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RESUMEN DE LA TESIS PARA OPTAR AL GRADO DE
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FECHA: 2024

PROF. GUÍAS: CLAUDIO MUÑOZ, MIGUEL ÁNGEL ALEJO

DINÁMICA DE SOLITONES PARA ECUACIONES DE CAMPO DE EINSTEIN

Esta tesis está dedicada al estudio de Ecuaciones en Derivadas Parciales hiperbólicas que
surgen de la Teoŕıa de Relatividad General. Dada la complejidad de las ecuaciones de Ein-
stein, frecuentemente es una buena opción estudiar una cuestión de interés en el marco de
una clase restringida de soluciones. Una forma de imponer tales restricciones es considerar
soluciones que satisfagan una condición de simetŕıa dada. En este trabajo se considera la
clase particular de soluciones con dos vectores de campo de Killing tipo-espacio. Más conc-
retamente, nos enfocaremos en el modelo de Einstein en el vaćıo Rµν(g̃) = 0, donde g̃ es el
tensor métrico y Rµν es el tensor de Ricci, en la formulación de Belinski-Zakharov.

El objetivo principal de esta tesis es describir con rigor las condiciones para la existencia
global de soluciones pequeñas, y su decaimiento en el cono de luz, aśı como la estabilidad
de un primer conjunto de soluciones solitónicas, para la denominada ecuación de Einstein
reducida, vista como una identificación de la ecuación de Campo Quiral Principal (PCF). El
manuscrito se divide en 4 caṕıtulos centrales, que pueden ser léıdos de manera independiente.

En primer lugar, en el Caṕıtulo 2 se describe rigurosamente la teoŕıa de existencia local
y global de soluciones con dato inicial pequeño para el modelo PCF. Además, se aborda
el estudio de la dinámica a largo plazo de las soluciones con enerǵıa finita, proponiendo
estimaciones viriales adecuadas para el modelo. Finalmente se propone una solución expĺıcita
tipo solitón, que pertenece a la familia de soluciones descrita en la teoŕıa de existencia global.

En el Caṕıtulo 3 se abordan las ecuaciones de campo de Einstein, por lo que natural-
mente tenemos un problema más complejo de analizar. Bajo los supuestos apropiados de
regularidad y datos iniciales pequeños, se obtiene la teoŕıa global para el problema, aśı como
una descripción apropiada de la enerǵıa y el momento en el caso de soluciones de tipo cos-
mológico en Relatividad General. Además, se proponen estimaciones viriales para esta clase
de soluciones, lo que nos permite dar cuenta del decaimiento de soluciones con enerǵıa finita.

En el Caṕıtulo 4 regresamos al modelo PCF, interesados en estudiar la estabilidad de las
soluciones expĺıcitas descritas en el Caṕıtulo 2. A diferencia del enfoque clásico, combinare-
mos técnicas de estabilidad asintótica y preservación de la enerǵıa local, para proporcionar
una caracterización de las perturbaciones de las soluciones de solitones regulares de PCF.

En lo que respecta al Caṕıtulo 5, se abordará un problema diferente. Se propone estu-
diar la tasa de blow-up para el modelo modificado Zakharov-Kuznetsov. Este problema es
particularmente interesante, dado que aún no se tiene un resultado concreto respecto a la
existencia de soluciones blow-up. Sin embargo, estudios numéricos sugieren que, de tener
una solución singular, la tasa de blow-up podŕıa acotarse en cierto rango. El propósito de
este estudio es contribuir al entendimiento y desarrollo de este desafiante problema.

Finalmente, en el Caṕıtulo 6, presentamos las conclusiones de los distintos tópicos abor-
dados, aśı como la descripción de problemas abiertos para considerarse en el futuro.
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SOLITONS DYNAMICS FOR EINSTEIN EQUATIONS

This thesis is devoted to the study of hyperbolic Partial Differential Equations arising from
General Relativity Theory. Given the complexity of the Einstein equations, it is often a
good choice to study a question of interest in the framework of a restricted class of solutions.
One way to impose such restrictions is to consider solutions that satisfy a given symmetry
condition. This work is concerned with the particular class of spacetimes that admit two
space-like Killing vector fields. More precisely, we will focus on the Einstein vacuum model
Rµν(g̃) = 0, where g̃ is the metric tensor and Rµν is the Ricci tensor, in the Belinski-Zakharov
setting. This ansatz is compatible with the well-known Gowdy symmetry.

The main goal of this thesis is to describe rigorously the conditions for the global existence
of small solutions, and their decay in the light cone, as well as the stability of a first set of
solitonic solutions (gravisolitons), for the so-called reduced Einstein equation, viewed as an
identification of the Principal Chiral Field (PCF) model. In the following, the results of this
thesis will be described. The manuscript is divided into four central chapters, which can be
read independently of each other.

Chapter 2 firstly describes rigorously the theory of local and global existence of solutions
with small initial data for the PCF model. Secondly, the study of the long-term dynamics of
finite energy solutions is addressed, proposing suitable virial estimates for the model. Finally,
an explicit soliton-type solution belonging to the family of solutions described in the global
existence theory is proposed.

Chapter 3 addresses the Einstein field equations, where, under appropriate assumptions
of regularity and small initial data, the local and global theory for the problem is obtained,
as well as an adequate description of the energy and momentum in the case of cosmological
type solutions in General Relativity. In addition, virial estimates are proposed for this class
of solutions, which allows to account for the decay of solutions with finite energy.

In Chapter 4, we return to the PCF model, this time, interested in studying the orbital
stability of the explicit solutions described in Chapter 2. Unlike the classical approach, we
will combine asymptotic stability techniques and preservation of local energy to provide a
near complete characterization of perturbations of regular soliton solutions of PCF model.

Regarding Chapter 5, a problem with a completely different focus will be addressed. This
chapter proposes to study the blow-up rate for the modified Zakharov-Kuznetsov model. This
problem is particularly interesting since there are still no concrete results on the existence
of blow-up solutions for the model. However, numerical studies suggest that if there is a
singular solution, the blow-up rate could be restricted to a certain range. The purpose of
this study is to contribute to the state of the art on this challenging problem.

Finally, in Chapter 6, we present the conclusions of the different topics addressed and
some open problems to be considered in the future.
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amor, por ser alivio, calma y hogar, por darme ánimos siempre y hacerme sentir que puedo
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Extrañaré la posición excepcional de la que he disfrutado en el DIM, han sido años de
mucho crecimiento y disfrute. Gracias a los académicos del grupo de EDPs, en especial, a
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Chapter 1

Introduction

The Einstein vacuum equation determines a 4-dimensional manifold M with a Lorentzian
metric g̃ with vanishing Ricci curvature

Rµν(g̃) = 0. (1.0.1)

This dissertation is devoted especially to the study of global existence and long time dy-
namics of vacuum Einstein’s equations in General Relativity within the Belinski-Zakharov
formalism. This model, together with an appropriate ansatz, can be identified with a quasi-
linear wave system. In this setting, using suitable change of coordinates, we can describe
g̃ = g̃(Λ, ϕ, α, f), where the fields Λ, ϕ, α, f are smooth functions of t and x.

Based on this, we will be able to identify the equation (1.0.1), with a special case for a
general system of nonlinear wave equations in R1+1

t,x :

∂µ(m
µνα∂νΨ) = F (Ψ, ∂Ψ), (1.0.2)

here, mµν corresponds to the components of the Minkowski metric with µ, ν ∈ {0, 1}, Ψ :=
(Λ, ϕ) and the nonlinear term F = (F1, F2) can be partially described in terms of the well-
known fundamental null form1 as follows

F1 := Q0(lnα,Λ)− 2 sinh(2λ+ 2Λ)Q0(ϕ, ϕ) and F2 := Q0(lnα, ϕ) +
sinh(2Λ)

sinh2(Λ)
Q0(ϕ,Λ).

This identification allows to use part of the machinery known for hyperbolic models, such
as energy estimates and null vector fields, as well as key tools in the theory of dispersive
nonlinear equations, such as virial estimates.

The first goal of this thesis is to study the global existence theory and the long-term dy-
namics of solutions for the Principal Chiral Field (PCF) equation. This equation arises under
similar hypotheses, and corresponds to the particular case in (1.0.2) (taking α a constant).
Despite the substantial contrast between the properties and dynamics of these models, this
analysis is a first major step toward understanding the dynamics of the (1.0.2) model.

1For the forthcoming analysis it is convenient to introduce a fundamental null form, which is defined as
the following bilinear form:

Q0(ϕ,Λ) = mαβ∂αϕ∂βΛ,

where mαβ to denote the standard Minkowski metric on R1+1.
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Chapter 1. Introduction

We can summarize the second goal as follows: under the appropriate assumptions of
regularity and small initial data, we rigorously describe a detailed local and global theory
for the model (1.0.2), as well as an appropriate description of the energy and momentum for
cosmological-type solutions in General Relativity. These types of solutions are particularly
interesting since they include specific models such as Kasner’s metric and other Bianchi-type
models, which have a significant impact on physical applications. In addition, we propose
virial estimates for these types of solutions, which allow us to account for the decay of
solutions with finite energy.

The first result described earlier, concerning the PCF equation, leads us to a natural
continuation of the research: the stability of the explicit solutions described for the Chiral
model. Specifically, for this solution, the orbital stability is studied. Recall that stability
theory is important because it provides robustness to the results previously obtained for the
model equation.

The last problem addressed focuses on the blow-up rate associated with the Zakharov-
Kusnetzov model. Using all the tools of harmonic analysis and the local existence theory
already established for the model, we seek to establish a lower bound for the explosion
rate of the solutions of the modified Zakharov-Kuznetsov model. In this case, the study of
oscillatory integrals allows us to explicitly rewrite the estimates for both the linear model and
the nonlinear problem, which enables us to establish a blow-up rate, under the assumption
that there is a singular solution to the problem.

This work was carried out with important collaborations and research stays. A large
part of it was developed during different long visits that I made in 2022-2024. My deepest
thanks to Professors Frédéric Rousset, Jacques Smulevici, Jérémie Szeftel, Miguel A. Alejo,
Magdalena Caballero, Alma Albujer and Gong Chen for their support, interesting discussions
and very helpful comments during these visits.

• Universidad de Córdoba, Spain, with professor Miguel A. Alejo, February 2024.
Completion of the orbital stability project: new approach using virial techniques for
orbital stability problem for soliton-type solutions to the Principal Chiral Field Model.

• Georgia Institute of Technology, E.E.U.U., with professor Gong Chen, December-March
2023.
Blow-Up rate for solutions of the Zakharov-Kuznetsov model in dimension n = 2.

• Universidad de Córdoba, Spain, with professor Miguel A. Alejo, September-October
2022.
Stability problem for soliton-type solutions to the Principal Chiral Field Model.

• Université Paris Saclay, France, with professor Frédéric Roussett, June 2022.

In what follows in this chapter, we will briefly describe interesting facts associated with
the Theory of General Relativity, as well as the preliminary elements that will allow us to
understand how to describe the dynamics of the model (1.0.1) from the study of the system
of wave equations (1.0.2).
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1.1. BRIEF INTRODUCTION TO GENERAL RELATIVITY THEORY

1.1 Brief Introduction to General Relativity Theory

General Relativity is one of the most beautiful physical theories ever invented. It describes
one of the most pervasive features of the world we experience – gravitation – in terms of
an elegant mathematical structure (the differential geometry of curved spacetime) leading
to unambiguous predictions that have received spectacular experimental confirmation. The
essential idea is perfectly straightforward: while most forces of nature are represented by fields
defined on spacetime (such as the electromagnetic field, or the short-range fields characteristic
of subnuclear forces), gravity is inherent in spacetime itself. In particular, what we experience
as “gravity” is a manifestation of the curvature of spacetime. Carroll in [18] provides a clear
introduction to General Relativity.

The background of the Theory of General Relativity was built on fascinating physical
theories developed hundreds of years ago, let us briefly look at some of the history (see [35]):

We start in 1600, when Galileo Galilei stated the principle that the laws of motion and
mechanics (those of electromagnetism were not yet discovered) were the same in all reference
frames of constant velocity and found that the acceleration of bodies in free fall is universal2.

Some years later, in 1666 Isaac Newton formulates the universal law of gravity and
the equations of motion of classical mechanics. It states that the force that attracts two
matter particles in the universe is directly proportional to the product of both their masses
and inversely proportional to the the square of the distance between them. At the end of
the XVII century, trying to explain whether light would behave in the same way as sound
waves, two views emerged: Newton thought that light was a beam of emitted particles and
Christiaan Huygens said that light should be considered as a wave motion.

Almost two centuries later, in 1854, Georg Friedrich Bernhard Riemann interprets
space as a medium and introduces the notion of distance through a metric3. Riemann showed
that the basic properties (the structure) of a curved space are determined by the differen-
tial cuadratic form ds2 (distance notion), this would lead to the formulation of Differential
Geometry.

For his part, at the end of the XIX century, James Clerk Maxwell confirmed that
Huygens was right. Maxwell formulates the complete equations of electro-dynamics. In
addition, Maxwell’s theory provides a model of light as an electromagnetic effect and correctly
predicts the speed of light. It became clear that light was the visible manifestation of a whole
range of electromagnetic waves.

This conclusion raised the question of what was the medium in which light propagated and
if its motion was indeed relative, to what did its speed turn out to be relative? The answer

2In his Dialogue on the two maximal systems of the world, Galileo tried to defend the Copernican idea
that the Earth did not remain stationary at the center of the universe while everything else revolved around
it by giving an excellent description of relativity as applied to systems moving with constant velocity relative
to each other.

3Euclidean geometry describes plane surfaces but on curved surfaces it loses its validity. Gauss and others
had developed different types of geometry that could describe the surface of spheres and other curved surfaces
but it was Riemann who took things even further; he developed a way to describe a curved space with any
number of dimensions.
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1.1. BRIEF INTRODUCTION TO GENERAL RELATIVITY THEORY

seemed to be that the light waves constituted a perturbation of an invisible medium, called
the ether 4, and that their velocity was relative to it. All this would lead to a desperate search
for the ether at the end of the XIX century. Finally, in 1887 Albert Abraham Michelson
and Edward Morley show through experiments that the existence of the ether is ruled
out5.

In 1905, Albert Einstein formulates the theory of special relativity, which leads to a
true revolution in the structure of space and time. His first postulate was the principle of
relativity, which stated that all the laws of physics, including Maxwell’s equations, are the
same for all observers moving at constant speed relative to each other, and he also postulated
that, the speed of a ray of light was constant no matter how fast its source was moving.

Unfortunately, the postulate of light seemed incompatible with the principle of relativity
until he found the key to the problem: analyzing the concept of time. Thus he concluded
that time cannot be defined absolutely and that there is an inseparable relation between time
and the speed of the signal.

In 1915 Albert Einstein formulates the theory of General Relativity. The result he
obtained after great efforts and many years is known as the field equations, which are au-
thentically covariant and, consequently, he succeeded in making his theory incorporate all
forms of motion: inertial, accelerated, rotating or arbitrary. With his theory of special rel-
ativity, Einstein had shown that space and time did not have an independent existence but
instead shaped the structure of space-time together. The curved and wavy structure of space-
time explained gravity, its equivalence with acceleration and also - according to Einstein -
the General Relativity of all forms of motion. With the equations of the gravitational field
of his general theory of relativity, Einstein laid the foundations for the study of the nature
and evolution of the universe, thus becoming the father of modern cosmology.

A few months later, early 1916, Karl Schwarzschild discovers the first non-trivial
vacuum solution of the Einstein equations, describing the external gravitational field to a
spherically symmetric mass configuration. As we will come to understand several decades
later, this solution also describes an unrotating black hole. In the same year Einstein
predicts the existence of gravitational waves.

The General Relativity Theory has continued to result in significant advances. The high
point of success of the theory came in 1919, with the experiments of Arthur Eddington
and Frank Dyson, who measure the deflection of light during a solar eclipse and find that
it agrees with the prediction of General Relativity. After that, in 1927, Georges Lemaitre
predicts the expansion of the universe, based on Einstein’s equations. A couple of years
later, Edwin Hubble’s work confirms this prediction. In 1963 Roy Kerr discovers the

4The ether must permeate the entire known universe, be thin and so ethereal that it would have no effect
on the planets or on a feather passing through it; but at the same time it must be sufficiently rigid to allow
a wave to vibrate through it at an enormous speed (the speed of light, the measure of which was already
known).

5Einstein read an article by Wilhelm Wien describing the null results of thirteen experiments performed
to detect ether, including the Michelson-Morley and Fizeau experiments. For Einstein, the significance of
those experimental results was that they reinforced what he already believed: that Galileo’s principle of
relativity was applicable to light waves; that is, that from the mechanical point of view, any experiment
performed will give the same results regardless of the frame of reference.
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1.2. PRELIMINARIES

generalization of the Schwarzschild metric to the rotated case. LIGO experiment: in 2016
was obtained the first direct detection of gravitational waves produced by a binary black hole
system. A new window into our universe is opened.

1.2 Preliminaries

1.2.1 Mathematical General Relativity

As a consequence of the beauty of the physical theory that gives us Einstein’s theory of
gravitation and its inherent mathematical background problem, appears the Mathematical
General Relativity, which it ties fundamental problems of gravitational physics with beautiful
questions in mathematics. Let us briefly recall the most important developments related to
the Cauchy theory in General Relativity. Einstein field equations can be recast as quasilinear
wave equations (or as a nonlinear elliptic model) under a suitable choice of gauge, therefore,
it shares with the Partial Differential Equations (PDEs) theory, issues of existence, well-
posedness and stability, as well as, existence of solitonic solutions and their dynamics, this
issue is specific to the theory of dispersive PDEs. Choquet-Bruhat [21] gave a foundational
mathematical description of the evolution of initial data, subsequently globalized by Choquet-
Bruhat and Geroch [22]. After her, Newman- Penrose [92] analyzed gravitational radiation
and the proper definition of gravitational waves. The stability of the Kerr BH was recently
obtained in [64, 65, 66, 67, 68]. In the case of the Schwarzschild BH, the authors in [28, 29, 30]
showed co-dimensional stability6, and in [54] the authors proved stability under de Sitter
gravity. When matter is included, compact objects with a larger range of allowed densities
and redshifts are allowed [14]. Despite the impressive advances these years, the rigorous
understanding of multiple symmetric compact objects is still open.

In the following, we will briefly present some definitions to understand the context and
the elements that allow us to describe the equations of relativity in a PDEs context.

Elements of Lorentzian geometry

The equations of the Theory of General Relativity, describe how the gravitational field pro-
duces a curvature in spacetime, that is, replacing the action at a distance that produces
a gravitational field created by a body, according to the classical theory of gravitation, by
the idea that such a body, what it produces is a distortion of the space around it which is
measured by the curvature.

In General Relativity, and related theories, the space of physical events is represented by a
Lorentzian manifold. A Lorentzian manifold is a smooth (Hausdorff, paracompact) manifold
M = Mn+1 of dimension n+1, equipped with a Lorentzian metric g̃ such that, g̃ assigns to
each point p ∈ M a non-degenerate symmetric bilinear form on the tangent space TpM of
signature (−++ · · ·+).

Hence, if {e0, e1, ...., en} is an orthonormal basis for TpM with respect to g̃, then, perhaps
after reordering the basis, the matrix [g̃(ei, ej)] = diag(−1,+1, · · ·,+1). A vector v =

∑
vµeµ

6For details of this result see specifically [30, Theorem I.3.1, pp. 5]
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then has “square norm”,

g̃(u, v) = −(v0)2 +
∑

(vi)2,

which can be positive, negative or zero. This leads to the causal character of vectors, and
indeed to the causal theory of Lorentzian manifolds. On a coordinate neighborhood (U, xµ) =
(U, x0, x1, ..., xn) the metric g̃ is completely determined by its metric component functions on
U ,

g̃µν := g̃

(
∂

∂xµ
,
∂

∂xν

)
, 0 ≤ µ, ν ≤ n.

That is, for v = vµ ∂
∂xµ , w = wν ∂

∂xν ∈ TpM, p ∈ U , g̃(v, w) = g̃µνv
µwν . Classically the metric

in coordinates is displayed via the “line element”

ds2 = g̃µνdx
µdxν .

The prototype Lorentzian manifold is Minkowski space Rn+1, the space-time of special rel-
ativity. This is Rn+1, equipped with the Minkowski metric, which, with respect to Cartesian
coordinates (x0, x1, ..., xn), is given by

ds2 = −(dx0)2 + (dx1)2 + · · ·+ (dxn)2.

Each tangent space of a Lorentzian manifold is isometric to the Minkowski space, and in this
way the local accuracy of special relativity is built into General Relativity. For full details
see [25].

In this order of ideas, the main object of study of the Theory of Mathematical General
Relativity is a Lorentzian manifold that satisfies the Einstein field equations given by

Rµν −
1

2
g̃µνR︸ ︷︷ ︸

curvature−expression

= 8πTµν︸ ︷︷ ︸
energy−momentum−tensor

. (1.2.1)

Here R is the scalar curvature, Rµν is the Ricci tensor which is defined by

Rµν := ∂σΓ
σ
µν − ∂νΓ

σ
µσ + Γσ

γσΓ
γ
µν − Γσ

µγΓ
γ
νσ, (1.2.2)

the Christoffel symbols Γσ
µν depend on the metric g̃µν and its inverse g̃µν

Γσ
µν :=

1

2
g̃σγ(∂µg̃γν + ∂ν g̃µγ − ∂γ g̃µν), (1.2.3)

this reveals the highly nonlinear nature of the set of ten equations in (1.2.1) in the components
of the metric g̃µν .

In particular, if it is considered that in the exterior of the body there are no physical
phenomena of a non-gravitational nature and in this case, the metric representing the gravi-
tational field must have null Ricci tensor, i.e., the Vacuum Einstein equation

Rµν(g̃) = 0. (1.2.4)
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In this thesis work we will focus precisely on the study of vacuum Einstein equations, which
include many of the most important solutions in physics, such as black holes and cosmolog-
ical solutions. In addition, the dynamics of the vacuum solutions can tell us what happens
in the case where matter is present. This is a remarkable aspect of the General Relativity
Theory, in contrast to Newton gravitation theory: the equation (1.2.4) is non-trivial even in
the absence of matter. The focus of this thesis is the understanding of outstanding solutions
of (1.2.4) in the setting of Belinski-Zakharov spacetimes.

1.2.2 The Belinski-Zakharov ansatz: an overview

Belinski and Zakharov in 1978 recalled the particular case in which the metric tensor g̃µν
depends on two variables only, which correspond to spacetimes that admit two commuting
Killing vector fields, i.e. an Abelian two-parameter group of isometries. In this work we focus
in the case when both Killing vector fields are space-like. This assumption allowed them to
propose the so-called Belinski-Zakharov (BZ) transform to obtain solitonic solutions, so-called
gravisolitons7. Gravisolitons have an unusual number of features, however, it is known that
spacetimes highly important in physics and cosmology applications, such as, Schwarzschild
and Kasner spacetimes, can be identified as gravisolitons [8, 9]. In this section, we introduce
the ansatz used by BZ as well as the simplified version of the Einstein equation,

Rµν(g̃) = 0. (1.2.5)

The reduced equation to be obtained is still extremely relevant in mathematics and physics,
as will be explained below.

Consider a spacetime interval of a block diagonal form

ds2 = gijdx
idxj + gabdx

adxb, (1.2.6)

where we use the summation convention on i, j, k, ... ∈ {0, 3} and a, b, c, ... ∈ {1, 2}, and
assume that gij and gab depend only on the coordinates xk. Due to the axioms of general
relativity the tensor g = (gab) must be real and symmetric. By using a proper change of
coordinates, one can always cast the matrix gij to the conformally flat form gij = fηij where
f > 0 and

ηij =

(
−e 0
0 1

)
,

is a constant matrix with e = ±1. Note that ηµν is the metric of a flat Minkowski 4-
dimensional spacetime, while ηij is the metric of its 2-dimensional subspace. ηij denotes the
inverse of ηij. We will denote the determinants of each of the 2× 2 blocks by

det(gij) := −ef 2, det(gab) := eα2,

their product is the determinant of the full metric tensor

det g̃µν = −f 2α2.

7The term gravisoliton refers to the explicit solutions generated by the Belinski-Zakharov transform [9].
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From now on, we denote g := (gab), thus, the matrix representation of the metric is

g̃µν =


−ef 0 0 0
0 g11 g12 0
0 g21 g22 0
0 0 0 ef

 . (1.2.7)

It is important to recall that the structure of the metric (1.2.6) is not restrictive, since, from
the physical point of view, we find many applications that can be described according to
(1.2.6). Such spacetimes describe cosmological solutions of General Relativity, gravitational
waves and their interactions [8]. In fact, we could highlight the following two scenarios:

Definition 1.2.1 (Non-stationary spacetimes). We consider as non-stationary spacetimes,
a Lorentzian manifold with metrics that depend on time and one spatial coordinates, and are
typically expressed using Cartesian coordinates in which xi ∈ {t, x} and xa ∈ {z, y}. Here
e = 1 in (1.2.7), and the spacetime interval is

ds2 = f(t, x)(dx2 − dt2) + gab(t, x)dx
adxb.

Definition 1.2.2 (Stationary and axially-symmetric spacetimes). We consider as stationary
spacetime, a Lorentzian manifold with metrics that depend on two spatial coordinates. This
metrics can be conveniently expressed in cylindrical coordinates xi ∈ {ρ, z}, xa ∈ {t, ϕ} with
e = −1. Then the spacetime interval is

ds2 = f(ρ, z)(dρ2 − dz2) + gab(ρ, z)dx
adxb.

Such spacetimes describe fields of stationary compact objects (e.g. black holes). More
precisely, among them one can find

• Classical solutions of the Robinson-Bondi plane waves [15].

• The Einstein-Rosen cylindrical wave solutions and their two polarization generalizations
[17, 34].

• The homogeneous cosmological models of Bianchi types I–VII including the Kasner
model [60].

• (In the “static” setting) the Schwarzschild and Kerr solutions, and Weyl axisymmetric
solutions [111].

• 2-solitons, corresponding in a particular case to the Kerr-NUT (Newman-Unti-
Tamburino) black-hole solution of three parameters including Kerr, Schwartzschild and
Taub-NUT metrics [108].

To visualize how the mentioned spacetimes can be identified with the matrix representation
(1.2.7), let us look at the following examples:

Example 1.2.1. Line element for some special cases:

• Kasner metric:
ds2 = t(d

2−1)/2(dz2 − dt2) + t1+ddx2 + t1−ddy2,

where xa = (y, z), xi = (t, x).

9



1.2. PRELIMINARIES

• Einstein Rosen metric

ds2 = f(t, r)(−dt2 + dr2) + eΛ(t,r)(rdϕ)2 + e−Λ(t,r)dz2,

where xa = (ϕ, z), xi = (t, r).

• Schwarzschild metric: Kruskal-Szekeres coordinates

ds2 = −4r2s
r
e−r/rs(dT 2 − dR2) + r2(dθ2 + sin2 θdϕ2),

with T 2 −R2 = (1− r/rs)e
r/rs , and xa = (ϕ, T ), xi = (θ, r).

For additional bibliography the reader may consult [74, 78, 79] and references therein.
All this shows that, despite its relative simplicity, a metric of the type (1.2.6) encompasses a
wide variety of physically relevant compact objects.

Reduced Einstein Equation

In order to simplify the Einstein equation (1.2.5), it is necessary to obtain the components of
the Ricci tensor. Let us start by computing each of Christoffel symbol through Eq. (1.2.3):

Γk
ij =

1

2

(
g̃k0(∂ig̃0j + ∂j g̃i0 + ∂0g̃ij) + g̃k3(∂ig̃3j + ∂j g̃i3 + ∂3g̃ij)

)
=
1

2
g̃kl(∂ig̃lj + ∂j g̃il − ∂lg̃ij),

here, the notation ∂µ indicates the derivative with respect to xµ. Next

Γk
ab = −1

2
g̃kγ(∂γ g̃ab) = −1

2
g̃kl(∂lg̃ab).

Finally is directly that

Γc
ib =

1

2
g̃cd(∂ig̃db),

and

Γc
ab = −1

2
g̃al∂lg̃bc = 0.

Γk
ib =

1

2
g̃kγ (∂ig̃γb + ∂bg̃iγ − ∂γ g̃ib) = 0.

Γc
ij =

1

2
g̃cγ (∂ig̃γj + ∂j g̃iγ − ∂γ g̃ij)

=
1

2
g̃cb (∂ig̃bj + ∂j g̃ib − ∂bg̃ij) = 0.

The rest of the of the non-zero Christoffel symbols can be obtained through the symmetry
Γσ
µν = Γσ

νµ. The trace of the Christoffel symbols is

Γσ
iσ = ∂i(ln(αf)) and Γσ

aσ = 0.
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The Christoffel symbols and their trace can be used in Eq. (1.2.2) to obtain the components
of the Ricci tensor:

Rij =
1

2
∂k
[
g̃kl(∂ig̃lj + ∂j g̃il − ∂lg̃ij)

]
− ∂ji(ln(αf))

+
1

2
g̃kl(∂ig̃lj + ∂j g̃il − ∂lg̃ij)∂k(ln(αf))

− 1

4
glmgkn(∂ig̃mk + ∂kg̃im − ∂mg̃ik)(∂j g̃ln + ∂lg̃jn − ∂ng̃jl)

− 1

4
gbdgac(∂igad)(∂jgbc),

Rib =∂kΓ
k
ib − ∂bΓ

σ
iσ + Γσ

aσΓ
a
ib + Γσ

kσΓ
k
ib − Γσ

ikΓ
k
bσ − Γσ

iaΓ
a
bσ

=− Γc
ikΓ

k
bc − Γl

ikΓ
k
bl − Γc

iaΓ
a
bc − Γl

iaΓ
a
bl = 0,

Rab =− 1

2αf
∂k
(
αfg̃klg̃cd∂lg̃ac

)
gdb.

(1.2.8)

The complete system of Einstein’s vacuum in Eq. (1.2.5) decomposes into two sets of equa-
tions. Simplifying the third equation in (1.2.8), the equation Rab = 0 can be written as a
single tensorial (matrix) equation

ηij∂j
(
α∂i(gac)g

cb
)
= 0. (1.2.9)

In this work we focus in the Eq. (1.2.9), and we shall refer to it as the reduced Einstein
equation. In particular, we will address the non-stationary case, for which the Eq. (1.2.9)
is given by

∂t
(
α∂tgg

−1
)
− ∂x

(
α∂xgg

−1
)
= 0. (1.2.10)

The trace of the reduced Einstein equation is the trace equation:

ηij∂ijα = 0,

which implies in this case that the function α satisfies the one-dimensional wave equation,
i.e.,

∂ttα− ∂xxα = 0.

The second set follows from the equations R00 + R33 = 0 and R03 = 0, and gives the metric
coefficient f(t, x) in terms of the matrix g, solution of (1.2.10). These will be discussed later,
specifically in the Section 1.3.1.

1.3 Introduction to the Einstein Models

1.3.1 1+1 vacuum Einstein equation in geometrical coordinates

Recall the vacuum Einstein equations

Rµν(g̃) = 0, (1.3.1)
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in this work, in addition to considering the Belinski-Zakharov ansatz presented previously, we
will use a change of coordinates that will allow us to identify the reduced Einstein equation
(1.2.10) as a quasilinear system of wave equations. This new representation of the Einstein
equation (1.3.1) will be the central focus of study in this thesis.

Let us keep in mind that for the vacuum Einstein equation (1.3.1), in the context of non-
stationary spacetimes, we will choose a metric tensor depending on a time-like coordinate x0,
and one space-like coordinate x1 (possibly nonnegative). This choice, as mentioned before in
Def. 1.2.1, corresponds to considering non-stationary gravitational fields, often referred to
as Gowdy models [49], even when no compact spatial sections are considered. They are also
often mentioned as generalized Einstein-Rosen spacetimes [17]. In the particular case where
one has diagonal metrics these are called Einsten-Rosen spacetimes, first considered in 1937
by Einstein and Rosen [34].

Let us return to the description of the line element. We take the time-like coordinate
x0 = t and the space-like coordinate x1 = x. In this case the coordinates are typically
expressed using Cartesian coordinates in which xi ∈ {t, x} with i ∈ {0, 1}, and xa, xb ∈ {y, z},
where the Latin indexes a, b ∈ {2, 3}. Then the spacetime interval is a simplified block
diagonal form:

ds2 = f(t, x)(dx2 − dt2) + gab(t, x)dx
adxb. (1.3.2)

Recall that repeated indexes mean sum, following the classical Einstein convention. Recall
that denote g = gab. Due to the axioms of general relativity the tensor g must be real and
symmetric. The reduced Einstein equation for the non-stationary case is given by

∂t
(
α∂tgg

−1
)
− ∂x

(
α∂xgg

−1
)
= 0, det g = α2. (1.3.3)

The fact that the 2 × 2 tensor g is symmetric allows us to diagonalize it for fixed t and x.
We write g = RDRT , where D is a diagonal tensor and R is a rotation tensor, of the form

D =

(
αeΛ 0
0 αe−Λ

)
, R =

(
cosϕ − sinϕ
sinϕ cosϕ

)
, (1.3.4)

clearly
det g = α2. (1.3.5)

Here Λ is the scalar field that determines the eingenvalues of g, and the scalar field ϕ deter-
mines the deviation of g from being a diagonal tensor. Since ϕ is considered as an angle, we
assume ϕ ∈ [0, 2π]. Therefore Λ, ϕ and α in (1.3.4) can be considered as the three degrees of
freedom in the symmetric tensor g, [52]. Written explicitly, the tensor g is given now by

g = α

(
coshΛ + cos 2ϕ sinhΛ sin 2ϕ sinhΛ

sin 2ϕ sinhΛ coshΛ− cos 2ϕ sinhΛ

)
. (1.3.6)

Some analog representations have been used in various associated results, for example in
the Einstein-Rosen metric [17]. Note that Minkowski g̃µν = (−1, 1, 1, 1) can be recovered by
taking Λ = 0, α = 1 and ϕ free. The equation (1.3.1) reads now

∂t(α∂tΛ)− ∂x(α∂xΛ) = 2α sinh 2Λ((∂tϕ)
2 − (∂xϕ)

2),

∂t(α sinh2 Λ∂tϕ)− ∂x(α sinh2 Λ∂xϕ) = 0,

∂2t α− ∂2xα = 0,

∂2t (ln f)− ∂2x(ln f) = G,

(1.3.7)

12



1.3. INTRODUCTION TO THE EINSTEIN MODELS

where G = G[Λ, ϕ, α] is given by

G := −
(
∂2t (lnα)− ∂2x(lnα)

)
− 1

2α2
((∂tα)

2 − (∂xα)
2)

− 1

2
((∂tΛ)

2 − (∂xΛ)
2)− 2 sinh2 Λ((∂tϕ)

2 − (∂xϕ)
2).

(1.3.8)

Note that the equation for α(t, x) is the standard one dimensional wave equation, and can be
solved independently of the other variables. Also, given α(t, x), Λ(t, x) and ϕ(t, x), solving
for ln f(t, x) reduces to use D’Alembert formula for linear one dimensional wave with nonzero
source term. Consequently, the only nontrivial equations in (1.3.7) are given by the equations
for Λ(t, x) and ϕ(t, x), for α solution to linear 1D wave.

The local behavior of the spacetime described before is defined by the function α. In our
setting, α will be an always positive and bounded function. These characteristics will be
provided by the initial conditions that will be imposed on the problem. The gradient of the
function α(t, x) can be timelike, spacelike or null, see [8, 17, 34],

• The case where α is spacelike everywhere in spacetime ((∂xα)
2−(∂tα)

2 > 0) corresponds
to spacetimes said “with cylindrical symmetry”, which corresponds to the Einstein
Rosen spacetime, for example. They give an approach to the description of gravitational
waves.

• When the gradient of α is globally null, ((∂xα)
2 − (∂tα)

2 = 0), it corresponds to the
plane-symmetric waves.

• When the gradient of α is globally timelike ((∂xα)
2 − (∂tα)

2 < 0) is used to describe
cosmological models and colliding gravitational waves.

The focus of this work will be precisely the timelike case. This classification for the gradient
of the function α is necessary in order to propose an appropriate definition of energy and to
be capable of providing a description of the decay of the solution associated with the system.

On another hand, as one can see from (1.3.7), solutions are not unique. These fields
satisfy the gauge invariance

(Λ, ϕ, α, f) solution, then

(Λ, ϕ+ kπ, C1α,C2f) is also solution, k ∈ Z, C1, C2 > 0.
(1.3.9)

Since α 7→ C1α is just a conformal transformation in (1.3.6), with no loss of regularity we
can always assume C1 = C2 = 1 in (1.3.9). It should be noted that although (1.3.7) are
strictly non-linear in the fields Λ(t, x), ϕ(t, x), α(t, x) and f(t, x), it shares many similarities
with the classical linear wave and Born-Infeld equations [1]: given any C2 real-valued profiles
h(s), k(s), ℓ(s),m(s), then the following functions are solutions for (1.3.7):{

Λ(t, x) = h(x± t), ϕ(t, x) = k(x± t),

α(t, x) = ℓ(x± t), f(t, x) = m(x± t).

This property will be key when establishing the connection between the local theory that will
be presented in the following section and the analysis of explicit solutions to the equation in
the Section 3.6.
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1.4. INTRODUCTION OF THE ZAKHAROV-KUZNETSOV MODEL

1.3.2 Principal Chiral Field equation

Consider the Principal Chiral Field Models given by

∂t
(
∂tgg

−1
)
− ∂x

(
∂xgg

−1
)
= 0, (t, x) ∈ R× R, (1.3.10)

valid for a 2 × 2 Riemannian metric g . The Principal Chiral Field is a nonlinear σ-model
which is related to various classical spinor fields and received huge attention in the 1980s
and 1990s. In this work, we study a particular case of the reduction problem on “symmetric
spaces” such as the work of [7, 9, 52]. The symmetric space considered is the invariant
manifold of symmetric matrices sitting in the Lie group SL(2;R). This space is not a Lie
group, but it can be identified with a Hyperboloid in Minkowski spacetime, see [88].

The equation (1.3.10) is compatible with a certain class of constraints on the metric g that
effectively “identified” this equation with a system of semilinear wave equations, as follows:
if one settles α ≡ 1 constant in (1.3.3), in this case the metric (1.3.2) is diffeomorphic to
Minkowski [8, 52]. In this case, we avoid this oversimplification by only taking the first three
equations in (1.3.7) with α ≡ 1, not considering the function f , namely

∂2tΛ− ∂2xΛ = −2 sinh(2Λ)((∂xϕ)
2 − (∂tϕ)

2),

∂2t ϕ− ∂2xϕ = −sinh(2Λ)

sinh2(Λ)
(∂tϕ∂tΛ− ∂xϕ∂xΛ).

(1.3.11)

System (1.3.11) is a Hamiltonian system, having the conserved energy (see [52, pp. 66]):

E[Λ, ϕ](t) :=

∫ (
1

2
((∂tΛ)

2 + (∂xΛ)
2) + 2 sinh2 Λ((∂tϕ)

2 + (∂xϕ)
2)

)
(t, x)dx. (1.3.12)

1.4 Introduction of the Zakharov-Kuznetsov Model

In this section, we introduce the generalized Zakharov-Kuznetsov (ZK) model. Although,
this equation is not directly associated to the PDEs models in general relativity, it was part
of my thesis work, giving me the opportunity to gain experience and to learn new tools, which
contribute to improve my ability to tackle relevant research problems. More precisely, it was
motivated by my research visit to Prof. Chen Gong at Georgia Institute of Thecnology.

1.4.1 Setting of the model

The generalized Zakharov-Kuznetsov equation is given by

ut + (uxx + uyy + up)x = 0. (1.4.1)

This equation can be considered as a multi dimensional generalisation of the Korteweg-
de Vries (KdV) equation. During their existence, solutions to ZK have several conserved
quantities, relevant to this work are the L2 norm (or mass), and the energy (or Hamiltonian):

M [u(t)] =

∫
R2

u2(t) =M [u(0)],

E[u(t)] =
1

2

∫
R2

(u2x(t) + u2y(t))−
1

p+ 1

∫
R2

up+1(t) = E[u(0)].

14



1.5. THE VIRIAL METHOD

An important symmetry in the evolution equations is the scaling invariance, which states that
an appropriately rescaled version of the original solution is also a solution of the equation.
For the equation (1.4.1) it is

u(t, x, y) = λ
d

p−1u(λ3t, λx, λy).

This symmetry makes invariant the Sobolev norm Ḣs with s = 1 − d
p−1

, since ∥uλ∥Ḣs =

λ
d

p−1
+s−1 ∥u∥Ḣs . Moreover, the index s gives rise to the critical-type classification of (1.4.1):

• when s < 0, or p < d+ 1, the equation (1.4.1) is called the L2-subcritical equation (in
this case is p = 2);

• if p > d+ 1, or s > 0, the equation is L2-supercritical (we use p = 4), and

• with p = d+1, or s = 0, it is L2-critical. This classification is important in the study
of long time behaviour of solutions.

In Chapter 5, we will consider the case of the equation with p = 3, which corresponds to the
modified Zakharov-Kuznetsov equation, which is given by{

ut + uxxx + uxyy + u2ux = 0, (x, y) ∈ R2, t > 0,

u(0, x, y) = u0(x, y),

where u = u(t, x, y) is a real valued function.

1.5 The Virial Method

In this section, we will describe one of the methods used in the development of this work.
In particular, to understand the asymptotic behavior of the solutions. Next, let us introduce
the mindset of virial identities.

Given an equation, it is always a good idea to read as much as possible out of it. Thus, we
must always ask ourselves which are the rigid restrictions that an equation imposes a priori to
its solutions. For example, the conservation laws. These conservation laws are particularly
useful for controlling the long-time dispersive behavior or short-time smoothing behavior
of nonlinear PDEs. A very useful variant of a conservation law is that of a monotonicity
formula, a quantity G(u(t), t) depending on the solution u(t), and perhaps on the time t,
which is always monotone increasing in time t, or perhaps monotone decreasing in time t,
(see [107]).

A virial identity, in the most simplistic way, is a variation of a conservation law, often
rewritten as a monotony law, that a solution has to satisfy, and are related to some symmetries
and invariances that a solution to a certain equation can exhibit. These monotone quantities
can be used to obtain long-time control of a solution in several ways.

If a quantity G(u(t), t) is large at some initial time and is monotonically increasing, then
it will clearly remain large for all times (later t > t0). Conversely, if G(u(t), t) is bounded
at time t0, is monotonically decreasing and is nonnegative, then it remains bounded for all

15



1.5. THE VIRIAL METHOD

later times t > t0. If G(u(t), t) is monotonically increasing and itself the time derivative of
another quantity K(t), then we also learn that K(t) is convex in time, which can be useful in
a number of ways. Finally, if we know that G(u(t), t) is uniformly bounded in time, (through
uses of conservation laws) and is monotonic, then we conclude from the fundamental theorem
of calculus that ∂tG(u(t), t) is absolutely integrable in time and therefore decays to zero when
t −→ ∞, at least in some average sense. This type of long-time decay is especially useful for
understanding the asymptotic behaviour of the solution.

Monotonic quantities are used systematically in the context of elliptic equations, in this
case, it is known as Pohozhaev’s identity, which is applicable to localized solutions to the
stationary nonlinear Schrödinger equation. In physics, the Virial Theorem gives a relation
between the average total kinetic energy and the total potencial energy of the system. Al-
though the virial estimates go back to the 70’s only recently they have been used, together
with their variations, in a surprisingly powerful way in the context of dispersive equations.
More precisely, the virial identities in its modern form were introduced by Glassy [46] to
show blow up for certain focusing nonlinear Schröndiger equation.

We describe in simple words how our virial works. As mentioned before, the base of the
argument is the election of a conserved quantity, for example, for the vacuum Einstein model
we constructed new energies and virial functionals to provide a description of the energy
decay of smooth global cosmological metrics inside the light cone. It is possible to introduce
the following adapted virial functional

I(t) := −
∫
ρ

(
x− vt

ω(t)

)
κ∂xα

(
4 sinh2(Λ)((∂tϕ)

2 + (∂xϕ)
2) + (∂tΛ)

2 + (∂xΛ)
2
)
dx

+

∫
ρ

(
x− vt

ω(t)

)
κ∂tα

(
2∂xΛ∂tΛ + 8∂xϕ∂tϕ sinh

2(Λ)
)
dx,

(1.5.1)

with v ∈ (−1, 1), and κ, ω and ρ are chosen and defined from the proper characterization of
the problem. On the other hand, (Λ, ϕ, α) correspond to the solution of the quasilinear wave
system obtained from the Einstein equations under the B-Z symmetry ansatz, and a change of
appropriate coordinates. From the virial functional (1.5.1), one can obtain a characterization
of the decay dynamics of the solutions with finite energy, which is described in the following
results:

Lemma 1.5.1 (Virial identity). One has I(t) well-defined and bounded in time, and

d

dt
I(t) = − ω′(t)

ω(t)

∫
x− vt

ω(t)
ρ′
(
x− vt

ω(t)

)
p̂(t, x)

+
v

ω(t)

∫
ρ′
(
x− vt

ω(t)

)
p̂(t, x)

+
1

ω(t)

∫
ρ′
(
x− vt

ω(t)

)
ê(t, x).

where ê = ê(κ,Λ, ϕ, α) and p̂ = p̂(κ,Λ, ϕ, α). As a consequence, we can prove the following
result, which accounts for the decay of the solution, for the particular case of the cosmological
spacetime:
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1.6. MAIN RESULTS

Theorem 1.5.1 (Decay of cosmological finite-energy spacetimes Theorem 3.1.3, Chapter 3).
The cosmological 1-soliton (Λ, ϕ, α) obtained from a nonsingular generalized Kasner8 metric
of parameter d ≥ 1 is globally defined under suitable small perturbations in the case where α
satisfies

lim
t→+∞

∫
|x−vt|≤ω(t)

[
(∂tΛ)

2 + (∂xΛ)
2 + sinh2(Λ)

(
(∂tϕ)

2 + (∂xϕ)
2
)]

(t, x)dx = 0.

1.6 Main results

The results proved in this thesis are included in the following articles and preprints:

1. J. Trespalacios. Global Existence and Long Time Behavior in the 1+1 dimensional
Principal Chiral Model with Applications to Solitons, Annales Henri Poincaré, (2024).
(Chapter 2).

2. C. Muñoz and J. Trespalacios. Global Existence and Long Time Behavior in Einstein-
Belinski-Zakharov Soliton Spacetimes, arXiv:2305.01414. Submitted 2024.
(Chapter 3).

3. M. Alejo, C. Muñoz, J. Trespalacios. Nonlinear Stability of nonsingular solitons of the
Principal Chiral Field equation. arXiv:2408.09969. Submitted 2024. (Chapter 4).

4. J. Trespalacios. Blow-up rate for modified Zakharov-Kuznetsov Equation. Preprint.
(Chapter 5).

Now we briefly describe a slightly shorter version of the results:

1.6.1 Principal Chiral Field Model

As already mentioned, the simplest case for the reduced Einstein equation corresponds to
the Principal Chiral Field model. Hadad in [52] studied this identification using geometrical
coordinates (or Gowdy coordinates) obtaining a system of quasilinear wave equations, then,
using the Belinski-Zakharov transform, he presented some explicit solutions of this model.

In the Chapter 2, we focus on formally describing both, the local and global existence
theory of the associated semilineal wave system. The main problem lies in the fact that waves
in one dimension do not decay as they do in higher dimensions. However, inspired by the
results for the one-dimensional wave equation with null condition [85], we were able to show
that, with appropriate assumptions on the initial data, it is possible to obtain the global
existence of solutions in the energy space associated with the system. The chapter considers
a special case of the Principal Chiral Field model in (1 + 1)- dimensions as a simplified
version of the Einstein vacuum field equations under Belinksi-Zakharov symmetry.

There are four main results in this chapter: a local well-posedness statement, a global well-
posedness statement, a global-in-time decay result of some solutions, and an application to

8This metric correspond to a particular cosmological spacetime studied in Chapter 3.
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1.6. MAIN RESULTS

solitons. All of the statements together make for a relatively self-contained, new, interesting,
and comprehensive introduction to this special case of the Principal Chiral Field model.
Moreover, this work has led to some impressive follow up work that can be see in the Chapter
3.

Local and Global Existence.

Consider the following (1 + 1)−dimensional system of the semilinear wave equations,
which corresponds to the Principal Chiral Field model (PCFE) using the so called Gowdy
coordinates (see [109]):

∂2tΛ− ∂2xΛ = −2 sinh(2Λ)((∂xϕ)
2 − (∂tϕ)

2),

∂2t ϕ− ∂2xϕ = −sinh(2Λ)

sinh2(Λ)
(∂tϕ∂tΛ− ∂xϕ∂xΛ).

(1.6.1)

If we take function Λ(t, x) in the form

Λ(t, x) := λ+ Λ̃(t, x), λ ̸= 0.

Without loss of generality, we assume λ > 0. The basic idea is to establish the conditions
that are required on λ and Λ̃ in order to obtain the desired regularity results. Let us consider
the following notation:Ψ =

(
Λ̃, ϕ

)
, ∂Ψ =

(
∂tΛ̃, ∂xΛ̃, ∂tϕ, ∂xϕ

)
,

|∂Ψ|2 =
∣∣∂tΛ̃∣∣2 + ∣∣∂xΛ̃∣∣2 + |∂tϕ|2 + |∂xϕ|2,

where
(Ψ, ∂tΨ) ∈ H := H3(R)×H3(R)×H2(R)×H2(R).

Recall that, an evolution equation is said to be well-posed in the sense of Hadamard, if
existence, uniqueness of solutions and continuous dependence on initial data hold. A short
version of our first result is the following.

Proposition 1.6.1 (Proposition 2.1.1, Chapter 2). If (Ψ, ∂tΨ)|{t=0} = (Ψ0,Ψ1) ∈ H, satisfies
certain smallness conditions, then we have a Local Well Posedness for (1.6.1)

Having established the existence of solutions, our second result involves whether or not
local solutions can be extended globally in time. This is not an easy problem, mainly because
Λ(t, x) may achieve the zero value in finite time. Therefore, an important aspect of the proof
will be to ensure uniform distance from zero of the function Λ(t, x).

Theorem 1.6.1 (Theorem 2.1.1, Chapter 2). Consider the semilinear wave system (1.6.1)
posed in R1+1, with the following initial conditions:{

(ϕ, Λ̃)|{t=0} = ε(ϕ0, Λ̃0), (ϕ0, Λ̃0) ∈ C∞
c (R× R),

(∂tϕ, ∂tΛ̃)|{t=0} = ε(ϕ1, Λ̃1), (ϕ1, Λ̃1) ∈ C∞
c (R× R).

(1.6.2)

Then, there exists ε0 sufficiently small such that if ε < ε0, the unique solution remains smooth
for all time and have finite conserved energy.
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Long time behavior and Applications to solitons.

Finally, we discuss the long time behavior of globally defined solutions. Here, virial
identities will be key to the long-time description.

Theorem 1.6.2 (Theorem 2.1.2, Chapter 2). Let (Λ, ϕ) be a global solution to (1.6.1) such
that its energy E[Λ, ϕ](t) (see (1.3.12)) is conserved and finite. Then, for any v ∈ (−1, 1)
and ω(t) = t/ log2 t, one has

lim
t→+∞

∫ vt+ω(t)

vt−ω(t)

(
(∂tΛ)

2 + (∂xΛ)
2 + sinh2 Λ((∂tϕ)

2 + (∂xϕ)
2)
)
(t, x)dx = 0.

This result establishes that inside the light cone, all finite-energy solutions must converge
to zero as time tends to infinity.

An important outcome of our previous results is a clear background for the study of soliton
solutions of (1.6.1). In this work, we propose a finite energy soliton solution. Although it is
not so clear that they are physically meaningful, these new solutions have finite energy and
local well-posedness properties in a vicinity.

