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CONJUNTOS EXPLORABLES Y CONJUNTOS DE SALIDA
DEL CAMPO LIBRE GAUSSIANO

El Campo Libre Gaussiano (GFF en adelante, por sus siglas en inglés) es una función aleato-
ria que se obtiene como una perturbación de una función armónica. Puede ser visto como una
generalización del movimiento Browniano cuando el dominio temporal es reemplazado por uno
d-dimensional. Muchas propiedades son generalizables a dimensiones altas, mientras que otras se
pierden. Un objeto relevante en el estudio de la geometŕıa del GFF es el de sus conjuntos de salida.
En d = 1, se pueden definir como los intervalos aleatorios A−a,b = [0, τ−a,b] y A−a = [0, τ−a], donde
a, b > 0, y τ−a,b y τ−a son los tiempos de salida de [−a, b] y [−a,∞) del movimiento Browniano
estándar, respectivamente. En d = 2, trabajos recientes han probado que A−a,b y A−a se pueden
definir usando herramientas refinadas de geometŕıa compleja y conjuntos aleatorios. Sin embargo,
A−a,b existe si, y solo si a + b ≥ π, lo que es consecuencia de que el GFF no es una función en
d ≥ 2, sino que una distribución de Schwartz aleatoria. En d ≥ 3 no existen resultados sobre la
existencia de A−a,b y A−a. La pregunta que gúıa esta tesis es ¿En qué dimensiones se puede hacer
sentido de los conjuntos de salida del GFF?

Para poder resolver esta pregunta, describimos una propiedad básica que los conjuntos de salida
debeŕıan tener, aparte de las clásicas. Esta propiedad se introduce como una nueva propiedad
para conjuntos aleatorios, que es más restrictiva que la de ser conjunto de parada: ser un conjunto
explorable. Informalmente, un conjunto aleatorio es explorable si puede ser descubierto de una
forma adaptada. En la primera parte de este trabajo, estudiamos esta noción desde un punto de
vista abstracto, sin hacer referencia expĺıcita al GFF. Espećıficamente, enunciamos y demostramos
propiedades de los conjuntos explorables. Luego, relacionamos esta noción con el GFF, donde el
resultado principal es que cierto observable de los conjuntos de salida tiene la distribución de los
respectivos tiempos de salida del movimiento Browniano (τ−a,b para A−a,b y τ−a para A−a), en
dimensión d arbitraria.

En la última parte de esta tesis, explicamos como la teoŕıa de conjuntos explorables puede
ayudar a contestar la pregunta sobre la existencia de los conjuntos de salida del GFF en d ≥ 3.
Espećıficamente, proponemos un esquema de demostración basado en dos pasos, uno de los cuales
es completamente riguroso y depende de dicha teoŕıa. Finalizamos con avances en el otro paso, el
cual involucra nociones y objetos provenientes de la teoŕıa del potencial del movimiento Browniano.
Demostrar ambos pasos resultaŕıa en la no existencia de A−a,b en d ≥ 3 y A−a en d ≥ 7.
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EXPLORABLE SETS AND EXIT SETS OF THE GAUSSIAN FREE FIELD

The Gaussian Free Field (GFF) is a random field obtained as a perturbation of a harmonic
function. It can be viewed as a generalization of Brownian motion when the time domain is
replaced by a d-dimensional one. Many properties remain valid in higher dimensions, while others
are lost. An important object in the study of the geometry of the GFF is that of its exit sets. In
d = 1, one can define them as the random intervals A−a,b = [0, τ−a,b] and A−a = [0, τ−a], where
a, b > 0, and τ−a,b and τ−a are the exit times of [−a, b] and [−a,∞) of the standard Brownian
motion, respectively. In d = 2, recent works have proven that one can define A−a,b and A−a using
refined machinery of complex geometry and random sets. However, A−a,b exists if and only if
a + b ≥ π, which is a consequence of the fact that the GFF is no longer an ordinary function in
d ≥ 2, but a random Schwartz distribution. In d ≥ 3 there are no results about the existence of
A−a,b and A−a. The question that drives this thesis is: ¿In which dimensions can we make sense
of the exit sets of the GFF?

In order to solve this question, we describe a fundamental property that the exit sets should
have, apart from the classical ones. This is introduced as a new property for random sets, that is
more restrictive than the stopping set property: being an explorable set. Informally, a random set
is explorable if it can be discovered in an adapted way. In the first part of this thesis, we study this
notion from an abstract point of view, without making explicit reference to the GFF. Specifically,
we state and prove properties of explorable sets. Then, we relate this property to the GFF, where
the main result is that a certain observable of the exit sets is distributed like the corresponding
exit times of the Brownian motion (τ−a,b for A−a,b and τ−a for A−a), in arbitrary dimension d.

In the last part of this thesis, we explain how the theory of explorable sets could help to answer
the question about the existence of the exit sets of the GFF in d ≥ 3. Specifically, we propose a
proof scheme based on two steps, one of them is completely rigorous and depends on such theory.
We end this thesis by making progress in the other step, that involves notions and objects coming
from potential theory of Brownian motion. Completing both steps would prove the non-existence
of A−a,b in d ≥ 3 and A−a in d ≥ 7.
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− Profesor Jirafales: Primeramente, vamos a buscar la superficie del triángulo.

− Don Ramón: ¿Cómo...pues que todav́ıa no la encuentran?
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Agradezco a mi mamá, Carla, y a mi papá, Oscar, por todo el amor que me han dado desde
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por las conversaciones matemáticas y musicales, y por la amistad que tenemos. A los cabros de
la 427 (la mejor oficina en la historia del DIM) y la 426: Axel, Félix, Matu, JP y Xavi, por la
simpat́ıa, las tallitas, las sacadas de vuelta y la gran calidad humana que tienen. Estuvieron a
mi lado durante toda la tesis y debo decir que su compañ́ıa fue del mayor agrado posible. A los
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auxiliar, por confiar en mi trabajo y permitirme desarrollar mis habilidades docentes. A Natacha
Astromujoff, por el buen humor de siempre, la cercańıa que has generado con varios de nosotros
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Introduction

Random surfaces or random fields are probabilistic objects that allow us to model spatial random
phenomena. Examples of random surface modelling are easily found in spatial statistics models
of weather, ecology, epidemiology, econometrics, among many others; and also in quantum physics
models for fundamental particles. It is that latter scientific field that originally motivates the
study and development of the main object of this thesis: the continuum Gaussian Free Field
(GFF). Figure 1 shows how a GFF looks like in d = 2.

The GFF is a mathematical model for random surfaces that, roughly speaking, describes per-
turbations of harmonic functions. It has been proved to be a very rich mathematical object, with
properties that makes it interesting for both mathematicians and physicists:

• For mathematicians, the GFF can be viewed as a generalization of Brownian motion when the
time domain is replaced by a multidimensional one. As such, it appears as the (conjectural)
scaling limit of many discrete models. Furthermore, in d = 2 the GFF is deeply related with
other important objects as Stochastic Loewner Evolutions and Liouville Quantum Gravity.

• For physicists, it is the basic block used to construct fields in constructive field theory, and it
is a way to do Feynmann’s path integral in Liouville theory when the path is now a surface.

Figure 1: Macroscopic view of a 2-dimensional GFF.
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As mathematicians, we aim to understand which properties of Brownian motion have their
analog in the case of the GFF. However, past and recent works have shown that even basic features
of the Brownian motion do not remain valid in higher dimensions. For instance, the GFF is no
longer an ordinary function in d ≥ 2, but a random Schwartz distribution. In any case, it still
satisfies a Markov property which gives a fundamental tool in order to understand its geometry.

The main research question of the present thesis concerns the existence of the exit sets of
the GFF. There are two types of exit sets: two-valued sets (TVS) and first-passage sets (FPS).
Heuristically, a TVS is the set of points that can be connected to the boundary through a continuous
path over which the GFF “takes values” between two fixed bounds. Similarly, a FPS is the set of
points that can be connected to the boundary through a continuous path over which the GFF “takes
values” greater than a fixed (negative) bound. Figure 2 illustrate how any point is (heuristically)
determined to be in these sets.

D D

Φ ∈ [−a, b]

Φ ∈ [−a,∞)

Figure 2: Heuristic representation of TVS (left) and FPS (right).

In d = 1, TVS = [0, τ−a,b] and FPS = [0, τ−a], where

τ−a,b := inf{t ≥ 0 : Bt ∈ {−a, b}}, τ−a := inf{t ≥ 0 : Bt = −a},

with (Bt)t≥0 a standard Brownian motion and a, b > 0. These random times have been studied
during the last 100 years and they are very well understood at this point.

In d = 2, the heuristic definition of TVS and FPS do not make sense at all because the GFF
in d ≥ 2 is a random Schwartz distribution. This means that the GFF in d ≥ 2 is not defined
pointwise, so expressions like Φ(x) only make sense as ±∞. However, the existence of TVS and
FPS in d ≥ 2 (with a re-stated and formal definition) was proved using refined machinery of
random sets and complex analysis (see [AS18; ALS20a; ALS20b]). One relevant feature of TVS in
d = 2 is that they exist if, and only if a+ b ≥ 2λ, where λ is a positive constant depending on the
normalization of the Green’s function. This is due to the fact that the GFF oscillates too much
near the boundary, so that one cannot explore its level lines starting from the boundary without
seeing a oscillation smaller than 2λ immediately. Simulations of the TVS in d = 2 are shown in
Figure 3.

2



−λ

−λ

−λ−λ

λ
λ

λ

λ

Figure 3: Simulations of TVS in d = 2.

In d ≥ 3, there are no results about the existence of the exit sets of the GFF. Then, the research
question of this thesis is:

Do TVS and FPS exist in d ≥ 3?

However, there are conjectures to the answer of the preceding question:

• The FPS exists in d ∈ {3, 4, 5} and do not exist in d ≥ 7.

• The TVS does not exist in d ≥ 3.

In this thesis, we focus on the non-existence part of the TVS and FPS. To do this, we describe
a basic property of random sets, that the exit sets are expected to satisfy (apart from the classical
ones about the values of the harmonic function and thinness). We call this property explorability
of random sets. Informally, a random set is explorable if it can be discovered in an adapted way,
meaning that each boundary connected part of the set is a stopping set (d-dimensional analog of
stopping times). First, we study this notion from an abstract point of view, including properties
concerning limits, spatial behaviour and algorithmic procedures to discover explorable sets. Then,
we relate this notion with the GFF by studying its explorable sets. The main result is that the
law of an observable of the exit sets, related to the distance between the set and a fixed point, is
given by the exit times of the 1-dimensional Brownian motion in arbitrary dimensions (τ−a,b for
the TVS and τ−a for the FPS).

Using the ideas of the previous paragraph, we formulate a proof scheme for the non-existence
part of both exit sets, based in two steps. First, we have to prove that given a non-polar set in
d ≥ 3, the amount of dyadic boxes where the mentioned observable is above 2n(d−2) is 2n(d−2−ε)

for some ε > 0 (up to constants and lower order terms), where n determines the grid size. This is
essentially a potential theory problem which is not solved yet, but we give some partial results. On
the other hand, based on the theory of explorable sets, we prove that if the exit sets are explorable,
then the mentioned quantity of dyadic boxes has polynomial order. The conclusion is that the

3



TVS and FPS are a.s. polar in d ≥ 3 and d ≥ 7, respectively, proving the non-existence part of
the conjecture.

The existence part of the conjecture is not treated in this thesis, but proposed as future work as
it is also enriched by the theory of explorable sets (it is actually a work in progress of our group).
The interested reader can see [Wer21], where the author makes conjectures about the behaviour
of many objects related to the GFF in higher dimensions.

Note that we do not say anything about the existence of the FPS in d = 6, because the known
and new arguments (given in this thesis) do not work for such dimension.

The outline of this thesis is as follows:

Chapter I: We introduce the basic objects of this thesis. We start by defining the GFF as the
standard Gaussian variable of an appropriate Hilbert space, and use this approach to state and
prove many of its basic properties. Then, we go back to a more general setting to introduce the
stopping sets and also state and prove some of its basic properties. A brief but complete section on
the Hausdorff topology for compact sets is included. We end Chapter I with the formal definition
of the exit sets of the GFF and their construction in d = 2.

Chapter II: We introduce the explorable sets as suitable objects to answer our research ques-
tion and study such concept in full abstraction, without the GFF. We end Chapter II developing
the relationship between the explorable sets and the GFF.

Chapter III: We present some progress on our research question. We present a proof scheme
based on explorable sets and potential theory that concludes with the non-existence result of the
TVS in d ≥ 3 and FPS in d ≥ 7. We end Chapter III with some estimates required for the
mentioned scheme to work.

Prerrequisites of this thesis are strong background on measure theory, functional analysis and
stochastic calculus.

4



Chapter 1

Preliminaries

1.1 Gaussian Free Field

The continuum Gaussian Free Field is a mathematical model for random surfaces and plays an
important role in quantum physics, where it acquires the name massless free field or Euclidean
bosonic massless free field. It can be viewed as a generalization of Brownian motion when the
(1-dimensional) time domain is replaced by a d-dimensional domain. In this sense, many intuitive
properties of this random object remain, while others are lost when d ≥ 2. For instance, when
d ≥ 2, the continuum Gaussian Free Field is a not a random function but a random distribution (in
particular, it cannot be evaluated pointwise). However, it is still satisfying a generalized Markov
property, which form the basis of many recent works on the Gaussian Free Field and related topics.

The continuum Gaussian Free Field has a discrete counterpart and even an hybrid between the
discrete and the continuum. The first one is defined on a given graph, where the discrete Gaussian
Free Field takes its values on the vertices according to a specific Hamiltonian which governs the
interactions between the neighbor nodes. It can be proved that the continuum Gaussian Free Field
can be obtained as a scaling limit of its discrete version, providing one possible way to construct it.
The second possible approximation is defined on the “metric graph” (a graph where the edges are
considered as continuous line segments), which is obtained by sampling a discrete Gaussian Free
Field and then sampling Brownian bridges over the edges with initial and final values given by the
Gaussian Free Field on the corresponding vertices. None of these counterparts are treated in this
thesis and from now on we call the continuum Gaussian Free Field simply GFF (by its initials).

In this section, we define and construct the GFF on D ⊆ Rd and state many of its properties,
including relevant proofs. For these purposes, we provide an exhaustive presentation of the tools
needed to define the GFF and develop its theory. Specifically, we present the Gaussian variables
on Hilbert Spaces theory as a way to construct the GFF.
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1.1.1 Definition and construction

Gaussian variable in a Hilbert space

Before stating the main definition of this chapter, we take a brief look to a more general object,
which in a very particular case, gives origin to the GFF. This is the so-called Gaussian variable in
a Hilbert space. Such object appears as the natural generalization of Gaussian vectors to infinite
dimension. As such, it provides a rigorous way to consider a family of random variables indexed
by a Hilbert space which behaves like a Gaussian field. We consider that it is convenient to the
reader to know about this object because it is instructive from a theoretical point of view, with
pros and cons, as we shall remark while making the construction.

From now on, every time we refer to a function X as “random variable” or “random vector”,
we will be assuming that there is some measurable space (Ω,F) such that X is defined on Ω and
it is a measurable function.

Consider d ∈ N \ {0} and denote by ⟨·, ·⟩Rd the inner product of Rd. The following characteri-
zation of the Gaussian vectors in Rd is basic in any first course in probability (see Section 1.2 and
Theorem 1.3 in [Le 16], for instance).

Proposition 1.1. Let X be a random vector in Rd and Σ ∈ Rd×d positive-definite. Then, the
following are equivalent:

1. P(X ∈ dx) ∝ exp
(
−1

2
x⊤Σ−1x

)
dx.

2. ⟨X, h⟩Rd ∼ N (0, ⟨h,Σh⟩Rd) for all h ∈ Rd.

In any of these two cases, we say that X is a centered Gaussian (or Normal) distribution with
covariance matrix Σ and denote this as X ∼ N (0,Σ).

Note that the only characterization which depends explicitly on the inner product is 3. Let us
see how such statement gives an heuristic argument to generalize Gaussian vectors. For Σ ∈ Rd×d

positive-definite and X ∼ N (0,Σ), define

⟨h1, h2⟩Σ−1 := ⟨h1,Σ
−1h2⟩Rd , for all h1, h2 ∈ H.

Then, ⟨·, ·⟩Σ−1 defines an inner product equivalent to ⟨·, ·⟩ and for all h ∈ H we have

⟨X, h⟩Σ−1 = ⟨X,Σ−1h⟩Rd ∼ N (0, ⟨Σ−1h,ΣΣ−1h⟩Rd) = N (0, ⟨Σ−1h, h⟩Rd) = N (0, ⟨h, h⟩Σ−1).

From this we see that the characterization 3. of the previous proposition can be re-stated
equivalently as

⟨X, h⟩Σ−1 ∼ N (0, ⟨h, h⟩Σ−1), for all h ∈ H, (1.1)

so one finds that Gaussian vectors can be characterized using a single inner product (equivalent
to the original one). From now on, let (H, ⟨·, ·⟩) be any Hilbert space.
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Definition 1.2. A collection (Xh)h∈H is called the Gaussian variable of H if

• For all h ∈ H, Xh ∼ N (0, ⟨h, h⟩).

• For all h1, h2 ∈ H and λ ∈ R, a.s. Xλh1+h2 = λXh1 +Xh2.

The first property is just the analogue of (1.1) and the second property is almost the linear
property of the inner product. The obvious question now is the existence of such family of random
variables and this is just a consequence of the Kolmogorov’s extension theorem for Gaussian
variables, which is standard in the literature (see Theorem 1.11 in [Le 16]).

Theorem 1.3. Let Γ : H ×H → R a measurable function such that

• For all h1, h2 ∈ H, Γ(h1, h2) = Γ(h2, h1).

• For all finite J ⊆ H, (Γ(h1, h2))h1,h2∈J is a strictly positive-definite matrix.

Then, there exists a unique probability measure µ on the σ-algebra generated by the cylinders of
RH , such that if X has distribution µ, then X is Gaussian process with covariance Γ.

Then, the existence of the Gaussian variable in H is proved directly with Theorem 1.3.

Corollary 1.4. There exists a unique probability measure µ on the σ-algebra of the cylinders of
RH , such that if X has distribution µ, then X is the Gaussian variable of H.

Proof. Define Γ : H ×H → R by Γ(h1, h2) = ⟨h1, h2⟩. The commutative property is obvious from
the commutativity of the inner product. Now let J ⊆ H be finite. Then, for all λ ∈ R|J |,

∑
h1,h2∈J

λh1λh2⟨h1, h2⟩ =
〈∑

h∈J
λhh,

∑
h∈J

λhh

〉
≥ 0.

and the existence and uniqueness of µ is proven by Theorem 1.3. Now we prove that if X has
distribution µ, then it is the Gaussian variable of H. In fact, for all h ∈ H, Xh is a centered
normal random variable with variance E[X2

h] = ⟨h, h⟩. On the other side, for fixed h1, h2 ∈ H and
λ ∈ R,

E[(Xλh1+h2 − λXh1 −Xh2)
2]

= E[X2
λh1+h2

+ λ2X2
h1

+X2
h2

− 2λXλh1+h2Xh1 − 2Xλh1+h2Xh2 + 2λXh1Xh2 ]

= 0,

which proves that a.s. Xλh1+h2 = λXh1 +Xh2 , that is, X is the Gaussian variable of H.

