
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
ESCUELA DE POSTGRADO Y EDUCACIÓN CONTINUA
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

SELF-SUPERVISED LEARNING ON 3D REPRESENTATIONS

TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS, MENCIÓN COMPUTACIÓN

MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERO CIVIL EN COMPUTACIÓN

LUCAS OYARZÚN MÉNDEZ

PROFESOR GUÍA:
IVÁN SIPIRAN MENDOZA

PROFESOR CO-GUÍA:
JOSÉ SAAVEDRA RONDO

MIEMBROS DE LA COMISIÓN:
JUAN BARRIOS NUÑEZ

FELIPE BRAVO MÁRQUEZ
RICARDO ÑANCULEF ALEGRÍA

Este trabajo ha sido parcialmente financiado por:
ANID FONDECYT GRANT 11220211

SANTIAGO DE CHILE
2024



RESUMEN DE LA TESIS PARA OPTAR
AL TÍTULO DE MAGÍSTER EN CIENCIAS,
MENCIÓN COMPUTACIÓN
AL TÍTULO DE INGENIERO CIVIL EN COMPUTACIÓN
POR: LUCAS OYARZÚN MÉNDEZ
FECHA: 2024
PROF. GUÍA: IVÁN SIPIRAN

APRENDIZAJE AUTOSUPERVISADO SOBRE REPRESENTACIONES 3D

La creciente accesibilidad de los datos de nubes de puntos 3D ha acelerado el desarrollo de
métodos de aprendizaje profundo para su análisis y procesamiento. Sin embargo, la eficacia
de las redes neuronales en este campo se ve a menudo obstaculizada por la necesidad de
amplios conjuntos de datos, cuya creación es costosa y laboriosa. Esta tesis explora el marco
de las redes siamesas como estrategias de preentrenamiento para redes neuronales en nubes
de puntos 3D. Aunque estos métodos han demostrado resultados en el preentrenamiento de
redes neuronales 2D, su estudio en el contexto de datos 3D es relativamente reciente.

Nuestra investigación propone la aplicación de técnicas de entrenamiento basadas en redes
siamesas, como BYOL o SIMSIAM, a los codificadores de las principales redes neuronales
diseñadas para el procesamiento de nubes de puntos 3D. Estos regímenes de preentrenamiento
permiten a los codificadores generar representaciones de datos sin depender de etiquetas, lo
que puede mejorar el rendimiento de la red en tareas posteriores como la clasificación, la
segmentación y el reconocimiento de objetos en entornos urbanos, mejorando así la fiabilidad
de los vehículos autónomos en escenarios complejos.

También se experimentó sobre un enfoque alternativo: sustituir el conjunto de datos de
preentrenamiento convencional del estado del arte por SimpleShape, un conjunto de datos
creado artificialmente. Este enfoque se inspira en el concepto de aprendizaje supervisado
basado en fórmulas. Nuestro estudio pretende investigar la eficacia de este enfoque sobre
nubes de puntos 3D. Los resultados indican que incluso una versión simplificada de este
conjunto de datos puede producir resultados competitivos frente a las pruebas de referencia
actuales, a pesar de no estar diseñado específicamente para el preentrenamiento de nubes de
puntos 3D.

La eficacia de estas representaciones adquiridas se evaluó utilizando métricas de evalu-
ación estándar en el campo. La precisión de la clasificación obtenida en el conjunto de datos
ScanObjectNN en su variante OBJ-BG fue del 94,15%. En la prueba comparativa de apren-
dizaje de few-shot en Model-Net40 5w10s, la precisión fue del 97,1%, y en ModelNet40 5w20s,
del 98,8%. Con estos resultados, los marcos de trabajo propuestos superan los resultados del
estado del arte en estas pruebas comparativas. El código desarrollado e implementado a
efectos de esta investigación se encuentra disponible en
https://github.com/LucasOyarzun/Point_Simsiam.

i

https://github.com/LucasOyarzun/Point_Simsiam


ABSTRACT OF THE THESIS TO APPLY FOR
THE DEGREE OF MASTER IN SCIENCES,
MENTION IN COMPUTER SCIENCE
THE DEGREE OF CIVIL COMPUTER ENGINEER
BY: LUCAS OYARZÚN MÉNDEZ
YEAR: 2024
THESIS ADVISOR: IVÁN SIPIRAN

SELF-SUPERVISED LEARNING ON 3D REPRESENTATIONS

The increasing accessibility of 3D point cloud data has accelerated the development of deep
learning methods for its analysis and processing. However, neural networks’ effectiveness in
this field is often hindered by the need for extensive labeled datasets, which is both costly and
labor-intensive. This thesis explores Siamese network frameworks as pre-training strategies
for neural networks on 3D point clouds. While these methods have demonstrated exceptional
results in 2D neural network pre-training, their study in the context of 3D point clouds is
relatively recent.

Our research proposes the application of training techniques based on Siamese networks,
such as BYOL or SIMSIAM, to the encoders of leading neural networks designed for 3D
point cloud processing. These pre-training regimes enable the encoders to generate data rep-
resentations adeptly without relying on labels, potentially bolstering network performance
in downstream tasks like classification, segmentation, and object recognition in urban envi-
ronments, thereby enhancing the reliability of autonomous vehicles in complex scenarios.

An alternative approach was experimented with: substituting the conventional pre-training
dataset in current state-of-the-art models with SimpleShape, an artificially created dataset.
This approach is inspired by the concept of formula-driven supervised learning. Our study
aims to investigate the effectiveness of this approach. The results indicate that even a sim-
plified version of this dataset can produce competitive results against current benchmarks,
despite not being specifically tailored for 3D point cloud pre-training.

The effectiveness of these acquired representations was evaluated using well-established
evaluation metrics. The classification accuracy achieved on the ScanObjectNN dataset
under its OBJ-BG variant was 94.15%. On the few-shot learning benchmark on Model-
Net40 5w10s, the accuracy was 97.1%, and on ModelNet40 5w20s, it was 98.8%. With
these results, the proposed frameworks surpass the state-of-the-art results in these bench-
marks. The code developed and implemented for the purpose of this research is available at
https://github.com/LucasOyarzun/Point_Simsiam.
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Chapter 1

Introduction

Neural networks, often referred to as artificial neural networks (ANNs) [1], are computa-
tional models inspired by the intricate workings of the human human brain in its decision-
making processes. These networks are composed of multiple interconnected units called
neurons that work together to acquire knowledge and make predictions. Neural networks
can learn in a variety of ways, including supervised, self-supervised, or unsupervised learn-
ing. The extensive research and study of these networks forms the basis of the burgeoning
field of deep learning (DL) [2].

Deep learning models are known for their need for large amounts of data compared to
other machine learning methods, high computational complexity, lack of interpretability of
their predictions, and excellent performance on complex machine learning problems that
require learning patterns and representations of the objects under study [3]. These models
have made significant advances in tasks such as classification, segmentation, object detection,
object reconstruction, text translation, and text generation, especially in 2D image space,
natural language processing, and 3D space.

In recent years, significant advances in technology have led to the development of modern
techniques and devices capable of capturing the three-dimensional shapes of various objects
[4, 5]. These three-dimensional representations serve as valuable inputs for computational
algorithms to analyze and understand. Our research is specifically focused on the application
of neural networks for pattern and entity recognition in 3D point clouds, due to their growing
importance in fields such as robotics, virtual reality, and the automotive industry [6–9].

1.1. Point clouds learning

Point clouds are a common three-dimensional representation used in computer vision and
robotics. They are composed of points in 3D space, each representing a location in the
captured scene. These points can be generated using various sensing modalities, including
LiDAR, depth sensors, or structured light scanners. In practical applications, point clouds
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are a crucial input for algorithms that detect, classify, segment, and reconstruct objects.

The unstructured nature of point clouds presents significant computational challenges.
Effective processing requires specialized algorithms that can handle issues such as noise,
missing data, and variations in point density. Despite the challenges, point clouds are a
valuable resource that provide detailed insight into the geometry and spatial relationships
of objects in their environment. This rich source of information makes them indispensable
in a wide range of applications, and they are a central tool for understanding and analyzing
complex three-dimensional scenes.

1.2. Self-supervised learning

The availability of 3D data for neural network training is increasing, with well-known
datasets such as ShapeNet [10], ModelNet [11], and ScanNet [12] gaining recognition. Deep
learning research demands significant amounts of data, and the existence of rich and diverse
datasets is crucial in enabling the training of neural networks with exceptional capabilities
to tackle complex tasks.

However, obtaining new data samples presents significant challenges. Manual labeling
of 3D data is a resource-intensive and time-consuming process, which limits dataset expan-
sion. Furthermore, point clouds are unstructured and have variable point density, unlike the
structured pixel grids of 2D images with a fixed distribution at each point. The inherent
characteristic of point clouds makes it challenging for neural networks to extract and learn
features from three-dimensional representations effectively.

To overcome the challenge of manually annotating datasets, self-supervised learning (SSL)
techniques can differentiate records based on the points themselves, eliminating the need
for manual labeling. This differentiation among samples enables models to learn features
independently and transfer their knowledge to other networks responsible for subsequent
classification or segmentation tasks.

Supervised machine learning is a systematic process that trains a model to represent a
function y′ = f(x) using a dataset Ds = {x

(s)
i , y

(s)
i }N

i=1, enabling the model to predict y′ values
for new, previously unknown samples of x. In the context of deep learning, the predictive
model consists of a feature extractor function hθ, known as the backbone, and a task-specific
head function gΦ, known as the head network, which together compose f(x) = gΦ(hθ(x)).
The model then adjusts hθ and gΦ to minimize a loss function L, such as the negative log-
likelihood of Equation (1.1), as described by Ericsson L. et al. [13].

arg min
θ,Φ

∑
L(gΦ(hθ(xs

i ), ys
i ) (1.1)

The self-supervised learning process revolves around the creation of pseudo-labels for a
dataset D = {xi}M

i=1, with a size of M . It starts with a pre-training neural network, which is

2



primarily focused on an initial task known as a pretext task, denoted as P . This pretext task
generates pairs of data points {xi, zi}M

i=1 = P (D). Subsequently, a new network, represented
as kγ(hθ(.)), is trained to predict the value z from its corresponding pair x. Once the training
of this model is completed, a knowledge transfer step is performed to extract the parameters
θ∗ of the Equation (1.1). These extracted parameters are then transferred to start the training
of a new deep learning architecture, represented as gΦ(hθ∗(.)), which is intended to perform
various subsequent tasks, as mentioned above. The process of self-monitored pre-training,
knowledge transfer, and the development of subsequent tasks is visually illustrated in Figure
1.1

Figure 1.1: Transfer learning process. The pre-training model performs
a pre-training task in which it learns θ∗ parameters that it will transfer
as initial parameters to the subsequent model to initiate its training and
achieve the target prediction task.

Given the tasks of machine learning in the domain of three-dimensional models, the chal-
lenges involved, and the growing demand for high-quality and large datasets, it is important
to implement efficient and effective self-supervised machine learning methods.

Understanding 3D scenes is essential for various tasks, such as robotic grasping and self-
driving navigation [14–16]. However, most approaches to this challenge are fully supervised,
meaning they heavily rely on annotated 3D data. This process is often time-consuming and
resource-intensive.

Recent advances in 3D self-supervised learning have focused on autoencoders [17–20]. In
autoencoders, an unsupervised approach, the model learns to represent data features through
two main networks: an encoder and a decoder. The encoder network transforms the complex
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raw point cloud input into a compact coded representation, which the decoder then attempts
to invert. During each training step, the decoder attempts to reconstruct the input sample
while optimizing the architectural parameters. A notable variant of autoencoders are masked
autoencoders [15, 21–26], which incorporate initial masking transformations that effectively
hide certain data from the input. This technique encourages the auto-encoder to learn the
features of the object from the masked version of the sample, and then recreate the original
shape of the point cloud before the masking process.

Additional self-supervised deep learning techniques, such as BYOL [27] and SIMSIAM[28],
prioritize contrastive learning and achieve remarkable results on image-related tasks using
simpler neural network architectures. This is in contrast to many state-of-the-art proposals
that rely on complex compositions of transformational models. However, not enough work
has been done to replicate the advances of Siamese networks with three-dimensional data.

1.3. Synthetic datasets

In addition to developing novel self-supervised learning models and techniques, one way
to enhance representation learning is to acquire new datasets for pre-training tasks. As
previously mentioned, ShapeNet is the primary dataset for pre-training networks. However,
recent developments, such as the introduction of the SimpleShape dataset [29], a synthetic
dataset created from closed planar curves used as the directrices of cylinders and cones,
provide a promising alternative for research and experimentation.

SimpleShape has the advantage of being a synthetic dataset that can be easily extended as
needed, making it a convenient source of samples for pre-training neural networks. Since the
focus of this work is to improve representation learning of 3D shapes, this artificial dataset
can serve as input to a training pipeline.

In this context, a point MAE model [23] was trained using different versions of Simple-
Shape with different sample sizes ranging from 1000 to 100,000. If these experiments yield
results similar to or better than those obtained from pre-training with ShapeNet, it would
open the possibility of considering synthetic datasets as a valuable addition to the pre-training
process.

The goal of this research is to create an experimental approach that uses self-supervised
learning techniques to generate 3D representations from unlabeled datasets. These repre-
sentations are then used to improve classification and segmentation tasks. Our proposed
approach incorporates architectures inspired by SIMSIAM and BYOL, which are specifically
designed to optimize efficiency and outperform current state-of-the-art methods by reducing
data requirements, resource consumption, and training time.

In addition, we expect that achieving competitive results with SimpleShape pre-training
will stimulate the adoption of synthetic datasets in self-supervised learning, thereby expand-
ing the potential of pre-training with copyright-free samples.
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1.4. Document structure

The following is the structure of this thesis:

1. A complete review of the state of the art related to self-supervised learning on 3D point
clouds is presented in Chapter 2.

2. The methodology is described in Chapter 3, where the problem statement, research
questions, hypothesis, and goals are found.

3. The models proposed in this thesis are presented in Chapter 4. The subsequent Chap-
ters describes the datasets (5) and evaluation metrics (6) to be employed in the experiments
in Chapter 7. Finally, the results and analysis of the experiments in Chapter 8, as well as
the general conclusions in Chapter 9.
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Chapter 2

Related work

This chapter provides an in-depth review of the state of the art in 3D point cloud deep
learning. First, work on point cloud learning in general (2.1) is summarized, describing the
main networks for this type of data and their respective encoders. Then, the literature related
to self-supervised learning based on autoencoders and Siamese networks is described, ending
with an analysis of the works that combine both ideas in the field of self-supervised learning
on 3D point clouds and the research gap in this area of study.

2.1. Point cloud learning

Point cloud learning is the study of 3D point clouds, developing deep learning models
that can understand their shapes and structures. Several methods have been developed to
address the main challenges of working with point clouds, such as permutation invariance,
noise, variable densities, and the limited number of samples available for training.

Point clouds typically consist of spatial data represented by a set of points with three
variables. Additional data such as color, normals, and labels may also be included. The goal
is to create general models for these types of clouds that can work with spatial data alone,
using other features only when necessary.

One of the major challenges in developing methods for point clouds is the lack of data,
unlike images, which have datasets such as ImageNet [30, 31] with 14M annotated images,
CIFAR-10 and CIFAR-100 [32] with 60K annotated images, COCO [33] with 328K anno-
tated images, and IMDB-Wiki [34] with more than 500K images. The most commonly used
point cloud datasets are ModelNet40 [11] with 12K objects, ShapeNet [10] with 50K objects,
ScanObjectNN [35] with 3K objects, ScanNet [12] with 15K frames, and KITTI [36], also
with 15K frames.

The scarcity of large amounts of available labeled data adds to the inherent challenges of
point clouds, which, unlike images, have areas of varying density and more sparse zones. This
complicates learning, as methods must be able to relate points globally or locally, focusing
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attention on the most descriptive areas of the object, which may be very small and dense, or
very large with few points.

Guo, Yulan et al. [37] describe in detail the various current proposals for point cloud
learning. For classification tasks, methods typically work by learning an embedding for each
point in the cloud and then forming a global embedding for the entire shape by aggregating
the previous embeddings. The resulting embedding is then used as input to fully connected
layers that determine the class to which the method considers the object to belong. These
methods can be divided into multi-view based, volumetric based, and point based methods.

Multi-view based methods, as the name suggests, generate different 2D views by projecting
the object onto planes around it. From these views, they extract an embedding from each view
and aggregate them to perform the final classification. MVCNN [38] was the first model of this
technique, which simply combines the embeddings by max-pooling. In addition, several works
use this technique, including models that exploit the integration of convolutional features [39]
or aggregate data using graph convolutions [40].

Volumetric-based methods enclose the point cloud in 3D meshes and then apply 3D or 2D
convolutional nets to each plane. VoxNet [41] followed this idea with a volumetric occupancy
network model. However, a major problem with these methods is scalability, as computation
and memory grow cubically with the grid resolution. For this reason, later methods have
proposed using octrees as a specialized data structure for 3D networks [42, 43]. Finally,
there are convolutional occupancy networks [44], which instead of using 3D grids in their
convolutions, use three 2D planes to extract features from the object, one plane for each axis.

Point-based methods work directly on the input point cloud. They model each point in the
cloud using common Multi-Layer Perceptron (MLP) layers, and then aggregate the features
obtained for each point into a global feature for the entire object. PointNet [45] introduced
this technique, achieving permutation invariance of the features of each point by aggregating
the points with a symmetric function. PointNet++ [46] followed the same idea, but added
point features at different levels, allowing it to learn information about local structures in
shapes.

Xu Ma et al. [47] point out that “most 3D point cloud applications are still based on the
simple PointNet (and PointNet++) or voxel-based methods. This is because sophisticated
extractors that explore fine geometric properties have recently been developed. However, due
to their computational complexity and memory requirements, they reduce the efficiency in
natural scene applications. There are three categories of point cloud representation models:
convolution-based, graph-based, and attention-based.

As mentioned earlier, convolution-based methods extract point features by enclosing them
in 2D or 3D grids and then applying convolution operations. On the other hand, graph-based
methods connect the points in the cloud through graphs, considering each point as a vertex
and generating directed edges between them. Graph features are obtained by typical graph-
based networks, as shown in the Figure 2.2, which represents the basic operation of DGCNN
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[48]. In this way, features are obtained by grouping features by point neighborhoods, a similar
approach to PointNet++.

One of the most relevant works in this area is DGCNN [48], which constructs a graph in
the feature space and dynamically updates it after each layer. It uses MLP as the learning
function on the edges and applies channel-wise symmetric aggregation to obtain neighbor-
hood features. New methods have emerged from this work, focusing on improving DGCNN,
relating hierarchical features of each layer [49], building autoencoders [50, 51], simplifying
aggregation [52], and reducing model runtime [53].

In terms of attention-based models, the PointTransformer [54] was created inspired by
the Transformer [55] models, which have achieved excellent results in natural language pro-
cessing and image processing tasks. Zhao et al. [54] mention that while there were already
models that used attention mechanisms to process point clouds [56–59], these models applied
attention to the entire cloud, which required excessive computation, making them inapplica-
ble for learning large 3D scenes. A key advantage of PointTransformer was that it applied
self-attention locally, allowing it to scale to large 3D scenes.

Xu Ma et al. [47] introduce Point-MLP, a new model based solely on MLP operations, sim-
ilar to PointNet and PointNet++. It is a residual feedforward MLP network that aggregates
local features extracted by hierarchical MLPs, to which they add a lightweight geometric
affine module that transforms the points into a normal distribution. Although their model
achieves excellent results, it uses a large number of parameters (12.6M). Therefore, they also
present an elite version of Point-MLP with much fewer parameters (0.68M), which achieves
similar results with reduced training and inference time.

