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Resumen
Detección de Unit Test Smells de C#
en Visual Studio

Los Test Smells son malas prácticas de programación que suelen indicar problemas de diseño
en código de testeo. Tienen un impacto negativo en la comprensibilidad y mantenibilidad de
los tests, y suelen mantenerse en el código por mucho tiempo luego de ser introducidos. Esto
es debido a que los desarrolladores no suelen darles importancia, a pesar de las los problemas
que trae su presencia.

Por lo tanto, hemos desarrollado una herramienta de detección y refactoring, disponible
como paquete NuGet para el editor Visual Studio, que ayuda a los usuarios a identificar test
smells a medida que van escribiendo código, y facilita el proceso de arreglarlos o eliminarlos.
La herramienta detecta 14 smells distintos, destacándolos como avisos en el editor, y ofrece
refactorings automáticos para 7 de los smells.

También hemos desarrollado una manera alternativa de analizar proyectos mediante una
herramienta de linea de comando, que permite ejecutar los mismos analizadores sin necesidad
de instalar nada en el proyecto. Esta herramienta genera un reporte con la lista de todos los
smells identificados, permitiendo al usuario obtener información detallada de la repartición
y naturaleza de los smells de su proyecto. Esto también puede ser integrado a una pipeline
de git, para correr al análisis antes de cada commit o pull request.

A partir de una validación manual de la herramienta sobre un corpus de tests industriales,
hemos determinado que el analizador tiene una precisión suficiente para ser útil en un
ambiente de producción, y ayudar a los desarrolladores a escribir código de testeo mas limpio
y mantenible.
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Abstract

Test smells are bad programming practices in unit test code that indicate possible
design problems within the tests. They have a negative impact on test readability and
maintainability, and have been shown to stay in code for long amounts of time, due to
developer perception not lining up with the negative consequences of their presence.

Thus, we have developed a set of analyzers and codefixes, available as a Visual Studio
NuGet package, to helps developers catch test smells as they introduce them, and expedite
the process of fixing them. The tool detects and reports a total of 14 different test smells as
warnings inside the editor and offers automatic fixing of 7 of the aforementioned smells as
code refactorings.

We have also developed a command line tool that allows developers to run the same
analysis without having to install anything, generating a list report of all smells found. This
allows developers to run analysis before commits as a git action or use external tools to get
useful information about the distribution and nature of smells affecting a project.

From manual validation in industrial test code, we conclude that the tool has sufficient
precision to prove useful in a production environment and help developers write cleaner and
more maintainable test code.

ii



Table of Content

1 Introduction 1

2 Background and Related Work 4

2.1 Code Smells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Test Smells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Defined Test Smells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Impact of Test Smells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Creation and Longevity of Test Smells . . . . . . . . . . . . . . . . . . . . . 9

2.6 Test Smell Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Detected Smells 11

3.1 Priority of Smell Detection and Fixing . . . . . . . . . . . . . . . . . . . . . 11

3.2 Detected smells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Roslyn 14

4.1 Analyzers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Codefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3.1 Batch Fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4 .editorconfig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

iii



4.4.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Common Implementation Techniques 19

5.1 Batch Fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Filtering for Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3 Getting Assertion Method Symbols . . . . . . . . . . . . . . . . . . . . . . . 20

5.4 Checking All Assertion Invocations in a Method . . . . . . . . . . . . . . . . 20

5.5 Analyzer Compendium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.6 Settings in .editorconfig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Analyzer and Codefix Implementations 23

6.1 Avoiding Erroneous Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.2 Empty Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2.2 Codefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.3 Magic Number Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.3.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3.2 Codefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.4 Obvious Fail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.4.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.4.2 Codefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.5 Redundant Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.5.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.5.2 Codefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.6 Assertion Roulette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.6.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iv



6.6.2 Codefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.7 Unknown Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.7.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.8 Duplicate Assert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.8.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.9 Exception Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.9.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.10 Conditional Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.10.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.11 Sleepy Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.11.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.12 General Fixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.12.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.13 Mystery Guest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.13.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.14 Eager Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.14.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.14.2 Codefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.15 Ignored Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.15.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.15.2 Codefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.16 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.16.1 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.17 NuGet Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.18 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Results and validation 46

7.1 Command Line Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

v



7.1.1 Command Line tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.1.2 CSV Output: Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . 47

7.1.3 CSV Output: Method Summary . . . . . . . . . . . . . . . . . . . . . 47

7.1.4 CSV Output: Method List . . . . . . . . . . . . . . . . . . . . . . . . 48

7.1.5 JSON Configuration file . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.1.6 Source Control Use Case . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.3 Analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.4.1 Diagnostic validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.4.2 Random Sample validation . . . . . . . . . . . . . . . . . . . . . . . . 53

7.4.3 Random Sample Validation Results . . . . . . . . . . . . . . . . . . . 56

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.5.1 Smells with Low Detection . . . . . . . . . . . . . . . . . . . . . . . . 57

7.5.2 False Negatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.5.3 False Positives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.5.4 Corpus of Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 Conclusion and Future Work 60

Bibliography 64

Annex A Detail of EmptyTest Detection and Fixing 66

A.1 Analyzer: EmptyTestAnalyzer . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.2 Fixer: EmptyTestCodefixProvider . . . . . . . . . . . . . . . . . . . . . . . . 69

Annex B Examples of Detected Smells 72

B.1 Assertion Roulette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vi



B.2 Conditional Test Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B.3 Duplicate Assert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B.4 Eager Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B.5 Empty Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

B.6 Exception Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

B.7 General Fixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.8 Ignored Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.9 Magic Number Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.10 Mystery Guest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.11 Redundant Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.12 Sleepy Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.13 Unknown Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.14 Obvious Fail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

vii



List of Tables

2.1 Summary of test smells impact in f-score of correctness. . . . . . . . . . . . . 8

3.1 Summary of detected test smells . . . . . . . . . . . . . . . . . . . . . . . . . 12

7.1 Detail of each project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2 Detected smells in Project A . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.3 Methods affected by each smell in project A . . . . . . . . . . . . . . . . . . 50

7.4 Detected smells in Project B . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.5 Detected smells in Project C . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.6 Detected smells in all projects . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.7 True and false positives per smell in the 11 methods with the most detected
smells in project A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.8 Smell instances found in manual validation . . . . . . . . . . . . . . . . . . . 56

7.9 Results of random sample validation . . . . . . . . . . . . . . . . . . . . . . 57

viii



List of Figures

1.1 Example of the TestSmells Detector detecting and helping to fix a test smell
instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Loss of correctness due to the presence of each smell . . . . . . . . . . . . . . 8

2.2 Frequency of test smellyness per smell . . . . . . . . . . . . . . . . . . . . . 9

4.1 Example of the codefix menu and preview. . . . . . . . . . . . . . . . . . . . 17

6.1 Analyzer detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2 Analyzer warning messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.3 Smells after codefix application . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.4 nuget.org page for the Test Smells package . . . . . . . . . . . . . . . . . . . 44

7.1 Detected smells in all projects . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.2 Detected smells in each file of Project A . . . . . . . . . . . . . . . . . . . . 53

7.3 Detected smells in each file of Project B . . . . . . . . . . . . . . . . . . . . 54

7.4 Detected smells in each file of Project C . . . . . . . . . . . . . . . . . . . . 54

7.5 Detected smells in the 11 methods with the most diagnostics . . . . . . . . . 55

ix



Chapter 1

Introduction

Unit testing is an integral part of modern software development. However, just as production
code can be riddled with code smells [22] (surface indications of design problems), so can
test code be subject to ”test smells”. Test smells are bad programming practices, indicators
of design problems (or simple developer oversights) that affect tests, such as using exception
handling within a test, or testing many production methods in one test.

Existing research [15, 27] has shown that these test smells have a negative impact in the
quality of tests, and that developers do not consider them a serious enough problem to spend
time searching and fixing them. Thus, test smells tend to have a long lifespan in the code.

This points to the importance and potential usefulness of a tool that automatically detects
these test smells within the editor, in order to help developers catch and fix these problems
as soon as they are introduced.

Raincode Labs [4] is an independent company specializing in compilation development,
with a primary focus on creating and sustaining compilers, transpilers, interpreters, and
similar tools. In their development workflow, Raincode extensively utilizes the C#
programming language [5] and employs the MSTest framework for unit testing [10].
Recognizing the importance of maintaining high-quality tests in their pipeline, Raincode
identified a need for a test smell detection tool tailored to their requirements.

While multiple detection tools exist [14], they are generally made with Java [7] projects
in mind, or are external applications that are not intended to use within a code editor, but
as a standalone application.

In this project, we develop such an in-editor tool, called TestSmells Detector , to detect
14 different test smells (and to help the developer fix 7). The tool is intended to be used
in C# projects utilizing the MSTest testing framework. It is available for use as a NuGet
module [11] within the Visual Studio [12] editor environment, or as a standalone command
line application for generating a test smell detection analysis of a complete project.

The TestSmells Detector is developed using the Roslyn framework [18], an open source
implementation of the C# compiler. It is made out of 2 main components for each smell: (1)
analyzers, which analyze the source code and raise diagnostics whenever they find a smell,
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and (2) codefixes, which give the user the option to refactor a smell identified by an analyzer,
when possible.

Within the Visual Studio editor, the smells found by the analyzers are displayed as
warnings (green underlines), and the available codefixes can be accessed through the Code
Action menu, as shown in the example in Figure 1.1.

(a) Assertion Roulette smell detected
(b) Warning message shown upon hovering the
smell

(c) Contextual refactoring menu for the smell
instance

(d) Fixed smell after refactoring (the contents of
the messages are input by the developer)

Figure 1.1: Example of the TestSmells Detector detecting and helping to fix a test smell
instance

The remainder of this report is structured as follows:

• Chapter 1 is this introduction.
• In Chapter 2, an examination of prior research on test smells is presented. The chapter

explores the origin and definition of the term, providing insights into 24 distinct smells
documented in the literature, including a newly introduced one in this project. The
discussion goes over the observed impact and persistence of these smells in various
studies, along with an exploration of the different techniques employed by existing
detection tools.

• In Chapter 3, we discuss the priority we utilized for deciding which smells would be
detected by the TestSmells Detector , as well as go over the list of smells for which an
analyzer was implemented.

• Chapter 4 deals with Roslyn, the framework utilized to implement the tool, and offers an
explanation of the general building blocks needed to develop an analyzer and a codefix.
We explain the concepts of Analyzers, Diagnostics, Codefixes and the configuration file
format of Roslyn, .editorconfig.

• In Chapter 5, we explain the techniques and methodologies commonly used within the
developed analyzers and codefixes, such as filtering test methods or analyzing the list
of assertion calls within a test method.

2



• Chapter 6 a comprehensive overview is provided regarding the implementation of each
analyzer and codefix. We also describe how the analyzers are tested and debugged, and
what the priorities of the design are.

• Chapter 7 deals with the validation of the analyzers. We explain the usage of the
command line application, which was used to analyze three industrial projects (provided
by Raincode Labs). We report on the results of these analyses and a manual analysis of
the generated diagnostics, and check the corresponding accuracy values gleaned from
them. Finally we discuss the meaning of these results and the conclusions we can learn
from them.

• Chapter 8 concludes with perspective for future work.

This document also has 2 appendices that provide additional context and information of
the tool’s implementation and the smells it detects:

• Appendix A offers an detailed description of the implementation of the simplest
analyzer, Empty Test, explaining the source code of the analyzer step by step.

• Appendix B shows simple code examples of each detected test smell.
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Chapter 2

Background and Related Work

There is extensive investigation and literature on the topic of test smells (although most
of it assumes the tests are written in Java). In this chapter we will look at the history and
definition of code smells and test smells. We will also look at the list of defined smells found in
literature, and their definitions. These smells have a proven impact on code maintainability,
and have been shown to have a long life expectancy in projects before being fixed, as discussed
in this chapter. Finally, we will look at the different approaches used by existing detection
applications.

2.1 Code Smells

In 1999 Martin Fowler wrote about the concept of code smells [21]: symptoms of deeper
coding problems, or, as he put it in a related article [22], ”a surface indication that usually
corresponds to a deeper problem in the system”. These are coding errors and bad practices
that do not stop a program from working correctly, but make maintaining and expanding
the code more difficult. In his book, Fowler defines a set of different smells and a series of
refactorings to fix each these smells once identified.

For example, some well known and very frequent code smells are Mysterious Name and
Duplicated Code, the former referring to a programs whose named elements (like variables,
functions, etc) have names that do not clearly communicate their use or purpose, the latter
indicating a program which has the same or very similar code repeated in multiple locations.

2.2 Test Smells

Test smells are a subset of code smells initially defined by Arie van Deursen et al. [17], which
pertains specifically to unit tests. while many general code smells can happen in unit tests,
Deursen defines a set of 11 smells (later expanded by other authors [3, 23]) which happen
only in or around unit tests and related testing classes.
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According to existing research [15], these smells have a negative impact in the quality of
the code and the ease of understanding of the purpose of each test, thus making it harder to
maintain and expand it.

Michele Tufano et al.’s investigation on the nature of test smells [28] also concluded that
test smells are frequently ignored by developers, and tend to stay in the code for long periods
of time without being refactored. They also find that most test smells are introduced at
the time of test creation, and stress the importance of tools that highlight the existence and
negative nature of these smells, to limit the introduction of new smell instances, and as a
reminder of the importance of refactoring the existing smells.

2.3 Defined Test Smells

There is a multitude of test smells defined in multiple works. While this is by no means an
exhaustive list, what follows is a generally complete sample of common test smells, which
appear in research literature:

1. Assertion Roulette [17, 3]: This smell occurs when a test has multiple assertions,
and doesn’t label them with message (most testing frameworks have a way to add a
message parameter to an assertion method). This makes it difficult to know what the
test is checking, and also makes it harder to understand what is happening if the test
fails.

2. Conditional Test Logic [3]: A test has this smell when it has conditional logic (if
statements, for or while loops) that control what happens inside it. Tests should be
simple and run the same statements each time they’re run. This smell complicates this
and also makes it harder to comprehend what the test is doing.

3. Constructor Initialization [3]: A test class should not have an constructor. If
test need global variables (that are not constants) or a base state for the class is
needed, a setup fixture (in MSTest, this would be a method with the [TestInitialize]
attribute) should be utilized. Otherwise, tests might change these values, and the result
of the tests could then depend on the order they are run.

