
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

EMPIRICAL STUDY OF THE VISUAL REASONING CAPABILITIES OF THE
NEURAL STATE MACHINE

TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS, MENCIÓN COMPUTACIÓN

MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERO CIVIL EN COMPUTACIÓN

GABRIEL ALEJANDRO CHAPERON BURGOS

PROFESOR GUÍA:
JORGE PÉREZ ROJAS

PROFESOR CO-GUÍA:
FELIPE BRAVO MÁRQUEZ

MIEMBROS DE LA COMISIÓN:
JOSÉ MANUEL SAAVEDRA RONDO
BENJAMÍN BUSTOS CÁRDENAS
FRANCKLIN RIVAS ECHEVERRÍA

SANTIAGO DE CHILE
2023

Estudio empírico de las capacidades de
razonamiento visual de la Neural State
Machine

El área de aprendizaje profundo es un área dentro de las ciencias de la computación, la
estadística y la matemática donde los practicantes diseñan redes neuronales profundas para
lograr imitar habilidades que son inherentemente humanas. En esta área se usan tareas con
el fin evaluar la capacidad de un modelo para llevar a cabo una habilidad humana, como
reconocimiento de objetos, clasificación de texto o reconocimiento de voz.

A finales del 2019 una nueva arquitectura llamada Neural State Machine (NSM) fue pro-
puesta para la tarea de respuesta de preguntas visuales, donde se espera que un modelo pueda
responder preguntas que están basadas en una imagen. La arquitectura se inspira fuertemen-
te en máquinas de estado tradicionales de teoría de autómatas, y funciona recorriendo un
camino por los objetos de la imagen de forma iterativa hasta encontrar la respuesta a la
pregunta.

En este trabajo estudiamos de forma empírica las limitaciones de esta nueva arquitectura.
De teoría de autómatas sabemos que la falta de memoria en las máquinas de estado tradi-
cionales limita el tipo de entradas que pueden procesar. Considerando esta observación y el
diseño de la NSM basado en máquinas de estado, nosotros conjeturamos que la arquitectura
va a ser incapaz de procesar algunos tipos de preguntas basadas en imágenes.

Para probar nuestra hipótesis usamos una metodología experimental. Primero definimos
categorías de preguntas donde pensamos que la NSM tendrá problemas. Estas preguntas
vienen de esfuerzos previos en la literatura de establecer puntos de referencia para sistemas
multimodales de texto y visión. Luego evaluamos la arquitectura y comparamos los resultados
con resultados base donde la NSM alcanza un desempeño prácticamente perfecto.

Nuestros hallazgos muestran que la NSM efectivamente tiene problemas para responder
las preguntas propuestas. La disminución en el desempeño varía en cada caso, llegando
en ocasiones a niveles aleatorios. Nuestros resultados sugieren que para tener una solución
exhaustiva para la tarea de respuestas de preguntas basadas en imágenes es necesario ir más
allá de una red neuronal que representa una máquina finita de estados.

i

Empirical study of the visual reasoning
capabilities of the Neural State Machine

The field of deep learning is a subfield of computer science, statistics and mathematics where
practitioners try to build deep neural networks that mimic, to some extent, abilities inherent
to human beings. In this field, tasks are used to evaluate the ability of a model to perform
specific human skills, like object recognition, text classification or speech recognition.

In late 2019, a new architecture called Neural State Machine (NSM) was proposed for
the task of visual question answering, where a model has to answer a question based on an
image. The network is heavily inspired by traditional state machines from automata theory,
and works by iteratively following a path on the image trying to find the answer to the
question.

In this work we empirically study the limitations of this new architecture. From automata
theory we know that traditional state machine’s lack of memory limits the kind of inputs they
can process. Considering this observation and the networks inspiration on state machines we
hypothesize the network will be unable to process certain kinds of image-based questions.

We prove our hypothesis using an experimental approach. First we define a number
of question categories where we think the NSM will struggle. These questions come from
previous efforts in the literature to establish benchmarks for multimodal visual-text systems.
Next we evaluate our architecture and compare the results to a baseline in which the NSM
performs almost perfectly.

Our findings show the NSM indeed struggles in the proposed proposed questions, with
varying degrees of decrease in performance, reaching in some cases random performance. Our
results suggests that, in order to have a comprehensive solution for the question answering
problem, one would need to go beyond a neural network representation of a finite state-
machine.

ii

Ojalá esto sirva de algo.

iii

Agradecimientos

Gracias a mi mamá1, mi papá1, mi meme, la bego y el jorge.

1Contribuciones iguales.

iv

Table of Content

1 Introduction 1

2 Related Work 5

2.1 VQA - Datasets . 5

2.2 VQA - Methods . 6

2.3 Machine-inspired Architectures . 7

3 The architecture in depth 8

3.1 Preliminaries . 8

3.2 Formal definition . 9

3.3 Concept Vocabulary . 10

3.4 States and transitions . 10

3.5 Instructions . 11

3.6 Transition function - State machine simulation 12

4 Research methodology 14

4.1 Dataset Selection . 14

4.2 CLEVR Dataset . 15

4.2.1 Images . 15

4.2.2 Questions . 16

4.3 Question families chosen for this work . 17

4.3.1 Questions with jumps . 17

v

4.3.2 Counting questions . 18

4.3.3 Questions with conjunctions . 19

4.3.4 Questions with implicit relations . 20

4.3.5 Questions with comparisons . 21

4.4 Input representation . 21

5 Experiments 23

5.1 Questions with jumps . 23

5.2 Counting questions . 24

5.2.1 Existence . 24

5.2.2 Counting . 25

5.3 Conjunction . 25

5.4 Implicit relations . 26

5.5 Comparison . 26

6 Discussion 27

6.1 Baseline . 27

6.2 Hypothesis categories . 27

7 Conclusions 32

Bibliography 37

vi

List of Tables

5.1 Test results per number of jumps and final query type of the NSM, trained
using questions that only include jumps and end by querying a property. . . 24

5.2 Results of the NSM when trained on questions that have up to two jumps, but
tested in a test dataset that has 3-jump questions only. 24

5.3 Simplest counting case. Results of the NSM answering questions of whether
an objects exists in a picture or not. 25

5.4 General counting case. Questions were balanced based on answers. Results
are grouped by number of jumps to reach the final query and object count. . 25

5.5 Conjunction accuracy results, grouped by property. 25

5.6 Implicit relation results grouped by property used to jump and final queried
property. The training set didn’t contain any questions in the diagonal since
those would be trivial to answer. 26

5.7 Results of comparison questions grouped by queried property and number of
jumps included in the question. 26

vii

List of Figures

1.1 Simple image-based questions that require abilities like counting and identify-
ing colors. These abilities are learned very early in human development. . . . 1

1.2 An example of an image and its corresponding scene graph. The graph cap-
tures many of the images actors, their properties and the relations between
them. Image taken from Visual Genome [20]. 2

1.3 An overview of the NSM and how it processes both the graph and the question
to find an answer. The architecture uses the question as a guiding signal to
traverse the scene graph and reach a final node which contains the answer to
the question. 3

3.1 A simple example of a finite state machine with four states. The machine has
states S = {ε, 0, 1, 2}, the input alphabet is Σ = {0, 1}, the initial state is
s0 = ε, there is just one final state F = {0} and the transition function is
depicted by the edges and their labels in the graph. 9

3.2 A state transition where probability gets redistributed through an edge. . . . 13

4.1 A sample image and questions from CLEVR. Figure taken from Johnson, et
al. [18]. 15

4.2 Landscape of object attributes available in CLEVR. 16

4.3 An example image and its associated scene graph. 16

4.4 Example questions and their functional programs. 17

6.1 The first figure shows a question in the category of implicit relations where the
relation is actually not needed to identify the queried object. In this case, there
is only one purple thing, and so it is not necessary to associate its material to
the big grey object. Compare to the second question, where it is mandatory
to first identify the grey object (the small grey ball) and then, using its size
(small) find the other small object in the image. 30

viii

Chapter 1

Introduction

One of the many abilities of us human beings is that we are able to answer simple questions
based on an image. This task is commonly known as Visual Question Answering (VQA)
[3], and it is used to evaluate the visually-grounded reasoning capabilities of neural systems.
Examples of such simple image-based questions can be seen in Figure 1.1.

