric measures (see Proposition 33).
An equivalent result is drawn for the orbit space in Proposition 34 (using Proposition 28);
but for the case of equivariant models, Proposition 35 provides a significative (and novel)
counterexample that forbids an analogous result.

We properly reinterpret symmetrized models in our context with Proposition 38; as well as
the usual symmetry-leveraging techniques (DA, FA and EA) with Proposition 40. Further
interesting properties of this setting are presented regarding linear functional derivatives
(Proposition 41), optimization under DA, FA and EA (Proposition 42), and bounding the
approzimate invariance of a functional under approzimately symmetric data (Proposition 44).

We culminate our work by examining the Wasserstein Gradient Flows (WGF) of invariant
functionals. One of our main original results, Proposition 45, states that whenever an
invariant functional R has a well defined WGF; then such WGF, when initialized on a
symmetric measure, will remain symmetric overtime. Many subsequent results follow to
exploit this fact in the specific setting of the MF Limit of overparametrized NNs (such as
Theorem 14, Corollary 10, Corollary 11 and Corollary 9). On the same line, another of
our main results states that WGFs initialized on a measure concentrated on the subspace of
equivariant parameters, will remain concentrated on such a space overtime (see Theorem 15,
Theorem 16 and Corollary 12). Finally, analyzing the WGF of the DA and FA versions of
a given functional provides interesting insights about when they coincide (see Corollary 13,
Corollary 14 and Corollary 15).

More generally, throughout our work, we have addressed many key questions regarding
the impact of data symmetries on the MF limit of NN training. Each chapter has contributed
to this objective, either building upon existing known frameworks or rigorously proving
enlightening new results. All in all, we have provided a comprehensive analysis of symmetries
in NNs that enriches both their theoretical understanding and their potential practical
applications (such as the development of new NN architectures or new NN optimization
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algorithms). Despite all of this, our work remains far from complete, as many very interesting
open questions are yet to be attacked in our future work.

Some of the main open questions from our work specially revolve around understanding
under which conditions the use of equivariant NNs won’t lead to a loss of generalization power.
For instance, despite having the counterexample stating that inf,,ep(zy R(1) < inf ,epec) R(1)
(i.e. in general the optimal value of the global problem is strictly smaller than that of the
restricted problem), one may want to bound the distance between both quantities under
reasonable conditions (similar to what’s done in Proposition 44). This could shed light onto
the assumptions that need to be made for the global optimal value to be sufficiently close to
the restricted optimal value; i.e. when is it reasonable to restrict ourselves to such a space?

Furthermore, the truly interesting questions appear at the level of the relation between
optimizers. It would be interesting to understand under which conditions an optimizer of the
global problem (say, u.) could satisfy that (,u*)gc is an optimizer for the restricted problem.
Conversely, one might ask how an optimum of the restricted problem (say, v.) could be
canonically extended (in some way) in order for it to become an optimizer of the global
problem. In particular, even if we assume that universality holds for £ (as in Proposition 36),
does it help in establishing these relationships? In the regularized setting, how can we even
compare both problems if the entropy terms force the minimizers to be concentrated on
different spaces? (Also, can we leverage Proposition 10 in this case to find a relationship
between them?).

Another one of the big challenges to be tackled in future work revolves around understanding
the interplay between the Mean Field theory and the well-known universality results from the
literature. Notably: to what extend is the compactness of Z required for Theorem 1 to hold?
Are there specific conditions (notably, requiring an unbounded o, or a specific growth-rate for
K) under which having universality might also imply that the infimum inf,c s z) R(7v) will be
attained? Can this result be achieved at least on the case of bounded target f* = E[Y|X = -]?
One might even be willing to ask about the converse statement: if the conditional expectation
is attained for every problem with arbitrary m € Po(X x )), does this imply that the class
Foo (M3(Z)) is universal as well?

On the same line, having £ satisfy universality (as in Proposition 36) is not at all trivial
in our MF shallow NN setting. Remarkably, Maron et al. [55] have shown that first order
tensor NNs (which are the ones we consider in Section 4.1) aren’t always universal (beyond a
handful of examples). Thus, a great open challenge that emerges, is understanding whether
our shallow NN model can be used to represent more complex structures (notably, NNs with
arbitrarily large tensor order) by considering a well-chosen activation function (o). In other
words: which other universal architectures can be represented using our shallow NN model?

The third major axis of our future research deals with the subject of: what exactly do
we earn from reducing the dimensionality of the problem at hand? For instance, if we follow
Proposition 34, we know that we can reduce the global minimization problem to the orbit space
G\ Z; now, how exactly does this make the problem easier to solve? In other words, is the
resolution of the limiting DD easier to tackle?! Similarly, is there any specific quantitative

'We know from Chossat [18] that we could hope to achieve some kind of simplification of the systems of
equations at hand.
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advantage from only considering parameters in £4? Can we profit from the dimensionality
reduction to improve some of the bounds of known results (e.g. of global convergence and
propagation of chaos)? How do we manage to do this while circumventing the issue of the
degeneracy of £¢ as a strict subspace of Z?

Along the same lines, it would be of crucial interest to truly understand the concrete
advantages of employing DA and FA during NN training. These symmetry-leveraging
techniques don’t have major effects at the level of the WGF'; however, when data is symmetric,
one would expect that the use of these techniques could accelerate training in some way. One
may then ask: can we achieve a quantitative advantage regarding the convergence to the
global minimum and/or the propagation of chaos results by using these symmetry-leveraging
techniques during training? Finally, how does the use of EA fit into this landscape? In
particular, more thought shall be put into understanding how the dynamics of R|p ey and
RE4 might be tightly connected (as is the case for R and RF4 whenever R is G-invariant).

Beyond these three major axes, many other interesting questions have appeared throughout
our study. Regarding other aspects of the MF theory of shallow NNs, one might be willing to
ask whether any other initializations of the training dynamic are worth considering, beyond
the classic i.i.d. initialization. Also, an adaptation of the CLT results to our general
framework would be of crucial interest; as well as studying how symmetries take part in
the limiting fluctuation process. Along the same lines, extending some of the known global
convergence results to the SGD dynamics (as in Suzuki et al. [82]), or going deeper into the
MF study of multilayer NNs (as in Nguyen and Pham [61]) are both relevant questions for
the MF' literature by themselves. Studying how symmetries could intervene in both such
settings would undoubtedly be of the highest of interests.

Analogously, we believe that many of our results can still be extended /generalized. Notably,
a deeper analysis of our version of Jensen’s inequality (Proposition 32) should be considered:
we believe that a simpler proof can be achieved by passing directly through the Wasserstein
subdifferential of the relevant convez functional (without requiring it to be C*). This could
also shed light onto whatever happens when there’s equality in Jensen’s expression. For
instance, in the example of the learning problem: would the fact that R(u) = R(u®) force
i to be G-invariant? Such an insight could allow us to better grasp the structure of the
minimizers of G-invariant functionals. On the same line, we would like to understand to
what extent some of our results critically lie on the usage of a quadratic loss?: which of these
could be extended to consider an arbitrary convex loss function £ : Y x)Y — R 7 On a similar
note, we believe that attacking the topics of approximate and partial symmetries (and seeing
how they can be expressed in the MF regime) would definitely be an interesting extension of
our setting. The same holds for the research of novel symmetry-exploiting techniques from
the literature (such as the canonicalization concept from Kaba et al. [42]): can we translate

these to the MF setting in order to compare them to other symmetry-leveraging techniques
at the MF level?

Other minor open questions have been proposed throughout this work, notably suggesting
to establish that u“ should be the canonical way of making u € P(Z) symmetric® (i.e. its

2For instance, consider Lemma 1, Lemma 2, Lemma, 10, among many others.
3We haven’t managed to prove this yet, despite many intermediate results such as proposition 23,
proposition 24 and proposition 25 bringing us closer to that objective.
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projection onto P¢(Z)). Along the same lines, one would like to find some way of quantifying
the distance between ;. and both §“ and ugG: e.g. could we bound W, (u, ugc) ? Finally, the
study of symmetries in the MF regime of NNs, but while considering non-trivial actions on
the intermediate layer (particularly, going beyond the ones of the form Idy®n with G G, R?),
could be a really interesting next step for establishing a robust theory regarding this topic.

Last but not least, the computational aspect of this work is yet to be fully fleshed out.
Computing £ isn’t truly an easy task (as mentioned in Finzi et al. [31]), and so many of the
practical aspects of our novel contributions are yet to be thoroughly explored. With this in
mind, numerical simulations will be put in place in order to test and verify the bulk of our
theoretical results from a practical perspective.

With all being said, we could consider all of these open questions and problems to be
another significant part of the novel contributions produced by this work. Many of these
interesting ideas either hadn’t even been touched on the literature, or where simply too
complicated to write down in a concrete fashion. The theoretical background provided by
this work has allowed us to not only prove many interesting results ourselves, but also to
properly describe (and write down) many remarkable questions and problems to be tackled
in the months following this thesis.

This work has provided with significant contributions to both the literature regarding the
MF Theory of shallow NNs, and the literature concerned with the leveraging of symmetries
in learning problems. These include reinterpretations of known facts from the literature,
novel results with interesting original proofs, and a big list of open problems and questions
that have emerged during the development of this thesis. We hope that our work will serve
as a catalyst for further research on this topic, ultimately leading to significant advancements
in the area.
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Annex A

Reading Guide and Summary of
Contributions

Concerning the specifics of this work, the following chapter gives a detailed overview of the
structure of the document, delving into the specific results presented in each section.

Chapter 1

Chapter 1 contains a global overview of the problem at hand, together with an introduction
this work’s objectives and overall structure.

Chapter 2

Chapter 2 presents a thorough review of the literature on the topic of the Mean Field
(MF) Limit in the context Shallow Neural Networks (NNs), as well as most relevant
theoretical elements for defining such an object. More specifically, its different subsections
can be described as follows:

e In Section 2.1 the general learning problem is introduced, and in Section 2.1.1 the same
is done for a standard model of Multilayer NNs.

e Section 2.2 introduces the idea of the (multiple) overparametrized regimes for the
training of NNs.

e The chapter follows by going deeper into the results related to the MF limit:

— First, considering known universality results from the literature (which we slightly
adapt to make them fit into the context that’s useful for our subsequent results).

A proposition is proved showing that the usual notion of discriminatory activation
function (from the ML literature) implies the one established in assumption 1
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(proposition 1).

A classic universality result (Theorem 1 and corollary 1) is presented, with a proof
by Rotskoff and Vanden-Eijnden [72] replicated under more general assumptions.
Similarly, an heuristic observation from Rotskoff and Vanden-Eijnden [72] is now
presented in our context with an added layer of formality (Proposition 3; with a
proof that formalizes from the ideas of [72]).

Section 2.2.3 presents the ideas behind the usual NN optimization problem, and
how it might be convexified to simplify its resolution. Also, some known results
about the decomposition of the population risk (in the quadratic case) and what
this implies in the setting of universality (Lemma 1 and Lemma 2), are presented
(with minimal proofs for clarity).

The basic theory about Wasserstein spaces is presented (Section 2.2.4). Two small
basic results are presented (and proved) to illustrate properties of the population
risk in our setting (Lemma 3 and Proposition 5).

The theory of Wasserstein Gradient Flows is introduced in Section 2.2.5, largely
based in Ambrosio et al. [1], Santambrogio [73] and Villani [88] .

Linear Functional Derivatives and Intrinsic Derivatives are generally defined (and
calculated for some remarkable examples); and the general result of Proposition 6
is proved (with an original proof, though it’s likely that similar results have been
previously established in the literature).

A known result about C! functionals is presented (Lemma 4; with its proof being
replicated from Hu et al. [38] for clarity).

The usual definition of a Wasserstein (sub-)Gradient Flow (WGF) is provided and
a well known result about the existence and uniqueness of solutions is presented
(Proposition 7).

Multiple variants of Stochastic Gradient Descent (SGD) for neural network training
are presented in Section 2.2.6. Some key notation for our work (inspired from
Section 2.2.5) is introduced.

Section 2.2.7 regroups all the elements introduced up until that point to present
the MF view of neural network training. In particular, a well known result of
Propagation of Chaos is presented (under multiple variants detected in the existing
literature) in Theorem 4. This shows exactly in what sense SGD can be regarded
as a WGF for the population risk functional.

Section 2.2.8 finalizes our exploration of the MF limit of shallow NNs by presenting
classical global convergence results from the literature (for instance, Theorem 5,
Proposition 9, Proposition 11, Proposition 10, Theorem 6, Theorem 7, Theorem 8§,
Corollary 3). In particular, part of our work included placing most of these results
(coming from a multitude of papers) under a common setting (and notation).
In particular some proofs (such as that of Proposition 10) were replicated from
their original works (e.g. Hu et al. [38]), but under the new notation (and overall
setting), to ensure that they stayed true even under the more general description.

Finally, the obtained results are put under the lens of shallow NN models: In
Assumption 5, we provide enough conditions for some of the results of the previous
sections to hold.
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e A quick overview of the existing work on the mean field limit of deep neural networks
is provided, though not much depth is sought.

Chapter 3

In a similar vein to Chapter 2, Chapter 3 presents the ideas behind the group theoretical
understanding of symmetries in the context of Neural Networks; displaying relevant theoretical
results from the literature as well as introducing relevant ideas from a practical viewpoint.
Its subsections are structured as follows:

e The (well known) idea of symmetry (as invariance/equivariance) is introduced and
motivated.

e Some background on group theory is presented, as it is the usual way of studying
symmetries in the NN context. In particular, group actions are defined and some
of their properties (as well as those of orbit spaces) are presented (Proposition 12).
Invariant /Equivariant Maps and Actions via Representations are also introduced.

e Some well known results coming from the theory of G-invariant measures (see Kallenberg
[45]); such as Theorem 10, Theorem 11 and Theorem 12 are presented. Some derivative
results (closer to the setting of the learning problem) are also introduced.

In particular, Proposition 13 (esentially stating that the conditional expectation function
is G-equivariant when one assumes the underlying law to satisfy the same property) is
presented and proved. The proof relies mostly on standard arguments, but we however
believe it to be original (as far as our knowledge reaches).

e Some of the standard theory used to understand symmetric models (particularly, from
Elesedy and Zaidi [28]) is introduced. The symmetrization operator is defined and a
Hilbert orthogonal decomposition lemma is presented (Lemma 8).

The notion of symmetrization gap (standard in the literature) is presented, and a known
result from Elesedy and Zaidi [28] is extended (using Proposition 13 and following
ideas from Huang et al. [40]). This new version is presented (and proved) in Lemma 10

e Section 3.4 presents the different well known and mostly used techniques for leveraging
symmetries in the NN context. In particular, Data Augmentation (DA), Feature
Averaging (FA) and Equivariant Architectures (EA) are each presented in a different
section, together with some well known results concerning their theoretical properties.
Special care is put into the understanding of EA, and Flinth and Ohlsson [32] is widely
used as a reference in this aspect.

Chapter 4

Chapter 4 starts presenting the results from our own study of symmetries in the NN context,
with an Optimal transport (OT) and Mean Field view. In particular, the chapter is built on
the following structure:
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e In Section 4.1.2, a simple, yet really useful, example is fully fleshed out, to introduce the
concept of G-equivariant NNs (how they should be described in the shallow NN setting;
and why a more complez network structure is required to make G-actions interesting).
A useful characterization of G-equivariant shallow NNs is provided (Proposition 19),

and this serves to motivate the idea of generalizing the definition of G-equivariant
NNs.

A new (broader) definition of shallow Equivariant NN models is introduced (consider
Definition 4.2) and some of its basic properties are proven (e.g. in Proposition 20 and
Proposition 21). Furthermore, the previous motivational example is shown to satisfy
the new (more general) definition (in Proposition 22).

e Some more concepts about G-invariant measures are introduced; but now under the
lens of OT theory. The well known symmetrization of a measure is presented and some
of its basic properties are proven (see Proposition 23). A similar approach is used for
the pushforward through an orthogonal projection onto a linear subspace (Lemma 12) .

Some (relatively) well know properties of the Wasserstein distance are proven (notably,
Proposition 24); though the arguments used are relatively standard and even directly
inspired from Santambrogio [73].

Similarly, in Proposition 25 and Lemma 13, interesting properties of the measure spaces
PY(Z) and P(EY) are presented and proven (and, to our knowledge, they are mostly
original). Most remarkably, we prove that, in some sense we can canonically project
any measure onto any one of these spaces.

Finally, Proposition 26 provides a characterization of how the densities of the different
projections of a given measure look like (and we prove this properties as well, through
relatively standard techniques).

e Section 4.2.1 provides a reinterpretation of the results of Section 3.2.1 by passing
to the orbit space G\Z. Notably, Proposition 27 and Corollary 5 are proved and
used to establish a correspondence between P%(Z) and P(G\Z) (Proposition 28 and
Corollary 6). These kinds of results seem to already exist in the setting of ergodic
theory, however, the proofs we provide are original (as far as we were able to identify
in the related literature).

e Section 4.3 Provides key properties satisfied by G-invariant functionals under derivation
and integration. In particular, Proposition 29 and Proposition 30 are introduced and
proven (through relatively standard arguments).

e Finally, Section 4.4 provides insight into the properties of functionals R : P(Z) — R,
particularly in the case when they are assumed to be G-invariant.

More specifically, a notion of G-invariance is introduced for these kinds of functionals
(Definition 4.4) and many properties are proven under such definition. For this
purpose, an interesting variant of Jensen’s inequality is proved (Proposition 32; the
proof is rather standard but, to our knowledge, it is original). Most remarkably
Proposition 31, Corollary 8 and Proposition 33 are proved, ultimately showing that
G-invariant functionals can be minimized by only considering symmetric measures
on PY(Z). Furthermore, some interesting examples of G-invariant functionals are
provided. Analogously, Proposition 28 is used to further narrow down the problem of
optimizing a G-invariant functional to that of finding an arbitrary measure on P(G\Z2)
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(Proposition 34). Examples of such a reduction at the level of G-invariant functionals
are also provided.

Finally, Proposition 35 provides an original counterexample to the idea that a G-
invariant functional can always be minimized over £9. i.e. We prove that in the general
setting models based on P(EY) aren’t enough to optimize the original population risk
functional.

