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RESUMEN DE LA TESIS PARA OPTAR
AL GRADO DE DOCTOR EN CIENCIAS DE LA INGENIERÍA,
MENCIÓN MODELACIÓN MATEMÁTICA
POR: DANIEL LASLUISA CASTAÑO
FECHA: 2024
PROF. GUÍA: SR. HÉCTOR RAMÍREZ Y SR. DIDIER AUSSEL

CONTRIBUCIONES A LA OPTIMIZACIÓN EN ENERGÍA: DESDE LA
OPTIMIZACIÓN BINIVEL AL DISEÑO ÓPTIMO DE PLANTAS DE ENERGÍA

RENOVABLE

En este trabajo de tesis, desarrollamos y aplicamos técnicas de optimización en el diseño y
gestión de energía. En primer lugar, nos enfocamos en la optimización binivel y desarrollamos
nuevo análisis teórico para single-leader-multi-follower games con restricciones de cardinali-
dad. Luego, se aplica a la localización óptima de estaciones de carga por vehículos eléctricos.
La segunda parte está dedicada a la optimización económica de plantas solares desde una
perspectiva a largo plazo, así como desde una perspectiva a corto plazo. Se desarrolla un
enfoque innovador de optimización global que combina el diseño óptimo de almacenamiento
y la operación óptima en un contexto de mercado. Luego, a escala a corto plazo, se analiza
el control óptimo de la producción de energía de una planta solar.
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CONTRIBUTIONS TO OPTIMIZATION IN ENERGY: FROM BILEVEL
OPTIMIZATION TO OPTIMAL DESIGN OF RENEWABLE ENERGY PLANT

In this thesis work, we develop and apply optimization techniques in energy design and man-
agement. First we focus on bilevel optimization and developed new theoretical analysis for
single-leader-multi-follower games with cardinality constraints. It is then applied to optimal
location of charging stations for electric vehicles. The second part is dedicated to economic
optimization of solar power plants from a long term as well as from a short term perspec-
tive. Innovating global optimization approach mixing optimal design of storage and optimal
operation in a market context is developed. Then at a short term scale, the optimal control
of energy production of a solar power plant is analysed.
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Chapter 1

Introduction (English and French
version)

When speaking of the "optimal design" of energy units, that is production plants or delivery
plants (charging stations for electric vehicles, renewable energy plants....), one can understand
this problem in many different ways. Some examples are:

1) determining the "best" physical characteristics/design for an energy unit, where best
can be understood from an economical point of view, by an exergy approach or other
criterion;

2) determining the optimal location to built this energy unit. Here again "optimal" can
cover the evaluation of costs, benefits, quality of service...;

3) determining the "best" way to operate the energy unit, that is when to store, when to
produce/to stop producing or when to offer a delivery;

and many others. This kind of analysis is of course fundamental in an investment decision
perspective or to compare different configurations. But it is also very important for the
design of demand-side management interactions (for example in Smart-grid, microgrids and
virtual power plants).

In this thesis work we will address the three following cases: in a first part (chapters 2
and 3), motivated by the determination of optimal location of charging stations for electric
vehicles (point 2) above), we will focus on the study of bilevel problems intrinsically including
cardinality constraints.

In the second part of this manuscript (chapters 4, 5 and 6), we will concentrate both on
the optimal design of a concentrated solar plant in the context of prices determined by energy
market and on its operation at a long term (Chapter 5), thus addressing points 1) and 3)
above. The short term operation with irradiance perturbations will be considered in Chapter
6.

In Chapter 2, respectively Chapter 4, preliminary notions, context and notation will be
recalled/fixed concerning bilevel optimization, respectively on concentrated solar plants. Fi-
nally, a brief summary of the structure of the whole development in this research work is

1



given in Conclusion/Chapter 7.

1.1 Part I: Bilevel games and cardinality constraints
In recent years, the automobile industry has witnessed a significant shift towards sustainable
transportation solutions. One of the most notable advancements in this regard is the growing
popularity of electric cars. Electric vehicles (EVs) have become a viable alternative to tra-
ditional gasoline cars, offering numerous benefits in terms of environmental impact, energy
efficiency, and technological innovation. Some of the factors that have favored this growth
include:

• The increasing awareness of environmental issues, such as climate change and air pol-
lution, has led to a rise in demand for cleaner and more sustainable vehicles [32, 89].

• The continuous development of battery technology has improved the range of electric
cars, alleviating concerns about the limited distance they can travel between charges
(for example, an electric car with a 60 kWh battery and an efficiency of 4 miles/kWh
can travel approximately 240 miles).

• Many governments provide significant financial incentives for the purchase of electric
cars, such as tax credits, tax discounts, and subsidies, to encourage the adoption of
cleaner technologies.

• The deployment of a broader and more accessible charging infrastructure has alleviated
concerns about the availability of charging stations, making electric cars more practical
for a larger number of people.

In contrast, as an increasing number of electric vehicle owners proceed to charge their
cars, higher demand is generated in the charge service, exerting a direct influence on the
planning and management of the electrical infrastructure.

Figure 1.1: Facility location problem, graphic representation.

The development of charging infrastructure drives the demand for increased capacity in
the electrical grid, requiring strategic planning when locating charging stations. A well-
established charging network not only has the potential to promote the growth of the EV
market by alleviating concerns about the availability of charging points but also intensifies
the requirement for an expanded charging network, as the rising number of EVs contributes to
such a demand. Additionally, the charging patterns of electric vehicles can have a significant
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impact on daily electricity demand [97, 70, 37]. In this regard, based on the supply capacity
of each facility simultaneously, the implementation of tariffs or incentives for charging at
different facilities may be key to balancing the load on the electrical grid [37].

The theory of bilevel optimization focuses on problems with two levels of decision-making,
akin to a leader and a follower. In the context of facility location problem (see Figure 1.1),
this entails a company (leader) making strategic decisions regarding location, while followers
(cars in this case) react. This perspective allows for the joint optimization of strategic and
tactical decisions, encompassing both facility location and the reactions of participants in
the market. Now, in confronting the challenge of facility location, the additional complexity
of considering the limited capacity of facilities for car supply is introduced, which could be
translated into cardinality constraints in a bilevel problem. Let us recall that cardinality
constraints are constraints on the maximum number of non zero components of given vector
variables. However it turns out that bilevel problems with cardinality constraints have never
been considered in the literature. We develop here the first elements of the theory on these
problems.

In the Single-Leader-Multi-Follower (SLMF) games, a designated leader engages with a
group of followers, each playing a crucial role in the decision-making process. The leader,
orchestrates her choices, while the followers respond by solving a (generalized) Nash equilib-
rium problem that is parameterized by the leader’s decision variable.
A common approach to tackle the complexities of Single-Leader-Multi-Follower games in-
volves reformulating them as single-level optimization problems. This reformulation is rooted
in the natural variational formulation of the lower-level game played by the followers. Lever-
aging standard convexity and continuity assumptions, a vector emerges as an equilibrium
point for the lower-level game if and only if it satisfies the coupled Karush-Kuhn-Tucker
(KKT) optimality conditions associated with each follower’s optimization problem.
The resulting optimization problem seamlessly fits into the realm of Mathematical Program-
ming with Complementarity Constraints (MPCC). This classification arises naturally as com-
plementarity equations play a pivotal role in the Karush-Kuhn-Tucker-based variational for-
mulations. The study of Single-Leader-Multi-Follower games within the MPCC framework
provides a powerful analytical lens, facilitating a deeper understanding of the intricate rela-
tionships and strategic interactions within hierarchical decision-making structures.

We will present three case studies for these type of problems: those with cardinality
constraints at the upper level, at the lower level, and a third mixed case. We begin by the first
case study, which maintains a structure that preserves key properties to ensure the existence
of solutions. In [23], for a single-level optimization problem with cardinality constraints,
the authors pose a reformulation of the original problem and prove equivalence of global
optima between the two optimization problems. Rebounding on this proposal, we introduce
a novel approach to the bilevel problem with cardinality constraints at the upper level and
establish the equivalence between global solutions in both approaches. In the second case,
with cardinality constraints at the lower level, there is a significant complexity in analyzing
solution existence due to the loss of convexity in the lower-level constraint set. Therefore, we
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propose a "mixed" approach, in which expressions corresponding to cardinality constraints
are distributed across both levels, preserving fundamental properties that guarantee solution
existence. Finally, we describe a detailed methodology for the numerical resolution of these
bi-level problems, situated within the context of the issue of locating electric vehicle charging
facilities.

1.2 Part II: Economic Efficiency of Concentrated Solar
Power plants

For the problem of optimal design of solar thermal plants, a multidimensional analysis will be
carried out, which consists of choosing the best configuration of each of the components (for a
certain type of Solar Captor, storage system and Rankine cycle) together with other economic
factors, in order to maximize the performance of the plant over a useful life horizon. However,
the concept of optimizing the performance is not uniquely defined and several parameters
need to be settled before an optimization model can be posed. Based on the black-box model
(described in Chapter 4), we will address, in a general way, multidimensional analysis for a
CSP plant with different thermal storage systems.

Figure 1.2: Black box model for a CSP plant. Left image taken from [56].

For a solar power plant to be profitable depends largely on the storage system [123, 110].
According to the characteristics and functionalities of the storage systems that will be consid-
ered in this part of the investigative work, one of the objectives is to optimize the dimensions
and operations for each of these systems. On the other hand, to evaluate the profitability
and viability of a CSP plant together with a storage system, many studies consider the eco-
nomic indicator LCOE [5, 34]. Nevertheless, in a SPOT market context, it does not work to
consider this type of indicator, since it does not take into account incomes, which can also
be different depending on the type of storage system and production strategy. Hence the
need to consider other economic indicators to evaluate a CSP plant project that may vary
according to physical and economic conditions. Therefore, we will be considering them in a
SPOT market context, where we will be working with a non-constant price function, which
means that the operation of the plant can change the economic benefit of the plant. In addi-
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tion to the LCOE indicator, in this work we consider indicators such as: NPV (Net Present
Value), IRR (Internal Rate of Return), and CPB (Conventional Payback), since they capture
both the production capacity of the plant and the impact of production strategies [124, 125].
Another consideration to be analyzed is the variation of electricity market prices, which will
influence the income and costs generated by the plant, i.e., particularly according to the
economic indicator under consideration, the economic benefit will be slightly or strongly af-
fected. The previously described paradigm gives way to different optimization problems, each
one involving two distinct sets of variables that are optimized simultaneously: the physical
variables corresponding to the type of storage, and the operational/strategic variables, which
define storage/production strategies according to the desired objective. Because some of the
variables correspond to the operational use of the storage (and are therefore functions), this
maximization (or minimization) problem is actually an optimal control problem. However,
solving an optimal control problem could be quite difficult. Moreover, due to the discon-
tinuous nature of some functions, computational difficulties may arise. Therefore, in this
part the notion of pre-scenarios will be used. This concept, first formulated in [124], allows
us to transform the optimal control problem into a “classical" mathematical programming
problem, which consists in fixing the number and order of the different operation phases of
the plant, inducing a real parameterization of the admissible operations of the CSP plant of
the admissible operations of the CSP plant.

To address this problem, the first objective to develop will be to build a metamodel
whose usefulness can be summarized in Figure 1.3: First, the exogenous parameters like the
DNI function, lifetime of the plant, and the price function λ(·) are set; then each black-box
component is chosen, where the parameters to optimize are identified as variables of the
optimization problem, and finally, through the black-box model, the optimization problem is
constructed to optimize the chosen economic criterion under a pre-fixed operation strategy.

Figure 1.3: Meta-model for CSP optimal design

The resolution of the optimization problems that will be developed in the Chapter 5 follows
the alignments proposed in [124], these are: a prototype solar thermal plant is considered,
which will be optimized over a lifetime of N years. During this time, each year is assumed
to behave exactly the same with respect to the others, so only one year is optimized, and
then repeated N times. This repetition takes into account an economic devaluation, which is
captured by a discount rate. The model year is divided into periods (e.g. when divided into
four, each would represent a season) and each period is represented by a cyclical stage, which
is repeated. The optimization of the model year consists of maximizing (or minimizing) the
physical variables of the storage and the operation of the solar thermal power plant in each
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cyclic stage in order to maximize (or minimize) the economic criterion. So in a first instance
we will proceed in the creation and implementation of an algorithm for the maximization
(or minimization) of the economical indicators for the prototype solar thermal power plant.
This type of modeling will allow a comparative study between different integrated storage
systems, to show the efficiency of each one of them, as well as different prices scenarios, eco-
nomic criteria and operation strategies depending on the assumptions and sought objectives.

When designing a CSP plant, the effect of operation strategies is taken into account in
average, since the lifetime horizon doesn’t allow to have reliable forecasting on the variations
of weather conditions or fluctuations of prices. However, if one wants to address the prob-
lem of optimal operation of an already existing CSP plant, this approach is not valid for a
long time. Instead, it is necessary to consider the short-term problem of optimal operation
under the light of optimal control theory. The operation of a central receiver CSP plant is
conceived for maximizing the energy harvesting. To do so, the heliostats follow an aiming
strategy seeking to ensure a high radiation flux in the solar receiver. Although the laws
of thermodynamics allow achieving higher conversion efficiencies as the temperature raises,
the materials used in the absorber, as well as the thermal stability of the heat transfer fluid
define the temperature operational range. For instance, the molten salts mixtures commonly
used in CSP plants, present a thermal stability limit around 560◦C and a freezing point of
around 290◦C [131]. For avoiding freezing events, CSP plants commonly use heat tracers in
the pipes and/or directly in the storage tanks. In order to keep the temperature level lower
than the thermal stability, but high enough for maintaining high conversion efficiency, most
of CSP plants consider a perfect mass flow rate control. This control scheme considers that
the mass flow rate of heat transfer fluid (HTF) is varied to maintain a constant design outlet
temperature at the receiver. This operation mode is commonly activated during stable peri-
ods of DNI, such as during clear-sky days or periods with low variability. However, during
intermittent cloudy days or periods with high DNI variability (see Figure 1.4), a fixed mass
flow rate control is implemented. In this control scheme, the HTF outlet temperature is cal-
culated to maintain a constant HTF mass flow rate in the receiver, allowing the HTF outlet
temperature to vary within a safety limit during variable conditions of DNI, and ensuring the
receiver integrity [149]. In this context, critical scenarios with significant variations of the
DNI will be explored, where the daily operation of a CSP plant must meet two fundamental
criteria: first, optimize economic objectives, and second, maintain safe temperatures in the
face of DNI instability events.
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Figure 1.4: Representation of incident solar radiation (DNI) on a cloudy day.

For this problem, we will start adapting the quasi-static Black-box model of Section 2
to a dynamic one, identifying the controllable variables as well as the transition dynamics
that govern the system. We will focus on the dynamics of the heat-transfer fluid which
is the most sensitive element under DNI instability, and consider simplified dynamics for
each of the blackbox component. This simplification will allow us to derive a well-posed
dynamic for the variation of temperatures and mass-flow rates of the system. Once a black-
box dynamic system is derived, we can address the optimal operation problem, starting by
solving a perfect-information setting. Imagine first that for a short-term period of time
[0, H], like a day or a week, both the DNI function and the price curve are known. In
order to optimize the operation of the plant for a chosen economic criterion, we count with
two types of objects: the first one stands for the Dynamic constraints, the whole problem
of DNI instability is to maintain the conditions on the heat-transfer fluid within its limit
temperatures to avoid damages. Thus, for every time t ∈ [0, H] and every point x ∈ L
(where L is the one-dimensional model of the heat-transfer system), we need to ensure that

Tmin ≤ T (t, x) ≤ Tmax, (1.2.1)

where T (t, x) denotes the temperature of the HTF at point x and at time t.

The second one represents Controllable variables. The plant has many variables that de-
termine how the different functioning modes will be executed, and they can be modified over
time. For example, during the storage process, the consumed power of the storage system qS
and the mass flow rate ṁ are controllable (see eq. (4.2.1)). The value of ṁ(t) is controlled
by a pump and qS(t) is controlled by internal variables of the storage system.

Among the challenges currently faced by Concentrated Solar Power (CSP) plants, a signif-
icant issue is interference in the concentration of solar rays, primarily caused by the passage
of clouds between the sun and the mirrors. The actions that the plant must take in these
scenarios include, for example, the selective defocusing of certain mirrors and adjustments
to mass flow velocities—increasing them in response to the decrease in concentrated heat at
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the receiver and vice versa.

In critical situations, the most practical measure for the plant is to shut down, thus
avoiding excessive costs associated with electricity production. Therefore, in the last part
(Chapter 6, we will focus on considering critical scenarios characterized by disturbances in
solar irradiation concentration. From these critical scenarios, we will apply optimal control
theory to determine optimal shutdown policies.

1.3 Thesis structure and development
The first part of the thesis consists of two chapters, identified as Chapter 2 and 3. In the
first one, fundamental concepts, which will be used in Chapter 3: convex optimization, gen-
eralized Nash equilibrium problems, bilevel problems, cardinality constraints, among others.
Subsequently, in Chapter 3, results related to the analysis of Single-Leader-Multi-Follower
(SLMFG) including cardinality constraints are developed. Finally, in Section 3.3, the appli-
cation of these results is illustrated in the well-known Facility Location Problem, treating it
as a binomial problem.

The second part of the thesis is made up of three chapters. In Chapter 4, essential con-
cepts are presented to address the issues related to optimal design and operation of a CSP
plant. It begins with a brief introduction to the problem to be addressed, followed by the
presentation of a black-box model that allows the representation of a CSP plant and each
of its components (Solar Field, Storage System, and Rankine Cycle). Furthermore, relevant
parameters related to the geographical and economic characteristics specific to the location
of the plant project are detailed. For this purpose, functions capturing variations associated
with solar irradiation and prices in the electricity market are employed (see Section 4.2 and
4.3). In Chapter 5, dedicated to the comparative study with various storage systems, eco-
nomic indicators, and operation strategies are considered and detailed in sections 4.2, 4.4,
and 4.5, respectively. Finally, in Chapter 6, the optimal operation problem is addressed, in
which optimal control problems are proposed, considering a reduced model of the CSP plant
(keeping the three-component structure).

The developments presented in chapter 5 correspond to an article accepted for publication
in Journal of Energy Storage (2024).

8



Résumé en français

Lorsque l’on parle de "conception optimale" des unités énergétiques, c’est-à-dire des instal-
lations de production ou de distribution d’énergie (stations de recharge pour véhicules élec-
triques, centrales d’énergie renouvelable, etc.), on peut comprendre ce problème de plusieurs
manières différentes. Quelques exemples sont les suivants:

1) déterminer les "meilleures" caractéristiques physiques/conception d’une unité énergé-
tique, où "meilleures" peuvent être comprises d’un point de vue économique, par une
approche exergétique ou autre;

2) déterminer l’emplacement optimal pour construire cette unité énergétique. Ici encore,
le terme "optimal" peut recouvrir l’évaluation des coûts, des bénéfices, de la qualité de
service...;

3) déterminer la "meilleure" façon d’exploiter l’unité énergétique, c’est-à-dire quand stocker,
quand produire/arrêter de produire;

et bien d’autres encore. Ce type d’analyse est bien sûr fondamental dans une perspective de
décision d’investissement ou pour comparer différentes configurations. Mais il est également
très important pour la conception des interactions de gestion de la demande (par exemple
dans le Smart-grid, micro-réseaux et centrales électriques virtuelles).

Dans ce travail de thèse, nous aborderons les trois cas suivants: dans une première partie
(chapitres 2 and 3), motivée par la détermination de l’emplacement optimal des stations
de recharge pour les véhicules électriques (point 2) ci-dessus), nous nous concentrerons sur
l’étude de problèmes à deux niveaux incluant intrinsèquement des contraintes de cardinalité.
Dans la deuxième partie de ce manuscrit (chaptitres 4, 5 and 6), nous nous concentrerons
à la fois sur la conception optimale d’une centrale solaire concentrée dans un contexte de
prix déterminés par le marché de l’énergie et sur son fonctionnement à long terme (chapitre
5), abordant ainsi les points 1) et 3) ci-dessus. Le fonctionnement à court terme avec des
perturbations de l’irradiation sera examiné au chapitre 6.

Au chapitre 2, respectivement au chapitre 4, les notions préliminaires, le contexte et la no-
tation seront rappelés/fixés en ce qui concerne l’optimisation à deux niveaux (respectivement
sur les centrales solaires à concentration).

1.4 Partie I: Jeux biniveaux et contraintes de cardinalité
Ces dernières années, l’industrie automobile a connu une évolution significative vers des
solutions de transport durables. L’une des avancées les plus notables à cet égard est la
popularité croissante des voitures électriques. Les véhicules électriques (VE) sont devenus
une alternative viable aux voitures à essence traditionnelles, offrant de nombreux avantages en
termes d’impact sur l’environnement, d’efficacité énergétique et d’innovation technologique.
Voici quelques-uns des facteurs qui ont favorisé cette croissance:

• La prise de conscience croissante des problèmes environnementaux, tels que le change-
ment climatique et la pollution de l’air, a conduit à une augmentation de la demande
de véhicules plus propres et plus durables [32, 89].
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• Le développement continu de la technologie des batteries a amélioré l’autonomie des
voitures électriques, atténuant les inquiétudes concernant la distance limitée qu’elles
peuvent parcourir entre deux charges (par exemple, une voiture électrique avec une
batterie de 60 kWh et un rendement de 4 miles/kWh peut parcourir environ 240 miles).

• De nombreux gouvernements offrent des incitations financières importantes pour l’achat
de voitures électriques, telles que des crédits d’impôt, des réductions fiscales et des
subventions, afin d’encourager l’adoption de technologies plus propres;

• Le déploiement d’une infrastructure de recharge plus large et plus accessible a atténué
les inquiétudes concernant la disponibilité des stations de recharge, rendant les voitures
électriques plus pratiques pour un plus grand nombre de personnes.

En revanche, lorsqu’un nombre croissant de propriétaires de véhicules électriques procèdent
à la recharge de leur voiture, une demande plus importante est générée dans le service de
recharge, ce qui exerce une influence directe sur la planification et la gestion de l’infrastructure
électrique.

Figure 1.5: Problème de localisation des installations, représentation graphique.

Le développement de l’infrastructure de recharge stimule la demande d’augmentation de la
capacité du réseau électrique, ce qui nécessite une planification stratégique de l’emplacement
des stations de recharge. Un réseau de recharge bien établi peut non seulement favoriser
la croissance du marché des véhicules électriques en apaisant les inquiétudes concernant la
disponibilité des points de recharge, mais aussi intensifier le besoin d’un réseau de recharge
étendu, car le nombre croissant de VE contribue à une telle demande. En outre, les habitudes
de recharge VE’s électriques peuvent avoir un impact significatif sur la demande quotidienne
d’électricité [97, 70, 37]. À cet égard, en se basant sur la capacité d’approvisionnement de
chaque installation simultanément, la mise en place de tarifs ou d’incitations à la recharge
dans différentes installations pourrait être essentielle pour équilibrer la charge sur le réseau
électrique [37].

La théorie de l’optimisation biniveau se concentre sur les problèmes comportant deux
niveaux de prise de décision, à l’instar d’un leader et d’un suiveur. Dans le contexte du
problème de localisation des installations (voir la figure 1.5), cela implique qu’une entreprise
(leader) prenne des décisions stratégiques concernant la localisation, tandis que les suiveurs
(propriétaires de véhicules dans ce cas) réagissent. Cette perspective permet d’optimiser con-
jointement les décisions stratégiques et tactiques, en tenant compte à la fois de l’emplacement
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des installations et des réactions des acteurs du marché. En relevant le défi de la localisation
des installations, on introduit la complexité supplémentaire de la prise en compte de la ca-
pacité limitée des installations pour l’approvisionnement en voitures, ce qui se traduit par des
contraintes de cardinalité dans un problème à deux niveaux. Hors il s’avère que les problèmes
biveaux avec contraintes de cardinalité n’ont jamais été considérés dans la littérature. Nous
en développons ici les premiers éléments.

Dans les jeux SLMF (Single-Leader-Multi-Follower), un leader est en interaction avec
un groupe de suiveurs, chacun jouant un rôle crucial dans le processus de prise de déci-
sion. Le leader, représenté par la variable de décision x ∈ Rp, orchestre ses choix, tandis
que les suiveurs répondent en résolvant un problème d’équilibre de Nash (généralisé) qui est
paramétré par la variable de décision du leader. Une approche courante pour aborder les
complexités des jeux à un seul meneur et plusieurs suiveurs consiste à les reformuler comme
des problèmes d’optimisation à un seul niveau. Cette reformulation s’appuie sur la formula-
tion variationnelle naturelle du jeu de niveau inférieur joué par les suiveurs. En s’appuyant
sur les hypothèses standard de convexité et de continuité, un vecteur y ∈ Rq apparaît comme
un point d’équilibre pour le jeu de niveau inférieur si et seulement s’il satisfait aux conditions
d’optimalité couplées de Karush-Kuhn-Tucker (KKT) associées au problème d’optimisation
de chaque suiveur.

Le problème d’optimisation qui en résulte s’inscrit parfaitement dans le domaine de la
Programmation Mathématique avec Contraintes de Complémentarité (MPCC). Cette classi-
fication découle naturellement du fait que les équations de complémentarité jouent un rôle
central dans les formulations variationnelles basées sur Karush-Kuhn-Tucker. L’étude des
jeux à un seul leader et à plusieurs suiveurs via les MPCC facilite une compréhension plus
profonde des relations complexes et des interactions stratégiques au sein des structures de
prise de décision hiérarchiques.

Nous présenterons trois études de cas pour ce type de problèmes: ceux avec des contraintes
de cardinalité au niveau supérieur, au niveau inférieur, et un troisième cas mixte. Nous com-
mençons par la première étude de cas, qui maintient une structure qui préserve des propriétés
clés pour garantir l’existence de solutions. Dans [23], pour un problème d’optimisation à un
seul niveau avec des contraintes de cardinalité, les auteurs posent une reformulation du
problème original et prouvent l’équivalence des optima globaux entre les deux problèmes
d’optimisation. Sur la base de cette proposition, nous introduisons une nouvelle approche
pour le problème à deux niveaux avec des contraintes de cardinalité au niveau supérieur et
établissons l’équivalence entre les solutions globales dans les deux approches. Dans le second
cas, avec des contraintes de cardinalité au niveau inférieur, l’analyse de l’existence d’une
solution est très complexe en raison de la perte de convexité de l’ensemble de contraintes du
niveau inférieur. Nous proposons donc une approche "mixte", dans laquelle les expressions
correspondant aux contraintes de cardinalité sont réparties entre les deux niveaux, tout en
préservant les propriétés fondamentales qui garantissent l’existence de la solution. Enfin,
nous décrivons une méthodologie détaillée pour la résolution numérique de ces problèmes à
deux niveaux, dans le contexte de la localisation des installations de recharge des véhicules

11



électriques.

1.5 Partie II: Efficacité Économique des Centrales So-
laires à Concentration

Pour le problème de la conception optimale des centrales solaires thermiques, une analyse
multidimensionnelle sera effectuée, qui consiste à choisir la meilleure configuration de chacun
des composants (pour un certain type de capteur solaire, de système de stockage et de cycle
de Rankine) avec d’autres facteurs économiques, afin de maximiser la performance de la
centrale sur une durée de vie utile. Cependant, le concept d’optimisation des performances
n’est pas défini de manière unique et plusieurs paramètres doivent être définis avant qu’un
modèle d’optimisation puisse être posé. Sur la base du modèle de boîte noire (décrit dans
le Chapitre 4), nous aborderons, d’une manière générale, l’analyse multidimensionnelle pour
une centrale CSP avec différents systèmes de stockage thermique.

Figure 1.6: Modèle de boîte noire pour une centrale solaire à concentration. Image de gauche tirée de [56].

La rentabilité d’une centrale solaire dépend en grande partie du système de stockage.
Selon les caractéristiques et les fonctionnalités des systèmes de stockage qui seront examinés
dans cette partie du travail d’investigation, l’un des objectifs est d’optimiser les dimensions
et les opérations pour chacun de ces systèmes. D’autre part, pour évaluer la rentabilité et
la viabilité d’une centrale CSP associée à un système de stockage, de nombreuses études
prennent en compte l’indicateur économique LCOE [5, 34]. Néanmoins, dans un contexte
de marché SPOT, ce type d’indicateur ne fonctionne pas, car il ne prend pas en compte les
revenus, qui peuvent également être différents en fonction du type de système de stockage et
de la stratégie de production. D’où la nécessité de prendre en compte d’autres indicateurs
économiques pour évaluer un projet de centrale solaire à concentration, qui peuvent varier en
fonction des conditions physiques et économiques. Nous les examinerons donc dans le con-
texte du marché SPOT, où nous travaillerons avec une fonction de prix non constante, ce qui
signifie que l’exploitation de la centrale peut modifier le bénéfice économique de la centrale.
Outre l’indicateur LCOE, nous considérons dans ce travail des indicateurs tels que: NPV (Net
Present Value), IRR (Internal Rate of Return), et CPB (Conventional Payback), puisqu’ils
capturent à la fois la capacité de production de l’usine et l’impact des stratégies de produc-
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tion [124, 125]. Une autre considération à analyser est la variation des prix du marché de
l’électricité, qui influencera les revenus et les coûts générés par la centrale, c’est-à-dire qu’en
fonction de l’indicateur économique considéré, le bénéfice économique sera légèrement ou
fortement affecté. Cela donne donc lieu à différents problèmes d’optimisation, chacun impli-
quant deux ensembles distincts de variables qui sont optimisées simultanément: les variables
physiques correspondant au type de stockage, et les variables opérationnelles/stratégiques, qui
définissent les stratégies de stockage/production en fonction de l’objectif souhaité. Comme
certaines des variables correspondent à l’utilisation opérationnelle du stockage (et sont donc
des fonctions), ce problème de maximisation (ou de minimisation) est en fait un problème de
contrôle optimal. Cependant, la résolution d’un problème de contrôle optimal peut s’avérer
très difficile. De plus, en raison de la nature discontinue de certaines fonctions, des difficultés
de calcul peuvent survenir. C’est pourquoi, dans cette partie, nous utiliserons la notion de
pré-scénarios, qui a été formulée dans [124], grâce à laquelle le problème de contrôle optimal
peut être transformé en un problème de programmation mathématique “classique”, qui con-
siste à fixer le nombre et l’ordre des différentes phases de fonctionnement de l’installation,
induisant un véritable paramétrage des opérations admissibles de l’installation de DSP. des
opérations admissibles de la centrale CSP.

Pour aborder ce problème, le premier objectif à développer sera de construire un méta-
modèle dont le fonctionnement peut être résumé dans la Figure 1.3: tout d’abord, les
paramètres exogènes comme la fonction DNI, la durée de vie de la centrale et la fonction
de prix λ(·) sont définis; puis chaque composant de boîte noire est choisi, où les paramètres
à optimiser sont identifiés comme variables du problème d’optimisation, et enfin, à travers
le modèle de boîte noire, le problème d’optimisation est construit pour optimiser le critère
économique choisi selon une stratégie d’exploitation prédéfinie.

Figure 1.7: Méta-modèle pour la conception optimale de CSP

La résolution des problèmes d’optimisation qui seront développés dans le chapitre 5 suit
une stratégie proposée dans [124], à savoir: un prototype d’installation solaire thermique est
considéré, qui sera optimisé sur une durée de vie de N années. Pendant cette période, on sup-
pose que chaque année se comporte exactement de la même manière par rapport aux autres,
de sorte qu’une seule année est optimisée, puis répétée N fois. Cette répétition tient compte
d’une dévaluation économique, capturée par un taux d’actualisation. L’année modèle est
divisée en périodes (par exemple, si elle est divisée en quatre, chacune représente une saison)
et chaque période est représentée par une étape cyclique, qui est répétée. L’optimisation de
l’année modèle consiste à maximiser (ou minimiser) les variables physiques du stockage et les
variables de l’exploitation de la centrale solaire thermique dans chaque étape cyclique afin
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de maximiser (ou minimiser) le critère économique. Ce type de modélisation permettra une
étude comparative entre différents systèmes de stockage intégrés, afin de montrer l’efficacité
de chacun d’entre eux, ainsi que différents scénarios de prix, critères économiques et stratégies
d’exploitation en fonction des hypothèses et des objectifs recherchés.

Lors de la conception d’une centrale solaire à concentration, l’effet des stratégies d’exploi-
tation est pris en compte en moyenne, puisque l’horizon de la durée de vie ne permet pas
d’avoir des prévisions fiables sur les variations des conditions météorologiques ou les fluctua-
tions des prix. Cependant, si l’on veut aborder le problème de l’exploitation optimale d’une
centrale solaire à concentration déjà existante, cette approche n’est plus suffisante. Au lieu
de cela, il est nécessaire d’examiner le problème à court terme de l’exploitation optimale via
la théorie du contrôle optimal.

Figure 1.8: Représentation du rayonnement solaire incident (DNI) par temps nuageux.