Some of the available datasets for the task make use of what is know as a scene graph,
a graph that captures the objects and relations between them, where objects are nodes and
relations are represented using edges. Objects and relations can have properties describing
them in more detail, like color, size, orientation, etc. Models may use these scene graphs to
reason over a higher-level representation of the visual data. An example of the process of
extracting a scene graph from an image can be sen in Figure 1.2.

In this work we evaluate different cognitive capabilities of an architecture presented in
late 2019 that was specifically designed to process these scene graphs and answer questions
about the images they come from. The network is called Neural State Machine (NSM) and
its design is inspired by traditional finite state machines. The model is described in depth
in Chapter 3, but for now it suffices to know that the network interprets the scene graph as

(a) What is the color of the sphere? (b) How many small cylinders are there?

Figure 1.1: Simple image-based questions that require abilities like counting and identifying
colors. These abilities are learned very early in human development.

1

Figure 1.2: An example of an image and its corresponding scene graph. The graph captures
many of the images actors, their properties and the relations between them. Image taken
from Visual Genome [20].

a state machine and traverses it using the question as a guiding signal. After reaching the
end of the path, the final node (or state) the machine is in is used to answer the question. A
simplified schematic of the process can be seen in Figure 1.3.

This architecture hasn’t been the subject of study of any work until this date, and so the
aim of this thesis is to shed preliminary light into its capabilities and limitations.

Research Aim The aim of this work is to study the limitations of a newly
proposed architecture, the Neural State Machine.

The architecture was proposed as a general architecture for Visual Question Answering,
as one of the datasets it was evaluated on was the original VQA dataset [3]. Also, as we will
see in Chapter 3, the architecture makes use of two key architectures, an LSTM that has
been proven to be Turing complete by Siegelmann et al. [31], and a Feed Forward Network,
which has been proven to be an universal approximator by Hornik et al. [14]. This precedent
points in the direction of the NSM having similar, general properties.

However, from automata theory we know that state machines are limited in the kind of
inputs they can accept. Most notably, they lack any form of memory, so simple tasks like
identifying a palindrome are impossible for a state machine, since it cannot remember the
previous symbols it has seen. To understand the true nature of the architecture, we follow a
experimental approach, laid out in the following research objectives.

Research Objectives

1. The first step of this work is to implement the architecture. The code for the
architecture wasn’t open sourced in the original paper, so this is a necessary
first step.

2

Figure 1.3: An overview of the NSM and how it processes both the graph and the question to
find an answer. The architecture uses the question as a guiding signal to traverse the scene
graph and reach a final node which contains the answer to the question.

2. To validate our implementation of the architecture, we will define a question
category suitable for the NSM and evaluate it only in this subset.

3. Next we will design questions we hypothesize the NSM cannot answer. These
questions should be motivated by the limitations from traditional automata.

4. Finally we will evaluate the NSM using the proposed question categories to
identify its weaknesses.

Given the seemingly contradictory nature of the NSM, in this work we want to answer
the following two main research questions.

Research Questions

1. Does the performance of the NSM decrease when asked questions that intu-
itively require memory to solve?

2. In what types of questions does the network’s performance decrease the
most?

Since the NSM is strongly inspired by finite state machines, we theorize there are many
question categories that don’t fit with its design and therefore it will struggle answering them.
Formally our hypothesis is as follows.

Hypothesis There are natural questions over graph data that the NSM cannot
answer. These include questions that require the ability to count, that require
comparisons between objects and questions where logical conjunction must be
performed.

All these categories intuitively require memory to be answered. A simple such question
category to picture this idea are comparison questions. Something like Is object A the same

3

color as object B? requires to focus on two objects at the same time, which would require
remembering object A before focusing on object B. This simply doesn’t fit in the framework
of following a path to reach a single node.

Contributions The contributions of this work are the following.

1. And open source implementation of the Neural State Machine. To the best of
our knowledge this is the only working implementation1 of the architecture.

2. A set of experiments and results showing the pitfalls of the architecture.

The implementations and replication code for the experiments can be found at
https://github.com/gchaperon/neural-state-machine.

The rest of this work is structured as follows. Chapter 2 presents an overview of the related
work, to have a better understanding where in the field of Machine Learning this work is
located. As mentioned, Chapter 3 presents the architecture in detail, defining it formally and
drawing parallels with traditional machines. Chapter 4 explains our methodology, the data
used and the question categories. Following, Chapter 5 presents the results obtained and in
Chapter 6 we discuss the results, highlighting how they relate to our hypothesis. Finally,
Chapter 7 summarizes our findings and gives directions for future research.

1Another attempt at implementing the network is https://github.com/ceyzaguirre4/NSM, but as the
author states, it is not ready to be used.

4

Chapter 2

Related Work

In this chapter we review three main aspects of the related work. First we discuss the
most relevant datasets for the VQA task. We next describe different models that have been
proposed for the VQA task. Finally we review the different architectures proposed in the
literature that simulate traditional machines. The first two sections attempt to give the
reader a general overview of the VQA task, while the third presents two models that are
closest to the spirit of the NSM, as a machine-inspired neural network.

2.1 VQA - Datasets

The VQA task together with its first training dataset was released by Antol et al. in 2015 [3] .
This dataset contains 330K images from the MSCOCO dataset [23], and over 760K free-form
questions that were produced using crowdsourcing. The main characteristic of this dataset
is that both the questions and the answers are open-ended, in contrast with other datasets
at the time that used closed vocabularies as possible answers [10, 26, 32, 5].

Another well known dataset for this task is CLEVR [18]. In this dataset images were
generated automatically using Blender (a 3D modeling toolkit) [8]. The associated questions
are generated using templates that are filled in with the information used to create the images,
like relative position of objects, the colors of these objects or their shapes. The images contain
three different types of objects (spheres, cylinders, and cubes), and can appear in two sizes,
four colors, and two textures. The compiled dataset contains 100k images and 853k unique
questions. Since the dataset is automatically generated, it allows for tight control over the
contents of the images and questions, and so this dataset is specifically designed to evaluate
different kinds of reasoning abilities, like spatial relationship understanding, counting, and
comparisons.

Krishna et al. [20] present Visual Genome, a dataset that contains images from MSCOCO
and questions about them. The main difference with previous datasets is that every image
is tagged with a lot more information. Each image has bounding boxes for objects and
their labels, together with their attributes (color, size, etc), and also there are labels for the

5

relationships between these objects (behind, holding, jumping over, etc). All this information
is used to create a scene graph from the image which can be used to support the learning
process for a model, be it for pure image analysis or for the VQA task. The dataset contains
100k images with over 1.6M questions, all of which were crowdsourced from online workers.

The GQA dataset proposed by Hudson et al. [17] is based on Visual Genome and uses
the graphs that capture the information of each image to generate questions in an automated
way. This is accomplished by using a finite set of templates where the information from the
graphs is filled in. This technique allows them to use real world images and context, while
also having granular control over the questions and the cognitive skills necessary to answer
them. This dataset contains 100k images and over 22M questions, although they also provide
a smaller question split where the different categories have been balanced, which contains
around 1.7M questions. Most of the literature report their results on the latter.

2.2 VQA - Methods

Models for solving the VQA task can be classified into two main categories. The first category
corresponds to models that have strong inductive biases and that were specifically designed
for the VQA task, taking into account the reasoning skills necessary to be successful. These
models are generally highly interpretable and work very well on auto-generated datasets, but
they tend to struggle generalizing to real world scenarios. An example of a model in this
category is the Neural Module Network (NMN) proposed by Andreas et al. [2]. It consists of a
finite set of specific modules specialized for different types of reasoning, which are composed
depending on the structure of the question. Standard NLP tools are used to process the
question (like POS tags and dependency parsing) and determine what specific combination
of module must be instantiated. Many other architectures have been proposed that follow
the same idea of the NMN [15, 19, 27], but with relatively minor changes to the types of
modules, the query processing or the way the different modules communicate.