While these models are known for their point cloud classification version, they have direct
applications in other tasks such as segmentation. This can be done by simply changing the
network header to a segmentation header, or by more complex mechanisms such as linking the
header to previous layers. The working methods of the PointNet, DGCNN, PointTransformer,
and Point-MLP models are described below.
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2.1.1. PointNet
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Figure 2.1: PointNet architecture. The network takes as input a set of
N points from a given point cloud. The network is designed to perform
both sample and feature transformations, which are then aggregated using
a max-pooling strategy. This process facilitates the network’s ability to
produce a classification score for c different classes. Building on the basic
classification network, the segmentation network is extended to integrate
both global and local features through concatenation. In this architecture,
‘mlp’ denotes multi-layer perceptrons, with the subsequent layer sizes given
in parentheses. To ensure stability and improve convergence during training,
batch normalization is applied across all layers in conjunction with the ReLU
activation function.

PointNet [45] focuses on adapting to three main properties of point sets in Rn. These are
invariance to affine transformations such as rotation and translation of all points, invariance
to permutation of the input points, and interaction between nearby points.

The complete network is shown in Figure 2.1. It contains two T-Net [60] networks at the
beginning, the first of which is responsible for aligning the point cloud to a canonical space,
while the second aligns the point features in later stages of the process. The purpose of these
networks is to make the model invariant to affine transformations, like point clouds. As a
result, PointNet achieves better performance in classification tasks on ModelNet40.

To extract features from point clouds, we mainly use shared multilayer perceptron (MLP)
layers, which transform the cloud of N points with dimension N × 3 into a d dimensional
space N × d. For classification, a symmetric function, specifically max pooling, is applied
over the features, resulting in a global feature embedding of dimension N . Since max pooling
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is a symmetric function, it ensures that the model is invariant to permutations among the
points; the result remains unchanged if the points are permuted.

In the case of segmentation, the N vectors of d dimensions are concatenated with the
global feature vectors of d dimensions. This results in a feature matrix that includes both
the local information extracted before max-pooling and the global information extracted by
max-pooling. Both headers are then terminated with MLP layers, which are responsible for
generating the output scores for the target task.

While PointNet lacks features that other models include, such as capturing hierarchical
features through neighborhoods as PointNet++ [46] does, it remains one of the most widely
used networks when working with point clouds. This is due to its ease of implementation,
competitive results, and modest computational and memory requirements.

2.1.2. DGCNN

Figure 2.2: Left: Edge feature computation. This illustration shows
the computation of an edge feature eij from a pair of points xi and xj . The
function hΘ() denotes the edge features computed over a fully connected
layer. Right: The EdgeConv operation. This operation aggregates
the edge features for each edge starting at point xi. Image extracted from
DGCNN [48] description.

DGCNN [48] introduces the ability to recover geometric relationships between points, an
aspect that PointNet lacks due to its methodology of extracting features from points inde-
pendently. They propose an operation called EdgeConv, which generates features through
edges that describe the relationship between each point and its neighbors. This operation is
invariant to the order of neighbors, allowing for permutation invariance in the point cloud.

First, a directed graph of neighborhoods is computed, where each point is connected
to its K nearest neighbors. Edges connect the points, and edge features are defined as a
function of trainable parameters. EdgeConv is then defined as a channel-wise symmetric
aggregation operation applied to each point, aggregating its corresponding K edge features.
This operation, shown in Figure 2.2, is implemented as a layer of shared MLPs, similar to
the components of PointNet.
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The graphs needed to compute EdgeConv are dynamically created in feature space after
each layer. The network learns how to construct these graphs, with a different graph for each
layer. The implementation involves computing a pairwise distance matrix and grouping the
K nearest neighbors for each point in the feature space.
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Figure 2.3: DGCNN architecture. The network consists of a spatial
transformation module that aligns the input to a canonical space. Fea-
tures are then extracted and aggregated at the end of the network for seg-
mentation (bottom) and classification (top). The symbol ⊕ denotes the
concatenation operation. For segmentation tasks, the architecture further
incorporates data from the categorical vector of the dataset and concate-
nates the global feature with local features from previous layers.

For classification tasks, the upper branch of Figure 2.3 is followed, using four EdgeConv
layers working with K = 20 neighbors for each point. Fully connected layers are inter-
spersed between the EdgeConv layers to extract features. The features from these layers are
concatenated, and a fully connected layer with max pooling is applied to obtain the global
features of the point cloud. This is processed through two fully connected layers to obtain a
c dimensional vector of classification scores.

For segmentation, the architecture is modified by adding EdgeConv layers to the model
and concatenating the global features with local features from previous layers, similar to
PointNet. In addition, they incorporate the categorical vector containing ShapeNetPart [61],
the dataset on which segmentation is performed.
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2.1.3. PointTransformer

N
 x

 3

O
u

tp
u

t 
sc

or
es

c

mlp(c)

Global
AvgPooling

O
u

tp
u

t 
sc

or
es

N x M

mlp(M)

N
 x

 3
2

mlp(32)

N
/4

 x
 6

4

N
/1

6 
x 

12
8

N
/6

4
 x

 2
56

N
/2

56
 x

 5
12

N
/2

56
 x

 5
12

N
/6

4
 x

 2
56

N
/1

6 
x 

12
8

N
/4

 x
 6

4

N
 x

 3
2

𝑁
1

x 
f

Li
n

ea
r

p
ro

j

Point Transformer Block Transition Down

Segmentation network

Classification network

Li
n

ea
r

p
ro

j

Po
in

tT
ra

n
sf

o
rm

er
La

ye
r

𝑁
2

x 
f

Transition Up

𝑁
1

x
f 1

Fa
rt

h
es

t 
Po

in
t

Sa
m

p
le

Lo
ca

l m
ax

p
o

o
lin

g

K
N

N
, m

lp

𝑁
2

x
f 2

𝑁
1

x
f 1

𝑁
2

x
f 2

Li
n

ea
r

p
ro

j

su
m

m
a�

o
n

In
te

rp
o

la
�

o
n

𝑁
3

x
f 2

Li
n

ea
r

p
ro

j

mlp(512)

MLP

Figure 2.4: PointTransformer architecture. The network consists of
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encoding and ‘transition up’ blocks for decoding. It consists entirely of
transformer layers, pointwise transformations, and pooling operations.

𝑁
1

x 
f

Li
n

ea
r

p
ro

j

Point Transformer Layer

Li
n

ea
r

p
ro

j

ag
gr

eg
a�

o
n

𝑁
2

x 
f

mlp

mlp

Figure 2.5: PointTransformer Layer. This is a self-attention layer ap-
plied to an input of N1 points, each with f features. It performs linear
projections and MLP layers on each input point with respect to its k near-
est neighbors.

12



The PointTransformer [54] uses the capabilities of self-attention networks to perform clas-
sification and segmentation tasks on 3D point clouds. These networks are particularly suited
for this type of input because self-attention operates as a set operator, i.e. it is invariant to
the permutation of elements. This property is well suited to the primary characteristic of 3D
clouds: the invariance of their points.

A PointTransformer layer is developed based on vector self-attention, as shown in Figure
2.5. The set of points P is first divided into local neighborhoods centered on each point
using KNN (k-nearest neighbors). Then two linear projections are applied to the input and
a position coding is obtained by an MLP. These results are fed into a new MLP layer and
finally aggregated to produce a result that preserves the number of input features f but can
change the number of points N .

From the PointTransformer layer, the PointTransformer architecture shown in Figure 2.4
is created.The encoder progressively downsamples the input and implements a PointTrans-
former layer at each level. For classification, global average pooling and a simple MLP at
the end of the encoder are used to obtain the output. For segmentation, transition up layers
are applied in conjunction with PointTransformer layers, resulting in a feature vector for
each point in the set. The resulting structure for segmentation follows the U-Net [62] model,
connecting previous layers at each upsampling level.
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2.1.4. Point-MLP
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Figure 2.6: Point-MLP (top) and Point-MLP elite (bottom) ar-
chitectures. The structure is divided into several point MLP stages, each
consisting entirely of a geometric affine module, multilayer perceptrons, and
max-pooling operations.

Point-MLP [47] contends that the development of more sophisticated feature extractors
has become oversaturated, offering no significant performance improvements relative to the
computational and storage costs involved. They present an architecture based primarily on
feature extraction by residual MLP blocks. The core operation of Point-MLP is formulated
according to the Equation (2.1):

gi = Φpos(A(Φpre(fi,j)|j = 1, ..., K)) (2.1)

Where Φpre(·) and Φpos(·) represent residual MLP blocks. Φpre(·) is a shared block that
learns weights from a local region, while Φpos(·) is tasked with extracting deep aggregated
features. The aggregation function A that they use is the max-pooling operation. The
operation from Equation (2.1) refers to a Point-MLP stage, which is recursively repeated for
s stages. To select the k nearest neighbors of each point, the KNN algorithm is employed.

To deal with density variations within point clouds, a geometric affine module is applied
that transforms the point features of a local region into a normal distribution. This module,
combined with the MLP block stages, enables Point-MLP to achieve exceptional results in
classification and regression tasks with much simpler feature extractors compared to other
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state-of-the-art models.

In addition to the original Point-MLP structure, they propose a lightweight version called
Point-MLP elite. This architecture reduces the number of residual MLP blocks, reduces the
embedding dimension from 64 to 32, and introduces a bottleneck structure that significantly
reduces the number of parameters in the network. By combining these features, they are
able to reduce the number of parameters from 12.6M to only 0.68M, while still achieving
competitive results on various benchmarks. Both structures are shown in Figure 2.6.

For segmentation tasks, the network header can be modified by replacing the MLP network
with continuous interpolation layers and a lightweight pointNet. This modification allows the
network to produce a segmentation output of dimension N timesM , where N is the number
of points and M is the number of classes. Additionally, at each interpolation level, skip-link
concatenations are added with outputs from previous point-MLP stages.

2.2. Self-supervised learning

In self-supervised learning (SSL), Liu, Xiao, et al. [63] present two main methods for
training SSL models: a) generating classification labels from insights automatically derived
from the data, and b) predicting data subsets by analyzing different data segments. These
methods act as pretense tasks to avoid the need to manually label data sets. They also
identify three categories of SSL:

• Generative: Involves training an encoder network to translate an input x into a distinct
feature vector z that encapsulates the features extracted from the input data, along with
a decoder network tasked with reconstructing x from z.

• Contrastive: Focuses on training an encoder network to encode an input x into a feature
vector z, similar to generative models. However, the z vector is used to detect similarities
between different entities during the training process.

• Generative-Contrastive (Adversarial): Involves training an encoder-decoder network to
produce false data instances, and a discriminative network that attempts to determine
whether its inputs are from the original data set or the creations of the encoder-decoder
network.

2.2.1. Autoencoders

Autoencoders [64] are a fundamental generative method in self-supervised learning (SSL).
They aim to reconstruct the input data as closely as possible to the original input, often
using mean square error as the loss function for images. Denoising Autoencoders (DAE)
increase robustness by intentionally introducing noise, such as pixel masking. [65–67] or
colour channel removal [68].
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2.2.1.1. Masked autoencoders

Masked autoencoders (MAE), as introduced by Pascal Vincent et al. [65], hide parts of the
input and train the model to reconstruct the whole from the remaining data. This concept
is used in BERT [69] for natural language processing, where random tokens are masked for
the autoencoder to predict. In computer vision, techniques such as SimMIM [70] use similar
principles with image patches. Meanwhile, in three dimensions, there are different types
of entities, such as three-dimensional networks, where Yaqian Liang et al. [71] proposes to
adapt MAE to this type of sample, considering all the challenges of its structure composed
of vertices and faces with no specific order.

2.2.2. Siamese networks

Siamese networks [72] are a type of neural network architecture used for metric learn-
ing, assessing the similarity or dissimilarity between two entities. Within this subset are
contrastive networks [73], which are particularly effective for image representation [74–80].
They work by bringing closer the representations of altered versions of the same image (pos-
itive pairs) and distancing the representations of different images (negative pairs).

To train Siamese networks, positive pairs can be generated by modifying inputs, such
as applying rotations or translations to create variations of the same image. Contrastive
learning, which is widely used in image-based SSL, typically requires a substantial number of
negative samples and mechanisms to maintain them throughout training iterations. SimCLR
[81], for example, requires large batch sizes, while MoCo [82] uses a queue of negative samples
and a momentum encoder for consistency.

Negative pairs, ideally very different from the original, can be more difficult to generate
and are typically needed in larger numbers than positive pairs. Recent advances aim to
reduce the dependence on large data sets. In particular, BYOL [27] and SIMSIAM [28] have
shown promising results without the use of negative pairs in their training processes. These
innovations represent a shift towards more data efficient training models in SSL.
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2.2.2.1. BYOL
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Figure 2.7: BYOL architecture. It trains to increase the similarity be-
tween qθ(zθ) and the result of applying a stop-gradient operation [27] at z′

θ.
Where θ are the trained weights and ξ e is an exponential moving average
of θ. At the end of training, all but fθ are discarded and yθ is used as the
image representation.

BYOL [27] is a Siamese neural network architecture that uses two neural subnetworks,
target and online, that interact and learn from each other. Figure 2.7 describes the model
in detail. To train, it modifies views of an image and trains the online network to predict
the representation that the target network will produce from the same input sample but
with different modifications. Meanwhile, the weights learned by the target network follow a
moving average of the online network.

BYOL is unique in that it does not require negative pairs, but only augmented versions
of the input images. This feature drastically reduces the amount of data and computation
needed for these networks to learn, given that using negative pairs requires each example to
be compared to many others in order to perform well.
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2.2.2.2. SIMSIAM
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Figure 2.8: SIMSIAM architecture. It consists of two instances of an
encoder network f , a projector network g, a predictor network q, and a
gradient stopping process.

SIMSIAM [28] is a neural network that performs work similar to BYOL, but without
the need for an momentum encoder represented by the target network. As shown in Figure
2.8, SIMSIAM processes two modified views of an image over the same network called the
encoder f , which consists of a backbone network, commonly ResNet [83]. Then a multilayer
perceptron g, a simpler neural network, projects the output into a feature vector. Finally,
another multilayer perceptron q transforms the output of one of the projectors g and tries to
match it with the result of the other instance after applying a gradient stopping operation.

The training aims to increase the similarity between the output of the gradient-stopped
projection and the output of the predictor. The two views share the weights of the encoder
f and the projector g during training, which is different from the BYOL idea. The negative
cosine between p1 = q(g(f(x1))) and z2 = g(f(x2)) is minimized by the formula of Equation
(2.2) to increase the similarity between the two views.

D(p1, z2) = − p1

||p1||2
· z2

||z2||2
(2.2)

Equivalent to the mean squared error in l2 normalized vectors. Then define a symmetrized
loss according to the formula of the Equation (2.3) with p2 = q(g(f(x2))) and z1 = g(f(x1)),
which will be used to find the similarity of the outputs.
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(L) = 1
2D(p1, z2) + 1

2D(p2, z1) (2.3)

2.3. SSL on point clouds

While the development of new 3D shape capture technologies has increased, machine
learning architectures that process such data face a significant bottleneck in obtaining large
amounts of labeled data [84, 85]. This challenge has led to the adoption of self-supervised
learning (SSL) techniques to achieve better results for tasks with insufficient labeled data.

Xiao et al. [84] and Fei et al. [85] have presented comprehensive reviews summarizing the
state of the art in SSL applied to 3D point clouds. They explain that based on SSL ideas
in images and text, there are several proposals to apply SSL to 3D point clouds, including
point cloud self-reconstruction and contrastive learning, among others.

In point cloud self-reconstruction, autoencoders are considered representative of the method
where the point cloud itself serves as ground truth. Models are trained to produce outputs
that closely resemble the input. The encoder learns to generate low-dimensional representa-
tions that capture the most important information from the input while ignoring insignificant
data that may be noise. From this generated representation, the decoder then attempts to
reconstruct an output that closely matches the network’s input.

Building on the success of masked autoencoders in text, the concept of recovering masked
regions of the input as a pretext task has been explored in 3D point clouds. Point-BERT
[86] and Point-MAE [23] are the main proposals. These pre-train transform nets in a manner
analogous to what BERT [69] and MAE [22] do for images. They use an autoencoder model
to generate tokens from object patches, and randomly hide some tokens to train the network
to recover the original point tokens. Finally, the decoder is discarded and the encoder is used
to generate representations for downstream tasks.
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2.3.1. Point-MAE

FPS + KNN

Masking

Token embedding

Encoder

Decoder
Mlp 1 layer

Predicted
masked points

Ground-truth
masked points

Chamfer
distance

Figure 2.9: Point-MAE architecture. Consists of three main stages:
masking, embedding, and autoencoding. First, the point cloud is parti-
tioned into patches that are randomly masked and then embedded. This is
followed by a pre-training phase of the autoencoder, where the encoder is
fed only the visible tokens, while the decoder receives both the mask tokens
and the embeddings of the visible tokens. This design allows the model to
learn to reconstruct the full input from a partially observed dataset, thereby
capturing the underlying structure of the point cloud data.

Point-MAE [23] introduces a masked autoencoder structure that consists of three compo-
nents: a masking module, an embedding module, and an autoencoder module. The point
cloud masking module begins by using the farthest point sampling algorithm [87] to select
points C that are as far apart as possible. These points C serve as centers for the cloud
patches. Then, the kNN algorithm is applied to select the k nearest neighbors for each
previously obtained point C, forming patches P that partition the input cloud.

Since patches P may overlap, point clouds are masked by separately masking the patches.
Randomly, between 60% and 80% of the generated patches are classified as ‘masked’ Pm,
while the rest are classified as ‘visible’ Pv. The visible patches Pv then pass through an
embedding module consisting of lightweight point nets (essentially shared MLPs and max-
pooling layers), producing embeddings Ev.

The network proceeds by introducing the visible token embeddings Ev into an encoder
composed of standard transformer blocks, resulting in a low-dimensional representation vec-
tor. Using this representation and the original mask tokens Pm, the decoder is tasked with
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generating decoded mask tokens that are input to a final MLP prediction layer. The sole
function of this layer is to generate predicted masked dot patches using a linear MLP layer
and a reshaping operation.

The ability of the network to recover the coordinates of the points in the masked patches
is then evaluated. By comparing the predicted point patches Ppred and the ground truth
Pm, the reconstruction loss is calculated using the l2 chamfer distance [88], according to the
Equation (2.4). This process ensures that the network learns to accurately approximate the
geometry of the original point cloud.

L = 1
|Ppred|

∑
a∈Ppred

min
b∈Pm

||a − b||22 + 1
|Pm|

∑
b∈Pm

min
a∈Ppred

||a − b||22 (2.4)

Using the Point-MAE methodology as a foundation, new methods have emerged that
follow its core ideas. These proposals introduce enhancements aimed at exploiting the capa-
bilities of masked autoencoders in learning point clouds. Among them is Point-M2AE [89],
which, similar to PointNet++ [46], adds a hierarchical learning factor to the pre-training of
the network, creating a multi-scale masking that can be used to train the encoder-decoder
structure in a level-wise manner, following a U-net architecture [62]. In addition, Point-MA2E
[90] proposes not only to use masking transformations, but also to apply linear transforma-
tions before the input enters the autoencoder.

2.3.2. Contrastive learning

Contrastive learning methods, similar to autoencoder-based approaches widely studied
for 3D point clouds [20, 23–25, 86, 91], have been proposed for learning representations
of synthetic object scenes [92–95]. PointContrast [96] was a pioneer in teaching networks
to learn point cloud scene representations, demonstrating that such pre-training can im-
prove performance on high-level 3D tasks such as classification, segmentation, and detection.
DepthContrast [97] further advanced the field by handling single-view data.