We see that on any Hilbert space one can define a Gaussian variable. However, the construction
has a technical disadvantage, to say, µ is only defined on the σ-algebra of the cylinders of RH ,
which is very small. In fact, such σ-algebra allows to measure only “countable questions”, meaning
that events indexed by uncountable parameters are not measurable. For example, we cannot give
the probability of the following events:
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• {ω ∈ Ω : Xλh(ω) = λXh(ω), for all λ ∈ R}.

• {ω ∈ Ω : h 7→ Xh(ω) is continuous}.

We can avoid this problem by losing a bit of generality, specifically, asking the Hilbert spaces
to be separable. In fact, separable Hilbert spaces always have orthonormal basis, which allows to
represent its Gaussian variable in a more tractable way.

Proposition 1.5. Suppose that (H, ⟨·, ·⟩) is separable and let

• (en)n∈N be its orthonormal basis,

• (αn)n∈N be an i.i.d. family of standard normal random variables.

Define X = (Xh)h∈H by the following L2(Ω)-limit:

Xh :=
∑
n∈N

αn⟨en, h⟩ := lim
N→∞

N∑
n=0

αn⟨en, h⟩, for all h ∈ H. (1.2)

Then X is the Gaussian variable of H.

Proof. Let us start proving that the definition of Xh makes sense as a limit in L2(Ω). Fix h ∈ H
and for all N ∈ N define

XN
h :=

N∑
n=0

αn⟨en, h⟩.

Then, for all N,M ∈ N, N ≥ M , we have

E
[(
XN

h −XM
h

)2]
=

N∑
n=M+1

⟨en, h⟩2,

where we used that (αn)n∈N is i.i.d. distributed like N (0, 1). Taking the limit N,M → ∞, the
last term goes to zero as it is the tail of the convergent series given by

⟨h, h⟩ = lim
N→∞

N∑
n=0

⟨en, h⟩2,

proving that (XN
h )N∈N is a Cauchy sequence in L2(Ω) and then making sense of its L2(Ω)-limit,

that we already denoted by Xh.

Finally, it is known that the L2(Ω)-limit of centered Gaussian variables is centered Gaussian,
with variance equal to the limit of the corresponding variances (see Proposition 1.1 in [Le 16], for
instance). In our case, we have that

E[X2
h] = lim

N→∞

N∑
n=0

⟨en, h⟩2 = ⟨h, h⟩,
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and furthermore, for all h1, h2 ∈ H, λ ∈ R,

Xλh1+h2 = lim
N→∞

∑
n∈N

αn⟨en, λh1 + h2⟩ = λXh1 +Xh2 .

This proves that X is the Gaussian variable of H.

Note from the previous proposition that the equality Xλh1+h2 = λXh1 +Xh2 holds always and
not only a.s., making it a measurable event with full probability for the completed σ-algebra. Using
the previous equality, we can give a richer meaning to the formula (1.2). In fact, if we formally
write

X =
∑
n∈N

αnen, (1.3)

then ⟨X, h⟩ = ∑n∈N αn⟨en, h⟩ = Xh, that is, X can be seen as a linear operator from H into R.
As any Hilbert space is identified with its dual space, the natural question is whether X belongs
to H. The answer to this question is negative, because the L2(Ω)-norm of X would be given by

⟨X,X⟩ =
∑
n∈N

α2
n.

But for all n ∈ N, P(α2
n > 1) = 2

∫∞
1

e−x2/2dx > 0 and then
∑

n∈N P(α2
n > 1) = ∞. Given the

independence of the family (αn)n∈N, (independent) Borel-Cantelli’s lemma ensures that a.s. there
are infinite terms of the previous sum that are greater than 1, so a.s. ⟨X,X⟩ = ∞.

Formula (1.3) also justifies that one can freely write ⟨X, h⟩ instead of Xh when talking about
the Gaussian variable X of a separable Hilbert space H, as we will do from now on.

See Annex A to see two remarkable examples of Gaussian variables and some of their properties.

Definition of the GFF

Now we present the main definition of this chapter. Let D ⊆ Rd be open and consider the Sobolev
space H = H1

0 (D) endowed with the inner product

⟨f, g⟩D∇ :=

∫
D

∇f(x) · ∇g(x)dx = ⟨∇f,∇g⟩L2(D), f, g ∈ H1
0 (D).

Recall that ∇f for f ∈ H1
0 (D) is given in the distributional sense in general. The space

(H1
0 (D), ⟨·, ·⟩D∇) is a separable Hilbert space. From now on, we will just write ⟨·, ·⟩∇ for ⟨·, ·⟩D∇ when

there is no possible confusion about the domain D.

Definition 1.6. The GFF Φ (in D) is defined as the Gaussian variable of (H1
0 (D), ⟨·, ·⟩∇).

From now on, P and E will always denote the law of Φ and the expected value under P,
respectively. The given definition of the GFF feels too abstract, so it is worth to remark some
basic facts to give intuition. We start with the 1-dimensional cases, on which intuitive things
happen.

9



Theorem 1.7.

• The standard Brownian motion is the GFF in [0,∞).

• The Brownian bridge in [a, b] from 0 to 0 is the GFF in [a, b].

Proof. The family (⟨B, f⟩∇)f∈H1
0 ([0,∞)) satisfies the linearity with respect to f because of the lin-

earity of the derivative and the integral. On the other side, if f ∈ C∞
0 ([0,∞)), we have

⟨B, f⟩∇ = ⟨B′, f ′⟩L2([0,∞)) ∼ N (0, ⟨f ′, f ′⟩L2([0,∞))) = N (0, ⟨f, f⟩∇),

where B′ is the distribution representing the derivative of the Brownian motion (see Annex A.2
to see its definition and further discussions). Finally, we move up to f ∈ H1

0 ([0,∞)) by density of
C∞

0 ([0,∞)) under ⟨·, ·⟩∇.

For the Brownian bridge, take a = 0 and b = 1 for simplicity. Then (Wt)t∈[0,1] given by

Wt = Bt − tB1, t ∈ [0, 1],

is the Brownian bridge in [0, 1]. Again, linearity with respect to f of (W, f)f∈H1
0 ([0,1])

is clear.

Finally, if f ∈ C1
0([0, 1]) and recalling that f(1) = f(0) = 0,

⟨W, f⟩∇ = ⟨B′, f ′⟩L2([0,1]) −B1

∫ 1

0

f ′(t)dt︸ ︷︷ ︸
0

∼ N (0, ⟨f, f⟩∇),

and again we move up to H1
0 ([0, 1]) by density of C∞

0 ([0, 1]) under ⟨·, ·⟩∇. The general case of a
and b follows analogously.

To end this section, we come back to formula (1.3). Recall that such formula has to be inter-
preted formally in general, meaning that X cannot be considered as an element of H and neither
be “evaluated” at a single point if H is a functional space, for instance (the theoretical reason of
this will be clarified in the next section about properties of the GFF). However, it represents a pow-
erful tool for the computational simulation of the Gaussian variable of any separable Hilbert space,
provided that we know its orthonormal basis. As a numerical example, the space H = H1

0 ([0, π]
d)

has orthonormal basis given by the family (en1,...,nd
)n1,...,nd∈N defined by

en1,...,nd
(x1, . . . , xd) =

2d/2

πd/2
· sin(n1x1) . . . sin(ndxd)√

n2
1 + · · ·+ n2

d

, x1, . . . , xd ∈ [0, π].

In d = 2, numerical simulation of (1.3) gives Figure 1.1. Note how (1.3) illustrates the macro-
scopic behavior of the GFF, even thought it is not defined pointwise.

10



Figure 1.1: Simulation of a GFF in [0, π]2.

Remark 1.8. (Other boundary conditions) What we have called GFF is known as the zero-
boundary GFF in the literature. However, for any piecewise continuous function φ in ∂D, we can
define the GFF with boundary values as Φ + u, where Φ is a zero boundary GFF and u is the
harmonic extension in D of φ. From now on, we still calling GFF to the zero-boundary GFF.

1.1.2 Some properties

In this section, we present many basic properties of the GFF and some proofs, in order to clarify its
structure, geometry and functional properties. From now on, Φ will denote the GFF on D ⊆ Rd.

Covariance structure of the GFF

From its definition, the “product” ⟨Φ, f⟩∇ has distribution N (0, ⟨f, f⟩∇) for any f ∈ H1
0 (D). Using

this, can we give meaning to the product ⟨Φ, f⟩L2(D)? Heuristically, if (en)n∈N is the orthonormal
basis of H1

0 (D), we have by (1.2) that

⟨Φ, f⟩∇ =
∑
n∈N

αn⟨en, f⟩∇ =
∑
n∈N

αn⟨∇en,∇f⟩L2(D) =
∑
n∈N

αn⟨en,−∆f⟩L2(D),

where we supposed that f ∈ H1
0 (D) ∩ C2(D). Again, in the spirit of (1.3), the last term is what

we could interpret as ⟨Φ,−∆f⟩L2(D). This motivates the following definition.

Definition 1.9. For F ∈ C∞
0 (D), we define ⟨Φ, F ⟩L2(D) := ⟨Φ, f⟩∇, where f solves the Poisson

problem:

(P )F

{
−∆f = F, in D,

f = 0, in ∂D.
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It is known that if f solves (P )F , then

f(x) =

∫
D

GD(x, y)F (y)dy, for all x ∈ D,

where GD(·, ·) is the Green’s function of D, which acts as the inverse operator of −∆. Using this,
note that ⟨Φ, F ⟩L2(D) ∼ N (0, ⟨f, f⟩∇) for all F ∈ C∞

0 (D), where

⟨f, f⟩∇ = ⟨f,−∆f⟩L2(D) =

〈∫
D

G(·, y)F (y)dy, F

〉
L2(D)

=

∫∫
D×D

F (x)GD(x, y)F (y)dxdy.

This means that the covariance structure of the GFF is governed by GD(·, ·) and indeed we have
the following proposition, which gives an alternative definition for the GFF.

Proposition 1.10. Φ is the GFF in D if and only if (⟨Φ, F ⟩L2(D))F∈C∞
0 (D) is a Gaussian process

with covariance

E[⟨Φ, F ⟩L2(D)⟨Φ, G⟩L2(D)] =

∫∫
D×D

F (x)GD(x, y)G(y)dxdy, for all F,G ∈ C∞
0 (D).

Proof. Assume that Φ is the GFF in D. We already know that (⟨Φ, F ⟩)F∈C∞
0 (D) is a Gaussian

process just by definition. On the other hand, for F,G ∈ C∞
0 (D) and their solutions f, g ∈ C∞

0 to
the Poisson problems (P )F and (P )G, respectively, we have

E[⟨Φ, F ⟩L2(D)⟨Φ, G⟩L2(D)] = E[⟨Φ, f⟩∇⟨Φ, g⟩∇] = ⟨f, g⟩∇ =

∫∫
D×D

F (x)GD(x, y)G(y)dxdy.

On the other hand, assume that (⟨Φ, F ⟩)F∈C∞
0 (D) is a Gaussian process with the prescribed covari-

ance and let f ∈ C∞
0 (D). Then ⟨Φ, f⟩∇ is normally distributed with variance

⟨(−∆)−1(−∆f),−∆f⟩L2(D) = ⟨f,−∆f⟩L2(D) = ⟨f, f⟩∇.

The linearity with respect to f is clear, and we conclude by generalizing the result to f ∈ H1
0 (D)

using the density of C∞
0 (D) with respect to ⟨·, ·⟩∇.

Table 1.1 compares the covariance structure between a normal random vector and the GFF.
Proposition 1.10 justifies the sense of generalization of normal random vectors to infinite dimension
that we pointed out at the beginning of this section.

X ∼ N (0,Σ) Φ ∼ GFF

⟨·, ·⟩Rd ⟨·, ·⟩L2(D)

⟨·, ·⟩Σ−1 ⟨·, ·⟩∇
⟨X, h⟩Σ−1 ∼ N (0, ⟨h, h⟩Σ−1) ⟨Φ, f⟩∇ ∼ N (0, ⟨f, f⟩∇)
⟨X, h⟩Rd ∼ N (0, ⟨h,Σh⟩Rd) ⟨Φ, F ⟩L2(D) ∼ N (0, ⟨F, (−∆)−1F ⟩L2(D))

Σ−1 (−∆)−1

Σ GD(·, ·)

Table 1.1: Visual comparison between the covariance structure of a normally distributed random
vector and the GFF.
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Observe that the covariance structure of the GFF prevents it from being a function in d ≥ 2,
because GD(x, x) = ∞ for all x ∈ D. This means that Φ has infinite variance pointwise, and then
it is not well defined as an ordinary function. From this, we just say that the GFF takes values ∞
or −∞ pointwise. This clarifies the theoretical issue reported in the previous section.

As we only can know what the GFF “does to” functions in C∞
0 (D), we have that the GFF in

d ≥ 2 is a random Schwartz distribution or random generalized function (do not get confused with
the probability distribution). Recall that in the 1-dimensional case we have already seen that the
GFF corresponds to the Brownian motion or the Brownian bridge depending on the boundedness
of the domain, which are functions in the usual sense. In those cases, the covariance structure is
given by (s, t) 7→ s ∧ t in the case of Brownian motion, and by (s, t) 7→ (s ∧ t)(1 − s ∨ t) in the
case of Brownian bridge (in [0, 1]). Note that these (Green’s) functions are well defined in points
of the form (t, t), unlike the cases d ≥ 2.

Symmetries of the GFF

Now we are interested in finding the symmetries of the GFF, that is, to find spatial transformations
that preserves its law. For instance, and to give some intuition, if (Bt)t≥0 is a d-dimensional
standard Brownian motion and R ∈ Rd×d is a rotation matrix (that is, det(R) = 1), then (RBt)t≥0

is also a standard Brownian motion. In the same spirit, one could expect that at least rotations
preserve the law of the GFF.

From now on, let D,D′ ⊆ Rd and T : D → D′ be bijective and continuously differentiable.
We need to define what it will be the “Φ mapped to D′”. To gain some intuition, note that if
f ∈ H1

0 (D) and g ∈ H1
0 (D

′), then the change of variables formula gives that

⟨f ◦ T−1, g⟩L2(D′) = ⟨f, g ◦ T |JT |⟩L2(D),

where JT (·) is the jacobian of T and | · | denotes the determinant.

Definition 1.11. If Φ is a GFF in D, we define the distribution TΦ to be such that

⟨TΦ, f⟩L2(D′) = ⟨Φ, f ◦ T |JT |⟩L2(D), for any f ∈ C∞
0 (D′). (1.4)

Formula (1.4) defines what we expect to be the GFF in D mapped to D′. However, this
obviously depends on the properties of T . We describe three important cases where TΦ is indeed
a GFF in D′.

Proposition 1.12.

• If |JT | = 1, then TΦ is a GFF in T (D).

• If α ∈ R and T (x) = αx for all x ∈ Rd, then α
d
2
−1TΦ is a GFF in T (D).

• If d = 2 and T : D → D′ is a conformal transformation, then TΦ is a GFF in T (D) = D′.
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Proof. We use Proposition 1.10 and check that the covariance structure of the corresponding TΦ
is correct. In general, note that for F ∈ C∞

0 (T (D)),

E
[
⟨TΦ, F ⟩2L2(T (D))

]
=

∫∫
T (D)×T (D)

F (x)GD(T
−1(x), T−1(y))G(y)dxdy.

For the first and third cases, the result follows because GD(T
−1(x), T−1(y)) = GT (D)(x, y) in both.

The second case, follows from the identity GD(T
−1(x), T−1(y)) = α2−dGT (D)(x, y).

Circular averages of the GFF

Recall from regularization theory (see Section 8.2 in [Gat21], for instance) that any distribution
can be approximated in an appropriate sense using a sequence of mollifiers. In the GFF context,
we aim to find the best way to approximate it. This gives origin to the so-called circular averages
of the GFF. From now on, if (Bt)t≥0 is a d-dimensional Brownian motion and C ⊆ Rd, we denote

τC := inf{t ≥ 0 : Bt /∈ C},
τC := inf{t ≥ 0 : Bt ∈ C}.

For x0 ∈ D and ε > 0, let µx0,ε be the uniform measure over ∂B(x0, ε) ⊆ D, that is,

⟨f, µx0,ε⟩L2(D) :=

∫
∂B(x0,ε)

f(x)dµx0,ε(x) = Ex0 [f(BτB(x0,ε)
)]. (1.5)

In formula (1.5) we extended the use of the L2(D)-product ⟨·, ·⟩L2(D) to denote the integral of
functions against measures. In the context of the GFF Φ, its L2(D)-product against a measure
has to be interpreted as the product against the density of the measure (only in the case it exists),
that is, if µ is such that dµ(x) = f(x)dx, then

⟨Φ, µ⟩L2(D) := ⟨Φ, f⟩L2(D).

For the purpose of this section, we do not have that uniform measures have density with respect
to the Lesbegue measure. However, one can prove that∫

GD(x, y)dµx0,ε(x)dµx0,ε(y) < ∞.

This last quantity is what we can interpret as the variance of the L2(D)-product of Φ against
µx0,ε. This observation leads to the following definition.

Definition 1.13. The spherical average of Φ on ∂B(x, ε) is defined by Φε(x) := ⟨Φ, µx,ε⟩L2(D),
where ⟨Φ, µx,ε⟩L2(D) is a normal random variable with mean 0 and variance∫

GD(x, y)dµx0,ε(x)dµx0,ε(y).

Note that (Φε(x))x∈D,0<ε<d(x,∂D) is a real-valued stochastic process that approximates the GFF.
Furthermore, for fixed x ∈ D, we can know its law under appropriate time reparametrization.
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Theorem 1.14. Let x0 ∈ D and ε0 ∈ (0, d(x, ∂D)) be fixed. Then (Φσ(t)(x0) − Φε0(x0))t≥0 is a
standard 1-dimensional Brownian motion, where σ : [0,∞) → (0, ε0] is defined by

σ(t) =

{
ε0e

−t/cd , if d = 2,

(t/cd + ε2−d
0 )

1
2−d , if d ≥ 3.

Proof. For ε ∈ (0, ε0], using the harmonicity of y 7→ GD(x, y) we have

E[(Φε(x0)− Φε0(x0))
2] = E[⟨Φ, µx0,ε⟩2L2(D)]− 2E[⟨Φ, µx0,ε⟩L2(D)⟨Φ, µx0,ε0⟩L2(D)] + E[⟨Φ, µx0,ε0⟩2L2(D)].

Then, by definition and harmonicity of y 7→ GD(x, y) we have

E[⟨Φ, µx0,ε⟩2L2(D)] =

∫
D×D

GD(x, y)dµx0,ε(x)dµx0,ε(y) =

∫
D

GD(x, x0)dµx0,ε(x),

E[⟨Φ, µx0,ε⟩L2(D)⟨Φ, µx0,ε0⟩L2(D)] =

∫
D×D

GD(x, y)dµx0,ε(x)dµx0,ε0(y) =

∫
D

GD(x, x0)dµx0,ε0(x),

and analogously with E[⟨Φ, µx0,ε0⟩2L2(D)]. Then, using (1.5) and joining expectations (by taking

them under the same measure) we have

E[(Φε(x0)− Φε0(x0))
2] = Ex0

[
GD(BτB(x0,ε)

, x0)−GD(BτB(z0,ε0)
, x0)

]
.