Chapter 5

Chapter 5 culminates our work by employing the discovered facts from all previous chapters
to prove properties of the WGF of G-invariant functionals.

e First, some insight is provided about what a symmetrized NN model would look like in
our context (notably, Proposition 38 is proven and complemented with an example).

e Proposition 39, (stating that under the right G-invariance conditions the population
risk from the learning problem will also be G-invariant) is derived from results of the
previous chapter.

e Section 5.2.1 brings back the ideas of DA, FA and EA and places them in the context
of our work. In particular, Proposition 40 (describing the corresponding functionals
REY R4 and RF4), Proposition 41(describing the linear functional derivatives of such
functionals) and Proposition 42 (showing that the optimization under DA and FA
coincide and correspond to optimizing the original functional over the space P¢(Z))
are presented and proven. Finally, a rather interesting bound (useful in the context of
approzimate G-invariance) is provided in the learning setting (Proposition 44). This
fact is heavily inspired from an analogous result by Chen et al. [14], and its proof largely
follows that of [14] (with small adaptations to fit it in our context).

e Finally, Section 5.3 provides some of the main results that pull together all the theoretical

machinery introduced throughout this work. Most remarkably, we prove Proposition 45,
which states that, whenever a G-invariant functional R has a well defined WGF; then
such WGF will always respect the symmetric properties of the input (i.e. if the
dynamic starts at a G-invariant measure, then overtime the entire flow will remain
G-invariant as well). This result is put into perspective with Theorem 14, Corollary 10,
Corollary 11 and Corollary 9 (the latter stating that: if the WGF finds an optimum
through a G-invariant dynamic, then such an optimum has to be G-invariant as well).
These results can actually be made stronger, as we can state that a G-invariant
functional will be such that its WGF, if initialized in P(£Y), will remain in P(£Y)
overtime (see Theorem 15, Theorem 16) and Corollary 12.
Last of all, we analyze how the WGF of the DA and FA versions of a functional R (R
and R4 resp.) behave in terms of their associated WGF. We prove Corollary 14 (or,
in particular, Corollary 13), which states that: when initialized in PY(Z), the WGF
of RF4 and RY coincide exactly. Similarly, Corollary 15 states that the properties of
WGFs for G-invariant functionals are all satisfied by the DA, FA and EA versions of
R (even if R isn’t G-invariant).
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Chapter 6

Chapter 6 provides a natural conclusion to our work, gathering and summarizing the bulk
of our original contributions. It also contains a compilation of open questions to be attacked
in our future work.

Annexes

Annex A corresponds to the current review of the work’s structure.

Annex B provides an illustrative example of a Deep Set architecture. Also, some
illustrative calculations are provided for a simple example of NN architecture in our setting.

Annex C contains all the Proofs for the different results presented in the work (they
are original for the most part, and whenever elements were borrowed from anywhere in the
literature, it is clearly stated as so).

Annex D contains some of the classic technical assumptions that are required for the
results to hold (specially those of Section 2.2). It also contains some information about the
Central Limit Theorem of the SGD training process of shallow NNs; and some results of
Existence/Uniqueness of solutions for the McKean-Vlasov equation in the setting of Bortoli
et al. [9].
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Annex B

Application of our framework to some
EA

B.1 Example of Deep Sets

An emblematic example of neural networks with equivariant architecture are the
Deep Sets, introduced by Zaheer et al. [93]. Essentially, it is a neural network architecture
designed to be invariant under the action of G = S,,.

The input space is essentially R"*¢ ~ (R")®¢ which represents having n copies of length-
d real-valued vectors. We aim to construct a network with 1 hidden layer of the form ¢ :

Rnxd 27, groxN A RN W, R where J(z) = +WA(o(p(x))), and ¢ € Homg (R4 RN,
W e RM. The layer A corresponds to a global average pooling, which reduces the
dimension of the layer’s output by simply averaging over the domain on which the group

acts (with no trainable parameters). Eventually, we would like to let N go to infinity.

As shown in [93], the only way to achieve a S,-equivariant layer is if the matrices
A e R N)x(nxd) and p e R™N (from the definition of equivariant affine layer: ¢ : x — Az+b)
are of the form:

A=aQ1+ R®J, b=7®(1,...,1)

Where a, 8 € RV*4 4 € RY are the trainable parameters of the layer; I = Id,., and
J = 1,11 are two n x n matrices; and ® is the usual tensor product.

Explicitly expressing these matrices in a block-wise representation, we have:

a 0 0 6 B8 ... B

a®1 = 0 a 0 = R(nXN)X(nxd)7 ﬂ@J _ ﬂ B ﬁ c R(an)x(nxd)
. 0 Do 3
0 0 o B B p

TR (1,...,1) = (v,...,7) e RN
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So that:

Vie{l,...,n}, p(x)(i) =a-z(i)+ (- (2:6(])) +veRY

In other words, for this equivariant layer, we have only 2(N x d) + N = N(2d + 1) free
parameters. We can further notice that:

(631 51
o = ) B = ) Y= (’Wf)}]cvzl
Qe Be

With ay, B € RY for all k e {1,..., N}. Thus, we can write the action of ¢ as:

Vke{l,...,N}, Yie{l,....,n}, (@(x)i(i) = ay - (i) + B - (Z :E(j)) + Vi

Therefore, our 1-layer S,-equivariant neural network takes the form!:
Loyl
N; k‘ﬁZU o - (i) + By - + Yk
=1 i=

In other words, we can group our parameter vector simply as: 6 = (01, ...,60y), where:

||M:

Vie {17 s 7N}7 6@ = (I/I/?,ﬁai?ﬁhf)/i) € EG = R2d+2

(notice that these are the parameters invariant to the corresponding action of S,, over the
ambient space Z := R (xd) R™). This brings us closer to what we would like to study in
the Mean Field limit. Moreover, if we define:

ou(,0) : EWka<akx + By - (i >+%>

=1

we directly obtain:
N

which is essentially the same formulation used n our work.

It’s not complex to notice that, in this network architecture, what we can consider as
the fundamental interchangeable unit is somewhat more intricate than the usual shallow NN
model described at the beginning of Section 2.2. Particularly, in this case, the intermediate
layer takes the form R™¥  with a non-trivial action S, G, R™*" (so, it rather falls
under our setting from section 4.1.2. A fundamental question for our future work will be to
attempt to extend these concepts to more general actions of G' (and therefore other kinds of
architectures).

"Where, in this case, the GAP function A is defined as: A(y) = L 3", y(i)
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B.2 Some Explicit Calculations for the typical example

Let X = R, Z = RP = R+ ) — R and let G be a compact group such that G C,
X, GC, Rb, G C; V. Consider the activation function of shallow NNs oy : X x Z — Y
given (for 6 = (w,a)) by o4(z,0) = wo(a’x), with 0 : R® — R’ being G-equivariant to the
action of 1 (e.g. in many cases it is enough for o to be applied pointwise).

Consider the quantity we defined as Vu € P(2): L,,(p) := €({ox(x;-), 1), y). In this
particular example, we can explicitly calculate relevant quantities such as D, L, , (1, 0) for all
0eRP YueP(Z), Ve X, Vye Y. We find that the expression for this is given by:

J(2,y;0,10) := DLy (11, 0) = (mvvllf((é; *(%.')),’:i’gqﬁigfx)) e Rletd)xb

Which can be seen, vectorized as f(x,y; 0, 1) = vec(J(z,y;0, 1)) € RP. We can derive this
expression as follows:

DERIVATION OF THE EXPRESSION OF J(z,y;0,p) := D, L, ,(u,0). The expression for J comes from
the following derivation. Recall that:

J(a,y;0, 1) == (Dgou(,0))"U(x, y; ) € RP
where we (temporarily) define U(x, y; u) := Vil({ox(z, ), 1), y)

We notice that
Dgoy(z,0) = Djpo(x,0) - Dy(vec(0"))

And, as vec(0T) = K(*%¥vec(f), we have: Dg(vec(?)) = K(*%¥ 5o that:

Do (x,0) = Dgioi(x,0) - K

. T
The idea of derivating with respect to 67 is that 67 = (w”, a*) and so, vec(67) = (\\//2(;((1;}”) )

the derivative has the components associated with each set of parameters separate; i.e.
Dgﬁ“a* (l’, 0) = (Dvec(wT)U* (Z', 9)7 Dvec(aT)a* (LC, 0))
Now, notice that, as o.(z,0) € R

0.(z,0) = wo(a’ ) = vec(wo(a’ z)) = vec(Id, - w - o(a’ z))
= (o(a2)" @ Id.)vec(w) = (o(a’z)T @1d.) K ®vec(w?)

Where we’ve used properties of the Kronecker product, and those of vectorization. With
this, we get that:
Decuwryox(2,0) = (0(a”2)" @1d.) K™

Similarly, by the chain rule we get:

Dyec(ary0s(,0) = wa’(aTx)Dvec(aT)(aTx)
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where we're denoting, for y € R®:

a'(y1) 0 0

0 0', 9 0

o'(y) = ) .
0 0 o' (ys)

This comes from the fact that the activation function ¢ is applied coordinatewise.

On the other hand, as a’x € R?, aTx = vec(a’z) = vec(Idya’z) = (2 ® Idy)vec(a®).
With this, we get:
Dvec(aT)U* (.CE, (9) = wOJ(aTIB) (.TT ® Idb)

Putting both together, we have:
Dgo.(x,0) = ((o (a"2)" @1d) K", wo' (" 2) (2" @ 1dy)) € RV
This translates to:
Do (z,0) = ((o(a"2)" @ 1d.) K" wo'(a" z) (2" ®1d,)) L Klerdd)
So that, for J

J(a,y:0,1) = (((0(a"2)" @1d) K9 wo' (") (2" @1dy)) K ) U (2, y; )
K<bc+d> ((o(a"2)" @1d) K@) wo' (") (a7 @ 1dy))" Uz, y; 1)

K(c,b)(a(aTx) ®1d )
(byetd) . .
- <(x®1db)0'/<aT;U)wT) U(aj,y,u)

_ K(b,c-‘rd) . K(Qb) (O'(CLTZE) ® IdC)U(Iv Y; lj’) c RD
(2 ® )0’ (%) U (2, 1)

_ : T,\T
On the other hand, we can see that the matrix J(z,y;0,u) = (xg<(§’;’$)g£i,(?gpx))

satisfies:
vee (J(2,y;0, 1)) = vec ((o(a2)U(z, y; )", o' (@ 2)w U (x, y; p)2™)")
= KbetD) L yec ((o(a"2)U(z,y; )", o' (a"2)w" Uz, y; p)a™))
_ geray (- vee(o(a’2)U(w, y; )"
vee(o!(a” 2y U (x, y: 1))
_ j(berd) KOvec(U(z,y; u)o(a’x)T)
vee(o! (") U,y )"

And, as:

vec(U(z,y; p)o(a’2)") = vec(Id U(z, y; u)o(a’z)T)
= (o(a"2) ® Id.)vec(U(z,y; 1))
= (o(a"2) @ 1d)U (z, y; it)
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and:
vec(o' (aT 2)w U (z, y; p)x™) = vec(Idyo' (a” 2)w U (x, y; p)z™)
= (¢ ®Idy)vec (o' (a"x)wU(z, y; 1))
= (2 @1Idy)o" (a"2)w U (x, y; 1)
We get that:

. K©vec(U(x,y; u)o(a¥z)T) >
) _ polberd) y Y _ .
vee (J(x7y797lu’)) K <V€C<O'I(GTJ])U/TU<ZL’,:U' )J]T) (l’,y,QHLL)

)

In short, the following expression holds:

J(x,1;0, 1) = vec (J(x,y;0, 1))

(c+d) x

Which in particular, due to vec : R b  RP being an isomorphism, implies that:

J(@,y;0, 1) = (Dooy(,0))7U (2, y; p) € REFD*

can be perfectly identified with J(x,y;60, 1). Indeed, if V is the matrix representing vec, we
get:
Dyo(x,0) = Dgoy(x,0)Dgvec(d) = Do (x,0) -V

So that: . B
J(x,y;0, 1) = VI J(2,y;0, ) = VIV I(2,y;0, 1)

And as V is orthogonal?, we get the expression we wanted:

7 Uz, y;p)o(a’z)T )
o= o = (LA, ) <o

O
Hopefully, these calculations will not only serve to understand the different objects at

play in our slightly more robust version of shallow NNs; but also to highlight the immense
burden of calculations relieved by considering our theory from a more general viewpoint.

2This comes from the fact that the action over the basis of R(¢T*b giyeg vec(e; j) = ep(j—1)+; in the basis
OfRD. As for all il, ig € {1, ceey (C+d)}, jl,jg [S {1, ey b}, (ilajl) #* (ig,jg) > b(]l — 1) +i1 # b(jg — 1) +i27
we get the orthogonality condition we desire.
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Annex C

Proofs

C.1 Proofs for Section 2.2.2

For the original universality result in Rotskoff and Vanden-Eijnden [72], the authors consider:

Assumption 6 [Assumptions for the Universality result in Rotskoff and Vanden-Eijnden
[72]] Let e P(X), and consider:

e X c R? and Z = RP are closed smooth Riemannian manifolds (in particular,
compact).

o —as VoeX, o z,)eC(2).

o Let o, be discriminating, in the sense that:

{Vz € Z a.e. L{g(x)a*(x, p(de) =0 = [g=0 p—ae in X]

And with this, they prove:

Theorem 17 (Universality as in Rotskoff and Vanden-Eijnden [72]) Under assumption 6,
Foo (M3(2)) is a dense subspace of L*(X,Y;u) (in the L?>-norm topology).

In the body of this work, we consider a slightly stronger universality result, in the sense
that it might be used in a setting with ) being a subset of vector space more interesting
than R.

Proor or ProposiTioN 1. Let X = R% Y = R¢and Z = R**xR>*xR? and o, : X xZ — )
be defined as:
Vre X, V0 = (w,a,b) € Z, 0.(x;0) := wo(a’z +b)
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for 0 : R — R an activation function that’s applied pointwise and that’s discriminatory in
the sense that Yy e M5 (X):

f o(a’z +b)du(z) =0VaeR? VbeR = p=0
Rd

Let g € L*(X,Y;,) be a function satisfying:

Ve 2, [ (ola).ou(ws ) ydnala) =0
X
We want to show that g = 0 my-a.e.

g1
For this, notice that g = | : | with Vi € {1,...,¢}, g; : R? — R. It will therefore be

9e
enough to prove that Vi € {1,...,c},g; = 0 my-a.e. For this purpose, let ¢ € {1,...,c} and
consider the measure given by p;(dr) = g;(x)mx(dx), which lives in M?(X). Now, consider
arbitrary A € R? and B € R and define:

B

_ . 0 N

A= (A[0]...[0) e R B =1 [eR" W ={(e0]...]0) R
0

where e; € R¢ is the i-th canonical basis vector. With these, we have Vx € R%:

ATz + B o(ATz + B)
- - 0 - - ~ 0
ATz +B = : e R, and thus: Wo(AT24+B) =W : = o(AT2+B)e;
0 0

ie. for § = (W, A, B) € Z, we have:
Ve X, 0.(2,0) = Wo(ATz + B) = 0(ATz + B)e;
And evidently, for all x € X we also have that:
(), ul:0)yy = o(ATx + B)g(a), ey = o(ATx + B)gi(x)
By our initial hypothesis on g, we know that, in particular, for § € Z:

L<g<x>, 0 (@3 0))ydrx () = 0

But rewriting the integrand, this tells us that:

JX<g(x), 04(x;0))ydry(z) = L{ o(ATx + B)gi(v)drx(x) = L{ o(ATz + B)du;(z) =0
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But then, as A € R and B € R were arbitrary, we have that u; € M®(X) is such that:

VAeR? VB eR, J o(ATz + B)du;(z) = 0
X
So, by our discriminatory assumption, we get: p; = 0. In particular, as g; is the density of y;
with respect to Ty, we must have that: ¢; = 0 my-a.e. Now, as i € {1,...,c} was arbitrary,
we must conclude that Vi€ {1,...,c}, gi =0 my-a.e. and therefore g = 0 my-a.e.

This concludes the proof, as we have shown that o, is discriminatory in the sense of
assumption 1. O

PROOF OF PROPOSITION 2 (AS IN ROTSKOFF AND VANDEN-ELNDEN [72]). First, let’s see that the

class F,, (M?®(Z2)) is indeed a subspace of L?(X,Y;x).
Let f € F,,(M?(2)), by definition, 3y € M5(Z) such that f(x) = {(o.(z;-),7) Vo €

X mx — a.s. (remember these are Bochner integrals). We then check:

- 2

1122 my = fmu@ww>wﬂm>
Jx llJz h%

~ [ ] oetmn@), [ oo 2@ pymatas)

Jx Z Z

by linearity — JJQM%%@@J%MMMW%MM)
Jx JzJz

by Fubini = | Kz, 1(2(d) < Kbl <.

ZxZ

where we defined K (z, 2') = § ,{(0.(2,2), 04(x, 2'))ymx(dx). Thanks to assumption 1, (2, 2’) —
K(z,2') is well defined and continuous; thus by the compactness of Z, we get that || K|, =
SUD(, ez« z | K (2, 2')] < 0. The fact that for v € M%(Z), |y|rv < oo allows us to conclude.

Besides that, F(Mz) is clearly a linear subspace. O

PROOF OF THEOREM 1, AS IN ROTSKOFF AND VANDEN-ELNDEN [72]. To show that F,, (MS(Z)) is
dense in L*(X,Y;my), we proceed by contradiction. We know that the Bochner space
L*(X,Y;mx) is a Hilbert Space.

Assuming that F,, (M9(Z)) is not dense, by the Hahn-Banach theorem, there exists
a nonzero continuous linear functional L : L*(X,Y;7y) — R such that Lf = 0 for all
f e F,,(M°(2)). By the Riesz representation theorem (on a Hilbert Space), the action
of L on f can be represented as the inner product in L?(X,Y;7y) between f and some
g e L*(X,Y;mx), g # 0. In particular, this g # 0 is such that for all f € F, (M?(2)):
(g, Yr2(x ymy) = 0. As for any z € Z, 0,(:;2) = (04,0,) € F,,(M?(Z)), we have then that
Vze Z:

o=@@m@mmwﬂ=L@mmemew

By our discriminating assumption, this would mean that g = 0 my-a.e. in X, which is a
contradiction with the fact that g # 0 in L*(X,Y;7x). O
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ProoF oF ProposiTioN 3. Let f € F, (M®(Z)) and consider v € M?(Z) such that f =
§50.(-,2)7(dz). Consider the Jordan decomposition for v, such that v = v+ — 77, with
vt 7~ € M(Z2) (positive measures over Z), satisfying supp(y*) u supp(vy~) = supp(7y) and

supp(y") nsupp(y”) = .