Despite these advances, the techniques based on Siamese networks for images have not
been extensively explored for 3D point clouds. Huang et al. [98] introduced a framework
based on spatio-temporal representation learning using BYOL [27] to extract spatial and
temporal features from point cloud sequences. This approach treats two consecutive frames
as positive pairs and minimizes the mean squared error between their learned representations.
Conclu [99] applies self-supervised learning with a SIMSIAM-based architecture, although it
requires an additional clustering loss to prevent collapse. While several studies have extended
BYOL to 3D point clouds [100–102], none have yet focused on the general ability of Siamese
networks to generate representations of 3D point clouds, benchmarked against works such as
Point-MAE or Point-BERT.

A significant challenge for Siamese networks on non-image data is the identification of
appropriate input transformations. Point clouds, which are simply sets of points in three
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dimensions, cannot undergo color-based transformations. Furthermore, they are invariant to
permutation, which limits the applicability of transformations that would disrupt the point
order. Huang et al. [98] use successive frames as positive pairs in training, naturally generat-
ing augmentations that could otherwise be synthetically produced by linear transformations,
if the appearance and disappearance of objects in the scene is ignored.

Another hurdle is the linear transformation invariance as proposed by PointNet [45]. If an
encoder is invariant to such transformations, then applying them to the input point clouds
has no effect on the Siamese networks since both encoder outputs would be identical, resulting
in a loss too small to facilitate further network learning.

Despite attempts to adapt BYOL from 2D data to 3D points, as of the current knowledge,
no studies have examined other Siamese networks, like the more fundamental SIMSIAM [28],
on 3D representations. Hence, it remains uncertain whether Siamese networks inherently
allow for effective representation learning of 3D point clouds.

2.3.3. Formula-driven supervised learning

A distinct self-supervised learning approach is formula-driven supervised learning [103,
104], which leverages the creation of synthetic data sets for pre-training neural networks.
The term "formula-driven" refers to the generation of synthetic data based on mathematical
formulations.

This pre-training method offers several advantages, including complete control over object
features, freedom from data rights issues, and the potential for continuous improvement of
the generated objects. By controlling the features of the generated objects, patterns that
contribute most to the pre-training of neural networks can be identified, isolated, and used.
Because the patterns are mathematically generated, the risk of copyright infringement is
greatly reduced. In addition, synthetic data generation allows continuous improvement of
image or model quality and the generation of as many training samples as needed.

This technique has been extensively studied for images, with results comparable to su-
pervised training [103–107]. In the study of 3D point clouds, Yamada et al. [108] proposed
the PC-FractalDB pre-training model based on fractal geometry. This dataset is created
by defining fractal categories based on a variance threshold and instance augmentation with
FractalNoiseMix. A 3D scene is then generated by selecting 3D fractal models and translat-
ing them from the origin. The dataset is then used for object detection as a pre-training task
for the models. The results of PC-FractDB suggest that the use of formula-driven supervised
learning on 3D point clouds could be a novel tool to address the bottleneck of lack of labeled
data in this area of research.
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2.3.3.1. SimpleShape

SimpleShape [29], a recently introduced dataset, is tailored for detecting symmetries in 3D
point clouds. It uses closed plane curves as guides to generate three-dimensional shapes such
as cylinders and cones. While the dataset initially contains 69,000 simple three-dimensional
shapes, its mathematical formulation allows for the creation of an even larger number of
samples.

The dataset generation process begins by randomly selecting a closed plane curve and
setting random parameters for its creation. The point cloud is then generated by conical or
cylindrical extrusion. The final step is to apply noise, translation, and rotation transforma-
tions to the generated shapes.

Although the dataset is primarily designed for geometry recognition, its formulation can
be chosen to create synthetic point clouds. These synthetic clouds could be used in self-
supervised learning on point cloud representations, benchmarked against common standards.
This could help to assess the potential of using synthetic data in the study of 3D point clouds.

2.4. Research gaps in SSL on point clouds

As recent surveys show [84, 85], the main focus in recent years has been on pre-training
autoencoder type networks with transformer type encoders in SSL on 3D point networks.
This is understandable since this type of network is known to give the best results compared
to other proposals. However, when looking for studies on other ideas, it is clear that there is
a gap of proposals with other deep learning model structures.

Siamese networks have only been explored by Huang, et al. [98], which uses BYOL on
3D point clouds and under specific transformations for their dataset. While formula-driven
supervised learning has also been understudied, most work has assumed that ShapeNet is
the only or best choice of dataset for pre-training, without questioning it too much.

Because of these gaps we have identified in the state of the art, it becomes interesting
to study Siamese networks with a wide variety of encoders, not just transformers. And pre-
training on other types of datasets, such as SimpleShape. To explore new ways to help neural
networks on 3D points to get better results in different target tasks.
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Chapter 3

Methodology

The purpose of this chapter is to present the methodology that guided the upcoming
experiments. To this end, it first identifies the problems (3.1) and research questions (3.2) to
be addressed. It articulates our hypothesis regarding the questions posed (3.3) and formalizes
the goals of the research (3.4). Finally, the last section stipulates the scope and assumptions
of this research (3.5)

3.1. Problem statement

The development of autonomous devices using surface sensors, such as LiDAR sensors,
requires machine learning models to maximize their accuracy, precision, and reliability. This
type of sensor works with data structures based on three-dimensional point clouds, for which
there is not a large variety of labeled datasets that allow training large and complex data
models with traditional machine learning techniques.

Self-supervised learning is currently the main alternative for pre-training neural networks
without labeled data, which reduces the dependence on large amounts of labeled data. How-
ever, state-of-the-art proposals in 3D SSL are mainly composed of autoencoders, complex
structures that allow pre-training neural networks for 3D models. These are composed of
transformer networks, which are also known to require large amounts of samples for training.

An essential feature sought in self-supervised learning models is that they generalize to
different models of subsequent tasks, i.e. that they are useful for pre-training models aimed
at different tasks. For this, it is essential that the backbone network, after pre-training, can
extract features that facilitate the work of the new network head.

Among the most recent SSL proposals are Siamese networks, with architectures much
simpler than autoencoders, which have achieved excellent results. However, they have been
mainly applied to 2D models, so it is easy to consider them as pre-training model alternatives
for 3D models working with point clouds.

Siamese networks have a special case that must be avoided to perform proper training of
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the networks: the collapse of the network to trivial solutions. For this purpose, the contrastive
proposals use negative pairs, and the non-contrastive models use several alternatives, such as
BYOL, which requires a momentum encoder, and SIMSIAM, which uses gradient stopping
during training. Therefore, if Siamese network architectures are to be considered as an
alternative, it is essential to verify that the network does not collapse during its pre-training.

The process of transforming an architecture that works with 2D models into a new struc-
ture that works with 3D models is mainly based on changing the encoder, since it is the
module that receives the input. ResNet [83] is the main backbone used in 2D structures, and
PointNet [45] is the main backbone used in 3D. Unfortunately, PointNet is not a generaliza-
tion of ResNet; it has a significantly different structure.

Since PointNet, the most widely used encoder network, is invariant to rigid transformations
and rotations of the entire point cloud, one of our main challenges was to generate a set of
transformations that allow for extended data differentiation. To address this challenge, we
propose the creation of a new module T that performs data augmentation at the beginning of
the training cycle. This module includes transformations that can be applied to point clouds
to enable accurate distortion of the data, thus facilitating encoder learning during training.

Building self-supervised models that work with point clouds is a challenging problem with
direct applications in autonomous devices. The main goal is to eliminate the bottleneck of
the need for more training data. This work aims to consider the latest advances in 2D and
3D learning to generate a new self-supervised learning model that extends the capabilities of
neural networks when performing tasks on 3D point clouds.

Another approach developed for self-supervised learning is formula-driven supervised learn-
ing. This method relies on the generation of synthetic datasets that, through general SSL
techniques, allow the pre-training of encoders with a large amount of data generated from
mathematical formulas. In addition to the advantages of controlling the shapes of the data
used for pre-training, it also has the advantage of being free of copyright issues, thus encour-
aging the development of new copyright-free techniques.

The discovery of datasets created from mathematical formulations that allow neural net-
works to be pre-trained, with results comparable to or better than commonly used datasets
such as ShapeNet [10], remains a state-of-the-art challenge. If successful, it would greatly
benefit research on self-supervised learning techniques on 3D representations.

The concept of using synthetic datasets as a basis for self-supervised learning has been
explored recently, with a focus on neural networks for image processing. However, the point
cloud domain has seen only marginal benefits from this technique. The main problem has
been the lack of synthetic 3D point cloud datasets capable of generating feature-rich samples
that can effectively support neural networks during pre-training.
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3.2. Research questions

The main research questions are: How can self-supervised learning be extended to generate
representations that facilitate the pre-training of 3D point cloud classification and segmen-
tation networks, and what are the limitations in knowledge generation due to point cloud
transformations? These five research questions are considered together:

1. Can Siamese networks, when used in a self-supervised learning context, serve as an
effective approach for pre-training encoders on 3D point cloud data to generate useful
data representations?

2. What strategies are most successful in preventing Siamese networks from converging to
trivial solutions during the self-supervised pre-training phase?

3. Which data augmentation techniques prove to be the most beneficial in enhancing the
self-supervised pre-training of Siamese networks for 3D point cloud processing?

4. In terms of developing feature representations suitable for classification and segmenta-
tion tasks with point cloud data, how do Siamese networks compare to other state-of-
the-art methods in terms of efficiency and accuracy?

5. How effective is pre-training of self-supervised learning networks on mathematically
generated datasets, and how does this approach compare to traditional pre-training
datasets?
These revised questions are structured to facilitate a focused investigation, ensuring a
comprehensive exploration of the potential and challenges of Siamese networks in the
context of self-supervised learning for 3D point cloud data.

3.3. Hypothesis

We hypothesize that the 3D self-supervised learning Siamese network technique, when
synergized with carefully selected backbone networks and data augmentation techniques,
will significantly improve the performance of downstream point cloud tasks, including clas-
sification and segmentation. It is also hypothesized that the use of formula-driven datasets
for pre-training neural networks on 3D point clouds has the potential to equal or exceed the
results achieved by traditional pre-training on synthetic datasets, thus providing a promising
path to superior representation quality.

3.4. Goals

1. To identify a set of point cloud encoders capable of generating point cloud characteri-
zation representations that can be used in classification and segmentation tasks.
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2. To identify a set of 3D transformations T that allow different point cloud encoders to
learn to represent figures under the strategy of Siamese networks. These transforma-
tions should take into account the increased degrees of freedom provided by the third
dimension.

3. To evaluate the ability to improve the pre-training of 3D point cloud encoders through
different Siamese network-based pre-training strategies. The previously identified en-
coders and T transformations will be compared to the state of the art using established
benchmark datasets such as ModelNet and ScaObjectNN.

4. To investigate the generalization ability of neural networks developed from pre-training
with the ShapeNet database in subsequent deep learning tasks.

5. To perform an ablation study of the 3D self-supervised learning architecture to selec-
tively and strategically improve its components.

6. To evaluate the ability of the SimpleShape dataset to generate high information content
figures that support self-supervised learning strategies in characterizing clouds in such
a way that downstream tasks benefit from this pre-training.

7. Provide an implementation that can be easily integrated with other 3D deep learning
frameworks.

3.5. Scope and assumptions

This research evaluates the effectiveness of Siamese networks, an architecture for pre-
training 2D neural networks, on 3D point clouds self-supervised learning. It employs standard
benchmarks to assess the quality of pre-training performed by different architectures and to
compare them with the latest state-of-the-art work, which comprises different pre-training
models and architectures.

Additionally, the potential of SimpleShape as a pre-training dataset for self-supervised
learning on 3D point clouds will be evaluated. To this end, state-of-the-art models and
architectures in SSL will be tested, with only the pre-training dataset varying. These pre-
trainings will be evaluated using the same standard benchmarks as the Siamese network.

While some of the experiments focused on standard benchmarks may not fully reflect real-
world scenarios, as they utilize datasets generated from CAD models, the shape and structure
learning obtained through pre-training can be directly extrapolated to real 3D point clouds.
This will enable future work to evaluate the same models in terms of their performance on
datasets such as object recognition in autonomous vehicle programs.

The following assumptions are made for the realization of these experiments

• Data Accessibility Assumption: It is assumed that there is an increasing availability of
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3D point cloud data that can be used to train neural networks, although obtaining large
amounts of labeled data remains a challenge.

• Siamese network effectiveness: It is assumed that training techniques based on Siamese
networks, such as BYOL or SIMSIAM, applied to neural networks for 3D point cloud
processing are effective in improving network performance in subsequent tasks without
relying on labels.

• Self-Supervised Learning Generalization: It is assumed that self-supervised learning
methods previously developed and tested on 2D images will be equally effective when
applied to 3D data, especially in classification, segmentation, and object recognition
tasks.

• Synthetic dataset creation: It is assumed that the use of a synthetic dataset, such
as SimpleShape, for pre-training could be as effective as real, conventional datasets,
providing a viable and scalable way to improve the learning of representations without
relying on the acquisition of new labeled data.

• Evaluation metrics: The thesis assumes that established evaluation metrics, such as
classification accuracy and mIoU for segmentation, are suitable for measuring the success
of representations learned through self-supervised learning techniques.
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Chapter 4

Proposal

Our proposal is divided into two parts: On the one hand, to evaluate the capacity of
Siamese networks to pre-train encoders focused on deep learning on 3D point clouds. On the
other hand, to evaluate the potential of SimpleShape to be used as a pre-training dataset for
the same type of networks. The ultimate goal of pre-training in both cases is that the network
learns to recognize shapes without the need for labels, thus improving its performance in real
tasks, so-called downstream tasks.

In this chapter, we describe both approaches. First, we describe the PointSIMSIAM
and PointBYOL models, which allow us to evaluate the capacity of Siamese networks in
self-supervised learning (4.1). And second, it describes the creation of SimpleShape, the
dataset to be used for pre-training self-supervised learning under the idea of formula-driven
supervised learning (4.2).

4.1. Siamese networks proposed models

The proposed model is inspired by the SIMSIAM [28] and BYOL [27] frameworks, hereafter
referred to as PointSIMSIAM and PointBYOL, respectively. Its structure is analogous to
that used in 2D image processing, with adaptations mainly in the encoder used and in the
T transformations applied to the point cloud before input to the Siamese networks.

4.1.1. Data augmentation

In the transition from 2D image processing to 3D point cloud analysis, certain transforma-
tions used in the original domain of Siamese networks require adaptation, while others may
be less relevant or even inapplicable. However, this shift also introduces new transformation
possibilities for data augmentation in neural network pre-training.

Generalizable transformations include translation, flipping, cropping, rotation, scaling,
and noise, all reinterpreted for 3D points P = {x, y, z} instead of 2D pixels. Although these
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transformations remain essentially the same, neural networks processing 3D data must adapt
to be invariant to such changes. This adaptation could be achieved by augmenting the data
during training, by using symmetric functions such as max-pooling, or by using innovative
techniques that promote network invariance to these transformations.

When adapting 2D image processing techniques to 3D point cloud analysis, several trans-
formations commonly used in 2D contexts become less relevant or inappropriate. Color-based
modifications, including color jitter, grayscale, and adjustments to brightness, contrast, sat-
uration, and hue, are less applicable to 3D point cloud processing due to the typically color-
agnostic nature of point clouds. Similarly, enhancements such as blur, which are integral to
2D image enhancement, lose their utility in the 3D domain.

Morphological operations, such as erosion and dilation, which are commonly employed
in two-dimensional image processing [109], are not directly applicable to three-dimensional
point clouds due to the fundamental differences in their structural and representational char-
acteristics. Furthermore, two-dimensional operations, such as rotation and flipping, scaling
and cropping, perspective distortion, and filters, such as Gaussian blur, require adaptations
for their application from two-dimensional images to three-dimensional point clouds. These
discrepancies necessitate a reevaluation of the most appropriate transformations for effective
3D point cloud processing.

Furthermore, new transformations that are unique to the 3D domain are introduced.
These include point cloud sampling, which adjusts the density of point clouds by randomly
adding or removing points. Additionally, random point cloud deletion or masking is included,
which randomly eliminates sections of a point cloud to force the model to learn from partially
incomplete data. In addition, 3D shearing, a transformation that distorts the shape of the
point cloud in 3D space by changing the angles between points, is a technique that has no
direct equivalent in 2D imaging.

These new transformations are critical to increasing the robustness and versatility of
models designed for 3D object recognition and analysis. Huang et al. [98] distinguish between
temporal and spatial transformations. The authors propose a series of transformations,
including random rotation, random translation, and random scaling, which are designed to
simulate the changes that occur between two consecutive frames in a sequence of 3D model
captures from a sensor. In contrast, their proposed spatial transformations include random
cropping, random cropping, random jittering, and random drop-out.

In this study, a sequence of transformations is proposed that does not focus on simulating
data sequences to justify similarity search in the Siamese network. Instead, the objective
is to demonstrate that two point clouds derived from the same figure, albeit with different
transformations applied, should be recognized as the same object by an encoder, thus yielding
similar representations.

This transformation sequence consists of random scaling, random rotation, random trans-
lation, point cloud jitter, an additional layer of scaling and translation, and finally, inspired
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by the masked autoencoder pipeline and similar to Point-MA2E [90], a random mask opera-
tion that eliminates 60% of the total points was applied to the transformed point cloud. The
complete transformation pipeline is shown in Figure 4.1, and a specific example using the
ModelNet [11] dataset is shown in Figure 4.2.

Original
Linear

transformations

Linear
transformations

+
masking

Figure 4.1: Linear transformation and masking pipeline ilustration.
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Original
Linear

transformations

Linear
transformations

+
masking

Figure 4.2: Linear transformation and masking on ModelNet [11] chair sam-
ple. Masking ratio is setted to 60% of the total points in the model.

The idea of applying random masking to the point cloud is considered as one of the
principal contributions to the study of Siamese networks on 3D point clouds in this research.
This transformation follows the structure of masked autoencoders but with natural differences
due to the structure of the models. Since point-wise networks operate directly on the 3D
coordinates of points, this transformation involves removing sections of the point clouds in
the 3D domain, differing from the work of autoencoders that use transformer networks as
encoders and apply the random mask operation to the tokens generated from the point cloud,
masking tokens, that represents a group of points, rather than points.

Although this transformation is applied in a different layer of the training pipeline, it
follows the same principle as the other transformations. In essence, a uniformly masked
point cloud should be correctly identified by the encoder as a pair of another masked version
of the same object. This assertion is exemplified in cases such as a table missing a leg, which
remains essentially the same original table, or an airplane losing a wing, or a door with holes.

While basic transformations involving masking on point clouds, such as the clipping pro-
posed by Huang et al. [98], are capable of uniformly removing a portion of the cloud, masking
in masked autoencoders operates uniformly across the cloud, removing multiple tokens that
represents groups of points, simultaneously, with a uniform masking density throughout the
image.

Pang et al. [23] demonstrated that masking between 60% and 80% of the tokens generated
for a point cloud is the optimal range for pre-training a Transformer neural network. This
implies that for an input of 1024 points, between 204 and 410 points are sufficient for an
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encoder to recognize and correctly characterize the type of figure. This is due to the fact that
the semantic value of the points is not uniform. The corners and curves of figures contain
a significantly greater amount of information than intermediate points, which allows for the
accurate characterization of point clouds based solely on the most significant points.

The masking of masked autoencoders works with the 32 farthest-point-sample points of
the cloud and their 32 k nearest neighbors, resulting in a situation where most of the removed
points have little semantic value. Since the masking is done uniformly, the majority of the
removed points are likely to be in the center of the figure, leaving the critical points that
define an object intact.

In the case of using transformer-type backbone networks, in addition to applying the 3D
spatial masking transformation. The application of the token masking algorithm used by
Point-MAE [23] was also explored in its pre-training to determine which of the two trans-
formations is more beneficial for such networks when pre-trained with the methodology of
Siamese networks.

These transformations were applied to the PointSIMSIAM and PointBYOL networks in
conjunction with various encoders. These encoders may benefit more or less from the ap-
plied transformations and the final masking, providing insights into the effectiveness of these
methods in improving the learning capabilities of the networks.