4. Dead Fields [23]: A dead fields smell occurs when a class has fields that are never
used in any test method. The fields can be in a production class or a test class.

5. Duplicate Assert [3]: This smell occurs when a test checks the same condition
multiple times. While there may be a need to check the same condition with different
values, this should be done in a different test.

6. Eager Test [17, 3]: A test should check a single thing at a time, otherwise it is difficult
to comprehend and maintain. Thus if a test method tests more than one production
method, it is considered a test smell.

7. Empty Test [3]: When a test has no executable statements, most testing frameworks
mark the test as passing (since there is no failed assertion). This can give the wrong
impression that a feature is working correctly when in fact it isn’t being tested.
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8. Exception Handling [3]: Similar to Conditional Test Logic, this smells occurs when
a test catches or throws exceptions. If the test result is dependent on an exception
occurring (or not), then something like Assert.ThrowsException should be used
instead.

9. For Testers Only [17]: If a production class contains methods used only in test
methods, these are generally not needed or used to build a fixture. Thus, they should
be moved to the test class, not cluttering the production class.

10. General Fixture [17, 3]: This smell occurs when a test fixture sets up fields that are
not used in every test. This makes it harder to understand the base state of the fixture
when only a part of it is used on each test.

11. Ignored Test [3]: A test has this smell when it has the [ignore] attribute. These tests
increase compilation overhead and code complexity while not doing anything in return.

12. Indirect Testing [17]: A test has this smell when it checks methods that are not its
associated production class, for example calling methods in objects referenced by the
production object.

13. Lack of Cohesion of Test Methods [23]: This smell occurs when tests are grouped
in one class but have no cohesion.

14. Lazy Test [17, 3]: This test smell refers to when multiple tests check the same method
with the same fixture (but for example, check different fields of the object). Since they
generally only make sense in a group, they should be consolidated in a single test
method.

15. Magic Number Test [3]: This smell occurs when the assertion methods have numeric
literals as arguments, instead of saving the value in a local constant with a descriptive
name.

16. Mystery Guest [17, 3]: A test has this smell when it uses external resources (text
files, databases) to set up a fixture. This makes it harder to understand what the test
is doing, and also introduces the risk of the file changing, affecting the test in hidden
ways.

17. Redundant Assertion [3]: The test has an assertion which checks the equality of an
object with itself. This smell is usually left over from debugging.

18. Redundant Print [3]: This smell occurs when a test contains a print statement.
These are redundant in automated tests and are generally used in debugging and then
forgotten about.

19. Resource Optimism [17, 3]: The test uses external resources without checking if
they exist. This can change the result of the test without being dependent on changes
in the code.

20. Sensitive Equality [17, 3]: If a test checks for equality of objects by their ToString
representation, it is sensitive to changes or gaps in the string representation. Instead,
they should have and use an Equals method.
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21. Sleepy Test [3]: This smell happens when a test uses the sleep() function. This is
usually done to simulate API delay or similar situations.

22. Test Code Duplication [17]: This smell is more general, referring to having
duplicated code in the test methods, as can happen in any type of code.

23. Test Run War [17]: The test uses a temporary file used by other methods. This
can make it so a test’s result depends on a previous test that could have changed said
temporary file.

24. Unknown Test [3]: The test does not have any assertion. Most testing frameworks
will count such a test as passing unless it raises an exception. If the test is intended
to check if the tested method runs without raising an exception, specific tools for this
exist and should be used.

To this list we add the following new smell:

25. Obvious Fail: The test has an IsTrue(false) or IsFalse(true) assertion, which
can be replaced by a Fail() assertion.

The Obvious Fail smell is added due to finding it multiple times within the manual
validation phase of the project, in which it did, in fact, hinder the comprehension of the
tests.

2.4 Impact of Test Smells

There is existing research showing that test smells have a negative impact in the
maintainability and error-proneness of project [15]. In their paper, Bavota et al. investigate
8 different test smells, calculating the frequency of each of them (in a variety of java projects)
and the impact of each smell in developers’ understanding of a test (correctness) and time
taken to understand what the test is doing. The study checks for differences in results between
developers of different experience levels, from 1st year B.Sc. students to industrial developers.
Their findings indicate that test smells have a significant impact in the correctness, but make
a negligible difference in time taken to respond the questions given. This impact varies
greatly depending on the developer’s experience.

Since we expect the smell detection tool to be used mainly by experienced developers, we
will look specifically at the results of industrial developers and masters students, discarding
the results of fresher and bachelor students.

The (abridged) results of the study are as shown in table 2.1: The Frequency column refers
to the frequency of detection of each test smell in the checked test methods (for example,
Assertion Roulette was identified in 55% of the test methods). ∆FM Refers to the loss of
correctness F-Score in the developers’ responses, for a test method with a specific smell (for
example, questions about a specific method has a 0.90 drop in its responses’ f-score when
comparing the smelly method and its fixed version, for master students). A higher ∆FM
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means a higher negative impact in developers’ comprehension of the test method. The same
information is shown as a graphic in Figure 2.1

Test Smell Frequency
Masters
students’

∆FM

Industrial
developers’

∆FM

Average
∆FM

Assertion Roulette 55% 0.90 0.42 0.66
Mystery Guest 8% 0.62 0.25 0.44
Eager Test 34% 0.37 0.24 0.31
Indirect Testing 11% 0.21 0.29 0.25
Test Code Duplication 35% 0.18 0.28 0.23
General Fixture 16% 0.21 0.12 0.17
Sensitive Equality 5% 0.37 -0.05 0.16
Lazy Test 2% 0.12 0.15 0.14

Table 2.1: Summary of test smells impact in f-score of correctness.

Figure 2.1: Loss of correctness due to the presence of each smell

As we can see in Figure 2.2, each smell varies in how commonly they are found in tests,
with Assertion Roulette, Eager Test, and Test Code duplication being the most frequent.

Assertion roulette has the biggest impact and frequency, appearing in more than half of
the studied tests. When it is present in a test, the developers responding to the study had
a significantly lower score in their understanding of the tests. The other smells also have an
impact, each lesser than the last. However, all of them do have a negative impact in test
comprehension (except, arguably, Sensitive Equality and Lazy Test, which have a very small
frequency and loss of correctness).
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Figure 2.2: Frequency of test smellyness per smell

2.5 Creation and Longevity of Test Smells

In 2016, Tufano et al. [27] investigate developers’ perception of test smells, as well as the
way test smells are introduced in to the code, and their longevity. From their investigation,
they find that:

• Developers don’t perceive test smells as a problem, despite their negative impact on
the code.

• Most test smells are introduced when the test is first created and committed. They
highlight the importance of performing quality checks on commit time in order to avoid
introducing new test smells.

• Most test smells survive in code for a very long time, meaning they are not fixed after
being introduced.

Their results highlight the importance of having a tool that helps developers catch test
smells when they are created and reminds them of the negative impact these smells have on
the code.

2.6 Test Smell Detection

In their study Test Smell Detection Tools: A Systematic Mapping Study [14], Aljedaani et
al. analyze 22 different test smell detection tools released before 2020, most of which are
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intended for use in Java projects. Within these existing smell detection tools, they identify
4 main techniques used for identifying test smells:

• Rules/Heuristic: This approach to detection makes use of predefined rules, patterns
and metrics to detect smells. For example, Assertion Roulette is detected by checking
if a method has multiple assertion methods without message parameters.

• Information Retrieval: This technique uses natural language processing models to
analyze code (generally after a pre-processing step).

• Dynamic Tainting: This way of detecting test smells makes use of runtime analysis
of the test code.

• Metrics: This approach makes use of predefined symptoms of smells, such as Number
of Fixture Objects, Number of Fixture Production Types, and Average Fixture Usage,
and detects smells by tracking when some of these metrics go above specified thresholds.

The implemented tool employs rules and heuristics for detection, as it represents the
simplest and most straightforward approach feasible within Roslyn, which lacks support for
dynamic tainting. Additionally, training a language model or identifying effective metric
indicators for smells falls beyond the scope of this project.

2.7 Summary

In summary, test smells are a subcategory of code smells, a type of design error or indicator
to design problems in tests. These smells, apart from pointing to a possible problem with the
way the code is designed, hinder test readability and maintainability. Developers generally
don’t identify these smells as problems to fix, and thus they tend to stay in the code without
being refactored. This justifies the development of a detection tool (in our case, utilizing
rules and heuristics to identify the smells) that warns developers of any test smell they are
creating as soon as they code it.
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Chapter 3

Detected Smells

From the last chapter we have identified of 25 different test smells that can be found in test
code. However, due to time and feasibility constraints, not all of these are tackled in this
project. From these 25 smells, we have to prioritise, and end up with a list of 14 smells that
are actually detected by the TestSmells Detector .

3.1 Priority of Smell Detection and Fixing

As mentioned in 2.4, each smell has varying degrees of impact and frequency [15]. As
such, this project will use this information as a guideline to decide which smells have a
higher priority of detection and fixing. Specifically, the smells Assertion Roulette, Mystery
Guest, Eager Test, Indirect Testing and General Fixture have a higher priority. Test Code
Duplication will not be tackled, even if it has a higher impact than General Fixture, because
it is a more general smell and with already existing tools for in-editor detection and fixing
[2, 19].

In practice, 4 out of the 8 smells detailed in the study are implemented. Specifically,
Test code duplication is not implemented due to the existence of more mature tools for
code duplication detection. Indirect Testing is not implemented due to it being difficult to
accurately determine the production method of a test within Roslyn, and Sensitive Equality
are not implemented due to their limited impact a frequency, as per the aforementioned
study.

The rest of implemented test smells were decided mainly by ease of implementation,
expected accuracy, and feasibility within Roslyn. Other smell analyzers were also coded due
to their similarity to already implemented smells making them easy to make.

It was generally preferred to build analyzers where a clear path to correct detection
presented itself, in order to minimize implementing analyzer that then were not useful due
to their low accuracy or narrow usability.

For example, Mystery Guest’s implementation showed that correctly identifying any file
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access in a test is a lot more complex that what can be done efficiently in Roslyn. Thus, a
similar smell, Resource Optimism, was not implemented.

3.2 Detected smells

In its current form, the analyzer package detects a total of 14 different test smells. The smells
that are detected are as shown in table 3.1. In Appendix B we present examples of each of
these smells.

Test smell Description
Assertion Roulette The test has multiple asserts without descriptions.
Conditional Test
Logic

The test has control statements, or its result depends
on a control statement.

Duplicate Assert The test checks for the same condition multiple times
within the same test method.

Eager Test The has multiple assertions, and they check the results
of more than one method.

Empty Test The test contains no executable statements.
Exception Handling The test throws or catches an exception.
General Fixture The setup fixture sets up variables used in only some

tests.
Ignored Test The test has the [ignore] attribute.
Magic Number Test The test has assertions with literal values as arguments.
Mystery Guest The test uses external resources, such as a file or

database.
Redundant
Assertion

The test has an assertion which checks the equality of
an object with itself.

Sleepy Test The test uses the sleep() function.
Unknown Test The test does not have any assertion.
Obvious Fail The test has IsTrue(false) or IsFalse(true)

assertions.
Table 3.1: Summary of detected test smells

Empty Test was the first smell to be implemented, due to its relative simplicity, in spite
of its (perceived) low impact and frequency. This was helpful to grow an understanding and
familiarity with the Roslyn framework.

Smells implemented can also be grouped by their similar implementation (detailed in 6),
which, once one of them was implemented, meant it was easier and faster to do the rest.

The groups are as follows:

• Conditional Test Logic, Sleepy Test and Exception Handling

• Assertion Roulette, Duplicate Assertion and Unknown Assert
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• Magic Number and Redundant Assertion

3.3 Summary

In summary, we prioritise 14 different smells to detect with the TestSmells Detector , with
the main criteria being impact, frequency of appearance, and ease of implementation. Some
of these smells can be grouped by the similarity of their implementation, which meant they
were easier to make once the first was done.

13



Chapter 4

Roslyn

The framework utilized to detect and fix the prioritised smells is Roslyn [18]. Specifically,
we use Roslyn analyzers and codefixes to detect and fix (when possible) the test smells.
The utilized components of Roslyn detailed in this chapter are Analyzers, which detect
the test smells, Diagnostics, which are what an analyzer reports when a smell is detected,
Codefixes, which can automatically change a document in the editor to fix a detected smell,
and .editorconfig, the configuraiton file format utilized by Roslyn.

4.1 Analyzers

An analyzer is a class that analyzes the compilation, syntax, semantics and control flow of the
code to detect errors, smells, or formatting issues. If it finds an issue, it reports a diagnostic
with the issue’s location and additional information. This diagnostic is then shown to the
user by the editor’s warning or error messages and underline squiggles.

Analyzer Actions

An analyzer works by registering multiple actions which operate over multiple steps of code
analysis:

1. Compilation: In a compilation action, the analyzer has access to everything needed
to compile the document, including assembly references, compiler options, and source
files. Its main use is to get references to classes, to then use them in other actions. For
example, many analyzers in this project use the compilation action to get references
to the TestClass and TestMethod classes, to then check, in a Symbol action, if an
analyzed method is a test method inside a test class.

2. Symbol: In a symbol action, the analyzer has access to named objects, like variables,
classes, fields, etc, including those imported from other source files. It’s useful, for
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example, to check if a method has a specific attribute, or to get a list of all of a class’
fields for use in another action.

3. Syntax: In a syntax action, the analyzer has access to the syntax tree, and can check
what is written, including whitespace and comments. It is mostly used to check for
formatting rules, since the operation action is better for analyzing the code structure
in most situations.

4. Operation: In an operation action, the analyzer has access to the operations done by
the code. This lets the code check things like method invocations, switch operations,
variable declarations, and others. Most analyzers concerned with what the code does
need to check the operations.

Some actions, like Symbol, Operation and Syntax, can be registered on a ”kind”, meaning
the registered action is only triggered when an object of the corresponding kind is encountered
in the tree. For example, an operation action registered on invocation operations is only
triggered on operation invocations (while still having access to the complete operation tree).
This means an action can be registered without having to check that the triggering symbol,
node or operation is of a specific type each time.

4.2 Diagnostics

Diagnostics are what an analyzer produces after finding a piece of code matching its
conditions.

