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RESUMEN DE LA TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS, MENCION FÍSICA
POR: LUCAS MAURICIO GONZÁLEZ MUÑOZ
FECHA: 2024
PROF. GUÍA: LUIS FOÀ TORRES

ESTADOS TOPOLÓGICOS Y DE BORDE: USANDO CIRCUITOS
ELÉCTRICOS COMO SIMULADOR CUÁNTICO.

Español
En la búsqueda para mejorar nuestra comprensión sobre sistemas cuánticos, que frecuente-
mente se ve obstaculizada por la dificultad para acceder directamente a sus propiedades, la
imaginación humana ha dado lugar a diferentes "simuladores". Uno de los más recientemente
popularizados, se basa en el uso de circuitos eléctricos [1]. En la configuración adecuada, estos
circuitos permiten simular modelos de enlace fuerte, ampliamente utilizados en el contexto
del estudio de materiales incluyendo los llamados aislantes topológicos, en este contexto, es-
tos circuitos se denominan circuitos topoléctricos. Estos circuitos peculiares abren un abanico
de posibilidades para hacer lo que podría resultar imposible en materia condensada, como
observar la evolución temporal de un estado en una red, y también otras cosas que si bien
son factibles serían de muy alto costo, como por ejemplo acceder de manera directa a la
estructura de bandas de un sistema mediante mediciones.

En el Capítulo Uno, proporcionamos contexto sobre los aislantes topológicos, exponiendo
los modelos clave y algo de contexto histórico. Este capítulo concluye con una introducción
al tema principal de este trabajo: los circuitos topoeléctricos.

El Capítulo Dos introduce la teoría asociada al Laplaciano a tierra, dando la base necesaria
para nuestros cálculos y revisa las herramientas disponibles la exploración a lo largo de este
estudio.

El Capítulo Tres presenta nuestros resultados, demostrando las capacidades de los circui-
tos eléctricos para replicar fenómenos topológicos usando el modelo Su-Schrieffer-Heeger (El
modelo mas simple para un aislante topológico en una dimensión) y el modelo de Haldane.
También revisamos otros modelos tipo enlace fuerte que presentan estados de borde intere-
santes pero no topológicos como el modelo de Haldane modificado, que da origen a estados
antiquirales (Colomes et al., 2018)[2], y la observación de Skin effect dinámico en sistemas
no-Hermiticos (Li et al., 2022)[3]. Estos últimos dos resultados son originales de este trabajo.
Basados en las mediciones hechas en estos circuits demostramos como es posible acceder a la
estructura de bandas, a los elementos de matriz del Hamiltoniano y además la observación
de la dinámica de excitaciones.

Finalmente, en el Capítulo Cuatro presentamos las principales conclusiones y perspectivas
de este trabajo.
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English
In the pursuit of improving our understanding of quantum systems, which is often hindered
by the difficulty of accessing their properties directly, human imagination has given rise to
different “simulators.” One of the most recently popularized is based on the use of electrical
circuits [1]. In the appropriate configuration, these circuits allow simulating tight-binding
models, widely used in the context of the study of materials including the so-called topological
insulators, in this context, these circuits are referred to as topolectrical circuits. These peculiar
circuits open up a range of possibilities to do what could be impossible in condensed matter
such as observing the temporal evolution of a state in a network, and also other things that,
while feasible, would be very expensive such as directly accessing the band structure of a
system through measurements.

In Chapter One, we provide the context of topological insulators, exposing key models
and some historical context. This chapter concludes with an introduction to the main topic
of this work: topoelectrical circuits.

Chapter Two introduces grounded Laplacian theory, providing the theoretical foundation
necessary for our calculations and the tools available for exploration throughout this study.

The third chapter presents our results from this work, demonstrating the capabilities of
electrical circuitry to replicate topological phenomena using the Su-Schrieffer-Heeger model
(the simplest model of a topological insulator in one dimension) and the Haldane model.
We also present tight-binding systems that present interesting but non-topological edge-
states like the modified Haldane model, which gives rise to antichiral states (Colomes et al.,
2018)[2], and the observation of dynamic skin effects in non-Hermitian systems (Li et al.,
2022)[4]. These last two results are original to this work. Based on measurements in these
circuits, we demonstrate how it is possible to access the band structure, the matrix elements
of the Hamiltonian itself, and also observe the dynamics of excitations.

Lastly, in chapter 4 we present the main conclusions and perspectives of this work.
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Chapter 1

Introduction

In recent decades, the study of new electronic states at the boundary or edge of a system
(typically crystals) has gained enormous interest [5–9]. In particular, the use of topological
arguments has proven to be an effective tool in explaining phenomena that previously lacked
explanation [10].

One of the early milestones in the physics of topological effects is the integer quantum Hall
effect (QHE) [11]. This phenomenon occurs in a two-dimensional confined electron gas under
the effect of a strong perpendicular magnetic field, displaying quantized Hall conductivity in
integer multiples of e2/h. The remarkable precision of the Hall conductivity plateaus initially
puzzled the scientific community.

Seeking to obtain such states, now in the absence of a magnetic field, Duncan Haldane
proposed a model in 1988 to achieve the quantum Hall effect without Landau levels [10].
Haldane suggests a 2D honeycomb lattice and proposes a complex interaction term to second
neighbors to replace the role of an external field. While locally, this term is similar to a
magnetic field, globally, Haldane arranges its phases so that the total magnetic flux is zero,
breaking time-reversal symmetry and consequently opening an energy gap in the band struc-
ture. This addition produces two counter-propagating edge states that connect the valence
band with the conduction band. This phenomenon initially called the anomalous quantum
Hall effect, is characterized by the system’s topological invariant (again, the Chern number).
This model introduces the concept of a lattice with topological properties, but its experi-
mental realization seemed impossible due to the arbitrariness of the new term that breaks
time-reversal symmetry. It was not until 2014 that it was adequately verified using ultra-cold
fermions [12].

In 2005, Kane and Mele [13] explored a way to obtain Haldane-type states through a
physical interaction. This interaction should primarily preserve time-reversal symmetry, as
is the case in most materials. Surprisingly, Kane and Mele found that spin-orbit interaction,
present to varying degrees in all materials, could play that role. Today, we know that the
Kane and Mele model (for a honeycomb lattice with spin-orbit interaction) consists of two
conjugate copies of the Haldane model, one for each spin component, preserving time-reversal
symmetry. This system is called the quantum spin Hall insulator and exhibits helical spin-
polarized edge states. After a short search and thanks to other theoretical works, this effect is
experimentally achieved in 2007 [14]. It was the beginning of the era of so-called topological
insulators. With this milestone, the research extends this physics to other materials and
systems. Topological phenomena that have achieved experimental realization go beyond the
quantum Hall regime, including topological insulators in 1 [15] and 3 [16] dimensions, Weyl

1



semimetals [17], Floquet insulators [18], and even non-Hermitian systems with gains and
losses [19, 20], to name a few.

In the literature, systems with exotic edge states have yet to find experimental realization.
An example of this, and interest in this thesis project, is the modified Haldane model proposed
by Colomés and Franz [2]. This two-dimensional model shows a surprising property: co-
propagating edge states (i.e., states localized on each edge propagate in the same direction,
in contrast to what happens in the QHE where states propagate in opposite directions for the
same spin, schematized in Fig.1.1). Specifically, Colomés and Franz use a honeycomb lattice
(like graphene), including second neighbor couplings of the Haldane type but with a different
arrange of phases. Another interesting result is that these unusual edge states coexist with
bulk states that compensate for the edge states so that the transmission probabilities remain
reciprocal.

Figure 1.1: a) Scheme of the states in the Colomés and Franz model [2],
showing copropagating states on its edges (black arrows) coexisting with
bulk states in the opposite direction (red arrows). b) Scheme of typical
states of a topological insulator: counterpropagating and spin-polarized. In
cyan for down spin and black for up spin

How these systems are studied is quite diverse, ranging from experiments with ultra-
cold fermions [12], through mechanical meta-materials [19], to optical dynamics in photonic
networks [21, 22]. In this spirit, proposing a system analogous to topological networks but
from a new perspective arises the topic of this thesis: through an electrical circuit.

1.1. Models, Materials and Topological insulators.
This section will review in detail some systems that are of particular interest to this thesis.

As we embark on this journey of exploration, let us commence by solidifying our understan-
ding starting with a historical remark, then proceed with the simplicity of a one-dimensional
model and gradually progressing towards the intricate landscapes of two dimensional topo-
logical insulators.

1.1.1. Quantum Hall effect
In 1980, Klaus von Klitzing [11] was studying electronic transport in two dimension electro-

nic gases (2DEG) at low temperatures T ≈ 1K and a high intensity perpendicular magnetic
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fields of around B ≈ 10T. While measuring electronic transport, von Klitzing observed a
remarkable phenomenon. The system exhibited a non-zero quantized Hall resistance, mani-
festing as plateaus in the conductance as a function of the applied magnetic field (Figure
1.2). Additionally, the longitudinal resistance remained near zero. The conductance was re-
markably quantized in fundamental constants: e the electron charge, h the Planck constant,
and an integer ν.

σH = ν
e2

h
; (1.1)

Figure 1.2: Hall Voltage VH and longitudinal voltage Vx as a function of the
magnetic field for the QHE. A scheme of the experimental setup is shown in
the inset. Longitudinal voltage is in general zero, with peaks when the Fermi
energy crosses a Landau level, and the Hall voltage changes value. © 1985
IEEE. Reprinted, with permission, from M. E. Cage, R. F. Dziuba and B.
F. Field, ”A Test of the Quantum Hall Effect as a Resistance Standard,” in
IEEE Transactions on Instrumentation and Measurement, vol. IM-34, no.
2, pp. 301-303, June 1985, doi: 10.1109/TIM.1985.4315329.[23].

He measured values of ν to be exact integers with an astonishing precision of one part in a
billion [24]. This discovery revolutionized the understanding of electrical resistance and played
a crucial role in defining the fine-structure constant (α) [25]. The profound implications of
the QHE and the exceptional precision awarded von Klitzing the 1985 Nobel Prize in Physics.

The underlying explanation of the QHE emerged through the contributions of numerous
researchers. Initially, the focus shifted towards conductive chiral edge states within the sample
[26, 27]. These states were characterized as exponentially localized and exhibited current flow
in opposite directions along the edges. Later developments explored the QHE through the
lens of topological invariants. The integer ν in the conductance quantization was identified
as the Chern number, a specific topological invariant [28]. This connection between the QHE
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and topological invariants provided a profound understanding of the phenomenon beyond
the initial description of edge states. It established the QHE due to the system’s underlying
topological nature.

1.1.2. Su-Schrieffer-Heeger model
The first model we are interested in is the Su-Schrieffer-Heeger (SSH) model, initially

proposed to understand the electronic properties of polyacetylene (CH)x, a one-dimensional
chain of alternating carbon and hydrogen atoms [29]. Figure 1.3 visually depicts this chain
structure. We are interested in this model because is the simplest physical system showing
topological property[30].

The SSH model describes a system with alternating single and double bonds, leading
to step-wise hopping probabilities for electrons between neighboring sites. Interestingly, ex-
changing the single and double bonds does not alter the system’s energy, resulting in two
degenerate ground states. This degeneracy, a vital feature of the model’s topological order,
will be explored further in this section.

For simplicity, we will consider a lattice with a predefined dimerization (the difference in
lengths between single and double bonds) without delving into the complexities that lead to
this phenomenon.

Figure 1.3: Graphical representation of the tight-binding SSH model. Sites
A (B) are represented with grey (white) circles. Hoppings are depicted by
black lines, note that intracell hoppings (v) are different than intercell ones
(w). The unit cell is enclosed with dashed lines, and the lattice periodicity
constant a is shown over the lattice.

For a chain of N unit cells, each containing two sites (A and B), the single-particle
Hamiltonian describing an electron is:

H =
N∑
n

(εAc
†
2nc2n + εBc

†
2n+1c2n+1) + (vc†

2nc2n+1 + wc†
2n+1c2n+1 + h.c.), (1.2)

where c2n (c2n+1) represents the electron annihilation operator on the A (B) site in the n-
th unit cell, εA (εB) denotes the on-site energy of the A (B) sub-lattice, v is the hopping
amplitude within a unit cell and w the hopping amplitude between adjacent unit cells. For
convenience, we set εA = εB = ε, meaning the same on-site energy for all sites. This introduces
a constant energy shift in the spectrum and can be neglected for our analysis since it does
not alters the states. In real-space representation, the SSH Hamiltonian matrix for a N = 3
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chain with open boundary conditions reads as:

H =



0 v 0 0 0 0
v 0 w 0 0 0
0 w 0 v 0 0
0 0 v 0 w 0
0 0 0 w 0 v

0 0 0 0 v 0


. (1.3)

Thanks to the translation symmetry of the lattice, we can use the momentum k as a
quantum number and take advantage of Bloch’s theorem. Diagonalizing the Hamiltonian by
using a Fourier transform as:

c2n =
∫ π/a

−π/a
dkeikancA(k), (1.4)

c2n+1 =
∫ π/a

−π/a
dkeikancB(k), (1.5)

giving a Hamiltonian as:

H =
∫ π/a

π/a
dkψ†

kH(k)ψk, (1.6)

with ψk = (cA(k), cB(k))T , and the Bloch Hamiltonian:

H(k) =
(

0 v + we−ika

v + weika 0

)
. (1.7)

The eigenvalues E(k) can be obtained from equation 1.7 as:

E(k) = ±
√

(v + we−ika)(v + weika) = ±
√
v2 + w2 + 2vw cos(ka), (1.8)

and, given ϕ(k) = arg(v + weika), the bulk eigenstates:

|u±(k)⟩ =
√

2
2

(
±eiϕ(k)

1

)
. (1.9)

Since this thesis focuses on edge states, let’s explore the eigenstates of a finite SSH chain
to identify their presence. We will utilize Open Boundary Conditions (OBCs) to simulate an
open system. Specifically, we choose to start with an A site and end with a B site.

We compute the system’s eigenvalues and eigenstates by diagonalizing the finite Hamil-
tonian matrix obtained for this specific configuration. Figure 1.5(b) showcases the resulting
band structure for various values of the intracell hopping parameter (v) while keeping the
intercell hopping parameter (w) fixed. We observe the emergence of certain states within the
band gap for specific values of v. Furthermore, the gap closes entirely when v and w become
equal (v = w = 1), and these additional states subsequently disappear.

Figure 1.5(a) depicts the zero-energy eigenmodes corresponding to these gap states. We
can observe their localization at the chain’s edges, confirming their identity as edge states.
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Figure 1.4: Dispersion relations of the SSH model, for three arranges of
parameters: a): v = 1, w = 0.45; b): v = 1, w = 1; c): v = 0.45, w = 1. For
v = w the gap closes, and exchanging v with w the bands are the same.

While the band structures might appear identical for systems with the same v and w values,
our observations suggest that crucial information beyond the band structure exists. This
observation hints at the potential presence of a topological transition, where the system’s
properties undergo a fundamental change that cannot be captured solely by its band structure
by altering the system’s parameters (like v and w in this case).

