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Abstract

A group action on a compact Riemann surface induces an action
on the vector space of holomorphic differentials; the analytic represen-
tation of the action. This thesis deals with dihedral actions. First, a
bijective correspondence between geometric signatures and analytic rep-
resentations is obtained. Second, a refinement of a result of Bujalance,
Cirre, Gamboa, and Gromadzki about signature realization is provided.
Finally, we relate our results to decomposition of Jacobians by Prym
varieties and elliptic curves, extending results of Carocca, Recillas, and
Rodŕıguez.

Resumen

Una acción de grupo en una superficie de Riemann compacta induce
una acción en el espacio vectorial de diferenciales holomorfos; la repre-
sentación anaĺıtica de la acción. Esta tesis trata sobre acciones dihedra-
les. Primero, se obtiene una correspondencia biyectiva entre signaturas
geométricas y representaciones anaĺıticas. Segundo, se entrega un refina-
miento de un resultado de Bujalance, Cirre, Gamboa y Gromadzki sobre
realización de signaturas. Finalmente, relacionamos nuestros resultados
con descomposiciones de Jacobianas por variedades de Prym y curvas
eĺıpticas, extendiendo resultados de Carocca, Recillas y Rodŕıguez.
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Introduction

With the advent of significant advancements in computer algebra systems and
finite group theory at the turn of the twenty first century, the investigation of
automorphism groups of compact Riemann surfaces has witnessed a renewed
surge of interest.

While the field rests upon foundational results established by Riemann,
Klein, Wiman, and Hurwitz, a vast majority of the literature has been pub-
lished within the past three decades. This renewed interest is based in part
in two key aspects of the area. First, it boasts a rich landscape of open
problems. Second, its capacity to leverage concepts and techniques from var-
ious mathematical disciplines—including geometry/topology, algebra, combi-
natorics, number theory, and Galois theory—provides a rich toolkit for tack-
ling these problems.

The following examples should provide some insight into this interplay and
the various points of view that have emerged in the past few decades.

(1) Construction of Riemann surfaces with actions can be achieved through
various methods. Some methods draw from algebraic topology (mon-
odromy epimorphisms), the uniformization theorem (surface kernel epi-
morphisms), algebraic geometry (defining equations), or hyperbolic ge-
ometry (tilings by fundamental domains).

(2) The action of a group of automorphisms can be classified up to signature.
This classification in turn is equivalent to finding subgroups of Fuchsian
groups. Thus, many open problems involve studying Fuchsian groups,
their subgroups, and their over groups.

(3) Riemann’s existence theorem provides two conditions under which a
group acts on a Riemann surface with a given signature. While the first
condition is a simple arithmetic check, the second one (the existence of a
surface kernel epimorphism) is computationally nontrivial and the focus
of much current research.

(4) The study of the variation in the automorphism group among all possible
Riemann surfaces of a fixed genus has been carried out with the help of
moduli and Teichmüller spaces.

(5) As compact Riemann surfaces are in natural bijection with smooth, ir-
reducible projective curves, studying Riemann surfaces provides insight
into questions about curves.

1



(6) Torelli’s theorem establishes a strong correspondence between curves and
Jacobian varieties. Furthermore, the automorphism group of a curve can
be used to decompose its Jacobian variety. Most importantly for this
thesis, the theory of abelian varieties provides a natural way to lift a
group action on a curve into its analytic representation.

For an excellent overview of the field, we refer to [4] for a historical perspec-
tive and to [5] for an expository article on open problems and future directions.

Broughton’s seminal 1990 paper [2] established the modern perspective on
classifying finite group actions on compact Riemann surfaces, with Fuchsian
groups playing a central role. We refer to [3] for an up-to-date treatment of
this topic. Databases of actions on low genus can be consulted in [12, 20].

The theory of group algebra decomposition of Jacobian varieties is a rela-
tively recent development, pioneered by the works of Lange and Recillas [22],
and Carocca and Rodŕıguez [9] in the early 2000s. Shortly thereafter, Rojas
in [37] introduced the notion of geometric signature, a generalization of the
usual signature of an action. Rojas’ article proved that the geometric sig-
nature captures much information: the geometric structure of the lattice of
intermediate covers, the isotypical decomposition of the rational representa-
tion of the group action, and the dimension of the subvarieties of the group
algebra decomposition. For a survey of the broader area of group actions on
abelian varieties, we refer to [35]. For more recent developments, see [8, 34].

Dihedral actions on compact Riemann surfaces serve as a rich study case.
Notably, they are foundational examples for the theory of group algebra de-
compositions of Jacobians, providing valuable insights into the general struc-
ture of these decompositions. Concretely, Recillas and Rodŕıguez in [31]
worked out the case S3 ∼= D3 (1998), and later, Carocca, Recillas, and Rodŕıguez
in [7] gave a more general treatment of dihedral actions (2002). In a different
line of research, Bujalance, Cirre, Gamboa, and Gromadzki in [6] provided
necessary and sufficient conditions for a signature to admit a dihedral action
(2003). For related works on Riemann surfaces or abelian varieties with dihe-
dral actions, see [17, 24, 32].

In this thesis we deal with dihedral actions on compact Riemann surfaces
of genus g ≥ 2. Our aim is to understand in detail the interplay between
different notions of geometric data of an action. The main results are:

(1) We prove that there is a bijective correspondence between geometric
signatures and analytic representations of dihedral actions on compact
Riemann surfaces (Theorem 2.3). Explicit formulas are provided.

2



(2) We state necessary and sufficient conditions for a geometric signature to
admit a dihedral action (Theorem 3.4 and Theorem 3.5); this result is a
refinement of [6].

(3) We solve the problem of deciding when a C-representation is the analytic
representation of a dihedral action (Theorem 3.6 and Theorem 3.7).

(4) We prove that the dihedral group Dn is Prym-affordable if and only if n
is the power of a prime number (Theorem 4.3), extending results of [7].

(5) We characterize the group algebra components of a Jacobian with Dn-
action (n odd) that are isogenous to the Prym variety of an intermediate
cover (Theorem 4.4).

(6) We provide an exhaustive list of (geometric) signatures of Dn for which
the group algebra decomposition provides a complete decomposition of
the Jacobian (Theorem 4.5).

(7) We generalize (6) and give an exhaustive list of (geometric) signatures of
Dn for which the group algebra decomposition provides a decomposition
of the Jacobian into factors of equal dimension (Theorem 4.6).

This thesis is organized as follows. In Chapter §1 we shall briefly review
the basic background: group actions on Riemann surfaces, Q-representations,
abelian varieties, and representations of automorphism groups. The main
results of this thesis will be stated and proved in Chapter §2 (interplay between
geometric data) and Chapter §3 (geometric signature realization). Finally,
Chapter §4 will be concerned with applications to decomposition of Jacobians.
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Chapter 1

Preliminaries

In this chapter we briefly review the basic background needed to state and
prove the results of this thesis.

1.1 Group actions on Riemann surfaces

A Riemann surface is a connected complex analytic manifold of complex di-
mension 1. A map between Riemann surfaces is holomorphic if its expression
in local charts is holomorphic. An action of a group G on a Riemann surface
S is a monomorphism G→ Aut(S) into the automorphism group of S. Hence-
forth, S denotes a compact Riemann surface of genus g ≥ 2 with a G-action.
A classical result due to Hurwitz states that G is finite and |G| ≤ 84(g − 1).

Each G-action on S induces a Galois covering πG : S → SG, where SG
denotes the quotient Riemann surface given by the action of G on S. The
signature of the action is the tuple (γ;m1, . . . ,mv), where γ is the genus of SG
and m1, . . . ,mv are the ramification indices of the branch values of πG. If the
action has signature as above, then it satisfies the Riemann-Hurwitz formula

2g − 2 = |G|

2γ − 2 +

v∑
j=1

(
1− 1

mj

) .
Definition 1.1. Following [37], the geometric signature of the Galois covering
πG : S → SG is the (v + 1)-tuple

(γ;G1, . . . , Gv),

where γ is the genus of SG, and G1, . . . , Gv are the stabilizer subgroups of G
associated to the (G-orbits of the) ramification points of πG. Such subgroups
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are determined up to conjugation and reenumeration. (Strictly speaking, the
geometric signature is given by the conjugacy classes of the stabilizers, but we
denote them by a representative.)

It is worth mentioning that two actions of the same group with the same
signature can have different geometric signatures, as we shall see later.

Remark 1.1. If g ∈ G and a ∈ Z+, then the symbol ⟨g⟩a in a geometric
signature abbreviates ⟨g⟩, a. . ., ⟨g⟩. Similarly, if m ≥ 2 is an integer, then the
symbol ma in a signature abbreviates m, a. . .,m.

For any pair of subgroups H ≤ K of G, the induced maps πHK : SH → SK
are called intermediate coverings of πG : S → SG. The genus and the ramifica-
tion data of the intermediate coverings of πG are determined by the geometric
signature of the G-action. We refer to [37, §3] for more details.

Let H denote the upper half-plane. We recall that Aut(H) ∼= PSL(2,R).

Definition 1.2. A Fuchsian group ∆ is a discrete subgroup of Aut(H). A
surface Fuchsian group is a torsion free Fuchsian group.

Let ∆ be a co-compact Fuchsian group (H∆ is compact). The universal
covering map H → H∆ is unramified if and only if ∆ is torsion free. If γ
denotes the genus of H∆ and m1, . . . ,mv are the ramification indices of the
branch values of the covering map ∆→ H∆, then the tuple (γ;m1, . . . ,mv) is
the signature of ∆, and ∆ has a canonical presentation〈

α1, . . . , αγ , β1, . . . , βγ , x1, . . . , xv : x
m1
1 , . . . , xmv

v ,

γ∏
i=1

[αi, βi]
v∏
j=1

xj

〉
,

where the square bracket denotes the commutator. The elements α1, . . . , αγ
and β1, . . . , βγ are called the hyperbolic generators of ∆, whereas x1, . . . , xv
are the elliptic generators of ∆.

Theorem 1.1. Let S be a compact Riemann surface of genus g ≥ 2. Then

(1) there exists a (co-compact) surface Fuchsian group Γ such that S ∼= HΓ;

(2) a group G acts on S ∼= HΓ with signature σ if and only if there exists a
Fuchsian group ∆ of signature σ and an exact sequence of groups

1→ Γ→ ∆
θ−→ G→ 1.

In this case SG ∼= H∆ and g satisfies the Riemann-Hurwitz formula.
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The first statement of the previous theorem is called the uniformization
theorem, and the second one is called Riemann’s existence theorem. Note that
in the theorem above the signature of ∆ and the signature of the action of G
agree. We say that the action is represented by the surface kernel epimorphism
(ske) θ : ∆ → G. It is common to identify θ with the (2γ + v)-tuple or
generating vector

(θ(α1), . . . , θ(αγ), θ(β1), . . . , θ(βγ), θ(x1), . . . , θ(xv)) ∈ G2γ+v.

Definition 1.3. Let Sj be a Riemann surface with an action εj : G →
Aut(Sj), for j = 1, 2. The actions ε1 and ε2 are topologically equivalent if
there exist a group automorphism ω ∈ Aut(G) and an orientation-preserving
homeomorphism T : S1 → S2 such that

Tε1(ω(g)) = ε2(g)T

for all g ∈ G. If T is holomorphic then we speak of analytic equivalence.

Topological equivalence of actions can be detected in a Fuchsian groups
formulation. More precisely, following [2], two actions of G represented by the
skes θj : ∆ → G (j = 1, 2) are topologically equivalent if and only if there
exist ω ∈ Aut(G) and ϕ∗ ∈ B < Aut(∆) such that

θ2 = ω ◦ θ1 ◦ ϕ∗,

where B is the group of automorphisms of ∆ induced by the homeomorphisms
T as in Definition 1.3.

Proposition 1.1. If G is abelian and SG has genus zero, then B acts on a
ske by permuting the images θ(xj) of the elliptic generators so that the orders
of the elements are preserved.

Proof. See [2, Proposition 2.6].

An introductory treatment on Riemann surfaces can be found in [26]. For
more advanced accounts, see [15] or [16].

1.2 Q-representations

Let G be a finite group and let F be a field of characteristic zero. An F-
representation of G is a homomorphism ρ : G → GL(V ) into the general
linear group of a (finite-dimensional) F-vector space V . We will usually abuse



CHAPTER 1. PRELIMINARIES 8

notation and simply write V instead of ρ. The degree dV of V is the dimension
of V as an F-vector space, and the character χV of V is the map that sends
each element g ∈ G into the trace of V (g). Two representations are equivalent
if their characters agree; we write V1 ∼= V2.

The character field KV of V is the extension of F by the values of the
character of V . The Schur index sV is the smallest positive integer such that
there exists a degree sV extension of fields LV > KV over which V can be
defined; LV is called a field of definition.

A representation is irreducible if its invariant subspaces are the trivial ones.
There are finitely many pairwise nonequivalent irreducible F-representations
of G; we denote by IrrF(G) the set formed by them. If V is an F-representation
and IrrF(G) = {U1, . . . , Uv}, then for each j there exist a unique nonnegative
integer aj , the multiplicity of Uj in V , such that

V = a1U1 ⊕ · · · ⊕ avUv,

where ajUj = Uj⊕
aj· · ·⊕Uj . The integer aj agrees with ⟨V,Uj⟩/⟨Uj , Uj⟩, where

⟨V,U⟩ = 1

|G|
∑
g∈G

χV (g)χU (g).

It is known that for W ∈ IrrQ(G) there exists V ∈ IrrC(G) such that

W ⊗Q C ∼= sV (⊕σV σ) = (⊕σV σ)⊕ sV· · · ⊕ (⊕σV σ),

where the direct sum is taken over the Galois group associated to the field
extension KV > Q. We say that V and W are Galois associated.

Let H be a subgroup of G. The fixed subspace of V under H is

V H = {v ∈ V | ρ(h)(v) = v for all h ∈ H};

we denote its dimension by dHV . We refer to [38] and [39] for more details.

1.3 Abelian varieties

A g-dimensional complex torus X = VΛ is the quotient of a g-dimensional C-
vector space V by a discrete subgroup Λ of V of maximal rank. Each complex
torus is an abelian group and a g-dimensional compact connected complex
analytic manifold. Homomorphisms between complex tori are holomorphic
maps which are also group homomorphisms. Every tori homomorphism f :
X1 → X2 is induced by a unique C-linear map ρa(f) : V1 → V2 that sends Λ1
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into Λ2. The restriction of ρa(f) to Λ1 is a Z-linear map ρr(f) : Λ1 → Λ2.
The corresponding monomorphisms

ρa : Hom(X1, X2)→ HomC(V1, V2),

ρr : Hom(X1, X2)→ HomZ(Λ1,Λ2),

are called the analytic representation and rational representation of Hom(X1, X2),
respectively. Both representations can be extended to

HomQ(X1, X2) := Hom(X1, X2)⊗Z Q.

The (extension to C of the) rational representation is equivalent to the direct
sum of the analytic representation and its complex conjugate:

ρr ⊗ 1 ∼= ρa ⊕ ρa. (1.1)

An isogeny of tori is a surjective homomorphism with finite kernel. Two
isogenous tori are denoted by X1 ∼ X2.

An abelian variety is a complex torus which is also a complex projective
algebraic variety. The Jacobian variety JS of a compact Riemann surface S
is an (irreducible principally polarized) abelian variety: it is the quotient

JS = Ω1(S)∗/Λ

of linear functionals on the space of holomorphic differentials modulo periods.
(Λ is the canonical injection of the first homology group H1(S,Z) on Ω1(S)∗.)
The dimension of JS is the genus of S. Torelli’s theorem states that

S ∼= S′ ⇐⇒ JS ∼= JS′,

where JS ∼= JS′ is an isomorphism of principally polarized abelian varieties.
Given a (ramified) covering map f : S1 → S2 between compact Riemann

surfaces, the pullback f∗ : JS2 → JS1 is an isogeny onto its image f∗(JS2).
By Poincare’s theorem there exists a complementary abelian subvariety of
f∗(JS2), the Prym variety P (f) of f , and then

JS1 ∼ JS2 × P (f).

We refer to [1] for more details on abelian varieties.
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1.4 Representations of automorphism groups

Let G be a finite group. Every action of G on a compact Riemann surface (of
genus g ≥ 2) induces a G-action on its Jacobian variety.

Definition 1.4. Let S be a compact Riemann surface of genus g ≥ 2 with a
G-action. The homomorphisms

G→ Aut(JS)
ρa−→ GL(Ω1(S)∗)

G→ Aut(JS)
ρr−→ GL(Λ⊗Z Q)

are called, respectively, the analytic representation and the rational represen-
tation of the action. Abusing notation, we denote them by ρa and ρr.

Set ζn = e2πi/n.

Definition 1.5. Let G be a finite group. We define the function

N : IrrC(G)×G→ Q as N (V, g) =

|g|∑
α=1

Ng,α
|g| − α
|g|

,

where Ng,α is the number of eigenvalues of V (g) that are equal to ζα|g|.

The following theorem is a classical result due to Chevalley and Weil [11].
A modern proof can be found in [28].

Theorem 1.2 (Chevalley-Weil formula). Let S be a compact Riemann surface
of genus g ≥ 2 with a G-action, and let ρa be its analytic representation.
Assume that the action has signature (γ;m1, . . . ,mv) and is represented by
the surface kernel epimorphism θ : ∆→ G. If V ∈ IrrC(G) is nontrivial, then

⟨ρa, V ⟩ = dV (γ − 1) +

v∑
j=1

N (V, cj),

where c1, . . . , cv are the images of the v elliptic generators of ∆. If V is the
trivial representation then ⟨ρa, V ⟩ = γ.

Theorem 1.3. Let S be a compact Riemann surface of genus g ≥ 2 with a
G-action, and let ρr be its rational representation. Assume that the action has
geometric signature (γ;G1, . . . , Gv). If V ∈ IrrC(G) is nontrivial, then

⟨ρr, V ⟩ = 2dV (γ − 1) +

v∑
k=1

(dV − dGk
V ).

If V is the trivial representation then ⟨ρr, V ⟩ = 2γ.
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Proof. See [37, Theorem 5.10].

Observe that the theorem above says that the rational representation of
an action is determined by its geometric signature. The same holds for the
analytic representation when ρa ∼= ρa.

Corollary 1.1. If ρa ∼= ρa then ρr ∼= 2ρa. In particular,

⟨ρr, V ⟩ = 2⟨ρa, V ⟩ for V ∈ IrrC(G).

In this case, ρa is determined by the geometric signature of the action.

Proof. This is a direct consequence of Theorem 1.3, which states that ⟨ρr, V ⟩
is determined by the geometric signature, coupled with Equation (1.1).



Chapter 2

Geometric signature and
analytic representation

We begin this chapter with some general remarks about the interplay between
the analytic representation of a group action, its geometric signature and
other significant geometric data. As an example, we briefly consider the cyclic
actions. The rest of the chapter deals with dihedral actions.

2.1 General considerations

Proposition 2.1. Let Sj be a compact Riemann surface with a G-action,
for j = 1, 2. If the actions are topologically equivalent, then their geometric
signatures either agree or differ by an outer automorphism of G.

