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1. LITERATURE REVIEW 
 

 

1.1 State of the art of digital soil mapping (DSM)  

 

 

1.1.1 Soil data and auxiliary information 

 

One cannot begin to talk about digital soil mapping without the acknowledgement of 

researchers who introduced the term in the early 1980s (Burgess and Webster, 1980; 

McBratney et al., 1982), which lead to Digital soil mapping (DSM) that was defined by 

Schull et al. (2003) as the computer-assisted production of digital maps of soil types and 

soil properties by the use of field and laboratory observation methods coupled with spatial 

and non-spatial soil inference systems, to become a main subject of soil sciences. Several 

authors stated that digital soil mapping applies pedometric, which is defined as the 

application of mathematical and statistical methods for the study of the distribution and 

genesis of soil, to map or predict the spatial and temporal variability of soils (McBratney 

et al., 2000, 2003; Grunwald, 2006). The use of DSM is aimed at extending the 

functionality of soil information systems from the storage of digitised conventional soil 

maps to the production of soil maps to meet current and future demand for accurate, up-

to-date soil information. Even though DSM is the preferred soil mapping method, studies 

showed that traditional soil mapping and digital soil mapping are based on a similar 

principle (Roecker et al., 2010). To support this idea, Seeno (2015) concluded that both 

types of mapping can be interpreted as predictive because both look to the known 

relationship between soil and the more visible environmental variables to make inference 

about the properties and behaviour of soil. 

 

Soil mapping, in general, requires (i) a predefined model of soil formation, and (ii) data 

on soil properties and on other environmental variables that have a significant impact on 

soil formation and thus on the spatial distribution of the soil properties (Dobos et al., 

2006). Therefore in this sense, traditional soil mapping and digital soil mapping do not 

differ much (Roecker et al., 2011). The main reason that makes them similar is the fact 

that both approaches need input data on soil and covariates characterizing the 

environment where the soil formation takes place. However, the major difference 

between the approaches is the way in which the model derives the soil information from 

the input data. The traditional models are based on empirical studies and qualitatively 

defined correlation that formulates a mental model in the surveyor’s mind used to 

understand and characterize the soil resources (Roecker et al., 2011). The main problem 

with this approach is that it requires intensive fieldwork, time-consuming and too costly. 

The decisions are made mainly on the field, where all environmental covariates can be 

directly observed and information on the soil can be deduced. On the other side, digital 

soil mapping is based on hard soil data as well. Just like in traditional soil mapping, profile 

information is required to train the models and to understand the soil resources of the 

area. One of the advantages of digital soil mapping is that it is cheap, manages time and 

requires digital data sources as input variables for quantitative models (Dobos et al., 

2006). The advancement of technology made it easy for digital soil mapping of soil 

properties. In 1941, Jenny introduced a well-recognized equation that identified 5 major 



  2  

soil formation factors namely, climate, organisms, relief, parent material and time which 

was extracted from the hypothesis that was first proposed by Dokuchaev (1883) Eq. 1.  

 

                                            𝑆 = 𝑓 (𝑐𝑙, 𝑜, 𝑟, 𝑝, 𝑡)                                                            (1) 

 

To successfully predict the soil properties, a surveyor needs good quality and adequate 

resolution input data. However, Jenny’s approach is focused on the prediction of soil 

physiochemical and biological properties on a given location, but Roecker et al. (2011) 

noted that Jenny did not consider the soil as a continuum, where the soil properties at a 

given location depends on the geographic position and also on the soil properties at 

neighbouring location. Some properties are difficult and expensive to measure but can be 

successfully and accurately predicted from other available properties of the same area or 

field. It was then that McBratney et al. (2003) modified the equation introduced by Jenny 

(1941) and added two more variables in Equation 1 to make them 7. The new equation is 

well-known as SCORPAN. 

 

                                     𝑆𝑎 𝑜𝑟 𝑆𝑐𝑙 = 𝑓 (𝑆𝐶𝑂𝑅𝑃𝐴𝑁)+ Ɛ                                                    (2) 

 

Where Sa is soil attributes, Scl is referring to soil class, S is available soil properties at the 

same area, C is climate, O is organisms, R is a relief, P is parent material, A is age or 

sometimes referred to as time and N is known as geographic position. McBratney et al. 

(2003) also noted that along the way there would be some errors that might be committed 

when predicting the soil properties and introduced the error in the equation that will 

account for committed errors during the survey. 

 

 

1.2 Predicting and modelling of soil variability 

 

 

The prediction of soil properties at lower depth is not an easy task to do, because some of 

the predictor variables such as remote sensing spectral indices used in DSM are more 

correlated with soil properties of the top soil compared to lower (Taylor et al., 2013). 

Incorporating spatial dependence in statistical prediction models for categorical soil 

attributes such as soil types and/or texture class is not as straightforward as for continuous 

attributes. Therefore, many digital soil mapping application focus on methods that ignore 

spatial dependence in the categorical soil variable, such as multinomial logistic regression 

(Debella-Gilo and Etzelmüller, 2009; Hengl et al., 2007; Kempen et al., 2009), and 

classification and regression trees (Minasny and McBratney, 2007; Nelson and Odeh, 

2009; Stum et al., 2010). However, variability of soil properties can also be quantified 

using classical statistics, which involves the determination of mean, range and coefficient 

of variation (CV); on another hand, geostatistical tools are also used, which for example 

determine: semivariogram, autocorrelation, coefficient of determination, cross 

semivariogram, kriged and co-kriged maps (Jabro et al., 2010). McBratney et al. (2003) 

stated that different interpolation techniques have been used with varying degrees of 

success in order to create more accurate property maps. 

 

On the other side, an experimental variogram is usually used to measure the variability 

between pairs of points at various distances (Deutsch and Journel, 1998). This is the 

reason that the correlations at various distances can be established to come up with values 

non-sampled field location (Tola et al., 2017). However, the work conducted by Taylor 
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et al. (2013) proved that predicting regression models based on remote sensing 

information that describes topography and vegetation vigour can also be used to 

characterize the spatial variability of soil physical properties with success. Akpa et al. 

(2014) motivated the use of DSM and regards it as a promising approach that combines 

field observations and laboratory data, with remote and proximal soil observations to the 

spatial prediction of soil attributes. Many scientists are now considering the use of DSM, 

which lead to McBratney et al. (2003) formalizing DSM in the now widely used Scorpan 

model. 

 

Bacis Ceddia et al. (2009) emphasized that soil sampling allows the characterization of 

several soil attributes which may be estimated at unsampled sites through existing 

models. However, Siquiera et al. (2014) stated that sampling density also plays an 

important role in obtaining representative information to make a proper decision about 

the variability of properties across the landscape and or field. Isaaks and Srivastava (1989) 

concluded that deterministic models are considered to be more appropriate when there is 

enough information on physical and chemical properties. However, Webster (2000) could 

not agree nor deny that, instead, he stated that use of deterministic models for the 

understanding of both soil formation and their attributes does not result in accurate 

estimation, because of the great complexity among soil properties. 

 

Vieira (2000) further added that geostatistic focus is based on a probabilistic model, and 

has been successfully used in soil science for quantitative description of spatial 

variability, which may support predictions about the phenomena or property investigated. 

However, Brown et al. (2006) also motivated the use of remote sensing images of bare 

soil and spectral reflectance of soil samples to accurately and rapidly estimate soil 

properties across the field. Bacis Ceddia et al. (2009) indicated that it is very important 

for researchers to identify landscape features when using soil mapping procedures to 

predict soil properties. Much work has been done trying to correlate landscape features 

(altitude, slope, and shape) with physical soil properties (Kreznor et al., 1989; Pachepsky 

et al., 2001; Sobieraj et al., 2002; Rezaei and Gilkes, 2005). For example, in a study done 

by Novaes Filho et al. (2007) spatial variability of soil colour and texture were considered 

feasible to be used in models of DSM in Southern of Amazon. 

 

McBratney et al. (2000) noted that prediction can be made at unobserved locations using 

the environmental variables at those locations. With this technique, soil properties can be 

predicted using their interrelationships with the environmental covariates, such as digital 

elevation models, remotely sensed data and physical attributes obtained through 

laboratory analysis of soil samples (Mayr et al., 2008; Odeh and McBratney, 2000). Akpa 

et al. (2014) also indicated that models used in spatial variability studies are often based 

on compositional ordinary kriging (COK), regression kriging (RK), multiple linear 

regression (MLR),  generalized linear model (GLM),  regression tree models (RTM) and 

recently random forest model (RFM) with varying scale. However, kriging is known to 

have some theoretical and practical shortcomings such as probabilities that are outside 

the interval (D'Or and Bogaert, 2004; Papritz, 2009). 

 

From all the methods used to characterize and quantify the spatial variability of soil 

properties within the agricultural fields, many authors suggested that Geostatistics has 

proven to be useful, and has been successfully used by soil scientists and engineers 

(Webster and Oliver, 2001; Iqbal et al., 2005). Complementary, new methods of 

determining spatial variabilities such as DSM and remote sensing have been approved 
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and have attracted the attention of researchers (Taylor et al., 2013). The literature further 

indicates that semivariogram and cross-semivariogram have been continuously used to 

characterize and model spatial variance of the data to assess how data points are related 

with separation distance in the field (Nielsen and Wendroth, 2003). To prove the success 

of geostatistics in the field of soil science, Adhikary et al. (2009) applied with success the 

Geostatistics to study and analyse the spatial behaviour of soil texture and provided the 

maps which assisted the farmers to design the land management and the obtained results 

were convincing. 

 

Due to DSM’s increasing popularity, the number of models and the procedures for 

optimizing modelling performance has increased (Minasny and McBratney, 2016). Some  

models applied to soil mapping include the following: geostatistical (Kempen et al., 2012);  

fuzzy membership (Nolasco-Carvalho et al., 2009; Taghizadeh-Mehrjardi et al., 2015;  

Rizzo et al., 2016); and clorpt techniques based on environmental correlation, usually  

applying, CART, and regression models (Brungard et al., 2015; Heung et al., 2016; Chagas 

et al., 2017). Breiman (2001) used CART to develop the RF method that features 

enhanced accuracy without substantially increasing the number of calculations. RFM 

grows trees to the maximum depth possible, but the degree to which splits at nodes are 

randomly selected can be controlled (Svetnik et al., 2003) and it inherits the advantages 

of CARTs for low calculation load and high explanatory power. Amongst its advantages, 

Iverson et al. (2008) stated that RFM can also be used to determine the relative 

importance of input variables and that makes it a preferred algorithm to predict the soil 

variability. However, its accuracy of the models depends on the quality of information 

available to perform the interpolation of unsampled areas, in this sense, it is advisable to 

use variables that showed positive influence with the predicted property. 

 

 

1.3 Selection of input variables 

 

 

Selection of input variables for models is one of the critical tasks to do, as to perform a 

representative mapping of soil properties, it is important to select the most appropriate 

and relevant environmental covariates. Also, environmental variables connected to soil 

processes are also connected to each other. Swanson et al. (1988) stated that just as 

geomorphology determines soil properties, these environmental variables determine the 

pattern of vegetation across the landscape. The authors made an example of vegetation 

that is influenced by both soil properties and topographic position but also by climate, 

and by geology. The traditional survey begins by looking at the coarsest scale relevant to 

the area of interest. Dent and Young (1981) noted that it is necessary to identify the types 

of landscapes that make up the area, and then the landforms within those landscapes. 

 

This strategy was later applied by other researchers in DSM through the use of terrain 

attributes determined from digital terrain model (DTM) and imagery across a range of 

scale sizes to predict variability of soil physical properties across the field (Miller et al., 

2015). Based on the study conducted by Miller et al. (2015) it is very clear that the 

interconnectedness of the environmental variables used to predict soil properties allows 

for substitution with data mining models when there is limited information available for 

different environmental variables. Several studies noted data source for generating the 

environmental variables includes remote sensing data (Poggio et al., 2013; Toghizadih-
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Mehrjardi et al., 2014) such as normalized difference vegetation index (NDVI) which is 

directly related to organic material.  

 

The generated environmental variables are then directly used as inputs in machine 

learning tools such as regression models. However, till to date, it is not yet clear how 

many covariates can be used as predictors. It is also noted or suggested that a number of 

covariates should depend on the number of sampling points. The contribution of each 

variable is measured and the best-performed variables will then be included in the final 

model. Poggio et al. (2013) noted that being able to use remote sensing data for digital 

soil mapping makes it an incredibly powerful tool to apply in areas that have little field 

data. However, remote sensing alone is unable to give the information for subsoil 

properties.    

 

 

1.4 Data sources of environmental covariates for DSM 

 

 

1.4.1 Remote sensing data 

 

Satellite remote sensing data has emerged as a vital tool in soil resources survey and 

generation of information which helps to evolve the optimum land use plan for 

sustainable development at a scale ranging from regional to micro level (Singh, 2016) 

and also helps to obtain data from an area that cannot be sampled and it being cost 

effective. The surface features reflected on satellite image provide enough information to 

accurately delineate the boundaries which are accomplished effectively through the 

systematic interpretation of satellite imageries (Singh, 2016). The literature review by 

McBratney et al. (2003) shows that soil properties that govern the spectral reflectance are 

colour, texture, mineralogy, organic matter, water content and some physicochemical 

properties. 

 

Some properties are directly related to the surface colour and thus relatively easy to map 

when the soil is bare and visible spectra is used to detect colour. Dobos et al. (2006) gave 

an example with iron-oxide and organic matter content, the soil water contents and texture 

as good examples of direct properties. The prediction of subsoil attributes is generally 

more difficult than topsoil because many environmental covariates used DSM only 

generate a topsoil response (e.g. visible and near infrared, imagery and gamma 

radiometry) (Taylor et al., 2013). However, other soil features like many chemical 

properties of deeper horizons can be detected only indirectly, through the type and the 

condition of the surface vegetation. As alternatives, many types of proximal sensors 

(electromagnetic magnetic induction and ground penetrating radar) have been used for 

soil studies (Lombardi and Lualdi, 2019). However, these sensors are said to produce a 

signal that is difficult to interpret or to deconstruct into individual subsoil attributes or 

different subsoil layer responses.  

 

Another approach to deriving subsoil attributes is to incorporate a vegetation – soil 

inference system into the mapping. McKenzie and Ryan (1999) stated that compound 

remote sensing indices such as NDVI which generally reflects biomass status, have been 

shown to correlate well with the distribution of the organic matter.  
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Based on the study by Taylor et al. (2013) vegetative covariates have generally only been 

derived from the visible and near infrared regions of the electromagnetic spectrum (EMS) 

and usually only used empirically with models. A logical further development was to 

combine DEM-derived and remote sensing data to improve prediction models (Dobos et 

al., 2000). The use of combined terrain data and remote sensing imagery has been 

especially interesting for medium scale-surveys with grid resolutions from 20 – 200 m, 

although there has been an increasing number of field-site studies (Dobos et al., 2006). If 

they are appropriately selected, the remote sensing images can reflect the overall 

environmental conditions, types and condition of vegetation influenced by the soil 

properties, surface roughness and moisture content. 

 

 

1.4.2 Digital elevation models (DEM) and terrain parameters 

 

Previous studies stated that terrain attributes derived from digital elevation models are 

frequently used in digital soil mapping as auxiliary covariates in the construction of soil 

prediction models (Kempen et al., 2011; Caten et al., 2013; Teske et al., 2014). In recent 

years, it has been suggested that DEMs and information extracted from it may be limited 

with regards to the spatial resolution and error magnitude, and can differ in the behaviour 

of terrain features (Moura-Bueno et al., 2016). Hutchinson and Gallant (2000) stated that 

a DEM can be generated from topographic data of field survey, interpolation of vector 

bases (e.g. elevation points) extracted from topographic maps, pairs of stereoscopic 

images on aerial photographs and by satellite images obtained by optical sensors and or 

orbital radar. Several authors who worked closely with digital terrain model gave an idea 

that extracted parameters can be used for modelling of soils, vegetation, land use and 

geological features (Minella and Merten, 2012; Caten et al., 2011 and Samuel-Rosa et 

al., 2013).  

 

The basic terrain features (elevation, slope gradient, aspect, flow direction and curvature) 

are relatively simple and easy to derive and they influence the prediction of soil properties 

(McBratney et al., 2003; Smith et al., 2006). Several geomorphometric parameters, such 

as slope gradient, aspect, profile and elevation can be computed from DEMs and the study 

that was conducted by Moore et al. (1993) found significant correlations between 

quantified terrain attributes and measured soil properties 

 

 

 

1.5 Problem statement 

 

 

In the Mediterranean South of Chile, where the vine has a high potential for quality wine 

production without the need of irrigation, there are many areas with no to very limited 

publicly available soil spatial variability data at detailed scale. The spatial variability of 

soil physical properties is regarded as one of the problems affecting water distribution 

and the crop development, especially in rainfed conditions where environmental 

conditions (evapotranspiration), terrain attributes (slope gradient, aspect and curvature) 

and soil properties (texture, depth, soil water retention, organic matter, etc.) controls the 

availability of water in soil profile within the field. Considering the spatial variability is 

one of the major soil characteristics, variation in soil properties appears to be a key driver 

of vineyard yield and quality variability (Bramley and Lamb, 2003). Wine is one of the 



  7  

most development axes in Chile, reaching a total of 120,000 ha planted with vines (INE, 

2008). The strong spatial variability of physical properties that controls the distribution 

of water will lead to the growth variability of the vine in some areas within the field. 

Some areas of the field can suffer and excessive water stress which then affects the vine 

development because of the variation in texture and depth which influence the water 

holding capacity (WHC) and water uptake (van Leeuwen et al., 2004). Poor vine 

development affects the quality and price of wines produced in such rainfed areas. 

 

Chile is approaching its maximum capacity regarding the allocation of natural resources, 

water and soils for irrigation. Chile is a country with diverse geography and landscape 

formation and therefore it has limited space for agriculture because of mountains and 

hills, which then force removal of trees and natural vegetation in the hills in order to gain 

space for production of avocados and vines, among others, as it is the case in the Maule 

Region and other regions (Ferreyra et al., 2001; Seguel et al., 2015). The topography and 

particularly hillside aspect influence the microclimate of the area, hence the variation in 

soil properties across the landscape influences the distribution of water within the area 

during the rainfall distribution, which then leads to uneven plant growth.  