Le fonctionnement d’une centrale CSP à récepteur central est conçu pour maximiser la
récolte d’énergie. Pour ce faire, les héliostats suivent une stratégie d’orientation visant à
assurer un flux de rayonnement élevé dans le récepteur solaire. Bien que les lois de la ther-
modynamique permettent d’obtenir des rendements de conversion plus élevés à mesure que
la température augmente, les matériaux utilisés dans l’absorbeur, ainsi que la stabilité ther-
mique du fluide caloporteur, définissent la plage opérationnelle de température. Par exemple,
les mélanges de sels fondus couramment utilisés dans les centrales CSP présentent une limite
de stabilité thermique autour de 560◦C et un point de congélation autour de 290◦C [131].
Pour éviter les épisodes de gel, les centrales solaires à concentration utilisent généralement
des traceurs de chaleur dans les conduites et/ou directement dans les réservoirs de stockage.
Afin de maintenir le niveau de température inférieur à la stabilité thermique, mais suffisam-
ment élevé pour maintenir un rendement de conversion élevé, la plupart des centrales solaires
à concentration envisagent un contrôle parfait du débit massique. Ce schéma de contrôle
considère que le débit massique du Fluide de transfert de chaleur (HTF, pour son acronyme
en anglais) est modifié pour maintenir une température de sortie constante au niveau du
récepteur. Ce mode de fonctionnement est généralement activé pendant les périodes stables
de l’indice DNI, comme les jours de ciel clair ou les périodes de faible variabilité. Toutefois,
pendant les journées nuageuses intermittentes ou les périodes de forte variabilité du DNI
(voir la figure 1.8), une commande de débit massique fixe est mise en œuvre. Dans ce schéma
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de contrôle, la température de sortie du HTF est calculée pour maintenir un débit massique
constant du HTF dans le récepteur, ce qui permet à la température de sortie du HTF de
varier dans une limite de sécurité dans des conditions variables de DNI, et d’assurer l’intégrité
du récepteur [149]. Dans ce contexte, nous considérerons des scénarios critiques impliquant
des variations significatives du DNI, où le fonctionnement quotidien d’une centrale CSP doit
répondre à deux critères fondamentaux: premièrement, optimiser les objectifs économiques,
et deuxièmement, maintenir des températures sûres face à des événements d’instabilité du
DNI.

Pour ce problème, nous commencerons par adapter le modèle "quasi-statique boîte noire"
présenté au Chapitre 4 à un modèle dynamique, en identifiant les variables contrôlables
ainsi que la dynamique de transition qui régit le système. Nous nous concentrerons sur la
dynamique du fluide caloporteur, qui est l’élément le plus sensible en cas d’instabilité DNI, et
nous considérerons une dynamique simplifiée pour chacun des composants de la boîte noire.
Cette simplification nous permettra de dériver une dynamique bien posée pour la variation
des températures et des débits massiques du système. Une fois que le système dynamique
de la boîte noire est dérivé, nous pouvons aborder le problème de l’exploitation optimale, en
commençant par résoudre un cadre d’information parfaite. Imaginons tout d’abord que pour
une période à court terme [0, H], comme un jour ou une semaine, la fonction DNI et la courbe
des prix sont toutes deux connues. Afin d’optimiser le fonctionnement de l’usine pour un
critère économique choisi, nous disposons de deux types d’objets: le premier représente les
contraintes dynamiques, le problème de l’instabilité du DNI étant de maintenir les conditions
sur le fluide caloporteur dans ses températures limites afin d’éviter les dommages. Ainsi,
pour chaque temps t ∈ [0, H] et chaque point x ∈ L (où L est le modèle unidimensionnel du
système de transfert de chaleur), nous devons nous assurer que

Tmin ≤ T (t, x) ≤ Tmax, (1.5.1)

où T (t, x) représente la température du HTF au point x et à l’instant t.

La seconde représente les variables de contrôle. L’installation comporte de nombreuses
variables qui déterminent la manière dont les différents modes de fonctionnement seront exé-
cutés, et elles peuvent être modifiées au fil du temps. Par exemple, pendant le processus de
stockage, la puissance consommée du système de stockage qS et le débit massique ṁ sont
contrôlables (voir eq. (4.2.1)). La valeur de ṁ(t) est contrôlée par une pompe et qS(t) est
contrôlé par des variables internes du système de stockage.

Parmi les défis auxquels sont actuellement confrontées les centrales solaires à concentration
(CSP), un problème important est l’interférence dans la concentration des rayons solaires,
principalement causée par le passage des nuages entre le soleil et les miroirs. Les mesures que
l’usine doit prendre dans ces scénarios comprennent, par exemple, la défocalisation sélective
de certains miroirs et l’ajustement des vitesses d’écoulement de la masse - en les augmentant
en réponse à la diminution de la chaleur concentrée au niveau du récepteur et vice-versa.

Dans les situations critiques, la mesure la plus pratique pour la centrale est de s’arrêter,
ce qui permet d’éviter les coûts excessifs liés à la production d’électricité. Par conséquent,
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dans ce chapitre, nous nous concentrerons sur l’examen de scénarios critiques caractérisés
par des perturbations de la concentration de l’irradiation solaire. À partir de ces scénarios
critiques, nous appliquerons la théorie du contrôle optimal pour déterminer les politiques
d’arrêt optimales.

1.6 Structure et développement de la thèse
La première partie de la thèse se compose de deux chapitres, appelés 2 et 3. Dans le premier,
sont rappelés les concepts fondamentaux qui seront utilisés dans le Chapitre 3: optimisa-
tion convexe, problèmes d’équilibre de Nash généralisé, problèmes binomiaux, contraintes
de cardinalité, entre autres. Ensuite, dans le Chapitre 3, une analyse des problèmes Single-
Leader-Multi-Follower (SLMFG) incluant des contraintes de cardinalité est développée. Puis
l’application de ces résultats est illustrée dans le célèbre problème de localisation des instal-
lations, en le traitant comme un problème biniveau.

La deuxième partie de la thèse est composée de trois chapitres. Dans le Chapitre 4,
les concepts essentiels sont présentés pour aborder les questions liées à la conception et à
l’exploitation optimales d’une centrale CSP. Il commence par une brève introduction au
problème à traiter, suivie par la présentation d’un modèle de boîte noire qui permet la
représentation d’une centrale CSP et de chacun de ses composants (champ solaire, système
de stockage et cycle de Rankine). En outre, les paramètres pertinents liés aux caractéristiques
géographiques et économiques spécifiques à l’emplacement du projet de centrale sont détaillés.
À cette fin, des fonctions capturant les variations associées à l’irradiation solaire et aux prix
sur le marché de l’électricité sont utilisées (voir les Sections 4.2 et 4.3). Le Chapitre 5,
consacré à l’étude comparative de divers systèmes de stockage, des indicateurs économiques
et des stratégies d’exploitation sont examinés et détaillés dans les sections 4.2, 4.4, et 4.5,
respectivement. Enfin, le Chapitre 6 aborde le problème de l’exploitation optimale, dans
lequel des problèmes de contrôle optimal sont proposés, en tenant compte d’un modèle réduit
de la centrale CSP (en conservant la structure à trois composants

Les développements présentés au chapitre 5 ont fait l’object d’un article accepté pour
publication dans Journal of Energy Storage (2024).
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Part I

Bilevel games and cardinality constraints
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Chapter 2

Preliminaries

This chapter introduces the theoretical foundations for the development of the first part
of the research. In Section 2.1, a brief introduction to bilevel games is provided, focusing
particularly on Single-Leader Multi-Follower (SLMF) games, whose structure will be used
to address the challenges of considering cardinality constraints at different levels (upper and
lower). Subsequently, in Section 2.2, specific notations implemented for this work will be
presented. Finally, we present the preliminaries for the understanding and development of
the theoretical and numerical results.

2.1 Introduction
Single-Leader Multi-Follower (SLMF) games, introduced in [106], are bilevel games where one
agent, the leader, interacts with a group of other agents, the followers, under a hierarchical
structure. The leader decides her decision variable x ∈ Rp, and the followers react by solving
a (generalized) Nash equilibrium problem, parametrized by x. The leader, by knowing the
equilibrium problem of the followers, anticipates their reaction, and takes it into account
during her decision process.

The games where only one follower is considered are known as Stackelberg games, they
have been largely studied during the last decades, and their applications are now well spread
along many interdisciplinary fields (see, e.g., [122, 43, 14, 82] for some recent reviews and
advances on the field). The case where multiple followers are involved is considerably more
challenging, and therefore it still have a lot of open problems (see, e.g., [9, 73]).

A usual method to try to solve a Single-Leader-Multi-Follower game is to reformulate it as
a single-level optimization problem, based on the natural variational formulation of the lower-
level game played by the followers. Under standard convexity asssumptions, one has that a
vector y ∈ Rq is an equilibrium point for the lower-level game if and only if it solves the coupled
Karush-Kuhn-Tucker optimality conditions of each follower’s optimization problem [42]. The
resulting problem fits into the class of Mathematical Programming with Complementarity
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Constraints (MPCC), since the complementarity equations naturally appear in KKT-based
variational formulations. Recall that a complementarity constraint involving a vector variable
x is of the form

T1(x) · T2(x) = 0, (2.1.1)

where T1, T2 : Rn → R are two affine maps. As an illustration, the most common (but not
the only) complementarity constraint is given by complementary slackness in linear program-
ming. The MPCC reduction is classic in the literature of bilevel programming and it can be
found in monographs like [41, 40] for the case of one follower, and in [9] for the general SLMF
game. It is nevertheless important to say that specific qualification conditions one used to
garantee that the associated MPCC is a reformulation of the initial SLMF game.

In this part, the objective is to study a particular class of SLMF games, involving the
so-called cardinality constraints. A cardinality constraint over a vector variable z ∈ Rn has
the form of

∥z∥0 = |{i ∈ {1, . . . , n} : zi ̸= 0}| ≤ K, (2.1.2)

where K is a positive (integer) constant and |A| denotes the cardinality of the set A. The
function ∥ · ∥0 is known as the ℓ0-norm (or ℓ0-pseudonorm) and it counts the number of
nonzero entries of a vector. It is commonly used in mathematical programming to model
sparsity. However, due to its structure, the ℓ0-norm is hard to deal with. While most com-
mon approaches in the literature consist in replacing the ℓ0-norm by an alternative with
more regularity properties (such as the ℓ1-norm), recent studies have tackled mathematical
programming problems involving the ℓ0-norm directly. Some examples are: [54], where the
minimization of the ℓ0-norm is tackled by a complementarity constraint reformulation; [28],
where hidden convexity properties of the ℓ0-norm are explored; and [29], where the ℓ0-norm
is studied through the lens of generalized convexity.

A very important contribution to deal with optimization problems with cardinality con-
straints was developed in [23, 133], where the constraint (2.1.2) was equivalently written as
complementarity constraints as follows:

∥z∥0 ≤ K ⇐⇒ ∃u ∈ [0, 1]n such that
{ ∑n

i=1
ui ≥ n−K, and

∀i ∈ {1, . . . , n}, uizi = 0.
(2.1.3)

This idea has been deeply exploited to provide constraints qualification, algorithms, first-
order optimality conditions, sequential methods, etc. We refer the reader to the recent works
[55, 22, 79, 88, 87, 115] and the references therein. But to our knowledge bilevel problems
with cardinality conditions have never been studied.

Here, we will study SLMF games with cardinality constraints based on the following
straightforward remark: the MPCC reformulation of SLMF games, and the reformulation
(2.1.3) of (single-level) optimization problems with cardinality constraints follow the same
structure, namely, they encode the “hard” constraints by means of new variables (multipliers)
and complementarity constraints. The main caveat, as we will see later on, is that cardinal-
ity constraints in SLMF games induce feasibility issues, regardless if they are considered as
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coupling constraints for the leader, or shared constraints for the followers.

2.2 Definitions and notations
For any integer n ∈ N, we write [n] = {1, . . . , n}. From now on, we will work over finite-
dimensional euclidean spaces Rn, endowed with their respective usual inner products ⟨·, ·⟩ and
their induced euclidean norms. For any two vectors a, b ∈ Rn, we write a⊙ b to denote their
Hadamard product, that is, a ⊙ b = (aibi : i ∈ [n]). We will write 1 ∈ Rn as the vector of
1-entries of Rn, that is, the vector given by 1i = 1 for every i ∈ [n]. Abusing notation, we will
use the 1 to denote the corresponding vector of 1-entries regardless the dimension of the space.

For extended-real valued function f : Rn → R∪{+∞}, we denote by dom(f) the (effective)
domain of f , that is, domf = {x ∈ Rn : f(x) < +∞}. For a given γ ∈ R, we denote by
[f ≤ γ] the sublevel set of f of value γ. Recall that the function f is said to be

• convex if f(λx+(1−λ)y) ≤ λf(x)+ (1−λ)f(y) for each x, y ∈ dom(f) and λ ∈ [0, 1].
• quasiconvex if f(λx+(1−λ)y) ≤ max{f(x), f(y)}, for each x, y ∈ dom(f) and λ ∈ [0, 1].

It is well-known that every convex function is quasiconvex, and a function f is quasiconvex
if and only if the sublevel sets [f ≤ γ] are all convex (see, e.g., [4]).

A function h : Rn → R is said to be weakly analytic if for any two vectors x, y ∈ Rn, the
following implication holds:

t ∈ R 7→ h(x+ ty) is constant over an open interval =⇒ h(x+ ty) = h(x), for all t ∈ R.
(2.2.1)

In other words, h is weakly analytic if, whenever it is constant over a segment, it must be
constant over the whole line containing that segment. Of course, analytic function, such as
affine functions, are weakly analytic (see, e.g., [11]).

Let X and Y be two non-empty sets, and let us denote by P(Y ) the power set of Y . A
multifunction (also known as correspondence) F is a function F : X −→ P(Y ), that is, a
function which, for every x ∈ X, assigns a set F (x) ⊆ Y . We denote such a multifunction as
F : X ⇒ Y.

Whenever X and Y are metric spaces, following [3], we say that:

• A multifunction F : X⇒Y is upper semicontinuous at a point x0 ∈ X if, for each
neighbourhood V of F (x0) in Y , there exists a neighbourhood U of x0 in X such that

F (x) ⊂ V, ∀x ∈ U.

• A multifunction F : X⇒Y is lower semicontinuous at a point x0 ∈ X if, for each open
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set V ⊂ Y for which F (x0) ∩ V ̸= ∅ there exists a neighbourhood U of x0 such that

F (x) ∩ V ̸= ∅, ∀x ∈ U.

We define the domain of F and the graph of F as domF = {x ∈ X : F (x) ̸= ∅}, and
gphF = {(x, y) ∈ X × Y : y ∈ F (x)}, respectively. We say that F is closed if its graph is
closed as a subset of X × Y .

The following proposition, that will be used in the sequel, establishes that parametric sets
given by separable weakly analytic constraints are lower semicontinuous (in fact, they enjoy
further continuity properties, see, e.g., [11, Theorem 4.3.5] or [119]).

Proposition 2.2.1 ([11, Theorem 3.3.3]). Let X ⊂ Rn be a closed set, and consider a
multifunction F : X⇒Rm given by

F (x) = {y ∈ Rm : gk(y) ≤ φk(x), ∀k ∈ [m]},

where, for each k ∈ [m], gk : Rm → R and φk : Rn → R are continuous functions. If
additionally the functions {gk}k∈[m] are convex and weakly analytic, then the multifunction F
is lower semicontinuous.

Convex optimization and constraint qualification:

Let us consider an abstract optimization problem

min
z∈Ω

f(z), (2.2.2)

with the feasibility domain, Ω, defined as in terms of a set of constraints. This is,

Ω = {z | gk(z) ≤ 0, k = 1 . . . , p}, (2.2.3)

where, for each k ∈ {1, . . . , p}, the function gk : Rn → R is continuous. In this work, we
focus only on convex smooth problems, that is, we will assume that the objective function
is of class C1 and convex, and all constraint functions are of class C1 and quasiconvex. In
particular, this yields that the feasible sets Ω that we consider are always convex and closed.

For z ∈ Ω, we consider normal cone of Ω at z, denoted by NΩ(z), as in the sense of convex
analysis, that is,

NΩ(z) = {ν ∈ Rn : ⟨ν, y − z⟩ ≤ 0, ∀y ∈ Ω}.
We will say that the set Ω with its representation (2.2.3) verifies the Guignard’s Constraint
Qualification (see [65], or [126]) at z ∈ Ω if

NΩ(z) =

{
p∑

k=1

λk∇gk(z)
∣∣∣ λ⊙ g(z) = 0, λ ≥ 0

}
(2.2.4)

There exist many sufficient conditions to ensure that Ω verifies (2.2.4). In particular, if all
functions gk are affine, then (2.2.4) holds (see, e.g., [126]).
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2.3 The Generalized Nash Equilibrium problem (GNEP)
A Generalized Nash Equilibrium Problem (GNEP for short) is a noncoperative game con-
sidering a finite numbers of players and each of the players solves an optimization problem
parameterized by the decision of the other players. These optimization problems form feasi-
bility sets of decisions that influence the individual choices of the players, causing each player
to seek a strategy that maximizes his own profit, given the expected behavior of the other
players. Consider a finite set I := {1, 2, ..., N} of players, with N ∈ N. Each player i ∈ I
controls a variable/strategy zi ∈ Rni , and

z := (z1, . . . , zN) ∈ Rn, n := n1 + . . .+ nN ,

is the vector of joint strategies of all the players. As usual, we will denote z = (zi, z−i) to em-
phasise the decision variable of player i within the aggregated decision vector z. The index −i
corresponds to the set of opponents of player i ∈ I and we also write n−i := n−ni. The set of
possible strategies for the player i given by the opponents’ joint strategy z−i ∈ Rn−i is denoted
by Zi(z−i). That is, the constraints for player i are given by a multifunction Z−i : Rn−i ⇒ Rni .

Given the strategy z−i, the player i chooses a strategy zi such that it solves the following
optimization problem

min
zi

fi(zi, z−i)

s.t. zi ∈ Zi(z−i).
(2.3.1)

with fi : Rni × Rn−i 7→ R the cost function. A solution z of the (GNEP), called a gener-
alized Nash equilibrium, is a vector of

∏
i
Zi(z−i) such that, for any i, zi solves the problem

(2.3.1). A Nash Equilibrium Problem (NEP ) is a particular case of a GNEP , where the
set-valued maps Zi are constant maps (they do not depend on opponents strategies) [7].

2.4 Single-leader-multi-follower game (SLMFG)
We consider a game of M + 1 agents with one leader and M followers, where the latter are
indexed by i ∈ [M ]. We will say that the leader controls a variable x ∈ Rp, while each follower
i ∈ [M ] controls a variable yi ∈ Rqi . Let q =

∑M

i=1
qi.

Remark 2.4.1. In what follows, we will reserve the index letter i exclusively to denote the
ith follower. Thus, for a vector u ∈ Rq, we write ui to denote the vector in Rqi corresponding
to the coordinates in u associated to the ith follower. To denote coordinates of a vector or a
function, we will use other indexes, such as k or j.

For the leader’s problem, the objective function, which depends on all variables, is denoted
by θ : Rp × Rq 7→ R. We denote by X the feasible set for the leader’s decision variable x.
For each follower i ∈ I, following (2.2.2)-(2.2.3), we denote by fi : Rp × Rqi × Rq−i 7→ R their
cost function, and by gi : Rp × Rqi × Rq−i 7→ Rmi their constraint function, both functions
depending on the variables of all players (x, yi, y−i). We write p =

∑M

i=1
pi. We denote by
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Yi : X × Rp × Rq−i ⇒Rqi the feasibility set-valued map of follower i: given a leader’s decision
x, and the vector of decisions of the other followers, y−i, the set Yi(x, y−i) is given by

(x, y−i) 7−→ Yi(x, y−i) := {yi : gi(x, yi, y−i) ≤ 0}. (2.4.1)

In the rest of this chapter and the next one, we will indistinctly use the notation gi(x, yi, y−i) ≤
0 or yi ∈ Yi(x, y−i) to refer to the constraints of the ith follower. The general SLMF game is
defined in the following way:

min
x,y

θ(x, y)

s.t.


x ∈ X,
G(x, y) ≤ 0,
y ∈ GNEP (x).

min
yi

fi(x, yi, y−i)

s.t. yi ∈ Yi(x, y−i).

Leader ith Follower

(2.4.2)

where G : Rp×Rq → Rr is a continuous function, and GNEP (x) is the solution set-valued
map of generalized Nash equilibrium problem of the followers parametrized by x (see, e.g.
[58, 106]). Recall that the solution of the GNEP of the followers is given by

y ∈ GNEP (x) ⇐⇒ ∀i ∈ [M ], yi ∈ argmin{fi(x, z, y−i) : z ∈ Yi(x, y−i)}. (2.4.3)

In (2.4.2), the constraints G(x, y) ≤ 0 are known as coupling constraints, since they are
present only in the leader problem. They induce an extra difficulty for feasibility: indeed the
leader that must verify feasibility of x ∈ X considering that

x ∈ X is feasible ⇐⇒ {y : G(x, y) ≤ 0} ∩GNEP (x) ̸= ∅,

while followers do not take into account the coupling constraint G(x, y) ≤ 0 when they
solve their equilibrium problem. Finally, formulation (2.4.2) is known as optimistic, since
the leader can choose, in between the equilibrium point y ∈ GNEP (x) the most favorable to
it. Other formulations, such as the classic pessimistic approach (see, e.g. [9]) or the resent
Bayesian approach (see [119]), are available in the literature, but they are out of the scope
of this work.

One of the most relevant results for this work part is the one presented in [9], where the
authors prove the existence of solutions for SLMFG. In the following, we will quote this
important result.

Theorem 2.4.2. (Aussel-Svensson, 2018). Assume that,

a) θ is lower semi-continuous and X is closed,
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b) for each i ∈ M, fi is continuous,
c) for each i ∈ M,Yi is lower semi-continuous relatively to its non-empty domain and has

closed graph, and
d) θ is coercive or, X is compact and at least for one i, the graph of Yi are uniformly

bounded,

If the graph of the lower level GNEP is non-empty, then the SLMFG admits an optimistic
equilibrium.

In the original theorem of Aussel-Svensson [9], assumption d) was written with images,
but this is an error and graph should be considered.

2.5 Cardinality Constraint
In the field of optimization, decision-makers often encounter situations where they need to
select a limited number of elements from a given set to achieve an optimal outcome. This kind
of constraint, known as "cardinality constraints", plays a crucial role in various optimization
problems across different [23, 127, 10]. Cardinality constraints impose restrictions on the
number of variables that can take non-zero values (see 2.1.2) or participate in the solution of
an optimization problem. They are particularly common in combinatorial optimization, ma-
chine learning, portfolio optimization, and resource allocation, among others [57, 94, 30, 127].

A general cardinality constrained problem is of the form

min
x

F (x)

s.t.
{

x ∈ X,
∥x∥0 ≤ K

(2.5.1)

where F : Rn → R is a continuously differentiable function, X ⊂ Rn is a subset determined
by any further constraints on x, K is a natural number and ∥x∥0 is the number of nonzero
elements in the vector x (also called l0-norm). Of course it is assumed that K < n, otherwise
the cardinality constraint would be superfluous. The problems represented by (2.5.1) are in-
herently nonconvex because, even if all the functions involved are convex, the feasible region
remains nonconvex. Additionally, problem (2.5.1) cannot be treated as a nonlinear program
due to the discontinuity of the function ∥x∥0. Problem (2.5.1) has been extensively studied,
see [23, 121, 141, 22, 54]

In [23], the authors first present a formulation of the problem (2.5.1) as a standard nonlin-
ear program (NLP) with complementary-type constraints, using some binary variables. Then
they demonstrate that the standard relaxation of these binary variables has the nice property
that its solutions remain equivalent to the solutions of the original cardinality-constrained
problem (2.5.1). Additionally, they discuss the stationary conditions of the NLP reformula-
tion and mention that the usual constraint qualification conditions are often violated in their
NLP reformulation. So let us recall We will now present the binary-mixed reformulation for
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problem (2.5.1) and the theorem that guarantees the equivalence of the solutions of the two
problems (in the sense of global minimum).

The mixed-integer reformulation for the problem (2.5.1) is the following:

min
x,u

F (x)

s.t.


x ∈ X,
1⊤u ≥ n−K,
x⊙ u = 0, u ∈ {0, 1}n,

(2.5.2)

with a new variable u ∈ Rn and the expression 1, represents the ones vector of n compo-
nents.

Theorem 2.5.1. (Burdakov, Kanzow and Schwartz, 2016) [23]. A vector x∗ ∈ Rn is
a solution of problem (2.5.1), if and only if there exists a vector u∗ ∈ Rn such that (x∗, u∗)
solves the mixed-integer problem (2.5.2).

2.6 MPCC Reformulation
In general terms, the utility of reformulating a problem is to place it within a framework
where there is a well-developed theory to find a solution (or equilibrium) and/or to better
understand the properties of the problem. A classical reformulation of SLMFG consists in
replacing the lower-level GNEP with a parametric KKT conditions of each of the followers,
obtaining a Mathematical Program with Complementarity Constraints (MPCC).

The KKT optimality conditions associated to each follower’s problem described in (2.4.2)
is that, (yi, µi) from follower i satisfying


∇yi

fi(x, yi, y−i) +
∑pi

k=1
µik∇yi

gik(x, yi, y−i) = 0,
gi(x, y) ≤ 0
µikgik(x, yi) = 0,
µik ≥ 0, k = 1, ..., pi.

(2.6.1)

Let KKT(x) be denoted as the set of solutions of KKT conditions of all the followers,
that is, (y, µ) such that, given the parameters (x, y−i) for each i = 1, ..., N, (yi, µi), solves
the KKT system (2.6.1). Then, a global optimal solution for the MPCC reformulation of a
SLMF game is a vector (x, y) that solves the following problem

min
x,y

θ(x, y)

s.t.


x ∈ X,
G(x, y) ≤ 0,
y ∈ KKT (x).

(2.6.2)
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For this type of reformulations, there are numerical resolution methods, for instance in
[61, 67, 95].

Now, it is important to precise the correspondence or relationship between the global
solutions of the original problem (2.4.2) and its MPCC reformulation (2.6.2). For this, we
must analyze the lower level constraints qualification for the existence of Lagrange multipliers.
In other words, to ensure the equivalence between the global solutions of the problem (2.4.2)
and its reformulation (2.6.2), there are several qualification constraints that have to be verified
[51, 9]. However, under some basic assumptions on the objective functions and constraints
of the lower-level (with respect to differentiability and convexity [7]), along with techniques
developed in [8], it is possible to reduce the conditions to be verified, resulting in the fact that
GNEP (x) = KKT (x), ∀x ∈ X, which implies the equivalence between global solutions.

2.7 SOS1
By Special Ordered Set of type One (SOS1) one describes a collection of values in which one
value at most can have a non-zero value. The values in an SOS1 are not subject to any other
discrete conditions and are grouped together consecutively in the data [13].

The sets SOS1 are commonly used to represent a set of mutually exclusive alternatives that
are ordered in increasing values of size, cost, or some other relevant unit. This representation
is an extension of the separable programming model that deals with discrete variables. This
representation extends discrete programming from the separable programming model. It is
important to note that this representation assumes that a non-linear function represented in
this way has a single value within the range of its argument.

This method has been implemented to computationally solve the MPCC reformulations
(see Subsection 2.6) of the linear bilevel problems. For this, the complementary conditions
are omitted initially and then branch on them instead [83]. More recently, in [6], it has
been known that the S0S1 method is also very efficient to solve SLMF games in which the
constraints of the followers are linear.
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Chapter 3

Single-Leader Multi-Follower games with
cardinality constraints and their
application to a location problem

In this chapter, we will analyze SLMF games with cardinality constraints. In Section 3.1,
we will address the case of problems with cardinality constraints at the upper level, through
existence results, reformulations of the original problem and, finally, examples illustrating
the complexity of ensuring existence results for a bilevel problem with cardinality constraints
at the lower level will be presented. Then, in Section 3.2, an alternative approach will
be used: the cardinality constraints will be split between the lower and the upper levels.
Existence results and an equivalent reformulation will be presented. Finally, to illustrate the
applicability of the aforementioned results, formulations for the well-known facility location
problem will be developed and simulated.

3.1 SLMF games with upper-level cardinality constraints
In this section, we begin by illustrating the structure of bilevel problems with cardinality
constraints at the upper level. Subsequently, we prove the existence of solutions and introduce
a reformulation of the original problem, which will facilitate the establishment of equivalence
results for global solutions.

3.1.1 Problem formulation and existence result

The focus is here to consider a SLMF game where the coupling constraint G(x, y) ≤ 0 is a
cardinality constraint. That is, we will study the problem
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min
x,y

θ(x, y)

s.t.


x ∈ X,
∥y∥0 ≤ K
y ∈ GNEP (x)

min
yi

fi(x, yi, y−i)

s.t. gi(x, yi, y−i) ≤ 0.

Leader ith Follower

(3.1.1)

Remark 3.1.1. For the sake of simplicity, in this section we consider a single (global) cardi-
nality constraint ∥y∥0 ≤ K. However, for any partition S = {s1, . . . , sr} of the involved index
set {(i, j) : i ∈ [M ], j ∈ [qi]}, we can consider a sequence of “independent” cardinality
constraints of the form

∥ysl∥0 ≤ Kl, ∀l ∈ [r], (3.1.2)

where ysl = (yi,j : (i, j) ∈ sl). The results of this section can be directly extended to this
general case.

The main problem with formulations with cardinality constraints in the upper level, is
that the constraint ∥y∥0 ≤ K is a coupling constraint. This might lead to infeasibility, even
if the equilibrium set GNEP (x) is nonempty for every x ∈ X, as the following example
shows.

Example 3.1.2 (Infeasibility at the upper level problem by the cardinality constraint). We
consider the leader’s problem as

min
x,y

x

s.t


x ∈ [1, 2]
∥y∥0 ≤ 1
y ∈ GNEP (x)

(3.1.3)

while the followers’ equilibrium problem, for which GNEP (x) is the solution set, is given
by

min
y1

y1

s.t.
{

x ≤ 2y1
y1 ∈ [0, 1]

min
y2

−y2

s.t.
{

y2 ≤ y1
y2 ∈ [0, 1]

Follower 1 Follower 2

(3.1.4)

It is not hard to check that for any x ∈ [1, 2], the followers’ equilibrium problem has a
unique solution given by (y1(x), y2(x)) = (x/2, x/2). Thus, the solution map x 7→ GNEP (x)
enjoys several amenable properties: it is single-valued, continuous, linear and nonempty for
every leader’s decision. However, the upper-level problem is clearly infeasible. ♢
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However, if one assumes that there is at least one feasible point for the leader, one can
replicate the standard existence result of [7].

Theorem 3.1.3. Consider problem (3.1.1) and assume that

(i) θ is lower semicontinuous and X is closed.
(ii) for each i ∈ [M ], fi is continuous.
(iii) for each i ∈ [M ], the graph of Yi are uniformly bounded, and X is bounded.
(iv) for each follower i ∈ [M ], the set-valued map Yi is lower semicontinuous with nonempty

closed graph.

Then, either the SLMF game (3.1.1) is infeasible, or it admits a solution.

Proof. Let us assume that (3.1.1) is feasible, that the feasible set of the leader’s problem

F := {(x, y) ∈ X × Rm | ∥y∥0 ≤ K, y ∈ GNEP (x)} (3.1.5)

is nonempty. It thus remains to show that in this case, there is a solution for (3.1.1). It
follows the same lines as in [7] and is included here for sake of completeness.

To do so, we will prove first that the set-valued map GNEP has closed graph, thus defining
a closed constraint set for the leader. Let us observe that we can write

GNEP (x) =
M⋂
i=1

Si(x)

with
Si(x) :=

{
(yi, y−i) | yi ∈ argminz{fi(x, z, y−i) | zi ∈ Yi(x, y−i)}

}
.

Thus it is sufficient to prove that each of the maps Si : X⇒Rq has closed graph. Let us fix
i ∈ [M ] and take sequences (xk)k in Rp and (yk)k in Rq converging respectively to x and y,
and such that yk ∈ Si(xk) for all k ∈ N. We want to prove that y ∈ Si(x). Note that

(xk, yk) ∈ gphSi =⇒ yi,k ∈ Yi(xk, y−i,k) =⇒ (xk, yk) ∈ gphYi,

and thus, since Yi has closed graph, we get that yi ∈ Yi(x, y−i). Take zi ∈ Yi(x, y−i). By
lower semicontinuity of the set-valued map Yi, we know that (up to subsequences) that there
exist zi,k ∈ Yi(xk, y−i,k) such that zi,k → zi. Since yk ∈ Si(xk) then

fi(xk, yi,k, y−i,k) ≤ fi(xk, zi,k, y−i,k),∀k ∈ N.

Taking limit as k → ∞, since fi is continuous, it gives fi(x, yi, y−i) ≤ fi(x, zi, y−i). Since zi
was arbitrarily chosen from Yi(x, y−i), we conclude that y ∈ Si(x). Thus Si(x) is closed and
hence, GNEP has closed graph.

Observe also that GNEP is also uniformly bounded, since

GNEP (x) =
M⋂
i=1

Si(x) ⊂ {y ∈ Rq : yi ∈ Yi(x, y−i)},
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and the right-hand set is uniformly bounded, thanks to hypothesis (iii). Thus, noting that
{(x, y) : x ∈ X, ∥y∥0 ≤ K} is closed, we get that the set

F = {(x, y) : x ∈ X, ∥y∥0 ≤ K} ∩ gph(GNEP )

is compact. Since the objective function θ is lower semicontinuous, it follows that the opti-
mization problem of the leader in (3.1.1) has a solution, by a mild application of Weierstrass
theorem.

As usual, if the objective of the leader is coercive, that is, if θ(x, y) → +∞ as ∥(x, y)∥ →
+∞, then we can remove hypothesis (iii) from Theorem 3.1.3, and obtain the same result.
Note also that, Theorem 3.1.3 coincides with Theorem 3.1 of [7] in the case of trivial cardi-
nality constraints (that is, K = q), and so, that is why the proof follows the same strategy.

An important feature of this result is that for many optimization problems, infeasibility
can be checked numerically. Indeed, if one can reformulate the SLMF game to a single-level
optimization problem, classic ready-to-go algorithms should be able to decide infeasibility
or to provide a (global/local) solution. This property allows us to skip the step of checking
existence, and pass directly to computation: either we will find the solution or we will get a
certificate of infeasibility.

In the next subsection, we are going to present a first reformulation of the problem with
cardinality constraints in the upper level (3.1.1), and then discuss the relationship between
the feasible set of the problem (3.1.1) and the ones of its first reformulation.