The second category corresponds to models that seek to learn dense representations of
each image-question pair and use this vector to find the answer. An early example of this idea
is the work from Shih et al. [30]. They obtain a vector representation from the question via
parsing heuristics, and a series of object regions using an region proposal network (a standard
procedure in the field of computer vision). Then, they compute the vector similarity between
the question and each of the regions and use the highest-scoring pair to predict the answer.
This gives the model the ability to focus on regions of the image that are relevant to the
question. Lu et al. [25] expand on this idea, and introduce the concept of co-attention. In
this setup the model learns to focus on the image using the question and vice versa, use the
image to focus on the relevant words from the question.

After the advent of the Transformer architecture [33], an architecture that has seen ma-
jor success in the NLP world, a couple of models based on this architecture have been
proposed [24, 22, 21, 7]. They use pretraining techniques, where the model is first trained in
large amounts of unlabeled data to develop a general understanding of the world. Then this
model is finetuned in a specific task. The knowledge from the pretraining stage is used as a
starting point and the model learns specific information for the task of interest.

6

2.3 Machine-inspired Architectures

The idea of simulating classical machines using neural architectures is not new. Two examples
of this idea are the Neural Turing Machine [12] and the Differentiable Neural Computer [13].
These two examples have an external memory where they can store and retrieve values.

A Neural Turing Machine (NTM) architecture contains two basic components: a neural
network controller and a memory bank. Like most neural networks, the controller interacts
with the external world via input and output vectors. Unlike a standard network, it also
interacts with a memory matrix. This memory is essentially a list of vectors that the controller
can access using selective read and write operations (also called read and write heads). These
operations focus on certain locations of the memory using two main addressing mechanisms:
focus by content and focus by location. This means that when the read or write heads
receive a vector from the controller, they can choose to operate over the most similar vector
in memory or operate over a vector chosen based on the previous memory location.

The Differentiable Neural Computer (DNC) is in many ways the successor to the NTM.
The main idea of how it works is the same, meaning that it has a controller and heads for
writing and reading, but there are two main differences. The first is that the write head can
also erase content from memory, not just write to it. The second difference relates to the
addressing mechanisms, where the DNC has three of them. The first one is very similar to
the NTM, where the memory is accessed based on the similarity to the key vector from the
controller. The second records transitions between consecutively written locations, allowing
the network to operate on a sequence of memory locations previously visited. The third form
of attention allocates memory for writing, which allows unused locations to be delivered to
the write head.

7

Chapter 3

The architecture in depth

The Neural State Machine is a deep learning architecture designed to jointly process graph
and text data by simulating a finite state machine. The architecture was proposed for the
task of VQA, where the graph comes from the image and the text corresponds to a question
being asked about the image. For the description of the network we will use this task to
guide our explanation, but it should be noted that the architecture is designed to process
graphs.

The NSM proceeds in two stages, modeling and inference. In the modeling stage the
question is converted into a sequence of instructions that have to be executed to answer it.
In the inference stage the graph is treated as a state machine and the instructions are used
to guide the reasoning reaching a final state, which is then used to answer the question.

3.1 Preliminaries

We begin this section by recalling the definition of a traditional state machine. A finite-state
machine (also known as finite-state automaton) is an abstract machine that works by reading
symbols from an input sequence and, according to a set of defined transition rules, changes
its internal state.

Formally, a finite state machine is defined as a five-tuple (Σ, S, s0, δ, F), where:

• Σ is the input alphabet. The symbols read from the input belong to this set.

• S a finite set of the different states the machine can be at any given moment.

• s0 ∈ S the initial state. The states the machine is in before reading any symbol from
the input.

• δ : S × Σ → S a transition function. A function that takes the current state of the
machine and an element from the input, and outputs the next state.

• F ⊆ S a set of final states.

8

Figure 3.1: A simple example of a finite state machine with four states. The machine has
states S = {ε, 0, 1, 2}, the input alphabet is Σ = {0, 1}, the initial state is s0 = ε, there is
just one final state F = {0} and the transition function is depicted by the edges and their
labels in the graph.

The machine receives an input, a sequence of characters from the alphabet Σ, reads one
character at a time and changes state according to the transition function δ. After reading
the last character of the input the machine checks if the state it is in belongs to F and, if it
does, it is said the machine accepts the input.

A common way of representing state machine is as a graph, where states are represented
as the nodes of the graph and the valid transitions between states are captured by the edges
of the graph. Figure 3.1 shows and example state machine that accepts binary strings that
are multiples of three.

3.2 Formal definition

Having the previous definition of a traditional state machine as context, understanding the
NSM becomes much simpler. The main ideas to have in mind in the following (more tech-
nical) sections is that the machine state is no longer a single state but rather a probability
distribution over the states, and the transition function is not a fixed function but a pa-
rameterized function, a neural network that will learn how to shift the current probability
distribution to the next state.

Similarly to the classic state machine, the NSM is defined as a 6-tuple (C, S,E, {ri}Ni=0, p0, δ)
where

• C is the architecture’s concept vocabulary, or alphabet, to continue with the traditional
machine analogy. It consists of a set of concepts that include objects (dog, cat, etc),
properties (green, tall, etc) and relationships (on top of, talking to, etc). These concepts
are represented as vectors.

9

• S the set of states of the NSM.

• E the set of directed edges connecting the states. These edges represent valid transitions
of the model. Contrary to a classical state machine, where the graph edges are derived
from the transition function, in the NSM’s case these edges are explicit in the model
and the transition function δ redistributes probability along these edges.

• ri a sequence of instruction that are processed by the transition function δ. These
instructions guide the probability shifting process.

• δS,E : pi × ri → pi+1 the transition function; a neural network that at each step takes
the current probability distribution pi and a new instruction ri and computes the new
distribution pi+1. This neural module learns to shift the distribution during training.

In the following sections each of these NSM components is described in detail.

3.3 Concept Vocabulary

The NSM operates using a discrete set of concepts, called the concept vocabulary, that is
used to represent the information in both the image’s scene graph and the guiding instruc-
tions. Concepts are grouped in L + 1 sets, where L sets correspond to object properties,
i.e. C0 = {red, blue, ...}, C1 = {cube, sphere, ...}, etc. and the remaining set groups the
possible relations CL = {on top, in front, ...}. Therefore, C =

⋃L
i=0Ci. Furthermore, the

NSM defines an extra set D of L + 1 embeddings of the categories themselves, that is, if
C0 = {red, blue, ...} then D0 = color. Following the previous example, D would look like
D = {color, shape, ..., relation}.

3.4 States and transitions

Each graph consists of a set of objects found in the image that represent the states S of state
machine, where each state s ∈ S has L properties {sj}L−1j=0 , sj ∈ Cj. Similarly, the graph
has a set of edges (s, s′) ∈ E that relate two objects. Each of the edges as a single attribute
describing the relation (on top, below, etc).

The data we use for this work already contains ground truth scene graphs for each image,
meaning that we start directly with a scene graph and we don’t have to do any processing to
obtain a scene graph from an image. Indeed, in the original NSM work [16] the authors had
to perform a prepossessing step to extract a scene graph from an image. In the literature
this technique is called scene graph generation [34] [6].

10

3.5 Instructions

The next step is to obtain the sequence of instructions {ri}Ni=0 from the question. This process
has three steps: embedding, projection and decoding.

First each word of the question is embedded. For this work, since we want to remove
as much ambiguity as possible, we use one-hot encoding. Another viable solution would
be to use off-the-shelf precomputed embeddings, like they did in the original paper using
GloVe [29].