Diagnostics store multiple pieces of information:

• An ID, unique to each analyzer (but not each instance of the diagnostic). For
example, different tests with no statements would trigger 2 separate diagnostics with
the EmptyTest ID.

• A location, which tells the editor where in the document there is a diagnostic. It’s
expressed in starting and ending lines and columns (characters).

• A message, which is shown to the user in the Error List and when they mouse over the
diagnostic.

• A severity level, which determines the way it is shown (or isn’t) to the user in the
editor, and if it allows the project to build.

• A dictionary of string properties, which isn’t shown to the user but can be useful for
the developer.

The severity levels are:

• Error: The diagnostic shows up as an error in the error list and scroll bar, with red
squiggles under the offending piece of code, and cause builds to fail.
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• Warning: The diagnostic shows up as a warning in the error list and the scroll bar,
with green squiggles under the offending piece of code.

• Info: The diagnostic shows up as a message in the error list, with small grey squiggles
under the offending piece of code.

• Hidden: The diagnostic does not show up in the editor, but is reported to the IDE.

• None: The diagnostic is not reported.

4.3 Codefixes

A codefix is a class that works in tandem with an analyzer to remove or refactor a detected
issue. The class registers one or multiple CodeActions, which change one or multiple
documents’ syntax trees. Roslyn’s implementation of the code’s syntax tree is immutable.
Thus, whenever any change is made to a document, a brand new copy of the syntax tree,
with the appropriate changes, is made each time. Each codefix class has a list of diagnostic
IDs to which it can be applied.

Within the editor, the user can then choose a codefix from a contextual drop-down menu
for a specific diagnostic. Codefixes also have a preview, which lets the user see what the
result of the fix will be before deciding to apply the changes to the code.

4.3.1 Batch Fixing

Some codefixes can be applied simultaneously to all instances of an error, with the scope
of the changes (document, project or the entire solution) chosen by the user. When this is
enabled, the fix gives the option to fix all occurrences in different contexts, as seen in figure
4.1.

Roslyn has a default way to add batch fixing to a codefix (by using
WellKnownFixAllProviders.BatchFixer).

However, this only works for codefixes that are do not interfere with other instances of
itself. For example, a codefix that changes the name of a method can be run simultaneously,
as long as it doesn’t always change the name to the same thing, because if it does, it could
change the name of multiple methods to the same thing, and introduce an error into the
code.

For these cases, a custom implementation of batch fixing must be provided by the
developer.
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Figure 4.1: Example of the codefix menu and preview.

4.4 .editorconfig

Roslyn utilizes a configuration file format called EditorConfig [26]. Since Roslyn already
gets the smell severity values from this file format, and has an API for correctly accessing
the pertinent .editorconfig file. Thus, this what is used for the project.

This format allows for the user to define the severity of each analyzer diagnostic, from
completely hidden to an error that will stop compilation.

An .editorconfig file is to be placed in a solution or project files, and it applies
to documents and folders contained in it’s folder, recursively. However, a solution or
project can have multiple .editorconfig files, and the analyzer automatically decides which
configuration has priority, using the configuration file closest to each document.

A diagnostic’s severity can be manually set by adding the
dotnet diagnostic.diagnosticID.severity value to the .editorconfig document
(changing diagnosticID for the specific diagnostic).

The severity level codes are:

Severity editorconfig code
Error error
Warning warning
Info suggestion
Hidden silent
None none
Default default

A developer may access arbitrary configuration keys within an analyzer, for which the
user can set values within the configuration file. For example, an analyzer could access
dotnet diagnostic.diagnosticID.threshold within its code, and the user may set the
value within the project’s .editorconfig.

Configuration values can be grouped by headers with wildcard patterns that limit the
types of file to which the configuration applies.
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4.4.1 Example

Next is an example of a simple .editorconfig file. In this example, The Unknown Test
analyzer is set to hidden, so the diagnostics are not shown to the user. Assertion Roulette is
set to Info, to lessen the severity of the smell when shown to the user. Finally, the custom
value IgnoredFiles of the Mystery Guest analyzer is set to ”database.txt, values.csv”.

This configuration only applies to C# files due to the [*.cs] header, and only to files
for which it has priority.

[*.cs]
dotnet_diagnostic.UnknownTest.severity = silent
dotnet_diagnostic.AssertionRoulette.severity = suggestion

dotnet_diagnostic.MysteryGuest.IgnoredFiles = database.txt, values.csv

4.5 Summary

We utilize Roslyn for the implementation of the test smell analyzers, making use of the
framework’s analyzer class for test smell detection, and its codefix class for test smell fixing.
The analyzers report diagnostics, which store the position and other data pertinent to any
test smell found, and tell the IDE where to highlight code for the user to take notice. We use
the .editorconfig format to pass configuration values to the analyzers that may use them,
and to allow the user to set the severity of each smell to their preferred level.
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Chapter 5

Common Implementation Techniques

Within Roslyn, many analyzer implementations have parts in common. Thus, in this chapter
we explain the use case and implementation of multiple techniques utilized within the 14
analyzers and 7 codefixes, to be referenced later in chapter 6.

5.1 Batch Fixing

Unless otherwise noted, all codefixes register WellKnownFixAllProviders.BatchFixer as
their FixAllProvider, as explained in 4.3.1. This allows them to be run on multiple instances
of a smell at the same time with one call of the refactoring, if the users chooses to do so.

5.2 Filtering for Test Methods

Since most test smells occur only in test methods or test classes, it’s good to check at the
beginning if the analyzed method or class is relevant, or return if it isn’t. This way most of
the actual analysis isn’t run if the analyzed method isn’t a test method. This is done by:

1. In the compilation step, getting the UnitTesting.TestClassAttribute and
UnitTesting.TestMethodAttribute class symbols from the compilation.

2. In a symbol action, check the method’s attributes for equality with the
[TestMethodAttribute] class symbol.

3. Check the method’s containing class’ attributes for equality with the
[TestClassAttribute] class symbol.

4. If any of these is not present, or if the symbols are not in the compilation (when, for
example, the package is not installed), return and end the analysis.

Since most analyzers in this project follow these steps, from now on this process will be
summed up as ”filtering for test methods”.

19



5.3 Getting Assertion Method Symbols

Assertion methods are found by comparing the code’s invoked methods to a list of method
symbols. These symbols are saved in a list (generally at the compilation action step, in order
to do it only once) by:

1. Defining a string list of method names. In this case, we manually hard-code each of
the assertion method’s names into a list. This list can be changed depending on the
needs of the analyzer.

2. Manually getting the class symbols of the assertion classes
(Microsoft.VisualStudio.TestTools.UnitTesting.Assert,
Microsoft.VisualStudio.TestTools.UnitTesting.StringAssert and
Microsoft.VisualStudio.TestTools.UnitTesting.CollectionAssert) from
the compilation.

3. For each class symbol, and for each method name string, getting all members with the
name from the class symbol (this also gets all overloads with the same name), and store
them in a list.

5.4 Checking All Assertion Invocations in a Method

Many analyzers need to iterate over the list of all assertion invocations of a method. This
is done in a two stage process: Collecting all assertion calls inside a concurrent bag in an
Operation action, then analysing them in a SymbolEnd action:

1. Get the list of relevant assertions (as per 5.3).

2. After filtering for test methods (as per 5.2) in a SymbolStartAction, create a
ConcurrentBag<IInvocationOperation> to store the assertion invocations.

3. Register an operation action on Invocation operations, with the ConcurrentBag and
list of assertions as parameters. This action will:

(a) Check if the invocation’s target method is an assertion from the list.
(b) If so, add the invocation to the ConcurrentBag.

4. Register a SymbolEnd action with the ConcurrentBag as a parameter. This action will
iterate over the bag and determine if a smell is present.

SymbolEnd actions are guaranteed to run after the actions registered in SymbolStart
finish. This way, all invocations are added concurrently to the bag, before iterating over the
complete list.
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5.5 Analyzer Compendium

Many of the created analyzers follow a very similar pattern:

1. In a compilation action, get the [TestMethod] and [TestClass] class symbols from
the compilation. Sometimes, get another needed symbol, like the assertion methods or
the [Ignore] attribute.

2. Register a symbol start action on method symbols, which will:

(a) Filter for test methods.
(b) Either:

i. Register an operation action or operation block action, which can report a
diagnostic.

ii. Use the technique detailed in 5.4: Create a concurrent bag, and register an
operation action and a symbol end action, which can report a diagnostic.

Since so many analyzers have these steps in common, and work on the same methods, we
introduce the AnalyzerCompendium class, which groups all of these analyzers together, and
does the getting of the classes from the compilation and filtering for test methods steps only
once, before registering the analysis action of each of the sub-analyzers all at once.

In order to simplify the explanation of each analyzer, they are presented as if separately
implemented. Also, in the actual implementation, each analyzer is still a separate class whose
analysis method is called by the compendium, in order to better organize each analyzer action
and diagnostic descriptor.

All analyzers except General Fixture are included in the compendium. General Fixture’s
is not included because its implementation is very different from the rest of identifiers.

5.6 Settings in .editorconfig

Settings stored in .editorconfig are accessed using a specialAnalyzerConfigOptions
object from the context. However, in order to support custom settings (as a JSON file)
given from the command line application detailed in Section 7.1, an intermediate singleton
class is defined, SettingSingleton. At any moment, SettingSingleton’s custom settings
can be overwritten with SetSettings, passing a dictionary with the settings, and specifying
if these settings will override existing settings or not.

The class has a GetSettings method that takes the AnalyzerConfigOptions object and
the setting’s key. GetSettings first checks if the singleton has custom settings:

• If custom settings are set, it tries getting the custom setting. if it does not find it, it
checks if the original settings are to be overridden:
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– If they are overridden, returns null.
– if they are not overridden, return the original settings from

AnalyzerConfigOptions.

• If custom settings are not set, return the original settings from
AnalyzerConfigOptions.

5.7 Summary

We have detailed the common parts in most implementations of the analyzers, in order to
expedite the explanation of each analyzer in the next chapter. Most analyzers must filter
their analyzed methods for test methods and get the class and method symbols of MSTest
assertions. Some analyzers must check every assertion invocation in a method, which is also
detailed in this chapter. All but one of the analyzers follow almost the exact same steps for a
portion of their analysis, so a special class is implemented to run these steps only once, and
then branches out to each analyzer’s specific behaviour. Finally, we use a layer of abstraction
for accessing configuration files, in order to support passing a JSON configuration file for the
command line application explained in Section 7.1.
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Chapter 6

Analyzer and Codefix
Implementations

The final TestSmells Detector implementation consists of 14 analyzers and 7 codefixes. For
each smell, we recall its definition, explain why it has no codefix (if necessary), then describe
its detection and codefix (if it has one). They are presented grouped by the similarity of
their implementations. The grouping are:

• Empty test is not especially similar to any other analyzer, but is placed at the start
because it’s a good general example of a very simple smell.

• Magic Number, Obvious Fail, Redundant Assertion: These 3 analyzers check each
separate assertion’s arguments.

• Assertion Roulette, Duplicate Assertion, Unknown Test: These 3 analyzers check the
list of all assertions without caring about the rest of the test.

• Conditional Test, Exception Handling, Sleepy Test: These 3 analyzers check a specific
type of operation (or assertion), and simply report them if found.

• Ignored Test, Eager Test, General Fixture, Mystery Guest: These analyzers are not
very similar to any other in this project.

Figures 6.1, 6.2, and 6.3 are an example of working analyzer and codefix pairs for Empty
Test and Magic Number:

6.1 Avoiding Erroneous Diagnostics

One of the main priorities of the detection implementations is as follows: We want to minimize
as much as possible the possibility of reporting a smell in a place where none exist. This is
because we want to minimize the risk of a developer becoming annoyed with erroneous reports
and disabling or ignoring further analysis. Thus, we prefer to not diagnose a possible smell if
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(a) Empty Test detected by its analyzer (b) Magic Number detected by its analyzer

Figure 6.1: Analyzer detection

(a) Empty Test warning message (b) Magic Number warning message

Figure 6.2: Analyzer warning messages

(a) Empty Test fix (b) Magic Number fix

Figure 6.3: Smells after codefix application

it correctness is ambiguous than risk creating a false diagnostic. At worst, the analysis will
miss some smells, but it won’t point to a nonexistent error.

6.2 Empty Test

This smell occurs when a method has no executable statements in its body.

A more detailed (with code examples) explanation of this analyzer’s implementation is
provided in appendix A
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6.2.1 Detection

The smell is detected by finding methods marked by the [TestMethod] property inside
[TestClass] classes, and checking if the method has no statements.

1. Filter for test methods.

2. In SymbolStart, register an Operation action on OperationKind.MethodBody. This
action does the following:

(a) Check the method’s body block. If it has no descendant operations, report a
diagnostic with the method’s location.

6.2.2 Codefix

The smell is fixed by adding a NotImplementedException to the test, to ensure it fails when
run.

1. The fix code action is given the method declaration’s syntax node as an argument.

2. Get the System.NotImplementedException type symbol from the document’s
semantic model.

3. Get the method body’s list of statements and closing bracket.

4. Generate the throw statement:

(a) A throw statement with an object creation expression of a
NotImplementedException expression.

(b) Copy the closing bracket’s leading trivia as the throw statement’s leading trivia.
This way the body’s comments are placed before the throw statement.

(c) Add the the Simplifier.AddImportsAnnotation and Formatter.Annotation to
the statement to make sure the necessary usings are present in the document, and
to automatically balance the statement’s whitespace.

5. Add the generated statement to the method’s body.

6. Delete the leading trivia from the method’s closing bracket, so as to not have it
duplicated.

7. Replace the method node in the syntax tree.

8. Return a new document with the edited syntax tree.

6.3 Magic Number Test

This smell occurs when an assertion call has a numeric literal (a magic number) in its
arguments.
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6.3.1 Detection

The smell is detected by finding Assert.AssertEqual and Assert.AssertNotEqual methods
with either the first, second or both arguments given as numeric literals or cast numeric
literals.

Other assertion methods either don’t deal with numeric literals (the CollectionAssert
and StringAssert classes, and methods like IsTrue) or the usage of numeric literals inside
of them makes little to no sense in a real test (like IsNull or IsInstanceOfType). To limit
the analyzer’s complexity, other assertion methods are not taken into account and do not
trigger the analyzer.