 

Vrsic et al. (2011) noted that relief plays an important role in the vineyard because, for 

centuries, these have mainly occupied hillside as it is the case in most vineyards in Chile 

and other countries with a geographical formation similar to Chile. The soils from the 

upper slopes are frequently removed by erosion and deposited in the low-lying slopes, 

which leads to the variation in soil depth, texture and water content. Little work has been 

done at high resolution on spatial variability of soil properties in the vineyard at a lower 

than 0.3 m and that makes it difficult for those responsible for the particular site to model 

the site-specific management and making sure of the uniform quality of vines. 

 

Adhikary et al. (2009) postulated that soil water and texture are the most important soil 

physical properties that are known for governing nearly all of the other physical 

properties. Therefore high-resolution maps of texture are essential for hydrological and 

ecological modelling as well as agricultural management (Zhao et al., 2009). This idea 

gives evidence that combined variation of texture and soil water across the field would 

definitely lead to spatial variation in organic matter (Kong et al., 2009), penetration 

resistance and pedogenesis (Western et al., 2003). Based on documented studies, the 

temporal and spatial variability of soil texture and soil water may lead to structural 

differences in soil quality (Kettler et al., 2001) and hydrologic cycle (Western et al., 2003) 

across the field which all then lead to variability in crop quality or development. 

Therefore quantifying the variability of these properties using appropriate methods would 

then provide some assistance in developing, modelling and designing site-specific 

management, which includes water management, prevention of soil degradation and 

avoids environmental problems. 

 

 

1.6 Justification 

 

 

High-quality soil data can be used by multiple agencies, landowners and managers to aid 

in soil conservation and restoration efforts. The main reason for the development of this 

study is to provide the necessary information about the methods that can be used to map 

and predict the soil physical properties by means of knowledge-based DSM approach. 
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Characterizing the spatial variability of soil physical properties across the hillsides or 

catena is one of the useful focus for modelling, planning and managing the soils through 

the site-specific management. The use of spatial variability characterization methods will 

help to construct the maps of the areas across the hill indicating those areas that require 

the attention. It would be potentially used to describe spatial patterns by remote sensing 

information and predict the values of soil properties at unsampled locations using 

predicting regression models such as random forest. Thus, the potential has existed for 

vines and wine producers to acquire detailed geo-referenced information about vineyard 

performance and to use this information to tailor production of both vines and resultant 

wines according to expectations of vineyard performance, and desired goals in terms of 

both yield and quality (Bramley and Proffitt, 1999). The produced predictive soil maps 

provides important information about the properties and condition of the land and can be 

used as a guide for land use planning. In addition they can be used as part of the land 

management guide, such as monitoring the land drainage capabilities of the area. 
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CHAPTER 2. PREDICTING SPATIAL VARIABILITY OF SELECTED SOIL  

PROPERTIES USING DIGITAL SOIL MAPPING IN A RAINFED VINEYARD 

OF CENTRAL CHILE 

 

 

 

RESUMEN 
 

 

Las propiedades físico-hidráulicas del suelo influyen en el comportamiento del viñedo, 

por lo tanto, el conocimiento de su variabilidad espacial es esencial para tomar decisiones 

de manejo. El estudio tuvo como objetivo modelar y mapear las propiedades físicas del 

suelo mediante un enfoque basado en  conocimiento de mapeo digital del suelo. Este 

estudio tuvo como objetivo predecir la variabilidad espacial de las propiedades físicas del 

suelo para un viñedo de secano utilizando datos de detección remota y el modelo de 

Random Forest (RFM). El sitio de estudio es un viñedo de 29 ha, ubicado cerca de la 

ciudad de Cauquenes en la Región del Maule de Chile. Se dividió en cuadrículas regulares 

(60 x 60 m2), recogiendo y georreferenciando muestras de suelo perturbadas y no 

perturbadas a tres profundidades (0-20 cm, 20-40 cm y 40-60 cm). En 62 ubicaciones se 

analizaron los perfiles del suelo a 60 cm de profundidad para: distribución del tamaño de 

partícula, materia orgánica, densidad aparente, porosidad total, densidad de partículas, 

índice de estabilidad estructural, índice de repelencia, estabilidad de microagregados, 

resistencia a la penetración, resistencia al corte, conductividad hidráulica saturada, 

características de retención de agua del suelo, distribución de poros por tamaño y 

estabilidad de macroagregados. La estadística descriptiva mostró baja a muy alta 

variabilidad en las propiedades. Utilizamos un algoritmo de RF para vincular las 

covariables ambientales que describen los factores de formación del suelo y once 

propiedades del suelo seleccionadas en los intervalos de profundidad. La precisión del 

modelo se midió por R2, nRMSE, RMSE y sesgo. El modelo RF para arcilla, arena, 

relación de dispersión, y punto de marchitez permanente (PWP) funcionó 

adecuadamente, aunque los modelos no pudieron predecir de manera confiable el AWC, 

la porosidad total y el contenido de materia orgánica. Los mapas de predicción mostraron 

que los valores más altos de arcilla, capacidad de campo (FC), y PWP se encontraban en 

el lado occidental del campo donde hay una elevación más baja en el paisaje. Hubo un 

mejor desempeño de predicción en el contenido de arcilla de la superficie que en el 

subsuperficial (por ejemplo, R2 de 0,66; RMSE de 4,3% para 0-20 cm y R2 de 0,51; 

RMSE 5,6% a 40-60 cm). En general, la distribución del tamaño de partícula muestra 

variaciones marcadas en el viñedo con un mayor contenido de arena en comparación con 

el contenido de limo y arcilla. Hubo un menor rendimiento de predicción en de la relación 

de dispersión de superficie que la subsuperficial (por ejemplo, R2 de 0,49; RMSE de 

10,1% para los 0-20 cm y R2 de 0,81; RMSE de 8,7% a 40-60 cm). El modelo de RF 

sobreestimó las áreas con valores bajos y Sobreestimó las áreas con valores altos. El 

análisis de importancia variable mostró que el Índice de Posición Topográfica, el Índice 

de Humedad Topográfica, el aspecto, el Factor de longitud de pendiente, el área de 

captación modificada, el gradiente de pendiente del área de captación y la curvatura 

longitudinal se encontraban entre las covariables que más influían en la predicción.  

 

Palabras clave: mapeo digital del suelo, propiedades del suelo, viñedo, modelo de 

bosque aleatorio, covariables ambientales. 
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ABSTRACT 
 

 

 

Soil physico-hydraulic properties influence vineyard behavior, therefore the knowledge 

of their spatial variability is essential for making vineyard management decisions. The 

study aimed to model and map soil physical properties by means of knowledge-based digital 

soil mapping approach. The study site, a vineyard of 29 ha located near Cauquenes city in 

Maule Region, Chile, was divided in a regular square grid (60 x 60 m2), collecting and 

georeferencing disturbed and undisturbed samples from three different soil depths (0-20 

cm, 20-40 cm and 40-60 cm). At 62 locations soil profiles to 60 cm were analysed for 

particle size distribution, soil organic matter, bulk density, total porosity, particle density, 

structural stability index, repellency index, microaggregate stability, penetration 

resistance, shear strength, saturated hydraulic conductivity, soil water retention 

characteristics, pore size distribution and macroaggregate stability. The descriptive 

statistics showed low to very high variability within the field. We used a RF algorithm to 

link environmental covariates describing soil forming factors and eleven selected soil 

properties at three depth intervals. The model accuracy was measure by R2, nRMSE, 

RMSE and bias. RF model of clay, sand, dispersion ratio, and permanent wilting point 

(PWP), performed well, although the models could not reliably predict the available water 

content (AWC), total porosity and organic matter. Prediction maps showed that the 

highest amounts of clay, FC, and PWP were on the western side of the field where there 

is lower elevation in landscape. There was a better performance in the upper depth 

intervals than the lower depth intervals (e.g., R2 of 0.66; RMSE of 4.3 % for clay content 

at 0–20 cm and R2 of 0.51; RMSE of 5.6 % at 40-60 cm). Overall, the particle size 

distribution show marked variations across the vineyard with a higher sand content 

compared with silt and clay contents. There was a better performance in the lower depth 

intervals than the upper depth intervals (e.g., R2 of 0.49; RMSE of 10.1 % for dispersion 

ratio at 0–20 cm and R2 of 0.81; RMSE of 8.7 % at 40-60 cm). RF model overestimated 

areas with low values and underestimated areas with high values. Analysis of variable 

importance showed that Topographic Position Index, Topographic Wetness Index, 

aspect, Length Slope Factor, modified catchment area, catchment slope, and longitudinal 

curvature were the covariates with the highest influence on the prediction. 

 

 

 

Keywords: Digital soil mapping, soil properties, Vineyard, Random Forest model, 

Environmental covariates. 
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2. INTRODUCTION 

 

 

 

Soil mapping is regarded as key for guiding decision makers in natural resource 

assessment, environmental modelling, and land use studies. However, it requires the 

knowledge and experience of a senior pedologist for the stages of soil mapping (Kempen 

et al., 2012; Resende et al., 2014). Many environmental and agro-economic activities 

require accurate information about the spatial variability of soil properties (Ma et al., 

2017). This information is being generated through the application of digital soil mapping 

(DSM) methods. DSM is regarded as the creation and population of a spatial soil 

information system by numerical models inferring the spatial and temporal variation of 

soil types and soil properties from soil observation and knowledge and from related 

environmental variables (Lagacherie and McBratney, 2007). DSM has been applied at 

local, regional, national or a global scale. The conducted review on the use of DSM for 

soil mapping in Brazil (Caten et al., 2012; Heung et al., 2014; Lacoste et al., 2011), 

indicated that approaches used up to 2011 show three main classification models applied 

for DSM (artificial neural networks, logistic regression, and decision tree). Several 

studies reported that soil properties vary at different spatial scales (Outeiro et al., 2008; 

Goovaerts, 1998) primarily due to heterogeneity of internal factors and anthropogenic 

impacts generating complex spatial soil patterns (Kilic et al., 2012; Liu et al., 2009) and 

land use (Saglam and Dengiz, 2012).  

 

Spatial variability of soil physical properties results in the change in the values of certain 

soil properties over space (Ettema and Wardle, 2002). According to recent studies, 

understanding of spatial variability of soil physiochemical characteristics in both its static 

(e.g. texture and mineralogy) and dynamic (e.g. water content, compaction, organic 

matter, etc.) forms is necessary for site-specific management of agricultural practices, as 

it is directly contributing to variability in crop yield and quality (Jabro et al., 2010; Silva 

Cruz et al., 2011).  

 

Detailed digital soil maps showing the spatial heterogeneity of soil properties consistent 

with the landscape are required for site-specific management of plant nutrients, land use 

planning and process-based environmental modelling. Brady and Weil (2008) stated that 

spatial variability of soil properties can be categorized into three broad classes namely; 

large-, medium-, and small-scale. The variability of soil properties across landscapes and 

regions is attributed to the medium and large-scale, respectively. However, several 

authors noted that there is still few studies describe spatial variability of multiple soil 

properties and their inter-relationship at a landscape scale (Bruland et al., 2006; Liu et 

al., 2010; Paz-Gonzalez et al., 2000; Rivero et al., 2007; Stutter et al., 2009).  

 

Through the researches that have been conducted on this subject, Pereira and Ubeda 

(2010) regard mapping of spatial variability of soil properties as one of the important 

tools to understand how processes change in space and time. From the study that was 

conducted in the soils of North-Eastern of Sao Paulo state, Souza et al. (2004) noticed 

that small variations in the landscape form defined different spatial variability in the soil 

physical properties. These results were in agreement with the work reported by Souza et 

al. (2003), which evaluated the effect of landforms on the anisotropy of soil physical 

properties, observed higher spatial variability of soil physical properties in the concave 

landscape landform when compared to a linear one. Tsegaye and Hill (1998) conducted 
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the study on the effect of intensive tillage on spatial variability of soil, the results showed 

that all the measured soil properties except saturated hydraulic conductivity (Ksat) 

showed weakly spatial dependency for 6 – 9 cm and moderately spatial dependency for 

27 – 30 cm soil depths. Serrano et al. (2014) noted that heterogeneity in soil properties 

with depth and across the landscapes can be accounted for by several interacting factors 

that operate with different intensities and at different scales and acting simultaneously. 

This all proves the fact that spatial variability can be observed both vertically and 

horizontally which completes the variability across the profile.  

 

It is well documented that particle size, soil water content, plant available water (PAW) 

and penetration resistant showed a clear horizontal spatially variability structure capture 

by soil map units (Tsegaye and Hill, 1998). There have been several talks about the 

magnitude of the spatial variability of Ksat across the agricultural fields from which, 

Biggar and Nielsen (1976) reported Ksat as the one with the highest variability in the 

field. For example, Jury and Horton (2004) indicated the values of coefficient of variation 

for Ksat in the range of 50 - 300%. 

 

Chile is regarded as the world's eighth largest producer of wine and fifth largest exporter 

(Felzensztein et al., 2011) and the Chilean wines are positioned as the country’s most 

emblematic and best-known world ambassador. The Maule Region of southern Chile is 

one of the most wine producers in the country and most vineyards produce rainfed vine, 

which indicates that the distribution of water in the soil profile solely depends on soil 

properties and environmental variables such as precipitation and evapotranspiration. 

 

Ubalde et al. (2007) stated that the aim of modern oenology is to produce wines of 

recognized quality and typicality, which can then be differentiated in a market with 

growing demand. Therefore to achieve all this, it is essential to consider that the potential 

quality of the wine is established in vineyards. However, one of the challenges facing the 

vineyards managers is how to manage the yield and quality variability of the vineyard to 

identify uniform batches of good-quality fruits (Bramley, 2005). The soil in vineyards is 

subject to frequent traffic associated with soil tillage, weed control or plant protection and 

harvesting of vines. Based on the statistics given by Ferrero et al. (2005) in highly 

mechanized viticulture, the number of tractor passes per year is estimated to be up to 20 

– 30 in traditional cultivation.  

 

Unamunzaga et al. (2014) noted that there is little work that has been conducted at high 

resolution on soil properties at depths lower than 0.30 m which are of special relevance 

to perennial crops. It is noted that wine quality is often strongly influenced by spatial 

variability of soil properties such as soil texture and soil depth due to their relationship 

with soil water holding capacity (WHC) because vine behaviour is closely related to water 

uptake (van Leeuwe et al., 2004). 

 

The vineyards in Chile are largely distributed in hilly terrains and in such areas, relief 

controls the distribution of soil types in a landscape and is regarded as a source of 

variability (Jenny, 1980; De Gryze et al., 2008; Ruth and Lennartz, 2008), it has been 

reported by many authors as a source of spatial variability. The characterization of spatial 

variability of soil properties is essential in making site-specific management and other 

decision within the agricultural field. There are certain tools that were developed to help 

in determining the magnitude of spatial variability of soil and crop yield; classical 

statistics, which includes the determination of mean, range, standard deviation, 
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coefficient of variation and skewness were reported to be an important tool that can be 

used (Ramzan et al., 2017). However other researchers reported the importance of 

geostatistical methods in the implementation of site-specific management systems 

(Najafian et al., 2012). 

 

On the other hand, Taylor et al. (2013) proved that predicting regression models based 

on remote sensing information can also be used to characterize the spatial variability of 

soil physical properties with success. Akpa et al. (2014) motivated the use of DSM and 

regards it as a promising approach to the spatial prediction of soil attributes. Moreover, 

remotely sensed imagery can be used as a data source supporting DSM (Ben-Dor et al., 

2008; Slaymaker, 2001). One of the reasons that make remote sensing data to be more 

important in DSM technique is the fact that it facilitates mapping inaccessible areas by 

reducing the need for extensive time-consuming and costly fieldwork. Several authors 

noted terrain attributes such as elevation, plan and profile curvatures, relative slope 

position influence soil properties, and classification (Mehnatkesh et al. 2013; Umali et al. 

2012) and landscape hydrology.  

 

In addition, various papers in the literature have emphasized the importance of integrating 

terrain attributes with soil and crop variables when modeling yield and soil parameters 

(Beaudette et al. 2013; Brown et al. 2004; Norouzi et al. 2010; Zhang et al. 2012). 

Therefore DSM offers the use of soil, digital terrain model, and remote sensing data to 

map various soil properties at low costs. In addition, remote sensing helps to overcome 

errors in locating and plotting soil boundaries as also in generating soil map of 

inaccessible areas. Kudrat et al. (1992) explained that the dynamic inter-relationship 

between physiography and soil is utilized while deriving information on soil from satellite 

data. McBratney et al. (2003) added that different interpolation technique have been used 

with varying degree of success in order to create more accurate soil property maps. 

 

 

 

2.1 Research question 

 

 

Is it possible to generate successfully predictive maps of spatial variability of soil physical 

properties within a vineyard using digital soil mapping methods? 

 

 

2.2 General and specific objectives 

 

 

2.2.1 General objective 

 

To predict and characterize spatial variability of soil physical properties in a rainfed 

vineyard situated in a hill of granitic catena at central Chile using DSM. 

 

 

2.2.2 Specific objectives 

 

 To study the impact of auxiliary data, such as terrain attributes and satellite images 

for the prediction of spatial variability of soil properties. 
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 Determine importance of each environmental covariates on spatial variability of 

soil physical properties. 

 To model and map soil physical properties by means of knowledge-based digital 

soil mapping approach. 