3.1.2 Reformulations

Since GNEP (x) always stands for the solution set of the followers’ equilibrium problem, as
given in (3.1.1), we will only write the leader’s problem, where the constraint y ∈ GNEP (x)
captures the interaction with the followers, as in (2.4.3).

Now, following [23, 133], we can rewrite the cardinality constraint of (3.1.1), by including
a new variable u ∈ Rq and using (2.1.3) as follows:

min
x,y,u

θ(x, y)

s.t


x ∈ X,
y ∈ GNEP (x)
1⊤u ≥ q −K
u⊙ y = 0, u ∈ [0, 1]q

(3.1.6)

This reformulation is in fact equivalent (in the sense of global minimizers) to (3.1.1), as
the following proposition shows.

Proposition 3.1.4. A vector (x, y) ∈ Rn × Rq is feasible for (3.1.1) if and only if there is a
vector u ∈ Rq such that (x, y, u) is feasible for (3.1.6).
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Moreover, a vector (x∗, y∗) ∈ Rn × Rq is a global solution of problem (3.1.1) if and only if
there exist a vector u∗ ∈ Rq such that (x∗, y∗, u∗) is a global solution of reformulated problem
(3.1.6).

Proof. Since the objective functions of both problems are the same and do not depend on
the variable u, it suffices to show only the first part of the proposition.

First assume that (x, y) is feasible for (3.1.1). Then, due to ∥y∥0 ≤ K, let us define the
vector u ∈ Rq defined componentwise by

∀k ∈ [q], uk =

{
0 if yk ̸= 0,

1 if yk = 0.
(3.1.7)

Recall that, according to Remark 2.4.1, yk stands for the kth coordinate of the aggregated
vector y, without referring any follower. Then, u satisfies u ∈ [0, 1]q,1⊤u ≥ q − K, and
ukyk = 0 for all k ∈ [q]. Hence (x, y, u) is feasible for problem (3.1.6).

Now, for the reverse implication, suppose that there exists u ∈ Rq such that (x, y, u) is
feasible for (3.1.6). Then define the index set J := {k : uk > 0} ⊂ [q]. Since, by assumption,
u ∈ [0, 1]q and 1⊤u ≥ q−K, it follows that |J |≥ q−K. Furthermore, using u⊙y = 0, we see
that yi = 0 at least for all i ∈ J . Hence ∥y∥0 ≤ K. By hypothesis we have y ∈ GNEP (x).
Thus, (x, y) is feasible for problem (3.1.1). The proof is then complete.

Remark 3.1.5. Note that it is immediate to extend the previous result to the case of a
reformulation of the problem (3.1.1) considering u ∈ {0, 1}q instead of u ∈ [0, 1]q. The first
part of the proof remains the same, while for the second part, it is enough to define the set
of indices J := {k : uk = 1}.

If we consider local minimizers, the equivalence between (3.1.1) and (3.1.6) does not hold
anymore. Nevertheless, we still can get one implication.

Proposition 3.1.6. Let (x∗, y∗) ∈ Rn × Rm a local solution of (3.1.1). Then there exists a
vector u∗ ∈ Rq such that the vector (x∗, y∗, u∗) is also a local solution of (3.1.6).

Proof. Let u∗ be a vector defined componentwise by

∀k ∈ [q], u∗
k :=

{
0 if y∗

k ̸= 0,

1 if y∗
k = 0.

(3.1.8)

Again, according to Remark 2.4.1, yk stands for the kth coordinate of the aggregated
vector y, without referring any follower. We have that u∗

k = 1 if and only if y∗
k = 0 and hence

1⊤u∗ = q − ∥y∗∥0 ≥ q −K. It’s clear that (x∗, y∗, u∗) is feasible for problem (3.1.6). We will
show that (x∗, y∗, u∗) is a local minimun of (3.1.6). To this end, we can note that there exists
r1 > 0, such that
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f(x, y) ≥ f(x∗, y∗) ∀(x, y) ∈ Br1
(x∗, y∗), such that y ∈ GNEP (x), ∥y∥0 ≤ K,

due to the assumed local optimality of (x∗, y∗) for the problem (3.1.1). Furthermore, let
us choose r2 = 1/2. We have uk > 0 for all u ∈ Br2

(u∗) and all k ∈ [q] such that u∗
k > 0. The

previous observation lead to the following inclusion

{k : uk = 0} ⊆ {k : u∗
k = 0}, ∀u ∈ Br2

(u∗) (3.1.9)

Now, taking r := min{r1, r2}, and let (x, y, u) ∈ Br(x
∗, y∗) × Br(u

∗) be a feasible vector
for problem (3.1.6). In particular, we have x ∈ X and y ∈ GNEP (x). The inclusion (3.1.9)
implies that for every k ∈ [q],

yk ̸= 0 =⇒ uk = 0 =⇒ u∗
k = 0 =⇒ y∗

k ̸= 0

which entails ∥y∥0 ≤ ∥y∗∥0. Hence (x, y) is feasible for problem (3.1.1). Since we have
(x, y) ∈ Br1

(x∗, y∗), we obtain f(x, y) ≥ f(x∗, y∗) from local optimality of (x∗, y∗) of the
problem (3.1.1). Therefore, (x∗, y∗, u∗) is a local minimum of problem (3.1.6). The proof is
then completed.

This proposition is tight, in the sense that the converse implication does not hold. Here,
the local minima of problem (3.1.6) might fail to induce local minima of (3.1.1). The ob-
struction is that the variable u in the reformulation (3.1.6) acts as a multiplier inducing
partitions of the space: while the overall feasible set might be connected, it is possible to
locally separate a point where some coordinate uk is strictly positive from those where it
is zero. Similar issues have been identified in the classic MPCC reformulation of bilevel
programming problems (see, e.g., [39, Example 3.4]). The following example illustrates this
fact.

Example 3.1.7. Consider the problem

min
x,y

y1 − 2y2

s.t


x ∈ [0, 1],
y ∈ GNEP (x)
∥y∥0 ≤ 1,

and assume that for every x ∈ [0, 1], GNEP (x) = [0, 1]2. For any x ∈ [0, 1], the point (x, 0, 1)
is a global minimizer, while clearly (x, 0, 0) is not a local optimum. Now, the reformulation
(3.1.6) of this problem is given by

min
x,y,u

y1 − 2y2

s.t


x ∈ [0, 1],
y ∈ GNEP (x)
u1 + u2 ≥ 1
u⊙ y = 0, u ∈ [0, 1]2.
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Here, for any x∗ ∈ [0, 1], the point (x∗, y∗, u∗) with y∗ = (0, 0) and u∗ = (0, 1) is a local
optimum. Indeed, fix any r = 1/2 and pick any (x, y, u) ∈ Br(x, y

∗, u∗) that is feasible for
the reformulated problem. Then, necessarily u2 ≥ 1/2 and so y2 = 0. Then,

y1 − 2y2 = y1 ≥ 0 = y∗
1 − 2y∗

2 ,

and the conclusion follows. ♢

The observation that the variable u of (3.1.6) acts as a multiplier similar to the classic
MPCC reformulation of SLMF games is in fact rather powerful. Indeed, we can profit from
this observation to produce a second single-level reformulation of (3.1.1) without cardinality
constraints, which still is a mathematical programming problem with complementarity con-
straint, as the classic MPCC reformulation and the reformulation (3.1.6). We will just replace
the lower-level (generalized) Nash equilibrium problem of (3.1.6) by the concatenation of the
associated parametric KKT conditions of each of the followers.

Recalling that the constraint set Yi(x, y−i) is given by functional inequalities as in (2.4.1),
we can consider the Lagrangian function for the ith follower as

Li(x, y, u, λi) := fi(x, y, u) +

mi∑
k=1

λikgik(x, y, u),

where λi = (λi,1, . . . , λi,mi
) stands for the vector of Lagrange multipliers. The MPCC refor-

mulation for problem (3.1.6) is:

min
x,y,u,λ

θ(x, y)

s.t.



x ∈ X,
1⊤u ≥ q −K,
u⊙ y = 0, u ∈ [0, 1]q,

∀i ∈ [M ],


∇yi

fi(x, y) +
∑mi

k=1
λik∇yi

gik(x, y) = 0,
gi(x, y) ≤ 0,
λi ⊙ gi(x, y) = 0,
λi ≥ 0.

(3.1.10)

Note that, since the lower-level problems of (3.1.6) are not affected by the variable u
(which is used only to rewrite the cardinality constraint), the same KKT equations from
(3.1.10) are used to provide a MPCC reformulation of (3.1.1) maintaining cardinality con-
straints. However, we focus our attention only in (3.1.6) and (3.1.10), since our main goal is
to avoid cardinality constraints, in the spirit of [23, 133].

We finish this subsection with the next theorem, which is one of our main results, providing
the equivalence of all problems we have written so far, in the sense of global solutions. Even
though the proof follows standard arguments, we include it here for the sake of completeness.

Theorem 3.1.8. Consider problem (3.1.1) and assume the following hypotheses:
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(H1) (Follower Differentiability) For any follower i ∈ [M ] and any (x, y−i) ∈ X × Rq−i ,
fi(x, ·, y−i) and gi(x, ·, y−i) are differentiable.

(H2) (Follower Convexity) For any follower i ∈ [M ] and any (x, y−i) ∈ X ×Rq−i , fi(x, ·, y−i)
is convex, and the components of gi(x, ·, y−i) are quasiconvex functions.

(H3) (Guignard’s CQ) for each leader’s strategy x ∈ X, for each follower i ∈ [M ], and for
each joint strategy y = (yi, y−i) which is feasible for all followers, equation (2.2.4) holds
for Ω = Yi(x, y−i) at yi, with its representation (2.4.1).

Then, for any (x, y) ∈ Rp × Rq, the following assertions are equivalent:

(i) (x, y) is a feasible point (respectively, a global solution) of (3.1.1).
(ii) ∃u ∈ [0, 1]q, such that (x, y, u) is a feasible point (respectively, a global solution) of

(3.1.6).
(iii) ∃λ ∈ Rm,∃u ∈ [0, 1]q, such that (x, y, u, λ) is a feasible point (respectively, a global

solution) of (3.1.10).

Proof. The equivalence between (i) and (ii) is given in Proposition 3.1.4. To show that
(ii) ⇐⇒ (iii), it is enough to show that

(x, y, u) is feasible for (3.1.6) ⇐⇒ ∃λ ∈ Rm such that (x, y, u, λ) is feasible for (3.1.10).

Suppose first that (x, y, u) is feasible for (3.1.6). Then, y ∈ GNEP (x) and so we have that
for every i ∈ [M ], yi ∈ argminz{fi(x, z, y−i) | z ∈ Yi(x, y−i)}. Since Yi(x, y−i) is convex, we
get that

−∇yi
fi(x, yi, y−i) ∈ NYi(x,y−i)

(yi).

Then, hypothesis (H3) allows us to apply formula (2.2.4) to NYi(x,y−i)
(yi), ensuring that there

exists a multiplier λi ∈ Rqi satisfying the Karush-Kuhn-Tucker conditions for the problem of
the ith follower given by (x, y−i), at yi. Then, by writing λ = (λ1, . . . , λM), we conclude that
(x, y, u, λ) is feasible for (3.1.10).

For the converse, suppose now that (x, y, u, λ) is feasible for (3.1.10). Then, for i ∈ [M ],
λi ∈ Rqi is a multiplier satisfying the Karush-Kuhn-Tucker conditions for the problem of
the ith follower given by (x, y−i), at yi. Let z ∈ Yi(x, yi) and fix k ∈ {1, . . . ,mi}. Since
gik(x, ·, y−i) is quasiconvex, we have that the segment [yi, z] is contained in the sublevel set
[gik(x, ·, y−i) ≤ 0]. Then,

⟨∇yi
gik(x, yi, y−i), z − yi⟩ = lim

t→0

gik(x, yi + t(z − yi), y−i)− gik(x, yi, y−i)

t
≤ 0.

Since z ∈ Yi(x, y−i) and k ∈ {1, . . . ,mi} are arbitrary, we deduce that

−∇yi
fi(x, yi, y−i) =

mi∑
k=1

λik∇yi
gik(x, yi, y−i) ∈ NYi(x,y−i)

(yi).

Thus, convexity of fi, entails that yi ∈ argminz{fi(x, z, y−i) | z ∈ Yi(x, y−i)}. Since this
holds for every i ∈ [M ], we conclude that y ∈ GNEP (x), and so (x, y, u) is feasible for
(3.1.6), finishing the proof.
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3.1.3 Lower-level cardinality constraints

Even though our main focus is problem (3.1.1), in this subsection we will present the formu-
lation of the bilevel problem with cardinality constraints at the lower-level. Such formulation
considers the cardinality constraint as a shared constraint for the followers, and so it is written
as

min
x,y

θ(x, y)

s.t.
{

x ∈ X,
y ∈ GNEP0(x)

min
yi

fi(x, yi, y−i)

s.t. yi ∈ Yi(x, y−i).
∥y∥0 ≤ K

Leader ith Follower

(3.1.11)

Here, we denote GNEP0(x) as the equilibrium set of the followers’ problem, when in-
cluding the cardinality constraints. This problem is challenging to handle due to the loss of
convexity in the set of constraints for the followers and it is left out of the scope of our work.

Nonetheless, we provide here an example that illustrates how the cardinality constraint
at the lower-level leads to the loss of lower semicontinuity of the leader’s objective functional
even for very regular data.

Example 3.1.9 (Failing lower semicontinuity with lower-level cardinality constraints).

min
x,y

x+ y1 + y2

s.t.
{

x ∈ [0, 1],
y ∈ GNEP0(x)

min
y1

y1 + y2

s.t.


y1 + y2 ≤ 1
y1 ≥ x
∥y∥0 ≤ 1
y1 ≥ 0

min
y2

−y1 − y2

s.t.


y1 + y2 ≤ 1
∥y∥0 ≤ 1
y2 ≥ 0

Leader Follower 1 Follower 2

(3.1.12)

The solution of the parametric GNEP without considering the constraint ∥y∥0 ≤ 1 in the
followers problem is given by

GNEP (x) = {(x, 1− x)} for all x ∈ [0, 1]. (3.1.13)

Now, the solution of the parametric GNEP considering the constraint ∥y∥0 ≤ 1, is
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GNEP0(x) =

{
{(x, 0)} if x ∈ (0, 1]
{(0, 1)} if x = 0.

(3.1.14)

Even though all data are linear, the function θ(x, y) = x + y1 + y2 in the leader problem
from (3.1.12) fails to be lower semicontinuous when it is restricted to the feasible set. Indeed,
θ(x, y(x)) = θ(x, x, 0) = 2x if x > 0, and θ(0, y(0)) = θ(0, 0, 1) = 1. ♢

The main reason for the lack of lower semicontinuity is not the function θ itself, but rather
the lack of lower semicontinuity of the constraints maps (x, y−i) 7→ Yi(x, y−i). If one aims to
address SLMF games with lower-level cardinality constraints, probably dealing with the lost
of lower semicontinuity of the constraints maps might be the most difficult obstruction.

3.2 SLMF games with mixed cardinality constraints
As illustrated in the Example 3.1.2, problems of the form (3.1.1) can become infeasible due to
the fact that the leader does not have control over the decisions of the followers. Passing the
cardinality constraints to the follower, as we discussed previously, can break the regularity
of the upper-level problem (as illustrated in Example 3.1.9). In this section, however, we
propose a mixed formulation considering the reformulation (3.1.6), where the vector u is
used to represent the cardinality constraint partially distributed between the leader and the
followers. Specifically, we propose to consider the following formulation:

min
x,y,u

θ(x, y)

s.t.


x ∈ X,
y ∈ GNEP (x, u)
1⊤u ≥ q −K
u ∈ [0, 1]q

min
yi

fi(x, yi, y−i)

s.t. gi(x, yi, y−i) ≤ 0,
ui ⊙ yi = 0.

Leader ith Follower

(3.2.1)

Recall that, according to Remark 2.4.1, the vector ui ∈ Rqi stands for the components of
vector u ∈ Rq associated to the ith follower. Consistently, the vector u ∈ Rq is written as
u = (ui : i ∈ [M ]) ∈

∏M

i=1
Rqi , since each part ui acts only on the ith follower’s problem.

Now, GNEP (x, u) stands for the solution set of the new equilibrium problem of the followers.

Problem (3.2.1) can be interpreted as follows: the leader is given a new interdiction
variable u ∈ [0, 1]q, through which she can force any subset of followers’ variables to be zero.
The cardinality constraint is then ensured by demanding the leader to force at least q −K
followers’ variables to be zero, or equivalently, to allow at most K followers’ variables to
be nonzero. After the interdiction is decided by the leader, the followers solve their new
equilibrium problem, respecting that any interdicted variable must be zero.
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3.2.1 Existence of solutions and MPCC reformulation

The main difficulty in order to be able to prove the existence of solutions for the mixed
cardinality problem (3.2.1), is that the new constraint ui ⊙ yi = 0 can break the lower
semicontinuity of the constraint map of the follower, similar to what happens in Example
3.1.9. To solve this issue, we need to restrict ourselves to a setting where the constraint map
Yi is compatible with the new constraint ui ⊙ yi = 0. For this, let’s consider the particular
case where the constraint functions gi(x, yi, y−i), for i ∈ [M ] can be written as

gi(x, yi, y−i) = ĝi(yi)− φi(x, y−i),

where ĝi : Rqi → Rmi is componentwise convex, weakly analytic and continuous (see Chapter
2, Section 2.2), and φi : Rp × Rq−i → Rmi is continuous.

Theorem 3.2.1. Consider problem (3.2.1) and assume that

(i) θ is lower semicontinuous and X is closed.
(ii) for each i ∈ [M ], fi is continuous.
(iii) for each i ∈ [M ], the images of Yi, are uniformly bounded, and X is bounded.
(iv) for each i ∈ [M ], gi(x, yi, y−i) = ĝi(yi) − φi(x, y−i), where ĝi is componentwise convex,

weakly analytic and continuous, and φi is continuous.

Then, either problem (3.2.1) is infeasible, or it admits a solution.

Proof. Wlog, we will suppose that the feasible set of the leader’s problem

F := {(x, u, y) ∈ X × [0, 1]q × Rq | 1⊤u ≥ q −K, y ∈ GNEP (x, u)} (3.2.2)

is nonempty. So we only need to show that (3.2.1) admits a solution in this case.

To do so, let (x, u, y) ∈ X × [0, 1]q × Rq be a feasible point for (3.2.1). Note that taking u
as

∀k ∈ [q], uk :=

{
0 if uk = 0

1 if uk > 0.
(3.2.3)

then (x, u, y) is feasible for the problem (3.2.1) and the objective value for the leader is the
same, since it doesn’t depend on u.

Fixing u ∈ {0, 1}q =
∏M

i=1
{0, 1}qi , we consider for every i ∈ [M ] the set

Zu
i (x, y−i) = Yi(x, y−i) ∩ {yi ∈ Rmi | ui ⊙ yi = 0}, (3.2.4)

and we define Zu(x, y) =
∏M

i=1
Zu

i (x, y−i). With these definitions, for every u ∈ {0, 1}q, we
are going to define the following problem (Pu):
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min
x,y

θ(x, y)

s.t.
{

x ∈ Xu = X ∩ dom(Zu),
y ∈ GNEPu(x)

min
yi

fi(x, yi, y−i)

s.t. yi ∈ Zu
i (x, y−i).

Leader - (Pu) ith Follower - (F u
i )

(3.2.5)

where GNEPu(x) denotes the set of Nash equilibria associeted to the followers problems
F u

i .

Now, we will denote (P ) as the problem (3.2.1) and we consider v(P ) and v(Pu) the
optimal values of problems (3.2.1) and (3.2.5), respectively. We claim that v(P ) coincides
with the minimal value among the problems Pu, that is v(P ) = min{v(Pu) | u ∈ {0, 1}q}.
Indeed, on the one hand, if (x, u, y) is feasible for (P ) with u ∈ [0, 1]q, then (x, y) is feasible
for (Pu) where u is given as in (3.2.3), and both points have the same objective value for
their respective problems. So the value of the problem (P ) satisfies

v(P ) ≥ min{v(Pu) | u ∈ {0, 1}q}.

On the other hand, if (x, y) is feasible for (Pu) for some u ∈ {0, 1}p, then (x, y, u) must
be feasible for (P ). Indeed, this follows directly by the observation that y ∈ GNEP (x, u) if
and only if y ∈ GNEPu(x). Thus,

v(P ) ≤ min{v(Pu) | u ∈ {0, 1}q},

and the claim is proven. Now, in order to prove the existence of solutions for (P ) it is enough
to show that for every u ∈ {0, 1}q, one has that (Pu) is either infeasible or it admits a solution.
To do so, it is enough to verify that each problem (Pu) verifies the hypotheses of Theorem
3.1 of [7], that is, it verifies the hypotheses (i)− (iv) of Theorem 3.1.3.

Indeed, fix u ∈ {0, 1}q and assume that (3.2.5) is feasible. Trivially, hypotheses (i) and
(ii) of Theorem 3.1.3 hold. Note that, from (iii), we have that the images Yi are uniformly
bounded and so the images of Zu

i are uniformly bounded, as well. Thus, (Pu) also verifies
hypothesis (iii) of 3.1.3. Moreover, we can write

Zu
i (x, y−) := {z hi(z) ≤ ϕ(x, y−i)},

with

hy(z) =

 ĝi(z)
ui ⊙ z
−ui ⊙ z

 and ϕ(x, y−i) =

φi(x, y−i)
0
0

 .

Since the mappings yi 7→ ui ⊙ yi are componentwise linear with respect to (yi), we get that
hypothesis (iv) entails that hi is componentwise convex, weakly analytic and continuous and
that ϕ is continuous. Thus, of Theorem 3.3.3 of [11] (see Proposition 2.2.1 above), we have

38



that the multifunction Zu
i defined in (3.2.4) is lower semicontinuous and has closed graph.

Therefore, hypothesis (iv) of Theorem 3.1.3 holds.

Now, all the hypotheses of Theorem 3.1 of [7] are satisfied, thus (Pu) admits a solution.
Since problem (3.2.1) is feasible by hypothesis, at least one of the problems (Pu) must be
feasible as well. Then, to determine the solution of the problem (3.2.1), it is enough to take
the best point (x∗, y∗, u) among the u ∈ {0, 1}q for which the problem (Pu) is feasible. This
concludes the proof since there is a finite number of such u.

Similarly as we did in Subsection 3.1.2, we will consider the MPCC reformulation of
Problem (3.2.1). The Lagrangian function to the ith follower is given by

Li(x, y, u, λi, νi) := fi(x, y, u) + ν⊤
i (ui ⊙ yi) +

mi∑
k=1

λikgik(x, y, u),

and so, the MPCC reformulation is given by

min
x,y,u,λ,ν

θ(x, y)

s.t.



x ∈ X,
1⊤u ≥ q −K,
u ∈ [0, 1]q,

∀i ∈ [M ],


∇yi

fi(x, y) +
∑mi

k=1
λik∇yi

gik(x, y) + νi ⊙ ui = 0,
λikgik(x, y) ≥ 0,
gik(x, y) ≤ 0,
ui ⊙ yi = 0,
λik ≥ 0.

(3.2.6)

By following a similar strategy as in Subsection 3.1.2, we can establish the following
corollary.

Corollary 3.2.2. Consider Problem (3.2.1) and assume the following hypotheses:

(H1) (Follower Differentiability) For any follower i ∈ [M ] and any (x, y−i) ∈ X × Rq−i,
fi(x, ·, y−i) and gi(x, ·, y−i) are differentiable.

(H2) (Follower Convexity) For any follower i ∈ [M ] and any (x, y−i) ∈ X ×Rq−i , fi(x, ·, y−i)
is convex, and the components of gi(x, ·, y−i) are quasiconvex functions.

(H3) (Guignard’s CQ) for each leader’s strategy x ∈ X, for each follower i ∈ [M ], and for
each joint strategy y = (yi, y−i) which is feasible for all followers, equation (2.2.4) holds
for Ω = {z : gi(x, z, y−i) ≤ 0, ui ⊙ z = 0} at yi.

Then, for every (x, y) ∈ Rp × Rq, the following assertions are equivalent:

(i) ∃u ∈ [0, 1]q such that (x, y, u) is a feasible point (respectively, a global solution) of
(3.2.1).
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(ii) ∃λ ∈ Rm,∃u ∈ [0, 1]q such that (x, y, u, λ) is a feasible point (respectively, a global
solution) of (3.2.6).

The main limitation with this last corollary, is that the constraint qualification (2.2.4)
is required on the new feasible sets {z : gi(x, z, y−i) ≤ 0, ui ⊙ z = 0}, which might
be hard to verify, since it is not automatically inherited from the original constraint sets
Yi(x, y−i) = {z gi(x, z, y−i) ≤ 0}. Moreover, the constraints associated to the derivatives of
the Lagrangian, that is,

∇yi
fi(x, y) +

mi∑
k=1

λik∇yi
gik(x, y) + νi ⊙ ui = 0,

are complicated constraints, since they are at least quadratic due to the term νi ⊙ ui, and
they are not complementarity constraints. However, these two problems can easily be solved
in the special case of linear problems.

3.2.2 Further results for the linear case

We refer to problem (3.2.1) (or problem (3.1.1)) as linear or possessing linear data if

1. X = {x : Ax ≤ b}, for some matrix A and a vector b of appropriate dimensions;
2. θ(x, y) = c⊤x+ d⊤y, for some vectors c ∈ Rp and d ∈ Rq;
3. For each i ∈ [M ], there exist matrices Bi, Ci, Di of appropriate dimensions and a vector

γi ∈ Rmi such that gi(x, yi, y−i) = Bix+ Ciyi +Diy−i − γi;
4. For each i ∈ [M ], there exists a function αi : Rp×Rq−i → Rqi and a vector βi ∈ Rqi such

that fi(x, yi, y−i) = αi(x, y−i)
⊤yi + β⊤

i (yi ⊙ yi).

Observe that we are admitting the followers’ functions to be either linear with respect to
yi (if βi = 0) or quadratic, since β⊤

i (yi ⊙ yi) =
∑qi

j=1
βijy

2
ij. The abuse of the word “linear”

comes from the fact that the gradient map yi 7→ ∇yi
f(x, yi, y−i) will be affine if the map αi

is affine.

Note that in this case, the constraint sets {z : gi(x, z, y−i) ≤ 0, ui ⊙ yi = 0} verify the
linear constraint qualification (see, e.g., [126]), since all constraints are linear. Thus, (2.2.4)
is verified and Corollary 3.2.2 applies: the linear problem (3.2.1) is either infeasible or it
admits a solution.

Now, to search for a solution, we need to consider the MPCC reformulation (3.2.6), which
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takes the form

min
x,y,u,λ,ν

c⊤x+ d⊤y

s.t.



Ax ≤ b,
1⊤u ≥ q −K,
u ∈ [0, 1]q,

∀i ∈ [M ],


αi(x, y−i) +

∑mi

k=1
C⊤

i λik + νi ⊙ ui = 0,
λik(Bix+ Ciyi +Diy−i − βi) = 0,
Bix+ Ciyi +Diy−i ≤ βi,
ui ⊙ yi = 0,
λik ≥ 0.

(3.2.7)

Note that, assuming that all αi functions are affine maps, problem (3.2.7) is almost a lin-
ear programming problem with complementarity constraints: the only constraint that does
not fit in this setting is the one associated to the derivatives of the Lagrangian functions.

For Linear Programming problems with complementarity constraints, one could apply
the usual Branch-and-Bound algorithm. In fact, complementarity constraints and binary
variables can be treated in the same way using SOS1 constraints (see, e.g. [84, 6]), and so
Branch-and-Bound also applies for Mixed-Integer Linear Programming problems with com-
plementarity constraints.

Motivated by this observation and by the fact that, following Remark 3.1.5, one can
force the variable u ∈ [0, 1]q to be an integer vector in {0, 1}q, we establish the following
proposition, which is the last reformulation of this work.

Proposition 3.2.3. Consider problem (3.2.7), and the alternative formulation

min
x,y,u,λ,η

c⊤x+ d⊤y

s.t.



Ax ≤ b,
1⊤u ≥ q −K,
u ∈ {0, 1}q,

∀i ∈ [M ],



αi(x, y−i) +
∑mi

k=1
C⊤

i λik + ηi = 0,
λik(Bix+ Ciyi +Diy−i − βi) = 0,
Bix+ Ciyi +Diy−i ≤ βi,
ui ⊙ yi = 0,
ηi ⊙ (1− ui) = 0,
λik ≥ 0.

(3.2.8)

Then, for every point (x, y) ∈ Rp × Rq, the following assertions are equivalent:

(a) ∃(u, λ, ν) ∈ [0, 1]q × Rm
+ × Rq such that (x, y, u, λ, ν) is a feasible point (respectively, a

global solution) of (3.2.7).
(b) ∃(u, λ, η) ∈ {0, 1}q × Rm

+ × Rq such that (x, y, u, λ, η) is a feasible point (respectively, a
global solution) of (3.2.8).
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In particular, if the functions αi are affine, problem (3.2.8) is a mixed-integer linear program-
ming problem with complementarity constraints.

Proof. We will only show the equivalence between feasible sets, since the equivalence between
global solutions follows from this first equivalence an the fact that the objective function is
the same on both problems, depending only for the (x, y) variables.

(a) =⇒ (b): consider u as in (3.2.3), that is: for each k ∈ [q], uk = 1 if uk > 0, and
uk = 0 if uk = 0. Then, we can consider η defined from ν as follows:

∀k ∈ [q], ηk =

{
νk · uk if uk > 0,

0 if uk = 0.

Then, for every k ∈ [q], we have that ηk > 0 ⇐⇒ 1 − uk = 0, and that ηk = νk · uk. With
these observations, we can directly replace u by u and νi⊙ui by ηi (for each follower i ∈ [M ])
in problem (3.2.7), deducing that (x, y, u, λ, η) is feasible for problem (3.2.8).

(b) =⇒ (a): it is enough to define y = ν ⊙ u, since the inclusion u ∈ {0, 1}q and the
constraints ηi ⊙ (1− ui) = 0 allows to write:

νi ⊙ ui = ηi ⊙ ui ⊙ ui = ηi, ∀ i ∈ [M ].

Replacing η by ν ⊙ u, the constraints (νi ⊙ ui) ⊙ (1 − ui) = 0 become trivial in problem
(3.2.8), and so we deduce that (x, y, u, λ, ν) is feasible for problem (3.2.8). The proof is now
completed.

3.3 Application to Facility location problems with cardi-
nality constraints

In order to illustrate the theory presented in the previous sections, in this final section we
provide a concrete example consisting in a variant of the Facility Location problem [96, 36].
This problem is a classic example in Mixed-Integer programming primers, and it is very rel-
evant in several applications. In particular, we focus on electric mobility and the need to
optimize the charging infrastructure.

The problem we consider is the following: in a city, a company (the leader) is required
to build charging stations for electric vehicles, within a list of strategic locations, indexed by
the set S = {1, . . . , s}. The company must take into account a set of consumers with electric
cars (followers) , indexed by I = {1, ..., i}, who will charge their vehicles on one of the built
stations once a day. Therefore, the company must decide whether to put or not a charging
facility at each location s ∈ S, taking into account the decision process of the consumers.

Due to the nature of the problem, we include some variants. First, the clients are not nec-
essarily committing to charge in the same station every day, but rather they might alternate
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within a set of stations, with certain probability. Second, the clients play a congestion game,
in the sense that their preferences are influenced by how many clients (in expectation) will
choose each of the stations. And finally, due to the characteristics of charging, a station can
only serve a limited number of cars per day. With this limitation, the company must be able
to satisfy the demand for any scenario induced by the distribution of the clients. This last
requirement is translated into a cardinality constraint.

For this problem, it is assumed that the batteries of all vehicles have the same capacity
and each driver wishes to fully charge his battery; the decision to go to a specific station
varies according to the preferences of each driver.

3.3.1 Upper-level and mixed formulations

In what follows, the index i ∈ I will represent the ith client, and the index s ∈ S, will be the
sth station. For each station s ∈ S, we consider:

• A parameter ais > 0, which represents the total price of a full charge with respect to
client i at station s;

• A parameter cs > 0, which represents the cost of installing the station s;
• A parameter Ks > 0, which represents the number of charges that can be served by

station s per day;
• A variable xs ∈ {0, 1}, where xs = 1 if the station is built, and xs = 0, otherwise.

For each client i ∈ I and each station s ∈ S, we consider:

• A parameter pis, representing the preference to go to the station s. This preference is
influenced by the price as, but also by implicit factors, such as the distance to home,
the perception of the service, etc;

• A factor αis of inconvenience due to congestion at station s;
• A variable yis ∈ [0, 1], which determines probability of client i going to station s.

We denote by x = (xs : s ∈ S) the decision vector of the company, by yi = (yis s ∈ S) the
decision vector of each client i ∈ I, and by y = (yis : i ∈ I, s ∈ S) the joint decision vector
of all clients. With this in mind, each client i ∈ I aims to maximize the concave function

yi 7→ fi(x, yi, y−i) =
∑
s∈S

(
pis − αis

∑
j∈I

yjs

)
yis,

which is parametrized by the company’s decision x and by the other clients’ decision y−i. We
will consider two possible objective functions for the company:

• Profit: The company aims to maximize its revenue

θ(x, y) =
∑
s∈S

(
T
∑
i∈I

aisyis − csxs

)
,

where T is the number of days considered as lifetime of the project.
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• Welfare: The company aims to maximize the social welfare, given by

θ(x, y) =
∑
s∈S

(
T
∑
i∈I

aisyis − csxs

)
+ T

∑
i∈I

fi(x, y),

where T is the number of days considered as lifetime of the project.