Next, the NSM projects each of the embedded tokens to the concept vocabulary. To
accomplish this, the model takes each token and applies a learned function that maps the
token to the closest concept in the concept vocabulary C or, if there is no similar concept,
leaves the original token as is. The operation starts by computing a similarity score between
the input token and the concept vocabulary as follows:

Pi = softmax
(
w>i WC∗

)
(3.1)

where C∗ is the concept vocabulary C concatenated with a learned default vector c′, and
W are parameters, initialized to the identity matrix. C∗ and c′ are designed to give the
architecture enough freedom to leave some words untouched. Using this score the network
performs a soft-selection of the closest concept in the vocabulary as follows:

vi = Pi (c′)wi +
∑
c∈C

Pi (c) c (3.2)

If there is no concept close enough, the score Pi (c′) dominates the weighted sum and wi is
left mostly unchanged.

Summarizing, if a token is sufficiently close to a concept, then the token gets mapped.
Otherwise the token remains as its original vector. In this process all distances are computed
according to the embedding space.

After translating the word sequence {wi}Pi=1 to the normalized sequence {vi}Pi=1, the net-
work proceeds to the decoding step. In this step, the normalized vectors are used to obtain
N + 1 reasoning instructions {ri}Ni=0. The normalized sequence is passed through an LSTM
network to obtain a final hidden state q that represents the sequence. The vector q is repeated
N + 1 times and is passed to a simple recurrent neural network to obtain a N + 1 hidden
states {hi}Ni=0. It is these hidden states that are finally used to produce the instructions ri
in the following manner. Let V P×d = {vi}Pi=1 be the matrix of vectors vi stacked:

ri = softmax
(
hiV

>)V (3.3)

Conceptually, each hidden vector hi is used to perform a soft selection of one of the ques-
tion words, using the attention mechanism [4]. A probability distribution over the question
words is computed based on the similarity with the hidden vector hi and then all question
words are averaged using the similarity score as weight. This makes it so that the most
similar words dominate the weighted sum.

11

3.6 Transition function - State machine simulation

With the components described in previous sections, the states S, the edges E, the sequence
of instructions {ri}Ni=0 and the concept vocabulary C and D, we can finally understand
how the NSM simulates an automaton. Conceptually the transition function δ is in charge
of taking a probability distribution pi and, guided by the instruction ri, computes a new
distribution pi+1. Starting from a uniform distribution p0, this process is repeated N times
reaching the final distribution pN and instruction rN . Finally, using pN and rN , the whole
graph is aggregated into a single vector, which is used to predict the answer to the question.

The first step in this process is identifying to which concept category the instruction ri is
referring to. The instruction could have selected a relation within the question or a specific
property of an object, so the first step is to identify this concept category. For this, the NSM
computes the following vector Ri for the instruction being processed.

Ri = softmax (ri ◦D)

r′i = Ri (L)
(3.4)

In this equation ◦ is the dot product, and let’s recall that ri ∈ R, D ∈ R(L+1)×h, so
therefore Ri ∈ RL+1 and r′i ∈ [0, 1].

After deciding to which category the instruction ri relates to, this information is used to
select one of the properties of each node and edge. This is then used to compute a score for
each node and relation in the graph in the following way.

γy (s) = σ

(
L−1∑
j=0

Ri (j)
(
ri ◦Wjs

j
))

γi (e) = σ (ri ◦WLe
′)

(3.5)

Where {Wj}L−1j=0 and WL are learned parameters and σ is a non-linearity. Conceptually,
this step computes a relevance score for each node and edge with respect to the instruction
by performing a weighted average of its attributes using the vector Ri.

Having the scores for each node and edges allows the NSM to accomplish the main goal
of this step, to compute the next probability distribution over the nodes. For this, the
NSM redistributes probability based on each node’s individual score and also the score of its
neighbours. How much the individual score adds to the new distribution compared to the
score of its neighbours is decided by the value r′i = Ri (L) which, as described previously,
represents if the instruction refers to a relation or not. The final expression for pi+1 is as
follows

12

Figure 3.2: A state transition where probability gets redistributed through an edge.

psi+1 = softmaxs∈S (Ws · γi (s))

pri+1 = softmaxs∈S

Wr ·
∑

(s′,s)∈E

p (s′) · γi ((s, s′))

pi+1 = r′i · pri+1 + (1− r′i) · psi+1

(3.6)

Figure 3.2 shows a simplified schematic of a state transition. In the figure, the instruction
is closest to the relation to the right and therefore most of the probability score of node s′ is
transferred to node s through the connecting edge labeled as to the right.

This redistribution process is repeated N times to reach the final state rN . In this stage,
the graph’s state is aggregated using instruction rN into a single vector m, which can then be
used in a simple feed forward network to predict an answer to the question. In this particular
work, the final m vector is concatenated with the question vector q and passed through a
2-layer feed forward network. The precise equation to obtain vector m is as follows

m =
∑
s∈S

pN (s)
L−1∑
j=0

RN (j) sj (3.7)

13

Chapter 4

Research methodology

Let’s first refresh our hypothesis.

There are natural questions over graph data that the NSM cannot answer. These
include questions that require the ability to count, that require comparisons be-
tween objects and questions where logical conjunction must be performed.

We will prove this hypothesis using an experimental method. First we will establish a
baseline using questions that we know from previous works the NSM can answer success-
fully [16]. With this baseline at hand we will show that there is a set of questions where the
architecture shows a significant decrease in performance.

This chapter is structured in four parts; (1) first we present the rationale behind our
dataset selection, (2) then we describe in detail the dataset used, (3) following we define the
question sets, grouped by abilities required to answer them, that will be used to perform
experiments and (4) we finalize with the details of input representation for the architecture.

4.1 Dataset Selection

For our objective of studying the graph-traversing limitations of the NSM, we require data
with very specific properties. Most notably, since the architecture is designed to process
graphs instead of raw images, the original paper relied on off-the-shelf scene graph gener-
ation architectures to circumvent this limitation. In our setup, this preliminary step adds
unnecessary noise to the input of the NSM, and therefore we require a dataset that provides
ground-truth labels for the scene graphs. This immediately rules out most of the well-known
VQA datasets, like COCO [23] and the original VQA [3] dataset (and its various succes-
sors [35, 11, 1]).

Another important property is the ability to control the types of questions contained
in the dataset, and hopefully have enough questions of each category so that we can train
and evaluate the architecture using only each subset of questions. This lends itself nicely

14

Q: Are there an equal number of large things and metal spheres?
Q: What size is the cylinder that is left of the brown metal thing that is left of the big
sphere?

Figure 4.1: A sample image and questions from CLEVR. Figure taken from Johnson, et
al. [18].

for a synthetic dataset, where questions are generated by filling predefined templates. Two
notable datasets fall into this category, CLEVR [18] and GQA [17]. Both match our first
criteria of having scene graph ground truth labels, but we ultimately decided for CLEVR
because GQA didn’t provide the source code to generate new questions. This is an important
restriction because many of the question categories we want to study are underrepresented in
the datasets, and so to perform comparable and meaningful experiments we need to generate
more questions to reach a minimum number for each category.

4.2 CLEVR Dataset

The CLEVR dataset [18] is a synthetically generated evaluation dataset specifically designed
to test the visual reasoning capabilities of VQA systems. The dataset is multimodal, meaning
it contains both images and questions about these images. Following we explain how these
images and questions were generated and describe some of its properties. An example image-
question pair can be seen in Figure 4.1.

4.2.1 Images

The dataset contains around 100k images synthetically rendered using Blender [8], a 3D
modeling software. Each image contains a variable number of objects placed over a smooth
surface. Objects have four kinds of properties; color, shape, size and material. Figure 4.2
shows the whole range of attributes available in CLEVR.

15

Figure 4.2: Landscape of object attributes available in CLEVR.

1 {
2 "objects": [
3 {
4 "color": "blue", "size": "large",
5 "shape": "cube", "material": "metal",
6 },
7 {
8 "color": "gray", "size": "small",
9 "shape": "sphere", "material": "rubber",

10 },
11 {
12 "color": "green", "size": "large",
13 "shape": "cube", "material": "rubber",
14 },
15],
16 "relationships": {
17 "right": [[], [0, 2], [0]],
18 "behind": [[], [0], [0, 1]],
19 "front": [[1, 2], [2], []],
20 "left": [[1, 2], [], [1]],
21 },
22 }

Figure 4.3: An example image and its associated scene graph.