Figure 1.5: a) Probability distribution of the two edge states on each site of
a SSH model with 19 unit cells, v = 0.4 and w = 1. b) Eigenvalues of a finite
SSH model with 50 unit cells, as a function of v and fixed w = 1. There are
two degenerate edge states with zero energy living in the gap when |v| < |w|.
The color scale corresponds to the localization of each state measured by
the inverse participation ratio (IPR). For a given state |Ψ⟩ =

∑
n αn|cn⟩ the

IPR is obtained by IPR =
∑

n |αn|4. Resulting equal to 1 (0) for a fully
localized (extended) state.

Let’s shift our focus toward the Bulk Hamiltonian to explore this possibility. This Hamil-
tonian captures the system’s collective behavior within its bulk region, excluding the edges.

Equation 1.7 represents the SSH model’s Hamiltonian but we can utilize an alternative
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representation using the Pauli matrices and introducing a non-zero difference (∆) between
the on-site energies of A and B sites:

H(k) =
(

∆ v + weika

v + weika −∆

)

= h⃗ · σ⃗. (1.10)

Here, σ⃗ = (σx, σy, σz)T denotes the vector of Pauli matrices. And h⃗ = (v+w cos(ka), w sin(ka),∆)T

is a newly defined vector. This reformulation highlights the critical role of ∆ in the system’s
behavior. It becomes clear that only when ∆ = 0 can the gap in the band structure close. This
condition arises because the eigenvalues (energy spectrum) of the Hamiltonian are given by:
E = ±|⃗h| = ±

√
∆2 + v2 + w2 + 2vw cos(ka). Therefore, the energy gap remains open unless

∆ becomes zero, regardless of the values of v and w.
Even though exchanging v and w does not affect the band structure, continuously trans-

forming one system into the other while maintaining an open gap (∆ ̸= 0) is impossible.
Adding the ∆ term can break the system’s topological order.

To clarify this, we analyze the path traced by the endpoint of the vector h⃗ (defined in
Equation 1.10) as we traverse the Brillouin zone. Regardless of the system configuration, this
path will always form a closed loop. Crucially, when ∆ = 0, the path of h⃗ remains confined
to the dx,dy plane. If the origin lies on this path for a specific momentum value (k), the band
gap closes at that k, leading to the previously discussed transition. Figure 1.6 shows a visual
representation of this vector traversing the Brillouin zone.

Figure 1.6: Schematic representation of the path traced by h⃗ by sweeping
through the Brillouin zone in both trivial (not enclosing the origin) and
topological (enclosing the origin) phases. Figure from Baocheng Zhu, Lecture
notes on Topological Insulators [31].

This path possesses a well-defined winding number (ν) around the origin, which is a
powerful tool for characterizing the system’s topology. By introducing the unit vector ĥ = h

|h| ,
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the winding number can be calculated as [32]:

ν = 1
2π

∫ (
ĥ(k) × d

dk
ĥ(k)

)
z

dk. (1.11)

Interestingly, the winding number in the SSH model can only take two values: 0 or 1, de-
pending on the chosen parameters. The system is considered in its trivial phase when the
intracell hopping (v) surpasses the intercell hopping (w), resulting in a winding number of
0. In contrast, when w exceeds v, we obtain a winding number of ν = 1, signifying the
topological phase.

To conclude, a topological invariant is defined as an integer that characterizes an insulating
system (possessing a gap in its energy spectrum) and remains unchanged under continuous
transformations (adiabatic deformations). These invariants presents two key properties:

• They are only well-defined in the limit of infinitely large systems (thermodynamic limit).
• They depend on the specific symmetries that must be preserved during the transforma-

tions.
The winding number (ν) of the SSH model serves as a prime example of a topological inva-
riant, revealing the system’s underlying topological nature.

1.1.3. Graphene
After exploring the Su-Schrieffer-Heeger model, using it as an example for future models

by having characterized its topological characteristics, we turn our attention to graphene.
This material consists of a single layer of carbon atoms arranged in a honeycomb lattice.
Despite its seemingly simple structure, graphene possesses remarkable properties, including
high mechanical strength [33], high thermal conductivity [34] and electrical conductivity [35],
and the distinction of being the first isolated 2D material. The groundbreaking characteriza-
tion of its electrical properties made by Geim and Novoselov [36, 37] in 2004 opened a new era
of research. Now we study its characterisation and electronic properties using a tight-binding
perspective in order to use this as a basis for other systems.

We describe the graphene structure as a triangular Bravais lattice with two atoms per
unit cell. Its lattice vectors are:

a⃗1 = a

(
−1

2 x̂+
√

3
2 ŷ

)
; a⃗2 = a

(
1
2 x̂+

√
3

2 ŷ

)
; δ⃗ = a√

3
ŷ, (1.12)

where a = a0
√

3 with a0 ≈ 0.142nm. The nearest-neighbor vectors connecting sites A and B
are:

δ⃗1 = a√
3
ŷ; σ⃗2 = a

(
1
2 x̂− 1

2
√

3
ŷ

)
; σ⃗3 = a

(
−1

2 x̂− 1
2
√

3
ŷ

)
. (1.13)

The reciprocal lattice vectors, obtained using a⃗i · b⃗j = 2πδij, are:

b⃗1 = 4π
a

(
−1

2 x̂+ 1
2
√

3
ŷ

)
; b⃗2 = 4π

a

(
1
2 x̂+ 1

2
√

3
ŷ

)
. (1.14)

These vectors define the first Brillouin zone, which inherits the hexagonal shape of the underl-
ying Bravais lattice (Figure 1.7b). Notably, this zone has two nonequivalent vertices, denoted
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Figure 1.7: a) Graphene scheme lattice, the honeycomb structure is pro-
duce by a bipartite triangular Bravais lattice with site A (grey dots) and
B(white dots). The lattice vectors are highlighted in blue. b) Reciprocal
lattice described by the reciprocal vectors b⃗1 and b⃗2 highlighted in red. The
first Brillouin zone lies in just one hexagon, high symmetry point are poin-
ted in the lattice.

as:
K⃗+ = 4π

3a

(
1
2 x̂+

√
3

2 ŷ

)
K⃗− = 4π

3a

(
−1

2 x̂+
√

3
2 ŷ

)
, (1.15)

and another high symmetry point denotes as M⃗ = 2
√

3π
3a

ŷ. With this, we now explore the
electronic structure of this material.

1.1.3.1. Graphene band structure

To obtain the spectrum of an infinite graphene surface, we start by defining its tight-
binding Hamiltonian. Since graphene is made only with carbon atoms, the onsite energy of
A and B sites are the same. Considering ci the electronic annihilation operator in site i, the
Hamiltonian is:

H = E0
∑

i
c†

i ci + t
∑
⟨ij⟩

c†
i cj. (1.16)

Here, t accounts for the first neighbor hopping amplitude between sites. For graphene, this
quantity is t ≈ 3.0eV [38], but we will leave this quantity unspecified since we care more
about the system’s structure than the carbon atoms themselves. Also, since E0 only imposes
a shift in the spectrum, we set E0 = 0 for convenience.

Counting in translational symmetry produced by the lattice vector, we use k⃗ as a quantum
number and take advantage of the Bloch theorem by diagonalizing the Hamiltonian with a
Fourier transform. This procedure is standard in solid-state physics as we did before for the
SSH system, but now we apply it in 2 dimensions

ci(r⃗i) = 1√
N

∑
k⃗

ci(k⃗)ei⃗k·r⃗i . (1.17)
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leading to a Hamiltonian as:
H =

∑
k⃗

Ψ†
k⃗
H(k⃗)Ψk⃗, (1.18)

with Ψ†
k = (c†

Ak⃗
, c†

Bk⃗
), and the Bloch Hamiltonian

H(k⃗) =
 0 tα(k⃗)
tα(k⃗)∗ 0

 , (1.19)

where α(k⃗) = (1 + e−i⃗k·⃗a1 + e−i⃗k·⃗a2) as discussed in [39]. With this Hamiltonian we obtain the
dispersion relation by diagonalizing the 2 × 2 matrix:

E(k⃗) = ±t|α(k⃗)| (1.20)

= ±t
√

3 + 2 cos
(
k⃗ · a⃗1

)
+ 2 cos

(
k⃗ · a⃗2

)
+ 2 cos

(
k⃗ · (⃗a2 − a⃗1)

)
, (1.21)

replacing the lattice vectors and working out the trigonometric functions we obtain:

E(kx, ky) = ±t

√
1 + 4 cos

√
3kxa

2 cos kya

2 + 4 cos2 kya

2 . (1.22)

The wavevectors k⃗ = (kxx̂+ kyŷ) are within the first hexagonal Brillouin zone. If the bands
crosses then α(k⃗) = 0, it can be verified that this occurs only for α(k⃗ = K⃗±), therefore the
crossing occurs at the points K⃗+ and K⃗− just as depicted in Figure 1.8.

The ”touching” between the conduction and valence bands has remarkable consequences if
we work at low energies near K⃗+ or K⃗−. By working up a Taylor expansion of the Hamiltonian
1.19 near the special points, we obtain:

H±(q⃗) = −
√

3
2 (±qxσx + qyσy), (1.23)

where ± denotes for K⃗+ and K⃗−, q⃗ is the momentum measured from the special points
and σx,y are the first and second Pauli matrices. This Hamiltonian corresponds to massless
fermions in a linear dispersion and velocity ℏc =

√
3

2 ta as is the electrons where Dirac fermions.
As mentioned for SSH, this thesis is interested in edge states more than anything else, so

we will leave the description of symmetries out of this discussion; if the reader is curious, the
work of Rodriguez [40] would be helpful.

If we want to produce a finite system, the results will vary depending on the type of edge
termination we impose. For this thesis, we focus on zig-zag terminations like in the ribbons
shown in 1.9.

This section has established the key features of the graphene lattice, including its defining
vectors and the resulting reciprocal space with its Brillouin zone.

A subsequent subsection will address further exploration of graphene and other systems,
particularly their ribbon band structures and the potential presence of edge states, building
upon the foundation laid here.
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Figure 1.8: Graphene band structure. π∗ band correspond to the conduc-
tion band and π to the valence band. The dispersion relation is linear close
the K⃗+ (gray dots) and K⃗− (black dots), this produces what are known as
”Dirac cones” at this points. Figure from Fòa Torres, L.E.F., Roche, S. and
Charlier, J.-C. (2020) ‘Electronic Properties of Carbon-Based Nanostruc-
tures’, in Introduction to Graphene-Based Nanomaterials: From Electronic
Structure to Quantum Transport. Cambridge: Cambridge University Press,
pp. 11–69. [39]. Reproduced with permission of Cambridge University Press
through PLSclear.

1.1.4. Haldane model
While graphene on its own is not in a topological phase, the work of Duncan Haldane

adds a clever twist to this. He proposed a modified graphene model known as the Haldane
model to obtain the Quantum Hall Effect (QHE) without Landau levels [10].

The model changes graphene by breaking inversion symmetry and time-reversal symmetry,
showing the theoretical foundation of topological insulators. This changes in the Hamiltonian
are the following:

1. Adding a mass term with sub-lattice dependence (differing between sites A and B).

2. Adding a complex term to the hopping interaction between atoms that are next-nearest
neighbors (NNN). This term has the form t2e

iϕ, where t2 represents the hopping ampli-
tude and ϕ is a phase factor.

As Haldane highlights, the specific pattern of this phase factor eiϕ serves to mimic the effects
of a synthetic magnetic field within the material. However, this approach achieves the desired
effect without introducing any magnetic flux. These additions produce a Hamiltonian as

H = ∆
∑

j

ξjc
†
jcj + t1

∑
⟨i,j⟩

c†
i cj + t2

∑
⟨⟨i,j⟩⟩

c†
i cje

−iϵijϕ, (1.24)

where ξj = +1 when j ∈ A, ξj = −1 when j ∈ B, ϵij indicates the sign of the phase, Figure
1.10 presents a scheme to understanding this sign with the direction of each arrow been the
positive and the opposite direction the negative. Following the approach with graphene, we

11



.
Figure 1.9: a) Scheme of the Graphene lattice, in light grey are highlighted
cut directions to obtain both armchair and zigzag terminations.b) and c)
show Ribbons with armchair and zigzag edges where the shape of the edges
at the top of each scheme is highlighted. The unit cell is portrait in the
dashed boxes. d) A general shape ribbon. Figure from Fòa Torres, L.E.F.,
Roche, S. and Charlier, J.-C. (2020) ‘Electronic Properties of Carbon-Based
Nanostructures’, in Introduction to Graphene-Based Nanomaterials: From
Electronic Structure to Quantum Transport. Cambridge: Cambridge Uni-
versity Press, pp. 11–69. [39]. Reproduced with permission of Cambridge
University Press through PLSclear.

apply the Fourier transform to the Hamiltonian using eq.1.17.

H =
∑

k⃗

Ψ†
k⃗
H(k⃗)Ψk⃗, (1.25)

where, again, ψ†
k⃗

= c†
Ak⃗
, c†

Bk⃗
along with the bloch Hamiltonian

H(k⃗) =
∆ + t2βA(k⃗) t1α(k⃗),

t1α(k⃗)∗ −∆ + t2βB(k⃗),

 (1.26)
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Figure 1.10: Scheme for NNN hoppings for the Haldane model. Purple
(Green) arrows for sub-lattice A (B) with onsite energy ∆ (−∆). The di-
rection of each arrow indicate the positive phase +ϕ, negative phase is each
arrow in opposite direction.

with α(k) the same factor as in eq. 1.19 and the new terms

βA(k⃗) = −2
∑
b⃗i

cos
(
k⃗ · b⃗i + ϕ

)
, (1.27)

βB(k⃗) = −2
∑
b⃗i

cos
(
k⃗ · b⃗i − ϕ

)
, (1.28)

where the vectors b⃗i correspond to the positions of 3 NNN sites

b⃗1 = a⃗1,

b⃗2 = a⃗3, (1.29)
b⃗3 = a⃗1 − a⃗2,

A rearrangement of the Hamiltonian by using the Pauli matrices leads to

HHald(k⃗) = t1

[
1 + cos

(
k⃗ · a⃗1

)
+ cos

(
k⃗ · a⃗2

)]
σx + t1

[
sin
(
k⃗ · a⃗1

)
+ sin

(
k⃗ · a⃗2

)]
σy+

[
∆ + 2t2 sinϕ

∑
b⃗i

sin
(
k⃗ · b⃗i

)]
σz +

[
2t2 cosϕ

∑
b⃗i

cos
(
k⃗ · b⃗i

)]
I, (1.30)

identifying each term multiplying each Pauli matrix as the component d⃗ for HHald = d⃗ ·
σ⃗ + d0I, and of course a⃗1 and a⃗2 are the vectors defined for the Graphene triangular lattice.
Diagonalizing this Hamiltonian we obtain the band structure

E(k⃗) = 2t2 cosϕ
∑
b⃗i

cos
(
k⃗ · b⃗i

)
±
√√√√t1|α(k⃗)|2 +

(
∆ + 2t2 sinϕ

∑
b⃗i

sin
(
k⃗ · b⃗i

))2
. (1.31)

13



We have effectively broken time-reversal symmetry. Thanks to the inversion and time-reversal
breaking terms, an energy gap has been opened in the band structure.