4.1.2. Encoders

In addition to experimenting with the two networks, PointSIMSIAM and PointBYOL,
and applying the previously detailed transformations, a subset of neural networks was also
selected to serve as the backbone of the structure. These were of different types: PointNet
[45] as a pointwise network, DGCNN [48] as a graph-based network, a Transformer [55]
backbone as proposed by Point-BERT [86], and Point-MLP [47], which is also pointwise
but stands out as one of the models with the best results in the state of the art. Point-
MLP is particularly noteworthy because it avoids specialized encoders and consists entirely
of MLP-type networks.

Our interest is not only in examining the encoders for their ultimate capability in classi-
fication and segmentation tasks, but also in the specific ability of Siamese network methods
to teach each type of encoder to produce higher quality representations of 3D point clouds.
Additionally, following the issues raised by Ma et al. [47] regarding the specialization of
large networks to extract specific features from point clouds, the number of parameters in
the networks used in downstream tasks and the inference time for each were also compared.
This approach aims to provide a comprehensive evaluation of the effectiveness and efficiency
of these different coding strategies in the context of Siamese network-based learning.
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4.1.3. Prediction head networks

In describing the architecture of Multilayer Perceptron (MLP) networks, the notation
(m,n,p) is employed. Here, m denotes the number of neurons in the input layer. n indicates
the number of neurons in the hidden layer. Should there be multiple hidden layers, each
subsequent number following m and preceding p represents the number of neurons in each
additional hidden layer. Lastly, p corresponds to the number of neurons in the output layer.

The proposed models contain networks that serve as prediction heads. These were com-
posed of four MLP layers with the dimensions (din, 256, 256, dout), where the input was the
output vector vin ∈ Rdin from the pre-trained encoder. The output of these layers is the
classification vector vout ∈ Rdout for the following task. This four-layer structure is based
on the design proposed in Point-MAE [23], where a four-layer head is also used for the final
predictions. For segmentation tasks, the original segmentation versions of each model were
implemented, which are typically an extension of the original model, such as PointNet [45],
as shown in Figure 2.1.

This approach aims to ensure that the prediction head is adequately tuned to the specific
characteristics of the encoded representations, allowing for effective classification or segmen-
tation. The use of a standardized MLP structure across different encoder types also facilitates
direct comparison of their performance in the context of the same downstream task.

34



4.1.4. General proposed model
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Figure 4.3: PointSIMSIAM architecture. It is the same architecture
than SIMSIAM [28] for 2D images, but it applies 3D linear transformation
and masking to the input. It can be built to pre-train any 3D encoder.

In summary, the use of Siamese networks with encoders that directly process 3D point
clouds is proposed. The models are PointSIMSIAM, shown in Figure 4.3, and PointBYOL,
a version of BYOL for 3D point clouds. PointNet, DGCNN, Transformer, and Point-MLP
encoders were pre-trained using a series of linear transformations and point masking. These
combinations were evaluated for their ability to improve results in downstream tasks and for
their effectiveness in teaching the encoders to generate high-quality representations.

It is expected that a thorough analysis of the various proposed combinations of transfor-
mations, encoders, and pre-training methods will not only identify the most effective com-
bination for downstream tasks, but also provide insight into which backbone networks are
suitable and efficient for self-supervised learning using Siamese networks. In addition, this
study aims to understand the impact of different 3D transformations on network learning
and their potential to prevent the collapse of Siamese networks during pre-training. This
research could significantly contribute to the field of 3D point cloud processing by providing
new perspectives and techniques for effective and efficient learning.
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4.2. SimpleShape for formula-driven supervised learn-
ing

To evaluate the effectiveness of SimpleShape [29] as a pre-training dataset for self-supervised
learning (SSL) on 3D point clouds, Point-MAE [23] was pre-trained using its autoencoder-
based approach, replacing the standard ShapeNet55 [10] with SimpleShape. For a fair com-
parison, the official implementation of Point-MAE1 was used to pre-train and evaluate this
model under the same conditions as the other experiments.

To evaluate SimpleShape, systematic variations of the dataset were created with different
numbers of figures, named according to the number of objects created. The dataset variants
for evaluation included sets of 1K, 5K, 10K, 15K, 50K, and 100K figures.

It is expected that the versions with fewer figures (1K and 5K) would yield lower results
compared to the other variants, since Transformer networks [55] require a large amount of
data for training, and these sets have less than 10% of the figures provided by ShapeNet55 [10].
In addition, benchmark performance is expected to improve proportionally as the number of
figures in the dataset increases.

4.2.1. Dataset creation

To create the different datasets, the same configuration as the original benchmark was
followed, only varying the number of samples generated. The methodology of Sipiran et al.
[29] was used to create the datasets, keeping only the generated point clouds and omitting
their symmetry planes. Examples of the generated dataset, as shown in Figure 4.4, are
presented below.

1 https://github.com/Pang-Yatian/Point-MAE
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Examples of cones

Examples of cylinders

Figure 4.4: A visual illustration of point clouds in SimpleShape datasets.

The generation of point clouds is done in three steps:

1. Selection of a Known Symmetry Curve Family: A curve is selected from a family
of curves with known symmetry. The basic curve families are detailed in the Table 4.1.

2. Generation of a Cylinder or Cone: A cylinder or cone is generated using the selected
curve as the directrix.

3. Application of Translations and/or Rotations: Finally, translations and/or rota-
tions are applied to the generated shape.

Point clouds are created by randomly selecting one of these curves and assigning random
values to the parameters a, b, and m within certain constraints. The parameters for each
curve are assigned as follows:

• Citrus: a = 1 and b randomly chosen in the interval [1, 13], b ∈ N.

• m-Convexities: a randomly chosen in the interval [0.5, 1.1], a ∈ R, b randomly chosen
in the interval [0.2, 0.9], b ∈ R, and m randomly chosen in the interval [3, 9], m ∈ N.

• Geometric petal: a randomly chosen in the interval [1.0, 2.0], a ∈ R, b randomly chosen
in the interval [1, 6], b ∈ N, and m randomly chosen in the interval [1, 6], m ∈ N.

• Lemniscate of Bernoulli: a = 1.

• Egg of Keplero: a = 1.
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• Mouth curve: a = 1.

• Astroid: a = 1.

Table 4.1: Families of plane curves used as directrix of the cylinders and
cones in SimpleShape datasets.

Family Example Formula

Citrus curve P(t) :=


x = t − a

2

y = ±
√

(a−t)3t3

a4b2

m-convexities P(t) :=

x = a
1+b cos(mt) cos t

y = a
1+b cos(mt) sin t

Lemniscate of
Bernoulli P(t) :=

x = a sin t
1+cos2 t

y = a sin t cos t
1+cos2 t

Egg of Kepler
P(t) :=

x = a
(1+t2)2

y = at
(1+t2)2

Mouth curve P(t) :=

x = a cos t

y = a sin3 t

Geometric petal P(t) :=

x = (a + b cos nt) cos t

y = (a + b cos nt) sin t

Astroid P(t) :=

x = a cos3 t

y = a sin3 t
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To generate the point clouds, cones or cylinders are created with a rotation axis ran-
domly aligned with the z-axis. Translation and rotation transformations are applied with a
probability of 0.8 each. The Table 4.2 shows examples of shapes generated by SimpleShape.
Then, each point cloud is randomly subjected to final transformations. These are classified
into 5 types according to [29], including uniform noise, Gaussian noise, undersampling, and
combinations of these three transformations.

Finally, to create the datasets used in this research, these guidelines are followed to gen-
erate point cloud sets of 1K, 5K, 10K, 15K, 50K, and 100K samples. Although originally
designed to create figures with known symmetries, versions of this dataset focused on increas-
ing the variability of local and global features could be developed for self-supervised learning
techniques.

Table 4.2: Examples of shapes generated by SimpleShape [29].

Citrus
a = 1

b ∈ [1, 13], b ∈ N

m-Convexities
Top: a = 0.5, b = 0.2

Bottom: a = 1.1, b = 0.9
m ∈ [3, 9], m ∈ N

Geometric petal
Top: a = 1.0, b = 1

Bottom: a = 2.0, b = 6
m ∈ [1, 6], m ∈ N

Lemniscate Bernoulli
Egg of Keplero
Mouth curve

Astroid
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Chapter 5

Datasets

The datasets used in the experiments are described below. Following standard bench-
marks, these are Shapenet[10], ShapeNetPart[61], ModelNet[11], and ScanObjectNN[35]. It
also reveals the structure of SimpleShape[29], which was used for the second stage of our
experiments.

5.1. ShapeNet

ShapeNet [10] is a comprehensive repository of 3D CAD models that includes a diverse set
of semantic categories structured according to the WordNet [110] taxonomy. This database
is notable not only for its collection of models, but also for its extensive annotations, which
provide semantic insights critical to 3D geometric understanding and shape analysis. With
over three million shapes, approximately 220,000 of which are meticulously classified into
over three thousand categories, ShapeNet is recognized as one of the most comprehensive
and diverse datasets available.

Designed to evolve, ShapeNet regularly integrates new models and community-contributed
annotations. Models are drawn from public online repositories as well as established research
datasets, providing a wide range of shapes from common object categories to complex scenes.

The ShapeNet initiative includes subsets such as ShapeNetCore, consisting of 51,300
unique 3D models with manually verified category and orientation annotations, and ShapeNet-
Sem, consisting of 12,000 models with 270 categories, which provides a denser subset of
models.

Furthermore, ShapeNet facilitates user interaction with its data through tools and a web
API 2 that allows researchers to perform specific queries and batch downloads through an
easy-to-use web interface.

One of the challenges in building ShapeNet was the methodology for capturing and val-

2 https://shapenet.org
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idating annotations with high accuracy. When full verification isn’t possible, a confidence
metric is provided for each annotation, increasing the reliability of the dataset for various
applications.

Annotations in ShapeNet range from linguistic attributes based on WordNet to geometric
details such as rigid alignments, parts, keypoints, and symmetries. It also includes functional
and physical annotations such as surface material properties and weight, which are critical
for applications involving physical simulation and structural analysis.

Yu, Xumin, et al. [111] present ShapeNet-55, an advanced benchmark derived from the
ShapeNetCore dataset. This benchmark uses all 55 object categories from ShapeNet, with
the goal of testing the capabilities of neural networks with a dataset that maximizes diver-
sity. They partition the original ShapeNet dataset, allocating 80% of the objects from each
category to the training set and reserving the remaining 20% for evaluation purposes. This
allocation results in a substantial collection of 41,952 models for training and 10,518 mod-
els for testing. For each object in the dataset, 8,192 points are randomly sampled from its
surface to construct the corresponding point cloud, providing a rich and diverse set of data
points for robust neural network training and evaluation.

This particular subset has been widely adopted as the standard for pre-training datasets
used by self-supervised learning frameworks for point cloud models [23, 86]. For pre-training,
1024 of the available 8192 points are used for each object.

This specific subset has increasingly become the default standard for pre-training datasets
used in self-supervised learning frameworks, especially for point cloud models, as evidenced
by its adoption in studies such as Point-BERT [86] and Point-MAE [23]. For the pre-training
phase, these frameworks typically use a subset of 1,024 points from the available 8,192 points
for each object, providing a representative yet computationally manageable sample of the
entire point cloud for each model in the dataset. This approach balances the need for detailed
representation of each object with the practical constraints of processing and learning from
large point cloud data.

5.2. ShapeNetPart

ShapeNetPart [61] represents an advanced segment within the ShapeNetCore [10] database,
specifically designed to facilitate in-depth analysis of 3D shapes by providing meticulous per-
point annotations. The dataset meticulously catalogs over 31,963 models, meticulously dis-
secting them into 16 basic shape categories, annotated with 50 parts in total. This granular
approach to annotation is critical for tasks requiring precision, such as semantic segmentation
and object recognition, where understanding the specific parts and features of an object is
essential.

The creation of ShapeNetPart is based on an active learning methodology, a semi-automated
process that significantly reduces the labor-intensive nature of manual annotation. First, hu-
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man annotators label a subset of points on the 3D models, focusing on specific areas or
features of interest, such as the arms of a chair or the wheels of a car. These manual annota-
tions serve as seeds for an automated propagation system that extrapolates the initial labels
to similar shapes within the dataset, effectively augmenting the initial human effort.

To ensure the fidelity of the propagated labels, a subsequent verification phase is imple-
mented where both human-generated and algorithmically propagated annotations are metic-
ulously reviewed. This verification step is not only a quality control measure; it also provides
critical data that is used to fine-tune the propagation algorithms, increasing their precision
and reliability.

In practice, this framework processes each shape by uniformly sampling thousands of
points across its surface, assigning each point a boolean label that confirms or denies its
association with the specified region. Once labeled, these points serve as proxies for the
shape’s surface, and their annotations are eventually transferred to the actual faces of the
model, ensuring that the dataset reflects the complex topography of each object.

5.3. ModelNet

ModelNet [11] is a significant dataset designed to support the training of deep 3D shape
representations capable of capturing intra-class variance among objects. It was constructed
by aggregating a large number of 3D CAD models from various online resources, including
the 3D Warehouse 3 and Yobi3D 4, which indexes several CAD model websites. The dataset
was carefully curated to include a wide range of common object categories from the SUN
database [112], each with a minimum of 20 instances, for a total of 660 different categories.
Additional models were obtained from the Princeton Shape Benchmark [113].

To ensure the quality and relevance of the dataset, downloaded models underwent a rigor-
ous review process. Incorrectly categorized models were filtered out using Amazon Mechan-
ical Turk 5, where workers reviewed thumbnails of the models to confirm category accuracy.
The authors also performed manual inspections to remove any irrelevant objects or misclassi-
fications from each CAD model, ensuring that each mesh represented a single object belonging
to its labeled category. Superfluous elements such as ground thumbnails or bystanders were
also excluded.

The final dataset is extensive, containing 151,128 3D CAD models across 660 different
object categories, which significantly exceeds the scope of previous datasets in this area.
Specifically, a subset known as ModelNet40 was created for classification tasks. This subset
contains 12,311 CAD models in 40 different categories, further divided into 9,842 training
samples and 2,468 test samples. This division not only provides a robust framework for train-

3 https://3dwarehouse.sketchup.com
4 http://yobi3d.com
5 https://www.mturk.com
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ing and evaluating classification algorithms, but also ensures a diverse and comprehensive set
of models, making ModelNet40 an important resource in the field of 3D object classification.

5.4. ScanObjectNN

ScanObjectNN [35] is a real-world point cloud object dataset derived from indoor scene
scans, specifically designed to challenge current point cloud classification methods. It was
created from two notable scene mesh datasets, SceneNN [114] and ScanNet [12], from which
objects were manually selected and categorized into 15 common groups. This selection process
involved refining the initial instance segmentation from the scene datasets to ensure accuracy
and consistency across the collection.

The dataset is notable for its complexity, reflecting the clutter and partial views often
found in real-world environments due to occlusion. It contains 2,902 objects across its cat-
egories, with each object represented by a list of points that include both global and local
coordinates, normals, color attributes, and semantic labels. The objects in ScanObjectNN
reflect a more challenging and realistic environment than their synthetic counterparts, as they
are often noisy and incomplete, providing a more rigorous test for classification algorithms.

To further enhance the usefulness of the dataset, several variants were created to represent
different levels of difficulty and to test the robustness of the classification methods against
more extreme real-world conditions. These variants are

• OBJ ONLY: This baseline variant contains only the segmented objects, free of addi-
tional noise or background, allowing a direct comparison with the performance of the
synthetic dataset.

• OBJ-BG: Objects include background data, simulating common real-world scenarios
where objects may not be isolated. This variant helps to test how well classification
methods can distinguish between the object of interest and its surroundings.

• Perturbed Variants (PB): By introducing translations, rotations, and scaling pertur-
bations to the ground truth bounding boxes, these variants create objects with varying
degrees of background inclusion and bias, presenting up to 14,510 perturbed objects to
further challenge classification methods. Four variants are distinguished according to
their level of difficulty: PB_T25, PB_T25_R, PB_T50_R, and PB_T50_RS. Where
T25 and T50 refer to translations between 25% and 50% of their size. R and S refer to
rotation and scaling respectively.

The ScanObjectNN dataset provides an invaluable resource for advancing point cloud
classification techniques and is publicly available to the research community, encouraging the
development and benchmarking of new methods that can handle the intricacies of real-world
data.
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5.5. SimpleShape

SimpleShape [29] is a data set specifically designed for analyzing and detecting symmetry
in 3D point clouds. The dataset consists of a set of closed plane curves that serve as the
basis for generating surfaces of simple geometric shapes, such as cylinders and cones. These
shapes are designed to test the algorithms’ ability to detect reflective planes and the number
of symmetries within a given shape.

The dataset consists of 69,000 simple three-dimensional shapes represented as point clouds,
divided into training and test sets of 60,000 and 9,000 point clouds, respectively. Each
point cloud is generated by selecting a closed plane curve from a predefined family of curves
characterized by their unique shapes and parametric representations. This curve, which lies
in the XY plane, is then extruded along the Z axis to form the desired 3D shape, either
cylindrical or conical.

The point clouds in SimpleShape are subjected to various perturbations to mimic real-
world conditions and test the robustness of the symmetry detection algorithms. These pertur-
bations include clean point clouds with no noise, point clouds with uniform noise of varying
intensities, point clouds with Gaussian noise, undersampled point clouds, and combinations
of noise and undersampling.

The benchmark evaluates algorithms based on how effectively they can handle these per-
turbations and still accurately detect symmetries. The goal is to provide a comprehensive
dataset that can be used to develop and test algorithms on simple shapes, pushing the bound-
aries of what is possible in symmetry detection in point cloud data. In addition to serving
as a tool for advancing the field of 3D shape analysis, the dataset provides a robust platform
for researchers to benchmark and validate their symmetry detection methods.
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Chapter 6

Evaluation metrics

The metrics used to evaluate the quality of the pre-training resulting from the appli-
cation of both proposals of this research are described below: Siamese networks as a pre-
training method and replacing ShapeNet55 with SimpleShape as the pre-training dataset in
self-supervised learning models. These metrics include linear probing (6.1), fine-tuning for
classification (6.2), few-shot learning (6.3), and segmentation (6.4). Additionally, qualitative
metrics (6.5) and retrieval metrics (6.6) are added.

6.1. Linear probing

Linear probing serves as a central evaluation technique in the field of self-supervised learn-
ing, particularly when investigating the quality of representations derived from unsupervised
pre-training phases. It is based on the premise that a well-trained self-supervised model
should have learned representations that capture the underlying structure of the dataset,
even without the guidance of explicit labels.

The essence of linear probing is simple yet profound: a simple linear classifier (e.g., SVM
or KNN classifier) is trained on the frozen representations obtained from a self-supervised
model. The model itself is kept static, its weights untouched during this phase, ensuring that
the classifier’s performance depends solely on the quality of the embeddings it receives.

When using linear probing, the workflow begins once a self-supervised model has been
trained. This model, having digested unlabeled data, now acts as a feature extractor. As
new data is passed through the model, it outputs embeddings (a distilled essence of the input
data as seen through the lens of the model’s learned parameters).

These embeddings are then used as input to the linear classifier. The classifier’s task is to
map the embeddings to the correct output labels, even though these labels were never part
of the model’s initial training. Because of its simplicity, the classifier is a litmus test for the
embeddings: If the representations are strong, even this simple classifier should be able to
achieve high accuracy.
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The evaluation of the classifier, typically using a labeled validation set, provides direct
feedback on the representational power of the pre-trained model. The achieved accuracy be-
comes a measure of the quality of the embeddings and the effectiveness of the self-supervised
learning approach. This metric is particularly important for comparing different self-trained
algorithms or for fine-tuning their hyperparameters.