Additionally, since the dataset was generated synthetically, each image comes with a
ground truth scene graph, that contains all the information present in the image, including
spatial relations between objects. Figure 4.3 contains an example scene graph in JSON
format. Notice how each object has four attributes and there is a relationships field that
captures all the available spatial relationships between objects.

4.2.2 Questions

CLEVR contains around one million questions synthetically generated using a custom tem-
plate engine. The dataset contains 90 questions families, each with 2 to 4 templates. Using
the scene graph described previously, which contains all the information in an image, the
template engine takes in a generic template containing placeholders for objects and fills them

16

Figure 4.4: Example questions and their functional programs.

in using the scene graph data. The following is an example template and a question that
could be produced from this template.

What color is the <OBJ> that is <REL> the <OBJ>?
What color is the cube that is to the right of the yellow sphere?

Each question template defines a family of questions that share the exact same structure,
but are filled in with different values depending on each image. The dataset also defines a
so called functional program that captures the logical operations that have to be performed
to answer each question. This language includes basic operations like counting, filtering
and comparing attributes. Example questions and their functional program can be found in
Figure 4.4.

4.3 Question families chosen for this work

The CLEVR dataset contains 90 question families, but not all of them are useful for our goals.
In this section we precisely describe the question families we chose to perform experiments on,
and the rationale behind these decisions. Each subsection also contains example questions
in each category together with their accompanying functional program.

4.3.1 Questions with jumps

The first category contains questions with “jumps”, meaning they require to pay attention to
different objects in the scene and "jump" between them following relations. After following
this relation chain, the question ends by querying one of the properties of the final object.
Below is an example question and its functional program.

What is the color of the cube to the right of the sphere that is above the cylinder?

17

1 query_color(
2 uniq(
3 filter_shape(
4 cube ,
5 relate(
6 right ,
7 uniq(
8 filter_shape(
9 sphere ,

10 relate(
11 above ,
12 uniq(
13 filter_shape(
14 cylinder ,
15 scene()
16)))))))))

We use this first category as a baseline and, as mentioned earlier, our experiments will
focus on showing how the following categories compare to it.

4.3.2 Counting questions

This category includes questions where their final operation requires counting objects. In the
dataset there are two kinds of questions that require counting; questions where counting is
an intermediate operation and question where counting is the final operation. Here are two
examples, respectively.

Are there the same number of blue objects and red objects?
1 equal_integer(
2 count(
3 filter_color(
4 red ,
5 scene()
6)),
7 count(
8 filter_color(
9 blue ,

10 scene()
11))
12)

And

How many objects are there to the right of the blue cube?
1 count(
2 filter_color(
3 red ,
4 relate(

18

5 right ,
6 uniq(
7 filter_shape(
8 cube ,
9 filter_color(

10 blue ,
11 scene()
12))))))

For the latter example the question ends with a counting operation, whereas in the former
example the counting operation occurs before a final comparison. In a different section of this
work we test if the NSM is able to perform comparisons between objects, so in order to isolate
the reasoning capabilities we test with each question category, we choose only questions that
end in a counting operation.

As a special case of this category we define a small subcategory that checks if the model
is able to answer questions about object existence, i.e. being able to count zero or more
objects. An example question below.

Are there any red cubes to the right of the small cylinder?
1 exist(
2 filter_shape(
3 cube ,
4 filter_color(
5 red ,
6 relate(
7 right ,
8 uniq(
9 filter_shape(

10 cylinder ,
11 filter_size(
12 small ,
13 scene()
14)))))))

4.3.3 Questions with conjunctions

The next question category includes questions that require performing a logical and operation.
This involves comparing two "branches" in a question, and reasoning about both at the same
time. Below an example.

What is the color of the object that is to the right of the big cube and to the left
of the grey sphere?

1 query_color(
2 uniq(
3 intersect(
4 relate(
5 right ,

19

6 uniq(
7 filter_shape(
8 cube ,
9 filter_size(

10 big ,
11 scene())))),
12 relate(
13 left ,
14 uniq(
15 filter_shape(
16 sphere ,
17 filter_color(
18 grey ,
19 scene()))))
20)))

As one can appreciate, the question has two branches, one that identifies objects to the
right of the big cube and the other focuses on objects to the left of the grey sphere. The final
question queries a property of an object that satisfies both of these spatial conditions.

The logical and operation is an intermediate operation and, in this case, the question ends
by querying a property of an object. However, there are other terminal operation applicable
to conjunction questions, like counting. Since we test the counting capabilities of the model
in a different experiment, for this section we chose only questions that require conjunction
and finish by querying a property of an object identified by the conjunction.

4.3.4 Questions with implicit relations

The category of questions with implicit relations evaluates if the model is capable of focusing
on an object that shares a property with another object. This relation of sharing a property
is not explicitly represented in the scene graph of the image, so we call this category implicit
relation. An example question below.

What is the size of the other object that is the same color as the metal cylinder?
1 query_size(
2 uniq(
3 same_color(
4 uniq(
5 filter_shape(
6 cylinder ,
7 filter_material(
8 metal ,
9 scene()

10))))))

In this kind of questions the model needs to perform a jump between objects just like
in section 4.3.1, but without using a relation from the graph. This makes this category of
questions considerably harder.

20

Similar to section 4.3.3, the intermediate same_color operation could have ended in a
counting operation, e.g. How many object are the same size as the metal cylinder?. Again,
in this section we focus only on questions that end by performing a querying operation, a
reportedly simple operation for the NSM, in order to isolate the challenge of using an implicit
relation.

4.3.5 Questions with comparisons

The final category includes questions that require comparing a property between two objects.
In this sense, it is similar to the conjunction question where there are two branches and some
operation is applied to both of them. An example comparison question follows.

Is the size of the cube that is to the left of the yellow sphere the same as the
rubber cylinder?

1 equal_size(
2 query_size(
3 uniq(
4 filter_shape(
5 cube ,
6 relate(
7 left ,
8 uniq(
9 filter_color(

10 yellow ,
11 filter_shape(
12 sphere ,
13 scene()))))))),
14 query_size(
15 uniq(
16 filter_material(
17 rubber ,
18 filter_shape(
19 cylinder ,
20 scene()))))
21)

All the questions in this category have binary yes/no answers. Although the answer space
is simple, these questions require some form of memory to remember the property of one of
the object while the property of the other object is being computed.

4.4 Input representation

While the image representation (as a scene graph) was presented in the listing of Figure
4.3, the way the question is passed to the network undergoes some transformations from
the raw representation as text presented in previous sections. Namely, we ignore the text

21

representation of each category since the same question can be asked in different ways. For
example

What is the size of the object to the right of the blue cube?
There is an object to the right of the blue cube. What is its size?

As one can see, this is the same question and contains the exact same information, but
the position of the attributes and the question itself vary. To avoid this variability we use
the functional program associated with this question category. For this example it would be

1 query_size(
2 uniq(
3 relate(
4 right ,
5 uniq(
6 filter_color(
7 blue ,
8 filter_shape(
9 cube ,

10 scene()
11))))))

Furthermore, since this representation includes parenthesis and commas, and the input to
the NSM is a sequence of tokens, we choose to represent the functional program using prefix
notation (also known as polish notation), which is the final representation that we input to
the network.

1 query_size uniq relate right uniq
2 filter_color blue filter shape cube scene

The arity of each functions in the CLEVR world is fixed, so no parenthesis are required to
parse this program. This provides a compact and unambiguous representation of the question
that isolates the reasoning capabilities of the model from the ability to deal with noise in the
input.

22

Chapter 5

Experiments

The network was implemented using the PyTorch framework [28] and the training process
was done using the PyTorch Lightning framework [9]. The network was trained using the
Adam optimizer and for the most part we used the hyperparameter ranges recommended in
the original paper, i.e. learn rates [5 · 10−5, 10−4, 5 · 10−5, 10−3], batch sizes [32, 64, 128] and
ELU non-linearity σ.