Proof. As the geometric signature is preserved under inner group automor-
phisms, we only need to verify that conjugation by (orientation-preserving)
homeomorphisms does not affect the stabilizer groups, and leaves invariant
the geometric signature.

Let T : S1 → S2 be an (orientation preserving) homeomorphism, and let
ψj denote a G-action on Sj (j = 1, 2) such that ψ2(g) = T ◦ ψ1(g) ◦ T−1 for
all g ∈ G. We observe that, for p ∈ S1, the automorphism ψ1(g) fixes p if and
only if ψ2(g) = T ◦ ψ1(g) ◦ T−1 fixes T (p), as desired.

Corollary 2.1. If G does not have outer automorphisms, then the analytic
representation is constant over classes of topological equivalence of actions.
That is, if two actions are topologically equivalent then they share the geometric
signature.

12
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Example 2.1. Let D4 = ⟨s, r : r4, s2, (sr)2⟩ be the dihedral group of order 8,
and consider the outer automorphism of D4 given by

ω : s 7→ sr, r 7→ r.

It is known thatD4 acts in genus 3 with signature (0; 2, 2, 4, 4). The generating
vectors

V1 = (s, s, r, r3) and V2 = (sr, sr, r, r3)

of signature (0; 2, 2, 4, 4) are related by the automorphism ω. Hence they
represent actions that are topologically equivalent. Since ⟨s⟩ and ⟨sr⟩ are not
conjugate, the geometric signatures of V1 and V2 are distinct.

Now, let us study the analytic representation of cyclic actions. As complex
conjugation permutes the irreducible C-representations of a given cyclic group,
the relation ρa ∼= ρa does not hold for most cyclic actions.

Example 2.2. Consider the cyclic group Zp = ⟨r⟩ of prime order p. Let us
compute the values of the function N : IrrC(Zp) × Zp → Q, introduced in
Definition 1.5. The group Zp has p irreducible C-representations, of degree
one, given by

ρh : r 7→ ζhp for 0 ≤ h ≤ p− 1,

where ζp = e2πi/p. For 0 ≤ h, k ≤ p− 1, the eigenvalue of ρh(r
k) is ζhkp . Then,

N (ρh, r
k) =

p∑
α=1

Nrk,α

p− α
p

=
p−modp(hk)

p
,

where modp(a) is the remainder 0 < b ≤ p of a after integer division by p.

For cyclic actions, the analytic representations are not in bijective corre-
spondence with neither the actions (modulo hyperbolic generators), nor the
(geometric) signatures, nor the classes of topological equivalence of actions,
as we will see in the next two examples.

Example 2.3. Consider the group Z5 = ⟨r⟩. The generating vector V1 =
(r, r, r3) guarantees that Z5 acts on a Riemann surface of genus g = 2 with
signature (0; 5, 5, 5). The outer automorphism r 7→ r3 shows that such an
action is also represented by V2 = (r3, r3, r4). However, ⟨ρa, ρ1⟩ = 1 for V1
whereas ⟨ρa, ρ1⟩ = 0 for V2.
Example 2.4. The group Z5 = ⟨r⟩ acts in genus g = 6 with signature (0; 55).
The generating vectors

V1 = (r, r2, r2, r2, r3) and V2 = (r, r, r2, r2, r4)
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have the same signature (0; 55) and the same analytic representation

ρa ∼= 2ρ1 ⊕ ρ2 ⊕ 2ρ3 ⊕ ρ4,

but they are topologically distinct. The last claim is a direct consequence of
the fact that there is no automorphism of Z5 sending V1 to V2 together with
Proposition 1.1. Finally, we observe that ρa is not equivalent to its complex
conjugate

ρa ∼= ρ1 ⊕ 2ρ2 ⊕ ρ3 ⊕ 2ρ4.

2.2 Interlude: divisor transform

Consider the poset of positive integers Z+ ordered by divisibility. Let

Z|n = {q ∈ Z+ : q divides n}

be the subset of all positive divisors of n ∈ Z+.

Definition 2.1. Set n, q ∈ Z+. We say that q is a k-divisor of n if q divides
n and n/q is a product of exactly k distinct prime numbers. We denote the
set of all k-divisors of n by

Z|n
k = {q ∈ Z|n : q is a k-divisor of n}.

By definition Z|n
0 = {n}.

Definition 2.2. Let Ψ,Φ : Z+ → Z be two functions. The divisor transform
of Ψ is the function Ψ̂ : Z+ → Z given by

Ψ̂(n) =
∑
q∈Z|n

Ψ(q).

The inverse divisor transform of Φ is the function Φ̃ : Z+ → Z given by

Φ̃(n) =
∑
k≥0

(−1)k
∑
q∈Z|n

k

Φ(q).

Remark 2.1. For each n ∈ Z+ there exists k ∈ Z+ such that Z|n
k′ is empty

for all k′ ≥ k, hence Φ̃ is well-defined. If the prime decomposition of n is
pα1
1 · · · pαr

r , then for each 1 ≤ k ≤ r one has that∑
q∈Z|n

k

Φ(q) =
∑

1≤j1<···<jk≤r
Φ

(
n

pj1 · · · pjk

)
.

In particular,
∑

q∈Z|n
0

Φ(q) = Φ(n) and
∑

q∈Z|n
r
Φ(q) = Φ( n

p1···pr ).
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Example 2.5. Let n = p2qr where p, q, r are distinct prime numbers. We have

that Z|n
0 = {n}, Z|n

1 = {pqr, p2q, p2r}, Z|n
2 = {pr, pq, p2} and Z|n

3 = {p}. If
Φ : Z+ → Z, then

Φ̃(n) = Φ(n)− Φ(pqr)− Φ(p2q)− Φ(p2r) + Φ(pr) + Φ(pq) + Φ(p2)− Φ(p).

Lemma 2.1. Let Ψ,Φ : Z+ → Z be two functions. For a given positive integer
n the following conditions are equivalent:

(1) Φ̂(q) = Ψ(q) for all q ∈ Z|n;

(2) Ψ̃(q) = Φ(q) for all q ∈ Z|n.

Proof. (1→ 2) Let q ∈ Z|n with prime decomposition q = pα1
1 · · · pαr

r (αj ≥ 1
for 1 ≤ j ≤ r). For k ≥ 0, Condition (1) implies that∑

s∈Z|q
k

Ψ(s) =
∑
s∈Z|q

k

Φ̂(s) =
∑
s∈Z|q

k

∑
t′∈Z|s

Φ(t′). (2.1)

Note that if t is not a divisor of q then Φ(t) does not appear in (2.1).

For t ∈ Z|q, let us write q/t = pβ11 · · · p
βr
r , where 0 ≤ βj ≤ αj for 1 ≤ j ≤ r.

Observe that if q/t has r′ = #{βj ≥ 1} distinct prime factors then the number

of times that Φ(t) appears in (2.1) is
(
r′

k

)
, where

(
a
b

)
= a!

(a−b)!b! is the binomial

coefficient. It follows that if t is different from q then Φ(t) appears

r′∑
k=0

(−1)k
(
r′

k

)
= (1− 1)r

′
= 0

times in the total sum Ψ̃(q) =
∑r

k=0(−1)k
∑

s∈Z|q
k

Ψ(s). The term Φ(q) ap-

pears exactly once, which proves the desired result.
(2→ 1) The proof is by strong induction on the number N of prime factors

(counting multiplicities) of q ∈ Z|n. The base case N = 0 is trivial:

Ψ(1) = Ψ̃(1) = Φ(1) = Φ̂(1).

Let us consider the case N = 1, and let p ∈ Z|n be a prime number. By
Condition (2) we have that Ψ̃(p) = Φ(p) and Ψ̃(1) = Φ(1). Then

Φ̂(p) = Φ(p) + Φ(1) = Ψ̃(p) + Ψ̃(1) = (Ψ(p)−Ψ(1)) + Ψ(1) = Ψ(p),

as expected. Let us assume that we have proved Condition (1) for all divisors
of n with less than N ≥ 2 prime factors, and pick q ∈ Z|n with N prime



CHAPTER 2. GEOMETRIC SIGNATURE AND ANALYTIC
REPRESENTATION 16

factors. By Condition (2) and the strong inductive hypothesis, we have that

Φ(q) = Ψ̃(q)

= Ψ(q) +

r∑
k=1

(−1)k
∑
s∈Z|q

k

Ψ(s)

= Ψ(q) +
r∑

k=1

(−1)k
∑
s∈Z|q

k

Φ̂(s)

= Ψ(q) +

r∑
k=1

(−1)k
∑
s∈Z|q

k

∑
t′∈Z|s

Φ(t′), (2.2)

where r is the number of distinct prime factors of q. Using the same counting
argument of the previous part of the proof, we conclude that for each proper
divisor t of q, Φ(t) appears

r∑
k=1

(−1)k
(
r

k

)
= (1− 1)r − 1 = −1

times in the sum of Equation (2.2). It follows that

Φ̂(q) =
∑
s∈Z|q

Φ(s) = Ψ(q),

as desired.

Proposition 2.2. Φ 7→ Φ̂ and Φ 7→ Φ̃ are inverse operations.

Proof. To check that
̂̃
Φ = Φ and

˜̂
Φ = Φ it suffices to apply the above lemma

to the pairs of functions Φ̃,Φ and Φ, Φ̂ respectively.

2.3 Dihedral actions: Chevalley-Weil formula

Let Dn = ⟨s, r | rn, s2, (sr)2⟩ be the dihedral group of order 2n. The irre-
ducible C-representations of Dn are well-known (see for example [38, §5.3]).
Namely, if n is even then Dn has four C-representations of degree one:

ψ1 : r 7→ 1, s 7→ 1, ψ2 : r 7→ 1, s 7→ −1,
ψ3 : r 7→ −1, s 7→ 1, ψ4 : r 7→ −1, s 7→ −1,
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and (n− 2)/2 irreducible C-representations of degree two:

ρh : r 7→ diag(ωh, ωh), s 7→ ( 0 1
1 0 ),

where ω = ζn = e2πi/n and 1 ≤ h ≤ (n − 2)/2. If n is odd then Dn has
two C-representations of degree one, ψ1 and ψ2, and (n − 1)/2 irreducible
C-representations of degree two, given by ρh for 1 ≤ h ≤ (n− 1)/2.

Remark 2.2. As the character field of each irreducible C-representation V of
Dn is real, one has that V is equivalent to its complex conjugate V . Thus, if
ρa is the analytic representation of a dihedral action, then ρa ∼= ρa. Moreover,
ρa is determined by the geometric signature of the action and

⟨ρr, V ⟩ = 2⟨ρa, V ⟩, for V ∈ IrrC(G).

In what follows we compute the values of the functionN : IrrC(Dn)×Dn →
Q, introduced in Definition 1.5. Note that N (ψ1, g) = 0 for any g ∈ Dn. (This
is true regardless of the group under consideration.)

Lemma 2.2. Let n ≥ 3 be an odd integer and let q ∈ Z|n \ {1}. Then

N s rn/q

ψ1 0 0
ψ2 1/2 0
ρh 1/2 ε

where ε = 0 if q divides h, and ε = 1 otherwise.

Proof. The eigenvalue of ψ2(s) is ζ12 = −1 and the eigenvalue of ψ2(r
n/q) is

ζ22 = 1. It follows that

N (ψ2, s) =
2∑

α=1

Ns,α
2− α
2

=
2− 1

2
=

1

2
,

N (ψ2, r
n/q) =

2∑
α=1

Nrn/q ,α

2− α
2

=
2− 2

2
= 0.

The eigenvalues of ρh(s) are ζ12 = −1 and ζ22 = 1. Thus

N (ρh, s) =
2∑

α=1

Ns,α
2− α
2

=
2− 1

2
+

2− 2

2
=

1

2
.

The eigenvalues of ρh(rn/q) are ωhn/q and ω−hn/q with ω = ζn. Observe that

|rn/q| = q and ωhn/q = ζhq = ζ
modq(h)
q , where modq(a) is the remainder 0 <
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b ≤ q of a after integer division by q. If modq(h) = q, then both eigenvalues
are equal to ζqq = 1 and

N (ρh, rn/q) =

q∑
α=1

Nrn/q ,α

q − α
q

= 2
q − q
q

= 0.

If modq(h) ̸= q, then the eigenvalues are ζ
modq(h)
q and ζ

q−modq(h)
q , hence

N (ρh, rn/q) =

q∑
α=1

Nrn/q ,α

q − α
q

=
q −modq(h)

q
+
q − (q −modq(h))

q
= 1.

The proof of the lemma follows after noticing that modq(h) = q if and only if
q divides h.

Lemma 2.3. Let n ≥ 2 be an even integer and let q ∈ Z|n \ {1}. Then

N s sr rn/q

ψ1 0 0 0
ψ2 1/2 1/2 0
ψ3 0 1/2 δ/2
ψ4 1/2 0 δ/2
ρh 1/2 1/2 ε

where δ = 0 if 2q divides n, and δ = 1 otherwise; and ε = 0 if q divides h and
ε = 1 otherwise. In particular, for rn/2 we have that δ = 0 if n ∈ 4Z, and
δ = 1 otherwise; and ε = 0 if h is even, and ε = 1 otherwise.

Proof. We only give a proof for ψ3 and ψ4, because the remaining cases are
covered by the proof of Lemma 2.2. The eigenvalue of ψ3(s) and ψ3(r

even) is
ζ22 = 1, whereas the eigenvalue of ψ3(sr) and ψ3(r

odd) is ζ12 = −1. Thus

N (ψ3, r
even) = N (ψ3, s) =

2∑
α=1

Ns,α
2− α
2

=
2− 2

2
= 0,

N (ψ3, r
odd) = N (ψ3, sr) =

2∑
α=1

Nsr,α
2− α
2

=
2− 1

2
=

1

2
.
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On the other hand, the eigenvalue of ψ4(s) and ψ4(r
odd) is ζ12 = −1, whereas

the eigenvalue of ψ4(sr) and ψ4(r
even) is ζ22 = 1. Thus

N (ψ4, r
odd) = N (ψ4, s) =

2∑
α=1

Ns,α
2− α
2

=
2− 1

2
=

1

2
,

N (ψ4, r
even) = N (ψ4, sr) =

2∑
α=1

Nsr,α
2− α
2

=
2− 2

2
= 0.

To finish the proof, note that n/q is even if and only if 2q divides n.

2.4 Analytic representation formulas

Let S be a compact Riemann surface of genus g ≥ 2 with a dihedral action
represented by the ske θ : ∆→ Dn. The geometric signature of the action has
the form

(γ; ⟨s⟩a, ⟨sr⟩b, C1, . . . , Cv),

where a, b ≥ 0 are nonnegative integers, and Cj = ⟨rn/mj ⟩ is a cyclic subgroup
of Dn of order mj ≥ 2. We recall that we employ the notations introduced
in Remark 1.1. Observe that if n is odd then the signature encodes the same
information as the geometric signature. (In such a case ⟨s⟩ ∼ ⟨sr⟩ and the
relevant number is t := a+ b.)

Definition 2.3. Let θ : ∆→ Dn be a ske. The signature function Ψθ : Z+ →
Z of the action θ is given by

Ψθ(q) = #{1 ≤ j ≤ v : mj = q}.

Note that Ψ̂θ(n) = v and Ψ̂θ(1) = 0. For instance, when n ≥ 4 is even
Ψθ(2) is the number of times that the center ⟨rn/2⟩ appears in the geometric
signature, and consequently the number of fixed points of the automorphism
represented by rn/2 not fixed by other non-trivial powers of r is nΨθ(2).

Lemma 2.4. Let θ : ∆→ Dn be a ske, and let q be a positive integer. Then

(1) Ψ̂θ(q) = Ψ̂θ((n, q));

(2) Ψ̂θ(n) = Ψ̂θ(
n
q ) if and only if lcm(m1, . . . ,mv) divides

n
q , for q ∈ Z|n;

(3) Ψ̂θ(n) − Ψ̂θ(q) is the number of cyclic subgroups Cj appearing in the
geometric signature of the action such that mj does not divide q.
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Proof. Let us show the previous statements.

(1) If t ∈ Z+ does not divide n, then Ψθ(t) = 0. It follows that Ψ̂θ(q) is
equal to the sum of Ψθ over the common divisors of q and n. That is,

Ψ̂θ(q) =
∑
t∈Z|q

Ψθ(t) =
∑

t∈Z|q∩Z|n

Ψθ(t) =
∑

t∈Z|(n,q)

Ψθ(t) = Ψ̂θ((n, q)).

(2) Observe that Ψ̂θ(n) = Ψ̂θ(
n
q ) if and only if {m1, . . . ,mv} ⊂ Z|n/q. Which

in turn is true if and only if lcm(m1, . . . ,mv) divides n/q.

(3) It follows directly from the definition of Ψ̂θ.

Proposition 2.3. Let n ≥ 3 be an odd integer. Consider the collection of all
Dn-actions on compact Riemann surfaces with a given signature.

(1) The analytic representation is constant over classes of topological equiv-
alence.

(2) Actions that are topologically (hence, analytically) distinct share the
same analytic representation.

Proof. We know that the analytic representation of dihedral actions is de-
termined by its geometric signature, and that when n is odd the geometric
signature is determined by the signature.

Now, we determine ρa explicitly in terms of the geometric signature. As
usual, there is a difference in flavor when considering dihedral groups of order
2×odd and 2×even, so they must be treated separately. Whereas the odd case
is rather simple, the existence of a nontrivial central element and three classes
of involution makes the treatment of the even case slightly more involved.

Theorem 2.1. Let n ≥ 3 be an odd integer, and let S be a compact Riemann
surface of genus g ≥ 2 with dihedral action represented by the surface kernel
epimorphism θ : ∆→ Dn. If the action has signature (γ; 2t,m1, . . . ,mv), then
its analytic representation is given by

ρa ∼= γψ1 ⊕ µ2ψ2 ⊕
(n−1)/2⊕
h=1

νhρ
h,

where

µ2 = ⟨ρa, ψ2⟩ = γ − 1 + 1
2 t,

νh = ⟨ρa, ρh⟩ = 2(γ − 1) + 1
2 t+ Ψ̂θ(n)− Ψ̂θ(h),
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for 1 ≤ h ≤ (n− 1)/2.

Proof. The Chevalley-Weil formula states that

⟨ρa, ψ2⟩ = 2(γ − 1) + tN (ψ2, s) +
∑
q∈Z|n

Ψθ(q)N (ψ2, r
n/q),

⟨ρa, ρh⟩ = 2(γ − 1) + tN (ρh, s) +
∑
q∈Z|n

Ψθ(q)N (ρh, rn/q),

for 1 ≤ h ≤ (n− 1)/2. By Lemma 2.2 one has that

N (ψ2, s) =
1
2 , N (ψ2, r

n/q) = 0, and N (ρh, s) = 1
2 .

Moreover, ∑
q∈Z|n

Ψθ(q)N (ρh, rn/q) =
∑

q∈Z|n\Z|h

Ψθ(q) · 1

is the number of cyclic groups Cj appearing in the geometric signature such
that mj does not divide h. Then we conclude by Lemma 2.4.