 Establish correlations amongst the soil physical properties. 
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3. MATERIAL AND METHODS 
 

 

3.1 Site description 

 

 

The study was carried out in a 29 ha vineyard situated 20 km away to the west from 

Cauquenes city, in the Maule Region, central Chile (36º 02’ 27.18” SL, 72º 28’ 09.47” 

WL) at 202 m asl (Fig. 1). The site is characterized by a sub-humid Mediterranean climate 

with winter rainfall. According to Uribe et al. (2012), the mean annual precipitation of 

the area is 690 mm, mainly concentrated in winter months (June - July). The temperature 

regimes are moderate with cold winters, with maximum average temperatures ranging 

between 14 and 29 ℃ and the minimum between 3 and 12 ℃. The total annual 

evapotranspiration of the area is 1128 mm, with minimum and maximum (40 – 162 mm) 

occurring in July and January, respectively. According to CIREN (1997), the soils are 

belonging to Cauquenes soil Associations and classified as Ultic Palexeralf, which 

corresponds to deep soils ( ≥ 100 cm depth) with increasing clay content in the deeper 

horizons and slopes gradient ranging from 1 to > 30% in a hilly landscape. The soils are 

developed in situ from weathered granite, rich in quartz and feldspars. The vineyard 

correspond to “Pais” variety and is more than 50 years old with a plant density of 

approximately 10,000 plants per ha with a spacing of 1  x 1 m2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1. Location of the study area in the Maule Region, Cauquenes watershed at 

central Chile, with the detail of 62 sampling points (pits) and a distance of 60 x 60 m2. 
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3.2 Soil sampling and storage 

 

 

To study the spatial and vertical variability of selected soil physical properties, the 

following methodology was performed. A systematic sampling grid (60 × 60 m2) was 

used, and 62 soil pits were opened as close as possible to vine rows (Fig.1). At each 

sampling point, three undisturbed core samples were vertically taken with soil core 

sampler from each sampling depth (0-20 cm, 20–40 cm and 40–60 cm) and 186 disturbed 

soil samples (± 4 kg) were collected from each sampling point and depth for further 

analysis. The sampling density was two soil pits per hectare and all the sampling points 

were geo-referenced using global positioning system (GPS) receiver (accuracy of ± 4 m). 

Undisturbed samples were used for the determination of soil bulk density, the water 

retention curve at low suctions (< 100 kPa) and Ksat, the water repellency, and aggregate 

stability. Disturbed soil samples were thoroughly air-dried, mixed and 300 g of 

representative soil was ground to pass 2 mm sieve and the amount that could not pass 

through was also recorded then was used for the determination of particle size 

distribution, organic matter, particle density, and microaggregate stability. None sieved 

soil samples were used for water retention relationship at higher suctions (> 100 kPa) 

using a pressure plate apparatus. 

 

 

 

3.3 Laboratory analysis 

 

 

3.3.1 General soil physical properties 

 

Under laboratory conditions, disturbed soil samples (2 mm sieved, 186 samples in total) 

were used to determine particle density (PD) and particle size distribution, both according 

to methodologies detailed in Sandoval et al. (2012). To quantify the porous system, bulk 

density (BD) was measured using the cylinder method (Grossman and Reinsch, 2002) 

and total porosity (f) was calculated with the relation: 

 

                                                    𝑓 = [1 −
𝐵𝐷

𝑃𝐷
] ∙ 100 [%]                                              (3) 

 

 

3.3.2 Soil water retention curves and pore size distribution 

 

To prepare the soil samples for water retention measurements, the first step was to 

saturate the soil cores using a capillary rise saturation method. Thereafter, water retention 

curve was done using sandbox (Eijkelkamp) and pressure plate apparatus (Soil Moisture 

equipment) according to the method described Sandoval et al. (2012) applying increasing 

pressures to saturated samples (0.2, 6, 33, 500 and 1500 kPa). The volumetric water 

content at field capacity (FC) and the permanent wilting point (PWP) were considered 

when the equilibrium was reached at –33 and –1500 kPa, respectively. The pore size 

distribution was derived from the water retention curves data for each sampling point 

according to Hartge and Horn (2009), calculating the fast drainage pores (FDP > 50 μm) 

as the difference between water content at matric equilibrium of – 0.2 and the equilibrium 

at – 6 kPa; the slow drainage pores (SDP 10 – 50 μm) were calculated based on the 

difference between water content at – 6 and – 33 kPa, and the water available pores 
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(WAP, 0.2 – 10 μm) was determined as the difference between water content at – 33 and 

– 1500 kPa. 

 

 

3.3.3 Aggregate stability 

 

3.3.3.1 Macro aggregate stability  

 

Macro-aggregate stability was determined by the dry and wet sieving method (Hartge and 

Horn, 2009). The disturbed samples were air-dried, 200 g subsample of aggregates (dry 

soil exposed to air and up to 3 cm diameter) were randomly taken from each sample and 

placed on a set of sieves with diameters of 19, 9.5, 6.35, 4.75, 3.33, and 2 mm. The 

subsample was sieved for 2 min at a frequency of 60 Hz and the sample water content 

was determined. Once the dry sieving was finished, the aggregate mass left in each sieve 

was determined and the partial fraction of each size (ratio between sieve soil mass and 

total soil mass) was calculated and corrected for its water content to determine the initial 

distribution of aggregate sizes. A second sieving was then done under water where the 

set of sieves was shaken with 5 cm upward and downward movements for 5 min at 60 

rpm. The soil remaining in each sieve was dried at 105 °C for 16 h or more to determine 

the aggregate fraction for each size. The variation of weighted mean diameter (ΔWMD) 

was determined with the results of the dry and wet sieving (Hartge and Horn, 2009) by 

the equation:  

 

𝛥𝑊𝑀𝐷 =  ∑
(𝑛𝑖1 

× 𝑑𝑖) − (𝑛𝑖2 × 𝑑𝑖)

𝑛𝑖1

𝑛

𝑖=1

                                     (4) 

 

Where d is the aggregate mean diameter in range i that corresponds to each range of sieves 

being used, 𝑛𝑖1 
 is the dry mass of the fraction in range i for dry sieving, and 𝑛𝑖2  is dry 

mass in range i of wet sieving. Therefore, with the results of both sievings (dry and wet), 

a stability analysis is performed for each natural aggregate size range from a known 

distribution of aggregates obtained in dry sieving. The lowest ΔWMD value indicates the 

highest soil stability (Hartge and Horn, 2009).  

 

 

3.3.3.2 Micro aggregate stability  
 

Micro-aggregate stability was determined by the dispersion ratio (DR) method described 

by Seguel et al. (2003). Two soil samples of 50 g with aggregates between 1 and 2 mm 

diameter were obtained by sieving air-dried soil; one of the subsamples was subjected to 

a slight dispersion in 150 cm3 distilled water, while the other sample was subjected to a 

drastic dispersion with the same amount of distilled water and 20 cm3 of sodium 

pyrophosphate. Both samples were left to rest during the night. The drastically dispersed 

sample was then mechanically shaken for 10 min in a 75 cycle Hamilton Beach blender. 

Finally, the samples were poured into 1L measuring cylinders filled up to 1000 cm3 with 

distilled water. The density of the suspension was measured with a hydrometer along with 

the temperature 40 s after the start of the decanting process. The clay and silt content of 

both samples was calculated by the Bouyoucos hydrometer method based on Stoke’s law 

(Dane and Topp, 2002) using the equation: 
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𝐷𝑅 =  
(𝑆 + 𝐶)𝑆𝑑

(𝑆 + 𝐶)𝑑𝑑
· 100                                        (5) 

 

Where DR is the dispersion ratio, (S+C)Sd is the percentage of clay + silt content of 

slightly dispersed samples (without sodium pyrophosphate and no mechanical agitation) 

and (S+C)dd is the percentage of total clay and silt (with drastic dispersion). The lower 

values of DR indicates the highest stability. 

 

 

3.3.4 Organic matter (OM) 

 

Organic matter was determined using the calcination method, according to Schulte et al. 

(1991). Approximately 10 g of air-dried < 2 mm soil fractions were placed into 30 mL 

crucibles. Then samples were placed in a muffle oven at 360℃ for 16 h. Before weight 

determination, the samples were placed in a desiccator to reach room temperature. This 

method calculates OM (%) by comparing the mass of a sample before and after the soil 

has been ignited, using the formula:  

 

 

𝑂𝑀 =  
𝑃𝑟𝑒𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑚𝑎𝑠𝑠 (𝑔) − 𝑝𝑜𝑠𝑡 𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑚𝑎𝑠𝑠 (𝑔)

𝑃𝑟𝑒𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑚𝑎𝑠𝑠 (𝑔)
 · 100          [%]     (6) 

 

 

 

3.3.5 Soil water repellency 

 

Soil aggregates with diameters of approximately 3 cm were collected from the three soil 

profile depths (0-20, 20-40, and 40-60 cm) at all the 62 sampling points (soil pits). The 

sorptivity of each aggregate was measured according to Leeds-Harrison et al. (1994). In 

this method, water infiltrates into each aggregate from a small area (± 4 mm) as shown in 

(Fig.2) which produces an expanding wetting bulb that does not reach the boundary of 

the aggregate during measurement. The balance used was accurate to 1 mg, which is less 

than 2 % of the smallest total mass of water infiltrated during the test. A water-repellency 

index (R) was determined from the sorptivity measurements of two wetting liquids with 

different soil-liquid contact angles according to Tillman et al. (1989). It was evaluated 

from sorptivity measurements that were conducted at -1 cm pressure head for both water 

and 95 % methanol. Sorptivity (S) at -1 cm pressure is given by: 

 

                                                      Q (-1) =         
4 𝑏 𝑆(−1)

2 𝑟

𝑓
 ,                                          (7) 

 

Where the subscript -1 signifies the pressure head at which the measurements were being 

made, Q is a steady rate of water flow, b (0.55) is a parameter that depends on the soil-

water diffusivity function, r is the radius of the infiltrometer tip, S being sorptivity at -1 

head and f is the fillable air-porosity. For non-repellent soils, the sorptivity of a 95 % 

ethanol to water solution, SE is related to the sorptivity of pure water, SW, by: 

 

                                        𝑆𝑤 = [
(𝜇𝑚/𝛾𝑚)1/2

(𝜇𝑊/𝛾𝑊)1′2
] · 𝑆𝐸  ,                                                 (8) 
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Where 𝜇𝑚  is the viscosity of 95 % methanol at 20 ℃ (0.001 Ns m-2), 𝛾𝑚 is the surface 

tension of 95 % methanol at 20 ℃ (0.023 N m-1), 𝜇𝑊 is the viscosity of water at 20 ℃ 

(0.0010 N m-2), and 𝛾𝑊 the surface tension of water at 20°C (0.073 N m-1). Using these 

values, Equation (8) is reduced to: 

 

                                           SW = 1.78 𝑆𝐸.                                                          (9) 

 

Then the index R therefore becomes: 

 

                                         𝑅 = 1.78 (
𝑆𝐸

𝑆𝑊
) ,                                                      (10) 

                                       

With R = 1.0 signifying a totally non-repellent soil. According to Tillman et al. (1989), 

when SE < SW (R < 1.78) the soil is non-repellent. 

 

 
Figure 2. The infiltration devise used to measure the sorptivity of individual soil 

aggregates (Hallett and Young, 1999). 

 

 

3.3.6 Saturated hydraulic conductivity 

 

Saturated hydraulic conductivity, Ksat (LT-1), values of the soils were measured for all 

depths (0-20, 20-40 and 40-60 cm) in the laboratory using the constant head soil core 

method (Eijkelkamp) (SSSA, 2008). The samples were fully saturated using capillarity 

method then water was allowed to flow through the soil at a steady rate under a constant 

hydraulic head gradient. The measurements of volume were taken after 1 h and 5 h, 

respectively for all the samples. The Ksat processed using Darcy’s formula of water flow: 

 

𝐾𝑠𝑎𝑡 =  
4 𝑉𝐿

𝜋 ∙ 𝑑𝑐
2  ∙ ∆𝑡 ∙ ∆𝐻

                        (11) 

 

Where V (L3) is the volume of water collected during time interval ∆𝑡, 𝐿 is the length of 

soil sample in the core, ∆𝐻 (𝐿) is the difference in elevation between the water level in 

the reference tube and water level in the side arm of the outflow dripper and 𝑑𝑐  is the 

inside diameter of the core sample. 
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3.3.7 Penetration resistance and shear strength 

 

The vertical penetration resistance (PNT) was measured in situ with a 30º conical tip 

hand-push penetrometer and 1 cm2 (McKyes, 1989). The PNT measurements in each soil 

sampling point were made by pushing vertically the penetrometer to the soil at an 

approximated speed of 2 cm s-1 with three repetitions (Bradford, 1986). The 

measurements were done after a high-intensity rainfall, ensuring the soil was close to 

field capacity. In each soil sampling point, measurements were taken with three 

repetitions in each depth; surface, 10 cm, 30 cm and 50 cm. In addition, the soil shear 

strength (horizontal resistance) was then measured using a handheld shear vane at the 

same depths as penetration resistance, with three repetitions in each sampling depth. 

 

 

3.3.8 Structural stability index (SSI) 

 

The SSI indicates the risk of structural degradation, therefore it was inferred from the 

index proposed for mineral tropical soil, especially those found in the West African 

Savanna (Pieri, 1992). The higher the value of the SSI, the more stable is the soil. The 

values below 9 % represent an unstable structure. Therefore the SSI was calculates using 

the following formula: 

 

𝑆𝑆𝐼 =  [
𝑂𝑀

 (𝑠𝑖𝑙𝑡 + 𝑐𝑙𝑎𝑦)
] · 100   (%)                              (12) 

 

 

Where silt, clay and the organic matter content (OM) are in percent. 

 

 

3.4 Digital Elevation Model and Remotely Sensed Imagery 

 

 

3.4.1 Digital Elevation Model (DEM) 

 

The LiDAR point cloud was acquired in 2009 using a Harrier 54/G4Dual System sensor 

mounted on a Piper PA-24 Comanche airplane, achieving an average point cloud density 

of 4.64 points m-2. The pulse and scanning frequencies were 100 kHz and 100 Hz, 

respectively, with a field vision angle of approximately 22.5° and a laser pulse 

wavelength of 1550 nm. Using the “lasground.exe” tool of LAStools software (Isenburg, 

2014), the point cloud was classified as ground and no ground returns, subsequently 

obtaining from these a digital terrain model (DTM) and digital surface model (DSM) 

respectively with the “las2dem.exe” tool, both with a spatial resolution of 5 m (see 

appendix). A digital crown height model (DCM) was calculated by the difference 

between the DSM and the DTM. The SAGA GIS software Conrad, (2014) was used to 

calculate, based on the DTM, the first-order topographical variables, landform variables 

associated with morphometric, hydrology and topography. These 26 variables acquired 

from LiDAR are summarized in Table 1. 
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Table 1. Description of the environmental covariates derived from 5 m resolution DEM. 

Type of 

variables 

 Variable names References 

Terrain 

attributes 

Topographical 

derivatives 

Slope aspect 

 

Secondary curvature 

Longitudinal curvature 

Elevation 

 

 

Zevenbergen and Thorne 

(1987) 

Landform 

variables 

Hydrological  

variables 

Catchment area 

SAGA Wetness Index 

LS Factor 

Flow Accumulation 

Modified catchment area 

Böhner and  Selige (2006) 

Moore et al. (1991) 

Melton (1965) 

Beuer et al. (1985) 

Freeman (1991) 

Fairfield and Leymarie 

(1991) 
 

  Catchment slope gradient 

Topographic wetness 

index (x2) 

Quinn et al. (1991) 

 Morphometry Convergence Index  Koethe and Lehmeier 

(1996)  

  Curvature Classification Dikau (1988)  

  Multiresolution Index of 

Valley Bottom Flatness 

(MRVBF) 

Gallant and Dowling 

(2003)  

 

  Multiresolution Index of 

the Ridge Top Flatness 

(MRRTF) 

Gallant and Dowling 

(2003)  

 

  Topographic Position 

Index(TPI) 

Guisan et al. (1999)  

 

  TPI Based Landform 

Classification 

Guisan et al. (1999) 

  Relative Height and Slope 

Positions 

Boehner and Selige (2006) 

  Terrain Surface Texture Iwahashi and Pike (2007) 

  Terrain Surface Convexity Iwahashi and Pike (2007) 

  Upslope and Downslope 

Curvature 

Freeman (1991) 

Zevenbergen and Thorne 

(1987) 

  Terrain Surface 

Classification 

Iwahashi and Pike (2007) 

  Diurnal Anisotropic Heat Boehner and Antonic 

(2009) 

 Lighting, 

Visibility 

Analytical Hillshading Tarini et al. (2006) 
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3.4.2 Spectral remote sensing data 

 

Sentinel-2A optical images from November 2018 (freely available from the European 

Space Agency, ESA), were used. For this study, Sentinel-2 band 4 (B4; 10 m spatial 

resolution; 665 nm), band 2 (B2; 10 m spatial resolution; 490 nm), band 3 (B3; 10 m 

spatial resolution; 560 nm) atmospherically corrected imagery, were extracted from 

Copernicus data hub and used to calculate the spectral indices as summarized in Table 2. 

This data was obtained for the 62 geo-referenced pixels where the measurements of soil 

physical properties were carried out and soil samples were collected. Preliminary 

processing was carried out on these records to remove outliers due to the presence of 

clouds. Only the images without the presence of clouds were used in the analysis. The 

technical aspect can be obtained from Van der Werf and Van de Meer (2016). 

 

Table 2. Description of the spectral indices derived from sentinel 2A remote sensing. 

Spectral indices Abbr. Reference 

Green-Red vegetation index GRVI Motohka et al. (2010) 

Three band spectral index TBSI-T Tian et al. (2014) 

Three band spectral index TBSI-W Wang et al. (2012) 

Three band spectral index TBSI-V Verrelst et al. (2015) 

 

 

3.5 Selection of predictors 

 

Due to the large amount of data available for use as covariates in modelling, it was 

necessary to use a data-mining technique to select the most appropriate dataset as an 

optimal set of predictors to run the model, affording the lowest error. The process of 

selecting appropriate predictors was done using two methods of attribute selection, which 

consist of selecting a subset of characteristics from a set of complete data, maintaining 

high precision according to Ladha and Deepa (2011). The first method applied was the 

Boruta method (Kursa and Rudnicki, 2010) which is a wrapping type selection algorithm, 

that is, the classifier is used as a black box to interpret the subsets of characteristics based 

on its predictive power, returning a ranking of characteristics (Ladha and Deepa, 2011; 

Kursa and Rudnicki, 2010). The selection is made "backwards", starting with all the 

variables and eliminating them from one, wherein each step the variable that allows the 

error to be reduced is eliminated (Ladha and Deepa, 2011).  Kursa and Rudnicki (2010) 

noted that to use the Boruta algorithm, the following steps should be applied:  

 

(a) Create copies of all variables, these copies would be "shadow variables". 

(b) Mix all the attributes, training a Random Forest (RF) classifier in the system. 