Now, as |v|rv = §.(v"(dz) + 77 (dz)) < o, consider the probability measure v :=
(vt +97)/Ivlrv € P(Z), and draw an independent sample (Z;);ey from it. Consider the
+|ylrv i z € supp(y)

—[ylrv if 2 €supp(y7)
C; = ¢(Z;). Therefore, the sample (C;, Z;);ey is i.d.d. of law n € P(R x Z) given, for any

~

integrable f: R x Z — R, by: (f,m) = o F(lrv, 2)dv(2) + 5o F(=1lmv, 2)dv(2).
Then, by the Law of Large Numbers, we get that for all integrable f : R x Z — R:

%2 (Cy, Z) <f,%§5ci»zi> i <f’ ">

In particular, any function of the form f(c,z) = cf(z) with f : Z — R a v-integrable
function, will satisfy:

function ¢ : Z — R defined as: ¢p(z) := and set, for every i € N,

(Foy=|  plvi@ie [ —plvsEdn
supp(y™1) supp(y~)
Then, noticing that V|Supp ++) M — and Vlsupp(r-) = h”'TV we get that:

1
+ — —
<f 77> ‘P)/’TV Lupp 7+ |,Y|TVf(Z)d,Y (Z) "Y’TV Lupp(’y) |7|TVf(Z)d’Y (Z)

Jf )dy ( Jf )y~ (2)
_ L FEAOT =) (=) =

This implies that for any y-integrable f : Z — R we have:

%Zsz(Zz): fv%ZCzéZz>%<f77>
=1 =1

Now, by a standard argument passing through a countable dense subset, we get that:

n

s ¥ € C2), [ D10 = ( S B0 > — ()

i=1
Choose one particular realization of the random variables, (c¢;,6;);en such that the

above holds and recall that o, to be continuous and such that Yz € X', my-a.s., o.(z,-) is
bounded (by assumption 1). Define 7, := = 37" | ¢;0p, and conclude that:

Ty-a.s., Vo e X, fu(r) 1= (0x(2, ), n) P (os(x,°),7) = f(x)

which corresponds to the desired my-a.s. approximation. If 7y is compactly supported,

then by the continuity of o, over X x Z we get that o, is bounded on supp(mx). Therefore

Ra-as Vo € X, [fu(@)] < 230 llon(@, 0] < [ylrv 1o lmsuppire 2, allowing us to use

the dominated convergence theorem to conclude that |f, — f|rr(xy) —— 0. O
n—0oo
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Proor oF CoroLLARY 1. Let f € L*(X,Y;7my) and € > 0, by theorem 1 we know there exists

Ve € Fu (M5(Z)) such that | f,. — flr2xyme) < 5. Also, by proposition 3 (thanks to the

compact support of 7y), there exists a set of parameters (¢£,6%);ey € R x Z such that for
some N, € N: ||f,. — @é\éi’ei) L2(x,yme) < 5. Notice that @é\éi’ei) e N,,(Z). The triangle

inequality allows us to conclude by noticing that:

|f = q)é\cfi,es)HLQ(X,y;rx) < |fr. — (Pé\cf;es)HN(X,yaﬂx) + 1 fre — fHLQ(X,ynrx) S¢€

ie. Vfe L*(X,V;7x), EICD?C[Z o) € N, (Z) such that: ||f — @fﬁi ooy L2 imr) < € allowing us
to conclude. n
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C.2 Proofs for Section 2.2.3

Proor or LEmma 1. By the characterization of the norm in a Hilbert space:

R(f) = E<[Y = f(X)[3]

= E- (Y = f*(X) + f*(X) = F(X)[3]

= E-[Y = 1 (O3 + 2 = f*(X), f*(X) = F(X Dy + [ £7(X) = F(X)]3]

= E-[|Y = f*(X0)3] + 2E[Y — f(X), f*(X) = f(X)y] + B[ £*(X) = F(XOI5]

The first term clearly doesn’t depend on f, and the second term satisfies (by using the
bilinearity of (-, )y and the measurability of f and f*):

B[V = 7(X), F5(X) = F(X)w] = Ex[Ex[(Y = f7(X), [5(X) = f(X))p|X]]
= Ex[E[(V[X] = f*(X), f5(X) = F(X))y]
= E[(f*(X) = f5(X), /7(X) = f(X)y] = 0
Therefore, we conclude that: R(f) = R, + E:[|f*(X) — f(X)[3], where the term R, =

E-[|Y — f*(X)|3] is the Bayes risk, as it doesn’t depend in f and the other term can be
made zero by f*e M(X,)).

™

Now, if any other f satisfies R(f) = Rs, then it means that E.[|f*(X) — f(X)[3 = 0,
which allows us to conclude that f = f*in L*(X,Y;7X). i.e. f*is the unique minimizer. [

ProoF oF LEMMA 2. As m € P(X x ) is such that 7|y has a finite second moment, then
f*=FE,[Y|X =] € L*(X,Y;7x). Also, by lemma 1, we know that for any f e M(X,)):

R(f) = B[y = F(X)[3] = Rs + B[] £*(X) = F(X)[3)]

By universality, given any € > 0, we have that 3f. € F,,, (M?(Z)) such that I fe=FH 2 yima) <
€.1e Ye>0:

x < inf < R(/- x
R fe]—'a*l(r/l\/ts(z))R(f) R(f.) < R.+c¢

By taking ¢ — 0 we see that: infrer, (ms(z)) R(f) = infiepms(z) R(y) = R* (where we denote
R(y) for R(f,) with: f,(x) = {(ox(z,"),7) Yz € X).

For the last part, it’s clear that if there exists some measure u* € M®(Z) such that
inf.cas(z)) R(7y) is attained, then in particular: R(p*) = inf cusizy R(y) = R.. By
uniqueness of f* as the minimizer of R in L?*(X,Y;my), this can only happen if

Vo e X my-ae., {ou(z,), ") = f*(x) = E;[Y|X = 7]

129



C.3 Proofs for Section 2.2.4

Proor or LEmma 3. The implication to the left is direct from a previous characterization.
Now, given W, (p,, 1) —— 0, we know that Vf : Z — R with p-growth, §_ fdu, —
n—0o0

n—o0

Sz fdu. Let Y be a separable real hilbert space, with (ej)gen an orthornormal Hilbert basis.
For y € Y we define: Vk € N, Py = (y,ex); and we know that [y[3, = >,y Pe-yl>. In
particular, let f : Z — ) be an arbitrary continuous function with p-growth, and define
Yn = §5 fdp, and y = §_ fdu. We want to prove that |y, — y|| — 0. Indeed, notice
that: Vk € N, Py.y, = Pi.§, fdu, = § Py fdp, (by linearity of the Bochner integral). Also,
clearly: ¥k e N, Vz € Z, |Pof(2)] < |Pilaronlf@)ly < [f(2)ly < C+ C'|[%. So,
Vk e N, P..f : Z — R is a function with p-growth, and therefore: Py, = Sz Py fdu, —

§, Pe.fdu = Ppy. In particular, VN € N, 3 | | Py, — Pyl — 0. Notice that Vn €
n—a0

N, limy_, ijﬂ | Po-y — Pry? = |yn — yly; and as the series is convergent, it means that
VneN, Ve >0, IM, e N : ZZO:Mn | Pe-yn — Pr.y|* < €. From a standard diagonal argument
one concludes that |y, —y|y —— 0

n—o0

]

Proor oF ProprosiTioN 5. Indeed, let (i,)nen S Pp(Z) be a sequence converging to p € P,(2).
As o, is assumed to be continuous with p-growth on its second argument (i.e. Yz € X, Vz €
Z, ||ow(z,2)|y < C + C'|z|% for some constants C,C" > 0), by lemma 3, we know that,

Ty-a.e. Vo € X, {o.(x,"), in) — (ow(zy), )
As ¢ is assumed to be continuous, we get:
mx-a.e. Ve e X, Yy e Y, (({ou(x,"), tin), V) — (({ow(y), 1), y) (C.1)
Now, as £ > 0, we can employ Fatou’s Lemma' to obtain that:

E, [lim inf ((({o(X, "), ftn), Y))] < lim inf B [(((ou(X, ), i), Y))

n—0o0

We can then notice that from equation (C.1), we have:

By [lim inf (0o (X, ), ), V)| = B [60oa(X, ), 10, Y)] = R(p)

n—0o0

Putting both things together, we conclude the desired L.s.c. for W,: R(u) < liminf, o R(p,)
]

1Because all the involved functions are measurable
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C.4 Proofs for Section 2.2.5

Proor or PropositioN 6. We know that, Vu,v e P(Z), he[0,1]:

R((1—h)p+hv)— R(p) _ L®, (1= h)p+ hv)) — LEP, 1))
h h
L@, ) + WP, v — p)) — LD, 1))

h

Let’s denote by ¢, := (®, 1) (analogously ¢,_, := (®,v — u)) and s,, = hq,—,, so we can
write:
R((L =M+ hv) = R(p) _ Lgu + sp.) = L(4y)

h - h
As L is Gateaux differentiable, we have the following first order Taylor expansion Vx, s € H,

Vt e R:

L(x +ts) = L(x) + t Dy L(x).s + o(|t]|s])

In this particular case, we get:

R((A—h)p+hv) — R(p) _ L(gu + hgy—y) — L(qu)
h h
_ hDnL(4) -Gy + 0[] @]

h
= DhL(qu).qy,“ +

o(|Alllgy—p)
h

As ||gy—,| < o0 by hypothesis, we can say that: o(|h||q,—.|) = o(h). Therefore, taking the
limit with A — 0, we get that:

iy B = W)y + hv) — R(p)
h—0 h

. olh
= DhL(Qu)-QV—u + }llli% % = DhL(qu)'qV—u

Now, developping this last term (using, for instance, the linearity of the Bochner integral
under bounded linear operators, as we know Dy, L(x,-).(-) to be linear and bounded as we’re
working on Hilbert Spaces), we get that:

D L(qu)-Gv—n = Dil(qu) L@, v = p) = (DpL(gu)(®), v — p1)

Now, by the Riesz representation theorem, note that V0 € Z: D;,L(q,)(®(8)) = (VrL(q,), ®(0))n

and so: RI(1_n h
LR = Byt )

h—0 h

R(p) _ L<VhL(<<I>,u>), O(6) )3 d(v — ) (0)

From where we deduce that:

S 1.6) = (TAL((®,10), (6w ~
Where Cf, is a fixed constant, given by:
Cru = Z %(u, 0)du(0) = fz<th(<¢)»/~L>)7 (0))n d(p)(0) = (ViL({®, 1)), (P, 1))n

131



On the other hand, for the intrinsic derivative, notice that Dg(%—f(p,@)) :Z > Risa

bounded linear functional over Z a Hilbert space, so by Riesz representation, 3D, R(u,6) :=
V@(%(u, 0)) € Z such that:

veez (Vo (Gr0) ,z>z -0 (S0 )

However, we can develop the RHS, and as the constant Cg, doesn’t depend on 6, we get
that:

Dy (Z—]jw, e)) (2) = Dy (VAL((®, 1)), B(0))r0) (2)

Now, by the chain rule and the definition of the adjoint operator of Dy®(0):

Dy (gf (ks 9)) (2) = (VRL((D, 1)), Dy®(0)(2))y = {(Dg®(0))* (Vi LUD, 1)) , 2,
So, as they coincide for every z € Z, we conclude that:

DyuR(p,0) = (De®(0))" (Vi L, 11)))

[]

PROOF OF LEMMA 4 (FROM Hu ET AL. [38]). Define p° := (1 —&)u + 4. Since R is convex, we
have

< (R(Z) — R(n) = RGE) — R(p) = f 6 L Z—f(m (il — ) (dz) ds.

Since the map s € [0,1] — p® is continuous, it is of compact image (denoted [u, p']).

In particular, as g_]: is continuous and bounded on its second argument, we get that, it is
bounded on [u, '] x Z. In particular the dominated convergence theorem and Lebesgue
differentiation theorem (as ¢ — 0) allows us to conclude. [
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C.5 Proofs for Section 2.2.7

ProoF oF TueoreM 2. In Theorem 2.4 from Hu et al. [38], using the hypothesis they prove
that Yy € Py(Z), VZ = (Z)N, "X pover ZV_ it holds that: [E[R(v))] — R(n)] < ZE. From
here, they assume that a minimizer exists (which might seem restrictive). It however holds
without such assumption, as we can consider an arbitrary ¢ > 0 and some measure p* € Py(Z)
such that R(p*) < inf,ep,(z) R(u) + £. Then, clearly |E[R(v} )] — inf,ep,z) R(1)] < 2 + &,
As E[R(v))] = infgezv R (v') = infep,(z) R(1), we conclude that:

2L
inf R(v)) - inf R < —
egzi’N (Ve ) ueg;(z) () N te
allowing us to conclude by taking ¢ — 0. O]
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C.6 Proofs for Section 2.2.8

PROOF OF PROPOSITION 9 (FROM HU ET AL. [38]). To prove existence, consider any 11 € P(Z2)
such that R7%(j1) < +co. Consider the set:

. {MGP(Z)rﬁﬂy(MKRZ’ﬂ(ﬁ)— inf RW)}.

WeP(2)
As a sublevel set of the relative entropy H, S is weakly compact. Together with the weak
lower semi-continuity of R7'?  the minimum of R7? on S is attained®. As Vu ¢ S,
R7P(n) = R7P(n), the minimum of R7'# on S coincides with the global minimum. Since
R7? is strictly convex (thanks to the entropy), the minimizer is unique.

Now, let p* = argmin,ep(z) Ry %(1), we know p* € S, and thus H(p*) < 400 as well as
E,«[U(X)] < oo. Therefore, p1* is absolutely continuous with respect to the Gibbs measure,
so also absolutely continuous with respect to the Lebesgue measure.

If further U satisfies assumption 3, the last point implies that p* € Py(2) ]

PrOOF OF PROPOSITION 10. Let (7,,)nen and (5,)nen be two positive sequences decreasing to
0. On the one hand, since R is continuous (weakly if p = 0 or in W), for other p > 1) and
H,(1) = D(p|lv) = 0, for all u,, — p (in the appropiate sense), we have

lim inf R7P"(u,) > lim R(pn) = R(p)-
n——+aoo

n—-+aoo

On the other hand, given p € P,(Z), consider p to be the heat kernel in Z = R” and
pn(z) := B, Pv(x/B,). In particular, from Ambrosio et al. [1] (as the heat kernel has finite
p-th moments) we know that i, := p* p, —— p in W, (or weakly if it is the case).

n—0o0

Now, since the function h(x) := zlog(z) is convex, from Jensen’s inequality we get that

| ot < [ | bipato =) it = | nipu()de = | hiota)da=D 108(v/25,),

z
Besides, we have

Jz(u « py) log(g)dz = —f

zZ

p(dy) L pu(2)U(z — y)dz = —C (1 + L |y|2u(dy)) :

The last inequality is due to the quadratic growth of U; and by the same argument on 7r:

Jz(u * pp)rde = L_ p(dy) L pu(@)r(z —y)de < C (1 + L y!2u(dy)) :

Therefore, as R is W-continuous, R(u,) —— R(u), and:

n—00

lim sup R7™ P (u*vy,)

n—-+aoo

< R(p) 4+ lim sup 7, (J (= pn)rdx)
z

n—+ao

+lim sup 3, (L h(p * pn)dz — L(u * Pn) 10g(g)dm>

n——+o00

2Indeed, it is a lsc function over a compact set (under the weak topology).
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And, as lim,,_, 3, log(+/26,) = 0 and the rest of the terms are bounded, we conclude that:

lim sup R7* (= p,) < R(n)

n—+0o0

In particular, denoting by ,ul’ﬁ ¥ the unique minimizer of R7”, then from the previous

expressions we get Vn € N and Vi € P,(Z2):
R(p") < Ry2 () < B2 (s pn)
So that,

lim sup R(uI""") < lim sup R (u+p,) < R(u), for all ue Py(Z2).

n—o0 n——+0o0
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C.7 Proofs for Section 3.2.2

ProoF or ProposiTion 13. Indeed, , as E[|Y[*] < oo, we know the conditional expectation
E[Y|X] is well defined. From there, we know there exists a measurable f* : X — Y
st. f*(X) = E[Y|X]. In particular, we consider Yz € X, f*(z) := E[Y|X = z] and,
consequently, & = Y — f*(X). We immediately notice that, as 7 is G-invariant, f* : X — ) is
G-equivariant, as (by properties of the conditional expectation): Given any h : X — R square
integrable, we will show that: E.[Yh(X)] = Ex[{, o5 ' f*(pg-X)dAc(g)h(X)]. Indeed, notice
that (in the first step using Fubini’s theorem, as f* € L?(X,Y;mx) and h square integrable):

r

. B[y ' f* (pg- X)W(X)]dAc(9)

e[ 0000 -

[S—

Gﬁ;PEW[f*<pg-X>h<pg-‘1-pg'X )dAc(g)

linearity

[
[ S—

mx 18 G-invariant oy Er[f*(X)h(pg. . X)]dAc(g)

G
~

Il
[ S—

ho p;1 = 0, measurable and def. of f* ﬁgl.EW[Yh(pg._l.X)]d)\G(g)

I
| S
S

G

linearity :J ]E,r[ﬁgl.Yh(pg._l.X)]d)\G(g)
G
7 is G-invariant :J E.[Yh(X)]d\c(g)
G

By uniqueness of the conditional expectation, we know therefore that f*(X) = §, o, '. f*(pg. X ) Aa(g).-
In particular, my-a.e. f* = Q(f*), implying that f* is G-equivariant.

It is clear that £ is centered, as by the tower property:
E[¢] = E[Y - E[Y|X]] = E[Y] - E[E[Y|X]] = E[Y] -E[Y] =0
Analogously, notice that, from the property (with H some o.field):

E[|Y — E[Y[H]|*[H] = E[]Y[*[#] + E[JE[Y [H]|*[H] — 2E[CY, E[Y[H])[H]
E[|Y[*[#H] + [E[Y [H] | — 2CE[Y [H], E[Y[H])
= E[|Y*|#H] - [E[Y]#]|?