The topological characterization is also presented in [10]; by varying the parameters, the
system could manifest QHE and behave as a standard insulator for different combinations of
M and ϕ. The various behaviors get encapsulated by the Chern number.

C = 1
4π

∫
BZ

d⃗(k⃗)
|d⃗(k⃗)|3

(
∂d⃗(k⃗)
∂kx

× ∂d⃗(k⃗)
∂kx

)
d2k⃗, (1.32)

where d⃗(k⃗) is the vector identified before.
This number is a topological invariant, so as presented in the SSH model sections, it is

computed for an infinite sheet of the model. C = 0 is achieved for |M | > 3t2 sinϕ, leaving the
system as a trivial insulator. C = ±1 when |M | < 3t2 sinϕ denotes the system as a ”Chern
insulator”. This is represented in Figure 1.11 Of course, this topological order is accompanied
by a special characteristic: when we have a nontrivial insulator C ̸= 0, this number accounts
for the total number of edge states moving through the boundary of a finite system.

0
3 3

0

3 3

Figure 1.11: Phases Diagram of the Haldane model. As mentioned, the elec-
tion of parameters influences the Chern number C, implying the total num-
ber of edge states.

This subsection reviewed the Haldane model, focusing on its topological characterization
in the bulk. We use this model as a base for the following subsection.

1.1.5. Modified Haldane model
Another relevant model for this thesis is the modified Haldane model proposed by Colomés

and Franz in 2018 [2]. We are motivated to study this model because it presents antichiral
propagating edge states, as depicted in 1.1.

As the name suggests, this system directly modifies the Haldane model. This modification
only affects the σz term in 1.30 by adding a shift between the Dirac points, thus paving the
way for states with the same direction of propagation. Giving all NNN hoppings the same
phase in each sub-lattice effectively changes σz into σ0 = I achieving the desired result. In
eq. 1.24 this is performed by imposing ϵij = +1 to all phases, this results in the scheme
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illustrated in Figure 1.12.

Figure 1.12: Phase sign convention for NNN hoppings in the modified Hal-
dane model. Purple and green arrows for sub-lattices A and B achieve the
same interactions. The direction of each arrow indicate the positive phase
+ϕ, negative phase is each arrow in opposite direction

We focus in the NNN term so we set ∆ = 0 for the on-site energies. By using the Fourier
transform to this Hamiltonian we obtain

H(k⃗) =
 t2β(k⃗) t1α(k⃗)
t1α(k⃗)∗ t2β(k⃗)

 , (1.33)

with the factor for the NNN hopping phase is just

β(k⃗) = −2
∑
b⃗i

cos
(
k⃗ · b⃗i + ϕ

)
. (1.34)

differing from the two factors used in the Haldane model in eq.1.26. Dissecting this Hamil-
tonian with the Pauli matrices we get

HMH(k⃗) = t1

[
1 + cos

(
k⃗ · a⃗1

)
+ cos

(
k⃗ · a⃗2

)]
σx + t1

[
sin
(
k⃗ · a⃗1

)
+ sin

(
k⃗ · a⃗2

)]
σy+

2t2
[

sinϕ
∑
b⃗i

sin
(
k⃗ · b⃗i

)
+ cosϕ

∑
b⃗i

cos
(
k⃗ · b⃗i

)]
I. (1.35)

Thus, obtaining the band structure for this model by diagonilizing this Hamiltonian at
each k⃗

E(k⃗) = t2β(k⃗) ± t1|α(k⃗)|. (1.36)

The intriguing part of this model comes from its edge states. This means that the final
characterization for this model will come from the next section.
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1.2. Zoology of edge states
In this section, we will show the type of edge states obtained from the two-dimensional

systems we described before. Each edge state is associated with a specific band structure that
will give us information about the directions for the propagation of these states.

Since we need boundaries for the edge states to exist, as mentioned in the Graphene
subsection 1.1.3, we imposed zig-zag boundaries for all our two-dimensional materials. With
this in mind, Figure 1.13 encapsulates the three systems we are interested in this thesis for
the specific parameters mentioned in the caption.
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Figure 1.13: Band structure for a) Graphene model with t = 1, b) and c)
correspond to the Haldane model in the topological (ϕ = π/2, t2 = 0.1 and
∆ = 0) and trivial (ϕ = 0, t2 = 0.1 and ∆ = 0.15) phases respectively and
d) the modified Haldane model with ϕ = π/2, t2 = 0.03 and t1 = 1. Here a
corresponds to the lattice length found in 1.12.

We observe edge states in graphene, even though they are not topologically protected.
This edge state is observed in the band structure 1.13a), residing near the k = π region that
looks like a flat band. The constant dispersion shows us that the propagation velocity is near
0 since

v⃗g = 1
ℏ

∇k⃗E (1.37)
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defines the group velocity v⃗g of the electron wavefunction [41]. For the Haldane model, thanks
to ∆ and t2e

iϕ the band structure opens and the flat bands presented in graphene are now
two bands crossing the gap, the edge states disappear? No, the two bands near the gap cross
each other in k = π, presenting an opposite sign of slope, this produces two edge states
traveling opposite directions at each boundary according to eq.1.37.

It is important to notice that the band structure presented in Figure 1.13 b) corresponds
to the non-trivial phase and 1.13 c) accounts for the trivial phase. The first noticeable effect
is that in Figure 1.13 c) the states in the near the gap do not cross each other.

Last but not least, the band structure of the modified Haldane model [2] in Figure 1.13
d) the Dirac points shift their energy, and the middle bands now present edge states but
with the same direction of propagation (they have the same slope). These is states are called
anti-chiral states and have been found in twisted graphene [42] and also as a result of electron-
phonon interaction [43, 44] the characteristic discussed in the introduction called antichiral
edge states.

Figure 1.14 presents a scheme for the propagating edge states in the Haldane and modified
Haldane models.

Figure 1.14: Direction of propagation of the edge states in the a) Haldane
model, and b) the modified Haldane model.

1.3. Non Hermitian considerations
All the systems we have shown share one fundamental property: Hermiticity, meaning their

Hamiltonian operator is self-adjoint, thus ensuring the conservation of probability. However,
in recent years, there has been a trend in studying crystalline systems that do not preserve
this property, where electron-electron or electron-phonon interactions [45, 46], disorder [47],
and couplings between systems and the environment are commonly modeled with gains and
losses [48, 49] through a non-Hermitian terms.

These interactions lead to the study of non-Hermitian systems, leading to a rich tapestry
of novel phenomena. This became a field of research on its own, unraveling new topological
phenomena produced by the non-preserving interactions [6, 50–52].

A non-Hermitian phenomenon that we are particularly interested in is the non-Hermitian
Skin effect [6, 53], where the extended states of a finite system end up localizing close to a
boundary, accompanied by a high sensitivity to boundary conditions. Since we are interes-
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ted in building a bulk-boundary correspondence, this effect does not allow us to base the
topological invariants on the bulk eigenstates.

Even though this effect is an obstacle, we can take advantage of some of its consequences
to develop new physics. An example of this is shown in [4], where an unconventional reflec-
tion is characterized in the propagation of wave packets, dubbed the Dynamic Skin Effect,
as a cause of both non-Hermitian Skin effect and the Hermitian wave packet spreading. A
realization of this effect is studied in this work.

With this, we have finished the ground floor of this thesis. We have reviewed the systems
crucial to this work and defined some characteristics for our future results. In the next section,
we introduce the original ideas on topolectrical circuits and explain why this platform could
help develop new ideas on quantum materials.

1.4. Electrical circuits as simulators
In 2018, Stefan Imhof et al. [54] proposed to study topological phenomena utilizing elec-

trical circuits as simulators. This innovative idea opened a new path to link the abstract
theoretical framework of quantum materials with the experimental investigation.

This work served as a foundation for the field, where the versatility of electrical circuits
opens the gates of creativity and allows investigators to reach beyond usual interactions and
still obtain experimental confirmations without the usual limits.

By carefully designing circuits, research with this platform has helped to probe pheno-
mena such as edge states [55], Chern insulators [56], topological transitions [57–59], and
non-Hermitian phenomena [3, 60–62]. This scheme, apart from facilitating the study of to-
pological physics, also promises to develop new electronic devices and applications.

The central idea is to use circuital formalism, resistor, capacitor, and inductor (RCL)
components to construct analog systems similar to the ones we want to study. The circuit
Laplacian governs the dynamic of the circuitry, which takes the role of the Hamiltonian,
describing the evolution of a physical system.

Figure 1.15: a) Conceptual sketch of topological experiments on a bread-
board. b) Plethora of components that can be used in this circuitry. Image
taken from Ling Lu. Topology on a breadboard. Nature Physics, [63] and
reproduced with permission from Springer Nature
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The accessibility, scalability, and operability of electronics help simplify the intricate boun-
dary properties of topological phases. Freeing the research to experiment in physical models
that, due to their simplifications, are too ideal for a realization in a lab. Also, these stu-
dies offer a quick and easy experimental approximation for researchers unfamiliar with com-
plex experimental simulators. Additionally, the well-developed electrical engineering software
enables platforms beyond traditional labs to study these systems effectively.

1.5. About this thesis
This thesis aims to study edge and topological states inspired by solid-state physics models

via electrical circuits. The aim is to propose electrical circuits as a simulator or to realize
ideas.

The objective of this thesis is twofold: (i) Re-examining known models and their reali-
zations in electrical circuits and the opportunities that this simulator provides; (ii) use the
experience in (i) to adventure a little further in new propositions.

With this in mind, as specific objectives, this thesis studies the SSH model, a graphene
model and the Haldane model. We also propose circuits for the modified Haldane model [2],
elucidating its antichiral states through the circuit and study the effects of gain and loss
terms with simulations by electrical circuits [60, 62] by observing the Dynamic skin effect [4]
in a proposed non-Hermitian SSH circuit.

This thesis is structured into four chapters encompassing the introduction, describing cri-
tical concepts as the foundation for exploration. The second chapter will focus into Laplacian
theory, establishing the necessary tools for circuit exploration. The third chapter will present
our results, ranging from known topological model realizations in circuits to our newly propo-
sed modified Haldane circuit and the observation of Dynamic skin effect with its examination.
The final chapter will provide an account of the conclusions drawn from this work.
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Chapter 2

Circuit Analogs of quantum
Hamiltonians: Design and Debugging

This chapter explores the potential of electrical circuits as tools for simulating tight-
binding systems with translational symmetry. The focus is to design circuit analogies for
lattice structures and establishing connections between circuit analysis and solid-state phy-
sics.

In the first section, we elaborate the concept of the circuit Laplacian, along its matrix
representation and the parallels between circuit components and tight-binding model para-
meters.

The second section discusses the creation of specific circuit connections that model the
hopping elements in tight binding models. Selecting circuit parameters and components is
fundamental to replicate solid-state physics’s properties and interactions.

The third section focuses on practical measurements and impedance structure analysis.
We enable direct comparisons between circuit and solid-state band structures by extracting
the admittance band structure through systematic procedures.

In the "Debugging with the Grounded Laplacian"subsection, we address discrepancies
between the designed circuit and its solid-state counterpart. By analyzing the grounded
Laplacian matrix, we identify and resolve issues, leading to a deeper understanding of circuit
behavior.

This chapter provides formal guidance for researchers and engineers to design, measure,
and debug topolectrical circuits, allowing to explore phenomena in condensed matter physics
through electrical circuit emulation.

2.1. Laplacian formalism
If we want to simulate a tight-binding system with electrical circuits, it is necessary to

know what the circuit Laplacian is. Consider a network with N nodes with D-periodic
dimension. The connections between nodes are with components that do not generate power
(passive elements), like resistors, inductors, and capacitors. These nodes are labeled with
an index j from 1 to N , while the ground is labeled with 0 by convention. Let Vj and Ij

be the voltage measurement to the ground (V0) and the current entering the node j,
respectively. Two nodes, j, and l, can be connected with an admittance gjl, which is 0 if
there is no connection. Ijl with 2 indices represents the current flowing from node j to node
l. Using Kirchhoff’s law of nodes, we obtain an equation for the total current on an arbitrary
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node j:

Ij =
N∑

l=0
Ijl =

N∑
l=0

gjl(Vj − Vl) =
N∑

l=0
JjlVl. (2.1)

This equation can be written in matrix form as follows:

I = J(ω)V, (2.2)

where V and I have Vj and Ij for components, ω is the frequency of the oscillating voltage and
J is the systems grounded Laplacian. The matrix J with elements Jij governs the response
of the circuit to a given signal.

The matrix J can be decomposed in the systems Laplacian L = D − C and the matrix
W = diag(w1, w2, .., wN). L encapsulates the structure of connectivity in the network, C is
the adjacency matrix, and D contains the total conductance at each node. The matrix W
shows the grounding of the circuit at each node.

An example of this can be seen in Figure 2.1, where the equation for node a is written as:

Figure 2.1: Example of a circuit Laplacian J = D−C +W in a illustrative
RLC circuit of nodes {a, b, c}. Note that W and D are diagonal matrices
that account for the total conductance of each node to ground and to the
rest of the circuit respectively. C is the adjacency matrix containing the
information on how nodes are related.

Ia =
∑

j

Caj(Va − Vj) + waVa = iωC1(Va − Vb) + 1
iωL1

Va, (2.3)

Where Ia and Va are the currents and voltages at node a. The incoming current Ia must be
equal to the outgoing current flowing to each node j connected through a conductance Caj,
plus the current flowing directly to the ground through admittance w−1

a . As mentioned in
previous chapters, each admittance or conductance can be real or imaginary.

In this study, the circuits consist of repeating groups of M nodes and its corresponding
conductance. These groups are collectively referred to as the unit cell. Each node in the
circuit is assigned two indices: the first index, ρ, specifies the unit cell that the node belongs
to, and the second index, α, specifies the node within the unit cell. For example, node (2, 1)
is the first node of the second unit cell.

The circuit Laplacian can be written as a function of the relative position between the
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unit cells, Rρ − Rσ, and the frequency of the voltage, ω:

Jρ,α;σ,β(ω) = Jρ,α(Rρ − Rσ, ω), (2.4)

this is because the Laplacian only depends on the connectivity of the nodes, which is the
same for all unit cells, thus allowing a reciprocal space representation Jα,β(k).

Circuits are graphs, so their connectivity entirely determines them. Unlike the study of
crystalline networks in solid-state physics, there is no fixed distance or orientation of the
Bravais vectors of the network. An additional gauge for the circuit is introduced defined by
the equivalent classes between all the different Bravais vectors that describe the circuit (any
spacial arrangement of nodes is as good as any other) so the election of vectors is entirely
arbitrary. Once we fix the vectors, the translational invariant J can be diagonalized using
a spatial Fourier transform to D-dimensional reciprocal space k in M -dimensional block
matrices.