Linear probing thus plays a critical role in the self-supervised learning evaluation ecosys-
tem, providing a clear, quantitative metric that correlates the intricacies of unsupervised
representation learning with tangible downstream performance. It bridges the gap between
the abstract representations of unsupervised learning and the practical needs of labeled tasks,
validating the value of self-supervised pre-training in a supervised context.

6.2. Classification accuracy

Classification accuracy is a critical metric for measuring the performance of models in
accurately identifying and categorizing 3D point cloud data into predefined classes. This
metric is especially important in environments where models are fine-tuned on datasets such
as ModelNet, following self-supervised pre-training on datasets such as ShapeNet.

To compute classification accuracy, a neural network trained on ModelNet is tested on
a labeled dataset of different 3D model classes. The task of the network is to accurately
predict the correct class for each input 3D point cloud. Accuracy is computed by comparing
the network’s class predictions for each point cloud with the actual labels in the test data.

Mathematically, classification accuracy is expressed as:

Accuracy = Number of correct predictions

Total number of predictions
× 100% (6.1)

This formula reflects the proportion of test instances for which the model correctly predicts
the class, with the result expressed as a percentage. A higher percentage indicates a better
performing model in terms of correctly classifying the point clouds.

Classification accuracy is a simple yet powerful indicator of a model’s ability to generalize
from training to unseen data, highlighting the effectiveness of the learned representations for
the 3D shape recognition task. By providing a quantifiable and direct comparison of model
performance, it allows researchers to assess the impact of different self-supervised learning
approaches on the critical task of 3D object classification.

Furthermore, in accordance with previous research [23, 45, 46], a voting technique is
employed to assess the classification accuracy of the model. This technique enhances the
accuracy and resilience of the model by averaging the outcomes of multiple inferences, each
with variations in the input. Specifically, this evaluation is performed by applying a different
scaling and translation transformation to the test set on each of the 10 inferences per test
case. The logits of all inferences are concatenated and then averaged to form the "vote,"
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where each inference contributes an "opinion." The final score is obtained by averaging all
these opinions. The class with the highest average score is selected as the final prediction for
each sample.

6.3. Few-shot classification accuracy

Few-shot classification on ModelNet40 requires models that accurately identify and cat-
egorize 3D point cloud data based on a very limited set of labeled examples for each class.
This evaluation scenario is particularly challenging and relevant given the scarcity of large
labeled datasets in the 3D shape domain.

After pre-training, the model is exposed to the few-shot learning task. Here, it is given a
small number of labeled examples (often only one to five instances) per class. These examples
form the ‘support set’, which the model uses to fine-tune or adapt its learned representations
to the new specific task of classifying the point clouds into their correct categories.

Few-shot classification typically follows an ‘N-way, K-shot’ methodology, where N is the
number of different classes and K is the number of examples per class in the support set.
The model must use the limited information from these K shots to make accurate predictions
about new, unseen instances from the same N classes.

The model’s performance is then evaluated based on its accuracy in classifying these new
instances, which are part of the ‘query set’. Few-shot classification accuracy reflects the
model’s ability to quickly adapt its representations to new classes from minimal examples.
The high accuracy indicates that the model’s self-supervised pre-training has resulted in a
versatile and portable feature space that can effectively accommodate rapid learning and
generalization.

Building on previous studies in the area of few-shot learning for the ModelNet dataset, the
established ‘K-way N-shot’ framework [23, 86, 115] was followed. In this setup, K different
classes are first randomly selected from the dataset, and for each class, N +20 object instances
are sampled. The model is trained on K × N samples, which form the support set, to learn
the discriminative features of each class. Performance is then evaluated on the remaining
20K samples, called the query set, to test the model’s ability to generalize from the support
set to new, unseen instances. This approach ensures a balanced representation of classes and
provides a rigorous test of the model’s few-shot learning capabilities.

6.4. Segmentation mIoU

In the field of 3D point cloud analysis, especially for datasets such as ShapeNetPart
,[61], the mean intersection over union (mIoU) serves as an important metric for measuring
the effectiveness of part segmentation tasks. Part segmentation goes beyond simple object
classification by requiring each point in a point cloud to be classified into one of several
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specific part categories.

mIoU is particularly suited to part segmentation because it measures the degree of overlap
between the predicted and actual segments for each part category, relative to their combined
area. The calculation involves determining the IoU for each individual part category and
then averaging these IoU values across all categories to obtain the mean IoU.

Mathematically, the IoU for a part category is calculated as follows:

IoU = Area of overlap between predicted and actual segments

Area of union of predicted and actual segments
(6.2)

The mean IoU (mIoU) is then obtained by averaging the IoU values across all part cate-
gories:

mIoU =
∑

IoU of each part category

Number of part categories
(6.3)

In a self-supervised learning environment, where models are pre-trained on datasets like
ShapeNet without part labels, mIoU becomes an essential measure to evaluate how well these
models adapt to part segmentation tasks after fine-tuning. A high mIoU score indicates that
the model not only identifies the different parts within the point clouds, but also accurately
delineates their boundaries. This accurate segmentation is indicative of the model’s ability
to recognize and represent the intricate geometric and structural nuances of different object
parts, a key strength in applications requiring detailed 3D object analysis.

6.5. Dimensionality reduction evaluation

In the field of self-supervised learning, especially when dealing with complex data struc-
tures such as 3D point clouds, it is crucial to employ robust evaluation methods that can
effectively capture and illustrate the intricate relationships within the data. Dimensionality
reduction techniques, in particular t-Distributed Stochastic Neighbor Embedding (t-SNE)
and Uniform Manifold Approximation and Projection (UMAP), play a key role in this con-
text.

These methods not only help to visualize high-dimensional data in a comprehensible way,
but also provide insight into the quality of feature representations derived from self-supervised
learning models. In the following subsections, we discuss how each of these techniques con-
tributes to a deeper understanding of the underlying structure of the data, thereby validating
the efficacy of self-supervised learning approaches.
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6.5.1. t-SNE

In evaluating the effectiveness of pre-training for self-supervised learning, especially for
complex datasets such as 3D point clouds, t-Distributed Stochastic Neighbor Embedding
(t-SNE) [116] emerges as a powerful tool for visualization and analysis. As a nonlinear
dimensionality reduction technique, t-SNE is adept at unraveling the intricate structures
of high-dimensional data, thereby facilitating a deeper understanding of the feature spaces
developed by self-supervised models.

When applying t-SNE in the context of self-supervised learning, the process typically be-
gins by extracting a high-dimensional feature set from the pre-trained model. These features
are representative of the model’s internal understanding of the data and are obtained by
processing the input through the network to capture the activations of a selected layer. This
process results in a rich, multidimensional embedding of each data point, encapsulating the
learned nuances and discriminative features identified by the model.

After obtaining these embeddings, t-SNE is used to project the high-dimensional data into
a two- or three-dimensional space. The algorithm works by preserving the local structure of
the data, ensuring that points that are close in the original feature space remain close in the
reduced space, while those that are dissimilar end up farther apart. The resulting scatterplot
generated by t-SNE thus provides a visual map of the distribution and clustering tendencies
of the data.

The scatter plot serves as an intuitive medium to qualitatively assess the self-training pro-
cess. Effective pre-training is indicated by the formation of distinct clusters within the plot,
with each cluster representing a collection of similar data points. The degree of separation
between these clusters visually conveys the ability of the self-supervised model to recognize
and distinguish between different data patterns.

While t-SNE is inherently qualitative, it can be complemented with quantitative meth-
ods to objectively measure cluster quality, such as calculating the silhouette score. This
dual approach allows for both intuitive visual inspection and statistical evaluation of feature
representations, providing a comprehensive picture of model performance.

Ultimately, the value of t-SNE in the evaluation pipeline lies in its ability to elucidate
the success of self-supervised pre-training in fostering representations that are meaningful
and discriminative. Such visual and quantitative insights are invaluable for fine-tuning the
pre-training process and providing a solid foundation upon which further supervised or semi-
supervised tasks can be built.

6.5.2. UMAP

Uniform Manifold Approximation and Projection (UMAP) [117] is a dimensionality re-
duction technique that can be used to evaluate the quality of embeddings learned through
self-supervised learning. Like t-SNE, UMAP is used to visualize high-dimensional data in
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two or three dimensions, but it relies on different mathematical foundations and often offers
several practical advantages.

To evaluate self-supervised pre-training with UMAP, the process typically involves the
following steps:

Embedding generation: After a model has been pre-trained in a self-supervised manner,
it is used to generate high-dimensional embeddings from the data. These embeddings should
encapsulate the features that the model has learned to identify as significant during pre-
training.

Dimensionality reduction: UMAP is applied to these embeddings to project them into
a lower dimensional space for visualization. UMAP works by first estimating the manifold
on which the data lies using a nearest neighbor graph, and then optimizing the layout of
this graph in low-dimensional space to reflect the high-dimensional structure as closely as
possible.

Visualization and evaluation: The low-dimensional embeddings generated by UMAP can
be plotted, often resulting in a scatter plot that reveals the intrinsic clustering of the data.
This visualization can then be used to qualitatively evaluate how well the self-supervised
pre-training has captured meaningful structures and relationships within the data.

The main differences between UMAP and t-SNE are as follows

• Mathematical foundation: UMAP is based on manifold learning and topological data
analysis, while t-SNE is based on probability distributions and stochastic neighbor em-
bedding. UMAP tends to preserve more of the global structure of the data compared
to t-SNE, which focuses more on local neighbor relationships.

• Scalability: UMAP often scales better to larger datasets than t-SNE, making it more
suitable for big data applications. It is generally faster and uses fewer computational
resources.

• Flexibility: UMAP allows for more customization in its optimization process, such as
adjusting the balance between local and global structure, which can be beneficial de-
pending on the specific characteristics of the data.

• Consistency: UMAP tends to produce more consistent results across different runs and
parameter settings, which can make the interpretation of visualizations more reliable.

6.6. Retrieval techniques

A key technique for evaluating the effectiveness of models in self-supervised learning is
retrieval. Retrieval is the process of finding and selecting relevant or similar data from a larger
data set. This section focuses on two critical evaluation methods in the retrieval process:
Nearest Neighbor (NN) and Mean Average Precision (mAP).
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6.6.1. Nearest neighbor (NN)

The nearest neighbor technique is used to find the closest instance (or instances) to a given
data point in the feature space. In the realm of 3D point clouds, this means identifying the
point clouds that are most similar to a given query, based on the learned representations of
the model. The success of this technique depends heavily on the quality of the representations
generated by the self-supervised learning model. These representations should encapsulate
the essential characteristics of the 3D point cloud data and ensure that similar points are
clustered within the feature space.

6.6.2. Mean average precision (mAP)

Mean Average Precision (mAP) is a standard metric used to assess the quality of search
results in retrieval tasks. It is calculated by averaging the average accuracies obtained at
each recall level over a set of queries. In the context of 3D point clouds, the mAP provides a
quantitative measure of how well the model retrieves relevant instances under different simi-
larity thresholds. A high mAP indicates that the model not only retrieves relevant instances,
but also classifies them with high accuracy, which is crucial for practical applications where
accuracy and relevance are paramount.

For the mAP calculation, a result will be considered relevant if the class of the retrieved
object matches the class of the query object. This definition of relevance is critical as it
ensures that the metric accurately reflects the model’s ability to identify and prioritize the
most similar objects based on their structural characteristics. The effectiveness of retrieval
is gauged by the proportion of relevant objects that appear at the top of the retrieved list,
with particular focus on the initial few results, where precision has a pronounced impact on
the mAP metric.

The implementation of retrieval techniques such as NN (Nearest Neighbor) and mAP is
pivotal in self-supervised learning of 3D point clouds, as it provides a means of objectively
evaluating the quality of the retrieval results.
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Chapter 7

Experiments to perform

Both hypotheses were evaluated through several experiments. On the one hand, to eval-
uate the ability of Siamese networks for pre-training neural networks operating on 3D point
clouds, standard state-of-the-art benchmarks were followed, qualitatively and quantitatively
evaluating the features learned by the encoder during pre-training and its ability to use them
for classification and segmentation tasks.

On the other hand, to evaluate the capability of SimpleShape [29] as a dataset for formula-
driven supervised learning, the original model proposed by Point-MAE [23] was used and pre-
trained on different variations of the SimpleShape dataset with artificially generated samples
of 1K, 5K, 10K, 15K, 50K, and 100K. Once trained, the model was evaluated using the same
benchmarks as the Siamese network proposal.

This chapter describes how the data used were prepared following the standard methodol-
ogy in all cases (7.1). It continues with the description of the combinations between models
to be compared and their respective encoders (7.2). And finally it describes each of the
benchmarks through which the proposed models will be compared with the state of the art
(7.3).

7.1. Data preparation

The datasets to be used are those previously described in chapter 5. Specifically, the ver-
sion of the ShapeNet55 dataset presented by Yu, Xumin et al. [111] was used to pre-train the
networks. To ensure fair comparisons with other state-of-the-art models, the setup followed
by Point-MAE was adopted, sampling 1024 points from each cloud using the Farthest-Point-
Sampling algorithm.

In the case of Modelnet, the ModelNet40 version was used to evaluate the model’s ability to
classify shapes. Following the experiments of Zhang et al. [89] for linear probing, the same
version of ModelNet was used where 1024 points were sampled from each 3D model. For
few-shot learning, the dataset was divided according to the experiments performed by Point-
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BERT [86]; 10 independent experiments were performed and the average results along with
their standard deviation are reported in chapter 8. The benchmarks "5way 10shot", "5way
20shot", "10way 10shot" and "10way 20shot" were followed. For ScanObjectNN, the same
variants were chosen as for previous self-supervised learning work: OBJ-BG, OBJ-ONLY,
and PB-T50-RS.

7.2. Models

In this research, different versions of the PointSIMSIAM and PointBYOL models have
been evaluated, each integrated with the encoders proposed in section 4.1. These models
undergo the previously detailed linear and masking transformations to produce variants based
on PointSIMSIAM and PointBYOL. Encoders include PointNet, DGCNN, Transformer, and
Point-MLP, all of which follow the data augmentation strategy based on linear and masking
transformations presented in section 4.1.1.

In addition, variations of the original encoders have been experimented with. For example,
in PointNet, the T-Net modules were removed, focusing on invariance to linear transforma-
tions through spatial transformations. This modification, aimed at enhancing the effects of
linear transformations during pre-training, results in a version called ‘PointNet(w/o ST)’.

Regarding the Transformer encoder, two different versions were explored. The first uses
the previously defined transformations T to train the encoder. The second, on the other hand,
excludes the last point masking transformation from the set T and applies the tokenization
and token masking technique used by Point-MAE in its pre-training phase. This variant was
called Transformer(TM).

Finally, Point-MLP was used as an encoder in two forms: its standard version, also called
Point-MLP, and the simplified version known as Point-MLP elite.

Details of the encoders described in this section, including their inference time and number
of parameters, are presented in the Table 7.1. The inference time is a crucial aspect of these
models, as it determines their applicability in environments that handle 3D models, as pointed
out by Xu Ma et al. [47]. The number of parameters, on the other hand, indicates the size of
the model and provides insight into the complexity involved in its training and the amount
of data required.

Another value indicated in the table is the pre-training time of PointSIMSIAM and Point-
BYOL with each of the encoders. This time has an effect on the investigation of the models.
However, the most important value is the inference time, which is independent of the pre-
training method and will determine how long the model will take in real cases.

From the values shown in the table, it is clear that Transformer [86] has a significantly
higher parameter complexity compared to PointNet, DGCNN, and Point-MLP. Therefore, it
is desirable to achieve comparable performance to Transformer-based networks while using
these simpler network alternatives.
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In addition, DGCNN is characterized by a significantly longer inference time, mainly due
to intermediate tasks. Despite a relatively small number of parameters, the computational
demands imposed by the inference tasks result in a longer execution time. It is worth noting
the exceptional inference times achieved by PointNet and Point-MLP elite. These results
position them as the most favorable options for practical applications involving 3D point
clouds.

Table 7.1: Inference time and pre-training time of proposed methods with
different encoders for ModelNet40 train set (subsampled to 1024 points)
and the number of trainable parameters for each model’s encoder.

Method Encoder Inference
time [s]

Pre-
training
time [h]

#
params

PointSIMSIAM PointNet 11.1 22.0 2.8M
PointBYOL PointNet 11.1 23.8 2.8M
PointSIMSIAM PointNet (w/o ST) 5.6 20.7 0.5M
PointBYOL PointNet (w/o ST) 5.6 20.7 0.5M
PointSIMSIAM DGCNN 11.5 45.4 1.2M
PointBYOL DGCNN 11.5 59.2 1.2M
PointSIMSIAM Transformer 15.3 31.1 22.1M
PointBYOL Transformer 15.3 39.6 22.1M
PointSIMSIAM Transformer (TM) 37.0 13.3 22.1M
PointBYOL Transformer (TM) 37.0 21.6 22.1M
PointSIMSIAM Point-MLP 27.2 66.2 12.9M
PointBYOL Point-MLP 27.2 68.8 12.9M
PointSIMSIAM Point-MLP elite 16.5 29.2 0.6M
PointBYOL Point-MLP elite 16.5 33.2 0.6M

7.3. Standard benchmarks

To evaluate the performance of the proposed models from chapter 4, standard state-of-
the-art benchmarks were computed, following previous work on self-supervised learning on
3D point clouds [23, 45–47, 84–86]. Specifically, the ShapeNet dataset [10] was chosen to
pre-train different configurations of Siamese networks and then evaluate their generalization
ability for classification on Modelnet40, ScanobjectNN, and segmentation on Shapenetpart,
following the configurations described in chapter 5 using the metrics outlined in chapter 6.
Additionally, the embeddings produced by the different models were qualitatively evaluated
using t-SNE and UMAP techniques.

For each experiment, three pre-training and downstream task runs were conducted. In
accordance with standard practices in deep learning research, the most favorable results
obtained among these three runs are presented.
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7.3.1. Pre-training

The pre-training setup is performed using the model described in chapter 4. This involves
pre-training encoders according to the SIMSIAM and BYOL methods, tailored for 3D point
clouds. The ShapeNet55 dataset was used, with the Farthest Point Sample algorithm applied
to each model to set the number of points per figure to 1024. The linear transformations and
masking described in 4.1.1 are then applied before the models are processed by the network.

For optimization, the AdamW optimizer [118] is used together with the cosine learning
rate decay [119]. An initial learning rate of 0.001 is set, with a weight decay of 0.05. The
model is pre-trained for 300 epochs with a batch size of 128. Regarding masking, 60% of the
total points of each cloud are eliminated.

7.3.2. Linear probing

The approach used to evaluate the models by linear probing is similar to that of Point-
M2AE [89]: After pre-training each model with ShapeNet, 1024 points are sampled from
each 3D model of ModelNet40 [11]. The frozen encoder is then used to extract features,
followed by a linear SVM. In addition, a variation of the experiment was performed using a
kNN classifier with K = 20 instead of a linear SVM, allowing a broader assessment of the
quality of the embeddings produced by the model.

7.3.3. Classification

Following the state-of-the-art standard benchmarks, the performance of different models
pre-trained on ShapeNet55 [10] was evaluated when fine-tuned over 300 epochs to classify the
ModelNet [11] and ScanObjectNN [35] datasets in their three variants. Additionally, few-shot
classification experiments were performed on ModelNet40 [11], following the setup of Point-
BERT [86], where ModelNet is divided into 4 subsets that are evaluated independently. In
all these experiments, the pre-trained encoder is used with different self-supervised learning
methods, coupled with an MLP that serves as the classification head of the network.