1. Get the list of relevant assertions (Assert.AssertEqual and Assert.AssertNotEqual)
from the compilation (as per Section 5.3)

2. Filter for test methods (as per Section 5.2).

3. In SymbolStart, register an operation action on OperationKind.Invocation. This
action does the following:

(a) Check if the analyzed invocation is a relevant assertion. Return if it isn’t.
(b) Get the syntax of the first and second parameters of the invocation.
(c) Check separately if each of them is a magic number: If the parameter is either

a numeric literal expression, or a cast expression, and the value being cast is a
numeric literal, we count it as being a magic number.

(d) Raise a diagnostic for each of the magic number parameters, with the parameter’s
location.

6.3.2 Codefix

The smell is fixed by extracting the numeric literal to a local constant placed before the
assertion.

1. The fix code action is given the argument’s syntax node as an argument.

2. Get the document’s semantic model.

3. Using the semantic model, get argument’s operation, and from it, the parameter’s
name. We also get the argument’s type’s symbol.

4. From the parameter’s name, create an Identifier node, with a RenameAnnotation
annotation. This will prompt a renaming window for the identifier when the codefix is
executed.

5. From the argument’s type, create a TypeExpression node.
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6. Create a Local Declaration Statement. LocalDeclarationStatement is given the
type expression, the name ”constant name” and the expression inside the argument
syntax node (which houses the actual value of the argument). This will create a
statement similar to this: const int constant name = 1;. The type and value of
the declaration are those of the argument.

7. Replace the identifier token of the generated declaration statement with the identifier
generated in step 4. We do this because LocalDeclarationStatement does not support
using an already generated identifier, and we nned it to have the RenameAnnotation
annotation.

8. Copy the original invocation of the assertion (the argument’s parent is the argument
list, and its parent is the assertion invocation) replacing its argument list with a copy
of the original, in which the original argument has been replaced by the generated
identifier.

9. Create a SyntaxEditor from the document’s root. This allow to make multiple changes
to the syntax tree consecutively, while maintaining the tree’s original nodes if they’re
not changed.
This is important, because when editing a syntax tree manually, a completely new tree
is created. Thus if we insert the declaration statement and we can’t search the original
invocation node extracted from the argument’s parentage, since the new syntax tree’s
invocation is not the same node.

10. Using the SyntaxEditor, insert the declaration statement before the invocation
statement (the invocation expression’s parent).

11. Using the SyntaxEditor, replace the original invocation expression with the copy with
the replaced argument.

12. Replace the document syntax root with the SyntaxEditor’s changed root.

13. Return the edited document.

6.4 Obvious Fail

This smell occurs when an assertion call always fails in an obvious manner. Generally this is
done as a (less readable) replacement of Assert.Fail().

6.4.1 Detection

The smell is detected by finding any Assert.IsTrue(false) or Assert.IsFalse(true)
calls.

The implementation is very similar to Magic Number, with some key differences:
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• The list of relevant assertion methods gotten from the compilation (as per Section 5.3)
is: Assert.IsTrue and Assert.IsFalse.

• In the operation action, after checking if the invocation operation is of a relevant
assertion, the logic to determine if a smell is present is different:

1. Check if the invocation operation calls Assert.IsTrue, and if its first argument’s
syntax of of kind SyntaxKind.FalseLiteralExpression.

2. Or, Check if the invocation operation calls Assert.IsFalse, and if its first
argument’s syntax of of kind SyntaxKind.TrueLiteralExpression.

3. if any of these conditions is met, raise a diagnostic with the assertion’s location.

6.4.2 Codefix

The smell is fixed by replacing the smelly assertion with Assert.Fail(), keeping any message
arguments.

1. The code fix action is given the assertion invocation syntax node as an argument.

2. Create a list of arguments skipping the original assertion’s first argument (which would
be the boolean argument).

3. Create an invocation expression of Assert.Fail with the created argument list.

4. Replace the original invocation with the new one in the root.

5. Return a the document with the edited root.

6.5 Redundant Assertion

This smell occurs when an assertion checks a value against itself. Generally, this is a leftover
from debugging.

6.5.1 Detection

The smell is detected by checking the invocations of some assertion methods (specifically,
any assertion methods that compare 2 values), and checking if the compared values are
syntactically similar. White spaces and comments are ignored when determining if two
values are similar.

The implementation is very similar to Magic Number, with some key differences:

• The list of relevant assertion methods gotten from the compilation (as per
Section 5.3) is: Assert.AreEqual, Assert.AreNotEqual, Assert.AreNotSame,
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Assert.AreSame, CollectionAssert.AreEqual, CollectionAssert.AreNotEqual,
CollectionAssert.AreEquivalent, CollectionAssert.AreNotEquivalent,
CollectionAssert.IsSubsetOf, CollectionAssert.IsNotSubsetOf,
StringAssert.Contains, StringAssert.EndsWith, StartsWith.

• In the operation action, after checking if the invocation operation is of a relevant
assertion, the logic to determine if a smell is present is different:

1. Get the list of arguments with any of the following parameter names: ”expected”,
”actual”, ”notExpected”, ”subset”, ”superset”, ”value”, ”substring” from the
invocation. These are the names of the parameters that can be given identical
syntax values. For the relevant assertions, there are always exactly 2 parameters
with these names. Thus, the result will be a list of 2 arguments.

2. Check the similarity of both arguments with
argument2.Syntax.IsEquivalentTo(argument1.Syntax, true). The
topLevel parameter is set to true in order to ignore comments and whitespace
differences.

3. If both arguments are similar, report a diagnostic

6.5.2 Codefix

The smell is fixed by deleting the redundant assertion:

1. The codefix action is given the assertion invocation statement syntax node as an
argument.

2. Remove the node from the root.

3. Replace the document’s root with the edited root.

4. return the edited document.

6.6 Assertion Roulette

This smell occurs when a test method has multiple assertions, and some or all have no
message parameter explaining what the purpose of the assertion is.

6.6.1 Detection

The smell is detected by finding all relevant assertion methods [1, 16, 25] in a test method.
If the number of assertion is 2 or more, each one that does not have a message argument is
marked as having the smell.
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To check if an assertion has a message argument or not, the target method’s parameter
names are checked. Different method overloads have different parameter lists, and Roslyn can
differentiate which overload is an invocation’s target method: if the target method parameter
list ends with (message) or (message, parameters), it’s considered to have a message.

1. Collect all assertion calls (as per Section 5.4). In SymbolEnd, check the concurrent bag
of assertion invocations:

(a) If there are less than 2 assertions, end the analysis.
(b) For each assertion invocation, check if it has a message argument.
(c) If it has, report a diagnostic with the assertion’s location.

6.6.2 Codefix

This smell is difficult to fix automatically, because an assertion’s message must explain the
objective of the assertion in the context of the test. Such a task falls outside of the scope
of this tool, so the implemented fix simply makes it faster to do so manually, by adding the
message argument and automatically selecting the inside of the string.

This is the most complex codefix in the project due to the cursor manipulation it makes
use of. The fix uses 3 different custom classes and the DTE2[6], an object that enables
programmatic manipulation of the Visual Studio editor environment.

• CustomOperation ; CodeActionOperation, is a helper class to call the text selection
action.

• CustomCodeAction : CodeAction, which is used to differentiate the actions done by
the fix in the preview and in the editor. If this isn’t done, the preview action would
also run the DTE logic and move the cursor on the editor when previewing the fix.

• AssertionRouletteCodeFixProvider : CodeFixProvider, defines the logic of
adding the message parameter, and of selecting the newly created parameter (on
different methods).

CustomOperation

This helper class is used by the CustomCodeAction class, which, when defining the actions
done to the document in the preview and in the actual codefix, must return a list of
CodeActionOperation which are applied in order. We will use this helper class to store
the text selection operation.

1. The CustomOperation class inherits from the CodeActionOperation class and has the
following fields:

• Document ChangedDocument, Saves a document
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• Func<CancellationToken, Document, Task> SelectText

2. The class constructor simply sets both fields.

3. The async void Apply method is overriden, and it simply awaits SelectText (passing
the cancellation token and the ChangedDocument parameter as arguments).

CustomCodeAction

The code action is what the codefix registers. We use this custom class to define different
behaviour in the preview and in the actual codefix.

1. The CustomCodeAction class inherits from the [CodeAction] class and has the following
fields:

• override string EquivalenceKey

• override string Title

• Func<CancellationToken, Task<Document>> CreateChangedDocument

• Func<CancellationToken, Document, Task> SelectText

2. The class constructor simply sets all fields.

3. Override Task<Document> GetChangedDocumentAsync so that it returns (and awaits)
CreateChangedDocument.

4. Override Task<IEnumerable<CodeActionOperation>>
ComputePreviewOperationsAsync:

(a) Get the new document with the added "message" argument from
CreateChangedDocument.

(b) If there was any error and the new document is null, stop and return null.
(c) Return a CodeActionOperation[] with a single operation: a new

ApplyChangesOperation created from the new document’s solution
(changedDocument.Project.Solution).

5. Override Task<IEnumerable<CodeActionOperation>>
ComputePreviewOperationsAsync:

(a) Get the new document with the added "message" argument from
CreateChangedDocument.

(b) If there was any error and the new document is null, stop and return null.
(c) Create a new CustomOperation with the new document and the SelectText as

parameters.
(d) Return a CodeActionOperation[] with an ApplyChangesOperation created from

the new document’s solution and the custom operation.
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AssertionRouletteCodeFixProvider

The Codefix Provider has the logic for both adding the message parameter and moving the
cursor to select the newly added message.

1. The AssertionRouletteCodeFixProvider class has the following fields (used for text
selection):

• [Import] SVsServiceProvider ServiceProvider

• DTE2 DTE

• IVsTextManager TextManager

2. Register a new CustomCodeAction as the codefix, passing as arguments:

• The codefixes’ title as the title string.
• The nameof of the codefixes’ title as the equivalenceKey string.
• A callback to AddMessageParameterAsync with the method call’s syntax node as

an argument as the createChangedDocument function.
• A callback SelectText with the document as an argument as the selectText

function.

3. The AddMessageParameterAsync method does the following:

(a) Generate a message argument:
i. An argument syntax node with a literal expression inside.
ii. The literal expression of type SyntaxKind.StringLiteralExpression and

has a literal syntax node with the string ”message”.
iii. The argument node has an annotation:

SyntaxAnnotation("MessageArgument"). This will be used later to
find the node in the syntax tree. It has no other use and does not change the
generated code.

(b) Create an argument list from a copy of the invocation’s, and add the generated
message argument.

(c) Replace the invocation’s argument list with the new one.
(d) Replace the invocation in the syntax tree.
(e) Replace the document’s syntax tree
(f) Return the new document.

4. The SelectText method does the following:

(a) If the DTE field is null, try to get the DTE
(Package.GetGlobalService(typeof(DTE)) as DTE2). If there’s any exception
(generally, because the DTe is not available, for example, if the codefix is called
from a test), return. This way, if the codefix isn’t called from a Visual Studio
editor, it won’t try to select any text.
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(b) Get the document’s syntax tree root.
(c) Find the message assertion in the tree, checking all descendants for a node with

the ”MessageArgument” annotation.
(d) Using the DTE, get the active document. This is different from Roslyn’s document

and is used to change the text selection.
(e) Get the active document’s text selection.
(f) Get the line and column positions of the start and end of the argument’s syntax

node.
(g) Move the selection to the start of the argument node with

textSelection.MoveToLineAndOffset.
(h) Passing true as the Extend argument (so that it selects an area instead of just

moving the cursor), move the selection to the end of the argument node.

6.7 Unknown Test

This smell occurs when a test has no assertion calls.

It has no codefix because it is very difficult to determine what a test is testing
automatically, in order to correctly generate a corresponding assertion to add to the test.

6.7.1 Detection

The smell is detected by building list of all assertions in a test method (as per
Section 5.4, then checking if the list is empty. However, methods with ”Assert”
in their name, or whose name is defined in the .editorconfig options under
”dotnet diagnostic.MysteryGuest.CustomAssertions” (separated by commas if there is more
than one) are also counted as assertions.

1. Check all assertion invocations in the method, adding them to a concurrent bag as per
Section 5.4. Invocations are counted as assertions following these guidelines.

• If an invocation’s method is in the list of assertions.
• If an invocation’s method (in lowercase) has ”assert” in its name.
• Get the ”dotnet diagnostic.MysteryGuest.CustomAssertions” setting from

.editorconfig. Separate the list over commas, and trim the names. Check if
the invocation’s method’s name is in the list of names of the setting.

2. In Symbol End, check the concurrent bag of assertion invocations, and report a
diagnostic with the test method’s location if the bag is empty.
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6.8 Duplicate Assert

This smell occurs when a test checks the same condition multiple times, by calling the same
assertion multiple times with the same parameters.

This smell has no codefix mainly due to lack of time and ease of manual fixing (deleting the
duplicate assertions until one remain). Additionally, correctly determining which duplicate
assertion to leave and which to delete is difficult to do in a codefix. This is, however, the
easiest to implement out of the 7 smells without codefixes.

6.8.1 Detection

The smell is detected by building the list of all assertions in a test method (as per Section
5.4, then checking the list for assertions that have an equivalent syntax (like for Redundant
Assertion, using Syntax.IsEquivalentTo).

1. Collect all assertion calls as per Section 5.4. In Symbol End, check the concurrent bag
of assertion invocations, making a list for each group of similar invocations:
(a) Create a List<List<IInvocationOperation>> (called similarInvocations).

Add a list with the first invocation.
(b) For each invocation in the list (except the first one, that was already added):

i. Find the first list in similarInvocations whose first element is similar to
the invocation.

ii. If a list was found, add the invocation to it.
iii. If a list was not found, create a new list with the invocation and add it to

similarInvocations.
(c) After checking each invocation, the result will be either a list full of 1-element lists

(if the method had no duplicate assertions), or some lists which will have more
than one element.

(d) If the size of similarInvocations is equal to the amount of invocations in the
concurrent bag, return, since there are no duplicate assertions.

(e) Otherwise, filter similarInvocations, leaving only lists with more than 1 element
(these are the lists of duplicate assertions).

(f) Iterate over these lists, raising a diagnostic for each one. The diagnostic has
the list’s first assertion’s location, and, as secondary locations, the test method’s
location, and the location of every duplicate assertion in the list.