Theorem 2.2. Let n ≥ 2 be an even integer, and let S be a compact Rie-
mann surface of genus g ≥ 2 with a dihedral action represented by a sur-
face kernel epimorphism θ : ∆ → Dn. If the action has geometric signature
(γ; ⟨s⟩a, ⟨sr⟩b, C1, . . . , Cv), then its analytic representation is given by

ρa ∼= γψ1 ⊕ µ2ψ2 ⊕ µ3ψ3 ⊕ µ4ψ4 ⊕
(n−2)/2⊕
h=1

νhρ
h,

where

µ2 = ⟨ρa, ψ2⟩ = γ − 1 + 1
2(a+ b),

µ3 = ⟨ρa, ψ3⟩ = γ − 1 + 1
2 [b+ Ψ̂θ(n)− Ψ̂θ(

n
2 )],

µ4 = ⟨ρa, ψ4⟩ = γ − 1 + 1
2 [a+ Ψ̂θ(n)− Ψ̂θ(

n
2 )],

νh = ⟨ρa, ρh⟩ = 2(γ − 1) + 1
2(a+ b) + Ψ̂θ(n)− Ψ̂θ(h),

for 1 ≤ h ≤ (n− 2)/2.

Proof. The proof is analogous to the proof of the previous theorem, except
that we require Lemma 2.3 instead of Lemma 2.2.
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Remark 2.3. Ψ̂θ(n) − Ψ̂θ(h) is the number of cyclic subgroups Cj appearing
in the geometric signature such that mj does not divide h (Lemma 2.4). In

particular, if n is even then Ψ̂θ(n)− Ψ̂θ(
n
2 ) is the number of cyclic subgroups

Cj appearing in the geometric signature generated by an odd power of r.

Remark 2.4. Theorem 2.2 remains valid for the Klein group D2.

As a final observation, there is a bijection between Z|n \ {1, 2} and the set
of irreducible Q-representations of Dn of degree ≥ 2, given by

Z|n \ {1, 2} → IrrQ(Dn), q 7→W (q) = ⊕σ(ρn/q)σ.

Assuming the notation of Theorem 2.2, if n is even then the analytic repre-
sentation of a Dn-action can be written as

ρa ∼= µ1ψ1 ⊕ · · · ⊕ µ4ψ4 ⊕
⊕

q∈Z|n\{1,2}

νn/qW (q).

Indeed, this is a direct consequence of using Statement (1) of Lemma 2.4 on
the formulas given in Theorem 2.2. An analogous result is obtained for n odd.

2.5 Applications

The case Dp with p prime

Let p ≥ 3 be a prime number. If the dihedral group Dp acts on a compact
Riemann surface S with signature (γ; 2t, pl), then the genus of S is

g = 1 + (2γ − 2)p+ 1
2 tp+ l(p− 1).

(For necessary and sufficient conditions under which such an action exists,
see Theorem 3.2 and Theorem 3.3.) As a particular case of Theorem 2.1, the
analytic representation of the action is

ρa ∼= γψ1 ⊕ (γ − 1 + 1
2 t)ψ2 ⊕ [2(γ − 1) + 1

2 t+ l]W (p),

where W (p) ∼=
⊕(p−1)/2

h=1 ρh.

Remark 2.5. Two Dp-actions ∆→ Dp and ∆′ → Dp have equivalent analytic
representations if and only if they have the same signature:

ρa ∼= ρ′a ⇐⇒ s(∆) = s(∆′).

Of course, this is valid for a very special family of groups. (There is a unique
conjugation class of involutions, for example.) As we will see in the next
section, this is true for any Dn with n odd.
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Example 2.6. The dihedral group D7 acts in genus g = 12 with signature
(0; 2, 2, 7, 7, 7). There are four topological equivalence classes of such actions,
represented by the generating vectors

(s, s, r5, r, r), (s, s, r4, r2, r), (s, sr, r3, r2, r), (s, sr2, r3, r, r).

By Proposition 2.3, these four actions share the same analytic representation;
given by

ρa ∼= 2(ρ1 ⊕ ρ2 ⊕ ρ3).

Nonzero multiplicities

Latter on, in §4.3, we will want to know which irreducible C-representations
of Dn of degree two have non-vanishing multiplicities in the analytic represen-
tation ρa of a given dihedral action. The following set quantifies this notion:

Qθ = {q ∈ Z|n \ {1, 2} : ⟨ρa, ρn/q⟩ ≥ 1}.

Proposition 2.4. Let S be a compact Riemann surface of genus g ≥ 2 with
a dihedral action represented by a ske θ : ∆ → Dn. Assume that the action
has geometric signature (γ; ⟨s⟩a, ⟨sr⟩b, C1, . . . , Cv). Then

(1) if γ ≥ 1, or γ = 0 and a+ b ≥ 6, then Qθ = Z|n \ {1, 2};

(2) if γ = 0 and a + b = 4 then Qθ = (Z|n \ Z|n/α) \ {1, 2} for α =
lcm(m1, . . . ,mv). Furthermore, Qθ ̸= ∅.

Proof. In order to show the two previous statements, we apply the formulas of
Theorem 2.1 (if n is odd) and Theorem 2.2 (if n is even). Set q ∈ Z|n \ {1, 2}.

(1) It is easy to see that if γ ≥ 2, γ = 1 and a + b ≥ 2, or γ = 0 and
a + b ≥ 6, then ⟨ρa, ρn/q⟩ ≥ 1. Assume that γ = 1 and a + b ≤ 1.
As will be proven in the next chapter (Theorem 3.2 and Theorem 3.5)
the existence of an action implies that a + b is even, hence a + b = 0.
Furthermore, lcm(m1, . . . ,mv) = n or n/2. Then, by Lemma 2.4 one
has that ⟨ρa, ρn/q⟩ = Ψ̂θ(n)− Ψ̂θ(

n
q ) = 0 if and only if lcm(m1, . . . ,mv)

divides n/q, a contradiction.

(2) Assume that γ = 0 and a + b = 4. Lemma 2.4 states that ⟨ρa, ρn/q⟩ =
Ψ̂θ(n) − Ψ̂θ(

n
q ) = 0 if and only if q ∈ Z|n/α for α = lcm(m1, . . . ,mv).

Since g ≥ 2 it follows that {m1, . . . ,mv} is non-empty (otherwise g = 1,
a contradiction). Thus, n/α < n and Qθ ̸= ∅.

This concludes the proof.
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2.6 Geometric signature formulas

In §2.4 we determined the analytic representation of a dihedral action from a
given geometric signature. Here we deal with the converse problem.

Definition 2.4. Let V be a C-representation of Dn. The pre-signature func-
tion ΦV : Z+ → Z is given by

ΦV (q) =


⟨V, ρ1⟩ − ⟨V, ψ1 ⊕ ψ2⟩+ 1, if (n, q) = n,

⟨V, ρ1⟩ − ⟨V, ψ3 ⊕ ψ4⟩, if n is even and (n, q) = n
2 ,

⟨V, ρ1⟩ − ⟨V, ρ(n,q)⟩, if (n, q) < n
2 .

For the sake of clearness, we recall here that the divisor transform of a
function Ψ : Z+ → Z is the function

Ψ̂ : Z+ → Z, Ψ̂(n) =
∑
q∈Z|n

Ψ(q).

Also, the inverse divisor transform of a function Φ : Z+ → Z is the function

Φ̃ : Z+ → Z,
∑
k≥0

(−1)k
∑
q∈Z|n

k

Φ(q),

where Z|n
k is the set of k-divisors of n. The definition of the pre-signature

function ΦV is dual to that of the signature function Ψθ. More precisely:

Proposition 2.5. If ρa is the analytic representation of a dihedral action
represented by a ske θ : ∆→ Dn, then Ψθ is the inverse divisor transform of
Φρa. In other words,

Ψθ = Φ̃ρa and Ψ̂θ = Φρa .

Proof. Assume that n is even. A quick look at Theorem 2.2 gives

Ψ̂θ(n) = ⟨ρa, ρ1⟩ − ⟨ρa, ψ1 ⊕ ψ2⟩+ 1,

Ψ̂θ(
n
2 ) = ⟨ρa, ρ

1⟩ − ⟨ρa, ψ3 ⊕ ψ4⟩,

Ψ̂θ(h) = ⟨ρa, ρ1⟩ − ⟨ρa, ρh⟩,

for 1 ≤ h ≤ (n− 2)/2. By Lemma 2.4 one has that

Ψ̂θ(q) = Ψ̂θ((n, q)) = Φρa(q) for q ∈ Z+.

We conclude by Proposition 2.2. The proof is analogous for n odd.
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An immediate consequence is that we obtain an explicit formula for the
geometric signature of the action in terms of its analytic representation.

Proposition 2.6. Let n ≥ 3 be an odd integer, and let S be a Riemann surface
of genus g ≥ 2 with a dihedral action represented by a ske θ : ∆ → Dn. Set
Z|n = {1 < m1 < . . . < mv}. If ρa is the analytic representation of the action,
then the signature

(γ; 2t,ml1
1 , . . . ,m

lv
v ),

is given by
γ = ⟨ρa, ψ1⟩,
t = 2⟨ρa, ψ2⟩ − 2⟨ρa, ψ1⟩+ 2,

lj = Φ̃ρa(mj) for 1 ≤ j ≤ v.

Proof. The formulas for γ and t are clear as a direct consequence of Theo-
rem 2.1. Besides, by definition, lj = Ψθ(mj) for 1 ≤ j ≤ v, and the proof
follows from Proposition 2.5.

Example 2.7. Let V be a C-representation of D15 of the form

V = ν1(ρ
1 ⊕ ρ2 ⊕ ρ4 ⊕ ρ7)⊕ ν3(ρ3 ⊕ ρ6)⊕ ν5ρ5,

for ν1, ν3, ν5 nonnegative integers. The pre-signature function ΦV is deter-
mined by the values ΦV (15) = ν1 + 1, ΦV (5) = ν1 − ν5 and ΦV (3) = ν1 − ν3.
It follows that

Φ̃V (15) = ν3 + ν5 − ν1 + 1, Φ̃V (5) = ν1 − ν5, Φ̃V (3) = ν1 − ν3.

If V is the analytic representation of a D15-action, then its signature is

(0; 2, 2, 3ν1−ν3 , 5ν1−ν5 , 15ν3+ν5−ν1+1).

Proposition 2.7. Let n ≥ 2 be an even integer, and let S be a Riemann
surface of genus g ≥ 2 with a dihedral action represented by a ske θ : ∆→ Dn.
Set Z|n = {1 < m1 < . . . < mv}. If ρa is the analytic representation of the
action, then the geometric signature

(γ; ⟨s⟩a, ⟨sr⟩b, ⟨rn/m1⟩l1 , . . . , ⟨rn/mv⟩lv),

is given by
γ = ⟨ρa, ψ1⟩,
a = ⟨ρa, ψ2 ⊕ ψ4⟩ − ⟨ρa, ψ1 ⊕ ψ3⟩+ 1,

b = ⟨ρa, ψ2 ⊕ ψ3⟩ − ⟨ρa, ψ1 ⊕ ψ4⟩+ 1,

lj = Φ̃ρa(mj) for 1 ≤ j ≤ v.
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Proof. This is a direct consequence of Theorem 2.2. The formula for γ is clear.
In order to see the formulas for a and b, note that

1
2(a+ b) = ⟨ρa, ψ2⟩ − ⟨ρa, ψ1⟩+ 1,
1
2(a− b) = ⟨ρa, ψ4⟩ − ⟨ρa, ψ3⟩.

Finally, by Proposition 2.5, lj = Ψθ(mj) = Φ̃ρa(mj) for 1 ≤ j ≤ v.

Theorem 2.3. There is a bijective correspondence between geometric signa-
tures and analytic representations of dihedral actions on compact Riemann
surfaces of genus g ≥ 2.

Proof. Set Z|n = {1 < m1 < · · · < mv}. Assume that n is even and that the
action has geometric signature

(γ; ⟨s⟩a, ⟨sr⟩b, ⟨rn/m1⟩l1 , . . . , ⟨rn/mv⟩lv).

We know that the analytic representation ρa is determined by the geometric
signature. By Proposition 2.7, the geometric signature induced by ρa is

(γ′; ⟨s⟩a′ , ⟨sr⟩b′ , ⟨rn/m1⟩l′1 , . . . , ⟨rn/mv⟩l′v),

where

γ′ = ⟨ρa, ψ1⟩,
a′ = ⟨ρa, ψ2 ⊕ ψ4⟩ − ⟨ρa, ψ1 ⊕ ψ3⟩+ 1,

b′ = ⟨ρa, ψ2 ⊕ ψ3⟩ − ⟨ρa, ψ1 ⊕ ψ4⟩+ 1,

l′j = Φ̃ρa(mj) for 1 ≤ j ≤ v.

By Theorem 2.2 and Proposition 2.5 one has that γ′ = γ, a′ = a, b′ = b, and
l′j = lj . We conclude that both geometric signatures are equal.

Conversely, assume that the action has analytic representation ρa. Propo-
sition 2.7 states that the geometric signature induced by ρa is

(γ; ⟨s⟩a, ⟨sr⟩b, ⟨rn/m1⟩l1 , . . . , ⟨rn/mv⟩lv),

where

γ = ⟨ρa, ψ1⟩,
a = ⟨ρa, ψ2 ⊕ ψ4⟩ − ⟨ρa, ψ1 ⊕ ψ3⟩+ 1,

b = ⟨ρa, ψ2 ⊕ ψ3⟩ − ⟨ρa, ψ1 ⊕ ψ4⟩+ 1,

lj = Φ̃ρa(mj) for 1 ≤ j ≤ v.
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Now, by Theorem 2.2 and Proposition 2.5, the analytic representation ρ′a
induced by the previous geometric signature is equivalent to ρa. Indeed,

⟨ρ′a, ψ1⟩ = γ = ⟨ρa, ψ1⟩,
⟨ρ′a, ψ2⟩ = γ − 1 + 1

2(a+ b) = ⟨ρa, ψ2⟩,

⟨ρ′a, ψ3⟩ = γ − 1 + 1
2 [b+ Ψ̂θ(n)− Ψ̂θ(

n
2 )] = ⟨ρa, ψ3⟩,

⟨ρ′a, ψ4⟩ = γ − 1 + 1
2 [a+ Ψ̂θ(n)− Ψ̂θ(

n
2 )] = ⟨ρa, ψ4⟩,

⟨ρ′a, ρh⟩ = 2(γ − 1) + 1
2(a+ b) + Ψ̂θ(n)− Ψ̂θ(h) = ⟨ρa, ρh⟩,

for 1 ≤ h ≤ (n−2)/2, as desired. The proof of the case n odd is analogous.



Chapter 3

Existence of dihedral actions

Bujalance, Cirre, Gamboa, and Gromadzki in [6] provided necessary and suf-
ficient conditions for a signature to admit a surface kernel epimorphism onto
a dihedral group. In this chapter we provide a refinement of their results from
signatures to geometric signatures. Then we apply our results to address the
problem of deciding when a C-representation is the analytic representation of
a dihedral action.

3.1 Signature realization

For the sake of completeness, in this section we briefly review the main results
of [6]. Along this section, ∆ is a Fuchsian group of signature

(γ; 2t,m1, . . . ,mv),

with mj ≥ 3 for j = 1, . . . , v. Also, set mj+v = 2 for 1 ≤ j ≤ t.

Theorem 3.1. Let n ≥ 2 be an even integer and let γ > 0. Then necessary
and sufficient conditions for the existence of a surface kernel epimorphism
θ : ∆→ Dn are:

(1) mj divides n for j = 1, . . . , v;

(2) if t ≤ 2 then there is an even number of integers 1 ≤ j ≤ v + t such
n/mj is an odd integer;

(3) if γ = 1 and t ≤ 1 then lcm(2t,m1, . . . ,mv) = n or n/2. In the latter
case, if n ∈ 4Z then there is an odd number of integers 1 ≤ j ≤ v + t
such that n/2mj is an odd integer.

Proof. See [6, Theorem 2.1].

28
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Theorem 3.2. Let n ≥ 3 be an odd integer and let γ > 0. Then necessary
and sufficient conditions for the existence of a surface kernel epimorphism
θ : ∆→ Dn are:

(1) mj divides n for j = 1, . . . , v;

(2) t is even;

(3) if γ = 1 and t = 0 then lcm(m1, . . . ,mv) = n.

Proof. See [6, Theorem 2.2].

Theorem 3.3. Set γ = 0. Then necessary and sufficient conditions for the
existence of a surface kernel epimorphism θ : ∆→ Dn are:

(1) mj divides n for j = 1, . . . , v;

(2) t ≥ 2, and it is even if n is odd;

(3) if t = 2 then lcm(m1, . . . ,mv) = n;

(4) if t = 3 then lcm(2,m1, . . . ,mv) = n.

Proof. See [6, Theorem 2.3].

We emphasize that the previous theorems provide sufficient, but not nec-
essary, conditions under which there exist actions with a given geometric sig-
nature. As the following example illustrates, there are signatures for which
only some (of its associated) geometric signatures are realized.

Example 3.1. In accordance with the theorem above, the group D6 acts in
genus 5 with signature (0; 24, 3). The generating vector (s, s, sr3, sr, r2) repre-
sents an action with geometric signature (0; ⟨s⟩2, ⟨sr⟩2, ⟨r2⟩). In contrast, there
are no D6-actions in genus 5 with geometric signature (0; ⟨s⟩, ⟨sr⟩, ⟨r3⟩2, ⟨r2⟩).
If this were the case, then there would exist a generating vector of the form

(sr2ξ1 , sr2ξ2+1, r3, r3, r±2),

where ξ1, ξ2 ∈ Z satisfy

2(ξ2 − ξ1)± 2 + 7 ∈ 6Z.

However, the number above is odd, a contradiction.
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3.2 Geometric signature realization

Here we extend the results of the previous section from signatures to geometric
signatures for actions of the dihedral group Dn. As for n odd the signature is
equivalent to the geometric signature, we only consider the case n ≥ 2 even.

Let ∆ be a (co-compact) Fuchsian group of signature (γ; 2a+b,m1, . . . ,mv),
withmj ∈ Z|n\{1}, canonically presented by hyperbolic generators α1, . . . , αγ ,
β1, . . . , βγ , elliptic generators x1, . . . , xa+b, y1, . . . , yv, and relations

x2i = y
mj

j =

γ∏
t=1

[αt, βt]

a+b∏
k=1

xk

v∏
l=1

yl = 1, (3.1)

for i = 1, . . . , a+b and j = 1, . . . , v. Assume that there exists a ske θ : ∆→ Dn

that represents an action with geometric signature

(γ; ⟨s⟩a, ⟨sr⟩b, C1, . . . , Cv),

where Cj = ⟨rn/mj ⟩ is a cyclic subgroup of order mj ≥ 2. Without loss of
generality, it follows that

θ(xk) =

{
sreven, 1 ≤ k ≤ a,
srodd, a+ 1 ≤ k ≤ a+ b,

and
θ(yj) = (rn/mj )qj with (qj ,mj) = 1, (3.2)

for 1 ≤ j ≤ v. Observe that

⟨θ(y1), . . . , θ(yv)⟩ = ⟨(rn/m1)q1 , . . . , (rn/mv)qv⟩
= ⟨rn/m1 , . . . , rn/mv⟩
= ⟨rn/ lcm(m1,...,mv)⟩.