Jα,β(k, ω) =
∑

ρ

Jα,β(Rρ, ω)e−iRρ·k. (2.5)

This operation provides a mapping of the Laplacian spectrum to the wave vector k, esta-
blishing the admittance band structure of the circuit. Compared with tight-binding models,
modifying the connections between nodes is the same as changing the hopping elements in the
Hamiltonian. However, as can be seen in equation (2.2), this also affects the diagonal terms
because of the total conductance in each node. Connections to the ground also appear as a
diagonal term, which is accounted as on-site energy in a tight-binding model. At this point,
it is possible to identify some analogies between each part of the circuit and its associated
tight-binding model components, as shown in Table 2.1:

Table 2.1: Typical concepts of solid state physics find their analogue in
circuit physics.

Concept on Solid state physics Analogy on circuits
Sites Nodes
Hamiltonian Grounded Laplacian
Eigenvalue problem Kirchhoff’s equations
Hoppings Conductivities connecting nodes
Onsite energies Grounding terms + total conductance per node
Eigenenergies Admittance
Wavefunction Voltage profile

2.2. Designing Circuit Connections for Tight-Binding
Emulation

In this subsection, we focus on designing connections that mimic the characteristics of
tight-binding models using the circuit Laplacian as a parallel to a tight-binding Hamiltonian.
We will make deliberate choices while developing these designs to ensure rigor and practicality.
We discover practical ways to replicate the behavior of tight-binding interactions in circuits
by examining specific connection designs.
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2.2.1. Onsite terms
The effect of diagonal terms in the Hamiltonian can vary significantly depending on their

implementation. One notable effect is the ability to shift the energy band structure, mainly
when the terms are the same for all sites. Another effect is the potential to break inversion
symmetry, for example, in a bipartite lattice, resulting in a gap opening.

When designing the diagonal terms in J , it is essential to be careful with their placement.
The equation for J = D−C+W in Figure 2.1 involves two diagonal matrices, D and W , with
specific elements. Manipulating matrix D can be challenging because it depends on the total
conductance of each node, which is affected by the connections between nodes. Therefore, a
thorough understanding of node connections is needed to control the system’s behavior.

Matrix W represents the admittance going from each node to the ground. It provides
information about the components connected to the ground in each node. It is possible to
directly connect passive elements like capacitors, inductors, or resistors to the ground to
achieve specific effects, such as shifting the band structure. An important thing to have in
mind when dealing with its admittance, gC = iωC, gL = 1/iωL, and gR = 1/R, is that they
can be real or imaginary. This allows the utilization of complex-valued terms in the circuit
design with positive (capacitors) and negative (inductors) values.

To maintain the intuitive association of resistances with dissipative elements, components
related to onsite energies (real terms in the Hamiltonian) are intentionally chosen to be purely
imaginary. This choice involves predominantly using capacitors and inductors connected to
ground. When comparing matrix J with the Hamiltonian H, it is necessary to match the real
(imaginary) part of H with the imaginary (real) part of J, ensuring the parallelism between
the two systems, which can be expressed by the equation

H = iJ̄ . (2.6)

A direct consequence of this choice is that the admittance band structure is now purely
imaginary, in contrast to the energy band structure of a solid, which is strictly real in a
Hermitian model.

While purely imaginary on-site terms are ideal for emulating solids and ensuring the
hermiticity [57] of the system, parasitic resistances are unavoidable in realistic circuits. While
these parasitic terms are typically small and uniform, they can affect the system’s behavior.
Therefore, it is important to consider the influence of both parasitic and the implemented
imaginary terms when designing topolectrical circuits.

2.2.2. Hoppings
Hopping terms are at the core of the tight-binding approximation. These terms simplify

complex theoretical interactions by representing the probability of an electron hopping from
one atom to another in the lattice. Typically, hopping occurs between nearest neighbors,
although longer-range interactions are also possible.

Designing hopping elements for the grounded Laplacian is straightforward. It involves
connecting two nodes using circuit elements such as capacitors, inductors, or resistors. The
matrix C in Eq. (2.2) contains information about the lattice connectivity. This matrix is
designed to resemble the desired hopping elements in the Hamiltonian.

The circuit depicted in Fig. (2.1) has components C1,R1, and L2 acting as nearest-neighbor
(NN) hoppings, connecting nodes Va with Vb and Vb with Vc. The effect of this arrangement on
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the Laplacian preserves the same structure as a hopping term would have in the Hamiltonian,
thanks to the current being equal to the conductance connecting the nodes multiplied by the
voltage difference between the nodes (Eq. (2.1)).

It is important to note that in the given example, we connected the nodes Vb and Vc

with more than two elements. As mentioned earlier, the graph nature of circuits allows for
this flexibility in connectivity. In solid materials, this implies that a hopping term can be
constructed from two different interactions, resulting in an ”effective hopping” for that specific
element. Additionally, one could connect nodes Va and Vc with another element, introducing
next-nearest-neighbor hopping to the Hamiltonian and enabling long-range interactions.

Following the same logic applied to defining onsite terms for emulating real-valued hop-
pings, we will utilize purely imaginary conductance, specifically inductors (representing ne-
gative conductance) and capacitors (representing positive conductance). Capacitors are ge-
nerally used due to their positive values, but inductors are equally valid alternatives.

2.2.2.1. Designing non-reciprocal hopping elements with INICs

One type of connection utilized in this thesis uses an active element in order to obtain an
active component connection. This connection is motivated by the Haldane model, discussed
in Chapter 1, and involves a next-nearest-neighbor (NNN) complex hopping with a defined
phase and magnitude. As mentioned before, an essential requirement for this element is its
non-reciprocal nature from sites of the same sub-lattice. This section will focus on how to
design this general type of connection rather than exploring its specific implementation within
each lattice. The objective is to create the element (INIC) in its most general form without
considering the particular context of a graphene-like structure or similar systems.

As a starting point, working with resistances could be a suitable approach. Resistances
possess purely real admittance, which can result in a strictly imaginary hopping term. Ho-
wever, there are two significant challenges associated with this approach:

1. Resistances exhibit reciprocal admittance according to Equation (2.1).

2. This approach restricts us to a single phase, ϕ = π/2.

An active element is required to overcome these limitations. By utilizing an operational
amplifier (Op-Amp) and arranging the elements appropriately, an Impedance Converter with
Current Inversion (INIC) is constructed. Figure 2.2 illustrates this component.

Figure 2.2: INIC electrical scheme based on the implementation of T. Hof-
mann et al.. Physical Review Letters, (24) 122 (2019)[56] with the notation
accordingly to equation (2.7).
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An INIC circuit primarily utilizes an Op-Amp to convert impedance and invert the current
flowing through it. The Op-Amp [64], with its high-gain voltage amplification capabilities,
amplifies the voltage across the input impedance. It accomplishes voltage amplification by
applying negative feedback using external resistors or other components.

The current entering the operational amplifier is given by Iin = (Vj − Voa)/Ra, while
the current leaving is Iout = (Vj − Vl)/R. Assuming an infinite impedance of the Op-Amp
inputs, the relations simplify to Iout = (Voa − Vj)/Rb as no current can enter the Op-Amp.
In Laplacian form, this yields [56]:(

Iin

Iout

)
= 1
R

(
−ν ν

−1 1

)(
Vj

Vl

)
, (2.7)

where ν = Rb/Ra. As the matrix is not symmetric, circuit reciprocity is broken.
The amplified voltage across the input impedance and inverted current allows the INIC

to convert the impedance while maintaining a consistent relationship between the input
and output signals. This is beneficial when interfacing different components or systems with
mismatched impedance characteristics.

In summary, by utilizing the amplification and inversion capabilities of an Op-Amp,
the INIC circuit can convert an impedance. This enables impedance matching with almost
anything we would like to achieve. In particular, if Ra = Rb, the coupling gives R from in to
out and −R from out to in, just as the Haldane term needs. It is worth mentioning that this
kind of elements can be easily generalized from resistances for any conductance; for example,
in [62], the same idea is implemented with capacitors for a non-reciprocal nearest-neighbor
connection.

The next section will focus on how to use the information gained from these circuits by
measuring voltages and currents, with the objective of computing the admittance matrix.

2.3. Measuring Admittance Bands: Mapping Circuit
Behavior to a Tight-Binding Model

This section focuses on the practical measurements and admittance structure analysis re-
quired to establish direct comparisons between circuit and solid-state band structures. By
computing the admittance band structure researchers can gain valuable information about
the behavior and characteristics of systems. The utilization of periodic boundary conditions
(PBCs) to establish a reciprocal space representation of the Laplacian matrix and the sub-
sequent measurement of the complete impedance matrix for each k are covered.

Impedance is a quantity commonly measured in the study of circuits, it reflects how the
system resist the flow of current. Measuring it requires injecting a known current through
the circuit and measuring the resulting voltage profile, then using a relationship between the
voltage and the current the impedance is calculated. Applying an external current through
a node j, the impedance is:

Gij = V
(j)

i /Ij ⇒ V
(j)

i = GijIj. (2.8)

Here V (j)
i represents the voltage measured in node i when the only source of current is Ij.
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One can rewrite the equation 2.8 in matrix form:

V = GI, (2.9)

where G is called the impedance matrix. Identifying from eq.2.9 and eq.2.2 that G = J−1 is
in fact the inverse matrix of the Laplacian J . With this in mind, we now call the J matrix
the ”Admittance Matrix” and if the eigenvalues of G were to be obtained, the eigenvalues
of J can be calculated by inverting those of G. If the other way around is needed then it
can be expressed as G = ∑

jn ̸=0
1
jn
ψnψ

†
n , jn are the admittance eigenvalues and ψn are the

eigenvectors of J . This eigenvectors are related with the potential profile V proportional
to the input current distribution I. Also is worth noticing that if the circuit elements are
reciprocal, then G is always symmetric [65].

For a system of N nodes, the process of exciting a node and measuring the voltage profile
must be repeated N times to reconstruct the entire G matrix, with each N -th measurement
exciting a different node. This process ensures the reconstruction of the complete G matrix,
which can then be inverted to obtain J . This provides a direct measurement of the Laplacian
matrix, akin to measuring the system’s Hamiltonian, something that is typically challenging
in generic transport or scattering experiments on physical crystals.

In contrast to solid-state physics, where translational invariance naturally exists in crys-
talline systems, circuits require the introduction of periodic boundary conditions (PBCs) to
establish a periodic framework, enabling a reciprocal space representation of J . This allows
for obtaining its eigenvalues j for each k and, consequently, the admittance band structure
of the system j(k) through direct measurement.

An issue arises with this approach, as the previously mentioned method requires N mea-
surements, where N represents the total number of nodes in the circuit. However, assuming
translational invariance (TI) symmetry in the systems and M nodes in each unit cell, then
there are only M non-equivalent nodes, as each unit cell provides equivalent information for
the analysis of the admittance structure. Therefore, to reconstruct G, it is sufficient to repeat
the measurement procedure only M times, supporting each substructure once, significantly
reducing the number of measurements.

In each of the M measurement procedures, the voltages of N nodes are obtained, and
using the voltage and current information, the impedance matrix is reconstructed using
eq.2.8, resulting in an M × N matrix G. The matrix is then Fourier transformed into the
(M ×M) matrix for each vector k using eq.(2.10), resulting in Gα,β(k). In this transformed
matrix, the second index represents a node on the unit cell and is summed over all repetitions,
encoding the information of each position in the indexation of Gα,β(Rρ) for all N nodes.

Gα,β(k, ω) =
∑

ρ

Gα,β(Rρ, ω)e−iRρ·k. (2.10)

To obtain the admittance band structure, the eigenvalues of the impedance matrix are cal-
culated for each k and then inverted: j(k, ω) = 1

g(k,ω) .
In this section, we learned how to effectively access the Admittance Band structure of

systems by drawing analogies between circuit and solid-state models. However, relying solely
on this procedure makes it challenging to identify discrepancies between the circuit results
and the theoretical results. Differences in the band structure may stem from various sources,
and a subset of these sources might yield identical effects. The next subsection delves into the
discussion of detecting potential errors, such as incorrect connections, missing components,
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or elements not operating as expected.

2.3.1. Debugging with the grounded Laplacian
In the final section, the chapter addresses the detection and resolution of discrepancies

that may arise in the circuits behavior compared to the theoretical results. By examining
the grounded Laplacian matrix, researchers can systematically identify issues such as discon-
nected elements, faulty grounding connections, improper circuit element selection, missing
boundary terms and many others.

One effective method for identifying these discrepancies involves examining the grounded
Laplacian matrix of the circuit J(R). By measuring the complete G matrix and computing
J(R) as the inverse of G(R), valuable information can be gained regarding any errors or
deviations between the circuits band structure via direct comparison with theoretical Hamil-
tonian. Although the measurement of the complete G matrix and subsequent computation of
J(R) can be computationally demanding, this approach allows for a comprehensive assess-
ment of the circuits behavior, enabling the detection of issues.

Moreover, measuring these discrepancies can reveal the potential effects of such deviations
in a solid system. Additionally, studying these undesired terms can lead to the exploration
of new phenomena and a deeper understanding of the underlying behavior. Thus, while
initially unintended, these deviations in circuit behavior can uncover intriguing and previously
unexplored phenomena in solid-state systems.

To illustrate this procedure, a circuit was designed in LTSpice1 to emulate a small Haldane
model. The circuit had a width of 4 unit cells in the confined direction and 10 unit cells in the
periodic direction, as shown in Figure 2.3a). In Figure 2.3b), the band structure of the circuit
is overlapped with a theoretical computation of the model with the same width. However,
it is evident that the two bands closest to 0 do not match near k = π. To investigate this
discrepancy, the grounded Laplacian matrix, denoted as J , was measured.

Figure 2.3c) illustrates the imaginary part of the grounded Laplacian, which differs from
the real part of the Numerical Hamiltonian by a factor of 10−5. It can be assumed that
they are practically equal. However, the problem becomes more apparent when comparing
the real part of J with the imaginary part of H in 2.3d), as there are noticeable differences
between J and H. Based on the indexing used in these calculations, it is known that these
matrix elements correspond to connections between next nearest neighbor (NNN) nodes,
specifically on the boundary of the circuit. This can be visualized in Figure 2.3a), where
missing connections are clearly visible between NNN B nodes (pink dotted box) on the top
boundary and A (green dotted box) on the bottom boundary.

2.3.2. Two point impedance: detection of boundary modes
Before delving into the time evolution of voltages within our circuits, let’s equip ourselves

with a powerful tool capable of predicting the presence of edge states beforehand: the two-
point impedance, denoted as Zab = (Va − Vb)/I between nodes a and b [57]. here Va − Vb is
the voltage difference between the nodes and I es the magnitude of the current that enters
one node and leaves the other. It is worth noting that this differs from the calculation in
eq. 2.8, where measurements are referenced to ground (V0). To determine Zab is necessary
to express the potentials Vi in terms of the input current, elegantly employing the circuit

1 Webpage of the SPICE simulator of choice. https://ltspice-simulator

27

https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html


Figure 2.3: a) Electrical circuit intended to emulate a Haldane model ribbon
of 4×10 unit cells with periodic boundary conditions, pink and green dotted
boxes highlight the connections missing. b) Band structure obtained from
the circuit in a) (blue crosses) compared to the theoretical result (dashed
lines), c), d) Difference between the Laplacian J obtained from the same
circuit and the Hamiltonian of the theoretical model.