Indeed, consider a smooth function θ ∈ C2
c (R). Additionally, consider the constraint

0 < µ < 1. For any λ > 0, and ε > 0 small, let

Λ(0)
ε := λ+ εθ(t+ x), ϕ(0) := 0.

Clearly Λ
(0)
ε solves the wave equation in 1D and has finite energy E[Λ

(0)
ε , ϕ

(0)
ε ] < +∞. This

will be for us the background seed. The corresponding 1-soliton is now

g(1) =


eλ+εθ sech(β(λ+ εθ))

sech(β(λ+ εθ)− x0)
− 1√

c
sech(β(λ+ εθ))

− 1√
c
sech(β(λ+ εθ))

e−(λ+εθ) sech(β(λ+ εθ))

sech(β(λ+ εθ) + x0)

 , β =
µ+ 1

µ− 1
, (1.6.3)

which also has finite energy. Perturbations of the fields Λ and ϕ associated with this soliton
will be globally defined according to the Theorem 1.6.1:

Corollary 1.6.1 (Corollary 2.1.1, Chapter 2). Suitable perturbations of any soliton as in
(1.6.3) are globally well-defined.

This result has an important outcome: it allows us to try to study the stability of these
solutions, which will be done in Chapter 4.

1.6.2 Einstein-Belinski-Zakharov Spacetimes

In the Chapter 3 we consider the Vacuum Einstein equation in the setting of Belinski-
Zakharov ansatz. As seeing before, using Gowdy coordinates (geometrical coordinates), the
model can be rewrite as the Eq. (1.3.7). For the forthcoming analysis it is convenient to
introduce a fundamental null form, which is defined as the following bilinear form:

Q0(ϕ, Λ̃) = mαβ∂αϕ∂βΛ̃,
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where mαβ to denote the standard Minkowski metric on R1+1. Then, using this definition,
one can rewrite the first two equations of the system (1.3.7) in terms of null forms as follows:

□Λ̃ = Q0(lnα, Λ̃)− 2 sinh(2λ+ 2Λ̃)Q0(ϕ, ϕ),

□ϕ = Q0(lnα, ϕ) +
sinh(2λ+ 2Λ̃)

sinh2(λ+ Λ̃)
Q0(ϕ, Λ̃),

(1.6.4)

and the remaining equations are{
∂2t α− ∂2xα = 0,

∂2t (ln f)− ∂2x(ln f) = G,
(1.6.5)

where G = G[Λ, ϕ, α] is given by

G := −
(
∂2t (lnα)− ∂2x(lnα)

)
− 1

2α2
((∂tα)

2 − (∂xα)
2)

− 1

2
((∂tΛ)

2 − (∂xΛ)
2)− 2 sinh2 Λ((∂tϕ)

2 − (∂xϕ)
2).

(1.6.6)

In addition, we introduce the following modified energy of the system, which in the case
of cosmological type solutions will be highly relevant (see Chapter 3 Section 3.4):

E[Λ, ϕ;α](t) := −
∫
[κ∂tα(h1 − 2h2)](t, x)dx, (1.6.7)

where κ(t, x) =
α

(∂xα)2 − (∂tα)2
,

h1(t, x) = (∂tΛ)
2 + (∂xΛ)

2 + 4 sinh2(Λ)((∂xϕ)
2 + (∂tϕ)

2), (1.6.8)

and
h2(t, x) = ∂tΛ∂xΛ + 4 sinh2(Λ)∂tϕ∂xϕ.

This (nonconserved) energy is a modified version of the one introduced by Hadad [52], which
was not sufficiently useful in our purposes. Here (1.6.7) has important modifications to
ensure the positivity of the energy functional. Compared with our previous results [109]
in the case of the Principal Chiral equation, here the energy and momentum terms require
deeper understanding and much more work than before. Summarizing, in this chapter we
described in the Belinski-Zakharov-Einstein setting the following: The local and global
existence of solutions of the model, the definition of a modified energy and momentum,
the global-in-time decay result of solutions of finite energy, and finally The application
to gravisolitons of cosmological type. The following is a brief description of these results:

Global existence of small solution.

Our first result in this work is the global existence of solutions. For the system, we
consider constraints on the initial conditions for α(t, x). Using the D’Alembert formula we
have an explicit expression for α that allows us to obtain tight control over appropriate terms
by also using the central structure related to null forms. Although the nonlinearity is not
purely defined in terms of null forms, we can follow and adapt properly in the case of variable
coefficients the certain weighted energy estimates proposed. Keeping this in mind, we have
the following result:
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Theorem 1.6.3 (Small data global existence, Theorem 3.1.1, Chapter 3). Let λ > 0, c1 > 0
be fixed, and set

Λ =: λ+ Λ̃, and α := 1 + α̃. (1.6.9)

Consider the wave system (1.6.4) posed in R1+1, with the following initial conditions:

(IC)


(ϕ, Λ̃, α, f)|{t=0} = (εϕ0, εΛ̃0, 1 + α̃0, c1 + f0),

(∂tϕ, ∂tΛ̃, ∂tα, ∂tf)|{t=0} = (εϕ1, εΛ̃1, α1, f1),

(ϕ0, Λ̃0, α̃0, f0) ∈ (C∞
c (R))4 ,

(ϕ1, Λ̃1, α1, f1) ∈ C∞
c (R)× C∞

c (R)× S(R)× S(R).

Assume the following bounds on the initial conditions:

1. α1(·) > 0,

2. maxn=0,1,2

(
∥∂(n)x α̃0∥∞ + ∥∂(n)x α1∥∞

)
< 1

2
γ, where γ is a fixed sufficiently small con-

stant, but independent on ε.

3. ||f0||∞ ≤ c1
2
,

4. the initial data satisfy the compatibility conditions required by Einstein’s field equations.

Then, there exists ε0 sufficiently small such that if ε < ε0, the unique solution remains smooth
for all time.

A direct consequence of Theorem 1.6.3 is the global existence of the Belinski-Zakharov
metric (1.3.2):

Corollary 1.6.2. Under the assumptions in Theorem 1.6.3, g and f in (1.3.2) are globally
well-defined.

Decay of cosmological finite-energy spacetimes.

The second result in this chapter concerns the decay of a specific type of the solutions
of the Einstein equations in the vacuum. Specifically of cosmological type solutions, which
are of special interest in physics and cosmology. This type of solutions include the Kasner
type spacetimes, as well as some Bianchi type models, see [8]. We will prove, using well-
chosen virial estimates that for solutions to system (1.6.4) with finite energy (in particular,
globally defined small solutions from Theorem 1.6.3), they must decay to zero locally in
space, provided that the gradient of the function α(t, x) is globally timelike.

The following theorem constitutes the most important result in this chapter:

Theorem 1.6.4 (Decay of cosmological finite-energy spacetimes, Theorem 3.1.3, Chapter
3). Under the hypotheses in Theorem 1.6.3, assume in addition that one has

(a) bounded energy condition:
sup
t≥0

E[Λ, ϕ;α](t) < +∞;
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(b) for some c0 > 0 one has

α(t, x) > c0 and ∂tα is in the Schwartz class uniformly in time.

Then, for any v ∈ R, |v| < 1, and ω(t) = t(log t)−2, one has

lim
t−→+∞

∫
|x−vt|≲ω(t)

[
(∂tΛ)

2 + (∂xΛ)
2 + sinh2(Λ)

(
(∂tϕ)

2 + (∂xϕ)
2
)]
dx = 0.

A simple corollary in terms of the spacetime tensor g can be obtained:

Corollary 1.6.3. Under the hypotheses in Theorem 1.6.3, one has that g in (1.3.2) satisfies

lim
t−→+∞

∫
|x−vt|≤ω(t)

(
(∂t det g)

2 + (∂x det g)
2
)
(t, x)dx = 0. (1.6.10)

Vanishing property (1.6.10) can be understood as the manifestation that the spacetime is
of cosmological type, and information propagates with the speed of light, supported on the
light cone.

Finally, we apply Theorem 1.6.3 and 1.6.4 to the cosmological 1-soliton obtained from a
nonsingular generalized Kasner metric, In particular, we shall prove:

Theorem 1.6.5 (Theorem 3.1.4, Chapter 3). The cosmological 1-soliton (Λ, ϕ, α) obtained
from a nonsingular generalized Kasner metric of parameter d ≥ 1 is globally defined under
suitable small perturbations in the case where α satisfies the hypotheses of Theorem 1.6.3,
and satisfies

lim
t→+∞

∫
|x−vt|≤ω(t)

[
(∂tΛ)

2 + (∂xΛ)
2 + sinh2(Λ)

(
(∂tϕ)

2 + (∂xϕ)
2
)]

(t, x)dx = 0.

in the case where α is of cosmological type and satisfies the hypotheses of Theorem 1.6.4.
Moreover, it propagates with the speed of light.

1.6.3 Stability for the Principal Chiral Soliton

In the Chapter 4 we consider the orbital stability study for the 1-soliton of the Principal
Chrial Field equation. Stability theory is an important line of research in nonlinear par-
tial differential equations, in the sense that it gives solidity to the results related to global
existence of the solutions, asymptotic behavior, the dynamics of solutions. In addition to
the motivation arising from Principal Chiral Model, the study of the stability for hyper-
bolic equations is of independent interest because of the connections with other branches of
physics, for example, the study of the irrotational compressible Euler equations, also, the
Einstein-Maxwell equation, as well as, the wave map equation.

In this work we want to study hyperbolic PDEs arising from PCF Model

∂t
(
∂tgg

−1
)
− ∂x

(
∂xgg

−1
)
= 0, (t, x) ∈ R× R,
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valid for a 2 × 2 Riemannian metric g, into the Lie group SL(2;R). In particular we are
interested in the orbital stability of special solutions of these model with small initial data
perturbations. The main idea is to use viral techniques in a new way, this time, to obtain
orbital stability of the explicit solutions that can be previously constructed for the problem.

One of the important results of the global existence problem for the Principal Chiral
Field equation presented in Section 1.6.1, was the proposal of the 1-soliton. Recall that the
equation can be identified with the semilinear wave system

∂2tΛ− ∂2xΛ = −2 sinh(2Λ)((∂xϕ)
2 − (∂tϕ)

2),

∂2t ϕ− ∂2xϕ = −sinh(2Λ)

sinh2(Λ)
(∂tϕ∂tΛ− ∂xϕ∂xΛ).

(1.6.11)

The Finite energy solitons for this model are given by:

g(1) =


eλ+εθ sech(β(λ+ εθ))

sech(β(λ+ εθ)− x0)
− 1√

c
sech(β(λ+ εθ))

− 1√
c
sech(β(λ+ εθ))

e−(λ+εθ) sech(β(λ+ εθ))

sech(β(λ+ εθ) + x0)

 , β =
µ+ 1

µ− 1
, (1.6.12)

where θ ∈ C2
c (R), 0 < µ < 1, and for any λ > 0, x1 ∈ R and ε > 0 small, we defined

Λ(0)
ε = Λ(0)

ε (t, x) := λ+ εθ(t+ x), ϕ(0) := 0.

For its part, the parameters are given by

c =

(
2µ

µ2 − 1

)2

, v = −µ
2 + 1

2µ
< −1, and x0 =

ln |µ|√
c
.

For the 1-soliton (1.6.12), the corresponding fields Λ̂ε and ϕ̂ε, are given by:

Λ̂ε = B := arcosh

(
|v| cosh

(
Λ(0)

ε

)
− 1√

c
tanh

(
β
(
Λ(0)

ε

))
sinh

(
Λ(0)

ε

))
,

ϕ̂ε = D :=
π

4
− 1

2
arctan

(
cosh

(
β
(
Λ(0)

ε

))
cosh

(
Λ(0)

ε

) (
tanh

(
β
(
Λ(0)

ε

))
+ v

√
c tanh

(
Λ(0)

ε

)))
.

(1.6.13)

The purpose of this work is to give a first proof of the fact that the 1-soliton (1.6.12) of
the PCF model is orbital stable under small perturbations well-defined in the natural energy
space associated to the problem. The stability study will be done by addressing equation
(1.6.11) and using the description of the 1-solution (1.6.12) in terms of the fields Λ and ϕ
given by (1.6.13). In this order of ideas, we consider 1-soliton perturbed initial data of the
form {

(Λ, ϕ)|{t=0} = (B + εz0, D + εs0), (z0, s0) ∈ C∞
c (R)2,

(∂tΛ, ∂tϕ)|{t=0} = (Bt + εw0, Dt + εm0), (w0,m0) ∈ C∞
c (R)2.

(1.6.14)

Then there exists ε0 such that if ε < ε0, the unique solution remains smooth for all time and
have finite conserved energy. More precisely we can prove what follows result:
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Theorem 1.6.6 (Theorem 4.1.2, Chapter 4). There exists ε0 > 0 such that if 0 < ε < ε0,
the following holds. There exist C, δ0 > 0 such that, if 0 < δ < δ0, and [z0, w0, s0,m0] is given
as in (1.6.14), then the following are satisfied:

1. External energetic control. Assume that∫ (
1

2
(w2

0 + z20,x) + 2 sinh2(B + z0)(s
2
0,x +m2

0)

)
(x)dx < δ.

Then

• For all time, one has a crossed global control:∫
R

(
1

2
(zx − w)2 + 2 sinh2(B + z)(sx −m)2

)
(t, x)dx < 3δ. (1.6.15)

• Inside light-cone convergence. For any v ∈ (−1, 1) and ω(t) = t/ log2 t, one has

lim
t→+∞

∫ vt+ω(t)

vt−ω(t)

(
w2 + z2x + sinh2(B + z)(m2 + s2x)

)
(t, x)dx = 0. (1.6.16)

• Exterior stability: for all time t ≥ 0,∫
|x+t|≥R

(
1

2
(w2 + z2x) + 2 sinh2(B + z)(s2x +m2)

)
(t, x)dx < δ. (1.6.17)

2. Full orbital stability. Assume now [z0, w0, s0,m0] ∈ C∞
c (R)4 be initial data as in (4.1.11)

such that∑
k=0,1

∫
(1 + |x|2)1+γ

(
(∂kxw0)

2 + (∂k+1
x z0)

2 + (∂kxm0)
2 + (∂k+1

x s0)
2
)
dx < δ2, (1.6.18)

for 0 < γ < 1
3
. Then the corresponding global solution to (4.1.6) given as

(B + z, ∂tB + w,D + s, ∂tD +m) (1.6.19)

satisfies the same bounds for all times:

sup
t≥0

(
E(t) + E(t)

)
≤ Cδ2. (1.6.20)

(See (4.4.7) for the definition of these norms.)

Here E(t) and E(t) describe the energy norms associated with the problem, which are
introduced in the Chapter 4.
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1.6.4 Blow-up rate for the modified Zakharov-Kuztnesov
equation

Chapter 5 is devoted to the study of a lower bound for the blow up rate of that solution for
the modfied Zakharov-Kuznetsov{

ut + uxxx + uxyy + u2ux = 0, (x, y) ∈ R2, t > 0,

u(0, x, y) = u0(x, y),

where u = u(t, x, y) is a real valued function.

Our analysis relies on the local well-posedness results of Linares and Pastor [81] in Hs,
s > 3/4. The approach is to start with important linear estimates given by Faminskii [37],
and then move on to non-linear estimates given by Linares and Pastor in [81]. In particular,
we carefully keep track of the power of time involved in the estimates as it is central for the
analysis of the lower bound for the blow-up rate. In a second stage, we will try to adapt
the idea of Colliander et. al. [27]. The original idea comes from an argument used for the
heat equation made by Weissler [113] and later extended to nonlinear Schrödinger equations
by Cazenave and Weissler [19] to obtain a lower bound of blow-up for Sobolev norms of the
solution. More precisely, we can prove what follows result

Theorem 1.6.7 (Theorem 5.1.1, Chapter 5). Consider the IVP (5.1.2) with initial conditions
u0 ∈ Hs

xy(R) with s > 3/4. Assume that the solution u(t, x, y) blows up in a finite time T ∗

in Hs
xy(R). Then, we have the following lower bound for the blow-up rate:

C(s) ∥u(t)∥Hs > (T ∗ − t)−7/48, t ↑ T ∗. (1.6.21)
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Chapter 2

Global existence and long time
behavior in the 1+1 dimensional
Principal Chiral model with
applications to solitons

Abstract: In this paper, we consider the 1+1 dimensional vector valued Principal Chiral Field
model (PCF) obtained as a simplification of the Vacuum Einstein Field equations under the Belinski-
Zakharov symmetry. PCF is an integrable model, but a rigorous description of its evolution is far
from complete. Here we provide the existence of local solutions in a suitable chosen energy space, as
well as small global smooth solutions under a certain non degeneracy condition. We also construct
virial functionals which provide a clear description of decay of smooth global solutions inside the
light cone. Finally, some applications are presented in the case of PCF solitons, a first step towards
the study of its nonlinear stability.

This chapter has been published as: J. Trespalacios. Global Existence and Long Time Behav-

ior in the 1+1 dimensional Principal Chiral Model with Applications to Solitons, Annales Henri

Poincaré, (2024).
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2.1 Introduction and main results

2.1.1 Setting

The Einstein field vacuum equations and its consequences are key in the Physics of the past
century. For a gravitational Lorentzian field g̃ = g̃µν of local signature (−1, 1, 1, 1), one seeks
for solving the vanishing of the Ricci tensor

Rµν(g̃) = 0. (2.1.1)

This equation can be seen as a system of nonlinear quasilinear wave equations. Its importance
lies in the fact that many of the characteristic features of the dynamics of the Einstein field
equations, are already present in the study of the vacuum equations. See Wald [111] for a
detailed description of the Physics behind these equations.

Under certain symmetries and assumptions, the Einstein field equation can be identified
and reduced to the integrable Symmetric Principal Chiral Field Equation,

∂t
(
∂tgg

−1
)
− ∂x

(
∂xgg

−1
)
= 0, (t, x) ∈ R× R, (2.1.2)

valid for a 2 × 2 Riemannian metric g. This last equation will be the main subject of this
work. This equation is compatible with a certain class of constraints on the metric g that
effectively “reduce” the equation (2.1.2) to a system of quasilinear wave equations. We will
prove existence of local solutions, global small solutions, and describe in part the asymptotic
behavior of globally defined solutions. The Principal Chiral Field is a nonlinear σ-model
the which is related to various classical spinor fields and received huge attention in the
1980s and 1990s. The first description of the integrability of this model in the language
of the commutative representation (2.1.2) was given in [119], subsequently, different results
associated with integrability, conserved quantities and soliton solutions were obtained [10,
41, 93], as well as different analyses of this equation using Backlund transformation, Darboux
transformation [31, 53]. In the literature there are several results associated with the study
of the reduction of the PCF equation in homogeneous spaces of Lie groups. In particular,
Zakharov and Mikhailov in [117] studied the model of the Principal Chiral Field for the special
unitary group SU(N), as well as in [118], they studied the connection of this equation with
the Nambu-Jona-Lasinian model. In this work, we study a particular case of the reduction
problem on “symmetric spaces” such as the work of [7, 9, 52]. The symmetric space considered
is the invariant manifold of symmetric matrices sitting in the Lie group SL(2;R). This space
is not a Lie group, but it can be identified with a Hyperboloid in Minkowski spacetime, see
[88].

In order to explain the emergence of (2.1.2) starting from (2.1.1), one needs to consider the
so-called Belinski-Zakharov symmetry ansatz [9]. Symmetry has been a successful method
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for understanding complicated dynamics in a series of works related to dispersive models,
see e.g. [34, 45, 104]. On the other hand, this assumption is not restrictive, in the sense
that several important cases of physical Einstein vacuum metrics are contained under this
restriction.

2.1.2 Belinski-Zakharov spacetimes

Belinski and Zakharov recalled the particular case in which the metric tensor g̃µν depends
on two variables only, which correspond to spacetimes that admit two commuting Killing
vector fields, i.e. an Abelian two-parameter group of isometries, [8, 9]. The metric depends
on a time-like coordinate x0, and one space-like coordinate x1 (possibly nonnegative). This
choice, as will stay clear below, corresponds to considering non-stationary gravitational fields
and was first consider by Kompaneets [71]. In the particular case that one has a diagonal
metric this type of spacetime is often referred to as Einsten-Rosen spacetimes and was first
considered in 1937 by Einstein and Rosen [34].

In this work we take these variables to be the time-like and the space-like coordinates
x0 = t and x1 = x respectively. In this case the coordinates are typically expressed using
Cartesian coordinates in which xi ∈ {t, x} with i ∈ {0, 1}, and xa, xb ∈ {y, z}, where the
Latin indexes a, b ∈ {2, 3}. Then the spacetime interval is a simplified block diagonal form:

ds2 = f(t, x)(dx2 − dt2) + gab(t, x)dx
adxb. (2.1.3)

Recall that repeated indexes mean sum, following the classical Einstein convention. Here
with abuse of notation we denote g = gab. Due to the axioms of general relativity the matrix
g must be real and symmetric. As mentioned above, the structure of this metric is not
restrictive, since, from the physical point of view, we find many applications that can be
described according to (2.1.3). Such spacetimes describe cosmological solutions of general
relativity, gravitational waves and their interactions. Also they have many applications in
gravitational theory, [8], we can emphasize that these types of spacetimes belong to the
classical solutions of the Robinson–Bondi plane waves [15], the Einstein–Rosen cylindrical
wave solutions and their two polarization generalizations, the homogeneous cosmological
models of Bianchi types I–VII including the Kasner model [59], the Schwarzschild and Kerr
solutions, Weyl axisymmetric solutions, etc. For many more contemporary results the reader
can refer to [74]. All this shows that in spite of its relative simplicity a metric of the type
(2.1.3) encompasses a wide variety of physically relevant cases.

In order to reduce Einstein vacuum equations (2.1.1), one needs to compute the Ricci
curvature tensor in terms of the components of the metric g = gab. The consideration of the
metric in the form (3.1.2) results in that the components R0a and R3a of the Ricci tensor are
identically zero. Therefore, one can see that system of the Einstein vacuum equations (2.1.1)
decomposes into two sets of equations. The first one follows from equations Rab = 0, this
equation can be written as single matrix equation

∂t
(
α∂tgg

−1
)
− ∂x

(
α∂xgg

−1
)
= 0, det g = α2. (2.1.4)

We shall refer to this equation as the reduced Einstein equation. The trace of the equation
(2.1.4) reads

∂2t α− ∂2xα = 0. (2.1.5)
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This is the so-called trace equation; the function α(t, x) satisfies the 1D wave equation, for
details of the derivation of equations (2.1.4) and (2.1.5) see [8, p. 11] and [52, pp. 27 and
147]. The second set of equations expresses the metric coefficient f(t, x) in terms of explicit
terms of α and g, where det g̃µν := −f 2α2. For the moment, this expression is not relevant
in this introduction, for more details see [8].

2.1.3 New coordinates

The fact that the 2× 2 matrix g is symmetric allows one to diagonalize it for fixed t and x.
One writes g = RDRT , where D is a diagonal matrix and R is a rotation matrix, of the form

D =

(
αeΛ 0
0 αe−Λ

)
, R =

(
cosϕ − sinϕ
sinϕ cosϕ

)
.

Clearly det g = α2. Here Λ is the scalar field that determines the eigenvalues of g, and
the scalar field ϕ determines the deviation of g from being a diagonal matrix. Since ϕ is
considered as an angle, we assume ϕ ∈ [0, 2π]. Therefore Λ, ϕ and α can be considered as the
three degrees of freedom in the symmetric matrix g, [52]. Written explicitly, the matrix g is
given now by

g = α

(
coshΛ + cos 2ϕ sinhΛ sin 2ϕ sinhΛ

sin 2ϕ sinhΛ coshΛ− cos 2ϕ sinhΛ

)
. (2.1.6)

Some analog representations have been used in various results associated, for example to
the Einstein-Rosen metric [17]. Note that Minkowski gµν = (−1, 1, 1, 1) can be recovered by
taking Λ = 0, α = 1 and ϕ free. Now, with this representation, the equation (2.1.4) reads

∂t(α∂tΛ)− ∂x(α∂xΛ) = 2α sinh 2Λ((∂tϕ)
2 − (∂xϕ)

2),

∂t(α sinh2 Λ∂tϕ)− ∂x(α sinh2 Λ∂xϕ) = 0,

∂2t α− ∂2xα = 0,

(2.1.7)

and
∂2t (ln f)− ∂2x(ln f) = G, (2.1.8)

where G = G[Λ, ϕ, α] is given by

G := −
(
∂2t (lnα)− ∂2x(lnα)

)
− 1

2α2
((∂tα)

2 − (∂xα)
2)

− 1

2
((∂tΛ)

2 − (∂xΛ)
2)− 2 sinh2 Λ((∂tϕ)

2 − (∂xϕ)
2).

(2.1.9)

Note that the equation for α is the standard one dimensional wave equation, and can be solved
independently of the other variables. Also, given α, Λ and ϕ, solving for ln f reduces to use
D’Alembert formula for linear one dimensional wave with nonzero source term. Consequently,
the only nontrivial equations in (2.1.7) are given by{

∂t(α∂tΛ)− ∂x(α∂xΛ) = 2α sinh 2Λ((∂tϕ)
2 − (∂xϕ)

2)

∂t(α sinh2 Λ∂tϕ)− ∂x(α sinh2 Λ∂xϕ) = 0,
(2.1.10)
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for α solution to linear 1D wave. Because of the difficulties found dealing with this system,
we shall concentrate efforts in a more modest case. If one settles α ≡ 1 constant, in this
case the metric (2.1.3) is diffeomorphic to Minkowski [8, 52]. In this paper, we avoid this
oversimplification by only taking (2.1.10) with α ≡ 1, not considering the function f , namely

∂2tΛ− ∂2xΛ = −2 sinh(2Λ)((∂xϕ)
2 − (∂tϕ)

2),

∂2t ϕ− ∂2xϕ = −sinh(2Λ)

sinh2(Λ)
(∂tϕ∂tΛ− ∂xϕ∂xΛ).

(2.1.11)

(2.1.11) is a set of coupled quasilinear wave equations, with a rich analytical and algebraic
structure, as we shall see below. Also, it coincides with (2.1.2) under g as in (2.1.6) and α ≡ 1.
Understanding this particular case will be essential to fully understand the general case of non
constant α. It is very notable that the basic set of equations of the Einstein equation for the
metric (2.1.3) coincides with the Principal Chiral Field equation (2.1.2) when α is constant. If
we only consider this set of equations, the PCF equation formally admits nontrivial solutions
which would correspond to a special subclass of Chiral Field theory solutions, [8]. It should
be noted that in the particle case where α is constant, the reduced Einstein equation (2.1.4)
corresponds to the chiral field equation (2.1.2), as mentioned above, however, as we will see
later, from the definitions of energy and momentum densities of the Chiral Field equation,
we cannot deduce relevant results from the Einstein field equation when α is an arbitrary
function, the non-constant α case requires a different treatment. As a consequence of the
above observation, in the constant α case, the equation (2.1.8) is no longer coupled to the
system to be worked.

Remark 2.1.1. Notice that the choice α ≡ 1 is aso made because the equations (2.1.7) may
have a different behavior depending on the properties of the function α. Even in this case
(α ≡ 1), the PCF model is sufficiently rich to produce a complex dynamics. In our recent
result [91], posted online very recently, we consider the more demanding case α non constant,
but still under some particular conditions that are natural generalizations of the hypotheses
presented here. Finally, the current work has been essential to obtain the general results
presented in [91].

As we can see from the matrix form (2.1.6) the solutions in terms of the fields Λ and ϕ
are not unique, since these fields satisfy a gauge invariance, that is,

(Λ, ϕ) solution, (Λ, ϕ+ kπ) solution, k ∈ Z. (2.1.12)

It should be noted that although (2.1.11) is strictly non-linear in the fields Λ(t, x) and ϕ(t, x),
it has many similarities with the classical linear wave equation and with Born-Infeld equation
[1]: given any C2 real-valued profiles h(s), k(s), then the following functions are solutions for
Eqns. (2.1.11)

Λ(t, x) = h(x± t) = h(s), ϕ(t, x) = k(x± t) = k(s). (2.1.13)

This property will be key when establishing the connection between the local theory that will
be presented in the following section and the analysis of explicit solutions to the equation in
the Section 2.5. System (2.1.11) is a Hamiltonian system, having the conserved energy

E[Λ, ϕ](t) :=

∫ (
1

2
((∂tΛ)

2 + (∂xΛ)
2) + 2 sinh2 Λ((∂tϕ)

2 + (∂xϕ)
2)

)
(t, x)dx. (2.1.14)
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Note that the energy is well-defined if (Λ, ∂tΛ) ∈ Ḣ1 × L2, but a suitable space for (ϕ, ∂tϕ)
strongly depends on the weight sinh2 Λ, which can easily grow exponentially in space, since
Ḣ1 can easily contain unbounded functions. In this sense, understanding EΛ, ϕ (even for
classical solutions such as solitons) is subtle and requires a deep and careful analysis, which
will be done later.

The notion of the energy and the law of conservation of energy play a key role in all
mathematics-physical theories. However, the definition of energy in relativity is a complex
matter, and this problem has been given a lot of attention in the literature [111, 112]. The
most likely candidate for the energy density for the gravitational field in general relativity
would be a quadratic expression in the first derivatives of the components of the metric [111].
In this case we have a particular structure of spacetime and the equation (2.1.6) gives us a
decomposition of the metric in terms of the fields Λ and ϕ.

Coming back to our problem, and using inverse scattering techniques, Belinski and Za-
kharov [9] considered (2.1.4) giving a first approach to this problem. They introduce a
Lax-pair for (2.1.4)-(3.1.4), together with a general method for solving it. Localized struc-
tures and multi-coherent were found, but they are not solitons in the standard sense, unless
α is constant, a more in-depth study on the subject, is also made in [8, 9]. More recently
Hadad [52] explored the Belinski-Zakharov transformation for the 1+1 Einstein equation. It
is used to derive explicit formula for solutions on arbitrary diagonal background, in particular
on the Einstein-Rosen background.

2.1.4 Main results

One of the main purposes of this paper is to give a rigorous description of the dynamics
for (2.1.2) in the so-called energy space associated to the problem, and close to important
exact solutions. We will present three different results: local, global existence, and long time
behavior of solutions, in particular solitons.

Our first result is a classical local existence result for solutions in the energy space. As
mentioned above, the system (2.1.11) is a set of coupled quasilinear wave equations, with a
rich analytical and algebraic structure.

Clearly in the analysis of the initial value problem for this system, we have a component of
difficulty related to the regularity of the term sinh(2Λ)

sinh2(Λ)
when the function Λ(t, x) is zero, which

must be carefully analyzed in order to be able to construct a result of local well-posedness
associated to (2.1.11). In order to develop the results related to the local theory for the
nonlinear wave equation, let us write the function Λ(t, x) in the form

Λ(t, x) := λ+ Λ̃(t, x), λ ̸= 0. (2.1.15)

Notice that this choice makes sense with the energy in (2.1.14), in the sense that Λ ∈ Ḣ1 and
∂tΛ ∈ L2. Without loss of generality, we assume λ > 0. The basic idea is to establish the
conditions that are required on λ and Λ̃ in order to obtain the desired regularity results. With
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this choice, the system (2.1.11) can be written in terms of the function Λ̃(t, x) as follows:
∂2t Λ̃− ∂2xΛ̃ = −2 sinh(2λ+ 2Λ̃)((∂xϕ)

2 − (∂tϕ)
2),

∂2t ϕ− ∂2xϕ = −sinh(2λ+ 2Λ̃)

sinh2(λ+ Λ̃)
(∂tϕ∂tΛ̃− ∂xϕ∂xΛ̃).

(2.1.16)

This is the system we are going to analyze along this paper.

Let us consider the following notation :

Ψ =
(
Λ̃, ϕ

)
, ∂Ψ =

(
∂tΛ̃, ∂xΛ̃, ∂tϕ, ∂xϕ

)
,

|∂Ψ|2 =
∣∣∂tΛ̃∣∣2 + ∣∣∂xΛ̃∣∣2 + |∂tϕ|2 + |∂xϕ|2,

F (Ψ, ∂Ψ) = (F1, F2) ,

F1(Ψ, ∂Ψ) := 2 sinh(2λ+ 2Λ̃) ((∂xϕ)
2 − (∂tϕ)

2) ,

F2(Ψ, ∂Ψ) :=
sinh(2λ+ 2Λ̃)

sinh2(λ+ Λ̃)

(
∂tϕ∂tΛ̃− ∂xϕ∂xΛ̃

)
.

(2.1.17)

With this notation, the initial value problem for (2.1.16) can be written in vector form as
follows {

∂α(m
αβ∂βΨ) = F (Ψ, ∂Ψ)

(Ψ, ∂tΨ)|{t=0} = (Ψ0,Ψ1) ∈ H.
(2.1.18)

Where mαβ are the components of the Minkowski metric with α, β ∈ {0, 1}, and

(Ψ, ∂tΨ) ∈ H := H1(R)×H1(R)× L2(R)× L2(R).

Notice that from (2.1.15), Λ ∈ Ḣ1. We are also going to impose the following condition on
the initial data

∥(Ψ0,Ψ1)∥H ≤ λ

2D
, (2.1.19)

where the assumptions on the constant D ≥ 1 will be indicated below. An evolution equation
is said to be well-posed in the sense of Hadamard, if existence, uniqueness of solutions and
continuous dependence on initial data hold.

The following proposition shows that the equation (2.1.18), in terms of the function Λ̃
introduced in (2.1.15), is locally well-posed in the space L∞([0, T ];H) with the norm in this
space defined by

∥(Ψ, ∂tΨ)∥L∞([0,T ];H) = sup
t∈[0,T ]

(
∥Ψ∥H1(R)×H1(R) + ∥∂tΨ∥L2(R)×L2(R)

)
,

with (Ψ, ∂tΨ) introduced in (2.1.17). Our first result is the following.

Proposition 2.1.1. If (Ψ0,Ψ1) satisfies the condition (2.1.19) with an appropriate constant
D ≥ 1, then:
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(1) (Existence and uniqueness of local-in-time solutions). There exists

T = T

(∥∥∥(Λ̃0, ϕ0

)∥∥∥
H1(R)×H1(R)

,
∥∥∥(Λ̃1, ϕ1

)∥∥∥
L2(R)×L2(R)

, λ

)
> 0,

such that there exists a solution Ψ to ( 2.1.18) with

(Ψ, ∂tΨ) ∈ L∞([0, T ];H).

Moreover, the solution is unique in this function space. If the data has more regularity,
the solution is classical, see Appendix 2.6.3.

(2) (Continuous dependence on the initial data). Let Ψ
(i)
0 ,Ψ

(i)
1 be sequence such that

Ψ
(i)
0 −→ Ψ0 in H1(R) × H1(R) and Ψ

(i)
1 −→ Ψ1 in L2(R) × L2(R) as i −→ ∞. Then

taking T > 0 sufficiently small, we have∥∥(Ψ(i) −Ψ, ∂t(Ψ
(i) −Ψ)

)∥∥
L∞([0,T ];H)

−→ 0.

Here Ψ is the solution arising from data (Ψ0,Ψ1) and Ψ(i) is the solution arising from

data
(
Ψ

(i)
0 ,Ψ

(i)
1

)
.

Note that the above proposition does not directly give us a classical solution to the
problem, however, if it is assumed that the initial data is sufficiently regular, in fact the
solution can be understood as classical, see Appendix 2.6.3.

Having established the existence of solutions, our second result involves whether or not
local solutions can be extended globally in time. This is not an easy problem, mainly because
Λ(t, x) may achieve the zero value in finite time. Therefore, an important aspect of the proof
will be to ensure uniform distance from zero of the function Λ(t, x).

Theorem 2.1.1. Consider the semilinear wave system (2.1.18) posed in R1+1, with the fol-
lowing initial conditions:{

(ϕ, Λ̃)|{t=0} = ε(ϕ0, Λ̃0), (ϕ0, Λ̃0) ∈ C∞
c (R× R),

(∂tϕ, ∂tΛ̃)|{t=0} = ε(ϕ1, Λ̃1), (ϕ1, Λ̃1) ∈ C∞
c (R× R).

(2.1.20)

Then, there exists ε0 sufficiently small such that if ε < ε0, the unique solution remains smooth
for all time and have finite conserved energy (2.1.14).

The condition that the initial data is compactly supported can be relaxed, but it is
essential to have enough decay. For simplicity of exposition, we shall assume that the data
is compactly supported, as it is usually done in the literature, see for example [106].

The global existence problem stated above is a key part of the analysis comes from the
fact that (2.1.18) can be written as

□Λ̃ = −2 sinh(2λ+ 2Λ̃)Q0(ϕ, ϕ),

□ϕ =
sinh(2λ+ 2Λ̃)

sinh2(λ+ Λ̃)
Q0(ϕ, Λ̃),

(2.1.21)
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where Q0 represents the well-known fundamental null form

Q0(ϕ, Λ̃) = mαβ∂αϕ∂βΛ̃, (2.1.22)

where mαβ to denote the standard Minkowski metric on R1+1. The smallness in the initial
data implies that the nonlinear equation can be solved over a long period of time and the
global solution can be constructed once the non-linearity decays enough. Moreover, the slower
decay rate in low dimensions can be compensated by the special structure of the nonlinearity.

Global existence of small solutions to nonlinear wave equations with null conditions has
been a subject under active investigation for the past four decades. The approach to un-
derstand the small data problem with null condition was introduced by Klainerman in the
pioneering works [63] and by Christodoulou [23], for the global existence of classical solutions
for nonlinear wave equations with null conditions in three space dimensions. Alinhac in [3]
studied the problem for the case of two space dimensions. We remark here that in R3+1

the null condition is a sufficient but not necessary condition to obtain a small-data-global-
existence result, see e.g. [83, 84]. More recently Huneau and Stingo [58] studied the global
existence for a toy model for the Einstein equations with additional compact dimensions,
where the nonlinearity is linear combinations of the classical quadratic null forms. In one
space dimension waves do not decay, and nonlinear resonance can lead to finite time blow
up. Nevertheless, Luli, Yang and Yu in [85] proved, for Cauchy problems of semilinear wave
equations with null conditions in one space dimension, the global existence of classical solu-
tions with small initial data. The authors proposed a weighted energy and use the bootstrap
method for obtain the result. The system in the Theorem (2.1.1) does not obey the classi-
cal null condition. However, the factors Q0(ϕ, ϕ) and Q0(ϕ, Λ̃) provide decay and with the
appropriate condition on λ, global regularity can be obtained. Inspired by Luli, Yang and
Yu’s result [85] in the semilinear case, it is natural to conjecture that the Cauchy problem for
one-dimension system of quasilinear wave equations (2.3.1) admits a global classical solution
for small initial data. The main aim of this theorem is to verify this conjecture.

Now we discuss the long time behavior of globally defined solutions. Here, virial identities
will be key to the long-time description.

Theorem 2.1.2. Let (Λ, ϕ) be a global solution to (2.1.11) such that its energy E[Λ, ϕ](t) is
conserved and finite. Then, for any v ∈ (−1, 1) and ω(t) = t/ log2 t, one has

lim
t→+∞

∫ vt+ω(t)

vt−ω(t)

(
(∂tΛ)

2 + (∂xΛ)
2 + sinh2 Λ((∂tϕ)

2 + (∂xϕ)
2)
)
(t, x)dx = 0.

This result establishes that inside the light cone, all finite-energy solutions must converge
to zero as time tends to infinity. It is also in concordance with the solutions found in (2.1.13),
which are a natural counterexample in the case v = ±1. A similar outcome has been recently
found in [1], where the less involved Born-Infeld model is considered. Note that Theorem 2.1.2
is valid under general data, and compared with the obtained asymptotic result in Theorem
2.1.1, reveals that the decay property may hold under very general initial data, and unlike
[1], our model is in some sense semilinear.

As a final comment on this part of our results, we should mention the work by Yan [115]
dealing with the blow-up description in the Born-Infeld theory. We strongly believe that the
blow-up mechanism in the PCF model is triggered by the threshold Λ = 0.
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2.1.5 Application to soliton solutions

An important outcome of our previous results is a clear background for the study of soli-
ton solutions of (2.1.11). Belinski and Zakharov in [9] proposed that the Eq. (2.1.4) has
N−soliton solutions, see also [8] for further details. Hadad [52] also showed explicit exam-
ples of soliton solutions for the equation (2.1.11) using diagonal backgrounds, also called
“seed metric”. Basically, one starts with a background solution of the form

g(0) =

[
eΛ

(0)
0

0 e−Λ(0)

]
. (2.1.23)

The function Λ(0)(t, x) satisfies the wave equation ∂2tΛ
(0)−∂2xΛ(0) = 0. In this case, if we want

to identify the solution in terms of the equation (2.1.6), we have that Λ = Λ(0), ϕ = nπ, with
n ∈ Z, and α = 1. The gauge choice for us will be n = 0.

As expressed in [52], an important case is the one-soliton solution, which is obtained by
taking Λ(0) time-like and equals to t and ϕ(0) = 0. Note that with this choice the energy is
not well-defined, but a suitable modification will make this metric regular again. Indeed, the
energy proposed in (2.1.14) is not finite, but one can consider the following modified energy

Emod[Λ, ϕ](t) :=

∫ (
1

2

(
(∂tΛ)

2 − 1 + (∂xΛ)
2
)
+ 2 sinh2(Λ)((∂tϕ)

2 + (∂xϕ)
2)

)
, (2.1.24)

which is also conserved and identically zero. Hadad computed the corresponding 1-soliton
solution using Belinski and Zakharov techniques, obtaining

g(1) =


etQc(x− vt)

Qc(x− vt− x0)
−1

c
Qc(x− vt)

−1

c
Qc(x− vt)

e−tQc(x− vt)

Qc(x− vt+ x0)

 , (2.1.25)

where, for a fixed parameter µ > 1, one has

Qc(·) =
√
c sech(

√
c(·)), c =

(
2µ

µ2 − 1

)2

, v = −µ
2 + 1

2µ
< −1, and x0 =

ln |µ|√
c
.

Notice that the first component of g(1) grows in time. The parameter µ represents a pole in
terms of scattering techniques, however this point of view will be considered in another work.
Therefore, we have a traveling superluminal soliton which travels to the left (if µ > 0). Also,
representing g(1) in terms of corresponding functions Λ(1), ϕ(1) is complicated, and done in
Section 2.5.

In this paper, we propose a modification of this “degenerate” soliton solution by cutting
off the infinite energy part profiting of the wave-like character of solutions Λ(0). Although
it is not so clear that they are physically meaningful, these new solutions have finite energy
and local well-posedness properties in a vicinity.

Indeed, consider a smooth function θ ∈ C2
c (R). Additionally, consider the constraint

0 < µ < 1. For any λ > 0, and ε > 0 small, let

Λ(0)
ε := λ+ εθ(t+ x), ϕ(0) := 0.

36



2.2. THE INITIAL VALUE PROBLEM: LOCAL EXISTENCE

Clearly Λ
(0)
ε solves the wave equation in 1D and has finite energy E[Λ

(0)
ε , ϕ

(0)
ε ] < +∞. This

will be for us the background seed. The corresponding 1-soliton is now

g(1) =


eλ+εθ sech(β(λ+ εθ))

sech(β(λ+ εθ)− x0)
− 1√

c
sech(β(λ+ εθ))

− 1√
c
sech(β(λ+ εθ))

e−(λ+εθ) sech(β(λ+ εθ))

sech(β(λ+ εθ) + x0)

 , β =
µ+ 1

µ− 1
, (2.1.26)

which also has finite energy. Perturbations of the fields Λ and ϕ associated with this soliton
will be globally defined according to the Theorem 2.1.1:

Corollary 2.1.1. Suitable perturbations of any soliton as in (2.1.26) are globally well-defined.

This result has an important outcome: it allows us to try to study the stability of these
solutions, which will be done in a forthcoming work. Additionally, there are other possible
choices of metrics in Einstein’s field equations that lead to the KdV model, see e.g. [102].

Organization of this chapter

This paper is organized as follows: Section 2.2 is devoted to the proof of local existence of
solutions. In Section 2.3 we prove global existence of small solutions close to a nonzero value.
Section 2.4 is devoted to the long time behavior of solutions, and finally Section 2.5 consider
the particular case of solitons.
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2.2 The initial value problem: local existence

This section is devoted to the proof of Proposition 2.1.1. First, recall the following result
[106], that we will use to prove Proposition 2.1.1.

Lemma 2.2.1. Let ψ : I × R −→ R, I ⊆ R, be the solution of the initial value problem{
∂2t ψ −∆ψ = f(t, x), (t, x) ∈ I × R,
(ψ, ∂tψ)|{t=0} = (ψ0, ψ1) ∈ Hk(R)×Hk−1(R),

(2.2.1)

where k be a positive integer. Then for some positive constant C = C(k), the following energy
estimate holds

sup
t∈[0,T ]

∥(ψ, ∂tψ)∥Hk(R)×Hk−1(R) ≤ C(1 + T )

(
∥(ψ0, ψ1)∥Hk(R)×Hk−1(R) +

∫ T

0

∥f∥Hk−1(R) (t)dt

)
.

(2.2.2)
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Proof of Proposition 2.1.1. The proof is standard in the literature, but for the sake of com-
pleteness, we include it here.

(1). This part of the Proposition is proved by Picard’s iteration. Using a density argument
it is sufficient to assume the initial data (Ψ0,Ψ1) ∈ S4 (S being the Schwartz class), along
with condition (2.1.19). Define a sequence of smooth functions Ψ(i), with i ≥ 1 such that

Ψ(1) = (0, 0),

and for i ≥ 2, Ψ(i) is iteratively defined as the unique solution to the system{
∂α(m

αβ∂βΨ
(i)) = F (Ψ(i−1), ∂Ψ(i−1))

(Ψ(i), ∂tΨ
(i))|{t=0} = (Ψ0,Ψ1) ∈ H.

(2.2.3)

It is important to note that from (2.1.17) and (2.1.19) we can assure that for j = 1, 2,∑
γ=0,1

sup
|x|,|p|≤λ

2

|∂γx,pFj|(x, p) ≤ Cj, 1
2
λ. (2.2.4)

Indeed, this can be seen from the fact that for (x, p) = (x1, x2, p1, p2, p3, p4) and |x| ≤ λ
2
,

F1(x, p) = 2 sinh(2λ+ 2x1)
(
p24 − p23

)
, F2(x, p) =

sinh(2(λ+ x1))

sinh2(λ+ x1)
(p3p1 − p2p4) .

Define bounded functions in the class C1.

It is important to note that condition (2.2.4) allows this iterative definition of the functions
Ψ(i) to be possible, since it maintains each component of F with the required regularity, see
[106]. First, it will be shown that for a sufficiently small T > 0, the sequence (Ψ, ∂tΨ) is
uniformly (in i) bounded in L∞([0, T ];H), then it will be shown that it is also a Cauchy
sequence. For the first part, the idea is to use the energy estimates (2.3.8), we want to prove
that there is a constant 0 < A ≤ λ

2
such that∥∥(Ψ(i−1), ∂tΨ

(i−1)
)∥∥

L∞([0,T ];H)
≤ A, (2.2.5)

implies that ∥∥(Ψ(i), ∂tΨ
(i)
)∥∥

L∞([0,T ];H)
≤ A.

The energy estimation (2.3.8) allows us to write for (2.2.3) the following estimate:

sup
t∈[0,T ]

∥∥(Ψ(i), ∂tΨ
(i)
)∥∥

H ≤ C(1 + T )(∥(Ψ0,Ψ1)∥H)

+C(1 + T )

∫ T

0

(∥∥F1

(
Ψ(i−1), ∂Ψ(i−1)

)∥∥
L2(R) +

∥∥F2

(
Ψ(i−1), ∂Ψ(i−1)

)∥∥
L2(R)

)
(t)dt.

(2.2.6)
With this estimate, our goal is to bound the integral on the right hand side of the inequality
above. For this, we will use the conditions (2.1.19) for each Fj which is satisfied by the
hypothesis in (2.2.5), which results in the following, if B = max{C1,λ

2
, C2,λ

2
}, then

sup
t∈[0,T ]

∥∥(Ψ(i), ∂tΨ
(i)
)∥∥

H ≤ C(1 + T ) (∥(Ψ0,Ψ1)∥H + 2BT ) , (2.2.7)
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we can choose T > 0 sufficiently small such that

2BT ≤ ∥(Ψ0,Ψ1)∥H ,

so ∥∥(Ψ(i), ∂tΨ
(i)
)∥∥

L∞([0,T ];H)
≤ 2C ∥(Ψ0,Ψ1)∥H .

If we choose D > 4C in (2.1.19) and A := 2C||(Ψ0,Ψ1)||H ≤ 2Cλ
D

≤ λ
2
. We have thus shown

the desired implication.

We now move to the second part in which we show that the sequence is Cauchy in a larger
space L∞([0, T ];H). For every i ≥ 3 we consider the equation for Ψ(i) −Ψ(i−1) :

∂α(m
αβ∂β(Ψ

(i) −Ψ(i−1))) = F (Ψ(i−1), ∂Ψ(i−1))− F (Ψ(i−2), ∂Ψ(i−2)).

Using the condition (2.2.5) and the mean value theorem to show that there exists some C > 0
(depending on initial data but independent of i and T ) such that∥∥Fj

(
Ψ(i−1), ∂Ψ(i−1)

)
− Fj

(
Ψ(i−2), ∂Ψ(i−2)

)∥∥
L2(R) ≤ C

∥∥∂(Ψ(i−1) −Ψ(i−2))
∥∥
L2(R)×L2(R) .

Now, applying again the energy estimation (2.3.8)

sup
t∈[0,T ]

∥∥(Ψ(i) −Ψ(i−1), ∂t(Ψ
(i) −Ψ(i−1)))

∥∥
H ≤ CT

∥∥(Ψ(i−1) −Ψ(i−2), ∂t(Ψ
(i−1) −Ψ(i−2))

)∥∥
H .

Using (2.2.5) we have

sup
t∈[0,T ]

∥∥(Ψ(2) −Ψ(1), ∂t(Ψ
(2) −Ψ(1))

)∥∥
H ≤ C1,

therefore, choosing T sufficiently small, for i ≥ 3 we have

sup
t∈[0,T ]

∥∥Ψ(i) −Ψ(i−1)
∥∥
H1×H1 ≤

1

2
sup

t∈[0,T ]

∥∥Ψ(i−1) −Ψ(i−2)
∥∥
H1×H1 ,

which implies that

sup
t∈[0,T ]

∥∥Ψ(i) −Ψ(i−1)
∥∥
H1×H1 ≤

C1

2i−2
.

Therefore we have that the sequence is a Cauchy sequence on L∞([0, T ];H), hence conver-
gent. That is, there exists (Ψ, ∂tΨ) in L∞([0, T ];H). The uniqueness proof, is the result of
considering again the energy estimation.

Finally, for the continuous dependence on initial data taking i ∈ N sufficiently large, let
us bound the difference Ψ(i) −Ψ and use again the energy estimate for the equation:

∂α(m
αβ∂β(Ψ

(i) −Ψ)) = F (Ψ(i), ∂Ψ(i))− F (Ψ, ∂Ψ)

Applying the same reasoning as above and the energy estimation we can again write:

sup
s∈[0,t]

∥∥(Ψ(i) −Ψ, ∂tΨ
(i) − ∂tΨ

)∥∥
H ≤ C

∥∥∥(Ψ(i)
0 −Ψ0,Ψ

(i)
1 −Ψ1

)∥∥∥
H
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+ C

∫ t

0

∥∥(Ψ(i) −Ψ, ∂tΨ
(i) − ∂tΨ

)∥∥
H .