Now, by the strong Markov property for Brownian motion we have

E[(Φε(x0)− Φε0(x0))
2] =

∫
D

GRd(x, x0)dµx0,ε(x) =

{
cd log(ε0/ε), if d = 2,

cd(ε
2−d − ε2−d

0 ), if d ≥ 3.

If we force this variance to be t ≥ 0, then the corresponding ε := σ(t) satisfies

σ(t) =

{
ε0e

−t/cd , if d = 2,

(t/cd + ε2−d
0 )

1
2−d , if d ≥ 3.

As we already know that (Φσ(t)(x0)− Φε0(x0))t≥0 is a Gaussian process, this ends the proof.

Now we generalize some previous calculations in order to give the covariance structure of the
process (Φε(x))x∈D,ε∈(0,d(x,∂D)).

Definition 1.15. Let x, y ∈ D, ε ∈ (0, d(x, ∂D)) and δ ∈ (0, d(y, ∂D)). Define

Gε,δ
D (x, y) := E[Φε(x)Φδ(y)].

When ε = δ, we will simply write Gε,ε
D (x, y) = Gε

D(x, y).

Some estimates on Gε,δ
D are given in the following proposition. The proof is straightforward and

we do not present it here.
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Proposition 1.16.

• if |x− y| > ε+ δ, then Gε,δ
D (x, y) = GD(x, y).

• if |x− y| ≤ ε+ δ and d = 2, then

C1 ln(ε
−1) ∧ ln(δ−1)− gD(x, y) ≤ Gε,δ

D (x, y) ≤ C2 ln(ε
−1) ∧ ln(δ−1)− gD(x, y),

• if |x− y| ≤ ε+ δ and d ≥ 3, then

C1ε
2−d ∧ δ2−d − gD(x, y) ≤ Gε,δ

D (x, y) ≤ C2ε
2−d ∧ δ2−d − gD(x, y),

for some constants C1, C2 > 0.

Regularity of the GFF

In this section, we discuss the fact that the GFF can be viewed as a random element of a Sobolev
space of negative index, when we restrict it to a smaller functional space.

Suppose thatD is bounded, so that there exists an orthonormal basis (en)n∈N of (L2(D), ⟨·, ·⟩L2(D))
consisting on eigenfunctions of −∆ with zero boundary condition, with associated eigenvalues
(λn)n∈N. We can easily obtain an orthonormal basis of (H1

0 (D), ⟨·, ·⟩∇). In fact, note that for each
n,m ∈ N,

⟨en, em⟩∇ = ⟨en,−∆em⟩L2(D) = ⟨en, λmem⟩L2(D) =

{
λn, if n = m,

0, if n ̸= m.

which implies that ( 1√
λn
en)n∈N is an orthonormal basis of (H1

0 (D), ⟨·, ·⟩∇). Furthermore, the collec-

tion ( 1√
λn
⟨Φ, en⟩∇)n∈N is i.i.d. with standard normal distribution, so we can plug this in Formula

(1.3) to get the representation

Φ =
∑
n∈N

⟨Φ, en⟩∇
λn

en. (1.6)

Let s ≥ 0 and define

Hs(D) := {f ∈ L2(D) :
∑
n∈N

λs
nf

2
n < ∞},

where the coefficients (fn)n∈N come from the orthogonal decomposition of f in the basis (en)n∈N,
that is, f =

∑
n∈N fnen. Endow Hs(D) with the inner product

⟨f, g⟩Hs(D) :=
∑
n∈N

λs
nfngn, f, g ∈ Hs(D),

which makes (Hs(D), ⟨·, ·⟩Hs(D)) a Hilbert space. Now we state and prove the main result of this
section.

Theorem 1.17. For all s > d/2−1, Φ has a modification that is a.s. a continuous linear operator
from Hs(D) to R.
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To obtain the previous result, we need the following lemma on the growth of the sequence
(λn)n∈N, known as Weyl’s law (see Chapter 11 in [Str07], for instance).

Lemma 1.18. (Weyl’s law) There exists constants c, C > 0 such that for all n ∈ N,

cnd/2 ≤ λn ≤ Cnd/2.

Proof. (Theorem 1.17) Let f ∈ Hs(D). By the Cauchy-Schwartz inequality in (1.6) we have

|⟨Φ, f⟩∇| ≤
∑
n∈N

|⟨Φ, en⟩∇|
λn

|fn| ≤
(∑

n∈N

1

λ1+s
n

∣∣∣∣⟨Φ, en⟩∇√
λn

∣∣∣∣2
) 1

2
(∑

n∈N
λs
nf

2
n

) 1
2

.

The second factor of the last term is finite just by the choice of f , while the first factor satisfies

E

[∑
n∈N

1

λ1+s
n

∣∣∣∣⟨Φ, en⟩∇√
λn

∣∣∣∣2
]
=
∑
n∈N

1

λ1+s
n

E

[∣∣∣∣⟨Φ, en⟩∇√
λn

∣∣∣∣2
]
=
∑
n∈N

1

λ1+s
n

≤
∑
n∈N

1

c1+sn
d
2
(1+s)

< ∞,

where we used the Weyl’s law, concluding that such factor is a.s. finite. Finally, from such estimate
we have the following fundamental calculation: for all f, g ∈ Hs(D),

|⟨Φ, f⟩∇ − ⟨Φ, g⟩∇| = |⟨Φ, f − g⟩∇| ≤
(∑

n∈N

1

λ1+s
n

∣∣∣∣⟨Φ, en⟩∇√
λn

∣∣∣∣2
) 1

2
(∑

n∈N
λs
n(fn − gn)

2

) 1
2

.

The second factor in the last term is just the norm of f − g in Hs(D) and the first factor is the
same constant as before that we already seen it is a.s. finite. This concludes the proof.

1.1.3 Weak Markov property

In this section, we discuss the key fact that the GFF is a weak Markovian field. The main difference
with its 1-dimensional versions is that the time domain is d-dimensional, so we must generalize
what we understand by “Markovian decomposition”.

To gain some intuition, the weak Markov Property of Brownian motion is often stated for
information contained in intervals of the form [0, t]. Actually, such Markov property can be stated
for intervals of the form [t1, t2], or even finite unions of them, say C. In such case, the Markov
property remains the same: the conditional law of the Brownian motion given the information in
C, is that of a Brownian bridge plus a harmonic function in the bounded connected components
of R+ \ C and a Brownian motion in the unique unbounded connected component of R+ \ C.

The previous discussion should convince the reader that in the d-dimensional setting, the Marko-
vian decomposition of the GFF should be given in terms of a closed subset C ⊆ D. This is what
we prove in the following theorem.
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Theorem 1.19. (Weak Markov property of the GFF) Let C ⊆ D be closed. There exists
random distributions ΦC and ΦC such that

• Φ = ΦC + ΦC a.s.,

• ΦC and ΦC are independent,

• ΦC is harmonic on D \ C,

• ΦC is a GFF on D \ C.

For an illustration of the weak Markov property, see Figure 1.2.

C

ΦC = Φ

∆ΦC = 0

ΦC = 0
ΦC GFF

D

Figure 1.2: Illustration of the weak Markov property of the GFF. Informally, given the information
in C, ΦC and ΦC are independent, and the Φ and ΦC have the same law.

Proof. (Theorem 1.19) The proof relies on a functional analysis argument. Note that H1
0 (D \ C)

is contained in H1
0 (D), as every function in f ∈ H1

0 (D \ C) can be smoothly extended to D. We
will show that

H1
0 (D) = H1

0 (D \ C)⊕ Harm(D \ C),

where Harm(D \ C) is the family of harmonic functions in D \ C. Let us show this in two steps:

• H1
0 (D \C) is orthogonal to Harm(D \C): Let f ∈ C∞

0 (D \C) and g ∈ Harm(D \C). Then

⟨f, g⟩∇ = ⟨f,−∆g⟩L2(D) = ⟨f,−∆g⟩L2(D\C) + ⟨f,−∆g⟩L2(C) = 0,

where we used that ∆g = 0 in D \ C and f = 0 in C.

• The direct sum of H1
0 (D \ C) and Harm(D) is H1

0 (D). If g ∈ H1
0 (D \ C)⊥, then for all

f ∈ C∞
0 (D \ C)

0 = ⟨f, g⟩∇ = ⟨f,−∆g⟩L2(D) = ⟨f,−∆g⟩L2(D\C),

which implies that f ∈ Harm(D \ C).
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Now, if (eCn )n∈N and (en,C)n∈N are orthonormal basis for H1
0 (D \ C) and Harm(D \ C), respec-

tively, then their union is also a orthonormal basis of H1
0 (D) and then

Φ =
∑
n∈N

αne
C
n +

∑
n∈N

βnen,C .

where (αn)n∈N and (βn)n∈N are i.i.d. independent sequences of standard normal random variables.
Setting ΦC :=

∑
n∈N αne

C
n and ΦC :=

∑
n∈N βnen,C , we have the desired properties.

Let C ⊆ D be closed and use the weak Markov property to write Φ = ΦC + ΦC . Using the
orthogonality between ΦC and ΦC and the covariance structure of the GFF, for all f ∈ H1

0 (D \C)
we have

E[⟨ΦC , f⟩2L2(D)] = E[⟨ΦC , f⟩2L2(D)]− E[⟨Φ, f⟩2L2(D)] =

∫
f(x)(GD −GD\C)(x, y)f(y)dxdy.

This means that ΦC is a Gaussian process with covariance given by GD − GD\C . Let us
anticipate that the function GD−GD\C (for deterministic or random C) will play a key role in the
development of this thesis, because it encapsulates relevant information about the geometry of C.
As such, we will give this function a proper name: for deterministic or random closed C, we call
(GD −GD\C)(x, x) the observable of C.

1.2 Stopping sets

In this section, we make a brief presentation of the stopping sets, including some relevant proofs.
Recall that a stopping time is a real-valued positive random variable equal to the time at a given
event occurs, such that at each time we can know if such event happened of not. Stopping sets are
random sets that generalize such concept to the d-dimensional setting. To gain intuition from the
1-dimensional case, take F = (Ft)t≥0 a filtration and a stopping time τ with respect to F . Note
that {τ ≤ t} = {[0, τ ] ⊆ [0, t]} and then the stopping set property of τ can be re-stated as

{[0, τ ] ⊆ [0, t]} ∈ Ft, for all t ≥ 0.

But now we can make a new interpretation of the stopping set property, namely, at every time
t ≥ 0 we can know if the random closed interval [0, τ ] is contained in the closed interval [0, t]. Such
[0, τ ] is what we understand as a stopping set in this setting. In d ≥ 2 dimensions, the previous
discussion tells us how to generalize these notions to stopping sets A ⊆ D. However, now we are
in front of many theoretical questions and decisions to solve before, like:

• How to make sense about “random sets” (set-valued random variables)? Which is the ap-
propriate σ-algebra?

• How to define a filtration in d-dimensional time?

• How the notion of stopping time can be generalized to the d-dimensional setting?

To answer these questions, it is technically easier to choose a topology over the family of closed
sets of D. In our case, the most natural and appropriate topology is the so-called Hausdorff
topology. This concept will allow us to talk, among others, about:
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• Convergence of sequences of sets.

• Continuity of operations between sets.

• The law of random sets.

Once the stopping sets are defined, we discuss the strong Markov property of the GFF which
obviously generalizes the weak Markov property presented in the previous section. The strong
Markov property of the GFF is the cornerstone of many theoretical developments on probability
and current research questions. One of them is if one can define the exit sets of the GFF, just
like the 1-dimensional cases consisting on the first time Brownian motion reaches the value −a
and the first time the Brownian motion exits the interval [−a, b]. The main problem is that there
is no obvious meaning of the level sets of the GFF since it has no pointwise well-defined values.
However, in d = 2 they can be defined using refined tools from complex analysis, giving origin to
the two-valued sets and first-passage sets of the GFF, which we discuss briefly in the last subsection
of this chapter.

1.2.1 Hausdorff topology

In this section, we present the Hausdorff topology over compact sets. Let us remark that this
topology is way more general than the setting that we use here. For instance, many fundamen-
tal Hausdorff topology properties behaves different depending on the dimension, compactness or
completeness of the underlying space. For our purposes, it will be sufficient to assume that the
underlying space is finite-dimensional and bounded open simply connected (as we will work the
GFF on bounded D). However, when it is instructive, we will show some counterexamples that
arise in more general settings. Many of the properties and examples presented here can be found
in [Tuz20].

Let D ⊆ Rd be open, bounded, simply connected and endowed with a distance d (it suffices to
take d as the euclidian distance). Denote by C (D) the family of closed subsets of D. Define the
Hausdorff distance dHaus : C (D)× C (D) → R+ to be

dHaus(C1, C2) := inf{ε > 0 : C1 ⊆ (C2)ε ∧ C2 ⊆ (C1)ε},

for all C1, C2 ∈ C (D), where Cε := {x ∈ D : d(x,C) ≤ ε} for C ⊆ D is called the ε-fattening
of C or simply fattening of C. See Figure 1.3 for an illustration of dHaus(A,B). We also define
C−ε = {x ∈ C : d(x, ∂C) ≥ ε} for ε ≥ 0. Note that in both cases C0 = C. Some simple properties
of the fattening are:

• Aε ∪Bε ⊆ (A ∪B)ε.

• (A ∩B)ε ⊆ Aε ∩Bε.

• (Aε1)ε2 = (Aε2)ε1 .
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A B

sup
x∈A

d(x,B) sup
y∈B

d(y, A)

Figure 1.3: Illustration of the Hausdorff distance. In the figure, dHaus(A,B) corresponds to the
length of the violet line.

Definition 1.20. Let (Cn)n∈N ⊆ D and C ∈ C (D). We say that (Cn)n∈N converges to C in the
Hausdorff topology (or in the Hausdorff distance) if dHaus(Cn, C) → 0 when n → ∞.

Note that (Cn)n∈N converges to C in the Hausdorff topology if, and only if, for all ε > 0, there
exists n0 ∈ N such that Cn ⊆ Cε and C ⊆ (Cn)ε for all n ≥ n0.

We have the following theorem about the topological properties of (C (D), dHaus). We omit the
proof for simplicity, but the interested reader could find it in [Hen99], for instance.

Theorem 1.21. dHaus defines a distance on C (D). Furthermore, (C (D), dHaus) is a complete
compact metric space.

Limits in the Hausdorff topology

Now we characterize the convergence in the Hausdorff topology. The first step is to define candi-
dates for the limit of a sequence of sets, and this is done in the same spirit of a limit of a sequence
of real numbers.

Definition 1.22. Let (Cn)n∈N ⊆ C (D). We define the superior limit and the inferior limit of
(Cn)n∈N, respectively by

lim supCn := {x ∈ D :x is an accumulation point of a sequence

(xn)n∈N with xn ∈ Cn for all n ∈ N},

lim inf Cn := {x ∈ D :x is the limit of a convergent sequence

(xn)n∈N with xn ∈ Cn for all n ∈ N}.

Informally, the superior limit lim supCn is the biggest possible limit of (Cn)n∈N, because it asks
only for convergent subsequences inside the Cn’s. On the other side, the inferior limit lim inf Cn

is the smallest possible limit of (Cn)n∈N, because it asks for convergent sequences inside the Cn’s,
something hard to accomplish for a given point in a set, in general.
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The first step is to check that these candidates for a limit lies in C (D).

Proposition 1.23. For a non-trivial sequence (Cn)n∈N ⊆ C (D), lim inf Cn and lim supCn are
closed, lim inf Cn ⊆ lim supCn and lim supCn ̸= ∅.

Proof. The closedness comes from diagonal arguments and the rest is direct.

The following proposition is the preamble of the Hausdorff limit characterization with under-
lying compact metric space. Note that the compactness of D plays a key role in the proof.

Proposition 1.24. Let (Cn)n∈N ⊆ C (D) be a non-trivial sequence.

• For all ε > 0, there exists n0 ∈ N such that Cn ⊆ (lim supCk)ε for all n ≥ n0.

• For all ε > 0, there exists n0 ∈ N such that lim inf Ck ⊆ (Cn)ε for all n ≥ n0.

Proof. For the first bullet point, if we suppose that the statement is false, we obtain some ε > 0
and a sequence (xN)N∈N such that xN ∈ CnN

and d(xN , lim supCk) ≥ ε for all N ∈ N. By
compactness of D, there is a subsequence (xNk

)k∈N and x ∈ D such that xNk
→ x. However, we

have x ∈ lim supCnN
⊆ lim supCk and d(x, lim supCk) ≥ ε, which is a contradiction.

For the second bullet point, if we suppose again that the result is false, for some ε > 0 we get
a sequence (xN)N∈N such that xN ∈ lim inf Ck and xN /∈ (CnN

)ε for all N ∈ N. By compactness
of D, lim inf Ck is compact and then there is a subsequence (xNk

)k∈N and x ∈ lim inf Ck such that
xNk

→ x. By definition, we have that there is a sequence (x′
k)k∈N such that x′

k ∈ Ck for all k ∈ N
and x′

k → x. But then d(xNk
, x′

Nk
) → 0, implying that xNk

∈ (CnNk
)ε for large k, which is a

contradiction.

Then we have the following characterization of the convergence in the Hausdorff topology in
terms of the superior and inferior limit.

Proposition 1.25. If C is any accumulation point of (Cn)n∈N ⊆ C (D), then

lim inf Cn ⊆ C ⊆ lim supCn.

In particular, (Cn)n∈N converges in the Hausdorff topology iff lim inf Cn = lim supCn.

Proof. Let C be an accumulation point of (Cn)n∈N and (Cnk
)k∈N be a subsequence converging to

C, and ε > 0. Then Cnk
⊆ Cε and C ⊆ (Cnk

)ε for all k sufficiently large. On the other hand, by
Proposition 1.24, we have that for all sufficiently large k

Cnk
⊆ (lim supCnℓ

)ε and lim inf Cnℓ
⊆ (Cnk

)ε.

Join both statements to conclude that for all ε > 0 we have

C ⊆ (lim supCnℓ
)2ε and lim inf Cnℓ

⊆ C2ε.

Noting that lim supCnℓ
⊆ lim supCn and lim inf Cn ⊆ lim inf Cnℓ

, letting ε → 0 we conclude.
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Finally, it is clear that lim inf Cn = lim supCn implies that (Cn)n∈N converges in the Hausdorff
topology. The other direction is quite technical and we refer to [Tuz20] for a proof.

Remark 1.26. Take into account the following observations. Let X ⊆ Rd with the subspace
topology and consider C (X) as before.

• (xn)n∈N ⊆ X converges to x ∈ X if, and only if {xn} → {x} in the Hausdorff topology. In
fact, dHaus({xn}, {x}) = d(xn, x) for all n ∈ N and then both implications follow.

• Even for compact X, the inferior limit may be empty. For instance, if X = [−1, 1] and
Cn = {(−1)n} for all n ∈ N, lim inf Cn = ∅.

• For non-compact X, the superior limit can be empty.

– If X = (0, 1) and Cn = {1/n}, then there is no point in X which results from a
subsequence in the Cn’s, so that lim supCn = ∅.

– If X = R and Cn = {n}, the same problem as before arises.

• Proposition 1.25 is false for non-compact X.

– If X = (0, 1) and Cn = {1/n} ∪ {1/2}, then lim inf Cn = lim supCn = {1/2}, but for
ε = 1/4 there is no Cn such that Cn ⊆ {1/2}ε.

– If X = R and Cn = {0, n}, then lim inf Cn = lim supCn = {0} but dHaus(Cn, {0}) → ∞.