Green’s function G. This yields the following expression for the two-point impedance [66]:

Zab =
∑

i=a,b

GaiIi −GbiIi

I
= Gaa +Gbb −Gab −Gba =

∑
jn ̸=0

|ψn,a − ψn,b|2

jn

. (2.11)
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This equation says that the impedance for each mode n depends on the squared magnitude
of the potential difference between the two nodes involved, weighted by its eigen-impedance
j−1

n . As stated before, in the context of this work we consider only circuits made up of periodic
sub-lattices, and since Bloch’s theorem bless us with the momentum and band index one can
simplify the eigenstates for the last formula ψk,m(R, α) = φm(k, α)eik·R, this yields a refined
impedance formula:

Zαβ
R =

∑
k,m

|φm(k, α) − φm(k, β)eik·R|2

jk,m

, (2.12)

it can become large for a finite density of nontrivial eigenstates with small jk,m. These impe-
dance divergences, akin to resonances in RLC circuits, amplify even further when eigenstates
find themselves localized within specific regions—a hallmark of edge states.

Essentially, the presence of a localized state within the circuit is due to a significant
impediment to the flow of current and voltage. This obstruction manifests as a substantial
rise in Zab, providing a strong indication of the existence of edge states. As mentioned at
the beginning of this subsection, this tool allow us to detect the edge states before by not
performing any time-dependent measurement, also this is the conventional tool used in the
current literature to express the existence of edge states as shown for the work of [57] for the
Topological Boundary Resonance (TBR).

2.4. Probing the Dynamics: Unveiling Time-Dependent
Behavior

While the previous section explored extracting information through admittance band
structure measurements, we shift our focus to time-dependent observations. We study the
dynamic behavior of the system by observing the evolution of an excitation through the vol-
tage profile. In solid-state physics, this approach would be analogous to directly observing
the electronic wavefunction in the lattice, a feat currently beyond our reach.

However, by observing the voltage profile’s temporal evolution, we can gain valuable in-
formation about the dynamics of the circuit and its topological properties. This exploration
will provide a complementary perspective to the static study captured by the band structu-
re analysis and more importantly it would allow us to observe the edge states that we are
looking for directly.

2.4.1. Equations of motion
To delve into the circuit’s temporal evolution, we must first establish its equations of

motion. These equations, as eloquently detailed by Hofmann et al. (2019)[56], express the
relationships between currents, voltages, and their time derivatives within the system:

d

dt
I(t) = C

d2

dt2
V(t) + Σ d

dt
V(t) + LV(t). (2.13)

Where:

• I(t) : N-component vector representing input currents,

• V(t) : N-component vector representing node voltages against ground,
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• C, Σ, L: Real-valued (N × N) matrices representing capacitance, conductance, and
inductance, respectively.

These components collectively form the grounded circuit Laplacian [57] as

J(ω) = iωC + Σ + 1
iωL. (2.14)

Focusing on the homogeneous case (I = 0), we can recast the equation of motion in-
to 2N first-order differential equations utilizing voltages and their first-time derivatives as
independent variables. This transformation introduces the Hamiltonian matrix, H:

−i d
dt
ψ(t) = Hψ(t), (2.15)

here ψ(t) = (V̇(t),V(t))⊤, encompassing both voltage and its derivative, and H emerges as
a (2N × 2N)-Hamiltonian block matrix:

H = i
(
C−1Σ C−1L

−I 0

)
, (2.16)

with I the identity matrix.

2.4.2. Eigenfrequencies and Eigenstates: The Rhythm of Evolu-
tion

The Hamiltonian’s eigenfrequencies, denoted as ωm dictate the time evolution of its ei-
genstates ψm = ψme

iωmt. These frequencies, linked to the admittance eigenvalues j(ωm) = 0,
govern the circuit’s resonance behavior.

As stated in [56], to ensure measurable real voltages and their time derivatives, these
eigenfrequencies must come in pairs as (ω,−ω∗), corresponding to complex conjugate pairs
of eigenstates ψ, ψ∗. This leads to a natural pairing of eigenvalues as ω±

n , where ω−
n = −(ω+

n )∗

and n ∈ {1, ..., N}
The Hamiltonian’s eigenvectors, crucial for comprehending its dynamics, can be construc-

ted from the Laplacian’s eigenvectors:

ψ+
n =

(
iω+

n Vn

Vn

)
, and ψ−

n =
(

iω−
n V∗

n

V∗
n

)
. (2.17)

Notably, for non-Hermitian Hamiltonians, the left eigenvectors might diverge from their right
counterparts.

Having established the equations of motion and their connection to eigenstates, we are
now equipped to explore the dynamics of the circuit directly through the voltage profile. This
profile serves as a window into the system’s eigenstates, revealing it’s characteristics . In the
next section, we will discuss the excitation methods done in this work for general circuits,
allowing us to probe their dynamics.

2.4.3. Exciting! discussion on time dependent voltage excitation
In an experiment or, as in our case, a numerical simulation, we need to apply an external

voltage source to a circuit to conduct a transient analysis. This leads to the question: What
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type of voltage source can help us extract useful information from the system? And where
in the circuit is the most convenient place to connect this source? With various possibilities
available, which source will be the most effective? And where should we inject its energy to
reveal the most informative responses?

Our toolbox offers a range of voltage source options, each with unique capabilities. The
sinusoidal source allows us to examine the system at specific frequencies, providing a clear
frequency probe. Pulse and step functions deliver abrupt changes, which is ideal for studying
transient responses. For a broader perspective, complex waveforms like chirps or periodic
sweeps offer a comprehensive view of the system’s behavior across various frequencies. Each
choice, however, has its strengths and limitations, so careful consideration is required.

This work employed two distinct voltage signals, each tailored to illuminate specific aspects
of the circuit’s behavior:

1. Sinusoidal Waves: These waves served as precise frequency probes, used both at resonant
and off-resonant frequencies. By analyzing the circuit’s response in and out of resonance,
we gained insights into its stationary voltage patterns and its behavior at key frequencies.

2. Gaussian Pulses: As shown in Figure 2.4, these pulses delivered targeted bursts of energy,
ideal for studying propagation characteristics. By observing how voltage signals moved
through the circuit following a pulse injection, we could visualize its internal conductive
pathways.

Figure 2.4: Typical Gaussian voltage profile of the external voltage source
used to excite our circuits

The placement of these voltage sources was carefully chosen to align with the desired
information:

• Edge State Investigation: To explore the edge states, the source was positioned at a
circuit boundary, where these states are expected to be localized.

• Propagation Visualization: To unravel the voltage propagation, the pulse source was
connected to various nodes, both within the bulk and at the edges. This diversified
placement allowed us to observe the spatial and temporal evolution of voltage across
the circuit’s network.
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By employing these diverse voltage signals and strategic placements, we aim to gain com-
prehensive information on the dynamic behavior of the circuit.

It is worth mentioning that Gaussian pulses can limit data analysis, mainly when the
propagation time across an edge is similar to the pulse duration. This can lead to interference
in the voltage signals and potentially obscure the propagation analysis. Additionally, due to
the small size of the circuits studied in this work, the study of pulse propagation under
periodic boundary conditions was limited to a single circuit traversal. In other words, the
focus was observing the initial wavefront movement within a single cycle of the circuit.
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Chapter 3

Results

Having established the theoretical framework of Laplacian theory and measurement techni-
ques in the previous Chapter, we now present our investigation – the exploration of topological
phenomena in a selection of model circuits. This section presents the design and measured
band structures of four distinct topolectrical models: the Su-Schrieffer-Heeger (SSH) model
[29], the Haldane model [10], the Modified Haldane model [2], adding some effects of real
components to finish with a non-reciprocal SSH model [4] to demonstrate how this circuits
serve as a bridge, not just to observe new topological models, but also to venture into the fas-
cinating realm of non-Hermiticity. We will then dissect their topological properties through
the lens of their Laplacians, visualize the edge states, and finally, observe the propagation of
wave packets along these topologically protected states.

This investigation was made via numerical simulations using LTSpice2, a free SPICE
simulator software. The number of simulation that had to be done for this work was big
enough to require automatization, this was implemented with Python using a library called
PyLTSpice3 that is specialized to run SPICE simulations.

3.1. Su–Schrieffer–Heeger model
Our initial focus was on a selection of well-established models to validate known results

and establish a firm foundation for our subsequent analysis. Notably, the publication of T.
Helbig et al. in 2019 (Phys. Rev. B 99, 161114) [58] served as a valuable guide for our early
work.

Among these models, the Su-Schrieffer-Heeger (SSH) model held particular interest due
to its well-documented topological properties, specifically the presence of edge states. Addi-
tionally, its one-dimensional nature made it simple enough as a starting point.

3.1.1. Circuit Implementation and Edge State Verification
The general idea of the SSH model relies on alternating single and double bonds in a

one-dimensional molecule, translating to step-wise hopping probabilities. Figure 3.1a depicts
the LTSpice implementation of this model, employing step-wise capacitors with values C1
and C2 as described in the caption. Focusing in the in and out current for a pair of nodes A

2 Webpage of the SPICE simulator of choice. https://ltspice-simulator
3 PyLTSpice is available on PyPi https://PyLTSpice.
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and B in a j unit cell, the Kirchhoff equation of currents yields:

IAj = iωC1(VAj − VBj) + iωC2(VAj − VBj−1) + 1
iωL(VAj − V0), (3.1)

IBj = iωC1(VBj − VAj) + iωC2(VBj − VAj+1) + 1
iωL(VBj − V0), (3.2)

This yields to a set of equations for all the nodes that can be written down as:

I = JSSHV, (3.3)

where the matrix JSSH gives:

JSSH =



iω(C1 + C2) + 1
iωL

−iωC1 0 0 0 . . .

−iωC1 iω(C1 + C2) + 1
iωL

−iωC2 0 0 . . .

0 −iωC2 iω(C1 + C2) + 1
iωL

−iωC1 0 . . .

0 0 −iωC1 iω(C1 + C2) + 1
iωL

−iωC2 . . .
... ... ... ... . . .



= iωC2



(1 + t)(1 − ω2
0

ω2 ) −t 0 0 0 . . .

−t (1 + t)(1 − ω2
0

ω2 ) −1 0 0 . . .

0 −1 (1 + t)(1 − ω2
0

ω2 ) −t 0 . . .

0 0 −t (1 + t)(1 − ω2
0

ω2 ) −1 . . .
... ... ... ... . . .


,

(3.4)
here ω0 = 1√

L(C1+C2)
is the resonant frequency. With this, imposing periodic boundary con-

ditions and Fourier transforming eq.3.4 the momentum space representation of the grounded
Laplacian is obtained

JSSH(k) = iω(C1 + C2 − 1
ω2L

)I − iω[(C1 + C2 cos(k))σx + C2 sin(k)σy], (3.5)

where {σi} is the set of the Pauli matrices and I is the (2 × 2) identity matrix. For initial
observations, eq.3.21, omitting the identity term, has the same structure as the one presented
in eq.1.10 so this implementation should work for the analogy.

Our initial exploration focused on observing the edge voltage profile. As shown in Figure
3.1(b), exciting the system with a sinusoidal voltage source at the resonance frequency ω0
applied to one edge yielded the expected result for the theoretical zero-energy eigenstate,
ψ0(n) = (((−t)nV0, 0). It is important to note that this measurement was conducted in the
non-trivial phase of the system with t < 1.

3.1.1.1. Confirming the Non-Trivial Phase

Verifying the non-trivial phase was crucial, not only for interpreting the results but al-
so for tuning the resonance frequency. This was achieved through a two-point impedance
measurement, presented in Figure 3.1(c). As expected, a clear peak appears at the resonance
frequency in the non-trivial phase. This aligns with the fact that admittance eigenvalues serve
as an energy analog for circuits, and the presence of a zero-admittance mode translates to a
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divergence in the two-node impedance, as discussed in the previous section and demonstrated
by Cserti et al. (2011) [66].

Figure 3.1: a) Su-Schrieffer–Heeger (SSH) scheme. Each unit cell has a pair
of capacitors, C1 and C2, with identical grounded inductors L every two
capacitors. An AC voltage source of amplitude V0. With t = C1/C2 < 1
a characteristic 0 energy state can be found. This was implemented with
LTSPice with parameters: C1 = 0.1µF, C2 = 0.22µF, L= 10µH y V0 = 1V.
The green lines indicate how to measure in the t−1 configuration in the
same circuit. b) Simulated cero energy state ψ0(n) for the system described
in (a). This measurement matches with the theoretically expected state
ψ0(n) = (((−t)nV0, 0), where n is the unit cell listed left to right, the same
as the computed state using Python Tight-Binding.c) Two point impedance
calculations for the configurations t = 0.45 y t′ = 2.2. The non-trivial
topological phase shows a peak of impedance in the middle of the gap,
associated to the cero energy state, it can be noted that this behavior does
not appear in the trivial phase t′.

The presented results are based on simulations using mostly idealized components, with
the exception of the parameters required for calculations in LTSpice. In a real-world scenario
with non-ideal components, it is expected that the two-point impedance measurement would
exhibit a less sharp peak, as demonstrated by Lee et al. (2018) [57]. This deviation is due to
factors such as component tolerances, parasitic, and inherent losses in physical systems.

3.1.2. Admittance band structure
To further strengthen the analogy between our circuit and the SSH model, and to de-

finitively confirm that the observed edge states were not merely a fortuitous coincidence,
we sought to directly visualize the band structure of the system. Following the procedure
stated in the last section we excited all the nodes in the circuit with a sinusoidal voltage
source in a AC analysis and then measured the voltages in all nodes with respect to ground
and constructed the G matrix by the use of eq.2.8 tuning it near the resonance frequency
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encountered in 3.1(c). Figure 3.2 summarizes our findings, showcasing the admittance band
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Figure 3.2: Simulated admittance band structure of the finite implemented
circuit (blue crosses) with PBC compared with numerical calculation of
its corresponding infinite SSH analog model (black dashed lines). a) t′ =
C2/C1 = 2.22 corresponding to the trivial phase. b) Phase transition limit
by closing the gap in t = 1 and finally c) shows for t = 0.45 = tť−1 =
(2.22)−1 in the topological phase.

structure calculated for three distinct sets of capacitance values between nodes: C1 = 0.1µ F
and C2 = 0.22µ F. These capacitance values are arranged to achieve three pivotal values of t,
representing the ratio between capacitors (analogous to hopping amplitudes in the system).

We looked to further validate the accuracy of our model by directly comparing its J matrix
with the theoretical Hamiltonian, H. This comparison can be conducted in both position
and momentum space, providing complementary perspectives. We focused on position space,
aligning node indices to facilitate a direct subtraction of the measured J matrix from the
theoretical H matrix of the corresponding model.

Figure 3.3 showcases the results of this operation. The color bar reveals a minuscule
difference between the corresponding elements, significantly smaller than the overall matrix
values. This alignment confirms that our circuit measurements mirror the theoretical tight-
binding model.