(c) Calculate a measure of importance for shadow variables and real predictors. 

(d) Find the maximum value of importance within the shadow variables. 

(e) Compare the real predictors with the maximum importance values of the shadow 

variables. 

(f) It gives a score (z-score) to those real predictors that are more important than the 

shadow variables. 

(g) Eliminate predictors that have less importance than shadow variables. 
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(h) Remove all shadow variables. 

(i) Repeat the procedure until a score is assigned to all the predictors or until the 

previously established limit of executions has been reached. 

  

On the other hand, the Recursive Feature Elimination (RFE) algorithm is an example of 

"backward" feature deletion, in an iterative procedure (Guyon et al., 2002). According to 

Guyon et al. (2002), RF trains a classifier, which in this case was also RF, then calculates 

the classification criteria for all the characteristics and finally eliminates the function with 

the smallest classification criterion. Both methods eliminate variables as the classifier is 

iterated. Although both methods calculate a measure of importance, unlike Boruta, RFE 

calculates a measure of accuracy, which in this case was the root of the mean square error 

(RMSE) according to Cabezas et al. (2016). Then, considering that neither of the two 

methods considers collinearity among the predictors, it is that the selected predictors were 

compared with each other, choosing those predictors with better ranking and Pearson 

correlation coefficient (r) with the response variable and smaller among them. The best-

performed predictors were then used in the final model. 

 

 

3.6 Statistical analysis 

 

 

3.6.1 Descriptive statistics 

 

Statistical parameters which are generally regarded as indicators of the central tendency 

and spread of the data were analysed. They included the determination of mean, 

minimum, maximum values, standard deviation, range, coefficient of variation (CV), 

kurtosis and skewness. The normal frequency distribution was decided through the 

evaluation of skewness according to Paz-Gonzalez et al. (2000). The data were analysed 

using the SPSS version 25.0 software. The CV was used to assess the variability of the 

different data set. Normality test was carried out using the Quantile-quantile plots, 

Shapiro-Wilk, Kolmogorov-Smirmov, histogram plot and therefore the data that did not 

follow the normal distribution was log transformed to stabilize the variance. The 

normality tests were recalculated using the log-transformed data, as asymmetry in the 

distribution of data has an important effect on the variability analyses. The correlation 

between soil physical properties and environmental variables was tested using the 

Pearson correlation coefficient accepting a confidence level of 95%. 

 

 

3.6.2 Generation of statistical models 

 

The main objective behind the use of RF is to achieve an improved predictive accuracy 

by growing a large number of de-correlated trees. Breiman (2001) stated that this is done 

to obtain a prediction accuracy by averaging the prediction values from all the trees in the 

ensemble for each observation RF is thus especially beneficial for data sets with a large 

number of predictors that may be correlated. The RF method deals with an ensemble of 

trees and has evolved into an important non-parametric method that has capabilities to fit 

interactions that may be highly non-linear. Cutler et al. (2007) suggested that RF may 

also be used to deal with irrelevant predictor variables and robust outliers in the predictor 

variables list. 
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The RF method is a bagging method and uses recursive partitioning to form regression 

trees. Therefore each regression tree that is created is then independently grown until its 

maximum size is reached based on the training data set, known as the bootstrap sample 

consisting of 66% of the total population (Liaw and Weiner, 2002). On the other side RF 

seeks to add randomness into the data by selecting random subsets of input variables to 

establish the most efficient split at each tree node, thus reducing bias and maintaining 

diversity with the data since no pruning is performed (Breiman, 2001). The remaining 

34% of the data also known as out-of-bag data is used for the model prediction. The 

ensemble predicts the data using the difference in the mean square error of the out-of-bag 

data and the data that is used to grow the homogeneous regression trees. 

 

Once the predictors were chosen for each of the response variables (soil properties), the 

predictive models were generated. For this, two approaches were used, a regression 

testing the nonparametric Random Forest (RF) model proposed by Breiman (2001). RF 

uses a collection of decision tree classifiers, where each forest tree has been trained using 

a bootstrap sample of individuals from the data, and each division attribute in the tree is 

chosen from the random subset of attributes (Reif et al., 2006). The RF algorithm, for 

classification and regression, consists of (Liaw and Wiener, 2002): 

 

(a) Draw ntree bootstrap samples of the original data, where ntree corresponds to the 

number of trees to grow, this should not be a very small number. In this case, the ntree 

used was 500 (Fassnacht et al., 2014a, Lopatin et al., 2016, Castillo-Riffart et al., 2017). 

(b) For each of the bootstrap samples, a classification or regression tree grows without 

pruning, with the following modifications: in each node, instead of choosing the best 

division among all the predictors, randomly sample a random sample mtry (specifies how 

many random features will be selected to grow a single tree) of the predictors and choose 

the best division between these variables. For regressions, the default value of mtry 

corresponds to 1/3 of the total descriptors (Svetnik et al., 2003). The mtry was adjusted 

for each model, depending on the number of variables used. 

(c) Predict new data by adding the predictors of ntree trees. All the procedures were 

carried out using the packages "Random Forest" (Liaw and Wiener, 2002), "caret" (Kuhn 

et al., 2017) and "stats" (R Core Team, 2017) of the R-project software. 

 

 

3.6.3 Model accuracy 

 

For validation of purposes, the best RF models were embedded in bootstrap with 500 

iterations. In each bootstrap iterations, 80 times were drawn with replacement from 80 

available samples. In this procedure, on average 34% of the total number of samples were 

not drawn. These samples were subsequently used as holdout samples for an independent 

validation according to Fassnacht et al. (2014b). The model performances of RF was 

compared based on differences in coefficient of determination R2 and normalized RMSE 

between predicted and observed soil physical properties values of the hold-out samples 

in the bootstrap. To enable sound comparisons between four response variables, the 

normalized RMSE (nRMSE) will be used and calculated as:  

 

nRMSE= [RMSE/ [max (number of attributes) – min (number of attributes)]] x 100  

 

Where RMSE will be calculated as; 
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                          RMSE =  √
1

n
 ∑ (yj − ŷ)

2n
j=1                                                      (13) 

 

With y denotes reference parameter values, ŷ estimated value, and n number of samples.  

 

                        R2 =  
∑   (Pi  

n
j=1 − θi

̅̅̅)2 

∑ (Oi
n
j=1 − θi

̅̅̅)2                                                               (14) 

 

Where n denotes data point, Oi and Pi are observed and predicted soil selected physical 

properties values at the ith point and θi are the respective means. High values of R2 and 

low values of nRMSE indicate high model quality. The bias of prediction was measured 

as one minus the slope of regression without intercept of the predicted versus observed 

values.   

 

 

3.6.4 Predictive variability maps 

 

Predictive maps of selected soil properties were calculated for each depth based on the 

obtained best-performed models.  
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4. RESULTS 

 

 

4.1 Soil properties 

 

 

4.1.1 Descriptive statistics 

 

The analysis of the collected data of selected soil parameters was first achieved through 

the conventional statistics (minimum, maximum, arithmetic mean, standard deviation, 

range, coefficient of variation (CV), kurtosis and skewness) as given in Tables 3 to 5. The 

descriptive statistics of the selected soil physical properties from the surface (0-20 cm) 

are given in Table 3. The CV values was used to interpret the variability in soil properties. 

The criteria proposed by Gomes and Garcia (2002) was used to classify the soil properties 

into low (< 10%), medium (10- 20%), high (20 - 30%) and very high (>30%) variabilities. 

However, the high or low rank of the CV of a given variable is not necessarily the same 

for another variable (Costa et al., 2008). Mulla and McBratney (2000) proposed the CV 

classification for different variables be: SOM with a CV value of 21-41 % is moderate to 

high, while bulk density with the CV values of between 3-26 % is regarded as low to 

moderate, clay with a CV ranging between 16-53% is classified as moderate to high and 

sand content with a CV ranging between 3-37 % is classified as low to moderate 

variability, porosity with a CV that ranges between 7-11 % regarded as low variable, 

saturated hydraulic conductivity with the CV ranging between 48-352 % is regarded as 

high variable, water content at field capacity with an CV ranging between 4-20 % is 

categorised as low to moderate variable and water content at permanent wilting point with 

an CV value of 14-45% is categorized as moderate to high. 

 

The results obtained in this study indicate low to very high variability of soil physical 

properties within the top horizon (0-20 cm). The greatest and the least CVs for soil 

physical properties were obtained for Ksat (104%) and  PD (3.1%),  indicating very high 

variability for Ksat relative to other soil properties and the low value for PD indicates low 

variability relative to other properties. However, the majority of soil properties falls under 

high variability category. Cerri and Magalhães (2012) stated that high CV is the first 

indicator of data heterogeneity. Based on the skewness and kurtosis, most of the variables 

were satisfactorily described by a normal distribution (Table 3) and did not require 

transformation. Two possible exceptions were Ksat and available water content. 

 

The skewness for the normality should be less than 3 and it was found to be in a range of 

(-0.03 – 2.27). In spite of skewness and kurtosis of the distribution of some soil properties, 

the mean and median values were similar with the mean being equal to or almost equal 

to the median; except for clay (14.9 – 13.1), SSI (15.3 – 14.0) and Ksat (50.6 – 32.2). 

Minimum, maximum and range for other variables are also shown in (Table 3). 

Nevertheless, CV is the most discriminating factor for describing the variability of soil 

properties than the other parameters such as SD, mean, median according to Xing-Yi et 

al. (2007). 
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Table 3. Descriptive statistics for selected soil physical properties in the top soil (0-20 

cm). 

N = 62, SD = standard deviation, CV = coefficient of variation (%), OM = organic matter, BD = bulk 
density, PD = particle density, f = total porosity, SSI = structure stability index, R = repellence index, DR 

= dispersion ratio, PNT = penetration resistance, Ksat = saturated hydraulic conductivity, FC = field 

capacity, PWP = permanent wilting point, AWC = available water content, FDP = fast drainage pores, SDP 

= slow drainage pores, ΔWMD = weighted mean diameter. 

 

The descriptive statistics of the soil physical properties belonging to 20-40 cm soil depth 

are given in Table 4. Probability distributions of the soil properties were evaluated using 

skewness and kurtosis, and those not normally distributed were subjected to logarithmic 

transformation (PD, SSI, R index, DR, and PNT). PD and Ksat have minimum and 

maximum values of skewness, respectively (Table 4) and some properties were 

negatively skewed. Moreover, minimum and maximum values of kurtosis are shear 

strength and Ksat, respectively (Table 4). In spite of skewness and kurtosis of the 

distribution of the soil properties, the mean and median values were similar with means 

equal to or almost equal to the median; exceptions were DR, PNT, shear strength and 

Ksat (Table 4). Ranking of CVs for soil physical properties into different classes, for most 

soil properties exceeded 20%, indicating significantly variability (Table 4). PD, BD and 

f  had the lowest CV (3.7%-9.6%); silt, sand and FC had the medium CVs (15.5%-17.2%); 

clay, OM, SSI, PNT, shear strength, and PWP had high CVs (20.4%-28.9%); and finally, 

R-index, DR, FDP, SDP, ΔWMD and AWC had the highest CVs (35.6%-197.3%), 

indicating that soil properties were ordinarily heterogeneous. In overall, minimum and 

maximum values of CV is particle density (PD) and Ksat, respectively (Table 4). Among 

the soil properties analysed, the SD for SDP, OM, PD, BD and R index were the lowest 

(0.07-1.0), while that for PNT was the greatest (57.0). The Ksat values varied from 0.00 

to 186.3 and have a mean of 22.6 cm h-1 (Table 4). 

 

 

 

 

Variables Min Max Mean SD CV  Median Range Skewness Kurtosis 

Clay (%) 6.8 32.7 14.9 5.3 35.0 13.1 26.0 1.17 1.07 

Silt (%) 9.4 29.6 20.4 3.5 17.0 20.4 20.2 - 0.38 1.30 

Sand (%) 48.4 78.9 64.7 6.4 9.9 65.9 30.5 -0.38 0.03 

OM (%) 3.13 9.79 5.26 1.16 22.0 5.07 6.7 1.20 2.45 

BD (Mg m-3) 1.17 1.67 1.48 0.12 7.9 1.48 0.50 -0.41 -0.16 

f (%) 33.0 54.8 42.0 4.4 10.0 41.7 21.8 0.6 0.3 

PD ( Mg m-3) 2.36 2.68 2.55 0.08 3.1 2.57 0.30 -0.36 -0.88 

SSI (%) 9.7 28.0 15.3 4.3 28.0 14,0 18.2 1.57 1.88 

R Index 0.81 4.36 2.27 0.81 35.0 2.16 3.55 0.42 -0.28 

DR (%) 21.2 75.5 43.1 11.3 26.0 42.3 54.3 0.43 0.12 

PNT (kPa) 90.0 365.0 215.0 55.6 26.0 205 275 0.17 -0.34 

Shear strength 72.0 336.0 164.9 53.5 32.0 160 264 0.63 0.28 

Ksat (cm h-1) 0.0 290.1 50.6 52.8 104.0 32.2 290.1 2.27 6.31 

FC (%) 14.0 29.0 20.0 4.0 18.0 20.0 15.0 0.58 0.08 

PWP (%) 6.0 20.0 12.0 3.0 23.0 12.0 14.0 0.53 0.02 

AWC (%) 4.0 18.0 7.0 2.0 31.0 7.0 14.0 1.92 6.16 

FDP (%) 2.0 25.0 15.0 4.0 28.0 15.0 23.0 -0.03 0.60 

SDP (%) 2.0 8.0 5.0 1.0 27.0 5.0 6.0 0.30 0.63 

ΔWMD (mm) 0.1 8.47 4.56 2.14 47.0 4.22 8.42 -0.05 -0.77 
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Table 4. Descriptive statistics for selected soil physical properties in the subsurface (20-

40 cm). 

 N = 62, SD = standard deviation, CV = coefficient of variation (%), OM = organic matter, BD = bulk 

density, PD = particle density, f = total porosity, SSI = structure stability index, R = repellence index, DR 

= dispersion ratio, PNT = penetration resistance, Ksat = saturated hydraulic conductivity, FC = field 

capacity, PWP = permanent wilting point, AWC = available water content, FDP = fast drainage pores, SDP 

= slow drainage pores, ΔWMD =  weighted mean diameter. 

 

 

The descriptive statistics of the soil physical properties within the deeper horizon (40-60 

cm) is presented in Table 5. The statistics result obtained indicates moderate to high 

skewness, and the values of skewness vary from -0.62 to 4.04 depicting moderate to high 

skewness (Table 5); Ksat had the highest value of skewness, while PNT had the lowest 

skewness. Moreover, minimum and maximum values of kurtosis are PNT (-0.74) and 

AWC (21.09), respectively (Table 5). The mean and median values were similar with 

means being equal to or almost equal to the median; exceptions were Ksat, ΔWMD, PNT 

and DR (Table 5). CVs for most of the soil physical properties exceeded 20% indicating 

significant spatial variability. BD, f and PD had the lowest CVs (3.2%-8.6%); FC, PWP 

and sand had the medium CVs (14.7%-17.8%); clay, silt, OM, SSI, PNT, shear strength 

and ΔWMD had high CVs (21.2%-29.1%); finally, R index, DR, Ksat, AWC, FDP and 

SDP had very high CVs (33.0%-229.9%) indicating that soil properties were 

heterogeneous (Table 5). Among the soil properties analysed, the SD for SDP, BD and 

PD were the lowest (0.07-1.0), while PNT was the greatest (99.0). Ksat had the highest 

CV (229.9%) relative to all the other soil properties, while PD showed the lowest 

variability (3.2%). PNT, shear strength and Ksat showed the highest range relative to 

other soil properties (Table 5).  

 

Variables Min Max Mean SD CV Median Range Skewness Kurtosis 

Clay (%) 9.7 45.1 29.4 8.5 28.9 30.7 35.4 -0.14 -0.64 

Silt (%) 13.5 26.3 18.7 2.9 15.5 18.8 12.8 0.33 0.01 

Sand (%) 33.5 76.8 51.9 8.2 15.8 50.3 43.4 0.39 0.57 

OM (%) 2.10 6.55 4.33 0.88 20.39 4.35 4.45 -0.21 0.20 

BD (Mg m-3) 1.43 1.73 1.59 0.07 4.40 1.60 0.30 -0.28 -0.54 

f (%) 24.6 46.5 39.1 3.8 9.6 39.2 21.9 -0.95 2.41 

PD (Mg m-3) 2.16 2.73 2.62 0.10 3.66 2.65 0.57 -2.28 7.20 

SSI (%) 4.2 15.0 9.1 1.9 21.0 8.9 10.8 0.61 1.01 

R Index 0.68 3.02 1.68 0.60 35.63 1.69 2.34 0.38 -0.66 

DR (%) 11.7 76.4 30.0 13.1 47.5 23.4 64.7 1.52 2.14 

PNT (kPa) 130.0 385.0 276.4 57.0 20.6 287.0 255.0 -0.78 0.36 

Shear strength 116.0 332.0 240.7 55.8 23.2 251.0 216.0 -0.41 -0.68 

Ksat (cm h-1) 0.0 186.3 22.6 36.3 197.3 2.5 186.3 2.77 7.45 

FC (%) 15.0 36.0 25.0 4.0 17.2 26.0 21.0 -0.34 0.38 

PWP (%) 9.0 30.0 19.0 4.0 20.8 19.0 21.0 -0.14 0.34 

AWC (%) 3.0 17.0 7.0 2.0 33.9 7.0 14.0 1.98 6.79 

FDP (%) 4.0 20.0 9.0 3.0 34.1 9.0 16.0 0.97 0.92 

SDP (%) 1.0 7.0 3.0 1.0 35.8 3.0 6.0 0.85 1.12 

ΔWMD (mm) 0.33 12.01 6.81 2.62 38.46 6.68 11.68 -0.01 -0.33 
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Table 5. Descriptive statistics for selected soil physical properties in the subsoil (40-60 

cm). 