Let us now present two particular cases in which a sequence of closed sets converges in the
Hausdorff topology. One might expect that increasing and decreasing sequences contained in the
same compact set converges to something, and the answer is positive for the Hausdorff topology.

Proposition 1.27. Let (Cn)n∈N be a sequence of compact sets contained in D.

• If Cn ⊆ Cn+1 for all n ∈ N, then (Cn)n∈N converges to
⋃

n∈N Cn in the Hausdorff topology.

• If Cn+1 ⊆ Cn for all n ∈ N, then (Cn)n∈N converges to
⋂

n∈N Cn in the Hausdorff topology.

Proof. For the first bullet point, without loss of generality, assume that Cn ̸= ∅ for all n ∈ N. Let
x ∈ D be an accumulation point of a sequence (xn)n∈N such that xn ∈ Cn for all n ∈ N. Then
there exists a sequence (xnk

)k∈N which converges to x. Complete this sequence in the following
way: for n ∈ {0, 1, . . . , n0 − 1}, set yn = a0 for fixed a0 ∈ C0, and then for all k ∈ N and
n ∈ {nk, nk + 1, . . . , nk+1}, set yn = xnk

. The sequence (yn)n∈N satisfies yn ∈ Cn for all n ∈ N
by the increasing property and converges to x, showing that lim inf Cn = lim supCn. To identify
the limit, note that x ∈ ⋃n∈N Cn means that there is a sequence in

⋃
n∈N Cn that converges to x,

which translates into x ∈ lim supCn. The converse inclusion is analogous. The proof of the second
bullet point is analogous.
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The following proposition will be very important in the next chapter. It states that the Haus-
dorff limit a sequence of closed connected sets is connected. The proof presented here is a slight
variation of the one in [WD12] (Part A, Section XI).

Proposition 1.28. Let (Cn)n∈N be a sequence contained in D, such that Cn is connected for all
n ∈ N, and lim inf Cn ̸= ∅. Then, lim supCn and any accumulation point of (Cn)n∈N is connected.
In particular, if such sequence converges in the Hausdorff topology, its limit is connected.

Proof. Suppose that we can write lim supCn = A ∪ B where A,B ∈ C (D) are disjoint closed.
Compactness of D implies that d(A,B) > 0. If 0 < ε < d(A,B), then Cn ⊆ (A ∪ B)ε = Aε ∪ Bε

for all n sufficiently large, and such union still being disjoint. Connectedness of Cn implies that
Cn ⊆ Aε or Cn ⊆ Bε, but both are not simultaneously true. However, if there were infinitely
many n with Cn ⊆ Aε and infinitely many n with Cn ⊆ Bε, then lim inf Cn = ∅, which is a
contradiction. Say that Cn ⊆ Aε for all n sufficiently large. It follows that lim supCn ⊆ Aε and
then lim supCn ⊆ A, showing that lim supCn = A and B = ∅ as required. On the other side, if
C ′ is an accumulation point of (Cn)n∈N, we can take a subsequence (Cnk

)k∈N converging to C ′. As
∅ ≠ lim inf Cn ⊆ lim inf Cnk

= C ′ holds, the same proof applies to lim supCnk
= C ′.

It will be very important to note that we cannot replace “connected” by “pathwise-connected”
in the previous two results. As a counterexample, take

C = {(x, sin(1/x)) : x ∈ (0, 1]} ∪ ({0} × [−1, 1]),

and the sequence (Cn)n∈N defined for all n ∈ N by

Cn = {(x, sin(1/x)) : x ∈ [2−(n+1), 1]}.

One can see that (Cn)n∈N converges to C in the Hausdorff topology (for instance, by Proposition
1.27) and Cn is pathwise-connected for all n ∈ N, but C is not pathwise-connected. As a con-
sequence, we will have to restrict ourselves to the (pure topological) connected case in general
settings.

Continuity of the basic set operations

Having defined the notion of limit of sets, now we present the continuity of some basic set opera-
tions, such as union and intersection.

Proposition 1.29. Let δ > 0. The δ-fattening application C 7→ Cδ for C ∈ C (D) is continuous
for the Hausdorff topology.

Proof. Let ε > 0. Then there exists n0 ∈ N such that for all n ≥ n0, Cn ⊆ Cε and C ⊆ (Cn)ε.
Then, we also have (Cn)δ ⊆ (Cδ)ε and Cδ ⊆ ((Cn)δ)ε, showing that ((Cn)δ)n∈N converges to Cδ in
the Hausdorff topology.

Proposition 1.30. The union application (C1, C2) 7→ C1 ∪ C2 for C1, C2 ∈ C (D) is continuous
for the Hausdorff topology.
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Proof. Let (Cn)n∈N ⊆ C (D) and (C ′
n)n∈N ⊆ C (D) be two sequences that converge in the Hausdorff

topology to C and C ′, respectively. Let x ∈ lim sup(Cn ∪ C ′
n). Then there is a sequence (xn)n∈N

such that xn ∈ Cn ∪ C ′
n for all n ∈ N and a subsequence (xnk

)k∈N such that xnk
→ x. Complete

such subsequence to a sequence in the following way: for n ∈ {0, . . . , n0}, set yn = xn0 , and
for all k ∈ N and n ∈ {nk, nk + 1, . . . , nk+1}, set yn = xnk

. The sequence (yn)n∈N satisfies
yn ∈ Cn ∪ C ′

n for all n ∈ N and converges to x, so that x ∈ lim inf(Cn ∪ C ′
n), showing that

lim sup(Cn ∪ C ′
n) = lim inf(Cn ∪ C ′

n). To idenfify the limit, note that

lim inf(Cn ∪ C ′
n) ⊆ lim supCn ∪ lim supC ′

n = C ∪ C ′ = lim inf Cn ∪ lim inf C ′
n

⊆ lim inf(Cn ∪ C ′
n),

showing that lim inf(Cn ∪ C ′
n) = C ∪ C ′.

Remark 1.31. Unlike the union, the intersection operation is not continuous. The counterexample
is very simple. Take (xn)n∈N, (yn)n∈N ⊆ D sequences such that xn ̸= yn for all n ∈ N and xn → x
and yn → x. So {xn} ∩ {yn} = ∅ for all n ∈ N and in the limit this intersection is {x}.

However, it is still possible to state the semi-continuity of the intersection, concept that we
have to reformulate in the context of the closed sets.

Definition 1.32. Let T be a metric space and f : T → C (D) be a function. We say that f is

• upper semi-continuous (u.s.c. for short), if for every t ∈ T and (tn)n∈N with tn → t, we have
lim supn→∞ f(tn) ⊆ f(t).

• lower semi-continuous (l.s.c. for short), if for every t ∈ T and (tn)n∈N with tn → t, we have
lim infn→∞ f(tn) ⊇ f(t).

Proposition 1.33. Let T be a complete metric space, f : T → C (D) a function and C0 ∈ C (D).

1. If f is u.s.c., then f−1({C ∈ C (D) : C ∩ C0 ̸= ∅}) is closed in T .

2. If f is l.s.c., then f−1({C ∈ C (D) : C ⊆ C0}) is closed in T .

Proof.

1. Let (tn)n∈N ⊆ f−1({C ∈ C (D) : C ∩ C0 ̸= ∅}) such that tn → t. Upper semi-continuity of f
implies that f(t)∩C0 ⊇ lim sup(f(tn)∩C0) ̸= ∅, that is, t ∈ f−1({C ∈ C (D) : C ∩C0 ̸= ∅}).

2. Let (tn)n∈N ⊆ f−1({C ∈ C (D) : C ⊆ C0}) such that tn → t. Lower semi-continuity of f
implies that f(t) ⊆ lim inf f(tn) ⊆ C0, that is, t ∈ f−1({C ∈ C (D) : C ⊆ C0}).

Proposition 1.34. The intersection operation (C1, C2) 7→ C1 ∩ C2 for C1, C2 ∈ C (D) is upper
semi-continuous.
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Proof. Let (Cn)n∈N ⊆ C (D) and (C ′
n)n∈N ⊆ C (D) be two sequences that converge in the Hausdorff

topology to C and C ′, respectively. Let x ∈ lim sup(Cn∩C ′
n). Then there is a sequence (xn)n∈N such

that xn ∈ Cn∩C ′
n for all n ∈ N and a subsequence (xnk

)k∈N such that xnk
→ x. From the preceding

statement follows that x ∈ lim supCn = C and x ∈ lim supC ′
n = C ′, so that x ∈ C ∩ C ′.

On the Borel σ-algebra associated to the Hausdorff topology

Having defined the topology over C (D), we describe the associated Borel σ-algebra, that we denote
B(C (D)). At this point, the first question we pointed out in the introduction of this section about
“random” sets is answered in the following definition.

Definition 1.35. Let (Ω,F ,P) a probability space and a function A : Ω → C (D). We say that A
is a random set if it is a measurable function.

How can we figure out what is the law of a given random set? This question leads us naturally
to the goal of understanding the Borel σ-algebra induced by the Hausdorff topology. To do this,
fix C0 ∈ C (D) and define the following families of sets:

C ⊆C0 := {C ∈ C (D) : C ⊆ C0},
C ∩C0 := {C ∈ C (D) : C ∩ C0 ̸= ∅}.

Proposition 1.36. For fixed C0 ∈ C (D), C ⊆C0 and C ∩C0 are closed for the Hausdorff topology.

Proof. If (Cn)n∈N ⊆ C ⊆C0 converges in the Hausdorff topology to C, we have C = lim inf Cn.
Then, if x ∈ C, there is a sequence (xn)n∈N such that xn → x and xn ∈ Cn ⊆ C0, so that this
sequence is contained in the closed set C0 and then its limit remains in C0, that is, x ∈ C0, showing
that C ⊆ C0. In the case of C ∩C0 , if (Cn)n∈N ⊆ C ⊆C0 converges in the Hausdorff topology to C,
then the upper semi-continuity of the intersection says that

lim sup(Cn ∩ C0) ⊆ C ∩ C0,

and the left-hand side is non-empty by Proposition 1.23, showing that C ∩ C0 ̸= ∅.

The next proposition gives a simple characterization of the Borel σ-algebra induced by the
Hausdorff topology.

Proposition 1.37.

B(C (D)) = σ(C ⊆C0 : C0 ∈ C (D)) ∧ σ(C ∩C0 : C0 ∈ C (D)) (1.7)

= σ(C ⊆C0 : C0 ∈ C (D)) (1.8)

= σ(C ∩C0 : C0 ∈ C (D)). (1.9)
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Proof. The inclusion (⊇) of (1.7) is ensured because C ⊆C0 and C ∩C0 are closed (and thus borelians).
To see that (⊆), note that if BHaus(C0, ε) = {C ∈ C (D) : dHaus(C0, C) < ε} is the ball of center
C0 ∈ C (D) and radius ε > 0 for the Hausdorff distance, then

BHaus(C0, ε)
c = C ∩(C0)cε ∪ C ⊆(Cc

0)ε .

The inclusions (⊇) between (1.7) and (1.8), and (1.7) and (1.9) are direct. To see the opposite
ones, note that

(C ∩C0)c = C ⊆Cc
0 =

⋃
ε∈Q+

C ⊆(C0)cε , (C ⊆C0)c = C ∩Cc
0 =

⋃
ε∈Q+

C ∩(C0)cε .

Proposition 1.37 also gives the following simple and predictable corollary.

Corollary 1.38. The fattening, union and intersection operations are measurable with respect to
the Hausdorff topology.

Furthermore, Proposition 1.37 states that the only relevant information for measurability of
a set-valued function is that of knowing whether is a subset of any given closed set or if it is
intersection is non-empty with the closed sets. As a corollary, such information is the only relevant
one in order to characterize the law of a random set.

Corollary 1.39.

• A is a random set if, and only if,

for all C0 ∈ C (D), A−1(C ∩C0) ∈ F , or,

for all C0 ∈ C (D), A−1(C ⊆C0) ∈ F .

• If A1 and A2 are two random sets such that

for all C0 ∈ C (D), P(A1 ∩ C0 = ∅) = P(A2 ∩ C0 = ∅), or,

for all C0 ∈ C (D), P(A1 ⊆ C0) = P(A2 ⊆ C0),

then A1 and A2 are equal in law.

Proof. Direct from the fact that {C ⊆C0 : C0 ∈ C (D)} and {C ∩C0 : C0 ∈ C (D)} generate B(C (D)).
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1.2.2 Definition and properties of stopping sets

As we have anticipated, to model the dynamic evolution of information running in d-dimensional
time, we introduce the notion of filtration in the same spirit of the 1-dimensional case. Informally
speaking, this is done by replacing “less or equal than” by “subset of’, and stopping “time” by
stopping “set”. We will use the following notation for any sequence of sets (Cn)n∈N and C:

Cn ↗ C ⇐⇒ for all n ∈ N, Cn ⊆ Cn+1 and
⋃
n∈N

Cn = C,

Cn ↘ C ⇐⇒ for all n ∈ N, Cn+1 ⊆ Cn and
⋂
n∈N

Cn = C.

From now on, fix a probability space (Ω,F ,P) on which our random sets will be defined.

Definition 1.40. A family of sub-σ-algebras F = (FC)C∈C (D) of F is a filtration if

• (is increasing) for all C1, C2 ∈ C (D), C1 ⊆ C2 =⇒ FC1 ⊆ FC2.

• (is right-continuous) for all C ∈ C (D), Cn ↘ C =⇒ ⋂
n∈N FCn = FC.

• (is complete) F∅ is complete.

Now we are ready to introduce stopping sets. Recall that a positive random variable τ is called
stopping time for the (1-dimensional) filtration (Ft)t≥0 if for all t ≥ 0

{τ ≤ t} ∈ Ft.

Additionally, its associated filtration is defined as

Fτ :=

{
A ∈ σ

(⋃
t≥0

Ft

)
: A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0

}
.

Keeping the same two ideas, we introduce the stopping sets and its associated filtration.

Definition 1.41. Let F = (FC)C∈C (D) be a filtration. A random set A in C (D) is an F -stopping
set or stopping set for F (or simply stopping set, when there is no possible confusion), if for all
C ∈ C (D)

{A ⊆ C} ∈ FC . (1.10)

For such A, we define its associated σ-algebra by

FA := {Θ ∈ FD : Θ ∩ {A ⊆ C} ∈ FC , for all C ∈ C (D)}.

We define the dyadic partition of Rd as

Dn :=

{
d∏

i=1

[ni2
−n, (ni + 1)2−n) : (n1, . . . , nd) ∈ Zd

}
.

In the following proposition we list the first three basic properties of stopping sets.
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Proposition 1.42. Let F = (FC)C∈C (D) be a filtration.

1. If A is an F -stopping set, then FA is a σ-algebra.

2. If A1 and A2 are F -stopping sets, then A1 ∪ A2 is an F -stopping set.

3. If A1 and A2 are F -stopping sets such that a.s. {A1 ⊆ A2} ∪ {A2 ⊆ A1}, then A1 ∩ A2 is
an F -stopping set.

Proof.

1. It is clear that ∅ ∈ FA. If Θ ∈ FA, then for all C ∈ C (D) we have

Θc ∩ {A ⊆ C} = (Θ ∩ {A ⊆ C})c ∩ {A ⊆ C} ∈ FC ,

so Θc ∈ FA. Finally, if (Θn)n∈N ⊆ FA, then for all C ∈ C (D) we have(⋃
n∈N

Θn

)
∩ {A ⊆ C} =

⋃
n∈N

(Θn ∩ {A ⊆ C}) ∈ FC ,

so
⋃

n∈N Θn ∈ FA.

2. If C ∈ C (D), {A1 ∪ A2 ⊆ C} = {A1 ⊆ C} ∩ {A2 ⊆ C} ∈ FC .

3. If C ∈ C (D), {A1∩A2 ⊆ C} = ({A1 ⊆ C}∩{A1 ⊆ A2})∪({A2 ⊆ C}∩{A2 ⊆ A1})∪N ∈ FC ,
where N is negligible and we conclude by completeness of FC .

Remark 1.43. If A1 and A2 are F -stopping sets, then A1 ∩ A2 is not an F -stopping set in
general. To see this, let (Pt)t∈[0,1] be a Brownian bridge in [0, 1] with P0 = P1 = 0 and define

τ+ := inf{t ∈ [0, 1] : Wt = 0.5}
τ− := sup{t ∈ [0, 1] : Wt = −0.5}.

Then [0, τ+] and [τ−, 1] are stopping sets for the natural filtration of (Pt)t∈[0,1]. However, the
set [0, τ+] ∩ [τ−, 1] is not a stopping set because the conditional law of the Brownian bridge given
the previous intersection is not that of an independent Brownian bridge on its complement, as
illustrated in Figure 1.6.

Figure 1.4: [0, τ+] Figure 1.5: [τ−, 1] Figure 1.6: [0, τ+] ∩ [τ−, 1]

Figure 1.7: In all three figures the same trajectory is shown. The green part means the trajectory
contained in the corresponding time interval.
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Property 2. of the previous proposition allows us to define the augmented filtration of a stopping
set. This object will be important in the next chapter.

Definition 1.44. Let F = (FC)C∈C (D) be a filtration and A be an F -stopping set. We define the

augmented filtration FA = (FA
C )C∈C (D) by

FA
C := FA∪C , for all C ∈ C (D).

What (set-valued) functions of a stopping set preserve the stopping set property? The next
proposition shows some relevant constructions of stopping sets that still being a stopping set.

Proposition 1.45. Let F = (FC)C∈C (D) be a filtration.

1. If (An)n∈N is a sequence of F -stopping sets, then lim supAn is an F -stopping set.

2. If A is F -stopping set and ε > 0, then Aε is an F -stopping set.

3. If A is F -stopping set, then for all n ∈ N, [A]n :=
⋃

q∈Dn

q∩A ̸=∅

q is an F -stopping set.

Proof. We fix C ∈ C (D) and check that in all cases (1.10) is satisfied.

1. {lim supAn ⊆ C} =
⋂

ε∈Q∩(0,∞)

⋂
n0∈N

⋃
n≥n0

{An ⊆ Cε} ∈
⋂

ε∈Q∩(0,∞)

FCε = FC .

2. {Aε ⊆ C} = {A ⊆ C−ε} ∈ FC−ε ⊆ FC .

3. {[A]n ⊆ C} =

A ⊆
⋃

q∈Dn
q⊆C

q

 ∈ F⋃
q∈Dn
q⊆C

q ⊆ FC .

Further properties of stopping sets involve their associated σ-algebra, which behaves as one
might expect as shown in the following proposition.

Proposition 1.46. Let F = (FC)C∈C (D) be a filtration.

1. Let A be an F -stopping set. Then A is FA-measurable.

2. If A1 and A2 are F -stopping sets such that a.s. A1 ⊆ A2, then FA1 ⊆ FA2.

3. If (An)n∈N is a decreasing sequence of F -stopping sets such that A =
⋂

n∈N An is an F -
stopping set, then ⋂

n∈N
FAn = FA.

30



Proof.

1. Let C0 ∈ C (D). We check that {A ⊆ C0} ∈ FA. In fact, for all C ∈ C (D),

{A ⊆ C0} ∩ {A ⊆ C} = {A ⊆ C0 ∩ C} ∈ FC0∩C ⊆ FC .

This ends the proof, as we know that the events {A ⊆ C0} characterize the law of A.