Notably, in Figure 3.3(b) and 3.3(d), an imaginary diagonal term emerges in the mea-
sured J matrix. This term can be confidently attributed to parasitic resistances inherently
introduced by LTspice to facilitate calculations. Its presence is therefore expected and does
not undermine the validity of the overall agreement of the model with the theoretical Hamil-
tonian.

These results serve as a benchmark of the method at least for one-dimensional models.
The next step is to go for two-dimensional models, as mentioned at the beginning of the
chapter we are interested in honeycomb lattices so we implemented a Graphene model to
start the two-dimensional studies

3.2. Graphene model
To initiate our exploration of two-dimensional systems, we constructed a circuit model of

graphene, guided by Hofmann et al. (2019)[56]. The building block of the model consists of
two nodes, A and B, connected by a capacitance C. Each node within a unit cell is connected
to its counterparts in neighboring unit cells, also via capacitors C. This arrangement ensures
that every node is connected with its three nearest neighbors through identical capacitors.

36



Figure 3.3: Comparison between the J matrix, computed from the circuit
simulation, and the Hamiltonian H of the analog system for t = 0.45. While
elements of J are measured in admittance ([Ω−1]), and those of H in energy
([eV ]), the qualitative agreement between the matrices is evident.

Each node is grounded with an inductance Lgα and a capacitance Cgα, this grounding could
be different for each sub-lattice for the purpose of breaking inversion symmetry.

It is worth noticing that the physical arrangement of connections of this model deviates
from the conventional hexagonal geometry of honeycomb lattice. However, this difference does
not obstruct the accuracy the model in capturing the electronic characteristics of graphene.
As discussed in chapter 2, the governing equations of our circuit rely just on the connecti-
vity scheme of the network, leaving the geometric arrangement as a gauge freedom. This is
thanks to the graph nature of the framework, which prioritizes connections over the physical
distribution of nodes, as depicted in Figure 3.4.

37



Figure 3.4: Circuit implementation of the graphene model for the bulk. The
central unit cell consists of two nodes, labeled A34 and B34, connected to
their nearest neighbors via C0 capacitors.

For this implementation, writing the currents for a pair of nodes A and B in a j unit cell
the equations yields to:

IAj = iωC(VAj − VBj) + iωC(VAj − VBj−1) + iωC(VAj − VBj−2) +
[
iωCgA + 1

iωLgA

]
(VAj − V0),

(3.6)

IBj = iωC(VBj − VAj) + iωC(VBj − VAj+1) + iωC(VBj − VAj+2) +
[
iωCgB + 1

iωLgB

]
(VBj − V0).

(3.7)

Considering the equations for all nodes in the circuits, the last equation can be written in
matrix form:

I = JGraphV, (3.8)
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where JGraph is the grounded Laplacian of the system. Imposing periodic conditions and
Fourier transforming JGraph lead us to the momentum space representation

JGraph = iω
[(

3C − 1
ω2L

)
I − C(1 + cos kx + cos ky)σx − C(sin kx + sin ky)σy

]
. (3.9)

As we are using the graphene model as a basis for the following systems, we study the
band structure due to its importance in two-dimensions. Our focus is on ribbon geometry
(semi-1D) to study edge states and excitation propagation, with this geometry k is just a
number but node indexing takes a more important role for our calculations, we managed it
by using the notation for G and J from chapter 2 as we will explain.

Computing G matrix of the ribbon Gα,β(k) now requires a larger unit cell due to the
increased width. Consequently, α and β indices represent all nodes within this extended cell.
To apply Eq.2.10, we sum all unit cell components along the periodic dimension, resulting in
a (2M × 2M) matrix (M being the width). If we recall from the SSH model, G changes from
a (2 × 2) matrix to a bigger dimension, this shows the importance of proper node indexing
while building G from Eq.2.8. We adopted the indexing scheme from the PythTB4 library to
ensure consistency.

Figure 3.5 depicts the ribbon band structure obtained for a simplified graphene-like circuit
of 20 unit cells width and also 20 unit cells in the periodic dimension with the specified
parameters. The results from the circuit simulation (blue crosses) closely align with the band
structure of the corresponding solid system (dashed curve) for the same parameters. This
agreement validates the circuit model as a suitable analog for the graphene tight-binding
Hamiltonian.

Figure 3.6 examines the measured J matrix and its difference from the theoretical Hamil-
tonian H. Notably, the scale of these discrepancies is significantly smaller than the overall
magnitude of the matrix elements. This minimal difference validates the design of the cir-
cuit as an analog for the graphene tight-binding Hamiltonian. As anticipated, an imaginary
diagonal term emerges in the J matrix. This component, similar to the SSH model in Figure
3.3, can be attributed to the parasitic resistances inherently introduced by LTspice during
simulations.

Having established the graphene model as a stepping stone for two-dimensional honeycomb
systems, we embark on a journey to replicate known edge states and study new phenomena.
Two distinct directions guide our exploration:

• Our first objective is to incorporate topological effects into our framework. This begins
with tackling the well known Haldane model, an example of a topologically non-trivial
system exhibiting robust edge states.

• Next, we explore the Colomés and Franz model [2]. This model, currently lacking a simple
experimental realization, presents a unique opportunity to show our circuit methodology
as a powerful tool for theoretical exploration.

3.3. Haldane model
A key advantage of employing electrical circuits as simulators lies in their direct access

to the wave function and its time evolution. Considering this, and aligning with the focus
4 PythTB is available on PyPi https://PythTB

39

https://pypi.org/project/pythtb/##description


Figure 3.5: Measured admittance band structure of the implemented circuit
(blue crosses) with ω ≈ ω0, C = 10µF and L = 10µH contrasted with the
energy band structure of the corresponding tight binding model (dashed
lines).

of the project, we aim to utilize this platform for the direct observation of edge states, both
topologically protected (as demonstrated with SSH) and non-protected. In this section we
study the model proposed by D. Haldane in 1988 [10], from now on the Haldane model.

Our exploration goes in four stages: 1.- Designing the circuit. 2.- Band Structure Analy-
sis, highlighting the differences between the grounded Laplacian and the Hamiltonian. 3.-
Direct Observation of Edge States via voltage measurements. 4.- Incorporating Real-World
Elements.

We seek to not only replicate the known phenomena of edge states but also uncover
their dynamics and interactions within the framework of circuit simulations. This pursuit
aligns with this thesis objective of bridging between theoretical models and experimental
realizations of topological quantum materials using electrical circuits as platform.

3.3.1. Circuit design
Building upon the description of the Haldane model introduced in Chapter 1, we now fo-

cus on translating its connectivity pattern into our circuit. As a reminder, the model features
a honeycomb lattice where each site interacts with its nearest neighbors via a hopping am-
plitude t1 and, crucially, with its next-nearest neighbors (NNN) through a complex hopping
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Figure 3.6: Comparison between the J matrix, computed from the circuit
simulation (ω ≈ ω0, C = 10µF and L = 10µH), and the Hamiltonian H of
the analog system for t = 0.57. While elements of J are measured in admit-
tance ([Ω−1]), and those of H in energy ([eV ]), the qualitative agreement
between the matrices is evident.

t2e
iϕ. This complex term, with its specific phase rule depicted in Figure 1.10, plays a vital

role in topological properties of the model.
To accurately replicate this NNN connection, we use the description from Chapter 2 and

draw inspiration from the work of Hofmann et al. (2019) [56]. Their proposed Impedance
Converter with Current Inversion (INIC) configuration suits our needs, described by Eq. 2.7.
This element allows us to tune the phase of the hopping amplitude via proportion between
Ra and Rb, and achieve non-reciprocity, ensuring that the hopping amplitude from site A(B)
to A(B) differs from that for the reverse path. Figure 3.7 showcases the circuit designed to
simulate the bulk of the Haldane model.

For this implementation, writing the currents for a pair of nodes A and B in a j unit cell
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Figure 3.7: Zooming in on the bulk for the implementation of the Haldane
model circuit, centered at unit cell 75 with nodes A75 and B75 exemplify the
connections: Capacitors C0 to NN, while INICs controlled by absolute resis-
tance R0 bridge the gap between next-nearest neighbors across sub-lattices.
Each node is grounded with inductors L0 and sub-lattice-specific capacitors
(Cdp for A, Cdm for B), Although currently set to zero for simplicity, these
sub-lattice capacitors hold the potential to break inversion symmetry, ac-
ting as a Semenoff mass [67].

and using the notation presented the first chapter, the Kirchhoff equations yields to:

IAj = iωC0
(
VAj − VBj

)
+ iωC0

(
VAj − VBj−1

)
+ iωC0

(
VAj − VBj−2

)
+
[
iωCdp + 1

iωL0

] (
VAj − V0

)
+ 1
R0

(
VAj − VAj−1

)
+ −1
R0

(
VAj − VAj−2

)
+ 1
R0

(
VAj − VAj−3

)
+ −1
R0

(
VAj − VAj+1

)
+ 1
R0

(
VAj − VAj+2

)
+−1
R0

(
VAj − VAj+3

)
, (3.10)
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IBj = iωC0
(
VBj − VAj

)
+ iωC0

(
VBj − VAj+1

)
+ iωC0

(
VBj − VAj+2

)
+
[
iωCdm + 1

iωL0

] (
VBj − V0

)
+−1
R0

(
VBj − VBj−1

)
+ 1
R0

(
VBj − VBj−2

)
+ −1
R0

(
VBj − VBj−3

)
+ 1
R0

(
VBj − VBj+1

)
+ −1
R0

(
VBj − VBj+2

)
+ 1
R0

(
VBj − VBj+3

)
, (3.11)

where Ra = Rb = 1 so it give us a phase of ϕ = π/2 so all resistances are pure real numbers.
Considering the equations for all nodes in the circuit, the last equation can be written in
matrix form:

I = JHaldV, (3.12)

where JHald is the grounded Laplacian of the system in position representation. Imposing
periodic conditions and Fourier transforming JHald lead us to the momentum space represen-
tation

JHald = iω
3C0 + Cdp + Cdm

2 − 1
ω2L0

I − C0

(
1 + cos(kx) + cos(ky)

)
σx − C0

(
sin (kx) + sin (ky)

)
σy

+
(
Cdp − Cdm

2 + 2
ωR0

(
sin(kx) − sin(ky) − sin(kx − ky)

))
σz

, (3.13)

successfully replicating the structure of the Haldane model Hamiltonian 1.30 with ϕ = π/2.
The incorporation of INICs produces the desired effect within the JHald matrix, introducing
a component proportional to σz that complements the original graphene-like JGraph. Additio-
nally, grounding capacitors effectively simulate the Semenoff mass component. As discussed
in [10] is the interplay between this parameters what governs the topological phase diagram.
To ensure our subsequent calculations reside within the topological phase, we strategically
set Cdp = Cdp = 0 alongside with ϕ = π/2.

3.3.2. Band Structure analysis
In the following we use a ribbon geometry with zig-zag terminations. To maintain the

desired connectivity pattern, all missing nearest-neighbor (NN) connections were grounded
with their corresponding capacitors C0 at the boundaries.

Following the approach established in the graphene Section 3.2, we computed the con-
ductance matrix G for the ribbon geometry. Implementing periodic boundary conditions and
employing the measuring protocol, we obtained the admittance band structure. These results
are visually in Figures 3.8 and 3.9, showcasing the band structure and J matrix, respectively.

Figure 3.8 shows the ribbon band structure obtained for a circuit of 10 unit cells width
and also 10 unit cells in the periodic dimension with the specified parameters. Our results
from the circuit simulation (blue crosses) align with the band structure of the corresponding
solid system (dashed curve) for the same parameters.

Figure 3.9 shows the measured J matrix and its difference from the theoretical Hamiltonian
H. The scale of these differences is smaller than the overall magnitude of the matrix elements.
As anticipated, an imaginary diagonal term emerges in the J matrix. This component, similar
to the SSH model in Figure 3.3, can be attributed to the parasitic resistances inherently
introduced by LTspice during simulations. Also, the imaginary part of J shows that our
NNN connections resulted as non-reciprocal terms since the symmetrical terms are of opposite
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Figure 3.8: Measured admittance band structure of the implemented Halda-
ne circuit (blue crosses) with ω ≈ w0, C0 = 10µF, L0 = 10µH and R = 20Ω
contrasted with the band structure of the corresponding tight binding mo-
del (dashed lines).

signs, thus emulating the nature of the Haldane complex hopping.

3.3.3. Observation of edge states
Having constructed a circuit that mirrors the Haldane Hamiltonian, we now want to

directly observe its edge states. This begins by exciting the circuit and analyzing its response.
The Haldane model is renowned for presenting topologically protected chiral edge states,
which are predicted to emerge within the non-trivial topological phase. Thus, we aim to
verify whether our circuit, tuned to reside within this phase, will exhibit these states.

In chapter 2 we discussed the diverse techniques for circuit excitation. Here, we opt for
a pulse excitation scheme to probe the edge state dynamics. Figure 3.10 shows the results
obtained from applying a pulse excitation to various nodes within the circuit.

Figures 3.10(a) and (b) provide show the presence of topologically protected chiral ed-
ge states within our circuit model. As predicted by the Haldane model, the applied pulse
excitation remains confined to the designated edge, exhibiting little to no leakage into the
bulk. Also, the excitation propagates along each edge in opposite directions. This observed
behavior aligns with the theoretical expectations of chiral edge states within the Haldane
model. A bulk injection give us a drastically different response as shown in Figure 3.10c)
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Figure 3.9: Zoomed J matrix in a) and b) showing the structure of the
resulting connections. In c) and d) is the comparison between the J matrix,
computed from the circuit simulation (same parameters as in 3.8), and the
Hamiltonian H of the analog system for t1 = 0.58, t2 = 0.05 and ϕ = π/2.
While elements of J are measured in admittance ([Ω−1]), and those of H in
energy ([eV ]), the qualitative agreement between the matrices is evident.

where a localize voltage response is present.
However, it is important to acknowledge the presence of dissipation in the system. This

is likely attributable to the parasitic resistances within the circuit components, as hinted
at in Figure 3.9(d). These parasitic resistances introduce a finite imaginary component to
the J matrix of the circuit, resulting in complex energy eigenvalues and consequently, some
degree of dissipation. Also, as discussed in Chapter 2, thanks the grounding of the initial
excitation node and the potential for interference for more than the first circuit cycle, we end
up focusing on the initial wavefront for analysis. Exploring larger circuit sizes in the periodic
dimension would allow to study the preservation of the wavefront in a more detailed manner,
but the dissipation can also be well observed in 3.10d).
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Figure 3.10: Time-resolved voltage signal per unit cell for a Gaussian pulse
excitation in different nodes across the circuit. a) and b) Excitation applied
at opposite boundaries. The voltage signal remains confined to the respec-
tive edge, propagating in opposite directions as expected for chiral edge
states. c) showcase a localized circuit response for a bulk injection, differing
from the edge excitation. d) Finite system without periodic boundary con-
ditions. Here, the excitation pulse demonstrates its ability to traverse the
system boundaries.