The formulation of the SLMF game with cardinality constraints at upper level (3.1.1) is
then given by

max
x,y

θ(x, y)

s.t.


y ∈ NEP (x),
∥y•,s∥0 ≤ Ks,∀s ∈ S
xs ∈ {0, 1},∀s ∈ S.

max
yi,•

∑
s∈S

(
pis − αis

∑
j∈I

yjs
)
yis

s.t.
∑

s∈S
yis = 1,

yis ≤ xs, s ∈ S,
yis ≥ 0 s ∈ S.

Leader ith Follower

(3.3.1)

Similarly, the SLMF game with mixed cardinality constraints (3.2.1) is given by

max
x,y,u

θ(x, y)

s.t.


y ∈ NEP (x, u),
1⊤u•,s ≥ p−Ks,∀s ∈ S
uis ∈ [0, 1],∀i ∈ I, ∀s ∈ S
xs ∈ {0, 1},∀s ∈ S.

max
yi,•

∑
s∈S

(
pis − αis

∑
j∈I

yjs
)
yis

s.t.
∑

s∈S
yis = 1,

yis ≤ xs, ∀s ∈ S
ui ⊙ yi = 0,
yis ≥ 0, ∀s ∈ S.

Leader ith Follower

(3.3.2)

In both problems, we write NEP instead of GNEP , to emphasize that the equilibrium
problem of the followers is a Nash equilibrium problem and not a generalized one: the fol-
lowers only affect each others through the objective function and not the constraints.

Then, in this section four bilevel problems will be developed, according to two cases of
cardinality constraints and two different objective functions for the company, as summarized
in Table 3.1.

Finally, we include the corresponding MPCC reformulations, according to the develop-
ments of Sections 3.1 and 3.2. For problem (3.3.1), the Lagrangian associated to the ith
follower is given by

Li =
∑
s∈S

[(
pis − αis

∑
j∈I

yjs

)
yis + λi(yis − 1) + µ+

is(yis − xs) + µ−
is(−yis)

]
.
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Profit Social Welfare
Upper Upper-Profit Upper-SW
Mixed Mixed-Profit Mixed-SW

Table 3.1: Bilevel problems with cardinality constraints at the upper level and mixed, considering different
objective functions for the company.

Thus, the associated MPCC reformulation is given by:

min
x,y,u,λ,µ

+
,µ

−
θ(x, y)

s.t.



x ∈ {0, 1}p,
1⊤u•,s ≥ p−Ks, ∀s ∈ S
uis ∈ {0, 1},∀i ∈ I,∀s ∈ S,

u⊙ y = 0,∀i ∈ I


pi − αi ⊙ (yi +

∑
j∈I

yj) + λi + µ+
i − µ−

i = 0,
µ+

i ⊙ (yi − xs1) = 0,
µ−

i ⊙ yi = 0,
µ+

i , µ
−
i ≥ 0.

(3.3.3)

For the case of problem (3.3.2), the Lagrangian associated to the ith follower is given by

Li =
∑
s∈S

[(
pis − αis

∑
j∈I

yjs

)
yis + λi(yis − 1) + µ+

is(yis − xs) + µ−
is(−yis) + νis(uisyis)

]
.

Thus, considering the change of variables ηi = νi ⊙ ui, and following Proposition 3.2.3, we
get the final MPCC formulation given by:

min
x,y,u,λ,µ

+
,µ

−
,η

θ(x, y)

s.t.



x ∈ {0, 1}p,
1⊤u•,s ≥ p−Ks, ∀s ∈ S
uis ∈ {0, 1},∀i ∈ I,∀s ∈ S,

∀i ∈ I



pi − αi ⊙ (yi +
∑

j∈I
yj) + λi + µ+

i − µ−
i + ηi = 0,

µ+
i ⊙ (yi − xs1) = 0,

µ−
i ⊙ yi = 0,

ui ⊙ yi = 0,
ηi ⊙ (1− ui) = 0,
µ+

i , µ
−
i ≥ 0.

(3.3.4)

3.3.2 Methodology

Numerical Resolution of Bilevel Problems

For the problems at hand, we employ a numerical resolution approach based on the refor-
mulation of Mathematical Programming with Complementarity Constraints (MPCC) along
with the SOS1 (Special Ordered Sets 1) method. The use of MPCC is essential for mod-
eling and solving optimization problems where both continuous and discrete variables coexist.
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Facility 1 2 3 4 5 6 7 8 9 10
Type 1 1 1 1 1 2 2 2 3 3

Table 3.2: Type of facilities.

Step-by-Step Resolution

Here, we describe step-by-step the process used to solve the bilevel problems shown in
table 3.1:

• Problem Formulation: first, we formulate the problem of determining the location of
charging facilities as a bilevel problem with cardinality constraints (see Problem 3.3.1
and 3.3.2). The upper level aims to optimize certain global decision variables, while the
lower level models demand response and the allocation of vehicles to charging facilities.

• Reformulation 1: apply the reformulation described in Section 3.1.2, obtaining a new
variable to optimize along with new equality and inequality constraints.

• Reformulation 2 (MPCC): apply the MPCC reformulation technique to derive com-
plementarity relationships. This allows us to obtain a set of equations and inequalities
that characterize the problem more suitably for numerical resolution (for problems 3.3.1
and 3.3.2, see formulations 3.3.3 and 3.3.4, respectively.

• SOS1 Method: employ the SOS1 method, finding feasible solutions for combinatorial
optimization problems, ensuring the selection of the most suitable charging facility
locations, each with limited capacity for electric vehicle demand.

• Global Optimization: finally, we combine the solutions obtained in the lower level
using the SOS1 method with global optimization at the upper level to find the global
optimal solution to the charging facility location problem.

3.3.3 Numerical experiments and results

In this study we consider M = 150 drivers/cars (i ∈ I = {1, ...,M}) and ten facilities
(s ∈ S = {1, ..., 10}), each of which has a fixed capacity Ks, the as cost of fully charging the
car battery at the facility s (assuming all cars have the same battery).

Each facility belongs exclusively to one type: cheap (type 1), medium (type 2) and ex-
pensive (type 3). The values of as and Ks depend only on the type. Additionally, the fixed
construction cost [USD], also depending on the type, is given by c1 = 10000 for the cheap
type, c2 = 30000 for the medium type, and c3 = 50000 for the expensive type. The parame-
ters of each type of facility is given in Table 3.3 while the type of each facility is precised in
Table 3.2. Note that the values of the above constants, even if inspired from real life values,
have been chosen to be able to enlighten the effect of cardinality constraints in this academic
example. In the same line, as a simplifying assumption, we suppose that all cars charge their
cars once a week on the same days. The lifespan T of this study case, thus the number of
days of charging, is fixed to 52 weeks, representing one year of operation.
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Type Installation cost [USD] Cost per charge [USD] Capacity per day
1 c1 = 10000 a1 = 9 K1 = 20
2 c2 = 30000 a2 = 15 K2 = 40
3 c3 = 50000 a3 = 28 K3 = 100

Table 3.3: Description of facilities.

On the other hand, for each facility, a random variable ξs ∼ Lognormal(0.1,0.05) is con-
sidered, and the inconvenience of the facility are fixed as αs = 28 ξs

Ks
, for each facility s ∈ S.

For this work, the preference pis is considered as follows: for each facility and each driver, we
associate a random position (uniformly distributed) within the plane [0, 1]2, representing the
locations of the facilities and the houses of the drivers. With this, the following is calculated

pis =
1

dis

− as, (3.3.5)

where dis is the euclidean distance between the position of driver i and the facility s.

Fifty different experiments were performed, here called “cases", where the values for p
and α were chosen randomly for each case. These values are included in the supplementary
material. 100 problems were solved (50 cases, 2 configurations per case), using Gurobi
v10.0.2 [68] coupled with the SOS1 package, with an execution time limit of 60 minutes.

3.4 Simulations
In the simulations, we conducted 50 different experiments where the values for αs and pis,
with i ∈ I, s ∈ S, were randomly chosen. The problems under consideration are divided
into two categories: those with cardinality constraints at the upper level (CC at the upper
level) and those with mixed cardinality constraints (mixed CC). Additionally, two objective
functions will be examined in these problems: Profits and Welfare, ending thus with four
possible cases: Upper-Profits, Upper-SW, Mixed-Profits, and Mixed-SW (see Table 3.1).
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Cases Upper-Profit Mixed-Profit Upper-SW Mixed-SW
1 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
2 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
3 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
4 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
5 [0, 0, 2] [0, 0, 2] [0, 0, 2] [4, 2, 0]
6 - [0, 0, 2] - [3, 0, 1]
7 - [0, 0, 2] - [3, 0, 1]
8 - [0, 0, 2] - [3, 0, 1]
9 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
10 - [0, 0, 2] - [3, 0, 1]
11 - [0, 0, 2] - [3, 0, 1]
12 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
13 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
14 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
15 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
16 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
17 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
18 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
19 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
20 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
21 - [0, 0, 2] - [3, 0, 1]
22 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
23 - [0, 0, 2] - [3, 0, 1]
24 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
25 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
26 - [0, 0, 2] - [3, 0, 1]
27 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
28 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
29 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
30 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
31 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
32 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
33 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
34 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
35 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
36 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
37 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
38 - [0, 0, 2] - [3, 0, 1]
39 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
40 - [0, 0, 2] - [3, 0, 1]
41 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
42 - [0, 0, 2] - [3, 0, 1]
43 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
44 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
45 - [0, 0, 2] - [3, 0, 1]
46 [0, 0, 2] [0, 0, 2] [0, 0, 2] [4, 2, 0]
47 - [0, 0, 2] - [3, 0, 1]
48 - [0, 0, 2] - [3, 0, 1]
49 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]
50 [0, 0, 2] [0, 0, 2] [0, 0, 2] [3, 0, 1]

Table 3.4: Each component of the vector [n1, n2, n3] represents the number of built facilities according to
type a1, a2 and a3, respectively.
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In Table 3.4, we can observe how the solutions for the Mixed-Profits problem are con-
sistently the same, namely, constructing expensive facilities. This makes sense given the
problem’s structure, where the leader has significant freedom in decision-making. Since the
goal is to maximize profits, the outcome reflects the choice that yields the greatest benefit
for the leader, without taking into account the preferences of the followers. This can be
corroborated in Table 3.10, where the values of the objective functionals (Mixed-Profit) are
shown, whose results, maximizing Profit, are bigger than in the case of maximizing the So-
cial Welfare (Mixed-SW), see Table 3.11. Conversely, for the Mixed-SW problem, we can see
other different solutions, ranging from building three cheap facilities and one expensive one,
to building four cheap ones and two medium ones (only in cases 5 and 46). Clearly, in this
case, the effect of considering the presence of users becomes apparent when maximizing both
profits and the preferences of each follower.

Figure 3.1: Optimal gap for each of the problems in each case.

Figure 3.2: Execution time for each of the problems in each case.
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In Figure 3.1, the optimality gaps are compared for each of the problems across 50 cases. A
significant number of black and green characters corresponding to Mixed-Profits and Mixed-
SW problems can be observed, being closer to zero. Also for the Upper-Profit problems
but with a smaller number of feasible cases (36 cases, see Table 3.4) This indicates that,
under the resolution parameters, optimal solutions were found for problems for the afore-
mentioned problems, unlike for the Upper-SW problems. For the latter, the total number
of feasible points found was 36 (with a total of 50 cases considered), accompanied by a high
optimality gap. Similarly, in Figure 3.2, the execution times are displayed. Upper-Profits
and Upper-SW problems exhibited longer computation times, around 3600 seconds, whereas
for problems with mixed constraints, the average execution time was approximately 42.92
seconds. According to the Tables 3.8 and 3.9, the solutions of the Upper-Profit and Upper-
SW problems were the same, with the big difference that for the Upper-SW problems, they
required considerably more time to find an optimal solution.

Figure 3.3: Each bar corresponds to the number of built facilities of type a1, a2 or a3, for the different
problems, these are, from left to right, 1-Upper-Profit, 2-Mixed-Profit, 3-Upper-SW, 4-Mixed-SW.

Figure 3.3 shows two instances out of the 50 simulations, summarizing the different so-
lutions that were found. For the Upper-Profit, Upper-SW and Mixed-Profit problems, they
produce the same solution, which is to build two facilities with the highest service cost
(facility-a3). On the other hand, for Mixed-SW, two different solutions were found, each one
considering only the construction of two types of facilities, the first one, building three cheap
facilities and one expensive, and the second one, building four cheap and two medium. This
indicates, for this type of problem, that when considering different sets of parameters, it is
essential, as a minimum, to contemplate the construction of a facility of type a1, and in most
cases, the construction of a facility of type a3 is also advisable. For more details see Table
3.4.
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Figure 3.4: Values for the different functional objectives in each case study.

Figure 3.4 illustrates the distribution of objective function values. For the Upper-Profit
and Mixed-Profit problems, the mean is the same since in all cases the same value of the
objective function was obtained, as can be corroborated in the Table 3.8 and 3.10. On the
contrary, a greater variation of the values of the objective function can be observed for the
other two problems, where the mean of the found solutions of the Mixed-SW problem is
better than that of the Upper-SW problem. As previously pointed out in Section 3.1 (see
Example 3.1.2), bilevel problems with upper-level constraints pose a greater challenge for res-
olution. This is because the cardinality constraints at the upper level are, in fact, coupling
constraints. Consequently, this may lead to problem infeasibility, a fact which is supported
by simulations. For both Upper-Profits and Upper-SW problems, a feasible point could not
be found within the specified computation time limit. Furthermore, for the Upper-SW prob-
lems, the discovered solutions exhibit a high gap and execution time, with an optimality
gap and average execution time of 0.079 and 2199.38, respectively, (see Tables 3.5 and 3.6).
All of the aforementioned stands in contrast to the Mixed problems, as optimal points were
successfully identified in each case.

Note that in Upper-Profits and Upper-SW problems, in all cases they share the same
solution, which makes sense since they have the same feasibility set (the same constraints)
and only differ in the objective function. But there are also cases where it was not possible
to find feasible points. This implies that the methodology employed for this type of problem
may not be the most suitable in our case. It will be necessary to allocate significantly more
time to find the feasible point in each case, as indicated.

51



Cases Upper-Profit Mixed-Profit Upper-SW Mixed-SW
1 0.0 0.0 0.112 0.039
2 0.004 0.0 0.104 0.047
3 0.0 0.030 0.0 0.038
4 0.008 0.0 0.379 0.038
5 0.0 0.0 0.036 0.0
6 - 0.0 - 0.008
7 - 0.0 - 0.042
8 - 0.0 - 0.045
9 0.0 0.0 0.038 0.029
10 - 0.0 - 0.0
11 - 0.0 - 0.0
12 0.008 0.0 0.022 0.002
13 0.0 0.0 0.174 0.023
14 0.0 0.0 0.047 0.037
15 0.0 0.0 0.0 0.048
16 0.0 0.0 0.049 0.038
17 0.0 0.0 0.010 0.047
18 0.0 0.0 0.035 0.009
19 0.0 0.0 0.297 0.025
20 0.0 0.0 0.007 0.010
21 - 0.0 - 0.042
22 0.0 0.0 0.0 0.016
23 - 0.0 - 0.020
24 0.0 0.0 0.048 0.013
25 0.0 0.0 0.028 0.026
26 - 0.0 - 0.049
27 0.0 0.0 0.0 0.006
28 0.0 0.0 0.032 0.0
29 0.0 0.0 0.039 0.042
30 0.0 0.0 0.047 0.001
31 0.0 0.0 0.0 0.003
32 0.0 0.0 0.224 0.0
33 0.0 0.0 0.375 0.044
34 0.007 0.0 0.004 0.0
35 0.0 0.0 0.127 0.037
36 0.0 0.0 0.049 0.035
37 0.0 0.0 0.0 0.012
38 - 0.0 - 0.001
39 0.0 0.0 0.058 0.028
40 - 0.0 - 0.041
41 0.0 0.0 0.033 0.028
42 - 0.030 - 0.020
43 0.0 0.0 0.249 0.039
44 0.0 0.0 0.0 0.015
45 - 0.0 - 0.030
46 0.0 0.0 0.156 0.0
47 - 0.0 - 0.040
48 - 0.008 - 0.021
49 0.0 0.0 0.0 0.034
50 0.004 0.0 0.062 0.035

Table 3.5: Optimality gap.
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Cases Upper-Profit Mixed-Profit Upper-SW Mixed-SW
1 6.191 0.657 3740.590 15.263
2 3.208 0.784 3600.284 12.756
3 4.375 0.902 572.418 22.144
4 3.778 0.657 3600.290 15.902
5 7.727 0.687 753.646 17.362
6 3600 0.723 3600 17.299
7 3600 0.636 3600 18.949
8 3600 0.653 3600 14.346
9 12.823 3.879 1245.047 28.618
10 3600 0.725 3600 30.839
11 3600 0.752 3600 41.440
12 2.196 0.697 394.749 69.349
13 20.717 0.640 3600.326 88.868
14 3.522 0.748 1657.493 58.603
15 2.499 0.799 590.171 76.392
16 6.000 0.717 3028.510 75.185
17 15.552 0.622 412.490 98.379
18 3.669 0.710 866.065 94.647
19 5.649 0.795 3600.362 86.560
20 5.308 0.685 809.264 88.309
21 3600 0.749 3600 70.579
22 11.485 4.416 349.334 85.297
23 3600 5.123 3600 84.746
24 57.288 0.704 602.355 140.829
25 17.026 0.733 299.984 90.682
26 3600 0.687 3600 120.622
27 34.423 0.635 406.184 90.247
28 9.319 0.700 657.441 69.998
29 90.003 0.794 681.477 104.179
30 8.289 0.622 1665.688 94.690
31 4.044 0.639 315.150 73.569
32 13.707 3.822 3600.347 232.920
33 7.532 0.657 3600.226 773.350
34 5.791 0.651 437.842 53.886
35 21.394 0.673 3600.447 52.725
36 5.692 0.730 1282.929 47.173
37 13.253 0.708 544.162 45.824
38 3600 0.664 3600 86.840
39 11.93 0.754 3600.290 58.327
40 3600 0.764 3600 92.632
41 9.365 0.741 890.138 67.087
42 27.051 0.949 3600 284.789
43 152.249 0.619 3600.270 30.666
44 25.192 0.667 566.772 39.261
45 52.400 0.728 3600 46.766
46 27.463 0.723 3600.213 55.306
47 3600 0.712 3600 78.790
48 3600 0.691 3600 59.764
49 7.229 0.743 328.830 52.140
50 6.261 0.838 3600.087 87.288

Table 3.6: Execution time.
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Cases Upper-Profit Mixed-Profit Upper-SW Mixed-SW
1 [0, 0, 150] [0, 0, 150] [0, 0, 150] [58, 0, 92]
2 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
3 [0, 0, 150] [0, 0, 150] [0, 0, 150] [59, 0, 91]
4 [0, 0, 150] [0, 0, 150] [0, 0, 150] [57, 0, 93]
5 [0, 0, 150] [0, 0, 150] [0, 0, 150] [80, 70, 0]
6 - [0, 0, 150] - [60, 0, 90]
7 - [0, 0, 150] - [60, 0, 90]
8 - [0, 0, 150] - [60, 0, 90]
9 [0, 0, 150] [0, 0, 150] [0, 0, 150] [57, 0, 93]
10 - [0, 0, 150] - [60, 0, 90]
11 - [0, 0, 150] - [60, 0, 90]
12 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
13 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
14 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
15 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
16 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
17 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
18 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
19 [0, 0, 150] [0, 0, 150] [0, 0, 150] [58, 0, 92]
20 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
21 - [0, 0, 150] - [56, 0, 94]
22 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
23 - [0, 0, 150] - [60, 0, 90]
24 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
25 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
26 - [0, 0, 150] - [60, 0, 90]
27 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
28 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
29 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
30 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
31 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
32 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
33 [0, 0, 150] [0, 0, 150] [0, 0, 150] [59, 0, 91]
34 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
35 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
36 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
37 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
38 - [0, 0, 150] - [60, 0, 90]
39 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
40 - [0, 0, 150] - [59, 0, 91]
41 [0, 0, 150] [0, 0, 150] [0, 0, 150] [57, 0, 93]
42 - [0, 0, 150] - [60, 0, 90]
43 [0, 0, 153] [0, 0, 150] [0, 0, 153] [58, 0, 92]
44 [0, 0, 150] [0, 0, 150] [0, 0, 150] [60, 0, 90]
45 - [0, 0, 150] - [60, 0, 90]
46 [0, 0, 156] [0, 0, 150] [0, 0, 156] [80, 70, 0]
47 - [0, 0, 150] - [60, 0, 90]
48 - [0, 0, 150] - [60, 0, 90]
49 [0, 0, 150] [0, 0, 150] [0, 0, 150] [59, 0, 91]
50 [0, 0, 150] [0, 0, 150] [0, 0, 150] [55, 0, 95]

Table 3.7: Distribution for cars in facilities.
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Cases ⧹ Obj.Function Profit-Suppliers Benefit-Follower Social Welfare
1 118400.0 -192008.923 -73608.923
2 118400.0 -180380.928 -61980.928
3 118400.0 -187135.487 -68735.487
4 118400.0 -184822.077 -66422.077
5 118400.0 -188947.843 -70547.843
6 - - -
7 - - -
8 - - -
9 118400.0 -181038.676 -62638.676
10 - - -
11 - - -
12 118400.0 -175394.128 -56994.128
13 118400.0 -186857.391 -68457.391
14 118400.0 -183407.952 -65007.952
15 118400.0 -183990.818 -65590.818
16 118400.0 -190945.839 -72545.839
17 118400.0 -182369.999 -63969.999
18 118400.0 -184728.078 -66328.078
19 118400.0 -190713.112 -72313.112
20 118400.0 -189697.1 -71297.1
21 - - -
22 118400.0 -187520.686 -69120.686
23 - - -
24 118400.0 -186880.104 -68480.104
25 118400.0 -185280.004 -66880.004
26 - - -
27 118400.0 -194307.029 -75907.029
28 118400.0 -180294.034 -61894.034
29 118400.0 -181783.172 -63383.172
30 118400.0 -186053.14 -67653.14
31 118400.0 -188242.251 -69842.251
32 118400.0 -193139.608 -74739.608
33 118400.0 -182683.563 -64283.563
34 118400.0 -189754.889 -71354.889
35 118400.0 -183520.064 -65120.064
36 118400.0 -179026.6 -60626.6
37 118400.0 -184985.892 -66585.892
38 - - -
39 118400.0 -185249.908 -66849.908
40 - - -
41 118400.0 -184816.079 -66416.079
42 - - -
43 118400.0 -192116.082 -73716.082
44 118400.0 -189325.82 -70925.82
45 - - -
46 118400.0 -197089.986 -78689.986
47 - - -
48 - - -
49 118400.0 -185171.809 -66771.809
50 118400.0 -182578.032 -64178.032

Table 3.8: Values in [USD] for the configuration Upper-Profit. The Social Welfare is given by the sum of
the profit of the leader and the benefit of the followers.
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Cases ⧹ Obj.Function Profit-Suppliers Benefit-Follower Social Welfare
1 118400.0 -192008.923 -73608.923
2 118400.0 -180380.928 -61980.928
3 118400.0 -187135.487 -68735.487
4 118400.0 -184822.077 -66422.077
5 118400.0 -188947.843 -70547.843
6 - - -
7 - - -
8 - - -
9 118400.0 -181038.676 -62638.676
10 - - -
11 - - -
12 118400.0 -175394.128 -56994.128
13 118400.0 -186857.391 -68457.391
14 118400.0 -183407.952 -65007.952
15 118400.0 -183990.818 -65590.818
16 118400.0 -190945.839 -72545.839
17 118400.0 -182369.999 -63969.999
18 118400.0 -184728.078 -66328.078
19 118400.0 -190713.112 -72313.112
20 118400.0 -189697.1 -71297.1
21 - - -
22 118400.0 -187520.686 -69120.686
23 - - -
24 118400.0 -186880.104 -68480.104
25 118400.0 -185280.004 -66880.004
26 - - -
27 118400.0 -194307.029 -75907.029
28 118400.0 -180294.034 -61894.034
29 118400.0 -181783.172 -63383.172
30 118400.0 -186053.14 -67653.14
31 118400.0 -188242.251 -69842.251
32 118400.0 -193139.608 -74739.608
33 118400.004 -182683.567 -64283.563
34 118400.0 -189754.889 -71354.889
35 118400.0 -183520.064 -65120.064
36 118400.0 -179026.6 -60626.6
37 118400.0 -184985.892 -66585.892
38 - - -
39 118400.0 -185249.908 -66849.908
40 - - -
41 118400.0 -184816.079 -66416.079
42 - - -
43 118400.0 -192116.082 -73716.082
44 118400.0 -189325.82 -70925.82
45 - - -
46 118400.0 -197089.986 -78689.986
47 - - -
48 - - -
49 118400.0 -185171.809 -66771.809
50 118400.0 -182578.032 -64178.032

Table 3.9: Values in [USD] for the configuration Upper-SW. The Social Welfare is given by the sum of the
profit of the leader and the benefit of the followers.
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Cases ⧹ Obj.Function Profit-Suppliers Benefit-Follower Social Welfare
1 118400.0 -197079.792 -78679.792
2 118400.0 -192893.792 -74493.792
3 118400.0 -192503.584 -74103.584
4 118400.0 -195156.416 -76756.416
5 118400.0 -197723.344 -79323.344
6 118400.0 -196573.104 -78173.104
7 118400.0 -196031.472 -77631.472
8 118400.0 -196372.176 -77972.176
9 118400.0 -190960.224 -72560.224
10 118400.0 -193892.608 -75492.608
11 118400.0 -198713.424 -80313.424
12 118400.0 -184258.256 -65858.256
13 118400.0 -198810.976 -80410.976
14 118400.0 -194218.752 -75818.752
15 118400.0 -193770.304 -75370.304
16 118400.0 -200664.464 -82264.464
17 118400.0 -193122.384 -74722.384
18 118400.0 -195364.624 -76964.624
19 118400.0 -199020.64 -80620.64
20 118400.0 -199469.088 -81069.088
21 118400.0 -188747.104 -70347.104
22 118400.0 -198564.912 -80164.912
23 118400.0 -195226.304 -76826.304
24 118400.0 -198062.592 -79662.592
25 118400.0 -197079.792 -78679.792
26 118400.0 -200064.592 -81664.592
27 118400.0 -200191.264 -81791.264
28 118400.0 -195032.656 -76632.656
29 118400.0 -193744.096 -75344.096
30 118400.0 -192467.184 -74067.184
31 118400.0 -198860.48 -80460.48
32 118400.0 -198282.448 -79882.448
33 118400.0 -198372.72 -79972.72
34 118400.0 -198110.64 -79710.64
35 118400.0 -194310.48 -75910.48
36 118400.0 -188171.984 -69771.984
37 118400.0 -196345.968 -77945.968
38 118400.0 -194843.376 -76443.376
39 118400.0 -195379.184 -76979.184
40 118400.0 -196839.552 -78439.552
41 118400.0 -195804.336 -77404.336
42 118400.0 -195559.728 -77159.728
43 118400.0 -197950.48 -79550.48
44 118400.0 -198723.616 -80323.616
45 118400.0 -198599.856 -80199.856
46 118400.0 -200050.032 -81650.032
47 118400.0 -194362.896 -75962.896
48 118400.0 -195682.032 -77282.032
49 118400.0 -197898.064 -79498.064
50 118400.0 -193802.336 -75402.336

Table 3.10: Values in [USD] for the configuration Mixed-Profit. The Social Welfare is given by the sum of
the profit of the leader and the benefit of the followers.
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Cases ⧹ Obj.Function Profit-Suppliers Benefit-Follower Social Welfare
1 79286.4 -116808.313 -37521.913
2 77248.0 -107396.016 -30148.016
3 78267.2 -115354.264 -37087.064
4 80305.6 -103580.714 -23275.114
5 -14096.0 -18173.792 -32269.792
6 77248.0 -106866.032 -29618.032
7 77248.0 -113747.088 -36499.088
8 77248.0 -109664.464 -32416.464
9 80305.6 -115952.899 -35647.299
10 77248.0 -108731.168 -31483.168
11 77248.0 -116420.304 -39172.304
12 77248.0 -98581.392 -21333.392
13 77248.0 -117139.568 -39891.568
14 77248.0 -113403.472 -36155.472
15 77248.0 -112652.176 -35404.176
16 77248.0 -104057.408 -26809.408
17 77248.0 -109133.024 -31885.024
18 77248.0 -111172.88 -33924.88
19 79286.4 -113031.318 -33744.918
20 77248.0 -110016.816 -32768.816
21 81324.8 -116710.164 -35385.364
22 77248.0 -110964.672 -33716.672
23 77248.0 -108712.24 -31464.24
24 77248.0 -113316.112 -36068.112
25 77248.0 -117452.608 -40204.608
26 77248.0 -121953.104 -44705.104
27 77248.0 -110653.088 -33405.088
28 77248.0 -97678.672 -20430.672
29 77248.0 -111235.488 -33987.488
30 77248.0 -106978.144 -29730.144
31 77248.0 -114049.936 -36801.936
32 77248.0 -107987.152 -30739.152
33 78267.2 -105036.16 -26768.96
34 77248.0 -107115.008 -29867.008
35 77248.0 -112344.96 -35096.96
36 77248.0 -106647.632 -29399.632
37 77248.0 -106662.192 -29414.192
38 77248.0 -109657.184 -32409.184
39 77248.0 -111860.112 -34612.112
40 78267.2 -119751.064 -41483.864
41 80305.6 -118155.885 -37850.285
42 77248.0 -109130.112 -31882.112
43 79286.4 -114573.572 -35287.172
44 77248.0 -112526.96 -35278.96
45 77248.0 -110388.096 -33140.096
46 -14096.0 -20675.2 -34771.2
47 77248.0 -111298.096 -34050.096
48 77248.0 -107939.104 -30691.104
49 78267.2 -108991.821 -30724.621
50 82344.0 -119177.968 -36833.968

Table 3.11: Values in [USD] for the configuration Mixed-SW. The Social Welfare is given by the sum of the
profit of the leader and the benefit of the followers.

58



3.5 Conclusion
In this first part of the thesis, we delved into Single-Leader-Multi-Follower problems in-
volving cardinality constraints. There is limited literature on optimization with cardinality
constraints and, to our knowledge nothing on bilevel optimization with this kind of complex
constraints; hence, we endeavored to develop both theoretical and practical results. First,
we demonstrated the existence of solutions for SLMFG problems with cardinality constraints
at the upper level. Additionally, equivalence results for global optimality were proven, cou-
pled with reformulations of the original problem that facilitate numerical resolution. In a
second approach, namely SLMFG problems with cardinality constraints at the lower level,
we observed a loss of convexity in the followers’ constraint set, making it challenging to
guarantee solution existence. An alternative approach for a SLMF problem with cardinality
constraints was proposed, considering such constraints split at both levels. This approach
became tractable, largely due to the reformulation (see Section 3.1.2). In this latter case,
solution existence was guaranteed for a specific scenario where follower constraint functions
can be expressed as the difference of componentwise convex, weakly analytic, and continuous
functions.

Furthermore, the application of this theme found its place in the facility location problem,
involving the consideration of potential sites within a region for the construction of electric
charging facilities, taking into account car preferences. For these simulations, two types of
SLMF problems were considered (Upper - with cardinality constraints at the upper level
and Mixed - with mixed cardinality constraints) alongside two different approaches for each
problem-maximizing profits and maximizing social benefit, yielding a total of four problems
for analysis. The results indicated that the methodology used to numerically solve Upper
problems is inadequate, as in many cases, finding a feasible solution proved challenging, and
the optimality gap of the solutions found is relatively high, it should be noted. In contrast,
Mixed problems exhibited faster convergence and an optimality gap close to zero.
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Part II

Economic Efficiency of Concentrated
Solar Power plants
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Chapter 4

Preliminaries

This chapter presents the fundamental preliminaries for the understanding and development
of the second part of this work, which contains scientific contributions to the field of economic
viability of CSP plants. In Section 4.1, the issues to be addressed in relation to Concentrated
Solar Power plants (CSP plant) are presented. Section 4.2 describes the representation of a
CSP plant through a black box model; and its importance in the formulation of optimization
problems. Section 4.3 contains a description of the electricity market context considered.
Section 4.4 specifies each of the economic indicators that will be used for the comparative
study in Chapter 5. Then, Section 4.5 details the production strategies used for the com-
parative study (see Chapter 5), where different configurations for CSP plants are considered.
Finally, the numerical methods used to solve each of the optimization problems addressed in
this second part are presented.

4.1 Introduction
The growing awareness of the effects of climate change has encouraged the deployment of
renewable energy sources for electricity generation, further supported by the fact that these
sources come from free and inexhaustible natural resources. Consequently, the penetration
of solar assets, particularly in the realm of concentrated solar power plants (CSP, see Figure
4.1), has rapidly grown and holds great potential for expansion in the coming years [80].
Here we focus on the study of concentrated solar power plants (CSP, see Figure 4.1), which
are electrical energy systems that use mirrors to concentrate solar radiation, transform it
into heat and feed a power generator to produce electricity [76, 117]. However, in these
plants, the integration of energy storage systems presents a significant technical challenge,
hindering their deeper penetration into the electricity markets. This challenge primarily lies
in the storage systems’ ability to handle the variability of solar output, ensuring a constant
and reliable energy supply, which is crucial for their acceptance and success in the market
[92, 98, 110].

61



Figure 4.1: Concentrated Solar Power Plant (CSP plant). Image from [118].

Unlike other renewable energy systems, CSP plants allow the incorporation of storage
systems for electricity production, which store heat in materials that change temperature
(sensitive), phase (latent) or chemical composition (thermochemical) [78, 145]. Hence, sev-
eral studies have been carried on to improve the implementation of these storage technologies
[93, 78, 80]. Incorporating thermal energy storage (TES) into a CSP plant allows to man-
age the mismatch between energy supply and demand [142]; it allows to shift electricity
production to periods of higher prices, providing greater profit opportunities to the system;
and finally, the reliability and flexibility of a plant increases by improving the quality of
the services provided [80]. One of the most used systems today is the sensible heat storage
(SHS) that uses a storage of molten salt in two tanks. Its high implementation is due to
the fairly economical and efficient storage medium. On the other hand, a storage system
that has not yet been implemented industrially is thermochemical storage, which is based
on reversible reaction heat storage. The advantages of this type of system are the ability to
store energy for longer periods of time, its high volumetric energy density compared to the
other technologies, its weak thermal losses and its operation within wider temperature ranges.