(3.3)

For the rest of this section, we set

A = #{1 ≤ j ≤ v : n/mj is an odd integer},
B = #{1 ≤ j ≤ v : n/2mj is an odd integer}.
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Lemma 3.1.

(1) There are integers ξ1, ξ2, and ξ3 such that

γ∏
t=1

θ([αt, βt]) = r2ξ1 ,

a+b∏
j=1

θ(xj) = rξ2 ,

v∏
j=1

θ(yj) = rξ3 ,

and
2ξ1 + ξ2 + ξ3 ∈ nZ.

Concretely, ξ3 =
∑v

j=1 nqj/mj.

(2) The integers a, b, ξ2, ξ3, and A have the same parity; a+ b is even.

(3) If A = 0 then every term nqj/mj is even. In this case, if n ∈ 4Z then
the integers ξ3/2 and B have the same parity.

Proof. Let us prove the statements above.

(1) From (3.2) it follows that
∏v
j=1 θ(yj) = rξ3 with ξ3 =

∑v
j=1 nqj/mj .

Since the derived subgroup ofDn is ⟨r2⟩, it follows that
∏γ
t=1 θ([αt, βt]) =

r2ξ1 for some ξ1 ∈ Z. Thus, the long relation (3.1) of ∆ implies that∏a+b
j=1 θ(xj) = rξ2 for ξ2 ∈ Z and

2ξ1 + ξ2 + ξ3 ∈ nZ.

(2) As
∏a+b
j=1 θ(xj) = rξ2 , a and b must have the same parity. The parity

of ξ2 is determined by the number of terms of the form srodd in the
product

∏a+b
j=1 θ(xj). Concretely, ξ2 is odd if and only if b is odd. By

the relation above ξ2 and ξ3 must have the same parity. Now, observe
that ξ3 =

∑v
j=1 nqj/mj is odd if and only if there is an odd number of

integers 1 ≤ j ≤ v such that nqj/mj is odd. Since (qj ,mj) = 1, nqj/mj

is odd if and only if n/mj is odd. We conclude that ξ3 and A have the
same parity.

(3) Assume that A = 0. Thus, every term n/mj is even and the same holds
for nqj/mj . The integer ξ3/2 =

∑v
j=1 nqj/2mj is odd if and only if there

is an odd number of integers 1 ≤ j ≤ v such that nqj/2mj is odd. Now,
assume that n ∈ 4Z. To conclude it suffices to show that nqj/2mj is odd
if and only if n/2mj is odd. Indeed, if n/2mj is odd then mj is even,
hence qj is odd and so is nqj/2mj . The converse is direct.

This finishes the proof.
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Theorem 3.4. Let n ≥ 2 be an even integer and let γ = 0. Then necessary
and sufficient conditions for the existence of a surface kernel epimorphism
θ : ∆→ Dn of geometric signature (0; ⟨s⟩a, ⟨sr⟩b, C1, . . . , Cv) are:

(1) a, b, and A have the same parity;

(2) a+ b ≥ 2 is even;

(3) if a+ b = 2 then lcm(m1, . . . ,mv) = n;

(4) if a+ b > 2, and a = 0 or b = 0 then A > 0.

Proof. Let us prove that the conditions are necessary.

(1) This has already been proved in Lemma 3.1.

(2) Assume that a+ b < 2. Then a = b = 0 and θ(∆) ≤ ⟨r⟩, a contradiction
with the surjectivity of θ.

(3) Assume that a + b = 2. By Lemma 3.1 we have that ⟨θ(x1), θ(x2)⟩ =
⟨srk, rξ3⟩ for some k ∈ Z and ξ3 =

∑v
j=1 nqj/mj . Observe that

θ(∆) = ⟨θ(x1), θ(x2), θ(y1), . . . , θ(yv)⟩
= ⟨srk, rξ3 , rn/m1 , . . . , rn/mv⟩
= ⟨srk, rn/ lcm(m1,...,mv⟩.

Since θ is onto it follows that lcm(m1, . . . ,mv) = n.

(4) Assume that a + b > 2, and a = 0 or b = 0. Since a and b have the
same parity, either a ≥ 4 and b = 0, or b ≥ 4 and a = 0. If a ≥ 4 and
b = 0 then ⟨θ(x1), . . . , θ(xa)⟩ ≤ ⟨s, r2⟩. Since θ is onto, there must exist
some θ(yj) = rnqj/mj with n/mj odd, and therefore A ̸= 0. The same
argument holds for a = 0 and b ≥ 4.

Let us now show that the conditions are sufficient. Let a and b be two
nonnegative integers as in Condition (2). Then, one of the following cases
occurs:

(i) a, b ≥ 2 are even,

(ii) a ≥ 3 and b ≥ 1 are odd,

(iii) a ≥ 1 and b ≥ 3 are odd,

(iv) a ≥ 4 is even and b = 0,

(v) a = 0 and b ≥ 4 is even,

(vi) a = 2 and b = 0,

(vii) a = 0 and b = 2,

(viii) a = b = 1.
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For Cases (i), (ii), (iv), (vi) and (viii), we explicitly construct a ske θ :
∆→ Dn (in the form of a generating vector) of geometric signature

(0; ⟨s⟩a, ⟨sr⟩b, C1, . . . , Cv).

The remaining cases will follow after considering the outer automorphism
r 7→ r, s 7→ sr.

Set ξ3 =
∑v

j=1 n/mj . By definition, A is odd if and only ξ3 is odd. Con-
dition (1) guarantees that the integers a, b, ξ3 and A have the same parity.

(i) Assume that a, b ≥ 2 are even. The tuple

(s, a. . ., s, sr, b−1. . ., sr, sr1−ξ3 , rn/m1 , . . . , rn/mv)

is a generating vector. Note that ξ3 is even, hence ⟨sr1−ξ3⟩ ∼ ⟨sr⟩.

(ii) Assume that a ≥ 3 and b ≥ 1 are odd. The tuple

(s, a−1. . . , s, sr1+ξ3 , sr, b. . ., sr, rn/m1 , . . . , rn/mv)

is a generating vector. Note that ξ3 is odd, hence ⟨sr1+ξ3⟩ ∼ ⟨s⟩.

(iv) Assume that a ≥ 4 is even and b = 0. The tuple

(s, a−2. . . , s, sr2, sr2−ξ3 , rn/m1 , . . . , rn/mv)

is a generating vector. In fact, Condition (4) implies that A > 0, and
consequently some n/mj is odd. It follows that ⟨r, r2, rn/mj ⟩ = Dn.
Also, note that ξ3 is even, hence ⟨sr2−ξ3⟩ ∼ ⟨s⟩.

(vi) Assume that a = 2 and b = 0. The tuple

(s, sr−ξ3 , rn/m1 , . . . , rn/mv)

is a generating vector. By Condition (3), lcm(m1, . . . ,mv) = n and

θ(∆) = ⟨s, rn/m1 , . . . , rn/mv⟩ = ⟨s, rn/ lcm(m1,...,mv)⟩ = ⟨s, r⟩ = Dn.

In particular, v > 0. Also, note that ξ3 is even, hence ⟨sr−ξ3⟩ ∼ ⟨s⟩.

(viii) Assume that a = b = 1. The previous generating vector remains a
suitable choice. Observe that, in this case, ξ3 is odd and ⟨sr−ξ3⟩ ∼ ⟨sr⟩.

This concludes the proof.

Remark 3.1. Observe that lcm(m1, . . . ,mv) > 1 implies that v > 0.
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Theorem 3.5. Let n ≥ 2 be an even integer and let γ > 0. Then necessary
and sufficient conditions for the existence of a surface kernel epimorphism
θ : ∆→ Dn of geometric signature (γ; ⟨s⟩a, ⟨sr⟩b, C1, . . . , Cv) are:

(1) a, b, and A have the same parity (a+ b is even);

(2) if γ = 1 and a = b = 0 then lcm(m1, . . . ,mv) = n or n/2. In the latter
case, if n ∈ 4Z then B is odd.

Proof. Let us prove that the conditions are necessary. Condition (1) has
already been proved in Lemma 3.1.

In order to show Condition (2), assume that γ = 1 and a = b = 0. As θ is
onto at least one of the hyperbolic generators of ∆ must be sent to Dn \ ⟨r⟩.
After considering the outer automorphism r 7→ r, s 7→ srl, we can assume
that θ(α1) = s. Note that θ(β1) = srξ1 or r−ξ1 for some ξ1 ∈ Z. In each
case, θ([α1, β1]) = r2ξ1 . By Lemma 3.1, the integers ξ1 and ξ3 =

∑v
j=1 nqj/mj

satisfy the relation
2ξ1 + ξ3 ∈ nZ. (3.4)

Thus, Equation (3.3) implies that r2ξ1 ∈ ⟨rn/ lcm(m1,...,mv⟩. Surjectivity re-
quires that ⟨s, rξ1 , rn/ lcm(m1,...,mv)⟩ = Dn, and hence ⟨s, rn/ lcm(m1,...,mv)⟩ has
index 1 or 2 in Dn. Or equivalently,

lcm(m1, . . . ,mv) = n or n/2.

Assume that lcm(m1, . . . ,mv) = n/2. It follows that each n/mj is even
(A = 0) and ξ1 is odd. (If ξ1 is even then θ(∆) = ⟨s, rξ1 , r2⟩ ≠ Dn.) Now,
assume that n ∈ 4Z. Relation (3.4) turns into

ξ1 + ξ3/2 ∈ n
2Z.

Since ξ1 is odd and n/2 is even, ξ3/2 must be odd. We conclude by Lemma 3.1.

Let us now show that the conditions are sufficient. Let a and b be non-
negative integers as in Condition (1). Then, one of the following cases occurs:

(i) γ ≥ 2,

(ii) γ = 1 and a ̸= 0,

(iii) γ = 1 and b ̸= 0,

(iv) γ = 1 and a = b = 0.

For cases (i), (ii) and (iv) we explicitly construct a ske θ : ∆→ Dn (in the
form of a generating vector) of geometric signature

(γ; ⟨s⟩a, ⟨sr⟩b, C1, . . . , Cv).
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The remaining case will follow after considering the outer automorphism r 7→
r, s 7→ sr. Set ξ2 = 0 if b is even and ξ2 = 1 if b is odd. We also set
ξ3 =

∑v
j=1 n/mj . By definition, A is odd if and only if ξ3 is odd. Condition

(1) guarantees that the integers a, b, ξ2, ξ3 and A have the same parity.

(i) Assume that γ ≥ 2. The tuple

(s, r, γ−1. . . , r, r(ξ2+ξ3)/2, r, γ−1. . . , r; s, a. . ., s, sr, b. . ., sr, rn/m1 , . . . , rn/mv)

is a generating vector. Note that ξ2 + ξ3 is even.

(ii) Assume that γ = 1 and a ̸= 0. The tuple

(sr, r(ξ2+ξ3)/2; s, a. . ., s, sr, b. . ., sr, rn/m1 , . . . , rn/mv)

is a generating vector. Note that ξ2 + ξ3 is even.

(iv) Assume that γ = 1 and a = b = 0. Let ξ1 = (δn + ξ3)/2 for δ ∈ {0, 1},
and consider the tuple

(s, rξ1 ; rn/m1 , . . . , rn/mv).

Observe that the product [s, rξ1 ]rξ3 = 1 for δ = 0 and δ = 1, and that

θ(∆) = ⟨s, rξ1 , rn/m1 , . . . , rn/mv⟩ = ⟨s, rξ1 , rn/ lcm(m1,...,mv)⟩.

Condition (2) implies that lcm(m1, . . . ,mv) = n or n/2. In the first
case it is clear that the tuple is a generating vector. Now, assume that
lcm(m1, . . . ,mv) = n/2. Then, every term n/mj is even (A = 0) and
θ(∆) = ⟨s, rξ1 , r2⟩. (a) If n ∈ 4Z then, by Condition (2), B is odd, that
is, there is an odd number of integers 1 ≤ j ≤ v such that n/2mj is odd.
It follows that ξ3/2 is odd, and we choose δ = 0. Thus, ξ1 is odd and
θ(∆) = ⟨s, rξ1 , r2⟩ = Dn, satisfying that θ is a ske. (b) If n /∈ 4Z (n/2
is odd) and ξ3/2 is odd then we choose δ = 0. It follows that ξ1 is odd,
and we conclude as in (a). (c) If n /∈ 4Z and ξ3/2 is even then we choose
δ = 1. It follows that ξ1 is odd, and we conclude in the same way.

This concludes the proof.

3.3 Analytic representation criteria

We briefly recall some previous notions and introduce a pair of useful lemmas.
The divisor transform of a function Ψ : Z+ → Z is the function

Ψ̂ : Z+ → Z, Ψ̂(n) =
∑
q∈Z|n

Ψ(q).



CHAPTER 3. EXISTENCE OF DIHEDRAL ACTIONS 36

The inverse divisor transform of a function Φ : Z+ → Z is the function

Φ̃ : Z+ → Z, Φ̃(n) =
∑
k≥0

(−1)k
∑
q∈Z|n

k

Φ(q),

where Z|n
k is the set of k-divisors of n. Assume that θ : ∆ → Dn is a ske

that represents an action with geometric signature (γ; ⟨s⟩a, ⟨sr⟩b, C1, . . . , Cv),
where Cj = ⟨rn/mj ⟩ with mj ∈ Z|n \ {1}. The signature function of θ is

Ψθ : Z+ → Z, Ψθ(q) = #{1 ≤ j ≤ v : mj = q}.

If V is a C-representation of Dn then its pre-signature function ΦV : Z+ → Z
is given by

ΦV (q) =


⟨V, ρ1⟩ − ⟨V, ψ1 ⊕ ψ2⟩+ 1, if (q, n) = n,

⟨V, ρ1⟩ − ⟨V, ψ3 ⊕ ψ4⟩, if n is even and (q, n) = n
2 ,

⟨V, ρ1⟩ − ⟨V, ρ(q,n)⟩, if (q, n) < n
2 .

If ρa is the analytic representation of the dihedral action represented by the
ske θ then, as proved in Proposition 2.5,

Φ̃ρa = Ψθ and Φρa = Ψ̂θ.

We also recall that

A = #{1 ≤ j ≤ v : n/mj is an odd integer},
B = #{1 ≤ j ≤ v : n/2mj is an odd integer}.

Analytic representation criteria

Not every C-representation of a dihedral group comes from an action, as shows
the following example.

Example 3.2. Let V be a C-representation of D7 given by

V = 2ρ1 ⊕ ρ2 ⊕ ρ3.

We observe that V cannot be the analytic representation of an action. In-
deed, we have that Φ̃V (7) = 3. Thus, by Proposition 2.6, if V were the ana-
lytic representation of a D7-action then the signature would be (0; 2, 2, 7, 7, 7).
However, the analytic representation ρa associated to (an action with) this
signature is

ρa = 2(ρ1 ⊕ ρ2 ⊕ ρ3).
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The following results answer the question of when a given C-representation
is the analytic representation of a dihedral action. Let us denote by SuppΨ =
{q ∈ Z+ : Ψ(q) ̸= 0} the support of the function Ψ : Z+ → Z.

Theorem 3.6. Let V be a C-representation of Dn with n ≥ 3 odd. Then
necessary and sufficient conditions for V to be the analytic representation of
a Dn-action are:

(1) ⟨V, ψ2⟩+ 1 ≥ ⟨V, ψ1⟩;

(2) Φ̃V (q) ≥ 0 for each q ∈ Z|n \ {1};

(3) ⟨V, ρh⟩ = ⟨V, ρ(n,h)⟩ for 1 ≤ h ≤ (n− 1)/2;

(4) if ⟨V, ψ1⟩ ≤ 1 and ⟨V, ψ2⟩ = 0 then lcm(Supp Φ̃V ) = n.

Set Z|n = {1 < m1 < . . . < mv}. In this case, the action has signature

(⟨V, ψ1⟩; 2t,ml1
1 , . . . ,m

lv
v ),

where t = 2(⟨V, ψ2⟩ − ⟨V, ψ1⟩+ 1) and lj = Φ̃V (mj) for j = 1, . . . , v.

Proof. Let us prove that the conditions are necessary. Assume that V is the
analytic representation of the action represented by the ske θ : ∆ → Dn of
signature (γ; 2t,ml1

1 , . . . ,m
lv
v ), where lj ≥ 0.

(1) By Proposition 2.6, 0 ≤ 1
2 t = ⟨V, ψ2⟩ − ⟨V, ψ1⟩+ 1.

(2) By Proposition 2.6, 0 ≤ lj = Φ̃V (mj) for each mj ∈ Z|n \ {1}.

(3) By definition, ΦV (q) = ΦV ((n, q)) for q ∈ Z+. Since ΦV = Ψ̂θ, Theo-
rem 2.1 implies that ⟨V, ρh⟩ = ⟨V, ρ(n,h)⟩ for 1 ≤ h ≤ (n− 1)/2.

(4) Observe that lcm(ml1
1 , . . . ,m

lv
v ) = lcm(SuppΨθ) = lcm(Supp Φ̃V ). Then,

Theorem 2.1 and Theorem 3.3 give the following implications

⟨V, ψ1⟩ = ⟨V, ψ2⟩ = 0 =⇒ γ = 0 and t = 2 =⇒ lcm(Supp Φ̃V ) = n.

Similarly, Theorem 2.1 and Theorem 3.2 give

⟨V, ψ1⟩ = 1 and ⟨V, ψ2⟩ = 0 =⇒ γ = 1 and t = 0 =⇒ lcm(Supp Φ̃V ) = n.

Let us now prove that the conditions are sufficient. Let V be a C-
representation of Dn that satisfies Conditions (1), . . . , (4). As V satisfies (1)
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and (2), the formulas given in Proposition 2.6 induce a well-defined signature.
More precisely, V induces the signature σ = (γ; 2t,ml1

1 , . . . ,m
lv
v ), where

γ = ⟨V, ψ1⟩,
t = 2⟨V, ψ2⟩ − 2⟨V, ψ1⟩+ 2,

lj = Φ̃V (mj) for 1 ≤ j ≤ v.

We verify that the signature σ satisfies the sufficient conditions to admit a
dihedral action given in Theorem 3.3 and Theorem 3.2. (a) Assume that γ = 0,
that is, ⟨V, ψ1⟩ = 0. It is clear that t ≥ 2 is even. Also, if t = 2 then ⟨V, ψ2⟩ = 0,
and Condition (4) implies that lcm(Supp Φ̃V ) = lcm(ml1

1 , . . . ,m
lv
v ) = n. Then,

Theorem 3.3 guarantees that there exists a ske θ : ∆ → Dn of signature σ.
(b) Now, assume that γ ≥ 1. It is clear that t is even. And, if γ = 1 and
t = 0, then ⟨V, ψ1⟩ = 1 and ⟨V, ψ2⟩ = 0, and Condition (4) implies that
lcm(Supp Φ̃V ) = lcm(ml1

1 , . . . ,m
lv
v ) = n. Then, Theorem 3.2 guarantees that

there exists a ske θ : ∆→ Dn of signature σ.
In both cases (a) and (b), let ρa be the analytic representation associated

to the corresponding ske θ : ∆→ Dn of signature σ. By Theorem 2.1,

⟨ρa, ψ1⟩ = γ,

⟨ρa, ψ2⟩ = γ − 1 + 1
2 ,

⟨ρa, ρh⟩ = 2(γ − 1) + 1
2 t+ Ψ̂θ(n)− Ψ̂θ(h),

for 1 ≤ h ≤ (n− 1)/2. It is clear that

⟨ρa, ψj⟩ = ⟨V, ψj⟩ for j = 1, 2.