2. Let Θ ∈ FA1 . Then calling N = Θ ∩ {A2 ⊆ C} ∩ {A1 ⊆ A2}c, which is negligible, and for
C ∈ C (D),

Θ ∩ {A2 ⊆ C} = Θ ∩ {A1 ⊆ A2} ∩ {A2 ⊆ C} ∪N

= Θ ∩ {A1 ⊆ C} ∩ {A1 ⊆ A2} ∩ {A2 ⊆ C} ∪N.

Now we know that Θ ∩ {A1 ⊆ C} ∪N ∈ FC by completeness. To conclude, note that

({A1 ⊆ A2} ∩ {A2 ⊆ C})c = {A1 ⊆ A2}c ∪ {A2 ⊆ C}c ∈ FC ,

because {A1 ⊆ A2}c is negligible and FC is complete.

3. The inclusion (⊇) is consequence of the previous point. On the other hand, if Θ ∈ ⋂n∈N FAn ,

then for all C ∈ C (D),

Θ ∩ {A ⊆ C} =
⋂

ε∈Q∗
+

⋃
n0∈N

⋂
n≥n0

(Θ ∩ {An ⊆ Cε}) ∈
⋂

ε∈Q∗
+

FCε = FC .

From Proposition 1.46.2, if A is an F -stopping set, then it also is an FA-stopping set.

1.2.3 Strong Markov Property of the Gaussian Free Field

In this section, we come back to the GFF ground to state its Strong Markov property. Recall that
in the 1-dimensional case, if B = (Bt)t≥0 is a Brownian motion and F = (Ft)t≥0 is a filtration
which satisfies

• Bt is Ft-measurable, for all t ≥ 0,

• (Bt −Bs)t≥s is independent of Fs, for all s ≥ 0,

then we call B an F -Brownian motion. Such name is motivated by the fact that we can recognize
the historical geometric properties of the Brownian motion if sufficient information is provided by
F . As such, this concept allows us to state the strong Markov property of B. We aim to do
the same with the GFF, that is, to introduce the appropriate kind of filtration for which a strong
Markovian decomposition holds for the GFF. This is done analogously to the 1-dimensional case.
From now on, we consider a GFF Φ in D.
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Definition 1.47. Let F = (FC)C∈C (D) a filtration. We say that Φ is a F -GFF if the following
two conditions hold:

• ΦC is FC-measurable, for all C ∈ C (D),

• ΦC is independent of FC, for all C ∈ C (D),

where ΦC and ΦC are given by the Markovian decomposition of Theorem 1.19.

The basic question now is if there are filtrations that satisfy the requirements of Definition 1.47.
Analogously to the 1-dimensional case, we can define the natural filtration of the GFF.

Definition 1.48. The natural filtration of the GFF Φ is given by the family FΦ = (FΦ
C )C∈C (D)

defined as

FΦ
C = σ(ΦC)

P
, for all C ∈ C (D).

where ΦC is given by the weak Markovian decomposition of Theorem 1.19.

We have the following theorem that confirms that FΦ is a filtration, and additionally states
the Blumenthal 0-1-law of the GFF. We refer to Corollary 1.1.6 of [Aru15] for a proof of this result.

Theorem 1.49. FΦ is in fact a filtration. In particular, it is right continuous.

By the weak Markov property, in fact we have that Φ is a FΦ-GFF.

Theorem 1.50. (Strong Markov property of the GFF) Suppose that Φ is an F -GFF and
let A be an F -stopping set. There exists unique random distributions ΦA and ΦA such that

1. Φ = ΦA + ΦA a.s.

2. ΦA is harmonic on D \ A and FA-measurable,

3. Conditionally on FA, ΦA is a GFF in D \ A.

Proof. Let us start with the case where A takes a finite number of values, say, A ∈ {a1, . . . , an} for
some n ∈ N. Define ΦA =

∑n
i=1Φai1A=ai and let us check that ΦA = Φ−ΦA satisfies the required

properties. The first two are direct. For the last one,

E[⟨ΦA, F ⟩L2(D\A)|A]
(!)
=

n∑
i=1

E[⟨Φai , F ⟩L2(D\A)|A = ai]1A=ai

=

∫∫
(D\A)2

F (x)GD\A(x, y)F (y)dxdy.

The equality marked with (!) is due to the characterization of conditional expectations with respect
to σ-algebras generated by a countable partition (in this case, it is a finite partition since A takes a
finite number of values). The result is generalized to arbitrary stopping sets A using the sequence
([A]n)n∈N. We omit the proof and refer to Proposition 4.11. of [WP21].
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Usually, when we refer to ΦA restricted to D \ A we denote it simply as hA, that is,

hA := ΦA|D\A,

which is indeed an harmonic function on D \ A, conditionally on FA.

Remark 1.51. There exists a parallel concept in the literature that concerns the strong Markov
property of the GFF, namely, that of local sets of the GFF. Roughly speaking, a local set of the
GFF is defined as a coupling between a GFF, a random set and a harmonic function that satisfies
the markovian decomposition for the GFF given in the previous theorem. This concept is in fact
equivalent to that of stopping sets, but it allows us to study certain general types of stopping sets
in a very general framework and to formulate the most basic stopping sets for the GFF, that will
be discussed in the next section.

Several stopping sets and the GFF in random domain

Many times, there could be more than one stopping set participating when studying the GFF, so
it is natural to ask how their Markovian decompositions could be related. To do this properly, we
introduce the GFF in random domain first. This concept allows us to relate several stopping sets
for the GFF and their induced Markovian decompositions.

Definition 1.52. Let F be a filtration. A random distribution Φ̃ is called F -GFF in random
domain if there exists an F∅-measurable random closed set A such that, conditionally on A,

• Φ̃ is a GFF in D \ A.

• Φ̃C is FC-measurable, for all C ∈ C (D),

• Φ̃C is independent of FC, for all C ∈ C (D).

We can state a strong Markov property for the GFF in random domain, which is the same as
the standard one, but taking care of the domain on which the Markovian decomposition works.

Proposition 1.53. Let Φ̃ be an F -GFF in random domain with associated random set A, and B
be an F -stopping set. There exists unique random distributions Φ̃B and Φ̃B such that Φ̃ = Φ̃B+Φ̃B

a.s. and, conditionally on A and B,

1. Φ̃B is harmonic on D \ (A ∪B) and FB-measurable,

2. Φ̃B is a GFF in D \ (A ∪B).

If Φ is a GFF and A is a stopping set for the GFF, what filtration can we choose to make ΦA

(given by the strong Markov property) a GFF in random domain? The next proposition shows
that the augmented filtration works for such purpose.

Proposition 1.54. Let A be an FΦ-stopping set. Then, ΦA is an (FΦ)A-GFF in random domain.

The previous two propositions are the main ingredients to relate Markovian decompositions
associated to different stopping sets of the GFF. The first important result of this kind is the
following.
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Proposition 1.55. Let A1 and A2 be FΦ-stopping sets. Then,

ΦA1∪A2 = (ΦA1)A1∪A2 = (ΦA2)A1∪A2 , and,

ΦA1∪A2 = ΦA1 + (ΦA1)A1∪A2 = ΦA2 + (ΦA2)A1∪A2 .

Proof. Note that A1 ∪A2 is a stopping set for both augmented filtrations (FΦ)A1 and (FΦ)A2 , so
we can apply Proposition 1.53 to write

Φ = ΦA1 + ΦA1 = (ΦA1)A1∪A2 + (ΦA1)A1∪A2 + ΦA1 .

On the other hand, the standard strong Markov property gives that

Φ = ΦA1∪A2 + ΦA1∪A2 .

Conditionally on A1 and A2, ΦA1∪A2 and (ΦA1)A1∪A2 are both GFF in D\(A∪B), so the uniqueness
of the Markovian decomposition gives that they are equal, and consequently,

ΦA1∪A2 = (ΦA1)A1∪A2 + ΦA1 .

The equalities with A2 instead of A1 are obtained analogously.

The following proposition describes a particular but very important case for the development
of Chapter II.

Corollary 1.56. Let A1 and A2 be stopping sets for the GFF such that a.s. A1 ⊆ A2. Then, Φ
admits the decomposition

Φ = ΦA2 + (ΦA1)A2 + ΦA1 a.s.

where ΦA1 and ΦA2 are GFF in random domain.

Proof. Noting that A1 ∪ A2 = A2 a.s., we use Proposition 1.55 to write

Φ = ΦA2 + ΦA2 = ΦA2 + (ΦA1)A2 + ΦA1 .

1.2.4 The observable of a random set

Recall from the discussion after Theorem 1.19 that if C ⊆ D is closed, then (⟨ΦC , f⟩L2(D\C))f∈C∞
0 (D)

is a centered Gaussian process with covariance given by the function GD−GD\C , that we partially
called observable of C. In particular, it can be shown that

(GD −GD\C)(x, x)

{
< ∞, if x ∈ D \ C,
= ∞, if x ∈ C,
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This tells us that the function x 7→ (GD − GD\C)(x, x) recognizes whether a point lies in
C or not. In other words, the observable of C provides information about the geometry of C.
Furthermore, we can show that in d ≥ 3, for all x ∈ D \ C,

(GD −GD\C)(x, x) = cdEx[|BτD\C − x|2−d]− cdEx[|BτD − x|2−d],

where cd is the constant of the Green’s function. This tells us that (GD − GD\C)(x, x) encodes
information about the distance between x and C when x /∈ C.

The previous discussion justifies the importance of such function when studying stopping sets.
If A is a stopping set for the GFF and x ∈ D is fixed, then (GD −GD\A)(x, x) becomes a random
variable whose study provides valuable information about the (random) geometry of A. The same
remark applies to a sequence (At)t of random sets indexed by discrete or continuous time that
converges, that is, (GD − GD\At)(x, x) provides valuable information about the geometry of the
evolution of (At)t towards its limit set. From now on, we keep in mind this discussion in order
to guide the calculations about explorable sets (to be introduced in the next chapter) and their
exploration processes. Now we formally define what we will call observable from now on.

Definition 1.57. Let A ∈ C (D) be a random set and x ∈ D be fixed. We call the random variable

OA(x) := (GD −GD\A)(x, x),

the observable of A seen from x. Analogously, if (At)t ⊆ C (D) is a sequence of random sets indexed
by discrete or continuous time, we call the sequence of random variables (OAt(x))t the observable
process seen from x.

Note that if (At)t is a.s. increasing, then ((GD − GD\At)(x, x))t is also a.s. increasing. This
comes from the monotony of the Green’s function over the domain on which it is defined.

1.2.5 Stopping set processes

How can we figure out the properties of a stopping set? In the literature, this is often done with
limit arguments, meaning that an appropriate sequence of stopping sets that converges (in some
sense) transfers its properties to the limit. In this section, we aim to define one particular but very
useful kind of such sequences. Throughout this thesis, the convergence that we will use most of
the time is the Hausdorff convergence of compact sets. This gives origin to the notion of stopping
set process, that is standard in the literature about the GFF.

Definition 1.58. Let F = (FC)C∈C (D) be a filtration. An F -stopping sets process (or simply

stopping sets process when there is no possible confusion) is a sequence (ηt)t≥0 ⊆ C (D) such that

• if s ≤ t, then ηs ⊆ ηt,

• for all t ≥ 0, ηt is an F -stopping set,

• t 7→ ηt is continuous in the Hausdorff topology.

Proposition 1.59. Let F = (FC)C∈C (D) be a filtration and τ be a stopping time for the filtration
(FAt)t≥0. Then Aτ is an F -stopping set.
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Proof. Let C ∈ C (D). Then {Aτ ⊆ C} =
⋂

ε∈Q+

⋃
q∈Q+

({τ ≤ q} ∩ {Aq ⊆ Cε}) ∈ FC .

The following proposition makes the observable (defined in the previous section) a key object
when studying local set processes and their limits. It tells us that, under an appropriate time
reparametrization, the process of the harmonic part of the (strong) Markovian decomposition of
the GFF is a Brownian motion.

Proposition 1.60. Let (ηt)t≥0 be a stopping sets process for the GFF, x ∈ D and σ : R+ → R+

be a random function such that for all t ≥ 0, a.s.

(GD −GD\ησ(t)
)(x, x) = t.

Then (Φησ(t)
(x))t≥0 has a modification that is a Brownian motion.

Proof. Note that for all t ≥ 0,

E[Φησ(t)
(x)2] = E[E[Φησ(t)

(x)2|Fησ(t)
]] = E[(GD −GD\ησ(t)

)(x, x)] = t

so (Φησ(t)
(x))t≥0 has a continuous modification that is a Brownian motion. It only remains to show

that if τ is a stopping time for the Brownian motion, then Φησ(τ)
(x) = Bτ a.s. This comes from

the fact that the limits

Φησ(τ)
(x) = lim

s↘τ
s∈Q

Φησ(s)
(x) and Bτ = lim

s↘τ
s∈Q

Bs,

are well-defined in sets of full probability. Their intersection also has full probability and the limits
coincide in them, concluding the proof.

Remark 1.61. It is important to note that such σ of Proposition 1.60 does not always exist. In
fact, its existence depends heavily on how (ηt)t≥0 is “exploring” η∞. The basic requirement is having
control of the growth of t 7→ (GD − GD\ηt)(x, x) (before time reparametrization). For instance, if
t 7→ (GD −GD\ηt)(x, x) is discontinuous, then we cannot reparametrize time to make this function
to grow linearly. In the next chapter, we will see an explicit example where such σ does not exist.

1.3 Two-valued sets and First-passage sets

We end this chapter taking a brief look to two special stopping sets of the GFF, the so-called
exit sets : two-valued sets and first-passage sets. Two-valued sets are defined as the d-dimensional
analogues of the exit times of the interval [−a, b] of the standard Brownian motion, for a, b > 0.
Analogously, the first-passage sets are defined as the d-dimensional analogues of the exit times of
[−a,∞) for the standard Brownian motion. Recall that the GFF has no pointwise defined values,
so there is no evident meaning of the “the connected to the boundary component of the set where
the GFF takes values between −a and b”. In fact, the existence of these sets is solved only in
d = 2, as we shall discuss.
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1.3.1 Definition

To motivate the formal definition, consider a, b > 0, B = (Bt)t≥0 a standard Brownian motion, the
exit time from [−a, b] (respect to the natural filtration of B),

τ−a,b = inf{t ≥ 0 : Bt ∈ {−a, b}},

and denote A−a,b := [0, τ−a,b], which is a random closed interval. The strong Markov Property of
the Brownian motion gives us the markovian decomposition

B = BA−a,b
+BA−a,b ,

where, conditionally on τ−a,b,

• BA−a,b
and BA−a,b are independent processes,

• BA−a,b
is equal to B on A−a,b and is constant with values in {−a, b} on R+ \ A−a,b,

• BA−a,b is zero on A−a,b and is a standard Brownian motion on R+ \ A−a,b.

See Figure 1.8 for an illustration of such decomposition.

Figure 1.8: Markovian decomposition B = BA−1,2 + BA−1,2 (B is blue, BA−1,2 is green and BA−1,2

is red).

Here, BA−a,b
plays the role of being the harmonic part on the complement of A−a,b and BA−a,b

plays the role of being the GFF on the complement of A−a,b. Then we have the formal definition
of two-valued sets.

Definition 1.62. Let a, b > 0. The two-valued set of levels −a and b is defined as the stopping
set A−a,b which satisfies

1. hA−a,b
(x) ∈ {−a, b}, for all x ∈ D \ A−a,b.

2. −a ≤ ΦA−a,b
≤ b.
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From now on, we will abbreviate two-valued sets as TVS. The same heuristic argument applied
to τ−a = inf{t ≥ 0 : Bt = −a} motivates the formal definition of first-passage sets.

Definition 1.63. Let a > 0. The first-passage set of level −a is defined as the stopping set A−a

which satisfies

1. hA−a(x) = −a for all x ∈ D \ A−a.

2. ΦA−a ≥ −a.

We will abbreviate first-passage sets as FPS. By construction, it is easily seen the TVS and
FPS in d = 1 are exactly those given by [0, τ−a,b] and [0, τ−a], respectively. However, the existence
of TVS and FPS in general d ≥ 2 is not trivial, and in fact it is only solved in d = 2.

1.3.2 Existence in d = 2

The TVS and FPS existence result in d = 2 relies heavily on results coming from complex analysis
and the Schramm-Loewner Evolution theory. We remark (and insist from now on) that these
theories are, by definition, strictly about planar geometry, and there are not analogous theories in
d ≥ 3. This makes clear that there is no way of extrapolate the 2-dimensional arguments to general
dimensions, making the question of existence in d ≥ 3 very difficult and unsolved nowadays. The
aim of this brief section is to present, heuristically, the construction of the TVS and FPS in d = 2.

Schramm-Loewner evolutions and the GFF

Recall that the GFF in d = 2 is conformally invariant, and as we suppose that D is a simply
connected open set, we can think without loss of generality that D = D := {z ∈ C : |z| < 1}.
A Schramm-Loewner evolution of diffusivity κ ∈ R+ (SLEκ for short) is roughly a random curve
(γt)t≥0 on H = {z ∈ C : Im(z) > 0} given through the stochastic Loewner equation

ġt(z) =
2

gt(z) +
√
κBt

, g0(z) = z0,

where

• (Bt)t≥0 is a 1-dimensional Brownian motion,

• for all t ≥ 0, gt : H \ γ[0, t] → H is the unique conformal transformation such that
limz→∞(gt(z)− z) = 0.

Schramm-Loewner evolutions can be generalized to simply connected domains just by conformal
mapping: If D ⊆ C is a domain and φ : H → D is any conformal transformation such that
φ(z0) = a and φ(∞) = b, then (φ(γt))t≥0 is the SLEκ from a to b in D. These random curves
are characterized as the only family of planar curves that are conformally invariant and satisfy a
strong Markov property. They are proved to have phase transitions and strong connections with
many statistical physics models, for many distinct choices of the parameter κ.

In our case, the parameter κ = 4 is important because the SLE4 curves are related to the GFF
as its generalized level-lines, in the sense of the following result, that can be found in [BN14].
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Theorem 1.64. Let (γt)t≥0 be a SLE4 in H and denote by D− and D+ the left and right components
of H \ γ[0,∞). Conditionally on (γt)t≥0, let Φ

− and Φ+ be GFF on D− and D+, respectively, and
extend them to distributions defined on the whole H. Let λ =

√
π/8 and define

Φ = (Φ+ + λ1D+)− (Φ− + λ1D−).

Then, conditionally on (γt)t≥0, Φ is a GFF in H with boundary values −λ to the left and +λ to
the right of γ[0,∞), respectively.

Theorem 1.64 says that the SLE4 represents the “cliff” on the GFF where it has a “discontin-
uous” jump from −λ to λ. The value of the constant λ depends on the choice of normalization for
the Green’s function of the time domain.

Note that Theorem 1.64 works for the specific boundary condition −λ to the left and λ to the
right on the real line. However, we can couple the GFF with other piecewise constant boundary
conditions by using the so-called SLE type random curves. These random curves are variants of
SLE that can be coupled with a GFF in a way that such boundary condition is modified up to a
factor, according to a given vector ρ = (ρL, ρR), where ρL = (ρi,L)ℓi=0 and ρR = (ρj,R)rj=0 (L stands
for left, R stands for right). In such case, the associated SLE is denoted SLE4(ρ). The case of
interest for us is ρ = (δL, δR) with δL, δR ∈ R, where the boundary condition is{

−λ(1 + δL), to the left,

λ(1 + δR), to the right.