We can derive a sort of law of total variance, in the sense that:
E[|Y - E[Y]|*]] = E[E[|Y - E[Y|X]|*|X]] + E[|E[Y]X] - E[E[Y]X]]|*]
In particular, E[E[|Y — E[Y|X]||?| X]] < E[|Y — E[Y]|?|], leading us to:

E[|¢*] = E[JY — E[Y]X]|*] = E[E[|Y — E[Y]X]|*|X]] < E[]Y - E[Y]|*[] <
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This implies, that £ is a square integrable random vector (from properties of the Bochner
integral). Let h: X — ) be any measurable function. Then, consider:

E[¢€, h(X))] = E[(Y = E[Y[X], h(X))y]
= E[(Y, h(X))y — CE[Y[XT, h(X))y]
= E[(Y, h(X))y] = E[CE[Y|X], h(X))y]
= E[Y, h(X))y] — E[E[(Y, h(X))y[X]]
= E[(Y, h(X))y] = E[Y, h(X))y]
=0

Where we’ve used standard properties of the conditional expectation (tower property, linearity,
etc). The only property that may cause doubts is that for H-measurable r.v. Z on Y:

E[Y, Z)y[H] = (E[Y[H], Z)y

This can be shown by decomposing ) into its orthonormal basis (as its a separable Hilbert),
(en)nen,and considering the projections Vn € N, Yy € Y P,y = (y, e, ), which are bounded
linear operators. In particular, this implies (by using the linearity of the conditional expectation,
as well as its known properties in R, as P,(Z) is H-measurable):

¥neN, Py(E[Y[H])Pu(2) = E[P.(Y)|H]P(Z) = E[P.(Y)Po(Z)[H]

So, for all N € N (notice that, since there are countable cases, we can take a complete measure
set where this holds for every N € N):

N N
2, Pu(ELY [H]) P (2) = ELD, P ]
Finally, taking the limit with N — oo, we know that:

E[Y|H], Z)y = ) Pu(B[Y|H]) Pu(2)

neN

=E[), P(Y)Pu(2)[H]

neN

= E[Y, Z)y[H]
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C.8 Proofs for Section 3.3

PROOF OF LEMMA 10 (BASED ON ELESEDY AND ZAIDI [28] AND HUANG ET AL. [40]). As H < G is a
compact group and 7 is H-invariant, from proposition 13 we know that (X,Y) " (X, f*(X)+
€), with f* € L*(X,Y;7|x) such that Qg f* = f* (as functions in L*(X, Y;7|x)), and £ being
centered, with finite variance and such that for all measurable h : X — Y, E[(¢, h(X))y] = 0.

Consider any f € L*(X,Y;n|x) and decompose it, using Lemma 8 (thanks to the fact
that 7|y is G-invariant), as f = fo + f&, where fa = Qgf is its symmetric part and
f& = f — Qcf its antisymmetric part.

Since ¢ is centered and has finite variance, we can write®:

A(f,Qaf) =B [|Y = fF(X)[5] - Ex [V —?G< )5
= E. [If*(X) +£ FEOIS] = B [If*(X) + € = Fa(X)I3]
= Eq [|1/*(X) = f(X) + €3] =B [IF*(X) = Fal(X) + €[]
Er |

= LX) - )||y+2<f (X) — f(X)7§>y+||§||y]

E, [||f* T3 +20°(X) = Ta(X), &y + €15]

[Ilf (X) — f( )Ilzy] + 2B [(f*(X) = F(X), Ov] + Ex[[€]5]
E. [|£*(X) = fa(X )H;Qy — 2B [(f*(X) — fa(X), Oy] — E[[€]5]

[Hf (X) = FX) 5] = Ex [I17(X) = Fa(X)[3]

+ 2B [(f*(X) = F(X), Oy] = 2E[(f*(X) = Fa(X), ]
= E- [|/7(X) = fFOI3] = Ex [[1/*(X) = fa(X) 5] +0 -0
Where we've used the defining properties of £ and the fact that f, f* and f are all measurable,

as well. From here, the proof follows exactly as that of Huang et al. [40] (or Elesedy and
Zaidi [28]); using the decomposition of f, we get that

A(f, Qaf) = E[If*(X) = FXO5] = E[IF*(X) = Fa(X)[3]

can be written as:

A(f. Qaf) = Ex [|F*(X) = Fa(X)[5 — 2(f*(X) = Fa(X), fa(X))y + | fa(X)3]
= E. [|7(X) = Fa(X)3]

= 2B, [{f*(X) = fa(X), fa(X))»] + Ex [I /5 (X)]3]

= —2f* = o fao 2@ yimn) + 1G22 0 yimn)

= —2f* farrryma + 1 falte v yine)
Where we used the definition of the inner product in L*(X,Y;7x) and also the fact that
(Far [é)r2(x¢ yime) = 0. The first term on the right hand side, —2{f*, f&)r2(x,yry), is What
Huang et al. [40] call the mismatch between the real underlying model (which is only H-

equivariant) and the symmetrized version of our model (which we overdid, as we made it
entirely G-equivariant).

3We could actually skip all of these calculations, as they follow directly from Lemma 1. We do however
include them to keep the proof similar to that of [28, 40]
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Now, in the particular case of m being G-invariant, we would have that Qg f* = f* (as
functions in L*(X,Y;7|x)), and therefore, as f lives in the orthogonal space, we would get
—2(f*, fé)r2(x.ymr) = 0, giving us the desired result:

A(f? QGf) = HféH%%X,y;ﬂX)
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C.9 Proofs for Section 3.4.3

PROOF OF THE FORM OF THE ORTHOGONAL PROJECTION oNTO £Y. To prove that the orthogonal projection
from £ onto £ has the form:

VA e L, Peo(A) = L 7(g). AdA(g)

we start by defining an operator P : £ — £¢ by:

VAe L, P(A) = L p(g).Adg(g)

o It is linear as VA, Ae £, VAe R

f 2g).(AA—A)dAc(g) = f Ap(9)-A—plg)-AdAc(g) = A f
G G

Ag). Adra(g)— f 2g). Adra(g)
G

G
so that:
P(AA — A) = \P(A) — P(A)

e We can see that P(A) € £Y VA e L; this follows from the fact that, for a fixed
g € G, and for arbitrary A € L:

lo)P() = plo) |

() AdAG(1) - j 2(9)p(h) AdA(h)

G

_ f p(gh)Adrc(h) = f 5(h) AdAg(R) = PA
G G

where we’ve used the invariance of the Haar measure Ag. i.e. we have proven that:
Vge G, plg)P =P

e We can also see that P(A) = A, VA € £Y This is clear from the fact that
VAe EY Vge G, p(g)A = A, so we get:

P(4) = ng»AdAG(g) _ L Adra(g)

This means, in particular, that P2(A) = P(A), VAe L,so P : L — £ is a projection.

e Finally, we see that P is orthogonal, as for (-, -) the inner product on £, we have
VAe L, VAe EC:

P = (| 7o) AdG0). D
by linearity = ;@(Q)A,fbd/\g(g)

r\ ~
by orthogonality = | (A, p(g)" AdAa(g)
€

r‘ ~
As Aeg, = | 4, Ddra(g)
G

J

= <A7 A>



With this, we have that VA € £, VA e £°:
(A= P(A),A) =0

and so, P is the orthogonal projection onto £¢.
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C.10 Proofs for Section 4.1

N
PRrROOF OF PrOPOSITION 19. Indeed, let § = ((Z’)) e (RP)N we know that:

We can now write this in block form: W = (wy,...,wy), and A= | : |so we can actually

write the network as: )

O (x) := NWU(AX)
Now, we know that ®) is G-equivariant iff p(g).(W, A) = (W, A) Vg € G (with the action
defined above). Now, under this action, the conditions amounts to Vg € G:

ngalTPZ a{
01(9)- W = (pgwiny -, pgwany ) = (w1, ..., wn) and py(g).A = o=
nga%/); ajj\}

which is equivalent to asking: Vg € G, Vi€ {1,...,N}, pywn, = w; and pyan) = a;. ie.
Vge @G, Vie{l,...,N}, M,0; = 0;, or equivalently, Vi € {1,... N}, 6; € EC

PrOOF OF ProposiTION 21. Indeed, let 6 = (6;,)Y, € (£9)N 2z € X and g € G, we can see that:

1 & -
) ( (pg-x NZ «(pg-2; 0;) N;U*(P9~x3 Myb;)
1 i 1 i
— = ﬁg’_ 0'*<CL’, 61) = [)gCI)év(x>
TN =1 N =

Where we've respectively used the fact that Vi e {1,..., N}, 6; € £Y, the joint equivariance
of o, and the linearity of the representation.

For p1 € P(EY), the proof is exactly the same, only that lemma 13 (as u € P(EY) < PY(2))
and proposition 30 are used. Indeed, Vx € X

(g5 ), 1) = {0s(pg-m; ), My#p) = polos(;-), 11y

O

Qg

PROOF OF PrOPOSITION 22. Let 7 € R and 6 = ( ) e RP, with w € R*?, a € R¥™?. Let
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g € G, we see that:
_ ﬁgwngT
ox(pgx, M,.0) = o, <pgx, (,Ogm]g))
= pgwny o((pgang )" py)
= pywi, a(nga’ py pyt)
= ﬁgwngnga(aTx)

= ﬁgwa(&Tx) = pg0s(z,0)

We’ve used the fact that all actions are orthogonal, and also that the activation function

—

o is G-equivariant by hypothesis. So, as this is satisfied Vo € R¢, Vo = (2{) e RP, o, is

G-equivariant (on both arguments).

[]
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C.11 Proofs for Section 4.2

Now we consider the proof of other Lemmas involved in this work:
Proor or ProrosiTioN 23. This object is well defined, as:

e VBe Bz, [ge G — u(M;'(B))] € L*(G) (because u(-) < 1); so the integral is always

convergent.
e [t defines a measure, as:
— VB e Bz, u(B) =, u(M;'(B))d e = 0 (because u(:) = 0).

— For (B,,)nen a family of pairwise disjoint borel subsets of Z:

“() Ba) = f () B d)\G—f () M, (B))dAe

neN neN neN

Where the union is still disjoint, as M, (By) n M (By) # ¢ = B, 0 By # ¢
(as for € M (By) n My (By), we would have Myx € By 0 By). So, as i is a
measure (and using Fubini’s Theorem):

1) Bn) JZ d/\G—ZJ ))dAe = > uc(B

neN G neN neN neN

— Finally, using the fact that Vg € G, M;l(Z) = Z, and that p is a probability
measure over Z, we get:

n(2) = | nOg, @) = |

1(Z)dAg — J ldAg — 1
G G

G
So, p¢ is a probability measure over Z.

As for the corresponding properties, notice that:

1. Let g € G and p € P(Z). As for any measurable f : Z — R we have:

@%M#m%=LUJMMM#WMMM%{;ﬁW%wwwam

Then, using the right invariance of the normalized Haar measure, we conclude that:

<HM%W>JU D dAa(R) = (.

ie. (My#n)® = p
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2. Let a,b € R and u,v € P(Z). Consider any measurable f : Z — R and notice that
(using the definition and also the linearity of the group representation):

{f, (ap + b))%y = JG<f, Myp#(ap + bv))ydAg(h) = fG<f, aMp#p + OMy#v)dAg(h)

Again, using the linearity of the integral and the corresponding definitions, we get:

Folap+ ) = a L<f, Mytddra(h) + b L<f, My#ydra(h)

= a(f, u) + b(f,v%)
= (f,ap" + )

Proor or LEmMA 12. On the backward direction, it is clear that, as VB € Bz, u(B) =
p(P:1(B)), and thanks to the fact that Z = Pz '(€), we have: 1 = u(2) = p(P;*(€)) =

n(€).

For the reverse implication, as u(€) = 1, we have that VB € Bz, u(B) = u(Bn &). We
can also see, by properties of the projection, that:

e VBeBz, P;'(Bn&)=P;'(B). 4
e VBeBz, BCE P;Y(B)nE=DB.°

So, letting B € Bz, we can check that (using all of the above properties, considering B =
Bné&):

W(B) = (B~ €) = p(Pe (B~ €) 0 ) = u(P (B 1 €)) = u(P(B))

i.e we have that u = Pe#u = uf. O]

Proor oF ProposiTionN 24. 1. Let A € [0, 1] and v,n € P,(Z). We will study what happens
for v = Av + (1 — A\)n. Consider 7, and 7, the optimal couplings between v and u,
and 7 and p respectively. Then, by marginalizing, we get that (v3)|x = M71)|x + (1 —

AN (2)lx = Aw+(1=A)n = vand also (y3)[y = Ay +(1=A)(2)ly = Au+(1-=A)p =
p. That is, v3 := Ay + (1 — A)7 is a coupling between 7 and . We can then get, using
the minimality of W,(7, 1) and the fact that ; and 7, are optimal couplings, that:

Wp(7, 1) < El| X —Y|7]
= AE, [|X = Y[P] + (1 = ME,[|X - Y]]
= MW, (v, 1) + (1 = \)Wy(n, 1)

4c: direct from BNE C B; D:asVoe Z, Pref&;ifre Pg_l(B), we have Px € B, but also Pz € £, so
ze P (BnE)

52:if x € B € &, then Peax = x (as Pe is surjective, z = Pgy for some y, and Pex = PZy = Pey = 1),
andsoz e Py (B)n€&. c:ifxe P 1(B) n &, then x € € (implying Peax = 2) and Pex € B,so x € B
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i.e. we have proven that:
VA€ [0,1], Vu,n € Pp(Z), Wp(A + (1= A)n, ) < AWy (v, ) + (1 = N)W(n, )
and so, the function v — W, (v, 1) is convex.

2. The continuity follows directly (as the topology of P,(Z) is generated by W,,).

3. The strict convexity can be proven using a standard argument presented in Santambrogio
[73]. We replicate it here for completitude:

Suppose by contradiction that vy # 14 and ¢t € (0,1) are such that W,(v, pu) = (1 —
W, (v, i) + tWy (v, p), where vy = (1 — t)1y + try. Let 4y be the optimal transport
plan in the transport from p to vy (as p <€ A, it is a transport map); we write
v = (To,id)gu. Analogously, take v; = (71,id)gp optimal from p to vy. Define
Yo = (1 —t)y0 + ty1 € (v, p) (as in our first point). Then, we have:

(A=W v, 1)+ WP 01, 1) = W) < [ fr—yl? v = (L)W, (v, 1)+, 01,0,

which implies that ~, is actually optimal in the transport from u to v,. Yet 74 is not
induced from a transport map unless Ty = 7. This is a contradiction with vy # 14 and
proves the desired strict convexity.

4. For the G-invariance, consider G Cy; Z orthogonally and let pu,v € P,(Z). We will
prove that, Vg € G, W,(My#u, My#v) = W,(p, v). Indeed, let g € G; it is not hard to
check® that, for any v € II(u, v), 7 := (M, M,)#~ € TI(M,#u, M,#v). In particular:

W5 (My#p, My#v) < B5 [[ X =Y 7]

Now, if we take v to be an optimal coupling between i and v, we see that:

&UX—YM=J‘ Iz — yPdi(z,y)
ZxZ
:f i — ylPd(M,, M,) 4z, y)
ZxZ
S LR ATTER"
ZxZ
- [ - yPariey)
ZxZ
=f Iz — ylPdry(z,y)
ZxZ
_E, [|X — Y[P] = WP(, )

where we’ve used the definition of the pushforward measure as well as the linearity and
orthogonality of M, (and the optimality of 7). Thus, we conclude that:

WP (My#tp, My#tv) < WP (u,v)

6Suffices to see that m#5 = My#(m#~) for i = 1,2
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Conversely, for any coupling 7 € IL(My#p, My#v), we can define i := (M, M 1)#i €
P(Z x Z) and easily check that it is a coupling between p and v. By an exactly
analogous argument, if we take 7 € II(M,#u, M,#v) to be optimal, we get:

W7 (p,v) < By[| X = Y[[k] = B | = Wp (Mgt p, Myv)

Thus, we can conclude that, Vg € G:
W (Mg, Mydtv) = Wh(u,v)
and so W, : P,(Z) xP,(Z) — R, is jointly G-invariant (in the sense of Definition 4.4).

]

Proor oF ProprosiTioN 25. We will study each point separately:

1. We'll start dealing with the convexity. Consider A € [0, 1] and:
o For v e Py(Z), i := Mt + (1 — N)v € Py(Z), as by definition

| 1owdie) = [ 1o1rauto) + =) | jopane) < +oo

e Let p,v e PE(Z), then by definition:
A+ 1 =M)E) = E)+ (1 =Aw(E)=A+(1-)N) =1

So, (M + (1= Nv) e PE(2), and as i, v and \ are arbitrary, P¢(Z) is convex. It
follows directly that ng (Z2) =PE(Z) nPy(2) is convex.

e Analogously, let p, v € PY(Z). For g € G and a measurable f : Z — R, we have:

| s+ =20 =3 | £+ (1= [ s

=dff@w( (1= ff ) (0

ff (i + (1— ) ()

where we’ve used the fact that My#p = p and My#v = v. Since this argument
works for any positive and measurable f : Z — R, we get that: M,# Ay + (1 —
Nv = A+ (1—N)v; and as g was arbitrary, (A + (1—M\)v) € PY(Z). As p, v and
A were arbitrary, we conclude that P%(Z) is convex. As before, it follows directly
that PS(Z) = PY(Z) n P,(Z) is convex.

We now focus on the closedness under the weak topology. Notice that by definition of
the topology induced by W,,, P,(Z) is closed under it. We can also say that:

o If (tn)nen € Pp(Z) and p € P(Z2) such that W, (pu,,, p) —— 0, clearly e P,(2),
n—aoo

as (P,(Z),W,) is a Polish space (thus complete). We conclude that P,(Z) is
closed under the topology induced by W),
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It will be enough to check that P¢(Z) and P%(Z) are closed under the topology induced
by W,, as by intersection of closed sets, so will P%(Z) and P (Z).