N = 62, SD = standard deviation, CV = coefficient of variation (%), OM = organic matter, BD = bulk 

density, PD = particle density, f = total porosity, SSI = structure stability index, R = repellence index, DR 

= dispersion ratio, PNT = penetration resistance, Ksat = saturated hydraulic conductivity, FC = field 

capacity, PWP = permanent wilting point, AWC = available water content, FDP = fast drainage pores, SDP 

= slow drainage pores, ΔWMD =  weighted mean diameter 

 

As expected the soil properties varied with depth; OM, sand and porosity decreased with 

depth while BD, clay, PD, shear strength, PNT and MWD increased with depth (Table 3 

to 5). 

 

 

4.1.2 Pearson correlations 

 

Pearson correlations between all analysed parameters for soil properties of the entire data 

set of 62 sampling points for all the sampling depths (0-20 cm, 20-40 cm and 40-60 cm) 

are shown in Table 6, 7 and 8, respectively. In the top-soils  (0-20 cm) depth, the clay 

content was significantly (p < 0.01) positively correlated with properties such as shear 

strength (r = 34 %), FC (r = 49 %), PWP (r = 74 %) and significantly (p < 0.05) positively 

correlated with OM (r = 31 %), but negatively with sand (r = -83 %), SSI (r = -32 %), 

FDP (r = 27 %) and SDP (r = -27 %) (Table 6). The FC was significantly (p < 0.01) 

positively correlated with properties such as clay (r = 49 %), silt (r = 34 %), OM (r = 37 

%), but negatively with sand (r = -59 %) and Ksat (r = -44 %) (Table 6). As expected 

SOM was negatively correlated with sand content and bulk density (Table 6). However, 

there was no significant correlation between clay content and functional soil properties 

like aggregate stability test (DR and ΔWMD), Ksat and PNT.  

 

Correlation results between the properties of sub-soils (20-40 cm) depth shows that BD 

was significantly (p < 0.05) positively correlated with properties such as DR (r = 26 %), 

but significantly (p < 0.01) negatively correlated with f (r = -76 %), Ksat (r = -40 %) and 

Variables Min Max Mean SD CV Median Range Skewness Kurtosis 

Clay (%) 15.6 46.3 34.3 7.3 21.2 36.2 30.7 -0.62 -0.34 

Silt (%) 3.3 26.2 16.5 3.7 22.1 16.0 22.9 -0.17 2.62 

Sand (%) 35.2 68.4 49.2 7.2 14.7 48.1 33.3 0.46 -0.41 

OM (%) 1.59 5.56 3.67 0.88 24.0 3.51 3.97 0.20 -0.62 

BD (Mg m-3) 1.46 1.77 1.63 0.07 4.5 1.63 0.31 -0.07 -0.54 

f (%) 32.0 46.0 38.0 3.3 8.6 37.7 14.0 0.26 -0.38 

PD ( Mg m-3) 2.47 2.93 2.63 0.08 3.2 2.65 0.46 0.30 1.03 

SSI (%) 2.8 10.9 7.3 1.7 23.8 7.1 8.1 0.02 -0.49 

R Index 0.8 1.47 1.67 0.61 36.7 1.47 0.67 1.16 1.20 

DR (%) 13.0 85.4 27.7 14.8 49.3 25.6 72.4 1.60 2.42 

PNT (kPa) 160 550.0 364.2 99.0 27.2 372.5 390 -0.04 -0.74 

Shear strength 132 500.0 304.2 88.5 29.1 304.0 368 0.42 0.03 

Ksat (cm h-1) 0.0 330.7 18.4 52 229.9 2.5 330.7 4.04 18.62 

FC (%) 17.0 47.0 28.0 5.0 16.7 28.0 30.0 0.93 3.12 

PWP (%) 11.0 29.0 20.0 4.0 17.8 21.0 18.0 -0.24 0.40 

AWC (%) 2.0 29.0 8.0 3.0 44.2 7.0 27.0 3.95 21.09 

FDP (%) 4.0 16.0 8.0 3.0 33.0 8.0 12.0 0.47 -0.39 

SDP (%) 1.0 7.0 3.0 1.0 36.7 3.0 6.0 1.29 2.05 

ΔWMD (mm) 3.5 12.1 7.5 2.0 26.4 7.8 8.6 0.16 -0.55 
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FDP (r = -32 %) (Table 7). SSI was significantly (p < 0.01) positively correlated with 

sand (r = 42 %), OM (r = 60 %) and significant (p ≤ 0.05) positively correlated with f, but 

significant (p < 0.05) negatively correlated with clay (r = -32 %) (Table 7). There was no 

significant correlation between ΔWMD and any of the other soil properties at the 

sampling depths, except for the topsoil (Table 6, 7 and 8). Nevertheless, DR was 

significantly positively correlated with silt (r = 36 %), BD (r = 26 %), PD (r = 30 %) and 

significantly negatively correlated (20-40 cm) with clay (r = -29 %), OM (r = -47%), SSI 

(r = -32 %) and PNT (r = -38 %). On the other hand, Ksat at the depth of 20-40 cm was 

significantly positively correlated with sand (r = 27 %), f (r = 32 %) and FDP (r = 37 %) 

significantly negatively correlated with BD (r = -40 %), FC (r = -50 %) and PWP (r = -

39 %). Lastly, the Pearson correlation results of sub-soils (40-60 cm) depth shows that 

PNT was significant (p < 0.01) positively correlated with clay content (r = 50 %), shear 

strength (r = 39 %) and PWP (r = 38 %), but significant negatively correlated with DR (r 

= -41 %) and SDP (r = -27 %) (Table 8). The f was significant (p < 0.01) positively 

correlated with PD (r = 54 %) and SDP (r = 43 %). Ksat showed no dependence with 

other properties, while DR was significant positively correlated with silt (r = 31 %), sand 

(r = 34 %) and AWC (r = 37 %) and significant negatively correlated with clay (r = -49 

%) and PNT (r = -41 %) (Table 8). Generally, there is a positive correlation between sand 

and Ksat and negative correlation between sand and shear strength and water retention 

(FC and PWP) among all the depths (except for sand at 40-60 cm). The same for the 

relationship between OM and water retention at FC and PWP and OM and SSI. 
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Table 6. Pearson correlation of selected soil physical properties in the surface (0-20 cm). 

N = 62, *, ** Significant at p = 0.05 and 0.01, respectively.  OM = organic matter (%), BD = bulk density (Mg m-3), PD = particle density (Mg m-3), f = total 

porosity (%), SSI = structure stability index (%), R = repellence index, DR = dispersion ratio(%), PNT = penetration resistance (kPa), Ksat = saturated hydraulic 

conductivity (cm h-1), FC = field capacity (%), PWP = permanent wilting point (%), AWC = available water content (%), FDP = fast drainage pores (%), SDP = 

slow drainage pores (%), ΔWMD =  weighted mean diameter (mm), Shear = shear strength (kPa). 

 

 

 

 

 

Variables Clay Silt Sand OM BD f PD SSI R DR PNT Shear Ksat FC PWP AWC FDP SDP ΔWMD 

Clay 100                   

Silt 3 100                  
Sand -83** -58** 100                 

OM 31* -2 -24 100                

BD 8 5 -9 -13 100               

f -6 -13 12 5 -92** 100              
PD 4 -18 7 -19 30* 9 100             

SSI -32* -49** 53** 67** -18 14 -10 100            

R index -1 3 -1 -1 -29* 29* -3 1 100           
DR -16 31* -4 -17 25* -21 15 -23 4 100          

PNT 4 -9 2 -26* 22 -14 23 -16 -17 -6 100         

Shear  34** 1 -29* -10 19 -16 10 -29* -4 -7 53** 100        
Ksat -10 -47** 34** -6 -48** 49** -4 22 1 -24 8 -1 100       

FC 49** 34** -59** 37** 14 -16 -4 -13 -14 5 -21 13 -44** 100      

PWP 74** 28* -76** 39** 18 -19 -2 -20 -5 -4 -3 31* -43** 77** 100     

AWC -18 13 8 8 4 -5 -3 8 -18 12 -26* -20 -14 57** -8 100    
FDP -27* -1 23 -1 -70** 61** -32* 17 15 -14 -16 -32* 45** -44** -40** -20 100   

SDP -27* 32* 4 -17 -17 9 -25 -12 3 14 -24 -30* -12 -4 -6 0.2 43** 100  

ΔWMD 0.10 16 -17 -18 26* -13 34** -28* -6 2 16 17 -0.4 3 6 -0.1 -5 -5 100 
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Table 7. Pearson correlation of selected soil physical properties in the subsurface (20-40 cm). 

N = 62, *, ** Significant at p = 0.05 and 0.01, respectively.  OM = organic matter (%), BD = bulk density (Mg m-3), PD = particle density (Mg m-3), f = total 

porosity (%), SSI = structure stability index (%), R = repellence index, DR = dispersion ratio (%), PNT = penetration resistance (kPa), Ksat = saturated hydraulic 

conductivity (cm h-1), FC = field capacity (%), PWP = permanent wilting point (%), AWC = available water content (%), FDP = fast drainage pores (%), SDP = 

slow drainage pores (%), ΔWMD =  weighted mean diameter (mm), Shear = shear strength (kPa). 

 

 

 

 

 

Variables Clay Silt Sand OM BD f PD SSI R DR PNT Shear Ksat. FC PWP AWC FDP SDP ΔWMD 

Clay 100                   

Silt -27* 100                  

Sand -94** -7 100                 
OM 52** -17 -46** 100                

BD -1 -2 2 -11 100               

f -9 7 7 -10 -76** 100              

PD -14 9 11 -27* -6 70** 100             
SSI -32* -24 42** 60** -12 32* -18 100            

R index -10 -1 11 2 -19 21 9 16 100           

DR -29* 36** 17 -47** 26* 1 30* -32* -17 100          
PNT 24 -24 -17 21 3 -17 -22 5 3 -38** 100         

Shear 45** -12 -43** 24 10 -8 -3 -10 9 -15 35** 100        

Ksat -24 -4 27* -16 -40** 32* 6 9 -2 12 0.4 -17 100       

FC 66** 1 -69** 47** 18 -23 -16 -12 -11 -6 14 36** -50** 100      
PWP 73** -9 -73** 53** 15 -21 -16 -9 -4 -16 14 37** -39** 80** 100     

AWC -1 13 -4 2 -4 1 -3 -3 -11 9 1 4 -7 36** -23 100    

FDP -40** 10 38** -32* -36** 33** 11 1 12 8 -14 -38** 37** -75** -55** -34** 100   
SDP -51** 17 47** -20 -9 17 15 18 -10 8 -25 -39** 1 -30* -36** 2 14 100  

ΔWMD 11 -5 -10 8 -9 11 9 1 -3 4 -7 -1 -0.2 10 7 4 -11 -10 100 
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Table 8. Pearson correlation of selected soil properties in the subsoil (40-60 cm) 

 N = 62, *, ** Significant at p = 0.05 and 0.01, respectively.  OM = organic matter (%), BD = bulk density (Mg m-3), PD = particle density (Mg m-3), f = total 

porosity (%), SSI = structure stability index (%), R = repellence index, DR = Dispersion ratio(%), PNT = penetration resistance (kPa), Ksat = saturated hydraulic 
conductivity (cm h-1), FC = field capacity (%), PWP = permanent wilting point (%), AWC = available water content (%), FDP = fast drainage pores (%), SDP = 

slow drainage pores (%), ΔWMD =  weighted mean diameter (mm), Shear = shear strength (kPa). 

 

 

 

 

 

Variables Clay Silt Sand OM BD f PD SSI R DR PNT Shear Ksat FC PWP AWC FDP SDP ΔWMD 

Clay 100                   
Silt -26* 100                  

Sand -87** -24 100                 

OM 37** -15 -30* 100                
BD -26* -4 28* -9 100               

f 11 5 -13 -4 -80** 100              

PD -19 1 19 -21 7 54** 100             

SSI -19 -31* 34** 79** 10 -12 -8 100            
R index -9 1 9 -9 -3 8 11 -1 100           

DR -49** 31* 34** -16 15 16 -5 4 5 100          

PNT 50** -18 -42** 31* 1 -4 -7 6 -13 -41** 100         
Shear 38** -12 -33** 31* -4 -5 -15 10 -6 -16 39** 100        

Ksat -2 -0.2 2 -5 -16 10 -7 -4 -2 -4 6 -18 100       

FC 38** -5 -36** 46** -2 -4 -12 20 9 17 20 20 -9 100      
PWP 61** -5 -59** 48** -9 3 -9 8 -13 -11 38** 44** -16 69** 100     

AWC -14 2 13 10 5 -7 -4 17 25    37** -15 -3 6 62** -14 100    

FDP -24 0 24 -22 -15 4 -15 -5 -17 9 -9 -11 -6 -44** -49** -5 100   

SDP -42** 20 32* -22 -30* 43** 30* -3 -14 7 -27* -36** -4 -39** -42** 6 46** 100  
ΔWMD 2 -0.4 -2 -22 -18 23 14 -23 5 -21 4     4 10 -10    10 -23 -10 15 100 
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4.2 Statistical models 
 

 

4.2.1 Model performance 

 
The performance results of RFM as a predictor in modelling soil physical properties were 

summarized in terms of R2, RMSE, nRMSE and bias for all 500 bootstraps values for all 

the sampling depths (Table 9). The particle size distribution results showed that the 

combination of the various predictor variables can account for R2 of 0.51 to 0.66, 0.48 to 

0.52, and 0.42 to 0.50 of the variation in clay, sand, and silt, respectively. The prediction 

of clay content showed systematically higher R2 (0.66, 0.65, 0.51), across all depths. 

However, the silt content showed the lowest R2 (0.42, 0.42 and 0.50) across all depths, 

respectively. The values of R2 showed the trend within the soil depths for all the particles, 

for example, in clay content is higher for the first 20 cm, then decreased with depth 0.66 > 

0.51 > 0.65 (see Table 9). Sand showed the decrease with the soil depth. However, the 

opposite was observed for silt content. In terms of prediction accuracy, clay content showed 

the highest nRMSE (27.5, 26 and 16 %), bias (0.3, 0.7 and 0.5) values across all depths and 

the lowest nRMSE (8.6, 13, and 13) was associated with the prediction sand at all depths 

interval (Table 9). The lowest bias values were observed in silt content. 

 

The performance results of the random forest model as a predictor in modelling bulk 

density (BD) is summarised in Table 9. The best model fit of BD was found at surface 

depths (median bootstrap R2 of 0.51; nRMSE of 7 %). While the worst fit of BD was 

observed for 20-40 cm soil depths (median bootstrap R2 of 0.26; nRMSE of 4 %). The 

summary of root means square error and bias can also be obtained from Table 9. On the 

other hand, the performance results of the random forest model as a predictor in modelling 

soil organic matter (OM) is summarised in Table 9. The best model fit of BD was found at 

subsurface depths (median bootstrap R2 of 0.53; nRMSE of 18 %). While the worst fit of 

OM was observed for both surface (20-40 cm) and 40-60 cm soil depths (median bootstrap 

R2 of 0.31; nRMSE of 21 and 23 %, respectively). The summary of root means square error 

and bias can also be obtained from (Table 9) 

 

The results of the dispersion ratio (DR) showed R2 ranges from 0.49 to 0.81 across all the 

soil depths (Table 9). The best model fit was found when predicting DR at the lower soil 

depth (40-60 cm) (median bootstrap R2 of 0.81, nRMSE of 30 % and bias of -0.4). While 

the worst fit was observed for the upper depth (0-20 cm) (median bootstrap R2 of 0.49, 

nRMSE of 23 % and bias of -0.5) (Table 9). The values of R2 and nRMSE increased with 

soil depth, while RMSE decreased within the soil depths. 

 

The saturated hydraulic conductivity (Ksat) results demonstrate that R2 ranges from 0.26 

to 0.57 across all the soil depths. The best model fit was found when predicting Ksat at the 

lower depth (median bootstrap R2 of 0.57, nRMSE of 194 % and bias -10.4). While the 

worst fit was observed for 20-40 cm (median bootstrap R2 of 0.26, nRMSE of 109 and bias 

of 1.0) (see Table 9). The values of RMSE are summarized in Table 9. In addition, the 

water retention characteristics results showed that the combination of the various predictor 

variables can account for R2 of 0.40 to 0.57, 0.42 to 0.54 and 0.21 to 0.31 of the variation 

in permanent wilting point (PWP), field capacity (FC) and available water content (AWC) 

respectively. The best fit was found when predicting PWP (median bootstrap R2 of 0.57, 
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0.48 and 0.54; nRMSE of 19 %, 19% and 15% and bias of 0.3, 0.4 and 0 for all the depths, 

respectively). However, the worst fit was observed for FC for two soil depths (median 

bootstrap R2 of 0.54, 0.40 and 0.42; nRMSE of 16 %, 16 % and 32 %; bias of 0.1, 0.2 and 

0.45) (see Table 9). The values of average error rates increase with the increase in soil 

depths.  

 

The pore size distribution results showed that the combination of various predictor 

variables can account for R2 of 0.31 to 0.54 and 0.20 to 0.50 of the variation in slow 

draining pores (SDP) and fast draining pores (FDP), respectively. The best fit was found 

when predicting SDP (median bootstrap R2 of 0.31, 0.54 and 0.50; nRMSE of 26 %, 31 % 

and 32%; bias -0.4, 1.2 and 0.9) (see Table 9). However, the FDP showed the lowest R2 

(0.20, 0.46 and 0.50) across all the sampling depths. The average error rate (nRMSE) and 

bias for the final model used to generate the predictive map of FDP were 26 %, 31% and 

29% and 0.2, 1.0 and -0.2, respectively (see Table 9). The model performance results of 

other soil properties can also be obtained in Table 9. 

 

In general, the dispersion ratio showed the best fit than other soil physical properties and 

available water content showed the worst fit. In addition, Ksat showed the highest average 

error rates across all the depths (91, 109 and 194 %) See Table 9. Based on model 

validation, all the models showed a systematic tendency to overestimate small values and 

underestimate high values (Fig.4). This effect was strong in Ksat models (Fig. 4.16, 4.17 

and 4.18) and least in BD models (Fig. 4.10, 4.11 and 4.12). 