6.9 Exception Handling

This smell occurs when a test method’s result depends on it handling exceptions (within the
test’s body, not the production object).
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It has no codefix because correctly determining the intent of each throw or try operation
is difficult to do automatically.

6.9.1 Detection

The smell is detected by finding any throw or try operation in a test method. If any are
found, a diagnostic is reported.

The implementation is almost identical to Conditional test, except for the
type of Operation on which the action is registered: OperationKind.Throw and
OperationKind.Try. The diagnostic message is also different.

6.10 Conditional Test

This smell occurs when a test method contains one or more control statements (if, switch,
conditional expression, for, foreach and while statement).

This smell has no codefix, since correctly identifying the objective of a control statement,
and generating a suitable replacement or change is way too complex for a simple codefix.

6.10.1 Detection

The smell is detected by finding any conditional, loop or switch operations in a test method.
If any are found, a diagnostic is reported. As an exception, foreach loops are ignored by the
analyzer, since most of the time, it’s used to iterate and test over a list of values, instead of
having a specific condition that can change the test’s operation.

1. Filter for test methods (as per Section 5.2).

2. Register Operation actions over OperationKind.Conditional, OperationKind.Loop
and OperationKind.Switch. These actions will all do the same, with the only
difference being the diagnostic’s message:

(a) Check if the operation is a foreach loop, return if it is.
(b) Report a diagnostic with the operation’s location, specifying in the message which

type of conditional operation triggered the analyzer.

6.11 Sleepy Test

This smell occurs when a test calls the Thread.Sleep() method.
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It has no codefix because an adequate replacement to Thread.Sleep() is heavily
dependent on the production object implementation, and very difficult to determine
automatically.

6.11.1 Detection

The smell is detected by finding any invocation operation that calls Thread.Sleep() inside
a test method.

1. In the Compilation action, get all members caller ”Sleep” from
System.Threading.Thread. This will get all overloads of the method.

2. Filter for test methods (as per Section 5.2).

3. Register an Operation action on OperationKind.Invocation. This action will:

(a) Check if the invocation’s target method is in the list of Sleep method symbols.
(b) If it is, report a diagnostic with the invocation’s location.

6.12 General Fixture

This smell occurs when a fixture or initializer method for a test class sets up a field, and said
field isn’t used in one or more test methods.

It has no codefix due to time constraints, because the way to do it, which would be to
extract the init method into multiple separate methods that set up each specific set of fields,
and then call those methods in the tests that need them, is very complex, and would use too
much development time for a smell that does not occur frequently enough to justify it within
the limited timespan of the project.

6.12.1 Detection

The smell is detected by analysing each method of the test class. If the method is a setup
method, each field in it is saved to a concurrent list. If the method is a test method, each
field utilized is saved in a concurrent dictionary (with the method’s name as its key).

After checking each method, each test method’s used fields are checked to see if any field
used in the setup is missing, and a diagnostic is raised for each missing field.

Each field can be marked as having the smell multiple times, once for each method that
does not use it.

• In Compilation Start, get the test attributes and the TestInitializeAttribute
attribute.
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• Register a Symbol Start action for SymbolKind.NamedType, which will:

1. Check if the symbol has the [TestClass] attribute, return if it doesn’t.
2. Iterate over the list of class members. Build up a list of test methods (which have

the test method attribute), fields, and save the init method.
3. if the class has no init method, return.
4. Create an empty ConcurrentBag of field symbol and location tuples. This will be

used to save each field used inside the init method.
5. Create an empty ConcurrentDictionary of string keys and list of field symbol

items. This will be used to save the fields used by each test method. Note that due
to grouping the used fields by their method’s name, multiple overloaded methods
with the same name could have unexpected results. However, since the analyzer
looks only at test methods, this shouldn’t be a problem except in very specific
cases, and in the worst case scenario, it will only result in a false negative.

6. Register an operation action on OperationKind.MethodBody. This action does
the following:
(a) Check if the containing symbol of the method’s body is the init method. If it

is, add each assigned field and its location to the concurrent bag:
i. Filter all descendant operations for OperationKind.SimpleAssignment,

and filter these for assignments whose target is of kind
OperationKind.FieldReference.

ii. Iterate over these filtered operations, adding a tuple with the target field’s
symbol and the assignment’s location to the concurrent bag.

iii. Return (since the method cannot be both an init method and a test
method).

(b) If it’s not an init method, check if the method’s symbol is contained in the
list of test methods. If it is:

i. Filter all operations in the method body for
OperationKind.FieldReference.

ii. Build a list of the referenced target field symbols.
iii. Save the list of used fields with the method’s name as the key in the

concurrent dictionary.
7. Register a Symbol End action, passing the concurrent bag and concurrent

dictionary. This will be called back after the operation action has finished, so
we will have a complete lists of the fields set in the init method and the fields
referenced in each test method. This action will do the following:
(a) Check each tuple containing a test method and its used fields from the

concurrent bag.
(b) For each tuple, create a list of the fields used in the init method, then remove

each field used in the method.
(c) The resulting list holds all the fields that are given a value in the init method,

but are not used in the test method.
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(d) Raise a diagnostic for each unused field, pointing to the init method’s
assignment, and giving the method where the field is not used as part of
the message.

6.13 Mystery Guest

This smell occurs when a test method uses external resources (files, databases, etc).

It has no codefix because there is no (reasonable) way to correctly identify the purpose
of an external resource and create a suitable replacement automatically.

6.13.1 Detection

The smell is detected by finding calls to specific File and FileStream method calls that read
files. The smell is suppressed, however, if somewhere in the test method, any file is created or
written to. This is to limit false positive diagnostics in the case that the tested class uses files,
instead of the test reading test data from a file. The analyzer also accepts a comma separated
list of strings as a configuration setting (dotnet diagnostic.MysteryGuest.IgnoredFiles)
to ignore any method with a literal string containing any string of the list. This way, if needed,
the developer can explicitly permit file reading in a test class file without triggering warnings.

For ease of coding, a class is defined: FileSymbols, which fetches and stores the relevant
symbols from the compilation. On its constructor, it is given the analyzer’s compilation,
from which it:

1. Gets the System.IO.File and System.IO.FileStream symbols from the compilation.

2. Gets the write and read methods from each of these symbols, merging all write methods
and all read methods into 2 separate lists.

The class also has an Error method that checks if the stored class symbols are null or if the
method lists are empty.

The write and read methods are as follows:

• System.IO.File read methods: ReadAllBytes, ReadAllBytesAsync, ReadAllLines,
ReadAllLinesAsync, ReadAllText, ReadAllTextAsync, ReadLines, ReadLinesAsync,
OpenRead.

• System.IO.File write methods: AppendAllLines, AppendAllLinesAsync,
AppendAllText, AppendAllTextAsync, AppendText, Create, CreateText,
OpenWrite, WriteAllBytes, WriteAllBytesAsync, WriteAllLines, WriteAllLinesAsync,
WriteAllText, WriteAllTextAsync.
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• System.IO.FileStream read methods: BeginRead, EndRead, Read, ReadAsync,
ReadByte.

• System.IO.FileStream write methods: BeginWrite, EndWrite, Write, WriteAsync,
WriteByte.

During the analysis, the non-static read and write method invocations must be checked
in order to confirm that they are called on file objects. For example, FileStream’s method
ReadAsync is implemented in the Stream class. Thus, when we find a ReadAsync call, we
must make sure it is called from a FileStream object instance.

1. In the compilation action, create a FileSymbols struct from the compilation, returning
is it has any error.

2. Filter for test methods (as per Section 5.2).

3. Create 3 concurrent bags: one for write method invocations, another for read method
invocations, and another for instances of string literals of any of the ignored files defined
in editorconfig.

4. Register an operation action on OperationKind.Literal, pasing the string literal bag
as an argument, which will:

(a) Get the list of ignored files from editorconfig (as per Section 5.6).
(b) Check if the analyzed literal operation is a string, and if it has a value. If it does,

check if its value contains any of the ignored file strings. If it does, add it to the
bag.

5. Register an operation action on OperationKind.Invocation, passing the write and
read bags and as arguments, which will:

(a) Check if the invocation operation’s is called from a FileStream or File object.
This is done by if invocation.Instance.Type is equal to the file class symbols
(if the method is static, invocation.Instance will be null). If it is not called
from a file class, return.

(b) Check if the invocation operation’s target method is in either the list of read
methods or write methods, and add them to the respective bag if they are.

6. Register a symbol end action, passing all 3 bags as arguments. This action will:

(a) Check if there are any write methods or ignored file literals in their respective
bags. If there are, return.

(b) Report a diagnostic for each read method invocation, with the invocation’s
location.

6.14 Eager Test

This smell occurs when a test methods invokes multiple methods of the production object.
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6.14.1 Detection

Eager Test is detected by checking each assertion method in a test and setting aside each
value given as the actual argument. Then, for each given actual argument, if it’s a method
invocation, the method’s name is saved to a list. If the argument is a variable, each time
a value is assigned to the variable, if a method is used, it is also saved to a list. This way,
each method called involved in the value given to the assertion method is saved. Then if the
amount of called methods is greater than a threshold, it triggers a diagnostic. To simplify the
codefix, test methods with a single assertion are never considered to have the smell, since,
while they may use multiple production methods, they should be testing the result of only
one.

1. In the Compilation action, get the symbol of the System namespace.

2. Filter for test methods (as per Section 5.2).

3. Register an operation block action, this action will:

(a) Get the method’s body block.
(b) Iterate over all descendant operations, saving all

OperationKind.SimpleAssignment and OperationKind.VariableDeclarator
to an assignments list, and all assertion invocations to an assertins list.

(c) If there is only 1 assertion, return.
(d) Create a set of called methods symbols (using SymbolEqualityComparer.Default

as the comparer).
(e) Iterate over all assertions:

i. Get the value argument of the assertion: the argument whose parameter name
is either ”actual”, ”value”, ”condition” or ”collection”. Return if no value
argument exists.

ii. Check the value’s operation and all it’s descendants.
iii. If the operation is OperationKind.Invocation, add it to the set of called

methods.
iv. If the operation is OperationKind.LocalReference (a reference to a local

variable), iterate over every assignment from the assignment’s list:
A. If the assignment is OperationKind.SimpleAssignment, check if the

assignment’s target is OperationKind.LocalReference and is the same
variable as the reference’s. If it is, iterate over every operation in the
assignment’s value, saving any method invocation’s target method in the
called methods set.

B. If the assignment is OperationKind.VariableDeclarator, check if the
declaration’s target is the same variable as the reference’s. If it is,
iterate over every operation in the declaration’s value, saving any method
invocation’s target method in the called methods set.
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v. From this, we have a set of every method called from an assertion’s value
argument, or involved in any variable used in it.

vi. If the set’s size is greater than one, raise a diagnostic on the assertion’s
location, with the rest of the assertion’s location and the method’s location
as secondary locations.

6.14.2 Codefix

A fix to this smell involves identifying the logic that tests for each individual production
method in an affected test method, and separating it into a different test method for
each production method being tested. However, without doing some advanced control-flow
analysis, figuring out which method calls need to stay and which can be safely deleted to
not change the results of the test is way too complex, doubly so because any method could
have side effects. The proposed fix is then a simple, general solution, which might not be
ideal, but ensures the smell is eliminated and the possible side effects are maintained: The
fix creates a separate test method for each assertion in the original eager test. Each of these
new methods has a single assertion, and any method call made inside the arguments of the
other assertions are maintained as statements in their respective tests. The fix does not take
into account all edge cases of possible arguments given to an assertion, and is not given as an
option if it detects a case not specifically allowed (since not all valid argument expressions
are valid statements).

1. In the registering method, get the syntax node for the test method from the test’s
location, and the syntax node of each relevant assertion invocation from their locations.

2. Check if any of the invocation’s argument is of a type not supported
by the fix. The supported types are: SyntaxKind.IdentifierName,
SyntaxKind.NumericLiteralExpression, SyntaxKind.StringLiteralExpression,
SyntaxKind.InterpolatedStringExpression and SyntaxKind.InvocationExpression.
This is because, rather than deal with every corner case of every possible syntax
node, it was decided to define a narrower list of common nodes that are supported.
Note that the only one of these expression types that can introduce side effects is
SyntaxKind.InvocationExpression.

3. Register the codefix, passing the test’s location and every assertion invocation’s location
as arguments.

4. The codefix does the following:

(a) Iterate over the assertions, creating a list of lists of expressions. This list is
populated with the arguments that are invocations from each assertion. This
list will be later used to add these invocations back into the generated method
copies, in order to maintain any possible side effects. These invocations will be
called replacements.

(b) Iterate over the list of assertions. For each assertion, we will create a new test
method that only keeps that assertion, and replaces every other assertion with its
replacements, saving each new method to a list:
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i. Create a copy of the test method’s body.
ii. For each assertion that is not the one that is being kept:

A. If the assertion has no replacements, remove it from the test’s copy’s body.
B. If the assertion has a single replacement, replace the node with a statement

built from the replacement invocation, making sure to copy the replaced
assertion’s trivia to it.

C. If the assertion has more than 1 replacement: make a list of statements
from each invocation, adding the leading trivia of the replaced assertion
to the first statement, and the trailing trivia to the last statement. Then
replace the assertion with the list of statements.

iii. Save the test copy to the list, changing its identifier to a copy of the original’s,
with an added number in the end. Each copy also has the original method’s
leading trivia.

(c) Replace the original test method with the list of copies in the root.
(d) Replace the document root with the new edited root.
(e) Return the edited document.

6.15 Ignored Test

This smell occurs when a test has the Ignore attribute.

6.15.1 Detection

The smell is detected by checking if a test method definition has the [Ignore] attribute.

1. In the Compilation action, get the class symbol for
Microsoft.VisualStudio.TestTools.UnitTesting.IgnoreAttribute.

2. Filter for test methods (as per Section 5.2).

3. Register an Operation action on OperationKind.Invocation. This action will:

(a) Check if the invocation’s target method is in the list of Sleep method symbols.
(b) If it is, report a diagnostic with the invocation’s location.

6.15.2 Codefix

The smell is fixed by deleting the [Ignore] attribute.