We refer to [WW17] for a complete study of the level lines of the GFF through SLE type
random curves.

Construction of the TVS and FPS in d = 2

For the construction of the TVS, we are interested in Theorem 1.64 re-stated in D and using
SLE4(−1,−1) and SLE4(−1) level lines. The procedure is the following:

I. Sample a SLE4(−1,−1) from −i to i. Let (Dj)j be the connected components of D\γ[0,∞).
On each Dj, there is an independent GFF with boundary values equal to 0 on ∂Dj ∩∂D and

• λ on ∂Dj ∩ γ[0,∞), if Dj is to the right of γ[0,∞),

• −λ on ∂Dj ∩ γ[0,∞), if Dj is to the left of γ[0,∞).

II. On each Dj, sample a SLE type joining the only two points in ∂D that delimite the arc of
the excursion of γ[0,∞) that defines Dj.

• If Dj is to the left, sample an SLE4(−1, 0),

• If Dj is to the right, sample an SLE4(0,−1).

III. Repeat the process on every new connected component that appears from the old ones.

IV. Define A−λ,λ as the closed union of all the sampled SLE lines.
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See Figure 1.9 for an illustration of the previous procedure. In this way, we have a GFF on
D \ A−λ,λ and the harmonic function associated to A−λ,λ takes values −λ or λ in D \ A−λ,λ. This
construction is the basis to generalize the sets A−λ,λ to A−a,b, where a, b > 0 must a + b ≥ 2λ
(otherwise, the TVS does not exist). On the other side, the FPS can be constructed as the limit
of TVS when the upper bound tends to infinity, that is, A−a := limb→∞A−a,b. See Figures 1.10,
1.11 and 1.12 for some simulations of the exit sets in d = 2.

Figure 1.9: First two steps in the construction of A−λ,λ. Picture taken from [ALS20a].

Figure 1.10: Simulation of A−2λ,2λ done by David Wilson.

40



−λ

−λ

−λ−λ

λ
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λ

Figure 1.11: Simulation of A−λ,λ done by Brent Werness.

Figure 1.12: Four nested FPS, where λ =
√

π/8. Aλ is in dark blue. The difference between A−2λ

and Aλ is in lighter blue, difference between A−2λ and A−3λ in green and yellow depicts the missing
part of A−4λ. Simulations by Brent Werness.
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Chapter 2

Explorable sets

2.1 Motivation

As we pointed out in the previous chapter, exit sets of the GFF are shown to exist in d = 2 using
conformal transformations and SLE. The main difficulty for the construction in d ≥ 3, is that in
such dimensions there are not analog objects that could allow us to construct them.

Motivated by such difficulties, we propose a new notion on random sets called explorable sets.
This notion captures the property of a random set to be locally discovered in an adapted way, that
is, explorable sets can be discovered in a way such that at each step we have a stopping set. We
believe that this notion will give tools to decide the existence of the exit sets in higher dimensions.
Specifically, if the exit sets are shown or assumed to be explorable, then there is a key additional
hypothesis to work with, making the question more tractable.

However, as a new concept is being introduced, the first step is to study its properties from
an abstract point of view. In this chapter we develop the concept of explorable set by studying
some interesting properties, like spatial behaviour, limit theory and exploration properties. Specif-
ically, we prove that the explorable set property translates into the existence of two discrete time
procedures that satisfy the previous exploration property. We discuss the pros and cons of each
algorithm, and pick the most appropriate to develop its relation with the GFF.

2.2 Boundary connected components

As we mentioned before, the property of being explorable requires to have access to pieces of a
given random set that are connected to the boundary. We then introduce the boundary connected
components (bcc) of a set, that is to say its connected component that contains the boundary.
From now on, D ⊆ Rd is open, bounded and simply connected.

Definition 2.1. Let E ⊆ D be closed and connected with ∂D ⊆ E. For all C ⊆ D, we define

bccE(C) :=
⋃

{X ⊆ C : E ⊆ X and X is connected}. (2.1)
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If E = ∂D, we denote bcc∂D(C) = bcc(C), and if E ̸⊆ C, we define bccE(C) := bccE(C ∪ E).

See Figure 2.1 for an illustration of the bcc operation for E = ∂D.

D D

bcc(C)C

Figure 2.1: The bcc of a set are its connected components that are connected to the boundary of
D. In the figure, C is drawn in red (left) and bcc(C) is drawn in blue (right).

Remark 2.2.

• Although the case E ̸⊆ C of our definition is kind of artificial, we will not require it as we
will assume that every random set contains the corresponding boundary of the bcc.

• The operation bccE : P(D) → P(D) is not injective nor surjective in general.

• bccE(C) is connected as it is the arbitrary union of connected sets containing a single common
point (any x0 ∈ ∂D). See Proposition 4 in Chapter 4 of [Lim20] for instance.

Let us now state and prove some properties of the bcc. These properties will be very important
in the study of explorable sets, because they provide algebraic identities and better characteriza-
tions of the bcc. We start with four properties, whose proof is done with basic set theory.

Proposition 2.3. (First properties of the bcc) Let E ⊆ D be closed and connected.

1. (Contraction) For any C ⊆ D, bccE(C) ⊆ C ∪ E.

2. (Monotonicity) If C1, C2 ⊆ D are such that C1 ⊆ C2, then bccE(C1) ⊆ bccE(C2).

3. (Idempotence) For all C ⊆ D, bccE(bccE(C)) = bccE(C).

4. (Intersection) For all C1, C2 ⊆ D, bccE(C1 ∩ C2) = bccE(bccE(C1) ∩ bccE(C2)).

Proof. 1. and 2. are direct from the definition. For 3. it suffices to note that if X participates
in the union (2.1), then X ⊆ bccE(C) automatically. This shows that bccE(C) = bccE(bccE(C)).
For 4., we have bccE(C1 ∩ C2) ⊆ bccE(C1) ∩ bccE(C2) by 2. Then, using 3. we have

bccE(C1 ∩ C2) ⊆ bccE(bccE(C1) ∩ bccE(C2)),
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For the other inclusion, by 1. and 2. is direct that

bccE(bccE(C1) ∩ bccE(C2)) ⊆ bccE(C1 ∩ C2).

It is difficult to characterize bccE(C) for general C ⊆ D. However, C will always be a random
closed set, so in particular it will be closed. It turns out that closedness is an additional hypothesis
on C that allows us to give alternative characterizations for its bcc, as we shall see.

Proposition 2.4. If C ∈ C (D) is such that E ⊆ C, then

bccE([C]n) ↘ bccE(C).

Consequently, bccE(C) is closed and bccE : C (D) → C (D) is measurable.

Proof. The monotonicity of the boundary connected components gives that bccE(C) ⊆ ⋂n∈N bcc
E([C]n).

For the other inclusion, we have bccE([C]n) ⊆ [C]n for all n ∈ N, and then⋂
n∈N

bccE([C]n) ⊆ C.

Since bccE([C]n) is connected for all n ∈ N,
⋂

n∈N bcc
E([C]n) is connected thanks to Proposition

1.27 and Proposition 1.28. This shows that⋂
n∈N

bccE([C]n) ⊆ bccE(C).

The conclusion follows from the fact that bccE(C) can be written as a countable intersection
of closed sets and then bccE(·) is the pointwise limit of measurable functions.

An immediate corollary is the following ε-paths characterization of the boundary connected
components. Recall that Cε = {x ∈ D : d(x,C) ≤ ε}.

Corollary 2.5. (ε-paths characterization of bcc) If C ∈ C (D) is such that E ⊆ C, then

bccE(C) = {x ∈ C : (∀ε > 0)(∃γε ∈ C([0, 1], Cε)) : γ(0) ∈ ∂E, γ(1) = x}.

In this case, for any given x ∈ bccE(C) and ε > 0, we call the path γε an ε-path.

Proof. It suffices to note that bccE([C]n) is pathwise-connected as the it is a finite union of closed
hypercubes. Furthermore, we have

bccE([C]n) = {x ∈ D : ∃γ ∈ C([0, 1], [C]n) : γ(0) ∈ ∂E, γ(1) = x},

and the result follows.

The following result is key for the development of the theory of explorable sets. It allows us to
easily prove measurability of many kind of events involved with such notion, as we shall see.
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Proposition 2.6. For all ε > 0, A,C ∈ C (D), bccE(A) ⊆ C ⇐⇒ bccE(A ∩ Cε) ⊆ C.

Proof. Let ε > 0 and A,C ∈ C (D). If bccE(A) ⊆ C, then by monotonicity of bcc we have

bccE(A ∩ Cε) ⊆ bcc(A) ⊆ C.

If bccE(A∩Cε) ⊆ C, note that bccE(A∩Cε) = bccE(A∩C) by monotonicity and idempotence
of the bcc. Fix x ∈ bccE(A) and δ > 0. Using Proposition 2.5, take a δ-path γ : [0, 1] → Aδ joining
x and (some point in) ∂E. Define t0 = sup{t ∈ [0, 1] : γ(t) ∈ bccE(A ∩ Cε)} the last time γ visits
bccE(A ∩ Cε). However, the equality bccE(A ∩ Cε) = bccE(A ∩ C) implies that the path never
exits bccE(A∩Cε). This tells us that t0 = 1, that is, γ(1) = x ∈ bcc(A∩C) ⊆ C, as required.

Remark 2.7.

• If C is not closed, then bccE(C) may not satisfy property 2.5. For instance, if D = [0,∞),
then bcc(Q+) = {0}. If 2.5. were true, bcc(Q+) = Q+ which is absurd. A similar counterex-
ample is obtained with C = [0, 1) ∪ (1,∞).

• If A and C are not closed, then Proposition 2.6 may not be true. We called the following
counterexample the “sun”. For a, b ∈ Rd, denote the straight line segment joining a and b as
[a, b] := {λa+ (1− λ)b : λ ∈ [0, 1]}. Using this, take d = 2, D = B(0, 2π) and define

Rθ := [(cos(θ), sin(θ)), ((2π − θ) cos(θ), (2π − θ) sin(θ))],

A := ∂D ∪ ∂B(0, 1) ∪
⋃

{Rθ : θ ∈ (0, 2π) ∩Q},
C := ∂D ∪

⋃
{Rθ : θ ∈ (0, 2π) ∩Q}.

See Figure 2.2 for an approximated picture of A. Then bcc(A) = ∂D ⊆ C, but for any
ε > 0, bcc(A ∩ Cε) = A which is not a subset of C. The key hypothesis that is failing is the
closedness of A and C. In fact, every point in the (open) line segment [(1, 0), (2π, 0)] is a
limit point of A, but none of them belongs to A (same with C). This allows Cε to connect
everything in A to ∂D, for any ε > 0.

D

A

Figure 2.2: The “sun”, a counterexample to show that we cannot drop the closedness of A in
Proposition 2.6.
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2.3 Definition of explorable sets and first properties

In this section, we define and study the explorable sets. Recall that this notion must capture
the property of a random set of being discoverable in an adapted way. To gain some intuition,
the random interval [0, τ−a,b] (for Brownian motion) can be discovered by (continuously) walking
through the time domain until the Brownian motion reaches −a of b. Using this procedure, at each
t ≥ 0, we have that t∧ τ−a,b is a stopping time (which converges to τ−a,b a.s. as t → ∞). Now, the
question is: What is the set version of taking the minimum of two numbers? We postulate that
the answer is the operation bcc(A ∩ C) for A,C ⊆ D. This motivates the following definition.

Definition 2.8. Let F = (FC)C∈C (D) a filtration. A random set A is F -explorable for E (possibly

random F∅-measurable as well), if bccE(A) = A and for all C0 ∈ C (D) with ∂D ⊆ C0,

bccE(A ∩ C0) is an F -stopping set. (2.2)

When there is no possible confusion about the filtration and E = ∂D, we just say that the set
is explorable instead of F -explorable for ∂D.

Remark 2.9. Note that if A is an F -explorable set for E, then bccE(A ∩ C0) is FC0-measurable
for all C0 ∈ C (D). In fact, for all C ∈ C (D),

{bccE(A ∩ C0) ⊆ C} = {bccE(A ∩ C0) ⊆ C ∩ C0} ∈ FC∩C0 ⊆ FC0 ,

and we conclude by Corollary 1.39.

As a parallel issue besides the existence of the exit sets of the GFF, we have that the intersection
of stopping sets is not a stopping set in general (a very particular case is stated in Proposition
1.42). Such observation appeared while studying the intersections of exit sets in d = 2 (which
are by far not treated in this thesis), where the stopping set structure do not provide chances of
making interesting calculations. This gave birth to the concept of bcc and explorable set, which
appeared to fit with our purposes, due to the following first and fundamental property. It states
that we can construct stopping sets from the bcc of the intersection of explorable sets.

Theorem 2.10. If A1 and A2 are explorable sets, then bcc(A1 ∩ A2) is a stopping set.

Proof. Let C ∈ C (D). Then, for all ε > 0,

{bcc(A1 ∩ A2) ⊆ C} = {bcc(A1 ∩ A2 ∩ Cε) ⊆ C}
= {bcc(bcc(A1 ∩ Cε) ∩ bcc(A2 ∩ Cε)) ⊆ C}.

The last event lies in FCε because it is a measurable operation of the FCε-measurable functions
bcc(A1 ∩ Cε) and bcc(A2 ∩ Cε) (recall Proposition 2.4, Corollary 1.38 and Remark 2.9). As ε > 0
was arbitrary, this proves that {bcc(A1 ∩ A2) ⊆ C} lies in

⋂
ε>0FCε , which is simply FC by

right-continuity.

The following proposition states that if we replace the deterministic set C0 by a stopping set
in (2.2), we obtain a stopping set for the augmented filtration of the latter. This property will be
relevant when studying the geometry of explorable sets.
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Proposition 2.11. If A is explorable and B is a stopping set, then

bcc(A ∩B) is an FB-stopping set.

Proof. Let C ∈ C (D). Then, by Propositions 2.3.4. and 2.6, for all ε > 0 we have

{bcc(A ∩B) ⊆ C} = {bcc(bcc(A ∩ Cε) ∩B)} ∈ FCε∪B.

This shows that {bcc(A∩B) ⊆ C} ∈ FB
Cε

for all ε > 0. By right-continuity of FB, we conclude
that {bcc(A ∩B) ⊆ C} ∈ FB

C .

The filtration of an explorable set

The structure of explorable sets provides interesting properties involving filtrations. Given an ex-
plorable set, we prove that we there exists a minimal filtration such that the set remains explorable
with respect to it.

Proposition 2.12. Let F = (FC)C∈C (D) be a filtration and A be explorable. Define the collection
of σ-algebras G = (GC)C∈C (D) by

GC :=
⋂
ε>0

σ(bcc(A ∩ Cε))
P
.

Then,

1. G is a filtration,

2. A is G -explorable for D,

3. G is the smallest filtration that makes A explorable.

For the proof, we need the following lemma, which is illustrated in Figure 2.3.

Lemma 2.13. If C1, C2 ∈ C (D) are such that C1 ⊆ C2, then σ(bcc(A ∩ C1)) ⊆ σ(bcc(A ∩ C2)).

Proof. By Proposition 2.3.4 we have that bcc(A∩C1) = bcc(A∩C2∩C1) = bcc(bcc(A∩C2)∩C1),
which shows that bcc(A ∩ C1) is the composition between a σ(bcc(A ∩ C2))-measurable function
and a B(C (D))-measurable function, resulting in a σ(bcc(A ∩ C2))-measurable function.

Proof. (Proposition 2.12).

1. G is complete by definition and the increasing property follows directly from Lemma 2.13.
For the right continuity, let C ∈ C (D) and (Cn)n∈N ⊆ C (D) be a decreasing sequence with
C =

⋂
n∈N Cn. The inclusion GC ⊆ ⋂

n∈N GCn follows again by Lemma 2.13. For the other
inclusion, if B ∈ ⋂n∈N GCn , then for all n ∈ N there exists Xn ∈ ⋂ε>0 σ(bcc(A∩ (Cn)ε)) such
that B∆Xn is negligible. Note that

lim supXn ∈
⋂
n∈N

⋂
ε>0

σ(bcc(A ∩ (Cn)ε)) =
⋂
ε>0

σ(bcc(A ∩ Cε)),
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where the last equality is easily verified using the Hausdorff convergence of (Cn)n∈N to C.
Furthermore, B∆ lim supXn is negligible, showing that B ∈ GC .

2. Let C0 ∈ C (D). Then, for C ∈ C (D) and arbitrary ε > 0, Lemma 2.13 gives that

{bcc(A ∩ C0) ⊆ C} = {bcc(A ∩ C0 ∩ Cε) ⊆ C} ∈ σ(bcc(A ∩ C0 ∩ Cε)) ⊆ σ(bcc(A ∩ Cε)),

so that {bcc(A ∩ C0) ⊆ C} ∈ ⋂ε>0 σ(bcc(A ∩ Cε) ⊆ GC .

3. Let H be another filtration with the property that A is H-explorable for D and such that
for all C ∈ C (D), HC ⊆ GC . By Remark 2.9, the H-explorability tells us that for all ε > 0
and all B ∈ C (D), {bcc(A ∩ Cε) ⊆ B} ∈ HCε , from where we have

σ(bcc(A ∩ Cε)) = σ({{bcc(A ∩ Cε) ⊆ B} : B ∈ C (D)}) ⊆ HCε .

Intersecting over ε > 0 and completing, it follows that GC ⊆ HC , so H = G holds.

bcc(A ∩ C1)= bcc(bcc(A ∩ C2)∩bcc(C1))

C1

C2

Figure 2.3: Geometric context of the Lemma 2.13. In simple words, the blue lines can be recovered
from the red ones in a measurable way.

Limit theory

A reasonable question when one has a property on elements of a topological space is if it is preserved
by limits. Now, we aim to find conditions that ensure that the Hausdorff limit of explorable sets
is explorable. In fact, this question is interesting because the Hausdorff limit is not sufficient to
ensure that the limit is explorable, which can be shown with some examples. However, we still
can find a sufficient condition for the limit to be explorable, which basically states that with high
probability, everything that is seen in the limit set, appeared in some finite time or, more informally,
that there are no surprises in the infinite time.
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Cδ2

Cδ

∂D

bcc(An ∩ Cδ) ∩ Cδ2

An \ bcc(An ∩ Cδ)

Figure 2.4: Illustration of the hypothesis (S). With high probability, the blue part and the red
part are at positive fixed distance, for all n ∈ N.

Definition 2.14. Let (An)n∈N be a sequence of random sets. Call by (S) the following hypothesis:
For all C ∈ C (D) and ε, δ > 0, there exists η0 > 0, such that

P
(
lim inf
n→∞

d(bcc(An ∩ Cδ) ∩ Cδ2 , An \ bcc(An ∩ Cδ)) ≥ η0

)
≥ 1− ε.

We call the hypothesis (S) uniform separation, and if (An)n∈N satisfies (S) we say that such
sequence is uniformly separated. If, additionally, An → A in the Hausdorff topology, the limit
should not have “new” connected components. See Figure 2.4 for an illustration of (S). These
hypothesis together with the explorability of the sequence, ensure that A is explorable, as we prove
in the following theorem.

Theorem 2.15. Suppose that (An)n∈N and A are random sets such that

1. An is explorable for all n ∈ N,

2. An → A in the Hausdorff topology,

3. (An)n∈N satisfies (S).

Then A is explorable.