On the one hand, the high investment costs of solar thermal plants with storage capacity
discourage private producers to install this type of plants. On the other one, without storage
systems, solar plants are not very attractive in many geographical areas, such as in temper-
ate/subtropical areas, since the production period does not coincide with the peak demand
period [45, 46, 49, 80]. This has implied that storage systems are systematically included
in the running CSP plants. These systems allow plants to continue their production after
daylight, extending, in average, the production time in 7 hours, and some of them arriving to
a continuous production 24/7 [102]. However, even in these cases, all working CSP plants re-
quire financial support/subsidies, either for their construction or for their operation [112, 75].

Despite these economical drawbacks, the interest on CSP and the number of projects that
are operative or in construction is growing every day [144, 77, 75]. Furthermore, the NREL
[44] contemplates new challenges for CSP production under atypical scenarios, in order to
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maximize the participation of renewable energy sources in their (Californian) power gener-
ation mix. Other countries, including Chile and France, are also following this tendency
of investigating the pathways for increasing the penetration of renewable energies [35, 108],
in particular CSP involving a thermal storage system [81, 105, 91]. Under this context, the
relevance to systematically study the different options of storage systems for CSP plants is
clear. One of the objectives of this study is to investigate various aspects of the economic
efficiency of such installations, focusing on two main axes: the optimal design of CSP projects
and the optimal operation of existing plants.

4.2 Black-box model
The general model of a Concentrated Solar Power plant considers four main subsystems: a
heliostat field (mirrors) that redirect the solar radiation to a focal point, a heat absorber,
a power cycle, and a thermal energy storage system [138]. The heat absorber is commonly
placed on the top of a central tower, at the focal point of the heliostat field. The heliostats
reflect the solar radiation which intensity is given by the Direct Normal Irradiance (DNI),
reaching extremely high temperatures (550-800 °C) [102], depending on the physical limita-
tions of the heat transfer fluid. Through a primary circuit, the heat transfer fluid conveys
the thermal energy captured either to the storage system, to the Rankine cycle or both.

The main principle we want to exploit is that CSP plants can be modeled as black-box
components connected by the heat-transfer fluid loop, and possibly other thermally driven
unit operations. The black-box model we propose to develop follows the approach presented
in Figure 4.2. Here, we identify some nodes of the heat-transfer fluid, denoted by nα (where
α is the index of the node), as points to measure state variables of the heat transfer fluid.
These state variables are the mass flow rate ṁα(t), measured in [kg/s], which provides the
variation of mass per unit of time, and the temperature Tα, measured in [◦C].
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Figure 4.2: Scheme of the black-box model for a Concentrated Solar Power plant. The red circuit represents
the main heat-transfer loop.

Four main designs typologies are available for CSP plants: parabolic through collector
(PTC), solar tower also called central receiver systems (CRS), linear Fresnel reflectors (LFR),
and parabolic dish collectors (PDC). The two first technologies have seen commercial large-
scale deployment and exhibit a higher level of technological and commercial maturity, and
account for the largest percentage of currently installed capacity worldwide [74, 25]. The
Solar Towers, consist of an heliostat field that reflect the DNI to a focal point located at the
top of the tower, where is placed a heat absorber [117]. Similarly, Parabolic troughs consist
in a linear parabolic reflector which concentrates the DNI along its focal line, where a pipe
acts as heat absorber [117].

Regardless the storage system, the heat exchange between the heat transfer fluid and the
storage is given by the general equation

qS = c · ṁ ·∆T, (4.2.1)

where qS is the heat consumed by the storage system, c is the thermal capacity of the
heat-transfer fluid, ṁ stands for the mass flow rate passing through the exchanger, and ∆T
denotes the variation of temperature between the initial point and the final point of the
heat exchanger. Finally, the Rankine cycle uses the heat to start a steam-based circuit that
activates a sequence of turbines, producing electricity. Rankine cycles are well-known, both
in the literature as in existing energy plants [109, 134].

For the Optimal Design problem, with the black-box models established for each compo-
nent of the CSP plant, their interaction are modeled via a quasi-static model. The operation
of the plant is divided in four phases, which are the Inactive phase, the Storage phase, the
Storage-Production phase and the Discharge phase, and it is assumed that the transition
in between them is instantaneous (the transient phases are not considered except for the
start-up of the Power Bock).

4.2.1 The Solar Resource and the Solar Field

The solar field is composed of a set of heliostats, whose function is to project the sun’s rays to
a specific point or sector called a receiver at the top of a tower, heating it up to approximately
565 °C [64].
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Figure 4.3: Data and Interpolation model -
Summer day. California, SM = 2.5.

Figure 4.4: Data and Interpolation model -
Summer day. Sevilla, SM = 2.5.

The intensity of the sun’s rays depends on the place where the plant is installed. One
way to represent solar irradiance is by means of the Direct Normal Irradiance (DNI), that is
the amount of solar radiation that arrives in a direct line from the sun and strikes a surface
perpendicularly. It does not include solar radiation that has been scattered or reflected by the
atmosphere or surroundings. This measure is crucial for any solar technology that relies on
the direct capture of sunlight, such as systems using mirrors or lenses to concentrate sunlight
onto a small receiver [18]. For example, Figure 4.3 shows the irradiation of an average day
in the summer season in California/USA. This curve is expressed by the Direct Normal
Irradiance function, DNI(·), which depends on the time and the mirror field. Thanks to
this curve, we model the useful thermal power function qsol(·), whose expression represents
the recovered thermal power from the solar field and considers the thermal losses at receiver.
This is,

qu(t) =KHel ·DNI(t), ∀t ∈ [0, H], (4.2.2)

where KHel is an efficiency constant depending on the thermal efficiency of the receiver, the
optical efficiency of the mirrors field, and total surface of the heliostats (see [125]). Here,
[0, H] is a time interval (measured in hours).

In practice, the optical efficiency of the mirrors field is hard to model, thus the software
SAM [103] is used to evaluate qsol(t) in terms of DNI(t) and the Solar Multiple (SM) (which
represents the ratio of the solar field size relative to the minimum size needed to generate the
rated power of the turbine during peak solar radiation [100]). Actually, to obtain the new
function qu(·) the hourly average values of useful thermal power are simulated using SAM
software and an polynomial approximation is done with the polyfit function in MATLAB.
Then, the function of useful thermal power is

∀t ∈ [0, 24], qsol(t)

{
p(t) if t ∈ [tsolini, t

sol
fin],

0 otehrwise.
(4.2.3)

with the interpolation polynomial function p(·) and the times of sunlight, tsolini, t
sol
fin.

4.2.2 The Steam Rankine Cycle or Power Block

The power block model has been reduced to a set of polynomial functions of degree 2 via
quadratic regressions [124, 125]. These regressions were chosen to simplify the plant modeling
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of the different connections and functionalities [103]. For the Rankine modeling, we mainly
use three regressions, given by:

Ẇelec(t) =fa(ṁ4(t), T4(t), Tout(t)),

=a1 + a2T4(t) + a3T
2
4 (t) + a4Tout(t) + a5T

2
out(t) + a6ṁ4(t) + a7ṁ

2
4(t)

+ a8T4(t)Tout(t) + a9T4ṁ4(t) + a10ṁ4(t)Tout(t), (4.2.4)

Ẇelec(t) =fb(qR(t), T4(t), Tout(t)),

=b1 + b2T4(t) + b3T
2
4 (t) + b4Tout(t) + b5T

2
out(t) + b6qR(t) + b7q

2
R(t)

+ b8T4(t)Tout(t) + b9T4(t)qR(t) + b10qR(t)Tout(t). (4.2.5)

T5(t) =fc(ṁ4(t), T4(t), Tout(t)),

=c1 + c2T4(t) + c3T
2
4 (t) + c4Tout(t) + c5T

2
out(t) + c6ṁ4(t) + c7ṁ

2
4(t)

+ c8T4(t)Tout(t) + c9T4(t)ṁ4(t) + c10ṁ4(t)Tout(t). (4.2.6)

T12(t) =fd(ṁ4(t), T4(t), Tout(t)),

=d1 + d2T4(t) + d3T
2
4 (t) + d4Tout(t) + d5T

2
out(t) + d6ṁ4(t) + d7ṁ

2
4(t). (4.2.7)

ṁ11(t) =fe(ṁ4(t), Tout(t)),

=e1 + e2Tout(t) + e3T
2
out(t) + e4ṁ4(t) + e5ṁ

2
4(t) + e6ṁ4Tout(t). (4.2.8)

ṁ4(t) =fh(Ẇelec(t), T4(t), Tout(t)),

=h1 + h2T4(t) + h3T
2
4 (t) + h4Tout(t) + h5T

2
out(t) + h6Ẇelec(t) + h7Ẇ

2
elec(t)

+ h8T4(t)Tout(t) + h9T4(t)Ẇelec + (t)h10Ẇelec(t)Tout(t).

(4.2.9)

Here, ṁα and Tα represent the mass flow and temperature at the node α (see Figure
4.2), and ẆElec, representing the electric power. Coefficients a, b, c, d, e and h were estimated
with SAM software (see Table 4.1), for more detail [103]. Some of these regressions are
“redundant”. For example, Ẇelec can be expressed in terms of T4 and Tout (outlet temperature
in the Rankine steam loop, [124]) but also ṁ4 can be expressed in terms of Ẇelec, T4 and Tout.
This was done in order to avoid working with inverse functions or unnecessarily complex
systems of equations. That is, fh is an approximation of the inverse function of fa with
respect to the first entry. For the quadratic regressions used in the two-tank model, we will
consider the temperature Tout as the ambient temperature Tenv, which is fixed depending on
the operating time interval of the plant and also takes different values depending on the day
or night.

66



Coefficient index a b c d e h

1 -2.99 -5.53 -1.58e2 1.94e1 -5.75 9.92e1
2 -3.70e−3 1.44e−2 8.08e−1 1.10e−2 2.70e−1 -3.80e−1
3 1.17e−6 -2.01e−5 3.73e−5 2.25e−6 -2.80e−3 5.27e−4
4 6.75e−2 1.58e−2 3.47e−1 1.04 2.82 7.64e−1
5 6.18e−5 2.82e−5 9.48e−4 -1.23e−4 -5.69e−6 4.87e−3
6 4.88e−2 2.34e−1 -8.30e−2 -2.06e−2 -3.03e−3 1.31e1
7 8.76e−3 3.18e−4 2.67e−4 1.82e−5 -3.83e−3
8 -2.13e−4 -8.91e−5 1.32e−4 -1.72e−3
9 2.05e−4 2.29e−4 -8.14e−5 -1.37e−2
10 -5.24e−4 -9.73e−4 -4.69e−4 3.43e−2

Table 4.1: Coefficients of the quadratic regressions.

4.2.3 Storage System

In this work, two storage systems are considered. They are designed for the storage of sensible
heat and chemical reaction enthalpy. The operation and composition of these systems will
be briefly described below.

Storage - Two-tank indirect

Sensible heat storage is a technology currently implemented in most CSP power plants around
the world. They can store thermal energy for up to 15 hours using a heat transfer medium
such as molten salt [92]. Molten salts have a high storage efficiency that allows sensible heat
storage to produce electricity during the peak power demand after sunset [123]. In recent
years, studies have been carried out to improve these types of systems [143, 132].

Figure 4.5: Schema in production phase.

We consider here an indirect sensible heat storage system, composed of two heat transfer
loops, a heat exchanger and two tanks for the storage material (low temperature and high
temperature). The plants use molten salt as storage material [66]. The integration of such
Two-tank molten salt storage is illustrated in Fig. 4.5 (see also [2]).
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During daytime operation of the plant, the solar field concentrates the solar irradiation on
the receiver. Then, the heat transfer fluid (HTF) passes through it and conducts the collected
heat to the heat exchanger (nodes 3 and 6, in Figure 4.5). The heat is thus transferred from
HTF to the molten salt (Storage phase), which flows from the cold tank, with temperatures
not lower than 290◦C, to the hot tank, with temperatures not bigger than 560◦C, where
the heat will be stored. During the Storage-Production phase, one part of the HTF passes
directly from solar field to the power block. For the Discharge phase, the molten salt flows
from the hot tank to the cold tank and, by means of the heat exchanger, the stored heat is
transferred to the HTF and finally is directed to the power block.

Storage - Thermochemical Reactor

Another type of heat energy storage is Thermochemical storage. It is not yet implemented in
commercial CSP but its advantages in terms of heat storage and high temperature manage-
ment are promising. In [125], an economic evaluation was performed for CSP plant projects
using an innovative Thermochemical system, and this work includes this storage system in
the comparative study.

Figure 4.6: Concentrated Solar Power Plan with termochemical storage.

The Thermochemical storage is based on a process that involves a fixed-bed Thermochem-
ical reactor implementing the calcium oxide/calcium hydroxide (CaO/Ca(OH)2) and water
(H2O) reactive pair. This storage is based on the association of two monovariant reversible
transformations: a chemical reaction

CaO +H2O(g)

Synthesis

⇌
Decomposition

Ca(OH)2 +∆h◦
r (4.2.10)

and a liquid/gas phase change

H2O(g)

Synthesis

⇌
Decomposition

H2O(l) +∆h◦
vap. (4.2.11)
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where ∆h◦
r and ∆h◦

vap are respectively the standard molar enthalpy of reaction and va-
porization. These transformations are defined by the thermodynamic operating conditions Tc

(constraint temperature) and Pc (constraint pressure). The main advantages of CaO/Ca(OH)2
Thermochemical storage are the intrinsic high energy density of this low cost and environ-
mentally friendly reactive pair, and a non time-dependent energy storage capacity (as long as
reactants are stored separately). Moreover, the power and temperature of the Storage/Dis-
charge phases can be controlled not only by the mass flow rate and temperature of the heat
transfer fluid, but also by the operating pressure of the reactor. In addition, these storage
properties (power, energy density, ...) also depend on the physical characteristics of the re-
actor (dimension) and the way that the porous reactive solid is implemented in the reactor
(apparent density, DEC, part of binder added to enhance heat transfer, ρeng). For more
details, we refer to [125, 128, 140].

The integration of the Thermochemical storage system during these three different phases
will be illustrated in figures 5.6, 5.7 and 5.8 in Chapter 5.

4.3 Spot Market
When setting a specific location for the planning of a CSP plant project, there are several
considerations to take into account in addition to geographic characteristics, since each coun-
try presents various particularities in its electricity market, as well as high differences in its
incentive schemes for promoting the deployment of renewable energy sources [53]. Aiming to
consider such effects, the analysis for the CSP plant should consider that the location (and
therefore its solar resource availability), as well as the features of the electricity market are
fixed in advance.

There is a part of the electric energy that is exchanged through a so-called SPOT Market.
These markets are also called "pay-as-clear", since this electricity would be paid according
to the market price, instead of what is declared and/or ordered. Usually, the problem related
to this market clearing is solved for each hour of the next day, and so, the market price is in
fact a piecewise constant function λ : [0, 24] −→ R+ such that

t 7−→ λ(t) =
24∑
k=1

λk1[k−1,k](t) (4.3.1)

where λk is a constant market price and 1[a,b](·) is the indicator function of [a, b], given by
1[a,b](t) = 1 if t ∈ [a, b] and 0 otherwise.

In this work, it is assumed that the production of the CSP plant is not sufficient to
influence the market price. Moreover, it is assumed that the production offer is always fully
accepted/bought. Therefore, an exogenous price function λ(·) is used, according to which
the production is paid. This price function λ(·) is estimated by taking the average values of
market prices from the historical data.
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4.4 Economic Criteria
Once the context of Solar resource and market are chosen, the design and operation of the
CSP plant must respond to an economic criterion. There are several criteria that can be
chosen, where the most relevant for renewable energy projects have been summarized in [5].
In the same article, the authors show that these criteria are not equivalent in general, in the
sense that optimizing with respect to one of them may lead to a quite different solution than
optimizing with respect to another one. Therefore, the proposed model should be designed
to switch between these criteria, depending on which is the best adapted one for the plant’s
market conditions. For example, if the CSP plant is designed under some public contract
with a feed-in tariff (a fixed preferential price [33]), then the CSP plant should be designed
to produce as much energy as possible minimizing the cost of production. This is a common
scenario in several countries, where the economic criterion that must be chosen is the Lev-
elized Cost of Energy.

In contrast, as described in [124, 125], a CSP plant can be conceived to participate in the
SPOT market, as observed in many countries. Such is the case of the United States, France,
Chile, and most countries in Europe and South America, where the market is managed by a
regulator, usually called Independent System Operator (ISO), which fixes the market prices
from the declarations/bids of the agents. The reader is referred to [1] for more information
regarding the issue concerning the European market.

4.4.1 Levelized Cost of Energy (LCOE)

One of the most commonly used economic criteria in CSP plant projects is the Levelized Cost
of Energy (LCOE), which represents the annualized cost of a unit of energy (kWh) produced
by the system (see, e.g., [5]). More precisely, it relates the total amount of costs involved in
the project and the total amount of energy produced, over the lifetime of the project. It is
expressed as follows:

LCOE =
Cinvest +

∑N

k=1

Costk

(1+ιr)
k∑N

k=1

Wk

(1+ιr)
k

(4.4.1)

where N represents the duration of the project (years), ιr the nominal discount rate, Costk
is the annual cost of year k, Cinvest the initial investment of the project, and Wk is the annual
electrical energy produced.

4.4.2 Net Present Value (NPV)

In [125, 124], the Net Present Value (NPV) was used as indicator to evaluate a CSP plant
project. This metric considers the revenues of the power plant during its lifetime, according to
the variable prices of the SPOT market, as well as the investment, operation and maintenance
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costs. More precisely,

NPV (N, ιr, ...) = −Cinvest +
N∑

k=1

(Revk − Costk)

(1 + ιr)
k

(4.4.2)

where N is the number of years of lifetime of the plant, Revk is the revenues of year k (implicit
in this expression is the effect of market price variation for each year), and Costk is the costs
(operational and maintenance costs) of year k. As before, Cinvest is the investment cost and
ιr is the real discount rate.

4.4.3 Internal Rate of Return (IRR)

The Internal Rate of Return (IRR) of a project is the real discount rate ι∗r at which the Net
Present Value of the project is zero. That is,

ι∗r : NPV (·, ι∗r, ...) = 0,

where NPV (·, ιr, ...) is the expression of Eq.4.4.2 varying with respect to ιr This rate is
used for depreciation of future flows and to determine their current values [5].

4.4.4 Conventional PayBack (CPB)

The conventional payback (CPB) evaluates the payback time based on the nominal discount
rate ι. It does not take into account the inflation. The conventional payback is defined by:

CPB = inf{k ≤ N |NPV (k, ·, ...) ≥ 0},

where NPV (k, ·, ...) is the Net Present Value corresponding to the case of the project
stopped after k years,

4.5 Production Strategies
In [124], it was corroborated how the use of a production strategy for a CSP plant, different
from the classic one (using the energy stored after sunlight), can generate a higher profitabil-
ity. This study was carried out considering the participation of the plant in a SPOT market.
In this work three kind of production strategies will be considered: one of Classic strategies
and two of Price Chasing. These are the following:

Classic production strategy: this is the typical strategy used in many plants around the
world. It consists of, for each day, doing a Storage phase (according to the storage capacity
and availability of heat energy) and immediately after discharging all the stored energy until
the system is empty.
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Price Chasing operation strategy : whenever storage is implemented in a CSP, the classic
production strategy is perfectly adapted to a situation where the produced energy is sold at
a fixed price. But it leads to a low economical efficiency of the CSP, actually to the need of
subsidies (see e.g. [80]). When the energy price varies, like in deregulated market context, an
alternative approach is to prefer a production targeted to periods during which the produced
energy can be sold at advantageous prices, namely the peaks of spot/deregulated electricity
markets. Note also that weekly storage strategy can also take advantage of low demand
days, Sunday typically, to increase the discharge capacity during the week. Following [124],
this production strategy will be called «Price Chasing strategy». In order to explore more
deeply the Price Chasing strategy, we will here consider two different forms of it, one with
one discharge per day and one with two discharges per day.

4.6 Optimization Algorithms

4.6.1 Interior point - Matlab

In the context of optimizing objective functions subject to nonlinear constraints, MATLAB®

provides a tool known as fmincon [129]. This command relies on optimization methods that
leverage information about the gradient of the objective function and constraints, resulting
in an efficient search for the critical points of the problem.

In particular, fmincon serves to solve multivariable and nonlinear programming problems,
with a distinctive feature, which is its ability to choose different optimization algorithms.
These algorithms have different characteristics and are suitable for different types of prob-
lems, with one of the available algorithms being the Interior Point approach.

The Interior Point algorithm is exceptionally capable of addressing smooth nonlinear con-
straints in optimization problems, standing out for its robustness and efficiency. This method
has proven to be very effective in a wide variety of situations, especially due to its sophisti-
cated approach that handles constraints by introducing barriers that are iteratively modified.
This allows for an efficient exploration of the solution space, ensuring stable and reliable con-
vergence towards the optimum, even in large-scale problems. Its general applicability and
the ability to handle inherent complexities in diverse applications establish it as a top-tier
optimization method, widely endorsed in literature and engineering practices.[139, 26].

4.6.2 Bocop

The Bocop project [19] serves as an open-source toolbox designed to address optimal control
problems through collaborative efforts with both industrial and academic partners. Opti-
mal control, a discipline focusing on optimizing dynamic systems governed by differential
equations, finds applications in diverse fields, including transportation, energy, process op-
timization, and biology. The original Bocop package employs a local optimization method,
approximating the optimal control problem by transforming it into a finite-dimensional op-
timization problem (NLP) using time discretization, specifically utilizing the direct tran-
scription approach. The ensuing NLP problem is then addressed using the well-established
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software IPOPT, with sparse exact derivatives computed by ADOL-C [136].

The so-called direct approach involves converting the infinite-dimensional optimal control
problem (OCP) into a NLP through time discretization applied to the state and control
variables, as well as the dynamics equation. While these methods may exhibit lower pre-
cision compared to indirect methods based on Pontryagin’s Maximum Principle, they offer
greater robustness during initialization (in the sense of providing good convergence and sta-
bility in the solution of the problem). Moreover, their application is more straightforward,
contributing to their widespread adoption in industrial settings.
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Chapter 5

Multidimensional analysis for the
techno-economic study of the CSP plant
with different storage systems

In this chapter, the comparative study of the profitability and feasibility of a CSP plant,
different storage systems, economic criteria and operation strategies will be considered (see
subsections 4.2, 4.4 and 4.5. In Subsection 5.1, the transition from these control problems to
classical optimisation formulations will be briefly explained. In 5.2, the optimization problems
to be solved are detailed, giving a description of the dynamics of each of the storage systems
under consideration, the composition of the objective function and the functionality for each
of the variables that make up the problem. Finally, results and discussions will be presented
in Subsection 5.3, and finally conclusions are given in Subsection 5.4.

5.1 Control problem
The aim of this study can be formally written as follows: given a location, a price curve, a
solar field and a power block, the aim is to design the Storage System (Two-tanks and Ther-
mochemical) and its operational use in order to maximize (minimize) the economic indicator
over the lifetime (N years) of the project. Due to the fact that some of the variables corre-
spond to the operational use of the storage (and are therefore functions), this maximization
(minimization) problem is actually an optimal control problem.

The variables of the control problem should be thus optimized in a time interval [0, H],
with H being the number of hours of the plant project duration and defined as follows:

• ν - represents the vector of the physical variables that describe the Storage System
dimensions;

• µ - represents the vector of operational variables composed of real-valued functions
describing the operation of the Storage System;
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• τ - represents the state of operation of the plant,

τ : [0, H] → {I, S, {S, P}, D}

describing the order and number of phases (Inactive/Storage/Storage-Production/Discharge)
for each t ∈ [0, H].

Depending on the Storage System, the physical and operation vectors will differ. For
example, in the case of a Thermochemical storage system, the components of the vector of
physical variables will correspond to the dimensions and amounts of chemical compounds for
a Thermochemical reactor and the components of the vector of operations will correspond
to the operating pressure and temperatures. For the case of a storage with two molten salt
tanks, the components of the vector of physical variables will correspond to the volume of
the tank and dimensions of heat exchanger while the components of the vector of operation
variables will correspond to the mass flows of the heat transfer fluid and molten salt, which
are controlled by pumps. On the other hand, the strategic variables will define the operation
phase of the plant, determining the instants of time that the Storage System will be in some
operation phase (Inactive, Storage and Discharge), that is, determining the order and number
for each of the operation phases.

The set of possible physical variables will be denoted by V and the sets of feasible
(functions-valued) operational and strategy variables will be respectively denoted by U(ν)
and F(ν, µ). Thus the optimal control problem can be formulated in the following abstract
form:

max/min
ν,µ,τ

Indicator(ν, µ, τ)

subject to


ν ∈ V,

µ ∈ U(ν),
τ ∈ F(ν, µ).

(5.1.1)

5.1.1 From Control problem to the Optimization Problem

The idea of Pre-scenarios, which has been introduced in [124], consists of restricting the
“profile" of the strategy functional variables (defining order and number of phases) in such a
way that these restricted profiles can be described by vectors of real numbers.

In a pre-scenario, the functions fixing a certain operation (Storage/Production/Discharge)
are defined on time intervals, IS = [tSini, t

S
fin], IP = [tPini, t

P
fin] and ID = [tDini, t

D
fin]. Thus, along

with some simplifying assumptions, such as that the Storage and Discharge phases occur at
a constant power rate, the reformulated optimisation problem consists, for what concerns
the operational variables, on deciding the size of the intervals of each of the phases, and
the constant values of the operational values within these intervals. This concept will be
described in more detail below.
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Figure 5.1: Example of a Pre-scenario for one day, one Storage phase, one Storage-Production phase and
two Discharges phases.

The control problem described in (5.1.1) is hard to solve. Thus, in order to simplify this
control problem and solve it in a differentiable optimization environment, a differentiable
optimization problem will be proposed. This technique was introduced in [124] and here we
summarize it for completeness.

First, assuming that the N years of the project are equal, a single model year is divided
in p periods. Each periods Peri, with i ∈ {1, ..., p}, it is modeled as Ri repetitions of a cyclic
stage Si, with its own operational and strategy variables (µi, τi). Also, the stage Si has a
fixed number of days NDays(i) and therefore a fixed number of hours Hi. Let H(Peri) the
number of hours of the period Peri, the only constraint for the stage Si is that

Ri =
H(Peri)

Hi

is a positive integer,

that is, the duration of the stage Si is a divisor of the duration of the period Peri.

At this point, the original control problem was divided into control sub-problems coupled
only by the physical variables ν. Therefore, since we are assuming that each stage is inde-
pendent and cyclic, the approach will now be to solve the following problem decoupled by
periods:

min/max
ν,µ1,...,µp,τ1,...,τp

Indicator(ν, µ1, ..., µp, τ1, ..., τp)

subject to


ν ∈ V,

µi ∈ Ui(ν) and τi ∈ Fi(ν, µi).∀i ∈ {1, ..., p},
IniCond(Si, ν, µi, τi) = FinCond(Si, ν, µi, τi), ∀i ∈ {1, ..., p},

(5.1.2)

where Ui(ν) stands for all feasible operation functions

µi : [0, Hi] → Rm
i
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representing a cyclic operation for the stage Si (that is, satisfying µi(0) = µi(Hi)). Analo-
gously, Fi(ν, µi) stands for the strategy functions

τi : [0, Hi] → Rl
i

representing a cyclic strategy for the stage Si (that is, satisfying τi(0) = τi(Hi)). Finally,
IniCond(Si, ν, µi, τi) and FinCond(Si, ν, µi, τi) represent the initial and final conditions for
the stage Si (which allows to close the cycle of the stage), for the dimensions ν, the operation
µi and the strategy τi.

Daily pre-fixed strategies

Now the objective will be to reduce the optimal control problem (5.1.2) to one of real value
differentiable optimization. For this, a pre-scenario will be set, that is, a plant production
strategy will be pre-established, with a fixed number of phases (Storage, Storage-Production,
Discharge), as well as the order of these on each day k ∈ {1, ..., Ndays(i)} of each stage Si.

In this part, we are going to assume that in our model the Storage and Discharge phases
happen at a constant rate, that is, when the plant is inside of a phase, all its behavior is
constant (static). In other words, the operational variables that describe the operation of
the plant in each phase will be constant, and thus, we now aim to decide the value of those
constants, and the initial and final times of each phase. By prefixing the number and order
of such phases, the control problem 5.1.2 becomes parameterized.

Then, setting a stage Si and a day k ∈ {1, ..., Ndays(i)}, the following definitions are
included:

• The indices that will be representing the temporary variables, (tini(i, j, k)) and tfin(i, j, k))),
as well as other variables, for the different phases of Storage, Storage-Production, and
Discharge, are:

– i: It will represent index of the the stage S, with i ∈ {1, ..., p}
– k: It will represent index of the day k of stage Si

– j : It will represent the order index of the phase on day k

• The number of Storage phases JS(i, k). For each j ∈ {1, ..., JS(i, k)}, the variables
tSini(i, k, j) and tSfin(i, k, j) are introduced as the initial time and final time of the jth
Storage phase of the kth day of the stage Si.

• The number of Production phases JP (i, k). For each j ∈ {1, ..., JP (i, k)}, the variables
tPini(i, k, j) and tPfin(i, k, j) are introduced as the initial time and final time of the jth
Storage-Production phase of the kth day of the stage Si.

• The number of Discharge phases JD(i, k). For each j ∈ {1, ..., JD(i, k)}, the variables
tDini(i, k, j) and tDfin(i, k, j) are introduced as the initial time and final time of the jth
Storage phase of the kth day of the stage Si.

Figure 5.1 shows an example of a pre-scenario for one day, between the two blue stars,
which is indicating that a day is not fixed and in fact a day k is measured from the initial
storage instant tSini(i, k, 1) to the next day’s initial storage time tSini(i, k + 1, 1).
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In Problem (5.1.2), for each stage Si one had the set

Oi(ν) = {(τi, µi) : µi ∈ Ui(ν), τi ∈ Fi(ν, µi)}

that represents all physically possible operations of the CSP plant. This is a set of functions
and therefore of infinite dimension. Nevertheless, when a pre-scenario is fixed, the admissible
operations are restricted, considering only those which respect the pre-scenario strategy.
Thus, a subset O′

i(ν) ⊆ Oi(ν) of admissible operations can be constructed. Furthermore,
this set can be described by real variables. Indeed, let τ̃i ∈ Rai denotes the vector of all time
variables for all days of stage Si, and µ̃i ∈ Rbi denotes the vector of all operational variables
for each one of the Storage and Discharge phases considered in the same stage. Thanks to
the pre-scenario construction, there exists a subset Oi(ν) ⊆ Rai+bi and an invertible mapping

ϕi : Oi(ν) → O′
i(ν)

such that each admissible operation in O′
i(ν) can be uniquely identified with a vector (τ̃i, µ̃i) ∈

Oi(ν) through ϕi. This identification is called a parameterisation of the admissible operations
and with it, it is possible to rewrite problem (5.1.2) as

min/max
ν,µ̃1,...,µ̃p,τ̃1,...,τ̃p

Indicator(ν, µ̃1, ..., µ̃p, τ̃1, ..., τ̃p)

subject to


ν ∈ V ⊆ Rn,

(µ̃i, τ̃i) ∈ Oi(ν) ⊆ Rai+bi ∀i ∈ {1, ..., p},
IniCond(Si, ν, µ̃i, τ̃i) = FinCond(Si, ν, µ̃i, τ̃i),

∀i ∈ {1, ..., p}.

(5.1.3)

Therefore, with the above parameterisation, Problem (5.1.3) is now a constraint real-
valued optimization problem. It is therefore simpler and less expensive, in the sense of
computational demand, than Problem (5.1.1).

According to the indicators in (4.4) and the implementation of pre-scenarios for solving
optimization problems as described in the Section 5.1, for example, two objective functions,
Indicator(·, ..., ·), would be

NPV (ν, µ1, ..., µp, τ1, ..., τp) = USF (N, ιr)

[
p∑

i=1

Ri(Revi(ν, µi, τi)− Costi(ν, µi, τi))

]
− Cinvest(ν)

and

LCOE(ν, µ1, ..., µp,τ1, ..., τp) =
USF (N, ιr) · [

∑p

i=1
Ri · Costi(ν, µi, τi))] + Cinvest(ν)

USF (N, ιr) ·
∑p

i=1
Ri ·Wi(ν, µi, τi)

with USF (N, ιr) called the Uniform Series Factor (more details see [5]) given by the
N years, the real discount rate ιr and Ri is the number of repetitions of the stage Si.
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Revi(ν, µi, τi) and Costi(ν, µi, τi) stand for the revenues and costs of the stage Si for the
dimensions ν, the operation µi and the strategy τi.

5.2 Optimization Problem
This section is devoted to the detailed structure of problem (5.1.3), and how are all the
variants considered in this work. In Subsection 5.2.1 we detail the equations governing each
of the plant components. Then, the expressions of the revenues and costs which compose each
of the economic indicators are described in Subsection 5.2.2. Subsequently, the constraints
will be indicated in terms of the variables of the problem. Finally, the bounds for the
problem variables are shown and the complete optimization problems to solve are exposed
in the Subsection 5.2.4.