3.3.4. Real Operational Amplifiers
Our exploration thus far has relied on ideal operational amplifiers (Op-Amps) within the

INICs, giving clear results about the circuit’s behavior. Now, we take a crucial step towards
realism by incorporating non-ideal Op-Amps readily available in the market, readily found
within LTspice libraries. This transition raises a set of questions: Will employing real-world
Op-Amps introduce new phenomena not observed with their idealized counterparts? Can
the effects of these non-ideal components be directly observed and quantified within the J
matrix? Will the robust nature of the Haldane model’s topology be sufficient to preserve the
observed edge states under the influence of these realistic components?

Addressing these questions through careful simulations and analysis will not only validate
our circuit model’s fidelity to real-world systems but also provide valuable information about
the interplay between topological states and circuit imperfections.
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Following the insights provided by Hofmann et al. (2019) [56], we replace the ideal Op-
Amps with the LT1363 operational amplifiers (Op-Amp) as the non-ideal component imple-
mentation with the same structure presented in Figure 3.7.

A crucial aspect of the realistic Op-Amps is its requirement for a separate external voltage
source beyond the one used for excitation. This voltage, specified as ranging from ±2.5V to
±15V, significantly impacts the circuit’s computational overhead. Increasing the voltage leads
to a disproportionate escalation in simulation time, particularly noticeable in tasks like band
structure calculations. Figures 3.11 and 3.12 illustrate this, showcasing the dramatic rise in
computation time for three different external voltages as the system size (number of nodes)
increases. We could leave the external sources high and perform less calculations using the
methodology presented in Section 2.3 to reduce the total number of iterations, but since we
wanted to also obtain the complete J matrix this was not an option.

Figure 3.11: Total calculation time for band structure opposed to total num-
ber of nodes, each color represents the external voltage feeding the real Op-
Amps.

Leaving the Op-Amps connected to a large external source does not allow for a quick
convergence to the DC operating point that is needed to perform the band calculations
in each iteration. However, we found that so much amplification is not necessary and that
the external voltage of V = ±2.5 is more than sufficient, while also ensuring reasonable
calculation times. The 3 voltages used correspond to those tabulated in the specifications of
this Op-Amp model.

Considering this, the band structure of a Haldane model circuit with its real Op-Amps is
presented in Figures 3.13 and 3.14 the J matrix comparison with the theoretical H Hamil-
tonian of the corresponding system.

While the overall shape of the band structure remains preserved, Figure 3.13 reveals
differences between the ideal case (dashed lines) and the circuit response with non-ideal Op-
Amps (crosses). To dissect these differences, Figure 3.14 compares the measured J matrix
from the circuit simulation with the theoretical Hamiltonian H. As evident from the zoomed-
in views in Figure 3.14(c) and (d), the major deviations originate from the next-nearest
neighbor (NNN) terms associated with the INICs.
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Figure 3.12: Another visualization of the data shown in Figure 3.11 but in
log − log scale. This representation shows the power law scale of the calcu-
lation times, alerting that for bigger systems the total times can increase
drastically.

Our analysis suggests that the non-ideal Op-Amps introduce errors in the desired ϕ = π/2
phase shift within the NNN terms. Unlike the ideal configuration, the realized INICs not
only exhibit an imaginary component but also possess a small real component, indicating a
deviation from the purely imaginary phase shift expected. Also this effect is increased in the
negative configuration, giving an effective Z impedance in one direction and |Z ′| ̸= |Z| in the
opposite, differing from the Z ′ = −Z expected from the ideal implementation. This adds a
non-Hermitian extra term to the simulations.

Does this effect destroy the edge states? We replicate the excitation strategy previously
employed with ideal Op-Amps.

Figures 3.15(a) and (b) shows that despite the band structure differences, chiral edge
states persist within the circuit model even with non-ideal Op-Amps. Similar to the ideal
case, the applied pulse excitation remains confined to the designated edge, with minimal
leakage into the bulk. Additionally, the excitation propagates along each edge in opposite
directions, echoing the theoretical expectations of chiral edge states.

However, a notable difference compared to the ideal case is the increased level of dissipation
observed in the propagating wave packet. This phenomenon is visually apparent in Figure
3.15(d), where the wave packet exhibits a more pronounced decay compared to Figure 3.10(d).
This heightened dissipation can be attributed to the non-ideal characteristics of the Op-Amps,
most likely arising from the imperfect phase shift within the NNN terms.

The last way of evidencing the damping is in Figure 3.16 where the maximum of the voltage
signal of each unit cell is shown for a Gaussian excitation. In this figure the dissipation effect
is more evident and even a presence of bulk leakage is depicted.

In this section the Haldane circuit was revised, the circuit showed a good accordance
with its tight binding homologous. The edge states where observed and the band structures
computed, showing the capabilities of circuits as a platform for observing different topological
manifestations. It also acknowledge the implementation of realistic components, showing its
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Figure 3.13: Measured admittance band structure of the Haldane circuit
with realistic Op-Amps (blue crosses) with ω ≈ w0, C0 = 10µF, L0 = 10µH
and R = 20Ω contrasted with the band structure of the corresponding tight
binding model (dashed lines).

effects in the Laplacian and consequently in the band structure.
The next section studies another model, proposed by Colomés and Franz [2] known as the

modified Haldane model. The methodology will remain the same as the one presented in this
section: Observe the expected edge states and compute the band structure.

3.4. Colomés and Franz model
The motivation for choosing the modified Haldane model is that, as discussed in [2], it

is predicted to have antichiral edge states. That is, edge states that propagates in both
boundaries but in the same direction, as opposed from the Haldane case. This antichiral
states are accompanied by some bulk states that propagate in the opposite direction of the
boundary ones. If we implement a successful design for this circuit it should present a similar
response as the Haldane model in Figure 3.10 but with larger voltages in the bulk.

The exploration unfolds the same way as before in four stages: 1.- Discussing the circuit
design. 2.- Band Structure Analysis, highlighting the differences between the grounded Lapla-
cian and the Hamiltonian. 3.- Direct Observation of Edge States via voltage measurements.
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Figure 3.14: Comparison between the J matrix, computed from the circuit
simulation (same parameters as in Figure 3.13), and the Hamiltonian H of
the analog system for t1 = 0.58, t2 = 0.05 and ϕ = π/2. In c) and d) is a
zoomed portion of the difference matrix to accentuate the structure of the
difference.

4.- Incorporating Real-World Elements.

3.4.1. Circuit design
This circuit presents a honeycomb structure with its nearest neighbors via a hopping

amplitude t1 and with its next-nearest neighbors (NNN) through a complex hopping t2e
iϕ

with a specific sign rule illustrated in Figure 1.12.
This complex hopping is also facilitated by an INIC implementation of R0 absolute re-

sistance that, for the beginning of this study, is done with idealistic Op-Amps. The NN
connection is achieved using capacitors C0 inherited from graphene circuit, as well as its
grounding.

Figure 3.17 showcases the circuit designed to simulate the bulk of the modified Haldane
model. Building upon the familiar connections employed in the Haldane model, this circuit
introduces a crucial modification: the NNN connections in the B sub-lattice is turned around
in order to replicate the sign rule shown in 1.12.

For this implementation, writing the currents for a pair of nodes A and B in a j unit cell
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Figure 3.15: Time-resolved voltage signal per unit cell for a Gaussian pulse
excitation in different nodes across the Haldane circuit with realistic Op-
Amps. a) and b) shows the chiral edge states. c) showcase a localized circuit
response for a bulk injection, differing from the edge excitation. d) is for a
finite systems in all directions, we we that the excitation is able to travel
across the boundary but with noticeable dissipation.

and using the notation presented the first chapter, the Kirchhoff equations lead to:
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We establish the relationship between resistance values and the desired phase shift within
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Figure 3.16: Comparison between ideal and real Op-Amp implementation
for the maximum voltages of each unit cell for Gaussian pulse excitation
across different nodes. Real Op-Amps show more dissipation than ideal ones,
it allows for bulk leakage in edge injection.

the NNN terms. Setting Ra = Rb = 1 results in a phase shift of ϕ = π/2, making all resistance
values purely real numbers. This simplifies the calculations and analysis due to the absence
of extra imaginary components.

Comparing Equations 3.15 and 3.11 reveals the key difference: the sign of the NNN hopping
terms in the current expression for node B. This seemingly minor modification impacts the
edge state behavior and band structure, justifying closer analysis in the subsequent sections.

Considering the equations for all nodes in the circuit, the current equation can be written
in matrix form:

I = JMHV, (3.16)

where JMH is the grounded Laplacian of the system in position representation. Imposing
periodic conditions and Fourier transforming JMH lead us to the momentum space represen-
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Figure 3.17: Zooming in on the bulk for the implementation of the Haldane
model circuit, centered at unit cell 11, 12 with nodes A1112 and B1112
exemplify the connections: Capacitors C0 to NN, while INICs controlled
by absolute resistance R0 bridge the gap between next-nearest neighbors
across sub-lattices, differing from 3.7 in the direction of the connection for
the B sub-lattice. Each node is grounded with inductors L0 and sub-lattice-
specific capacitors (Cdp for A, Cdm for B), Although currently set to zero for
simplicity, these sub-lattice capacitors hold the potential to break inversion
symmetry, acting as a Semenoff mass [67].

tation

JMH =iω
3C0 + Cdp + Cdm

2 − 1
ω2L0

+ 2
ωR0

(
sin(kx) − sin(ky) − sin(kx − ky)

)I
−C0

(
1 + cos(kx) + cos(ky)

)
σx − C0

(
sin (kx) + sin (ky)

)
σy +

(
Cdp − Cdm

2

)
σz

,
(3.17)
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successfully replicating the structure of the modified Haldane model Hamiltonian 1.35 by
changing the INIC term from σz to I to act as a pseudoscalar potential [2]. This configura-
tion of INICs produces the desired effect in the circuit. The grounding capacitors effectively
simulate the Semenoff mass component but we are not interested in this effect for this study
so we set Cdp = Cdp = 0.

3.4.2. Band structure analysis
In order to observe the edge states presented in the circuit a ribbon has to be constructed.

We stick with the decision taken in Section 3.3.2 and perform a ribbon with zig-zag ter-
minations, grounding each NN missing connections in the boundary with its corresponding
capacitor C0. We use this configuration since it is simpler to construct with the geometry of
the circuit, it is not impossible to implement Armchair edges but it requires more work for
the indexation of G.

To compute the conductance matrix G for the ribbon geometry we impose periodic boun-
dary conditions. Following the protocol in Section 2.3 we successfully calculate the admittance
band structure. These results are presented in Figures 3.18 for the band structure, and 3.19
the J matrix analysis.

Figure 3.18: Measured admittance band structure of the implemented mo-
dified Haldane circuit (blue crosses) with ω ≈ ω0, C0 = 10νF, L0 = 10νF
and R = 34Ω contrasted with the band structure of the corresponding tight
binding model (dashed lines)

54



Figure 3.18 shows the ribbon band structure for a circuit of 20 units cells width and 20
unit cells in the periodic direction with the specified parameters. The data obtained with
LTSpice (blue crosses) matches with the theoretical band structure of the tight binding
model, assuring that our implementation is in the right direction.

Figure 3.19: Zoomed in comparison between the J matrix, computed from
the circuit simulation (same size and parameters as in Figure 3.18), and the
Hamiltonian H of the analog system for t1 = 0.58, t2 = 0.03 and ϕ = π/2.
As the matrices are to big to actually notice a difference, thanks to the scale
in the zoomed version the qualitative agreement between them is evident.

On the other hand, Figure 3.19 examines the measured J matrix and its difference from
the theoretical Hamiltonian H. Just as in the Haldane model, the implementation of idealis-
tic INICs produces the desired effects in with little to no discrepancies with the theoretical
interactions. Again, an imaginary diagonal term emerges, attributed to the expected parasitic
resistances inherently introduced in the grounding inductors by LTSpice during simulations.
The change in the INICs direction for sub-lattice B is also noticeable in 3.19(b), by compari-
son with 3.9(b) the two sub-lattices share the same sign for the NNN connection, as expected
from the design.

3.4.3. Edge states
Due to the results in Figure 3.18 and 3.19 we have the confirmation that our connection

design is behaving as expected. As mentioned at the beginning of the section, the objective
is to observe the edge states in this system so the next step is to excite the ribbon at its
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boundaries and bulk to see its reaction.
As implemented in section 3.3.3, we check the dynamics with Gaussian pulses. Figure 3.20

shows the results obtained from this procedure.

Figure 3.20: Time-resolved voltage signal per unit cell for a Gaussian pulse
excitation in different nodes across the modified Haldane circuit with ideal
Op-Amps. a) and b) shows the antichiral edge states. c) showcase a bulk
injection, differing from the edge excitation since the voltage propagates en
various directions.

Figures 3.20(a) and (b) reveal a distinct behavior compared to the ideal Haldane model.
Contrary to the opposite-direction propagation in Figure 3.10, both injections in the modified
model travel across their respective edges in the same direction. This phenomenon aligns with
the predictions for anti-chiral edge states in Colomés et al.(2018)[2].

Figure 3.20 clearly showcases non-trivial bulk contributions accompanying the edge beha-
vior. Compared to the ideal case, bulk nodes exhibit a non-negligible voltage response, in-
dicating some degree of leakage from the edge into the bulk. This leakage arises from the
inherent modification of the Haldane model, allowing for bulk states to hybridize with the
edge states and propagate with them.

Based on the presented results, we can confidently conclude that the proposed antichiral
edge states do indeed exist within the modified Haldane model and offer the potential for
direct observation. This finding represents a significant step forward in the exploration of
exotic phenomena within circuit-based platforms.

However, a crucial question remains: how do these antichiral edge states fare under the
influence of more realistic components? To address this concern, we will follow the same
investigative path taken in the Haldane implementation in the next subsection analyzing the
system with non-ideal Op-Amps.
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3.4.4. Real Operational Amplifiers
To address the concern of more realistic components we will implement non ideal Opera-

tional Amplifiers (Op-Amps) to our INIC implementation. Since this study is a continuation
from the Haldane implementation we will keep the same LT1363 implemented before because
we got satisfactory results from its implementation.

One of the observations made at the end on Section 3.3.4 was that the real INIC im-
plementation present a non-Hermitian feature: Instead of giving impedance of 1

R
in one

direction and −1
R

to the other it actually gives an impedance 1
R

to the positive direction and
Z = Re[Z] + i Im[Z] where Re[Z] ≈ 1

R
but not quite the exact value. This should have

repercussion on the band structure and be more evident in the difference between J and H.
Also, following the evidence presented before about the calculation times in Figures 3.11

and 3.11 we feed the LT1363s with a ±2.5V external voltage source.
We implement a circuit with the same structure of the one in Figure 3.17 but with the

LT1363 realistic Op-Amps. Figures 3.21 and 3.22 resume our results.

Figure 3.21: Measured admittance band structure of the modified Haldane
circuit with realistic Op-Amps (blue crosses) with ω ≈ w0, C0 = 10µF, L0 =
10µH and R = 60Ω contrasted with the band structure of the corresponding
tight binding model (dashed lines).