1. The fix code action is given the Ignore attribute’s syntax node as an argument.
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2. Get the attribute’s parent, which will be an attribute list (since attributes can be
grouped in a single brace group)

3. Check the attribute list’s size.

• If the list has a single item, it can be deleted (since it only has the Ignore attribute
in it). Remove the List node from the root.

• If the list has more items, only the Ignore attribute must be deleted. Create a
new list with the Ignore attribute removed, then replace the original node in the
root.

4. Replace the document’s root with the edited root.

5. Return the edited document.

6.16 Testing

Each smell analyzer has a battery of tests checking basic, manufactured test methods
exhibiting each of the smells, and their corresponding corner cases. These tests are also
used to check that the codefixes correctly apply the necessary changes to the corresponding
smelly test.

These tests have 4 important components:

• An assembly reference, giving the test the necessary assemblies to compile the test
code. For these tests are given a Net 7 Assembly with the MStest package.

• A configuration string, which emulates an .editorconfig file. From this we can pass
relevant configuration values. Generally, we use it to suppress any smell which isn’t the
one being tested.

• Any amount of diagnostic mockups, constructed to mimic the diagnostics expected to
be reported by the analyzer.

• Strings of the smelly test code (and the fixed test code, when applicable), for the test
to compile and run the analyzer on.

For ease of development, in order to be able to use syntax highlighting and other IDE
features, the smelly test code is stored in a separate .cs file near the test class. These files
are excluded from the solution because otherwise, Visual Studio detects them as part of the
project and tries to run them when running the actual tests. Each of these files is read into
a string and passed to the test, instead of storing the entire string within the test. Ironically,
this means almost every test has the Mystery Guest smell. This was a conscious choice, and
goes to show how smells can appear from justified design decisions.
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6.16.1 Debugging

During development, debugging was achieved in 2 ways:

• Using the written unit tests and visual Studio’s integrated debugger to run the debugger
over the test.

• Using a VSIX test environment bundled with the default analyzer template, which
compiles a package out of the implemented analyzers, and loads a test instance of
visual studio with the analyzer package loaded in. This doesn’t allow us to run the
debugger, but it let’s us check if the analyzers work in an editor environment.

6.17 NuGet Package

The set of analyzers and codefixes is available [11] to the public as a NuGet [8] Package that
can be installed in a C# project from the Visual Studio IDE or using the NuGet package
manager.

Figure 6.4: nuget.org page for the Test Smells package
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6.18 Summary

In summary, we have implemented 14 analyzers and 7 codefixes, with corresponding tests,
which use the capabilities of Roslyn to detect multiple different smells. These can be grouped
by their similarity in 4 sets: analyzers that check the arguments of assertion invocations,
analyzers that check the list of assertion invocation, analyzers that report the existence
of a certain type of operation or invocation, and analyzers that don’t fit in the 3 prior
categories. These analyzer implementations have a battery of corresponding tests that check
that the detection and fixing of smells work correctly. Finally, these implemented analyzers
are package as a NuGet extension available to the public to be installed on any C# project.
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Chapter 7

Results and validation

Using the analyzers detailed in the prior chapter and the command line tool explained in
Section 7.1, we run analysis on a corpus of test code. From this analysis we can validate
if the diagnostics generated by the TestSmells Detector are correct. These results and
corresponding validation are detailed and discussed in this chapter.

7.1 Command Line Analysis

An expected use case of the developed analyzers is to run analysis on a project before a
commit or pull request, and use these results to make sure the changes do not introduce
additional test smells.

Thus, a command line application to run is developed to analyze a solution and produce
CSV output detailing the found smells. This also enables us to perform a large scale validation
of the detected smells.

The application takes the form of an .exe file inside a folder with the necessary DLLs
and resources.

7.1.1 Command Line tool

The application is run as follows: Testsmells.Console.exe -s <path to solution>
There are multiple parameters that can be given to the tool in order to further customize
the results:

• –solution, -s: Absolute path to the .sln file of the solution to be analyzed.

• –output, -o: Path for CSV output. The application will create a CSV file with
the given filename, and save a list of each encountered smell diagnostic (that was not
hidden). If a path is not given, the information will be displayed in the command
console.
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• –method output, -m: Path for method summary. The application will create a CSV
file with the given filename, and save a list of each method affected by at least one
smell, detailing the amount of each smell encountered in it.

• –method list output, -l: Path for method list. The application will create a CSV
file with the given filename, and save a list of each test method in then solution.

• –config, -c: Path for a JSON configuration file. This configuration lets a developer
define the smells’ severities and define global configuration values.

• –ignore default config, -i: Flag for ignoring the configuration values defined in the
project in favour of the ones set in the JSON configuration file.

7.1.2 CSV Output: Diagnostics

This output makes it easy to check the amount and type of each detected smell. The output
columns are:

1. The file where the smell is detected.

2. The first line of the detected smell’s position.

3. The character of that line where the smell’s position starts.

4. The severity of the diagnostic, which can be error, warning, suggestion or hidden,
depending on the project’s configuration and the severity list passed as a JSON config
file.

5. The ID of the detected smell.

6. The message of the diagnostic.

The included information is: file and position where the smell is detected, the severity of the
diagnostic (warning, error, etc), the smell’s name, and the diagnostic message.

7.1.3 CSV Output: Method Summary

This output is intended to show a summary of each method affected by at least one detected
smell, and show the number of instances of each smell per test method. The output columns
are:

1. The name of the test method.

2. A column for each smell detector, with a number representing the amount of times that
smell occurs in the test method

3. The total amount of detected smell instances in the test method.

47



7.1.4 CSV Output: Method List

This output shows the entire list of all test methods in the solution. This is implemented to
help in evaluation, to have a complete list of methods from where to take a sample.

7.1.5 JSON Configuration file

A JSON configuration file can be passed as an argument to the application. In it, severities
for each smell can be set (error, warning, suggestion or hidden). Specific configuration
values for each analyzer can also be passed inside the configuration file. The expected syntax
of the file is as follows:

• Any number of specific configuration values, with the same key and value as the
.editorconfig equivalent (but as a JSON key-value pair).

• A dictionary named "severity", with key-value pair for each smell whose severity is
to be overwritten, with its ID as key and severity as value.

1 {
2 "dotnet_diagnostic.MysteryGuest.IgnoredFiles": "TestCorpus",
3 "severity":
4 {
5 "UnknownTest": "hidden",
6 "MysteryGuest": "error"
7 }
8 }

By default, the analysis will prioritize any .editorconfig values it can find before using
the JSON values. However, if the –ignore default config flag is set when calling the tool,
it will always use the JSON values.

7.1.6 Source Control Use Case

Apart from it’s use in the validation, the command line application is intended to use as a
part of a git pipeline, allowing developers to set up the tool to automatically run before a
commit or pull request, and letting the analysis inform the validity of the commit. This is,
however, specific to each project’s source control pipeline, and not explored in depth in this
project.

7.2 Analysis

The TestSmells Detector is tested on a set of industrial projects provided by Raincode Labs
using the command line application.
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The first project has a total of 849 test methods found and analyzed. These results are
used to make a detailed validation of the tool. Another 2 industrial projects are analyzed,
with 1958 and 133 test methods, for a total (including the 3 projects) of 2940 test methods
analyzed. The amount of test methods and found smells is detailed in table 7.1.

• Project A [20] is a source-to-source translator from the DFSORT DSL to the SyncSort
DSL (two Domain-Specific-Languages used for sorting and reformatting data).

• Project B is a collection of command line tools that implement a host of mainframe
tools in .NET and their common infrastructure.

• Project C is a base infrastructure for multiple compilers implemented in .NET.

Project Test Classes Test Methods Detected Smells
Project A 41 849 388
Project B 25 1958 3525
Project C 18 133 537

Table 7.1: Detail of each project

7.3 Analysis results

For projects A, B, and C, the TestSmells Detector generates a list of all detected smells. For
project A specifically, we also generate a list of methods and their respective smells, and a
list of all test methods found in the project.

In total, 4402 separate smells are detected by the tool. With a total of 2940 test methods,
this means an average of 1.5 smells were found per test.

According to the data shown in tables 7.2, 7.4, 7.5, 7.6, and figure 7.1 most of the detected
smells are Assertion Roulette, followed by General Fixture, and Conditional Test.

This count, however, does not mean much by itself, because each smell analyzer reports
each smell differently, and this skews smells in favour of the ones that generate the most
diagnostics.

For example, Eager Test can be diagnosed at most once per test, since the report groups
all production method calls, and reports them in a single diagnostic. On the other hand,
Assertion Roulette generates one diagnostic for each assertion missing a message parameter.

Thus, for project A we also count the amount of tests with at least 1 instance of a smell, as
shown in table 7.3. Out of 849 test methods of Project A, 78 (9.19%) have at least one smell
diagnostic. Out of these, most present the Magic Number and Assertion Roulette smells,
followed by Ignored Test. As we can see, the amount of methods presenting each smell does
not follow the same order as the amount of diagnostic instances for each smell.
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Smell ID Amount Percentage
AssertionRoulette 202 56.42%
MagicNumber 100 27.93%
ConditionalTest 20 5.59%
IgnoredTest 10 2.79%
EagerTest 9 2.51%
DuplicateAssert 8 2.23%
ExceptionHandling 5 1.40%
ObviousFail 4 1.12%
EmptyTest 0 0.00%
GeneralFixture 0 0.00%
MysteryGuest 0 0.00%
RedundantAssertion 0 0.00%
SleepyTest 0 0.00%
UnknownTest 0 0.00%
Total 358 100.00%

Table 7.2: Detected smells in Project A

Smell ID Amount of Tests
with the smell

% out of the
smelly tests

% out of
all tests

MagicNumber 62 79.49% 7.30%
AssertionRoulette 50 64.10% 5.89%
IgnoredTest 10 12.82% 1.18%
EagerTest 9 11.54% 1.06%
ConditionalTest 6 7.69% 0.71%
ObviousFail 4 5.13% 0.47%
DuplicateAssert 5 6.41% 0.59%
ExceptionHandling 3 3.85% 0.35%
EmptyTest 0 0.00% 0.00%
GeneralFixture 0 0.00% 0.00%
MysteryGuest 0 0.00% 0.00%
RedundantAssertion 0 0.00% 0.00%
SleepyTest 0 0.00% 0.00%
UnknownTest 0 0.00% 0.00%

Table 7.3: Methods affected by each smell in project A

From the analysis results we can also group detected smells by file, which shows that
smells are not distributed equally between files, as we can see in figures 7.2, 7.3 and 7.4.
Generally, 2 or 3 files contain most of the project’s smells.
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Smell ID Amount Percentage
AssertionRoulette 1416 40.38%
GeneralFixture 624 17.79%
ExceptionHandling 408 11.63%
ConditionalTest 342 9.75%
EagerTest 237 6.76%
DuplicateAssert 155 4.42%
UnknownTest 98 2.79%
MagicNumber 88 2.51%
MysteryGuest 65 1.85%
ObviousFail 58 1.65%
SleepyTest 8 0.23%
IgnoredTest 7 0.20%
EmptyTest 1 0.03%
RedundantAssertion 0 0.00%
Total 3507 100.00%

Table 7.4: Detected smells in Project B

Smell ID Amount Percentage
AssertionRoulette 374 69.65%
MagicNumber 68 12.66%
DuplicateAssert 32 5.96%
ConditionalTest 24 4.47%
EagerTest 22 4.10%
UnknownTest 16 2.98%
ExceptionHandling 1 0.19%
EmptyTest 0 0.00%
GeneralFixture 0 0.00%
IgnoredTest 0 0.00%
MysteryGuest 0 0.00%
ObviousFail 0 0.00%
RedundantAssertion 0 0.00%
SleepyTest 0 0.00%
Total 537 100.00%

Table 7.5: Detected smells in Project C

7.4 Validation

The first project’s analysis of 849 test methods in 41 test classes produced 388 test smells
over 78 smelly tests.
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Smell ID Totals Percentage
AssertionRoulette 1992 45.25%
GeneralFixture 624 14.18%
ExceptionHandling 414 9.40%
ConditionalTest 386 8.77%
EagerTest 268 6.09%
MagicNumber 256 5.82%
DuplicateAssert 195 4.43%
UnknownTest 114 2.59%
MysteryGuest 65 1.48%
ObviousFail 62 1.41%
IgnoredTest 17 0.39%
SleepyTest 8 0.18%
EmptyTest 1 0.02%
RedundantAssertion 0 0.00%
Total 4402 100.00%

Table 7.6: Detected smells in all projects

7.4.1 Diagnostic validation

Out of these results, the 11 tests with most smell instances (as shown in figure 7.5) are
manually checked to confirm each smell diagnostic. From this validation, all 122 diagnostics
of these diagnostics are found to be true positives, detailed in table 7.7.

As an aside, when in this document we mention false or true positives or negatives, we
mean the following:

1. A True Positive is a diagnostic that correctly points to a smell that exists within the
code.

2. A True Negative means the code has no smell and the analyzer raises no diagnostics.

3. A False Positive is a diagnostic that point to a place in the code where no such smell
actually exists.

4. A False negative means the code has a smell, but no corresponding diagnostic was
generated, meaning the analyzer didn’t detect the smell.

However, after manual analysis of these 11 methods, 15 false negatives are found: 4
missing assertion roulette diagnostics, 6 missing eager test diagnostics within 6 different
methods and 5 missing mystery guest diagnostics. These missing diagnostics are discussed
in more detail in Subsection 7.5.2.
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Figure 7.1: Detected smells in all projects

Figure 7.2: Detected smells in each file of Project A

7.4.2 Random Sample validation

A random sample of 90 test methods is also manually checked for smells, in order to compare
with the diagnostic found by the tool. Out of these 90 methods, 13 had diagnostics raised
by the analysis.

Each method is checked manually in search of smells in 2 passes. From this manual
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Figure 7.3: Detected smells in each file of Project B

Figure 7.4: Detected smells in each file of Project C

analysis we get the smells detailed in table 7.8 in the random sample. Each method’s smells
are noted in the table, noting how many of each smell is encountered.