7.3.4. Segmentation

Consistent with other studies on self-supervised learning for 3D point clouds [84, 85], the
ability of pre-trained models to generalize acquired knowledge to new tasks was evaluated.
For this purpose, ShapeNetPart [61] was chosen as a test dataset for segmentation. The
model pre-trained on ShapeNet55 [10] was fine-tuned for the part segmentation task on the
new dataset. This task involves classifying each point in the cloud with a label corresponding
to the part of the object to which it belongs.
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7.3.5. Dimensionality Reduction Evaluation

To evaluate the quality of the representations generated by the pre-trained model, the
dimensionality reduction metrics described in section 6.5 were used. Specifically, the feature
vector space generated by the model for the objects in ModelNet40 was reduced to two
dimensions using t-SNE and UMAP techniques. The purpose of this approach is to determine
the ability of the models to generate object class clusters within the feature space.

7.3.6. Retrieval Techniques

Finally, the retrieval techniques described in section 6.6 were applied. This involved
creating a N × N matrix of the model-generated feature vectors for the N elements of the
ModelNet40 test subset. This matrix captures the cosine similarity between the feature
vectors. From this data, the performance of different models was calculated using the NN
and mAP metrics.
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Chapter 8

Results and analysis

This chapter focuses on the analysis of the different results obtained and their contribu-
tion to the solution of the problems proposed in this research, namely the exploration of
alternatives of self-supervised learning on 3D point clouds.

Following the standard benchmarks described in Chapter 7, the results of PointSIMSIAM
and PointBYOL in their different versions for standard benchmarks were examined (section
8.1). The results to be compared from previous state-of-the-art work only consider the values
reported by the actual research of each model, as well as reports of similar papers and surveys
[84, 85]. Blank values in the results tables indicate that the model result in that comparison
has not been officially reported.

Then, the effectiveness of SimpleShape as a pre-training dataset in self-supervised learning
techniques was analyzed in comparison to ShapeNet55, the dataset widely used in recent
studies (section 8.2).

In benchmarking exercises where results in downstream tasks are compared, a table is
included which compares the results obtained when the model is used in its original form (from
scratch) to perform the task, with those obtained when it is pre-trained with PointSIMSIAM
and POINTBYOL, and then used to perform the same task. The purpose of these tables is
to evaluate the difference in performance between the encoder without pre-training and with
pre-training.

These experiments were conducted using three GeForce RTX A5000 GPUs, each with 24
GB of video memory.

8.1. Siamese networks

In line with current standard benchmarks, the effectiveness of Siamese networks in pre-
training encoders for 3D point clouds was assessed, aiming to generate representations that
are useful for various downstream tasks.
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At the end of each subsection, a comparison was also made with the results of the original
models trained from scratch for the evaluated fine-tuning tasks. It is important to note that
the models trained from scratch were trained in a supervised manner, using the original
labels of the figures. The purpose of this evaluation is to determine whether the proposed
pre-training model indeed improves the performance of encoders on downstream tasks with
3D datasets.

8.1.1. Linear probing

Following the instructions in section 7.3.2, the linear probing experiments were performed
with KNN (k = 20) and SV M , and the classification accuracies are reported in Table 8.1.
As shown, among the proposed models, PointBYOL with a DGCNN encoder achieves the
best performance in SV M , reaching an accuracy of 91.7%. This result is slightly better than
ConClu [99], the most effective contrastive learning model, with 91.6%. However, Point-
MA2E achieves the best overall results in the experiment with SV M , with an accuracy of
93.1%. For the KNN classifiers, the results show that the PointBYOL model with a DGCNN
encoder achieves the best classification accuracy, with an accuracy of 85.5%.

Almost all the proposed models achieve an accuracy higher than 75%, except for PointSIM-
SIAM with PointNet, which gives lower results. Several conclusions can be drawn from these
results:

First, DGCNN emerges as the coder that achieves the best results with both PointSIM-
SIAM and PointBYOL, outperforming all state-of-the-art contrastive learning models. This
suggests that DGCNN is the coder that produces the most effective representations after
pre-training.

Second, PointSIMSIAM and PointBYOL show similar results when all encoders are con-
sidered. While the best overall result is obtained with PointBYOL for Transformer and
Point-MLP, the best individual performance is obtained with PointSIMSIAM.

Third, PointSIMSIAM does not perform well with PointNet, which may be due to the
fact that the proposed transformations are not sufficient to prevent the encoder results from
collapsing. When training PointNet under the PointSIMSIAM methodology, the transfor-
mations aim to sufficiently differentiate the inputs so that the T-net modules for spatial
transformations do not quickly lead to a collapse of the results. However, it appears that this
goal is not fully achieved, resulting in the encoder not learning effectively during training.

These initial results confirm that the proposed methodology of Siamese networks is suit-
able for pre-training models working with 3D point clouds. Subsequent experiments were
conducted to measure the self-supervised learning methods of the state-of-the-art [84, 85].
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Table 8.1: Linear evaluation on ModelNet40 [11] using SV M and KNN
(k = 20). Methods are categorized according to their self-supervised learn-
ing (SSL) methodology. The best of the proposed models and the best state-
of-the-art model are highlighted in bold. Models are organized by method-
ology: first, denoising autoencoder models; then, contrastive learning-based
models; and finally, the proposed models.

Method Backbone SVM Acc. (%) kNN Acc. (%)
Point-DAE PointNet 89.3 -
Point-DAE DGCNN 91.9 -
Point-BERT Transformer 87.4 -
Point-MAE Transformer 91.0 -
Point-M2AE Transformer 92.9 -
Point-MA2E PointNet 89.4 -
Point-MA2E DGCNN 92.1 -
Point-MA2E Transformer 93.1 -
DepthContrast PointNet++ 85.4 -
STLR PointNet 88.3 -
STLR DGCNN 90.9 -
GISR DGCNN 90.4 -
DCGLR 3D-ViT 91.3 -
DCGLR PCT 91.4 -
ConClu DGCNN 91.6 -
PointSIMSIAM PointNet 67.9 60.6
PointBYOL PointNet 85.3 76.9
PointSIMSIAM PointNet(w/o ST) 88.0 79.0
PointBYOL PointNet(w/o ST) 88.3 79.7
PointSIMSIAM DGCNN 89.6 81.7
PointBYOL DGCNN 91.7 85.5
PointSIMSIAM Transformer 87.3 82.6
PointBYOL Transformer 85.7 80.5
PointSIMSIAM Transformer(TM) 88.3 82.3
PointBYOL Transformer(TM) 76.0 74.7
PointSIMSIAM Point-MLP 88.8 83.6
PointBYOL Point-MLP 88.2 83.7
PointSIMSIAM Point-MLP elite 87.5 83.2
PointBYOL Point-MLP elite 88.4 82.7

8.1.2. Classification on ModelNet40

Following the standard benchmarks for self-supervised learning on 3D point clouds, PointSIM-
SIAM and PointBYOL were fine-tuned on the ModelNet40 [11] dataset, after being pre-
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trained with ShapeNet55. All model variations proposed in section 4.1 were used and the
results are shown in Table 8.2.

Unfortunately, the standard approach is to use the voting method, so the raw accuracy
results for many models are unknown. In terms of voting accuracy, several proposed models
outperform state-of-the-art contrastive learning models. In terms of autoencoders, both
Point-MAE and Point-M2AE achieve better results than Siamese networks, although they
remain competitive.

The best performing models among the proposed variants are PointBYOL with a Point-
MLP encoder, which achieves 93.6% accuracy with voting. PointBYOL with Point-MLP
elite obtains 93% raw classification accuracy. This result matches the performance of Con-
trastMPCT [120], a model that uses Transformer as the encoder, while Point-MLP elite is a
simpler and lighter network.

All models based in contrastive learning evaluated with voting accuracy are outperformed
by several proposed models. However, although these models outperform Point-BERT and
Point-DAE from the state of the art in voting accuracy, Point-M2AE with a Transformer
encoder achieves the highest accuracy at 94.0%.

Each PointSIMSIAM and PointBYOL model was also compared with the original results
obtained by their encoders, trained in a supervised manner without pre-training on Model-
Net40. The aim is to verify if pre-training with Siamese networks does indeed improve the
final classification results on this dataset.

Looking at the results in Table 8.3, PointNet [45], DGCNN [48], and Transformer [86]
perform better with the Siamese network method compared to training only on ModelNet40 in
a supervised manner. However, Point-MLP [47] and Point-MLP elite are negatively affected
by pre-training, with PointSIMSIAM and PointBYOL performing worse than without pre-
training. This may be due to the structure of Point-MLP being overly specialized for this
benchmark, or the pre-training parameters being suboptimal, thereby distracting the encoder
from classifying correctly.

While the pre-trained models do not reach the level of those pre-trained with autoencoders,
the proposed Siamese networks significantly improve the results of different encoders. This
suggests that further research on the chosen transformations could enable the models to
achieve even better results.
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Table 8.2: Comparison of pre-trained models vs from scratch performance:
Shape classification on ModelNet40. ‘Acc (%)’ denotes overall accuracy and
‘Voting Acc (%)’ denotes voting accuracy. The results are listed starting
with autoencoder-based models, followed by models that primarily use con-
trastive learning, and finally the results of the proposed models.

Method Backbone Acc. (%) Voting Acc. (%)
Point-DAE PointNet 90.6
Point-DAE DGCNN 93.3
Point-BERT Transformer 93.2
Point-MAE Transformer 93.8
Point-M2AE Transformer 94.0
DepthContrast [97] PointNet++ 85.4
ContrastMPCT [120] Transformer 93.3
STRL [98] PointNet 88.6
STRL [98] DGCNN 90.8
PointSIMSIAM PointNet 91.1 90.9
PointBYOL PointNet 91.3 91.2
PointSIMSIAM PointNet(w/o ST) 89.9 90.0
PointBYOL PointNet(w/o ST) 90.0 90.3
PointSIMSIAM DGCNN 92.3 92.6
PointBYOL DGCNN 93.0 93.0
PointSIMSIAM Transformer 92.5 92.5
PointBYOL Transformer 92.7 93.1
PointSIMSIAM Transformer(TM) 91.9 92.5
PointBYOL Transformer(TM) 92.5 92.9
PointSIMSIAM Point-MLP 92.9 93.0
PointBYOL Point-MLP 93.0 93.6
PointSIMSIAM Point-MLP elite 92.7 92.3
PointBYOL Point-MLP elite 93.3 93.1
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Table 8.3: Shape classification on ModelNet40. ‘Voting Acc (%)’ indicates
voting accuracy. Each version of PointSIMSIAM and PointBYOL is distin-
guished, along with the ‘from scratch’ results of their respective encoders.

Method Backbone Voting Acc. (%)
From scratch PointNet 89.2
PointSIMSIAM PointNet 90.9
PointBYOL PointNet 91.2
PointSIMSIAM PointNet(w/o ST) 90.0
PointBYOL PointNet(w/o ST) 90.3
From scratch DGCNN 92.9
PointSIMSIAM DGCNN 92.6
PointBYOL DGCNN 93.0
From scratch Transformer [86] 91.4
PointSIMSIAM Transformer 92.5
PointBYOL Transformer 93.1
PointSIMSIAM Transformer(TM) 92.5
PointBYOL Transformer(TM) 92.9
From scratch Point-MLP 94.5
PointSIMSIAM Point-MLP 93.0
PointBYOL Point-MLP 93.6
From scratch Point-MLP elite 94.0
PointSIMSIAM Point-MLP elite 92.3
PointBYOL Point-MLP elite 93.1

8.1.3. Classification on ScanObjectNN

The results for classification on ScanObjectNN are shown in the Table 8.4. Among the
proposed models, the best performance in this task is achieved by PointBYOL with Point-
MLP elite as the backbone in the OBJ-ONLY variant, and PointBYOL with Point-MLP as
the backbone in the OBJ-BG and OBJ-PB categories of ScanObjectNN.

Among all current models, Point-MA2E [90] achieves the best results in the OBJ-ONLY
category with an accuracy of 93.07% and in OBJ-PB with an accuracy of 89.31%. However,
the proposed configuration of PointBYOL with Point-MLP backbone outperforms the state-
of-the-art proposals in the OBJ-BG category, achieving a classification accuracy of 94.15%.
It is noteworthy that according to Fei et al. [85], ContrastMPCT [120] is the only contrastive
learning method evaluated under this benchmark, and the models with PointBYOL with
Point-MLP and Point-MLP Elite backbones significantly outperform it.

As in the previous section, the results of each backbone are compared with its unpretrained
version in Table 8.5. The version trained only on ScanObjectNN with labels is called ‘from
scratch’. Although most of the proposed models achieve competitive results, exceeding 85%
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accuracy, those using Point-MLP and Point-MLP elite as encoders stand out.

Since there are no official results from these encoders for OBJ-ONLY and OBJ-BG, it
remains unclear whether the results are due to the proposed methodology or to the qual-
ity of the encoder. To address this, Table 8.5 shows that for the PB-T50-RS variant, the
most complex in the dataset, the Point-MLP encoder improves its performance by about
4.6%, demonstrating that it does indeed improve performance thanks to pre-training with
PointBYOL.

Regarding the self-supervised learning models using contrastive learning, only ContrastM-
PCT is identified, which is outperformed in its results. However, it is noteworthy that using
Transformer as an encoder, the same as ContrastMPCT, yields worse results in classifying
ScanObjectNN. This difference in results suggests that Transformer networks do not benefit
as much from Siamese network pre-training as Point-MLP, which is not a major issue since
these models require a large amount of data. The performance improvement with Point-MLP
over Transformer is positive for both the increased accuracy and the smaller dimension of
the encoder, which favors the goal of self-supervised learning to reduce the amount of data
required for training.
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Table 8.4: Accuracy (%) results of fine-tuning on ScanObjectNN classifica-
tion. Models are categorized according to their pre-training methodology:
first, models based on the autoencoder methodology; then, state-of-the-art
models following contrastive learning; and finally, the models proposed in
this research.

Method Backbone OBJ-ONLY OBJ-BG PB-T50-RS
Point-DAE PointNet 80.2
Point-DAE DGCNN 92.1
Point-BERT Transformer 88.12 87.43 83.07
Point-MAE Transformer 88.29 90.02 85.18
Point-M2AE Transformer 88.81 91.22 86.43
MAE3D DGCNN 83.21
Point-MA2E PointNet 80.2
Point-MA2E DGCNN 92.1
Point-MA2E Transformer 93.07 93.86 89.31
ContrastMPCT [120] Transformer 90.42 90.15 85.50
PointSIMSIAM PointNet 77.97 78.31 69.00
PointBYOL PointNet 82.44 81.58 69.81
PointSIMSIAM PointNet(w/o ST) 79.69 78.83 69.04
PointBYOL PointNet(w/o ST) 80.89 79.00 68.98
PointSIMSIAM DGCNN 88.81 88.98 81.57
PointBYOL DGCNN 89.15 88.81 82.27
PointSIMSIAM Transformer 85.71 86.57 81.57
PointBYOL Transformer 88.64 89.33 84.73
PointSIMSIAM Transformer(TM) 87.95 88.64 83.48
PointBYOL Transformer(TM) 86.92 85.37 80.22
PointSIMSIAM Point-MLP 90.19 92.08 87.95
PointBYOL Point-MLP 90.71 94.15 89.00
PointSIMSIAM Point-MLP elite 89.67 91.37 85.60
PointBYOL Point-MLP elite 91.74 91.05 87.02
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Table 8.5: Comparison of pre-trained models vs from scratch performance:
Accuracy (%) results of fine-tuning ScanObjectNN classification, comparing
each Siamese network model with its backbone results when trained from
scratch.

Method Backbone OBJ-ONLY OBJ-BG PB-T50-RS
From scratch PointNet 73.3 79.2 68.0
PointSIMSIAM PointNet 77.97 78.31 69.00
PointBYOL PointNet 82.44 81.58 69.81
PointSIMSIAM PointNet(w/o ST) 79.69 78.83 69.04
PointBYOL PointNet(w/o ST) 80.89 79.00 68.98
From scratch DGCNN 86.2 82.8 78.1
PointSIMSIAM DGCNN 88.81 88.98 81.57
PointBYOL DGCNN 89.15 88.81 82.27
From scratch Transformer 79.86 80.55 77.24
PointSIMSIAM Transformer 85.71 86.57 81.57
PointBYOL Transformer 88.64 89.33 84.73
PointSIMSIAM Transformer(TM) 87.95 88.64 83.48
PointBYOL Transformer(TM) 86.92 85.37 80.22
From scratch Point-MLP - - 85.4 ± 0.3
PointSIMSIAM Point-MLP 90.19 92.08 87.95
PointBYOL Point-MLP 90.71 94.15 89.00
From scratch Point-MLP elite - - 83.8 ± 0.6
PointSIMSIAM Point-MLP elite 89.67 91.37 85.60
PointBYOL Point-MLP elite 91.74 91.05 87.02

8.1.4. Few-shot classification

The primary goal of the few-shot classification benchmark is to evaluate the quality of
pre-trained encoders in terms of their ability to quickly adapt to new target datasets.

The results are presented in Table 8.6. As in previous experiments, the autoencoder-based
models are reported first, followed by those using contrastive learning, and finally the models
proposed in this research. The reported results pertain to the mean and standard deviation
of the accuracy of the model across the 10 independent experiments defined by Sharma et al.
[115]. It is notable that Point-M2AE [89] and ContrastMPCT [120] achieve the best results
in their respective groups.

Comparing the proposed models with the best state-of-the-art, PointBYOL with DGCNN
achieves the best results in the ‘5w10s’ and ‘5w20s’ benchmarks with 97.1% ± 2.1% and
98.9%±1.4% accuracy, respectively. In other benchmarks, the proposed networks rank third
in ‘10w10s’ and second in ‘10w20s’. Beyond the achieved performance, it is noteworthy that
convolutional networks outperform Transformer models pre-trained with autoencoders and
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contrastive learning.

Each version of the Siamese network is also compared to its encoder trained from scratch
in the Table 8.7. It is observed that all encoders benefit from pre-training with PointBYOL
and PointSIMSIAM. Unfortunately, Point-MLP does not report its results in this benchmark,
so the results are only reported in the last two sections of the table.

Analyzing the results in Table 8.7, it is clear that encoders trained from scratch are
significantly less efficient than those pre-trained. The most striking example is DGCNN,
which achieves an accuracy of only 16.9% under the ‘10w20s’ method, while pre-training
with PointBYOL increases its accuracy to 95.1%, resulting in an approximate increase of
78.2% due to the Siamese network pre-training alone.

Table 8.6: Few-shot classification results on ModelNet40. Mean accuracy
(%) and standard deviation (%) from 10 independent experiments are re-
ported.