By Proposition 2.6, Φ̃ρa(mj) = Ψθ(mj) = lj for 1 ≤ j ≤ v, and hence

Φ̃ρa(q) = Φ̃V (q) for each q ∈ Z|n.

By Lemma 2.1 and Proposition 2.2, it follows that

ΦV (q) = Φρa(q) for each q ∈ Z|n.

By definition, ⟨V, ρ(n,h)⟩ = ⟨ρa, ρ(n,h)⟩ for all 1 ≤ h ≤ (n− 1)/2. To conclude,
Condition (3) implies that ⟨V, ρh⟩ = ⟨ρa, ρh⟩ for all 1 ≤ h ≤ (n− 1)/2. Hence
V ∼= ρa is the analytic representation of a dihedral action.

Remark 3.2. It follows from the proof of the theorem above that Conditions
(1) and (2) guarantee that the induced signature is well-defined. Condition
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(3) ensures that V has the “structure” of an analytic representation, that is,
that the Galois associated C-representations have the same multiplicity in the
decomposition of V . Finally, Condition (4) has to do with the existence of a
dihedral action.

Lemma 3.2. Let n ≥ 2 be an even integer.

(1) A = Ψ̂θ(n)− Ψ̂θ(
n
2 ) = Φρa(n)− Φρa(

n
2 ).

(2) B = Ψ̂θ(
n
2 )− Ψ̂θ(

n
4 ) = Φρa(

n
2 )− Φρa(

n
4 ) for n ∈ 4Z.

Proof. Recall Lemma 2.4 and the fact that Ψ̂θ = Φρa .

Theorem 3.7. Let V be a C-representation of Dn with n ≥ 2 even. Then
necessary and sufficient conditions for V to be equivalent to the analytic rep-
resentation of a Dn-action are:

(1) ⟨V, ψ2⟩+ 1 ≥ ⟨V, ψ1⟩+ |⟨V, ψ3⟩ − ⟨V, ψ4⟩|;

(2) Φ̃V (q) ≥ 0 for each q ∈ Z|n \ {1};

(3) ⟨V, ρh⟩ = ⟨V, ρ(n,h)⟩ for 1 ≤ h ≤ (n− 2)/2;

(4) if ⟨V, ψ1⟩ = ⟨V, ψ2⟩ = 0 then lcm(Supp Φ̃V ) = n;

(5) if ⟨V, ψ1⟩ = 0, ⟨V, ψ2⟩ ≥ 1 and |⟨V, ψ3⟩ − ⟨V, ψ4⟩| = ⟨V, ψ2⟩ + 1 then
ΦV (n) > ΦV (

n
2 );

(6) if ⟨V, ψ1⟩ = 1 and ⟨V, ψ2⟩ = 0 then lcm(Supp Φ̃V ) = n or n/2. In the
latter case, if n ∈ 4Z then ΦV (

n
2 )− ΦV (

n
4 ) is odd.

Set Z|n = {1 < m1 < . . . < mv}. In this case, the action has geometric
signature

(⟨V, ψ1⟩; ⟨s⟩a, ⟨sr⟩b, ⟨rn/m1⟩l1 , . . . , ⟨rn/mv⟩lv),

where lj = Φ̃V (mj) for j = 1, . . . , v, and

a = ⟨V, ψ2 ⊕ ψ4⟩ − ⟨V, ψ1 ⊕ ψ3⟩+ 1,

b = ⟨V, ψ2 ⊕ ψ3⟩ − ⟨V, ψ1 ⊕ ψ4⟩+ 1.

Proof. Let us prove that the conditions are necessary. Assume that V is the
analytic representation of the action represented by the ske θ : ∆ → Dn of
geometric signature

(γ; ⟨s⟩a, ⟨sr⟩b, ⟨rn/m1⟩l1 , . . . , ⟨rn/mv⟩lv).
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(1) By Proposition 2.7,

a ≥ 0 =⇒ ⟨V, ψ2⟩+ 1 ≥ ⟨V, ψ1⟩+ (⟨V, ψ3⟩ − ⟨V, ψ4⟩),
b ≥ 0 =⇒ ⟨V, ψ2⟩+ 1 ≥ ⟨V, ψ1⟩+ (⟨V, ψ4⟩ − ⟨V, ψ3⟩).

(2) By Proposition 2.7, 0 ≤ lj = Φ̃V (mj) for mj ∈ Z|n \ {1}.

(3) By definition, ΦV (q) = ΦV ((n, q)) for q ∈ Z+. Since ΦV = Ψ̂θ, Theo-
rem 2.2 implies that ⟨V, ρh⟩ = ⟨V, ρ(n,h)⟩ for 1 ≤ h ≤ (n− 2)/2.

(4) Observe that lcm(ml1
1 , . . . ,m

lv
v ) = lcm(SuppΨθ) = lcm(Supp Φ̃V ). Then,

Theorem 2.2 coupled with Theorem 3.4 give

⟨V, ψ1⟩ = ⟨V, ψ2⟩ = 0 =⇒ γ = 0 and a+b = 2 =⇒ lcm(Supp Φ̃V ) = n.

(5) By Theorem 2.2 one has that

⟨V, ψ1⟩ = 0, ⟨V, ψ2⟩ ≥ 1 and
|⟨V, ψ3⟩ − ⟨V, ψ4⟩| = ⟨V, ψ2⟩+ 1

=⇒ γ = 0, a+ b > 2, and
a = 0 or b = 0.

Then, Theorem 3.4 implies that A > 0. To conclude, Lemma 3.2 states
that A = ΦV (n)− ΦV (

n
2 ).

(6) By Theorem 2.2,

⟨V, ψ1⟩ = 1 and ⟨V, ψ2⟩ = 0 =⇒ γ = 1 and a = b = 0.

Then, Theorem 3.5 implies that

lcm(ml1
1 , . . . ,m

lv
v ) = lcm(Supp Φ̃V ) = n or n/2,

and, in the latter case, if n ∈ 4Z then B is odd. To conclude, Lemma 3.2
states that B = ΦV (

n
2 )− ΦV (

n
4 ).

Let us now prove that the conditions are sufficient. Let V be a C-
representation of Dn that satisfies conditions (1), . . . , (6). The formulas given
in Proposition 2.7 show that, as V satisfies (1) and (2), V induces a well-
defined geometric signature. Concretely, V induces the geometric signature

σ = (γ; ⟨s⟩a, ⟨sr⟩b, ⟨rn/m1⟩l1 , . . . , ⟨rn/mv⟩lv),
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where

γ = ⟨V, ψ1⟩,
a = ⟨V, ψ2 ⊕ ψ4⟩ − ⟨V, ψ1 ⊕ ψ3⟩+ 1,

b = ⟨V, ψ2 ⊕ ψ3⟩ − ⟨V, ψ1 ⊕ ψ4⟩+ 1,

lj = Φ̃V (mj) for 1 ≤ j ≤ v.

Lemma 3.2, which easily extends to geometric signatures that do not admit
actions, implies that B = ΦV (

n
2 )− ΦV (

n
4 ) and

A = ΦV (n)− ΦV (
n
2 ) = ⟨V, ψ3 ⊕ ψ4⟩ − ⟨V, ψ1 ⊕ ψ2⟩+ 1.

Assume that γ = 0. We verify that the geometric signature σ satisfies the
existence conditions (i), . . . , (iv) of Theorem 3.4.

(i) It is clear that a+b and a+A are even, hence a, b, and A have the same
parity.

(ii) Since ⟨V, ψ1⟩ = γ = 0, it follows that a+ b ≥ 2.

(iii) Assume that a+b = 2. Then ⟨V, ψ2⟩ = 0 and Condition (4) implies that
lcm(ml1

1 , . . . ,m
lv
v ) = lcm(Supp Φ̃V ) = n.

(iv) Assume that a + b > 2, and a = 0 or b = 0. Then ⟨V, ψ2⟩ ≥ 1 and
|⟨V, ψ3⟩ − ⟨V, ψ4⟩| = ⟨V, ψ2⟩ + 1. Moreover, Condition (5) implies that
A = ΦV (n)− ΦV (

n
2 ) > 0.

Now, assume that γ ≥ 1. We verify that the geometric signature σ satisfies
the existence conditions (i) and (ii) of Theorem 3.5.

(i) As before, it is clear that a + b and a + A are even. Hence a, b, and A
have the same parity.

(ii) Assume that γ = 1 and a = b = 0. Then ⟨V, ψ1⟩ = 1 and ⟨V, ψ2⟩ = 0.
Moreover, Condition (6) implies that

lcm(ml1
1 , . . . ,m

lv
v ) = lcm(Supp Φ̃V ) = n or n/2.

Also, Condition (6) states that, in the latter case, if n ∈ 4Z then B =
ΦV (

n
2 )− ΦV (

n
4 ) is odd.

We conclude that there always exists a ske θ : ∆ → Dn of geometric
signature σ. The rest of the proof is analogous to that of Theorem 3.6. (Up
to we must employ Theorem 2.2 instead of Theorem 2.1.)
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Example 3.3. Let V be a C-representation of Dp with p ≥ 3 prime. There
exist unique nonnegative integers µ1, µ2, ν1, . . . , ν(p−1)/2 such that

V = µ1ψ1 ⊕ µ2ψ2 ⊕ ν1ρ1 ⊕ · · · ⊕ ν(p−1)/2ρ
(p−1)/2.

We apply Conditions (1), . . . , (4) of Theorem 3.6 to find necessary and suffi-
cient conditions on µ1, µ2, ν1, . . . , ν(p−1)/2 such that V is the analytic repre-

sentation of a Dp-action. First, we observe that Φ̃V (p) = ν1 − (µ1 + µ2) + 1
and that Condition (3) is equivalent to

ν1 = · · · = ν(p−1)/2.

Now, we consider the cases (i) µ1 = 0, (ii) µ1 = 1, and (iii) µ1 ≥ 2.

(i) Assume that µ1 = 0. Conditions (1) and (4) hold. Then, by Condition
(2), one has that

ν1 + 1 ≥ µ2.

(ii) Assume that µ1 = 1. Condition (1) holds, Condition (2) is equivalent to
ν1 ≥ µ2, and Condition (3) states that if µ2 = 0 then Φ̃V (p) = ν1 ≥ 1.
Thus,

ν1 ≥ µ2 and ν1 ≥ 1.

(iii) Assume that µ1 ≥ 2. Condition (1) states that µ2 ≥ µ1 − 1 ≥ 1, and
Condition (4) trivially holds. Condition (2) is equivalent to Φ̃V (p) =
ν1 − (µ1 + µ2) + 1 ≥ 0. Thus,

ν1 + 1 ≥ µ1 + µ2 and µ2 ≥ µ1 − 1.

Example 3.4. Let V be a C-representation of D4. There exist nonnegative
integers µ1, . . . , µ4 and ν1 such that

V = µ1ψ1 ⊕ · · · ⊕ µ4ψ4 ⊕ ν1ρ1.

We apply Conditions (1), . . . , (6) of Theorem 3.6 to find conditions on µ1, . . . , µ4
and ν1 such that V is the analytic representation of some D4-action. First,
we observe that Condition (3) trivially holds and that

Φ̃V (4) = ΦV (4)− ΦV (2) = µ3 + µ4 − (µ1 + µ2) + 1,

Φ̃V (2) = ΦV (2) = ν1 − (µ3 + µ4).

By Condition (1), one of the following cases occurs: (i) µ1 = 0 and µ2 = 0,
(ii) µ1 = 1 and µ2 = 0, and (iii) µ1 ≥ 1.
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(i) Assume that µ1 = µ2 = 0. Conditions (5) and (6) trivially hold. Since
Φ̃V (4) = µ3 + µ4 + 1 ≥ 1 it follows that Condition (4) holds. Condition
(1) is equivalent to |µ3 − µ4| ≤ 1. Finally, Condition (2) states that
Φ̃V (4), Φ̃V (2) ≥ 0. Thus,

|µ3 − µ4| ≤ 1 and ν1 ≥ µ3 + µ4.

(ii) Assume that µ1 = 1 and µ2 = 0. Conditions (4) and (5) trivially hold.
Condition (1) states that µ3 = µ4, and Condition (2) is equivalent to
Φ̃V (4), Φ̃V (2) ≥ 0, that is, ν1 ≥ µ3 + µ4. Finally, Condition (6) states
that lcm(Supp Φ̃V ) = 4 or 2, and, in the latter case, ΦV (2) is odd. If
Φ̃V (4) ≥ 1 then we are done. Otherwise, Φ̃V (4) = 0, Φ̃V (2) ≥ 1 and
ΦV (2) is odd. That is, µ3 = µ4 = 0 and ν1 ≥ 1 is odd. Thus,

µ3 = µ4, ν1 ≥ 2µ3, and

µ3 = 0 =⇒ ν1 ≥ 1 is odd.

(iii) Assume that µ2 ≥ 1. Condition (4) and (6) trivially hold. Conditions (1)
is equivalent to µ2+1 ≥ µ1+|µ3−µ4|, and (2) states that Φ̃V (4), Φ̃V (2) ≥
0. Finally, we observe that Condition (5) holds. Indeed, it states that
if µ1 = 0 and |µ3 − µ4| = ψ2 + 1 then ΦV (4) > ΦV (2). The previous
inequality is equivalent to Φ̃V (4) ≥ 0, which is already guaranteed by
Condition (2). Thus,

ν1 ≥ µ3 + µ4 ≥ µ1 + µ2 + 1 ≥ 2µ1 + |µ3 − µ4|.

For instance, whereas the C-representations of D4,

3ψ3 ⊕ 4ψ4 ⊕ 7ρ1, ψ1 ⊕ ρ1, and 2ψ2 ⊕ 3ψ3 ⊕ 3ρ1,

are analytic representations of a D4-action, the C-representations of D4,

3ψ3 ⊕ 5ψ4 ⊕ 7ρ1, ψ1 ⊕ 2ρ1, and ψ2 ⊕ 3ψ3 ⊕ 3ρ1,

are not analytic representations of any D4-action.

Lemma 3.3. For n ≥ 3, if ρa is the analytic representation of a Dn-action
in genus g ≥ 2, then ⟨ρa, ρ1⟩ ≥ 1.

Proof. Assume that n ≥ 4 is even. By Theorem 2.2 we know that

⟨ρa, ρ1⟩ = 2(γ − 1) + 1
2(a+ b) + Ψ̂θ(n).

If ⟨ρa, ρ1⟩ = 0 then either:
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(1) γ = 1, a+ b = 0 and Ψ̂θ(n) = 0;

(2) γ = 0, a+ b = 2 and Ψ̂θ(n) = 1;

(3) γ = 0, a+ b = 4 and Ψ̂θ(n) = 0.

Note that Theorem 3.5 tells us that no action satisfies (1). Besides, by The-
orem 3.4, the only geometric signature compatible with (2) is (0; ⟨s⟩, ⟨sr⟩, ⟨r⟩).
Also, (3) has geometric signature (0; ⟨s⟩2, ⟨sr⟩2). In each case the genus g is
less than 2, a contradiction. If n ≥ 3 is odd then we set t := a+ b and obtain
the same conclusions.

Proposition 3.1. There is a Dn-action in genus g ≥ 2 with irreducible ana-
lytic representation ρa if and only if n ∈ {3, 4, 6}. In each case, ρa ∼= ρ1 and
the action is in genus 2.

Proof. (→) Assume that ρa is irreducible. By Lemma 3.3 one has that ⟨ρa, ρ1⟩
is always positive, hence ρa ∼= ρ1. However, by Theorem 3.6 (if n is odd) and
Theorem 3.7 (if n is even) one has that if ⟨ρa, ρ1⟩ ≠ 0 then ⟨ρa, (ρ1)σ⟩ ≠ 0 for
all σ in the Galois group of ρ1. It follows that the Galois group of ρ1 must
be trivial, and this only happens for Dn with n ∈ {3, 4, 6}. (The size of the
Galois group of ρ1 is 1

2ϕ(n), where ϕ is Euler’s totient function.)
(←) Consider the following (geometric) signatures:

D3 : σ3 = (0; 2, 2, 3, 3),

D4 : σ4 = (0; ⟨s⟩, ⟨sr⟩, ⟨r2⟩, ⟨r⟩),
D6 : σ6 = (0; ⟨s⟩, ⟨sr⟩, ⟨r3⟩, ⟨r2⟩).

In each case, the (geometric) signature realizes as an action and its associated
analytic representation satisfies ρa ∼= ρ1. (The realization of the signature σ3
follows from Theorem 3.3, and the realization of the geometric signatures σ4
and σ6 is guaranteed by Theorem 3.4. Then, using the analytic representation
formulas in Theorem 2.1 and Theorem 2.2, it is easy to check that ρa ∼= ρ1.)

For the sake of clearness, we compute the geometric signature σ associated
to ρa ∼= ρ1 for D6, and verify that σ = σ6. By Proposition 2.7,

σ = (γ; ⟨s⟩a, ⟨sr⟩b, ⟨r3⟩l1 , ⟨r2⟩l2 , ⟨r⟩l3),
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where γ = ⟨ρa, ψ1⟩ = 0,

a = ⟨ρa, ψ2 ⊕ ψ4⟩ − ⟨ρa, ψ1 ⊕ ψ3⟩+ 1 = 1,

b = ⟨ρa, ψ2 ⊕ ψ3⟩ − ⟨ρa, ψ1 ⊕ ψ4⟩+ 1 = 1,

l1 = Φ̃ρa(2) = ⟨ρa, ρ1⟩ − ⟨ρa, ρ2⟩ = 1,

l2 = Φ̃ρa(3) = ⟨ρa, ρ1⟩ − ⟨ρa, ψ3 ⊕ ψ4⟩ = 1,

l3 = Φ̃ρa(6) = (⟨ρa, ρ1⟩ − ⟨ρa, ψ3 ⊕ ψ4⟩+ 1)− 2 = 0.

(Note that Φ̃ρa(6) = Φρa(6)− Φρa(3)− Φρa(2).) This ends the proof.



Chapter 4

Group algebra decomposition

Carocca, Recillas, and Rodŕıguez in [7] studied compact Riemann surfaces
with dihedral actions and provided the associated group algebra decomposi-
tion of their Jacobians. In this chapter, equipped with tools not available at
that time, we deal with the problem of determining when such a decomposi-
tion is affordable by Prym varieties. Along the way, we recover some of the
results of [7]. Finally, we relate our results with the classical Ekedahl-Serre
problem of completely decomposable Jacobians.

4.1 Preliminaries

Let G be a finite group and set IrrQ(G) = {W1, . . . ,Wv}.

Theorem 4.1. Let A be an abelian variety with a G-action. There are abelian
subvarieties B1, . . . , Bv of A and a G-equivariant isogeny

A ∼ Bn1
1 × · · · ×B

nv
v ,

where G acts on B
nj

i via the representation Wj.

Proof. See [21, Theorem 2.2].