5.2.1 Modeling - Storage System

In order to reduce the notation of each variable and expression in the different phases of the
plant, the sub-indices i, k, j will be omitted. Therefore, continuous equations are considered
to represent the variation and evolution of temperatures, mass flows, powers, etc., for all
t ∈ I = [tini, tfin]. Note that, for the Storage and Discharge phases occurring at a constant
rate (see, [125]), it is sufficient that these expressions are verified for t = tini, tfin.

Two-tank molten salt storage

The operation of the Two-tank system with molten salt is determined by the heat transfer
fluid inside the heat exchanger, which is controlled from pumps that regulate mass flow rates.
This exchange operates in a counter current mode. For the Storage phase, the fluid in the
red circuit (see Figure 5.2) passes from node 3 to node 6, and the flow of molten salt passes
through the exchanger from the cold tank (node 7) to the hot tank (node 8). In the case of
the Discharge phase, the fluids pass through the same nodes in opposite directions. For this
reason, we will distinguish the operational variables as follows:

• µS(t) = (ṁS
3 (t), ṁ

S
salt(t), T7(t)) represents the operational variables of the mass flows

during the Storage phase, where the molten salt ṁS
salt (mass flow) moves from the cold

tank (at temperature T7) to the hot tank;
• µD(t) = (ṁD

3 (t), ṁ
D
salt(t), T8(t)) represents the operational variables of the mass flows

during the Discharge phase, where the molten salt ṁD
salt (mass flow) moves from the

hot tank (at temperature T8) to the cold tank.

Therefore the vector of operational variables is defined as

µ(t) = (ṁS
3 (t), ṁ

S
salt(t), T7(t), ṁ

D
3 (t), ṁ

D
salt(t), T8(t)).

Now, the physical and operational variables will allow to determine the thermal power
involved in each of the different phases, and the amount of energy which is stored or discharged
during a day of operation :
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• qS(t) = qS(ν, ṁ
S
3 (t), ṁ

S
salt(t), T7(t)) represents the storage power corresponding to heat

transfer from the heat transfer fluid to the molten salt flow;
• qD(t) = qD(ν, ṁ

D
3 (t), ṁ

D
salt(t), T8(t)) represents the discharge power corresponding to

heat transfer from the molten salt to the heat transfer fluid.

These two variables for the thermal powers, qS and qD, allow to calculate each operating
mode.

Storage phase. In this phase, the solar field and the Storage System are active. The
storage schema of the plant is shown in Fig. 5.2. Let’s assume that this phase happens in a
time interval IS = [tSini, t

S
fin].

Figure 5.2: Two-tank molten salt storage. Scheme in Storage phase.

To simplify the modeling of the heat exchange, we assume that there is no heat loss.
Therefore, the heat sent by the heat transfer fluid between nodes 3 and 6, and the heat
received by the molten salt between nodes 7 and 8, is the same. This is represented by the
following equations:

qS(t) = Chtfṁ
S
3 (t)(T3 − T6(t)) (5.2.1a)

qS(t) = Csaltṁ
S
salt(t)(T8(t)− T7(t)) (5.2.1b)

where Chtf , Csalt are the heat capacity of the heat transfer fluid and molten salt, and ṁS
3 (·),

ṁS
salt(·) are the mass flow rates for each fluid. During the Storage phase, the CSP plant

operates with a nominal temperature of T2 = 560°C in the node 2. The thermal losses for the
heat-transfer fluid are neglected and so, T2 = T3, T1(t) = T6(t) and ṁ1(t) = ṁ2(t) = ṁ3(t)
= ṁ6(t), for any t ∈ IS, as shown in Table 5.1. Note that if the plant is operating with a
nominal temperature (T2 = 560°C), then in the storage phase the temperature will be the
same at node 3. Similarly, temperatures at nodes 1 and 6 will coincide, but the values will
depend according to the mass flow ṁS

3 and the thermal power qS.
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Mass Flow Temperature
ṁ1 = ṁ2 = ṁ3 = ṁ6 T3 = T2 ; T1 = T6

Table 5.1: Storage phase - Conditions for temperatures and mass flows.

For the heat exchanger, each side of the exchanger has an average temperature, that is

Thtf (t) =
T3 + T6(t)

2
, and Tsalt(t) =

T7(t) + T8(t)

2
.

According to the previous assumptions, the thermal power inside the exchanger (which
coincides with the exchanged heat qS) is expressed as follows:

qS(t) =
1

2
hconv ·Aexch · [(T3 + T6(t))− (T7(t) + T8(t))] , (5.2.2)

with hconv representing the convective heat transfer coefficient. Finally, the thermal power
cannot exceed the available thermal power, leading to

Chtfṁ
S
3 (t)(T3 − T6(t)) ≤ qsol(t) ∀t ∈ [tSini, t

S
fin]. (5.2.3)

Recall that qsol(·) is the thermal power coming from the solar field (see Eq. 4.2.3).

Storage-Production phase. During the Storage phase, when the thermal power obtained
from the solar field generates a non-negligible excess with respect to the consumption of the
Storage System qS, the operation of the plant switches to a Storage-Production phase. In
this phase, we have one part of the recovered energy coming from the solar field which goes
to the exchanger (nodes 3 and 6). The other part goes to the power block (nodes 4 and 5).
All components are active in this phase, as shown in Fig. 5.3. Let’s assume that this phase
happens in a time interval IP = [tPini, t

P
fin].

Figure 5.3: Two-tank molten salt storage. Scheme in Storage-Production phase.

Note that, both in the Storage and Storage-Production phases, the same vector µS will
be used to describe the operation of the exchanger and the two tanks. Thus, the storage power
during the Storage-Production phase coincides with qS(·), that is, qP (t) = qS(ṁ

S
3 (t), ṁ

S
salt(t), T7(t)),

for all t ∈ IP . In addition, as in the Storage phase, the assumptions we are considering are
summarized in Table 5.2.

Mass Flow Temperature
ṁ1 = ṁ2 ; ṁ3 = ṁ6 ; ṁ4 = ṁ5 T2 = T3 = T4

Table 5.2: Storage-Production phase assumptions.

The mass flow through node 2 will be divided into two parts, the first one directed to
the Storage System and the second one to the power block. Therefore, according to the
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conservation of flow of mass and energy, we have the following relationships:

ṁ1(t) = ṁS
3 (t) + ṁ4(t), (5.2.4)

ṁ1(t)T1(t) = ṁS
3 (t)T6(t) + ṁ5(t)T5(t). (5.2.5)

Now, since the thermal power cannot exceed the available thermal power, the inequality
(5.2.3) is replaced by

Chtf ṁ
S
3 (t)(T3 − T6(t)) + Chtf ṁ4(t)(T4 − T5(t)) ≤ qsol(t), (5.2.6)

Finally, the following equations end the description of the operation of the plant in this
phase,

qR(t) = min{qsol(t)− qS(t), qnom_max}, (5.2.7)
qR(t) = Chtfṁ

S
4 (t)(T4 − T5(t)), (5.2.8)

qR(t
P
ini), qR(t

P
fin) ≥ qnom_min, (5.2.9)

Ẇelec(t) = fb(qR(t), T2, T
d
env), (5.2.10)

ṁ4(t) = ff(Ẇelec(t), T2, T
d
env), ∀t ∈ IP , (5.2.11)

with qR(·) + qS(·) the thermal consumption of the plant and qnom_min, qnom_max being
respectively the minimum and maximum power value at which the power block operates.
These values correspond to 20% and 105% of the nominal value of the power block. The
last quadratic regressions are determined given that the CSP plant continues to operate
with a nominal temperature at node 2 of T2 = 560°C and the average environment daylight
temperature T d

env (which is exogenous), is known.

Discharge phase. In this phase, only the Storage System and the Rankine cycle are active,
as can be seen in the Fig. 5.4.

Figure 5.4: Two-tank molten salt storage. Schema in Discharge phase.

During this Discharge phase, the molten salt stored in the hot tank is conducted to the
heat exchanger to transfer the stored heat energy to the heat transfer fluid. Subsequently
this energy is transferred to the power block to finally produce electricity. Assuming that
this phase happens in a time interval ID = [tDini, t

D
fin], the system of equations representing
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this phase is as follows:

qD(t) = Chtfṁ
D
3 (t)(T3(t)− T6(t)) (5.2.12a)

qD(t) = Csaltṁ
D
salt(t)(T8(t)− T7(t)) (5.2.12b)

qD(t) = −1

2
hconvAexch((T3(t) + T6(t))− (T7(t) + T8(t))) (5.2.12c)

T5(t) = fc(ṁ
D
3 (t), T4(t), T

i
env) (5.2.12d)

where qD(·) represent the thermal power transferred to the heat transfer fluid from the
molten salt. The relations (5.2.12a - 5.2.12c) are similar to those expressed in (5.2.1a-5.2.1b
and 5.2.2).

Note that, as shown in the Table 5.3, in this phase we have T6(t) = T5(t), T3(t) = T4(t)
and qD(t) = qP (t), for all t ∈ ID.

Mass Flow Temperature
ṁ3 = ṁ4 = ṁ5 = ṁ6 T3 = T4 ; T5 = T6

Table 5.3: Discharge phase assumptions.

Finally, using the quadratic regression fb (see equation 4.2.5), we calculate the electrical
power produced in this phase by

Ẇelec(t) = fb(qD(t), T4(t), T
i
env) ∀t ∈ ID.

where T i
env is the temperature of the environment, which we assume constant while its value

depends on the season i ∈ {1, ..., 4}.

Volumes and Temperatures During the Storage and Discharge phases, the volume and
temperature of the two tanks vary. In each of the phases, the temperature will only vary in
one tank while remaining constant in the other. The variation is produced mainly by the
new volume entering one of the tanks and its temperature. The volume’s balance is given by
the following expressions:

Vcold(t) =

{
Vcold(t

S
ini)− V S

new(t), if t ∈ IS,

Vcold(t
D
ini) + V D

new(t), if t ∈ ID.

Vhot(t) =

{
Vhot(t

S
ini) + V S

new(t), if t ∈ IS,

Vhot(t
D
ini)− V D

new(t), if t ∈ ID.

Here, the new incoming or outgoing volume of each of the tanks is given by

V S
new(t) =

∫ t

t
S
ini

ṁS
salt(t)

ρsalt

dt,

V D
new(t) =

∫ t

t
D
ini

ṁD
salt(t)

ρsalt

dt,

where ρsalt is the density of molten salt.

Regarding the temperatures, since the variation in the cold tank is not really significant
during the Storage phase, we assume that it remains constant during this phase, and similarly
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for the hot tank temperature in Discharge phase. This assumption is made by the fact that
the daily heat losses in the tanks are around 5°C (see [114]), which are negligible for this type
of study. Then, the temperature variation in the cold tank is, Tcold(t) = Tcold(t

S
ini) if t ∈ IS,

and

Tcold(t) =
Tcold(t

D
ini) · Vcold(t

D
ini) · ρsalt + T7(t) ·

∫ t

t
D
ini

ṁD
salt(t) dt

Vcold(t) · ρsalt

, if t ∈ ID. (5.2.13)

For the hot tank, Thot(t) = Thot(t
D
ini) if t ∈ ID, and

Thot(t) =
Thot(t

S
ini) · Vhot(t

S
ini) · ρsalt + T8(t) ·

∫ t

t
S
ini

ṁS
salt(t) dt

Vhot(t) · ρsalt

, if t ∈ IS. (5.2.14)

Finally, these volumes cannot exceed the maximum or minimum capacity allowed in the
two tanks, that is, setting the physical characteristics of the tank (V ), the capacities of both
tanks will be limited, that is,

Vmin(V ) ≤ Vcold(t), Vhot(t) ≤ Vmax(V ), ∀t ∈ IS,D.

According to [131], a temperature range has been established for the stored molten salt
in the tanks,

290°C ≤ Tcold(t), Thot(t) ≤ 560°C, ∀t ∈ IS,D.

Thermochemical Storage

The model we use here has been mainly elaborated in [124, 125]. In order to keep a self-
contained exposition, we present the main elements of the model.

Figure 5.5: Concentrated Solar power plant with Thermochemical storage, including the thermal
integration (original Figure from [124]).

When this type of storage is considered, the vector of physical variables ν is composed
of four components: energy density DEC, apparent volumetric mass of conductive binder
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ρeng, tubes’ radius rsw and the equivalent length of the tubes L. The equivalent length of
the tubes corresponds to the product of the number of tubes in a module by the number of
modules and by the length of each tube. Then, the vector of physical variables is represented
as ν = (DEC, ρeng, rsw, L).

The operation of the thermochemical reactor is defined by the pressure of the reactor Pc(t)
and the gap between operating and thermodynamic equilibrium temperatures ∆Teq(t). This
gap of temperature ∆Teq(t) is expressed as the difference between the average temperature
of the heat-transfer fluid (when passing through nodes 3 and 6), and the thermodynamic
equilibrium temperature of the reversible reaction (4.2.10), Teq(Pc(t)), which is given by

Teq(Pc(t)) =
94573

121.186− 8.314 · ln(Pc(t))
− 273.158. (5.2.15)

Therefore it is assumed, as a first approximation, that
T6(t) + T3(t)

2
= Tc(Pc(t),∆Teq(t)) = Teq(Pc(t)) + ∆Teq(t), (5.2.16)

where Tc(Pc(t),∆Teq(t)) stands for the operating temperature of the reactor. However, the
operational variables (Pc(t),∆Teq(t)) are different depending on the direction of the reaction
that the reactor (4.2.10) performs. Thus, the following definitions are made:

• µS(t) = (P S
c (t),∆T S

eq(t)) stands for the operational variables during the Storage process
(decomposition reaction).

• µD(t) = (PD
c (t),∆TD

eq (t)) stands for the operational variables during the Discharge
process (synthesis reaction).

Finally, the vector µ of operational variables is defined as

µ(t) = (P S
c (t),∆T S

eq(t), P
D
c (t),∆TD

eq (t)).

As previously described, the physical and operational vectors (ν and µ respectively) define
the thermal power stored or released by the reactor. These variables will allow to evaluate
two important functions:

• qS(t) = qS(ν, P
S
c (t),∆T S

eq(t)) represents the storage power corresponding to heat flux
from the heat transfer fluid to the reactor.

• qD(t) = qD(ν, P
D
c (t),∆TD

eq (t)) represents the discharge power corresponding to heat flux
from the reactor to the heat transfer fluid.

The governing equations of these functions are the local mass balance and the energy
balance equations in the porous reactive media, with source and sink terms related to the
thermochemical reaction and depending on the reaction kinetics (see, e.g. [125]). This set of
equations is solved by a finite elements method. Therefore, the above mentioned functions qS
and qD are the solutions of a large differential system and no explicit formulae are available.
We follow [124] and consider a Shepard Interpolation [120] based on simulated data.

Storage phase During the Storage phase, only the solar field and the Thermochemical
reactor are active. The active schema of the plant is shown in Fig. 5.6. Let’s assume that
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this phase happens in a time interval IS = [tSini, t
S
fin].

Figure 5.6: Thermochemical storage system. Schema in Storage phase. Copied from [124].

The exchange of heat between the heat-transfer fluid and the reactor is given by the
following equation:

qS(t) = Chtfṁ3(t)(T3 − T6(t)), (5.2.17a)

where Cth is the thermal capacity of the heat-transfer fluid. It is assumed that, during
the Storage phase, the CSP plant operates with a nominal temperature in the node 2 of
T2 =560°C. The thermal losses for the heat-transfer fluid are neglected and so, T2 = T3 and
T1(t) = T6(t) during this phase. Also, ṁ1(t) = ṁ2(t) = ṁ3(t) = ṁ6(t), ∀t ∈ IS.

Further, for ensuring the heat transfer and the decomposition reaction, it is imposed that
the heat-transfer fluid always has a higher temperature than the thermodynamic equilibrium
temperature of the reactor, that is,

T6(t) ≥ Teq(P
S
c (t)),∀t ∈ IS. (5.2.18a)

where the equilibrium temperature Teq(P
S
c (t)) is given by Eq. (5.2.15).

Also, the thermal power cannot exceed the available thermal power.

Chtfṁ1(t)(T2 − T1(t)) ≤ qsol(t), ∀t ∈ [tSini, t
S
fin], (5.2.19)

where qsol(·) is the thermal power coming from the solar field.

The storage process consists in the decomposition reaction in Eq. 4.2.10 and 4.2.11.
The water is pulled out from the reactor and stored in the reservoir (node 10) in liquid
form. According to the values of physical variable ν , and the operational variable µS =

86



(P S
c (t),∆T S

eq(t)), the thermal power that has to be dissipated (between nodes 8 and 10) in
order to condensate the water is computed, and it is denoted by qdis(t) = qdis(ν, µ

S(t)). In this
phase, qdis coincides with the dissipated power q2, and it is calculated from the states of node
8 (which depends on (ν, µS(t))) and node 10 (which depends on the exogenous environmental
conditions), and the thermal capacity of water.

Storage-Production phase

Figure 5.7: Thermochemical storage system. Schema in Storage-Production phase. Copied from [124].

As in the case of the Two-tank storage system, when the thermal power recovered from
the solar field generates a non-negligible excess with respect to the qS consumption of the
Storage System, the operation of the plant switches to a Storage-Production phase. Let’s
assume that this phase happens in a time interval IP = [tPini, t

P
fin]. In this phase all the

components are active as shown in the Fig. 5.7.

During this phase, part of the recovered power goes to the reactor and the other part goes
to the power block. This latter thermal power will be denoted by qth(·) and it varies in time.
This variation is motivated by the fact that the plant tries to recover the maximum power
from qsol(·). Then, ∀t ∈ IP , we have the inequality (5.2.19) is replaced by

Chtfṁ3(t)(T3 − T6(t)) + Chtfṁ4(t)(T4 − T5(t)) ≤ qsol(t), ∀t ∈ IP . (5.2.20)

Also, thanks to the thermal integration (blue circuit, see Figure 5.7), part of the outlet
thermal power qdis can be recovered (between nodes 8 and 9) by the power block. This useful
part, recovered at the instant t ∈ IP is denoted by qudis(t). Knowing the thermal power qth(·)
it is possible to determine the electrical power in this phase, as

Ẇelec(t) = fb(qth(t) + qudis(t), T2, T11), ∀t ∈ IP . (5.2.21)

where fb is one regressions shown in the equation 4.2.5. In this phase, we have T2 = T4, since
the CSP plants continues to operate with a nominal temperature at node 2 of T2 = 560°C.
All these functions finally are deducted by qsol(·) and the variables ν and µS(·).

The last quadratic regressions are determined given that the CSP plant continues to
operate with a nominal temperature at node 2 of T2 = 560°C and the average environment
daylight temperature T d

env (which is exogenous), is known.
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Discharge phase

Figure 5.8: Thermochemical storage system. Schema in Discharge phase. Copied from [124].

In this phase, only the components of the Storage System and the power block are active,
as shown in the Fig. 5.8. In the others phases, the heat transfer fluid goes from node to 3 to
node 6, but at this stage, the transfer goes in the opposite direction.

The exchange of heat power between the heat-transfer fluid and the reactor is given by
the following equation:

qD(t) = Chtfṁ3(t)(T3(t)− T6(t)). (5.2.22)

To calculate the electric power, we use the cuadratic regressions fb,

Ẇelec(t) = fb(qD(t), T3(t), T11(t)), ∀t ∈ ID. (5.2.23)

For ensuring the heat power transfer and the synthesis reaction, it is necessary to impose
that the heat-transfer fluid always has a lower temperature than the equilibrium temperature
of the reactor, that is,

T3(t) ≤ Teq(P
D
c (t)),

where the equilibrium temperature Teq(·) is given by Eq. 5.2.15. During this synthesis
reaction (Discharge phase), the water that was stored in the reservoir (node n10) is evaporated
and injected in the reactor. This process consumes a heat flux, q1, which depends on the
reactor kinetics, that is, q1 = q1(µ

D). Through a thermal integration, the heat from the
power block can provide the evaporation heat q1 [125]. Thus,

q1(t) = ccwṁ11(t)(T12(t)− T13(t)), ∀t ∈ ID. (5.2.24)

where ccw is the average thermal capacity of coolant and the temperature in the node 12 is
determined by the regression fd (see Sec. 4.2.7).

Finally, we calculate the amount of electric power needed for the fan to dissipate during
the cooling, from the thermal power dissipated (q3) during the cooling process of the power
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block with the following relation,

q3(t) = ṁ11(t) · cpair · (T13(t)− T11(t)), ∀t ∈ ID. (5.2.25)
Welec_q3

(t) = 0.02 · q3, ∀t ∈ ID, (5.2.26)

with cpair thermal capacity of the coolant (black cycle, see Figure 5.7).

5.2.2 Objective Function

To be coherent with our approach, the objective function must be an economic criterion
taking into account, at the same time, the storage design (investment cost) and the dynamic
operation of the plant (operational costs and possibly incomes).

For the different indicators presented in Section 4.4, we must determine the initial invest-
ment of the project along with the costs and revenues related to the operation and production
of the CSP plant. Thus, in the present Section, we begin to detail each of the terms that
make up the economic indicator equations (see Section 4.4, equations 4.4.1 and 4.4.2), based
on the reduced model of the plant and the pre-scenarios strategy. In this work, we will con-
sider pre-scenarios, per day, with a single Storage and Production phase and one or several
Discharge phases, similarly as shown in Figure 5.1.

Revenues

The revenues of the plant come from two sources: the electrical power produced during the
Production-Storage phases,

RevP
i (ν, µi, τi) =

NDays(i)∑
k=1

∫ t
P
fin(i,k)

t
P
ini(i,k)

λ(t)Ẇelec(t) dt, (5.2.27)

and the electrical power produced during the Discharge phases

RevD
i (ν, µi, τi) =

NDays(i)∑
k=1

J(i,k)∑
j=1

∫ t
D
fin(i,k,j)

t
D
ini(i,k,j)

λ(t)Ẇelec(t) dt. (5.2.28)

Thus,
Revi(ν, µi, τi) = RevP

i (ν, µi, τi) +RevD
i (ν, µi, τi).

Common Storage System Costs

The costs associated with plant operation during the different time intervals corresponding
to each phase, IS, IP , ID, are listed below. The representation of these costs is the same, but
the nature of the variables is not. The Inactive phase has no costs, since the plant is shut
down. Therefore, there are no operating costs.

The following are the costs for each stage Si and day k ∈ 1, ..., Ndays(i):

• Heliostat operational cost: It consists in a constant energy requirement Cstart of start-
up and a marginal energy requirement Cmov of moving the Heliostats following the sun to
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supply the useful heat

Costhel(i, k) =λ(i, tSini(i, k)) · Cstart +

∫ t
S
fin(i,k)

t
S
ini(i,k)

λ(i, t) · Cmov dt. (5.2.29)

• Pumping cost of ṁS
3 (·) - Storage and Storage-

Production phases: During the Storage and Production phases, the red circuit is only pumped
by the pump P1, and therefore, associated only with ṁP

1 (·). This marginal cost is linear with
respect to ṁS

3 (·) so

CostP1
(i, k) = CP1

(∫ t
P
ini(i,k)

t
S
ini(i,k)

λ(i, t)ṁS
3 (i, k) dt +

∫ t
P
fin(i,k)

t
P
ini(i,k)

λ(i, t)ṁP
1 (i, k, t) dt

+

∫ t
S
fin(i,k)

t
P
fin(i,k)

λ(i, t) · ṁS
3 (i, k) dt

)
.

(5.2.30)

• Pumping cost of ṁR, Storage-Production phase: The power block must pump a vapor
as heat-transfer fluid. Denoting by ṁR(t) the mass flow rate of this fluid, it is known that
it is proportional to ṁ4(t), t ∈ IP (as shown in the Figure 5.7). Nevertheless, the power
consumption of pumping ṁR is quadratic. Thus, during the Storage-Production phases one
has

CostPPR
(i, k) =

∫ t
P
fin(i,k)

t
P
ini(i,k)

λ(i, t)
(
APR

ṁ4(i, k, t)
2 +BPR

ṁ4(i, k, t) + CPR

)
dt, (5.2.31)

where APR
, BPR

and CPR
are three constant real numbers.

• Pumping cost of ṁR, Discharge phase: similar to the previous cost, we have to

CostDPR
(i, k, j) =

J(i,k,j)∑
j=1

∫ t
D
fin(i,k,j)

t
D
ini(i,k,j)

λ(i, t)
(
APR

ṁD
4 (i, k, j)

2 +BPR
ṁD

4 (i, k, j) + CPR

)
dt, (5.2.32)

with the same constants APR
, BPR

and CPR
as above.

• Pumping cost of ṁD
3 (·) - Discharge phase: In the Discharge phases, the active pump P2

is at the node 4. As in the Storage phase, this cost is as follows,

CostDP2
(i, k) =CP2

·
J(i,k)∑
j=1

∫ t
D
fin(i,k,j)

t
D
ini(i,k,j)

λ(i, t)ṁD
3 (i, k, j)dt. (5.2.33)

• Maintenance: The operation and maintenance costs are divided into a fixed cost by
capacity, set at 59.4 e/kWe/year and a variable cost (V arcost) depending on the generated
energy, fixed at 3.15 e/MWhe (see [124]). Moreover, energy consumption of the heliostat
field (tracking) and pumps are taken into account (using SAM default values). The variable
costs are:

CostM(i, k) = V arcost ·

(∫ t
P
fin(i,k)

t
P
ini(i,k)

Ẇelec(t) dt+

J(i,k)∑
j=1

∫ t
D
fin(i,k,j)

t
D
ini(i,k,j)

Ẇelec(t) dt

)
. (5.2.34)
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• Start-up cost of the power block: Before starting the power block and produce any power
energy, the power block must be heated. The pre-heating requirement is modeled as a de-
lay of one third of an hour in the effective production. Nevertheless, if the power block is
already partially heated, this delay is attenuated. To compute this start-up cost, first the
non-attenuated one is computed, that is

CostPfullStart(i, k) =

∫ t
P
fin(i,k)+1/3

t
P
ini(i,k)

λ(i, t)Ẇelec(t) dt (5.2.35)

CostDfullStart(i, k, j) =

∫ t
D
fin(i,k,j)+1/3

t
D
ini(i,k,j)

λ(i, t)Ẇelec(t) dt. (5.2.36)

Then, the effective start-up cost of the power block is obtained by considering an attenua-
tion function φ(t) = 1−exp(−3t/2) (as considered in [124]), which will take values depending
on the difference in hours between the final and initial times of electric energy production
(Production and Discharge phases),

CostPstarR(i, k) =φ(∆t) · CostPfullStart(i, k), (5.2.37)

CostDstarR(i, k, j) =φ(∆t) · CostDfullStart(i, k, j), (5.2.38)

thus, the smaller the time difference (∆t) the more attenuation will tend to be negligible.
These expressions have been established with reference to those set forth in [124].

Costs of Thermochemical System

For the case of Thermochemical Storage System, it was taken advantage of the various exo-
and endo-thermal components of the power block and the Thermochemical system by recov-
ering thermal energy between them (see blue and black circuits in Figure 5.5). That will
result in reducing the amount of wasted heat released to the ambient. The costs related with
these integrated systems are:

• Pumping cost of ṁ11(·) - Storage-Production
phase and Discharge Phase: The black cycle of Fig. 5.5 is active during the Storage-Production

phases and the Discharge phases and the coolant is pumped by the pump P3 between nodes
n12 and n13. As above,

CostDP3
(i, k) =CP3

·
∫ t

P
fin(i,k)

t
P
ini(i,k)

λ(i, t)ṁP
11(i, k, t)dt+ CP3

·
∫ t

D
fin(i,k,j)

t
D
ini(i,k,j)

λ(i, t)ṁD
11(i, k, j)dt. (5.2.39)

• Dissipation cost of q2 - Storage Phase: During the Storage phase, the ventilator is used
to dissipate q2(·), which depends also on ν and µS(t),

CostSDiss2(i, k) =

∫ t
S
fin(i,k)

t
S
ini(i,k)

λ(i, t)PCq2
(ν, P S

c (i),∆T S
eq(i), q2(t)) dt, (5.2.40)

where PCq2
(·) is a nonlinear function that computes the electrical power consumption of the

ventilator.
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• Dissipation cost of q3: Storage-Production and Discharge phase: The power consump-
tion is modeled as the 2% of the heat power q3 that must be dissipated. Thus

CostDiss3
(i, k) =

∫ t
P
fin(i,k)

t
P
ini(i,k)

λ(i, t) · 0.02 · q3(t)dt+
J(i,k)∑
j=1

∫ t
D
fin(i,k,j)

t
D
ini(i,k,j)

λ(t) · 0.02 · q3(t)dt. (5.2.41)

The way to compute the heat power q3(·) is described in Appendix 5.2.1.

• Investment cost: the total investment cost is calculated with the following formulation
derived from SAM software:

Cost0 =Cland + (CStr(ν) + CRank + CSF )(1 + τc)[1 + τs + 0.8τt]

where τc is the contingency rate (fixed at 7%); τs is the rate which considers the EPC
(engineer-procure-construct) and owner costs (fixed at 13%); τt is the sales tax (5%). For
more details see [125]. The sub-costs of the power plant are calculated as follows:

(a) Cland and CSF : the cost of the land and solar field, are approximated as functions of
the Solar Multiple (SM):

Cland =9000(414 · SM + 51.6), (5.2.42)

CSolarField =106(57.765 · SM + 14.373). (5.2.43)

(b) CRank: the cost of the power block is proportional to the design gross capacity. In this
study CRank is 66Me.

(c) CStr: the cost of the Storage System also considers the cost Cacc2 of the ventilator that
dissipates q2 and the cost Chx of the heater that uses q1 to evaporate the water in node
n10. The final investment cost of the Storage System is given by

CStr =1.1(Creac(ν) + Cacc2 + Chx), (5.2.44)

where the Creac of the reactor is estimated in terms of the physical variables via con-
sultation with an industrial partner, associated with the laboratory PROMES-CNRS,
namely COLDWAY. This company manufactures Thermochemical reactors for different
industrial processes. Given a vector ν = (DEC, ρeng, rsw, L), a polynomial regression
was obtained based on the estimations done by this company. The cost of the reactor
can be expressed as

Creac =βfh(DEC, ρeng, rsw)DEC · L · π(r2sw − r2diff ), (5.2.45)

where fh is a polynomial function, rdiff is a constant parameter and β is the ratio be-
tween the expected and estimated cost for the Thermochemical reactor. The correction
coefficient β will take values between 1 and 3, with 1 being the optimistic case and 3
the pessimistic case [124].

Costs of Two-tank System

• Pumping cost of ṁS
salt(·) - Storage phase: In the Storage phases, the active pump is P4,

which allows the flow of molten salt from cold tank to hot tank. This cost is as follows,

CostSP4
(i, k) =CP4

·
∫ t

S
fin(i,k)

t
S
ini(i,k)

λ(i, t)ṁS
salt(i, k)dt. (5.2.46)
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• Pumping cost of ṁD
salt(·) - Discharge phase: In the Discharge phases, the active pump

is P4, allowing the flow of molten salt from hot tank to cold tank and similarly as in the
Storage phase, this cost is as follows,

CostDP4
(i, k) =CP4

·
∫ t

D
fin(i,k,j)

t
D
ini(i,k,j)

λ(i, t)ṁD
salt(i, k, j)dt. (5.2.47)

• Investment cost: The investment cost is according the three components, the solar field
(which also considers the cost of the operation land) depending on the Solar Multiple (SM)
indicator, the cost on the power block, which is constant, and the investment on the Two-tank
storage system

CostInv = Cland + (CStr(V,Aexch) + CRank + CSF )(1 + τc)[1 + τs + 0.8τt] (5.2.48)

(a) Cland, CSF and CRank: these costs are the same as those proposed for the Thermochem-
ical system in the Subsection 5.2.2.

(b) CStr: this cost is based on the estimated results of thermal energy storage in tanks,
made in [140] and the estimate made in SAM [131]. The computation of the cost of
the heat exchanger is given by the following expression

CHExch =C0 · (
Q

Q0

)M · CEPCI

CEPCIref
, (5.2.49)

where CHExch is the cost of the exchanger with capacity Q (in this context, Aexch) and
C0 the known cost of an exchanger with capacity Q0. M is a constant that depends
on the type of material in the exchanger. The evaluation of the investment cost for
the Two-tank storage system is done on the basis of the estimated cost per unit of
thermal energy, CNREL = 22$/kWhth, estimated in the NREL reports [131]. Therefore,
according to the above, the total cost of the Two-tank storage system is:

CStr(V,Aexch) =CHExch(Aexch) + Emax(V ) · CNREL, (5.2.50)

with Emax representing the maximum energy produced per hour, during the time
horizon.

5.2.3 Bounds

Table 5.4 shows the bounds for the variables of the optimization problem, which differ de-
pending on the Storage System.
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VARIABLE RANGE
Two-tank System

V [0, +∞[
Aexch [0, +∞[
ṁS

salt [0, 1500]
ṁS

3 [0, 1500]
T7 [290, 560]

ṁD
salt [0, 1500]

ṁD
3 [0, 1500]

T8 [290, 560]
Thermochemical System

DEC [150, 300]
ρeng [30, 70]
rsw [0.03, 0.09]
L [0, +∞)

PS
c , P

D
c [0.072, 2.753]

TS
eq [25, 125]

TD
eq [-150, -50]

tSini t
S
fin [0, +∞[

tPini t
P
fin [0, +∞[

tDini t
D
fin [0, +∞[

Table 5.4: Optimization problem variables bounds.

The bounds for the variables corresponding to the Two-tank system have been deduced
from [80, 90] and from the energy balance in the system. On the other hand, for the Ther-
mochemical system, these bounds are based on the know-how of PROMES-CNRS, which
are presented in [124]. At the end of Table 5.4, the strategic variables (time variables) are
presented, which correspond to the initial and final time of each phase of the plant.

5.2.4 Structure of the optimization problem

Optimization Problem for Thermochemical Storage

In this case, according to Section 5.1 and the Subsection 5.2.1, the variables to be optimized
would be the following:

• ν = (DEC, ρeng, rsw, L).