Proof. First we prove that 2. and 3. give a convenient writing of bcc(A∩C0) for each C0 ∈ C (D),
that jointly with 1. allows us to conclude that A is explorable. More precisely, 2. and 3. imply
that for all C0 ∈ C (D), we have that a.s.

bcc(A ∩ C0) =
⋂
δ>0

lim sup
n→∞

bcc(An ∩ (C0)δ). (2.3)
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The conclusion of the theorem follows from the previous equality. In fact, if An is explorable
for all n ∈ N, then for all C ∈ C (D) and ε > 0 we have that

{bcc(A ∩ C0) ⊆ C} =

{⋂
δ>0

lim sup
n→∞

bcc(An ∩ (C0)δ) ⊆ C

}

=
⋂

ε∈Q∗
+

⋃
δ∈Q∗

+

{
lim sup
n→∞

bcc(An ∩ (C0)δ) ⊆ Cε

}
∈ FC ,

where we used that the superior limit of stopping sets if a stopping set (Proposition 1.45) and the
right-continuity of F .

It remains to prove (2.3). For the inclusion to the left, by u.s.c. of the intersection (Proposition
1.34) we have⋂

δ>0

lim sup
n→∞

bcc(An ∩ Cδ) ⊆
⋂
δ>0

lim sup
n→∞

(An ∩ Cδ) ⊆
⋂
δ>0

(A ∩ Cδ) = A ∩ C.

Note that for all δ > 0, lim supn→∞ bcc(An ∩ Cδ) is connected since lim infn→∞ bcc(An ∩ Cδ)
is non-empty (such inferior limit contains at least ∂D, and then Proposition 1.28 applies). These
closed sets are decreasing with respect to δ > 0, from where we conclude that the left-hand side is
closed and connected by Proposition 1.27 and Proposition 1.28. Using the monotonicity of bcc(·),
we conclude.

For the other inclusion, we prove the following claim. Fix ε, δ > 0 and let η0 = η0(ε, δ) be given
by the hypothesis (S).

Claim: If

lim inf
n→∞

d(bcc(An ∩ Cδ) ∩ Cδ2 , An \ bcc(An ∩ Cδ)) ≥ η0 and dHaus(An, A) → 0,

then

bcc(A ∩ C) ⊆ lim sup
n→∞

bcc(An ∩ Cδ). (2.4)

This gives the desired conclusion. In fact, for given ε, δ > 0

P
(
lim inf
n→∞

d(bcc(An ∩ Cδ) ∩ Cδ2 , An \ bcc(An ∩ Cδ)) ≥ η0(ε, δ)
)
≤ P((2.4) holds).

Taking the limits ε → 0 and δ → 0, we conclude that a.s.

bcc(A ∩ C) ⊆
⋂
δ>0

lim sup
n→∞

bcc(An ∩ Cδ).

and (2.3) is proved.
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Proof. (Claim) Let x ∈ bcc(A∩C) and suppose by contradiction that x /∈ lim supn→∞ bcc(An∩Cδ).
Then, there exists ε0 > 0 such that d(x0, lim supn→∞ bcc(An ∩ Cδ)) ≥ ε0. Define ε = (ε0 ∧ δ2)/16
and let γ be the ε-path with values in (A ∩ C)ε such that γ(1) = x and γ(0) ∈ ∂D (Proposition
2.5). Define

t0 = inf

{
t ∈ [0, 1] : d

(
γ(t), lim sup

n→∞
bcc(An ∩ Cδ)

)
≥ 4ε

}
,

and let n be sufficiently large such that

dHaus(An, A) ≤ ε, and (2.5)

dHaus

(
lim sup
n→∞

bcc(An ∩ Cδ),
⋃
N≥n

bcc(An ∩ Cδ)

)
≤ ε. (2.6)

By continuity of γ, we have that x0 = γ(t0) satisfies

d(x0, A ∩ C) ≤ ε and (2.7)

d

(
x0, lim sup

n→∞
bcc(An ∩ Cδ)

)
= 4ε. (2.8)

From (2.6), we can find n0 sufficiently large and some x̂ ∈ bcc(An0∩Cδ) such that d(x0, x̂) ≤ 5ε.
We also have that x0 ∈ Cε ⊆ Cδ2 by (2.7). This gives

d(x0, bcc(An0 ∩ Cδ) ∩ Cδ2) ≤ 5ε. (2.9)

On the other hand, note that if y ∈ bcc(An0 ∩ Cδ) ∩ Cδ2 and z ∈ lim supn→∞ bcc(An ∩ Cδ) are
such that d(x0, y) = d(x0, bcc(An0 ∩Cδ)∩Cδ2) and d(x0, z) = 4ε (which is possible by compactness
of those subsets), then

d(x0, bcc(An0 ∩ Cδ) ∩ Cδ2) = d(x0, y) ≥ d(x0, z)− d(z, y) = 4ε− ε = 3ε.

In particular, x0 /∈ bcc(An0 ∩ Cδ). Finally, by (2.5) and (2.7) we have that x0 ∈ Aε ⊆ (An0)2ε,
which implies

d(x0, An0 \ bcc(An0 ∩ Cδ)) ≤ 2ε. (2.10)

Note that (2.9) and (2.10) imply that

d(bcc(An0 ∩ Cδ) ∩ Cδ2 , An0 \ bcc(An0 ∩ Cδ)) ≤ 7ε,

but this is a contradiction since 7ε < η0. We conclude that x ∈ lim supn→∞ bcc(An ∩ Cδ).

An interesting question about this limit result is if we can find a weaker condition than (S)
that makes the explorable set property preserved by Hausdorff limits. We do not get further into
this question in this thesis.
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2.4 Exploring an explorable set

In this section, we study ways to “discover” explorable sets, as we anticipated at the beginning
of this chapter. From now on, we replace “discover” by “explore” (and accept the redundancy),
because we feel that the latter really express the meaning of the expression bcc(A∩C) for explorable
A (recall the discussion at the beginning of Section 2.3).

Let us first propose a naive idea of exploration of an explorable set that does not work for our
purposes, in order to justify that we need a more sophisticated idea. Let A be explorable. Recall
that we want to find a stopping set process (At)t≥0 such that At ↗ A and for each x ∈ D, the
observable process (OAt(x))t≥0 is a.s. continuous. By definition, bcc(A ∩ C0) is a stopping set for
all C0 ∈ C (D). Now replace C0 by Ct, where (Ct)t≥0 is a deterministic increasing set process such
that Ct ↗ D. It suffices to think of (Ct)t≥0 as a growing band from the boundary of D until it
covers the whole D. The process (bcc(A ∩ Ct))t≥0 is increasing and it consists only in stopping
sets, but is t 7→ OAt(x) continuous? The answer is no, in general, as illustrated in Figure 2.5.

∂D

Ct1

A

∂D

Ct2

A

Figure 2.5: Discontinuity of t 7→ bcc(A ∩ Ct), where t1 < t2. To the left, bcc(A ∩ Ct1) is drawn in
blue. To the right, bcc(A ∩ Ct2) is the union of the blue and red parts.

The problem is that giant pieces of A can “return” to some Ct, and the boundary connected
component operation will add such piece at once when the increasing process (Ct)t≥0 reaches A
when “it is returning”. In Figure 2.5, such giant piece is drawn in red in the second image. Note
that the time variation t2 − t1 can be very tiny while the blue and red parts remain big. Then the
map t 7→ OAt(x) cannot be continuous in general.

From this naive attempt of exploring an explorable set, it is evident that we need a more
sophisticated idea. In the next subsections, we propose and study two discrete algorithms that
explore explorable sets, using better geometric intuitions than the previous one. From now on, we
refer to such algorithmic procedures as exploration processes.
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2.4.1 Restarting property of exploring sets

This section is devoted to discuss, state and prove a fundamental property of explorable sets that we
call restarting property. From now on, we refer to any set of the form bcc(A∩C) as an exploration
of A. Informally, the restarting property states that when an exploration of an explorable set
is done, the unexplored part of the set remains explorable with respect to it. Rephrasing this
statment, we find that this property can be interpreted as a spatial Markov property of explorable
sets. Such exploration is what we want to be the iterations of the algorithms that we will propose
in the next sections.

Proposition 2.16. (Restarting property I) If A is explorable, then for all C0 ∈ C (D),

A is F bcc(A∩C0)-explorable for bcc(A ∩ C0).

Proof. We denote bccbcc(A∩C0)(·) = bcc0(·). Unpacking the definition, we have to prove that for
all C0, C1, C, T ∈ C (D),

{bcc0(A ∩ C1) ⊆ C} ∈ Fbcc(A∩C0)
C .

By the first bullet point of Remark 2.2 Observe that

{bcc0(A ∩ C1) ⊆ C} = {bcc0(A ∩ C1) ⊆ C, bcc(A ∩ C0) ⊆ C1} ∪ {bcc(A ∩ C0) ⊆ C1}c

Let us state the following claim to conclude. The proof is postponed to the end.

Claim: If bcc(A ∩ C0) ⊆ C1, then bcc0(A ∩ C1) = bcc(A ∩ C1).

The claim implies that for all ε > 0,

{bcc0(A ∩ C1) ⊆ C} = {bcc(A ∩ C1) ⊆ C, bcc(A ∩ C0) ⊆ C1} ∪ {bcc(A ∩ C0) ⊆ C1}c
= {bcc(bcc(A ∩ Cε) ∩ C1) ⊆ C, bcc(A ∩ C0) ⊆ C1} ∪ {bcc(A ∩ C0) ⊆ C1}c.

We have that {bcc(bcc(A ∩ Cε) ∩ C1)} ∈ FCε and {bcc(A ∩ C0) ⊆ C1} ∈ Fbcc(A∩C0) by
explorability of A (Propositions 1.46.1. and 2.4 and Remark 2.9). Then, for all ε > 0 we have

that {bcc0(A ∩ C1) ⊆ C} ∈ Fbcc(A∩C0)
Cε

, and then {bcc0(A ∩ C1) ⊆ C} ∈ ⋂ε>0F
bcc(A∩C0)
Cε

= FC by
right-continuity.

Proof. (Claim) Suppose that bcc(A ∩ C0) ⊆ C1. If x ∈ bcc0(A ∩ C1) and ε > 0 is fixed, there
exists an ε-path γ1 joining x and some point y in ∂ bcc(A∩C0). By closedness of bcc(A∩C0), for
the same ε we can take other ε-path γ2 joining y and some point in ∂D. If we glue the paths γ1
and γ2, we obtain an ε-path joining x and some point in ∂D, with values in (A ∩ C1)ε. As ε was
arbitrary, we conclude that x ∈ bcc(A ∩ C1).

On the other hand, if x ∈ bcc(A ∩ C1), we divide the proof two cases: x ∈ bcc(A ∩ C0) and
x /∈ bcc(A ∩ C0). If x ∈ bcc(A ∩ C0), then automatically x ∈ bcc0(A ∩ C1) by definition of the
bcc. If x /∈ bcc(A ∩ C0) and ε > 0 is sufficiently small, we can take an ε-path γ joining x and
some point in ∂D with values in (A ∩ C1)ε. If we take the exit time of γ from bcc(A ∩ C0) and
cut γ at such time, we obtain an ε-path joining x and some point in ∂ bcc(A∩C0), with values in
(A ∩ C1)ε. This means that x ∈ bcc0(A ∩ C1).
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Proposition 2.16 states that an explorable set can be explored in such a way that the explo-
rations are stopping sets. However, we are interested in iterative processes of explorations, that
is, at each step we do an exploration taking the previous exploration as boundary (and such is a
random set). The next proposition states that we can do this properly, that is, if we explore an
explorable set using a stopping set, explorability is preserved for the augmented filtration of the
latter, using the exploration as the new boundary.

Proposition 2.17. (Restarting property II) If A is explorable and B is an F -stopping set,
then A is FB-explorable for bcc(A ∩B).

Proof. The proof is completely analogous to the Restarting property I.

2.4.2 Two exploration processes

In this section, we propose two ways to “explore” explorable sets. This means that for an explorable
set A, we construct two discrete-time sequences (An)n∈N such that An is a stopping set for all n ∈ N
and An ↗ A. To do this, the restarting property and the bcc operation are key. We take into
account the additional requirement of having control on the growth of the observable process
(OAn(x))n∈N (Recall Definition 1.57). Then, we have to avoid naive ideas like the one described at
the beginning of Section 2.4.

From now on, we refer to such sequences (An)n∈N as exploration processes, since they are defined
through algorithmic procedures that discover A starting from the boundary of D. Throughout this
section, such procedures are called pre-algorithms since they are actually designed to study the
exit sets of the GFF, where they will be considered as “actual” algorithms (Section 2.5).

Throughout this subsection, we fix an explorable set A.

Pre-first algorithm

The first exploration process is obtained by locally growing A, starting from ∂D. This is done
using the fattening operation with the bcc in order to obtain a stopping set at each time and
keep the connectedness of whole the sequence. The local growing is done through consecutive
applications of the fattening of sets, using a sequence of radius bounded from below. This last
hypothesis provides a good feature for this first exploration process: it always converge in finite
(but random) steps. See Figure 2.6 for an illustration of this pre-algorithm.

Proposition 2.18. (Pre-first algorithm) Let (εn)n∈N be a sequence such that εn ≥ ε for all
n ∈ N, for some ε > 0. Define the sequence (An)n∈N as{

A0 = ∂D,

An+1 = bcc(A ∩ (An)εn), for n ∈ N.
(2.11)

Then,

• for all n ∈ N, An+1 is an FAn-stopping set,

• there exists a random N = N(ε) ∈ N such that An ↗ AN = A.
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(A0)ε0 (A1)ε1

A A

A1
A2

∂D = A0 ∂D = A0

Figure 2.6: Illustration of the pre-first algorithm (first two iterations).

Proof. (Proposition 2.18) First, note that for all n ∈ N, by monotonicity and idempotence of bcc
we have that An+1 ⊇ bcc(An) = An, so (An)n∈N is increasing. For the first bullet point, we proceed
by induction. For n = 0, A1 is an FA0-stopping set just by explorability of A. Assume that An is
an FAn−1-stopping set. Then Proposition 2.11 gives that bcc(A∩(An)εn) is an (FAn−1)An-stopping
set, but this filtration is simply FAn because An−1 ⊆ An.

For the second bullet point, as (An)n∈N is increasing and D is compact, such sequence converges
in the Hausdorff distance (Proposition 1.27). In particular, dHaus(An, An+1) → 0 as n → ∞. Let
N = N(ε) ∈ N be the first positive integer such that dHaus(AN , AN+1) < ε/2. By definition of the
Hausdorff distance we have AN+1 ⊆ (AN)ε/2. However, the definition of AN+1 and Proposition 2.6
(noting that ε/2 < εN) gives

bcc(A ∩ (AN)εN ) ⊆ (AN)ε/2 ⇐⇒ bcc(A) ⊆ (AN)ε/2.

Since bcc(A) = A by explorability, this implies that A ⊆ (AN)εN and consequently,

AN+1 = bcc(A ∩ (AN)εN ) = bcc(A) = A.

Inductively, An = A for all n ≥ N + 1, and we conclude the proof.

Note that the pre-first algorithm is monotonic with respect to the fattening radius sequence.
This tells us one might expect that the exploration process converges to something non-trivial if
we take sequences with small step εn+1 − εn. This conjecture is not treated in this thesis.

Pre-second algorithm

The second exploration process for A is obtained using paths of hypercubes. This means that,
unlike the pre-first algorithm, this procedure discovers A using an ordered sequence of hypercubes
of fixed side-length growing from the boundary of D. Such procedure ensures that the exploration
process grows only a tiny amount of space at each time, because “big parts” of A are not allowed
to appear instantly. Then, one can properly expect that the observable process associated to the
pre-second algorithm is actually controlled in arbitrary dimension d. However, the trade-off is that
we have to work with pathwise-connected A, so generality is lost. Moreover, we do not know if
this procedure ends in finite steps, but we can show that the exploration process covers A.
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We start by understanding how to cover simple continuous curves in D (recall that we assume
compact D). To do this, define the family of hypercubes with (at least) one vertex with dyadic
coordinates and side-length ε > 0 as

Qε :=
{
Q ⊆ Rd : Q = [x1, x1 + ε]× · · · × [xd, xd + ε] for some (xi)

d
i=1 ∈ Dd

}
.

where D :=
⋃

n∈N Dn is the set of dyadic numbers, that is, for each n ∈ N,

Dn := {k2−n : k ∈ Z}.

Do not get confused with the set Dn defined in the previous chapter, typography is relevant.
It is clear then that Qε is countable, as a family of sets indexed by Dd, which is countable.

Lemma 2.19. Let γ : [0, 1] → D be a simple continuous curve and ε > 0 fixed. Define

Qε,γ :=

{
(Qn)n∈N : Qn ∈ Qε for all n ∈ N, γ[0, 1] ⊆

⋃
n∈N

Qn

}
,

Then there exists a least one sequence in Qε,γ such that QN = Qn for all n ≥ N , for some N ∈ N.

Proof. By uniform continuity, for our given ε > 0, there exists δ > 0 such that for all t, s ∈ [0, 1],
|t − s| ≤ δ implies |γ(t) − γ(s)| ≤ ε. Notice that without loss of generality we can take this last
distance to be the supremum norm in Rd, which induces hypercubes as the associated balls. Then,
as [0, 1] = [0, δ) ∪ [δ, 2δ) ∪ · · · ∪ [(k − 1)δ, 1], where k = k(δ) ≥ 1 is the first positive integer such
that k(δ)δ ≥ 1, it is clear that we will only need k(δ) hypercubes to cover γ[0, 1].

As we mentioned, the basic blocks for the pre-second algorithm are the “paths of hypercubes”.
First, we restrict to the family Qε,D := {Q ∩D : Q ∈ Qε} which is also countable. Then, for each
n ∈ N, we define the family of paths of hypercubes in Qε,D with length n starting from ∂D as the
family of ordered pairs given by

Pε,n,D :=
{
(Qi)

n
i=1 : for all i ∈ {1, . . . , n}, Qi ∈ Qε,D,

Q0 ∩ ∂D ̸= ∅,
for all i ∈ {0, . . . , n− 1}, Qi ∩Qi+1 ̸= ∅

}
.

Note that Pε,n,D ⊆ ∏n
i=1Qε,D, so Pε,n,D is also countable. Then, we define the family of paths

of hypercubes in Qε,D with finite length starting from ∂D as

Pε,D :=
⋃
n∈N

Pε,n,D.

Again, Pε,D is countable because it is a countable union of countable sets. We use this
fact to put an order into the hypercubes participating of the paths in Pε,D, in the following
manner. Take an enumeration of Pε,D, say, Pε,D = {Γn}n∈N. For each n ∈ N, we can write
Γn = (Qn,0, Qn,1, . . . , Qn,ℓ(Γn)) where ℓ(Γn) is the length of Γn. We use this to put the diagonal
order over the hypercubes, as represented in Table 2.1.
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n 0 1 2 3 4 . . .
Γ0 Q0,0 (0) Q0,1 (1) Q0,2 (3) Q0,3 (6) Q0,4 (10) . . .
Γ1 Q1,0 (2) Q1,1 (4) Q1,2 (7) Q1,3 (11) Q1,4 (16) . . .
Γ2 Q2,0 (5) Q2,1 (8) Q2,2 (12) Q2,3 (17) Q2,4 (23) . . .
Γ3 Q3,0 (9) Q3,1 (13) Q3,2 (18) Q3,3 (24) Q3,4 (31) . . .
Γ4 Q4,0 (14) Q4,1 (19) Q4,2 (25) Q4,3 (32) Q4,4 (40) . . .
...