Method Backbone 5w10s 5w20s 10w10s 10w20s
Point-DAE PointNet 93.0 ± 3.7 94.9 ± 3.3 86.7 ± 5.8 92.1 ± 4.6
Point-DAE DGCNN 96.7 ± 2.5 97.7 ± 1.6 93.0 ± 3.8 95.6 ± 2.6
Point-BERT Transformer 94.6 ± 3.1 96.3 ± 2.7 91.0 ± 5.4 92.7 ± 5.1
Point-MAE Transformer 96.3 ± 2.5 97.8 ± 1.8 92.6 ± 4.1 95.0 ± 3.0
Point-M2AE Transformer 96.8 ± 1.8 98.3 ± 4.5 92.3 ± 4.5 95.0 ± 3.0
MAE3D Transformer 95.2 ± 3.1 97.9 ± 1.6 91.1 ± 4.6 94.2 ± 3.8
ContrastMPCT [120] Transformer 96.5 ± 1.7 98.5 ± 1.7 93.0 ± 2.4 95.2 ± 2.0
Cover-tree [115] PointNet 63.2 ± 10.7 68.9 ± 9.4 49.2 ± 6.1 50.1 ± 5.0
Cover-tree [115] DGCNN 60.0 ± 8.9 65.7 ± 8.4 48.5 ± 5.6 53.0 ± 4.1
PointSIMSIAM PointNet 90.8 ± 6.6 93.8 ± 5.1 84.3 ± 6.4 90.8 ± 5.1
PointBYOL PointNet 93.3 ± 3.4 96.4 ± 1.9 87.9 ± 5.2 92.6 ± 4.5
PointSIMSIAM PointNet(w/o ST) 93.2 ± 3.4 94.9 ± 3.2 87.5 ± 6.2 92.1 ± 4.1
PointBYOL PointNet(w/o ST) 93.7 ± 3.0 94.9 ± 3.0 87.7 ± 5.9 92.0 ± 4.2
PointSIMSIAM DGCNN 96.8 ± 2.3 98.8 ± 1.4 92.6 ± 4.5 95.3 ± 2.8
PointBYOL DGCNN 97.1 ± 2.1 98.4 ± 0.9 92.3 ± 4.0 95.5 ± 2.8
PointSIMSIAM Transformer 94.7 ± 3.1 97.0 ± 2.5 90.2 ± 5.2 94.3 ± 3.0
PointBYOL Transformer 95.7 ± 3.6 98.4 ± 1.2 92.4 ± 4.5 95.1 ± 2.8
PointSIMSIAM Transformer(TM) 95.5 ± 2.8 96.9 ± 1.9 91.2 ± 4.6 94.5 ± 2.4
PointBYOL Transformer(TM) 93.8 ± 2.7 95.7 ± 2.5 88.9 ± 5.2 93.1 ± 4.0
PointSIMSIAM Point-MLP 95.2 ± 3.0 98.3 ± 1.6 91.9 ± 4.8 94.9 ± 2.6
PointBYOL Point-MLP 96.7 ± 2.3 98.0 ± 1.9 92.6 ± 4.1 95.1 ± 2.5
PointSIMSIAM Point-MLP elite 95.1 ± 1.8 98.1 ± 1.8 92.0 ± 4.9 94.5 ± 3.0
PointBYOL Point-MLP elite 95.8 ± 2.8 97.4 ± 2.3 91.7 ± 4.3 95.0 ± 2.5
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Table 8.7: Comparison of pre-trained models vs from scratch performance:
Few-shot classification results on ModelNet40, comparing each Siamese net-
work model with its backbone results when trained from scratch. Mean
accuracy (%) and standard deviation (%) from 10 independent experiments
are shown.

Method Backbone 5w10s 5w20s 10w10s 10w20s
From scratch PointNet 52.0 ± 12.2 57.8 ± 15.5 46.6 ± 13.5 35.2 ± 15.3
PointSIMSIAM PointNet 90.8 ± 6.6 93.8 ± 5.1 84.3 ± 6.4 90.8 ± 5.1
PointBYOL PointNet 93.3 ± 3.4 96.4 ± 1.9 87.9 ± 5.2 92.6 ± 4.5
PointSIMSIAM PointNet(w/o ST) 93.2 ± 3.4 94.9 ± 3.2 87.5 ± 6.2 92.1 ± 4.1
PointBYOL PointNet(w/o ST) 93.7 ± 3.0 94.9 ± 3.0 87.7 ± 5.9 92.0 ± 4.2
From scratch DGCNN 36.1 ± 2.8 40.8 ± 4.6 19.9 ± 2.1 16.9 ± 1.5
PointSIMSIAM DGCNN 96.8 ± 2.3 98.8 ± 1.4 92.6 ± 4.5 95.3 ± 2.8
PointBYOL DGCNN 97.1 ± 2.1 98.4 ± 0.9 92.3 ± 4.0 95.5 ± 2.8
From scratch Transformer 87.8 ± 5.2 93.3 ± 4.3 84.6 ± 5.5 89.4 ± 6.3
PointSIMSIAM Transformer 94.7 ± 3.1 97.0 ± 2.5 90.2 ± 5.2 94.3 ± 3.0
PointBYOL Transformer 95.7 ± 3.6 98.4 ± 1.2 92.4 ± 4.5 95.1 ± 2.8
PointSIMSIAM Transformer(TM) 95.5 ± 2.8 96.9 ± 1.9 91.2 ± 4.6 94.5 ± 2.4
PointBYOL Transformer(TM) 93.8 ± 2.7 95.7 ± 2.5 88.9 ± 5.2 93.1 ± 4.0
From scratch Point-MLP - - - -
PointSIMSIAM Point-MLP 95.2 ± 3.0 98.3 ± 1.6 91.9 ± 4.8 94.9 ± 2.6
PointBYOL Point-MLP 96.7 ± 2.3 98.0 ± 1.9 92.6 ± 4.1 95.1 ± 2.5
From scratch Point-MLP elite - - - -
PointSIMSIAM Point-MLP elite 95.1 ± 1.8 98.1 ± 1.8 92.0 ± 4.9 94.5 ± 3.0
PointBYOL Point-MLP elite 95.8 ± 2.8 97.4 ± 2.3 91.7 ± 4.3 95.0 ± 2.5

8.1.5. Point cloud segmentation

Another key aspect of a successful self-supervised learning method is its ability to general-
ize to different types of tasks. To evaluate this property, the downstream task of segmenting
the ShapeNetPart [61] dataset is used. The goal of this experiment is to evaluate the gener-
alization ability of the pre-trained encoders in feature generation, extending the downstream
tasks beyond simple classification. The segmentation heads originally proposed for each
backbone were adopted.

As reported in Table 8.8, the Siamese network versions with the best results are PointSIM-
SIAM and PointBYOL with the Point-MLP encoder, reaching a MIoUI of 85.9. However,
they do not surpass the results of ContrastMPCT [120] and Point-M2AE [89], which are the
leading models in contrast learning and autoencoders, respectively.

Similar to previous experiments, Table 8.9 reports the results of each variant of PointSIM-
SIAM and PointBYOL compared to the original version of their encoders trained from
scratch. From this table, we can see that PointNet [45], DGCNN [48], and the Transformer
encoder [86] benefit from pre-training for segmentation. On the other hand, Point-MLP [47]
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reduces its mIoUI from 86.1 to 85.9, and its simplified version, Point-MLP elite, reaches 85.8
with PointBYOL. This last result is not compared to Ma et al. [47] as they do not report
their results in this benchmark.

These results suggest that the generalization capability of pre-training with Siamese net-
works is less efficient than masked autoencoder methods. Although the segmentation results
are not the best compared to other pre-training methods, the possibility of improving the
transformations used or using other Siamese network methods, such as SwAV or SimCLR,
to achieve better performance is not ruled out.

Table 8.8: Part Segmentation on ShapeNetPart [61]. ‘mIoUI ’ denotes the
mean IoU of the model over all instances in the dataset. The results are
categorized based on autoencoder models, contrastive models, and proposed
models.

Method Backbone mIoUI

Point-DAE PointNet 84.7
Point-DAE DGCNN 85.9
Point-BERT Transformer 85.6
Point-MAE Transformer 86.1
Point-M2AE Transformer 86.5
Point-MA2E PointNet 84.8
Point-MA2E DGCNN 86.0
Point-MA2E Transformer 86.4
PointContrast [96] SR-UNet 85.1
ContrastMPCT [120] Transformer 86.2
ConClu [99] DGCNN 85.4
PointSIMSIAM PointNet 84.4
PointBYOL PointNet 84.6
PointSIMSIAM PointNet(w/o ST) 84.4
PointBYOL PointNet(w/o ST) 84.3
PointSIMSIAM DGCNN 85.3
PointBYOL DGCNN 85.3
PointSIMSIAM Transformer 85.6
PointBYOL Transformer 85.6
PointSIMSIAM Transformer(TM) 85.6
PointBYOL Transformer(TM) 85.7
PointSIMSIAM Point-MLP 85.9
PointBYOL Point-MLP 85.9
PointSIMSIAM Point-MLP elite 85.6
PointBYOL Point-MLP elite 85.8
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Table 8.9: Comparison of pre-trained models vs from scratch performance:
Part segmentation on ShapeNetPart [61], comparing each Siamese network
model with its backbone results when trained from scratch. ‘mIoUI ’ denotes
the model’s mean IoU across all instances in the dataset. The results are
categorized based on autoencoder models, contrastive models, and proposed
models.

Method Backbone MIoUI

From scratch PointNet 83.7
PointSIMSIAM PointNet 84.4
PointBYOL PointNet 84.6
PointSIMSIAM PointNet(w/o ST) 84.4
PointBYOL PointNet(w/o ST) 84.3
From scratch DGCNN 85.2
PointSIMSIAM DGCNN 85.3
PointBYOL DGCNN 85.3
From scratch Transformer 85.1
PointSIMSIAM Transformer 85.6
PointBYOL Transformer 85.6
PointSIMSIAM Transformer(TM) 85.6
PointBYOL Transformer(TM) 85.7
From scratch Point-MLP 86.1
PointSIMSIAM Point-MLP 85.9
PointBYOL Point-MLP 85.9
From scratch Point-MLP elite -
PointSIMSIAM Point-MLP elite 85.6
PointBYOL Point-MLP elite 85.8

8.1.6. Dimensionality reduction evaluation

As mentioned in chapter 6, t-SNE and UMAP are qualitative evaluation methods that
allow a visual assessment of the quality of representations generated by a pre-trained encoder.
To evaluate the proposed models, after pre-training on ShapeNet55, the encoder is used to
generate embeddings of each ModelNet40 model. These embeddings are then used to generate
two-dimensional representations using t-SNE and UMAP.

Effective pre-training of the encoder should visually cluster objects of the same class close
together, while separating those of different classes as much as possible, forming one cluster
for each class. For this purpose, the results of these evaluation techniques are presented on
a 2D plane, where the points are colored according to the label of each object transformed
into an embedding.

Based on this, a qualitative analysis of the generated clusters is performed, evaluating the
quality of the pre-training by examining the relationship between the generated clusters and

69



the classes of the dataset. This benchmark is related to linear probing in that it measures the
ease of classifying classes based solely on the features generated by the pre-trained model.

Comparing the t-SNE results from Figures 8.1 and 8.2 with the UMAP results from
Figures 8.3 and 8.4, the first noticeable difference is the scale of the results. UMAP projects
the results into a two-dimensional range with a maximum value of less than 20, while t-
SNE reaches values close to 75. This means that, mathematically, the different classes of
ModelNet40 appear closer on the plane in UMAP than in t-SNE, but this observation can
be misleading because these numerical values are not the main focus of these benchmarks.

The results with t-SNE are consistent across the board. In particular, PointSIMSIAM
with PointNet does not generate specific clusters for the classes, but groups them all into one
cluster. In the remaining images, several distinct groups can be identified, along with a central
cloud of points composed of elements from different classes. It’s significant that PointNet
without spatial transformations discriminates a large number of classes, unlike PointNet with
spatial transformations, suggesting that while T-Net modules may improve the performance
of PointNet, they make pre-training with the proposed combination of transformations more
difficult.

UMAP produces figures similar to t-SNE, but on a smaller scale. With PointSIMSIAM
and PointNet, UMAP also discriminates only one class from the rest, while PointNet (without
ST) produces more defined clusters. UMAP not only reduces the range of values taken by
the features, but also accentuates the differences between clearly differentiated classes and
brings those with similar feature vectors closer together. It is observed that PointBYOL
increases the grouping of classes in the case of PointNet, Transformer and Point-MLP. These
results are consistent with those obtained in previous benchmarks, where pre-training with
Siamese networks effectively helps the coders to better differentiate elements of a data set.
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Figure 8.1: Siamese networks t-SNE results part 1. t-SNE is used to
project the representations generated by pre-trained encoders into 2D. In
all images, the x and y axes range from [-70, 70].
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Figure 8.2: Siamese networks t-SNE results part 2. t-SNE is used to
project the representations generated by pre-trained encoders into 2D. In
all images, the x and y axes range from [-70, 70].
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Figure 8.3: Siamese networks UMAP results part 1. UMAP is applied
to project the representations generated by pre-trained encoders into 2D.
In all images, the x and y axes range from [-20, 20].
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Figure 8.4: Siamese networks UMAP results part 2. UMAP is applied
to project the representations generated by pre-trained encoders into 2D.
In all images, the x and y axes range from [-20, 20].
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8.1.7. Retrieval techniques

Table 8.10 shows the results of the NN and mAP techniques applied to the representations
from the test subset of ModelNet40 generated by the PointBYOL with a pre-trained Point-
MLP encoder model. It can be seen from the table that the performance of NN significantly
exceeds that of mAP. The pre-trained model with the best results is PointSIMSIAM with a
Point-MLP encoder, which achieves 78.8% in the NN metric and 45.1% in the mAP metric.
This results suggest that the model is effective at identifying the nearest neighbor to a given
data point within the feature space. For a single example or query, the model is able to
accurately identify the most similar example from its training set.

Conversely, a lower performance in mAP, implies that while the model may be proficient
in identifying the most similar case (as evidenced by NN), it is not as efficient or accurate in
ranking a broader set of relevant examples in terms of similarity or relevance. mAP considers
not only the accuracy in identifying relevant examples, but also how those examples are
ranked. A low mAP indicates that the model finds relevant examples, but does not necessarily
rank them effectively.

According to these results, the model may exhibit limited generalization, suggesting that it
could be overfitted to specific data characteristics. This allows for accurate nearest neighbor
identification but fails to generalize this capability across a wider data set. Furthermore,
the feature representations learned by the model might be effective in identifying direct
similarities but less so in capturing a range of more subtle or complex similarities needed for
high mAP ranking. Another possibility is that the model might be biased towards certain
types of data or characteristics, resulting in accurate nearest neighbor identification but poor
overall relevance ranking.

A thorough analysis of Figure 8.5 reveals the model’s proficient ability to discern common
features among similar objects. Although there are instances of misclassification, such as
incorrectly associating ‘bed’ more closely with ‘sofa’ and ‘desk’ than with its own category,
it is understandable considering that this particular model of ‘bed’ might be significantly
different from others in the dataset. A similar phenomenon is observed with ‘bookshelf’,
‘wardrobe’, and ‘tv_stand’, items that are often conflated even in everyday language.

In summary, the results of high NN but low mAP in retrieval tasks suggest that the model
is likely to be very good at identifying the most similar example for a specific query, but less
able to effectively classify a wider range of relevant examples. This suggests areas where the
model may need improvement, such as generalizing its learning capabilities or developing
more robust feature representations.
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Table 8.10: Retrieval results. ‘NN (%)’ denotes the percentage of in-
stances where the model accurately identified the nearest neighbor. ‘mAP
(%)’ signifies the model’s mean average precision in its retrieval tasks across
various levels of recall.

Method Backbone NN (%) mAP (%)
PointSIMSIAM PointNet 60.4 26.7
PointBYOL PointNet 73.8 31.2
PointSIMSIAM PointNet(w/o ST) 76.8 36.9
PointBYOL PointNet(w/o ST) 78.2 38.2
PointSIMSIAM DGCNN 74.8 39.4
PointBYOL DGCNN 75.2 39.2
PointSIMSIAM Transformer 77.1 41.1
PointBYOL Transformer 77.2 38.3
PointSIMSIAM Transformer(TM) 73.7 37.9
PointBYOL Transformer(TM) 68.1 32.2
PointSIMSIAM Point-MLP 78.8 45.1
PointBYOL Point-MLP 77.5 37.3
PointSIMSIAM Point-MLP elite 77.2 42.8
PointBYOL Point-MLP elite 77.9 39.6

Additionally, the results of the 3D object retrieval can be visually examined in Figure 8.5.
This figure shows randomly selected objects from the ModelNet dataset next to point clouds
that, according to the PointSIMSIAM with Point-MLP pre-trained model, have the most
similar representations to the selected figures. In this case, similarity is determined based on
the cosine similarity of the generated feature vectors.
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Figure 8.5: Visual Representation of retrieval. Objects randomly se-
lected from ModelNet are displayed alongside their 5 nearest elements in
the feature space, according to output from PointSIMSIAM with Point-
MLP encoder.
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8.2. Formula-driven supervised learning

Unlike the previous experiments, the formula-driven supervised learning approach focuses
on improving self-supervised learning methods by changing the dataset used, rather than the
model or methodology. To evaluate the results of this approach, all pre-training and model
evaluation parameters are kept constant, with the dataset being the only varying factor.

To fairly compare the added value of pre-training with SimpleShape on 3D point cloud
networks to pre-training with ShapeNet55, Point-MAE [23] was used as the deep learning
model. Since Point-MAE has been shown to improve results on 3D point cloud networks when
pre-trained with self-supervised learning on ShapeNet55, it effectively assesses the impact of
SimpleShape. The results in each benchmark were compared when Point-MAE’s Transformer
was pre-trained on the SimpleShape1K, SimpleShape5K, SimpleShape10K, SimpleShape15K,
SimpleShape50K, and SimpleShape100K datasets.

The results were compared with those published by Pang, et al. [23] and with the Trans-
former encoder [86] trained on the same datasets using labels but without pre-training. In
addition, the official implementation of Point-MAE was followed to obtain results in each
subsequent task, reported as ‘Point-MAE (ours)’.

In this section the models are evaluated under the linear probing metric (8.2.1). Then the
results are reported under the standard downstream tasks metrics (8.2.2), which are analyzed
as a whole in its last subsection (8.2.2.5). Finally, the results and analysis of dimensionality
reduction evaluion (8.2.3) and retrieval (8.2.4) are presented.

8.2.1. Linear probing

The linear probing results are detailed in Table 8.11, where it is observed that the rep-
resentations generated by Point-MAE, after pre-training with SimpleShape, facilitate the
accurate classification of a significant portion of the samples by SV M and KNN .

The most remarkable results are achieved with SimpleShape10K, which reaches an accu-
racy of 88.2% with linear SV M and 81.7% with the KNN classifier. Beyond this point,
accuracy decreases progressively as the number of SimpleShape samples is increased or de-
creased. Compared to pre-training with ShapeNet, the latter shows better results with linear
SV M , reaching an accuracy of 91.0%, but with KNN , pre-training with SimpleShape10K
outperforms ShapeNet, reaching an accuracy of 81.7%.

8.2.2. Downstream tasks

8.2.2.1. Classification on ModelNet40

Regarding the fine-tuning evaluations for ModelNet40 classification shown in Table 8.12,
SimpleShape5K outperforms pre-training with ShapeNet55 in joint accuracy, but does not
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reach its level when using the voting method. The best voting accuracy achieved with pre-
training on SimpleShape5K is 92.99%, while Point-MAE achieved 93.8% with pre-training
on ShapeNet55. However, the accuracy of the Transformer model trained from scratch with
labels is lower than all results obtained with SimpleShape, highlighting Point-MAE’s ability
to improve its encoder’s results even with a different dataset than ShapeNet55.

Table 8.11: Linear evaluation on ModelNet40 [11] by SVM and kNN.

Method Pre-training dataset SVM Acc. (%) kNN Acc. (%)
Point-MAE ShapeNet55 91.0
Point-MAE (our) ShapeNet55 90.0 76.9
Point-MAE SimpleShape1K 56.7 61.8
Point-MAE SimpleShape5K 87.9 80.6
Point-MAE SimpleShape10K 88.2 81.7
Point-MAE SimpleShape15K 87.2 80.8
Point-MAE SimpleShape50K 87.0 80.1
Point-MAE SimpleShape100K 86.0 78.8

Table 8.12: Shape classification on ModelNet40.‘Acc (%)’ denotes overall
accuracy and ‘Voting Acc (%)’ indicates voting accuracy.

Method Pre-training dataset Acc. (%) Voting Acc. (%)
Transformer from scratch 91.4
Point-MAE ShapeNet55 93.8
Point-MAE (our) ShapeNet55 92.7 93.4
Point-MAE SimpleShape1K 92.4 92.9
Point-MAE SimpleShape5K 92.7 93.0
Point-MAE SimpleShape10K 92.7 92.8
Point-MAE SimpleShape15K 92.4 92.7
Point-MAE SimpleShape50K 92.3 92.9
Point-MAE SimpleShape100K 92.1 92.8
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Table 8.13: Few-shot classification results on ModelNet40. Mean accuracy
(%) and standard deviation (%) from 10 independent experiments are re-
ported.