• µi = (P S
c (i, k),∆T S

eq(i, k), P
D
c (i, k, j),∆TD

eq (i, k, j)).

• τi = (tSini(i, k), t
S
fin(i, k), t

D
ini(i, k, 1), t

D
fin(i, k, 1), ..., t

D
ini(i, k, j), t

D
fin(i, k, j)), with j ∈ J(i, k),

where the time intervals for each of the phases are denoted as, IS = [tSini(i, k), t
S
fin(i, k)],

IP = [tPini(i, k), t
P
fin(i, k)] and ID = [tDini(i, k, j), t

D
fin(i, k, j)]. The optimization problem to

solve would be the following:
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max
ν,µ,τ

NPV = USF (N, ιr)

[
4∑

i=1

Ri(Revi(ν, µi, τi)− Costi(ν, µi, τi))

]
− Cinvest(ν)

subject to





qS(i, k) = Chtfṁ3(i, k)(T3 − T6(i, k)) ,

T8(i, k) =
94573

(121.186−8314·log(PS
c (i,k)))

− 273.15

ṁ8(i, k) = qS(i, k) ·
Mwater

dhr

T S
cond(i, k) = 5120/(13.7− log(P S

c (i, k)/1.013))− 273.15

qdesu(i, k) = ṁ8(i, k) · cp_steam · (T8(i, k)− T S
cond(i, k)) .

dhvap(i, k) = −2451.7 · T S
cond(i, k) + 2.5033 · 106 .

qcond(i, k) = ṁ8(i, k) · dhvap(i, k) .

qS2 (i, k) = qdesu(i, k) + qcond(i, k) .

if τi = P, S



ṁ1(i, k, t) = ṁS
3 (i, k) + ṁ4(i, k, t)

ṁ1(i, k, t)T1(i, k, t) = ṁS
3 (i, k)T6(i, k) + ṁ5(i, k, t)T5(i, k, t)

qR(i, k, t) = qth(i, k, t) + qudis(i, k, t)

q2(i, k, t) = qdis − qudis(i, k, t)

Ẇelec(t) = fb(qR(i, k, t), T2, T11(i, k, t))

ṁ11(i, k, t) = fe(ṁ4(i, k, t), TenvDay)

T12(i, k, t) = fd(T2, ṁ4(i, k, t), TenvDay)

q3(i, k, t) = ṁ11(i, k, t) · cp11 · (T12(i, k, t)− TenvDay)

Wq3
(i, k, t) = 0.02 · q3(i, k, t)

if τi = P



qD(i, k, j) = Chtfṁ
D
3 (i, k, j)(T3(i, k, j)− T6(i, k, j))

Ẇelec(i, k, j) = fb(qD(i, k, j), T3(i, k, j), T11(i, k, j))

q1(i, k, j) = ccwṁ11(i, k, j)(T12(i, k, j)− T13(i, k, j))

q3(i, k, j) = ṁ11(i, k, j) · cpair · (T12(i, k, j)− T11(i, k, j))

Ẇelec_q3
(i, k, j) = 0.02 · q3(i, k, j)

if τi = D

{
50 ≤ qS(i, k)

Teq(P
S
c (i, k)) ≤ T6(i, k)

if τi = S{
q4_min ≤ qR(i, k, t)

Chtfṁ3(i, k, t)(T3 − T6(i, k, t)) + Chtfṁ4(i, k, t)(T4 − T5(i, k, t)) ≤ qsol(i, t)
if τi = P

50 ≤ qD(i, k, t)

T3 ≤ Teq(P
D
c (i, k, t))

WNommin
≤ ẆD

elec(i, k, j) ≤ WNommax

if τi = P
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290 ≤ T∝(i, k) ≤ 590, with ∝= 1, ..., 6.

Tenv_min ≤ T∝(i, k) ≤ 200, with ∝= 7, 11, 12, 13.

Tenv_min ≤ T∝(i, k) ≤ 590, with ∝= 8, 9, 10.

90 ≤ ṁ∝(i, k) ≤ 2000, with ∝= 1, 2, 3, 6.

90 ≤ ṁ∝(i, k) ≤ 600, with ∝= 4, 5.

200 ≤ ṁ∝(i, k) ≤ 3000, with ∝= 7, ..., 10.

0 ≤ ṁ∝(i, k) ≤ 300, with ∝= 11, 12, 13.

if τi = S, P,D.



DEC ∈ [150, 300]

ρeng ∈ [30, 70]

rsw ∈ [0.03, 0.09]

L ∈ [0,∝ [

P S
c (i, k), P

D
c (i, k, j) ∈ [0.072, 2.753]

T S
eq(i, k) ∈ [25, 125]

TD
eq(i, k, j) ∈ [−150,−50]

tSini(i, k), t
S
fin(i, k) ∈ [0,∝ [

tDini(i, k, j), t
D
fin(i, k, j) ∈ [0,∝ [

∀i ∈ {1, ..., p}, ∀k ∈ {1, ..., NDays(i)}, ∀j ∈ {1, ..., J(i, k)}

Optimization Problem for Two-tank Storage

In this case, as described in the Section 5.1 and the Subsection 5.2.1, the variables to be
optimized would be the following:

• ν = (V,Aexch).

• µi = (ṁS
3 (i, k), ṁ

S
salt(i, k), T7(i, k), ṁ

D
3 (i, k, j), ṁ

D
salt(i, k, j), T8(i, k, j)).

• τi = (tSini(i, k), t
S
fin(i, k), t

D
ini(i, k, 1), t

D
fin(i, k, 1), ..., t

D
ini(i, k, j), t

D
fin(i, k, j)), with j ∈ J(i, k),

The optimization problem to solve takes the general form:
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max
ν,µ,τ

NPV = USF (N, tr)

[
p∑

i=1

Ri(Revi(ν, µi, τi)− Costi(ν, µi, τi))

]
− Cinvest(ν)

subject to




qS(i, k) = Chtfṁ

S
3 (i, k)(T3 − T6(i, k)) ,

qS(i, k) = Csaltṁ
S
salt(i, k)(T8(i, k)− T7(i, k))

qS(i, k) =
1
2
α ·Aexch · ((T3 + T6(i, k))− (T7(i, k) + T8(i, k))) .

if τi = S



ṁ1(i, k, t) = ṁS
3 (i, k) + ṁ4(i, k, t)

ṁ1(i, k, t)T1(i, k, t) = ṁS
3 (i, k)T6(i, k) + ṁ5(i, k, t)T5(i, k, t)

qR(i, k, t) = qsol(i, t)− qS(i, k)

qR(i, k, t) = Chtfṁ
S
3 (i, k)(T4 − T5(i, k, t))

Ẇelec(i, k, t) = fb(qR(i, k, t), T2, T
d
env)

ṁ4(i, k, t) = ff (Ẇelec(i, k, t), T2, T
d
env)

if τi = P



qD(i, k, j) = Chtfṁ
D
3 (i, k, j)(T3(i, k, j)− T6(i, k, j))

qD(i, k, j) = Csaltṁ
D
salt(i, k, j)(T8(i, k, j)− T7(i, k, j))

qD(i, k, j) =
1
2
α ·Aexch · ((T3(i, k, j) + T6(i, k, j))− (T7(i, k, j) + T8(i, k, j)))

T5(i, k, j) = (ṁD
3 (i, k, j), T4(i, k, j), T

n
env)

Ẇelec(i, k, j) = fb(qD(i, k, j), T4(i, k, j), T
n
env)

if τi = D



Vcold(t
S
fin(i, k)) = Vcold(t

S
ini(i, k))− V S

new(t
S
fin(i, k)), if τi = S

Vhot(t
S
fin(i, k)) = Vhot(t

S
ini(i, k)) + V S

new(t
S
fin(i, k)), if τi = S

Vhot(t
D
fin(i, k, j)) = Vcold(t

D
ini(i, k, j)) + V D

new(t
D
fin(i, k, j)), if τi = D

Vhot(t
D
fin(i, k, j)) = Vhot(t

D
ini(i, k, j))− V D

new(t
D
fin(i, k, j)), if τi = D

Tcold(t
S
fin(i, k)) = Tcold(t

S
ini(i, k)), if τi = S

Thot(t
S
fin(i, k)) =

Tcold(t
S
ini(i, k)) · Vhot(t

S
ini(i, k)) · ρsalt + T8(t

S
fin(i, k)) ·

∫ t

t
S
ini(i,k)

ṁS
salt(t

S
fin(i, k)) dt

Vhot(t
S
fin(i, k)) · ρsalt

,

if τi = S

Tcold(t
D
fin(i, k, j)) =

Tcold(t
D
ini(i, k, j)) · Vcold(t

D
ini(i, j, k)) · ρsalt + T7(t

D
fin(i, k, j)) ·

∫ t
D
fin(i,k,j)

t
D
ini(i,k,j)

ṁD
salt dt

Vcold(t
D
fin(i, k, j)) · ρsalt

,

if τi = D

Thot(t
D
fin(i, k, j)) = Tcold(t

D
fin(i, k, j)), if τi = S

50 ≤ qS(i, k) =
2·ChtfCsaltṁ

S
3 (i,k)ṁsalt(i,k)·α·Aexch·(T2−T7(i,k))

2·ChtfCsaltṁ
S
3 (i,k)ṁ

S
salt(i,k)+Chtf ṁ

S
3 (i,k)αAexch+Csaltṁ

S
salt(i,k)αAexch

260 ≤ T6(i, k) =
−qS(i,k)

Chtf ṁ
S
3 (i,k)

+ T3 ≤ 590

220 ≤ T8(i, k) =
qS(i,k)

Csaltṁ
S
salt(i,k)

+ T7(i, k) ≤ 600

Chtfṁ
S
3 (i, k)(T3 − T6(i, k)) ≤ qsol(i, t)

if τi = S

{
q4_min ≤ qR(i, k, t)

Chtfṁ
S
3 (i, k)(T3 − T6(i, k)) + Chtfṁ4(i, k, t)(T4 − T5(i, k, t)) ≤ qsol(i, t)

if τi = P

50 ≤ qD(i, k, j)

260 ≤ T3(i, k, j)

260 ≤ T5(i, k, j) = fc(ṁ
D
3 (i, k, j), T4(i, k, j), T

n
env) ≤ 590

220 ≤ T7(i, k, j) =
−qD(i,k,j)

Csaltṁ
D
salt(i,k,j)

+ T8(i, k, j) ≤ 600

WNommin
≤ ẆD

elec(i, k, j) ≤ WNommax

if τi = D

{
Vmin(V ) ≤ Vcold, Vhot ≤ Vmax(V )

280°C ≤ Tcold, Thot ≤ 590°C
if τi = S, P,D.
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Vcold(0) = Vcold(Hi)

Vhot(0) = Vhot(Hi)

Tcold(0) = Tcold(Hi)

Thot(0) = Thot(Hi)

∀i ∈ {1, ..., p}



V ∈ [0,∝ [

Aexch ∈ [0,∝ [

ṁS
salt(i, k) ∈ [0, 900]

ṁS
3 (i, k) ∈ [0, 900]

T7(i, k) ∈ [290, 560]

ṁD
salt(i, k, j) ∈ [0, 900]

ṁD
3 (i, k, j) ∈ [0, 900]

Ṫ8(i, k, j) ∈ [290, 560]

tSini(i, k), t
S
fin(i, k) ∈ [0,∝ [

tDini(i, k, j), t
D
fin(i, k, j) ∈ [0,∝ [

∀i ∈ {1, ..., 4}, ∀k ∈ {1, ..., NDays(i)}, ∀j ∈ {1, ..., J(i, k)}

5.3 Results and Discussion
In this section, we present the different simulations carried out for the comparative study
with different «profiles», that is different economic indicators; different production strategies;
different storage systems; and even possibly different price scenarios or different correction
coefficients β. The model proposed in the previous sections has been implemented in the
case of Californian markets, more precisely with the data corresponding to the network node
of Daggett. Thus the solar resource (used with SM = 2.5) and market prices are the ones
corresponding to this location. Nevertheless, as in many deregulated market around the
world, the prices on the Californian electricity market has been subject to important pertur-
bations in the recent years and it is quite difficult to determine a «mean profile» of prices.
Therefore we decided to focus on a scenarios analysis, emphasizing the potential influence of
such perturbations on the results. The Price-Pessimistic scenario (PP) corresponds to the
price profiles of year 2016 (with low prices) which was also used in [124, 125], thus allowing
to compare both studies. An optimistic scenario has been elaborated on the base of the
mean price in California in 2021. But in order to avoid that this sensitivity analysis would
be perturbed by a difference of profiles instead of the difference of mean prices, the Price-
Optimistic scenario (PO) corresponds to the prices profile of 2016 shifted by the difference
of mean prices between 2021 and 2016, that is by 16.3$/MWh. The mean price of 2021 was
preferred to the ones of 2022 which are quite extreme (reaching often 124$/MWh). In fact,
between 2020 and 2021 the average price difference was also high, equal to 14.64. Finally,
a Price-Medium scenario (PM) is considered for the difference between the average price of
the years 2020 and 2021, and the average price of the year 2016, that is by 9$/MWh.

The real discount rate is set as ιr = 0.03 and the number of years as N = 30. In some
simulations a sensitivity analysis on these parameters will be done. We consider p = 4
seasons, with a stage of Ndays = 7 each. For i = 1, ..., 4 (each index representing a season),
the curves of useful power qsol(·, i) (see Subsection 4.2.1) and electricity price λ(·, i) (see
4.3), are taken from [124, 125], whose data comes from the SAM software and the average
electricity prices for each day during each season of year 2016 (Price-Pessimistic scenario).
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5.3.1 Computational Implementation

The solution of the different optimisation problems were obtained with MATLAB® version
9.9.0.1570001 (R2020b) using the fmincon function with the interior point algorithm [129].

This implementation required a large computational processing capacity, mainly due to
the number of variables of these problems (see 5.2.4 and 5.2.4), which varies depending on
the type of Storage System and production strategy. Moreover, for certain configurations,
convergence problems occur. Hence, it has been needed to look for an alternative approach
to obtain optimal results in a reasonable time.

When considering the Two-tank system, we propose to split the search for a best local
minimum by two loops, as shown in Algorithm 1. In this case, the physical variable V , which
represents the maximum volume of molten salt used during the model year (and therefore for
the entire time horizon N), is left fixed and the problem is solved for the rest of the variables.
In this way, we get a while loop with a subroutine of iterations corresponding to the command
fmincon (the number of iterations for this subroutine can also be fixed). For each iteration
of the while loop of the variable V , the convergence is verified, based on different tolerance
criteria, towards an optimal value of V ∗.

Algorithm 1: Double loop - Interior point
Input: x0 = (V0, A

0
exch, ..., ·) ∈ Rn,

k = 0, exitflag = 2, ε > 0,
V0 = 10000, VA = V0 + 2ε,
xaux
0 = (A0

exch, ..., ·) ∈ Rn−1;
1 while | V0 − VA |> ε and k < maxiter and exitflag = 2, do
2 V0 = VA;

3 [x,fval,exitflag,output] = fmincon(fun, xaux
0 , .., ·) VA = max{Vi}, // i= 1,...,4.

4 k=k+1

5 V = VA;
6 return x = (V,Aexch, ..., ·);

Now when considering Thermochemical storage, before executing the optimization process,
the physical variables have been rescaled to avoid numerical instabilities.

In what follows, we provide a comparison of the results of the optimization process for
different economic criteria. We compare the Two-tank system with the Thermochemical
system under the different values of beta (see cost equation 5.2.45) for the cost estimation of
the reactor.

5.3.2 LCOE sensitivity to discharge duration

For this first analysis, the economic indicator LCOE is used and the discharge duration
for the two storage systems in question were varied. Different price scenarios (PP, PM,
PO) were considered but their influence is minor since the LCOE criterion doesn’t take into
account revenues/incomes of the plant. Thus the different of price scenario only acts on the
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costs associated to the use of electricity (pumping, heliostats, dissipation). More important
influence of the price scenarios will be observed in the forthcoming subsections where NPV
criterion will be used. Here since we focus only on LCOE criterion, the price profile is not
taken into account (for revenues/incomes) and the Discharge strategy is only the Classical
one.

As can be observed in Figures 5.9 and 5.10, in all cases the Two-tank system is the most
economically efficient to implement. Furthermore, it can be observed that the compensation
of the income generated from considering more time in the Discharge phase is maintained for
all cases for the Two-tank system, hence its slow decrease. For the Thermochemical system,
in the optimistic case (β = 1, continuous red curve), the results found indicate that if we
consider a Discharge phase greater than 10 hours, the costs of producing electricity increase.
This is reflected mainly when comparing the results of 10h and 12h, where we can observe a
change in the behavior of the curve (continuous red, Figure 5.9 - 5.10), and this is due to the
cost of considering a larger Thermochemical reactor to discharge energy for a longer time is
not compensated by the production of electrical energy. In the other cases (β = 2, 3), we can
notice a more sensitive behavior of the curves that represent them, since when considering
higher costs for the Storage System, they present a peak for the 6 hours of duration and then
a valley approximately in the 10 hours of duration, which is due to insufficient production of
electric energy and to an excessively large design of the Storage System. Finally, if we com-
pare the most viable cases of both systems (12h duration for Two-tanks and 10h duration for
Thermochemical reactor with β = 1), we have that the cost of energy production is reduced
by approximately 27%.
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Figure 5.9: LCOE values, changing the discharge duration with the classic strategy, SM = 2.5, N = 30
years and ιr = 3%. PP scenario.
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Figure 5.10: LCOE values, changing the discharge duration with the classic strategy, SM = 2.5, N = 30
years and ιr = 3%. PO scenario.

The results in Figure 5.9 and 5.10, show very low LCOE values for both storage systems,
which are comparable to those estimated in [78, 108, 71, 128]. Let us nevertheless recall that,
fossil fuel technologies have a projected LCOE for the year 2035 in the range of approximately
3.49-7.09 cents/kWh [86].

5.3.3 Sensitivity analysis based on NPV criterion

In this subsection, the optimization (actually maximization) will be done using the NPV
economical criterion, thus taking into account the revenues generated by electricity sales.
Thus the different price scenarios will clearly have an influence on the results.

NPV sensitivity to discharge duration

The sensitivity analysis being here focusing on the Discharge duration, only the Classical
strategy will be considered. Tables 5.5 - 5.7 and Figures 5.11- 5.12 show the NPV values
with respect to the variation of the discharge duration. For the PP scenario, we can notice
the strong evolution of the curves corresponding to the Thermochemical system, as they
decay rapidly after 6 hours of discharge duration (see Figure 5.11). The best configuration
corresponds to “Reac-Class-β1" with a discharge duration equal to 6 hours. For the Two-
tank system, the behavior of the blue curve is opposite to the others, since it has a slow and
constant growth from a certain point. For this system, the best configuration corresponds to
“Two-tanks-Class" with 12 hours discharge duration. It is clear that for both storage systems,
the plant project does not recover the investment (negative NPV). A similar analysis happens
for the PM scenario.

Time 4h 8h 12h
Incomes PP 133.55 166.45 174.75

NPV PP[Me] -134.36 -129.73 -158.40
Incomes PM 177.74 230.95 233.69

NPV PM[Me] -94.44 -62.12 -104.00
Incomes PO 215.25 277.64 293.76

NPV PO[Me] -60.38 -19.45 -15.18

Table 5.5: Thermochemical reactor system with Classical strategy, β = 1.
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Time 4h 8h 12h
Incomes PP. 135.14 170.15 177.08

NPV PP[Me] -151.95 -157.81 -246.66
Incomes PM 180.74 230.92 235.61

NPV PM[Me] -110.78 -98.01 -392.02
Incomes PO 218.0 277.90 287.51

NPV PO[Me] -77.28 -54.21 -146.66

Table 5.6: Thermochemical reactor system with Classical strategy, β = 2.
Time 4h 8h 12h

Incomes PP 152.61 184.65 207.89
NPV PP[Me] -104.50 -91.96 -89.05
Incomes PM 203.62 246.79 260.96

NPV PM[Me] -58.46 -39.81 -45.69
Incomes PO 245.13 297.25 339.60

NPV PO[Me] -22.62 8.40 28.87

Table 5.7: Two-tank system with Classical strategy.

Additional results have shown that the variations of NPV when one considers either one
Discharge phase or two Discharge phases are minor. Thus in the forthcoming subsection,
and for simplicity, we will essentially consider configurations with only one Discharge phase.

For the PO scenario, the Thermochemical system continues to show greater sensitivity
to the change in discharge duration. Here, the best configuration is “Reac-Class-β1", with
a duration of 8 hours. Note that, the NPV value improved by 3 times (on negative values)
compared to the PP scenario. For the case of “Reac-Class-β2", we have a variation in the
behavior of the NPV curve coinciding with the first case in that the best configuration
corresponds to a duration of 8h. Finally, for the “Reac-Class-β3", the results are analogous
to those deduced with the PP scenario.

When considering the PO scenario the NPV values increase of more than 100 Me in most
cases, which allowed that for a period of 30 years and under plant configurations with a
duration in the Discharge phase of more than 6 hours, it was possible to obtain a positive
NPV, i.e., the plant recovers the investment.
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Figure 5.11: NPV values, changing the discharge duration with the classic strategy, SM = 2.5, N = 30
years and ιr = 3%. Price-Pessimistic scenario.
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Figure 5.12: NPV values, changing the discharge duration with the classic strategy, SM = 2.5, N = 30
years and ιr = 3%. Price-Optimistic scenario.

Optimal production profiles

In parallel to the optimization of the sizing of the storage systems, the optimization problems
are also aimed at optimizing the plant production operations. According to the production
strategies described in Subsection 4.5, the optimized strategies found for both storage systems
will be analyzed. Finally, the consideration of different price scenarios does not represent
important variations in the operating profiles. Therefore, the price scenarios in question will
not be specified in this subsection.

Thermochemical system In this subsection, our aim is to combine the most innovating
approaches, that are Thermochemical system and Price Chasing strategy (see [124, 125]).

Figures 5.13 and 5.14 show the operational profiles of the plant with the Thermochemical
storage system using Price Chasing as production strategy, for 7 days (upper graph) together
with the electricity production and price curve for the same time horizon (lower graph),
corresponding to Winter season.
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Figure 5.13: Winter season, Thermochemical system with Price Chasing strategy - 1 Discharge phase.
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Figure 5.14: Winter season, Thermochemical system with Price Chasing strategy - 2 Discharge phases.

It can be observed that in the case of a single discharge (Figure 5.13), the discharge takes
place immediately after the end of the Storage phase, mainly for two reasons: the first one is
due to the highest peaks of the price curve, approximately after the beginning of the night;
and the second one, due to the cost that would entail to restart the power block. Then,
Figure 5.14 shows the operational profile for two Discharge phases per day, where Discharge
phases are carried out in those time intervals where the value of the electricity price is higher.
On can indeed observe that the optimisation aligns both Discharge phases with price peaks.

Similarly, in Figures 5.15 and 5.16, the operation profiles in the summer season are shown.
In both cases, a continuous production of electrical energy is obtained and considering two
Discharge phases instead of one does not have any relevant effect. The relevance of multiple
Discharge phases is related to the storage capacity of the plant. Indeed, in the case of the
Winter season (Figure 5.14), the amount of stored energy was not enough to have a continuous
production.
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Figure 5.15: Summer season, Thermochemical system with Price Chasing strategy - 1 Discharge phase.
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Figure 5.16: Summer season, Thermochemical system with Price Chasing strategy - 2 Discharge phases.

Here, the production strategy used is Price Chasing, with which a positive NPV is obtained
for the price (PO) and cost coefficient β = 1. We can also see the large effect of considering a
specific production strategy for the plant Indeed, when comparing Classical and Price Chasing
strategies combined with Thermochemical system, then with Classical strategy positive NPV
is never reached (see Table 5.5) while with Price Chasing strategy, in the PO scenario, a
positive NPV is obtained for the configuration “Reac-PC-1D-β1" (see Table 5.8). Now, if
we compare the configurations “Reac-Class-β1-6h" (see figures 5.11 and 5.12) and “Reac-PC-
1D-β1" (see tables 5.8 and 5.9), we note that in this case, the implementation of the Price
Chasing strategy increases the NPV by approximately 40 Me(with respect to N = 30 years),
for the PP and PO price scenarios.

Parameter β = 1 β = 2 β = 3

Incomes PP 195.98 171.03 163.59
NPV PP [Me] -94.12 -117.15 -134.63
Incomes PM 274.03 246.60 224.26

NPV PM [Me] -29.40 -62.39 -84.16
Incomes PO 334.94 321.91 287.15

NPV PO [Me] 24.20 -14.44 -40.74

Table 5.8: Economic results considering different β for Thermochemical storage system and Price Chasing
strategy with one Discharge phase. SM = 2.5, N = 30 years and ιr = 3%.

Parameter β = 1 β = 2 β = 3

Incomes PP 190.65 165.79 162.28
NPV PP [Me] -99.61 -123.99 -138.06
Incomes PM 271.48 243.46 224.63

NPV PM [Me] -30.73 -61.79 -83.33
Incomes PO 332.71 295.76 286.84

NPV PO [Me] 23.61 -14.65 -39.06

Table 5.9: Economic results considering different β for Thermochemical storage system and Price Chasing
strategy with two Discharge phases. SM = 2.5, N = 30 years and ιr = 3%.

Two-tank system In Figures 5.17 and 5.18, the operational profiles of the plant with a
Two-tank system are shown. These profiles correspond to the Classical 12-hour discharge
duration strategy, which according to the sensitivity analysis performed in the Subsection
5.3.3, is the most cost-efficient. A negative effect of this strategy with fixed discharge duration
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is that the plant must discharge regardless of the market value price: first, in Figure 5.17, it
can be observed that the Discharge phase for each day ends in the price valleys that occurs
in the evening hours; second, the cost related to the large sizing of the Storage System for
discharges of such a length is quite high.
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Figure 5.17: Winter season, Two-tank storage system with Classical production strategy.
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Figure 5.18: Summer season, Two-tank storage system with Classical production strategy.

If we compare this Storage System with the best configurations for each production strat-
egy, Two-Tanks-Class-12h and Two-tanks-PC-1D, this is opposite to what happens with the
Thermochemical system, since the Classical strategy is more cost-effective, increasing the
NPV value by approximately 16 Me for the PO price scenarios and a period of 30 years (see
Table 5.10). As can be checked in Table 5.10, in this case, the Storage System has been sized
larger for the case of the Price Chasing strategy, and therefore it is more costly.

Strategy Classical-12h Price Chasing
Incomes 339.60 357.16

Operational cost 11.32 11.44
Maintenance cost 25.40 26.62

Storage system cost 44.97 88.09
Solar field cost 148.06 148.06

Power block cost 69.67 69.67

NPV PO [Me] 28.87 13.29
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Table 5.10: Economic results for the Two-tank system considering different strategies of production and the
PO price scenario. SM = 2.5, N = 30 years and ιr = 3%.

5.3.4 Conventional Payback

It is well-known that in the case of CSP equipped with Two-tanks storage system one cannot
reach a valuable CPB (i.e. a CPB value lower than the project duration) without subsidies
[99]. Thus here we only focus on Thermochemical storage system.

In order to identify the time needed to obtain or recover the investment in a CSP plant,
the optimization problem to be solved will be to maximize the NPV indicator, varying the pa-
rameter corresponding to the number of years, N , as well as considering different production
strategies for each of the storage systems. For this indicator, the case studies correspond-
ing to the Price Chasing strategies are also considered. Therefore, we will detail the most
relevant configurations for the CSP plant according to the type of Storage System.
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Figure 5.19: Thermochemical system, Price Chasing strategy with one and two Discharge phases, different
values for cost parameter β, SM = 2.5, ιr = 3% and PP scenario.
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Figure 5.20: Thermochemical system, Price Chasing strategy with one and two Discharge phases, different
values for cost parameter β, SM = 2.5, ιr = 3% and PO scenario.

In the Figures 5.19-5.20, we analyzed configurations with the Thermochemical system
and the Price Chasing production strategy (one and two Discharge phases). For the PP
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scenario, we can notice that the different configurations require more than 50 years to recover
the investment. Under such conditions, this type of systems cannot become economically
competitive. A similar case happens with the Thermochemical system worked out in [21].
For the PO scenario, the first configurations to recover the investment correspond to the
optimistic cost cases (β = 1) with the Price Chasing strategy of one and two Discharge
phases. A time horizon of 26 years, respectively 28 years is necessary to obtain a positive
NPV. But for β = 2 (resp. 3), our results show that 30 years (resp. 40 years) are necessary.
Finally, we can note that in the case of the PP scenario, we can observe a similar behavior of
the curves for all the β cases, with a small difference between both curves of the same color,
with the strategy of a single Discharge phase (1D) better than that of two Discharge phases
(2D). In the case of the PO scenario, we can analyse that the difference between the one and
two discharge strategies is negligible.
It is important to emphasize that, to our knowledge, it is the first time that an optimal
configuration of a storage in a CSP plant attains a positive NPV with a "reasonable" time
horizon (less that 30 years).

5.3.5 Internal Rate of Return

Another approach consists in analysing to what extent the possible fluctuations of the cur-
rency price can affect the economical efficiency of the CSP power plant with storage. Hence
the importance of the parameter ιr, which is used to depreciate future money transactions
and determine their current values. The following results correspond to the maximization
of the NPV indicator by varying the real discount rate until the initial investment is recov-
ered. In this subsection, we decided to present the sensitivity analysis of the Internal Rate
of Return only for the PM scenario, that is the mean price scenario.
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Figure 5.21: These simulations correspond to the Classical and Price Chasing strategies with both storage
systems. SM = 2.5, N = 30 years and PM scenario.

Analyzing the evolution of the different curves for each configuration in Figure 5.21, we
can observe that, as in the case study with the CPB indicator, the configuration of the
Thermochemical system with the classic production strategy is the one that presents the
most deficient results that is the plant can recover the investment only with very small rates.
On the other hand, the other configurations recover the initial investment, within a period
of 30 years, considering a rate up to approximately ιr = 2%. Such a rate is particularly
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reasonable with regards to real life data. This shows that, for each of these configurations,
the CSP plant will be economically efficient for a large set of values of rate ιr.

Finally the most favorable configurations, independently of the variations of the real dis-
count rates, correspond to the Two-tank system with the Classical strategy (Two-tanks-Class-
12h) and the Thermochemical system with the Price Chasing (Reac-PC-1D-β1).

5.3.6 Comparison of some typical profiles

Comparing only the Price Chasing operation strategy with one Discharge phase for the two
storage systems (see Table 5.11), the revenues produced with the Two-tank system are higher,
but this implies a larger investment in the Storage System. In contrast, the Thermochemical
storage is designed to be smaller, attacking only the first peak of prices. In other words, the
Thermochemical system maintains a more efficient balance between investment costs and
revenues, for all price scenarios.

YEAR 10 30 50

Two-tanks
Incomes PP 94.73 219.21 287.93

NPV PP [Me] -208.50 -108.67 -62.53
Incomes PM 124.57 288.06 378.28

NPV PM [Me] -179.67 -42.08 24.73
Incomes PO 155.24 357.16 466.40

NPV PO [Me] -168.34 13.29 134.63

Thermoch.
Incomes PP 71.87 195.98 240.87

NPV PP [Me] -177.14 -94.12 -47.20
Incomes PM 103.63 271.48 358.89

NPV PM [Me] -152.85 -30.73 40.49
Incomes PO 118.85 332.71 439.16

NPV PO [Me] -135.73 23.21 110.63

Table 5.11: Economic results for Thermochemical and Two-tank storage system (with Price Chasing
strategy, one Discharge phase), considering different years.

Now, comparing the most relevant cases of a CSP plant with different storage systems
and operating strategies (see Figures 5.22 and 5.23), we can highlight the configurations that
have a better behavior compared to the rest.

When considering the PP scenario, a CSP plant with any of the configurations in question
would not be able to recover the investment in less than 50 years.
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Figure 5.22: These curves correspond to the different storage systems with the Price Chasing and Classical
operation strategies. SM = 2.5, ιr = 3% and PP scenario.

When considering the scenario PO, we can see in Figure 5.23 several changes in the results.
First, we have that all the evaluated configurations, except the Reac-Class-6h, obtain a
positive value for the NPV after 26 years. Excluding the Reac-Class-6h case and analyzing the
evolution of the curves of the other configurations, we can notice that the best configuration
corresponds to Reac-PC-1D, with a small advantage on the second configuration, that is
Two-Tanks-Class-12h. The Thermochemical system presents a higher cost-efficiency in the
operation of the plant.
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Figure 5.23: These curves correspond to the different storage systems with the Price Chasing and Classical
operation strategies. SM = 2.5, ιr = 3% and PO scenario.

Let us emphasize that the optimization problems are solve using the all purpose optimization
tool fmincon of Matlab (with interior point methods). The problem being highly non-
convex, the obtained solutions (physical/operational variables) are only stationary point or
at the best local minimums and they depend on the initial point. As a consequence the
optimisation in the case of Price Chasing strategy (thus with an higher degree of liberty) could
possibly not reach the same optimal value as the more restricted optimisation with Classical
strategy. This situation can be observed in Figure 5.22 between the curves «Two tank-PC-
1D»and «Two tanks-Class-12h». The difference, in terms of NPV values, is nevertheless no
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significant for a -somehow classical- lifespan of the project of 30 years (see [31, 130]).
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5.4 Conclusion
In conclusion, the main objective of this work was to develop a comparative study of the fea-
sibility and economic efficiency of a CSP plant with different storage systems and production
strategies, along with the impact of considering different pricing scenarios. In these cases
studied, we have a parallel between technologies and strategies commercially implemented
and those that are still in development phase.