Using Gronwall’s inequality (see Appendix 2.6.1) and (2.3.8), we have for a constant C =
C(T ) > 0,

sup
t∈[0,T ]

∥∥(Ψ(i) −Ψ, ∂tΨ
(i) − ∂tΨ

)∥∥
H ≤ C

∥∥∥(Ψ(i)
0 −Ψ0,Ψ

(i)
1 −Ψ1

)∥∥∥
H
.

Taking i −→ ∞ the right-hand side of the inequality tends to zero, then

sup
s∈[0,t]

∥∥(Ψ(i) −Ψ, ∂tΨ
(i) − ∂tΨ

)∥∥
H −→ 0.

This last property ends the proof of Proposition 2.1.1.

2.3 Global Solutions for Small Initial Data

In this Section we prove Theorem 2.1.1. As in the previous section, let us consider the field
Λ(t, x) described as Λ(t, x) := λ + Λ̃(t, x), then, let us establish the conditions on λ that
guarantee the regularity conditions necessary to study the system (2.1.16)

∂2t Λ̃− ∂2xΛ̃ = −2 sinh(2λ+ 2Λ̃) ((∂xϕ)
2 − (∂tϕ)

2) = −2 sinh(2λ+ 2Λ̃)Q0(ϕ, ϕ),

∂2t ϕ− ∂2xϕ =
sinh(2λ+ 2Λ̃)

sinh2(λ+ Λ̃)

(
∂xϕ∂xΛ̃− ∂tϕ∂tΛ̃

)
=

sinh(2λ+ 2Λ̃)

sinh2(λ+ Λ̃)
Q0(ϕ, Λ̃),

(2.3.1)

with Q0 given in (2.1.22). The constant λ > 0 will play an important role in the overall
analysis of the problem and the conditions assumed on it will be verified using a continuity
method. We will use two coordinate systems: the standard Cartesian coordinates (t, x) and
the null coordinates (u, u):

u :=
t− x

2
, u :=

t+ x

2
.

Remark 2.3.1. Consider the two null vector fields defined globally as

L = ∂t + ∂x, L = ∂t − ∂x.

Then, one can rewrite the right-hand side of ( 2.3.1) as

(∂xϕ)
2 − (∂tϕ)

2 = Q0(ϕ, ϕ) = 2LϕLϕ, (2.3.2)

∂xϕ∂xΛ̃− ∂tϕ∂tΛ̃ = Q0(ϕ, Λ̃) =
1

2
LϕLΛ̃ +

1

2
LΛ̃Lϕ. (2.3.3)

It can be noticed that the null structure commutes with derivatives:

∂xQ0(ϕ, Λ̃) = Q0(∂xϕ, Λ̃) +Q0(ϕ, ∂xΛ̃). (2.3.4)

Also, based on this, we have the following inequality

Q0(∂
p
xϕ, ∂

q
xϕ) ≲ |L∂pxϕ||L∂qxϕ|+ |L∂pxϕ||L∂qxϕ|. (2.3.5)
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Σ0

Σt

Cu Cu

Figure 2.1: The entire region enclosed by Σ0 and Σt is Dt.

Before presenting the proof, there are certain results and definitions to be mentioned
before, for details and proofs see [4, 85]. From now on, we will consider the conformal killing
vector field on R1+1 given by

(1 + |u|2)1+δL, (1 + |u|2)1+δL,

with 0 < δ < 1, and the following integration regions: Σt0 denotes the following time slice in
R1+1:

Σt0 := {(t, x) : t = t0}. (2.3.6)

Dt0 denotes the following region of spacetime

Dto := {(t, x) : 0 ≤ t ≤ t0}, Dt0 =
⋃

0≤t≤t0

Σt0 . (2.3.7)

The level sets of the functions u and u define two global null foliations of Dt0 . More precisely,
given t0 > 0, u0 and u0, we define the rightward null curve segment Cu0 as :

Cu0 :=

{
(t, x) : u =

t− x

2
= u0, 0 ≤ t ≤ t0

}
,

and the segment of the null curve to the left Cu0
as:

Cu0
:=

{
(t, x) : u =

t+ x

2
= u0, 0 ≤ t ≤ t0

}
.

The space time region Dt0 is foliated by Cu0
for u ∈ R, and by Cu0 for u ∈ R. Let us

also consider the following energy estimate proposed in [4, 85] for the scalar linear equations
□ψ = ρ given by:∫

Σt

[
(1 + |u|2)1+δ|Lψ|2 + (1 + |u|2)1+δ|Lψ|2

]
dx

+ sup
u∈R

∫
Cu

(1 + |u|2)1+δ|Lψ|2dτ + sup
u∈R

∫
Cu

(1 + |u|2)1+δ|Lψ|2dτ

≤ C0

∫
Σ0

[
(1 + |u|2)1+δ|Lψ|2 + (1 + |u|2)1+δ|Lψ|2

]
dx

+ C0

∫∫
Dt

[
(1 + |u|2)1+δ|Lψ|+ (1 + |u|2)1+δ|Lψ|

]
|ρ|.

(2.3.8)
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Motivated by the above estimation (2.3.8) and [85], we define the space-time weighted energy
norms valid for k = 0, 1:

Ek(t) =
∫
Σt

[
(1 + |u|2)1+δ|L∂kxΛ̃|2 + (1 + |u|2)1+δ|L∂kxΛ̃|2

]
dx,

Ek(t) =

∫
Σt

[
(1 + |u|2)1+δ|L∂kxϕ|2 + (1 + |u|2)1+δ|L∂kxϕ|2

]
dx,

Fk(t) = sup
u∈R

∫
Cu

(1 + |u|2)1+δ
∣∣∣L∂kxΛ̃∣∣∣2 ds+ sup

u∈R

∫
Cu

(1 + |u|2)1+δ|L∂kxΛ̃|2ds,

Fk(t) = sup
u∈R

∫
Cu

(1 + |u|2)1+δ
∣∣L∂kxϕ∣∣2 ds+ sup

u∈R

∫
Cu

(1 + |u|2)1+δ|L∂kxϕ|2ds.

(2.3.9)

Finally, we define the total energy norms as follows:

E(t) = E0(t) + E1(t).

Analogously one defines F(t), E(t), and F(t).

Remark 2.3.2. We note that if t = 0 then F(0) = F(0) = 0 and for E(t) the initial data
determines a constant C1 so that

E(0) = C1ε
2. (2.3.10)

We will use the method of continuity as follows: we assume that the solution Λ̃ exists for
t ∈ [0, T ∗] so that it has the following bound

E(t) + F(t) ≤ 6C0C1ε
2, (2.3.11)

E(t) + F(t) ≤ 6C0C1ε
2, (2.3.12)

and

sup
t∈[0,T ∗]

∥∥∥Λ̃∥∥∥
L∞(R)

≤ λ

2
. (2.3.13)

We want to show that for all t ∈ [0, T ∗] there exists a universal constant ε0 (independent of
T ∗) such that the estimates are improved for all ε ≤ ε0. It is important recall that, the terms
related to the functions sinh(·), cosh(·), coth(·) and csch(·) can be written using the Taylor
expansion as:{

sinh(2λ+ 2Λ̃) = sinh(2λ) + 2 cosh(2λ)Λ̃ + 4 sinh(2λ+ 2ξ1)Λ̃
2,

cosh(2λ+ 2Λ̃) = cosh(2λ) + 2 sinh(2λ)Λ̃ + 4 cosh(2λ+ 2ξ2)Λ̃
2,

(2.3.14)

and under (2.3.13),
coth(λ+ Λ̃) = coth(λ)− csch(λ)Λ̃− csch(λ+ ξ3) coth(λ+ ξ3)Λ̃

2,

csch2(λ+ Λ̃) = csch2(λ)− 2 csch2(λ) coth(λ)Λ̃

+
{
2 csch2(λ+ ξ4) coth

2(λ+ ξ4) + csch4(λ+ ξ4)
}
Λ̃2,

(2.3.15)

with ξ1, ξ2, ξ3, ξ4 between 0 and Λ̃, which satisfies (2.3.13). Then, from this condition (2.3.13)
and (2.3.14) one has

|sinh(2λ+ 2Λ̃)| ≤ λ0(λ), |cosh(2λ+ 2Λ̃)| ≤ λ1(λ).

|coth(λ+ Λ̃)| ≤ λ3(λ), and |csch(λ+ Λ̃)| ≤ λ4(λ).
(2.3.16)
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Using the assumptions (2.3.11) and (2.3.12) the following pointwise bounds were established
in [85].

Lemma 2.3.1 ([85], Lemma 3.2). Under assumptions (2.3.11)-(2.3.13), there exists a uni-
versal constant C2 > 0 such that:

|LΛ̃(t, x)| ≤ C2ε

(1 + |u|2)1/2+δ/2
, |Lϕ(t, x)| ≤ C2ε

(1 + |u|2)1/2+δ/2
,

|LΛ̃(t, x)| ≤ C2ε

(1 + |u|2)1/2+δ/2
, |Lϕ(t, x)| ≤ C2ε

(1 + |u|2)1/2+δ/2
.

Proof. It is sufficient to prove one of the four inequalities, since the other inequalities are
completely analogous. The proof is based on the boostrap assumptions (2.3.11)-(2.3.13).
Indeed, according to the Sobolev inequality on R, since

|∂x(1 + |u|2)1/2+δ/2| ≤ (1 + |u|2)1/2+δ/2,

one has

|(1 + |u|2)1/2+δ/2Lϕ(t, x)|2 ≲ ||(1 + |u|2)1/2+δ/2Lϕ||2L2(Rx)
+ ||∂x((1 + |u|2)1/2+δ/2Lϕ)||2L2(Rx)

≲ ||(1 + |u|2)1/2+δ/2Lϕ||2L2(Rx)
+ ||∂x((1 + |u|2)1/2+δ/2)Lϕ||2L2(Rx)

+ ||(1 + |u|2)1/2+δ/2L∂x(ϕ)||2L2(Rx)

≲ ||(1 + |u|2)1/2+δ/2Lϕ||2L2(Rx)
+ ||(1 + |u|2)1/2+δ/2L∂x(ϕ)||2L2(Rx)

≲ E(t)
≲ 6C0C1ε

2.

Consequently, we have the desired inequality.

Now we have all the ingredients to prove Theorem 2.1.1.

2.3.1 Proof of the Theorem 2.1.1

For simplicity, we work with the first equation of the system (2.1.21). On the other hand,
we can substitute in the following proof Λ̃ by ϕ and then sum the estimates to complete the
test for the original system, see Appendix 2.6.2 for details of the estimates for the second
equation in (2.3.1), which complete the proof. We prove this using the bootstrap method;
i.e., we will assume that this weighted energy is bounded by some constant. Then, we can
show that the solution decays. Since the initial data are small, this allows us to show that
the weighted energy is bounded by some better constant. Thus, by continuity, we conclude
that the weighted energy cannot grow to infinity in any finite time interval and therefore,
using the local existence theorem, the solution exists for all time.

Proof. Using (2.3.2) and (2.3.4) in the first equation of the (2.3.1) we obtain:

□∂xΛ̃ = −2
[
sinh(2λ+ 2Λ̃) (Q0(∂xϕ, ϕ) +Q0(ϕ, ∂xϕ)) + 2∂xΛ̃ cosh(2λ+ 2Λ̃)Q0(ϕ, ϕ)

]
.

(2.3.17)
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We can see that the null structure is “quasi-preserved” after differentiating with respect to x.
We will use a bootstrap argument as in the (3+1)-dimensional case [63]. Fix δ ∈ (0, 1). Under
the assumptions (2.3.11)-(2.3.12)-(2.3.13) for all t ∈ [0, T ∗], we assume that the solution
remains regular, to later show that these bounds are maintained, with a better constant.

Consider k = 0, 1. Using (2.3.8) on (2.3.17), with ψ = ∂kxΛ̃, and taking the sum over
k = 0, 1, we obtain

E(t) + F(t) ≤ 2C0E(0)

+ 2C0

∫∫
Dt

(
(1 + |u|2)1+δ|LΛ̃|+ (1 + |u|2)1+δ|LΛ̃|

)
| sinh(2λ+ 2Λ̃)||Q0(ϕ, ϕ)|

+ 4C0

∫∫
Dt

(
(1 + |u|2)1+δ|L∂xΛ̃|+ (1 + |u|2)1+δ|L∂xΛ̃|

)
| sinh(2λ+ 2Λ̃)||Q0(ϕ, ∂xϕ)|

+ 4C0

∫∫
Dt

(
(1 + |u|2)1+δ|L∂xΛ̃|+ (1 + |u|2)1+δ|L∂xΛ̃|

)
|∂xΛ̃ cosh(2λ+ 2Λ̃)||Q0(ϕ, ϕ)|

=: 2C0E(0) + 2C0

6∑
j=1

Ij,

(2.3.18)
where the integrals Ii, i ∈ {1, 2, 3..., 6} are defined as follows:

I1 :=

∫∫
Dt

(
(1 + |u|2)1+δ|LΛ̃|

)
| sinh(2λ+ 2Λ̃)||Q0(ϕ, ϕ)|,

I2 :=

∫∫
Dt

(
(1 + |u|2)1+δ|LΛ̃|

)
| sinh(2λ+ 2Λ̃)||Q0(ϕ, ϕ)|,

I3 := 2

∫∫
Dt

(
(1 + |u|2)1+δ|L∂xΛ̃|

)
| sinh(2λ+ 2Λ̃)||Q0(ϕ, ∂xϕ)|,

I4 := 2

∫∫
Dt

(
(1 + |u|2)1+δ|L∂xΛ̃|

)
| sinh(2λ+ 2Λ̃)||Q0(ϕ, ∂xϕ)|,

I5 := 2

∫∫
Dt

(
(1 + |u|2)1+δ|L∂xΛ̃|

)
|∂xΛ̃ cosh(2λ+ 2Λ̃)||Q0(ϕ, ϕ)|,

I6 := 2

∫
Dt

(
(1 + |u|2)1+δ|L∂xΛ̃|

)
|∂xΛ̃ cosh(2λ+ 2Λ̃)||Q0(ϕ, ϕ)|.

(2.3.19)

The goal is to control the right-hand side of the above estimate. Essentially we have six
terms to control, but several are equivalent and essentially we only need to consider two
cases. Indeed, it will be sufficient to bound the terms corresponding to LΛ̃ and L∂xΛ̃, since
by symmetry, the procedure for the other terms will be analogous. First, we start to bound
the term:

I35 := I3 + I5 =

∫∫
Dt

(
(1 + |u|2)1+δ|L∂xΛ̃|

)
(
2|∂xΛ̃ cosh(2λ+ Λ̃)||Q0(ϕ, ϕ)|+ 2| sinh(2λ+ 2Λ̃)||Q0(ϕ, ∂xϕ)|

)
.

(2.3.20)
Taking into account (2.3.5), (2.3.13) and (2.3.14), we can write for (2.3.20):

I35 ≲
∫∫

Dt

(
(1 + |u|2)1+δ|L∂xΛ̃|

)(
|∂xΛ̃||Lϕ||Lϕ|+ |L∂xϕ||Lϕ|+ |Lϕ||L∂xϕ|

)
=: I35,1 + I35,2 + I35,3.

(2.3.21)
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Since ∂xΛ̃ = 1
2
(L− L)Λ̃, we have

I35,1 =

∫∫
Dt

(1 + |u|2)1+δ|L∂xΛ̃||∂xΛ̃||Lϕ||Lϕ|

≤ 1

2

∫∫
Dt

(1 + |u|2)1+δ|L∂xΛ̃||LΛ̃||Lϕ||Lϕ|+ (1 + |u|2)1+δ|L∂xΛ̃||LΛ̃||Lϕ||Lϕ|

=: I35,1,1 + I35,1,2.

(2.3.22)

Recall that by Fubini’s Theorem the spacetime Dt in (2.3.7) is foliated by Cu for u ∈ R, and
also by {t} × Σt, t ∈ R. Using Lemma 2.3.1 and defining φ(x) = (1 + |x|2)1+δ (to simplify
the notation), we have the following:

I35,1,1 ≲
∫∫

Dt

ε (φ(u)−3/4φ(u)1/2|L∂xΛ̃|)︸ ︷︷ ︸
L2
tL

2
x

(φ1/2(u)|Lϕ|)︸ ︷︷ ︸
L∞
t L2

x

(φ(u)−1/4φ(u)1/2|Lϕ|)︸ ︷︷ ︸
L2
tL

∞
x

≲ε

(∫∫
Dt

φ(u)|L∂xΛ̃|2

φ(u)3/2

)1/2

︸ ︷︷ ︸
T1

sup
t∈[0,T ∗]

(∫
Σt

φ(u)|Lϕ|2
)1/2

︸ ︷︷ ︸
T2

(∫ t

0

∥∥∥∥φ(u)1/2φ(u)1/4
|Lϕ|

∥∥∥∥2
L∞(Στ )

dτ

)1/2

.︸ ︷︷ ︸
T3

Let us study each of the factors Tj. For T1, one has:

T 2
1 ≤

∫
R

[∫
Cu

φ(u)|L∂xΛ̃|2

φ(u)3/2
ds

]
du =

∫
R

1

φ(u)3/2

[∫
Cu

φ(u)|L∂xΛ̃|2ds

]
︸ ︷︷ ︸

≲F1(t)

du ≲
∫
R

ε2

φ(u)3/2
du,

since the integral is finite, we have T1 ≲ ε. The integral T2 is part of the energy norm E0(t) in
(2.3.9) then T2 ≲ ε. For the term T3 one can use the same argument as in [85]: using Lemma
2.6.2 one gets

T3 ≲

(∫ t

0

∥∥∥∥φ(u)1/2φ(u)1/4
Lϕ(t, x)

∥∥∥∥2
L2(Στ )

+

∫ t

0

∥∥∥∥φ(u)1/2φ(u)1/4
L∂xϕ(t, x)

∥∥∥∥2
L2(Στ )

)1/2

≲

(∫∫
Dt

φ(u)

φ(u)1/2
|Lϕ|2 +

∫∫
Dt

φ(u)

φ(u)1/2
|L∂xϕ|2

)1/2

.

Both terms above are of the same form as T1 and then we have that T3 ≲ ε. We conclude
that I35,1,1 ≲ ε4.

Now we control the integral I35,1,2 in (2.3.22). Using again Lemma 2.3.1 we have:

I35,1,2 =

∫∫
Dt

(1 + |u|2)1+δ|L∂xΛ̃||LΛ̃||Lϕ||Lϕ| ≲
∫∫

Dt

ε2|L∂xΛ̃||Lϕ|

=

∫∫
Dt

ε2
φ(u)1/2

φ(u)1/2
|L∂xΛ̃|

φ(u)1/2

φ(u)1/2
|Lϕ|

≲
∫∫

Dt

ε2
(
φ(u)

φ(u)
|L∂xΛ̃|2 +

φ(u)

φ(u)
|Lϕ|2

)
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≲
∫
R

ε2

φ(u)

[∫
Cu

φ(u)|L∂xΛ̃|2ds

]
︸ ︷︷ ︸

≲F1(t)

du+

∫
R

ε2

φ(u)

[∫
Cu

φ(u)|Lϕ|2ds
]

︸ ︷︷ ︸
≲F0(t)

du ≲ ε4.

Putting all estimates together for I35,1, we can conclude that I35,1 ≲ ε4. A similar result is
obtained for I46 := I4 + I6.

Now we treat the term I1 + I2 + I35,2 + I35,3 from (4.4.14) and (2.3.21). We have from
(2.3.5) and (4.2.10),∫∫

Dt

φ(u)|L∂xΛ̃| (|L∂xϕ||Lϕ|+ |Lϕ||L∂xϕ|) +
∫∫

Dt

(
φ(u)|LΛ̃|+ φ(u)|LΛ̃|

)
(|Lϕ||Lϕ|+ |Lϕ||Lϕ|) .

Using the condition (2.3.13), the situation matches Case 1 developed in [85]. All these
integrals can be written as

∼
∫∫

Dt

(
φ(u)|L∂xΛ̃||Lϕ||L∂xϕ|+ φ(u)|L∂xΛ̃||L∂xϕ||Lϕ|

)
.

We bound this term in the following form: take j, k ∈ {0, 1}, ψ = Λ̃, ϕ, so that∫∫
Dt

φ(u)
∣∣L∂kxψ∣∣ |Lψ| ∣∣L∂jxψ∣∣ ≲ ∫∫

Dt

ε

φ(u)1/2
φ(u)

∣∣L∂kxψ∣∣ ∣∣L∂jxψ∣∣
≲
∫∫

Dt

ε

φ(u)1/2

(
φ(u)

∣∣L∂kxψ∣∣2 + φ(u)
∣∣L∂jxψ∣∣2)

≲
∫
R

[∫
Cu

ε

φ(u)1/2

(
φ(u)

∣∣L∂kxψ∣∣2 + φ(u)
∣∣L∂jxψ∣∣2) ds

]
du

=

∫
R

ε

φ(u)1/2

[∫
Cu

(
φ(u)

∣∣L∂kxψ∣∣2 + φ(u)
∣∣L∂jxψ∣∣2) ds

]
︸ ︷︷ ︸

≲E+F+E+F

du

≲
∫
R

ε3

φ(u)1/2
du ≲ ε3.

(2.3.23)
See also Luli, Yan and Yu [85] for detailed computations. So we can conclude that in this
case we can bound them by ε3. Finally, from the energy estimate (2.3.8), we can take all the
estimates together for some universal constants C4, C5 we have that for all t ∈ [0, T ∗]:

E(t) + F(t) ≤ 2C0C1ε
2 + C4ε

3 + C5ε
4. (2.3.24)

Now, we take ε0 such that

ε0 ≤
C0C1

C4

, ε20 ≤
C0C1

C5

, (2.3.25)

we can see that for all 0 < ε ≤ ε0 and for all t ∈ [0, T ], we have

E(t) + F(t) ≤ 4C0C1ε
2. (2.3.26)

This improves the constant in (2.3.11) In the same way, an analogous reasoning is used for
the analysis of the equation in terms of ϕ, using in this case the equation (2.3.3), which
results in an improvement of the constant involved in the estimate (2.3.12).

46



2.4. LONG TIME BEHAVIOR

To improve condition (2.3.13), using the Fundamental Theorem of Calculus and Lemma
2.3.1, one can write Λ̃(t, x), t ≥ 0, in the following form:

|Λ̃(t, x)| ≤ ε|Λ̃0(x)|+
∫ t

0

|∂tΛ̃(τ, x)|dτ

≤ εK1 +
1

2

∫ t

0

|LΛ̃ + LΛ̃|dτ

≤ εK1 +
1

2

∫ t

0

(
C2ε

φ(u)1/2
+

C2ε

φ(u)1/2

)
dτ

≤ εK1 + εC2K2 ≤ Kε,

for some universal constant K. Next, we take ε0 > 0 that satisfies the condition (2.3.25) and
such that

Kε0 <
λ

4
, (2.3.27)

taking sup over t ∈ [0, T ∗], we conclude that for all 0 < ε ≤ ε0 we improved estimate (2.3.13).
As mentioned before, the proof is completed by doing an analogous study in terms of the ϕ
field and then taking the sum over the estimates for the final conclusion.

2.4 Long time behavior

Recall the energy introduced in (2.1.14):

E[Λ, ϕ](t) =

∫ (
1

2
((∂xΛ)

2 + (∂tΛ)
2) + 2 sinh2(Λ)((∂xϕ)

2 + (∂tϕ)
2)

)
(t, x)dx.

We first start with a simple computation, already present in [52].

Lemma 2.4.1. If Λ(t, x), ϕ(t, x) are the solutions of (2.1.2) with Λ(t, x) ∈ C∞
0 (R) and

ϕ(x) ∈ C∞
0 (R) then the energy of the system is conserved, that is

d

dt
E[Λ, ϕ](t) = 0.

2.4.1 Energy and momentum densities

In terms of the fields Λ and ϕ, let us introduce the energy and momentum densities

p(t, x) := ∂xΛ∂tΛ + 4 sinh2(Λ)∂xϕ∂tϕ,

e(t, x) :=
1

2
((∂xΛ)

2 + (∂tΛ)
2) + 2 sinh2(Λ)((∂xϕ)

2 + (∂tϕ)
2).

(2.4.1)

Lemma 2.4.2. Using the definition above in Eq. (2.4.1), one has the following continuity
equations

∂tp(t, x) = ∂xe(t, x),

∂te(t, x) = ∂xp(t, x),
(2.4.2)
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and the inequality
|p(t, x)| ≤ e(t, x). (2.4.3)

Proof. First we prove ∂tp(t, x) = ∂xe(t, x). Using (2.1.11) we can prove the continuity equa-
tion (2.4.2). Let us start with the first derivatives

∂x

(
−1

2
((∂xΛ)

2 + (∂tΛ)
2)− 2 sinh2(Λ)((∂xϕ)

2 + (∂tϕ)
2)

)
= −∂xΛ∂2xΛ + ∂tΛ∂txΛ− 2 sinh(2Λ)((∂xϕ)

2 + (∂tϕ)
2)∂xΛ− 4 sinh2(Λ)(∂xϕ∂

2
xϕ+ ∂tϕ∂txϕ),

and

∂t
(
∂xΛ∂tΛ + 4 sinh2(Λ)∂xϕ∂tϕ

)
= ∂xtΛ∂tΛ + ∂xΛ∂

2
tΛ + 4 sinh(2Λ)∂tΛ∂xϕ∂tϕ+ 4 sinh2(Λ)∂xtϕ∂tϕ+ 4 sinh2(Λ)∂zϕ∂

2
t ϕ.

Subtracting these two last equations gives:

2 sinh 2Λ((∂xϕ)
2 + (∂tϕ)

2)∂xΛ + ∂xΛ(∂
2
xΛ− ∂2tΛ) + 4 sinh2(∂2xϕ− ∂2t ϕ)∂xϕ

− 4 sinh(2Λ)∂tΛ∂xϕ∂tϕ = 4 sinh(2Λ)(∂xϕ)
2∂xΛ− 4(∂xϕ)

2∂xΛ sinh(2Λ)

+ 4 sinh(2Λ)∂xϕ∂tϕ∂tΛ− 4 sinh(2Λ)∂tΛ∂xϕ∂tϕ = 0.

Second, we prove ∂te(t, x) = ∂xp(t, x); in effect, using (2.1.11) we have

∂te(t, x) =∂xΛ∂xtΛ + ∂tΛ∂ttΛ + 2∂tΛ sinh(2Λ)((∂xϕ)
2 + (∂tϕ)

2)

+ 4 sinh2(Λ)∂xϕ∂xtϕ+ 4 sinh2(Λ)∂tϕ∂ttϕ

=− 2∂tΛ sinh(2Λ)((∂xϕ)
2 − (∂tϕ)

2) + 2∂tΛ sinh(2Λ)((∂xϕ)
2 + (∂tϕ)

2)

+ 4 sinh2(Λ)∂xϕ∂xtϕ+ 4∂tϕ∂xxϕ sinh
2(Λ) + 4 sinh(2Λ)∂tϕ∂xϕ∂tΛ

+ ∂xΛ∂xtΛ + ∂tΛ∂xxΛ− 4(∂tϕ)
2∂tΛ sinh(2Λ)

= ∂x(∂xΛ∂tΛ + 4 sinh2(Λ)∂tϕ∂xϕ).

Then, the equation (2.4.2) is satisfied. As we can see, the continuity equation can be written
explicitly as

∂t
(
∂xΛ∂tΛ + 4 sinh2 Λ∂xϕ∂tϕ

)
− ∂x

(
1

2
((∂xΛ)

2 + (∂tΛ)
2) + 2 sinh2(Λ)((∂xϕ)

2 + (∂tϕ)
2)

)
= 0.

(2.4.4)

To prove the inequality, let us take into account Cauchy’s inequality, then

|∂xΛ∂tΛ| ≤
1

2

(
(∂xΛ)

2 + (∂tΛ)
2
)
, |∂xϕ∂tϕ| ≤

1

2

(
(∂xϕ)

2 + (∂tϕ)
2
)
,

so that

|p(t, x)| ≤ 1

2
((∂xΛ)

2 + (∂tΛ)
2) + 2 sinh2(Λ)((∂xϕ)

2 + (∂tϕ)
2). (2.4.5)

That is, the energy density exerts a control on the momentum density, which will be of key
importance, since all the analysis and results will attempt to establish the energy space of
the coupled system.
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2.4.2 Virial estimate

The purpose of this section is to present a Virial identity which is related to the energy
presented above. Let us take into account certain considerations following a proposal similar
to the one used in [1]. However, in our case the semilinear character of the model enters and
no smallness in a smaller space is needed. In what follows, we consider t ≥ 2 only, and

ω(t) :=
t

log2 t
,

ω′(t)

ω(t)
=

1

t

(
1− 2

log t

)
. (2.4.6)

Furthermore, let us consider (Λ, ϕ) continuous in time such that E[Λ, ϕ](t) < +∞ is con-
served. We introduce a Virial identity for the chiral field equation (2.1.11). Indeed, let
ρ := tanh(·), and let I(t) be defined as

I(t) := −
∫
R
ρ

(
x− vt

ω(t)

)(
∂xΛ∂tΛ + 4∂xϕ∂tϕ sinh

2(Λ)
)
dx, v ∈ (−1, 1). (2.4.7)

A time-dependent weight was also considered in [1], with the same goals. The choice of I(t)
is motivated by the momentum and energy densities. Recall that

∫
=
∫
R .

Lemma 2.4.3 (Virial identity). We have

d

dt
I(t) = ω′(t)

ω(t)

∫
x− vt

ω(t)
ρ′
(
x− vt

ω(t)

)
(∂xΛ∂tΛ + 4∂xϕ∂tϕ sinh

2(Λ))

+
1

ω(t)

∫
ρ′
(
x− vt

ω(t)

)(
1

2
(∂xΛ)

2 + 2(∂tϕ)
2 sinh2(Λ)

)
+

1

ω(t)

∫
ρ′
(
x− vt

ω(t)

)(
1

2
(∂tΛ)

2 + 2(∂xϕ)
2 sinh2(Λ)

)
+

v

ω(t)

∫
ρ′
(
x− vt

ω(t)

)(
∂xΛ∂tΛ + 4∂xϕ∂tϕ sinh

2(Λ)
)
.

(2.4.8)

Proof. From (2.4.2) we readily have

d

dt
I(t) = ω′(t)

ω(t)

∫
ρ′
(
x− vt

ω(t)

)
x− vt

ω(t)
p(t, x) +

v

ω(t)

∫
ρ′
(
x− vt

ω(t)

)
p(t, x)

−
∫
ρ

(
x− vt

ω(t)

)
∂xe(t, x),

using integration by parts and the Lemma 2.4.2

d

dt
I(t) = ω′(t)

ω(t)

∫
ρ′
(
x− vt

ω(t)

)
x− vt

ω(t)
p(t, x) +

v

ω(t)

∫
ρ′
(
x− vt

ω(t)

)
p(t, x)

+
1

ω(t)

∫
ρ′
(
x− vt

ω(t)

)
e(t, x).

This proves (2.4.8) after replacing (2.4.1).
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2.4.3 Integration of the dynamics

The goal of this subsection is prove the Theorem 2.1.2; let us start with the following integral
estimate

Lemma 2.4.4. Let ω(t) given as in (2.4.6). Assume that the solution (Λ, ϕ)(t) of the system
(2.1.11) satisfies

E[Λ, ϕ](t) < +∞. (2.4.9)

Then we have the averaged estimate∫ ∞

2

1

ω(t)

∫
R
sech2

(
x− vt

ω(t)

)
e(t, x)dxdt ≲ 1, (2.4.10)

Moreover, there exists an increasing sequence tn → +∞ such that

lim
n−→+∞

∫
R
sech2

(
x− vtn
ω(tn)

)
e(tn, x)dx = 0. (2.4.11)

In order to show Lemma (2.4.4), we use the new Virial identity for (2.4.7) presented for
the Chiral Field Equation (2.1.2).

Proof. First note that, from the condition (2.4.9) we have that clearly I(t) in (2.4.7) is well
defined. Here we use the fact that both ∂xΛ and ∂tΛ are small in L∞ thanks to the Sobolev
embedding and in of the same form ∂xϕ and ∂tϕ. Moreover

sup
t∈R

|I(t)| ≲ E[Λ, ϕ](t) ≲ 1. (2.4.12)

On the other hand, from Lemma 2.4.3, we have the identity

d

dt
I(t) = J1 + J2, (2.4.13)

where

J1 =
ω′(t)

ω(t)

∫
ρ′
(
x− vt

ω(t)

)
x− vt

ω(t)

(
∂xΛ∂tΛ + 4∂xϕ∂tϕ sinh

2(Λ)
)
,

and J2 is the remaining term of (2.4.8). From the definition of ω(t), (2.4.9) and using
Cauchy’s inequality for δ > 0 small, we have:

|J1| ≤ 2

t

∫
|x− vt|
ω(t)

ρ′
(
x− vt

ω(t)

)
(|∂xΛ||∂tΛ|+ 4|∂xϕ||∂tϕ| sinh2(Λ))

≤ 8Cδ

t2

∫
(x− vt)2

ω(t)
ρ′
(
x− vt

ω(t)

)(
1

2
(∂tΛ)

2 + 2(∂tϕ)
2 sinh2(Λ)

)
+

δ

ω(t)

∫
ρ′
(
x− vt

ω(t)

)(
1

2
(∂xΛ)

2 + 2(∂xϕ)
2 sinh2(Λ)

)
≤ 8Cδω(t)

t2
sup
x∈R

(
(x− vt)2

ω2(t)
ρ′
(
x− vt

ω(t)

))∫ (
1

2
(∂tΛ)

2 + 2(∂tϕ)
2 sinh2(Λ)

)
+

δ

ω(t)

∫
ρ′
(
x− vt

ω(t)

)(
1

2
(∂xΛ)

2 + 2(∂tϕ)
2 sinh2(Λ)

)
≤ C

t log2 t
+

δ

ω(t)

∫
ρ′
(
x− vt

ω(t)

)(
1

2
(∂xΛ)

2 + 2(∂tϕ)
2 sinh2(Λ)

)
.
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Furthermore, for J2(t) we have

|v|
ω(t)

∫
ρ′
(
x− vt

ω(t)

) ∣∣∂xΛ∂tΛ + 4∂xϕ∂tϕ sinh
2(Λ)

∣∣ = |v|
ω(t)

∫
ρ′
(
x− vt

ω(t)

)
|p(t, x)|

≤ |v|
ω(t)

∫
ρ′
(
x− vt

ω(t)

)
e(t, x).

With this estimate on J1 to obtain 1− |v| − δ > 0 for δ > 0 sufficiently small, and

d

dt
I(t) ≥ 1− |v| − δ

ω(t)

∫
ρ′
(
x− vt

ω(t)

)
e(t, x)− C

t log2 t
. (2.4.14)

After integration in time we get (2.4.10). Finally, (2.4.11) is obtained from (2.4.10) and the
fact that ω−1(t) is not integrable in [2,∞).

Proof of Theorem 2.1.2. Let us consider ψ(·) = (ρ′)2 = sech4(·), then

d

dt

∫
ψ

(
x− vt

ω(t)

)
e(t, x) = − ω′(t)

ω(t)

∫
x− vt

ω(t)
ψ′
(
x− vt

ω(t)

)
e(t, x)− v

ω(t)

∫
ψ′
(
x− vt

ω(t)

)
e(t, x)

+
1

ω(t)

∫
ψ′
(
x− vt

ω(t)

)
p(t, x).

Since |x−vt
ω(t)

ψ′
(

x−vt
ω(t)

)
| ≲ sech2

(
x−vt
ω(t)

)
and |p(t, x)| ≤ e(t, x) we have:

| d
dt

∫
ψ

(
x− vt

ω(t)

)
e(t, x)| ≤ C

ω(t)

∫
sech2

(
x− vt

ω(t)

)
e(t, x), (2.4.15)

furthermore

lim
n−→∞

∫
sech4

(
x− vtn
ω(tn)

)
e(tn, x) = 0. (2.4.16)

Finally using (2.4.15) for t < tn

|
∫
ψ

(
x− vtn
ω(tn)

)
e(tn, x)−

∫
ψ

(
x− vt

ω(t)

)
e(t, x)| ≤

∫ tn

t

2

ω(s)

∫
sech2

(
x− vs

ω(s)

)
e(s, x)dxds,

sending n to infinity, and using (2.4.16) we have

|
∫
ψ

(
x− vt

ω(t)

)
e(t, x)| ≤

∫ ∞

t

2

ω(s)

∫
sech2

(
x− vs

ω(s)

)
e(s, x)dxds, (2.4.17)

which implies, thanks to Lemma 2.4.4,

lim
t−→∞

∫
sech4

(
x− vt

ω(t)

)
e(t, x) = 0,

which finally shows the validity of Theorem 2.1.2.

2.5 Application to soliton solutions

In this section, we apply our previous results to prove existence of global solutions around a
new class of soliton solutions of finite energy. First, we consider the case treated by Hadad
in [52]. See also [33, 78, 79] for other cases of soliton-like solutions not treated here.
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2.5. APPLICATION TO SOLITON SOLUTIONS

2.5.1 Singular solitons

Consider the soliton introduced in (2.1.25). We claim that this solution is singular in the
narrow sense that the energy of the system for this soliton is not finite. Our first result is
the following straightforward computation:

Lemma 2.5.1. One has,

Λ(t, x) = ln(|v| cosh(t))

+ ln

1− tanh(t) tanh(
√
c(x− vt))

|v|
√
c

+

√(
1− tanh(t) tanh(

√
c(x− vt))

|v|
√
c

)2

− sech2(t)

|v|2

 ,

ϕ(t, x) =
π

4
− 1

2
arctan

[
cosh(t) cosh(

√
c(x− vt))(tanh(

√
c(x− vt)) + v

√
c tanh(t))

]
.

(2.5.1)

Moreover, for Emod given in (2.1.24), the previous solution gives

Emod[Λ, ϕ](t) = 0. (2.5.2)

Remark 2.5.1. Notice that g(0) in (2.1.23) has also zero modified energy. This is in con-
cordance with the fact that g(1) is obtained from g(0) as seed.

Proof. We use the notation in (2.1.25) and γ :=
√
c(x− vt). Comparing the soliton (2.1.25)

with (2.1.6) we have the following equations:

et[cosh(lnµ)− sinh(lnµ) tanh(γ)] = cosh(Λ) + cos(2ϕ) sinh(Λ), (2.5.3)

e−t[cosh(lnµ) + sinh(lnµ) tanh(γ)] = cosh(Λ)− cos(2ϕ) sinh(Λ), (2.5.4)

− 1√
c cosh(γ)

= sin(2ϕ) sinh(Λ), (2.5.5)

where

cosh(ln(µ)) =
µ2 + 1

2µ
= −v, sinh(ln(µ)) =

µ2 − 1

2µ
=

1√
c
,

adding the first two equations we obtain:

−v cosh(t)− 1√
c
sinh(t) tanh(γ) = coshΛ.

Then, since we have the constraint µ > 1 we can write the expression for Λ as

Λ(t, x) = ln(|v| cosh(t))

+ ln

1− tanh(t) tanh(γ)

|v|
√
c

+

√(
1− tanh(t) tanh(γ)

|v|
√
c

)2

− 1

|v|2
sech2(t)

 .

Next, subtracting the same equations and using (2.5.5)

−v sinh(t)− 1√
c
cosh(t) tanh(γ) = cos(2ϕ) sinh(Λ),
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−v sinh(t)− 1√
c
cosh(t) tanh(γ) = − 1√

c
cot(2ϕ) sech(γ)

sinh(γ) cosh(t) +
√
cv sinh(t) cosh(γ) = cot(2ϕ),

In order to make sense, one needs sin(2ϕ) ̸= 0, i.e., ϕ ̸= nπ

2
. Therefore, we can write:

ϕ(t, x) =
π

4
− 1

2
arctan

(
sinh(γ) cosh(t) +

√
cv sinh(t) cosh(

√
c(x− vt))

)
=
π

4
− 1

2
arctan

(
cosh(t) cosh(

√
c(x− vt))(tanh(

√
c(x− vt)) + v

√
c tanh(t))

)
.

Now, let us study the derivatives of the Λ and ϕ fields. Assuming the constraints for the
parameter µ we have that

∂xΛ = − sinh(t) sech2(γ)√
(−v cosh(t)− 1√

c
sinh(t) tanh(γ))2 − 1

,

∂tΛ =
tanh(γ)

(
−v sinh(t) tanh(γ)− 1√

c
cosh(t)

)
√

(−v cosh(t)− 1√
c
sinh(t) tanh(γ))2 − 1

.

Additionally,

∂xϕ = −1

2

(√
c cosh(t) cosh(γ)(1 + v

√
c tanh(t) tanh(γ))

1 + (sinh(γ) cosh(t) + v
√
c sinh(t) cosh(γ))2

)
,

∂tϕ = −1

2

(
(1− cv2) sinh(t) sinh(γ)

1 + (sinh(γ) cosh(t) + v
√
c sinh(t) cosh(γ))2

)
.

Simplifying, the energy density is:

(∂xΛ)
2 + (∂tΛ)

2 − 1 =

sinh2(t) sech4(γ)− v2 sinh2(t) sech2(γ)(tanh2(γ) + 1)− v√
c
sinh(2t) tanh(γ) sech2(γ)− v2 + 1

(−v cosh(t)− 1√
c
sinh(t) tanh(γ))2 − 1

,

and

sinh2(Λ)((∂xϕ)
2 + (∂tϕ)

2)

=
c cosh2(t) cosh2(γ)− vc

2
sinh(2t) sinh(2γ) + (c2v4 − cv2 + 1) sinh2(t) sinh2(γ)

(1 + (sinh(γ) cosh(t) + v
√
c sinh(t) cosh(γ))2)2

.

Then, the integrals can be calculated with the help of the computer algebra system Mathe-
matica, obtaining that the soliton has finite modified energy, in fact, we have that

Emod[Λ, ϕ](t) = 0.

With the results obtained we can see that the Λ and ϕ fields associated to the soliton (2.1.25)
do not belong to the energy space proposed in the previous sections.
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2.5.2 Finite energy solitons

In this final section we consider the case of finite energy solitons, their perturbations, and a
corresponding global well-posedness result.

Proof of Corollary 2.1.1: Identifying the 1-soliton in (2.1.26)

g(1) =


eλ+εθ sech(β(λ+ εθ))

sech(β(λ+ εθ)− x0)
− 1√

c
sech(β(λ+ εθ))

− 1√
c
sech(β(λ+ εθ))

e−(λ+εθ) sech(β(λ+ εθ))

sech(β(λ+ εθ) + x0)

 , β =
µ+ 1

µ− 1
, (2.5.6)

with the geometrical representation (2.1.6), one gets the corresponding fields Λ̂ε and ϕ̂ε,
which have the following form:

Λ̂ε(t, x) := cosh−1

(
|v| cosh(λ+ εθ)− 1√

c
tanh(β(λ+ εθ)) sinh(λ+ εθ)

)
,

ϕ̂ε(t, x) :=
π

4
− 1

2
arctan

(
cosh(β(λ+ εθ)) cosh(λ+ εθ)(tanh(β(λ+ εθ)) + v

√
c tanh(λ+ εθ))

)
,

which are solutions for (2.1.21). From now on we drop ε to make the notation less cumber-
some.

We claim that Λ̂ have the desired local and global well-posedness properties. Indeed, note
that since 0 < µ < 1, then |v| > 1 and β < 0, so, for all t, x ∈ R

|v| cosh(λ+ εθ)− 1√
c
tanh(β(λ+ εθ)) sinh(λ+ εθ)

≥ |v|+ 1√
c
tanh(|β|(λ+ εθ)) sinh(λ+ εθ) > 1,

therefore, Λ̂ is well-defined and Λ̂(t, x) > 0 for all t, x ∈ R. Also, since θ ∈ L∞(R), for each
t, we have to that Λ̂ is a bounded function. Since θ ∈ C2

0 , we have that

Λ̂(t = 0, x) = C(λ), ∀x ∈ R \ supp θ,

then, define λ̃ := C(λ), which allows us to write Λ̂ := Λ̃ + λ̃. For the function Λ̃ one has

Λ̃|{t=0} = εΛ̃0, with Λ̃0 ∈ C2
0(R).

where Λ̃0 is defined as:

Λ̃0(x) :=
1

ε

(
cosh−1

(
|v| cosh(λ+ εθ(x))− 1√

c
tanh(β(λ+ εθ(x))) sinh(λ+ εθ(x))

))
− 1

ε

(
cosh−1

(
|v| cosh(λ)− 1√

c
tanh(βλ) sinh(λ)

))
.

The dependence associated with ε for this function, is suitable in the sense that we can
demonstrate straightforwardly that Λ̃0 is a bounded function when ε tends to zero, indeed,
we have that the lim

ε−→0
Λ̃0 can be calculated using L’Hôpital’s rule:

lim
ε−→0

Λ̃0 = lim
ε−→0

θ(x)
(
|v| sinh(λ+ εθ)− β√

c
sech2(β(λ+ εθ))− 1√

c
tanh(β(λ+ εθ)) cosh(λ+ εθ)

)
√

(|v| cosh(λ+ εθ)− 1√
c
tanh(β(λ+ εθ)) sinh(λ+ εθ))2 − 1
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=
θ(x)

(
|v| sinh(λ)− β√

c
sech2(βλ)− 1√

c
tanh(βλ) cosh(λ)

)
√

(|v| cosh(λ)− 1√
c
tanh(βλ) sinh(λ))2 − 1

= Cθ(x)

On the other hand, the derivative of Λ̃ is given by

∂tΛ̃ =
εθ′
(
|v| tanh(γ)− 1√

c
β sech2(βγ) tanh(γ)− 1√

c
tanh(βγ)

)
sech(γ)

√(
|v| cosh(γ)− 1√

c
sinh(γ) tanh(βγ)

)2
− 1

,

in this case γ := λ+ εθ, then, is clearly that ∂tΛ̃|{t=0} ∈ C2
0(R).

Next, for the field ϕ̂, we have a bounded function and ϕ̂(t, x) > 0 for all t, x ∈ R. Again,
since θ ∈ C2

0(R) we have,

ϕ̂(t = 0, x) = C1(λ), ∀x ∈ R \ supp θ,

and we can define
ϕ(t, x) = ϕ̂− ϵ with ϵ = C1(λ).

With this definition one has:

ϕ(t = 0, x) = ϕ̂(t = 0, x)− ϵ,

then
ϕ(t = 0, x) = ϕ̂(t = 0, x)− ϵ = 0 ∀x ∈ R \ supp θ,

if we choose
εϕ0(x) = ϕ(t = 0, x) = ϕ̂(t = 0, x)− ϵ,

where ϕ0 is given as:

ϕ0(x) =
1

2ε
arctan

(
cosh(βλ) cosh(λ)(tanh(βλ) + v

√
c tanh(λ))

)
− 1

2ε
arctan

(
cosh(β(λ+ εθ(x))) cosh(λ+ εθ(x))(tanh(β(λ+ εθ(x))) + v

√
c tanh(λ+ εθ(x)))

)
,

note that this definition is suitable, we can compute the lim
ε−→0

ϕ0 using L’Hôpital’s rule:

lim
ε−→0

ϕ0 = lim
ε−→0

θ(x)((1 + βv
√
c) sinh(γ) sinh(βγ) + (β + v

√
c) cosh(γ) cosh(βγ)

2(1 + (cosh(γ) sinh(βγ) + β
√
c sinh(γ) cosh(βγ))2)

= C1θ(x).

The function ϕ has the desired local and global well-posedness properties. Indeed, the deriva-
tive of this function is:

∂tϕ =
−εθ′(β + v

√
c+ (1 + βv

√
c) tanh(βγ) tanh(γ))

2 sech(βγ) sech(γ)((cosh(γ) sinh(βγ) + v
√
c sinh(γ) cosh(βγ))

2
+ 1)

,

which is also a localized function. Finally from the previous analysis, we can conclude that
for ∂tΛ, ∂tϕ ∈ L2(R), with Λ(t, x) = Λ̂(t, x), then

E[Λ, ϕ] <∞.
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In the end, Λ̂ reads as

Λ̂ = ln(cosh(γ)) + ln

|v| − tanh(γ) tanh(βγ)√
c

+

√(
|v| − tanh(γ) tanh(βγ)√

c

)2

− 1

 .

This finishes the proof.

2.6 Appendix

2.6.1 Some useful inequalities

This section start by presenting the well-known Gronwall’s lemma:

Lemma 2.6.1. Let f : R −→ R be a positive continuous function and g : R −→ R be a
positive integrable function such that

f(t) ≤ A+

∫ t

0

f(s)g(s)ds,

for some A ≥ 0 for every t ∈ [0, T ]. Then

f(t) ≤ A exp

(∫ t

0

g(s)ds

)
,

for every t ∈ [0, T ].

The second result to be presented is related to another pointwise bounds that were pre-
sented for Luli et. al. in [85] for the study of the global problem in the Section 2.3:

Lemma 2.6.2. Under the assumption ( 2.3.11) and ( 2.3.12) exits a universal constant C3

so that ∥∥∥∥φ(u)1/2φ(u)1/4
LΛ̃(t, x)

∥∥∥∥
L∞(Σt)

≤ C3

(∥∥∥∥φ(u)1/2φ(u)1/4
LΛ̃(t, x)

∥∥∥∥
L2(Σt)

+

∥∥∥∥φ(u)1/2φ(u)1/4
L∂xΛ̃(t, x)

∥∥∥∥
L2(Σt)

)
,

∥∥∥∥φ(u)1/2φ(u)1/4
LΛ̃(t, x)

∥∥∥∥
L∞(Σt)

≤ C3

(∥∥∥∥φ(u)1/2φ(u)1/4
LΛ̃(t, x)

∥∥∥∥
L2(Σt)

+

∥∥∥∥φ(u)1/2φ(u)1/4
L∂xΛ̃(t, x)

∥∥∥∥
L2(Σt)

)
,

and ∥∥∥∥φ(u)1/2φ(u)1/4
Lϕ(t, x)

∥∥∥∥
L∞(Σt)

≤ C3

(∥∥∥∥φ(u)1/2φ(u)1/4
Lϕ(t, x)

∥∥∥∥
L2(Σt)

+

∥∥∥∥φ(u)1/2φ(u)1/4
L∂xϕ(t, x)

∥∥∥∥
L2(Σt)

)
,
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∥∥∥∥φ(u)1/2φ(u)1/4
Lϕ(t, x)

∥∥∥∥
L∞(Σt)

≤ C3

(∥∥∥∥φ(u)1/2φ(u)1/4
Lϕ(t, x)

∥∥∥∥
L2(Σt)

+

∥∥∥∥φ(u)1/2φ(u)1/4
L∂xϕ(t, x)

∥∥∥∥
L2(Σt)

)
.

2.6.2 Ending of proof of Theorem 2.1.1

In this section, we describe the details of the estimates for the second equation in (2.3.1) that
complete the proof of Theorem 2.1.1.

For simplicity, in Section 2.3 we worked with the first equation of system (2.3.1). Now
we prove the estimates for the second equation.

Proof. The first step is the following: Using (2.3.3) and (2.3.4) in the second equation of
(2.3.1), we obtain:

□ (∂xϕ) = 2
[
coth(λ+ Λ̃)

(
Q0(∂xϕ, Λ̃) +Q0(ϕ, ∂xΛ̃)

)
− 2∂xΛ̃ csch2(λ+ Λ̃)Q0(ϕ, Λ̃)

]
. (2.6.1)

As in Section 2.3, fix δ ∈ (0, 1), under the assumptions (2.3.11)-(2.3.12)-(2.3.13) for all
t ∈ [0, T ∗], we assume that the solution remains regular, to later show that these bounds are
maintained, with a better constant.