For methods with diagnostics, each diagnostic is checked to see if it is correct, then any
other smells not diagnosed are also noted in the table.
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Figure 7.5: Detected smells in the 11 methods with the most diagnostics

Smell ID True Positive False Positive
AssertionRoulette 66 0
MagicNumber 25 0
ConditionalTest 18 0
DuplicateAssert 8 0
ExceptionHandling 3 0
ObviousFail 2 0
EagerTest 0 0
EmptyTest 0 0
GeneralFixture 0 0
IgnoredTest 0 0
MysteryGuest 0 0
RedundantAssertion 0 0
SleepyTest 0 0
UnknownTest 0 0

Table 7.7: True and false positives per smell in the 11 methods with the most detected
smells in project A

For counting the amount of true and false positives and negatives, the methodology is
as follows: Each method only counts as 1 true or false positive or negative for each smell.
This is because otherwise, there would be no clear way to count false negative instances.
Additionally, since some smell generate a greater amount of diagnostics, this would skew
results towards smells like Assertion Roulette seeming more or less accurate. Thus, a method
is counted as a true positive if all diagnostics are correct and there are no missing diagnostics
of that smell. Methods with any amount of undiagnosed smells are counted as false negatives.
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If a method has any erroneous diagnostics, it would be counted as a false positive (however,
none were found). Finally, methods with no smells and no diagnostics are counted as true
negatives.

Smell ID Manually found
smell instances

AssertionRoulette 85
MagicNumber 14
EagerTest 3
IgnoredTest 3
MysteryGuest 2
ConditionalTest 0
DuplicateAssert 0
EmptyTest 0
ExceptionHandling 0
GeneralFixture 0
ObviousFail 0
RedundantAssertion 0
SleepyTest 0
UnknownTest 0
Total diagnostics 107

Table 7.8: Smell instances found in manual validation

7.4.3 Random Sample Validation Results

From these validation results, we get the statistics shown in table 7.9. By examining 90 tests
out of a population of 849 tests, we achieve a 10% margin of error and 95% confidence level
[24].

Since only some of the methods in the random sample had diagnostics, and those smells
had a limited array of smells, we have a limited amount of true negatives and true and false
positives. This limits the results that we can glean from this sample to only some of the
smells.
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Smell ID True
Negative

True
Positive

False
Negative

False
Positive Precision Recall F-Score

Assertion
Roulette 60 2 28 0 1.000 0.067 0.125

ConditionalTest 90 0 0 0 - - -
DuplicateAssert 90 0 0 0 - - -
EagerTest 87 1 2 0 1.000 0.333 0.500
EmptyTest 90 0 0 0 - - -

Exception
Handling 90 0 0 0 - - -

GeneralFixture 90 0 0 0 - - -
IgnoredTest 87 3 0 0 1.000 1.000 1.000
MagicNumber 80 10 0 0 1.000 1.000 1.000
MysteryGuest 88 0 2 0 - 0.000 -
ObviousFail 90 0 0 0 - - -

Redundant
Assertion 90 0 0 0 - - -

SleepyTest 90 0 0 0 - - -
UnknownTest 90 0 0 0 - - -
TOTAL 1212 16 32 0 1.000 0.333 0.500

Table 7.9: Results of random sample validation

7.5 Discussion

7.5.1 Smells with Low Detection

Some of the test smells are not found at all, or in very small amounts. This can generally be
explained by their simple nature: Empty Test, Redundant Assertion and Unknown Test are
generally easy to avoid, and their detection is meant more to remind developers of leftover
or placeholder code.

7.5.2 False Negatives

In the manual validation of test smells, multiple instances of false negatives were found,
mainly for Assertion Roulette, Mystery Guest and Eager Test.

Assertion Roulette false negatives happened due to the use of helper assertions: methods
defined by the developer whose objective is to run assertion in a specific way, usually calling
an ”official” assertion method in their body. These were counted as assertion methods
during the inspection, and in all found instances, did not have a message parameter in
their definition). The analyzer did not count them as assertion roulette, since they were not
counted as assertion methods. A way to fix this would be to allow the developer to add a set
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of custom assertion methods to the configuration file, and have the analyzer look at those
calls too. This however would necessitate the developer to add a message parameter to the
helper assertion, and the analyzer would need a way to recognize that parameter as such.

Eager Test false negatives were due to the way it determines what is a production object.
Since there is no simple way to determine which is the production class being tested by a
test, the analyzer utilizes a simple heuristic of simply looking at all method calls made by
an object referenced in an assertion call. This criteria may be too strict, but it is preferable
to a loose criteria that could lead to too many false positive diagnostics.

Mystery Guest also had a couple of false negatives. These happened because the heuristic
for finding mystery guest instances is quite naive: it only checks the body of the test for file
reading methods. This however ignores any helper function that may read files inside its
body. While a more accurate implementation of the analyzer could be developed, it falls
outside the scope of this work.

7.5.3 False Positives

Within the manually checked diagnostics, no false positives were found. This is good, since
one of the priorities of the analyzers was to minimize the amount of false positive diagnostics,
as explained in Section 6.1.

7.5.4 Corpus of Tests

While there was an attempt to use an open source project to provide a corpus of test methods
to analyze, finding a project with enough tests that uses the MSTest framework proved
difficult. Most publicly available projects of sufficient size use different testing frameworks.
While this was not ideal, it points to the possible utility of expanding the tool’s support to
other testing frameworks.

The utilized corpus of tests, projects A, B and C, are useful in their size, in order to get
enough test methods. While manually reviewing the generated diagnostics, multiple useful
insights were found, and corresponding improvements to the tool made. However, some smells
are missing from the corpus, and, more importantly, due to it being an industrial project,
the access we had to the code was limited to project A, and within project A, limited further
to only the test code, without access to the production code.

7.5.5 Results

The validation results are not complete enough to reach a definitive conclusion about the
TestSmells Detector ’s accuracy. However, the results we do have show that the tool is
precise, although the recall values are less high (mainly brought down due to Assertion
Roulette and Mystery Guest false negatives). This means that while the tool may miss some
smell instances, it generally does not point to smells that do not exist.
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7.6 Summary

In summary, we have found that the developed tool has a promising precision rate, although
a less flattering recall value. From manual examination of generated diagnostics, we have
found no false positives, and while we have a generally high rate of false negatives, these are
expected and accounted due to the nature of some of the smells.

In closing this chapter, while it was impossible to find a corpus of tests that met the
criteria of size, language and framework compatibility, open source-ness, and not to mention
sufficient smelliness that allowed for a more complete validation of the tool, the results suggest
that the tool is accurate enough to be useful in practice, without hindering the developer by
reporting non-existing smells.
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Chapter 8

Conclusion and Future Work

We have created a tool that identifies 14 different test smells within the MSTest testing
framework, and generates automated fixes for 7 of these smells. The tool can be installed in
Visual Studio as a NuGet package, or used as a standalone command-line tool.

The tool was tested on hand-crafted test methods and a set of industrial projects, showing
its utility and general correctness. It allows developers to be informed of smells they are
introducing to their tests while writing them, helping them to avoid creating new smells and
fixing existing ones, with settings to suppress some of the diagnostics if the developer decides
the smell is justified in some way.

We have also created a smaller battery of automatic code fixes, that, while not advanced
enough to remove smells on autopilot, help the developer and quicken the process of fixing
these smells.

The tool prioritizes detecting true smells, in spite of missing some, in order to minimize
possible false positives and making the developer tired of receiving false diagnoses.

In future work, the developed tool can be expanded and improved in multiple different
ways:

• Address the Assertion Roulette and Mystery Guest false negatives, by adding support
for helper functions to be detected.

• Adding analyzers and codefixes for more smells.

• Adding support for other testing frameworks, notably NUnit [9] and xUnit [13]. The
detection logic would remain mostly the same, but some system would need to be
implemented to find and get each framework’s relevant class symbols as needed.

• Adding better analytics and a more complete display of information for the command
line tool. While the tool outputs information that can be used to judge the source
and severity of test smelliness, more can be done to readily show to the user where the
smells come from, which smells are more prevalent, what methods should have a higher
priority of refactoring, among other things.
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• Conducting a detailed survey of the tool’s effectiveness in lowering the amount of test
smells introduced to a project. While the tools correctness in detecting smells was
validated, and existing studies do recommend the use of detection tools for decreasing
the amount of test smells in a project (see section 2.5 of this document), we could not
check the impact of the tool in a production environment, which could also bring in
useful insights on which parts of the tool could be improved.
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Annex A

Detail of EmptyTest Detection and
Fixing

A.1 Analyzer: EmptyTestAnalyzer

This class is tasked with defining an analysis to be run on some piece of code (in this example,
each method of a document), which determines if a diagnostic must be reported and then
reports it accordingly.

The class must inherit from DiagnosticAnalyzer. We also specify that it’s an analyzer for
C# (since Roslyn also supports VB analyzers).

1 [DiagnosticAnalyzer(LanguageNames.CSharp)]
2 public class EmptyTestAnalyzer : DiagnosticAnalyzer

We must also define the diagnostic’s ID and category, and the necessary information to
generate the diagnostic’s message when it is shown to the user, all of which is saved in a
DiagnosticDescriptor Rule field. The descriptor’s parameters are saved and read from a
Resources file, one for each analyzer, to facilitate editing and localizing the values. When
a diagnostic is reported, the descriptor is used along with any necessary additional info to
format the warning message. In this case, the message is Test Method ’0’ is empty, and
it is given the method’s name as an additional parameter when reported.

Finally, the analyzer class has a SupportedDiagnostics field, a list of all different
descriptors the analyzer can emit (since an analyzer can report multiple types of diagnostic).

1 public const string DiagnosticId = "EmptyTest";
2

3 //Defining localized names and info for the diagnostic
4 private static readonly LocalizableString Title = new LocalizableResourceString(nameof(

↪→ Resources.AnalyzerTitle), Resources.ResourceManager, typeof(Resources));
5 private static readonly LocalizableString MessageFormat = new LocalizableResourceString(

↪→ nameof(Resources.AnalyzerMessageFormat), Resources.ResourceManager, typeof(
↪→ Resources));
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6 private static readonly LocalizableString Description = new LocalizableResourceString(nameof
↪→ (Resources.AnalyzerDescription), Resources.ResourceManager, typeof(Resources));

7 private const string Category = "Test Smells";
8

9 private static readonly DiagnosticDescriptor Rule = new DiagnosticDescriptor(DiagnosticId,
↪→ Title, MessageFormat, Category, DiagnosticSeverity.Warning, isEnabledByDefault:
↪→ true, description: Description);

10

11 public override ImmutableArray<DiagnosticDescriptor> SupportedDiagnostics {get{ return
↪→ ImmutableArray.Create(Rule);}}

We then override the Initialize method, to define some of the analyzer’s behaviour and
register the analysis callback. ConfigureGeneratedCodeAnalysis controls the analysis of
automatically generated code, done by source generators. Since generated code is usually not
expected to be edited by the user, we disable the analysis of it. Since analysing one method
to check if it is empty does not interfere with the same analysis of other methods, we can
enable concurrent analysis with EnableConcurrentExecution.

Finally, we register an action to start the analysis in the compilation start phase of analysis
with RegisterCompilationStartAction(FindTestingClass)

1 public override void Initialize(AnalysisContext context)
2 {
3 // Controls analysis of generated code (ex. EntityFramework Migration) None means

↪→ generated code is not analyzed
4 context.ConfigureGeneratedCodeAnalysis(GeneratedCodeAnalysisFlags.None);
5

6 context.EnableConcurrentExecution();
7

8 //Registers callback to start analysis
9 context.RegisterCompilationStartAction(FindTestingClass);

10 }

The method analysis for Empty Test works over 3 phases:

1. CompilationStart: In this phase we get the necessary attribute symbols from the
compilation.

2. SymbolStart: In this phase we check each method symbol in the document, and if
it has the [TestMethod] attribute, and is inside a class with the [TestClass], we
continue to the next phase.

3. OperationBlock: In this phase we check the operation block of the method body to
see if it has any statements, and report a diagnostic if doesn’t.

FindTestingClass is tasked with the compilation start phase. It simply gets the
TestClass and TestMethod attributes and registers an action for the Symbol phase. It
uses a lambda expression to pass the attribute symbols to the next action.

67



The Symbol action simply checks if the method symbol contained in the context is a
test method in a test class. Since most test smells analyzers only operate in test methods,
this checking step is done on most other analyzers and thus is defined in a TestUtils class
to minimize code duplication. After checking the attributes, the symbol action registers a
OperationBlock action.

1 private static void FindTestingClass(CompilationStartAnalysisContext context)
2 {
3

4 // Get the attribute symbols from the compilation
5 var testClassAttr = context.Compilation.GetTypeByMetadataName("Microsoft.

↪→ VisualStudio.TestTools.UnitTesting.TestClassAttribute");
6 if (testClassAttr is null) { return; }
7 var testMethodAttr = context.Compilation.GetTypeByMetadataName("Microsoft.

↪→ VisualStudio.TestTools.UnitTesting.TestMethodAttribute");
8 if (testMethodAttr is null) { return; }
9

10 // We register a Symbol Start Action to filter all test classes and their test
↪→ methods

11 context.RegisterSymbolStartAction((ctx) =>
12 {
13 if (!TestUtils.TestMethodInTestClass(ctx, testClassAttr, testMethodAttr)) {

↪→ return; }
14 ctx.RegisterOperationBlockAction(AnalyzeMethodBlockIOperation);
15 }
16 , SymbolKind.Method);
17 }

TestMethodInTestClass simply checks if the method symbol and its containing symbol
have the appropriate attributes

1 public static bool TestMethodInTestClass(SymbolAnalysisContext context,
↪→ INamedTypeSymbol testClassAttr, INamedTypeSymbol testMethodAttr)

2 {
3 var methodSymbol = (IMethodSymbol)context.Symbol;
4 var containerClass = methodSymbol.ContainingSymbol;
5 if (containerClass is null) { return false; }
6

7 return AttributeIsInSymbol(testClassAttr, containerClass) && AttributeIsInSymbol(
↪→ testMethodAttr, methodSymbol);

8 }
9

10 public static bool AttributeIsInSymbol(INamedTypeSymbol attribute, ISymbol symbol)
11 {
12 return symbol.GetAttributes().Where(attr => SymbolEqualityComparer.Default.Equals(

↪→ attr.AttributeClass, attribute)).Any();
13 }

The operation block action begins by getting the method body block from the context.
For this, we simply get the context’s first operation of kind Block. This is also repeated in
most analyzers, so it’s defined in TestUtils. After that, if the method body has no operations,
we get the method’s location and name, and report a diagnostic.
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1 private static void AnalyzeMethodBlockIOperation(OperationBlockAnalysisContext context
↪→ )

2 {
3 var block = TestUtils.GetBlockOperation(context);
4 if (block is null) { return; }
5 if (block.Descendants().Count() == 0)//if the method body has no operations, it is

↪→ empty
6 {
7 var methodSymbol = context.OwningSymbol;
8 var diagnostic = Diagnostic.Create(Rule, methodSymbol.Locations.First(),

↪→ methodSymbol.Name);
9 context.ReportDiagnostic(diagnostic);

10 }
11 }

A.2 Fixer: EmptyTestCodefixProvider

Empty Test’s fix should add a throw new NotImplementedException(); statement to make
the test fail. The fix should also preserve any comments present in the empty test.