First, when the sensitivity study was carried out using only the classical LCOE criterion,
with Classical strategy and varying the discharge duration, in both the PP and PO scenarios,
the Two-tank system with a duration of 12 hours for the Discharge phase was the most cost
efficient to implement. On the other hand, it should be noted that for the Thermochemical
system (optimistic case β = 1, 10 hours of Discharge phase) a very low value was also
obtained. But of course, since the LCOE indicator does not take into account incomes,
different price scenarios do not generate important variations of the LCOE (see Figure 5.9
and 5.10).

For the second sensitivity study, again with Classic strategy but using now the NPV
criterion, in all prices scenarios the results also indicated that the Two-tank storage system
was the most cost-effective. Moreover, in the case of the PO scenario, we obtained a positive
NPV for Discharge phases longer than 7 hours. For the Thermochemical system the most
cost-efficient corresponds to a Discharge phase of 8 hours (the best configuration) while the
optimal duration is of 6 hours if the PP scenario is considered.

For the third case study, using the CPB criterion and for the PO scenario, we obtained
that, after a period of 26 years, the investment is recovered with the configurations Reac-
PC-1D and Two-Tanks-Class-12h. When the IRR criterion is used, the best configuration
corresponds to Two-Tanks-Class-12h, obtaining a NPV equal to zero for a real discount rate
ιr = 2.1% over a time horizon equal to 30 years. Note that the configuration Reac-PC-1D
reaches extremely similar performance.

These case studies also enlighten how the consideration of different prices scenarios im-
pacted the sizing, operation and economic benefit of the CSP. Notice that considering the
NPV, CPB and IRR indicators using the PO scenario, we found that it was possible to re-
cover the investment mainly in a period of 30 years. It is important to emphasize that no
subsidies are considered in this work.

One of the main contribution of this work is not only to provide a large spectrum tool (with
possible variations of the economical criterion, of the electricity price, of the real discount
rate) but more importantly to emphasize the real pertinence of an optimisation process in
which the optimal design of the storage and the optimal operation are jointly (and not
sequentially) decided/computed. And this allows to prove that an economical equilibrium
for CSP is possible both with Two-tanks and Thermochemical technologies.

Some possible extensions could be first to integrate to the configuration of a hybrid storage
system (Two-tanks/Thermochemical), second, to investigate the feasibility of considering
operating strategies for long periods of time like inter-seasonal strategies and third to reinforce
the present analysis by using specific optimization methods to better embrace the high non-
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convexity of the problem.
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Chapter 6

Optimal Operation of a CSP plant under
DNI perturbations using switch controls

Solar irradiation variability is one of the primary challenges confronting solar power plants
[48]. The amount of solar radiation received varies throughout the day and year due to
Earth’s rotation and atmospheric factors. This leads to fluctuations in electricity produc-
tion, making solar energy generation intermittent rather than constant. Additionally, the
geographic location of a solar plant also influences the amount of solar radiation received,
which can affect its efficiency. On the other hand, studies are currently being conducted to
counteract the uncertain variability resulting from weather conditions, like the presence of
clouds and rain can dramatically reduce the amount of sunlight reaching photovoltaic panels
or mirrors in concentrated solar power plants [149]. Clouds can block direct sunlight and
scatter radiation, diminishing the intensity of available solar energy. Rain can temporarily de-
crease panel efficiency by affecting their ability to capture and convert sunlight into electricity.

These variations and impacts related to solar irradiation variability and weather condi-
tions pose a significant challenge for the integration of solar energy into electrical grids and
ensuring stable and reliable production. Therefore, research and development of technolo-
gies and strategies to mitigate these effects are crucial to fully harness the potential of solar
energy as a clean and sustainable energy source [48].

In this exploratory chapter, our main focus is to develop a sufficiently reduced differential
model for implementing control operations that can react to these variations and maintain
economical performance of the plant. This challenging task has at least three components
that deserved to be explored: First, the differential system modeling the dynamics of the
plant; Second, the operation of the Rankine cycle including possible shutdowns; and third,
the operation under uncertain irradiation.

With respect to the first aspect, the differential system needs to balance the trade-off
between representation of reality, and management of the model. If the model is too simple,
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connection with real plants might be lost. If the model is too complicated, it might become
impossible to find solutions to the induced control problems. Here, we propose a model that
takes into account these aspects.

With respect to the second aspect, a natural consequence of variability of solar irradia-
tion is that plants are not capable of maintaining continuous production. Thus, it becomes
necessary to turn off the Rankine cycle, for a period of time. We will call this action as a
shutdown of the Rankine cycle. In this work, we provide an initial exploration of how to
deal with shutdowns, by including a binary control (the switch control) to alternate between
two dynamics: one with the Rankine cycle on producing electrical power within its nominal
range, and the other with the Rankine cycle off, where no electrical power is produced. We
explore some scenarios that require one shutdown, and we look for the optimal one.

To model scenarios with disturbances, we assume that, in the presence of significant varia-
tions in solar irradiation, the capture of heat in the solar receiver is suspended. In the real
context, strong disturbances can damage the solar receiver, therefore, one of the measures
taken in this type of situation is to defocus the mirrors to reduce the solar concentration. This
type of measures will be assumed to be pre-established in the dynamics of the model. This
action is assumed and represented by the useful power function. In order to determine the
optimal shutdown instant and duration, a series of optimal control problems will be solved
for each critical scenario under consideration.

While this is an initial exploration of the problem of including switch controls, our de-
velopments here suggest that the proposed model is suitable for more complex scenarios.
Moreover, eventually it might lead to new solutions on how to manage shutdowns of the
Rankine cycle. The third aspect is left as a perspective of this work.

6.1 Dynamics of the reduced plant model
The model we will use to study and analyze the optimal shutdown of the Rankine Cycle is a
system of ordinary differential equations consisting of four state variables and three control
variables. This model represents the dynamics of a CSP plant with a two-tank storage sys-
tem, similar to the one described in the previous chapter. The main difference is that we will
consider a direct configuration, with the storage tanks as part of the main loop instead of the
indirect configuration presented in Chapter 5. As shown in Figure 6.1, the plant’s schematic
includes strategically located nodes for which our model will provide information regarding
temperatures, mass flows, thermal powers, and the amount of mass in the storage tanks.

In this model, we consider the use of molten salt as the heat transfer fluid, which circulates
throughout the plant in a closed-loop system. Therefore, we assume that the total mass
within the entire plant remains constant over time. We consider a fixed time horizon, that
we denote by H, which will be in hours.
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In the following figure, we present the reduced model of the CSP plant with the two-tank
storage system.

Figure 6.1: Scheme of a CSP plant reduced model.

As illustrated in Figure 6.1, the reduced model of the solar power plant comprises two
black boxes: the Solar Receiver System and the Rankine Cycle. Additionally, the system
incorporates two storage tanks and two pumps. Focusing on the Solar Receiver System,
this component covers the process of capturing and transferring thermal energy to the heat
transfer fluid as it enters the plant (node 1). The thermal power is subsequently represented
by the function of useful thermal power (Qu).

The two pumps control the movement of the heat transfer fluid throughout the plant.
Pump 1 is responsible for directing the fluid from the blue tank to the red tank, where it
receives the useful thermal power exchange between nodes 4 and 1, the flow of this fluid will
be denoted by ṁSF . At the same time, Pump 2 works to transport the accumulated energy
through the mass flow of the heat transfer fluid ṁR, from the red reservoir to the Rankine
cycle, which occurs between nodes 2 and 3. In this process, thermal energy is converted into
electrical energy. As a result, the now cooled heat transfer fluid is diverted to the blue tank
to start the cycle once again.

As for the solar field component, we will simplify the heat transfer process by assuming
that the thermal power entering the plant (from node 4 to 1) is described by an exogenous
function, which we will refer to as the useful thermal power function (detailed for the first
time in the previous chapter). This is expressed as:

Qu(t) = cp · ṁSF (t) · (T1(t)− T4(t)), ∀t ∈ [0, H]. (6.1.1)

To obtain this function, the hourly average values of useful thermal power are simulated
using the SAM [103] software. This work will use this representation of the useful thermal
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power, which is,

∀t ∈ [0, 24], Qu(t) =

{
p(t) if t ∈ [tsunini , t

sun
fin ],

0 if not,
(6.1.2)

with the polynomial interpolation function p(·) and the sunlight times, tsunini , t
sun
fin . This im-

plementation is explained in the Subsection 4.2.1. We will consider curves that represent
critical scenarios in which there is no thermal power during certain time intervals.

From equation 6.1.3, the expression to represent the temperature variation at node 1 (T1)
is derived, that is,

T1(t) =
Qu(t)

cp · ṁSF (t)
+ T4(t). (6.1.3)

Regarding the Rankine Cycle, we will assume that the plant being modeled retains the
same nominal characteristics considered for the same component in Chapter 5. Therefore,
we will also consider a quadratic approximation described in Subsection 4.2.2, which would
represent, in this case, the variation of temperature at node 3. It will be defined based on
the temperature at node 2 and the mass flow rate ṁR. Then, the quadratic regression is,

T3(T2(t), ṁR(t), Ta) = c1 + c2T2(t) + c3T
2
2 (t) + c4Ta + c5T

2
a + c6ṁR(t) + c7ṁ

2
R(t)

+ c8T2(t)Ta + c9T2(t)ṁR(t) + c10ṁR(t)Ta, ∀t ∈ [0, H],
(6.1.4)

where the values for the coefficients cα, with α = 1, ..., 10, are in Table 4.1, and Ta stands
for the ambient temperature.

For the reduced plant modeling, we relied on the articles [147, 146, 90]. On the one
hand, they provide a detailed model of heat transfer from the receiver surface to the heat
transfer fluid, which will then be transported throughout the plant. On the other hand, they
specifically model and validate thermal energy storage systems with tanks, and subsequently
conduct a study of control and operation strategies in scenarios with clear and cloudy days.
In the Tables 6.3, 6.1 and 6.2, we describe the state and control variables, parameters and
complementary functions used in the model (6.1.5-6.1.8).

Notation Description Unit/ Valor
T1 Molten salt temperature at node 1 [◦C]
T3 Molten salt temperature at node 3 [◦C]

Table 6.1: Complementary functions.
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Notation Description Unit/ Value
A Tank area [m2]
M Mass [kg]
cp Specific heat capacity t of salt [J/(kg·◦C)]
T Temperature [◦C]
Q Thermal power [W]
α Heat loss coefficient of the tanks [W/(m2·◦C)]
η Coefficient of performance [-]

Acronyms
a Ambient

elec Electrical
CT Cold tank
HT Hot tank
Nom Nominal

Table 6.2: Parameters and notations.

Notation Description Unit/ Value
T2 Molten salt temperature at node 2 and hot tank [◦C]
T4 Molten salt temperature at node 4 and cold tank [◦C]

MHT Mass of molten salt in the hot tank [kg]
MCT Mass of molten salt in the cold tank [kg]
ṁSF Mass flow of salt controlled by pump 1 [kg/s]
ṁR Mass flow of salt controlled by pump 2 [kg/s]

Table 6.3: State and control variables.

The equations that describe the model of this work are:

d(MHT )

dt
= ṁSF − ṁR (6.1.5)

d(MCT )

dt
= ṁR − ṁSF (6.1.6)

d(cp · (T2 − T hot
ref ) ·MHT )

dt
= ṁSF · cp · (T1(T4, ṁSF )− T hot

ref )− ṁR · cp · (T2 − T hot
ref )

− α ·A · (T2 − Ta) (6.1.7)

d(cp · (T4 − T cold
ref )MCT )

dt
= ṁR · cp · (T3 (T2, ṁR, Ta)− T cold

ref )− ṁSF · cp · (T4 − T cold
ref )

− α ·A · (T4 − Ta) (6.1.8)

Equations (6.1.5)-(6.1.6) are the mass balance of the tanks, which are representing the
mass flow of molten salt into and out of each tank. We assume that this fluid system is
controllable using Pump 1 and Pump 2 (see Figure 6.1), and whose representation will be
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through the mass flows ṁSF , ṁR.

The temperature at node 2 (or in the hot tank) is represented by equation (6.1.7). In this
expression we follow the variation of energy at he Hot tank, considering the incoming energy
to the tank, coming from the solar field, minus the energy directed to the power block and
the energy lost with respect to the ambient temperature (Ta). Also, in this equation, we have
the function that describes the behavior of temperature at node 1 (see equation 6.1.3), which
is deduced of the equation (6.1.1). Analogously, the equation representing the temperature
variation at node 4 (or in the cold tank) is described by (6.1.8), with the addition of a com-
plementary second function that describes the temperature at node 3 (see eq. 6.1.4). Again,
this is done by following the energy variations at the cold tank. Finally, the T hot

ref and T cold
ref

temperatures represent a nominal reference temperature inside the tanks.

By isolating the time derivatives of the state variables MHT , MCT , T2 and T4, we obtain
the following simplified system:

d(MHT )

dt
= [ṁSF − ṁR] , (6.1.9)

d(MCT )

dt
= [ṁR − ṁSF ] , (6.1.10)

d(T2)

dt
=

1

MHT

[
ṁSF (T1(T4, ṁSF , β)− T2)−

1

cp
[α ·A · (T2 − Ta)]

]
, (6.1.11)

d(T4)

dt
=

1

MCT

[
ṁR(T3 (T2, ṁR, Ta)− T4)−

1

cp
[α ·A · (T4 − Ta)]

]
. (6.1.12)

To finish, we provide an expression of the electric power Ẇelec(t), produced by the system.
According to [90], the estimation of the efficiency of the Rankine cycle is represented by,
ηR = ηel ·ηt, where ηel is the efficiency of the generator and ηt is the efficiency of the turbines.
Thus the net electrical power is given by

Ẇelec(T2(t), ṁR(t)) =QR(T2(t), ṁR(t)) · ηR (6.1.13)

where QR is the heat power adsorbed by the Rankine cycle, that is,

QR(T2(t), ṁR(t)) = cp · ṁR(t) · (T2(t)− T3(T2(t), ṁR(t), Ta)).

6.2 Plant dynamics with Switch Control
In real-life scenarios where a critical climatic situation arises for a Concentrated Solar Power
(CSP) plant, one of the measures taken to safeguard the plant is to shutdown one or more
of its components. In this section, we will introduce a switch control variable, into the pre-
viously presented model. This variable will enable the transition between the two dynamics
corresponding to the operation being on and off in the Rankine cycle [17, 148].
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The material considered for heat transfer throughout the plant is molten salt, which must
be in constant motion along with minimum temperatures to prevent solidification [62]. There-
fore, if the Rankine Cycle is turned off, the mass flow rate ṁR must continue its transition
to node 3 through an auxiliary pathway (see, red dashed line in Figure 6.1). In contrast, the
temperature at node 3 will be affected, and its value will be the same as that of node 2. In our
model, this means to switch the expression of T3 given by (6.1.12), by the expression T3 = T2.

To model this alternation for T3, we need to consider a control variable of the switch type,
denoted as v : [0, H] → {0, 1}, where 0 represents the off state, and 1 represents the on state.
Thus, we seek to capture the ability to activate or deactivate the Rankine cycle if necessary.
To depict this condition, the switch control variable would be included in equation 6.1.12 as
follows:

d(T4)

dt
=

1

MCT

[
ṁR([v · T3 (T2, ṁR, Ta) + (1− v) · T2)]− T4)−

1

cp
[α · A · (T4 − Ta)]

]
.

Thus, the model that considers on/off in the Rankine cycle is:

d(MHT )

dt
= [ṁSF − ṁR] , (6.2.1)

d(MCT )

dt
= [ṁR − ṁSF ] , (6.2.2)

d(T2)

dt
=

1

MHT

[
ṁSF (T1(T4, ṁSF , β)− T2)−

1

cp
[α ·A · (T2 − Ta)]

]
, (6.2.3)

d(T4)

dt
=

1

MCT

[
ṁR([v · T3 (T2, ṁR, Ta) + (1− v) · T2)]− T4)−

1

cp
[α ·A · (T4 − Ta)]

]
. (6.2.4)

When the Rankine cycle is running (between nodes 2 and 3), the temperature at node 3 is
determined through the complementary function (6.1.4), but when the Rankine cycle is off,
the mass flow continues its course through a circuit auxiliary, and therefore, the temperature
of node 3 will coincide with that of node 2. Finally, the expression (6.1.13) representing the
electrical power generated by the plant with the switch control would be as follows:

Ẇelec(T2(t), ṁR(t), v(t)) =QR(T2(t), ṁR(t), v(t)) · ηR (6.2.5)

where QR is the heat power absorbed by the Rankine cycle, that is,

QR(T2(t), ṁR(t), v(t)) = v(t) · cp · ṁR(t) · (T2(t)− T3(T2(t), ṁR(t), Ta)).

6.3 Optimal control problem
In this section, we will describe the optimal control problem where the goal is to maximize
operational incomes. For this, we will describe the revenues and costs generated by the plant
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in its daily operations. In this part, we use a price function λ(t), for the electric power. As
in Chapter 5.1 we assume that λ is exogenous and that the plant’s operation does not affect
it.

6.3.1 Objective functional

• Revenue: The goal is to maximize the profit of the plant, which comes from the
electrical energy produced in the time interval [0, H]. This, under the assumption
that all the produced energy will be purchased. Then the Revenues derived from the
produced energy are given by:

Rev(T2(t), ṁR(t), v(t)) =

∫ H

0

Ẇelec(T2(t), ṁR(t), v(t)) · λ(t)dt

• Costs: To maximize profit, one needs to take into account the operational costs
of the plant, such as operation of the mirror field and pumping of the different heat
transfer fluids. These operating costs are modeled as electricity consumption, which is
purchased at the market price λ(t). The operating cost functions are defined as follows:

1. Mass flow pumping cost ṁSF : During power production, mass flow ṁSF is
pumped by pump P1. This marginal cost is linear with respect to ṁSF so

CostP1
(ṁSF (t)) = CP1

·
∫ H

0

λ(t) · ṁSF (t) dt

2. Mass flow pumping cost ṁR : During power production, mass flow ṁR(t) is
pumped by pump P2. This marginal cost is linear with respect to ṁR so

CostP2
(ṁR(t)) = CP2

·
∫ H

0

λ(t) · ṁR(t) , dt

3. Start-up - Rankine: Before starting the Rankine cycle and producing electrical
power, the Rankine cycle must be heated up. When the Rankine cycle is fully
cold, the preheat requirement is modeled as a 20 min delay in actual production.
However, depending of the form of the switch function v : [0, H] → {0, 1}, this
start-up cost becomes hard to model. As mentioned before, here we will only
consider exploratory scenarios, where only one shutdown is needed. That is, the
Rankine cycle will be on, except for a continuous interval of length ∆t. In this
situation, the start-up cost will be modeled with an average cost (λ), the nominal
thermal power of the plant (ẆNom) and the attenuation function φ(t) := 1 −
exp(− 3

2
t) (similar to the implementation made in equations 5.2.37 and 5.2.38),

with the formula

CostSU(v(t)) =
φ(∆t) · λ · ẆNom

3

where ∆t is denoting the amount of time that the Rankine Cycle was off.

The objective functional will be the difference between previous revenues and costs.
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6.3.2 Control Problem

Our objective functional is defined as follows:

J(ṁSF (t), ṁR(t), v(t)) = Rev(T2(t), ṁR(t), v(t))− CostP1
(ṁSF (t))

− CostP2
(ṁR(t))− CostSU(v(t))

(6.3.1)

The resulting optimal control problem is then given by:

max J(ṁSF (t), ṁR(t), v(t)) (6.3.2)

subject to the model (6.2.1), considering initial conditions:

T4(tini) = T 0
1 T2(tini) = T 0

4 (6.3.3)
Msalt_CT (tini) = M 0

salt_CT Msalt_HT (tini) = M 0
salt_HT (6.3.4)

and with the control constraints:

0 < ṁSF ≤ ṁSF (t) ≤ ṁSF , 0 < ṁR ≤ ṁR(t) ≤ ṁRank, (6.3.5)

v(t) ∈ {0, 1}, ∀t ∈ [tini, tfin]. (6.3.6)

Finally, for all t ∈ [0, H], we include the following physical constraints:

T2(t) ∈ [290, 565], T4(t) ∈ [290, 565]. (Temperatures range for the salt) (6.3.7)

MHT (t) +MCT (t) = MTotal (Mass balance between the two tanks) (6.3.8)

Ẇmin
Nom · v(t) ≤ Ẇelec ≤ Ẇmax

Nom · v(t) (Nominal maximum Power) (6.3.9)

ṁSF , ṁR,MHT ,MCT ≥ 0 (6.3.10)

The restriction on Ẇelec means that either the Rankine cycle is off and so Ẇelec = 0, or it
is on and then Ẇelec is within the range of nominal values [Ẇmin

Nom, Ẇ
max
Nom].
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6.4 Simulations - Search for the optimal shutdown.
Up to now, we have presented a model with arbitrary switch control v : [0, H] → {0, 1},
that can model any possible shutdown operation. However, the problem in full generality
becomes hard to solve. In this first preliminary study of the problem, we want to study the
pertinence of this model by considering controls where only one shutdown is needed, that is,
where v takes the form

v(t) =

{
0 if t ∈ [h, h+∆t]

1 otherwise.

Here, we search for the optimal shutdown of the Rankine cycle, in the sense that we want to
determine the optimal v described above.

In order to determine the optimal shutdown of the Rankine cycle, we must find the starting
moment of shutdown and its duration. Identifying this initial moment is not straightforward,
as it can be influenced by various factors, including variations in the useful power curve,
electricity market prices, the amount of heat stored in the tanks, and more. To address these
factors, we will solve a series of optimal control problems, each one associated with a prefixed
switch control. Since, we study the case of a single switch for the Rankine cycle, the switch
control is fully determined the initial shutdown time h and its duration ∆t.

According to [124], the Rankine Cycle needs on average 20 minutes to warm up and start
working. Therefore, we will consider ∆t time windows, where the Rankine cycle will be off;
we will start by considering a Rankine stop of 20 minutes from instant 0. Then, we will
shift the window by moving its initial time according to a discretization of the [0, H]. This
is shown in the following figure:

Figure 6.2: Methodology to find the optimal shutdown.

For every initial time h and every time window ∆t, we will solve the optimal control
problem described in Section 6.3.2, by imposing the following switch: the Ranking cycle bust
be turn off on the interval [h, h+∆t], and turn on otherwise. The methodology is summarized
in the following pseudo-code.
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Algorithm 2: Routine - Bocop
Input: Initial condition x0 = (T 0

2 , T
0
4 ,M

0
HT ,M

0
CT , ṁ

0
SF , ṁ

0
R),

times = [h0, h1, ..., H],
window = [20, 25, 30, ..., 60],

1 for h in times do
2 for ∆t in window do
3 Define vaux : [0, H] → {0, 1} as

vaux(t) =

{
0 if t ∈ [h, h+∆t],

1 otherwise.

4 Solve optimal control problem of Section 6.3.2 imposing v = vaux.
5 Set x∗(h,∆t) = (T ∗

2 , T
∗
4 ,M

∗
HT ,M

∗
CT , ṁ

∗
SF , ṁ

∗
R) as the found solution.

Output: The full vector x∗ = (x∗(h,∆t) : (h,∆t) ∈ times× window).

To solve these optimal control problems (6.3.2)-(6.3.10), the specialized software BOCOP
was used [19]. Since we wish to solve various control problems by varying the time window
and shifting it along the time horizon, we propose the Algorithm 2, where two loops have
been created, corresponding to the variation of the time window and the shift of the off inter-
val [H,H +∆t]. Some parameters were artificially set, while others were chosen as described
in the literature [128, 90, 146, 24, 124]. See Table 6.4 table for more details.

Notation Description Unit Value
Atank Tank area [m2] 1842.54
cp Specific heat capacity of the molten salt [J/(kg·◦C)] 1560

Tamb Ambient temperature [◦C] 29.65
αtank Tank-Ambient Heat Loss Coefficient [W/m2 ◦C] 0.4
ηR Rankine effectiveness coefficient [-] 0.8

Table 6.4: Parameters and notations.

As illustrated in Figure 6.2, an optimal shutdown (if it exists) will be sought, For this, a
day will be considered, in which a first analysis will be to shift the 20 minutes of shutdown
(this time is set according to [124], where before starting the Rankine cycle and producing
electrical energy, the Rankine cycle must be preheated, which was estimated at 20 min)
during the whole time horizon [0,24]. Then, a second analysis will be to extend the shutdown
duration of the Rankine cycle by 5 more minutes and to shift this duration over the entire
time horizon. These analyses will be done until a shutdown with duration of 60 minutes is
considered.

124



6.4.1 Case 1: Useful thermal power Without perturbations

Figure 6.3: Exogenous functions. Useful thermal power and price function.

The first case to be analyzed is to consider a scenario without any type of disturbances.
For this purpose, two exogenous curves (see Figure 6.3) representing the useful thermal power
and a price curve will be considered. Both curves have been defined from the values studied
and analyzed in Chapter 5.

Figure 6.4: state variables and complementary functions of temperatures T1, T2, T3 and T4, without
shutdown of the Rankine cycle.

The temperatures found for the heat transfer fluid, which is Molten Salt, are within
safe ranges for the preservation of the material, i.e., T ∈ [290, 565] (see Figure 6.4). This
graph shows the variation of Temperature 1 (yellow curve) only since it corresponds to the
temperature of the molten salt coming from the receiver. With respect to the controls, we
can observe how the control of mass flow between nodes 4 and 1 (ṁSF ) exhibits a behavior
similar to that of the solar radiation curve. Indeed, this relationship is described by Equation
6.1.1, where, upon solving for Temperature 1, the mass flow becomes the quotient of useful
thermal power. On the other hand, there is no variation in mass flow ṁR over the time
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horizon. Consequently, given that this same mass flow passes through the Rankine cycle, we
obtain constant electrical power production (see Figure 6.6).

Figure 6.5: Control variables, mass flows ṁSF and ṁR, without shutdown of the Rankine cycle.

For the case without shutdown of the Rankine Cycle, it was found that the profits per day
of 26840.56 [e]. No additional simulations were carried out since in this case a continuous
production is already achieved.

Figure 6.6: Electrical power in a nominal range of 40 to 55 MW, without shutdown of the Rankine cycle.

6.4.2 Case 2: Useful thermal power with continuous perturbation

For the second study scenario, we have considered a more extended disturbance, lasting ap-
proximately 3 continuous hours (see Figure 6.7). Table 6.5 presents the results for the optimal
shutdown, occurring at time t = 5.83 hours in the time horizon, with a duration of 20 minutes.
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Figure 6.7: Exogenous functions. Useful thermal power and price function.

Duration - OFF Initial time Value - Objective function [e]
0 min - infeasible
20 min 5h_50min 26398.14
30 min 3h_40min 26074.82
40 min 12h_40min 26280.14
50 min 14h_10min 26125.23
60 min 19h_40min 25413.25

1h_10min 20h 25059.52
1h_20min 17h_50min 25473.63
1h_30min 8h_40min 25533.58

Table 6.5: Case 2, time and economic results. For every fixed duration value, only the optimal Initial time
is displayed.

According to the found results, it was not possible for the plant to operate without con-
sidering a shutdown of the Rankine cycle (see Table 6.5). On the other hand, the optimal
solution suggests that by shutting down the Rankine cycle at t = 5.83 for 20 minutes, a
greater gain is achieved compared to different shutdown scenarios (Duration-OFF, first col-
umn in Table 6.5).
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Figure 6.8: State variables and complementary functions of temperatures T1, T2, T3 and T4

In Figure 6.8, the dynamic change in the model when shutting down the Rankine cycle
is evident, as the temperature at node 3 changes at t = 5.83 from being around 290°C to
changing to another temperature close to 550°C, for 20 minutes. However, overall, the tem-
peratures remain within a safe range that preserves the properties of the heat transfer fluid
(molten salt) and the functionality of the plant. In Figure 6.9, it can be observed how the
plant utilizes a significant portion of the stored heat energy for electricity production until
around 11:00 hours, coinciding with the end of the continuous disturbance. Subsequently, it
begins to store energy until approximately 17:00 hours, with the aim of using this energy dur-
ing the period without sunlight. Finally, a stable production of electrical energy is achieved
without considerable variations throughout the time horizon (as shown on the right side of
Figure 6.10).

Figure 6.9: Control variable, mass flows with shutdown of the Rankine cycle at time t=5.83 (5 hours and 50
minutes), during 20 minutes.
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Figure 6.10: Mass in the cold and hot tanks and electric power.

6.4.3 Case 3: Useful thermal power with discontinuous perturba-
tions

Figure 6.11: Exogenous functions. Useful thermal power and price function.

Now let us consider a scenario with strong intermittent perturbations in the useful thermal
power curve, with two time intervals whose useful power will be zero. The price curve remains
the same as the one used previously (see Figure 6.11). For this case, we proceeded in the
same way, considering different time windows, starting from instant 0 and shifting it along
the time horizon.

According to the results, the optimal shutdown would occur at time t = 8.83 within the time
horizon of one day, lasting 30 minutes (see Table 6.6). In this scenario, unlike the previous
one, finding an optimal shutdown proved to be challenging (and even imposible) for many
cases. One reason for these infeasibilities is the intermittency in capturing heat energy, as
maintaining stable conditions within nominal ranges poses a significant challenge for the
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Duration - OFF Initial time Value - Objective function [e]
0 min - infeasible
20 min - infeasible
30 min 8h_50min 26449.85
40 min 12h 26286.19
50 min 3h_10min 25512.60
60 min - infeasible

1h_10min - infeasible
1h_20min - infeasible
1h_30min 12h_30min 25528.05

Table 6.6: Case 3, time and economic results. For every fixed duration value, only the optimal Inicial time
is displayed.

plant.

Figure 6.12: Control variable, mass flows with shutdown of the Rankine cycle at time t=5.83 (5 hours and
50 minutes), during 20 minutes.

As per the optimal solution, the behavior of the optimal controls aligns with what is
expected. On one hand, control ṁSF follows the useful thermal power curve, as indicated
by the expression for temperature T1 (see 6.1.3). This control must maintain conditions to
recover all useful thermal energy. On the other hand, control ṁR exhibits a constant and
stable behavior, ensuring that electrical energy production also occurs at a constant and
stable rate (see Figure 6.14).
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Figure 6.13: State variables and complementary functions of temperatures T1, T2, T3 and T4

In Figure 6.11, it is observed that the optimal shutdown occurs at the end of the first
disturbance, coinciding with the timeframe when the hot tank has the least amount of mass
(see Figure 6.14) and market prices are at their lowest throughout the time horizon. Tem-
peratures remain within the nominal safety range for both the plant and the heat transfer
fluid (see Figure 6.13), resulting in a stable production of electrical energy.

Figure 6.14: Mass in the cold and hot tanks and electric power.
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6.5 Conclusion
In this study, we developed a simplified model for a Concentrated Solar Power (CSP) plant,
allowing us to conduct simulations considering the shutdown of the Rankine cycle. Our inten-
tion is to further explore this model, considering not only a single switch but a finite number
of switches per day. The most relevant perspective of this chapter is to pave the way for the
consideration of stochastic disturbances, enabling the exploration of more realistic scenarios.

The constructed model was numerically validated for a single switch, and the challenge
lay in considering multiple switches, as it is computationally demanding. The model achieves
a good balance between the levels of detail found in the literature, providing crucial infor-
mation about temperatures, mass flows, tank masses, and generated electrical power.

Notably, independently of the various disturbances, the control variable ṁR consistently
exhibited a stable behavior, consequently ensuring a stable electrical energy production. This
stability can be attributed primarily to the decoupled dynamics, where the storage system
acts as a buffer against different disturbances, enabling the mass flow to remain constant
and/or within a nominal range.
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Chapter 7

Final Conclusion

In the initial part of this research, we focused on bilevel problems with cardinality constraints,
an area that has received little attention to date. We achieved explored mainly two possible
ways to include cardinality constraint, namely at the upper level and in a mixed form between
upper level and lower level. Sufficient conditions for the existence of solutions, equivalent
reformulation and application to a problem of optimal location for charging station of electric
vehicles have bee addressed. These investigations not only contribute to the knowledge to
under explored fields but also open the door to new areas of theoretical analyses and ap-
plications. Specifically, in this thesis, we concentrated on models where there is one leader
and multiple followers interacting with each other. As a natural extension of this work, the
case with multiple leaders and followers could be explored, as well as the development of
an alternative numerical method to solve problems with cardinality constraints at the upper
level since the obtained results in this last situation leads to an certain inefficiency in terms
of convergence speed and optimality gap.

In the second part of this research work, the primary objective was to assess and compare
the practicality and economic efficacy of various storage systems and production strategies
within a Concentrated Solar Power (CSP) plant, taking into account diverse pricing sce-
narios. The findings indicated that the Two-tank storage system is the most cost-effective
option, evaluated using criteria such as: Levelized Cost of Electricity (LCOE), Net Present
Value (NPV), Internal Rate of Return (IRR) and Conventional PayBack (CPB). But this
analysis also enlighten promising results for the the Thermochemical storage system, for ex-
ample showing that under certain electricity market configurations the initial investment and
operating costs can be balanced with the revenues, and this before the 30 years lifespan of
the project. In this first study, we underline the importance of considering different pricing
scenarios. Possible extensions of this research include delving into hybrid storage systems
and exploring inter-temporal strategies.

For the optimal operation problem, the last part of the PhD, a simplified model for a
Concentrated Solar Power (CSP) plant was developed, allowing simulations with possible
the shutdown of the Rankine cycle. The constructed model was numerically validated for a
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single switch, and the challenge lay in considering multiple switches, as it is computationally
demanding. The model achieves a good balance between the levels of detail found in the
literature, providing crucial information about temperatures, mass flows, tank masses, and
generated electrical power. Additionally, the incorporation of a switch variable decouples
part of the dynamics, allowing us to build a sufficiently simplified model for controlling and
optimizing processes to maximize plant profits. The intention is to further explore this model,
considering not only a single switch but a finite number of switches per day. The significant
perspective of this chapter is to pave the way for the consideration of stochastic disturbances,
enabling the exploration of more realistic scenarios.
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