 

 

4.2.2 Variable importance 

 
The “importance” function in the random forest package was used to access the importance 

of predictor variables used to predict soil properties. Variable importance was calculated 

as the increase in node impurity weighted by the probability of reaching that node. The 

higher values showed the more importance of the variable (Fig. 3).  Based on the average 

importance measured across 500 runs of the random forest model, the environmental 

variables that had the greatest influence on the model error rate for surface (0-20 cm) clay 

content were; DEM, catchment slope, topographic wetness index (TWI) and convexivity 

(Fig. 3.1). The predictor variables that had the greatest influence on subsurface (20-40 cm) 

clay content model error rate, averaged across 500 runs, were topographic position index 

(TPI), analytical Hillshading, aspect and LS factor (Fig. 3.2). The predictor variables that 

had the greatest influence on subsoil (40-60 cm) were DEM, longitudinal curvature, LS 

factor and modified catchment area (Fig. 3.3). The environmental variables that had the 

greatest influence on the model error rate for 0-20 cm, 20-40 cm and 40-60 cm sand content 

were DEM, catchment slope, slope and secondary curvature; catchment slope, topographic 

position index, LS factor, analytical Hillshading; modified catchment area, topographic 

position index, aspect and catchment area, respectively (Fig. 3.4, 3.5 and 3.6). The 

environmental variables that had the greatest influence on the model error rate for 0-20 cm, 

20-40 cm and 40-60 cm silt content were; Analytical Hillshading, convexity, green-red 

vegetative index (GRVI), Multiresolution Index of the Ridge Top Flatness (MrRTF); 

Multiresolution Index of Valley Bottom Flatness (MrVBF), GRVI, TWI_1, TPI; Modified 

catchment area; TWI-SAGA, convergence index and GRVI, respectively (Fig. 3.7, 3.8, and 

3.9). 
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Based on the averaged importance measured across 500 runs of the Random Forest model, 

the environmental variables that had the greatest influence on the model error rate for soil 

surface bulk density were; aspect, DEM, TWI-SAGA, and TBSI-T (Fig. 3.10). The 

environmental variables that had the greatest influence on subsurface bulk density model 

error rate, averaged across 500 runs, were; secondary curvature, catchment slope, LS 

factor, and longitudinal curvature (Fig. 3.11). The environmental variables that had the 

greatest influence on 40-60 cm bulk density model error rate, averaged across 500 runs, 

were; analytical Hillshading, TBSI-W, convergence index and MBI (Fig. 3.12).  

 

The environmental variables that had the greatest influence on the model error rate for 0-

20 cm, 20-40 cm and 40-60 cm dispersion ratio model were; TPI, modified catchment area, 

TWI_1, MrVBF (Fig. 3.13); Secondary curvature, longitudinal curvature, catchment slope, 

DEM (Fig. 3.14); DEM, catchment slope, TPI and longitudinal curvature, respectively 

(Fig. 3.15). The environmental variables that had the greatest influence on the model error 

rate for 0-20 cm, 20-40 cm and 40-60 cm saturated hydraulic conductivity (Ksat) model 

were; longitudinal curvature, TBSI-T, TPI and MrRTF (Fig. 3.16); TPI, SAGA-TWI, 

modified catchment area and LS factor (Fig. 3.17); flow accumulation, catchment area, 

VRM and TPI, respectively (Fig. 3.18).  

 

The environmental variables that had the greatest influence on the model error rate for 0-20 

cm, 20-40 cm and 40-60 cm permanent wilting point (PWP) model were; MrVBF, TPI, 

GRVI, DEM (Fig.3.19); Aspect, TPI, longitudinal curvature, analytical Hillshading (Fig. 

3.20); Analytical Hillshading, TPI, TWI and catchment slope (Fig. 3.21), respectively. The 

environmental variables that had the greatest influence on the model error rate for 0-20 cm, 

20-40 cm and 40-60 cm field capacity water content model were; GRVI, MrVBF, aspect, 

slope (Fig. 3.22); Analytical Hillshading, modified catchment area, slope, TPI (Fig. 3.23); 

TWI, analytical Hillshading, catchment slope and TPI (Fig. 3.24), respectively.  

 

The environmental variables that had the greatest influence on the model error rate for 0-

20 cm, 20-40 cm and 40-60 cm slow draining pores model were; Modified catchment area, 

DEM, catchment slope, GRVI (Fig. 3.25); catchment area, slope, modified catchment area, 

MrVBF (Fig. 3.26); Modified catchment area, TWI-SAGA, TBSI-W and MrVBF (Fig. 

3.27), respectively. The environmental variables that had the greatest influence on the 

model error rate for 0-20 cm, 20-40 cm and 40-60 cm fast draining pores were; Analytical 

Hillshading, longitudinal curvature, convergence index, secondary curvature (Fig. 3.28); 

Modified catchment area, TPI, analytical Hillshading, slope (Fig. 3.29); Analytical 

Hillshading, modified catchment area, TBSI-W and TWI (Fig. 3.30), respectively. 
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Table 9. Performance of Random Forest model as a predictor in modelling soil properties 

OM = organic matter, BD = bulk density, PD = particle density, f = total porosity, DR = dispersion 

ratio, PNT = penetration resistance, Ksat = saturated hydraulic conductivity, FC = field capacity, 
PWP = permanent wilting point, AWC = available water content, FDP = fast drainage pores, SDP 

= slow drainage pores, RMSE = root mean square error, nRMSE = normalized root mean square 

error, RFM = Random Forest model. 

 

 

 

Properties Depth (cm) R2 RMSE nRMSE Bias 

Clay (%) 0-20 0.66 4.3 27.5 0.3 

 20-40 0.51 7.7 26 0.7 

 40-60 0.65 5.6 16 0.5 

Sand (%) 0-20 0.52 5.6 8.6 0 

 20-40 0.52 7.0 13 0.1 

 40-60 0.48 5.6 13 0.3 

Silt (%) 0-20 0.42 3.3 16 0 
 20-40 0.42 2.7 14 0 

 40-60 0.50 3.3 19 -0.9 

OM (%) 0-20 0.31 1.1 21 -0.1 

 20-40 0.53 0.8 18 0.7 
 40-60 0.31 0.9 23 0.6 

BD (Mg m-3) 0-20 0.51 0.1 7.0 0 

 20-40 0.26 0.1 4.0 -0.2 
 40-60 0.40 0.1 4.0 -0.2 

PD (Mg m-3) 0-20 0.43 0.1 2.8 0 

 20-40 0.15 0.1 4.0 -0.1 

 40-60 0.45 0.1 3.0 -0.1 

f  (%) 0-20 0.49 3.9 9.1 -0.4 

 20-40 0.30 3.6 9.0 0.1 

 40-60 0.28 3.2 8.0 0.1 

DR (%) 0-20 0.49 10.1 23.0 -0.5 
 20-40 0.74 8.9 33 0 

 40-60 0.81 8.7 30 -0.4 

Ksat (cm h-1) 0-20 0.47 42 91 -1.8 

 20-40 0.26 34.2 109 1.0 
 40-60 0.57 37.6 194 -10.4 

PWP (%) 0-20 0.57 3.0 19.0 0.3 

 20-40 0.48 4.0 19.0 0.4 
 40-60 0.54 3.0 15.0 0 

FC (%) 0-20 0.54 3.0 16.0 0.1 

 20-40 0.40 4.0 16.0 0.2 

 40-60 0.42 1.0 32.0 0.4 

SDP (%) 0-20 0.31 1.0 26.0 -0.4 

 20-40 0.54 1.0 31.0 1.2 

 40-60 0.50 1.0 32.0 0.9 

FDP (%) 0-20 0.46 4.0 24.0 0.2 
 20-40 0.20 3.0 34.0 1.0 

 40-60 0.50 2.0 29.0 -0.2 

AWC (%) 0-20 0.31 2.0 28.0 0.6 
 20-40 0.21 2.0 34.0 2.1 

 40-50 0.22 3.0 39.0 1.0 
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4.2.3 Prediction maps 
 

The results present the patterns of soil texture for the three layers, as predicted by RFM 

(see Fig. 5.1-5.9). The variation in soil texture shows a progressive transition from the 

coarse texture (sand) along the fringes of the northern part of the vineyard to finer texture 

towards the southern part. 

 

When looking at the predictive maps for surface clay content, there were few areas where 

more than 25 % of clay content was predicted (Fig. 5.1). The areas that were predicted to 

have a greater amount of clay content were predominantly in the low lying slope of the 

toposequence in the southern and southern western part of the vineyard. Random Forest 

predicted surface clay content to range between 10-25 %. The largest area of the surface in 

the vineyard is predicted to be at most 14% of clay content. The predictive map of the 

subsurface (20-40 cm) clay content show that the RFM predicted clay content to be 

between 19 and 41 % (Fig. 5.2). High clay content was predicted most frequently in the 

lower-lying areas southern part of the study field. 

 

The predictive map of the subsoil (40-60 cm) clay content shows that RFM predicted the 

lower and upper values of the clay content to be 20-43%. When looking at the predictive 

map for subsoil (40-60 cm) clay content, there was a large area where more than or equal 

to 31% clay was predicted (Fig. 5.3). The clay content is high from the northern to the 

lower slope of the southern part of the vineyard and the map showed moderate overall 

variation with the majority of the area being classified as having 31 % to having between 

37 % and 42% clay content (Fig. 5.3). 

 

The study present here the patterns of sand content within vineyard for the three soil depths 

(0-20, 20-40 and 40-60 cm, respectively), as predicted by RFM and the predictive maps 

are shown in Fig. 5.4 to 5.6. The obtained predictive maps show that RFM predicted the 

following minimum and maximum values for surface (55-78 %), subsurface (41-70%) and 

subsoil (37-60%). According to the surface sand predictive map, the sand content is 

predicted to be high in the upper elevation compared to the low lying or valley bottom of 

the toposequence (see Fig. 5.4). Also, the map shows moderate spatial variability within 

the vineyard. On the other hand, the predictive map of the subsurface sand shows that there 

were few areas where greater than 60% of sand was predicted across all the studied field 

(see Fig. 5.5). However, there was a greater margin between the minimum and maximum 

predicted values. The predictive map for the subsoil sand content showed that there were 

few areas where more than 54% of sand content was predicted (see Fig. 5.6). The areas that 

were predicted to have a greater amount of sand content were predominantly at the edges 

of the western part of the vineyard. However, the lower values of the sand content were 

predicted to be distributed in the middle of the field until the southern part of the field (Fig. 

5.6). 

 

The predictive maps of silt content at three different soil sampling depths are demonstrated 

in Fig. 5.7 to 5.9. The RFM predicted the minimum and maximum values of the silt content 

at the three layers to be 16-25%, 15-24%, and 9-33%, respectively. The predictive maps 

showed that there were larger areas where more than 16, 15 and 9 % silt content was 

predicted for all the three depths, respectively (Fig. 5.7, 5.8 and 5.9). The higher values of 

the silt content are predicted to be along the fringes of the western part of the vineyard.  

The maps showed moderate to high variability in all the depths. 
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The study presented here the patterns of soil bulk density (BD) for the three layers (0-20, 

20-40 and 40-60 cm), as predicted by RF model (Fig. 5.10, 5.11 and 5.12). The model 

predicted the minimum and maximum BD for all the three sampling depths; 1.27-1.65 Mg 

m-3, 1.40-1.70 Mg m-3, and 1.53-1.74 Mg m-3, respectively. The predictive map for surface 

BD showed little overall spatial variation, with the majority of the area being classified as 

having less than or equal to 1.46 Mg m-3 BD (Fig. 5.10). Their areas that were predicted to 

have greater values of BD were predominantly in the western part of the field. On the other 

hand, the predictive map of subsurface BD showed little overall variation and the majority 

of the area being classified as having 1.60 Mg m-3 (Fig. 5.11). The low values (1.40-1.54 

Mg m-3) of the BD in the subsurface is predicted in the low lying slope from the eastern 

side of the field towards the southern part of the vineyard. 

 

The predictive map of the BD at the lower soil depths (40-60 cm) showed little variation, 

the majority of the area is being classified as having less than or equal to 1.63 Mg m-3 (Fig. 

5.12). The higher predicted values of BD are at the flat slope and the lowest values are at 

the east towards the southern part of the vineyard. 

 

The dispersion ratio (DR) which is the indicator of the micro-aggregate stability was 

predicted by RFM for three sampling depths (Fig. 5.13, 5.14 and 5.15). The minimum and 

maximum DR values predicted by RFM at all the depths; 26.2-62.3 %, 13.6-64%, and 16.4-

61.9%, respectively. The predictive map of soil surface DR showed high overall variation, 

with the majority of the area being classified as having greater 44.2% (Fig. 5.13). The areas 

that were predicted to have a greater amount of DR were predominantly in edges of the 

western and eastern part of the field (Fig. 5.13). However, the lower predicted DR values 

are distributed within the field. The predictive map for subsurface DR again showed high 

overall variation, with the majority of the area being classified as having less than 26.2 %. 

(Fig. 5.14). The highest and lowest DR predicted values are found in the western and 

eastern part of the field, respectively (Fig. 5.14). 

 

The results presented here show the patterns of saturated hydraulic conductivity (Ksat) for 

three sampling layers, as predicted by RFM (Fig. 5.16, 5.17 and 5.18). The model predicted 

the minimum and maximum Ksat values for all the three sampling depths; 9.2-144 cm h-1, 

0.79-149 cm h-1 and 0.27-88.60 cm h-1, respectively. The all the predictive maps showed 

strong variation, with the majority of the areas being classified as having Ksat of 76.7, 37.8 

and 22.4 cm h-1, respectively (Fig. 5.16 to 5.18). The predictive map of the surface Ksat 

showed that the high predicted values were scattered within the field (Fig. 5.16). While on 

the other hand, the predictive map of the subsurface Ksat showed that greater values were 

predicted on the edges of the west facing slope (Fig. 5.17). The predictive map of the lower 

depth Ksat showed that greater values were on the south western side of the field (Fig. 

5.18). However, there were few areas with high Ksat. 

 

The model predicted the minimum and maximum water content at PWP values for all the 

three sampling depths; 7-17 %, 12-27 % and 15-28 %, respectively. The predictive map for 

surface permanent wilting point (PWP) water content showed high variation, with the 

majority of the area being classified as having less than 14 % PWP water content (Fig. 

5.19). The areas that were predicted to have a greater amount of water content at PWP (14-

16 %) were predominantly in the low lying slopes (Fig. 5.19). On the other hand, the 

predictive map of the water content at PWP (20-40 cm) showed high variation within the 

field, with the majority of the area being classified as 24 % water content (Fig. 5.20). Also, 
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the predictive map for the water content at PWP (40-60 cm) showed moderate or medium 

variation within the field, with the majority of the area being classified as being 22 % water 

content (Fig. 5.21).  

 

The model predicted the minimum and maximum water content at field capacity (FC) 

values for all the three sampling depths; 14-28 %, 18-33 % and 19-42 %, respectively. The 

predictive map for surface water content at FC showed moderate to high variation, with the 

majority of the area being classified as having 24 % (Fig. 5.22).  The RFM predicted high 

values of FC water content at the southern part of the field as shown in (Fig. 5.22). On the 

other hand, the predictive map of subsurface water content at FC showed high variability, 

with the majority of the areas being classified as having 29 % (Fig. 5.23). The areas that 

were predicted to have a greater amount of FC water content were predominantly 

distributed across the field (Fig. 5.23). When looking at the predictive map for lower depth 

water content at FC, with the majority of the areas being classified as having less than 31 

% (Fig. 5.24). The predictive map of FC showed that greater values were predicted at the 

lower areas of the field and the south to south western parts of the field (Fig. 5.24). 

 

RFM predicted the spatial distribution of slow draining pores (SDP) within the field for 

three different sampling depths (Fig. 5.25 to 5.27). The model predicted the minimum and 

maximum SDP values for all the three sampling depths; 2-6 %, 1-6 % and 1-6 %, 

respectively. The predictive map of surface slow draining pores showed high variation 

within the field, with the majority of the areas classified as having 4 % (Fig. 5.25). The 

high volume of slow draining pores was predicted in the low lying slope on the western 

side of the field (Fig. 5.25). The predictive map of the subsurface SDP showed high 

variation, with the majority of the area being classified as having between 1.3-5.6 % (Fig. 

5.26). The areas that were predicted to have a greater amount of SDP were predominantly 

in northern and lower values are predicted in the southern part of the vineyard (Fig. 5.26). 

The predictive map of the lower depth (40-60 cm) SDP showed high variation, with the 

majority of the areas being classified as having less than 3 % (Fig. 5.27). The higher values 

are distributed in the western side of the vineyard (Fig. 5.27). 

 

The RFM predicted the minimum and maximum fast-draining pores (FDP) values for all 

the three sampling depths; 7-23 %, 7-14 % and 4-11 %, respectively (Fig. 5.28 to 5.30).The 

predictive map of soil surface FDP showed high variation, with the majority of the area 

being classified as having less than 11 % (Fig. 5.28). The highest pores are distributed in 

the eastern direction of the vineyard and the lowest were are at the western part of the field 

(Fig. 5.28). The predictive map for subsurface FDP again showed high variation, with the 

majority of the area being classified as being 6 % (Fig. 5.29). The low FDP values are 

scattered within the field. On the other hand, the predictive map of the lower depth FDP 

showed high spatial distribution within the field, with the majority of the area being 

classified as 11 % (Fig. 5.30). The lower FDP (< 6 %) are predicted to be at the flat area of 

the vineyard, which is situated in the middle of the field (Fig. 5.30). 
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Figure 3. Illustration of variable importance derived from Random Forest model for prediction of soil 

properties within the vineyard.   
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Figure 4. Validation of soil physical properties for the three soil sampling depths. 
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Fig. 5. Spatial distribution of predicted soil properties using RF model in vineyard for three layers. 
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5. DISCUSSION 

 

 

 

5.1. Descriptive statistics 

 

 

The studied site produces vines under dryland conditions, therefore the distribution and 

movement of soil moisture content and nutrients within the profile mainly depend on soil 

physical properties. Particle size distribution is one of the properties that drive other soil 

properties, for example, determining the potential soil water content that drives crop yield 

potential (Akpa et al., 2014). The results of particle size distribution (Tables 3 to 5) 

showed a high variability in fine particles (3-29 % silt and 6-46 % clay). The soil particle 

size distribution, i.e., sand, silt and clay, are vital in most hydrological, ecological, and 

environmental risk assessment models (Liess et al., 2012). The mean and variance of 

particle size varied with depth. The clay content increases from the top 20 cm depth with 

a peak at the 40 to 60 cm depth likely caused by clay illuviation and eluviation (Ayuba et 

al., 2007; Sharu et al., 2013) and movement of clay particles due to soil erosion (Amusan 

et al., 2005; Salako et al., 2006). The mean sand content is higher than that of clay and 

silt contents for each soil depth, which is commonly found is soil rich in quartz and 

granitic parent material as it is the case for this study (Sauer et al., 2010; Graham and 

O’Geen, 2010). The high sandiness and its decrease with soil depth could be due to the 

larger particle size of sand and its decreased transportability while silt and clay sizes are 

smaller and lighter hence easily moved in suspension both vertically and horizontally. 