The codefix class for EmptyTest is defined as a CodeFixProvider, with attributes for
registering it and having a single instance of the class, since it doesn;t hold state.

1 [ExportCodeFixProvider(LanguageNames.CSharp, Name = nameof(EmptyTestCodeFixProvider)),
↪→ Shared]

2 public class EmptyTestCodeFixProvider : CodeFixProvider

The codefix class needs a list of diagnostic IDs to look for. Diagnostics matching these
IDs are then made available in the RegisterCodefixesAsync method later.

1 public sealed override ImmutableArray<string> FixableDiagnosticIds
2 {
3 get { return ImmutableArray.Create(EmptyTestAnalyzer.DiagnosticId); }
4 }

Codefixes can be applied simultaneously to multiple diagnostics at the same time. To do
this, a batch fixer must be defined for the class. If the fix doesn’t interfere with itself (in
Empty Test’s case, each method can only have a single instance of the diagnostic, and fixing
one method doesn’t change anything in any other method), the default batch fixer can be
used. Otherwise, a custom batch fix must be defined.

1 public sealed override FixAllProvider GetFixAllProvider()
2 {
3 return WellKnownFixAllProviders.BatchFixer;
4 }

Registering a fix is similar in most cases:

1. We get the syntax root
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2. We get the relevant diagnostic

3. From both of these, we get the relevant syntax node where we want to apply the fix.

4. We register a CodeAction, giving it the necessary variables. Since the fix will only
need access to a single method at a time, we register as createChangedDocument. If
we were, for example, to change the name of a symbol, we’d need access to the entire
solution to check if the name is referenced elsewhere.

1 public sealed override async Task RegisterCodeFixesAsync(CodeFixContext context)
2 {
3 var root = await context.Document.GetSyntaxRootAsync(context.CancellationToken).

↪→ ConfigureAwait(false);
4

5 var diagnostic = context.Diagnostics.First();
6 var diagnosticSpan = diagnostic.Location.SourceSpan;
7

8 // Find the method declaration identified by the diagnostic.
9 var methodDeclaration = root.FindToken(diagnosticSpan.Start).Parent.

↪→ AncestorsAndSelf().OfType<MethodDeclarationSyntax>().First();
10

11 // Register a code action that will invoke the fix.
12 context.RegisterCodeFix(
13 CodeAction.Create(
14 title: CodeFixResources.CodeFixTitle,
15 createChangedDocument: c => AddNotImplementedException(context.Document,

↪→ methodDeclaration, c),
16 equivalenceKey: nameof(CodeFixResources.CodeFixTitle)),
17 diagnostic);
18 }

The fix’s logic is as follows:

1. Get the Semantic model of the document, in order to have access to its semantic
information.

2. Get the NotImplementedException symbol from the semantic model.

3. Get the relevant parts of the method: The body’s statements list (which is empty) to
insert our throw statement, and the body’s closing bracket, to preserve the method’s
comments (since they are saved as the closing bracket’s trivia).

4. Create the throw statement: This is done with a syntax generator: We make
a throw statement (throw), with an object creation expression (new object()),
with the appropriate exception type (NotImplementedExpression). We also copy
the closing bracket’s leading trivia (comments and white space) as the statement’s
leading trivia. This way, any comments the empty test had will appear before the
throw statement. The statement also has the Simplifier.AddImportsAnnotation
and Formatter.Annotation. The former automatically adds any necessary using
statements at the start of the document, and the latter automatically balances the
statement’s whitespace when it is added to the document.
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5. Add the new sttement to the body. Syntax nodes in Roslyn are immutable, so each
time we make a change we must create a new node. We also delete the closing bracket’s
leading trivia, since we moved it to the throw statement, otherwise it would be repeated.

6. Replace the original method body node in the syntax tree root, and return the edited
document with the new syntax tree.

1 private async Task<Document> AddNotImplementedException(Document document,
↪→ MethodDeclarationSyntax methodDeclaration, CancellationToken cancellationToken)

2 {
3 //NotImplementedException class
4 var semanticModel = await document.GetSemanticModelAsync(cancellationToken);
5 var notImplementedExceptionType = semanticModel.Compilation.GetTypeByMetadataName(

↪→ SystemNotImplementedExceptionTypeName);
6

7 //creating the new body with the added "raise new NotImplementedException();" at
↪→ the end.

8 //Method statements
9 var bodyBlockSyntax = methodDeclaration.Body;

10 var bodyStatements = bodyBlockSyntax.Statements;
11 var endBrace = bodyBlockSyntax.CloseBraceToken;
12

13 //We generate "raise new NotImplementedException();"
14 var generator = SyntaxGenerator.GetGenerator(document);
15 var throwStatement = (StatementSyntax)generator.ThrowStatement(generator.

↪→ ObjectCreationExpression(
16 generator.TypeExpression(notImplementedExceptionType))).WithLeadingTrivia(

↪→ endBrace.LeadingTrivia).WithAdditionalAnnotations(Simplifier.
↪→ AddImportsAnnotation, Formatter.Annotation);

17

18 //We add to the start of the statement block
19 var newBlockStatements = bodyStatements.Insert(0, throwStatement);
20 var newBodyBlockSyntax = bodyBlockSyntax.WithCloseBraceToken(endBrace.

↪→ WithLeadingTrivia()).WithStatements(newBlockStatements);
21

22 //Editing the document
23 var root = await document.GetSyntaxRootAsync(cancellationToken);
24 var newDocument = document.WithSyntaxRoot(root.ReplaceNode(bodyBlockSyntax,

↪→ newBodyBlockSyntax));
25

26 return newDocument;
27 }
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Annex B

Examples of Detected Smells

In this chapter we present a set of simple examples to illustrate each of the smells detected
the developed tool, detailed in Chapter 3.

B.1 Assertion Roulette

The test has multiple asserts without descriptions. In the example, lines 5 and 7 have
assertions without messages, making it difficult to easily ascertain the purpose of each
assertion.

1 [TestMethod]
2 public void AccelerateTest()
3 {
4 bool OpCode;
5 OpCode = FixtureCar.AccelerateTo(40);
6 Assert.IsTrue(OpCode);
7 OpCode = FixtureCar.AccelerateTo(50);
8 Assert.IsFalse(OpCode);
9 }

B.2 Conditional Test Logic

The test has control statements, or its result depends on a control statement. In the example,
the test’s execution depend on a host of control statements. In the worst case, changes in the
production code could cause SuccesfulAccel to become false, and make it so the test doesn’t
actually run any assertion, in which case it would pass without testing the MoveTowards
method.

1 [TestMethod]
2 public void MoveTowardsTest()

72



3 {
4 int speed = 40;
5 bool SuccesfulAccel = FixtureCar.AccelerateTo(speed);
6 if (SuccesfulAccel)
7 {
8 var destination = Tuple.Create(40f, 40f, 40f);
9

10 if (FixtureCar.CurrentSpeed > 0)
11 {
12 while (FixtureCar.Position != destination)
13 {
14 FixtureCar.MoveTowards(destination);
15 }
16 Assert.AreEqual(destination, FixtureCar.Position);
17 }
18 }
19 }

B.3 Duplicate Assert

The test checks for the same condition multiple times within the same test method. In the
example, the same assertion is run 3 times when one would suffice, making the test more
difficult to parse at first glance.

1 [TestMethod]
2 public void PassengerSpaceTest()
3 {
4 FixtureCar.Capacity = 3;
5 Assert.IsTrue(FixtureCar.AvailablePassengerSpace());
6 FixtureCar.AddPassenger(FixturePerson);
7 Assert.IsTrue(FixtureCar.AvailablePassengerSpace());
8 FixtureCar.AddPassenger(FixturePerson);
9 Assert.IsTrue(FixtureCar.AvailablePassengerSpace());

10 FixtureCar.AddPassenger(FixturePerson);
11 Assert.IsFalse(FixtureCar.AvailablePassengerSpace());
12 }

B.4 Eager Test

The has multiple assertions, and they check the results of more than one method. In the
example, the test checks the results of 4 different methods, which makes it unclear what
exactly is being tested.

1 [TestMethod]
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2 public void CarTest()
3 {
4 FixtureCar.AccelerateTo(40);
5 FixtureCar.AddPassenger(FixturePerson);
6 FixtureCar.MoveTowards(Tuple.Create(40f, 40f, 40f));
7

8 Assert.IsTrue(FixtureCar.AvailablePassengerSpace());
9 }

B.5 Empty Test

The test contains no executable statements. This test will always pass, and could lead the
developer to think a piece of production code works fine when in actuality it isn’t being
tested.

1 [TestMethod]
2 public void CarTestPassengers()
3 {
4

5 }

B.6 Exception Handling

The test throws or catches an exception. In the example, the test tries to catch an exception
when creating a new Car instance.

1 [TestMethod]
2 public void NullPassengersExceptionTest()
3 {
4 try
5 {
6 var exceptionCar = new Car(null, FixturePerson, 4, 4, 40);
7 }
8 catch (Exception ex)
9 {

10 Assert.Fail();
11 }
12 }
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B.7 General Fixture

The setup fixture sets up variables used in only some tests. In teh example, the
FixturePerson value isn’t used in the test, even tho it is stored within FixtureCar. In
this case, it could be a local variable of the Init method.

1 public Person FixturePerson;
2 public Car FixtureCar;
3

4 [TestInitialize]
5 private void Init()
6 {
7 this.FixturePerson = new Person(1, "PersonA", "Can Drive", 20);
8 this.FixtureCar = new Car(new List<Person>(), FixturePerson, 4, 4, 40);
9 }

10

11 [TestMethod]
12 public void AccelerateTest()
13 {
14 bool OpCode;
15 OpCode = FixtureCar.AccelerateTo(40);
16 Assert.IsTrue(OpCode);
17 OpCode = FixtureCar.AccelerateTo(50);
18 Assert.IsFalse(OpCode);
19 }

B.8 Ignored Test

The test has the [ignore] attribute.
1 [TestMethod, Ignore]
2 public void NegativeMovementTest()
3 {
4 var targetPos = Tuple.Create(−1f, −1f, −1f);
5 FixtureCar.MoveTowards(targetPos);
6 Assert.AreEqual(targetPos, FixtureCar.Position);
7 }

B.9 Magic Number Test

The test has assertions with literal values as arguments. In the example, the assertion on line
6 has a magic number as an expected value, without any obvious indication to the importance
of 40 specifically.
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1 [TestMethod]
2 public void AccelerateMoreClampTest()
3 {
4 FixtureCar.AccelerateMore(−20);
5 FixtureCar.AccelerateMore(50);
6 Assert.AreEqual(40, FixtureCar.CurrentSpeed);
7 }

B.10 Mystery Guest

The test uses external resources, such as a file or database. In the example, 2 Car instances
are created from external data, and then tested against each other, without any indication
of what data is responsible for the expected behaviour.

1 [TestMethod]
2 public void CarRaceTest()
3 {
4 string carJson1 = @"C:\Users\dev\source\repos\TestProject1 - Copy\

↪→ TestProject1\Car1.json";
5 string carJson2 = @"C:\Users\dev\source\repos\TestProject1 - Copy\

↪→ TestProject1\Car2.json";
6

7 Car car1 = Car.ParseFromString(carJson1);
8 Car car2 = Car.ParseFromString(carJson2);
9

10 car1.AccelerateMore(50);
11 car2.AccelerateMore(50);
12

13 Assert.IsTrue(car1.DistanceFromStart() > car2.DistanceFromStart());
14 }

B.11 Redundant Assertion

The test has an assertion which checks the equality of an object with itself. In the example,
the assertion in line 6 checks is redundant, wince it will always pass.

1 [TestMethod]
2 public void CarMovementTest()
3 {
4 FixtureCar.AccelerateTo(30);
5 //No exceptions?
6 Assert.AreEqual(FixtureCar, FixtureCar);
7 var destination = Tuple.Create(0f, 0f, 40f);
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8 var partialDestination = Tuple.Create(0f, 0f, 30f);
9

10 FixtureCar.MoveTowards(destination);
11

12 Assert.AreEqual(partialDestination, FixtureCar.Position);
13 }

B.12 Sleepy Test

The test uses the sleep() function.
1 [TestMethod]
2 public async void AccelerationTest()
3 {
4 var task = FixtureCar.StartAsync();
5 Thread.Sleep(10);
6 await task;
7 Assert.AreEqual(FixturePerson, FixtureCar.Driver);
8 }

B.13 Unknown Test

The test does not have any assertion. In the example, no assertion is called, which means
the test will pass as long as there is no exception in it’s execution. However, this makes it
hard to easily understand the purpose of the test.

1 [TestMethod]
2 public void NewCarWithPasssengersNoException()
3 {
4 var person1 = new Person(1, "a", "test person", 20);
5 var person2 = new Person(2, "a", "test person", 20);
6 var person3 = new Person(3, "a", "test person", 20);
7 var person4 = new Person(4, "a", "test person", 20);
8

9 var passengers = new List<Person> { person1, person2, person3, person4 };
10

11 var testcar = new Car(passengers, FixturePerson, 100, 4, 100);
12 }
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B.14 Obvious Fail

The test has IsTrue(false) or IsFalse(true). In the example, the assertion in line 7 could
be replaced with Assert.Fail(), which more directly conveys the test’s intent. This smell
generally appears alongside conditional testing.

1 [TestMethod]
2 public void NoNegativeMasSpeed()
3 {
4 var testcar = new Car(new List<Person>(), FixturePerson, 100, 4, −100);
5 if (testcar.MaxSpeed < 0)
6 {
7 Assert.IsTrue(false);
8 }
9 }
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