Consider k = 0, 1. Using (2.3.8) on (2.3.17), with ψ = ∂kxϕ, and taking the sum over
k = 0, 1, we obtain

E(t) + F(t) ≤ 2C0E(0)

+ 2C0

∫∫
Dt

(
(1 + |u|2)1+δ|Lϕ|+ (1 + |u|2)1+δ|Lϕ|

)
2| coth(λ+ Λ̃)||Q0(ϕ, Λ̃)|

+ 4C0

∫∫
Dt

(
(1 + |u|2)1+δ|L∂xϕ|+ (1 + |u|2)1+δ|L∂xϕ|

)
| coth(λ+ Λ̃)||(Q0(∂xϕ, λ̃) +Q0(ϕ, ∂xΛ̃))|

+ 4C0

∫∫
Dt

(
(1 + |u|2)1+δ|L∂xϕ|+ (1 + |u|2)1+δ|L∂xϕ|

)
|∂xΛ̃ csch2(λ+ Λ̃)||Q0(ϕ, Λ̃)|

=: 2C0E(0) + 2C0

8∑
j=1

Ij .

(2.6.2)

In this case, the integrals Ij, i ∈ {1, 2, .., 8} are defined as follows:
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I1 := 2C0

∫∫
Dt

(
(1 + |u|2)1+δ|Lϕ|

)
| coth(λ+ Λ̃)||Q0(ϕ, Λ̃)|

I2 := 2C0

∫∫
Dt

(
(1 + |u|2)1+δ|Lϕ|

)
| coth(λ+ Λ̃)||Q0(ϕ, Λ̃)|

I3 := 2C0

∫∫
Dt

(
(1 + |u|2)1+δ|L∂xϕ|

)
| coth(λ+ Λ̃)||(Q0(∂xϕ, Λ̃)|

I4 := 2C0

∫∫
Dt

(
(1 + |u|2)1+δ|L∂xϕ|

)
| coth(λ+ Λ̃)||Q0(ϕ, ∂xΛ̃))|

I5 := 2C0

∫∫
Dt

(
(1 + |u|2)1+δL∂xϕ|

)
| coth(λ+ Λ̃)||(Q0(∂xϕ, Λ̃)|

I6 := 2C0

∫∫
Dt

(
(1 + |u|2)1+δ|L∂xϕ|

)
| coth(λ+ Λ̃)||Q0(ϕ, ∂xΛ̃))|

I7 := 2C0

∫∫
Dt

(
(1 + |u|2)1+δ|L∂xϕ|

)
|∂xΛ̃ csch2(λ+ Λ̃)||Q0(ϕ, Λ̃)|

I8 := 2C0

∫∫
Dt

(
(1 + |u|2)1+δ|L∂xϕ|

)
|∂xΛ̃ csch2(λ+ Λ̃)||Q0(ϕ, Λ̃)|.

(2.6.3)

The goal is to control the right-hand side of the above estimate. Essentially we have eight
terms to control, but several are equivalent and essentially we only need to consider two
cases. Indeed, it will be sufficient to bound the terms corresponding to L∂xϕ and Lϕ, since
by symmetry, the procedure for the other terms will be analogous. First, we start to bound
the term I7, that represents the most attention, given that it has different sub-terms to
estimate, recalling that we define φ(x) = (1 + |x|2)1+δ, with 0 < δ ≪ 1.

Taking into account (2.3.5), (2.3.13) and (2.3.15)-(4.2.10), and writing ∂xΛ̃ = 1
2
(L−L)Λ̃,

we get

I7 ≲ C0

∫∫
Dt

φ(u)|L∂xϕ||LΛ̃||Lϕ||LΛ̃|+ C0

∫∫
Dt

φ(u)|L∂xϕ||LΛ̃|2|Lϕ|

+ C0

∫∫
Dt

φ(u)|L∂xϕ||LΛ̃|2|Lϕ|+ C0

∫∫
Dt

φ(u)|L∂xϕ||LΛ̃||Lϕ||LΛ̃|

:= I7,1 + I7,2 + I7,3 + I7,4.

(2.6.4)

Recall that by Fubini’s Theorem the spacetime Dt in (2.3.7) is foliated by Cu for u ∈ R, and
also by {t} × Σt, t ∈ R. Using again the Lemma 2.3.1, we obtain

I7,1 ≲
∫∫

Dt

ε (φ(u)−3/4φ(u)1/2|L∂xϕ|)︸ ︷︷ ︸
L2
tL

2
x

(φ1/2(u)|LΛ̃|)︸ ︷︷ ︸
L∞
t L2

x

(φ(u)−1/4φ(u)1/2|LΛ̃|)︸ ︷︷ ︸
L2
tL

∞
x

≲ε

(∫∫
Dt

φ(u)|L∂xϕ|2

φ(u)3/2

)1/2

︸ ︷︷ ︸
T1

sup
t∈[0,T ∗]

(∫
Σt

φ(u)|LΛ̃|2
)1/2

︸ ︷︷ ︸
T2

(∫ t

0

∥∥∥∥φ(u)1/2φ(u)1/4
|LΛ̃|

∥∥∥∥2
L∞(Στ )

dτ

)1/2

.︸ ︷︷ ︸
T3
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Let us study each of the factors Tj. For T1, one has:

T 2
1 ≤

∫
R

[∫
Cu

φ(u)|L∂xϕ|2

φ(u)3/2
ds

]
du =

∫
R

1

φ(u)3/2

[∫
Cu

φ(u)|L∂xϕ|2ds

]
︸ ︷︷ ︸

≲F1(t)

du ≲
∫
R

ε2

φ(u)3/2
du,

since the integral is finite, we have T1 ≲ ε. The integral T2 is part of the energy norm E0(t) in
(2.3.9) then T2 ≲ ε. For the term T3 one can use the same argument as in [85]: using Lemma
2.6.2 one gets

T3 ≲

(∫ t

0

∥∥∥∥φ(u)1/2φ(u)1/4
LΛ̃(t, x)

∥∥∥∥2
L2(Στ )

+

∫ t

0

∥∥∥∥φ(u)1/2φ(u)1/4
L∂xΛ̃(t, x)

∥∥∥∥2
L2(Στ )

)1/2

≲

(∫∫
Dt

φ(u)

φ(u)1/2
|LΛ̃|2 +

∫∫
Dt

φ(u)

φ(u)1/2
|L∂xΛ̃|2

)1/2

,

both terms above are of the same form as T1 and then we have that T3 ≲ ε. We conclude
that I7,1 ≲ ε4. Now we control the integral I7,2 in (2.6.4), using again the Lemma 2.3.1, the

assumption (2.3.12) and Cauchy–Schwarz inequality. We have:

I7,2 =C0

∫∫
Dt

φ(u)|L∂xϕ||LΛ̃|2|Lϕ| ≤
∫∫

Dt

C2ε
2φ(u)

1/2

φ(u)1/2
|L∂xϕ|

φ(u)1/2

φ(u)1/2
|Lϕ|

≤C2ε
2

(∫∫
Dt

φ(u)

φ(u)
|L∂xϕ|2

)1/2(∫∫
Dt

φ(u)

φ(u)
|Lϕ|2

)1/2

≲ ε4.

To finish with the term I7 we need to estimate the terms I7,3 and I7,4 in (2.6.4), which are
similar in structure, for this case we get:

I7,34 = I7,3 + I7,4 ≲
∫∫

Dt

ε2|L∂xϕ||Lϕ|+
∫∫

Dt

ε2|L∂xϕ||LΛ̃|

=

∫∫
Dt

ε2
φ(u)1/2

φ(u)1/2
|L∂xϕ|

(
φ(u)1/2

φ(u)1/2
|Lϕ|+ φ(u)1/2

φ(u)1/2
|LΛ̃|

)
≲
∫∫

Dt

ε2
(
φ(u)

φ(u)
|L∂xϕ|2

)
+

∫∫
Dt

ε2
(
φ(u)

φ(u)
|Lϕ|2

)
+

∫∫
Dt

ε2
(
φ(u)

φ(u)
|LΛ̃|2

)
≲
∫
R

ε2

φ(u)

[∫
Cu

φ(u)|L∂xϕ|2ds

]
︸ ︷︷ ︸

≲F1(t)

du+

∫
R

ε2

φ(u)

[∫
Cu

φ(u)|Lϕ|2ds
]

︸ ︷︷ ︸
≲F0(t)

du

+

∫
R

ε2

φ(u)

[∫
Cu

φ(u)|LΛ̃|2ds
]

︸ ︷︷ ︸
≲F0(t)

du ≲ ε4.

Putting all estimates together for I7, we conclude that I7 ≲ ε4. A similar result is
obatained for I8.
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Now we treat the term I1+I3+I4 from (2.6.2). We have from (2.3.5) and (2.3.15)-(4.2.10),

∫∫
Dt

φ(u)|L∂xϕ|
(
|L∂xϕ||LΛ̃|+ |L∂xϕ||LΛ̃|+ |Lϕ||L∂xΛ̃|+ |Lϕ||L∂xΛ̃|

)
+

∫∫
Dt

(φ(u)|Lϕ|)
(
|Lϕ||LΛ̃|+ |LΛ̃||Lϕ|

)
.

Using the condition (2.3.13), the situation matches Case 1 developed in [85]. All these
integrals can be written as

∼
∫∫

Dt

(
φ(u)|L∂xΛ̃||Lϕ||L∂xϕ|+ φ(u)|L∂xΛ̃||L∂xϕ||Lϕ|

)
.

Then, we can use the estimate (2.3.23) in Section 2.3 to conclude the bounds on these terms,
which again are of order ε3.

2.6.3 Classical Solution: Local Theory

As we can see, Proposition 2.1.1 does not directly provide us with a classical solution for
the initial value problem (2.1.16). In order to obtain such a classical solution, we need an
initial data with sufficient regularity, which allows us to control the terms associated with
the nonlinearity. The idea of the proof still has the same structure.

Recall that the initial value problem for (2.1.16) can be written in vector form as follows{
∂α(m

αβ∂βΨ) = F (Ψ, ∂Ψ)

(Ψ, ∂tΨ)|{t=0} = (Ψ0,Ψ1) ∈ Ĥ.
(2.6.5)

Where mαβ are the components of the Minkowski metric with α, β ∈ {0, 1}, and

(Ψ, ∂tΨ) ∈ Ĥ := H3(R)×H3(R)×H2(R)×H2(R). (2.6.6)

We are also going to impose the following condition on the initial data

∥(Ψ0,Ψ1)∥Ĥ ≤ λ

2D
, (2.6.7)

where the assumptions on the constant D ≥ 1 will be indicated below.

The following proposition shows that the equation (2.6.5), in terms of the function Λ̃
introduced in (2.1.15), is locally well-posed in the space L∞([0, T ]; Ĥ) with the norm in this
space defined by

∥(Ψ, ∂tΨ)∥L∞([0,T ];H) = sup
t∈[0,T ]

(
∥Ψ∥H3(R)×H3(R) + ∥∂tΨ∥H2(R)×H2(R)

)
,

with (Ψ, ∂tΨ) introduced in (2.1.17). The result is the following.
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Proposition 2.6.1. If (Ψ0,Ψ1) satisfies the condition (2.6.7) with an appropriate constant
D ≥ 1, then:

(1) (Existence and uniqueness of local-in-time solutions). There exists

T = T

(∥∥∥(Λ̃0, ϕ0

)∥∥∥
H3(R)×H3(R)

,
∥∥∥(Λ̃1, ϕ1

)∥∥∥
H2(R)×H2(R)

, λ

)
> 0,

such that there exists a (classical) solution Ψ to ( 2.6.5) with

(Ψ, ∂tΨ) ∈ L∞([0, T ]; Ĥ).

Moreover, the solution is unique in this function space.

(2) (Continuous dependence on the initial data). Let Ψ
(i)
0 ,Ψ

(i)
1 be sequence such that

Ψ
(i)
0 −→ Ψ0 in H3(R) × H3(R) and Ψ

(i)
1 −→ Ψ1 in H2(R) × H2(R) as i −→ ∞.

Then taking T > 0 sufficiently small, we have∥∥(Ψ(i) −Ψ, ∂t(Ψ
(i) −Ψ)

)∥∥
L∞([0,T ];Hs(R)×Hs(R))×L∞([0,T ];Hs−1(R)×Hs−1(R)) −→ 0.

as i −→ ∞ for every 1 ≤ s < 3. Here Ψ is the solution arising from data (Ψ0,Ψ1) and

Ψ(i) is the solution arising from data
(
Ψ

(i)
0 ,Ψ

(i)
1

)
.

Proof of Proposition 2.6.1. (1). This part of the Proposition is proved by Picard’s iteration.
Using a density argument it is sufficient to assume the initial data (Ψ0,Ψ1) ∈ S4 (S being
the Schwartz class), along with condition (2.6.7). Define a sequence of smooth functions Ψ(i),
with i ≥ 1 such that

Ψ(1) = (0, 0),

and for i ≥ 2, Ψ(i) is iteratively defined as the unique solution to the system{
∂α(m

αβ∂βΨ
(i)) = F (Ψ(i−1), ∂Ψ(i−1))

(Ψ(i), ∂tΨ
(i))|{t=0} = (Ψ0,Ψ1) ∈ H.

(2.6.8)

It is important to note that from (2.1.17) and (2.6.7) we can assure that for j = 1, 2,

2∑
γ=0

sup
|x|,|p|≤λ

2

|∂γx,pFj|(x, p) ≤ Cj, 1
2
λ. (2.6.9)

Indeed, this can be seen from the fact that for (x, p) = (x1, x2, p1, p2, p3, p4) and |x| ≤ λ
2
,

F1(x, p) = 2 sinh(2λ+ 2x1)
(
p24 − p23

)
, F2(x, p) =

sinh(2(λ+ x1))

sinh2(λ+ x1)
(p3p1 − p2p4) .

Define bounded functions in the class C1.

It is important to note that condition (2.6.9) allows this iterative definition of the functions
Ψ(i) to be possible, since it maintains each component of F with the required regularity, see
[106]. First, it will be shown that for a sufficiently small T > 0, the sequence (Ψ, ∂tΨ) is

61



2.6. APPENDIX

uniformly (in i) bounded in L∞([0, T ]; Ĥ), then it will be shown that it is also a Cauchy
sequence. For the first part, the idea is to use the energy estimates (2.3.8), we want to prove
that there is a constant 0 < A ≤ λ

2
such that∥∥(Ψ(i−1), ∂tΨ

(i−1)
)∥∥

L∞([0,T ];Ĥ)
≤ A, (2.6.10)

implies that ∥∥(Ψ(i), ∂tΨ
(i)
)∥∥

L∞([0,T ];Ĥ)
≤ A.

The energy estimation (2.3.8) allows us to write for (2.6.5) the following estimate:

sup
t∈[0,T ]

∥∥(Ψ(i), ∂tΨ
(i)
)∥∥

Ĥ ≤ C(1 + T )(∥(Ψ0,Ψ1)∥Ĥ)

+C(1 + T )

∫ T

0

(∥∥F1

(
Ψ(i−1), ∂Ψ(i−1)

)∥∥
H2(R) +

∥∥F2

(
Ψ(i−1), ∂Ψ(i−1)

)∥∥
H2(R)

)
(t)dt.

(2.6.11)
With this estimate, our goal is to bound the integral on the right hand side of the inequality
above. That is, we want to prove that there exists B = B(A,F ) > 0 such that for t ∈ [0, T ],
we have

2∑
n=0

||∂nxF (Ψ(i−1), ∂Ψ(i−1))||L2(t) ≤ B. (2.6.12)

For this, we will use the conditions (2.6.7) for each Fj which is satisfied by the hypothesis in
(2.6.10), if B1 = max{C1,λ

2
, C2,λ

2
}, and using chain rule we get

2∑
n=0

||∂nxF (Ψ(i−1), ∂Ψ(i−1))||L2 ≤ B1 +B1||∂xΨi−1||L2 +B1||∂∂xΨi−1||L2 +B1||∂Ψi−1||2H2

+B1||∂2xΨi−1||L2 +B1||∂∂xΨi−1 · ∂∂xΨi−1||L2 + ||∂∂2xΨi−1||L2

≤ B,

where B = B(B1, A, λ), which results in the following estimate

sup
t∈[0,T ]

∥∥(Ψ(i), ∂tΨ
(i)
)∥∥

Ĥ ≤ C(1 + T ) (∥(Ψ0,Ψ1)∥Ĥ + 2BT ) , (2.6.13)

we can choose T > 0 sufficiently small such that

2BT ≤ ∥(Ψ0,Ψ1)∥Ĥ ,

so ∥∥(Ψ(i), ∂tΨ
(i)
)∥∥

L∞([0,T ];Ĥ)
≤ 2C ∥(Ψ0,Ψ1)∥Ĥ .

If we choose D > 4C in (2.6.7) and A := 2C||(Ψ0,Ψ1)||Ĥ ≤ 2Cλ
D

≤ λ
2
. We have thus shown

the desired implication.

In the Section 2.2 we showed that the last sequence is of Cauchy type in the larger space
L∞([0, T ];H). Therefore, the sequence is Cauchy on L∞([0, T ];H), and hence convergent.
That is, there exists (Ψ, ∂tΨ) in L∞([0, T ];H). The uniform bounds (on i) in L∞([0, T ], Ĥ)
guarantees that the limit in fact lies in the smaller space L∞([0, T ], Ĥ), that is, for almost
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t ∈ [0, T ], (Ψ(i), ∂tΨ
(i))(t) ∈ Ĥ, uniform in i, and therefore by Banach-Alaoglu’s Theorem,

there is a weak limit in Ĥ (up to a subsequence). But the uniqueness of the limit ensures
that this limit must agree with (Ψ, ∂tΨ)(t). This concludes the proof of existence.

Finally, for the continuous dependence on initial data, we prove in the Section 2.2 that
taking i −→ ∞, we get

sup
s∈[0,t]

∥∥(Ψ(i) −Ψ, ∂tΨ
(i) − ∂tΨ

)∥∥
H −→ 0.

To obtain the result in general for 1 ≤ s < 3, simply observe that

sup
t∈[0,T ]

||(Ψ(i) −Ψ, ∂tΨ
(i) − ∂tΨ)||Hs×Hs×Hs−1×Hs−1(t)

≤ C sup
t∈[0,T ]

(
||(Ψ(i) −Ψ, ∂tΨ

(i) − ∂tΨ)||H1×H1×L2×L2(t)
) 3−s

2

×
(
||(Ψ(i) −Ψ, ∂tΨ

(i) − ∂tΨ)||H3×H3×H1×H1(t)
) s−1

2 −→ 0.

This last property ends the proof of Proposition 2.1.1.
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Chapter 3

Global existence and long time
behavior in
Einstein-Belinski-Zakharov Soliton
spacetimes

Abstract: We consider the vacuum Einstein field equations under the Belinski-Zakharov sym-
metries. Depending on the chosen signature of the metric, these spacetimes contain most of the
well-known special solutions in General Relativity, including well-known black holes. In this paper,
we prove global existence of small Belinski-Zakharov spacetimes under a natural nondegeneracy
condition. We also construct new energies and virial functionals to provide a description of the
energy decay of smooth global cosmological metrics inside the light cone. Finally, some applications
are presented in the case of generalized Kasner solitons.

This chapter is contained in: C. Muñoz and J. Trespalacios, Global Existence and Long Time

Behavior in Einstein-Belinski-Zakharov Soliton Spacetimes, arXiv:2305.01414. Submitted 2024.
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3.1 Introduction and main result

The Einstein vacuum equation determines a 4−dimensional manifold M with a Lorentzian
metric g̃ with vanishing Ricci curvature

Rµν(g̃) = 0. (3.1.1)

These equations can be written under certain gauge choices as a difficult system of quasilinear
equations. This is a remarkable aspect of the general relativity theory, in contrast to Newton
gravitation theory: the equation (3.1.1) is non-trivial even in the absence of matter. The
focus of this paper is the understanding of outstanding solutions of (3.1.1) in the setting of
Belinski-Zakharov spacetimes.

Salam and Strathdee [101] discussed black holes as possible solitons. Belinski and Za-
kharov [7, 9] (see also Kompaneets [71] and [117, 118]) proposed an application for the Inverse
Scattering Transform for spacetimes that admit two commuting Killing vector fields. Using
this ansatz Einstein’s vacuum field equations can be recast as a 1+1 system of four quasilinear
wave equations. In this paper we will follow their ansatz and describe rigorously symmetric
spacetimes and their long time dynamics. Symmetry has been a successful method for un-
derstanding complicated dynamics in a series of works related to dispersive models, see e.g.
[34, 45, 104] and references therein.

3.1.1 The Belinski-Zakharov Integrability ansatz

Belinski and Zakharov recalled the particular case in which the metric tensor g̃µν depends on
two variables only, which correspond to spacetimes that admit two commuting Killing vector
fields, i.e. an Abelian two-parameter group of isometries. This assumption allowed them to
propose the so-called Belinski-Zakharov transform to obtain solitonic solutions. Gravisolitons
have an unusual number of features, however, it is known that spacetimes highly important
in physics and cosmology applications, such as Kasner spacetimes, can be identified as grav-
isolitons [8, 9].

We will choose here a metric tensor depending on a time-like coordinate x0, and one space-
like coordinate x1 (possibly nonnegative). This choice, as will stay clear below, corresponds
to considering non-stationary gravitational fields, often referred to as Gowdy models [49],
even when no compact spatial sections are considered. They are also often mentioned as
generalized Einstein-Rosen spacetimes [17]. In the particular case where one has diagonal
metrics these are called Einsten-Rosen spacetimes, first considered in 1937 by Einstein and
Rosen [34].
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Set x0 = t and x1 = x. In this case the coordinates are typically expressed using Cartesian
coordinates in which xa, xb ∈ {y, z}, where the Latin indexes a, b ∈ {2, 3}. Then the space-
time interval is a simplified block diagonal form: xa, xb ∈ {y, z}, where the Latin indexes
a, b ∈ {2, 3}. Then the spacetime interval is a simplified block diagonal form:

ds2 = f(t, x)(dx2 − dt2) + gab(t, x)dx
adxb. (3.1.2)

Recall that repeated indexes mean sum, following the classical Einstein convention. Here with
a slight abuse of notation we shall denote g = gab. Due to the axioms of general relativity
the tensor g must be real and symmetric.

It is important to recall that the structure of the metric (3.1.2) is not restrictive, since,
from the physical point of view, we find many applications that can be described according
to (3.1.2). Such spacetimes describe cosmological solutions of general relativity, gravitational
waves and their interactions [8]. Among them one can find

• classical solutions of the Robinson-Bondi plane waves [15],

• the Einstein-Rosen cylindrical wave solutions and their two polarization generalizations
[17, 34],

• the homogeneous cosmological models of Bianchi types I–VII including the Kasner
model [60],

• (in the “static” setting) the Schwarzschild and Kerr solutions, and Weyl axisymmetric
solutions, see Section 8.3 in [8],

• 2-solitons, corresponding in a particular case to the Kerr-NUT (Newman-Unti-
Tamburino) black-hole solution of three parameters including Kerr, Schwartzschild and
Taub-NUT metrics [108].

For additional bibliography the reader may consult [74, 78, 79] and references therein.
All this shows that, despite its relative simplicity, a metric of the type (3.1.2) encompasses a
wide variety of physically relevant compact objects. Additionally, Belinski-Zakharov metrics
contain the so-called Gowdy spacetimes [49, 89], where the initial topology differs from our
setting. See also Section 4.1 in [8] for a deeper discussion.

In order to reduce Einstein vacuum equations (3.1.1), one needs to compute the Ricci
curvature tensor in terms of the components of the metric g = gab. The consideration of
the metric in the form (3.1.2) leads to components R0a and R3a of the Ricci tensor that are
identically zero. Therefore, one can see that Einstein vacuum equations (3.1.1) decompose
into two sets of equations. The first one follows from Rab = 0; this equation can be written
as the single tensor equation

∂t
(
α∂tgg

−1
)
− ∂x

(
α∂xgg

−1
)
= 0, det g = α2. (3.1.3)

We shall refer to this equation as the reduced Einstein equation. The trace of the equation
(3.1.3) reads

∂2t α− ∂2xα = 0. (3.1.4)

Therefore, the function α(t, x) satisfies the 1D wave equation. These equations may be
recast as equivalent to the “dynamical part” of the Einstein equations. The second set of
equations expresses the metric coefficient f(t, x) in terms of explicit terms of α and g, where
det g̃µν := −f 2α2.
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Geometrical coordinates

The fact that the 2× 2 tensor g is symmetric allows one to diagonalize it for fixed t and x.
One writes g = RDRT , where D is a diagonal tensor and R is a rotation tensor, of the form

D =

(
αeΛ 0
0 αe−Λ

)
, R =

(
cosϕ − sinϕ
sinϕ cosϕ

)
. (3.1.5)

Clearly
det g = α2. (3.1.6)

Here Λ is the scalar field that determines the eingenvalues of g, and the scalar field ϕ deter-
mines the deviation of g from being a diagonal tensor. Since ϕ is considered as an angle, we
assume ϕ ∈ [0, 2π]. Therefore Λ, ϕ and α in (3.1.5) can be considered as the three degrees of
freedom in the symmetric tensor g, [52]. Written explicitly, the tensor g is given now by

g = α

(
coshΛ + cos 2ϕ sinhΛ sin 2ϕ sinhΛ

sin 2ϕ sinhΛ coshΛ− cos 2ϕ sinhΛ

)
. (3.1.7)

Some analog representations have been used in various associated results, for example in
the Einstein-Rosen metric [17]. Note that Minkowski g̃µν = (−1, 1, 1, 1) can be recovered by
taking Λ = 0, α = 1 and ϕ free. The equation (3.1.3) reads now

∂t(α∂tΛ)− ∂x(α∂xΛ) = 2α sinh 2Λ((∂tϕ)
2 − (∂xϕ)

2),

∂t(α sinh2 Λ∂tϕ)− ∂x(α sinh2 Λ∂xϕ) = 0,

∂2t α− ∂2xα = 0,

∂2t (ln f)− ∂2x(ln f) = G,

(3.1.8)

where G = G[Λ, ϕ, α] is given by

G := −
(
∂2t (lnα)− ∂2x(lnα)

)
− 1

2α2
((∂tα)

2 − (∂xα)
2)

− 1

2
((∂tΛ)

2 − (∂xΛ)
2)− 2 sinh2 Λ((∂tϕ)

2 − (∂xϕ)
2).

(3.1.9)

Note that the equation for α(t, x) is the standard one dimensional wave equation, and can be
solved independently of the other variables. Also, given α(t, x), Λ(t, x) and ϕ(t, x), solving
for ln f(t, x) reduces to use D’Alembert formula for linear one dimensional wave with nonzero
source term. Consequently, the only nontrivial equations in (3.1.8) are given by the equations
for Λ(t, x) and ϕ(t, x), for α solution to linear 1D wave.

As one can see from (3.1.8), solutions are not unique. These fields satisfy the gauge
invariance

(Λ, ϕ, α, f) solution, then

(Λ, ϕ+ kπ, C1α,C2f) is also solution, k ∈ Z, C1, C2 > 0.
(3.1.10)

Since α 7→ C1α is just a conformal transformation in (3.1.7), with no loss of regularity we
can always assume C1 = C2 = 1 in (3.1.10). It should be noted that although (3.1.8) are
strictly non-linear in the fields Λ(t, x), ϕ(t, x), α(t, x) and f(t, x), it shares many similarities
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with the classical linear wave and Born-Infeld equations [1]: given any C2 real-valued profiles
h(s), k(s), ℓ(s),m(s), then the following functions are solutions for (3.1.8):

Λ(t, x) = h(x± t), ϕ(t, x) = k(x± t),

α(t, x) = ℓ(x± t), f(t, x) = m(x± t).

This property will be key when establishing the connection between the local theory that will
be presented in the following section and the analysis of explicit solutions to the equation in
the Section 3.6.

Coming back to our problem, and using Inverse Scattering techniques, Belinski and Za-
kharov [9] considered (3.1.3) giving first foundational results, see also [119]. They proposed
the application of the Inverse Scattering method to the equations of general relativity and
the procedure of calculating exact solitonic solutions of the equation. They introduce a
Lax-pair for (3.1.3)-(3.1.4), together with a general method for solving it. Localized and
multi-coherent structures were found, but they are not solitons in the standard sense, unless
α is constant. A more in-depth study on the subject is also made in [8, 9]. More recently,
Hadad [52] explored the Belinski-Zakharov transformation for the 1+1 dimensional setting,
obtaining explicit formulae for solutions constructed on arbitrary diagonal backgrounds, in
particular on the Einstein-Rosen background. With the detection of gravitational waves ob-
tained by the twin LIGO interferometers and their description as a merger of two black holes,
the study of gravitational soliton dynamics has gained huge importance. It should be noted
that the class of gravitational soliton solutions, as mentioned above, includes cosmological
solutions which describe non-homogeneous cosmological models, i.e. waves propagating with
subluminal velocity.

The local behavior of the spacetime described before is defined by the function α. In our
setting, α will be an always positive and bounded function. These characteristics will be
provided by the initial conditions that will be imposed on the problem. The gradient of the
function α(t, x) can be timelike, spacelike or null. The case where α is spacelike everywhere in
spacetime ((∂xα)

2− (∂tα)
2 > 0) corresponds to spacetimes said “with cylindrical symmetry”,

which corresponds to the Einstein Rosen spacetime, for example. They give an approach to
the description of gravitational waves. When the gradient of α is globally null, ((∂xα)

2 −
(∂tα)

2 = 0), it corresponds to the plane-symmetric waves. Finally, the last case, when the
gradient of α is globally timelike ((∂xα)

2−(∂tα)
2 < 0) is used to describe cosmological models

and colliding gravitational waves, see [6, 8, 17, 34]. It will be precisely the timelike case the
focus in this work. This classification for the gradient of the function α is necessary in order
to propose an appropriate definition of energy and to be capable of giving a description of
the decay of the solution associated with the system.

In a previous work [109] one of us considered the case when α is a constant function.
Such consideration simplified the system (3.1.8) and identified it with the Principal Chiral
Field model (PCF). This approach allowed us to give a first global existence result and local
decay in space. It should be noted that, in the case of constant α, the results obtained
cannot be extrapolated to the case of the Einstein equation in vacuum since essentially PCF
is not exactly the case α = const. in (3.1.8), but instead one has to completely eliminate the
equation for f . A different situation is obtained when considering the case in which α(t, x) is
a more general function; in this case, the results are completely identifiable with the Einstein
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equation, so it automatically becomes a more interesting and complex problem to analyze.
Unfortunately we are forced to consider only half of the α axis because, in general, the points
α = 0 correspond to the physical singularity through which the metric cannot be extended
[6, 8].

The study of hyperbolic nonlinear differential equations has been developed enormously
since the early 1980s, following the pioneering work of F. John, D. Christodoulou, L. Hor-
mander, S. Klainerman, and others. Much of the effort was focused on understanding the
global existence and blow-up for quasilinear wave equations or systems. An overview of the
main results can be found in [55]. Furthermore, a description from the geometrical analysis
is presented in [5, 106], where the stability results of the Minkowski space, demonstrated
by Christodoulou and Klainerman [24], are explained. It is also described how these re-
sults meant the starting point for the mathematical development of the framework of general
relativity.

In the particular setting of R1+3, the nonlinear wave equation with null condition1 has
been intensively studied, and many deep applications in physics and geometry have been
found. Klainerman, in his seminal work [63], introduces the celebrated null condition. Using
an approach subject to suitable small initial data, he constructs global solutions for the
problem, setting a trend and line of work in that direction. Christodoulou [23] also showed
independently the existence of smooth solutions to the nonlinear wave equation with small
initial data. It should be noted that the null condition is a sufficient, but not necessary
condition for global existence, see for example [83, 84]. Alinhac in [3] showed global existence
for small initial data in two dimensions in space, conditioning with a more restrictive null
form on nonlinearity.

Global small solutions in 1+1 dimensions may not exist in general [43, 44]. In particular,
in R1+1 we have an added difficulty, since waves do not decay in the same way in higher
dimensions. However, the special structure in the nonlinearity can give rise to important
results related to the asymptotic behavior of solutions, as in the case of the wave map [20].
In a recent paper, Luli et. al. [85] used weighted estimates for linear waves in R1+1, and
the null condition, to construct global solutions for the associated nonlinear equation. These
energy estimates allowed them to improve the decay on the null form.

3.1.2 Main results

Our first result in this paper is the global existence of solutions. For (3.1.8) we consider
constraints on the initial conditions for α(t, x). Using the D’Alembert formula we have an
explicit expression for α that allows us to obtain tight control over appropriate terms by also
using the central structure related to null forms. Although the nonlinearity is not purely
defined in terms of null forms, we can follow and adapt properly in the case of variable
coefficients the weighted energy estimates proposed in [85] to approach the problem and
finally obtain a small data global existence result for (3.1.8).

1For the forthcoming analysis it is convenient to introduce a fundamental null form, which is defined as
the following bilinear form:

Q0(ϕ, Λ̃) = mαβ∂αϕ∂βΛ̃,

where mαβ to denote the standard Minkowski metric on R1+1.
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Theorem 3.1.1 (Small data global existence). Let λ > 0, c1 > 0 be fixed, and set

Λ =: λ+ Λ̃, and α := 1 + α̃. (3.1.11)

Consider the wave system (3.1.8) posed in R1+1, with the following initial conditions:

(IC)


(ϕ, Λ̃, α, f)|{t=0} = (εϕ0, εΛ̃0, 1 + α̃0, c1 + f0),

(∂tϕ, ∂tΛ̃, ∂tα, ∂tf)|{t=0} = (εϕ1, εΛ̃1, α1, f1),

(ϕ0, Λ̃0, α̃0, f0) ∈ (C∞
c (R))4 ,

(ϕ1, Λ̃1, α1, f1) ∈ C∞
c (R)× C∞

c (R)× S(R)× S(R).

(3.1.12)

Assume the following bounds on the initial conditions:

1. α1(·) > 0,

2. maxn=0,1,2

(
∥∂(n)x α̃0∥∞ + ∥∂(n)x α1∥∞

)
< 1

2
γ, where γ is a fixed sufficiently small con-

stant, but independent on ε.

3. ||f0||∞ ≤ c1
2
,

4. the initial data satisfy the compatibility conditions required by Einstein’s field equations.

Then, there exists ε0 sufficiently small such that if ε < ε0, the unique solution remains smooth
for all time.

Remark 3.1.1. Note that the conditions on α1 and f are less demanding than the ones
required for α0. Indeed, one only needs data in the Schwartz class S(R) and compact support
is not necessary; this will be useful in some applications.

Recall that α is solution to the linear wave equation in 1D but far from zero. Along the
paper we will see that this condition is necessary and natural in view of (3.1.6). Consequently,
one only expects decay in the Ḣ1 × L2 norm, precisely as in [1]. A direct consequence of
Theorem 3.1.1 is the global existence of the Belinski-Zakharov metric (3.1.2):

Corollary 3.1.1. Under the assumptions in Theorem 3.1.1, g and f in (3.1.2) are globally
well-defined.

Remark 3.1.2. In view of the fact that the Einstein equations are a geometrical problem,
it is important to note that, in order to formulate the equations in general relativity as a
initial value problem, the initial data must satisfy compatibility conditions known as Einstein
constraint equations. Yvonne Choquet-Bruhat in her pioneering work [21] proved the local
existence and uniqueness for the Einstein equations in vacuum when given a set of initial
data (Σt, g̊, k̊) where Σt is a spacelike hypersurface of M, g̊ a Riemannian metric on Σt and
k̊ the associated second fundamental form. The result is valid when g̊ and k̊ satisfy the so-
called constraint equations, which are geometric conditions on the problem, see also [22] to
help understand the importance and complexity of the problem.

The Einstein constraint equations constitute a problem of great interest since from them
emerge a nontrivial system of elliptic equations, which has been studied from different in-
teresting fronts. Huneau in [57] obtained the existence of solutions for these compatibility
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conditions, assuming the existence of a translational spacelike Killing field in the asymptot-
ically flat case, this hypothesis allowed her to move from a 3+1 dimensional problem to a
2+1 dimensional one and from that, rewrite the Einstein constraint equations in a suitable
form. Also, Premoselli [97], using conformal method, obtains an admissible initial data for
the conformal Einstein-scalar constraint system. Recently Fournoduvlos et. al. [42], assumes
a constant main curvature condition on the hypersurface, to study the development of singu-
larities for a generalized Kasner metric. In this work we assume that the initial conditions
associated with the fields Λ, α, ϕ and f allow us to describe a spatial metric g̊ on the hyper-
surface associated with t = 0, such that the Einstein constraint equations are satisfied. It is
of independent interest to make a description and in-depth study of the constraint equations
for the specific cases of metrics that are identified with the formalism proposed by Belinski
and Zakharov.

Remark 3.1.3. The problem of global existence under general data size is delicate. Indeed,
(3.1.8) is clearly singular in the case where Λ reaches the zero value. Also, the global structure
of the solution in this case seems not clear unless one has further assumptions on the initial
data. These geometric problems will be considered in a forthcoming publication.

The second result in this work concerns the decay of a specific type of solutions of the
Einstein equations in the vacuum. Specifically of cosmological type solutions, which are of
special interest in physics and cosmology. This type of solutions include the Kasner type
spacetimes, as well as some Bianchi type models, see [8]. We will prove, using well-chosen
virial estimates that for solutions to (3.1.8) with finite energy (in particular, globally defined
small solutions from Theorem 3.1.1), they must decay to zero locally in space, provided that
the gradient of the function α(t, x) is globally timelike.

Indeed, virial functionals can describe in great generality the decay mechanism for models
where standard scattering is not available, either because the dimension is too small, or the
nonlinearity is long range, see e.g. [72, 73]. We will prove this result inspired by the results
obtained for the Born-Infeld equation in 1+1 dimensions [1].

Before proving this result, we introduce the following modified energy of the system,
which in the case of cosmological type solutions will be highly relevant (see Section 3.4):

E[Λ, ϕ;α](t) := −
∫
[κ∂tα(h1 − 2h2)](t, x)dx, (3.1.13)

where κ(t, x) =
α

(∂xα)2 − (∂tα)2
,

h1(t, x) = (∂tΛ)
2 + (∂xΛ)

2 + 4 sinh2(Λ)((∂xϕ)
2 + (∂tϕ)

2), (3.1.14)

and
h2(t, x) = ∂tΛ∂xΛ + 4 sinh2(Λ)∂tϕ∂xϕ.

This (nonconserved) energy is a modified version of the one introduced by Hadad [52], which
was not sufficiently useful in our purposes. Here (3.1.13) has important modifications to
ensure the positivity of the energy functional. Compared with our previous results [109] in
the case of the Principal Chiral Equation, here the energy and momentum terms require
deeper understanding and much more work than before.
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For this theorem we shall assume the cosmological condition

α(t, x) > 0, ∂tα(t, x) > 0,

(∂tα)
2(t, x)− (∂xα)

2(t, x) < 0, ∀(t, x) ∈ [0,∞)× R.
(3.1.15)

Theorem 3.1.2 (Existence of a modified energy). Let (Λ, ϕ, α)(t) be a smooth solution of
the system (3.1.8) such that α satisfies (3.1.15). Then the modified energy E[Λ, ϕ;α](t) is
well-defined and nonnegative.

Recall that the existence of a suitable energy is one of the key elements needed to study
long time behavior in Hamiltonian-type systems. In our setting, the energy E will not be
preserved in time, but under suitable conditions, already satisfied by solutions in Theorem
3.1.1, it will be bounded in time. The following remark clarifies this point:

Remark 3.1.4 (On the cosmological type condition). Condition (3.1.15) is not empty. In-
deed, in the case of small data as in Theorem 3.1.1, a sufficient condition to ensure (3.1.15)
is that

|α′
0(x)| < α1(x), ∀x ∈ R.

This condition is in concordance with (3.1.12), where α1 has been chosen to belong to a not
compactly supported space.

Now we are ready to state the result that we consider the most important in this work.

Theorem 3.1.3 (Decay of cosmological finite-energy spacetimes). Under the hypotheses in
Theorem 3.1.2, assume in addition that one has

(a) bounded energy condition:
sup
t≥0

E[Λ, ϕ;α](t) < +∞; (3.1.16)

(b) for some c0 > 0 one has

α(t, x) > c0 and ∂tα is in the Schwartz class uniformly in time. (3.1.17)

Then, for any v ∈ R, |v| < 1, and ω(t) = t(log t)−2, one has

lim
t−→+∞

∫
|x−vt|≲ω(t)

[
(∂tΛ)

2 + (∂xΛ)
2 + sinh2(Λ)

(
(∂tϕ)

2 + (∂xϕ)
2
)]
dx = 0. (3.1.18)

Remark 3.1.5 (On the finite energy condition). Globally defined solutions obtained from
Theorem 3.1.1 satisfy the finite energy condition (3.1.16) thanks to suitable weighted esti-
mates. Moreover, they also satisfy (3.1.17) in the case where the first line in (3.1.15) is
satisfied. In that sense, Theorem 3.1.3 is more general and might be satisfied by large solu-
tions, as explained in Section 3.6 where applications to Kasner spacetimes are presented.

A simple corollary in terms of the spacetime tensor g can be obtained:

Corollary 3.1.2. Under the hypotheses in Theorem 3.1.3, one has that g in (3.1.2) satisfies

lim
t−→+∞

∫
|x−vt|≤ω(t)

(
(∂t det g)

2 + (∂x det g)
2
)
(t, x)dx = 0. (3.1.19)
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Vanishing property (3.1.19) can be understood as the manifestation that the spacetime is
of cosmological type, and information propagates with the speed of light, supported on the
light cone.

Aplications to gravisolitons. One of the motivations of Belinski and Zakharov was to show
the existence of gravitational solitons (gravisolitons). From the mathematical point of view,
these are of solitonic type, although they exhibit a number of features unusual in this type of
solutions [8]. In this paper, we apply Theorem 3.1.1 and 3.1.3 to the cosmological 1-soliton
obtained from a nonsingular generalized Kasner metric, see (3.6.2) and (3.6.9)-(3.6.10) for
the explicit formulae. In particular, we shall prove (Corollaries 3.6.1 and 3.6.2):

Theorem 3.1.4. The cosmological 1-soliton (Λ, ϕ, α) obtained from a nonsingular generalized
Kasner metric of parameter d ≥ 1 is globally defined under suitable small perturbations in
the case where α satisfies the hypotheses of Theorem 3.1.1, and satisfies

lim
t→+∞

∫
|x−vt|≤ω(t)

[
(∂tΛ)

2 + (∂xΛ)
2 + sinh2(Λ)

(
(∂tϕ)

2 + (∂xϕ)
2
)]

(t, x)dx = 0.

in the case where α is of cosmological type and satisfies the hypotheses of Theorem 3.1.3.
Moreover, it propagates with the speed of light.

Notice that conditions in Theorem 3.1.4 are essentially only depending on α, and in some
sense this function determines the final behavior of solutions. The generalized Kasner metric
discussed in Theorem 3.1.4 avoids some undesirable bad behavior at the time origin, although
we believe that standard Kasner metrics should satisfy a result similar to Theorem 3.1.4.

3.1.3 More results and future research

The study of Einstein’s field equations has a long history of important developments.
Choquet-Bruhat [21, 22] gave a foundational mathematical description of the evolution of
initial data. A complete mathematical understanding of well-known black holes has taken
many years. The stability of the Kerr black hole was recently obtained in a series of works
by Klainerman, Szeftel and Giorgi [47, 64, 65, 66, 67]. In the case of the Schwarzschild black
hole, Dafermos, Holzegel, Rodnianski and Taylor [28, 29, 30] showed codimensional stability
and the asymptotic stability. Finally, Hintz and Vasy [54] proved nonlinear stability of Kerr
under de Sitter gravity.

In the case of the Einstein equations, symmetries are very important (see e.g. the binary
black hole merging LIGO simulations). Given the complexity of the Einstein equations, this
is a natural form to approach otherwise untreatable problems. A particular result is the
strong cosmic censorship conjecture, which states that for a generic initial data, the MGHD2

is inextensible. In vaccuum, Ringström provided important results in the framework of the so-
called Gowdy symmetry, see [99, 100]. Smulevici studied the same issue for T2-symmetric3

2Yvonne Choquet-Bruhat showed that it is possible to formulate the Einstein vacuum equations can be
viewed as an initial value problem [21], and given the initial data there is a part of spacetime, the so-called
maximum global hyperbolic development (MGHD), which is uniquely determined up to isometry.

3A spacetime (M, g) is said to be T 2-symmetric if the metric is invariant under the action of the Lie
group T 2 and the group orbits are spatial. These solutions constitute a class of spacetimes admitting a torus
action.
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3.2. LOCAL EXISTENCE

spacetimes with positive cosmological constant [105]. Gowdy spacetimes have also been
considered as a model to study gravitational waves and mathematical cosmology [49]. The
compatibility of the initial data with the conditions known as constraint equations is another
important issue. Huneau et. al. considered spacetimes with a translational Killing vector,
i.e. a symmetry with respect to one of the spatial coordinates [57].

Organization of this chapter

This chapter is organized as follows. Section 3.2 presents a summary of the local existence
result for system (3.1.8), which relies, as in [109], on a particular energy estimate. In the
Section 3.3 we prove the small initial data global existence result, namely Theorem 3.1.1.
Section 3.4 is focused on presenting a formalism suitable for the energy and momentum
densities for (3.1.8), in the particular case of cosmological type solutions. Then in Section
3.5 we present and prove the long term behavior result, Theorem 3.1.3. Finally, Section 3.6
is devoted to an application in the case of Kasner metrics.
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3.2 Local existence

Before presenting the proof of global existence for the system, it is important to make some
remarks to convince us that we first have a theory of local existence for the system (3.1.8).
The first thing that we need is to set the initial conditions for the one-dimensional wave
equation for α, which allow us to obtain a bounded and positive solution of this equation.
These conditions are not only needed to establish the local existence, but also to obtain the
global existence and to be subsequently able to make an analysis of the long-term behavior
of the corresponding finite energy solution, as we will see in the further sections. In order to
develop the results related to the local theory for the nonlinear wave equation, let us write
the function Λ(t, x) in the form

Λ(t, x) := λ+ Λ̃(t, x), λ ̸= 0. (3.2.1)

Notice that this choice makes sense with the energy in (3.1.13), in the sense that Λ ∈ Ḣ1

and ∂tΛ ∈ L2. Without loss of generality, we assume λ > 0. We consider the following vector
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notation 

Ψ =
(
Λ̃, ϕ

)
, ∂Ψ =

(
∂tΛ̃, ∂xΛ̃, ∂tϕ, ∂xϕ

)
,

|∂Ψ|2 =
∣∣∂tΛ̃∣∣2 + ∣∣∂xΛ̃∣∣2 + |∂tϕ|2 + |∂xϕ|2,

F (Ψ, ∂Ψ) = (F1, F2) ,

F1(Ψ, ∂Ψ) := 2 sinh(2λ+ 2Λ̃) ((∂xϕ)
2 − (∂tϕ)

2) ,

F2(Ψ, ∂Ψ) :=
sinh(2λ+ 2Λ̃)

sinh2(λ+ Λ̃)

(
∂tϕ∂tΛ̃− ∂xϕ∂xΛ̃

)
.

With this notation, the initial value problem for (3.1.8) can be studied by first focusing on
the following initial-value problem for (Ψ, ∂tΨ):{

∂µ(m
µνα∂νΨ) = F (Ψ, ∂Ψ)

(Ψ, ∂tΨ)|{t=0} = (Ψ0,Ψ1) ∈ H.
(3.2.2)

Here mµν are the components of the Minkowski metric with µ, ν ∈ {0, 1}, and the function
α := 1 + α̃, satisfies the following initial valued problem

∂2t α− ∂2xα = 0

(α, ∂tα)|t=0 = (1 + α̃0, α1)

with (α̃0, α1) ∈ C∞
c (R)× S(R).

(3.2.3)

Assume the following bounds on the initial conditions in (3.2.3):

1. α1(·) > 0,

2. maxn=0,1,2

(
∥∂(n)x α̃0∥∞

)
+ maxn=0,1

(
∥∂(n)x α1∥∞

)
< 1

2
γ, where γ is a fixed sufficiently

small constant, but independent on ε.

Notice that these conditions are already stated in Theorem 3.1.1. In addition, we will seek
for solutions in the space

(Ψ, ∂tΨ) ∈ H := H1(R)×H1(R)× L2(R)× L2(R).

Notice that from (3.2.1), Λ ∈ Ḣ1. We are also going to impose the following condition on
the initial data

∥(Ψ0,Ψ1)∥H ≤ λ

2D
. (3.2.4)

where D is a suitable constant. In order to state a local existence result for the initial value
problems (3.2.2), is important to recall the following result [106]:

Lemma 3.2.1. Let ψ : I × R −→ R, I ⊆ R, be the solution of the initial value problem{
∂µ(a

µν∂νψ) = f(t, x), (t, x) ∈ I × R,
(ψ, ∂tψ)|{t=0} = (ψ0, ψ1) ∈ Hk(R)×Hk−1(R),

75



3.3. PROOF OF GLOBAL EXISTENCE – THEOREM 3.1.1

where k be a positive integer and a and all its derivatives (of all orders) are bounded in
[0, T ]× R. Then for some positive constant C = C(k), the following energy estimate holds

sup
t∈[0,T ]

∥(ψ, ∂tψ)∥H

≤ C

(
∥(ψ0, ψ1)∥H1(R)×L2(R) +

∫ T

0

∥f∥Hk−1(R) (t)dt

)
exp

(
C

∫ T

0

∥∂a∥L∞(R) (t)

)
.

(3.2.5)

Now, we can propose the following result for the initial-value problem (3.2.2):

Proposition 3.2.1. If (Ψ0,Ψ1) satisfies the condition (3.2.4) with an appropriate constant
D ≥ 1, then:

(1) (Existence and uniqueness of local-in-time solutions). There exists

T = T

(∥∥∥(Λ̃0, ϕ0

)∥∥∥
H1(R)×H1(R)

,
∥∥∥(Λ̃1, ϕ1

)∥∥∥
L2(R)×L2(R)

, λ

)
> 0,

such that there exists a (classical) solution Ψ to ( 3.2.2) with

(Ψ, ∂tΨ) ∈ L∞([0, T ];H).

Moreover, the solution is unique in this function space.

(2) (Continuous dependence on the initial data). Let Ψ
(i)
0 ,Ψ

(i)
1 be sequence such that

Ψ
(i)
0 −→ Ψ0 in H1(R) × H1(R) and Ψ

(i)
1 −→ Ψ1 in L2(R) × L2(R) as i −→ ∞. Then

taking T > 0 sufficiently small, we have∥∥(Ψ(i) −Ψ, ∂t(Ψ
(i) −Ψ)

)∥∥
L∞([0,T ];H)

−→ 0.

Here Ψ is the solution arising from data (Ψ0,Ψ1) and Ψ(i) is the solution arising from

data
(
Ψ

(i)
0 ,Ψ

(i)
1

)
.

Sketch of proof. The idea of the proof is standard in the literature (see e.g. Luk [86]), in
this case we must identify the component of a in (3.2.5) con a00 = a11 := α(t, x), and
a01 = a10 = 0. Then we can use the energy estimate (3.2.5). The rest of the proof, for this
particular system, can be seen into detail in [109, Proposition 1], only an adaptation in the
estimation of energy to be used is required. This ends the proof of Proposition 3.2.1.