Method Pre-training dataset 5w10s 5w20s 10w10s 10w20s
Transformer from scratch 87.8 ± 5.2 93.3 ± 4.3 84.6 ± 5.5 89.4 ± 6.3
Point-MAE ShapeNet55 96.3 ± 2.5 97.8 ± 1.8 92.6 ± 4.1 95.0 ± 3.0
Point-MAE (our) ShapeNet55 97.1 ± 2.2 98.3 ± 1.3 93.1 ± 3.8 95.1 ± 3.3
Point-MAE SimpleShape1K 91.7 ± 3.1 94.6 ± 4.0 87.2 ± 6.6 90.8 ± 5.2
Point-MAE SimpleShape5K 95.0 ± 2.2 97.2 ± 2.0 89.5 ± 5.0 92.9 ± 4.3
Point-MAE SimpleShape10K 95.5 ± 2.3 97.1 ± 2.0 91.0 ± 4.8 93.3 ± 3.3
Point-MAE SimpleShape15K 95.5 ± 2.4 97.3 ± 1.7 90.5 ± 4.9 93.2 ± 4.2
Point-MAE SimpleShape50K 95.0 ± 2.8 97.4 ± 2.6 90.8 ± 4.8 93.3 ± 4.0
Point-MAE SimpleShape100K 94.8 ± 2.7 97.6 ± 2.0 90.5 ± 4.8 93.3 ± 4.5

8.2.2.2. Classification on ScanObjectNN

Continuing with downstream task benchmarks, the performance of Point-MAE on ScanOb-
jectNN after pre-training with different versions of SimpleShape was also evaluated, with
results presented in Table 8.14. Similar to the ModelNet40 classification results, it does not
reach the levels of Point-MAE, but a significant improvement is observed compared to the
Transformer trained from scratch. In this case, unlike the previous benchmarks, the best
results are achieved with the SimpleShape100K dataset, with 87.26%, 86.57%, and 81.85%
in the OBJ-ONLY, OBJ-BG, and PB-T50-RS tests, respectively.

Table 8.14: Accuracy (%) results from fine-tuning on ScanObjectNN clas-
sification.

Method Pre-training dataset OBJ-ONLY OBJ-BG PB-T50-RS
Transformer from scratch 79.86 80.55 77.24
Point-MAE ShapeNet55 90.02 88.29 85.18
Point-MAE (our) ShapeNet55 88.30 87.60 83.07
Point-MAE SimpleShape1K 85.71 85.20 80.22
Point-MAE SimpleShape5K 85.20 86.23 81.23
Point-MAE SimpleShape10K 86.74 86.91 82.69
Point-MAE SimpleShape15K 85.71 86.05 81.89
Point-MAE SimpleShape50K 86.57 85.54 81.99
Point-MAE SimpleShape100K 87.26 86.57 81.85

8.2.2.3. Few-shot classification

Concluding the downstream classification tasks, the results of pre-training with Simple-
Shape in the few-shot classification task were evaluated. These are detailed in the Table
8.13. Here, the best results are spread between pre-training with SimpleShape5K to Simple-
Shape100K, showing a significant improvement of the Transformer’s performance compared
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to training from scratch, although not surpassing the results obtained when pre-training with
ShapeNet55.

8.2.2.4. Point Cloud segmentation

To conclude the evaluation of the downstream tasks, Table 8.15 shows the results of the
point MAE in the segmentation task. While the results are very similar to those obtained
with pre-training on ShapeNet55, they are not quite the same. The best performance is
achieved by pre-training with SimpleShape100K, reaching 86.0 mIoUI compared to the 86.1
mIoUI achieved with ShapeNet55 pre-training.

Table 8.15: Part segmentation on ShapeNetPart [61], comparing each
Siamese network model with its backbone results when trained from scratch.
‘mIoUI ’ denotes the model’s mean IoU across all instances in the dataset.
The results are categorized based on autoencoder models, contrastive mod-
els, and proposed models.

Method Pre-training dataset mIoUI

From scratch Transformer 85.1
Point-MAE ShapeNet55 86.1
Point-MAE (our) ShapeNet55 86.1
Point-MAE SimpleShape1K 85.6
Point-MAE SimpleShape5K 85.6
Point-MAE SimpleShape10K 85.9
Point-MAE SimpleShape15K 85.9
Point-MAE SimpleShape50K 85.6
Point-MAE SimpleShape100K 86.0

8.2.2.5. Downstream tasks results analysis

For few-shot learning on ModelNet40,ScanObjectNN classification, and ShapeNetPart seg-
mentation, shown in the tables 8.13, 8.14, and 8.15, pre-training with SimpleShape again
produces results inferior to those of ShapeNet55, but superior to training with labels from
scratch, even on a dataset generated from only 1000 samples. This suggests that while
ShapeNet55 may contain objects with greater variability and feature richness, the differ-
ence in results with SimpleShape is not as pronounced as when using the model without
pre-training.

Analyzing the performance of Point-MAE with different sizes of the SimpleShape dataset,
it is evident that in most cases the most significant performance difference occurs between pre-
training with SimpleShape1K and SimpleShape5K. On the other hand, the best performance
results are obtained with different numbers of samples in the dataset: for ModelNet40 it is
5K, for ScanObjectNN it is 10K and 100K, for few-shot learning it is 10K, 50K and 100K,
and for segmentation it is 100K. This could be due to the fact that increasing the number of
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samples in the pre-training set does not directly affect the results of the subsequent tasks, as
long as a minimum number of figures is reached.

Once all datasets, except SimpleShape1K, reach this minimum number of figures necessary
for the Transformer model to learn through masked autoencoders, the difference in using one
dataset over another becomes minimal. An interesting finding is the increase in mIoUI

with SimpleShape100K in the Table 8.15. This improved performance in segmentation may
indicate that the number of samples is important for improving performance. It would be
worthwhile to continue this experiment in the future and test with a version of SimpleShape
containing 500K or more elements.

From these results, it can be concluded that SimpleShape is sufficient to achieve high levels
of performance in downstream tasks, suggesting that using ShapeNet55 as a standard for pre-
training is not necessarily the best option. This dataset is used under the assumption that
it provides enough features to teach a deep learning model to discriminate between classes
and identify the most relevant features of each 3D model. However, because ShapeNet55
was created from CAD models, it has limited variability, well-defined edges, and a lack of
randomness in its features.

Nevertheless, based on these experiments, ShapeNet55 remains the better choice for pre-
training Point-MAE for classification and segmentation tasks, especially if performance is the
main goal. However, SimpleShape offers other advantages, such as avoiding copyright issues,
and its 5000-sample version is sufficient to achieve competitive results with less than 10% of
the total samples of ShapeNet55.

8.2.3. Dimensionality reduction evaluation

Similar to the dimension reduction experiments performed for PointSIMSIAM and Point-
BYOL in section 8.1.6, the quality of the representations generated by Point-MAE can be
assessed after their pretraining on the SimpleShape dataset. Following the same methodol-
ogy, after pre-training on SimpleShape1K, 5K, 10K, 15K, 50K, and 100K, the encoder is used
to create embeddings for each model from ModelNet40. These embeddings are then used to
generate two-dimensional representations using t-SNE and UMAP.

The results are shown in Figure 8.6 and 8.7 for t-SNE and Figure 8.8 and 8.9 for UMAP.
It is immediately apparent that, similar to PointSIMSIAM and PointBYOL, t-SNE allows
a clearer differentiation of the dataset’s class clusters. Although the results are not perfect,
there are clear class clusters in the figures.

The results obtained with t-SNE, as shown in Figures 8.6 and 8.7, show cluster group-
ings with considerable distances between them, but with intermediate elements that do not
clearly define any particular class. This is with the exception of the pre-training with Simple-
Shape1K, which confirms previous analyzes where Point-MAE pre-trained with this dataset
gave inferior results compared to the others. Given that the only variable among the datasets
is the number of figures that make up the generated dataset, it can be inferred that one thou-
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sand figures is not enough to pretrain such a network.

At the same time, it is assumed that the images generated by the model are indicative
of its ability to discriminate object classes in datasets different from the pretraining dataset.
This would be considered successful pretraining, suggesting that SimpleShape has potential
for pretraining such networks if further explored for this purpose.

UMAP, on the other hand, presents less striking results in Figures 8.8 and 8.9. Sim-
pleShape1K fails to distinguish any class and ends up with a single cluster combining all
elements of the dataset. The other variants of SimpleShape manage to distinguish small
clusters from the main group, but these separations are not as clear as with t-SNE, and none
is clearly superior to the others.

While it might be expected that increasing the number of samples in the pre-training
dataset would improve performance, this is not observed in these cases. Therefore, even
though it is possible to create a dataset with 1 million points, this alone is not sufficient. It
becomes necessary to explore other parameters of the dataset during its creation, such as the
variability among its figures and the functions used to create the figures.
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Point-MLP
Pre-training
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(10K)

Figure 8.6: SimpleShape t-SNE results part 1. t-SNE is used to project
the representations generated by pre-trained encoders into 2D. In all images,
the x and y axes range from [-70, 70].
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Figure 8.7: SimpleShape t-SNE results part 2. t-SNE is used to project
the representations generated by pre-trained encoders into 2D. In all images,
the x and y axes range from [-70, 70].
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Figure 8.8: SimpleShape UMAP results part 1. UMAP is applied to
project the representations generated by pre-trained encoders into 2D. In
all images, the x and y axes range from [-20, 20].
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Figure 8.9: SimpleShape UMAP results part 2. UMAP is applied to
project the representations generated by pre-trained encoders into 2D. In
all images, the x and y axes range from [-20, 20].
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8.2.4. Retrieval techniques

Continuing with the experiments performed, Table 8.16 shows that the SimpleShape15K
and SimpleShape50K versions even surpass the results obtained by Point-MAE when pre-
trained with ShapeNet55. It is noticeable that SimpleShape1K delivers significantly lower
results than the others due to its limited number of samples. While there is a peak in
performance between the 15K and 50K variants, the 100K sample variant shows a drop in
performance, which could be attributed to several factors, including possible overfitting on
SimpleShape, which contains simple figures.

Similar to the Siamese network results, the model may have limited generalization. This
is due to its high performance in finding neighbors with NN compared to the results in
mAP. However, it can be observed that ShapeNet55 also detects this difference between the
benchmarks. This indicates that the results obtained by pre-training with ShapeNet55 could
be equal or even worse than those of SimpleShape. The superior results obtained in all
standard benchmarks, where ShapeNet55 outperforms SimpleShape in all its variants, can
be attributed more to the great adaptability of the Transformer model to new datasets than
to the type of dataset used for pretraining.

Furthermore, it is crucial to highlight the efficiency gains achieved by having fewer sam-
ples in the training process. Reducing the number of samples directly translates into faster
computation, as the model needs to process a smaller dataset. This approach not only con-
serves computational resources, but also speeds up the overall training and retrieval process.
Despite this accelerated methodology, the accuracy of the model remains robust, as demon-
strated by its ability to distinguish between closely related object classes in Figure 8.10. The
occurrence of small classification errors, such as in the sink and car models, does not affect
the overall efficiency and effectiveness of the model’s performance. By balancing the amount
of training data with the need for computational speed, the model provides a pragmatic
solution for large-scale object recognition tasks.

Table 8.16: SimpleShape Retrieval results. ‘NN (%)’ denotes the per-
centage of instances where the model correctly identified the nearest neigh-
bor. ‘mAP (%)’ denotes the average precision of the model in its retrieval
tasks at different recall levels.

Method Pre-training dataset NN (%) mAP (%)
Point-MAE ShapeNet55 72.2 33.3
Point-MAE SimpleShape1K 47.4 18.5
Point-MAE SimpleShape5K 73.3 36.5
Point-MAE SimpleShape10K 72.6 37.3
Point-MAE SimpleShape15K 73.5 36.8
Point-MAE SimpleShape50K 72.2 37.5
Point-MAE SimpleShape100K 69.8 33.9
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The results of the 3D object retrieval can be visualized again in Figure 8.10. This figure
shows the same objects selected from the ModelNet dataset as used in the experiments
with PointSIMSIAM and PointBYOL in section 8.1.7. It contains, in order, the five objects
whose representations are closest in cosine similarity to the feature vector of the main object
according to the version pre-trained with SimpleShape15K.
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Figure 8.10: Visual Representation of Retrieval for SimpleShape.
Objects randomly selected from ModelNet are displayed next to their 5
nearest elements in feature space, according to the output of Point-MAE
pre-trained with SimpleShape15K.

90



Chapter 9

Conclusions

The experiments conducted in this research show that the Siamese network method is
effective for pre-training learning models on 3D point clouds. The proposed models per-
formance reach state-of-the-art results in self-supervised learning of 3D representations in
several cases. Although masked autoencoders remain the best methodology for pre-training
such networks in various tasks, contrastive learning, driven by Siamese networks, proves to
be a competitive pre-training technique.

While Siamese networks did not outperform the best masked autoencoders on segmenta-
tion and classification task on ModelNet40, they achieved better results on ScanObjectNN
classification, this is a dataset generated from scans of real objects, where better results were
obtained, is more indicative of the real-world applications of these networks.

Another area where Siamese networks excel is in few-shot learning. Here, models that
are not based on the Transformer structure, such as DGCNN and Point-MLP, outperform
those that are. This performance with simpler models is consistent with the primary goal of
reducing the need for large amounts of labeled data required by larger models.

In addition to verifying the feasibility and effectiveness of Siamese networks, it was ob-
served that almost all pre-training improves the performance of the encoders used when
comparing the pre-trained model with the model trained with labels only. This implies that
it is always advisable to pre-train a model with Siamese networks before performing the de-
sired downstream tasks. Even pre-training a model that has already been pre-trained with
autoencoders can further improve the performance of the model in its tasks, as long as the
main advantages of each pre-training strategy are effectively chosen.

Increasing research on Siamese networks in 3D point clouds could enable them to achieve
performance comparable to the best current models. However, this area has not been as ex-
tensively researched as autoencoders. Although the performance is similar, Siamese networks
offer the advantage of simplicity, as they do not require a large transformer-type decoder
during pre-training and allow the use of smaller and less dense encoders than those required
for autoencoders, achieving similar results in current benchmarks for assessing pre-training
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quality.

Beside testing the effectiveness of Siamese networks for pre-training neural networks work-
ing on 3D point clouds, this work also tested the ability of artificially generated datasets to
be used as pre-training datasets for this type of models.

On the one hand, the effectiveness of substituting the conventional pre-training dataset,
ShapeNet55, with a synthetic dataset, SimpleShape, using a formula-driven supervised learn-
ing approach was demonstrated. This substitution extends the capabilities of models dealing
with 3D point clouds. Although the results do not reach state-of-the-art levels in standard
benchmarks, they show the advantages of a formula-driven method: a scalable dataset with
an unlimited number of pre-training samples, free from copyright issues, and versatile enough
to be tailored to specific pre-training tasks.

On the other hand, in common tasks for evaluating the quality of representations generated
by pre-trained models, specifically in retrieval tasks, pre-training with SimpleShape even
outperformed pre-training with ShapeNet55. This suggests that while the model naturally
generates features that better distinguish objects of different classes in new datasets, the
fine-tuning of the model does not fully capitalize on these acquired capabilities, resulting in
lower final performance.

9.1. Contributions

This thesis presents innovative techniques to improve the processing and interpretation of
3D point cloud data using self-supervised learning techniques. Focusing on pre-training neu-
ral networks using Siamese network-based approaches and formula-driven supervised meth-
ods, the research aims to overcome the challenges associated with the need for large labeled
datasets in 3D data analysis. The effectiveness of these techniques was evaluated through
various methods, including linear probing, t-SNE, and transfer learning (fine-tuning), demon-
strating their potential to improve tasks such as classification and segmentation in 3D point
clouds.

The key findings of this study are Siamese networks the results obtained reach state-of-
the-art self-supervised learning methods performance in the ScanObjectNN and ModelNet
few-shot learning benchmarks. Furthermore, ShapeNet55 is not necessarily the best choice
for a pre-training dataset. The encoder used in Transformer models is able to achieve good
results even on simple datasets like SimpleShape5K, with 10% of the total number of samples
that ShapeNet55 has. This suggests that the success of ShapeNet55 as a standard pre-training
dataset is more related to the quality of the encoders used than to the ability of the dataset
to pre-train models.
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9.2. Achievement of goals

With respect to the goals of this thesis, the accomplishments achieved for each will be
described below:

1. A variety of point cloud encoders have been identified that can be used for classification
and segmentation tasks, including: PointNet, DGCNN, Point-MLP, Transformer, and
their variations.

2. A set of 3D transformations was identified to allow these encoders to be pre-trained
under the Siamese network strategy without collapsing in their pre-training. These
transformations consist of linear data augmentation rotation, translation, clipping, and
scaling, and then a random point group masking transformation is applied.

3. The ability of Siamese networks to improve performance on standard benchmarks has
been evaluated. Highlighting the improvement of the state of the art in ScanObjectNNN
classification and few-shot classification benchmarks.

4. The ability to generalize learning with the ShapeNet dataset in subsequent tasks was
investigated. It was also compared to pre-training with the synthetic dataset Simple-
Shape.

5. An ablation study was performed in which different combinations of self-supervised
learning components were tested in a structured manner. These included: different
encoders, pre-training techniques, target tasks, performance from scratch and with pre-
training, and different datasets to pre-train the networks.

6. The ability of SimpleShape to generate figures with high information content was eval-
uated. Although better results were obtained than without applying formula-driven
supervised learning, in its current state SimpleShape performs worse on the standard
benchmarks than ShapeNet as a pre-training dataset.

7. An implementation that can be easily integrated with other 3D deep learning frameworks
was provided. It separates the different components mentioned in this thesis: dataset,
pre-training, encoder, network header, transformations and target tasks. This allows
any new research to make free use of the implementation.

9.3. Future work

The results of this research open new avenues of investigation that could pursue the same
goal: advancing self-supervised learning methodology to reduce the need for labeled data in
training 3D point clouds. Motivated by the excellent results of pre-training with Siamese
networks, a potential area of exploration following this work is to investigate other types
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of Siamese networks that are more complex than SIMSIAM and BYOL, such as SwAV and
SimCLR.

In addition, other transformations can be targeted at specific downstream tasks, such as
segmentation. One approach is to identify parts of objects before applying transformations,
either by manual labeling or simpler methods such as dividing the space into subsections
and assigning a label to each. Then, linear and masking transformations would be applied,
shifting the current goal from having a similar global feature vector between two variants
of a figure to having similar features for groups with the same labels in both transformed
variants of the figure.

The third parameter considered in this thesis, in addition to the pre-training methodology
and the applied transformations, is the encoder used. As point cloud research continues, it is
expected that new encoders will emerge that are more efficient at extracting features from 3D
figures. Since Siamese networks are agnostic to the encoder used, applying this methodology
to any newly developed encoder has great potential, as most will benefit in their final results
compared to training from scratch.

Regarding the study of formula-driven supervised learning on 3D point clouds, the re-
cently published SimpleShape dataset has great potential for exploring its characteristics
and effectiveness in generating feature-rich models. The main purpose of this dataset is to
facilitate the training of symmetry detection in 3D objects, which imposes certain limitations
that may not contribute positively to the pre-training presented in this work.

Therefore, it would be appropriate to explore the potential of SimpleShape for self-
supervised learning by modifying the curve generation parameters and definitions. Currently,
these are limited to specific shapes focused on symmetries. However, for Siamese networks, an
approach focused on generating global and local features with high variability could improve
pre-training results for generating representations of 3D point clouds.

Finally, just as this work focuses on investigating the effectiveness of Siamese networks
for 3D point clouds, it also shows that the use of formula-driven supervised learning is
effective for this task. Therefore, the creation of new synthetic datasets tailored for formula-
driven training could lead to improved results in generating representations of 3D objects. In
addition, combining different types of datasets could increase the diversity of the data used,
thereby improving the quality of the pre-training of the network encoder.
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