The isogeny above is the group algebra decomposition of A respect to G.
The subvariety Bj , which is defined up to isogeny, is called the group algebra
component of A associated to Wj . If A = JS and W1 denotes the trivial
representation, then (as we shall do in this chapter) B1 ∼ JSG and n1 = 1.

Proposition 4.1. For j = 2, . . . , v, the dimension of the group algebra com-
ponent Bj of JS is

dimBj =
1
2kVj ⟨ρr, Vj⟩,

46
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where Vj ∈ IrrC(G) is Galois associated to Wj, and kVj = sVj |Gal(KVj/Q)|.

Proof. See [37, Theorem 5.12] and Theorem 1.3.

It is worth observing that whereas the dimension of Bj depends on the
action, the integer v only depends on the algebraic structure of G.

Theorem 4.2. Let S be a compact Riemann surface of genus g ≥ 2 with a
G-action. Let H ≤ K be subgroups of G. If B1, . . . , Bv are the group algebra
components of JS, then

JSH ∼ JSG ×Bu2
2 × · · ·B

uv
v ,

where uj = dHVj/sVj for 2 ≤ j ≤ v. In addition,

P (πHK ) ∼ Bt2
2 × · · · ×B

tv
v ,

where tj = (dHVj − d
K
Vj
)/sVj for 2 ≤ j ≤ v.

Proof. See [9, Theorem 5.2 and Corollary 5.4].

A detailed account on decomposition of Jacobians by Prym varieties can
be found in [23].

4.2 Jacobians with dihedral actions

We recall that the Schur index of the dihedral representations is equal to
1. Also, there is a bijection between Z|n \ {1, 2} and the set of irreducible
Q-representations of Dn of degree ≥ 2, given by

Z|n \ {1, 2} → IrrQ(Dn), q 7→W (q) = ⊕σ(ρn/q)σ.

For the sake of clearness, we begin this section with a simple example.

Example 4.1. The group algebra decomposition of JS with respect to D3 is

JS ∼ JSD3 ×B2 ×B(3)2,

where B2 and B(3) are the group algebra components associated to ψ2 and
W (3), respectively. The dimensions of the fixed subgroups are

dHV ψ2 ρ1

⟨r⟩ 1 0
⟨s⟩ 0 1

It follows from Theorem 4.2 that B2 ∼ P (π⟨r⟩D3
) and B(3) ∼ P (π⟨s⟩D3

). Thus,

JS ∼ JSD3 × P
(
π
⟨r⟩
D3

)
× P

(
π
⟨s⟩
D3

)2
.
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The general case for dihedral groups is as follows. For n even, the group
algebra decomposition of JS with respect to Dn is

JS ∼ JSDn ×B2 ×B3 ×B4 ×
∏

q∈Z|n\{1,2}

B(q)2,

where Bj is the group algebra component associated to the nontrivial degree
one representation ψj , and B(q) is the group algebra component associated
to W (q). If n is odd then we just omit B3 and B4, and hence

JS ∼ JSDn ×B2 ×
∏

q∈Z|n\{1,2}

B(q)2.

Hereafter, ϕ denotes the Euler totient function.

Proposition 4.2. The dimension of the group algebra components are:

(1) dimBj = ⟨ρa, ψj⟩ for j = 1, . . . , 4;

(2) dimB(q) = 1
2ϕ(q)⟨ρa, ρ

n/q⟩ for q ∈ Z|n \ {1, 2}.

Proof. Since ρa ∼= ρa, by Corollary 1.1 and Proposition 4.1 one has that
dimB = |Gal(KV /Q)|⟨ρa, V ⟩. We recall the well-known fact that

|Gal(KV /Q)| =

{
1, if V = ψj ,
1
2ϕ(q), if V = ρn/q.

This completes the proof.

The dimensions dHV are known for the dihedral groups. We include them
here for latter use.

Lemma 4.1. Let H ≤ Dn and V ∈ IrrC(Dn). For α, q ∈ Z|n,

dHV ψ1 ψ2 ψ3 ψ4 ρn/q

⟨rn/α⟩ 1 1 δ δ 2ε

⟨s, rn/α⟩ 1 0 δ 0 ε

⟨sr, rn/α⟩ 1 0 0 δ ε

where δ = 1 if n/α is even, and δ = 0 otherwise; and ε = 1 if α divides n/q,
and ε = 0 otherwise. If n is odd then we must omit columns ψ3 and ψ4.
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Now, we derive expressions for the decompositions of JSH and P (πHK )
induced by the group algebra decomposition of JS. For α ∈ Z|n, let

Hα = ⟨s, rn/α⟩, Kα = ⟨sr, rn/α⟩, and Cα = ⟨rn/α⟩,

be subgroups of Dn. In fact, this covers all of the subgroups of Dn modulo
conjugation. Also, Hn = Kn = Dn. If α is a proper divisor of β ∈ Z|n, then

Cα < Hα < Hβ, Cα < Kα < Kβ, and Cα < Cβ,

with associated intermediate coverings

SCα → SHα → SHβ
, SCα → SKα → SKβ

, and SCα → SCβ
.

We observe that, modulo conjugation, all possible group inclusions and inter-
mediate coverings are depicted above.

Proposition 4.3. For α ∈ Z|n, set Qα = Z|n/α \ {1, 2}. Then

(1) JSHα ∼

{
JSDn ×

∏
q∈Qα

B(q), if n
α is odd

JSDn ×B3 ×
∏
q∈Qα

B(q), if n
α is even

(2) JSKα ∼

{
JSDn ×

∏
q∈Qα

B(q), if n
α is odd

JSDn ×B4 ×
∏
q∈Qα

B(q), if n
α is even

(3) JSCα ∼

{
JSDn ×B2 ×

∏
q∈Qα

B(q)2, if n
α is odd

JSDn ×B2 ×B3 ×B4 ×
∏
q∈Qα

B(q)2, if n
α is even

If n is odd then we just discard the components B3 and B4 (nα is odd).

Proof. Assume that n is even. Following Theorem 4.2,

JSHα ∼ JSDn ×B
u2
2 ×B

u3
3 ×B

u4
4 ×

∏
q∈Z|n\{1,2}

B(q)u(q),

where uj = dHα
ψj

for j ∈ {2, 3, 4}, and u(q) = dHα

ρn/q for q ∈ Z|n \ {1, 2}. By

Lemma 4.1, one has that u2 = 0, u3 = δ, u4 = 0 and u(q) = ε(q), where

δ =

{
1, if n

α is even

0, if n
α is odd

and ε(q) =

{
1, if q ∈ Z|n/α

0, if q /∈ Z|n/α

Therefore,

JSHα ∼ JSDn ×B0
2 ×Bδ

3 ×B0
4 ×

∏
q∈Z|n\{1,2}

B(q)ε(q).
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Similarly,

JSKα ∼ JSDn ×B0
2 ×B0

3 ×Bδ
4 ×

∏
q∈Z|n\{1,2}

B(q)ε(q),

JSCα ∼ JSDn ×B1
2 ×Bδ

3 ×Bδ
4 ×

∏
q∈Z|n\{1,2}

B(q)2ε(q).

The proof for the case n odd is analogous.

Proposition 4.4. For α, β ∈ Z|n, set Qα,β = (Z|n/α \ Z|n/β) \ {2}. If α is a
proper divisor of β, then

(1) P (πHα
Hβ

) ∼

{
B3 ×

∏
q∈Qα,β

B(q), if n
α + n

β is odd∏
q∈Qα,β

B(q), if n
α + n

β is even

(2) P (πKα
Kβ

) ∼

{
B4 ×

∏
q∈Qα,β

B(q), if n
α + n

β is odd∏
q∈Qα,β

B(q), if n
α + n

β is even

(3) P (πCα
Cβ

) ∼ P (πHα
Hβ

)× P (πKα
Kβ

);

(4) P (πCα
Hβ

) ∼ B2 × P (πHα
Hβ

)× P (πKα
Dn

).

(5) P (πCα
Kβ

) ∼ B2 × P (πKα
Kβ

)× P (πHα
Dn

).

If n is odd then we just discard the components B3 and B4 (nα + n
β is even).

Proof. Assume that n is even. Following Theorem 4.2,

P (πHα
Hβ

) ∼ Bt2
2 ×B

t3
3 ×B

t4
4 ×

∏
q∈Z|n\{1,2}

B(q)t(q),

where tj = dHα
ψj
− d

Hβ

ψj
for j ∈ {2, 3, 4}, and t(q) = dHα

ρn/q − d
Hβ

ρn/q for q ∈
Z|n \ {1, 2}. By Lemma 4.1, one has that t2 = 0, t3 = δ − δ′, t4 = 0 and
t(q) = ε(q)− ε′(q), where

δ =

{
1, if n

α even

0, if n
α odd

ε(q) =

{
1, if q ∈ Z|n/α

0, if q /∈ Z|n/α

δ′ =

{
1, if nβ even

0, if nβ odd
ε′(q) =

{
1, if q ∈ Z|n/β

0, if q /∈ Z|n/β

Therefore,

P (πHα
Hβ

) ∼ B0
2 ×Bδ−δ′

3 ×B0
4 ×

∏
q∈Z|n\{1,2}

B(q)ε(q)−ε
′(q).
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Similarly,

P (πKα
Kβ

) ∼ B0
2 ×B0

3 ×Bδ−δ′
4 ×

∏
q∈Z|n\{1,2}

B(q)ε(q)−ε
′(q),

P (πCα
Cβ

) ∼ B0
2 ×Bδ−δ′

3 ×Bδ−δ′
4 ×

∏
q∈Z|n\{1,2}

B(q)2(ε(q)−ε
′(q)),

P (πCα
Hβ

) ∼ B1
2 ×Bδ−δ′

3 ×Bδ
4 ×

∏
q∈Z|n\{1,2}

B(q)2ε(q)−ε
′(q),

P (πCα
Kβ

) ∼ B1
2 ×Bδ

3 ×Bδ−δ′
4 ×

∏
q∈Z|n\{1,2}

B(q)2ε(q)−ε
′(q).

The proof for the case n odd is analogous.

The following corollary, which was proven in [7, Theorems 6.1, 7.1, and
8.1], follows directly from the previous proposition.

Corollary 4.1. Let S be a compact Riemann surface of genus g ≥ 2 with

a Dn-action. Then for each n, P (π
⟨r⟩
Dn

) ∼ B2. Moreover, if n is even, then

P (π
⟨s,r2⟩
Dn

) ∼ B3 and P (π
⟨sr,r2⟩
Dn

) ∼ B4.

Proof. Observe that

P (π
⟨r⟩
Dn

) = P (πCn
Hn

) ∼ B2 × P (πHn
Hn

)× P (πKn
Kn

) = B2 × P (πDn
Dn

)2 ∼ B2.

Similarly for the other cases.

4.3 Prym affordable Jacobians

Let S be a compact Riemann surface of genus g ≥ 2 with a G-action. The
group algebra decomposition of JS is a powerful tool to study the following
two questions:

Question 1. When does the Jacobian JS decomposes as a product of Jacobians
of quotient surfaces of S?

Question 2. When does the Jacobian JS decomposes as a product of JSG
and Prym varieties of intermediate coverings of π : S → SG?

In 1989, preceding the group algebra decomposition theorems, Kani and
Rosen in [19] provided partial results regarding the first question. More re-
cently, Reyes-Carocca and Rodŕıguez in [33] generalized their results. The
second question was considered by Moraga in [27] for actions of affine groups
over finite fields.
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Definition 4.1. Let S be a compact Riemann surface of genus g ≥ 2 with a
G-action. Following [27], the group algebra decomposition of JS (with respect
to G) is called affordable by Prym varieties if each group algebra component
(with respect to G) of JS is isogenous to the Prym variety of an intermediate
covering.

Definition 4.2. A group G is Prym-affordable if every group algebra decom-
position of a Jacobian with respect to G is affordable by Prym varieties.

Example 4.2. The cyclic group Zp of prime order p is Prym-affordable. Indeed,
Zp has two irreducibleQ-representations and every irreducible C-representation
has degree and Schur index equal to one. Thus, if G ∼= Zp acts on a Riemann
surface S of genus g ≥ 2 then

JS ∼ JSG ×B2 ∼ JSG × P (π{1}G ).

Partial results for the problem of determining when Dn is Prym-affordable
have been obtained. Concretely, Carocca, Recillas, and Rodŕıguez proved in
[7, Theorems 6.4 and 7.1] that Dp (p ≥ 3 prime) and D2e (e ≥ 2) are Prym-
affordable, respectively. Besides, Lange and Recillas in [21, §4.4] pointed out
that D2p is not Prym-affordable.

The following result gives a complete answer to the problem.

Theorem 4.3. The dihedral group Dn is Prym-affordable if and only if n = pe

for p prime and e ≥ 1.

Proof. For α, β ∈ Z|n, let Hα = ⟨s, rn/α⟩ be a subgroup of Dn, and let

Qα,β = (Z|n/α \ Z|n/β) \ {2}.

(←) Let n = pe for p prime and e ≥ 1, and assume that Dn acts on a
compact Riemann surface S of genus g ≥ 2. After considering Corollary 4.1,
it suffices to prove that for each q ∈ Z|n \ {1, 2}, the subvariety B(q) of JS
is isogenous to the Prym variety of an intermediate covering. Set αj = n/pj

and βj = n/pj−1 for j ∈ {1, . . . , e}. Observe that

Qαj ,βj = Z|pj \ Z|pj−1
= {pj}.

Then, by Proposition 4.4(1), one has that

P (π
Hαj

Hβj
) ∼

∏
q∈Qαj,βj

B(q) ∼ B(pj),
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for 1 ≤ j ≤ e if p ≥ 3, and for 2 ≤ j ≤ e if p = 2, as desired. (If p ≥ 3 then
Z|n \ {1, 2} = {p, . . . , pe}, otherwise Z|n \ {1, 2} = {22, . . . , 2e}. Moreover,
n
αj

+ n
βj

= pj + pj−1 is even in each of the previous cases.)

(→) Let us prove the contrapositive. Assume that n is not the power of a
prime. Then, one of the following cases occurs:

(i) n ∈ pqZ for p, q ≥ 3 primes, or

(ii) n ∈ 2pZ for p ≥ 3 prime.

We now proceed to prove that for each of the cases above, given a suitable
choice of action, there is a group algebra component that is not isogenous
to the Prym variety of an intermediate covering. Let θ : ∆ → Dn be a
ske such that the quotient surface has genus γ ≥ 2. (The existence of θ is
guaranteed by Theorems 3.1 and 3.2.) Then, by the Chevalley-Weil formula
and Proposition 4.2, one has that all the group algebra components (associated
to the action of θ) have positive dimension.

(i) Assume that n ∈ pqZ. By Proposition 4.4, if B(pq) ∼ P (πHK ) for H < K
subgroups of Dn then, as every group algebra component has positive
dimension, there are integers α, β ∈ Z|n, with α a proper divisor of β,
such that

Qα,β = (Z|n/α \ Z|n/β) \ {2} = {pq}.

It follows that pq divides n/α but does not divide n/β. Since p and q
are prime, at least one of them does not divide n/β and Qα,β is not a
singleton, a contradiction.

(ii) Assume that n ∈ 2pZ. By Proposition 4.4, if B(pq) ∼ P (πHK ) for H <
K subgroups of Dn (and every group algebra component has positive
dimension), then there are integers α, β ∈ Z|n, with α a proper divisor
of β, such that

Qα,β = (Z|n/α \ Z|n/β) \ {2} = {2q}.

In particular, 2p is a divisor of n
α (even) but not of n

β . Since p /∈ Qα,β
it follows that p divides n

β and therefore 2 does not divide n
β (odd). We

conclude that n
α + n

β is odd and thus

P (πKH ) ∼ B3 ×B(2p) or P (πKH ) ∼ B4 ×B(2p).

a contradiction.

This concludes the proof.
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Moving forward, we refine our analysis to consider the possibility that
some group algebra components may have dimension zero.

Definition 4.3. For each subset Q ⊂ Z+, we define the function

LQ : Z+ → Z+ given by LQ(q) = lcm(Q ∩ Z|q \ {q}).

Lemma 4.2. Set Q ⊂ Z+ and q ∈ Z+. Then

(1) LQ(q) is a divisor of q;

(2) LQ(q) ̸= q if and only if LQ(q) is a proper divisor of q;

(3) if q is the power of a prime number then LQ(q) ̸= q;

(4) if q ∈ Q then LQ(q) ̸= q if and only if Q ∩ Z|q \ Z|LQ(q) = {q};

(5) if q ∈ Q and LQ(q) ̸= q, then LQ(q) = gcd{t ∈ Z|q : Q∩Z|q \Z|t = {q}}.

Proof. The least common multiple of a subset of Z|q is a divisor of q. This
proves (1), which in turn implies (2). To see that (3) holds, note that

Q ∩ Z|pe \ {pe} ⊂ {p, . . . , pe−1} for p prime.

Set q ∈ Q. If LQ(q) = q then Q ∩ Z|q \ Z|LQ(q) is empty. By definition, if
LQ(q) ̸= q then each element of Q ∩ Z|q \ {q} divides LQ(q). This shows (4).

Finally, let us prove (5). Set q ∈ Q and assume that LQ(q) ̸= q. Choose
t ∈ Z|q such that Q ∩ Z|q \ Z|t = {q}. Since every element of Q ∩ Z|q \ {q}
divides t it follows that LQ(q) divides t, as desired.

Definition 4.4. Let ρa be the analytic representation of a dihedral action
represented by a ske θ : ∆→ Dn. Set

Qθ = {t ∈ Z|n \ {1, 2} : ⟨ρa, ρn/t⟩ ≥ 1}.

Theorem 4.4. Let n ≥ 3 be an odd integer, and let S be a compact Riemann
surface of genus g ≥ 2 with a dihedral action represented by a surface kernel
epimorphism θ : ∆→ Dn. For q ∈ Qθ, the subvariety B(q) of JS is isogenous
to the Prym variety of an intermediate covering if and only if LQ(q) ̸= q. In
this case,

B(q) ∼ P (πHK ) for H = ⟨s, rq⟩ and K = ⟨s, rLQθ
(q)⟩.
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Proof. Assume that LQθ
(q) ̸= q. Set α = n/q and β = n/LQθ

(q), and recall
that Hα = ⟨s, rn/α⟩ and Qα,β = (Z|n/α \ Z|n/β). By Lemma 4.2(2), α is a
proper divisor of β and hence Hα < Hβ. Moreover, by Lemma 4.2(4),

Qθ ∩Qα,β = Qθ ∩ (Z|q \ Z|LQθ
(q)) = {q}.

Then Proposition 4.4(1) implies that

P
(
πHα
Hβ

)
∼

∏
t∈Qα,β

B(t) ∼
∏

t∈Qθ∩Qα,β

B(t) ∼ B(q).

For the converse, assume that B(q) ∼ P (πKH ) for H < K subgroups of Dn.
By Proposition 4.4, we can assume that H = Hn/q and K = Hn/t with t a
proper divisor of q such that

Qθ ∩ (Z|q \ Z|t) = {q}.

By Lemma 4.2(5), we conclude that LQθ
(q) divides t and LQθ

(q) ̸= q.