Changes in the sand content were to a greater extent influenced along the topo-sequence 

while that of silt and clay were greater along with profile depth. 

 

The standard deviations (SD) and coefficient of variations (CV) showed moderate to high 

variation or heterogeneity in clay fraction compared with silt and sand fractions and the 

results are in agreement with the findings by Odeh et al. (2003) and Oku et al. (2010), 

but in contrast to Buchanan et al. (2012) and Adhikari et al. (2013) who reported a higher 

variability in sand content compared to clay and silt. The high variation could be due to 

depositions and differences in landscape. The skewness and kurtosis coefficient were 

used to describe the shape of the data distribution; the values for particle size distribution 

are slightly within the normal distribution range, which is 0 for skewness and 3 for 

kurtosis. The low kurtosis values for clay, silt, and sand in all the soil depth indicates that 

their data set have light trails and/or lack of outliers. The soil particle size fractions are 

one of the most important properties to influence soil physiochemical properties (e.g 

hydraulic properties, nutrient status, and water holding capacity) due to their correlation 

with other variables as indicated in Tables 6 to 8.  Clay content had a positive significant 

correlation with other attributes such as shear strength, organic matter, water contents at 

field capacity and permanent wilting point. The reason for the positive correlation 

between clay and water content at both field capacity and the wilting point could be due 

to the pore size and water holding capacity of the clay fraction in all the soil depths (Rawls 

et al., 2003). However, the negative correlation between clay content, fast drainage pores, 

slow drainage pores is explained by the pore sizes because clay soils hold more water 

through their micropores. 
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The obtained results showed that silt content negatively influenced the saturated hydraulic 

conductivity because of its particle size which doesn’t allow a constant flow of water 

within the soil profile due to its small particle size compared to sandy soils. However, on 

the other hand, a sand fraction is completely different from the clay and silt because it is 

characterized by a larger volume of macropores than micropores which drains first when 

suction starts during drying (Jury and Horton, 2004). Sand has low water holding capacity 

as it is shown by the results obtained in this study, where it proved to have a significant 

negative correlation with water retention at field capacity and at the permanent wilting 

point for all the soil depths. This is due to a high volume of macropores (fast drainage 

pores) that releases water quickly when exposed to suction leading to low water available 

for crops. The mean values of bulk density and particle density showed an increase in soil 

depth. This behaviour could be explained by the influence of organic matter, which 

decrease the soil bulk density by its own low value of bulk density (Seguel and Horn, 

2006) and same applies with particle density (Sandoval et al., 2012; Adams, 1973). 

Nevertheless, no significant correlations were found among these properties and only 

particle density was negatively correlated with organic matter at 20-40 cm (Table 7).  

 

The sandy texture also influenced the bulk density values (Chaudhari et al., 2013), which 

were considered slightly high (1.48 < 1.59 < 1.63 Mg m-3), as well as particle density 

(2.55 < 2.62 < 2.63 Mg m-3) for the three depths (Table 3, 4 and 5, respectively). Those 

soil particle density values can be explained by the dominance of the quartz mineral in 

the sand fraction of the soils across the vineyard, as was reported by Silva et al. (2001). 

However, it is the opposite with total porosity because the porosity decreased with soil 

depth and again this is associated with the decrease in organic matter and within the 

profile and high proportion of sand compared to clay or silt.  

 

Based on CV values of bulk density, total porosity and particle density, both surface and 

subsurface depths soil had low spatial variability according to the CV values of bulk 

density, porosity set by Mulla and McBratney (2000) and their variability magnitude. The 

low variability of bulk density within the field is in agreement with the work of Osama et 

al. (2008) that aimed at investigating the spatial variability of penetration resistance. The 

low variability of bulk density and particle density could also be because of uniform 

parent material and land management in the area. In addition, bulk density is regarded as 

one of the properties that are less variable. The skewness and kurtosis showed that the 

data set had low trails, except for particle density at the lower depth, the reason could be 

the presence of an outlier. However, organic matter showed high variability in all the 

sampling depth which could be due to differences in terrain elevation variables (aspect, 

slope gradient, etc.) model of the area (Dahlgren et al., 1997). 

 

As expected, organic matter had a significant positive correlation with water retention 

characteristics (FC, PWP) at all the sampling depth, this is due to the fact that presence 

of organic matter improves water holding capacity (Rawls et al., 2003), soil structure and 

structural stability index (Soto et al., 2018). However, the significant negative correlation 

is observed between organic matter and penetration resistance at the first soil depth (0-20 

cm) but there is a positive correlation in the lower soil depth. On the other hand, total 

porosity showed a significant positive relationship with other soil properties like saturated 

hydraulic conductivity, fast draining pores and repellence index especially at the first two 

sampling depths. The reason could be the fact that total porosity is the summation of both 

macro and microporosity which then allows the hydraulic processes to occur. The results 

water retention characteristics showed that the water content at field capacity, permanent 
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wilting point and available water content increase with the increase in soil depth. The 

reason for this trend is associated with relatively higher clay content, low total porosity 

and high bulk density in the lower depth which allow clay particle to hold moisture to its 

micropores and less water is released (Warrick, 2002). 

 

The water that is adsorbed by micropores is not available for plant uptake. The pore size 

distribution means decreases with soil depth, this is associated with particle size 

distribution. For example, the decrease in fast draining pores with soil depth is influenced 

by the increase in clay content in lower depths. The contribution of slow drainage pores 

is necessary to improve the amount of usable water for the plant growth according to 

Hartge and Horn (2009). All the CV values of soil water retention characteristics showed 

moderate and high variability (10% to > 30%) within the field. Similar results for water 

retention data was obtained by Malla et al. (1996), observing the variance tends to 

decrease with increasing depth. Water release through more uniform pores may explain 

it, particularly for high water tension values. In this study, a lower variance for high water 

retention values may be explained by water retention caused by absorption rather than 

capillarity since it’s controlled by porosity (Warrick, 2002).  

 

The availability of water content within the soil profile is influenced by many other soil 

physical properties such as texture, organic matter, and pore size distribution depending 

on soil structure (Warrick, 2002). High significant positive correlations were found when 

water content at field capacity (33 kPa) and permanent wilting point (1,500 kPa) are 

correlated with clay and silt contents, organic matter, penetration resistance and shear 

strength. This was expected because the increase in organic matter helps improve the 

water holding capacity of the soil and clay content helps retain more water. However, the 

water that is absorbed by micropores of clay fraction is not available for the plants. On 

the other hand, significant (p < 0.05, < 0.01) negative correlation was observed between 

PWP, FC and sand content, saturated hydraulic conductivity (Tables 6 to 8). This was 

expected because sandy soil contains a high volume of macropores that all fast drainage 

of water when exposed to suction, which then leaves the soil with less water at field 

capacity and at permanent wilting point (Jury and Horton, 2004). 

 

The reduction of water content at field capacity and wilting point when sand content 

increase reduces the water retention within the profile, which would then leave the plants 

water stressed and thus others dying (Hillel, 1980). The pore size distribution also plays 

an important role in water movement within the soil. In this sense, it was observed that 

fast drainage pores (FDP) had a significant positive correlation with total porosity, sand, 

and saturated hydraulic conductivity, and significant negative relationship with bulk 

density, water content at field capacity and permanent wilting point in almost all the 

horizon. The skewness and kurtosis of FC, PWC, SDP, and FDP showed that the data set 

lacked the outliers, except for available water content in all the soil depth. 

 

The results obtained in this study showed that saturated hydraulic conductivity (Ksat) 

decreases with the increase in soil depth (50.6 > 22.6 > 18.4 cm h-1) (Tables 3 to 5). The 

reason for this variation within the soil profile is due to the fact that Ksat it is affected by 

many soil physical properties such organic matter, soil texture, bulk density and total 

porosity (Hillel, 1980). The Ksat of the surface was on average about two times greater 

than for the lower soil depths, therefore increased Ksat values in the surface depth could 

be due to lower bulk density owing to the presence of organic material and high total 

porosity. Similar conclusion was reported by Rasse et al. (2000) and Iqbal et al. (2005). 
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The CV values of Ksat increases with soil depth (104.4 < 197.3 < 229.9 %) and because 

the values are greater than 48 %, the Ksat is considered as highly variable within the field, 

according to Mulla and McBratney (2000). There are several talks about the magnitude 

of the spatial variability of Ksat across the agricultural fields from which, Biggar and 

Nielsen (1976) reported Ksat as the one with the highest variability. For example, Jury 

and Horton (2004) indicated the values of CV for Ksat in the range of 50-300%. Therefore 

the present study is in agreement with the work that was reported by the above literature. 

 

The skewness and kurtosis of Ksat showed that the data set were not normally distributed 

and therefore the data was log transformed to make it normal because it was positively 

skewed and contained slight trails. As result, mean values and median values were not 

similar. The Pearson correlation results show that Ksat had a significant (p < 0.01 and < 

0.05) negative correlations with silt, bulk density, water content at field capacity and 

permanent wilting point for 0-20 cm and 20-40 cm depths, except for the lower depth 

(40-60 cm) which showed that statistically there was no significant correlation between 

Ksat and other soil physical properties. Ksat at 0-20 cm and 20-40 cm depths also showed 

significant (p < 0.01, 0.05) positive correlation with sand, total porosity and fast drainage 

pores (Table 6, 7 and 8). The obtained significant correlation between Ksat and other soil 

properties is in agreement with the work of Candemir and Gülser (2012) which found that 

Ksat significantly increased with increasing sand and decreasing clay content. The results 

reported by Iqbal et al. (2005) stated that increased Ksat values in the surface horizon 

could be due to lower bulk density owing to the presence of macro-porosities. 

 

Soil aggregate stability is one of the indicators of soil quality and plays a very important 

role in the movement and storage of water and air throughout the soil profile. For this 

study the soil macroaggregates and micro-aggregate stability were evaluated by 

dispersion methods (ΔWMD and DR, respectively), and structural stability index (SSI) 

was determined for the three sampling depths. The mean values of the DR index, 

associated with micro-aggregate stability, showed an increase with the increase in soil 

depth; however, the lowest values of DR index indicate high micro-aggregate stability 

within the soil profile. This was probably due to the increase in clay content and presence 

of Fe oxides in the lowest soil depths as was suggested by Brunel et al. (2016) in the same 

soil series with different tillage systems. The micro-aggregate stability results are in 

agreement with the work reported by Seguel et al. (2003) which stated that clay content 

plays an important role in the formation of micro-aggregates. On the other hand, the 

ΔWMD associated with macro-aggregate stability showed an increase with the increase 

in soil depth, which indicates a decrease in macro-aggregate stability with the increase in 

soil depth. The reason for this variation is associated with the decrease of soil organic 

matter in depth. It is well known that organic material binds the soil particles together to 

resist the degradation and improves the porosity of the soil, thus reduces the slaking and 

dispersion (Chenu et al., 2000). 

 

The soil aggregate stability is related to soil structure, therefore structural stability index 

(SSI) results showed that there is a decrease with the increase in soil depth. The high 

values of SSI in the upper soil depths indicates the resistance of the soil to structural 

degradation. However, in the lower soil depth, there is a risk of structural degradation 

according to the lowest values of OM. The reason for this change is related to the variation 

in soil organic matter within the soil profile, as it is well known that OM that helps bind 

the soil particles together to form a stable soil structure (Reynolds et al., 2009; Soto et 

al., 2018). Serme et al. (2016) use the SSI to assess the soil structural stability with 
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different amounts of organic amendments and concluded that the SSI increases with the 

rise in soil organic matter content. The larger content of organic matter in the upper 

horizon promotes the stability as the effect of slow humectability of aggregates, 

generating organic-mineral bonds with soil particles and preventing the dispersive effect 

of water (Ellies et al., 1995; Chenu et al., 2000; Dexter, 2002). However, high amounts 

of clay and silt contents are observed in the lower soil depths. The CV values of micro-

aggregate, macro-aggregate and structural stability index indicates high to very high 

variability within the field in all the three sample depths according to the criteria proposed 

by Gomes and Garcia (2002). However, in the study area, the high variability of stability 

could be ascribed to pedogenic processes influenced by the micro-topographical 

variations operating over a different period of time which influences the presence of soil 

organic carbon (Minasny et al., 2008). The dataset indicates moderate to high skewness. 

The values of skewness vary from -0.01 to 1.60 for all the soil depths (Tables 3 to 5). 

Highly skewed variables indicate that these properties have a local distribution; that is 

high values were found for some sampling points, but most values were low. However, 

these high soil test values may not always be an outlier but a management induced 

variation (Vasu et al., 2017). 

 

Soil compaction is one of the most complex phenomena that are difficult to measure 

directly due to its multifaceted relationship with other physical properties of the soil 

(Horn and Fleige, 2009). This phenomenon involves disruption and reduction of larger 

pores which then lead to an increase in bulk density; however, only the shear strength 

was negatively correlated with FDP (coarse pores) in the upper two soil layers and no 

relationships were observed with BD values. The mean values of soil PNT and shear 

strength increased with the increasing soil depth (Tables 3 to 5). The average PNT and 

shear strength values of the study area were related to the soil moisture regime which 

depends soil texture. The shear strength increased with soil depth due to the nature of 

soils in the region defined as residual soils from granitic material with less intense 

pedogenic process at depth. Similar results were reported by Soto et al. (2018). There is 

an inversely proportional relationship between penetration resistance, shear strength, and 

root growth because high penetration resistance restricts root growth and or penetration 

(Horn et al., 2007). However, for this study, the resistance values were not critical for 

both surface and subsurface. Different authors presented different critical values of PNT, 

e.g between 1.0 and 3.5 MPa (Merotto and Mudstock, 1999) and 2.0 and 8.0 MPa 

(Schoeneberger et al., 2012) as values of moderate and high restrictions for rooting. 

Nevertheless, Taylor and Bran (1991) determined that PNT values higher than ≈ 0.2 MPa 

(200 kPa) generate a lineal decrease in root development. 

 

The CV values of PNT and shear strength indicates high to very high variability in 

penetration resistance within the field. The high variability is associated to differences in 

textural properties and moisture content. These differences have resulted from the 

processes of deposition that reflect the composition and properties of material deposited 

spatially and temporarily, which contribute to the heterogeneity within the field. The 

results showed a significant positive correlation between PNT and shear strength, clay 

content and PWP and a significant negative correlation to organic matter, available water 

content, dispersion ration, slow draining pores, and sand content. The obtained results 

were in agreement with the work that was reported by Gülser et al. (2016) and Acuna 

(2013). When water content decreases, an increase in mechanical resistance occurs 

because of the diminution of cohesion within the solid fraction of the silty soils. On the 

other hand, there is a significant positive correlation between soil shear strength and clay 
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content, PNT, FC, PWP, and significant negative correlation to sand content, structural 

stability index, fast draining pores, and slow draining pores. 

 

When studying water repellency, it is important to examine soil aggregates as individual 

structural entities. The measurement of soil water repellency for each soil aggregate was 

done using a device that was proposed by Leeds-Harrison et al. (1994) which measures 

the hydraulic properties of individual soil aggregate. The mean values of soil water 

repellency index for all the aggregates decreased with the increasing soil depth (Tables 

3, 4 and 5). The mean R-index values showed that surface if water repellent because the 

R index is greater than 1.78 while the subsurface is regarded as hydrophilic, since the R 

index values are less than 1.78. The main reason could be that the stability of the 

aggregates is mainly influenced by the quantity and quality of organic matter in the soil 

(Piccolo and Mbagwu, 1999), where some compounds favor stability to water, either by 

a cementing action in the points of contact or by its water repellency, which reduces the 

speed of humidification of aggregates (Chenu et al., 2000). The excessive hydrophobicity 

of the soil in the surface, is caused by the presence of coatings hydrophobic on solid 

particles, results in a reduction in the rate of wetting and a water repellency in the soil 

(Hallet, 2007; Urbanek et al., 2007). This water repellency is due to the accumulation of 

certain types of hydrophobic organic compounds, which do not present a degree of 

alteration very advanced, and that they have their origin in the decomposition of 

organisms, mainly plants and microbial (Doerr et al., 2000). In general, the repellency 

increases with increases in organic matter and decreases with increases in soil clay 

contents (Harper et al., 2000).  

 

Based on the CV values of R index, both surface and subsurface soil had very high spatial 

variability because the CV values are greater than 30 % according to Gomez and Garcia 

(2002). In general, CV values increased with increasing soil depth. Similar results were 

reported by Liu et al. (2009) which demonstrated high variability of soil water repellency 

within the field. In spite of skewness and kurtosis of the distribution of soil water 

repellency, the mean and median values were similar with means being equal or almost 

equal to the median. There is a significant negative correlation between the R index and 

bulk density and significant positive with total porosity within the surface. However, the 

correlation was not significant between R index and other soil properties in the subsurface 

(Tables 6 to 8). 

 

 

5.2 Statistical models 

 

 

In predicting the spatial variability of the particle size distribution (clay, sand, and silt) 

for three different soil depths within the vineyard, RFM performed significantly better at 

the top 20 cm compared with the lower sampling depths for all the particles. The opposite 

was observed for silt content, with the performance improvements with depth. Similar 

results were reported by several authors (Henderson et al., 2005; Minasny et al., 2006; 

Malone et al., 2013). This could be accounted for by the nature of the environmental 

covariates used (Adhikari et al., 2013) and the effect of lower data density with depth. 