3.3 Proof of Global Existence – Theorem 3.1.1

3.3.1 Preliminaries

We begin this section by introducing some basic definitions, and certain important results
that will be useful for describe our result. For full details on the notation and considered
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norms, see [5, 85] and our previous work [109]. We will use two coordinate systems: the
standard Cartesian coordinates (t, x) and the null coordinates (u, u):

u :=
t+ x

2
, u :=

t− x

2
, (3.3.1)

and consider the two null vector fields defined globally as

L = ∂t + ∂x, L = ∂t − ∂x. (3.3.2)

In the same way as in [5, 85, 109] we consider the weight function φ defined as

φ(u) := (1 + |u|2)1+δ with 0 < δ < 1/3. (3.3.3)

Recall that from initial conditions (3.1.12) we have α0 := 1+α̃0 and also have the following
facts, which are easy to check:

(i) Since α̃0 ∈ C∞
c (R) and α1 ∈ S(R), with α1 > 0, one has for some fixed constant

K1, K2 > 0 such that,

||α̃0||∞ <
γ

2
, |α(n)

0 (2u)| ≤ K1γ

φ3/4(u)
, n = 1, 2, (3.3.4)

and

|α(n)
1 (2u)| ≤ K2γ

φ3/4(u)
, n = 0, 1. (3.3.5)

(ii) Using the classical D’Alambert formula in the third equation in (3.1.8) which correspond
to one-dimensional wave equation for α, we obtain :

α(t, x) =
1

2

(
2 + α̃0(2u) + α̃0(−2u) +

∫ 2u

0

α1(s)ds−
∫ −2u

0

α1(s)ds

)
, (3.3.6)

(iii) Moreover, the derivatives of the function α will be described as:
∂xα = 1

2
(α̃′

0(2u) + α̃′
0(−2u) + α1(2u)− α1(−2u))

∂tα = 1
2
(α̃′

0(2u)− α̃′
0(−2u) + α1(2u) + α1(−2u))

∂2xα = 1
2
(α̃′′

0(2u) + α̃′′
0(−2u) + α′

1(2u)− α′
1(−2u))

∂t,xα = 1
2
(α̃′′

0(2u)− α̃′′
0(−2u) + α′

1(2u) + α′
1(−2u)) .

(3.3.7)

(iv) The following relations for the null vector field L and L hold:

|L(lnα)| ≤ |∂xα + ∂tα| = |α̃′
0(2u) + α1(2u)| ≲

K1γ

φ3/4(u)
.

|L(∂x(lnα))| ≤
1

2
|(α̃′

0(2u) + α̃′
0(−2u) + α′

1(2u)− α′
1(−2u)) (α̃′

0(2u) + α1(2u))|

+ |α̃′′
0(2u) + α′

1(2u)| ≲
K1γ

φ3/4(u)
.

|L(∂x(lnα))| ≤
1

2
|(α̃′

0(2u) + α̃′
0(−2u) + α′

1(2u)− α′
1(−2u)) (α̃′

0(2u) + α1(2u))|

+ |α̃′′
0(2u) + α′

1(2u)| ≲
K1γ

φ3/4(u)
.

(3.3.8)
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From now on, we will consider the conformal Killing vector fields on R1+1 given by

(1 + |u|2)1+δL, (1 + |u2|)1+δL,

with 0 < δ1/3. We also consider the following integration regions:

• St0 denotes the following time slice in R1+1:

St0 := {(t, x) : t = t0} .

• Dt0 denotes the following region of spacetime

Dto := {(t, x) : 0 ≤ t ≤ t0} , Dt0 =
⋃

0≤t≤t0

St0 .

The level sets of the functions u and u define two global null foliations of Dt0 . More precisely,
given t0 > 0, u0 and u0, we define the rightward null curve segment Ct0,u0

as:

Ct0,u0
:=

{
(t, x) : u =

t− x

2
= u0, 0 ≤ t ≤ t0

}
, (3.3.9)

and the segment of the null curve to the left Ct0,u0 as:

Ct0,u0 :=

{
(t, x) : u =

t+ x

2
= u0, 0 ≤ t ≤ t0

}
. (3.3.10)

The space time region Dt0 is foliated by Ct0,u0
for u ∈ R, and by Ct0,u0 for u ∈ R.

Finally, we will consider the following energy estimate proposed in [4, 85] for the scalar
linear wave equation □ψ = ρ (τ ∈ [0, t] in Ct,u and Ct,u). There exists C0 > 0 such that∫

St

[
(1 + |u|2)1+δ|Lψ|2 + (1 + |u|2)1+δ|Lψ|2

]
dx

+ sup
u∈R

∫
Ct,u

(1 + |u|2)1+δ|Lψ|2dτ + sup
u∈R

∫
Ct,u

(1 + |u|2)1+δ|Lψ|2dτ

≤ C0

∫
S0

[
(1 + |u|2)1+δ|Lψ|2 + (1 + |u|2)1+δ|Lψ|2

]
dx

+ C0

∫∫
Dt

[
(1 + |u|2)1+δ|Lψ|+ (1 + |u|2)1+δ|Lψ|

]
|ρ|dτdx.

(3.3.11)

3.3.2 Global existence for (Λ̃, ϕ)

Recall that α was already solved in (3.3.6) and from (3.1.8) ln f is completely determined
if we know (Λ, ϕ). Now we state a modified version of the main theorem, written in the
variables (Λ̃, ϕ), introduced in (3.1.11).

For the forthcoming analysis it is convenient to introduce a fundamental null form, which
is defined as the following bilinear form:

Q0(ϕ, Λ̃) = mαβ∂αϕ∂βΛ̃,
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where mαβ to denote the standard Minkowski metric on R1+1. Then, using this definition,
one can rewrite the first two equations of the system (3.1.8) in terms of null forms as follows:

□Λ̃ = Q0(lnα, Λ̃)− 2 sinh(2λ+ 2Λ̃)Q0(ϕ, ϕ),

□ϕ = Q0(lnα, ϕ) +
sinh(2λ+ 2Λ̃)

sinh2(λ+ Λ̃)
Q0(ϕ, Λ̃).

(3.3.12)

It can be also noticed that the null structure is “quasi-preserved” after differentiating with
respect to x, in the sense that

∂xQ0(ϕ, Λ̃) = Q0(∂xϕ, Λ̃) +Q0(ϕ, ∂xΛ̃). (3.3.13)

Additionally, we have the following relation between the null form and the Killing vector
fields L and L

Q0(∂
p
xϕ, ∂

q
xΛ̃) ≲ |L∂pxϕ||L∂qxΛ̃|+ |L∂pxϕ||L∂qxΛ̃|, (3.3.14)

where the implicit constant is independent of (Λ̃, ϕ).

Motivated by estimation (4.2.6) and [5, 85, 109], we define the space-time weighted energy
norms, valid for k = 0, 1:

Ek(t) =
∫
St

[
(1 + |u|2)1+δ|L∂kxΛ̃|2 + (1 + |u|2)1+δ|L∂kxΛ̃|2

]
dx,

Ek(t) =

∫
St

[
(1 + |u|2)1+δ|L∂kxϕ|2 + (1 + |u|2)1+δ|L∂kxϕ|2

]
dx,

Fk(t) = sup
u∈R

∫
Ct,u

(1 + |u|2)1+δ
∣∣∣L∂kxΛ̃∣∣∣2 ds+ sup

u∈R

∫
Ct,u

(1 + |u|2)1+δ|L∂kxΛ̃|2ds,

Fk(t) = sup
u∈R

∫
Ct,u

(1 + |u|2)1+δ
∣∣L∂kxϕ∣∣2 ds+ sup

u∈R

∫
Ct,u

(1 + |u|2)1+δ|L∂kxϕ|2ds.

(3.3.15)

Then, using (4.4.7) we define the total energy norms as follows:

E(t) = E0(t) + E1(t).

Analogously one defines F(t), E(t), and F(t).

Remark 3.3.1. We note that if t = 0 then from (3.3.9) and (3.3.10) one has F(0) = F(0) =
0. Also, for E(t) the initial data determines a constant C1 so that

E(0) = C1ε
2. (3.3.16)

This exact bound will be used by the end of the proof of global existence, more specifically in
(3.3.26).

We are now ready to state and to prove the main result of this section:

Theorem 3.3.1. Under the assumptions in Theorem 3.1.1, the following are satisfied. As-
sume that the solution (Λ̃, ϕ) of the system (3.3.12) exists for t ∈ [0, T ∗] satisfying the bounds

E(t) + F(t) ≤ 6C0C1ε
2, (3.3.17)
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E(t) + F(t) ≤ 6C0C1ε
2, (3.3.18)

and

sup
t∈[0,T ∗]

∥∥∥Λ̃∥∥∥
L∞(R)

≤ λ

2
. (3.3.19)

Then for all t ∈ [0, T ∗] there exists a universal constant ε0 (independent of T ∗) such that the
previous estimates are improved for all ε ≤ ε0.

The previous result ensures that the solution (Λ̃, ϕ) constructed via an iterative method is
global in time and satisfies the bounds (4.4.8)-(4.4.10), consequently we can finally conclude
the proof of the Theorem 3.1.1.

3.3.3 Proof of Theorem 4.4.1

For simplicity, we work with the first equation of the system (3.3.12). An analogous study of
the equation for the field ϕ shows the same outcome, proving that ϕ is also globally defined.

The proof is based on the bootstrap method; i.e., we will assume that the weighted
energies E(t), F(t) are bounded by some particular constant. Then, we will show that the
corresponding solution defined in [0, T ∗] decays. Since the initial data are small, this allows us
to show that the weighted energies are bounded by some better constant. Thus, by continuity,
we conclude that the weighted energy cannot grow to infinity in any finite time interval and
therefore, using the local existence theorem, the solution exists for all time.

This procedure has been done before in several works, see e.g. [85, 109]. however, in
this work we have several complications coming from the new wave field α, which has to be
correctly estimated in order to preserve the wave-like character of the system (3.3.12).

Deriving the first equation of (3.3.12) and using (4.4.2) we obtain:

□∂xΛ̃ = ρ1 + ρ2, (3.3.20)

whereρ1 := Q0(∂x(lnα), Λ̃) +Q0(lnα, ∂xΛ̃),

ρ2 := −2
[
sinh(2λ+ 2Λ̃) (Q0(∂xϕ, ϕ) +Q0(ϕ, ∂xϕ)) + 2∂xΛ̃ cosh(2λ+ 2Λ̃)Q0(ϕ, ϕ)

]
.

(3.3.21)
We can see that the null structure is “quasi-preserved” after differentiating with respect to
x. We will use a bootstrap argument as in the (3+1)-dimensional case [63]. Fix δ ∈ (0, 1).
Under the assumptions (4.4.8)-(4.4.9)-(4.4.10) for all t ∈ [0, T ∗], we assume that the solution
remains regular, to later show that these bounds are maintained, with a better constant.

80



3.3. PROOF OF GLOBAL EXISTENCE – THEOREM 3.1.1

Consider k = 0, 1. Using (4.2.6) on (3.3.12), with ψ = ∂kxΛ̃ and (4.4.11)-(4.4.12). Taking
the sum over k = 0, 1, we obtain

E(t) + F(t) ≤ 2C0E(0)

+ 2C0

∫∫
Dt

(
(1 + |u|2)1+δ|LΛ̃|+ (1 + |u|2)1+δ|LΛ̃|

) ∣∣∣Q0(lnα, Λ̃)
∣∣∣ |Q0(ϕ, ϕ)|

+ 2C0

∫∫
Dt

(
(1 + |u|2)1+δ|LΛ̃|+ (1 + |u|2)1+δ|LΛ̃|

) ∣∣∣sinh(2λ+ 2Λ̃)
∣∣∣ |Q0(ϕ, ϕ)|

+ 2C0

∫∫
Dt

(
(1 + |u|2)1+δ|L∂xΛ̃|+ (1 + |u|2)1+δ|L∂xΛ̃|

)
|ρ1|

+ 2C0

∫∫
Dt

(
(1 + |u|2)1+δ|L∂xΛ̃|+ (1 + |u|2)1+δ|L∂xΛ̃|

)
|ρ2| =:

5∑
j=0

Aj.

(3.3.22)

In the framework of the energy integrals already established, and given the symmetry of the
terms, it is sufficient to establish the control of the terms A1 + A3 in (4.4.14), as follows:

A1 + A3 =

I1︷ ︸︸ ︷∫∫
Dt

φ(u)|LΛ̃||Q0(lnα, Λ̃)|+

I2︷ ︸︸ ︷∫∫
Dt

φ(u)|LΛ̃||Q0(∂x(lnα), Λ̃) +Q0(lnα, ∂xΛ̃)|

+

∫∫
Dt

φ(u)|LΛ̃||Q0(lnα, Λ̃)|︸ ︷︷ ︸
I3

+

∫∫
Dt

φ(u)|LΛ̃||Q0(∂x(lnα), Λ̃) +Q0(lnα, ∂xΛ̃)|︸ ︷︷ ︸
I4

.

(3.3.23)

Let us start with the integral I1 in the term below, using (4.4.3) we get:

I1 :=

∫∫
Dt

φ(u)|LΛ̃||Q0(lnα, Λ̃)|

≲
∫∫

Dt

φ(u)|LΛ̃|[|L(lnα)||LΛ̃|+ |L(lnα)||LΛ̃|] =: I1,1 + I1,2.

(3.3.24)

We will analyze into detail each part in this integral. For this, we recall the following result
due to Luli et. al. in [85]:

Lemma 3.3.1 ([85], Lemma 3.2). Under assumptions (4.4.8) and (4.4.9), there exists a
universal constant C2 > 0 such that:

|LΛ̃(t, x)| ≤ C2ε

(1 + |u|2)1/2+δ/2
, |Lϕ(t, x)| ≤ C2ε

(1 + |u|2)1/2+δ/2
,

|LΛ̃(t, x)| ≤ C2ε

(1 + |u|2)1/2+δ/2
, |Lϕ(t, x)| ≤ C2ε

(1 + |u|2)1/2+δ/2
.

Consider now Lemma 4.4.1 and the definition of φ in (4.2.5). Also, consider the inequal-
ities for α (4.4.5), and (4.4.6). We obtain

I1,1 :=

∫∫
Dt

φ(u)|LΛ̃|2|L(lnα)| ≲
∫
R

K1γ

φ3/4(u)

[∫
Ct,u

φ(u)|LΛ̃|2ds

]
︸ ︷︷ ︸

≲F(t)

du ≲ K1γε
2.
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For the second integral in (3.3.24) consider

K := max{K1, K2}. (3.3.25)

Using again (3.3.7), (4.4.4)-(4.4.5) and (4.4.6) and (4.4.1) we have

I1,2 :=

∫∫
Dt

φ(u)|LΛ̃||LΛ̃||L(lnα)| ≲
(∫∫

Dt

φ(u)|LΛ̃|2|LΛ̃|
)1/2(∫∫

Dt

φ(u)
K2γ2

φ3/2(u)
|LΛ̃|

)1/2

≲

(∫
R

C2ε

φ1/2(u)

∫
Ct,u

φ(u)|LΛ̃|2du

)1/2(∫
R

C2ε

φ1/2(u)

∫
Ct,u

4K2γ2

φ1/2(u)
du

)1/2

≲ K(C2ε
3)1/2(C2γ

2ε)1/2 = KC2γε
2.

For the integral I2 in (3.3.23), we have from (4.4.3) that

I2 =

∫∫
Dt

φ(u)|LΛ̃||Q0(∂x(lnα), Λ̃) +Q0(lnα, ∂xΛ̃)|

≤
∫∫

Dt

φ(u)|LΛ̃|2|L(∂x(lnα)|+
∫∫

Dt

φ(u)|LΛ̃||LΛ̃||L∂x(lnα)|

+

∫∫
Dt

φ(u)|LΛ̃||L∂xΛ̃||L(lnα)|+
∫∫

Dt

φ(u)|LΛ̃||L(lnα)||L∂x(Λ̃)|

=: I2,11 + I2,12 + I2,21 + I2,22.

Using (4.4.6) and similar computations to the previous ones, we get

I2,11 ≲ K1γε
2.

Next, using Cauchy-Schwarz,

I2,12 ≲

(∫∫
Dt

φ(u)|LΛ̃|2|LΛ̃|
)1/2(∫∫

Dt

φ(u)|LΛ̃||L∂x(lnα)|2
)1/2

≲


∫
R

C2ε

φ1/2(u)

[∫
Ct,u

φ(u)|LΛ̃|2ds

]
︸ ︷︷ ︸

≲F(t)

du


1/2(∫

R

C2ε

φ1/2(u)

[∫
Ct,u

K2γ2

φ1/2(u)
ds

]
du

)1/2

≲ C2Kγε
2.

Using the same analysis as before,

I2,21 ≲

(∫∫
Dt

φ(u)|LΛ̃|2|L(lnα)|
)1/2(∫∫

Dt

φ(u)|LΛ̃|2|L(lnα)|
)1/2

≲

(∫
R

Kγ

φ3/4(u)

[∫
Ct,u

φ(u)|LΛ̃|2ds

]
du

)1/2(∫
R

Kγ

φ3/4(u)

[∫
Ct,u

φ(u)|L∂xΛ̃|2ds

]
du

)1/2

≲ C2Kγε
2.
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The last estimate involves Cauchy-Schwarz to obtain

I2,22 ≲

(∫∫
Dt

φ(u)

φ(u)
|LΛ̃|2

)1/2(∫∫
Dt

φ(u)|L(lnα)|2|L∂xΛ̃|2φ(u)
)1/2

≲ ε

(∫
R

K2γ2

φ3/2(u)

[∫
Ct,u

φ(u)|L∂xΛ̃|

]
du

)1/2

≲ Kγε2.

The remaining integrals are analogous and we have for both expressions that:

I3 :=

∫∫
Dt

φ(u)|LΛ̃||Q0(lnα, Λ̃)| ≲ γε2,

I4 :=

∫∫
Dt

φ(u)|LΛ̃||Q0(∂x(lnα), Λ̃) +Q0(lnα, ∂xΛ̃)| ≲ γε2.

For the other term, which correspond to ρ2 in (4.4.11), the analysis is the same as described
in our recently completed work [109]. See this reference for full details.

Finally, from the energy estimate (4.2.6), we can arrange all the previous estimates to-
gether, and for universal constants C4, C5, K with K1, K2 ≤ K, (see (3.3.25)), one has for all
t ∈ [0, T ∗]:

E(t) + F(t) ≤ (2C0C1 +Kγ)ε2 + C4ε
3 + C5ε

4, (3.3.26)

where C1 is given in (3.3.16). Now, if we take ε0 such that

ε0 ≤
C0C1

C4

, ε20 ≤
C0C1

C5

, (3.3.27)

and γ such that

Kγ <
C0C1

2
,

we can see that for all 0 < ε ≤ ε0 and for all t ∈ [0, T ], we have

E(t) + F(t) ≤ 9

2
C0C1ε

2.

By taking a suitable γ and ε0, we have the desired control. This improves the constant in
(4.4.8).

To improve condition (4.4.10), using the Fundamental Theorem of Calculus, (3.3.2) and
Lemma 4.4.1, one can write Λ̃(t, x), t ≥ 0, in the following form:

|Λ̃(t, x)| ≤ ε|Λ̃0(x)|+
∫ t

0

|∂τ Λ̃(τ, x)|dτ

≤ εM1 +
1

2

∫ t

0

|LΛ̃ + LΛ̃|dτ

≤ εM1 +
1

2

∫ t

0

(
C2ε

φ(u)1/2
+

C2ε

φ(u)1/2

)
dτ

≤ εM1 + εC2M2 ≤Mε,

(3.3.28)
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for some universal constant M. Next, we take ε0 > 0 that satisfies the condition (3.3.27) and
such that

Mε0 <
λ

4
, (3.3.29)

taking sup over t ∈ [0, T ∗], we conclude that for all 0 < ε ≤ ε0 we have improved via (3.3.29)
the key estimate (4.4.10).

The above estimates, prove that the solution Λ̃ is global. A similar argument, as estab-
lished before, shows that ϕ is also globally defined. This ends the existence proof in Theorem
4.4.1.

3.3.4 End of proof of Theorem 3.1.1

Since α, Λ̃ and ϕ have been completely determined in previous steps, we only need to deter-
mine the behavior of the function f in (3.1.8). Note that α satisfies (3.3.6) and in the system
(3.1.8) we have that ln f satisfies the nonhomogeneous wave equation with initial conditions
(3.1.12), then, we can use D’Alembert’s solution to describe the function f , but previously,
let us analyze the following result:

Lemma 3.3.2. Let G be defined as in (3.1.9). Under the hypotheses of Theorem 3.1.1, and
under the consequences of Theorem 4.4.1, the following is satisfied:

• For each t ∈ R, G(t, ·) ∈ (L1 ∩ L∞)(R);
• There exists C > 0 such that supt≥0 ∥G(t)∥L1∩L∞ ≤ C.

Proof. Since G is given by (3.1.9), one has

G := −
(
∂2t (lnα)− ∂2x(lnα)

)
− 1

2α2
((∂tα)

2 − (∂xα)
2)

− 1

2
((∂tΛ)

2 − (∂xΛ)
2)− 2 sinh2 Λ((∂tϕ)

2 − (∂xϕ)
2).

From (3.3.7) and (4.4.4), we can simplify

G =
1

2α2
(α̃′

0(2u) + α1(2u))(α1(−2u)− α̃′
0(−2u))

− 1

2
((∂tΛ)

2 − (∂xΛ)
2)− 2 sinh2 Λ((∂tϕ)

2 − (∂xϕ)
2) =: G1 +G2.

It can be seen that the regularity of the term G depends on the initial conditions for the
function α, and on the functions Λ, ϕ. The hypotheses in Theorem 3.1.1 ensure that, for all
t ∈ R,

G1 =
1

2α2
(α̃′

0(2u) + α1(2u))(α1(−2u)− α̃′
0(−2u)) ∈ S(R).

Moreover, supt∈R ∥G1(t)∥L1∩L∞ ≤ C. On the other hand, G2 satisfies from (3.1.14)∣∣(∂tΛ)2 − (∂xΛ)
2 − 2 sinh2 Λ((∂tϕ)

2 − (∂xϕ)
2)
∣∣ (t, x) ≤ h1(t, x).

Now we use the following result to conclude:
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Lemma 3.3.3.

|h1(t, x)| ≲
ε2

φ(u)
+

ε2

φ(u)
.

Assuming this result, we finally get G(t, ·) ∈ L1(R) ∩ C(R) with uniform bounds in
time.

Proof of Lemma 3.3.3. First of all, we have (see (3.3.2), Lemma (4.4.1) and (4.2.5))

|∂tΛ| ≲ |LΛ̃|+ |LΛ̃| ≤ ε

φ(u)1/2
+

ε

φ(u)1/2
.

Similarly,

|∂xΛ|+ |∂xϕ|+ |∂xϕ| ≲
ε

φ(u)1/2
+

ε

φ(u)1/2
.

Finally, thanks to (3.3.28),
sinh2(Λ) ≲ sinh2(λ).

Gathering these results we conclude.

The previous result allows us to describe the function f using d’Alembert formula for the
nonhomogeneous linear wave and (3.1.12). Consider the initial data problem for v(t, x) :=
ln f(t, x) given by 

∂2t v − ∂2xv = G(t, x)

v(0, x) = ln(f(0, x)) = ln(f0 + c1)

∂tv(t, x)|{t=0} =
f1

c1+f0
.

(3.3.30)

We get

v(t, x) :=
1

2
[ln(c1 + f0(x+ t)) + ln(c1 + f0(x− t))]

+
1

2

∫ x+t

x−t

f1(s)ds

c1 + f0(s)
+

1

2

∫ t

0

[∫ x+t−s

x+s−t

G(s, y)dy

]
ds =: v1 + v2 + v3.

(3.3.31)

It is clear that v1 and v2 are globally defined, bounded in time and space members. On the
other hand, thanks to (3.3.3),∣∣∣∣∫ x+t−s

x+s−t

G(s, y)dy

∣∣∣∣ ≲ ε2
∫ x+t−s

x+s−t

(
1

φ(s+ y)
+

1

φ(s− y)

)
dy

≲ ε2
∫ x+t

x+2s−t

dy

φ(y)
+ ε2

∫ x+t−2s

x−t

dy

φ(y)
≲
ε2(t− s)

φ(x+ t)
+
ε2(t− s)

φ(x− t)
.

Consequently,

|v3| ≲
∫ t

0

(
ε2(t− s)

φ(x+ t)
+
ε2(t− s)

φ(x− t)

)
ds ≲ t2

(
ε2

φ(x+ t)
+

ε2

φ(x− t)

)
.

Now we conclude the proof of the theorem. From (3.3.31) the function f is given by

f(t, x) = ρ(t, x) exp

(
1

2

∫ x+t

x−t

f1(s)ds

c1 + f0(s)
+

1

2

∫ t

0

[∫ x+t−s

x+s−t

G(s, y)dy

]
ds

)
,
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with
ρ(t, x) =

√
(c1 + f0(x+ t))(c1 + f0(x− t)).

Notice that f is strictly positive everywhere in time and space. Given the initial conditions
imposed on the function f , the integrals are well-defined. Additionally the function f is
positive consistent with Belinski-Zakharov proposal.

3.4 Energy-momentum formulation

The aim of this section is first to introduce a correct definition of energy and momentum
densities for one type of solutions of the Einstein equations in vacuum, and then to give a
proper description of the decay of these solutions in the framework of the global existence
theory presented in the previous section.

The notion of the energy and the law of conservation of energy play a key role in all
mathematics-physical theories. The definition of energy in relativity is a complex matter,
and this problem has been given a lot of attention in the literature [111, 112]. For this
and other reasons it is very interesting to study and to define what could be considered a
good definition of “energy”. However, the most likely candidate for the energy density of the
gravitational field in general relativity would be a quadratic expression in the first derivatives
of the components of the metric [111], or as in this case, in terms of the fields defining the
components of the metric. For the particular case of spacetimes admitting two commutative
Killing vectors, the energy formulation is constrained by the function α(t, x), which we recall,
in this setting, is a positive solution of the one-dimensional wave equation.

What we must keep in mind is that these spacetimes can be used to describe both cylin-
drical gravitational waves and inhomogeneous cosmological models in vacuum, but the former
are less suited to study decay properties, for the reasons exposed below. Roughly speaking,
for gravitational cylindrical wave solutions, the gradient of α(t, x) must be spacelike, while
for the description of cosmological models, it must be timelike.

In this section, we propose an adequate description of the energy and momentum densities,
according to the type of spacetime being analyzed, i.e., subject to the sign of the gradient of
the function α.

3.4.1 Energy-Momentum formalism

We begin by proposing an initial definition for energy and momentum densities of the system
(3.1.8). In the spirit of the definition proposed by Hadad in [52, p.73], we will expose this new
description for these densities in the suitable terms of the field Λ, ϕ, α, and study whether or
not it is a conserved quantity and to find local conservation laws.

Recall (3.1.13). In terms of the fields Λ, ϕ and the function α(t, x), let us introduce the
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following densities:

e(t, x) := κ∂tα

[
(∂xα)

2 + (∂tα)
2

α2
+ 4 sinh2(Λ)

(
(∂tϕ)

2 + (∂xϕ)
2
)
+ (∂tΛ)

2 + (∂xΛ)
2

]
− 2κ∂xα

(
∂xα∂tα

α2
+ ∂xΛ∂tΛ + 4∂xϕ∂tϕ sinh

2(Λ)

)
,

(3.4.1)

where
κ(t, x) =

α

(∂xα)2 − (∂tα)2
, (3.4.2)

and

p(t, x) := κ∂xα

[
(∂xα)

2 + (∂tα)
2

α2
+ 4 sinh2(Λ)

(
(∂tϕ)

2 + (∂xϕ)
2
)
+ (∂tΛ)

2 + (∂xΛ)
2

]
− 2κ∂tα

(
∂xα∂tα

α2
+ ∂xΛ∂tΛ + 4∂xϕ∂tϕ sinh

2(Λ)

)
.

(3.4.3)

It should be noted that, in providing these densities, certain constraints, regarding the region
in which (∂xα)

2 − (∂tα)
2 is null, must be considered. These considerations will be studied

in more detail in the following section. Now, in order to have an suitable definition of these
densities, we propose the following redefinition:

ẽ = ẽ[Λ, ϕ, α] := κ∂tα
[
(∂tΛ)

2 + (∂xΛ)
2 + 4 sinh2(Λ)

(
(∂tϕ)

2 + (∂xϕ)
2
)]

− 2κ∂xα
(
∂xΛ∂tΛ + 4∂xϕ∂tϕ sinh

2(Λ)
)
,

(3.4.4)

and

p̃ = p̃[Λ, ϕ, α] := κ∂xα
[
(∂tΛ)

2 + (∂xΛ)
2 + 4 sinh2(Λ)

(
(∂tϕ)

2 + (∂xϕ)
2
)]

− 2κ∂tα
(
∂xΛ∂tΛ + 4∂xϕ∂tϕ sinh

2(Λ)
)
.

(3.4.5)

For the densities e, p, we can state the following identities

Lemma 3.4.1. Let (Λ, ϕ, α) be a solution to (3.1.8). Let e(t, x) and p(t, x) be as introduced
in (3.4.1)-(3.4.3). Assume that (t, x) lies in an open region of spacetime such that (∂xα)

2 −
(∂tα)

2 ̸= 0. Then one has

∂tp(t, x) + ∂xe(t, x) = 0,

∂te(t, x) + ∂xp(t, x) = 4 sinh2(Λ)
(
ϕ2
t − ϕ2

x

)
+ Λ2

t − Λ2
x + ∂x

(αx

α

)
− ∂t

(αt

α

)
.

(3.4.6)

Equations (3.4.6) are a modified version of the continuity equations for the energy and
momentum densities. A perfectly behaved relation was found in [109] in the case of the
integrable Principal Chiral model. The situation here is more subtle, and there is no sign of
a perfectly behaved continuity equation, manly because of the functions α and f .

Part of the proof of the first equation is essentially contained in Hadad [52], but the
technical details, as well as the proof of the second equation are included in Appendix 3.7.1.
As a corollary we also have the following identities for the redefined densities ẽ(t, x), and
p̃(t, x):
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Corollary 3.4.1. Let ẽ(t, x) and p̃(t, x) be as introduced in (3.4.4)-(3.4.5). Under the as-
sumptions of Lemma 3.4.1, one has

∂tp̃(t, x) + ∂xẽ(t, x) = 0,

∂tẽ(t, x) + ∂xp̃(t, x) = 4 sinh2(Λ)
(
ϕ2
t − ϕ2

x

)
+ Λ2

t − Λ2
x.

Proof. The proof follows immediately from the definition and description of the densities
obtained in the Lemma 3.4.6.

Note the symmetry in the terms defining the densities, however, the derivatives of the
function α(t, x) make a significant change in the nature of these densities, (as compared to
the PCF equation case, where α(t, x) was considered as a constant, see [109]). This implies
a deeper analysis regarding the correct formulation of energy densities. As mentioned in the
introduction, the local behavior of the spacetime is defined by the nature of the function
α(t, x).

This function may have a gradient spacelike in all the spacetime (corresponds to space-
times with cylindrical symmetry), globally null (corresponds to the plane-symmetric waves)
or timelike (cosmological type-solutions), see [6, 8, 17, 34, 51] for more details. The following
sections propose appropriate definitions of the energy and momentum densities associated
with each type of solution, i.e., depending on the nature of the gradient of the alpha function.

3.4.2 Cosmological-type solutions

As mentioned before, spacetimes in the Belinski-Zakharov setting can be used to represent
inhomogeneous vacuum cosmological models. In these, the universe is assumed to contain
gravitational waves propagating in opposite spatial directions, see [6, 8]. To describe this
class of models, it is appropriate to take the function α(t, x) timelike, i.e., with negative
gradient norm. Let us start with some preliminary definitions and results.

Definition 3.4.1 (Timelike condition). Given the function α(t, x), we will say that α(t, x)
is timelike, if its gradient satisfies

(∂xα)
2 − (∂tα)

2 < 0, ∀(t, x) ∈ R2. (3.4.7)

In this case, we will say that our model is of cosmological type.

Definition 3.4.1 is taken from [17, p. 965]. It is relevant to remark that, as expressed in
[17], other cosmological type models are of interest, such as Gowdy models. For more details,
the reader can consult the aforementioned work and references therein.

Using the same notation as in (3.3.6) for the initial conditions for α, as a solution to the
wave equation, when α(t, x) is timelike everywhere, we have the following result:

Lemma 3.4.2. Assume that α(t, x) is timelike in the whole spacetime. Then

(i) one has
|∂xα| < |∂tα|. (3.4.8)
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(ii) if additionally, (t, x) is such that

∂tα(t, x) > 0, (3.4.9)

then, |∂xα| < ∂tα if and only if the initial data of the function α satisfy

|α̃′
0(·)| < α1(·). (3.4.10)

(iii) if additionally
α(t, x) > 0 ∀(t, x) ∈ R2, (3.4.11)

then the parameter κ defined in (3.4.2) is well-defined and it is negative, and

−κ∂tα > 0. (3.4.12)

Proof. The proof is obtained from a straightforward calculation and the use of (3.4.9).

Remark 3.4.1. Notice that condition (3.4.7) is ensured if the initial data for α satisfies
(3.4.10), in addition, this condition allows us to propose an α function that is in consistency
with the hypotheses of the Theorem 3.1.1.

Now, in order to define a positive energy density and being possible to set a control of
this density over the momentum density, we propose:

Definition 3.4.2. For cosmological-type solutions, the energy and momentum densities will
be defined as

ê(t, x) = −ẽ(t, x), (3.4.13)

and
p̂(t, x) = p̃(t, x). (3.4.14)

3.4.3 Proof of Theorem 3.1.2

Theorem 3.1.2 will be a consequence of the following lemma.

Lemma 3.4.3. Under (3.4.8), (3.4.9) and (3.4.11), the energy density defined in (3.4.13) is
nonnegative. Moreover, one has the improved estimate

ê ≥ |κ|(|∂tα| − |∂xα|)
[
(∂tΛ)

2 + (∂xΛ)
2 + 4 sinh2(Λ)

(
(∂tϕ)

2 + (∂xϕ)
2
)]
.
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Proof of Lemma 3.4.3. We compute: from (3.4.4) and Lemma 3.4.2 (ii),

ê = −ẽ = − κ∂tα
[
(∂tΛ)

2 + (∂xΛ)
2 + 4 sinh2(Λ)

(
(∂tϕ)

2 + (∂xϕ)
2
)]

+ 2κ∂xα
(
∂xΛ∂tΛ + 4∂xϕ∂tϕ sinh

2(Λ)
)

≥ |κ∂tα|
[
(∂tΛ)

2 + (∂xΛ)
2 + 4 sinh2(Λ)

(
(∂tϕ)

2 + (∂xϕ)
2
)]

− 2|κ∂xα|
(
|∂xΛ||∂tΛ|+ 4|∂xϕ||∂tϕ| sinh2(Λ)

)
= |κ|(|∂tα| − |∂xα|)

[
(∂tΛ)

2 + (∂xΛ)
2 + 4 sinh2(Λ)

(
(∂tϕ)

2 + (∂xϕ)
2
)]

+ |κ∂xα|
(
(∂tΛ)

2 + (∂xΛ)
2 − 2|∂xΛ||∂tΛ|

)
+ 4|κ||∂xα| sinh2(Λ)

(
(∂tϕ)

2 + (∂xϕ)
2 − 2|∂xϕ||∂tϕ|

)
≥ |κ|(|∂tα| − |∂xα|)

[
(∂tΛ)

2 + (∂xΛ)
2 + 4 sinh2(Λ)

(
(∂tϕ)

2 + (∂xϕ)
2
)]

≥ 0.

(3.4.15)

The proof is complete.

Furthermore, under this same hypothesis, we can establish an appropriate control of
the energy density on the momentum density. Recall that the condition that ∂tα > 0 ,
necessarily implies, that the function α1(s) > 0,∀s ∈ R which is in correspondence with the
setting proposed for function α(t, x) in the previous global existence theory. We can obtain
the following result:

Lemma 3.4.4. Under (3.4.8), (3.4.9) and (3.4.11),

|p̂(t, x)| ≤ ê(t, x). (3.4.16)

Proof. To simplify the notation, let us define:

h1(t, x) = (∂tΛ)
2 + (∂xΛ)

2 + 4 sinh2(Λ)((∂xϕ)
2 + (∂tϕ)

2) ≥ 0, (3.4.17)

and
h2(t, x) = ∂tΛ∂xΛ + 4 sinh2(Λ)∂tϕ∂xϕ, (3.4.18)

then, the energy density and the momentum density can be written as

ê = −κ(∂tαh1 − 2∂xαh2), p̂ = κ(∂xαh1 − 2∂tαh2).

Recall that, ê ≥ |κ|(|∂tα|−|∂xα|)h1 ≥ 0 thanks to (3.4.15). Now, let us prove (3.4.26). Using
the Cauchy inequality and the condition (3.4.7), one has 2|h2| ≤ h1. Therefore, using that
κ < 0, κh1 ≤ 2κh2. Since ∂tα + ∂xα > 0, one has

κh1(∂tα + ∂xα) ≤ 2κh2(∂tα + ∂xα).

Consequently,
κ∂xαh1 − 2κ∂tαh2 < −κ∂tαh1 + 2κ∂xαh2,

which proves that p̂ ≤ ê.
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For the other direction we have ∂tα− ∂xα > 0, 2κh2 ≤ −κh1, so that

−κh1(∂tα− ∂xα) ≥ 2κh2(∂tα− ∂xα),

κ∂xαh1 − 2κ∂tαh2 ≥ κ∂tαh1 − 2κ∂xαh2,

p̂ ≥ −ê.

Therefore, we obtain a control of energy density over momentum density

|p̂(t, x)| ≤ ê(t, x).

The proof is complete.

With the previous definitions of hat-densities (3.4.13) and (3.4.14) and the identities ob-
tained in Corollary 3.4.1, one has the following consequences (modified continuity equations):

Corollary 3.4.2. Let (Λ, ϕ, α) solutions of the system (3.1.8). Under the assumptions of
Lemma 3.4.1, one has

∂tp̂(t, x)− ∂xê(t, x) = 0,

∂tê(t, x)− ∂xp̂(t, x) = 4 sinh2(Λ)
(
ϕ2
x − ϕ2

t

)
+ Λ2

x − Λ2
t .

(3.4.19)

Lemma 3.4.4 and Corollary 3.4.2 will become very important, in the sense that, the
control that new energy density has over the momentum density, allow us to propose virial
estimate, and analyzed the long time behavior of the cosmological type solution, as we will
be discussing in the subsequent sections. We now discuss the energy formulation for the case
where the gradient of the function α is spacelike.

3.4.4 Cylindrical Gravitational waves

Let u(0) = u(0)(t, r) be a solution to the cylindrical wave equation in 2D:

∂2t u
(0) =

1

r
∂r
(
r∂ru

(0)
)
, (t, r) ∈ Rt × (0,∞).

As usual, α satisfies the 1D wave equation in (t, r). Let us introduce the following line
element of a cylindrically symmetric spacetime as follows:

ds2 = f (0)(−dt2 + dr2) + e−u(0)

(αdϕ)2 + eu
(0)

dz2, (3.4.20)

with xa = {ϕ, z} and xi = {t, r} and r > 0. This line element belongs to the class of solutions
considered in the Belinski-Zakharov spacetime setting where

g =

[
α2e−u(0)

0

0 eu
(0)

]
.

A particular case of the metric (3.4.20) is the one given by the Einstein-Rosen model, where
α ≡ r. See (3.6.12) and (3.6.13) for more details.
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As mentioned before, the local behavior of the considered spacetime is defined by the
gradient of the function α. In the case that this gradient is spacelike, it actually corresponds to
cylindrical spacetimes. Notice that metric (3.4.20) is a particular case of (3.1.2) in cylindrical
coordinates, where the fields described by the geometric representation (3.1.7), are given as
follows: the field ϕ is a constant, and the field Λ = u(0). In this section, we will consider
precisely this general setting. Consider the system (3.1.8) with α as a positive solution of the
one-dimensional wave equation, and satisfying the so-called space-like condition, which will
be described below. Thus we capture the essential condition describing the Einstein-Rosen
gravitational wave metric [17].

As in the previous subsection, we introduce some preliminary definitions and results.

Definition 3.4.3 (Spacelike Condition). We say that α(t, x) is spacelike if its gradient sat-
isfies

(∂rα)
2 − (∂tα)

2 > 0, ∀(t, r). (3.4.21)

The spacelike condition (3.4.21) contrasts with the timelike one in (3.4.7) not only by
the obvious reason (opposite signs), but also because it will allow not decaying solutions to
the problem. In this sense, one can guess that no general virial theorem is present in this
situation, unless we assume additional hypothesis on u(0) and α.

Coming back to (3.4.20), and using the same notation for the initial conditions for α as
in (3.3.6), with α(t, x) spacelike everywhere, one has the following result:

Lemma 3.4.5. If the function α is spacelike,

|∂tα| < |∂rα|,

and the following are satisfied:

(i) if (t, r) is such that
∂rα(t, r) > 0, (3.4.22)

then, |∂tα| < ∂rα if and only if the initial data of the function α satisfy

|α1(·)| < α̃′
0(·)

(ii) the parameter κ defined in (3.4.2) (with x replaced by the variable r) is well-defined and
positive, and

κ∂rα > 0. (3.4.23)

Proof of Lemma 3.4.5. The proof is obtained from a straightforward calculation as in Lemma
3.4.2.

Comparing with (3.4.9) and (3.4.12), one can see that (3.4.22) and (3.4.23) are “dual” to
the former ones. Although one can think that these properties are not harmful, it turns the
case that this is exactly the case: these signs are bad for decay purposes by natural reasons:
spacelike dynamics tends to be unphysical in reality.

To ensure that we have an appropriate energy and to be possible to set a control of this
density over the momentum one, we define
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3.5. VIRIAL ESTIMATES FOR COSMOLOGICAL-TYPE SOLUTIONS

Definition 3.4.4. For cylindrical-type solutions, the energy and momentum densities are
defined as

ê(t, r) = p̃(t, r), (3.4.24)

and
p̂(t, r) = ẽ(t, r). (3.4.25)

Notice that in this case, when the gradient of the function α(t, r) is spacelike, the pa-
rameter κ defined in (3.4.2), is positive. Now, with these redefinitions, we provide analogous
estimates to those obtained in the case of cosmological type solutions.

Lemma 3.4.6. If ∂rα(t, r) > 0 globally in spacetime, then the energy density ê(t, r) is always
nonnegative. Moreover, we have

|p̂(t, r)| ≤ ê(t, r). (3.4.26)

The proof of (3.4.16), considering the constraints, is obtained in a similar way as in
the previous section, see Lemma 3.4.4 for more details. Lemma 3.4.6 is always useful to
understand the right notion of energy.

Finally, similar to the previous section, with the formulation of energy and momentum
densities given in (3.4.24)-(3.4.25), the identity equations obtained in the Corollary 3.4.1,
provide the following modified continuity equations:

Lemma 3.4.7. Let (Λ, ϕ, α) solutions of the system (3.1.8), and α(t, r) spacelike, then, we
have the following continuity equations

∂tê(t, r) + ∂rp̂(t, r) = 0,

∂tp̂(t, r) + ∂rê(t, r) = 4 sinh2(Λ)
(
ϕ2
r − ϕ2

t

)
+ Λ2

r − Λ2
t .

(3.4.27)

The proof of this result is obtained in a similar way as in the previous subsection. An
important remark obtained from (3.4.27) is the following: in this set of identities the role
of energy is played by the momentum, and vice versa. This somehow harmless condition
destroys possible computations of decay by showing that the quantity that decays has no
particular positivity. However, we expect to consider Lemma 3.4.7 in forthcoming works.

3.5 Virial Estimates for Cosmological-type Solutions

Let us come back to the setting already worked in Subsection 3.4.2. In what follows, let us
consider (Λ, ϕ, α) globally defined in time and continuous such that

(3.1.15) and (3.1.17) are satisfied. (3.5.1)

Note that (3.4.8) is a consequence of assuming (3.1.15) in Theorem 3.1.3. Finally,

E[Λ, ϕ;α] :=

∫
R
ê(t, x)dx

is well-defined for all time and bounded:

0 ≤ E[Λ, ϕ;α] ≤ sup
t∈R

E[Λ, ϕ;α] < +∞. (3.5.2)

Notice that this time E[Λ, ϕ;α] is not conserved (see (3.4.19)).
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Remark 3.5.1. Condition (3.5.2) is not empty, for instance if the data is given as in The-
orem 3.1.1 and α satisfies the time-like condition (3.4.7) and (3.4.9), then (4.4.8)-(4.4.9)
ensures that the energy is bounded in time as in (3.5.2). See Lemma 3.3.3 for a proof.

We introduce a Virial identity for the Einstein field equation (3.1.8). Indeed, let ρ be a
smooth bounded function with L1 ∩L∞ integrable derivative. Let ω(t) be a smooth positive
function to be chosen later, not necessarily varying in time. Finally, for v ∈ (−1, 1) let

I(t) := −
∫
ρ

(
x− vt

ω(t)

)
κ∂xα

(
4 sinh2(Λ)((∂tϕ)

2 + (∂xϕ)
2) + (∂tΛ)

2 + (∂xΛ)
2
)
dx

+

∫
ρ

(
x− vt

ω(t)

)
κ∂tα

(
2∂xΛ∂tΛ + 8∂xϕ∂tϕ sinh

2(Λ)
)
dx

=: −
∫
ρ

(
x− vt

ω(t)

)
p̂(t, x)dx.

(3.5.3)

A time-dependent weight ω(t) was already considered in [1, 109], but ω(t) = const. is also
perfectly possible. The choice of I(t) is motivated by the momentum and energy densities.

Lemma 3.5.1 (Virial identity). One has I(t) well-defined and bounded in time, and

d

dt
I(t) = − ω′(t)

ω(t)

∫
x− vt

ω(t)
ρ′
(
x− vt

ω(t)

)
p̂(t, x)

+
v

ω(t)

∫
ρ′
(
x− vt

ω(t)

)
p̂(t, x)

+
1

ω(t)

∫
ρ′
(
x− vt

ω(t)

)
ê(t, x).

(3.5.4)

Proof. The proof of (3.5.4) follows immediately from the Lemma 3.4.2. The proof of bound-
edness of I(t) goes as follows: from (3.5.3), the boundedness of ρ and (3.5.1),

|I(t)| ≤
∫

|ρ|
(
x− vt

ω(t)

)
|p̂|(t, x)dx ≲

∫
|p̂|(t, x)dx ≤

∫
ê(t, x)dx,

therefore from (3.5.2) we obtain supt≥0 |I(t)| < +∞.

3.5.1 Virial estimates

Now we are ready to use previous identities.

We choose ω and ρ. Let ω(t) = const. or

ω(t) :=
t

log2 t
,

ω′(t)

ω(t)
=

1

t

(
1− 2

log t

)
. (3.5.5)

and
ρ := tanh, ρ′ = sech2 . (3.5.6)
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Theorem 3.5.1. Let ω and ρ be given as in (3.5.5)-(3.5.6). Assume that the solution
(Λ, ϕ, α)(t) of the system (3.1.8) is such that α satisfies (3.5.1) and the finite energy condition
(3.5.2) is satisfied. Then we have the averaged estimate∫ ∞

2

1

ω(t)

∫
sech2

(
x− vt

ω(t)

)
ê(t, x)dxdt ≲ 1, (3.5.7)

Moreover, there exists an increasing sequence tn → +∞ such that

lim
n−→+∞

∫
sech2

(
x− vtn
ω(tn)

)
ê(tn, x)dx = 0. (3.5.8)

In order to show Theorem 3.5.1, we use the new Virial identity for (3.5.3) presented for
the Einstein field equation (3.1.8).

Proof. On the other hand, recall that, we are considering that α is a positive solution of the
one-dimensional wave equation, with time-like gradient and with positive time derivative in
all spacetime, therefore, we can use the Lemma 3.4.4 and the Lemma 3.5.1, then, we get

d

dt
I(t) =: J1 + J2 + J3.

First of all, we consider J1. If ω(t) is constant, there is nothing to prove. Assume now ω(t)
given as in (3.5.5). We have

|J1| ≤
|ω′(t)|
ω(t)

∫
|x− vt|
ω(t)

ρ′
(
x− vt

ω(t)

)
|p̂(t, x)|dx ≤ |ω′(t)|

ω(t)

∫
|x− vt|
ω(t)

ρ′
(
x− vt

ω(t)

)
ê(t, x)dx.

From the definition of ω(t) and using Cauchy’s inequality for δ > 0 small, we have:

|J1| ≤
Cδω(t)

t2
sup
x∈R

(
(x− vt)2

ω2(t)
|ρ′|
(
x− vt

ω(t)

))∫
ê(t, x)dx

+
δ

ω(t)

∫
ρ′
(
x− vt

ω(t)

)
ê(t, x)dx

≤ C

t log2 t
+

δ

ω(t)

∫
ρ′
(
x− vt

ω(t)

)
ê(t, x)dx.

Now,

|J2(t)| ≤
|v|
ω(t)

∫
ρ′
(
x− vt

ω(t)

)
|p̂(t, x)| ≤ |v|

ω(t)

∫
ρ′
(
x− vt

ω(t)

)
ê(t, x).

Finally, J3(t) does not need any bound at all. In any case, ω(t) = const. or ω(t) as in (3.5.5),
one has the following: if δ > 0 is small:

d

dt
I(t) ≥ 1− |v| − δ

ω(t)

∫
ρ′
(
x− vt

ω(t)

)
ê(t, x)− Cδ

t log2 t
. (3.5.9)

After integration in time in (3.5.9) and since the term C
t log2 t

integrates finite, we get (3.5.7)

Finally, (3.5.8) is obtain from (3.5.7) and the fact that ω−1(t) is not integrable in [2,∞).
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3.5.2 Proof of the Theorem 3.1.3

First of all, notice that the RHS in (3.4.19) satisfies (with h1 given in (3.4.17))∣∣4 sinh2(Λ)
(
ϕ2
x − ϕ2

t

)
+ Λ2

x − Λ2
t

∣∣ ≤ h1.

Using the the Lemma 3.4.4, Lemma 3.4.2, (3.5.11) and integration by part we have∣∣∣∣ ddt
∫

sech4

(
x− vt

ω(t)

)
ê(t, x)dx

∣∣∣∣
≤ |ω′(t)|

ω(t)

∫
x− vt

ω(t)
|(sech4)′|

(
x− vt

ω(t)

)
ê(t, x)dx +

4|v|
ω(t)

∫
sech4

(
x− vt

ω(t)

)
ê(t, x)dx

+

∫
1

ω(t)
sech4

(
x− vt

ω(t)

)
|p̂|dx+

∫
sech4

(
x− vt

ω(t)

)
h1dx

≤ 2|v|+ 1 + |ω′(t)|
ω(t)

∫
sech2

(
x− vt

ω(t)

)
ê(t, x)dx+

2

ω(t)

∫
sech4

(
x− vt

ω(t)

)
ω(t)

∂tα

α
ê(t, x)dx.

Finally, notice that from (3.3.7), (3.3.1) and (3.5.5),

ω(t) sech

(
x− vt

ω(t)

)
∂tα

α
≲ 1.

This estimation is possible since α′
0 and α1 are compactly supported and Schwartz, respec-

tively. Therefore, for every n ≥ 0,

α ≥ 1

2
, ∂tα ≲n

1

φn(u)
+

1

φn(u)
, u, u as in (3.3.1).

Consequently for n sufficiently large but fixed,

ω(t) sech

(
x− vt

ω(t)

)
∂tα

α
≲ ω(t) sech

(
x− vt

ω(t)

)(
1

φn(u)
+

1

φn(u)

)
≲

ω(t)

φn((1− |v|)|t|)
+ ω(t) sech

(
(1− |v|) |t|

ω(t)

)
≲ 1 + ω(t) sech

(
(1− |v|) log2 t

)
≲ ω(t)t−(1−|v|) log t ≲ 1.

We conclude that∣∣∣∣ ddt
∫

sech4

(
x− vt

ω(t)

)
ê(t, x)dx

∣∣∣∣ ≲ 1

ω(t)

∫
sech2

(
x− vt

ω(t)

)
ê(t, x)dx.