We use an RNN hidden size of 100, since in early experiments we notice that larger values
don’t impact the network’s performance. The input size used was 45, because this was the
number of unique tokens in the questions for CLEVR and we used one-hot encoding. We
tried a number of computation steps in the range of [0..6] but found that with 4 computation
steps the network reached the best performance and after that there were no improvements
in any of the question groups we evaluated. Since the model was evaluated in a synthetic
dataset we don’t observe overfitting, so we don’t use any kind of regularization. The network
was trained until train loss stopped improving. All experiments took between 6 and 12 hours
to complete, and the hardware used varied between either an RTX 2080 and RTX 3090.

Each experiment was performed using a different number of training examples, because
not always the original categories of CLEVR aligned with the ones used in this work, so
for some categories there were too few questions. To fix this, we used the official CLEVR
generation code to sample questions specifically belonging to the categories we’ve described
in the previous chapter. We aimed for around 100k to 200k questions for each category.

For each experiment the train and test sets are balanced with respect to the possible
answers. For example, in the counting questions, if the number of possible counts found in
pictures is six, then each count has the same amount of questions. Considering this, the
metric used for all experiment is the test accuracy.

5.1 Questions with jumps

Our baseline is the result of the architecture trained and evaluated in questions with “jumps”.
Table 5.1 shows accuracy results per number of jumps in the question and per each final query

23

Table 5.1: Test results per number of jumps and final query type of the NSM, trained using
questions that only include jumps and end by querying a property.

nhop \ query_* size color material shape

0 1.00 1.00 1.00 1.00
1 0.99 0.99 0.99 0.99
2 0.99 0.99 0.99 0.99
3 0.99 0.99 0.98 0.99

Table 5.2: Results of the NSM when trained on questions that have up to two jumps, but
tested in a test dataset that has 3-jump questions only.

nhop \ query_* size color material shape

3 0.95 0.95 0.94 0.95

operation.

The train set had around 120k questions and the test set had around 27k questions. A
model that chooses randomly an answer for each query category would have 1

2
= 0.5 accuracy

for the property size, 1
8

= 0.125 accuracy for color, 1
2

= 0.5 accuracy for material and 1
3

= 0.33
accuracy for shape.

We also tested the ability of the NSM to generalize to questions that require more jumps
than what the architecture saw in the training set. To this end, we trained the NSM with
questions having only zero, one or two jumps, and evaluate with questions that require three
jumps. Table 5.2 shows the results obtained using this setup.

5.2 Counting questions

The first category of questions beyond the baseline is what we arbitrarily consider the simplest
category, which are the counting questions. Within this category we further separate into
questions of existence and actual counting.

5.2.1 Existence

Table 5.3 shows the results of training the NSM using questions of the simplest counting case,
where the answer is only whether an object exists or not. That is, it is a special counting
question asking if the count is greater than 0.

For this experiment the train set had around 100k questions and the test set had 10k
questions. Since these questions are yes or no questions, the accuracy of a random model
would be 0.5.

24

Table 5.3: Simplest counting case. Results of the NSM answering questions of whether an
objects exists in a picture or not.

nhops 0 1 2 3

accuracy 0.99 0.61 0.64 0.66

Table 5.4: General counting case. Questions were balanced based on answers. Results are
grouped by number of jumps to reach the final query and object count.

nhops \counts 0 1 2 3 4 5

0 0.75 0.38 0.41 0.19 0.31 0.70
1 0.42 0.31 0.21 0.21 0.26 0.39
2 0.49 0.37 0.24 0.22 0.32 0.32
3 0.47 0.36 0.21 0.25 0.29 0.36

5.2.2 Counting

Following the simpler case, Table 5.4 shows the results of training and evaluating with count-
ing questions, grouped by number of jumps to reach the final query and number of objects
matching the query.

The train set had around 70k questions and the test set around 10k questions. For this
category, extra care was taken to balance the dataset by answer to avoid biases. Each possible
count had the same amount of training and testing questions, so that the network couldn’t
guess the most common object count and achieve a high accuracy. Given this, a model that
chooses randomly has an accuracy of 1

6
= 0.166.

5.3 Conjunction

Table 5.5 presents the results of the question category that involves a logic and and ends by
querying an object’s property. Results are grouped by queried property.

For this experiment the train set had around 140k questions and the test set had around
15k. Similar to the jumping questions, the accuracies of a random model are 0.5, 0.12, 0.5
and 0.33 for properties size, color, material, and shape, respectively.

Table 5.5: Conjunction accuracy results, grouped by property.

query_* size color material shape

acc 0.80 0.72 0.80 0.76

25

Table 5.6: Implicit relation results grouped by property used to jump and final queried
property. The training set didn’t contain any questions in the diagonal since those would be
trivial to answer.

same_* \ query_* size color material shape

size - 0.75 0.91 0.86
color 0.73 - 0.75 0.65

material 0.92 0.73 - 0.88
shape 0.86 0.59 0.87 -

Table 5.7: Results of comparison questions grouped by queried property and number of jumps
included in the question.

nhops \equal_* size color material shape

0 0.85 0.71 0.82 0.57
1 0.62 0.50 0.60 0.51
2 0.54 0.52 0.55 0.48

5.4 Implicit relations

Table 5.6 shows the results of the experiments with questions having implicit relations. Re-
sults are grouped as follows: each row represents the property used to relate two objects and
columns represent the final property that was queried after the jump. Since jumping using
a property and then querying that same property (e.g. What is the color of the object of the
same color as the small ball?) would be trivial to answer, the diagonal is left empty.

For this experiment we used a train set of 210k questions and a test set of 15k questions.
The random accuracy for each property are the same as the previous section.

5.5 Comparison

Table 5.7 show the results of the comparison questions grouped by final queried property
and number of jumps involved in the selection of the objects to be compared. Since for
comparison questions two branches must be resolved and then the final nodes of each branch
must be compared according to the queried property, jumps could be involved in determining
those final nodes of each branch.

For this experiment we used 350k train questions and 15k test questions. These questions
are binary yes/no questions, so random accuracy is 0.5 for all subcategories.

26

Chapter 6

Discussion

6.1 Baseline

Our first step in the experimentation process was to verify the claimed capabilities of the
NSM in previous work [16]. Table 5.1 shows a strong indication that the architecture is able to
answer questions with jumps, since it achieves virtually perfect accuracy in all subcategories,
regardless of the number of jumps required to solve the question. To further validate the
baseline, we test the network on questions that require more jumps than what it has seen
in the training process. For this we train the network on questions that require at most two
jumps, but evaluate using questions that require three jumps. As we can see in Table 5.2, the
network is indeed able to generalize, and we could say it has learned the general algorithm
for performing steps, rather than an ad-hoc method to answer the specific question types it
was trained on.

One thing to note about this experiment is that the training was done using 4 processing
steps. Any number below proved to lower the accuracy of the network, which is inline with
intuition since each processing step focuses on an object, and there are four objects involved
in a three-step question. Slightly more processing steps didn’t yield any improvement, and
many more (say, ten), decreased the network’s performance. All of this is inline with previous
work, validates our implementation for this thesis and serves as a baseline for comparison
when evaluating the network in the proposed categories.

6.2 Hypothesis categories

Existence Among the question categories we propose in our hypothesis, we start with
counting questions since it is the simplest to conceptualize. Table 5.3 shows the simplest
case of counting, where the only answers are either zero or more than zero. Immediately
we can see a decrease in performance of the NSM compared to jumping questions. The
only subcategory where the NSM performs comparably to our baseline is when the questions
doesn’t even require hops to be answered, e.g. Is there a blue object?. However, when any

27

number of jumps are required to identify the queried object, the network’s performance drops
abruptly. A random baseline would have a 0.5 accuracy, so the results for multiple hops is
closer to random performance than to the optimal of jumping questions.