Let p € P(Z) and (ftn)ney S P(Z) such that W,(u,, ) —— 0. Recall that this
n—0o0
pand { [0dan (6) — {, [617du(0)
(Ambrosio et al. [1]). Also recall that y,, —— p means that Vf € Cy(2), {f, pn) —
n—ao0 n—ao0
(fsmy

o If (pn)nen S PY(Z), consider g € G, and f € Cy(Z2); it is not hard to see that
f = f oM, is also continuous and bounded (as a composition of continuous
functions and using the boundedness of f). Thus, we get by weak convergence:

convergence is equivalent to having u,
n—0o0

But as yu, € P¢(Z) for all n € N, we know that:

<f7 ,un> = <f o Mga ,un> = <f7 Mg#un> = <f7 ,un>
And also by weak convergence (as f € CP(2)): {f, pn) TO(; {f, uy. By uniqueness

of the limit, we must have that oy =, u> =(fo u> (f, My#p). ie.
We've shown that Vf € Cy(Z),, f(M,0)du(0) = §. f( ), by density of

Cy(2) in L*(Z2), we get that p = M, #y,, and as g € G was arbltrary, we get
p € PY(Z). Thus, we conclude that PG(Z ) is closed for the topology induced by
W,

e Analogously, if (yn)nen S P?(Z), we use an identical argument to prove that
pe PE. For f e Cy(Z) we consider f := f o Pg, which is also a continuous and
bounded function (as Pe is continuous). Thus, we get by weak convergence:

<.f7/~bn> E) <.f7:u>
But as p, € P¢(Z) for all n € N, we know that:

(Fs by = (f © Pe, pin) = {f Pettptn) = {f, tn)
And also by weak convergence: {f, u,y —— {f, ). By uniqueness of the limit,
n—0oo

we must have that <f, ,u> <f, py = {foPeuy={_f PeH#py. i.e. We've shown
that Vf € Cy(Z), (., f(Pe0)du(0) = § f(0)du(8), by the same density argument

as before, we get that ,u Pe#tu; and so € PE(Z). Thus, PE(Z) is closed for
the topology induced by W,

In conclusion, by intersection of closed sets, we get that both PPG (Z) and PS(Z) are
closed under the topology induced by W),

2. We will study each case separately:

e First, notice that for all B € Bz, (Pe#u)(B) = u(P;*(B)), in particular, as
PY(E) = Z, we have:

(Pe#t)(€) = p(Pe 1 (€)) = w(2) = 1



On the other hand,
.
| 16t (Pestintas) = [ 1017(Petenyat)
z Je
f‘
= | |Peb]”p(do)
Je
r
as Pe fizes points in € = | [0]Pu(do)
Je

:
[01Pp(df) < +oo
JZ

N

So, we have succesfully proven that Pe#pu € P}‘f (2)

e Let h € G and B € Bz, we note that (using the properties of the representation
M and those of the Haar measure Ag):

r

1 (M, = | u(M, (M, (B)))dAa(g)

Js (M My)~ (B))dAc(g)

GM(th (B))dAc(9)

J
f (M (B))dAa ()
1(B)

So, Vg € G, pu® = M,#u%. As, by definition of u®, for any positive and
measurable f : Z — R we have:

(fnO = L<f o My, iydra(g)
It follows that (by Fubini’s theorem):
L 017 duc( j f ML, dpu(6)dra (g)
< | [ 1 pierdu@)ine
GJIZ
_ f 617 du(o) j M, |PdAc (g)
Z G
For an orthogonal representation M, we have that |M,| < 1, Vg e G.
f 6P duc( j 6P du(o J M, |Pdrc(g) j 6P du(6) < +o0
zZ

So, u“ € PS(2).
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3. Let pu € Py(Z). We will prove that p© minimizes W, (s, -) over PZ(Z). For this purpose,
recall that, by definition of the projection onto £, Vz € Z, Vw € &, ||z — Pez| < |z —w]|.

Let v € PE(Z), I(u, v) the set of couplings between p and v and consider € II(j, v).
We can prove” that v(Z x £) = 1, thus:

E, [|X — Y|"] = f Iz — wldy(z, w) = L Lz = wldr(z

ZxZ

By the disintegration theorem (Kallenberg [43]) we get that, for any measurable
[+ Zx&— R we can write:

feai = [ ([ fe ) dee

ZxE
by the definition of I(u,v) = f (J f(z,w)d’y(w|z)> du(z)
z \Je

In particular, for f(z,w) = |z — w|?, we get:

B, 01 - Y7L = [ ([ 1= ulrantul) due)

Now, from the fact that Vz € Z, Yw € &, |z — Pez|P < |z — w|P, we get that: Yz € Z:

L 2 — wlPdy(w]z) > f 2 — PezlPdy(wl2)

So, in particular (as the term inside the integral on the RHS doesn’t depend on w):

L <L |z — wpdy(w\z)) dp(z) =

([ 1= Pestrantuts) duce)
Jo - peate ([ nwla)) auta

|2~ Pecldu:)
z
Now, consider ¥ € P(Z x Z), given by 74 = Law((X, P X)), where X ~ p. This
probability law is naturally a coupling 7 € II(u, uf), as: m#y = Law(X) = p and
mo#y = Law(P: X)) = Pe#p by known property. It also satisfies:

~
Z
~

I
— (S

bt

[
[ S—

B 1X = Y1) = | == PeslPduce)
So, by our previous calculation:
E, [|X - Y] = E; [|X = Y] = Wy (n, 1)

where we recall that 7 € II(u, ) and that Wx(u, u€) is defined as an infimum over
all such couplings. As we considered an arbitrary v € II(u,v), we get (by taking the
infimum) that:

WE (1, 1) < Wh(p,v)

"Indeed, v(Z x &) = Py (m2((X,Y)) € ) = m#y(€) = v(€) =1
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which is valid Vv € P5(Z). In particular, this means that

earg min W,(u,
pt gyepg 0 (1, v)

Whenever Z = R”, ;1 << X and p > 1, we use the strict convexity given by proposition 24
to conclude it must be the unique global minimum.

4. For the last point notice that, from lemma 12, the assertion for p¢ is direct. On
the other hand, we know by the previous points that: u = pu% = pu € Pf (Z) and
conversely, if u € 77}? (Z) then for any measurable f : Z — R:

(o = f (Mt dra(g f (o iddralg) = (fopsd

so that u = u®

Proor or LEMMA 13. We can see that:

o Let u e 7756( ) g € G and consider an arbitrary positive measurable f : Z — R, we
see that (using the fact that (%) = 1 and the definition of £Y):

| soptan) = | rnoynian = [ romian = | 5o

So, we conclude that p = M,#p for an arbitrary g € G, and so u € PE(Z).
e Analogously, let € P(Z) and B € Bz be a borel set; we see that:

(1O (A) = pC(Prd(A)) = LMM;PE—;(A))dAG(g)

And we can see that®: Vg € G, V0 € Z Pga M, = Pgcf. Thus, Mg_lPS’Gl(A) =
(Pea M,)"'(A) = (Pga)*(A), so that:

(U (A) = f WM P (A))dAa(g) =j (P (AN dNa(g) = u(Prt(A)) = 1 (4)
G G

For the last equality, we notice that £ € PE9(Z) < PF(2), and so ()€ leaves it as it
was: ()% = p°

Proor oF ProrosiTiON 26. First of all, the first point, concerning PgG(Z), we can see that:

SIt’s enough to notice that Pea M0 = §, My(My0)dAg(h) = § (M My0)dAa(h) = §, M;0)dra(h) =
Pgc, as the Haar measure is G-invariant.
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e For notational convenience, we will denote £ := £ (though, in reality, nothing’s special
about £¢ in the proof that follows).

e Given any positive and measurable f : £ — R, we see that:

<f,5>ffpgzdu ffpgz aA(2)

By the disintegration theorem (see Kallenberg [43], as A is o-finite), we know that
Jp : &€ — £ a measurable kernel (consisting of probability measures) such that for
every positive Borel measurable g : Z =~ & x £+ — R:

| st = || st@mtemirre)

In particular, as Z ~ £ @ EL, we get:

i = [ PPN = || HPee+ i)uta + o )Pt @)

Now, as the projection satisfies: Vz € £,Vy € L, Pe(z +y) = o, we get:

r

(fufy = I ). F(Pe(z +y))u(z + y)des (y)dre (x)

= f@)u(z + y)dp.(y)dre(z)
o

- | 1@ | v+ ndetare(a)

[

JE
f‘
= | fx)u(z)dre(x)
Je
Where we've defined u®(z) = ., u(x + y)de.(y) = 0 and, in particular, it satisfies:

[ @irsta j ., e+ e mirete) = | uine -1

Thus, 1€ has a density with respect to \g := Pe#\ (restricted to £).

e As a direct consequence, if £ is a strict linear subspace of Z = R”, then any measure
concentrated on it, can’t have a density with respecto to A of R”. This is the case
of £¢ as stated.

Concerning the case of PY(Z), we can see that:

e As M is orthogonal, we have Vg € G, A = M,#X\ by Lemma 14. i.e. A e M%
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e Consider any positive and measurable f : Z — R. We know that (f, u) = §. f(2)u(z)d\(z).
In particular, we can compute:

i = | (o
- | [ ron0du)ir(
JGJz
-, | 0100 arto)
-, N RS AROr
A is G-invariant = J f(z dA(2)dAc(g)
J
Pubini — [ f(2) J (M, +.2)da(g)dA(2)
Jz G
A¢ invariant to inversion = f(z)f u(My.2)dAa(g)dA(2)
JZ G
by definition = ], f(2)u(2)d\(2)

We also notice that, clearly u® > 0 and

L J J z)dAc(g)dA(z) =J J w(M,.2)d\(z)dAa(g)
JJ 2)dMAN(2)da (g JJ ()dra(g) = 1

In particular, u® is the (\-a.s. unique) density of u¢.

As for the equivalence:

—: By Theorem 12, as pu, A € M§ and u <« A, we know that 3h : Z — R, measurable
and G-invariant such that h is the density of .

We know that the density is A-a.s. unique, so that A-a.s. u = h (and so, u is a.s.
G-invariant).

«=: If u is M\-a.s. G-invariant (and measurable), we know that A-a.s. Vz € Z, Vg €
G, w(My.z) = u(z). In particular, let Qg := {z € Z Vg € G, u(z) = u(M,.2)}
(such that )\(QC ) = 0). We notice that, for every z € Qg, u SG (Mg.2)dNa(g) =

SG 2)d\a(g) = u(z). This means that M-a.s. u“ = u, and therefore for any positive
and measurable Vf:Z - R,

i = [ FEE@INE = [ FEuEaE) = S

which allows us to conclude thanks to proposition 25.
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Proor oF ProprosiTioN 27. Following the standard first isomorphism theorem argument, notice
that ¥ : G\Z — Z defined as Gz € G\Z — ¢, € M(Z) is well defined, as for any z,y € Z
such that Gz = Gy we have ¢, = ¢,. It then clearly satisfies ) = ¢, by definition; and
thus it is unique as well. This function is measurable, as for any measurable B € M(Z2),
to check that »*(B) € Bgz, we need to check that p~*(p'(B)) € Bz, notice, however,
that p~1(p " 1(B)) = (pop)1(B) = ¢ }(B) € Bz. So, we get that p is measurable and so it
constitutes a kernel. O

PROOF OF COROLLARY 5. Given v e MY(Z), we know that there exists a unique u € M(p(Z2))

such that v="\_0.( du = S 2) mdu(m). Let A € Bz, we notice that, by definition of
7 v(A) = §, oo (A)dv(x Sz gpp (A)dv(z). Now by the change of variables property
(see lemma 6), we get that v(A Sz By (A)dv(z SG\Z ©0-(A)dv(T) (where we denote
U =puv).

We see that this measure is unique because, if there was another 7 € M(G\Z) such
that v = SG\Z ?-(-)dn(T), we could define, using our measurable cross-section, n = (s#mn)“
MC(Z), and we would have p#n =7 (as po s = Idg\g and Vg € G,po M, = p)). From
here, we could define i € M(p(Z)) by § fdi = §, f(¢.)dn(z). This would clearly imply
(by the change of variable theorem) that { fdp = SG\Z (p)dn(T). So, in particular, v =

SG\Z o(1)dn(z) = Smd,u m). By uniqueness of v in theorem 10, we get that u = ji; thus,
Sfdp = §, fle.)dn(z) = §. f(p.)dv(z) = § fdu. Now, as n € MY(Z), in particular n =
Sz .dv(z) and so replacmg in the last equahty, we get 7 = v which naturally leads to the
desired i = 7. |

Proor or ProposiTioN 28. U is naturally well defined (as p : Z — G\ Z is measurable). We
can see that:

e U is injective: Let p, gy € PY(2) be such that p#u; = p#us. Then, we notice that,
by corollary D, considering the orbit measure kernel ¥ : G\Z — Z, we have (for

i=1,2): SG\Z O ()dp#u;(T). But as p#u = pF s, we have that:

M1 = JG\Z P (-)dp#p (T) = JG\Z Pz()dp#p2(T) = po

which proves the desired injectivity.

e U is surjective: Let 7 € P(G\Z), we define p = (s#m)¢ (which is well defined as
s : G\Z — Z is measurable; and the symmetrization is also well defined). We have
that p#u = T, as for any f e M(G\Z,R):

Lf( (2))d(s4T)° j f F(p(My.2))d(s470)(2)dAg(g)
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but, for any g € G, p(M,.z) = p(2), therefore:

f F(p(=2)d(s#7)° (=) = f F(p(=))d(s#7) (=)dAa(g)
— [ s e)

JZ
r

= |, reteEname
- r@ame

Ja\z

Where we've used the identity po s = Idg\ z.

Therefore, ¥ is a bijection and its (unique) inverse is @ — (s#71)°.

We can check that ¥ : y — p#p is continuous. We endow P(G\Z) with the weak-
* topology. However, as (G\Z,7g\ z) isn’t necessarily metrizable, we have to argue using
nets (as it is known that for any topological space X, (i )aca converges in P(X) iff Vf €
Co(X), ({f, tha))aca converges in R). Indeed, to check continuity it’s enough to take a net
(1o )aca converging to p € P(Z) and notice that:

¥ (pa)) = (o ps pa) = (fop, = W ()

where we’ve used the continuity of p and the fact that pu, — p in P(Z). We conclude that
for every net (f1a)aca converging to p € P(Z), (V(ia))aca converges to ¥(u) in P(Z) (thus
proving continuity). In particular, ¥ is also measurable.

It is also not hard to see that ()¢ : P(Z) — P(Z) is continuous, as for every weakly
converging sequence (i, — u, we have, for every f : Z — R bounded and continuous:

(Fouy = L<f o My jiddre(g) — L<f o My, iydAc(g) = (f. 1

where we've used the continuity of M,, Vg € G, the weak convergence of the sequence and
the dominated convergence theorem (as f is bounded). Therefore, to establish the desired
measurability of the inverse map (), it suffices to check that @ — s#@ is a measurable
map. This is a standard result, thanks to the measurability of s.

Further assuming that s : G\Z — Z is continuous is quite strong. In particular,
as s is injective (it must be, as p o s = Idg z), it allows us to define a metric on G\Z
(via do\z(Z,y) = dz(s(T),s(y))) that generates the topology of G\Z. In particular, weak
convergence can be defined in P(G\Z) and a direct computation (similar to what we’ve
already done) shows that both ¥ and ¥~! are weak continuous. ]
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C.12 Proofs for Section 4.3

ProOF oF ProposiTiON 29. Indeed, we know that Vz € Z D, f(+, z) is the unique function that
satisfies, V2 € X':

im —

h—0 I

Now, we want to prove that Vi € X,Vz € Z, Vg€ G : Do f(xy-T, Xg-2) = XgDaf(Z,2)x, ",
for this, it will be enough to check that:

0

O+ %) = F( 8 R2) — X Def @2 ]

0
h—0 [

since by uniqueness this will imply that D, f(x4.Z, Xg-2) = XgDof (%, 2)x;". Now, thanks to
the property satisfied by f, we have Vh # 0:

1f(Xg-T + h, Xg2) — f(Xg-T, Xg-2) — XgDa (T, Z)Xg_lh”

IA]
_ 1f (xg- (T + Xg_l'h’)7 Xg?) = f(Xg-T, Xg-2) — Xg Do f (7, Z)Xg_lh’H
IA]
X f @+ x5 2) = XS (F,2) = XgDaf (7, 2)x5 D
IA]
- [+ ) = £(E,2) = Daf(3.2)0G )|
[Xg-Xg "

Now, recall that for every g € G, the operator Y, is bounded, i.e. it has a finite operator
norm 0 < |x,| < o (notice it is non-zero as x, is invertible). Now, notice that, defining
h:=x;1h

9

Xor |16+ 102) = 102) = Dot @ AR | 3,111 + ho2) — £(6,2) - Dot (3,20
ot b pont

We can rewrite the last term to get:

|f(@+ h,2) = f(3,2) = Daf (&, 2)h] ng‘leﬁH
7] X912

Xl -

”f(j + iL72> _ f(jN’ Z) _ Dxf(i',Z)ilH
[

< [Xallxg I -
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Now, as x, and X;l are bounded operators, we have that: h — 0 <= h = Xglh — 0. Also,
both | x|l and |x,'| are finite numbers, and so:

lim Hf(Xg-:i + h, ng) - f(Xg"fja )Zg-z) - )ngD:ch(i’v z)Xg_lh’H

= Tl N
f93+hz f(z,2) — D, f(%,2)h
< tim |, - A2 <ﬁ” ) = Duf (&, 2)h|
. _ | f @+ R, 2) = (&, 2) — Do f(%, 2)h

< Il oy V0D =S G) = DSEI

This concludes the proof.

m
ProoF or CoroLLARY 7. It suffices to see that the proof of Proposition 29 works for f: X —
Z; we could see f as a function f: X x Z — Y, as f(x,z) = f(z), taking the trivial action
on Z. Also, we could notice that the property of f being G-equivariant, corresponds to f

satisfying: Vg e G, Vx e X, z € Z, f(Xg.a:,Id.z) = f(xg-%) = Xgf(x) = )ng(x,z), which is
exactly what we need to conclude the proof (following the same ideas of Proposition 29). [

Proor oF ProposiTiON 30. Let € P(Z) and f be as stated. Notice that, Vx € X, Vg € G,
we have:

2l F (@), ) = X L F (2. 6)du(8) = L Ko (2. 0)du(6)

Where we’ve used the linearity of the Bochner integral under continuous linear
operators (such as is x,). It follows, from the joint G-equivariance of f and the definition
of the pushforward measure, that:

J Xof (@, 0)dp(0 f S (X, Xg0)dpu(6 f £ (g, 0)d(Xy#11)(0)
With this, we’ve succesfully proven that:

)V(g<f(x7 ')>:u> = <f(ng7 ')a 5(9#[0

which allows us to conclude as desired. O
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C.13 Proofs for Section 4.4

Proor oF ProrosiTion 31. To prove this, recall that the linear functional derivative of R is
the only function g—ﬁ : P(Z) x Z — R satistying Vu,v € P(Z):

g TP ) = ) - [ S0y - @) and [ S 0)au(o) =0

In particular, as R is G-invariant, we can write Yy, v € P(Z), Yh # 0 and g € G:

R(A—h)p+hw) — R(p) _ R(Mg#((1 — h)p + hw)) — R(My#p)
h h
R((1 — h)(My#p + h(My#v) — R(My#p)
h

Taking the limit, we get:

R(L =B h) — R R(L ) (Mgt + (M) — R(OMy)
h—0 h h—0 h
L (g 0) (M — M) (9)

Jz o

Finally, we can also check that:

0
S, My 0)u®) = [ S0 0)Mu6) = 0
z Op

So, by the uniqueness of the linear functional derivative, we get Vg € G:

OR OR
E(Mae) = E(Mg#M,Mgﬂ)

Finally, from proposition 29, as £ o R is jointly G-invariant, we get Vg € G-

OR R
Dy < au) (My.41, M,.0) = Dy (E) (1,0).M7

so that by considering the gradient, we get the desired result:

DMR(MQ#Ma Mgg) = MQ‘DMR(HH 9)
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ProOOF oF ProposiTioN 32. We know from lemma 4 that whenever R is convex and of class C*
the following inequality holds V1, us € P(2):

Rlu) > () + [ 5 e ) = ) )

Let § € S be arbitrary and consider pip = fi := { psdA(s); and pg = pz. Then:

R( (fudes)) < Rin) - | 5 ( | udes),z) d (ug - uscws)) (2)

Integrating the inequality with respect to A (on §):

K ( | usws)) G < [ rgae)-| ( [ ( e ) d (ug -[ usws))) IA(3)
3)
).