Then integrating in time for t < tn, we have∣∣∣∣∫ sech4

(
x− vtn
ω(t)

)
ê(tn, x)dx−

∫
sech4

(
x− vt

ω(t)

)
ê(t, x)dx

∣∣∣∣
≤
∫ tn

t

1

ω(t)

∫
sech2

(
x− vs

ω(t)

)
ê(s, x)dxds.

sending n −→ ∞ and using (3.5.8), we get∣∣∣∣∫ sech4

(
x− vt

ω(t)

)
ê(t, x)dx

∣∣∣∣ ≤ ∫ ∞

t

1

ω(t)

∫
sech2

(
x− vs

ω(t)

)
ê(s, x)dxds.
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Now, sending t −→ ∞, we get

lim
t−→∞

∫
sech4

(
x− vt

ω(t)

)
ê(t, x)dx = 0.

Using again the definition of the h1 and h2 given in (3.4.17)-(3.4.18), and the condition (3.4.7)
that ensures 2|h2| ≤ h1, one has

ê = −κ∂tαh1 + 2κ∂xαh2 ≥ (∂tα− |∂xα|)|κ|h1. (3.5.10)

In addition, using that α > 0, ∂tα > 0 and Lemma 3.4.2, we estimate |κ|(∂tα − |∂xα|) as
follows

|κ|(∂tα− |∂xα|) =
α

|(∂xα)2 − (∂tα)2|
(∂tα− |∂xα|)

=
α

|∂xα|+ ∂tα
≥ 1

2

α

∂tα
.

Therefore,
1

2

α

∂tα
h1 ≤ ê. (3.5.11)

Now, for δ sufficiently small and |v| < 1, the first term in the right side of the equation (3.5.9)
in the Theorem 3.5.1, can be estimated as follows

1− |v| − δ

ω(t)

∫
ρ′
(
x− vt

ω(t)

)
ê(t, x) ≳

1

ω(t)

∫
ρ′
(
x− vt

ω(t)

)
α

2∂tα
h1(t, x).

Finally, from the hypothesis (3.1.17) we have (∂tα)
−1 > c0 > 0, and from the inequalities

(3.5.10) and (3.5.11) we get the lower bound∫
sech2

(
x− vt

ω(t)

)(
(∂xΛ)

2 + (∂tΛ)
2 + sinh2(Λ)((∂xϕ)

2 + (∂tϕ)
2)
)
(t, x)dx

≲
∫

sech2

(
x− vt

ω(t)

)
ê(t, x)dx,

which finally shows the validity of Theorem 3.1.3 and the proof of (3.1.18).

Remark 3.5.2. Notice that from (3.3.7) we have ∂tα uniformly in the Schwartz class, and
one has the lower bound (∂tα)

−1 > c0 > 0. Indeed,

α

∂tα
≳

1

α1 − |α′
0|

≳ 1.

consequently, the solutions from Theorem 3.1.1 satisfy Theorem 3.1.3 as well.

3.6 Applications to gravitational solitons

The purpose of this section is to analyze the dynamics of certain exact solutions to the
Einstein field equations that can be derived from the Belinski-Zakaharov transform.
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3.6.1 Generalized Kasner metric background

We begin our analysis by considering vacuum cosmologies described by the Kasner-type
model. The Kasner metric, being one of the first known exact solutions in relativistic cosmol-
ogy, remains one of the most important exact solutions in General Relativity. The generalized
Kasner metric can be written in the diagonal form as follows:

ds2 = f0(t, x)(dx
2 − dt2) + αeu0dy2 + αe−u0dz2, (3.6.1)

where the function u0 is given by
u0(t, x) = d lnα, (3.6.2)

and d is an arbitrary parameter, the Kasner parameter. It can be chosen either positive or
negative, for instance d = ±1 corresponds to a region of Minkowski, d = 0 is an LRS space
with Petrov type metric D. The x axis expands as time evolves if |d| > 1 and contracts
if |d| < 1 [8]. The original Kasner metric [59] is obtained by taking α = t (timelike) and
describes an anisotropic universe without matter. The original Kasner’s choice does not fit
into the assumptions of Theorem 3.1.1, and will be studied elsewhere.

In this work we will assume that d ≥ 1 to ensure the correct finite energy condition.
Naturally one has

det g = α2, g = α diag
(
eu0 , e−u0

)
.

As mentioned in the previous section, in order to identify the spacetime (3.6.1) with a cos-
mological model, the function α(t, x) must be globally timelike. If one compares (3.6.1) with
(3.1.7), we have that Λ and ϕ should be given by

Λ(0)(t, x) = u0, and ϕ(0) = nπ, n ∈ Z. (3.6.3)

Lemma 3.6.1. If the function α(t, x) satisfies the hypotheses of the Theorem 3.1.1 with
|α̃0| < α1 and ∂tα > 0, then, the Kasner-type seed solution (Λ(0), ϕ(0)) of the (3.1.8) has
finite nonnegative energy.

Proof. The energy density proposed in (3.4.13), in this case, has the following structure:

ê0 =− α∂tα

(∂xα)2 − (∂tα)2
[
(∂xΛ

(0))2 + (∂tΛ
(0))2

]
+

2α∂xα

(∂xα)2 − (∂tα)2
∂xΛ

(0)∂tΛ
(0).

Using (3.6.3) we get: 
∂xΛ

(0) =
d∂xα

α
,

∂tΛ
(0) =

d∂tα

α
.

Then, since (∂xα)
2 − (∂tα)

2 < 0 we can simplify the expression (3.6.1) as:

ê0 =
d2α∂tα

(∂xα)2 − (∂tα)2

(
(∂xα)

2 − (∂tα)
2

α2

)
= d2∂t(lnα). (3.6.4)

Notice that ê0 is nonnegative and well-defined thanks to the timelike condition on α. And a
similar way, we have the following momentum density:

p̂0 = d2∂x(lnα).
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Given the definition of ∂tα in terms of initial conditions α̃0, α1, and using (4.4.6), we can
conclude that the energy (3.6.4) corresponding to this background metric is finite, i.e.

E[Λ(0), ϕ(0);α](t) =

∫
ê0dx =

∫
1

2
[L(lnα) + L(lnα)]dx <∞.

The proof is complete.

Theorems 3.1.1 and 3.1.3 imply in this case that for any |v| < 1 and ω(t) = t(log t)−2,

lim
t→+∞

∫
|x−vt|≤ω(t)

1

α2

(
α2
t + α2

x

)
(t, x)dx = 0,

as naturally expected for solutions of the 1D wave equation. What is more interesting is the
case of 1-soliton solutions.

Remark 3.6.1. As we can notice, until now it has been enough to impose certain constraints
on the function α, to understand how we must define the energy in each spacetime and to
understand how the solution of the system behaves in long time. At this point, it is important
to emphasize that, in the framework of the Inverse Scattering theory for the Einstein equation,
proposed by Belinski and Zakharov, in addition to the function α(t, x), it is necessary to
introduce its conjugate derivative β(t, x), related to α(t, x) by the identities

∂tβ = ∂xα, and ∂xβ = ∂tα,

β is introduced with the aim of describing the 1-soliton solution. In the setting of Theorem
3.1.1, from (3.3.6) one sees that this function is given by

β(t, x) := C + α̃0(2u)− α̃0(−2u) +

∫ 2u

0

α1(s)ds+

∫ −2u

0

α1(s)ds, C ∈ R. (3.6.5)

β(t, x) is a second independent solution of the one-dimensional wave equation, and will be
automatically spacelike in our setting. Indeed, from (3.3.1),

βt = α̃′
0(2u) + α̃′

0(−2u) + α1(2u)− α1(−2u),

and
βx = α̃′

0(2u)− α̃′
0(−2u) + α1(2u) + α1(−2u) > 0.

Consequently,
βx − βt = −2α̃′

0(−2u) + 2α1(−2u) > 0,

and
βx + βt = 2α̃′

0(2u) + 2α1(2u) > 0.

Belinski and Zakharov postulate that there is a smooth, one-to-one, surjective mapping
between t, x and α, β, see [6].

In the setting of Theorem 3.1.1, it is clear that β defines a bounded function in spacetime.
Additionally,

lim
t→+∞

∫
|x−vt|≤ω(t)

1

β2

(
β2
t + β2

x

)
(t, x)dx = 0.
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One Soliton Solution

Belinski and Verdaguer [8, p. 47] introduced the one soliton solution with Kasner background.
Let ω ∈ R be a fixed parameter. Let µ be

µ := w − β −
√

(w − β)2 − α2, (3.6.6)

where β solves (3.6.5), namely ∂tβ = ∂xα. Then the 1-soliton with Kasner background is
given by

g(1) =
1

µ cosh(ρ)

[
eu0(µ2eρ + α2e−ρ) α2 − µ2

α2 − µ2 e−u0(α2eρ + µ2e−ρ)

]
, (3.6.7)

where
ρ = d ln

(µ
α

)
+ C, C ∈ R,

f = f (0)α1/2µ cosh(ρ)(α2 − µ2)−1.

Some important remarks are in order. First, from (3.6.6) one can see that if ω is sufficiently
large, µ is real-valued. Assume ω > 0 sufficiently large such that µ is real valued and
positive. For the purposes of this work, we need a further simplification of (3.6.7). Assuming
for simplicity C = 0 in ρ, after some computations we get

eu0 = αd, eρ =
(µ
α

)d
, e−ρ =

(µ
α

)−d

, cosh ρ =
1

2

((µ
α

)d
+
(µ
α

)−d
)
,

and for

m :=
µ

α
=

1

α
(w − β −

√
(w − β)2 − α2),

one obtains

g(1) =
2

µ
((

µ
α

)d
+
(
µ
α

)−d
)
 αd

(
µ2
(
µ
α

)d
+ α2

(
µ
α

)−d
)

α2 − µ2

α2 − µ2 α−d
(
α2
(
µ
α

)d
+ µ2

(
µ
α

)−d
) 

=
2α

md +m−d

[
αd
(
md+1 +m−d−1

)
1
m
−m

1
m
−m α−d

(
md−1 +m−d+1

) ] .
(3.6.8)

A first glimpse of the g(1) reveals that it will behave closely to the functions α and β. In this
sense, we can say that the associated propagation speed must coincide with a support on the
light cone. Comparing (3.6.8) with (3.1.7), we find that

coshΛ + cos 2ϕ sinhΛ =
2αd

(
md+1 +m−d−1

)
md +m−d

coshΛ− cos 2ϕ sinhΛ =
2α−d

(
md−1 +m−d+1

)
md +m−d

sin 2ϕ sinhΛ =
2 (m−1 −m)

md +m−d
.

and therefore

coshΛ =
αd
(
md+1 +m−d−1

)
+ α−d

(
md−1 +m−d+1

)
md +m−d

, (3.6.9)
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tanh 2ϕ =
2 (m−1 −m)

αd (md+1 +m−d−1)− α−d (md−1 +m−d+1)
. (3.6.10)

Since α,m > 0 by hypothesis and a+ 1
a
≥ 1 for a > 0, we get

αd
(
md+1 +m−d−1

)
+ α−d

(
md−1 +m−d+1

)
md +m−d

=
(αdm+ α−dm−1)md + (αdm−1 + α−dm)m−d

md +m−d
≥ 1.

Using that sinh(arccoshx) =
√
x2 − 1 for |x| ≥ 1, we get

sinh2 Λ =

(
(αdm+ α−dm−1)md + (αdm−1 + α−dm)m−d

md +m−d

)2

− 1. (3.6.11)

As a first application, we use Theorem 3.1.1 to provide the following global existence result:

Corollary 3.6.1. Under the smallness hypotheses on α from Theorem 3.1.1, suitable per-
turbations of the 1-soliton with Kasner metric background (3.6.8) are globally defined.

Additionally, it is not difficult to realize that (Λ, ϕ, α) define globally defined finite energy
solutions. Consequently, Theorem 3.1.3 allows us to conclude

Corollary 3.6.2. Under the hypothesis on α obtained from Theorem 3.1.1, g(1) in the form
(Λ, ϕ, α) satisfies the assumptions in Theorem 3.1.3, and consequently

lim
t→+∞

∫
|x−vt|≤ω(t)

(
Λ2

t + Λ2
x + sinh2(Λ)(ϕ2

t + ϕ2
x)
)
(t, x)dx = 0.

Both corollaries prove Theorem 3.1.4.

Proof of Corollary 3.6.1. We have to verify the hypotheses in Theorem 3.1.1. Indeed, notice
that from (3.6.5) (by choosing C = 1)

α = 1 + α̃0, β = 1 + β̃0.

Similarly, m has the same asymptotic behavior, converging to a constant as time tends to
infinity. It is then revealed that Λ = λ + Λ̃ and ϕ in (3.6.9)-(3.6.10) follow an analogous
structure, where perturbations can be made arbitrarily small, depending on a parameter ε.
The rest of the hypotheses are standard and satisfied in a standard fashion.

Proof of Corollary 3.6.2. Assume (3.1.15) and (3.1.17). In order to apply Theorems 3.1.2
and 3.1.3 we only need to check the finite energy condition for all time. This is clear from
the form of Λ = λ+Λ̃ and ϕ in (3.6.9)-(3.6.10): every squared time and space derivative will
involve squared derivatives on α, µ and β, which have bounded in time finite energy. Finally,
(3.6.11) ensures the last part of the energy condition.
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3.6.2 The Einstein-Rosen Metric

We study now a metric with cylindrical symmetry where our decay results do not apply. We
will choose α = r > 0 as solution to 1D waves, such that

αt = 0, α2
r − α2

t = 1 > 0,
αt

α
= 0.

The cylindrical coordinates are xµ = t, r and xa = φ, z. The metric will be also diagonal
(φ = 0). We have then the following spacetime interval [34]:

ds2 := f (0)(−dt2 + dr2) + eu0(rdϕ)2 + e−u0dz2, (3.6.12)

where f (0) > 0 and u0 are functions of t, r and u0(t, r) satisfies the “cylindrical” wave equation

∂2t u0 =
1

r
∂r(r∂ru0). (3.6.13)

This is the Einstein-Rosen diagonal form. As in the previous case, the Belinski-Zakharov
setting is

g = α diag(eΛ
(0)

, e−Λ(0)

), α = r, u0(t, r) = Λ(0) − ln r.

Then Λ(0) is as (3.1.7) if ϕ(0) = nπ. It satisfies the equation

∂2tΛ
(0) =

1

r
∂r(r∂rΛ

(0)).

A particular choice for Λ(0) is given by

Λ(0) = J0(r) sin(t), (3.6.14)

where J0 denotes the 0-th order Bessel function. From (3.6.14) clearly Λ(0) does not decay
in time. For this case, the densities are given as follows:

e0 = r((∂tΛ
(0))2 + (∂rΛ

(0))2)

p0 = −2r∂tΛ
(0)∂rΛ

(0).

For completeness, the one soliton solution in this case was studied by Hadad in [52], and it
is given as

g(1) =
1

µ cosh(γ)

[
r2eu0 cosh(γ + γ̃) r2−µ2

2µ
r2−µ2

2µ
e−u0 cosh(γ − γ̃)

]
,

where ω ∈ R, 

µ = ω − t±
√

(ω − t)2 − r2

γ̃ = ln
(

r
|µ|

)
∓ cosh−1

(
ω−t
r

)
γ = K + u0 + 2ρ+ γ̃ K = ln(C), C > 0

∂tρ =
r

µ2−r2
(r∂tu0 + µ∂ru0)

∂rρ =
r

µ2−r2
(r∂ru0 + µ∂tu0)

f = C0

√
r µ
µ2−r2

cosh(γ)f 0.

102



3.7. APPENDIX

Then, the fields Λ and ϕ are given as:

Λ = cosh−1

(
r

2
eu0 cosh(γ + γ̃) +

e−u0

2r
cosh(γ − γ̃)

)
ϕ =

1

2
tan−1

(
r2 − µ2

4µ cosh(γ)h

)
,

where

h =
r

2
eu0 cosh(γ + γ̃)− e−u0

2r
cosh(γ − γ̃).

A further study of this metric with other techniques will be done elsewhere.

3.7 Appendix

3.7.1 Proof of the Lemma 3.4.1

In this section we prove, for completeness, the modified continuity equations (3.4.6). First,
let us start by writing the derivatives of the energy and momentum densities (respectively).
Recall that, for this case, we have a full form for h1 and h2 introduced in (3.4.17) and (3.4.18),
as follow:

h1 =
(∂xα)

2 + (∂tα)
2

α2
+ 4 sinh2(Λ)

(
(∂tϕ)

2 + (∂xϕ)
2
)
+ (∂tΛ)

2 + (∂xΛ)
2

and

h2 =
∂xα∂tα

α2
+ ∂xΛ∂tΛ + 4∂xϕ∂tϕ sinh

2(Λ).

Then, we can write the energy and momentum density as:

e(t, x) = κ∂tαh1 − 2κ∂xαh2,

p(t, x) = κ∂xαh1 − 2κ∂tαh2,

where
κ :=

α

α2
x − α2

t

, and

∂tκ =
αtα

2
x − αtα

2
t − 2ααxαxt + 2ααtαtt

(α2
x − α2

t )
2

,

∂xκ =
αxα

2
x − αxα

2
t − 2ααxαxx + 2ααtαtx

(α2
x − α2

t )
2

.
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For the derivatives of h1 and h2 we have:

∂th1 =2
(αxαxt + αtαtt)α

2 − ααt(α
2
x + α2

t )

α4
+ 4 sinh(2Λ)Λt(ϕ

2
x + ϕ2

t )

+8 sinh2(Λ)(ϕ− xϕxt + ϕtϕtt) + 2ΛxΛxt + 2ΛtΛtt

∂xh1 =2
(αxαxx + αtαtx)α

2 − ααx(α
2
x + α2

t )

α4
+ 4 sinh(2Λ)Λx(ϕ

2
x + ϕ2

t )

+ 8 sinh2(Λ)(ϕxϕxx + ϕtϕtx) + 2ΛxΛxx + 2ΛtΛtx

∂th2 =
(αttαx + αtαxt)α

2 − 2αα2
tαx

α2
+ ΛxtΛt + ΛxΛtt

+ 4 sinh(2Λ)Λtϕtϕx + 4 sinh2(Λ)(ϕxtϕt + ϕxϕtt)

∂xh2 =
(αxxαt + αxαxt)α

2 − 2αα2
xαt

α2
+ ΛxxΛt + ΛxΛtx

+ 4 sinh(2Λ)Λxϕtϕx + 4 sinh2(Λ)(ϕxxϕt + ϕxϕtx)

The first step will be to proof the first equation in (3.4.6), taking derivative in x for energy
density and derivative in t for the momentum density, we have

∂xe(t, x) =κxαth1 − 2κxαxh2 + κ (αtxh1 + αt∂xh1 − 2αxxh2 − 2αx∂xh2)

=Teα + TeΛ + Teϕ,

∂tp(t, x) =κtαxh1 − 2κtαth2 + κ (αtxh1 + αx∂th1 − 2αtth2 − 2αt∂th2)

=Tpα + TpΛ + Tpϕ.

Where the terms, for example, Teα, T eΛ, T eϕ represent the terms in ∂xe that are related with
α,Λ, and ϕ respectively, as follows:

Teα := ∂x

(
κ∂tα

(∂xα)
2 + (∂tα)

2

α2
− 2κ∂xα

∂xα∂tα

α2

)
Teϕ := ∂x

(
4κ∂tα sinh2(Λ)

(
(∂tϕ)

2 + (∂xϕ)
2
)
− 8κ∂xα∂xϕ∂tϕ sinh

2(Λ)
)

TeΛ := ∂x
(
κ∂tα((∂tΛ)

2 + (∂xΛ)
2)− 2κ∂xα∂xΛ∂tΛ

)
.

In the same way for Tpα, Tpϕ, TpΛ, this time respect to ∂tp:

Tpα := ∂t

(
κ∂xα

(∂xα)
2 + (∂tα)

2

α2
− 2κ∂tα

∂xα∂tα

α2

)
Tpϕ := ∂t

(
4κ∂xα sinh2(Λ)

(
(∂tϕ)

2 + (∂xϕ)
2
)
− 8κ∂tα∂xϕ∂tϕ sinh

2(Λ)
)

TpΛ := ∂t
(
κ∂xα((∂tΛ)

2 + (∂xΛ)
2)− 2κ∂xα∂tΛ∂tΛ

)
.

Now, we are going to compute the sum of these two expressions, term by term, taking into
account the structure of each term, starting by Teα, Tpα:

Tpα =
αxα

2
xαt

(α2
x − α2

t )
2α2

+
αxαtα

2
t

(α2
x − α2

t )
2α2

− 2αα2
xα

2
xαxt

(α2
x − α2

t )
2α2

− 2αα2
xαxtα

2
t

(α2
x − α2

t )
2α2

+
2ααtαxα

2
xαtt

(α2
x − α2

t )
2α2

+
2ααtαxα

2
tαtt

(α2
x − α2

t )
2α2

− 2α2
tαxαt

(α2
x − α2

t )α
2
+

4αα2
xα

2
tαxt

(α2
x − α2

t )
2α2

− 4ααtαxα
2
tαtt

(α2
x − α2

t )
2α2

+
2αα2

xαxt

(α2
x − α2

t )α
2

+
2ααxαtαtt

(α2
x − α2

t )α
2
− 2αxαtα

2
x

(α2
x − α2

t )α
2
− 2α2

tαxαt

(α2
x − α2

t )α
2
− 2αttααxαt

(α2
x − α2

t )α
2
− 2αtααttαx

(α2
x − α2

t )α
2

− 2α2
tααxt

(α2
x − α2

t )α
2
+

4αtα
2
tαx

(α2
x − α2

t )α
2
+

ααttα
2
x

(α2
x − α2

t )α
2
+

ααxtα
2
t

(α2
x − α2

t )α
2
.
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Arranging terms,

Tpα =
α2
x

α2
x − α2

t

(
ααxt − αxαt

α2

)
− α2

t

α2
x − α2

t

(
ααxt − αtαx

α2

)
+

2αα2
xα

2
tαxt

(α2
x − α2

t )
2α2

− 2ααtαxαttα
2
t

(α2
x − α2

t )
2α2

− 2αα2
xα

2
xαxt

(α2
x − α2

t )
2α2

+
2ααtαxα

2
xαtt

(α2
x − α2

t )
2α2

+
2αα2

xαxt

(α2
x − α2

t )α
2
− 2αtααttαx

(α2
x − α2

t )α
2

=
α2
x

α2
x − α2

t

∂x

(αt

α

)
− α2

t

α2
x − α2

t

∂x

(αt

α

)
− 2α2

xααxt

(α2
x − α2

t )α
2
+

2ααtαxαtt

(α2
x − α2

t )α
2

+
2α2

xααxt

(α2
x − α2

t )α
2
− 2ααtαxαtt

(α2
x − α2

t )α
2
= ∂x

(αt

α

)
.

Similarly,

Teα =
α2
x

α2
x − α2

t

(
αxαt − ααtx

α2

)
− αxαtα

2
t

(α2
x − α2

t )α
2
+

3αtxαα
2
t

(α2
x − α2

t )α
2
− 2αα2

xα
2
tαtx

(α2
x − α2

t )α
2

+
2αα2

xαxαtαxx

(α2
x − α2

t )
2α2

− 2ααxαxxαtα
2
t

(α2
x − α2

t )
2α2

+
2αα2

tαxtα
2
t

(α2
x − α2

t )
2α2

− 2ααxxαxαt

sα2

=− α2
x

α2
x − α2

t

∂x

(αt

α

)
− αxαtα

2
t

(α2
x − α2

t )α
2
+

3αtxαα
2
t

(α2
x − α2

t )α
2
− 2α2

tαtxα

(α2
x − α2

t )α
2

+
2ααxxαtαx

(α2
x − α2

t )α
2
− 2ααxxαxαt

(α2
x − α2

t )α
2

=− α2
x

α2
x − α2

t

∂x

(αt

α

)
+

α2
t

α2
x − α2

t

(
αtxα− αxαt

α2

)
=− α2

x

α2
x − α2

t

∂x

(αt

α

)
+

α2
t

α2
x − α2

t

∂x

(αt

α

)
=− ∂x

(αt

α

) α2
x − α2

t

α2
x − α2

t

= −∂x
(αt

α

)
,

therefore Teα + Tpα = 0. We continue with the terms that depend mainly on Λ and its
derivatives:

TeΛ =
αxαtΛ

2
t

α2
x − α2

t

+
αxαtΛ

2
x

α2
x − α2

t

− 2α2
xΛxΛt

α2
x − α2

t

− 2ααxαxxαtΛ
2
t

(α2
x − α2

t )
2

− 2ααxαxxαtΛ
2
x

(α2
x − α2

t )
2

+
4αα2

xαxxΛxΛt

(α2
x − α2

t )
2

+
ααxtΛ

2
t

α2
x − α2

t

+
ααxtΛ

2
x

α2
x − α2

t

+
2ααtΛxΛxx

α2
x − α2

t

+
2ααtΛtΛtx

α2
x − α2

t

− 2ααxxΛxΛt

α2
x − α2

t

− 2ααxΛxxΛt

α2
x − α2

t

− 2ααxΛxΛtx

α2
x − α2

t

+
2αα2

tαtxΛ
2
t

(α2
x − α2

t )
2
+

2αα2
tαtxΛ

2
x

(α2
x − α2

t )
2
− 4ααtαtxαxΛxΛt

(α2
x − α2

t )
2

,

and for p we have:

TpΛ =
αxαtΛ

2
t

α2
x − α2

t

+
αxαtΛ

2
x

α2
x − α2

t

− 2α2
xΛxΛt

α2
x − α2

t

− 2αα2
xαxtαtΛ

2
t

(α2
x − α2

t )
2

− 2αα2
xαxtαtΛ

2
x

(α2
x − α2

t )
2

+
4ααxαtαxtΛxΛt

(α2
x − α2

t )
2

+
ααxtΛ

2
t

α2
x − α2

t

+
ααxtΛ

2
x

α2
x − α2

t

+
2ααxΛtΛtt

α2
x − α2

t

− 2ααtΛtΛtx

α2
x − α2

t

− 2ααxxΛxΛt

α2
x − α2

t

− 2ααtΛttΛt

α2
x − α2

t

+
2ααxΛxΛtx

α2
x − α2

t

+
2ααtαxαttΛ

2
t

(α2
x − α2

t )
2

+
2ααtαxαttΛ

2
x

(α2
x − α2

t )
2

− 4αα2
tαttΛxΛt

(α2
x − α2

t )
2
.
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If we sum these two terms and using the first equation in the (3.1.8), we get

TeΛ + TpΛ =

=
2(αxΛt − αtΛx)[αΛtt − αΛxx]

α2
x − α2

t

+
2αtΛt(αxΛt − αtΛx)

α2
x − α2

t

− 2αxΛx(αxΛt − αtΛx)

α2
x − α2

t

+R

=
2

α2
x − α2

t

(αxΛt − αtΛx) [∂t(αΛt)− ∂x(αΛx)] +R

=
2

α2
x − α2

t

(αxΛt − αtΛx)
[
2αϕ2

t sinh(2Λ)− 2αϕ2
x sinh(2Λ)

]
+R,

where R represents the remainder of the terms in the sum above. After simplification, we
have that R is actually equal to zero, indeed

R =
2αxtαΛ

2
t

(α2
x − α2

t )
2
(α2

t − α2
x) +

2αxtαΛ
2
x

(α2
x − α2

t )
2
(α2

t − α2
x) +

4αttαΛtΛx

(α2
x − α2

t )
2
(α2

x − α2
t ) +

2αxtαΛ
2
t

α2
x − α2

t

+
2αxtαΛ

2
x

(α2
x − α2

t )
2
− 4αttαΛtΛx

α2
x − α2

t

= 0.

The last terms to simplify are the terms that depend mainly on ϕ, first, let us start with the
terms related to ϕ in momentum density derivatives:

Tpϕ =
4αtαx sinh

2(Λ)ϕ2
t

α2
x − α2

t

+
4αtαx sinh

2(Λ)ϕ2
x

α2
x − α2

t

− 8α2
t sinh

2(Λ)ϕxϕt

α2
x − α2

t

− 8αα2
xαtx sinh

2(Λ)ϕ2
x

(α2
x − α2

t )
2

− 8αα2
xαtx sinh

2(Λ)ϕ2
t

(α2
x − α2

t )
2

+
16ααxαxtαt sinh

2(Λ)ϕxϕt

(α2
x − α2

t )
2

+
8ααtαttαx sinh

2(Λ)ϕ2
t

(α2
x − α2

t )
2

+
8ααtαttαx sinh

2(Λ)ϕ2
x

(α2
x − α2

t )
2

− 16αα2
tαtt sinh

2(Λ)ϕtϕx

(α2
x − α2

t )
2

+
4ααxt sinh

2(Λ)ϕ2
t

α2
x − α2

t

+
4ααxt sinh

2(Λ)ϕ2
x

α2
x − α2

t

+
4ααx sinh(2Λ)Λtϕ

2
x

α2
x − α2

t

+
4ααx sinh(2Λ)Λtϕ

2
t

α2
x − α2

t

+
8ααx sinh

2(Λ)ϕxϕxt

α2
x − α2

t

+
8ααx sinh

2(Λ)ϕxϕtt

α2
x − α2

t

− 8ααtt sinh
2(Λ)ϕxϕt

α2
x − α2

t

− 8ααt sinh(2Λ)Λtϕxϕt

α2
x − α2

t

− 8ααt sinh
2(Λ)ϕxtϕt

α2
x − α2

t

− 8ααt sinh
2(Λ)ϕttϕx

α2
x − α2

t

Now, let us pass to the terms in the derivative of the energy density

Teϕ =
4αtαx sinh

2(Λ)ϕ2
t

α2
x − α2

t

+
4αtαx sinh

2(Λ)ϕ2
x

α2
x − α2

t

− 8α2
x sinh

2(Λ)ϕxϕt

α2
x − α2

t

− 8ααxαtαxx sinh
2(Λ)ϕ2

t

(α2
x − α2

t )
2

− 8ααxαtαxx sinh
2(Λ)ϕ2

x

(α2
x − α2

t )
2

+
16αα2

xαxx sinh
2(Λ)ϕxϕt

(α2
x − α2

t )
2

+
8αα2

tαtx sinh
2(Λ)ϕ2

t

(α2
x − α2

t )
2

+
8αα2

tαtx sinh
2(Λ)ϕ2

x

(α2
x − α2

t )
2

− 16ααtαtxαx sinh
2(Λ)ϕtϕx

(α2
x − α2

t )
2

+
4ααxt sinh

2(Λ)ϕ2
t

α2
x − α2

t

+
4ααxt sinh

2(Λ)ϕ2
x

α2
x − α2

t

+
4ααt sinh(2Λ)Λxϕ

2
x

α2
x − α2

t

+
4ααt sinh(2Λ)Λxϕ

2
t

α2
x − α2

t

+
8ααt sinh

2(Λ)ϕxϕxx

α2
x − α2

t

+
8ααt sinh

2(Λ)ϕtϕtx

α2
x − α2

t

− 8ααtt sinh
2(Λ)ϕxϕt

α2
x − α2

t

− 8ααx sinh(2Λ)Λxϕxϕt

α2
x − α2

t

− 8ααx sinh
2(Λ)ϕxxϕt

α2
x − α2

t

− 8ααx sinh
2(Λ)ϕxϕtx

α2
x − α2

t

.
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In the next step we will sum Teϕ + Tpϕ + TeΛ + TpΛ, then, simplify the similar terms and
cancel the corresponding terms, then we obtain the following expression:

Teϕ + Tpϕ + TeΛ + TpΛ

=
8αxαt sinh

2(Λ)ϕ2
t

α2
x − α2

t

+
8αxαt sinh

2(Λ)ϕ2
x

α2
x − α2

t

− 8α2
x sinh

2(Λ)ϕtϕx

α2
x − α2

t

− 8α2
t sinh

2(Λ)ϕtϕx

α2
x − α2

t

+
8ααtx sinh

2(Λ)ϕ2
t

(α2
x − α2

t )
2

(α2
t − α2

x) +
8ααtx sinh

2(Λ)ϕ2
x

(α2
x − α2

t )
2

(α2
t − α2

x)

+
16ααxx sinh

2(Λ)ϕtϕx

(α2
x − α2

t )
2

(α2
x − α2

t ) +
8ααtx sinh

2(Λ)ϕ2
t

α2
x − α2

t

+
8ααtx sinh

2(Λ)ϕ2
x

α2
x − α2

t

+
4ααt sinh(2Λ)Λxϕ

2
x

α2
x − α2

t

+
4ααt sinh(2Λ)Λxϕ

2
t

α2
x − α2

t

+
4ααx sinh(2Λ)Λtϕ

2
x

α2
x − α2

t

+
4ααx sinh(2Λ)Λtϕ

2
t

α2
x − α2

t

− 16ααtt sinh
2(Λ)ϕxϕt

α2
x − α2

t

− 8ααx sinh(2Λ)Λxϕxϕt

α2
x − α2

t

− 8ααx sinh
2(Λ)ϕxxϕt

α2
x − α2

t

+
8ααx sinh

2(Λ)ϕtϕtt

α2
x − α2

t

− 8ααt sinh(2Λ)Λtϕxϕt

α2
x − α2

t

− 8ααt sinh
2(Λ)ϕxϕtt

α2
x − α2

t

+
4ααx sinh(2Λ)Λtϕ

2
t

α2
x − α2

t

− 4ααx sinh(2Λ)Λtϕ
2
x

α2
x − α2

t

− 4ααt sinh(2Λ)Λxϕ
2
t

α2
x − α2

t

+
4ααt sinh(2Λ)Λxϕ

2
x

α2
x − α2

t

+
8ααt sinh

2(Λ)ϕxϕxx

α2
x − α2

t

.

In this expression we have several terms that will cancel out. They can be gathered in such
a way that we can use the second equation in the system (3.1.8). We have

Teϕ + Tpϕ + TeΛ + TpΛ =sinh2(Λ)(αtϕt − αxϕx + αϕtt − αϕtt)

(
8αxϕt − 8αtϕx

α2
x − α2

t

)
+ sinh(2Λ)(αϕtΛt − αϕxΛx)

(
8αxϕt − 8αtϕx

α2
x − α2

t

)
=(∂t(α sinh2 Λ∂tϕ)− ∂x(α sinh2 Λ∂xϕ))

(
8αxϕt − 8αtϕx

α2
x − α2

t

)
= 0.

We conclude that:
∂tp(t, x) + ∂xe(t, x) = 0.

In the second part of the proof, we are going to show the second equation in (3.4.6). For
this, we will again use the notation for grouping terms in the following way

∂te(t, x) = γtαth1 − 2γtαxh2 + γ (αtth1 + αt∂th1 − 2αxth2 − 2αx∂th2)

= Teα + TeΛ + Teϕ,

∂xp(t, x) =∂xγ (αxh1 − 2αth2) + γ (αxxh1 + αx∂xh1 − 2αtxh2 − 2αt∂xh2)

= Tpα + TpΛ + Tpϕ,

where the terms Teα, T eϕ, T eΛ has the same form than in the before, but, this time respect
to the terms for ∂te (or ∂xp respectively) Let us simplify each term, starting with the terms
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in α:

Teα =− αα2
xαtt

(α2
x − α2

t )α
2
+

2α2
xα

2
t

(α2
x − α2

t )α
2
+

3αα2
tαtt

(α2
x − α2

t )α
2
− 2ααtxαxαt

(α2
x − α2

t )α
2
− 2α2

tα
2
t

(α2
x − α2

t )α
2

− α2
tα

2
x

(α2
x − α2

t )α
2
+

α2
tα

2
t

(α2
x − α2

t )α
2
− 2ααxαtαxtα

2
x

(α2
x − α2

t )
2α2

− 2ααxαxtα
2
tαt

(α2
x − α2

t )
2α2

+
2αα2

tαttα
2
x

(α2
x − α2

t )
2α2

+
2αα2

tαttα
2
t

(α2
x − α2

t )
2α2

+
4ααxα

2
xαxtαt

(α2
x − α2

t )
2α2

− 4αα2
tαttα

2
x

(α2
x − α2

t )
2α2

=− αα2
xαtt

(α2
x − α2

t )α
2
+

2α2
xα

2
t

(α2
x − α2

t )α
2
+

α2
t

(α2
x − α2

t )
∂x

(αx

α

)
+

2αα2
tαtt

(α2
x − α2

t )α
2
− α2

tα
2
t

(α2
x − α2

t )α
2

− 2ααtxαxαt

(α2
x − α2

t )α
2
− 2αα2

tαtt

(α2
x − α2

t )α
2
+

2ααxαxtαt

(α2
x − α2

t )α
2

=− α2
t

(α2
x − α2

t )
∂x

(αx

α

)
− αtt

α
+

α2
t

(α2
x − α2

t )
∂t

(αt

α

)
= −∂t

(αt

α

)
,

for another hand, using a similar simplification as above, we obtain for Tpα the following
expression:

Tpα =
α2
xα

2
x

(α2
x − α2

t )α
2
+

α2
xα

2
t

(α2
x − α2

t )α
2
− 2α2

xα
2
t

(α2
x − α2

t )α
2
− 2αα2

xα
2
xαxx

(α2
x − α2

t )
2α2

− 2αα2
xα

2
tαxx

(α2
x − α2

t )
2α2

+
4αα2

xα
2
tαxx

(α2
x − α2

t )
2α2

+
2ααtαxαxtα

2
x

(α2
x − α2

t )
2α2

+
2ααtαxαxtα

2
t

(α2
x − α2

t )
2α2

− 4ααtαxαxtα
2
t

(α2
x − α2

t )
2α2

+
ααxxα

2
x

(α2
x − α2

t )α
2

+
ααxxα

2
t

(α2
x − α2

t )α
2
+

2ααxxα
2
x

(α2
x − α2

t )α
2
+

2ααtxαxαt

(α2
x − α2

t )α
2
− 2α2

xα
2
x

(α2
x − α2

t )α
2
− 2α2

xα
2
t

(α2
x − α2

t )α
2

− 2ααxαtαtx

(α2
x − α2

t )α
2
− 2αα2

tαxx

(α2
x − α2

t )α
2
− 2ααtαxαtx

(α2
x − α2

t )α
2
+

4α2
tα

2
x

(α2
x − α2

t )α
2

= ∂x

(αx

α

)
.

Now, for the terms in TeΛ and TpΛ we have

TeΛ =
α2
tΛ

2
t

α2
x − α2

t

+
α2
tΛ

2
x

α2
x − α2

t

− 2αxαtΛxΛt

α2
x − α2

t

− 2ααxαtxαtΛ
2
t

(α2
x − α2

t )
2

− 2ααxαtxαtΛ
2
x

(α2
x − α2

t )
2

+
4αα2

xαxtΛxΛt

(α2
x − α2

t )
2

+
2ααttα

2
tΛ

2
t

α2
x − α2

t

+
2αα2

tαttΛ
2
x

α2
x − α2

t

− 4ααtαxαttΛxΛt

α2
x − α2

t

+
ααttΛ

2
t

α2
x − α2

t

+
ααxxΛ

2
x

α2
x − α2

t

− 2ααxΛxΛtt

α2
x − α2

t

+
2ααxαtΛxΛtx

α2
x − α2

t

+
2ααtΛtΛtt

(α2
x − α2

t )
2
− 2ααtxΛxΛt

(α2
x − α2

t )
2
− 2ααxΛxtΛt

(α2
x − α2

t )
2
,

and, for p we have:

TpΛ =
α2
xΛ

2
t

α2
x − α2

t

+
α2
xΛ

2
x

α2
x − α2

t

− 2αxαtΛxΛt

α2
x − α2

t

− 2αα2
xαxxΛ

2
t

(α2
x − α2

t )
2
− 2αα2

xαxxΛ
2
x

(α2
x − α2

t )
2
+

4ααxαtαxxΛxΛt

(α2
x − α2

t )
2

+
2ααxtαxαtΛ

2
t

α2
x − α2

t

+
2ααxtαxαtΛ

2
x

α2
x − α2

t

− 4αα2
tαxtΛtΛx

α2
x − α2

t

− ααxxΛ
2
t

α2
x − α2

t

+
ααxxΛ

2
x

α2
x − α2

t

+
2ααxΛxxΛx

α2
x − α2

t

+
2ααxΛtΛtx

α2
x − α2

t

− 2ααxtΛtΛx

(α2
x − α2

t )
2
− 2ααtαxΛtΛxx

(α2
x − α2

t )
2

− 2ααtΛxΛtx

(α2
x − α2

t )
2
.
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If we sum up the terms and using the first equation in the system (3.1.8) and after simplifi-
cation we obtain

TeΛ + TpΛ =

(
2αtΛt − 2αxΛx

α2
x − α2

t

)
(αtΛt − αxΛ− αΛxx + αΛtt)

+
(α2

t − α2
x)Λ

2
x

α2
x − α2

t

+
(α2

x − α2
t )Λ

2
t

α2
x − α2

t

=

(
2αtΛt − 2αxΛx

α2
x − α2

t

)
(αtΛt + αΛtt − αxΛx − αΛxx) + Λ2

t − Λ2
x

=

(
2αtΛt − 2αxΛx

α2
x − α2

t

)(
2αϕ2

t sinh(2Λ)− 2αϕ2
x sinh(2Λ)

)
+ Λ2

t − Λ2
x.

To conclude the result, let us simplify the terms in ϕ:

Tpϕ =
4α2

x sinh
2(Λ)ϕ2

t

α2
x − α2

t

+
4α2

x sinh
2(Λ)ϕ2

x

α2
x − α2

t

− 8αtαx sinh
2(Λ)ϕxϕt

α2
x − α2

t

− 8αα2
xαxx sinh

2(Λ)ϕ2
t

(α2
x − α2

t )
2

− 8αα2
xαxx sinh

2(Λ)ϕ2
x

(α2
x − α2

t )
2

+
16ααxαxxαt sinh

2(Λ)ϕxϕt

(α2
x − α2

t )
2

+
8ααtαtxαx sinh

2(Λ)ϕ2
t

(α2
x − α2

t )
2

+
8ααtαtxαx sinh

2(Λ)ϕ2
x

(α2
x − α2

t )
2

− 16αα2
tαtx sinh

2(Λ)ϕtϕx

(α2
x − α2

t )
2

+
4ααxx sinh

2(Λ)ϕ2
t

α2
x − α2

t

+
4ααxx sinh

2(Λ)ϕ2
x

α2
x − α2

t

+
4ααx sinh(2Λ)Λxϕ

2
x

α2
x − α2

t

+
4ααx sinh(2Λ)Λxϕ

2
t

α2
x − α2

t

+
8ααx sinh

2(Λ)ϕxϕxx

α2
x − α2

t

+
8ααx sinh

2(Λ)ϕtϕtt

α2
x − α2

t

− 8ααtx sinh
2(Λ)ϕxϕt

α2
x − α2

t

− 8ααt sinh(2Λ)Λxϕxϕt

α2
x − α2

t

− 8ααt sinh
2(Λ)ϕxxϕt

α2
x − α2

t

− 8ααt sinh
2(Λ)ϕtxϕx

α2
x − α2

t

.

Now, let us pass to the terms in the derivative of the energy density

Teϕ =
4α2

t sinh
2(Λ)ϕ2

t

α2
x − α2

t

+
4α2

t sinh
2(Λ)ϕ2

x

α2
x − α2

t

− 8αxαt sinh
2(Λ)ϕxϕt

α2
x − α2

t

− 8ααxαtαxt sinh
2(Λ)ϕ2

t

(α2
x − α2

t )
2

− 8ααxαtαxt sinh
2(Λ)ϕ2

x

(α2
x − α2

t )
2

+
16αα2

xαxt sinh
2(Λ)ϕxϕt

(α2
x − α2

t )
2

+
8αα2

tαtt sinh
2(Λ)ϕ2

t

(α2
x − α2

t )
2

+
8αα2

tαxx sinh
2(Λ)ϕ2

x

(α2
x − α2

t )
2

− 16ααtαttαx sinh
2(Λ)ϕtϕx

(α2
x − α2

t )
2

+
4ααtt sinh

2(Λ)ϕ2
t

α2
x − α2

t

+
4ααtt sinh

2(Λ)ϕ2
x

α2
x − α2

t

+
4ααt sinh(2Λ)Λtϕ

2
x

α2
x − α2

t

+
4ααt sinh(2Λ)Λtϕ

2
t

α2
x − α2

t

+
8ααt sinh

2(Λ)ϕxϕxt

α2
x − α2

t

+
8ααt sinh

2(Λ)ϕtϕtt

α2
x − α2

t

− 8ααxt sinh
2(Λ)ϕxϕt

α2
x − α2

t

− 8ααx sinh(2Λ)Λtϕxϕt

α2
x − α2

t

− 8ααx sinh
2(Λ)ϕxtϕt

α2
x − α2

t

− 8ααx sinh
2(Λ)ϕxϕtt

α2
x − α2

t

.
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The last step is to perform the sum of the all term in Λ, ϕ, and simplify similar terms. We
will use the second equation in the system (3.1.8), then, we can write

Teϕ + Tpϕ + TeΛ + TpΛ

=
4α2

t sinh
2(Λ)ϕ2

t

α2
x − α2

t

+
4α2

t sinh
2(Λ)ϕ2

x

α2
x − α2

t

+
4ααt sinh(2Λ)Λtϕ

2
x

α2
x − α2

t

+ Λ2
t − Λ2

x

+
4ααt sinh(2Λ)Λtϕ

2
t

α2
x − α2

t

− 4ααt sinh(2Λ)Λtϕ
2
x

α2
x − α2

t

− 16αtαx sinh
2(Λ)ϕxϕt

α2
x − α2

t

+
8ααt sinh

2(Λ)ϕtϕtt

α2
x − α2

t

− 8ααx sinh(2Λ)Λtϕxϕt

α2
x − α2

t

+
16ααxt sinh

2(Λ)ϕxϕt

α2
x − α2

t

− 8ααx sinh
2(Λ)ϕxϕtt

α2
x − α2

t

+
4α2

x sinh
2(Λ)ϕ2

t

α2
x − α2

t

+
4α2

x sinh
2(Λ)ϕ2

x

α2
x − α2

t

+
4ααx sinh(2Λ)Λxϕ

2
x

α2
x − α2

t

+
4ααx sinh(2Λ)Λxϕ

2
t

α2
x − α2

t

+
8ααx sinh

2(Λ)ϕxϕxx

α2
x − α2

t

− 8ααt sinh(2Λ)Λxϕxϕt

α2
x − α2

t

− 8ααt sinh
2(Λ)ϕtϕxx

α2
x − α2

t

+
4ααt sinh(2Λ)Λtϕ

2
t

α2
x − α2

t

− 4ααx sinh(2Λ)Λxϕ
2
t

α2
x − α2

t

+
4ααx sinh(2Λ)Λxϕ

2
x

α2
x − α2

t

− 16ααtx sinh
2(Λ)ϕtϕx

α2
x − α2

t

= 4 sinh2(Λ)
(
ϕ2
t − ϕ2

x

)
+

(
8αtϕt − 8αxϕx

α2
x − α2

t

)
(αϕtΛt − αϕtΛt) sinh(2Λ)

+

(
8αtϕt − 8αxϕx

α2
x − α2

t

)
sinh2(Λ)(αtϕt − αxϕx + αϕtt − αϕxx) + Λ2

t − Λ2
x

= 4 sinh2(Λ)
(
ϕ2
t − ϕ2

x

)
+ Λ2

t − Λ2
x.

We can then conclude that:

∂te(t, x) + ∂xp(t, x) =4 sinh2(Λ)
(
ϕ2
t − ϕ2

x

)
+ Λ2

t − Λ2
x + ∂x

(αx

α

)
− ∂t

(αt

α

)
,

as desired.
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Chapter 4

Nonlinear Stability of nonsingular
solitons of the Principal Chiral Field
equation

Abstract: We consider the Principal Chiral Field model posed in 1+1 dimensions into the Lie
group SL(2,R). This model is characterized for being integrable with infinitely many conserved
quantities. The Belinski-Zakharov formalism has been applied to this model by Hadad, showing
the existence of 1-solitons of singular type obtained by a dressing method from background seeds.
In a previous work, it was proved the existence of finite-energy, nonsingular solitons, extending the
class of physically meaningful solutions. In this work we show the nonlinear stability of sufficiently
small non singular solitons. The method of proof involves the use of vector field methods as in a
previous work by the second and third authors dealing with the Einstein’s field equations under the
Belinski-Zakharov formalism, extending for all times the size of suitable null weighted norms of the
perturbations at time zero.

This chapter is contained in: M.A. Alejo, C. Muñoz and J. Trespalacios. Nonlinear Stability of

nonsingular solitons of the Principal Chiral Field equation, arXiv:2408.09969. Submitted 2024.
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4.1. INTRODUCTION

4.1 Introduction

Consider the Principal Chiral Field model (PCF) given by

∂t
(
∂tgg

−1
)
− ∂x

(
∂xgg

−1
)
= 0, (t, x) ∈ R× R, (4.1.1)

valid for a 2 × 2 Riemannian metric g, into the Lie group SL(2;R). Chiral fields on Lie
groups represent equivalence classes of the integrable relativistic two-dimensional systems,
consequently, (4.1.1) represents an integrable system. Zakharov and Mikhailov [117] showed
that classical spinor fields are connected with each such system. The Principal Chiral Field
is a nonlinear σ-model. The first description of the integrability of this model in the lan-
guage of the commutative representation (4.1.1) was given in [119]. Subsequently, different
results associated with integrability, conserved quantities and soliton solutions were obtained
[10, 41, 93], as well as different descriptions of this equation using Bäcklund and Darboux
transformations [31, 53]. There are several results associated with the study of the reduction
of the Principal Chiral Field equation in homogeneous spaces of Lie groups. In particular,
Zakharov and Mikhailov [117] studied PCF (4.1.1) for the special unitary group SU(N). In
[118], they studied the connection of this equation with the Nambu-Jona-Lasinian model. In
this work, we follow a different approach; we shall study PCF in the particular case of the re-
duction problem on “symmetric spaces”, following the works [7, 9, 52]. The symmetric space
considered is the invariant manifold of symmetric matrices sitting in the Lie group SL(2;R).
This space is not a Lie group, but it can be identified with an hyperboloid in Minkowski
spacetime, see [88].

In this work we shall study stability of regular soliton solutions of the PCF model. In
particular, we are interested in the notion of orbital and asymptotic stability of special so-
lutions of these model with small initial data perturbations. As far as we know, this seems
the first rigorous results in this direction for these kind of solutions. The stability theory is
an important line of research in nonlinear PDEs, in the sense that it gives solidity to the
results related to global existence of the solutions, asymptotic behavior, the dynamics of so-
lutions. In addition to the motivation arising from the PCF model, the study of the stability
for hyperbolic equations is of independent interest because of the connections with other
branches of physics. Indeed, the study of stability elucidates our understanding of whether
such models can provide mathematically reasonable models for physical phenomena.

Unlike many previous results related to orbital stability, in this paper we do not follow
the classical approach since it is nearly useless. PCF is a model where standard techniques
fail and one needs a new approach. We will combine asymptotic stability techniques and
preservation of local energy to provide a complete characterization of perturbations of regular
soliton solutions of PCF.

4.1.1 Setting of the model

Following the same approach that in a previous work [109], in this paper we consider the
identification of the PCF Equation (4.1.1) with the following (1 + 1)-dimensional system of
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4.1. INTRODUCTION

the semilinear wave equations
∂2tΛ− ∂2xΛ = −2 sinh(2Λ)((∂xϕ)

2 − (∂tϕ)
2),

∂2t ϕ− ∂2xϕ = −sinh(2Λ)

sinh2(Λ)
(∂tϕ∂tΛ− ∂xϕ∂xΛ).

(4.1.2)

This system corresponds to the PCF equation using the so-called Gowdy coordinates (see
[91] for full details). The fact that the 2× 2 matrix g is symmetric allows one to diagonalize
it for fixed t and x. One writes g = RDRT , where D is a diagonal matrix and R is a rotation
matrix, of the form

D =

(
eΛ 0
0 e−Λ

)
, R =

(
cosϕ − sinϕ
sinϕ cosϕ

)
.