Most of the environmental covariates used in this research more based on land surface 

features are likely to have a stronger relationship or correlation with topsoil than subsoil 

properties. Several studies suggested that prediction performance for lower depths could 

be improved by the inclusion of covariates such as Gamma-radiometric or 
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electromagnetic induction (EM38) which allows accurate prediction of soil properties up 

until approximately 2 meters (Cook et al., 1996; Rawlins et al., 2009; Priori et al., 2014). 

However, considering the extent of Chile, the cost of acquiring such data may be 

extremely high to offset the extra benefit. In terms of prediction accuracy, sand content 

had the highest RMSE values across all the depths whereas the lowest RMSE was 

associated with the modeling of silt content at all the depths. This variation is in 

agreement with the work reported by studies using similar modeling approaches (Akpa et 

al., 2014; Niang et al., 2014; Buchannan et al., 2012). However, the results are in 

disagreement with the work reported by Odeh et al. (2003) which studied the spatial 

composition of soil particle size fraction as compositional data, which came to a different 

conclusion as this current study.  There was a large influence of analytical Hillshading, 

topographic position index, DEM, LS Factor, modified catchment area, catchment slope 

and topographic wetness index on the particle size distribution. However, the relative 

importance of the variables differs with depth and from one particle to another. Other 

authors have also reported the relationship between terrains attributes and soil properties, 

especially particle size distribution (Moore et al., 1993; Odeh et al., 1995; Greve et al., 

2012a, 2012b), with terrain attributes explaining 20 and 88% of the variation (Thompson 

et al., 2006). This could be explained to their impact on the vertical and horizontal 

movement of soil particles through erosion and deposition in the low lying areas of the 

field. Sand content is also influenced by geology and rates of weathering. However, the 

influence of geology and soil type on spatial distribution soil texture in Chile is not well 

documented and few studies are available (Bernhard et al., 2018). The spatial 

distributions of soil texture and soil particle size distribution in general effect and control 

runoff generation, slope stability, depth of accumulation, and soluble salt content (Yoo et 

al., 2006; Gochis et al., 2010; Crouvi et al., 2013). The predictive maps showed that soil 

texture varied considerably across the field (Fig. 5.1-5.9). Soil high in clay content were 

observed at lower elevations in a landscape (Schimel et al., 1985; Bonifacio et al., 1997) 

due to the influence of erosion relative to other soil forming processes. 

 

RFM was able to take a set of noisy data and still identify correlations between soil bulk 

density and environmental covariates that could be interpreted as landscape processes 

acting on the soil.  The model identified aspect, topographic wetness index, three-band 

spectral index and elevation as important covariates for predicting surface bulk density, 

which is associated with soil mineralogy. From the list of important covariates used to 

predict the bulk density, aspect proved to be the most important variable of them all. 

Therefore the removal of the aspect from the list of predictors would increase the error 

rate by reducing accuracy. Some of these covariates influence the organic matter, which 

affects the bulk density of the soil surface (Liu et al., 2015; Hu et al., 2019). The model 

for subsurface bulk density listed longitudinal curvature, slope length factor, secondary 

curvature and catchment slope as major players to influence spatial variability pattern of 

soil bulk density. The best effect of curvature was its combinations, particularly in 

concave and convex and as a result of this effect, bulk density was predicted to be high at 

the south to southwest which is characterized by domination on concave curvature.  

 

Validation of bulk density prediction RFM at all depths using R2 and RMSE indices 

showed that surface soil layer had higher prediction accuracy (i.e., higher R2 and lower 

RMSE) compared to the layers at lower soil depths. These values were 0.51 and 0.10, and 

0.26 and 0.10. This variation could be explained by different environmental covariates 

used for prediction of bulk density at each sampling depths. Some covariates such as 

remote sensing data as in this case are well known to directly predict topsoil variables 
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compared lower depths. Similar results were reported by Adhikari et al. (2014). As it was 

expected, the predictive maps showed an increase in bulk density with soil depths. 

Looking at bulk density distribution, soils in the north of the field appeared to have high 

density than soils at the centre of the vineyard and the eastern area, especially in the 0-20 

cm depth. The spatial variability of bulk density in the vineyard could also be associated 

with variation in texture and organic matter (Adams, 1973) within the field. 

 

Soil aggregate stability is considered as an important indicator of soil quality in the 

landscapes witnessing land degradation due to erosion by water. The stability of the 

microaggregates (1-2 mm) was determined by the dispersion ratio (DR) method. The 

predictive maps of DR showed the increase of the aggregate stability (lower DR values) 

with soil depth and the spatial variability, with the 40-60 cm depths showing more 

variability. The reason for the variation could be explained by organic matter content 

across the field and the variation in clay content (Seguel et al., 2003). The RF models of 

microaggregate stability showed that TPI, TWI, modified catchment area, MrVBF, digital 

elevation model, longitudinal curvature, secondary curvature, catchment slope, and slope 

played an important role in predicting the microaggregate stability. Several studies also 

showed that spatial variability of aggregate stability is closely related to the terrain 

attributes such as slope, curvature, and aspect through their impacts on various soil 

properties (Rhoton and Duiker, 2008).  

 

However, Rhoton et al. (2006) noted that studies on the spatial variability of aggregate 

stability and its relationship with topography are rare and focused on the assessment of 

soil aggregate stability in different parts of the slope than on their direct relationship with 

topographic derivatives (Canton et al., 2009). Therefore based on this study, topographic 

wetness index and slope played more impact in the prediction of spatial variability of 

aggregate stability, through their impact on various properties (Rhoton and Duiker, 2008). 

The RF model performed significantly better at the lower soil depth compared with the 

20 cm. The Validation of microaggregate stability prediction RFM at the surface using 

R2, nRMSE and bias showed that lower depth (40-60 cm) had higher prediction accuracy 

(i.e., higher R2, lower bias, and nRMSE) compared to the topsoil. The values of R2, 

nRMSE and bias for topsoil and subsoil were: 0.49, 23 and - 0.5; 0.81, 30 and -0.4, 

respectively. The differences in model accuracy are associated with environmental 

covariates. However, all the depths has demonstrated promising results and high values 

of the determinant coefficient in the case of dispersion ratio.  

 

Appropriate estimation of saturated hydraulic conductivity (Ksat) was necessary, as it is 

an essential part of management practices including, irrigation, drainage, flood protection 

and erosion control in addition to water flow and transport modeling in soil. The 

predictive Ksat results showed the minimum and maximum predicted values of saturated 

hydraulic conductivity within the study area for all the three sampling depths (0-20 cm, 

20-40 cm, and 40-60 cm). As expected, the Ksat decreased with soil depths. The trend is 

associated with other soil properties such as macropores, texture, bulk density, organic 

matter and water retention (Kotlar et al., 2019). The predictive maps of Ksat showed 

higher spatial variability within the vineyard compared to other soil properties. There 

were areas within the field that showed very low Ksat more especially the areas at the 

centre of the field, which makes them more at risk of being eroded. There was a large 

influence of longitudinal curvature, TBSI-T, TPI, MrRTF, TWI-SAGA, modified 

catchment area, LS factor, flow accumulation and VRM (Fig. 3.16, 3.17 and 3.18) on the 

saturated hydraulic conductivity. However, the relative importance of these variables 
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varies with depths. Topographic wetness played a crucial role in predicting the Ksat due 

to the geographic formation of the vineyard that is composed of different slopes. 

Therefore TWI described soil moisture pattern in the watershed based on topography. The 

valley bottom and the centre of the vineyard are characterized by low slope, which 

permitted the water accumulation. During the fieldwork, it was evident that some areas 

that had low Ksat were washed off or eroded.  

 

The validation of Ksat prediction RF models at the surface using R2, nRMSE and bias 

showed that lower depth had higher prediction accuracy (i.e., higher R2 = 0.57, higher 

bias = -10.4 and nRMSE = 194) compared to the topsoil with values of R2, nRMSE and 

bias for topsoil: R2 = 0.47, bias = -1.8 and nRMSE = 91, respectively. The variation of in 

prediction accuracy of the models can be associated with environmental covariates used 

for the prediction of the Ksat at each soil depth. The prediction accuracy can be improved 

by using the soil properties (clay, sand, silt, bulk density, water content, and organic 

matter) that affect Ksat as input for predictive models (Nemes, 2005). The values are in 

accordance with the previous studies using similar methods. Agyare et al. (2007) while 

estimating Ksat obtained R2 and RMSE about 0.6 and 0.42, respectively. On the other 

hand, Merdun et al. (2006) obtained R2 range and RMSE varied from 0.44 to 0.95 and 

0.020 to 3.51, respectively. The study area produces vines under dryland condition, which 

means that the distribution of water within the profile mainly depends on other soil 

properties and precipitation. Therefore it was necessary to predict saturated hydraulic 

conductivity using machine learning (RF model) because measuring Ksat is time-

consuming and very costly, it varies much within time and space. 

 

The water storage capacity of the vineyard was quantified by water holding capacity 

(difference between water content at field capacity and permanent wilting point). The 

predictive maps of water retention characteristics showed the increase of water content 

(FC, and PWP) with soil depth, the higher amount of available water content can be 

associated with good quality soil structure. According to Yoon et al. (2007), at low matric 

tension, the water retention depends on soil structure, while at higher matric tension 

(PWP) water retention depends on the soil texture. For example, clay content contains a 

large volume of micropores which holds more water. However, some of that adsorbed 

water is available for plants and some are not available to be taken up by plants. The 

predictive maps showed the high prediction of soil moisture content in the areas with the 

low slope gradient, which is associated with the depositions of fine materials more 

especial in the south to southwest areas. Moisture content combined with other soil 

properties plays an important role in rainfed vine production, as it influences the 

movement of nutrients within the soil. The spatial variability demonstrated by the 

predictive maps of water retention characteristics is associated with the spatial of other 

soil properties such as silt, clay, sand, bulk density, and organic matter which affects 

water holding capacity and water uptake (van Leeuwen et al., 2004). The areas with the 

lesser available water content at lower depth are more likely to be water stress and affect 

the vine size because vine behavior is closely related to water uptake. The horizontal 

spatial variability of available water content is in agreement with the work reported by 

Tsegaye and Hill (1998). 

 

For describing spatial variation of the soil hydraulic properties; water content at field 

capacity (FC), and permanent wilting point (PWP) at three different depths the most 

important environmental covariates were DEM (elevation), MrVBF, TPI, longitudinal 

curvature, topographic wetness index, catchment area, Green-Red vegetation index 
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(GRVI), modified catchment area, analytical Hillshading, TBSI-V, length-slope factor 

across the field. However, the relative importance varied with soil depths. The predictors 

such as elevation and topographic curvature were expected to affect the water content 

because they affect the local climate (microclimate). It was also interesting to see remote 

sensing predictors such as green-red vegetative index and TBSI-V playing an important 

role in predicting the soil moisture content of the topsoil because vegetation vigour can 

be indirectly used to predict the soil properties. The final RFM were used for estimating 

the deterministic component for each soil hydraulic property (PWP, and FC). The 

performance of the final RF models is summarized in Table 9. R2 varies between 0.54–

0.57, and 0.42– 0.54 for PWP, and FC, respectively. RMSE was 0.03–0.04, and 0.01–

0.03 cm3 m-3 for PWP, FC and AWC, respectively. The variation in accuracy can be 

associated with environmental covariates and their direct influence.  

 

The RFM showed promising results in predicting the soil water content. The prediction 

results obtained in this study are in agreement with the work reported by Szabó et al. 

(2019) which mapped soil hydraulic properties based on random forest based on 

Pedotransfer functions and geostatistics. Even though the final RFM performed fairly 

well, it can still be improved by reducing the number of predictors and using predictor 

variables related to water distribution (channel network, valley depth…etc.). The accurate 

final models would be used to design sustainable agricultural system management 

strategies responsive to fluctuating soil moisture regime within the vineyard because it is 

essential for modeling agricultural system productivity. The vines are very sensitive to 

moisture content and they become water-stressed when there is very limited water 

content. 

 

This study would not be complete if we did not characterize the pore size distribution, 

because pores play an important role in vertical and horizontal movement of water within 

the soil properties. The soil pore sizes in the vineyard were classified as fast draining 

pores (non-capillary) pores, slow draining pores (coarse capillary) and water-holding 

pores according to Baver and Gardner (1972). The predictive maps of pores size 

distribution showed the decrease of fast-draining pores (FDP, >50 μm) with soil depth 

(see Fig. 5.28 to 5.30), the reason for the variation could be explained by associated with 

soil texture (clay, sand, and silt) content, soil structure  and organic matter across the field. 

Similar results were reported by Seguel et al. (2015). These pores are responsible for the 

vertical flow of water that is available for root uptake and helps in solute movement in 

the soil. The study by Chen and Wagenet (1992) showed that FDP comprise only a small 

portion of the total soil voids, but under some conditions, vertical flow through 

macropores dominate during infiltration. 

 

The topsoil contains a high volume of FDP because of the domination of coarse-textured 

soil which drain first after rainfall and play a significant effect of soil moisture content at 

field capacity. The other reason could be associated to the present of organic matter which 

influences the soil structure. The main reason to characterize these pores was the fact that 

the ability of pores to conduct water is mainly controlled by pore size, continuity, and 

distribution of pores in the soil. However, on the other hand, predictive maps of slow 

draining pores (SDP, 10-50 μm) showed a decrease of this kind of pores with soil depth 

(Fig. 5.25-5.27). This could be associated with soil texture and soil aggregation. These 

pores help the horizontal and upward movement of water due to the presence of cohesion 

and adhesion forces. The spatial variability of slow draining pores is associated with other 

soil properties such as soil texture, organic matter, soil depth and soil aggregation or 
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arrangement of soil particles. These pores hold water against gravity, however, the water 

can still be able to be absorbed by the vines. The SDP predictive maps for all the depths 

demonstrate that the capillary pores are more in the areas with flat slope, more especial 

in the West and Northwest direction of the vineyard (Fig. 5.25 to 5.27). Because flatter 

areas respond to sediment deposition from the surrounding hillsides with the 

accumulation of fine particles such as clay and silt, which contains a high amount of 

micropores. 

 

For describing spatial variation of the slow draining and fast-draining pores for all the 

sampling depths, modified catchment area, digital terrain model (DEM), catchment area, 

TWI-SAGA, analytical Hillshading, longitudinal curvature, and TPI played a significant 

role in predicting the pore size distribution due to their high node purity (Fig. 3.25-3.30). 

The other predictor variables to influence the prediction included Green-Red vegetation 

index, MrVBF, slope, and TBSI-W (Fig. 3.25-3.30). However, their relative importance 

varies with depth. Predictor variables such as MrVBF represent areas of accumulation of 

sediments according to the topographic surrounding context. Taylor et al. (2013) reported 

MrVBF as a relevant predictor of water table depths under the Mediterranean landscape. 

The slope also played a role in the final model because it influences the movement of 

water and particles within the field. Higher values of Multi-resolution Index of Valley 

Bottom Flatness (MrVBF) represent areas where the accumulation of sediments are not 

possible, such as highly elevated areas of the vineyard. Therefore the lower areas had the 

lowest MrVBF and accumulation of sediments was possible. The performance of the final 

RF models is summarized in Table 9. R2 varies between 0.31–0.54, and 0.20–0.50 for 

SDP and FDP, respectively. nRMSE was 26–32 % and 24–34% for SDP and FDP, 

respectively. Bias was -0.4-1.2 and -0.2-1.0 for SDP and FDP, respectively. The variation 

in accuracy can be associated with environmental covariates and their direct influence in 

modeling the soil properties. The final models showed a slight tendency to overestimate 

areas with low pore sizes and to produce a slight underestimate of areas high pore sizes. 

This could be associated with model calibration. Less to none work published about the 

prediction of draining pores, reason why the predicted pore sizes results can be used as 

input for further hydraulic property analysis within the vineyard. 
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CONCLUSIONS 
 

 

A field study was conducted to investigate and characterize the spatial variability of soil 

properties at different depths using digital soil mapping (DSM) within the vineyard. The 

following conclusions are inferred from the study: 

 

Low to very high spatial variability in soil properties were observed across the 

experimental field but the magnitude varied with soil depth. The six soil properties that 

showed a considerable degree of variation were clay, repellency index, shear strength, 

saturated hydraulic conductivity, available water content (AWC), and dispersion ratio. 

The applied DSM approach including Random Forest model (RFM) as a relatively tool 

in the field of soil science for prediction of soil physical properties yielded promising 

results as accuracy of the model and generated prediction maps were acceptable.  

 

There was a negative and positive correlation amongst the soil properties, OM had a 

significant positive correlation with soil water retention characteristics (AWC, PWP, and 

FC) and soil particle distribution is directly correlated with soil draining pores, water 

content and hydraulic conductivity. All these results indicate that a better understanding 

of spatial variability of soil properties at higher depths than 40 cm can help improve the 

quality and yield from the vineyard. The main environmental predictors for soil properties 

variability in the vineyard were analytical Hillshading, topographic wetness index, 

topographic position index, longitudinal curvature, secondary curvature, modified 

catchment area, Green-Red vegetation index (GRVI), Three band spectral index (TBSI-

W), Three band spectral index (TBSI-V) and Three band spectral index (TBSI-T), Multi 

resolution Index of Valley Bottom Flatness (MrVBF), Digital Elevation Model (DEM), 

slope aspect, convergence index, and length slope factor. 

 

The remote sensing data played a role in the prediction and can be used with success as 

input for DSM for the surface depths. RFM provided a promising framework for the 

spatial prediction of soil properties as the accuracy of the model performance was 

acceptable. However RFM overestimated areas with lower values and underestimated 

areas with higher values. RFM predicted dispersion ratio, clay content, sand content, FC, 

PWP, and Ksat significantly well. The RFM can be improved by applying predictor 

variables that are directly related to the variable of interest. The prediction error may be 

improved by broadening the sampling design to include more replicates.  

 

The performance in soil depth could be improved by inclusion of covariates such as 

Gamma radiometric and electromagnetic induction. As DSM showed satisfactory 

concordance with the conventional soil map, in combination with the other observations 

made in this study, the application of pedometric methods such as DSM algorithms should 

be seriously considered as a complementary approach to conventional methods for 

mapping soil properties in the Mediterranean vineyards. Finally, the produced predictive 

maps can be used for modeling agricultural system productivity in the near future.
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Appendix 1: Digital elevation model of the studied area 



  77  

 

Appendix 2: Results 
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