(C.
We notice that the LHS doesn’t depend on 3, so that {4 R (§ psdA(s)) dA(S) = R (§ psd(s)
On the other hand, the right-most term can be developed as:

18 (Yo )
T ([ Yo [ 5 (i Yo o)
8 o) (122 Y[ )

Notice that the linear functional derivative is chosen in such a way so that it satisfies
YveP(2), ). ;}j(l/ 0)dv(0) = 0. In particular, the second term of the previous expression

vanishes. We get that
= [ (L ([ netro) dnso) ixs

But, by definition: Vf : Z — R measurable,

{f, fﬂsdA )) = f<f s )dA(s) J(J f(2)dps(» ) A(s)
L (fo)ofo

(by the same convention on the definition of the linear functional derivative). With this, we
conclude that equation (C.2) turns into:

R(ﬂ)=R(fusdA ) [ rtw)ar

which is what we wanted to prove. O

(&

So this is:
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Proor or Proposition 33. Evidently, inf cpe(z) R(p) = inf ep(z) R(1).

For the other inequality, take (un)nen € P(Z) an infimizing sequence for R (such that
R(ptn) = R(ftns1) and R(p,) —— inf,epz) R(p)); such a sequence always exists. By
n—a0

corollary 8, we have Vn e N, R(uS) < R(u,); thus, Vn € N:

inf  R(u) < R(uS) < Ry
ot (1) < R(py) < R(pn)

Which allows us to infer, by taking n — o, that: inf,cpc z) R(p) < inf,ep(z) R(1) Therefore,
we conclude what we wanted:

inf R(u)= inf R
ot (1) Lt (1)

The assertion about minima follow directly from corollary 8. O

Proor or ProprosiTioN 34. Thanks to the assumed conditions, we can establish the bijection
given by WU in proposition 28. Then:

On the one hand, we immediately have that: Vi € P(G\Z), ¥~ (1) = (s#n)® € PY(2)
Thus, R((s#71)¢) > infepo(z) R(1).

On the other hand, we might take (i,)nen S PY(Z2) an infimizing sequence, such that
R(ptn) — inf,epoz) R(p). Consider the image through ¥ of these measures, (fin)nen =
n—oo

(U(pin))nen S P(G\Z). We know that Vn e N, u, = U (7,,) = (s#7,)¢ and thus:

inf )% < 7,)%) = R(u,) ——  inf
vneN,  iof R((s#m)”) < R((s#71,)") = Rlpn) — “e%%(z)R(“)

So, by taking the limit with n — oo we get:

inf R(u)= inf R((s#n)°
ot (1) o ((s#m)”)

[]

COUNTEREXAMPLE OF AN EXPLICITLY G-EQUIVARIANT OPTIMUM (ProposiTioN 35). Consider the group
G = C, acting on R? via 90° rotations. Let K = B(0,1) < R? be a compact set. Consider

a random variable X ~ N(0,1dy)|x (i.e. given by X = Z1 ek for Z ~ N(0,1dy)) and the
constant r.v. Y = 1.

Clearly G is finite (thus compact) and it can be seen as its ortogonal representation:
10 0 -1 -1 0 0 1 . .
pG = {(0 1) , (1 0 ) , < 0 _1> , (_1 0)} < 0(2), pe ={Id1} < O(1) (trivial repr.)
By the definition of our r.v.s, it is clear that:

(d)

o X = p,X Vge G because X ~ N(0,1dy)

160



(d)

o V2 5Y VgeGand® Y L X; so, in particular, Vg € G, (X,Y) L (p, X, p,Y)

Therefore, 7 = Law(X,Y) is G-invariant (and also compactly supported). Consider a shallow

NN given by: ®) : R? — RV** — Roas: &) (z) = L+ YV wio(alz), Yo € RY where

0; = <w2> e R¥® := RP with b € N (also, considering some action G G, R®). We let

G Gy RP as described in section 4.1.2, i.e.

D w; T w; T

Mgei — <pg 77% — 77gT

Pg Q; 779 Pgaﬂ?g
Assume, for instance, that n, = Id; (thus no condition is required for o, to be jointly G-
equivariant) and recall that: 0; € £¢ <= Vge G, M,0; = 0;. However, if we assume that:

: : -1 ! ! - T
Vg € G, pga; = a;, then, in particular: < 0 _01) (Zé) = (Zé) This in turn implies, as
aj = —a} and af = —a? that aj = a? = 0. i.e. a; = 0. Thus, any 6; = w.i € % has a; = 0.

Therefore, if we choose any o such that 0(0) = 0 (e.g ¢ = tanh, that is C* and bounded)
and we choose 0; € £ Vi =1,...,N; then:

Lo
2§ _ T - -
Vo e R*, dy (x)—leélwia(O x) = E w;0 =0

i.e. any equivariant architecture in this context satisfies @gc(az) = (0 (whereas
Y =1). In particular: E[|Y — & (2)|2] = 1, VN e N, V0 € (£4)V, and thus:

inf R(®°)=1= inf R(v
i R@)=1= i R)
i=1..N
NeN
On the other hand, consider a fully conected neuronal network. By the universal approximation
theorem (with o = tanh), as 7 is compactly supported (in particular, 7,.(K) = 1); we
consider the parameters that approximate the function f(x) = 1in K = B(0, 1) to precision
e > 0. i.e. Fore € (0,3), we know: = 3N € N, Jay, ...,ay € R?, Jwy, ..., wy € R' such that:

1
[ — floo,c = sup [@g(z) — f(z)| <€ <3
zeK 2

Then: ) )
E[J1 — @,(e)] < B[(sup|(a) — 1] < E[1]  »
zeK
But, in particular, 3} € P(Z) such that:

EY — @y(r)P] < | <1

9The independence comes from the fact that for any measurable f and h the following holds:

E[f(X)R(Y)] = E[f(X)n(D)] = h(DE[f(X)] = E[f(X)]E[A(Y)]
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and so:

inf R(p) < inf E[[Y —®,(2)? inf R
nf (1) Jnf 1 e(w)\]<yegggc) (v)

In particular, we can’t expect an optimum of the learning problem to be achieved within
the space P(£Y). O
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C.14 Proofs for Section 5.1

Proor oF ProrosiTioN 38. By definition 3.8, we know that Vo e X

(Qf,)(x) = L Prt fulpar)dA(9)

In particular:

r

(qu)(x) = G ﬁgflfu(pgx)d)‘G(g)

-
= . ﬁg_1<0* (pgx7 ')7 M>d)\c(g)

~
= G<lag*10-* (pgxu '>7 /1“>d/\G(g>

J

_ <L Pg104(pgz, )N (9), 1)

Where we’ve used the linearity of the integral and Fubini’s theorem. We have obtained that:

(Qf) (@) = (o (@, ), .

Further assuming o, to be G-equivariant, as M, is invertible Vg € G, {(o.(p,z,-), ) =
(0u(pg, ), Mg# (M F#1)) = pgloe(x,-), My #p), where we've also used proposition 30
(because o, is jointly G-equivariant). So, we can write:

(Qf,u)(x) = [‘ ﬁg*lﬁg<0*<x7 ‘)7 Mg_l#:u>d)‘G(g)

JG

- L@* (), My #uydAa(g)

A¢ is invariant to inversion = {’ (o4(z,-), My#pydra(9)
JG

by definition = {o.(z,-), ") = Jue(x)
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C.15 Proofs for Section 5.2

PROOF OF ProPosITION 39. Everything simply reduces to showing that the population risk
R :P(Z) — R is G-invariant as, by proposition 4, corollary 2, corollary 8 and proposition 33,
we can conclude the rest of the proposition. Indeed, Yg € G and Vi € P(Z2),

R(My#p) = By [(({ow (X5 ), My#p), V)]

by proposition 30 = ]E7r [£(pgCos( Py . X5, H>apgpg_ly)]
G-invariance of £ =By [{({ox(p, ' X5-), 1), py 'Y )]
G-invariance of 1 = E; [(({o.(X;), 1), Y)] = R(u)

]

PRrROOF OF ProPosITION 40. From the fact that o, is jointly G-equivariant, following proposition 38,
we get that Vo e X: (0¥ (z,-), u) = (o.(x,-), u"). In particular, this means that:

RFA(:UJ) = EW [6 (<0-*G(X7 ‘)v N>7Y)] = ETF [6 (<0-*<X’ ')7:UJG>7 Y)] = R(NG)
Even more directly, RFA(u) = E, [£ (<O'*(X, ), 1, Y)] — R(uf%).

On the other hand, using the joint G-equivariance of o, (via proposition 30) and the
G-invariance of ¢ one can easily compute that Vx e X, Vye Y, Vge G :

Lpg.:c,ﬁg.y(Mg#M) =1L (<0* (pg-xv ')7 Mg#:u>7 ﬁgy)
=/{ (159‘<0-*(x7 ')7 /~L>7 légy)

=l ((ow(@: ), 1), y) = Lay(p)

i.e. Loy o pyy(Mg#p) = Lay (1)

This is equivalent to stating that the map L : P(Z) — L*(X x Y, 7) given by L(u) —
[(z,y) — L, (n)] is G-equivariant under the correct G-actions!®.

Notice then that, using the Haar’s measure invariance under inversion, we get:

r

R% () = JGEW [Lp, x5y (1)] dXc(9)

= GEw [Lpg.X,pg.Y(Mg#Mg_l#M)] dAa(9)

= Jo Er [Lxy (Mg 1)) dAa(9)

- | B syt dxalo) = | RGN

Finally, for the G-invariance, notice that, for g € G and € P(2):

R (My#n) = R((My#1)¢) = R(u®) = R™(n)
1Where Vg € G, we consider g.u = My#u and Ve € X, Yy e Y, g.(f(z,y)) = f(g ., g7 y)
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Where we've used the fact that: Vg e G, (M,#u)¢ = u (See proposition 23). Analogously,
RPA(My#p) = R((My#1)™) = R((Pec © My)#p) = R(Pea#p) = R ().

Finally,
RO ) = | RGO D)

_ L R((Myy#12))dAc (h)
- [ m@s#m G - 1

Where we’ve used the right-invariance of the Haar Measure. O]

PrOOF OF ProPoSITION 41. For the convexity, it is not hard to notice that, for A € [0,1], p,v €
P(Z):

R
REMpu+ (1=MNw) = | R(M,#M\u+ (1= MN)v))dra(g)

JG
r

= | ROMy#p+ (1= N My#v)dra(g)

JG

< J; AR(My#p1) + (1 = N R(My#v)dAo(9)

< AR(M#p)da(g) + J (1= N R(M#v)da(g)
Ja G

< ARC(p) + (1 — N)R%(v)
And similarly:
RFA\L+ (1= Nv) = R(Ap + (1 = )% = RO + (1 — \v©)
< AR(UE) + (1 = NR(WY) = ARFA () + (1 = MR (v)
An analogous argument justifies the convexity of RE4 (as Pec is linear).
As for the expressions of the linear functional derivatives, we can formally determine, by
definition, that, given u,v € P(Z):
RE((L— by + hv) — RO(u) _

g ROM#(1 = b + ) del9) - g RO ide(9)

lim li
h—0 h h—0 h
- Jim R((1 — k) My#u + f;LMg#u) — R(My#n) (g)
—vJa
(i B R)Myp - hM#tv) — R(My#p1) D(g)
Jg h—0 h
([ OR
= ‘J 5 — (My#u, 0)d(My#v — My#11)(0)dAc(g)
JaJz Ol
([ OR
= — (My#p, My.0)d(v — 1) (0)dc(g)
JoJz op
([ OR
= | [ St 2, )G 01— )0)
Jz Jg OH
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Where we have used Fubini’s theorem, which is applicable!! thanks to the fact that R is of
class Ct, and we've used the definition of the linear functional derivative for R. Also, we see
that (using Fubini’s Theorem once again, as well as the definition of the linear functional
derivative of R):

L LZ—];(Mg#u,Mg.é’)d)\G(g)du(G) _ [ L Zf(M H11, M,.0)dp(0)dAc (g)

_ f gR(M #u, 0)d(My#p)(0)dAc(g)
f

(-

0dAc(g) =0

JG

So, by the definition of the lineal functional derivative, we can identify that:

ORC é’R

Thus, formally taking the gradient we also get:
D,R%(p,0) = L M, Dy R(My#u, My.0)dA(g)

Analogously, we calcuate the expression for the 1.f.d. of RF4; let pu,v € P(Z):

oy B =R+ hw) = R () R(((L = h)p+ hw)®) — R(p®)
h>0 h h—0 h
R WS+ ) R(u)
h

— 1))

0)d(v — p)(0)dra(g)

Fubini = (1%, M,.0)d\g(g)d(v — 11)(0)

J@
J, L
J.J,

au
OR
o

And also:

L L g_f(ﬂc, M,.0)dAc(g)du(6) = , My.0)dp(0)dAc(g)

f
—
F

(&

d(My#1)(0)dAa(g)

J, 5o
fa_R
Z
8R

(-

1ue(0) =0

Hn particular, as for any fixed p € P(Z) the function g € G — My#u is continuous (thus, of compact
image), then the function (g,2) € G x Z — T(M #u, My.z) is bounded
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So, by the definition of the lineal functional derivative, we can identify that:

ORFA oR
S(1.0) = | S M 0)AG(0)

Thus, formally taking the gradient we also get:
D, R (1, 0) = f M .D,R(1C, M,.0)dAa(g)
G

Lastly, the Lf.d. of RF4 is calculated similarly, noticing that:
RPA((L = h)u+ hv) = RP(n)  R(Peo#((1 = b + hv)) — R(Peap)

fim h = !
R
_ a_(,fG, 0)d(Pec#v — Pec#u)(0)
z Of

_ L %(MSG, Pec)d(v — 1) (0)

And that:

aR SG J aR gG P
— , Pec .0)du(0) = | — ,0)d(pe¢)(0) =0
Laﬂ(u ec-0)dp(0) Zau(u )d(p"=9)(0)
So that we can identify:

aREA aR SG EA T gG
o (MQ)ZE(M , Pec.0) and D,R*"(n,0) = P:e.D,R(1" , Pec.0)

Finally, from the fact that R is convex and C!, we know by proposition 32 that Vu € P(Z):

R4 () = R(C) < | ROL#0DG() = R
G
]
PRrOOF OF ProposITION 43. Naturally, if R = R, from proposition 40, we get that R is G-
invariant.

For the converse, whenever R is G-invariant, we have that Vu € P(2), Vg € G, R(My#un) =
R(u), so that:

Ve P(Z), RO(u) = f

GR(Mg#u)dAG(g) = f R(p)dra(g) = R(p)

G

ProoF oF ProposiTION 44. First of all, notice that for p € P(Z), by definition:

E,[L*(X, V)] - J

G

|R(u) — R% ()| =

EL[L*(p, X, ﬁg-Y)]dAG(g)‘

L E, [L4(X,Y) — L*(py. X, pg.Y)] dAG(g)‘
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For the first part, notice, as in Chen et al. [14], that by a known characterization of the
norms generated by inner products, we can say that, for any a € R: [a| = sup),;{(v, @), in
particular:

70 = RG] = sup (o [ B4 [ZHXY) = LG9, X,y V] dhla) )

jul<1

_ sup L E, [(v, LF(X,Y) — L*(py. X, 5. Y )] dAa(g)

lv]<1

_ sup L E. [(o, DM(X, YY) — (0, D(py. X, 5. V)] dAes(g)

lv]<1

= sup JG E; [{v, LM(X,Y))] — E, [{v, L*(py. X, pg.Y ))] dAc:(9)

jul<1

Now, for any v € R with |v] < 1, we define p,(-) = {(v,-), which is clearly a 1-Lipschitz
function (by the Cauchy-Schwartz inequality).

By the Kantorovich-Rubinstein characterization of the W; distance, we have, for any
v1,v3 € P(R): Wi(vq,12) = sup {’S(pdl/l — Sgodyg‘ D 1—Lipschitz}.