Clearly det g = 1. Here Λ is the scalar field that determines the eigenvalues of g, and the
scalar field ϕ determines the deviation of g from being a diagonal matrix. Since ϕ is considered
as an angle, we can assume without loss of generality that ϕ ∈ [0, 2π]. Therefore Λ, ϕ can be
considered as the two degrees of freedom in the symmetric matrix g, [52]. Written explicitly,
the matrix g is given now by

g =

(
coshΛ + cos 2ϕ sinhΛ sin 2ϕ sinhΛ

sin 2ϕ sinhΛ coshΛ− cos 2ϕ sinhΛ

)
. (4.1.3)

Therefore, the components of the matrix g are completely determined by the fields Λ and
ϕ. For more details see [52, 109]. The system (4.1.2) is a set of coupled quasilinear wave
equations, with a rich analytical and algebraic structure. Solutions of the (4.1.2) are invariant
under space and time translations. Indeed, for any t0, x0 ∈ R, Λ(t−t0, x−x0), ϕ(t−t0, x−x0)
is also a solution. The conservation laws for the PCF equation (4.1.2) are as follow: in first
place, we have the energy

E[Λ,Λt, ϕ, ϕt] =

∫ (
1

2
((∂xΛ)

2 + (∂tΛ)
2) + 2 sinh2(Λ)((∂xϕ)

2 + (∂tϕ)
2)

)
(t, x)dx, (4.1.4)

and in second place we have the momentum

P [Λ,Λt, ϕ, ϕt] =

∫ (
∂xΛ∂tΛ + 4 sinh2(Λ)∂xϕ∂tϕ

)
(t, x)dx. (4.1.5)

Note that the energy is well-defined if (Λ, ∂tΛ) ∈ Ḣ1 × L2, but a suitable space for (ϕ, ∂tϕ)
strongly depends on the weight sinh2 Λ, which can easily grow exponentially in space, since
Ḣ1 can easily contain unbounded functions. In this regard, making sense of the energy (even
for classical solution such as solitons) is subtle and requires a deep and careful analysis.

Local and global solutions

Among the results presented in [109, Proposition 1.1], one has the local existence result for
solutions in the energy space. In the analysis of the initial value problem for this system, the
regularity of the term sinh(2Λ)

sinh2(Λ)
is delicate, specially when the function Λ(t, x) is zero. This case
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4.1. INTRODUCTION

must be carefully analyzed in order to be able to construct a local existence result associated
to PCF (4.1.2). In [109], it was proposed to write the function Λ(t, x) in the form

Λ(t, x) := λ̃+ Λ̃(t, x), λ̃ ̸= 0.

Notice that this choice makes sense with the energy in (4.1.4), in the sense that Λ ∈ Ḣ1 and
∂tΛ ∈ L2. Without loss of generality, we assume λ̃ > 0. The basic idea for LWP was to
establish the conditions that are required on λ̃ and Λ̃ in order to obtain the desired regularity
results. With this choice, the system (4.1.2) can be written in terms of the function Λ̃(t, x)
as follows: 

∂2t Λ̃− ∂2xΛ̃ = −2 sinh(2λ̃+ 2Λ̃)((∂xϕ)
2 − (∂tϕ)

2),

∂2t ϕ− ∂2xϕ = −sinh(2λ̃+ 2Λ̃)

sinh2(λ+ Λ̃)
(∂tϕ∂tΛ̃− ∂xϕ∂xΛ̃).

(4.1.6)

Having established the existence of solutions, the second result presented in [109] involves
whether or not local solutions can be extended globally in time. One has [109, Theorem
1.1]:

Theorem 4.1.1. Consider the semilinear wave system (4.1.2) posed in R1+1, with the fol-
lowing initial conditions:{

(ϕ, Λ̃)|{t=0} = ε(ϕ0, Λ̃0), (ϕ0, Λ̃0) ∈ C∞
c (R)2,

(∂tϕ, ∂tΛ̃)|{t=0} = ε(ϕ1, Λ̃1), (ϕ1, Λ̃1) ∈ C∞
c (R)2.

Then, there exists ε0 such that if ε < ε0, the unique solution remains smooth for all time and
have finite conserved energy (4.1.4).

In the same work [109], it was also established that the family of solutions satisfying the
hypotheses of Theorem 4.1.1 is non-empty. Using the ideas proposed by Belinski-Zakharov, it
was proved that there exists a family of solitons-like solutions for the PCF equation (4.1.1).
The construction and characterization of these solutions is briefly shown in the following
section.

4.1.2 Soliton solutions

Belinski and Zakharov in [9] (see also [8]) showed that (4.1.1) has N -soliton solutions. More
precisely, they proposed a transformation that systematically constructs the so-called gravi-
solitons in the context of the vacuum Einstein equations in General Relativity, under certain
conditions of symmetry in their coordinates. Hadad [52] explicitly showed, using this trans-
formation, the structure of the N -soliton for the PCF model (4.1.1). The application of
this transformation can be done since this model can be identified with the so-called reduced
Einstein equation given by

∂t
(
α∂tgg

−1
)
− ∂x

(
α∂xgg

−1
)
= 0, (t, x) ∈ R× R, (4.1.7)

with det g = α. Note that (4.1.1) corresponds to the case α = 1 in (4.1.7). It is important
to note that although the identification of the equation (4.1.1) with (4.1.7) can be made,
this special class of solutions has no relevance for the gravitational field. However, even in
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the case (α ≡ 1), the PCF model is sufficiently rich to produce a complex dynamics and
would formally have nontrivial solutions even when α is constant. In our recent result [91],
we considered the more demanding case when α non constant. We believe that the current
work will be essential to further study the stability of the cosmological type solutions as the
ones studied in [91].

We will now briefly discuss the general structure of the 1-soliton of the (4.1.1), as well
as the particular elements that characterize it. One starts using diagonal backgrounds, also
called “seed metric”, of the form

g(0) =

[
eΛ

(0)
0

0 e−Λ(0)

]
.

The function Λ(0)(t, x) satisfies the 1+1 wave equation ∂2tΛ
(0)−∂2xΛ

(0) = 0. In this case, if we
want to identify the solution in terms of the fields Λ and ϕ in the equation (4.1.2), we must
set (4.1.3) Λ = Λ(0), ϕ = nπ, with n ∈ Z, and α = 1. The gauge choice for us will be n = 0.

As can be seen into detail in [52], when applying the algorithm proposed by Belinski-
Zakharov, the following 1-soliton structure is obtained for the equation (4.1.1):

g(1) =
1

cosh γ1

 eΛ
(0)

cosh(γ1 + γ̃1)
1− µ2

1

2µ1

1− µ2
1

2µ1

e−Λ(0)
cosh(γ1 + γ̃1)

 , (4.1.8)

where the parameters γ̃1, γ1, are given in terms of the parameter µ1
1, as follow

γ̃1 := − ln |µ1|, γ1 := K1 + Λ(0) + 2B1, K1 := ln |C1|, C1 ∈ R,

B1 :=
1

µ2
1 − 1

(
Λ(0) + µ1Λ̃

(0)
)
, where ∂xΛ̃

(0) = ∂tΛ
(0).

The parameter µ1 represents a pole in terms of scattering techniques, however for this par-
ticular cases µ1 is a constant. It is easy to verify that det g(1) = 1, as required.

Singular solitons

Hadad [52] described the 1-soliton solution, which is obtained by taking Λ(0) = t (time-like)
and ϕ(0) = 0. Note that with this choice the energy in (4.1.4) is not well-defined. Indeed, the
energy proposed in (4.1.4) is not finite, but one can consider the following modified energy

Emod[Λ, ϕ](t) :=

∫ (
1

2

(
(∂tΛ)

2 − 1 + (∂xΛ)
2
)
+ 2 sinh2(Λ)((∂tϕ)

2 + (∂xϕ)
2)

)
,

which is also conserved and identically zero. Hadad computed the corresponding 1-soliton
solution using Belinski and Zakharov techniques, obtaining the corresponding form (4.1.8),

1This parameter appears naturally in the application of the Belinski-Zakharov transform to the equations
of General Relativity, for full details see [8, 117, 118, 119].
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as follows

g(1) =


etQc(x− vt)

Qc(x− vt− x0)
−1

c
Qc(x− vt)

−1

c
Qc(x− vt)

e−tQc(x− vt)

Qc(x− vt+ x0)

 ,
where, for a fixed parameter µ > 1, one has

Qc(·) =
√
c sech(

√
c(·)), c =

(
2µ

µ2 − 1

)2

, v = −µ
2 + 1

2µ
< −1, and x0 =

ln |µ|√
c
.

Notice that the first component of g(1) grows in time. Therefore, we have a traveling super-
luminal soliton which travels to the left (if µ > 0).

In [109], we propose a modification of this “degenerate” soliton solution by cutting off
the infinite energy part profiting of the wave-like character of solutions Λ(0). Although it is
not so clear that they are physically meaningful, these new solutions have finite energy and
local well-posedness properties in a vicinity. However, the stability of this solution was not
clear at the moment.

Finite energy, nonsingular solitons

Consider a smooth function θ ∈ C2
c (R), and 0 < µ < 1. For any λ > 0 and ε > 0 small, let

Λ(0)
ε (t, x) := λ+ εθ(t+ x), ϕ(0) := 0,

(it is also possible to take shifts, but this freedom is nearly unimportant for our results.)

Clearly Λ
(0)
ε solves the wave equation in 1+1 dimensions and has finite energy E[Λ

(0)
ε , ϕ

(0)
ε ] <

+∞. This will be for us the background seed. The corresponding 1-soliton, in correspondence
with the form (4.1.8), is now

g(1) =


eλ+εθ sech(β(λ+ εθ))

sech(β(λ+ εθ)− x0)
− 1√

c
sech(β(λ+ εθ))

− 1√
c
sech(β(λ+ εθ))

e−(λ+εθ) sech(β(λ+ εθ))

sech(β(λ+ εθ) + x0)

 , β =
µ+ 1

µ− 1
, (4.1.9)

with

c =

(
2µ

µ2 − 1

)2

, v = −µ
2 + 1

2µ
< −1, and x0 =

ln |µ|√
c
.

For this, the corresponding fields Λ̂ε and ϕ̂ε in (4.1.2), are given by γ := λ+ εθ(t+ x),

Λ̂ε = B = arcosh

(
|v| cosh γ − 1√

c
tanh(βγ) sinh γ

)
,

ϕ̂ε = D =
π

4
− 1

2
arctan

(
cosh(βγ) cosh γ(tanh(βγ) + v

√
c tanh γ)

)
.

(4.1.10)

Finally, we define the time derivative of B and D as follows

∂tB =
εθ′
(
|v| tanh(γ)− 1√

c
β sech2(βγ) tanh(γ)− 1√

c
tanh(βγ)

)
sech(γ)

√(
|v| cosh(γ)− 1√

c
sinh(γ) tanh(βγ)

)2
− 1

.
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Clearly ∂tB|{t=0} ∈ C1
0(R), and

∂tD =
−εθ′(β + v

√
c+ (1 + βv

√
c) tanh(βγ) tanh(γ))

2 sech(βγ) sech(γ)((cosh(γ) sinh(βγ) + v
√
c sinh(γ) cosh(βγ))

2
+ 1)

,

which is also a localized function. Notice that ∂tB, ∂tD ∈ L2(R), and the total energy is
finite.

From [109] one has that B is well-defined, B(t, x) > 0 for all t, x ∈ R, and for each t, B
is a bounded function. Again following [109], one can write B = λ̃ + B̃, λ̃ := limx→∞B(t =
0, x) > 0. Moreover,

B̃|{t=0} = εB̃0, with B̃0 ∈ C2
0(R).

where B̃0 is bounded in ε. A similar computation can be done for D and its time derivatives,
see [109]. Therefore, the setting of Theorem 4.1.1 is satisfied.

In this paper, in order to get global solutions, we shall assume 1-soliton perturbed initial
data of the form{

(Λ, ϕ)|{t=0} = (B + εz0, D + εs0), (z0, s0) ∈ C∞
c (R)2,

(∂tΛ, ∂tϕ)|{t=0} = (Bt + εw0, Dt + εm0), (w0,m0) ∈ C∞
c (R)2.

(4.1.11)

Then, by the previous non degeneracy analysis and Theorem 4.1.1, there exists ε0 such that
if ε < ε0, the unique solution remains smooth for all time and it has finite conserved energy
(4.1.4). This does not ensure that the perturbations [z, w, s,m](t) will remain small compared
with B̃ and D̃ after a large time, but our goal will be to guarantee that if they are small at
time zero, they will remain small at large time.

4.1.3 Main results

Having described in detail in Subsection 4.1.2 the PCF 1-soliton solutions, the purpose of
this paper is to give a first proof of the fact that the 1-soliton (4.1.9) of the PCF model is
orbital stable under small perturbations well-defined in the natural energy space associated
to the problem. The stability study will be done by addressing equation (4.1.2) and using
the description of the 1-soliton (4.1.9) in terms of the fields B and D given by (4.1.10). Our
main theorem is the following:

Theorem 4.1.2. There exists ε0 > 0 such that if 0 < ε < ε0, the following holds. There
exist C, δ0 > 0 such that, if 0 < δ < δ0, and [z0, w0, s0,m0] is given as in (4.1.11), then the
following are satisfied:

1. External energetic control. Assume that∫ (
1

2
(w2

0 + z20,x) + 2 sinh2(B + z0)(s
2
0,x +m2

0)

)
(x)dx < δ.

Then
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• For all time, one has a crossed global control:∫
R

(
1

2
(zx − w)2 + 2 sinh2(B + z)(sx −m)2

)
(t, x)dx < 3δ. (4.1.12)

• Inside light-cone convergence. For any v ∈ (−1, 1) and ω(t) = t/ log2 t, one has

lim
t→+∞

∫ vt+ω(t)

vt−ω(t)

(
w2 + z2x + sinh2(B + z)(m2 + s2x)

)
(t, x)dx = 0. (4.1.13)

• Exterior stability: for all time t ≥ 0,∫
|x+t|≥R

(
1

2
(w2 + z2x) + 2 sinh2(B + z)(s2x +m2)

)
(t, x)dx < δ. (4.1.14)

2. Full orbital stability. Assume now [z0, w0, s0,m0] ∈ C∞
c (R)4 be initial data as in (4.1.11)

such that∑
k=0,1

∫
(1 + |x|2)1+γ

(
(∂kxw0)

2 + (∂k+1
x z0)

2 + (∂kxm0)
2 + (∂k+1

x s0)
2
)
dx < δ2, (4.1.15)

for 0 < γ < 1
3
. Then the corresponding global solution to (4.1.6) given as

(B + z, ∂tB + w,D + s, ∂tD +m) (4.1.16)

satisfies the same bounds for all times:

sup
t≥0

(
E(t) + E(t)

)
≤ Cδ2. (4.1.17)

(See (4.4.7) for the definition of these norms.)

Notice that (4.1.12) is a global in time and space property satisfied by perturbations of
solitons. However, having direct control on each component of the differences is an important
open question, that probably requires the introduction of better decay properties of the initial
data, as it is done in (4.1.15).

Additionally, condition (4.1.15) is part of a more general energy norm condition, described
as

E [z0, w0] + E [s0,m0] < δ2,

(see (4.4.7) for the definition of these norms). It turns out that these norms are key to
translate the smallness information of the problem, in addition to the smallness of the 1-
soliton solution, represented by the parameter ε, which enters when computing space and
time derivatives of the solution.

One may think that standard energetic Lyapunov control in terms of energy and momen-
tum is the key to prove orbital stability. Unfortunately, in the case of PCF solitons, this
is not the case. Indeed, energy and momentum are useless since they do not control the
central region around the soliton. The best example of this fact is the estimate (4.1.12). The
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proof of Theorem 4.1.2 needs new ideas. In [109], the author showed that perturbations of
small 1-solitons lead to a global solution, but the smallness of the perturbation could not
be preserved. In this paper we avoid this problem by proposing a new idea obtained from
the general case of the Einstein’s field equations under the Belinski-Zakharov formalism [91].
Solitons are perturbations of the nonlinear primordial equations, and their size will be con-
trolled using well-defined weighted norms. It will be particularly important to notice that
solitons are assumed sufficiently small, but perturbations are considered smaller.

Organization of this work

This work is organized as follows. In Section 4.2 some important definitions, notation and
previous work are stated. In Section 4.3 we will introduce energy and momentum for per-
turbations of the soliton solution, and compute useful virial identities valid for data only in
the energy space. Finally, in Section 4.4 we prove the nonlinear stability of perturbations of
nonsingular PCF solitons.
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4.2 Preliminaries

4.2.1 Soliton profiles

Let ξ := t+x, and ε > 0. From now on, we will use the following notation: let γ := λ+εθ(ξ).
Consider the soliton profiles

B(ξ) = cosh−1

(
|v| cosh γ − 1√

c
tanh(βγ) sinh γ

)
,

D(ξ) =
π

4
− 1

2
arctan

(
cosh(βγ) cosh γ

(
tanh(βγ) + v

√
c tanh γ

))
.

If ξ = t + x, then B and D are solutions to (4.1.6). We shall also need the derivatives of B
and D:

B′(ξ) =
εθ′
(
|v| tanh γ − 1√

c
β sech2(βγ) tanh(γ)− 1√

c
tanh(βγ)

)
sech(γ)

√(
|v| cosh(γ)− 1√

c
sinh(γ) tanh(βγ)

)2
− 1

,

D′(ξ) =
−εθ′ (β + v

√
c+ (1 + βv

√
c) tanh(βγ) tanh γ)

2 sech(βγ) sech γ
(
(cosh(γ) sinh(βγ) + v

√
c sinh γ cosh(βγ))

2
+ 1
) .

(4.2.1)
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Notice that both functions have compact support since θ′ has compact support.

The vector soliton is denoted as B = [B,B′, D,D′], and the perturbation will be denoted
as u = [z, w, s,m] ∈ C∞

0 (R)4.

4.2.2 Previous bounds on global solutions

Let us recall some previous information [109] about the global solution in our problem.
Consider

u :=
t− x

2
, u :=

t+ x

2
.

Consider the two null vector fields defined globally as

L = ∂t + ∂x, L = ∂t − ∂x.

Let 0 < δ < 1. Σt0 denotes the region

Σt0 := {(t, x) : t = t0}. (4.2.2)

Dt0 denotes the following region of spacetime

Dto := {(t, x) : 0 ≤ t ≤ t0}, Dt0 =
⋃

0≤t≤t0

Σt0 .

The level sets of the functions u and u define two global null foliations of Dt0 . More precisely,
given t0 > 0, u0 and u0, we define the rightward null curve segment Cu0 as :

Cu0 :=

{
(t, x) : u =

t− x

2
= u0, 0 ≤ t ≤ t0

}
, (4.2.3)

and the segment of the null curve to the left Cu0
as:

Cu0
:=

{
(t, x) : u =

t+ x

2
= u0, 0 ≤ t ≤ t0

}
. (4.2.4)

The space time region Dt0 is foliated by Cu0
for u ∈ R, and by Cu0 for u ∈ R.

In the same way as in [85, 109] we consider the weight function φ defined as

φ(u) := (1 + |u|2)1+γ with 0 < γ < 1/3. (4.2.5)

Finally, we will consider the following energy estimate proposed in [4, 85] for the scalar linear
wave equation □ψ = ρ (τ ∈ [0, t] in Cu and Cu). There exists C0 > 0 such that∫

Σt

[
φ(u)|Lψ|2 + φ(u)|Lψ|2

]
dx

+ sup
u∈R

∫
Cu

φ(u)|Lψ|2dτ + sup
u∈R

∫
Cu

φ(u)|Lψ|2dτ

≤ C0

∫
Σ0

[
φ(u)|Lψ|2 + φ(u)|Lψ|2

]
dx+ C0

∫∫
Dt

[φ(u)|Lψ|+ φ(u)|Lψ|] |ρ|dτdx.

(4.2.6)
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Based on this estimate, and in the setting of equation (4.1.6), we define the space-time
weighted energy norms valid for k = 0, 1:

Ek[Λ̃](t) =
∫
Σt

[
φ(u)|L∂kxΛ̃|2 + φ(u)|L∂kxΛ̃|2

]
dx,

Ek[ϕ̃](t) =

∫
Σt

[
φ(u)|L∂kxϕ|2 + φ(u)|L∂kxϕ|2

]
dx,

Fk[Λ̃](t) = sup
u∈R

∫
Cu

φ(u)
∣∣∣L∂kxΛ̃∣∣∣2 ds+ sup

u∈R

∫
Cu

φ(u)|L∂kxΛ̃|2ds,

Fk[ϕ̃](t) = sup
u∈R

∫
Cu

φ(u)
∣∣L∂kxϕ∣∣2 ds+ sup

u∈R

∫
Cu

φ(u)|L∂kxϕ|2ds.

(4.2.7)

Finally, we define the total energy norms as follows:

E(t) = E0(t) + E1(t).

Analogously one defines F(t), E(t), and F(t). Then from [109] we know that there exists
C > 0 such that for all t ≥ 0,

E(t) + F(t) ≤ Cε2, E(t) + F(t) ≤ Cε2, (4.2.8)

and (λ̃ := limx→∞B(t = 0, x) > 0)

sup
t≥0

∥∥∥Λ̃∥∥∥
L∞(R)

≤ λ̃

2
. (4.2.9)

From this last fact, we have the following corollary:

Corollary 4.2.1. Let z(t) be defined in (4.1.16). One has for all time t ≥ 0,

0 < c0(λ̃) ≤ sinh(B + z) ≤ c1(λ̃),

0 < d0(λ̃) ≤ cosh(B + z) ≤ d1(λ̃).
(4.2.10)

Proof. Recall B in (4.1.10). Since B+ z = λ̃+ Λ̃, we first have λ
4
≤ γ = λ+ εθ(ξ) ≤ 5

4
λ, and

from (4.2.9),
1

2
λ̃ ≤ |B + z| ≤ 3

2
λ̃.

The remaining bounds in (4.2.10) are direct consequences of the previous inequality.

4.2.3 Local decay

Recall the following result from [109]:

Theorem 4.2.1. Under a finite energy assumption, every globally defined solution to the PCF
model satisfies the following convergence property: for any v ∈ (−1, 1) and ω(t) = t/ log2 t,
one has

lim
t→+∞

∫ vt+ω(t)

vt−ω(t)

(
(∂tΛ)

2 + (∂xΛ)
2 + sinh2 Λ((∂tϕ)

2 + (∂xϕ)
2)
)
(t, x)dx = 0.
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This results shows that finite-energy global PCF solutions must decay inside the light
cone. Notice that this is a property satisfied by any globally-defined finite-energy solution.
An immediate consequence of the previous result is the following decay property, which proves
(4.1.13).

Corollary 4.2.2. For any v ∈ (−1, 1) and ω(t) = t/ log2 t, one has

lim
t→+∞

∫ vt+ω(t)

vt−ω(t)

(
w2 + z2x + sinh2(B + z)(m2 + s2x)

)
(t, x)dx = 0.

Proof. An immediate consequence of (4.1.16), (4.2.1) and the fact that B′ and D′ are sup-
ported in |x+ t| ≤ R.

4.3 Exterior stability bounds

Recall from (4.1.4) and (4.1.5) the energy and momentum

E[Λ,Λt, ϕ, ϕt] =

∫
e(t, x)dx, P [Λ,Λt, ϕ, ϕt] =

∫
p(t, x)dx,

where e and p are the energy and momentum densities:

e :=
1

2
((∂xΛ)

2 + (∂tΛ)
2) + 2 sinh2(Λ)((∂xϕ)

2 + (∂tϕ)
2), (4.3.1)

p := ∂xΛ∂tΛ + 4 sinh2(Λ)∂xϕ∂tϕ. (4.3.2)

The system (4.1.2) can be expanded around the perturbation of the solitonB + u, as follows:
for any u = [z, w, s,m], we have that u formally satisfies the following systemztt − zxx = 2 sinh(2(B + z)) (2D′(st − sx) + s2t − s2x) ,

stt − sxx = −sinh(2(B + z))

sinh2(B + z)
(D′(zt − zx) +B′(st − sx) + stzt − sxzx) .

(4.3.3)

This system can be written in matrix form as
zt = w, st = m,

wt − zxx = 2 sinh(2(B + z)) (2D′(m− sx) +m2 − s2x) ,

mt − sxx = −sinh(2(B + z))

sinh2(B + z)
(D′(w − zx) +B′(m− sx) +mw − sxzx) .

(4.3.4)

Recall that the conservation laws of the model are given by (4.1.4) and (4.1.5), if you consider
the expansion of the energy and momentum density around the 1-soliton we get

Lemma 4.3.1. Let (t, x) be such that u(t, x) is well-defined. Then a.e.

2(e− p)[B+ u] = (zx − w)2 + 4 sinh2(B + z)(sx −m)2 ≥ 0, (4.3.5)

where e and p are given in (4.3.1) and (4.3.2).
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4.3. EXTERIOR STABILITY BOUNDS

Proof. First of all, notice that

e[B+ u] = B′2 +B′zx +B′w +
1

2
z2x +

1

2
w2

+ 4 sinh2(B + z)

(
D′2 +D′(sx +m) +

1

2
(s2x +m2)

)
.

(4.3.6)

On the other hand,

p[B+ u] = B′2 +B′zx +B′w + zxw + 4 sinh2(B + z)
(
D′2 +D′(sx +m) + sxm

)
. (4.3.7)

Subtracting both identities we get (4.3.5):

2(e− p)[B+ u] = (zx − w)2 + 4 sinh2(B + z)(sx −m)2.

The proof is complete.

Now we are ready to prove (4.1.12).

Corollary 4.3.1. For all times t ≥ 0,∫
R

(
(zx − w)2 + 4 sinh2(B + z)(sx −m)2

)
(t, x)dx

=

∫
R

(
(z0,x − w0)

2 + 4 sinh2(B + z0)(s0,x −m0)
2
)
(x)dx < 3δ.

The previous result establishes that the differences zx−w and sx−m have good behavior
in time, and remain bounded. An important part of the proof of Theorem 4.1.2 will be to
get better control on each part of the perturbation u by separate.

Let us calculate the variation with respect to t of the quantity (4.3.5), using the system
(4.3.4). Let

ê[u](t) :=
1

2
(w2 + z2x) + 2 sinh2(B + z)(s2x +m2),

p̂[u](t) := zxw + 4 sinh2(B + z)sxm,

Fp[u](t) := 2 sinh(2(B + z))
(
B′(s2x −m2) + 2D′(zxm− wsx)

)
,

Fe[u](t) := 2 sinh(2(B + z))
(
B′ (s2x −m2

)
+ 2D′ (D′(w − zx) +mw − sxzx)

)
.

(4.3.8)

In this case, ê and p̂ are localized versions of the energy and momentum densities. Notice
that |p̂[u](t)| ≤ |ê[u](t)|. Then, we claim the following

Lemma 4.3.2. For all t ≥ 0, it holds that

∂tp̂[u](t) = ∂xê[u](t) + Fp[u](t), ∂tê[u](t) = ∂xp̂[u](t) + Fe[u](t). (4.3.9)

Proof. From [109, Lemma 4.2], we know that ∂te = ∂xp and ∂tp = ∂xe, with e and p given in
(4.3.1)-(4.3.2). We have from (4.3.6)-(4.3.7), and (B′2)t = (B′2)x,

d

dt
ê[u](t) = − d

dt

(
B′zx +B′w + 4 sinh2(B + z)D′ (D′ + sx +m)

)
+ ∂x

(
B′zx +B′w + 4 sinh2(B + z)D′ (D′ + sx +m) + p̂[u]

)
.
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Using (4.3.4),

d

dt

(
B′zx +B′w + 4 sinh2(B + z)D′ (D′ + sx +m)

)
= B′′zx +B′wx +B′′w +B′ (zxx − 2 sinh(2(B + z))

(
2D′(sx −m) + s2x −m2

))
+ 4 sinh(2(B + z))(B′ + w)D′ (D′ + sx +m) + 4 sinh2(B + z)D′′ (D′ + sx +m)

+ 4 sinh2(B + z)D′ (D′′ +mx + sxx)

− 4D′ sinh(2(B + z)) (D′(w − zx) +B′(m− sx) +mw − sxzx) .

Simplifying,

d

dt

(
B′zx +B′w + 4 sinh2(B + z)D′ (D′ + sx +m)

)
= ∂x

(
B′zx +B′w + 4 sinh2(B + z)D′ (D′ + sx +m)

)
− 2 sinh(2(B + z))B′ (s2x −m2

)
− 4 sinh(2(B + z))D′ (D′(w − zx) +mw − sxzx) .

We conclude now that
d

dt
ê[u](t) = ∂xp̂[u](t) + Fe[u](t).

This is the first identity in (4.3.9). On the other hand, using (4.3.4) again,

d

dt

(
zxw + 4 sinh2(B + z)sxm

)
= wwt + zxzxt + 2 sinh(2(B + z))(B′ + zt)(s

2
x +m2) + 4 sinh2(B + z)(sxsxt +mmt)

= w
(
zxx − 2 sinh(2(B + z))

(
2D′(sx −m) + s2x −m2

))
+ zxwx + 2 sinh(2(B + z))(B′ + w)(s2x +m2) + 4 sinh2(B + z)sxmx

+ 4 sinh2(B + z)msxx − 4m sinh(2(B + z)) (D′(w − zx) +B′(m− sx) +mw − sxzx) .

Rearranging appropriately and simplifying,

d

dt
p̂[u](t)

=
1

2
∂x(w

2 + z2x) + sinh(2(B + z)) (−4D′zxsx + 4D′zxm)

− 2 sinh(2(B + z))s2xzx + 2 sinh(2(B + z))zxm
2 + 4 sinh(2(B + z))(B′sxm+ sxwm)

+ 4 sinh2(B + z)mxm+ 2 sinh2(B + z)∂x(s
2
x)− 4 sinh(2(B + z))D′(w − zx)sx

− 4 sinh(2(B + z))(B′sxm+ sxwm) + 4 sinh(2(B + z))(B′ + zx)s
2
x

=
1

2
∂x
(
z2x + 4 sinh2(B + z)s2x

)
+ 2 sinh(2B + 2z)B′s2x + 2 sinh(2B + 2z)zxs

2
x

+ sinh(2(B + z))[−4D′zxsx + 4D′zxm− 2zxs
2
x + 2zxm

2]

+ 2 sinh2(B + z)∂x(m
2)− 4 sinh(2(B + z))D′wsx + 4 sinh(2(B + z))D′zxsx

+ 2 sinh(2(B + z))B′m2 − 2 sinh2(2(B + z))B′m2.

Finally,

d

dt
p̂[u](t) = ∂xê[u](t) + 2 sinh(2(B + z))

(
B′(s2x −m2) + 2D′(zxm− wsx)

)
.

Finally, this proves the second identity in (4.3.9).
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The Lemma 4.3.2, allows us to propose the following integral estimation, which will be
the focus in the subsequent section

Lemma 4.3.3. Let ψ a smooth bounded weight function and r ∈ R. Then

d

dt

∫
ê[u](t)ψ(x+ rt)dx = r

∫
ê[u](t)ψ′(x+ rt)dx−

∫
p̂[u](t)ψ′(x+ rt)dx

+

∫
Fe[u](t)ψ(x+ rt)dx,

d

dt

∫
p̂[u](t)ψ(x+ rt)dx = r

∫
p̂[u](t)ψ′(x+ rt)dx−

∫
ê[u](t)ψ′(x+ rt)dx

+

∫
Fp[u](t)ψ(x+ rt)dx.

(4.3.10)

Proof. The proof of the Lemma 4.3.3 is direct from the Lemma 4.3.2 and from using inte-
gration by parts.

Note that from (4.2.1) B′, D′ are compactly supported functions. Assume that at time
t = 0 one has supp(B′) ∪ supp(D′) ⊆ {ξ ∈ R : |ξ| < R}, for some R > 0.

Lemma 4.3.4 (Exterior stability). Assume that B + u is globally defined. Then for any
0 < δ < R one has ∫

|x+t|≥R

ê[u](t)dx ≤
∫
|x|≥R

ê[u](0)dx.

This bound proves (4.1.14).

Proof. Let ψ be a smooth cut-off function such that

0 ≤ ψ ≤ 1, ψ′ ≤ 0, ψ(s) = 0, s ≥ −R, ψ(s) = 1, s ≤ −R− 1.

Now, if r = 1, notice that ψ(x + t) has support in x + t ≤ −R. Since |p̂| ≤ ê, we have from
(4.3.10),

d

dt

∫
ê[u](t)ψ(x+ t)dx ≤

∫
Fe[u](t)ψ(x+ t)dx = 0,

proving the stability estimate for the left side. The other side is proved similarly.

4.4 Interior control

In this section we prove the last estimate in (4.1.17). It is important to notice that one can
write (4.3.3) as followsztt − zxx = −2 sinh(2(B + z)) (2Q0(D, s) +Q0(s, s)) ,

stt − sxx =
sinh(2(B + z))

sinh2(B + z)
(Q0(D, z) +Q0(B, s) +Q0(s, s)) .

(4.4.1)
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where Q0 is the fundamental null form

Q0(ϕ1, ϕ2) = mαβ∂αϕ1∂βϕ2,

and where mαβ to denote the standard Minkowski metric on R1+1 with signature (−1, 1).
It can be also noticed that the null structure is “quasi-preserved” after differentiating with
respect to x, in the sense that

∂xQ0(ϕ, Λ̃) = Q0(∂xϕ, Λ̃) +Q0(ϕ, ∂xΛ̃). (4.4.2)

Additionally, we have the following relation between the null form and the Killing vector
fields L and L

Q0(∂
p
xϕ, ∂

q
xΛ̃) ≲ |L∂pxϕ||L∂qxΛ̃|+ |L∂pxϕ||L∂qxΛ̃|, (4.4.3)

where the implicit constant is independent of (Λ̃, ϕ).

It is easy to check that (see (4.2.5)):

(i) Since 0 < γ < 1/3, using (4.2.5) and the Bernoulli’s inequality, we get

φ3/4(·) ≤ (1 + |2(·)|)2.

(ii) Thus, since B′, D′ ∈ C∞
c (R), one has that for some fixed constant K1, K2 > 0,

|B(n+1)(2u)| ≤ K1ε

φ3/4(u)
, n = 0, 1, (4.4.4)

and

|D(n+1)(2u)| ≤ K2ε

φ3/4(u)
, n = 0, 1. (4.4.5)

(iii) The following relations for the null vector field L and L hold:

|L(D(2u))| = 2|D′(2u)| ≤ K1ε

φ3/4(u)
,

|L(D′(2u))| = 2|D′′(2u)| ≤ K1ε

φ3/4(u)
, |LD)| = 0.

(4.4.6)

and similar estimates for B′.

Recall Σt, Cu and Cu as introduced in (4.2.2), (4.2.3) and (4.2.4), respectively. Recall the
energies introduced in (4.2.7). We will adapt the proof of Theorem 3.1 in [91] to the case of
solitons, to obtain that the following energies remain small: for k = 0, 1:

Ek[z, w](t) =
∫
Σt

[
φ(u)|L∂kxz|2 + φ(u)|L∂kxz|2

]
dx,

Ek[s,m](t) =

∫
Σt

[
φ(u)|L∂kxs|2 + φ(u)|L∂kxs|2

]
dx,

Fk[z, w](t) = sup
u∈R

∫
Cu

φ(u)
∣∣L∂kxz∣∣2 + sup

u∈R

∫
Cu

φ(u)|L∂kxz|2,

Fk[s,m](t) = sup
u∈R

∫
Cu

φ(u)
∣∣L∂kxs∣∣2 + sup

u∈R

∫
Cu

φ(u)|L∂kxs|2.

(4.4.7)
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Then, using (4.4.7) we define the total energy norms as follows:

E(t) := E0[z, w](t) + E1[z, w](t).

Analogously one defines F(t), E(t), and F(t). From (4.1.15) we know that E(0) + E(0) < δ2.
The stability of the soliton perturbation (4.1.17) will be a consequence of the following more
complete result:

Theorem 4.4.1. Assume that there exists T ∗ > 0 such that, for all t ∈ [0, T ∗], the estimates

E(t) + F(t) ≤ 6CC0δ
2, (4.4.8)

E(t) + F(t) ≤ 6CC0δ
2, (4.4.9)

hold for some C0 > 0 and

sup
t∈[0,T ∗]

∥z∥L∞(R) ≤
λ

2
. (4.4.10)

Then for all t ∈ [0, T ∗] there exists a universal constant δ0 (independent of T ∗) such that the
previous estimates are improved for all δ ≤ δ0.

4.4.1 Proof of Theorem 4.4.1

As usual, we work with the system for z in (4.4.1), the one for s being very similar in both
nature and estimates.

Deriving (4.4.1) and using (4.4.2) we obtain:

□∂xz = ρ1 + ρ2, (4.4.11)

where {
ρ1 := −4 sinh(2(B + z)) (Q0(∂xD, s) +Q0(D, ∂xs) +Q0(s, ∂xs)) ,

ρ2 := −4 cosh(2(B + z))(B′ + zx) (2Q0(D, s) +Q0(s, s)) .
(4.4.12)

Under the assumptions (4.4.8)-(4.4.9)-(4.4.10) for all t ∈ [0, T ∗], we assume that the solution
remains regular, to later show that these bounds are maintained, with a better constant.

Consider k = 0, 1. Using (4.2.6), with ψ = ∂kxz and (4.4.11)-(4.4.12). Taking the sum
over k = 0, 1, and using (4.4.10), we obtain

E(t) + F(t) ≤ 2C0E(0)

+ CλC0

∫∫
Dt

(φ(u)|Lz|+ φ(u)|Lz|) |Q0(D, s)|+ CλC0

∫∫
Dt

(φ(u)|Lz|+ φ(u)|Lz|) |Q0(s, s)|

+ 2CλC0

∫∫
Dt

(φ(u)|L∂xz|+ φ(u)|L∂xz|) |ρ1|+ 2CλC0

∫∫
Dt

(φ(u)|L∂xz|+ φ(u)|L∂xz|) |ρ2|,

(4.4.13)
where Cλ := C(c0(λ), c1(λ)), same as in (4.2.1). Recall the following result due to Luli et.
al. in [85]:
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Lemma 4.4.1 ([85], Lemma 3.2). Under assumptions (4.4.8) and (4.4.9), there exists a
universal constant C2 > 0 such that:

|Lz(t, x)| ≤ C2δ

(1 + |u|2)1/2+γ/2
, |Ls(t, x)| ≤ C2δ

(1 + |u|2)1/2+γ/2
,

|Lz(t, x)| ≤ C2δ

(1 + |u|2)1/2+γ/2
, |Ls(t, x)| ≤ C2δ

(1 + |u|2)1/2+γ/2
.

Note that we can conveniently write

∂xz =
1

2
(Lz − Lz) and B′ =

1

2
LB,

then, using (4.4.3) we can estimate (4.4.14) as follows

E(t) + F(t) ≲ 2C0E(0)

+ C0

∫∫
Dt

(φ(u)|Lz|+ φ(u)|Lz|) |Ls| |LD|+ 2C0

∫∫
Dt

(φ(u)|Lz|+ φ(u)|Lz|) |Ls||Ls|

+ 2C0

∫∫
Dt

(φ(u)|L∂xz|+ φ(u)|L∂xz|) |L∂xs||LD|+ 2C0

∫∫
Dt

(φ(u)|L∂xz|+ φ(u)|L∂xz|) |Ls||LD′|

+ 2C0

∫∫
Dt

(φ(u)|L∂xz|+ φ(u)|L∂xz|) |Ls||L∂xs|+ 2C0

∫∫
Dt

(φ(u)|L∂xz|+ φ(u)|L∂xz|) |L∂xs||Ls|

+ 2C0

∫∫
Dt

(φ(u)|L∂xz|+ φ(u)|L∂xz|) |LB||Ls|||LD|+ 2C0

∫∫
Dt

(φ(u)|Lz|+ φ(u)|Lz|) |Lz||Ls||Ls|

=: 2C0E(0) + 2C0

8∑
n=1

Tn.

(4.4.14)

Taking into account the estimates already established in [109], we will focus on the key
terms in this framework, that is, the terms Ti, for i ∈ {1, 3, 4, 7} . Let us start with T1, using
Hölder inequality we get:

T1 = T1,1 + T1,2 :=

∫∫
Dt

φ(u)|Lz| |Ls| |LD|+
∫∫

Dt

φ(u)|Lz||Ls||LD|

≲

(∫∫
Dt

φ(u)|Lz|2|LD|
)1/2(∫∫

Dt

φ(u)|Ls|2|LD|
)1/2

+

(∫∫
Dt

φ(u)|Lz|2|Ls|
)1/2(∫∫

Dt

φ(u)|Ls||LD|2
)1/2

≤

(∫
R

εK2

φ3/4(u)

[∫
Cu

φ(u)|Lz|2ds

]
du

)1/2(∫
R

εK2

φ3/4(u)

[∫
Cu

φ(u)|Ls|2ds

]
du

)1/2

+

(∫
R

C2δ

φ1/2(u)

[∫
Cu

φ(u)|Lz|2ds
]
du

)1/2(∫
R

C2δ

φ1/2(u)

[∫
Cu

K2
2ε

2

φ1/2(u)
ds

]
du

)1/2

≲ K2εδ
2.

Now, for T3 we have

T3 = T3,1 + T3,2 :=

∫∫
Dt

φ(u)|L∂xz||L∂xs||LD|+
∫∫

Dt

φ(u)|L∂xz||L∂xs||LD|,
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note that T3,1 ∼ T1,1, thus T3,1 ≲ εδ2, for the integral T3,2 we obtain

T3,2 =

∫∫
Dt

φ1/2(u)

φ1/2(u)
|L∂xz|φ1/2(u)φ1/2(u)|L∂xs||LD|

≤
(∫∫

Dt

φ(u)|L∂xz|2

φ(u)

)1/2(∫∫
Dt

K2
2ε

2φ(u)|L∂xs|2

φ1/2(u)

)1/2

≲ K2εδ
2.

The next term we would like to estimate is T4, note that if we write

T4 = T4,1 + T4,2 =

∫∫
Dt

φ(u)|L∂xz||Ls||LD′|+
∫∫

Dt

φ(u)|L∂xz||Ls||LD′|,

then T4,1 ∼ T1,1 and T4,2 ∼ T3,2, thus T4 ≲ K2εδ
2. Finally for T7 we get

T7 =

∫∫
Dt

φ(u)|L∂xz||LB||Ls||LD|+
∫∫

Dt

+φ(u)|L∂xz||LB||Ls||LD|

≤
(∫∫

Dt

φ(u)|L∂xz|2|LB|2
)1/2(∫∫

Dt

φ(u)|Ls|2|LD|2
)1/2

+

(∫∫
Dt

φ(u)|L∂xz|2|Ls|
)1/2(∫∫

Dt

φ(u)|Ls||LB|2|LD|2
)1/2

≤
(∫∫

Dt

K2
1ε

2

φ3/2(u)
φ(u)|L∂xz|2

)1/2(∫∫
Dt

K2
2ε

2

φ3/2(u)
φ(u)|Ls|2

)1/2

+

(∫∫
Dt

C2δ

φ1/2(u)
φ(u)|L∂z|2

)1/2(∫∫
Dt

K2
1K

2
2ε

2δ

φ2(u)φ1/2(u)

)1/2

≲ K1K2ε
2δ2.

For the other term, which correspond to Ti, for i ∈ {2, 5, 6} in (4.4.14), the analysis is the
same as described in our recently completed work [109]. See this reference for full details.
More precisely

Tj ≲ δ3, for j ∈ {2, 5, 6} and T8 ≲ δ4.

Finally, from the energy estimate , we can arrange all the previous estimates together, and
for universal constants C3, C4, C5, C6, K, with K = max {K1, K2}, we have that for all
t ∈ [0, T ∗]:

E(t) + F(t) ≤ 2C1C0δ
2 + C3εKδ

2 + C4K
2ε2δ2 + C5δ

3 + C6δ
4.

Now, we take δ0 such that

δ0 ≤
C1C0

C5

and δ20 ≤ C1C0

C6

,

and 0 < ε < ε0 such that

max
{
C3εK,C4ε

2K2
}
≤ C1C0

2
.

Then, we can see that for all 0 < δ < δ0 and for all t ∈ [0, T ∗], we have

E(t) + F(t) ≤ 5C1C0δ
2.

This improves the constant in (4.4.8).
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Chapter 5

Blow-up rate for modified
Zakharov-Kuznetsov Equation

Abstract: In this short note we consider the modified Zakharov-Kuznetsov equation in R2, for
initial conditions in the Sobolev space Hs with s > 3/4. This equation is L2 or mass critical.
Assuming that there is a blow up solution at finite time T ∗, we set a lower bound for the blow up
rate of that solution, expressed in terms of a lower bound for the Hs norm of the solution. The
analysis is based on properly examining the linear estimates given by Faminskii [37], as well as, the
local well-posedness theory of Linares and Pastor [81], combined with an argument developed by
Weissler [113] and Colliander-Czuback-Sulem [27] in the context of the semilinear heat equation.

This chapter is contained in: J. Trespalacios, Rate blow-up for modified Zakharov-Kuznetsov Equa-

tion. Preprint 2024.
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5.1 Introduction and main results

5.1.1 Setting

Consider the two-dimensional (2D) generalized Zakharov-Kuznetsov (ZK) equation

ut + (uxx + uyy + up)x = 0. (5.1.1)

This equation is an extension of the well-known generalized Korteweg-de Vries (KdV) equa-
tion to two spatial dimensions. The ZK equation in 3D with a quadratic nonlinearity (p = 2),
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5.1. INTRODUCTION AND MAIN RESULTS

was originally proposed by Zakharov and Kuznetsov [116], to model waves in magnetized plas-
mas, see also [75], and a rigorously justified derivation in [76] from the Euler-Poisson system
for uniformly magnetized plasma. From the local theory it follows that solutions to the ZK
equation has a maximal forward lifespan [0, T ) with either T = +∞ or T <∞. Also, in the
case T < +∞, one has ||∇u(t)||L2(R2) ↗ ∞ as t −→ T, although the unbounded growth of
the gradient might also happen in infinite time. In [37] Faminskii considered the case p = 2
in 2D. He showed local and global well-posedness for initial data in Hm(R2), m ≥ 1, integer.
His method of proof was inspired by the one given by Kenig, Ponce and Vega in [61] to show
local well-posedness for the IVP associated to the KdV equation. To prove global results, he
made use of the L2 and H1 conserved quantities for solutions of (5.1.1).

In this note we consider the particular case when p = 3., which is so-called the modified
ZK equation. Notice that aso in this case mZK has a physical meaning. Indeed, it appears
as an asymptotic model in the context of weakly nonlinear ion-acoustic waves in a plasma of
cold ions and hot isothermal electrons with a uniform magnetic field [90]. On the other hand,
the case p = 4 does not seem to appear as a physically relevant model but (as the generalized
KdV equation) can be used as a mathematical toy model to investigate the competition
between nonlinearity and dispersion.

5.1.2 Modified ZK

Consider the two-dimensional initial value problem (IVP) associated to the modified
Zakharov-Kuznetsov (mZK) equation (which correspond to (5.1.1) with p = 3 and with
a rescaling) {

ut + uxxx + uxyy + u2ux = 0, (x, y) ∈ R2, t > 0,

u(0, x, y) = u0(x, y),
(5.1.2)

where u = u(t, x, y) is a real valued function. During their existence, solutions to ZK have
several conserved quantities, relevant to this work is the L2 norm (or mass), and the energy
(or Hamiltonian):

M [u(t)] =

∫
R2

u2(t) =M [u(0)],

E[u(t)] =
1

2

∫
R2

(
u2x(t) + u2y(t)

)
− 1

4

∫
R2

u4(t) = E[u(0)],

under appropriate conditions on the smoothness of the solution u(t, x, y) and its decay at
the infinity. An important symmetry in the evolution equation (5.1.1) is the the scaling
invariance, which states that an appropriately rescaled version of the original solution is also
a solution of the equation. For the equation (5.1.2) it is

uλ(t, x, y) = λu(λ3t, λx, λy).

This symmetry makes invariant the Sobolev norm Ḣs with s = 0, where Ḣs(R2) denotes the
homogeneous Sobolev space of order s, since ∥uλ∥L2 = ∥u∥L2 . Therefore, the index s gives
rise to the critical-type classification of (5.1.1). Since the mass of the solution (the L2 norm)
of the equation (5.1.2) is scaling-invariant, the 2D mZK equation is said to be mass-critical.
The mZK equation has a family of localized traveling waves, which travels only in x direction

u(t, x, y) = Qc(x− ct, y),
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5.1. INTRODUCTION AND MAIN RESULTS

where Qc satisfies
∆Qc − cQc +Q3

c = 0,

and defining the ground state solution. We note that Qc ∈ C∞(R2) ∩H1(R2). The solitons
Qc(x, y) are related to the soliton Q1(x, y) =: Q(x, y) for c > 0 as follows:

Qc(x, y) =
√
cQ(

√
cx,

√
cy);

thus, it suffices to consider c = 1. One can prove that Q is radial, and ∂rQ(r) < 0 for any
r = |(x, y)| > 0. Moreover, Q has exponential decay: ∂αQ(x, y) ≤ cαe

−c0r for any multi-index
α and any (x, y) ∈ R2. The asymptotic stability of this solution was studied in [26, 39, 96],
while the existence of breathers is discussed in [40].

The 2D mZK equation (5.1.2) has been extensively studied in recent years. Biagini-
Linares [13] studied the Local Well-Posedness (LWP) in H1(R2). Linares and Pastor in [81],
proved that the mZK equation is locally well-posed for data in Hs(R2), s > 3/4 and they
also showed the ill-posedness, in the sense that the data-to-solution map fails to be uniformly
continuous (non-uniform data to solution map) for s ≤ 0, so one cannot expect semilinear
well-posedness in the critical space L2(R2). This LWP result was improved by Ribaud and
Vento [98], who proved LWP for data in Hs(R2), s > 1/4. More recently, Kinoshita in [62]
established LWP at regularity s = 1/4, which is in fact optimal for the Picard iteration
approach. Regarding to Global Well Posedness (GWP), Linares and Pastor [82] proved the
GWP in Hs(R2) for s > 53/63, when the mass of the initial data is smaller than the mass
of the ground state in the focusing case. Bhattacharya et. al. in [11] used the I-method
to obtain global well-posedness in Hs(R2) space for s > 3/4, thus, improving the result of
Linares and Pastor [82].

Using the energy and mass conservation together with the Gagliardo-Nirenberg inequality
an its sharp constant expressed in terms of the solution mass, one has

∥∇u∥2L2 ≤

(
1− ∥u∥2L2

∥Q∥2L2

)−1

E[u].

Thus, if ∥u0∥L2 < ∥Q∥L2 , then solutions with the initial condition u0 exists also globally in
time, while the blow-up might be possible if the initial mass ∥u0∥L2 is greater or equal to that
of the soliton Q, see [69]. Recently, in [12] it was proved mass-concentration of low-regularity
blow-up solutions, hinting an important step towards the proof of finite time blow-up. Recall
the definition for blow up solution:

Definition 5.1.1 (Blow-up solution). We say that the solution u(t, x, y) to the IVP (5.1.2)
with u0 ∈ Hs(R2) blows up in finite time if there exists 0 < T ∗ <∞ such that

lim
t↑T ∗

∥u(t, x, y)∥Hs(R2) = ∞.