The overall shape of the band structure remains preserved, Figure 3.21 reveals differen-
ces between the ideal case (dashed lines) and the circuit response with non-ideal Op-Amps
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(crosses). To dissect these differences, Figure 3.22 compares the measured J matrix from the
circuit with the theoretical Hamiltonian H. As evident from the zoomed-in views in Figure
3.14(c) and (d), the major deviations originate from the next-nearest neighbor (NNN) terms,
as mentioned before, associated with the non-Hermitian effects of the realistic INICs

Figure 3.22: Comparison between the J matrix, computed from the circuit
simulation (same parameters as in Figure 3.21), and the Hamiltonian H of
the analog system for t1 = 0.577, t2 = 0.017 and ϕ = π/2. In c) and d) is a
zoomed portion of the difference matrix to accentuate the structure of the
difference.

Does this effect destroy the edge states? Following the study mentioned in the Haldane
implementation 3.3.4, we replicate the excitation strategy.

Figures 3.23(a) and (b) shows that despite the band structure differences, antichiral edge
states persist within the circuit model even with non-ideal Op-Amps. Similar to the ideal case,
the applied pulse excitation remains in the designated edge, propagating along each boundary
in the same directions, echoing the theoretical expectations of antichiral edge states.

However, a notable difference compared to the ideal case is that, although the edge voltages
present a level of dissipation through the propagation, the bulk states that where present in
all Figure 3.20 are now suppressed. This phenomenon is visually apparent in Figure 3.15(a)
and (b), where the bulk is on a darker blue than the ones in 3.20 and also in Figure 3.24.
This phenomena can be attributed to the non-ideal characteristics of the Op-Amps, most
likely arising from the imperfect phase shift within the NNN terms.

An initial idea to explain this last phenomenon was that, since the realistic INICs present
a non-Hermitian term, there could be non-Hermitian skin effect [53] (NHSE) on the system.
The NHSE manifest When adding non-Hermitian terms in a Hermitian Hamiltonian, the
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Figure 3.23: Time-resolved voltage signal per unit cell for a Gaussian pulse
excitation in different nodes across the modified Haldane circuit with realis-
tic Op-Amps. a) and b) shows the antichiral edge states. c) showcase a bulk
injection, differing from the edge excitation since the voltage propagates en
various directions.

bulk eigenstates of the original Hamiltonian localize at a boundary and lose their extended
nature. To study this we went the other way around now, in order to check if the type
of interaction associated to the realistic INICs where able to produce skin effect we built
numerically a bigger tight-binding system with this exact interaction and checked if any bulk
states produced any level of localization.

Figure 3.25 showcases the difference of our numerically created non-Hermitian Hamiltonian
with the one obtained from the electrical circuit. The accordance between these two indicate
us that we have the same type of interactions in both of them.

With the confirmation presented, in Figure 3.26 is presented the band structure for a bigger
system with 50 unit cells of width and infinite on the other direction with 110 k-points. Each
point has as color the Inverse Participation Ratio (IPR) in log10 scale to exaggerate any
contribution to localization. It appears that none of the bulk states are localized since for all
bulk states the IPR is fairly small.

Another way of visualizing the localization is to plot each of the states in a matrix and
plot the weight of its component in color. We present this in Figure 3.27, a zoomed version
to the states that stand out in 3.28 and the same idea but in logarithmic scale to exaggerate
any localization.

In synthesis:

• Figures 3.27, 3.28, and 3.29 collectively demonstrate localization exclusively for edge
states, providing evidence against the presence of skin effect.
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Figure 3.24: Comparison between ideal and real Op-Amp implementation
of the modified Haldane model for the maximum voltages of each unit cell
for Gaussian pulse excitation across different nodes. Real Op-Amps show
more dissipation than ideal ones, ii allows for bulk leakage in edge injection.

Figure 3.25: Difference between the non-Hermitian theoretical implementa-
tion of J, the main differences are from the grounding terms at the boun-
daries, witch are smaller than the scale of the elements in the H matrix.

• This conclusion signifies that the observed bulk propagation suppression in Figures 3.23
and 3.24 must stem from a different mechanism.
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Figure 3.26: Band structure of the implementation of the non-Hermitian
connection of the INICs for a bigger system in a tight binding Hamiltonian.
Each point is colored according to the IPR of its associated state.

Figure 3.27: Matrix of states with the weights as color, just a few states
present localization and they correspond to the energies in the gap, i.e. the
edge states.

• Further supporting this notion, a hypothetical skin effect caused by realistic INIC im-
plementation would have manifested as bulk suppression in the Haldane case as well.
However, Figure 3.15 reveals the opposite, with leakage from edges into the bulk.

We discard the Skin effect as the source of the bulk suppression and the origin remains
undetermined. Dissipation, as previously discussed in the Haldane section, appears as a po-
tential candidate, but further investigation is required to establish its definitive role.
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Figure 3.28: Zoomed version of the matrix of states with the weights as color,
just a few states present localization and they correspond to the energies in
the gap, i.e. the edge states.

Figure 3.29: Matrix of states with the weights as color in logarithmic scale,
just a few states present values near zero and they correspond to the energies
in the gap, i.e. the edge states.

Even though we discarded the skin effect, its role as a contributing factor can still be
investigated. As a future direction, we may consider implementing the skin effect through
modifications to the circuit connections.

The beauty lies in how realistic components can introduce new effects and interactions.
These can be captured within a tight-binding Hamiltonian, allowing us to model and unders-
tand these behaviors in hypothetical materials.
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3.5. Dynamic skin effect
In the last discussion in section 3.4.4, we proposed making non-Hermitian considerations

in the circuit. We checked for the non-Hermitian Skin effect, but the system did not present
it. Since we proposed the idea, we have embarked on a study to implement non-Hermitian
terms with electrical circuits.

We implement an analog circuit for the system presented in [4] of a non-Hermitian SSH
model, like the one in [53]. The work of Haoshu Li and Shaolong Wan shows that wave packets
in non-Hermitian systems can be accelerated or decelerated compared to their Hermitian
counterparts, forming unconventional reflections to open boundaries. Using a non-Hermitian
SSH model with asymmetric hoppings, we simulated the time-evolution of different initial
states as depicted in Figure 3.30.

Figure 3.30: Time evolution of an initial wavepacket state with k0 = 0 in
a non-Hermitian SSH model [4] for different system sizes and initial condi-
tions: a) 96 unit cells width, Gaussian initial condition with x0 = 48 center
position and σ = 10. b) 500 unit cells width, initial position of the center
of the wavepacket x0 = 250 with a standard deviation of σ = 20. c) 96 unit
cell width, x0 = 48 and σ = 10. d) 96 unit cells width and initial condition
as excitation of one A-type node in x0 = 48. The color bar represents the
probability distribution as |ψ(t, x)|2 = |⟨xA|ψ(t)⟩|2 + |⟨xB|ψ(t)⟩|2 and time
in 1

t units with t the couplings.

We observe that for k0 = 0, the packet’s initial momentum, the state is accelerated to
one of the edges. Since the non-Hermitian effects are sensitive to boundary conditions, we
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simulate different sizes and initial conditions to demonstrate the general effect.
Now, translating this to an electrical circuit, we use as a base the SSH circuit and im-

plement the asymmetric hoppings by an INIC configuration with an effective capacitance of
C3 based on the implementation of Helbig et al.[62], basically merging all the work shown in
this thesis. A representation of the LTSpice implementation is shown in Figure 3.31

Figure 3.31: Zooming in on the bulk for the implementation of the non-
Hermitian SSH model circuit, centered at cell 46. Nodes A046 and B046
exemplify the connections: Capacitors C1 as connections of the same unit
cell, capacitors C2 as connections between cells (completing the Hermitian
part of the SSH model) and INICs controlled by an absolute capacitance
C3 unbalancing the effective capacitance between nodes in the same cell as
the asymmetric term. Each node is grounded with inductors L0.

The total current at A and B is:

IAj = iωC1(VAj − VBj) + iωC2(VAj − VBj−1) + 1
iωL(VAj − V0) + iωC3(VAj − VBj), (3.18)

IBj = iωC1(VBj − VAj) + iωC2(VBj − VAj+1) + 1
iωL(VBj − V0) − iωC3(VBj − VAj). (3.19)

This yields to a set of equations for all the nodes that can be written down as:

I = JSSHV. (3.20)

Imposing periodic boundary conditions and Fourier transforming eq. 3.4 the momentum
space representation of the grounded Laplacian is obtained

JNSSH(k) = iω
(
C1 +C2 − 1

ω2L

)
I− iω

[
(C1 +C2 cos(k))σx + (C2 sin(k) + iωC3)σy + iωC3σz

]
,

(3.21)
where {σi} is the set of the Pauli matrices and I is the (2×2) identity matrix. As always, the
identity term does not affect the eigenstates. We almost encapsulated the desired Hamiltonian
but for a σz proportional term. We include the last term in our simulations, but its effect
is negligible since C3 is small compared to the other capacitors. Also, we can always add a
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grounding capacitor C0 = 2C3 in sub-lattice A to cancel it out.
We make a circuit based on the scheme in Figure 3.31 of 96 unit cells with the following

parameters: C1 = 6.36uF, C2 = 3.183uF, C3 = 0.63uF, L0 = 10u and ω = 2πf0 with
f0 = 50kHz and the same realistic Op-Amps as in section 3.3.4. With the systems constructed,
we have to set up an excitation. How we excite the system affects the initial condition; a
Gaussian pulse could be enough, but depending on the lifespan of the pulse it will impose an
external forcing for too long. An example of this is depicted in Figure 3.32, where we see that
the node of excitation functions as a voltage source point, creating an interference pattern
and resonances.

Figure 3.32: Voltage distribution over each cell for an excitation (τ = 1σt/2)
as a function of time t (in the x-axis), and the position of the cell x (in the
y-axis). The colour bar represent |V (t, x)|2 = |⟨xA|ψ(t)⟩|2 + |⟨xB|ψ(t)⟩|2.

We impose a Gaussian pulse with a narrow distribution, and we can witness the Dynamic
skin effect’s properties in Figure 3.33: elastic reflection to one of the boundaries and inelastic
reflection to the other. The voltage is localized at one boundary, just as the probability
distribution in 3.30d).

To check if the wavefront actually arrives earlier to one of the edges we visualize the
voltages at the some cells living near each boundary as a function of time. Figure 3.34 shows
that for the un-localized edge the voltage reaches a peak when the reflection happens. On
the other hand, the voltages near the other boundary arrive earlier but not enough to ensure
that the wave-packet centroid of the propagation reached it, this is due to the enhanced
spreading of the wave packet in this direction. Despite of this, the voltages in this edge reach
a maximum at a time marginally earlier than the peak of the other boundary, we conclude
that a study of larger systems is required to probe the acceleration effect.

The voltage profile in Figure 3.35 corresponds to a shorter-lived excitation modulated
with a temporal switch. The results do not improve as compared with 3.33. It misses some
properties if the injections are too short. We attribute this to the presence of the ω factor in
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Figure 3.33: Voltage distribution over each cell for a short-lived Gaussian
excitation (τ = 0.5σt/2) as a function of time t (in the x-axis), and the
position of the cell x (in the y-axis). The colour bar represent |V (t, x)|2 =
|⟨xA|ψ(t)⟩|2 + |⟨xB|ψ(t)⟩|2, normalized at each t.
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Figure 3.34: Voltages near each boundary as function of time, red is for the
two first cells, at the elastic boundary (0 and 1 of our indexation), and blue
is for the last two cells, at the inelastic boundary (94 and 95). The presence
of narrow peaks indicates the elastic reflection and the localization arises
from signals persistence over time.

the Laplacian; if the excitation is too short, it does not represent the system we are trying
to replicate since it can get a complete oscillation to set up the frequency.

With this section, we again validate the simulation capabilities of electrical circuits for
tight-binding Hamiltonians and extend its range to non-Hermitian phenomena.
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Figure 3.35: Voltage distribution over each cell for a short-lived Gaussian
excitation (τ = 0.05σt/2) as a function of time t (in the x-axis), and the
position of the cell x (in the y-axis). The colour bar represent |V (t, x)|2 =
|⟨xA|ψ(t)⟩|2 + |⟨xB|ψ(t)⟩|2, normalized at each t.
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Chapter 4

Conclusions

In this thesis, we investigated edge states using electrical circuits. Chapter 1 introduced
the concepts and models for topological states and Tight-Binding Hamiltonians. Then, chap-
ter 2 we discussed about topoelectrical circuits by considering the different steps involved in
simulating a crystalline system. Chapter 3 focused on emulating known systems and repro-
ducing results. We studied the SSH model, graphene, and the Haldane model to validate the
circuits capabilities as simulators. This validation was achieved by obtaining the admittance
band structure and studying the excitation dynamics in each model.

An additional key finding of this initial part is a new methodology for reconstructing
the circuit Laplacian in real space through measurements. This allows us to compare the
simulating circuit with the theoretical model. This methodology offers a valuable tool to
visualize the effects of realistic components present in the circuit and provides a reliable way
to check for any unintended characteristics or missed connections.

By exciting the Haldane model circuit with an external voltage source in a ribbon configu-
ration we observed the presence of chiral states, successfully capturing the expected dynamics
in its topological phase.

Having established the groundwork, Chapter 3 also addressed our other objective: pro-
posing electrical circuits to simulate novel topological states or edge states that lack prior
experimental realization. Specifically, we designed and analyzed an electrical circuit to si-
mulate a modified Haldane model. We computed the band structure and Laplacian matrix
of the circuit, achieving a high degree of agreement with the original Tight-Binding model.
The antichiral states in this system were observed by measuring the voltage profile produced
by injected voltages at its boundaries. This demonstrates the ability of electrical circuits to
emulate not only known phenomena but also to facilitate the study of novel materials.

We further explored a less ideal scenario by considering realistic operational amplifiers
(Op-Amps) and characterized their impact on the Haldane and modified Haldane models.
Deviations from the ideal behavior were observed in the band structures of these models
due to the replaced components. We confirmed the specific nature of these differences by
comparing the measured Laplacians with the Hamiltonians. This demonstrates the potential
of electrical circuits to elucidate unexpected phenomena and capturing the consequences of
real-world effects in our models.

Motivated by the study of realistic scenarios, we extended our investigation to non-
Hermitian phenomena using circuits. We designed and analyzed an electrical circuit to si-
mulate a non-Hermitian SSH model with asymmetric hoppings, specifically searching for the
presence of the Dynamic Skin Effect. By implementing the designed circuit and injecting
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voltages, we observed the inelastic reflection of an initial state in one direction, leading to
localization at that edge, and an elastic collision with the other boundary. These observations
show the capabilities of electrical circuits in simulating non-Hermitian characteristics.

With this work we conclude that topoelectrical circuits are a useful tool for simulating
Tight-Binding models and studying topological states or edge states. As highlighted in the
introduction, these circuits also offer significant advantages by simplifying the concepts in-
volved in studying topological phases due to the accessibility and operability of electronics,
as we demonstrated with the implementations of the modified Haldane model and the non-
Hermitian SSH model. Computation times could present an obstacle for studying larger
systems, specially in the presence of higher voltages, but this can be overtaken with direct
measurements in a real life electrical circuit in the laboratory. Further experimental realiza-
tion could validate our simulations, this would help to capture the technical difficulties of
this framework and provide new phenomena in a more realistic scenario.
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