Consider a dihedral action in genus g ≥ 2 represented by a ske θ : ∆→ Dn

with n odd. Let (γ; 2t,m1, . . . ,mv) be its signature. By Lemma 3.3, one has
that n ∈ Qθ, that is, Qθ is not empty. Moreover, Proposition 2.4(1) states
that if γ ≥ 1, or γ = 0 and t ≥ 6, then Qθ = Z|n \ {1, 2}. In this case, all the
subvarieties B(q) of JS have positive dimension (Proposition 4.2). Therefore,
in our search for examples of group algebra decomposition’s with dimension
zero subvarieties, we will examine the following cases:

(1) γ = 0 and t = 2;

(2) γ = 0 and t = 4.

Also, in Case (2) we know, by Proposition 2.4(2), that

Qθ = Z|n \ Z|n/ lcm(m1,...,mv).

As we will see in the following examples, group algebra decompositions of
Jacobian varieties, respect to non Prym-affordable dihedral groups, can still
be affordable by Prym varieties. Moreoever, we provide an infinite family of
such decompositions.

Example 4.3. Recall that Hα = ⟨s, rn/α⟩, Cα = ⟨rn/α⟩ andW (q) = ⊕σ(ρn/q)σ.
(1) Let p, q ≥ 3 be distinct prime numbers, and let e ≥ 1. By Theorem 3.3,

one has that the group Dpeq acts in genus g = 1+pe(q−1) with signature
(0; 2, 2, 2, 2, q). Since lcm(m1, . . . ,mv) = q, it follows that

Qθ = Z|peq \ Z|pe = {q, pq, p2q, . . . , peq}.
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Therefore, LQθ
(q) = 1 and

LQθ
(pjq) = lcm{q, pq, . . . , pj−1q} = pj−1q for 1 ≤ j ≤ e.

By Theorem 4.4, one has that

JS ∼ B2 ×B(q)2 ×B(pq)2 × · · · ×B(peq)2,

∼ P
(
π
⟨r⟩
Dpeq

)
× P

(
π
⟨s,rq⟩
Dpeq

)2 × P (π⟨s,rpq⟩⟨s,rq⟩
)2 × · · · × P (π⟨s⟩

⟨s,rpe−1q⟩

)2
,

= P
(
π
Cpeq

Dpeq

)
× P

(
π
Hpe

Dpeq

)2 × P (πHpe−1

Hpe

)2 × · · · × P (πH1
Hp

)2
.

(2) Let p, q ≥ 3 be distinct prime numbers. By Theorem 3.3, one has
that the group Dp2q acts in genus g = (p2 − 1)(q − 1) with signature
(0; 2, 2, q, p2). Then, by Theorem 2.1, the analytic representation of the
action satisfies ρa ∼= W (p2q) ⊕W (pq). Since Qθ = {pq, p2q}, it follows
that LQθ

(pq) = 1 and LQθ
(p2q) = pq. By Theorem 4.4, we conclude

that

JS ∼ B(pq)2×B(p2q)2 ∼ P
(
π
⟨s,rpq⟩
Dp2q

)2×P (π⟨s⟩⟨s,rpq⟩
)2

= P
(
π
Hp

Dp2q

)2×P (πH1
Hp

)2
.

(3) Let p, q, r ≥ 3 be distinct prime numbers. By Theorem 3.3, one has that
the group Dpqr acts in genus g = 1+2pqr− (qr+ pr+ p) with signature
(0; 2, 2, p, q, qr). Then, by Theorem 2.1, the analytic representation of
the action is given by

ρa ∼= 2W (pqr)⊕ 2W (pq)⊕W (qr)⊕W (pr)⊕W (q),

and hence Qθ = {pqr, pq, qr, pr, q}. Then,

LQθ
(pqr) = lcm(pq, qr, pr, q) = pqr,

LQθ
(pq) = LQθ

(qr) = q and LQθ
(pr) = LQθ

(q) = 1.

It follows from Theorem 4.4 that B(pqr) is not isogenous to the Prym
variety of any intermediate cover.

4.4 Completely decomposable Jacobians

An abelian variety is completely decomposable if it is isogenous to a product
of elliptic curves. Ekedahl and Serre in [14] posed the following two questions:
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Question 1. Is it true that, for all positive integers g, there exists a curve of
genus g whose Jacobian is completely decomposable?

Question 2. Is the set of genera for which a curve with completely decompos-
able Jacobian exists infinite?

Since the publication of [14], the study of completely decomposable Jaco-
bians has attracted considerable interest. See for example [10, 13, 18, 25, 29].
Despite recent advancements, the previous questions still remain open.

Notably, Ekedahl and Serre provided a list of genera (up to 1297) with
curves exhibiting completely decomposable Jacobians, but significant gaps
remained. To address this, Paulhus and Rojas in [30] used computational
tools to systematically construct examples in new genera, relying on the group
algebra decomposition of Jacobian varieties. See also the recent article [36].

Here we determine all Riemann surfaces with dihedral action such that the
group algebra decomposition yields a complete decomposition of the Jacobian.

Theorem 4.5. Let n ≥ 3 be a positive integer, and let S be a compact Rie-
mann surface of genus g ≥ 2 with a Dn-action. The group algebra decomposi-
tion (with respect to Dn) provides a complete decomposition of JS if and only
if one of the following cases occurs.

n genus signature geometric signature complete decomposition of JS

3 2 (0; 2, 2, 3, 3) B(3)2

3 (0; 2, 2, 2, 2, 3) B2 × B(3)2

(1; 3) JSD3
× B(3)2

4 (1; 2, 2) JSD3
× B2 × B(3)2

4 2 (0; 2, 2, 2, 4) (0; ⟨s⟩, ⟨sr⟩, ⟨r2⟩, ⟨r⟩) B(4)2

3 (1; 2) (1; ⟨r2⟩) JSD4
× B(4)2

(0; 2, 2, 2, 2, 2) (0; ⟨s⟩2, ⟨sr⟩2, ⟨r2⟩) B2 × B(4)2

(0; 2, 2, 4, 4) (0; ⟨sr⟩2, ⟨r⟩2) B3 × B(4)2

(0; ⟨s⟩2, ⟨r⟩2) B4 × B(4)2

4 (0; 2, 2, 4) (0; ⟨s⟩, ⟨sr⟩3, ⟨r⟩) B2 × B3 × B(4)2

(0; ⟨s⟩3, ⟨sr⟩, ⟨r⟩) B2 × B4 × B(4)2

5 (1; 2) (1; ⟨sr⟩2) JSD4
× B2 × B3 × B(4)2

(1; ⟨s⟩2) JSD4
× B2 × B4 × B(4)2

6 2 (0; 2, 2, 2, 3) (0; ⟨s⟩, ⟨sr⟩, ⟨r3⟩, ⟨r2⟩) B(6)2

3 (0; 2, 2, 2, 6) (0; ⟨sr⟩2, ⟨r3⟩, ⟨r⟩) B3 × B(6)2

(0; ⟨s⟩2, ⟨r3⟩, ⟨r⟩) B4 × B(6)2

4 (0; 25) (0; ⟨s⟩, ⟨sr⟩3, ⟨r3⟩) B2 × B3 × B(6)2

(0; ⟨s⟩3, ⟨sr⟩, ⟨r3⟩) B2 × B4 × B(6)2

(0; 2, 2, 3, 6) (0; ⟨s⟩, ⟨sr⟩, ⟨r2⟩, ⟨r⟩) B(3)2 × B(6)2

5 (1; 3) (1; ⟨r2⟩) JSD6
× B(3)2 × B(6)2

(0; 2, 2, 2, 2, 3) (0; ⟨s⟩2, ⟨sr⟩2, ⟨r2⟩) B2 × B(3)2 × B(6)2

(0; 2, 2, 6, 6) (0; ⟨sr⟩2, ⟨r⟩2) B3 × B(3)2 × B(6)2

(0; ⟨s⟩2, ⟨r⟩2) B4 × B(3)2 × B(6)2

6 (0; 2, 2, 2, 2, 6) (0; ⟨s⟩, ⟨sr⟩3, ⟨r⟩) B2 × B3 × B(3)2 × B(6)2

(0; ⟨s⟩3, ⟨sr⟩, ⟨r⟩) B2 × B4 × B(3)2 × B(6)2

7 (1; 2, 2) (1; ⟨sr⟩2) JSD6
× B2 × B3 × B(3)2 × B(6)2

(1; ⟨s⟩2) JSD6
× B2 × B4 × B(3)2 × B(6)2

Proof. According to Proposition 4.2, if ρa is the analytic representation of an
action of Dn then dimB(n) = 1

2ϕ(n)⟨ρa, ρ
1⟩. We observe that ϕ(n) = 2 if and
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only if n ∈ {3, 4, 6}. This fact coupled with Lemma 3.3, which states that
⟨ρa, ρ1⟩ ≥ 1 in genus g ≥ 2, imply that dimB(n) ≥ 2 for n ̸= 3, 4, 6.

Now, we will determine all the (geometric) signatures of D3, D4, and
D6 whose associated group algebra decomposition of JS provides a complete
decomposition of JS. Our approach will be to list all the “potential analytic
representations” and use Theorem 3.6 and Theorem 3.7 to determine which
among them actually are the analytic representation of a dihedral action.
Then, obtaining the (geometric) signature is a straightforward application of
Proposition 2.6 and Proposition 2.7.

(1) Consider the group D3. Assume that the group algebra decomposition,

JS ∼ JSD3 ×B2 ×B(3)2,

with respect to D3 provides a complete decomposition of JS. Then, by
Proposition 4.1, the multiplicities of the irreducible C-representations in
ρa are zero or one. That is, ρa is equivalent to one of the following cases:

(i) ρ1

(ii) ψ1 ⊕ ρ1
(iii) ψ2 ⊕ ρ1

(iv) ψ1 ⊕ ψ2 ⊕ ρ1

Observe that

Φ̃ρa(3) = Φρa(3) = ⟨ρa, ρ1⟩ − ⟨ρa, ψ1 ⊕ ψ2⟩+ 1.

By Theorem 3.6, each of the representations above is the analytic rep-
resentation of some D3-action. For the sake of example, we include the
computation of the signature σ = (1; 3) associated to ρa ∼= ψ1 ⊕ ρ1. By
Proposition 2.6 we have that σ = (γ; 2t, 3l), where

γ = ⟨ρa, ψ1⟩ = 1,

t = 2⟨ρa, ψ2⟩ − 2⟨ρa, ψ1⟩+ 2 = 0,

l = Φ̃ρa(3) = 1.

(2) Consider the group D4. Assume that the group algebra decomposition,

JS ∼ JSD4 ×B2 ×B3 ×B4 ×B(4)2,

with respect to D4 provides a complete decomposition of JS. As before,
the multiplicities of the irreducible C-representations in ρa are zero or
one. That is, ρa is equivalent to one of the following cases:
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(i) ρ1

(ii) ψ1 ⊕ ρ1

(iii) ψ2 ⊕ ρ1

(iv) ψ3 ⊕ ρ1

(v) ψ4 ⊕ ρ1

(vi) ψ1 ⊕ ψ2 ⊕ ρ1

(vii) ψ1 ⊕ ψ3 ⊕ ρ1

(viii) ψ1 ⊕ ψ4 ⊕ ρ1

(ix) ψ2 ⊕ ψ3 ⊕ ρ1

(x) ψ2 ⊕ ψ4 ⊕ ρ1

(xi) ψ3 ⊕ ψ4 ⊕ ρ1

(xii) ψ1 ⊕ ψ2 ⊕ ψ3 ⊕ ρ1

(xiii) ψ1 ⊕ ψ2 ⊕ ψ4 ⊕ ρ1

(xiv) ψ1 ⊕ ψ3 ⊕ ψ4 ⊕ ρ1

(xv) ψ2 ⊕ ψ3 ⊕ ψ4 ⊕ ρ1

(xvi) ψ1 ⊕ ψ2 ⊕ ψ3 ⊕ ψ4 ⊕ ρ1

Observe that

Φ̃ρa(4) = Φρa(4)− Φρa(2) = ⟨ρa, ψ3 ⊕ ψ4⟩ − ⟨ρa, ψ1 ⊕ ψ2⟩+ 1,

Φ̃ρa(2) = Φρa(2) = ⟨ρa, ρ1⟩ − ⟨ρa, ψ3 ⊕ ψ4⟩.

By Theorem 3.7, the representations (vi), (vii), (viii), (xi), (xiv), (xv)
and (xvi) are not the analytic representation of any D4-action. More
precisely: the cases (vii) and (viii) do not satisfy statement (1) of The-
orem 3.7; and cases (vi), (xi), (xiv), (xv) and (xvi) do not satisfy state-
ment (2) of Theorem 3.7. The remaining statements of Theorem 3.7
hold in each case. We conclude that the remaining representations are
the analytic representation of some D4-action.

(3) Consider the group D6. Assume that the group algebra decomposition,

JS ∼ JSD6 ×B2 ×B3 ×B4 ×B(3)2 ×B(6)2,

with respect to D6 provides a complete decomposition of JS. As before,
the multiplicities of the irreducible C-representations in ρa are zero or
one. That is, ρa is equivalent to one of the following cases:

(i) ρ1

(ii) ψ1 ⊕ ρ1

(iii) ψ2 ⊕ ρ1

(iv) ψ3 ⊕ ρ1

(v) ψ4 ⊕ ρ1

(vi) ψ1 ⊕ ψ2 ⊕ ρ1

(vii) ψ1 ⊕ ψ3 ⊕ ρ1

(viii) ψ1 ⊕ ψ4 ⊕ ρ1

(ix) ψ2 ⊕ ψ3 ⊕ ρ1

(x) ψ2 ⊕ ψ4 ⊕ ρ1

(xi) ψ3 ⊕ ψ4 ⊕ ρ1

(xii) ψ1 ⊕ ψ2 ⊕ ψ3 ⊕ ρ1
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(xiii) ψ1 ⊕ ψ2 ⊕ ψ4 ⊕ ρ1

(xiv) ψ1 ⊕ ψ3 ⊕ ψ4 ⊕ ρ1

(xv) ψ2 ⊕ ψ3 ⊕ ψ4 ⊕ ρ1

(xvi) ψ1 ⊕ ψ2 ⊕ ψ3 ⊕ ψ4 ⊕ ρ1

(xvii) ρ2 ⊕ ρ1

(xviii) ψ1 ⊕ ρ2 ⊕ ρ1

(xix) ψ2 ⊕ ρ2 ⊕ ρ1

(xx) ψ3 ⊕ ρ2 ⊕ ρ1

(xxi) ψ4 ⊕ ρ2 ⊕ ρ1

(xxii) ψ1 ⊕ ψ2 ⊕ ρ2 ⊕ ρ1

(xxiii) ψ1 ⊕ ψ3 ⊕ ρ2 ⊕ ρ1

(xxiv) ψ1 ⊕ ψ4 ⊕ ρ2 ⊕ ρ1

(xxv) ψ2 ⊕ ψ3 ⊕ ρ2 ⊕ ρ1

(xxvi) ψ2 ⊕ ψ4 ⊕ ρ2 ⊕ ρ1

(xxvii) ψ3 ⊕ ψ4 ⊕ ρ2 ⊕ ρ1

(xxviii) ψ1 ⊕ ψ2 ⊕ ψ3 ⊕ ρ2 ⊕ ρ1

(xxix) ψ1 ⊕ ψ2 ⊕ ψ4 ⊕ ρ2 ⊕ ρ1

(xxx) ψ1 ⊕ ψ3 ⊕ ψ4 ⊕ ρ2 ⊕ ρ1

(xxxi) ψ2 ⊕ ψ3 ⊕ ψ4 ⊕ ρ2 ⊕ ρ1

(xxxii) ψ1 ⊕ ψ2 ⊕ ψ3 ⊕ ψ4 ⊕ ρ2 ⊕ ρ1

Observe that

Φ̃ρa(6) = Φρa(6)− Φρa(3)− Φρa(2)

= ⟨ρa, ρ2 ⊕ ψ3 ⊕ ψ4⟩ − ⟨ρa, ρ1 ⊕ ψ1 ⊕ ψ2⟩+ 1

Φ̃ρa(3) = Φρa(3) = ⟨ρa, ρ1⟩ − ⟨ρa, ψ3 ⊕ ψ4⟩

Φ̃ρa(2) = Φρa(2) = ⟨ρa, ρ1⟩ − ⟨ρa, ρ2⟩

By Theorem 3.7, the representations (ii), (iii), (vi), (vii), (viii), (xi), (xii),
(xiii), (xiv), (xv), (xvi), (xxii), (xxiii), (xxiv), (xxvii), (xxx), (xxxi), and
(xxxii) are not the analytic representation of any D6-action. More pre-
cisely: the cases (vii), (viii), (xxiii) and (xxiv) do not satisfy Statement
(1) of Theorem 3.7; the cases (ii), (iii), (vi), (xi), (xii), (xiii), (xiv), (xv),
(xvi), (xxii), (xxvii), (xxx), (xxxi) and (xxxii) do not satisfy Statement
(2) of Theorem 3.7; and the cases (vii) and (viii) do not satisfy State-
ment (6) of Theorem 3.7. The remaining statements of Theorem 3.7
hold in each case. We conclude that the remaining representations are
the analytic representation of some D6-action.

This ends the proof.

The following corollary is a quick consequence of the theorem above.

Corollary 4.2. If n ≥ 3 is different from 3, 4, and 6 then the group algebra
decomposition with respect to each action of Dn does not provide a complete
decomposition of the Jacobian.



CHAPTER 4. GROUP ALGEBRA DECOMPOSITION 61

A generalization of the Ekedahl-Serre problem

An interesting generalization of the Ekedahl-Serre problem involves seeking
decompositions of Jacobians where each subvariety in the decomposition has
the same dimension.

Definition 4.5. Let k be a nonnegative integer. An abelian variety is k-
decomposable if it is isogenous to a product of abelian varieties of dimension
k. We say that the product is a k-decomposition of JS.

Lemma 4.3. Let Dn act in genus g ≥ 2, and let ρa be the analytic represen-
tation of the action. For q ∈ Z|n \ {1, 2}:
(1) ⟨ρa, ρ1⟩ ≥ ⟨ρa, ρn/q⟩;

(2) dimB(n) ≥ 1;

(3) dimB(n) ≥ dimB(q);

(4) if dimB(n) = dimB(q) then q ∈ {n, n2 } for n ∈ 2Z \ 4Z, and q = n
otherwise.

Proof. Recall that dimB(q) = 1
2ϕ(q)⟨ρa, ρ

n/q⟩. To prove Statement (1) note

that Ψ̂θ(n) ≥ Ψ̂θ(n)− Ψ̂θ(
n
q ) and apply Theorem 2.1 and Theorem 2.2. State-

ment (2) follows from (1) and the fact that ϕ(n) ≥ ϕ(q). Statement (3) is a
quick consequence of Lemma 3.3.

Let us prove Statement (4). By (1) and (2) one has that dimB(n) =
dimB(q) if and only if ϕ(n) = ϕ(q) and ⟨ρa, ρ1⟩ = ⟨ρa, ρn/q⟩. To conclude, we
observe that ϕ(n) = ϕ(q) implies that n = q or n = 2q (for q odd).

Proposition 4.5. Let S be a compact Riemann surface of genus g ≥ 2 with a
Dn-action. If the group algebra decomposition of JS with respect to Dn yields
a k-decomposition of JS, then k = dimB(n) is a multiple of 1

2ϕ(n).