Concerning the study of the existence of blow up solutions, significant efforts have been
made with respect to the case of the 2D mZK equation. Recall that this equation is mass
critical, and therefore, can be compared to the critical generalized KdV equation in 1D. For
this equation, Martel and Merle [87] proved the existence of solutions that blow up in the
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H1(R2) norm in finite time. However, no exhaustive analogous results are yet available for the
2D mZK equation. When the initial data u0 ∈ H1(R2) Farah et. al. [38] proved that there
exists α > 0 such that the solution to 2D mZK blows up in finite or infinite time, if the energy
is negative and if the mass of the initial data satisfies ∥Q∥L2(R2) < ∥u0∥L2(R2) < ∥Q∥L2(R2)+α.
This is referred to as near-threshold blow-up phenomenon for the negative energy solutions.
Klein-Roudenko-Stoilov in [69] investigated the H1(R2) blow-up phenomenon for the 2D
mZK equation, numerically. In particular, they propose the following conjecture:

Conjecture 1 (L2- critical case, [69]). Consider the 2D critical mZK equation (5.1.2). Then

• If u0 is such that ∥u0∥L2 < ∥Q∥L2 , then the solution is dispersed.

• If u0 is sufficiently localized and such that ∥u0∥L2 > ∥Q∥L2 , then the solution blows up
in finite time t = T ∗ and such that as t −→ T ∗

u(t, x, y)− 1

L(t)
Q

(
x− xm(t)

L(t)
,
y − ym(t)

L(t)

)
−→ ũ ∈ L2,

with L(t) ∼
√
T ∗ − t,

∥ux(t)∥L2 ∼
1

L(t)
, and xm(t) ∼

1

T ∗ − t
, ym(t) −→ y∗ <∞.

This statement conjectured that blow-up happens in finite time and that blow-up solutions
have some resemblance of being self-similar, i.e., the blow-up core forms a rightward moving
self-similar type rescaled profile with the blow-up happening at infinity. For another hand,
in a very recent result, Bozgan et. al. in [16], proposes a proof for existence of a blow up
solution for the mZK equation, if the initial data satisfies ∥u0∥L2 > ∥Q∥L2(R2) + ε0, with an

additional condition on the H1(R2) norm of ε0. In addition the authors propose a rate for
the blow up of the singular solution, however, there are some issues in the proposed proof
that are under discussion. The results in [16] propose that the blow-up rate exponent is 3/4,
in contrast to the one presented in Conjecture 1, This discrepancy highlights a fundamental
issue about the difficulty of understanding the dynamics of blow up solutions for this model.

5.1.3 Main Result

In this work we provide a lower bound on the blow-up rate for solutions to mZK in 2D. Our
analysis relies on the LWP results of Linares and Pastor [81] in Hs, s > 3/4. The approach
is to start with important linear estimates given by Faminskii [37], and then move on to non-
linear estimates given by Linares and Pastor in [81]. In particular, we carefully keep track of
the power of time involved in the estimates as it is central for the analysis of the lower bound
for the blow-up rate. In a second stage, we will try to adapt the idea of Colliander et. al.
[27]. The original idea comes from an argument used for the heat equation made by Weissler
[113] and later extended to nonlinear Schrödinger equations by Cazenave and Weissler [19]
to obtain a lower bound of blow-up for Sobolev norms of the solution. More precisely,

Theorem 5.1.1. Consider the IVP (5.1.2) with initial conditions u0 ∈ Hs
xy(R) with s > 3/4.

Assume that the solution u(t, x, y) blows up in a finite time T ∗ in Hs
xy(R). Then, we have

the following lower bound for the blow-up rate:

C(s) ∥u(t)∥Hs > (T ∗ − t)−7/48, t ↑ T ∗. (5.1.3)
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Compared with Conjecture 1, we are somehow far from the proposed rate of decay. How-
ever, it was noticed in [69] that no particular rate of decay was extremely favored from
numerical experiments, leading to an unclear picture of the possible rates of decay for critical
ZK.

Here is a brief description of the guidelines that we will follow in this work. First of all, the
proof is based in a previous result obtained for the case of the Zakharov system by Colliander-
Czuback-Sulem [27] and previous well-posedness results by Faminskii [37] and Linares-Pastor
[81]. The goal is to obtain an explicit quantitative version of the LWP obtained in [37], key
to apply the arguments from [27]. In Section 5.2 we present in detail the linear estimates
associated with the equation (5.1.2). The goal is to show that we can handle the linear part
in the right side of (5.2.1), and produce additional powers of the existence time T in the
process. More precisely, we shall study in detail and improve the following bound from [37]:

Lemma 5.1.1. Let u0 ∈ Hs(R2), s > 3/4. Then,

∥U(t)u0∥L2
xL

∞
yT

≤ c(s)T 1/8 ∥u0∥H1
xy
,

with c(s) is a constant depending on s.

Next, in Section 5.3 we will study nonlinear estimates for the full problem, in the spirit of
Linares and Pastor [81]. Our goal is to carry out all the powers in the variable T . In specific,
we will improve with quantitative bounds in time the following result:

Theorem 5.1.2 (Theorem 1.1 in [81]). For any u0 ∈ Hs(R2), s > 3/4, there exist T =
T (∥u0∥Hs) > 0 and a unique solution of the IVP (5.1.2), say u(·), defined in the interval
[0, T ] such that

u ∈ C
(
[0, T ];Hs(R2)

)
,

∥Ds
xux∥L∞

x L2
yT

+
∥∥Ds

yux
∥∥
L∞
x L2

yT

<∞,

∥u∥L3
TL∞

xy
+ ∥ux∥L9/4

T L∞
xy
<∞,

and
∥u∥L2

xL
∞
yT
<∞.

Finally in the Section 5.4 we will assume that there exists a blow-up solution in finite
time. Then, collecting all the previously obtained estimates, and following [27] with minor
differences, we will obtain (5.1.3).
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5.2 Linear estimates

5.2.1 Notation

For α ∈ C, the operators Dα
x and Dα

y are defined via Fourier transform by D̂α
xf(ξη) =

|ξ|αf̂(ξ.η) and D̂α
y f(ξη) = |η|αf̂(ξ, η). The mixed space-time norm is defined by (for 1

≤ p, q, r <∞)

∥f∥Lp
xL

q
yL

r
T
=

∫ +∞

−∞

(∫ +∞

−∞

(∫ T

0

|f(t, x, y)|rdt
)q/r

dy

)p/q

dx

1/p

,

with natural modification is either p = ∞, q = ∞, or r = ∞. For another hand, consider the
Duhamel representation of the solution of the mZK equation (5.1.2), that takes the form:

u(t, ·, ·) = U(t)u0 +

∫ t

0

U(t− t′)(u2ux)(t
′)dt′. (5.2.1)

Define the metric spaces

YT = {u ∈ C([0, T ];Hs(R2)); |||u||| <∞},

and
Ya

T = {u ∈ YT ; |||u||| < a},

with

|||u||| := ∥u∥L∞
T Hs

xy
+ ∥u∥L3

TL∞
xy
+ ∥u∥

L
9/4
T L∞

xy
+ ∥Ds

xux∥L∞
x L2

yT
+
∥∥Ds

yux
∥∥
L∞
x L2

yT

+ ∥u∥L2
xL

∞
yT
.

In this section consider the IVP{
ut + ∂x∆u = 0, (x, y) ∈ R2 t ∈ R,
u(0, x, y) = u0(x, y).

(5.2.2)

The solution of the (5.2.2) is given by the unitary group {U(t)}∞t=−∞:

u(t) = U(t)u0(x, y) =

∫
R2

ei(t(ξ
3+ξη2)+xξ+yη)û0(ξ, η)dξdη. (5.2.3)

The estimates associated with the solution (5.2.3) are well-known and can be seen in detail
in [37, 81]. In particular, as we are interested in tracking the time power involved in the
estimation, we will focus in the important linear estimate in Lemma 5.1.1, from [37, Theorem
2.4]. First, it is necessary to follow the details of the following auxiliary result, see [37, Lemma
2.2]:

Lemma 5.2.1. For any T > 0 and k ≥ 0 there exists a constant c > 0 and a function
Hk,T (x) > 0 such that ∫ +∞

0

Hk,T (x)dx ≤ c · T 1/423k/2(k + 1)2, (5.2.4)
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and ∣∣∣∣∫∫ exp(i(tξ3 + tξη2 + xξ + yη))ψ1(ξ)ψ2(η)dξdη

∣∣∣∣ ≤ Hk,T (|x|), (5.2.5)

for |t| ≤ T and (x, y) ∈ R2, where ψ1(ξ) = µ(a − |ξ|) and ψ2(η) = µ(b − |η|) for any
a, b ≤ 2k+1.

Here, the function µ(x) denotes a nondecreasing infinitely differentiable function on R
such that µ(x) = 0 for x ≤ 0 and µ(x) = 1 for x ≥ 1. Note that, with this definition, the
function µ(a− |ξ|) is a cut-off function defined as,

µ(a− |ξ|) =

{
1, |ξ| ≤ a− 1

0, |ξ| ≥ a,

in addition, µ(|ξ| − b) is given by

µ(|ξ| − b) =

{
1, |ξ| ≥ b+ 1

0, |ξ| ≤ b.

Proof of the Lemma 5.2.1. We closely follow Faminskii [37]. Without loss of generality one
can assume that T ≥ 1 and t ≥ 0. By J(t, x, y) we denote the analog of the left-hand side in
(5.2.5) in which the function ψ1 = µ(a − |ξ|) is replaced by ψ1 = µ(a − |ξ|)µ(|ξ| − 1) (then
ψ1(ξ) = 0 for |ξ| ≤ 1), i.e.,

J =

∫∫
exp(i(tξ3 + tξη2 + xξ + yη))ψ1(ξ)ψ2(η)dξdη.

For |x| ≤ 2−k/2 we use the inequality

|J | ≤ c · 22k, (5.2.6)

which corresponds to the size of the domain in this region. Next, suppose that either x ≥
2−k/2, or x < −max{2−k/2, 32t·22k}. Set φ1(ξ, η) := tξ3+tξη2+xξ; then (φ1)ξ = t(3ξ2+η2)+x
and |(φ1)ξ| ≥ max{t(3ξ2 + η2), |x|/2} for (ξ, η) ∈ suppψ1(ξ)ψ2(η). Integrating by parts, we
obtain

J =

∫
ψ2(η)e

iyη

(∫
eiφ1ψ1(ξ)dξ

)
dη

=

∫
ψ2(η)e

iyη

(
−
∫ (

ψ1(ξ)

i(φ1)′

)′

eiφ1dξ

)
dη.

(5.2.7)

Then

|J | ≤
∫
ψ2(η)

∫ ∣∣∣∣( ψ1(ξ)

i(φ1(ξ))ξ

)′∣∣∣∣ dξdη
≤
∫
ψ2(η)

∫ (∣∣∣∣ψ′
1

φ′
1

∣∣∣∣+ ∣∣∣∣ψ1φ
′′
1

(φ′
1)

2

∣∣∣∣) dξdη
≲
∫
ψ2(η)

∫
(ψ′

1|x|−1 + ψ1t|ξ||x|−2)dξdη ≤ c · 2k|x|−1 for 2−k/2 ≤ |x| ≤ 1.
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For the remaining case, integrating by parts again in (5.2.7), and by simplifying, we get

|J | ≤
∫
ψ2(ξ)

∫ ∣∣∣∣∣
(

1

φ′
1

(
ψ1

φ′
1

)′)′
∣∣∣∣∣ dξdη ≤ c · 2k|x|−2 for |x| ≥ 1. (5.2.8)

The main difficulty is in the consideration of the remaining case −32t · 22k < x < −2−k/2.
Let us reduce J as follws:

J =

∫
Φ(y − z)

(∫ (
π

t|ξ|

)1/2

exp

(
i

(
tξ3 + xξ − z2

4ξt
+
π

4
sgn ξ

))
ψ1(ξ)dξ

)
︸ ︷︷ ︸

J1

dz, (5.2.9)

where Φ ≡ F−1
y (ψ2). Let us estimate the inner integral J1(t, x, y) with respect to ξ on the

right-hand side in (5.2.9).

Case z2 ≥ x2/4. Let us split the real axis into two parts

Ω1 = {ξ : ξ2 > |x|/(32t)}, and Ω2 = {ξ : ξ2 < |x|/(32t)}.

From now on, the integrals J1i will correspond to the integral J1 on each of the regions Ωi.
If φ(ξ) = tξ3 + xξ − z2/(4ξt), after the analysis for this region [37] one gets

|J11| ≤ ct−7/12|x|−1/4 ≤ c1 · 27k/6|x|−5/6,

|J12| ≤ c
(t|ξ|−1/2)

|φ′|

∣∣∣∣
∂Ω2

+c

∫
Ω2

∣∣∣∣∣
(
|tξ|−1/2ψ1

φ′

)′
∣∣∣∣∣ dξ ≤ c12

k/2|x|−3/2.
(5.2.10)

Case z2 ≤ x2/4. Let z2 = px2, 0 ≤ p ≤ 1/4. Consider the following domains:

Ω3 =

{
ξ : ξ2 >

|x|
6t

}
, Ω4 =

{
ξ :

p|x|
2t

< ξ2 ≤ |x|
6t

}
, and Ω5 =

{
ξ : ξ2 <

p|x|
2t

}
.

For these regions we have to 
|J13| ≤ c27k/6|x|−5/6,

|J14| ≤ c12
k|x|−3/2,

|J15| ≤ c12
3k/2|x|−1.

(5.2.11)

Using the inequality
∫
|Φ(y)|dy ≤ c(k + 1) and the estimates (5.2.10)-(5.2.11), from the

equation (5.2.9) we obtain

|J | ≤ c(k + 1)(27k/6|x|−5/6 + 2k|x|−3/2 + 23k/2|x|−1), (5.2.12)

for −32t ·22k < x < −2−k/2 and for any y. Combining inequalities (5.2.6)-(5.2.8) and (5.2.12)
yields the estimate (5.2.5) for J .

Principal estimate: This is the main contribution of this work. Let us return to the
structure for J in (5.2.9), but now consider the case of

J0 =

∫
Φ(y − z)

(∫ (
π

t|ξ|

)1/2

exp

(
i

(
tξ3 + xξ − z2

4ξt
+
π

4
sgn ξ

))
ψ0(ξ)dξ

)
dz, (5.2.13)
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where Φ ≡ F−1
y (ψ2), and the function ψ0(ξ) ≡ µ(2− |ξ|), instead of ψ1(ξ) ocurring with J in

(5.2.9), then we have
|J0| ≤ c · 2k, for |x| ≤ 128T, (5.2.14)

and

|J0| ≤ c · 2kx−2, for x ≥ 128T or x ≤ −max(128T, 32t · 22k). (5.2.15)

But if −32t · 22k < x < −128T, then we must estimate the inner integral J0i(t, x, z) with
respect to ξ on the right-hand side in (5.2.13), that contains the function ψ0(ξ) ≡ µ(2− |ξ|)
instead of ψ1(ξ) ocurring in J , and will be analyzed in different regions Ω0i, i ∈ {1, 2, 3, 4},
which will be described below. That is

J0i :=

∫
Ω0i

(
π

t|ξ|

)1/2

exp

(
i

(
tξ3 + xξ − z2

4ξt
+
π

4
sgn ξ

))
ψ0(ξ)dξ.

Case 1: Consider z2 ≥ x2

4
. For this case, let us split the real axis into two

Ω01 = {ξ : ξ2 > |x|/(32t)}, Ω02 = {ξ : ξ2 < |x|/(32t)}. (5.2.16)

Note that if ξ ∈ suppψ0, then |ξ| < |x|/32t, i.e. Ω01 = ∅ and, since |ξ|−1/2 exp(iπ sgn(ξ/4)) =
(−iξ)−1/2, it follows that, similar to (5.2.10), integration by parts yields

|J0| =
∣∣∣∣∫ Φ(y − z)J02dz

∣∣∣∣ ≤ cx−2.

Case 2: Consider z2 ≤ x2

4
. Set φ(ξ) = tξ3 + xξ − z2/(4ξt) and z2 = px2, 0 ≤ p ≤ 1/4. We

divide the real axis into three parts (here Ω03 = {ξ : ξ2 > |x|/(6t)} = ∅):
Ω04 := Ω4 ∩ {ξ : |ξ| ≥ |x|−1/2}; Ω4 =

{
ξ : p|x|

2t
< ξ2 ≤ |x|

6t

}
,

Ω05 := Ω5 ∩ {ξ : |ξ| ≥ |x|−1/2}; Ω5 =
{
ξ : ξ2 < p|x|

2t

}
,

Ω06 := {ξ : |ξ| ≤ |x|−1/2}.

(5.2.17)

Let us start estimating J04, that it is, the integral in the region Ω04. Note that φ′(ξ) =

3tξ2 + x+ z2

4ξ2t
= 3tξ2 + x+ px2

4ξ2t
and

φ′

((
p|x|
(2t)

)1/2
)

= φ′

((
|x|
(6t)

)1/2
)

= |x|3p− 1

2
≤ −|x|

8
. (5.2.18)

Now, φ′′′ = 6t+ 3z2

2t
ξ−4 > 0. It follows that |φ′(ξ)| ≥ |x|

8
for ξ ∈ Ω4, thus also in Ω04 and

|φ′′| =
∣∣∣∣6tξ − 1

2

p

t

|x|2

ξ3

∣∣∣∣ ≤ |6tξ|+ 3
|x|
|ξ|

≤ c

(
t|ξ|+

∣∣∣∣xξ
∣∣∣∣) . (5.2.19)

Also, we can write Ω04 as follows:

Ω04 = [−b,−a] ∪ [a, b], with a := max

{(
p|x|
2t

)1/2

, |x|−1/2

}
and b :=

(
|x|
6t

)1/2

.
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Since |ξ|−1/2 exp(iπ sgn ξ/4) = (−iξ)−1/2, then the integral to be estimated can be written as

J04 =

∫
Ω04

π1/2

t1/2
(|ξ|)−1/2 exp(iφ(ξ))ψ0dξ.

By integration by parts

|J04| ≲ π1/2 |(t|ξ|)−1/2ψ0(ξ)|
|φ′(ξ)|

∣∣∣∣
∂Ω04

+

∫
Ω04

∣∣∣∣∣
(
|tξ|−1/2ψ0(ξ)

φ′(ξ)

)′

exp(iφξ)

∣∣∣∣∣ dξ.
Let us estimate the integral of the right-hand side of the inequality. First we have for the
derivative∣∣∣∣ ddξ

(
(t|ξ|)−1/2ψ0(ξ)

φ′(ξ)

)∣∣∣∣
=

1

φ′(ξ)2

((
−1

2
t−1/2 ξ

|ξ|
ξ−3/2ψ0 + (t|ξ|)−1/2ψ′

0

)
φ′(ξ)− (t|ξ|)−1/2ψ0φ

′′(ξ)

)
.

Using (5.2.18)-(5.2.19) we get∫
Ω04

∣∣∣∣∣
(
|tξ|−1/2ψ0(ξ)

φ′(ξ)

)′

exp(iφξ)

∣∣∣∣∣ dξ ≲ |x|−1t−1/2

∫
Ω04

|ξ|−3/2ψ0dξ + |x|−1t−1/2

∫
Ω04

|ξ|−1/2ψ′
0dξ

+ |x|−2t−1/2

∫
Ω04

|ξ|−1/2

(
t|ξ|+ |x|

|ξ|

)
ψ0dξ

= I1 + I2 + I3.

We are going to estimate each integral Ii, i ∈ {1, 2, 3}, conveniently using the definition of
the domain as follow

I1 ≤ |x|−1t−1/2

∫ 2

|x|−1/2

|ξ|−3/2dξ ≲ |x|−1t−1/2|x|1/4 = t−1/2|x|−3/4. (5.2.20)

Next for I2 we have

I2 ≤ |x|−1t−1/2

∫ 2

1

|ξ|−1/2dξ ≲ |x|−1t−1/2|x|1/4 = t−1/2|x|−3/4. (5.2.21)

We have used that T ≥ 1 and x < −128T . For I3 we get

I3 ≤ t1/2|x|−2

∫ ( |x|
6t )

1/2

|x|−1/2

|ξ|1/2dξ + t−1/2|x|−1

∫ 2

|x|−1/2

|ξ|−3/2dξ

≲ t1/2|x|−2

(
|x|
6t

)3/4

+ t−1/2|x|−3/4 ≤ (T 1/4 + 1)t−1/2|x|−3/4.

(5.2.22)

Again, we have used that T ≥ 1 and x < −128T . Finally, collecting estimates (5.2.20)-
(5.2.22) we can conclude∫

Ω04

∣∣∣∣∣
(
|tξ|−1/2ψ0(ξ)

φ′(ξ)

)′

exp(iφξ)

∣∣∣∣∣ dξ ≲ (T 1/4 + 1)t−1/2|x|−3/4. (5.2.23)
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Now, ∂Ω04 = {−a,−b, a, b} , with a := max

{(
p|x|
2t

)1/2
, |x|−1/2

}
and b :=

(
|x|
6t

)1/2
. Then,

using (5.2.18), for the boundary term we have

π1/2 |(t|ξ|)−1/2ψ0(ξ)|
|φ′(ξ)|

∣∣∣∣
∂Ω04

≲ |x|−1t−1/2|x|1/4 + |x|−1t−1/2

(
|x|
6t

)−1/4

≲ |x|−3/4t−1/2 + |x|−1

(
|x|
6t

)−1/4

t−1/2 ≲ T 1/4t−1/2|x|−3/4.

(5.2.24)

So then, by collecting (5.2.23)-(5.2.24) we get

|J04| ≲ T 1/4t−1/2|x|−3/4.

The remaining integrals can be estimated as in [37] to get:

|J05| ≤ ct−1/2|x|−1/4,

|J06| ≤ ct−1/2|x|−1/4, (5.2.25)

Combining the estimates (5.2.1)-(5.2.25), we obtain, similarly to (5.2.12):

|J0| ≤ c · T 1/4(k + 1)t−1/2|x|−1/4 ≲ c · T 1/4(k + 1)2k|x|−3/4.

Lemma 5.2.2 (Theorem 2.4 [37]). Let v0 ∈ Hs for some s > 3/4. Then

∥U(t)u0∥L2
xL

∞
yT

≤ c(s)T 1/8 ∥u0∥Hs
xy
,

where c(s) is a constant depending on s.

Proof. Let us introduce the sequence of functions ψk(ξ, η) as follows:

1. ψ0(ξ, η) = µ(2− |ξ|)µ(2− |η|), and
2. ψk(ξ, η) = µ(2k+1−|ξ|)µ(2k+1−|η|)µ(|η|−2k+1)+µ(2k+1−|ξ|)µ(|ξ|−2k+1)µ(2k−|η|)

, for k ≥ 1.

Note that, using induction, we can show that

m∑
k=0

ψk(ξ, η) = µ(2m+1 − |ξ|)µ(2m+1 − |η|), with supp

(
m∑
k=0

ψk(ξ, η)

)
= [−2m+1, 2m+1],

thus we can conclude that
∑∞

k=0 ψk(ξ, η) ≡ 1.

For any function f ∈ L2, we set Bkf = F−1(ψ
1/2
k f̂). Note that ∥Bku0∥L2 ≤ c ·2−ks ∥u0∥Hs .

If g ∈ C∞
0 (R)3, then, by (5.2.5), we have∣∣∣∣∫ T

−T

(U(t− τ))B2
kg(τ, ·, ·)(x, y)dτ

∣∣∣∣ ≤ (Hk,2T (| · |) ∗
∫ T

−T

∫
|g(τ, ·, y)|dτdy

)
(x), (5.2.26)
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for |t| ≤ T. Let us introduce operators Ak acting from L1([−T, T ];L2) as follows:

Ak =

∫
χT (τ)U(−τ)×Bkg(τ, ·, ·)dτ.

Then, by virtue of the unitary of U(t), the self-adjointness of Bk, and the permutability
of U(t) and Bk, the operator A∗

k (acting from L2 into L∞([−T, T ];L2)) is specified by the
formula A∗

kv = U(t)Bkv.

Set X = L2
x(R;L1

ty([−T, T ] × R)); then X∗ = L2
x(R;L∞

ty ([−T, T ] × R)) and, by virtue of
(5.2.4) and (5.2.26), one has

∥A∗
kAkg∥X∗ =

∥∥∥∥∫ T

−T

U(t− τ)B2g(τ, ·, ·))(x, y)dτ
∥∥∥∥
X∗

≤
∫
Hk,2T (|x|)dx ∥g∥X ≤ cT 1/423k/2 ∥g∥X ,

for g ∈ C∞
0 (R3). Therefore, by Lemma 2.1 in [48], we have∥∥U(t)B2

kv0
∥∥
X∗ ≤ c1/2T 1/823k/4(k + 1) ∥Bku0∥L2 ≤ c1/2T 1/82−k(s−3/4)(k + 1) ∥u0∥Hs .

Thus, we obtain

∥U(t)u0∥X∗ ≤ c

(
∞∑
k=0

2εk
∥∥U(t)B2

kv0
∥∥2
X∗

)1/2

≤ c

(
∞∑
k=0

2εk(c1/2T 1/82−k(s−3/4)(k + 1) ∥u0∥Hs)
2

)1/2

≤ c · T 1/8

(
∞∑
k=0

2εk2−k(2s−3/2)(k + 1)2

)1/2

∥u0∥Hs ≤ c1(s)T
1/8 ∥u0∥Hs ,

if 0 < ε < 2s− 3/2.

5.3 Nonlinear estimates

As mentioned before, the intention of this section is to trace the powers of T that appear in
the non-linear estimation associated to the equation (5.1.2), for this, we reanalyze the LWP
result of Linares and Pastor [81].

Proof of the Theorem 5.1.2. We closely follow Theorem 1.1 in [81]. Consider the integral
operator:

Ψ(u) = Ψ(u)(t) = U(t)u0 +

∫ t

0

U(t− t′)(u2ux)(t
′)dt′.

We assume that s > 3/4 and, without loss of generality T ≤ 1. We start by estimating
the Hs-norm of Ψ(u). Let u ∈ YT . By using Minkowski’s inequality, group properties, and
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Hölder inequality, we have

∥Ψ(u)(t)∥L2
x,y

≤ c ∥u0∥Hs + c

∫ T

0

∥u∥L2
xy
∥uux∥L∞

xy
dt′

≤ c ∥u0∥Hs + cT 2/9 ∥u∥L∞
T L2

xy
∥u∥L3

TL∞
xy
∥ux∥L9/4

T L∞
xy
.

(5.3.1)

Recall the Leibniz rule for fractional derivatives: Let 0 < α < 1 and 1 < p <∞. Then:

∥Dα(fg)− fDαg − gDαf∥Lp(R) ≤ c ∥g∥L∞(R) ∥D
αf∥Lp(R) , (5.3.2)

where Dα denote Dα
x or Dα

y . Now, using group properties, Minkowski and Hölder inequalities,
and twice the Leibniz rule (5.3.2) we have:

∥Ds
xΨ(u)(t)∥L2

xy
≤ ∥Ds

xu0∥L2
xy
+

∫ T

0

∥∥Ds
x(u

2ux)(t
′)
∥∥
L2
xy
dt′

≤ c ∥u0∥Hs + c

∫ T

0

∥ux∥L∞
xy

∥∥Ds
x(u

2)
∥∥
L2
xy
dt′ + c

∫ T

0

∥∥u2Ds
xux
∥∥
L2
xy
dt′

≤ c ∥u0∥Hs + c

∫ T

0

∥ux∥L∞
xy
∥ux∥L∞

xy
∥Ds

xu∥L2
xy
dt′ + c

∫ T

0

∥∥u2Ds
xux
∥∥
L2
xy
dt′

≤ c ∥u0∥Hs + c ∥u∥L∞
T Hs

xy

∫ T

0

∥ux∥L∞
xy
∥ux∥L∞

xy
dt′ + c

∫ T

0

∥∥u2Ds
xux
∥∥
L2
xy
dt′.

(5.3.3)
From Hölder inequality and the argument in (5.3.1), we get∫ T

0

∥ux∥L∞
xy
∥ux∥L∞

xy
dt′ ≤ T 2/9 ∥u∥L3

TL∞
xy
∥ux∥L9/4

T L∞
xy
, (5.3.4)

and ∫ T

0

∥∥u2Ds
xux
∥∥
L2
xy
dt′ ≤

∫ T

0

∥ux∥L∞
xy
∥uDs

xux∥L2
xy
dt′

≤
(∫ T

0

∥u∥2L∞
xy
dt′
)1/2

∥uDs
xux∥L2

xyT

≤ cT 1/6 ∥u∥L3
TL∞

xy
∥u∥L2

xL
∞
yT

∥Ds
xux∥L∞

x L2
yT
.

(5.3.5)

Thus, combining (5.3.3), (5.3.4) and (5.3.5), we obtain

∥Ds
xΨ(u)(t)∥L2

xy
≤ c ∥u0∥Hs + cT 2/9 ∥u∥L∞

T Hs
xy
∥u∥L3

TL∞
xy
∥u∥

L
9/4
T L∞

xy

+ cT 1/6 ∥u∥L3
TL∞

xy
∥u∥L2

TL∞
yT

∥∥Ds
yux
∥∥
L∞
x L2

yT

.
(5.3.6)

Similarly for
∥∥Ds

yΨ(u)(t)
∥∥
L2
xy
,∥∥Ds

yΨ(u)(t)
∥∥
L2
xy

≤ c ∥u0∥Hs + cT 2/9 ∥u∥L∞
T Hs

xy
∥u∥L3

TL∞
xy
∥u∥

L
9/4
T L∞

xy

+ cT 1/6||u||L3
TL∞

xy
∥u∥L2

TL∞
yT

∥∥Ds
yux
∥∥
L∞
x L2

yT

.
(5.3.7)

Therefore, from (5.3.1), (5.3.6) and (5.3.7), we deduce

∥Ψ(u)∥L∞
T Hs ≤ c ∥u0∥Hs + cT 1/6|||u|||3. (5.3.8)
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Next, from the oscillatory inequality, group properties, and the argument in (5.3.1), we get

∥Ψ(u)∥L3
TL∞

xy
≤ ∥U(t)u0∥L3

TL∞
xy
+

∥∥∥∥U(t)(∫ t

0

U(−t′)(u2ux)(t′)dt′
)∥∥∥∥

L3
TL∞

xy

≤ c ∥u0∥L2
xy
+ c

∫ T

0

∥∥(u2ux)(t′)∥∥L2
xy
dt′

≤ c ∥u0∥Hs + cT 2/9|||u|||3.

(5.3.9)

By choosing ε ∼ 1/2 such that 1 − ε/2 ≤ s, an application of Lemma 2.6 in [81] together
with arguments similar to (5.3.6) yield

∥∂xΨ(u)∥
L
4/9
T L∞

xy
≤ ∥U(t)∂xu0∥L4/9

T L∞
xy

+

∥∥∥∥U(t)(∫ t

0

U(−t′)∂x(u2ux)(t′)dt′
)∥∥∥∥

L
4/9
T L∞

xy

≤ c
∥∥D−ε/2

x ∂xu0
∥∥
L2
xy
+ c

∫ T

0

∥∥D−ϵ/2
x ∂x(u

2ux)(t
′)
∥∥
L2
xy
dt′

≤ c ∥u0∥Hs + c

∫ T

0

∥∥(u2ux)(t′)∥∥L2
xy
dt′ + c

∫ T

0

∥∥Ds
x(u

2ux)(t
′)
∥∥
L2
xy
dt′

≤ c ∥u0∥Hs + cT 1/6|||u|||3.
(5.3.10)

Applying Lemma (2.7.i) in [81], group properties, and Minkowski and Hölder inequalitiies,
we obtain

∥Ds
x∂xΨ(u)∥L∞

x L2
yT

≤ ∥∂xU(t)Ds
xu0∥L∞

x L2
yT

≤
∥∥∥∥∂xU(t)(∫ t

0

U(−t′)Ds
x(u

2ux)(t
′)dt′

)∥∥∥∥
L∞
x L2

yT

≤ c ∥Ds
xu0∥L2

xy
+ c

∫ T

0

∥∥Ds
x(u

2ux)(t
′)
∥∥
L2
xy
dt′

≤ c ∥u0∥Hs + cT 1/6|||u|||3

and ∥∥Ds
y∂xΨ(u)

∥∥
L∞
x L2

yT

≤ ∥∂xU(t)Ds
xu0∥L∞

x L2
yT

≤
∥∥∥∥∂xU(t)(∫ t

0

U(−t′)Ds
x(u

2ux)(t
′)dt′

)∥∥∥∥
L∞
x L2

yT

≤ c ∥Ds
xu0∥L2

xy
+ c

∫ T

0

∥∥Ds
x(u

2ux)(t
′)
∥∥
L2
xy
dt′

≤ c ∥u0∥Hs + cT 1/6|||u|||3.
At last, and application of Lemma 5.2.2, Minkowski’s inequality, group properties, and ar-
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guments previously used yield

∥Ψ(u)∥L2
xL

∞
yT

≤ ∥U(t)u0∥L2
xL

∞
yT

+

∥∥∥∥U(t)(∫ t

0

U(−t′)(u2ux)(t′)dt′
)∥∥∥∥

L2
xL

∞
yT

≤ c(s)T 1/8 ∥u0∥Hs + c(s)T 1/8

∫ T

0

∥∥(u2ux)(t′)∥∥Hs dt
′

≤ c(s)T 1/8 ∥u0∥Hs + c(s)T 1/8T 1/6|||u|||3.

(5.3.11)

Therefore, from (5.3.8)-(5.3.11), we deduce

|||Ψ(u)||| ≤ c(s)T 1/8 ∥u0∥Hs + c(s)T 1/8T 1/6|||u|||3. (5.3.12)

Choose a = 2c(s)T 1/8 ∥u0∥Hs and T > 0 such that

a2c(s)T 1/8T 1/6 ≤ 1

4
. (5.3.13)

Then we get

|||Ψ(u)||| ≤
(
1

2
+ 4c(s)3T 3/8+1/6 ∥u0∥2Hs

)
2c(s)T 1/8 ∥u0∥Hs ≤

3

4
a.

Thus, to see that Ψ : Ya
T −→ Ya

T is well defined. Moreover, similar arguments show that Ψ
is a contraction.

5.4 Lower bound for the rate of blow-up of singular

solutions

Taking into account the estimate (5.3.12) and denoting

Y(M,T ) = {u : u(t = 0, x) = u0, |||u||| ≤M} ,

the LWP theory is obtained by a contraction argument in the space Y(M,T ), provided

the smallness condition c(s)T
1
8
+ 1

6M2 < 1/4 is satisfied. We adapt arguments develop by
Colliander et. al [27] for the Zakharov system, which were originally developed by Weissler
[113] for the heat equation, to prove a lower bound on the rate of blow up. Denote by T ∗ the
supremum of all T > 0 for which there exists a solution u of the mZK satisfying

∥u∥L∞
T Hs

xy
+ ∥u∥L3

TL∞
xy
+ ∥u∥

L
9/4
T L∞

xy
+ ∥Ds

xux∥L∞
x L2

yT
+ ∥Ds

yux∥L∞
x L2

yT
+ ∥u∥L2

xL
∞
yT
<∞.

The LWP theory shows T ∗ > 0 and for all t ∈ [0, T ∗)

∥u(t)∥Hs
xy
<∞.

By maximality of T ∗, it is imposible that

∥u(t)∥L∞
[0,T∗]H

s
xy
<∞,
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since, otherwise, it would be possible to demonstrate LWP for T1 > T ∗ by taking as initial
condition u0 = u(T ∗, x). Therefore, if T ∗ <∞, blow-up occurs:

∥u(t)∥Hs
xy

−→ ∞, as t −→ T ∗.

Consider u(t) posed at some time t0 ∈ [0, T ∗]. If for some M

c(s, (T − t0))∥u(t0)∥Hs + c(s, (T − t0))(T − t0)
1/6M3 < M,

then, we have LWP in [t0, T ], thus T < T ∗. Therefore, ∀M > 0

c(s)(T ∗ − t0)
1/8∥u(t0)∥Hs + c(s)(T ∗ − t0))

1/8(T ∗ − t0)
1/6M3 > M.

Choosing M = 2c(s)∥u(t0)∥Hs , we have

2c(s)M2 > (2 + (t∗ − t0)
1/8)(T ∗ − t0)

−(1/8+1/6) > (T ∗ − t0)
−(1/8+1/6).

Equivalently,

2c(s)2∥u(t0)∥2Hs > (T ∗ − t0)
−(1/8+1/6), or

√
2c(s)∥u(t0)∥Hs > (T ∗ − t0)

−(7/48).

Thus we get (5.1.3).
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis work is concerned with the study of global existence for small solutions to the
Einstein equations in vacuum in the Belinski Zakharov setting, as well as the study of the
long-term behavior of the solutions, and their stability. The first result corresponds to a
particular case identified with the Principal Chiral Field equation, then, the Einstein equa-
tions in vacuum are properly addressed. Finally, an additional result related to the Zakharov
Kuznetsov model is presented.

The results obtained in Part II are obtained from the identification of the vacuum Einstein
equation with a system of quasilinear wave equations, for the global existence, and the use
of the virial technique to obtain the asymptotic behavior of the solution, as well as, certain
stability result.

Global existence for Pincipal Chiral Field Equations

In a first work, it was considered a special case of the Principal Chiral Field model in (1 +
1)- dimensions as a simplified version of the Einstein vacuum field equations under Belinksi-
Zakharov symmetry [52, 119].

∂t
(
∂tgg

−1
)
− ∂x

(
∂xgg

−1
)
= 0, det g = 1.

There are four main results in this paper:

• Local and global well-posedness,

• Global-in-time decay result of some solutions, and finally

• The application to solitons.

The statements together make for a relatively self-contained, new, interesting, and compre-
hensive introduction to this special case of the Principal Chiral Field model. Energy estimates
for the wave equation were key to prove the local wellposedness result. Having established
the existence of solutions, our second result involves whether or not local solutions can be
extended globally in time, for this purpose, a condition of smallness is stated for the initial
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data. The smallness in the initial data implies that the nonlinear equation can be solved
over a long period of time and the global solution can be constructed once the non-linearity
decays enough. Moreover, the slower decay rate in low dimensions can be compensated by
the special structure of the nonlinearity.

Belisnki-Zakharov spacetimes

The Einstein vacuum equation determine a 4−dimensional manifold M with a Lorentzian
metric g̃ with vanishing Ricci curvature

Rµν(g̃) = 0. (6.1.1)

The focus is understanding of outstanding solutions of (6.1.1) in the setting of Belinski-
Zakharov spacetimes. Belinski and Zakharov recalled the particular case in which the metric
tensor g̃µν depends on two variables only. The following statements have been provided:

• A rigorous description of the global existence theory for the Einstein equations in
vacuum, approached, via Gowdy coordinates (geometrical coordinates), as a system of
quasilinear wave equations. Although the nonlinearity is not purely defined in terms
of null forms, we can follow and adapt properly in the case of variable coefficients the
weighted energy estimates proposed in [85] to approach the problem and finally obtain
a small data global existence result.

• Formulation of conserved quantities for cosmological setting: we were able to propose
a suitable formulation of energy and momentum, which allowed us to study decay of
a cosmological-type solutions of the Einstein equations in the vacuum.

• The description of the asymptotic behavior for soliton-like solutions that can be iden-
tified as cosmological-like solutions of the Einstein equations: we proved, using well-
chosen virial estimates that for solutions with finite energy, they must decay to zero
locally in space.

Stability Results.

In this work we studied stability of particular soliton solutions to PCF. In particular, orbital
stability of special solutions of these model with small initial data perturbations. It seems the
first rigorous results in this direction for these kind of solutions. The stability theory is an
important line of research in nonlinear PDEs, in the sense that it gives solidity to the results
related to global existence of the solutions, asymptotic behavior, the dynamics of solutions.

Unlike many previous results related to orbital stability, in this work we do not follow the
classical approach since it is nearly useless. PCF is a model where standard techniques fail and
one needs a new approach. We combined asymptotic stability techniques and preservation of
local energy to provide a near complete characterization of perturbations of regular soliton
solutions of PCF. The main idea is to use viral techniques in a new way, this time, to obtain
orbital stability of the explicit solutions that can be previously constructed for the problem.
In this work was given a first proof of the fact that the 1-soliton (4.1.9) of the PCF model are
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orbital stable under small perturbations well-defined in the natural energy space associated
to the problem.

The results obtained in Part III concerned to the modified Zakharov-Kuznetsov
equation, more precisely:

Rate Blow-up for modified Zakharov-Kuznetsov equation

By considering the modified Zakharov.Kuznetsov equation, given by{
ut + uxxx + uxyy + u2ux = 0, (x, y) ∈ R2, t > 0,

u(0, x, y) = u0(x, y),

for initial conditions in the Sobolev space Hs with s > 3/4. Assuming that there is a blow
up solution at finite time t∗, we set a lower bound for the blow up rate of that solution.

It is important to emphasize that the existence of blow-up solutions for this model has
not been demonstrated, however, there are some numerical works that suggest that they exist
and attempt to describe the rate for this blow-up. The results presented in this work are
intended to contribute to the advances in the state of the art of the problem.

6.2 Future Works

In the following I would like to raise certain problems that are of great interest to me and in
which I find a lot of potential, based on the results we have obtained for Belinski Zakharov
spacetimes. These questions are quite varied and very robust in each case. Let us see a brief
discussion of each of these problems below.

6.2.1 Integrability and Solitons in General Relativity

In this project I will be interested in the study of stationary axisymmetric spacetimes, for
which one of the twoKilling fields is timelike. Indeed, I will focus on theKerr and Kerr-
Nut solutions and its generalizations, in the framework of the Belinski-Zakharov transfom,
as solutions of 2-solitons on the Minkowski background. These spacetimes have been
studied from the physical point of view in the last decades, since it is possible to rely on
these models to describe the gravitational fields of astrophysical sources, such as black holes.

Integrability in Axisymmetric spacetimes

For the stationary axisymmetric spacetimes, the more general case in which the sources
are rotating but their fields remain stationary, the line element can be extended to what is
known as the Weyl–Lewis–Papapetrou form see [80, 94, 114],

ds2 = −f (dt+ A(z, ρ)dφ)2 + f−1
(
e2γ(z,ρ)(dρ2 + dz2) + ρ2dφ2

)
,

{
f(z, ρ) > 0, ρ > 0,

z ∈ R, φ ∈ [0, 2π).
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This block diagonal form is guaranteed in vacuum by Papapetrou’s theorem [94], assuming
a regular symmetry axis and the presence of the two commuting Killing vector fields ∂t
(timelike) and ∂φ (spacelike).

Now, the equation Rab = 0 can be expressed in terms of two sets of nonlinear equations for
f and ϕ = ϕ(ρ, f, A). After some work, one gets that the complex function E(ρ, z) := f + iϕ
satisfies the so-called Ernst equation:

(E + E)∆E = 2gµνEµEν , and ∆E =
1√

− det g
∂µ

(√
− det ggµνEν

)
. (6.2.1)

The function E is called the Ernst potential. Then, solutions to the stationary axisymmetric
Einstein equations in vacuum can be obtained by solving the Ernst equation. In fact, this
equation can be obtained in any space-time having two commutative Killing vectors [50, 70,
77]. Ernst’s original motivation in finding the Ernst equation [36, 70] was to provide a simple
scheme to construct the Kerr metric as a solution to the stationary axisymmetric Einstein
equations in vacuum. This model is considered integrable in the sense of the existence of a zero
curvature representation (Lax representation in the case of the KdV equation). Interesting
problems have been addressed using the integrability structure of the Ernst equation [50].
Among them, we mention the collision of two plane gravitational waves [77]. This shows the
relevance and potential of this form of integrability, and the need to be fully understood and
rigorously described.

Proposed Problem: Description of the axisymmetric 2-gravisoliton spacetimes

In a first stage, I will propose new classification results for (6.2.1) in the case of 2-gravisoliton
spacetimes. Following the road map introduced in [2], I expect to uniquely describe Black-
Holes in terms of suitable profile-phase functions [110].The purpose is to identify, in
this context, the operators describing the dynamics of the so-called phase function, as well
as to describe the solitonic solutions belonging to this class. Although some solutions have
been well studied in the literature and show interesting features, there are still open questions
about their meaning, singularities, topology, and conserved charges. In this objective, I aim
to contribute to a new classification of gravitational solitons.

In a second stage, I will describe dynamical properties of 2-gravisoliton spacetimes in
the case of perturbed symmetric data by using generalized virial identities in the spirit
of [91]. In the case of axially symmetric spacetimes, and from the identification of the Ernst
equation in the setting of the Belinski-Zakharov ansatz, I will understand and take advantage
of the integrability structure to extend and describe the long time dynamics as I previously
did in [91].

6.2.2 Stiff fluids in FLRW spacetimes

A classical assumption is that our large-scale universe is governed by the cosmological prin-
ciple, with a Universe homogeneous and isotropic. In this setting, the Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric

(FLRW ) ds2 = −dt2 + a(t)2
(

dr2

1−Kr2
+ r2dΩ2

)
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is commonly used to describe the Universe at great scales and it is one of the basis of the
current Big-Bang theory, usually referred as the ΛCDM cosmological model. The other key
component of the model is the Cold Dark Matter (CDM) theory. A key component of the
FLRW metric (FLRW) is the scale factor, usually denoted as a(t), which measures either the
expansion or contraction of the Universe with respect to a time scale variable. The parameter
K measures the curvature of the universe, being K = 0 a flat spacetime. Assuming this as
a perfect fluid leads to the Friedmann’s equations, one has an energy momentum tensor

Tµν = (ρ+ p)uµuν + pgµν , p = pressure, ρ = density,

that through Einstein’s field equations couples the scalar factor with the content of the
universe, in the sense that

ρ̇+ 3H(ρ+ p) = 0, H(t) :=
ȧ(t)

a(t)
.

Usually one assumes that H is constant. The precise value of today’s Hubble parameter (and
the consequent equipartition of mass-energy of the universe) is matter of a hot controversy [32,
103], between essentially two methods of measuring H (among other important observables)
that differ in their outputs: measures using the local distance ladder and those inferred using
the CMB1 and galaxy surveys. Density ρ in the Universe is a tough question. Precisely, this
last ingredient is another issue in Cosmology.

However, the Big-Bang theory as it is does not explain several puzzling observations of
our current universe. These are the horizon, the flatness, and the initial conditions
problems. The horizon problem refers to the impressive homogeneity of our universe, given
the lack of causal connection among extreme sections of it. The flatness problem corresponds
to the extreme flatness of the Universe today, given the fact that expansion and time evolution
should make our universe even flatter. Finally, the Big-Bang model does not explain the
initial conditions required to fulfill today’s universe. Precisely, the theory of inflation was
introduced to repair these unsolved issues of the model, and solves with great success the
two first problems. For the third one must consider perturbations of inflation.

The large structure of the present Universe seems to be isotropic and spatially homoge-
neous. Physical cosmology is based on the relativistic Friedmann-Lemâıtre-Robertson-Walker
(FLRW) models which describe the Universe as completely homogeneous and isotropic in all
its evolution. Under the appropriate symmetry restrictions, Einstein equations coupled to a
massless scalar field ϕ (a massless Klein-Gordon field) reads

Rµν = ∂µϕ∂νϕ, ∂µ∂µϕ = 0

It is well known that a solution of this system have an interpretation as a stiff perfect fluid
in the FLRW setting, as follows: if ϕ is timelike, i.e. ∂µϕ∂νϕ < 0, p is the pressure, ρ the

1Hubble [56], based on the observation of local galaxies, observed that the universe expands and proposed
the famous formula v = H0d, where v is the radial velocity of nearby galaxies and d its distance. The
parameter H0, today known as the Hubble’s constant (or parameter) describes the expansion of our universe.
A posterior analysis, with the discovery of the Cosmic Microwave Background (CMB) [95], a vestige of the
decoupling between matter and radiation, confirmed the idea of a primordial universe more compact than
the actual one
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density, and uµ the 4-velocity, defined as

ρ = p = −1

2
∂µϕ∂νϕ, uµ =

∂µϕ√
−∂µϕ∂νϕ

,

then the energy tensor Tµν represents a perfect fluid: Tµν = (ρ + p)uµuν + pgµν . Stiffness
is defined by ρ = p, and the speed of sound equals the speed of light. Under a 2-Killing
vector field isometries, gµν can be written using the Belinski-Zakharov ansatz, and the
recently developed theory [91, 109] applies.

Proposed problem. To explore stiff-fluids using the long time behavior techniques
developed previously mentioned, such as virial estimates, to obtain rigorous insights about
the cosmological dynamics. This proposal is part of the Regional Program MATH-
AmSudmacro project in collaboration withDiego Chamorro (U. Paris-Saclay) andClau-
dio Muñoz (University of Chile).

6.2.3 Stability in the Energy Space for Einstein Equation

The stability theory is an important line of research in nonlinear partial differential
equations, in the sense that it gives solidity to the results related to global existence
of the solutions, asymptotic behavior, the dynamics of solitonic solutions. Given the
description of the Einstein equations as a nonlinear model of wave equations, either from
the Belinski-Zakharov formalism or using the so-called wave coordinates, we can study
the different stability results developed for certain dispersive models, see for example [72],
in order to establish sufficient conditions for stability in energy spaces for the equations
associated with General Relativity (GR). In addition to the motivation arising from GR,
the study of the stability for hyperbolic equations is of independent interest because of
the connections with other branches of physics, for example, the study of the irrotational
compressible Euler equations, which describe the dynamics of a compressible gas, also, the
Einstein-Maxwell equation, as well as, the wave map equation.

In this problem I want study hyperbolic PDEs arising from General Relativity. In particular
I am interested in the orbital and asymptotic stability of special solutions of these model
against small initial data perturbations. The study of stability elucidates our understanding
of whether such PDEs can provide mathematically reasonable models for physical phenom-
ena in our universe. This problem is a naturally continuation of my PhD. research, In a
previous work [91], we achieved the description of a type of cosmological solution, under the
setting of the Belinski-Zakharov symmetries described below, the main goal is to explore
the stability of these objects under small perturbations in the appropriate energy space, by
addressing the problem using a variational approach.

Proposed problem. To understand the stability and asymptotic stability theory of
Belinksi-Zakharov gravisolitons following our recent works and the previously developed tech-
niques in [91].
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6.2.4 The Einstein Constraint Equations with two Killing
Vectors Fields

In view of the fact that the Einstein equations are a geometrical problem, it is important
to note that, in order to formulate the equations in General Relativity as a initial value
problem, the initial data must satisfy compatibility conditions known as Einstein constraint
equations. Yvonne Choquet-Bruhat in her pioneering work [21] proved the local existence
and uniqueness for the Einstein equations in vacuum when given a set of initial data (Σt, g̊, k̊)
where Σt is a spacelike hypersurface of M, g̊ a Riemannian metric on Σt and k̊ the associated
second fundamental form. The result is valid when g̊ and k̊ satisfy the so-called constraint
equations, which are geometric conditions on the problem, see also [22] to help understand
the importance and complexity of the problem. These constraint equations are described as:
the Hamiltonian and momentum constraint equations, which are respectively{

R̊− |̊k|2 + (tr̊k)2 = 0,

d̊ivk̊ − ∇̊tr̊k = 0,

where ∇̊ is the Levi-Civita connection of g̊ and R̊ is the scalar curvature of g̊. The Einstein
constraint equations constitute a problem of great interest since from them emerge a non-
trivial system of elliptic equations, which has been studied from different interesting fronts.
Huneau in [57] obtained the existence of solutions for these compatibility conditions, as-
suming the existence of a translational spacelike Killing field in the asymptotically flat case,
this hypothesis allowed her to move from a 3+1 dimensional problem to a 2+1 dimensional
one and from that, rewrite the Einstein constraint equations in a suitable form. Also, Pre-
moselli [97], using conformal method, obtains an admissible initial data for the conformal
Einstein-scalar constraint system. Recently Fournoduvlos et. al. [42], assumes a constant
main curvature condition on the hypersurface, to study the development of singularities for
a generalized Kasner metric.

Proposed problem. To make a description and in-depth study of the constraint equa-
tions for the specific cases of metrics that are identified with the formalism proposed by
Belinski and Zakharov. This study includes the existence of solutions to the proposed “el-
liptic” model.
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