Counting When we add difficulty by requiring a specific number as answer, we see no
outstanding performance in Table 5.4. A random baseline for this table would have 0.16
accuracy on all subcategories, and we see that most cells are below 0.4 accuracy. We observe
also a considerable drop in performance when requiring one or more jumps, and in every row
the highest accuracy is achieved when answering for zero objects. This could be explained
because the “lack” of objects in the image can be encoded in a similar way as in the existence
questions, but encoding a specific number in the final vector that aggregates the graph proves
to be challenging. The number of objects in the image was fixed by the available images in
CLEVR, so we couldn’t experiment with higher objects counts, but we speculate the higher
the number of possible counts the lower the network’s performance is to be expected.

An interesting phenomenon occurs in this category, where consistently the performance
drops for one, two, three and four objects, but ramps up for five objects. If we focus on
the first row of Table 5.4, where this phenomenon is more noticeable, we see that when
no jumps are involved the network reaches a remarkable accuracy when counting both zero
and five objects in the scene. From Table 5.3 we see that the network is indeed capable of
distinguishing between no objects and some objects. In the case of counting we could think
that the network can encode the information of many objects, for which it ends up predicting
5 most of the time, but on the contrary, is unable to make a difference when encoding 3 or
4 in the final vector m of Eq 3.7.

The overall decrease in performance could be explained by the final aggregation operation
in Eq 3.7. In Eq 3.5 we see that the network is indeed capable of giving a score to multiple
nodes, and so if a question asks to count red cubes, the network will indeed be able to
highlight all red cubes in the graph. However, we think this information is lost in Eq 3.7.
Since

∑
pN = 1, regardless of the number of objects in the scene, it is difficult for the

architecture to encode a specific number in vector m.

Conjunction Next up we observe Table 5.5. Again we see a decrease in performance
compared to jump questions, although not so steep compared to the counting questions.
Accuracy of a random model would be less than 0.5, so the results for this category are
actually closer to the questions with jumps. Interestingly, there is a correlation between the
results per queried property and the respective random performance, since there are just two
options for size and material, but three for shape and eight for color.

There is no definitive answer on how to explain the accuracy of this experiment, but we
can provide some speculative possible explanations. First, one thing to notice is that the final
operation of selecting a property of an object matches the design of the network, whereas the
counting operation is simply not supported by the original design. The network would have
to rely on a more complex representation of the information in the final aggregating vector
to encode a count instead of an object property. Another idea is that the specific conjunction
questions created for CLEVR don’t have jumps within each branch. For example, consider

28

the question

What is the color of the sphere left of the cylinder and below the cube?

and compare to

What is the color of the sphere that is both left to the cylinder and below the red
cube that is to the left of the blue cube?

In the first case the final node of both branches is reached by directly identifying an object,
but in the second case, one of the branches requires following a relationship to reach the
final node of the branch. This might increase the complexity of the questions, but it is not
explored in the CLEVR dataset.

The simplicity of the branches could allow the network to reach the final node in only
two steps. Using the first question as example, in the first step both the cylinder and
the cube could be attended to. Then, the next instruction would have to encode both
relationships, left and below, so that in the second equation of Eq 3.6 a node that satisfies
both relationships receives the most probability weight. This is indeed possibly if we look at
Eq 3.3, where an instruction is free to attend to as many tokens from the input question as
needed. Conceptually, this would equate to computing both question branches in parallel.

The previous mechanism relies on the assumption that the instruction in Eq 3.3 is able
to attend to an arbitrary number of tokens in the input question. This is possible in theory,
but in practice it is extremely hard for a softmax layer to reliably highlight multiple positions
in the input vector. It is for this reason that we believe the network is far from a perfect
performance on this question category. The instructions would have to be overloaded with
information, which we believe could hinder the network’s operation.

Implicit relations The category of implicit relations follows the trend of having lower
results than the questions where the jumps are explicit in the graph. However, among the
unfavorable categories the model performs remarkably well. Most notably, we can see in
Table 5.6 the questions that requires a jump by the same size and the last query is about
the object’s material, the network achieves 0.91 accuracy. The inverse also holds, i.e. when
the jump is done by same material and the final query is about size. Let’s remember that
both properties size and material have only two values each, so the variability in those
subcategories is small.

Similar to conjunction questions (see Table 5.5), we see that the network performs worse
in questions that involve color, since it is the property that has the highest number of different
values.

The high performance of the network can be explained by a faulty implementation of the
algorithm to create this category of questions in the CLEVR dataset. Although the authors
took the necessary precautions to avoid having questions with answers that are self contained,
meaning it is not even necessary to look at the image to answer them (e.g. What is the color

29

There is a small purple thing that is the same
material as the big gray object; what shape
is it?

What material is the other thing that is the
same size as the gray object?

Figure 6.1: The first figure shows a question in the category of implicit relations where the
relation is actually not needed to identify the queried object. In this case, there is only
one purple thing, and so it is not necessary to associate its material to the big grey object.
Compare to the second question, where it is mandatory to first identify the grey object (the
small grey ball) and then, using its size (small) find the other small object in the image.

of the objects that is the same color as the blue cube?), they didn’t verify that the implicit
relations had to be followed in order to identify the final objects. This is best understood
with examples. Figure 6.1 shows an example of this phenomenon, where sometimes the final
queried object can be identified without attending to anything else, just because there is not
enough variety of objects in the image. The first question of Figure 6.1 expects an agent to
identify a "small purple thing" using the material of "the big gray object". Since there is only
one small purple object, knowing its material is superfluous. When this phenomenon occurs,
the network is only required to focus on an object and select one of its property, an operation
we have already establish the NSM can do. Manual exploration of the test set shows that
around 50% of the questions in this category suffer from this problem, which explains the
high performance of the model.

The poor performance of the network on the rest of the questions (like the second question
of Figure 6.1) might be explained by the distribution update equations in Eq 3.6. From the
second equation we see that the only mechanism the network has to carry any information
from step i to step i+ 1 is via the relationship component pri+1. psi+1 is computed using only
the current instruction and the properties of nodes, and the previous probability weight of
each node is not considered. With this in mind, for a question like What material is the other
thing that is the same size as the gray object?, even though the network could focus on the
grey object, its probability weight could not be transferred to any other object because the
next instruction could not include a spacial relation, as there are none in the question.

30

Comparisons The category of comparison questions shows a behaviour similar to the
existence questions. As we can see in Table 5.7, the performance of the network is relatively
good when there are no jumps involved in the question, but when some hops are required to
reach the final node of each branch, the performance worsens to random levels (let’s remember
all comparison questions are binary yes/no questions).

To attempt explaining the relatively high performance when there are no hops invFeed-
backolved, we reuse the argument used in the discussion for conjunction questions. Albeit
difficult in practice, Eq 3.3 indeed gives the network enough freedom to attend to multiple
objects in a single instruction. Let’s use as example the question Are the cube and cylinder
the same color?. The network could attend to both the cube and cylinder, an the final ag-
gregated vector m of equation Eq 3.7 would contain both object’s colors. If these colors are
the same, then only one color would be present in m, but if the colors are different, then
more that one color would appear in m. This could allow the network to correctly answer
the question.

Where we think the network fails for this case is again in Eq 3.6, and its inability to
conditionally update the state based on the previous state. Even assuming the network could
compute branches in parallel, as speculated for questions with conjunctions, the presence of a
relationship in a instructions forces all nodes to transfer its probability to neighboring nodes.
Let’s consider a question where only one branch includes a relationship, like Is the cube the
same color as the sphere above the cylinder?. Assuming the first instruction correctly pushes
the NSM to focus on both the cube an the sphere, when trying to transition only one branch
using the relation above, all nodes will transfer its probability via this relation, since the
second equation from Eq 3.6 applies to all nodes. This would make the network shift the
high probability mass the cube had, effectively "forgetting" about the relevance of the cube.
This would make it impossible for the network to answer the question, after having lost the
initial focus on the cube.

31

Chapter 7

Conclusions

Let’s once again remember our hypothesis

There are natural questions over graph data that the NSM cannot answer. These
include questions that require the ability to count, that require comparisons be-
tween objects and questions where logical conjunction must be performed.