So, in particular, considering vy = L*#m and vy = L*#g#7m we have, for any v € R:

Wi (LF#m, LA #g#m) > U Qud LI #m — JsovdL“#g#ﬂ

(py o LH)dm — f(gov o L' o g)dm
Er [0, LM(X,Y))] = Ex [{v, L*(pg. X, pg.Y )]

We can integrate this inequality to get:

L Wi (¥, Litg#tm)dAc(g) = J (Ex [Cv, LM(X, Y))] = Er [0, LH(pg- X, pg-Y))]) dAc(9)

G

As this holds for any v € R, |v| < 1, then:

|R(1) — RS (u J Wi (L! #gfm, L'#m)dAa(g)

Now, by a known property of the Wasserstein metric with respect to pushforward measures
of Lipschitz functions'?, Vu € P(Z) and g € G:

Wl (Lu#g#ﬂ'v LM#T‘.) < CWl (9#77 W)

so that (as the bound doesn’t depend on p):

sup |R(p) — RE(u)| < CJG Wilg#m, m)dAc(g)

HeP(Z2)

12Which comes from noting that for v an optimal coupling between 7 and g#m, (L*, L*)#v is a coupling
between LF#m and LF#g#m; allowing to conclude using the C-Lipschitzness of L* uniformly on g
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Assuming both ¢ and o, to be Lipschitz (with constants C; and C5 respectively) and defining
C' = max{C}, C1Cs}, tells us that, for any u e P(Z):

’L“(a}l,yl) - Lu<x27 y2)’ = ’€(<O'*<l'1, ')7ﬂ>7 yl) - €(<U*(l’2, ')a:u>7 y2)’
<Cy (H<0*((£1, ')7:u> - <U*(‘T27 ')’ ”>H + Hyl - yQH)

[ @0~ on(o ) du(e)‘ oA —

< C1 | [(0u(@1,0) = 0u(22,0))] dp0) + Cillyn = o

r

< Clj Cy (|1 — wo| + 110 — 0]]) dpu(0) + Crllyr — 12|

< O (|1 — 22| + |11 — 22)

Implying the desired (uniform in pu) global C-Lipschitzness. O
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C.16 Proofs for Section 5.3

ProOF oF ProposITION 45. We know that a family (u)i=0 S Pa(Z) satisfies the WGF equation
in the weak sense if Yo € C*(Z x (0,T)):

|| | @ty = 0P R 2). it 09) () =

Now, profiting from the uniqueness of the solutions of this equation, it will be enough to
show that, given a solution (i;)i=0 S Pa(Z) of the WGF, then (uf)i=o < P (Z) is also a
solution. Indeed, consider, for g € G, fi; = M# 1, and notice that for ¢ € C(Z x (0,T)):

JO L(aw, ) — (D) DuRir, 2), Vaip 2, £)))djin(2) dt

- fo L_ (Oep(My.2,t) — {s(t) Dy R(My#t i, My.2), Voip(My.2, 1)) dpe(2) dt =2 *

Now, we can define ¢9 € C°(Z x (0,7)) given by V(z,t) € Z x (0,T) ¢9(z,t) = p(M,.z,1),
which satisfies:

01p?(2,t) = Oup(My.z,t) and V.@7(z,t) = M) V.o(M,.z,t)

So that, by also using proposition 31 and the orthogonality of the group action, we get:
T
o= | [ @ ent) = DRl 2, M 211 dpz)
0 Jz

T
~ | [ @) = DRl 21,11 diz) e = 0
0 Jz
Where the last equality comes from the fact that (i)¢>o is a solution to the WGF.

In particular, as we also have that fig = M,#uo = po (because po € PY(Z)), by
uniqueness we can conclude that this means that Vg € G,Vt € (0,7T) M-a.e., p, = My

This may seem weaker that what we want to prove. Nevertheless, as our group is compact
and has a unique normalized Haar measure, we can proceed as follows: let f: [0, T]x Z — R,
be any positive and measurable function. Given g € G, take Q, < [0,7'] a full measure set
where it holds that p, = My#p,. In particular, f, = f(¢,-) : £ — R is positive and
measurable, so that:

Vt e Qg {fi, o) = {fo, MoFine) = {fe 0 My, 1)

and we can integrate this equality to get: SOT< fi, pydt = S§< fro My, puydt Now, by integrating
both sides with respect to the Haar measure, and applying Fubini’s theorem (because everything
is positive) we get:

[ttt = [ [ tomoiirato) = [ [ <ot minirato

— LT L<ft o My, utydAg(g)dt = JOT<ft7 gt
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Implying'® Vt € [0, T] a.e. pu; = pu&, and therefore: Vt € [0,T] a.e. p; € P(Z).

]

Proor or TueoreM 14. From Hu et al. [38] (or Sznitman [83]) we know that in all of the
presented cases a unique solution to the Fokker-Planck equation exists.

Furthermore, from the examples in section 4.4, we know that, whenever R, r and U are G-
invariant functions, the functionals R, R and R7” are all G-invariant. As from the examples
in section 2.2.5 we know that Vu e P(Z) s.t. p <k v, Vo e Z:

DR} (11,0) = DyR(1,0) + 7 (0) + B8 (Vo log(uu(8)) — Volog(r()))
= D, R(p,0) + 7Vr(0) + B (Vglog(u(0)) + VeU(0))

LVau(e))

= D,R(1,0) +7Ver(0) + BVeU(0) + 3 (N(Q)

So that Yue P(Z) s.t. p < v, Vh e Z:

div (D, Ry" (11, 0) u(0)) = div ((D#R(u, 0) + 7Ver(0) + BVeU(0) + 3 (ﬁvww)) ) u(e))

= div (D, R(p, ) + 7Ver(0) + BVeU(8)) pu(0) + BVeu(0))
= div (D, R(p, 8) + 7Ver(0) + BVeU(8)) p(0) ) + BAap(0)

That is, R7” is a G-invariant functional such that the WGF as given by the expression of
proposition 45 reads:

Qe = () [div (Du R (e ) ) | = < (8) [div (DR (e, -) + 7Vr + BVU) 1) + BA]

and it has indeed a unique solution (weak if 5 = 0 and strong if § > 0). So, proposition 45
applies and allows us to conclude. As for the property of the density, we apply proposition 26
directly. O]

Proor or CororLAaRy 10. Though it is enough to reference theorem 14, we provide an independent
proof, as it highlights other interesting elements from the theory developped during chapter 4.

To establish this result, we note the following classical result regarding Brownian motions:

Lemma 15 Let (2, F,P) be a probability space, and let (By)i=o be a standard D-dimensional
BM. If M € O(D) is an orthogonal matriz, THEN (W})i>0 := (M By)>0 is also a standard
D-dimensional BM.

ProOF OF LEMMA 15. It’s not complicated to check this, noting that, according to the usual
characterization of the standard BM:

13Indeed, one can choose any positive measurable f : Z — R and define the sets A, = {t € [0,T]
fomey > {fopd)} (And A analogously); so that fy(t,z) = 1a,(t)f(2), and therefore, the fact that:

SSF La, (O)fs peydt = S(:)F La, (t)(f, pE)dt implies that both A4 have null measure
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e For almost all w € Q, the function ¢ — By(w) is continuous, which implies that ¢ —
M By(w) is also continuous.

e For any tp < --- < tn, the vector (By,,, — By,)i" ! is independent, which implies that
(MBy,,, — M By,)!—) is also independent (as it’s a measurable function of independent
random variables).

e Finally, to see the stationary increments property, let 0 < s < t. By studying the
characteristic function, we notice that for any ¢ € RP:

E [ez‘gT(Wt—wg] _E [ez’sTM(Bt—Bg] _E [ei(MTaT(Bt—Bs)] _E [ez*(MTs)T(BFS)]
— _1 _ MT 2) _ _1 _ 2
=exp [ —5(t = 8)|ME[" ) =exp | —5(t = s)[¢]

Here, we’ve used that B;_s ~ N (0, (t — s)Idp) (and thus its characteristic function
is known), as well as the orthogonality of M. In particular, we’ve shown that the
characteristic function of W; — W is exactly that of a normal distribution N (0, (t —

S)IdD)
With all of this, we conclude that (W;);>o is a D-dimensional BM. O

Now, we look at the McKean-Vlasov SDE given by (where we include the covariance term
from Bortoli et al. [9], assuming the law 7 is jointly G-invariant):

dz, = <(t) [ (DpR(pe, Ze) + 7o (Zy) + BVeU(Zy)) dt + \/%\/i(/utv Z;)dB; + \/ﬁdét]

Where ji; = Law(Z;), (By)i=0 and (By)ss0 are (independent) D-dimensional Brownian Motions,
and X(u,0) := Er [(DuLTX,Y(/% 0) — DR (n, 9)) ® (DuLTX,Y(M 0) — DR (n, 9))]

Let (Z:)t=0 be the unique strong solution to this SDE (which exists by a result by
Bortoli et al. [9]). By the strong solvability, we must have that:

Z, aézo—fg(s) (DR (110, Zs) +BV9U(ZS))ds+£ \/%qs)x/i(us, )dB, +f (s)\/2BdB,

0
and Law(Z,) = p° (initial condition)

Now, in the context of this SDE, the solution is uniquely trajectory-wise determined;
that is, if (Y}):=0 is another solution over [0, "] with respect to the same Brownian motion
and in the same probability space, then Z, “" Y, for all ¢ > 0. This is slightly more
than what we need, as the Yamada-Watanabe theorem guarantees that trajectory-wise
uniqueness implies uniqueness in law for an SDE. Consequently, if we can find another
solution to the SDE, potentially with respect to a different probability space and different BM,
their laws must be the same.

In other words, to successfully demonstrate that Vg € G, u, = My#u, it suffices to show
that for a fixed g € G, the process Z; := M,Z, satisfies the same SDE, potentially with a
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different BM and a different probability space. By uniqueness in law, this implies that V¢ > 0

(a.e.):
1 = Law(Z,) = Law(Z,) = Law(M,Z,) = M,#u,

This in turn implies (integrating over R, and then over G the evaluation against an arbitrary
positive measurable function f : R, x Z — R; see the last part of the proof of theorem 14)
that Vt > 0 (a.e.) p, = p, and therefore, p, € PY(Z).

With this in mind, take the solution (Z;),s¢ and g € G, and observe that Z = (M,.Z;):0
satisfies the SDE with the same initial condition but with respect to another Brownian
motion. Indeed, we have:

o Law(Z)) = Law(M,Z)) = My#u° = p° (due to the assumed G-invariant initial
condition).

e Denoting v, := M #p as the law of Zs, we have to show that for all ¢ > 0:

thzo—ftg(s)<DuRT(l/s, )+ BYeU(Z ds+f\f S (v, Z, st+f (s)7/2BdB,

0

Specifically, for a given t > 0:
Zt - Mth

= 04,20~ M, ([ S0 (Do e 2) 4 9940122 )

+M9(Lt\/%§(s) (Zs, 115)d B, +J de)

= 2o~ | <) U DR (0 2 + BV (2) ds
0

+ %Mf ()VE(Z,, 11,)dB, +fMJ

0

=7y — th(s) (D#RT(VS, s) + BVU(Z )) ds

+ \/%}: S(8)MgV'S(Zs, ps)d By + \/ﬁf: <(s)M,d B

Here, we used the linearity of the integral (and stochastic integral) and proposition 31
as well as proposition 29, which hold V0 € Z,Vu € P(Z) (including 0 = Z,(w), Yw € )
and pus = Law(Z;)). Furthermore, we can observe that by the same propositions
(applied to random variables and their laws) we have:

A(X,Y, vy, Z) := D, Lk y(vs, Z) — D, R (vs, Z,
= Dy Ly (My#tps, My.Zs) — Dy R (My#tpis, My. Z)
= MyDy L7y o1y (116, Zs) = My.DuR (s, Zs)
= M, <DML;;1.X,ﬁg_1.Y(MS7 Zs) = Dy R (s, Zs))
= My Alp, " X, p, 'Y, s, Z)
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(v, Ze) = Br | (AX, Vo0, 2,)) @ (A(X. Vo1, Z4) )|
= Ex [(My. Aoy X, 55" Y, 115, Z5)) @ (My.Alpg . X, Y, 1, Z5) ) |
= My [(Alp, " X, p, 1Y, s, Z4)) ® (Alp, ' X, p, Y, s, Zs)) | - M,
— My B [(A(X, Y, 1y, Z6) @ (A(X, Y, 1, Z4))] M7
= My.S(ps, Zs). M,
Where we’ve used the G-invariance of m and the definition of the outer product ®. In
short, we’ve proven that:

Y(vs, Z) = My (ps, Zs) MY

g
In particular, as the square root of a symmetric positive definite matrix is unique, it
must hold that: 3
VE(vy, Zs) = MgN'S (s, Zs) M
= MY, Zs) = VE(vs, Zo) M,
With this, we have!*:

7= 7o — L tg(s) <DMRT(uS, Z) + 5v9U(ZS)) ds

+ \/% L t <(s)VE(vs, Zo)M,dB, + /28 JO t s(s)M,dB,
_ Ty L tg(s) (DHRT(US,ZS) v ﬁng(Zs)) ds

+ \/% L tg(s)ﬁ(zs, v,)dM, B, + \/ﬁfc(s)dMng

Thus, (7)o is a solution to the SDE (with the same initial condition) but with the
D-dimensional BMs (W})i=0 1= (MyBy)i=0 and (Wy)=o 1= (MyBy)i=0. As previously
mentioned, due to uniqueness in law (guaranteed by the Yamada-Watanabe theorem),

this implies that Z, @ Zy; for all t > 0, and consequently, p; = My# 1, Vt = 0, which

concludes the proof.
O

PROOF OF THEOREM 15 AND THEOREM 16. We will prove theorem 16, since the proof of theorem 15
shall be recovered by formally considering 5 = 0.

Consider the (pathwise unique) solution of the SDE (5.6), Z = (Z;)i>o. This means
that it satisfies:

¢ ¢
7, % 7y — J <(8)D, R (11, Z)ds + «/Qﬂf ¢(8)PecdBs, and Zy = & (initial condition)
0 0
(C.3)

S

14We have used that SS X (s)dW, = Sé X (s)M,dBs, which follows from the definition of the BM as a limit
of increments.
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With & such that Law(&) = u°.

~ We first let g € G be an arbitrary group element, and we study how the process Z =
(Z1)i=0 := (MyZy)=0 satisfies this same equation (C.3).

Denote vy := My#/s as the law of ZS (see Lemma 7), we want to show that for all ¢ > 0:

7, % 7o — f ¢(s)D, R (vy, Z4)ds + \/ﬁf §(s)PecdB, (C.4)
0 0

Indeed, first notice that:

1. Let © be the full measure set where & € £¢ (which we can do since g € P(EY), or,
equivalently: P(§ € £) = 1). Then, Yw € Q, Zy(w) = &(w) € €Y. In particular,
Yw e Q, Vg e G, Zy(w) = M,Zy(w) = My&(w) = &(w) = Zo(w). That is, Zy = Z,.

2. Now, the equation is satisfied by (Z;)s~o and therefore, for t = 0 , we have:

¢ ¢
Zy = MyZy = MyZy — M, <f §(S)DMRT(,MS, Zs)ds> + w/QBMgJ ¢(8)PecdBy
0 0
rt

¢

=Zy— J s(s)MyD, R (us, Zs))ds + \/ZBJ §(s)My.PecdB;
0 0

rt

= Zo— | (DR (M, My Z2)ds + /28 f (s) Pead B,
0 0

r

t t
S(s)D, R (vs, Zs)ds + «/Q,BJ ¢(s)PeadBs
0 0

Here, we used the linearity of the integral (and the stochastic integral), the fact that
Vg€ G, MyPec = Pgc, and Proposition 31 (as R is G-invariant, as well as 7 : & — R),
which holds for V0 € Z,Vu € P(Z) (in particular for § = Z (w), Yw € Q and us =
Law(Zs)). Thus, Vg € G, (C.4) holds.

By the pathwise uniqueness of the solution (Z;);>9, we (5.6) we have's:
P (sup 12, — Z,| = O> =1
=0
In particular, as g € G was arbitrary, we have that:
Vge G, sup||Z; — M,Z| = 0 (C.5)
£0

We now want to be able to interchange the Vg € GG with the probability measure. Fortunately,
we are dealing with a compact group with a normalized Haar measure A\q.

Indeed, from equation (C.5) we deduce that Vg € G, Vt = 0, P(|Z, — M,Z,| = 0) = 1.

15More information shall be found in Ethier and Kurtz [29)
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Now, notice that, for any t > 0 and w € €:
12u(w) — Pso Zu(w)] = ] z) - Mg.zxw)dm(g)H
G

_ HG(Zt(w) - Mg.Zt(w))d)\G(g)H

r

|Zi(w) — My Zy(w)|| dAc(9)

by property of the integral <

Now, we can integrate both sides by P to get (using Fubini as functions are positive and
measurable):

f 1Z0(w) — Pec Zy(w)|dP(w f f 1Z0(w) = M, Zy(w)| dra(g)dP(w)
< [ [ 1260 - My 2@ d)irG(g) = 0
G Ja
where in the last step we have used the fact that Vg € G, Vt > 0, P(|Z, — M,Z;| = 0) = 1,
so that V¢t > 0, Yg € G, |, [ Z:(w) — My.Z(w)| dP(w) = 0.

This implies that V¢ > 0 P-a.s. Z; = PeaZy, ie. P(Z; € EF) = 1,(EC) = 1, or, in fancier
words, Vt = 0, u; € P(EY). O

PROOF OF THE EQUIVALENT CONDITION RESULTING FROM THEOREM 15. As for all t > 0 we get: 1 =
P(Vi=0,Z;€ &% <P (Z € &%) = m(EY) < 1, we get the first implication.

For the reverse implication, assume that for all ¢t > 0 we have p;(£%) = 1. i.e. if we define
= {Z; € €9}, we have P(Q;) = 1, Vt > 0. It will suffice to show that

M 2=

tEQ+ t=0

as we will then have: P <ﬂte©+ Qt> = 1 as a countable intersection of almost sure events.

This will, in turn, give us that:
P(Vte[0,T],Z, € &%) =1

To show our claim, the 2 inclusion is direct; the other inclusion follows from the continuity
of the solution of the SDE'. Let w € (g, i, then Vi € Q, Zy(w) € 9. Let t > 0.
we know that 3(¢,)nen S Q4 such that t,, —— ¢; by the continuity of (Z;(w))i=0, we get

that lim,, o | Zs, (w) — Zy(w)| = 0. As Vn € N Zt (w) € €Y, and £Y is closed!”, we get that
Zy(w) € EY. i.e. we have proven that Vt > 0, Zt( ) € €Y, which means that w € (5, Q. O

16This shouldn’t be hard to verify, as Vw € Q, (Z;(w))s=0 just follows an equation driven by (Bi(w))¢0,
which has continuous trajectories.

1766 = Ny e RP : (My—1)0 = 0} = (Mg —1dp) =" ({0}) which is an intersection of closed sets
(thanks to the continuity of M, Vg e G)
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PROOF OF COROLLARY 13 AND COROLLARY 14. Let (uf'4);=¢ and (j1;);=0 be the WGF solutions
starting from jio for R4 and R respectively. Then, as R4 is G-invariant (see proposition 40),
by theorem 14, (a.e.)Vt = 0, uf4 € PY(Z). Now, let’s see that this process actually also
satisfies the WGF for R, forcing both processes to coincide by the uniqueness of the WGF.