Proof. Assume that the group algebra decomposition yields a k-decomposition
of JS. Then, dimB(n) equals zero or k. By Lemma 4.3 one has that
dimB(n) ≥ 1 and hence k = dimB(n).

Theorem 4.6. Let n ≥ 3 be a positive integer, and let S be a compact Rie-
mann surface of genus g ≥ 2 with a Dn-action. For k ≥ 2, the group algebra
decomposition (with respect to Dn) provides a k-decomposition of JS if and
only if one of the following cases occurs.
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n genus g g/k signature geometric signature k-decomposition of JS

3 2m 2 (0; 2, 2, 3m+1) B(3)2

3m 3 (0; 22m+2, 3) B2 × B(3)2

4 2m 2 (0; 2m+2, 4) (0; ⟨s⟩, ⟨sr⟩, ⟨r2⟩m, ⟨r⟩) B(4)2

4m 4 (0; 22m+2, 4) (0; ⟨s⟩, ⟨sr⟩2m+1, ⟨r⟩) B2 × B3 × B(4)2

4m 4 (0; ⟨s⟩2m+1, ⟨sr⟩, ⟨r⟩) B2 × B4 × B(4)2

5 4m 2 (0; 2, 2, 5m+1) B(5)2

6 3 (0; 26) B2 × B(5)2

6 4m 4 (0; 2, 2, 3m, 6) (0; ⟨s⟩, ⟨sr⟩, ⟨r2⟩m, ⟨r⟩) B(3)2 × B(6)2

6m 6 (0; 22m+2, 6) (0; ⟨s⟩, ⟨sr⟩2m+1, ⟨r⟩) B2 × B3 × B(3)2 × B(6)2

6m 6 (0; ⟨s⟩2m+1, ⟨sr⟩, ⟨r⟩) B2 × B4 × B(3)2 × B(6)2

p (p − 1)m 2 (0; 2, 2, pm+1) B(p)2

pe pe−1(p − 1)m 2 (0; 2, 2, pm, (pe)) B(pe)2

pq (p − 1)(q − 1) 2 (0; 2, 2, p, q) B(pq)2

2e 2e−1m 2 (0; 2m+2, (2e)) (0; ⟨s⟩, ⟨sr⟩, ⟨r2
e−1

⟩m, ⟨r⟩) B(2e)2

2p p − 1 2 (0; 2, 2, 2, p) (0; ⟨s⟩, ⟨sr⟩, ⟨rp⟩, ⟨r2⟩) B(2p)2

2(p − 1)m 4 (0; 2, 2, pm, 2p), (0; ⟨s⟩, ⟨sr⟩, ⟨r2⟩m, ⟨r⟩) B(p)2 × B(2p)2

Here m is a positive integer; if n ∈ {3, 4, 5} then m ≥ 2. For the last five rows
of the table above we make, in descending order, the following assumptions:
(i) p ≥ 7 is prime; (ii) p ≥ 3 is prime and e ≥ 2; (iii) p, q ≥ 3 are distinct
primes; (iv) e ≥ 3; and (v) p ≥ 5 is prime. Also, for n = pe, we introduce
the notation (pe) to emphasize that the integer pe appears one time in the
signature. Similarly for n = 2e.

Proof. Let us first prove that if for some k ∈ Z+ the group algebra decompo-
sition (with respect to Dn) provides a k-decomposition of JS, then n is either
a prime power or the product of two primes.

Let ρa be the analytic representation of a Dn-action. Fix m = ⟨ρa, ρ1⟩,
which is a positive integer by Lemma 3.3. We proceed by contradiction. As-
sume that n is not a prime power nor the product of two primes. There are
two cases:

(1) Set n /∈ 2Z \ 4Z. By Lemma 4.3 one has that ⟨ρa, ρn/q⟩ = 0 for all
q ∈ Z|n \ {1, 2, n}. It follows that

Φρa(q) =


m− ⟨ρa, ψ1 ⊕ ψ2⟩+ 1, if (n, q) = n

m− ⟨ρa, ψ3 ⊕ ψ4⟩, if n is even and (n, q) = n
2

m, 1 < (n, q) < n
2

0, (n, q) = 1

If n is odd then there are distinct odd primes p1, p2 ∈ Z|n such that n ̸=
p1p2, hence Φ̃ρa(p1p2) = −m < 0. Thus, Statement (2) of Theorem 3.6
is not satisfied and therefore ρa is not the analytic representation of
a Dn-action, a contradiction. If n is even then there is an odd prime
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p ∈ Z|n such that n ̸= 2p, hence Φ̃ρa(2p) ≤ −m < 0. Similarly, we reach
a contradiction by Statement (2) of Theorem 3.7.

(2) Set n ∈ 2Z \ 4Z. Note that n
2 is odd. By Lemma 4.3 one has that

⟨ρa, ρn/q⟩ = 0 for all q ∈ Z|n \ {1, 2, n2 , n}, and ⟨ρa, ρ
2⟩ = 0 or m. It

follows that

Φρa(q) =



m− ⟨ρa, ψ1 ⊕ ψ2⟩+ 1, if (n, q) = n

m− ⟨ρa, ψ3 ⊕ ψ4⟩, if n is even and (n, q) = n
2

m, 2 < (n, q) < n
2

m− ⟨ρa, ρ2⟩, (n, q) = 2

0, (n, q) = 1

If there are distinct odd prime numbers p1, p2 ∈ Z|n, then Φ̃ρa(p1p2) < 0
and we conclude as in (1). Now, assume that n = 2pe for some odd
prime p and e ≥ 2. If e ≥ 3 then Φ̃ρa(2p

e−1) = −m < 0, a contradiction.
If e = 2 then n = 2p2, and

Φ̃ρa(2p
2) = ⟨ρa, ψ3 ⊕ ψ4⟩ − ⟨ρa, ψ1 ⊕ ψ2⟩+ 1−m,

Φ̃ρa(p
2) = −⟨ρa, ψ3 ⊕ ψ4⟩,

Φ̃ρa(2p) = ⟨ρa, ρ2⟩ −m,

Φ̃ρa(p) = m,

Φ̃ρa(2) = m− ⟨ρa, ρ2⟩.

We observe that Statement (2) of Theorem 3.7 tells us that Φ̃ρa(q) ≥ 0
for q ∈ {2p2, p2, 2p, p, 2}. Then, ⟨ρa, ψj⟩ = 0 for j = 1, . . . , 4, ⟨ρa, ρ2⟩ =
m and m = 1. However, lcm(Supp Φ̃ρa) = p ̸= 2p2, a contradiction by
Statement (4) of Theorem 3.7.

Now, if n ≥ 3 is a prime power or a product of two primes, then one of
the following cases occurs:

(1) n = 3,

(2) n = 4,

(3) n = 5,

(4) n = 6,

(5) n = p for p ≥ 7 prime,

(6) n = pe for p ≥ 3 prime and e ≥ 2,
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(7) n = pq for p, q ≥ 3 distinct primes,

(8) n = 2e for e ≥ 3,

(9) n = 2p for p ≥ 5 prime.

For each of the cases above, we will determine all the (geometric) sig-
natures of Dn whose associated group algebra decomposition provides a k-
decomposition of the Jacobian for some k ≥ 2.

Our approach will be to apply Theorem 3.6 and Theorem 3.7 to find all the
compatible analytic representations. Then, as in the proof of Theorem 4.5,
obtaining the (geometric) signature is a straightforward application of Propo-
sition 2.6 and Proposition 2.7.

Let ρa be the analytic representation of a Dn-action as above. Propo-
sition 4.5 states that k = 1

2ϕ(n)m with m = ⟨ρa, ρ1⟩ a positive integer.

Proposition 4.2 together with Lemma 4.3 imply that ⟨ρa, ρn/q⟩ = 0 for q ∈
Z|n \{1, 2, n}; unless n ∈ 2Z\4Z, in which case we can also have ⟨ρa, ρ2⟩ = m.
Moreover, by Theorem 3.6(3) and Theorem 3.7(3), ⟨ρa, (ρn/q)σ⟩ = ⟨ρa, ρ(n,h)⟩
for each element σ of the Galois group of ρn/q. In summary:

⟨ρa, ρh⟩ =


m, if (n, h) = 1,

0 or m, if n ∈ 2Z \ 4Z and (n, h) = n
2 ,

0, otherwise.

Also, by Proposition 4.2 one has that ⟨ρa, ψj⟩ = 0 or k. Finally, we recall that
W (q) = ⊕σ(ρn/q)σ.

(1) Assume that n = 3. In this case, k = m ≥ 2 and

Φ̃ρa(3) = m− ⟨ρa, ψ1 ⊕ ψ2⟩+ 1.

Statement (2) of Theorem 3.6 says that Φ̃ρa(3) ≥ 0. That is, ⟨ρa, ψ1 ⊕
ψ2⟩ ≤ m+ 1. Thus, either ⟨ρa, ψ1 ⊕ ψ2⟩ = 0 or m. By Statement (1) of
Theorem 3.6, which tells us that ⟨ρa, ψ2⟩+1 ≥ ⟨ρa, ψ1⟩, if ⟨ρa, ψ1⊕ψ2⟩ =
m then ⟨ρa, ψ1⟩ = 0 and ⟨ρa, ψ2⟩ = m. We conclude, by Theorem 3.6,
that the compatible analytic representations are:

(i) mW (3),

(ii) mψ2 ⊕mW (3).

By Proposition 3.6, the signature (γ; 2t, 3l) associated to ρa is given by

γ = ⟨ρa, ψ1⟩, t = 2⟨ρa, ψ2⟩ − 2⟨ρa, ψ1⟩+ 2, and l = Φ̃ρa(3).
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For instance, if ρa ∼= mW (3) then γ = 0, t = 2, and l = m + 1. We
conclude that the representations above have signatures (0; 2, 2, 3m+1)
and (0; 22m+2, 3), respectively.

(2) Assume that n = 4. Then, k = m ≥ 2 and

Φ̃ρa(4) = ⟨ρa, ψ3 ⊕ ψ4⟩ − ⟨ρa, ψ1 ⊕ ψ2⟩+ 1,

Φ̃ρa(2) = m− ⟨ρa, ψ3 ⊕ ψ4⟩.

Statement (2) of Theorem 3.7 requires that Φ̃ρa(4), Φ̃ρa(2) ≥ 0. In par-
ticular, ⟨ρa, ψ3 ⊕ ψ4⟩ ≤ m. If ⟨ρa, ψ3 ⊕ ψ4⟩ = 0 then ⟨ρa, ψ1 ⊕ ψ2⟩ = 0,
because Φ̃ρa(4) ≥ 0. By Statement (1) of Theorem 3.7, which says that
⟨ρa, ψ2⟩ + 1 ≥ ⟨ρa, ψ1⟩ + m, if ⟨ρa, ψ3 ⊕ ψ4⟩ = m then ⟨ρa, ψ1⟩ = 0
and ⟨ρa, ψ2⟩ = m. We conclude, by Theorem 3.7, that the compatible
analytic representations are:

(i) mW (4),

(ii) mψ2 ⊕mψ3 ⊕mW (4),

(iii) mψ2 ⊕mψ4 ⊕mW (4).

By Proposition 2.3, the geometric signature (γ; ⟨s⟩a, ⟨sr⟩b, ⟨r2⟩l1 , ⟨r⟩l2)
associated to ρa is given by

γ = ⟨ρa, ψ1⟩,
a = ⟨ρa, ψ2 ⊕ ψ4⟩ − ⟨ρa, ψ1 ⊕ ψ3⟩+ 1,

b = ⟨ρa, ψ2 ⊕ ψ3⟩ − ⟨ρa, ψ2 ⊕ ψ4⟩+ 1,

l1 = Φ̃ρa(2),

l2 = Φ̃ρa(4).

For instance, if ρa ∼= mψ2⊕mψ3⊕mW (4) then γ = 0, a = 1, b = 2m+1,
l1 = 0, and l2 = 1. We conclude that the representations above have
geometric signatures (0; ⟨s⟩, ⟨sr⟩, ⟨r2⟩m, ⟨r⟩), (0; ⟨s⟩, ⟨sr⟩2m+1, ⟨r⟩), and
(0; ⟨s⟩2m+1, ⟨sr⟩, ⟨r⟩), respectively. Henceforth, we omit the (geometric)
signature computations.

(3) Assume that n = 5. Then, k = 2m and

Φ̃ρa(5) = m− ⟨ρa, ψ1 ⊕ ψ2⟩+ 1.

Statement (2) of Theorem 3.6 says that Φ̃ρa(5) ≥ 0. If m ≥ 2 then
⟨ρa, ψ1 ⊕ ψ2⟩ = 0. On the other hand, if m = 1 then ⟨ρa, ψ1 ⊕ ψ2⟩ ≤
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k = 2. Thus, by Statement (1) of Theorem 3.6, which tells us that
⟨ρa, ψ2⟩ + 1 ≥ ⟨ρa, ψ1⟩, one has that ⟨ρa, ψ1 ⊕ ψ2⟩ = 0, or ⟨ρa, ψ1⟩ = 0
and ⟨ρa, ψ2⟩ = 2. We conclude, by Theorem 3.6, that the compatible
analytic representations are:

(i) mW (5),

(ii) 2ψ2 ⊕W (5).

(4) Assume that n = 6. Then, k = m ≥ 2 and

Φ̃ρa(6) = ⟨ρa, ψ3 ⊕ ψ4 ⊕ ρ2⟩ − ⟨ρa, ψ1 ⊕ ψ2⟩ −m+ 1,

Φ̃ρa(3) = m− ⟨ρa, ψ3 ⊕ ψ4⟩,

Φ̃ρa(2) = m− ⟨ρa, ρ2⟩.

Statement (2) of Theorem 3.7 requires that Φ̃ρa(q) ≥ 0 for q = 2, 3, 6.

In particular, as Φ̃ρa(3) ≥ 0, ⟨ρa, ψ3 ⊕ ψ4⟩ ≤ m. If ⟨ρa, ψ3 ⊕ ψ4⟩ = 0

then ⟨ρa, ψ1 ⊕ ψ2⟩ = 0, and ⟨ρa, ρ2⟩ = m, because Φ̃ρa(6) ≥ 0. Now,
if ⟨ρa, ψ3 ⊕ ψ4⟩ = m then ⟨ρa, ψ1⟩ = 0, ⟨ρa, ψ2⟩ = k and ⟨ρa, ρ2⟩ =
k. Indeed, this is a consequence of Φ̃ρa(6) ≥ 0 and Statement (1) of
Theorem 3.7, which says that ⟨ρa, ψ2⟩+1 ≥ ⟨ρa, ψ1⟩+m. We conclude,
by Theorem 3.7, that the compatible analytic representations are:

(i) mW (3)⊕mW (6),

(ii) mψ2 ⊕mψ3 ⊕mW (3)⊕mW (6),

(iii) mψ2 ⊕mψ4 ⊕mW (3)⊕mW (6).

(5) Assume that n = p for p ≥ 7 prime. Then, k = 1
2(p− 1)m ≥ 3m and

Φ̃ρa(p) = m− ⟨ρa, ψ1 ⊕ ψ2⟩+ 1.

Statement (2) of Theorem 3.6 says that Φ̃ρa(p) ≥ 0. In other words,
⟨ρa, ψ1 ⊕ ψ2⟩ ≤ m + 1. Since ⟨ρa, ψj⟩ = 0 or k ≥ 3m, it follows that
⟨ρa, ψ1 ⊕ ψ2⟩ = 0. We conclude, by Theorem 3.6, that the compatible
analytic representations are:

(i) mW (p).
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(6) Assume that n = pe for p ≥ 3 prime and e ≥ 2. Then, k = 1
2ϕ(p

e)m ≥
3m and

Φ̃ρa(p
e) = 1− ⟨ρa, ψ1 ⊕ ψ2⟩,

Φ̃ρa(p
j) = 0 for 1 < j < e,

Φ̃ρa(p) = m.

As before, Statement (2) of Theorem 3.6 implies that ⟨ρa, ψ1 ⊕ψ2⟩ = 0.
We conclude, by Theorem 3.6, that the compatible analytic representa-
tions are:

(i) mW (pe).

(7) Assume that n = pq for p, q ≥ 3 distinct primes. Then, we have that
k = 1

2(p− 1)(q − 1)m ≥ 4m and

Φ̃ρa(pq) = 1−m− ⟨ρa, ψ1 ⊕ ψ2⟩,

Φ̃ρa(p) = m,

Φ̃ρa(q) = m.

By Statement (2) of Theorem 3.6, which requires that Φ̃ρa(pq) ≥ 0, one
has that m = 1 and ⟨ρa, ρ1 ⊕ ψ2⟩ = 0. We conclude, by Theorem 3.6,
that the compatible analytic representations are:

(i) W (pq).

(8) Assume that n = 2e for e ≥ 3. Then, k = 2e−2m ≥ 2m and

Φ̃ρa(2
e) = ⟨ρa, ψ3 ⊕ ψ4⟩ − ⟨ρa, ψ1 ⊕ ψ2⟩+ 1,

Φ̃ρa(2
e−1) = −⟨ρa, ψ3 ⊕ ψ4⟩,

Φ̃ρa(2
j) = 0 for 1 < j < e− 1,

Φ̃ρa(2) = m.

Statement (2) of Theorem3.7 says that Φ̃ρa(q) ≥ 0 for q ∈ Z|2e \ {1}.
Since Φ̃ρa(2

e−1) ≥ 0 it follows that ⟨ρa, ψ3 ⊕ ψ4⟩ = 0. Also, ⟨ρa, ψ1 ⊕
ψ2⟩ = 0 because Φ̃ρa(2

e) ≥ 0. We conclude, by Theorem 3.7, that the
compatible analytic representations are:

(i) mW (2e).
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(9) Assume that n = 2p for p ≥ 5 prime. Then, k = 1
2(p− 1)m ≥ 2m and

Φ̃ρa(2p) = ⟨ρa, ψ3 ⊕ ψ4 ⊕ ρ2⟩ − ⟨ρa, ψ1 ⊕ ψ2 ⊕ ρ1⟩+ 1

Φ̃ρa(p) = ⟨ρa, ρ1⟩ − ⟨ρa, ψ3 ⊕ ψ4⟩

Φ̃ρa(2) = ⟨ρa, ρ1⟩ − ⟨ρa, ρ2⟩

Statement (2) of Theorem 3.7 says that Φ̃ρa(q) ≥ 0 for q = 2, p, 2p.

Since Φ̃ρa(p) ≥ 0 and k ≥ 2m, it follows that ⟨ρa, ψ3 ⊕ ψ4⟩ = 0. Also,

⟨ρa, ψ1 ⊕ ψ2⟩ = 0 because Φ̃ρa(2p) ≥ 0. Moreover, if ⟨ρa, ρ2⟩ = 0 then
m = 1. We conclude, by Theorem 3.7, that the compatible analytic
representations are:

(i) W (2p),

(ii) mW (p)⊕mW (2p) for m ≥ 1.

This concludes the proof.

The following is a quick corollary of the previous theorem.

Corollary 4.3. For k ≥ 2, if n is neither a prime power nor the product of
two primes, then the group algebra decomposition (with respect to any action
of Dn) does not provide a k-decomposition of the Jacobian.
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