In the previous chapter we’ve seen the NSM has virtually random performance on count-
ing and comparison questions. The NSM’s performance also decreases in questions that
require conjunctions (logical and) and that feature implicit relations (see subsection 4.3.4 for
a description). In these last two categories the decrease in performance is not so steep, but it
is clearly lower compared to an almost perfect score in jump-query questions, for which the
network was designed. These question categories are found in the CLEVR dataset which was
designed to test multiple reasoning capabilities of VQA systems, and so it is sensible to use
them to evaluate the NSM. These findings show strong evidence in favor of our hypothesis.

Summarizing, in this work we’ve shown how the NSM is unable to answer question types
that involve counting, performing comparisons and logical conjunctions. Our results show
that although the network doesn’t degenerate to random levels on most cases, indeed its
performance is well below compared to its intended target questions.

Our proposed question categories were strongly influenced by our notions of traditional
state machines, and how their pitfall is their lack of memory. Hence, our ‘questions required
(in our opinion) the use of some sort of "memory" to be answered, either be it storing a
running number for counting, or remembering the state of a previous computation, as in
the comparison questions. Understanding the cause of the low performance of the NSM is
challenging as we would’ve had to perform a more thorough analysis of the network’s weights
and their evolution over the training process, which quickly becomes intractable.

The insight obtained in this work helps lay ground for future work. A straightforward im-
provement, inspired from automata theory, could be adding a simple LIFO memory module
to the network, simulating a push-down automaton. Previous work on machine-like architec-
tures [12, 13] have shown good results when allowing the network to interact with a memory

32

module, but to the best of our knowledge, this technique hasn’t been applied to answering
questions based on graphs (or images). This extension wasn’t explored in this work because
of time constraints.

Finally, this work provides the community with an open source implementation of the
network and the training details to replicate this work. The original authors didn’t open-
source the code for the network nor their experiments, so this would be the only open source
implementation. Hopefully this can encourage more people to experiment with the network
and further this research line.

33

Bibliography

[1] Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and Aniruddha Kembhavi. Don’t just as-
sume; look and answer: Overcoming priors for visual question answering. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 4971–4980,
2018.

[2] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module net-
works. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 39–48, 2016.

[3] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C. Lawrence Zitnick, and Devi Parikh. VQA: Visual Question Answering. In Inter-
national Conference on Computer Vision (ICCV), 2015.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[5] Jeffrey P. Bigham, Chandrika Jayant, Hanjie Ji, Greg Little, Andrew Miller, Rob Miller,
Aubrey Tatarowicz, Brandyn Allen White, Samuel White, and Tom Yeh. Vizwiz: nearly
real-time answers to visual questions. In International Cross-Disciplinary Conference
on Web Accessibility, 2010.

[6] Tianshui Chen, Weihao Yu, Riquan Chen, and Liang Lin. Knowledge-embedded routing
network for scene graph generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 6163–6171, 2019.

[7] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan,
Yu Cheng, and Jingjing Liu. Uniter: Learning universal image-text representations.
arXiv preprint arXiv:1909.11740, 2019.

[8] Blender Online Community. Blender - a 3D modelling and rendering package. Blender
Foundation, Stichting Blender Foundation, Amsterdam, 2018.

[9] William Falcon and Kyunghyun Cho. A framework for contrastive self-supervised learn-
ing and designing a new approach. arXiv preprint arXiv:2009.00104, 2020.

[10] Donald Geman, Stuart Geman, Neil Hallonquist, and Laurent Younes. Visual turing
test for computer vision systems. Proceedings of the National Academy of Sciences of
the United States of America, 112, 03 2015.

34

[11] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making
the v in vqa matter: Elevating the role of image understanding in visual question answer-
ing. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 6904–6913, 2017.

[12] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

[13] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka
Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho,
John Agapiou, Adrià Puigdomènech Badia, Karl Moritz Hermann, Yori Zwols, Georg
Ostrovski, Adam Cain, Helen King, Christopher Summerfield, Phil Blunsom, Koray
Kavukcuoglu, and Demis Hassabis. Hybrid computing using a neural network with
dynamic external memory. Nature, 538(7626):471–476, Oct 2016.

[14] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2(5):359–366, 1989.

[15] Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko.
Learning to reason: End-to-end module networks for visual question answering. In
Proceedings of the IEEE International Conference on Computer Vision, pages 804–813,
2017.

[16] Drew Hudson and Christopher D Manning. Learning by abstraction: The neural state
machine. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

[17] Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual
reasoning and compositional question answering. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 6700–6709, 2019.

[18] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence
Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for compositional language and
elementary visual reasoning. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1988–1997, 2017.

[19] Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Judy Hoffman, Li Fei-
Fei, C Lawrence Zitnick, and Ross Girshick. Inferring and executing programs for visual
reasoning. In Proceedings of the IEEE International Conference on Computer Vision,
pages 2989–2998, 2017.

[20] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,
Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome:
Connecting language and vision using crowdsourced dense image annotations. Interna-
tional journal of computer vision, 123(1):32–73, 2017.

[21] Gen Li, Nan Duan, Yuejian Fang, Ming Gong, Daxin Jiang, and Ming Zhou. Unicoder-
vl: A universal encoder for vision and language by cross-modal pre-training. In AAAI,
pages 11336–11344, 2020.

35

[22] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. Vi-
sualbert: A simple and performant baseline for vision and language. arXiv preprint
arXiv:1908.03557, 2019.

[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in
context. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors,
Computer Vision – ECCV 2014, pages 740–755, Cham, 2014. Springer International
Publishing.

[24] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic
visiolinguistic representations for vision-and-language tasks. In Advances in Neural In-
formation Processing Systems, pages 13–23, 2019.

[25] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Hierarchical question-image
co-attention for visual question answering. In Advances in neural information processing
systems, pages 289–297, 2016.

[26] Mateusz Malinowski and Mario Fritz. A multi-world approach to question answering
about real-world scenes based on uncertain input. Advances in neural information pro-
cessing systems, 27, 2014.

[27] David Mascharka, Philip Tran, Ryan Soklaski, and Arjun Majumdar. Transparency by
design: Closing the gap between performance and interpretability in visual reasoning.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
4942–4950, 2018.

[28] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-
torch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc.,
2019.

[29] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors
for word representation. In Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 1532–1543, 2014.

[30] Kevin J Shih, Saurabh Singh, and Derek Hoiem. Where to look: Focus regions for
visual question answering. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4613–4621, 2016.

[31] Hava T Siegelmann and Eduardo D Sontag. On the computational power of neural nets.
In Proceedings of the fifth annual workshop on Computational learning theory, pages
440–449, 1992.

[32] Kewei Tu, Meng Meng, Mun Wai Lee, Tae Eun Choe, and Song-Chun Zhu. Joint video
and text parsing for understanding events and answering queries. IEEE MultiMedia,
21(2):42–70, 2014.

36

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008, 2017.

[34] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh. Graph r-cnn for
scene graph generation. In Proceedings of the European conference on computer vision
(ECCV), pages 670–685, 2018.

[35] Peng Zhang, Yash Goyal, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Yin
and yang: Balancing and answering binary visual questions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 5014–5022, 2016.

[36] Guangming Zhu, Liang Zhang, Youliang Jiang, Yixuan Dang, Haoran Hou, Peiyi Shen,
Mingtao Feng, Xia Zhao, Qiguang Miao, Syed Afaq Ali Shah, et al. Scene graph gener-
ation: A comprehensive survey. arXiv preprint arXiv:2201.00443, 2022.

37

	Introduction
	Related Work
	VQA - Datasets
	VQA - Methods
	Machine-inspired Architectures

	The architecture in depth
	Preliminaries
	Formal definition
	Concept Vocabulary
	States and transitions
	Instructions
	Transition function - State machine simulation

	Research methodology
	Dataset Selection
	CLEVR Dataset
	Images
	Questions

	Question families chosen for this work
	Questions with jumps
	Counting questions
	Questions with conjunctions
	Questions with implicit relations
	Questions with comparisons

	Input representation

	Experiments
	Questions with jumps
	Counting questions
	Existence
	Counting

	Conjunction
	Implicit relations
	Comparison

	Discussion
	Baseline
	Hypothesis categories

	Conclusions
	Bibliography