Indeed, we know that (uf4)is¢ satisfies: Vo € CP(Z x (0,7)):

T
|| || @eotet) — OB R, 2, Vo 1) a2 e =0
0 zZ
Now, as: (a.e.)Vt = 0, pf'* € PY(Z2) (and thus, uf* = (uf'4)), we have that, Vz € Z:
D, RFA(uf4, 2) = L MT D R((p)%, My.z)dAc(g) f MT DR(ui, My.2)dAc(g)

Where we’ve expanded the expression of DNRF 4 using proposition 41. Now, as R is supposed
to be G-invariant, we can use proposition 31 to see that (once again using that puf™ is G-
invariant):

DuR(Man My.z) = Mg‘DuR(Mg_l-NfA»Z) = Mg'DuR(NanZ)
Putting it all together, we have:
D, R (ui?, z) = J M] . My.D,R(pu?, 2)dAc(9) = DuR(uf ™, 2)
a

So, in particular, (uf4);>o satisfies Vo € CX(Z x (0,T)):

JJ‘éwzt DR, 2), Vo2, 1)) duF A (=) dt = 0

Implying that (uf4),0 is a solution of the WGF of R starting from po. By uniqueness, we
. (, FA _
get: (uy )izo = (1) i=o0-

The extension to the case of corollary 14 comes from the fact that, even when R isn’t
G-invariant, we have from proposition 41 (and also using the G-invariance of uf'4), vz € Z:

DR (uf A,z)=f M. D, R((uF)C, M,.2)dAa (g J MP.D,R(uf 4, M,.2)dAa(g)
G

D, R (uf*,2) = L M) Dy, R(Mg#pi*, My.z)dc(g f M} DR (i, My.z)dAc(g)

ie. D,RFA(uf4,2) = D,RE(uf4, 2), Vz € Z, allowing us to conclude as before. O
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Annex D

Reference Results from the Literature

D.1 Mean Field Theory of Shallow NNs

D.1.1 Key Assumptions for the results of chapter 2

Here we present some of the standard assumptions from the literature for the different results
presented throughout our work.

Assumption 7 (Assumptions for Proposition 7 (taken from Chizat and Bach [16])) Consider
a setting as described in proposition 6, with R(u) := L({(®, ) + 7§, rdp.

1. Let Z to be the closure of a convex open set within some finite-dimensional euclidean
space.

2. Let L : H — R* be differentiable, with a differential dL that is Lipschitz on bounded
sets and bounded on sublevel sets.

3. Let ® : Z — H be differentiable and V : Z — R* be semiconvex (i.e. I\ € R :
V + Al -|? is convez).

4. There ezists a family (Q,)r-0 of nested nonempty closed convexr subsets of Z
such that:

(a) {ue Q;dist(u, Q) <1} < Qpyy for all m,r" >0,
(b) ® and V are bounded, and d® is Lipschitz on each Q,
(¢) 3C1,Ca > 0 such that sup,.q ([d®(u)| + [0V (u)|) < C1+ Cyr for all v > 0, where

|0V (u)| stands for the mazimal norm of an element in OV (u).

Assumption 8 (Assumptions for the POC result, Theorem 4) We state some of the common
assumptions for which results are known:

1. Sirignano and Spiliopoulos [18]. Let Z = R x R? with o, (x, (w,a)) = wo(a’z).
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e o€ CZ(R) i.e. o is twice continuously differentiable and bounded.

e The data is i.i.d. distributed according to m € P(X x V) such that E.[| X[*+ [Y|*]
is bounded.

o The parameters are initialized i.i.d. drawn from a distribution pg € P(Z) is such
that: Egy,ay~ulexp(g|W])] < C' for some 0 < q < 0 and Egy,ay~pu || A|*)] < C

2. Mei et al. [57]. Let Z =R x R%.

e The activation function (x,0) — o.(x;0) is bounded, with sub-Gaussian gradient:
los]oo < Co, Vo (X;0)|y, < Co. Labels are bounded |yi| < Cs.

o The gradients 0 — VF(0), (01,02) — Vg, K(01,02) are bounded, Lipschitz continuous;
namely Vo (0)|2, [V, K(61,02)2 < Cs, [VoF(0) — VoF(0')]2 < Cs[6 — ¢,
Vo, K (61, 02) — Vo, K(6},05) |2 < Cs| (01, 62) — (67, 05)]].

o The initialization is i.i.d. drawn from py € P(Z2).

o Inthe geneml case, assume the functiont — ¢(t) to be bounded Lipschitz: <] oo, ||l Lip <
C1, with So t)dt = 0. Also, let e = ey such that imy_,, ey = limy_, o en log(N/ey) =
0 and thHOO N/log(N/eN) o0

Only for the Noisy case, assume:
o FeCY2Z), K e CYZ x Z) with V} K(0,0) uniformly bounded for 0 < k < 4.
3. Descours et al. [24]. Consider, for N > 1, the o-algebras, F% = 0{Z%i=1,..., N}
and, for k=1, F& = o (27, {Bk_l}jzo, {82;1}]':0,1' e{l,...,N}). Assume:
e Forallk,qeN, |B,| 1L (XF,YF),>1. Also, Vk e N, |By|, (XF, YF), =1 1L F&

o The activation function o* : X x Z — R belongs to C;°(X x Z).
o Foralll #keN, (X5, Y )1 1L (XF V)1 Also, Yk € N, the batch of data is

n' - —n n) —n

drawn i.i.d. from we P(X x y) s.t. B [[Y]'9"] is finite.
e Parameters are initialized i.i.d. from po € P(Z) such that B, [|Z|®"] < +oo.
o Vke N, Vie{l,...,N}, & ~ N(0,1dz) and &F I F¥. Also, Vk,l € N, Vi, j €

4. Bortoli et al. [9]. Let there exist measurable functions ® : X — [1,400) and ¥ : Y —
[1, +00) such that:

o/ RxY —>RNisst Yyel, (7 Ly,y)) € C3R), andVje R, Vye Y
10:£(0,y)| < T(y), [2(F,y)| + |75, y)| < ().
0s: X x Z — R is such that Vx € X, (0 — o.(z,0)) € C*(Z) and

low(z, 0)| + | Dgos(2,0)| + | Djo(x,0) + | Dyos(x,0)| < @(w),

o r € C3(Z2) satisfies supyez{|Dar(0)| + |Dir(0)|} < +o0
o The data distribution € P(X x V) is s.t. B [®19(X) + ¥H(Y)] <

Assumption 9 (Assumptions for theorem 5 (taken from Chizat and Bach [16])) Consider
the following assumptions:
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1. Chizat and Bach [16]. Assume their 1-partially homogeneous case, with Z = R x Z
with Z < RP™Y and V(w,0) € Z, ou(w,0) = wd.(0) = [z € X — wd.(z;0)] €

H = L2(X,V;7mx) and V(w,0) = |w|V(0). Let L(f) = E.[(f(X),Y)] defined over
L*(X,Y;7x) and see R as R(u) = L({ox, 11)).

o Let & and V be bounded and differentiable, with Lipschitz differential.

e L is convex, differentiable with differential dL that is Lipschitz on bounded
sets and bounded on sublevel sets.

o VheH (it is enough for it to hold for h = L'(§ o.du) with p € M(Z)), the set of
regular values of g, : 0 € Z — (h,5.(0)) + V(0) is dense in its range.
e J. behaves nicely at the boundary of the domain. i.e. Fither:

— Z = RP" and Yh € H, 0 € SP2 — g,(rf)converges uniformly in
CYH(SP=2) as r — o0, to a function satisfying the Sard-type regularity.
— Zis the closure of an bounded open convex set and for all h € H, gy

satisfies Neumann boundary conditions (i.c., for allf 0Z, d(gn)e(Tg) =
0, where iy € RP~1 is the normal to 0Zat 0).

e The wnitial condition o satisfies that: for some ro > 0, the support of o is
contained in [—71o, 0] X Z and separates' (—ro) x Z from (ro) x Z (this is referred
to as a separation property of the initial condition. ).

Assumption 10 (Assumptions for the well definedness of Hu et al. [38] and Chen et al. [13])
Assume that the intrinsic derivative D,R : P(Z) x Z — Z of the functional R : P(Z) - R

exists and satisfies the following conditions:

1. Hu et al. [38]. Assume:

e D, R is bounded and Lipschitz continuous, i.e. 3Cr > 0 s.t. Vz,2' € Z, YV, ' €
PQ(Z)7

[Duli(p, 2) = DuR(1, 2)| < Crllz = 2| + Wa(p, 1]
o VueP(2), D R(i,") e C*(Z).
e VD,R:P(2Z)x Z— Zx Zis jointly continuous.

2. Chen et al. [13]. They relax some differentiability conditions at the cost of boundedness
assumptions:

o Vx € Z,Ym,m' € Po(Z),|D,R(m,z) — D,R(m,x)| < ME Wi(m,m') for some
constant ME >0 (i.e. it is lipschitz on the measure argument).

e Suppose that

sup sup VD, R(p, z)| < M,
HEP2(Z) z€2

for some constant ME >0 i.e. VD, R(u,x) is uniformly bounded. *

!In an ambient space Z, the set C' separates the sets A and B if any continuous path in Z with endpoints
in A and B intersects C'.

2They state that they are NOT requiring a coercivity condition, as is the case in Hu et al. [38] with the
assumption 3
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Some less relevant assumptions, specific to the result by Suzuki et al. [82] are:

Assumption 11 (from Suzuki et al. [82]) The loss function R and the reqularization term
r are convez. Specifically,

1. R:P(2) - R is a convex functional on P(Z), that is, R(Ou + (1 — 0)v) < OR(u) +
(1 =60)R(v) for any 0 € [0,1] and p,v € P(2).
2. Moreover, R admits a first-variation at any p € Pa(2).

3. r(-) is twice differentiable and convez.

4. There exist constants A\;, Ao > 0 and ¢, > 0 such that \Idz < VVr(z) < X\Idz (in
the matriz order), x"'Vr(x) = M|z|?, and 0 < r(z) < Ao(c, + ||z|?) for any x € Z, and
Vr(0) = 0.

Assumption 12 (from Suzuki et al. [82]) Assume that:

1. There exists L > 0 such that
IDuR(, ) — DG a')] < L(Walps, ) + o — )
(i.e. the intrinsic derivative is Lipschitz), and

*R
)
for any p, (' € Po(Z) and x,2' € Z.

2. There exists C > 0 such that |D,R(p, )| < C for any pe P(Z) and x € Z. i.e. the
intrinsic deriwative is bounded.

< L1+ er (=] + 2']))

Assumption 13 (from Suzuki et al. [82]) Assume that there exists ¥ > 0 such that u* and
vy satisfy LSIW) VO = (0;)X, € ZV.

D.1.2 A note about the Central Limit Theorem of shallow NNs

Similar in spirit to the usual Central Limit Theorem (CLT) from probability theory, we
will be interested in the fluctuations of the empirical process around its mean. Let p™'¢ =
(uftv/aj)t>0 € Dg([0,7]) be the empirical process associated to the general SGD Dynamics
(equation (2.2)) and p = (u¢)i=0 the unique solution of the associated DD (equation (2.5)),
both starting from .

We will be interested in understanding the fluctuation process given by:
nT = VN = )

The main idea will be to try to determine whether this fluctuation process has a fixed
asymptotic law (possibly another process in Dg([0,7])), in a similar way to how the usual
CLT works.
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The natural candidate would correspond to a Gaussian distribution in the space Dg([0,T7]).
Let’s define it in the following manner (where the exact definition of the relevant spaces shall
be found in Descours et al. [24]):

Definition D.1 ((G-process) as in Descours et al. [24]) We say that G € C(RT, H=/0J0(Z))
is a G-process if for all k =1 and fi,. .., fr € H7(Z),

{t = ({f1,G), -, {fr,G0), t e RT} e C(RT,RF)

is a process with zero-mean, independent Gaussian increments (and thus a martingale), and
with covariance structure given by: for all1 <i,7 <k and all 0 < s <,

Cov ({fi, Gy, {f;,Gs)) = o’E {@ L Cou(Qulfil(x, ), Qul fi1(x, y)) dv

where Qv[f](xay) = (y - <U*(>x)7lav>)<vf ’ VU*(',.’L'),/_LU> fOT‘ f € HJOJO(Z) and p s the
solution to the DD equation (2.7).

Definition D.2 Let v be a H=70"150( Z)-valued random variable. We say that a C(R*, H=Jotbio(Z))-
valued process m on a probability space is a weak solution of equation (D.1) with initial
distribution v if there exists a G-process G € C(R*, H=70J0(Z)) such that the following
equation holds:

a.s. Vf e H(Z) vt e RY,

omd —{fom) = f L aly = (2 1)V - Vo) (de,dy)

_L L )XV ) () + G
X (D.1)

and ng = v in distribution.

In addition, we say that weak uniqueness holds if for any weak two solutions n; and 1,
of equation (D.1) (possibly defined on two different probability spaces) with the same initial
distributions, it holds ny = no in distribution.

The main theorem of this branch of the literature states as follows:

Assumption 14 (From Descours et al. [24]) Further assume:

1. The distribution g € P(Z) is compactly supported.

2. |Bx| — |By| a.s. as k — o

Theorem 18 ((Central Limit Theorem) as in Descours et al. [24]) Assume assumption 8
(3.) and assumption 14. Consider the quadratic loss ((y,§) = |y — §|*; let ex = ~ and
s=a>0 (ie sy =% is the simple learning rate).

Let (6% )ken be obtained from following the minibatch SGD Dynamics (equation (2.2)
with 7 = 0 and the noise term divided by N° with § > 411) starting from po; and let
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o= ()=0 € Dg([0,T]) be the unique solution of the simple distributional dynamics
(equation (2.7)) starting from po. Define the rescaled empirical training process as pl¥ :=
({Ni))ez0 € Di([0,T]) and the fluctuation process as n™ = (" )izo 1= (VN (N — 10))e=0 €
Dg([0,T]). Then:

1. (Convergence) The sequence (n™)n=1 = D(R*, H=/01io(Z)) converges in distribution
to a process n* € C(R™, Hotlio(Z)).

2. (Limit equation) Let vy be the unique H~7010(Z)-valued random variable such that
forallk =1 and f1,..., fr € HOo Lo (Z),

(CFramiys o i) ~ N (O, T(fr, -, f)

where U(fy1, ..., fr) is the covariance matriz of the vector (f1(WP),..., fe(WP)". The
process n* has the same distribution as the unique weak solution n* of equation (D.1)
with initial distribution vy.

This also holds in the setting of Sirignano and Spiliopoulos [81], where (0%)ren just follows
the simple SGD Dynamics (equation (2.1)); it is a particular case, in which By =1 Vk € N
and thus By = 1 in the definition of the G-process.

Remark 1. Notice that equation (D.1) is a stochastic PDE that is linear (in 7), whereas
the DD from equation (2.7) is a deterministic PDE but NON-Linear. Also, equation (D.1)
is clearly coupled to the DD. By its linearity, as the equation is driven by a Gaussian
process, the limit 7, itself must also be a Gaussian process.

2. As in the usual probabilistic setting, theorem 18 allows us to approzrimate our rv’s
behaviour, for large N as:

N 1
Ving =~ Mt + —ﬁNﬁt
where 7, has a Gaussian distribution with a specific variance-covariance structure.

3. As shown by the combination of simple Propagation of Chaos (theorem 3) and CLT
(theorem 18) results, we get some insight about how training of the NN should take
place: the number of hidden units and stochastic gradient steps should be of the same
order to have convergence and statistically good behavior (e.g. £ = NT SGD
steps for NV hidden units).

Having understood how fluctuations of our training process evolve overtime; we are now

interested in discovering whether this process will converge to a meaningful distribution for
the problem.

D.1.3 Existence and Uniqueness of Solutions for the McKean-
Vlasov Dynamic

In their paper, Bortoli et al. [9] prove the existence of strong solutions with pathwise
uniqueness for the non-homogeneous McKean-Vlasov equation with non-constant covariance
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matrix (based on Theorem 1.1. of Sznitman [83]); i.e.
dZt = b(t, Zt7 [Lt)dt + U(t, Zt, [Lt)dBt

where b and o satisfy the conditions of B2 (presented right after) and for all ¢ > 0, p, =
Law(Z;) € Po(RP), (B;)i=o is an r-dimensional Brownian motion (in the case where r could
be different from D), and Z, has law (fixed) u° € Po(RP). For this, consider the following
technical assumptions (B1 and B2) which have been taken directly from [9]

Assumption 15 (Assumptions for the existence/uniqueness of solutions in Bortoli et al. [9])
Consider:

B1. There exist a measurable function g : RP x W — R, M, = 0 and uy € P2(RP) such
that for any N € N, the following hold.

(a) For any wy,ws € RP and 2z € W we have
lg(ws, 2) = g(wa, 2)|| < C(2)|wr — wyl, and [g(wy, 2)| < ((2)

with §,, (*(2) dmy(z) < +o0
(b) by € O(R; x RP x Po(RP),RP) and o € C(R; x RP x Po(RP), RP*"),
(c) For any wy,wy € RP and py, po € Po(RP)

sup {”bN(t? w17 Ml) - bN(tJ w27 :LL2)H + HO-N(t7 w1, :ul) - UN(tu Wa, N2>H}

t=0

<), (wl ~ ] + ( || a2 - <9(~>Z),u2>|2d7rw(2))1/2 })7

SUp b (£, 0, pio) | + low (t, 0, o)} < M.

B2. There exist My = 0, k > 0, b e C(R, x RP x Po(RP),RP) and 0 € C(Ry x RP x
Po(RP), RP*T) such that

sup {Ioa(t, w, ) = b(t, w, p)|[ + o (t, w, p) — ot w, p)[} < MaNT"
t=0,weRP puePa(RP)

They use this to prove the following key result:

Proposition 47 (11 of Bortoli et al. [9]) Assuming B1 and B2. Given u° € Py(RP) as
a fized initial condition; THEN, there exists an (F;)i=o-adapted process (Z;)i=o that is the
unique (pathwise) strong solution of the McKean-Viasov SDE:

dZt = b(t, Zt, /llt)dt + O'(t, Zt, /uLt>dBt

Additionally, it satisfies for each T = 0: supsepo 7 E[| Z:]*] < 0
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