...
...

...
...

...
. . .

Table 2.1: Order on the hypercubes participating in Pε,D.

Proposition 2.20. (Pre-second algorithm) Assume that A is pathwise connected. Define the
sequence (An)n∈N as {

A0 = ∂D,

An+1 = bcc(A ∩ (Qd−1(n) ∪ An)), n ∈ N,
(2.12)

where d : {(m, ℓ(Γn)) ∈ N2 : n ∈ N,m ∈ {0, . . . , ℓ(Γn)}} → N encodes the order on the hypercubes,
which is explicitly written in red in Table 2.1. Then,

• for all n ∈ N, An+1 is an FAn-stopping set,

• An ↗ A.

Figure 2.7: Illustration of the pre-second algorithm. To the left, six paths of hypercubes are drawn
with different colors. To the right, the covering at time n − 1 is drawn with gray and the red
hypercube appears at time n (Q = Qd−1(n)).

Proof. First, note that for all n ∈ N we have that An+1 ⊇ bcc(An) = An by monotonicity and
idempotence of bcc, so (An)n∈N is increasing. We have that A1 is an FA0-stopping set just by
explorability of A. Then, inductively, if An is an FAn−1-stopping set then it is also an FAn-stopping
set (by the increasing property of (An)n∈N). Using this, we note that for all ε > 0,

{bcc(A ∩ (Qd−1(n) ∪ An)) ⊆ C} = {bcc(bcc(A ∩ Cε) ∩ (Qd−1(n) ∪ An)) ⊆ C} ∈ FAn
Cε

.

showing that An+1 is an FAn-stopping set.
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For the second bullet point, if x ∈ A, then for any y ∈ ∂D we can pick a continuous path γ
in A that joins x and y, because A is pathwise connected with ∂D ⊆ A. Then, Lemma 2.19 gives
the existence of a path of hypercubes with finite length in Qε,D, from which x ∈ ⋃n∈NAn follows.
The other inclusion is direct by definition.

Note that the side-length of the hypercubes was always fixed to be some ε > 0, and therefore
the pre-second algorithm works for every side-length. It may be convenient that to denote (Aε

n)n∈N
for the exploration process obtained with hypercubes of side-length ε.

However, note that the second algorithm is not monotonic with respect to ε, because changing
the side-length changes the whole family of hypercubes Qε,D (and its diagonal ordering) and
therefore distinct exploration processes cannot be compared. This means that if we want to make
sense of the limit as ε → 0, we can only expect convergence in distribution of the associated
random objects.

2.4.3 Measurability of the pathwise boundary connected components

The notion of boundary connected components that we have proposed is based on purely topolog-
ical connectedness, as one can see in Definition 2.1. We can also propose the pathwise boundary
connected components, that is, for C ⊆ D we can define

bccp(C) := {x ∈ C : ∃γ ∈ C([0, 1], C), γ(0) ∈ ∂D, γ(1) = x}.

Such object is obviously more tractable and comfortable than bcc(C), but it is also much less
general. In fact, every path connected set is connected, but the converse is false. Then, the
measurability of the bcc : C (D) → C (D) cannot imply the measurability of bccp : C (D) → C (D).
However, the pre-second algorithm, which we proved that works well for pathwise-connected sets,
provides a measurable writing for the bcc in the sense of path connectedness. In fact, for A closed,
pathwise-connected and such that ∂D ⊆ A we have that

A = bcc(A) = bccp(A) =
⋃
n∈N

An,

where (An)n∈N is the sequence defined by (2.12). This means that bccp(A) is nothing but an
increasing countable union of closed sets in this particular case. In this sense, we pose the question:
For arbitrary A ∈ C (D), is it true that bccp(A) =

⋃
n∈N An? Note that this would immediately

imply that bccp : C (D) → C (D) is well-defined and measurable in the Hausdorff topology (see
Proposition 1.30). However, we do not treat this question further in this thesis.

2.5 Explorable sets and the Gaussian Free Field

In this section, we relate the notion of explorable sets with the GFF. Specifically, given D open,
bounded, and simply connected, and Φ a GFF in D, we study the process (hAn(x))n∈N associated
to an FΦ-explorable set A, where (An)n∈N is a construction of the pre-algorithms shown in the
previous section.
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Recall that our basic task is to provide new estimates for the exit sets of the GFF in d ≥ 3,
in order to use limit arguments to prove or disprove their existence in large dimensions. The
process (hAn(x))n∈N is very important in this context, because having an appropriate control over
its variance (given by (OAn(x))n∈N) allows us to identify the law of the OA(x). In fact, we will show
that after time reparametrization, (hAn(x))n∈N converges to a Brownian motion and consequently
OA(x) has the law of some stopping time.

Throughout this section, we consider D ⊆ Rd to be a bounded, open and simply connected set,
Φ to be a GFF in D, A to be random FΦ-explorable set for ∂D (FΦ was introduced in Definition
1.48), x ∈ D and r0 > 0 be such that B(x, r0) ⊆ D.

2.5.1 First algorithm

In this section, we use the pre-first algorithm to generate an exploration process such that the
growth of the observable process is uniformly controlled. However, this requirement is achieved
only in d = 2 for this pre-algorithm. First, we present a construction in d = 3 where we cannot
reparametrize the observable process and then present the actual first algorithm.

A set with non-reparametrizable observable process for the first algorithm

The pre-first algorithm has a significant degree of freedom given by the choice of (εn)n∈N. In fact,
the only requirement for this pre-algorithm to work is that (εn)n∈N is uniformly bounded from
below. From this, one might expect that the observable process associated to (An)n∈N given by
Proposition 2.18 is properly controlled, but it turns out that this is true only in d = 2. This
is because the topological properties of polar sets in d = 3 allows us to construct sets with
discontinuous observable process (for the pre-first algorithm) under any time reparametrization
(Recall Remark 1.61). An example of such a set is constructed as follows.

For x, y ∈ R and n ∈ N, define the branch of root (x, y) and height 2−(n+1) by

bnx,y :=
⋃

m1,m2∈{0,1}
[(x, y, 1− 2−n), (x+ (−1)m12−n, y + (−1)m22−n, 1− 2−(n+1))].

Recall that [a, b] = {λa + (1 − λ)b : λ ∈ [0, 1]} denotes the straight line segment between
a, b ∈ Rd. Using this, define the dyadic tree as

T :=
⋃
n∈N

⋃
x,y∈Dn+1\Dn

bnx,y.

Note that by density of the dyadic numbers, we have that [0, 1]2 × {1} ⊆ T . This is a key fact
to illustrate the pathological behaviour of the associated observable process. See Figure 2.8 for an
approximate picture of T .

Consider any sequence (εn)n∈N with infn∈N εn ≥ ε > 0 for some ε > 0 and compute the
explorations (An)n∈N given by (2.11) starting from the root (0, 0). Then, there exists some N ∈ N
such that AN = T . However, note that for any x ∈ R3, OAn(x) = 0 for all n < N by polarity of
lines in d = 3, while

OT (x) = O[0,1]2×{1}(x) > 0.
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Furthermore, OT (x) = ∞ if x ∈ [0, 1]2×{1}. This means that the finite sequence (OAn(x))
N
n=0 is

identically zero before N and then jumps. Such jump is unavoidable under any time reparametriza-
tion. This is explained by the fact that the non-polar set [0, 1]2×{1} is approximated by the polar
sets bnx,y. Then, the exploration process of the first algorithm from the root does not find anything
non-polar until it reaches [0, 1]2 × {1}, causing the fatal discontinuity.

Figure 2.8: Construction of the T up to 4 iterations of the branches.

This is clearly a phenomenon caused by the dimension. In fact, the family of polar sets in d = 2
is essentially the family of singletons and their countable unions, and lines do not belong to it. In
d = 3, the family of polar sets includes lines and this allows us to construct pathological sets like
the dyadic tree.

First algorithm

Now we present the actual first algorithm. As we mentioned, to construct it we need the Beurling
estimate, which is an exclusive result for the 2-dimensional setting. Such result allows us to have
useful bounds for the involved Green’s functions. The Beurling estimate and its proof can be found
in Proposition 3.73 of [Law08].

Lemma 2.21. (Beurling estimate) In d = 2, for all compact and connected K ⊆ R2, z ∈ R2\K
and η ≤ diam(K)/2,

Pz(τ
∂B(z,η) ≤ τK) ≤ c

(
d(z,K)

η

)1/2

.

for some constant c > 0 depending on K.

Then, we have the following proposition.
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Proposition 2.22. (First algorithm) Let d = 2 and δ > 0. Define (εn)n∈N by

εn := max{ε > 0 : (GD\An −GD\(An)ε)(x, x) ≤ δ}, n ∈ N. (2.13)

Consider the exploration process (An)n∈N given by (2.11) using (εn)n∈N. Then,

• if d(x,A) > 0, then there exists a random N ∈ N such that An ↗ AN = A.

• if d(x,A) = 0, the algorithm never ends and x ∈ ⋃n∈N An.

Proof. Assume that d(x,A) > 0 and let η ∈ (0, d(x,A)) be sufficiently small. First, note that
ε ∈ [0, η/2] 7→ (GD\An − GD\(An)ε)(x, x) is continuous for all n ∈ N. In fact, from Annex B we
have that

(GD\An −GD\(An)ε)(x, x) = Ex[GD\An(x,Bτ (An)ε )]. (2.14)

If (εm)m∈N is such that εm ↘ ε, then (GD\(An)εm − GD\(An)ε)(x, x) ≲ Ex[d(Bτ (An)ε , (An)εm)
1/2]

by Lemma 2.21, which converges to zero as m → ∞. If εm ↗ ε, the result follows simply by the
dominated convergence theorem. Now fix ε ≤ η/2 and y ∈ (An)ε. By Lemma 2.21 we have that

GD\An(x, y) ≤ log

(
2

η

)
Py(τ

∂B(y,η/2) ≤ τAn) ≤ c log

(
2

η

)(
2ε

η

)1/2

.

Then, if we choose ε = ε0 := (η/2)(δ2/(c2 log(2/η)2)), the last bound is equal to δ. Then by
(2.14) we see that An can be fattened at least ε0 > 0 and (GD\An −GD\(An)ε)(x, x) ≤ δ still holds.
This shows that εn ≥ ε0 for all n ∈ N, and we conclude as in Proposition 2.18.

For the second bullet point, note that x /∈ An for all n ∈ N. Otherwise, the observable
process of (An)n∈N cannot have uniformly bounded jumps. Consequently, the algorithm never
ends. However, x ∈ ⋃n∈N An. If not, using the connectedness of

⋃
n∈N An (Propositions 1.27 and

1.28) we contradict the connectedness of A.

Note also that the first algorithm is a monotonic with respect to δ, meaning that we can
compare exploring sequences obtained for distinct choices of δ (this comes from the fact that εn is
proportional to δ for all n ∈ N). This motivates the following question: What we obtain as limit
when δ → 0? We do not treat this question for this algorithm.

Convergence to the Brownian motion of the first algorithm

Let us now show that the exploration process (An)n∈N given by Proposition 2.22 can be reparametrized
in time in such a way that (hAn)n∈N converges in distribution to a Brownian motion (uniformly
on compact time intervals [0, T ]). To do this, the only result that we need is to show that the
observable grows (almost) as a linear function. The rest is done with standard arguments.

From now on, fix δ > 0 and consider the sequence (εn)n∈N defined by (2.13) and the exploration
process (An)n∈N defined by (2.11) using (εn)n∈N. We omit the dependence on δ of such objects,
but keep in mind that they are really functions of this parameter. Using this, define the time
reparametrization σ : [0,∞) → N,

σ(t) := inf{n ∈ N : OAn(x) ≥ t}.
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Define the random time τδ := limt→∞ OAσ(t)
(x). Note that the consequences of Proposition 2.22

we have a.s. that

τδ =

{
OA(x), if x ∈ D \ A,
∞, if x ∈ A.

(2.15)

In the first case, we consider an extension of the exploration process (Aσ(t))t≥0 such that the
observable keeps growing linearly up to infinity, in order to avoid an stopped process.

Lemma 2.23. For all t ≥ 0,

t ≤ OAσ(t)
(x) ≤ t+ δ. (2.16)

Consequently, for all t ≥ 0 and λ ∈ R we have that

exp

(
λ2

2
t

)
≤ E[exp(λhAσ(t)

(x))] ≤ exp

(
λ2

2
(t+ δ)

)
.

Proof. Let t ≥ 0. Then, by definition if σ and (εn)n∈N we have that

t ≤ OAσ(t)
(x) = OAσ(t)−1

(x) + (GD\Aσ(t)−1
−GD\Aσ(t)

)(x, x) ≤ t+ δ.

For the bounds of the Laplace transform of hAσ(t)
, we use the strong Markov property of the

GFF to write Φ = ΦAσ(t) + hAσ(t)
. Let r be sufficiently small and take circular average to the

previous equality to get

Φr(x) = Φ
Aσ(t)
r (x) + hAσ(t)

(x),

where we used the harmonicity of hAσ(t)
in D \ Aσ(t). Using this, for all λ ∈ R we have

E [exp (λΦr(x))] = E
[
exp

(
λΦ

Aσ(t)
r (x)

)
exp

(
λhAσ(t)

(x)
)]

= E
[
exp

(
λhAσ(t)

(x)
)
E
[
exp

(
λΦ

Aσ(t)
r (x)

) ∣∣FΦ
Aσ(t)

]]
.

We already know that

E[exp (λΦr(x))] = exp

(
λ2

2
Gr

D(x, x)

)
, and,

E
[
exp

(
λΦ

Aσ(t)
r (x)

)
|FΦ

Aσ(t)

]
= exp

(
λ2

2
Gr

D\Aσ(t)
(x, x)

)
.

Plugin this in the previous equation gives

1 = E
[
exp

(
λhAσ(t)

(x)
)
exp

(
−λ2

2
(Gr

D −Gr
D\Aσ(t)

)(x, x)

)]
.

Using the previous bounds of the observable, we conclude that

exp

(
λ2

2
t

)
≤ E [exp (λhAt(x))] ≤ exp

(
λ2

2
(t+ δ)

)
.
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Lemma 2.23 states that for each t ≥ 0, hAσ(t)
behaves like a centered gaussian random variable

with variance t. Now we look at the whole process (hAσ(t)
)t≥0 to prove that it converges to a

Brownian motion when δ goes to zero. From now on, every result that we show is to prove
that the hypothesis of the following result hold. Its proof, among many other facts about the
convergence of probability measures on continuous functions, can be found in [Bil99].

Lemma 2.24. (Theorem 7.5 in [Bil99]) Let X = (Xt)t≥0 and XN = (XN
t )t≥0 for N ∈ N be

continuous stochastic processes. If for all T > 0,

1. (XN
t1
, . . . , XN

tk
) =⇒ (Xt1 , . . . , Xtk) for all 0 ≤ t1, . . . , tk ≤ T , and

2. lim
δ→0

lim sup
N→∞

P

 sup
|t−s|≤δ
t,s∈[0,T ]

|XN
t −XN

s | ≥ η

 = 0 for all η > 0,

then XN converges in distribution to X for the topology of the uniform convergence on compact
sets when N → ∞.

Now we construct a sequence of processes hN that converges in distribution to a Brownian
motion. Let (δN)N∈N be such that δN → 0. For each N ∈ N, consider the exploration process
given by the first algorithm (AN

n )n∈N using δN as the control parameter for the jumps of the
observable. Using this, for each T ∈ (0,∞) we define the process hN = (hN

t )t∈[0,T ] by

hN
t :=

{
hAN

σ(t)
(x), if t ∈ DN ,

linearly interpolated, if t ∈ [0,∞) \DN .

Recall that DN = {k2−N : k ∈ Z}. From now on, we show that if we restrict hN to some
compact [0, T ], then it converges in distribution to (Bt)t∈[0,T ]. To do this, we take T = 1 for
without loss of generality, as every argument can be directly extended to arbitrary T .

Lemma 2.25. For all s, t ∈ [0, 1], N ∈ N and λ ≥ 0,

E[exp
(
λ|hN

t − hN
s |
)
] ≤ 2 exp

(
λ2

2
(|t− s|+ δN)

)
.

Consequently, for all η ≥ 0,

P(|hN
t − hN

s | ≥ η) ≤ 2 exp

(
− η2

2(|t− s|+ δN)

)
.

Proof. Let s, t ∈ [0, 1] be such that s ≤ t and N ∈ N. We denote AN
σ(t) = At. As As ⊆ At holds,

Proposition 1.56 let us write hN
t − hN

s = (ΦAs)At(x). Using this, we have that

E
[
exp

(
λ(hN

t − hN
s )
)]

= E
[
E
[
exp

(
λ(ΦAs)At(x)

)
|FΦ

As

]]
= E

[
exp

(
λ2

2
(GD\As −GD\At)(x, x)

)]
≤ exp

(
λ2

2
(t− s+ δN)

)
.
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Using that hN
t − hN

s and −(hN
t − hN

s ) are equal in distribution, we have

E
[
exp

(
λ|hN

t − hN
s |
)]

≤ 2E
[
exp

(
λ(hN

t − hN
s )
)]

≤ 2 exp

(
λ2

2
(t− s+ δN)

)
.

To conclude, we have by Markov-Chebyshev’s inequality that for all η, λ ≥ 0,

P(|hN
t − hN

s | ≥ η) ≤ E[exp
(
λ|hN

t − hN
s |
)
] exp (−λη) ≤ 2 exp

(
λ2

2
(|t− s|+ δN)− λη

)
.

Since this inequality is valid for all λ as input for the right-hand side, we can optimize it. First
order conditions give that the optimal parameter is λ = η/(|t− s|+ δN), and then

P(|hN
t − hN

s | ≥ η) ≤ 2 exp

(
− η2

2(|t− s|+ δN)

)
.

The final lemma ensures that a.s. for sufficiently big N ∈ N, the function hN is Hölder
continuous.

Lemma 2.26. Let α ∈ (0, 1/2) and choose the sequence (δN)N∈N to be such that δN ≤ 2−N for all
N ∈ N. Then, a.s. the (hN)t∈[0,1] is α-Hölder for sufficiently large N .

Proof. For each N,M ∈ N, define the event

AN,M :=

{
max

t∈DM\{1}
|hN

t+2−M − hN
t | ≥ 2−Mα

}
.

Note that for each N ∈ N, (AN,M)M≥N is decreasing. To see this, suppose that AN,M+1 holds
for some N ∈ N and M ≥ N . Then, there is some t ∈ DM+1 \ {1} such that

|hN
t+2−(M+1) − hN

t | ≥ 2−(M+1)α.

There are two cases:

(i) t ∈ DM : By linearity of hN in [t, t+ 2−M ] we have

|hN
t+2−M − hN

t | = 2|hN
t+2−(M+1) − hN

t | ≥ 2−(M+1)α+1 = 2−Mα21−α ≥ 2−Mα,

where we used simply that 1− α > 0.

(ii) t /∈ DM : Define t̂ = t − 2−(M+1) and note that t̂, t̂ + 2−M ∈ DM . By linearity of hN in
[t̂, t̂+ 2−M ] we have

|hN
t̂+2−M − hN

t̂ | = 2|hN
t+2−(M+1) − hN

t | ≥ 2−(M+1)α+1 = 2−Mα21−α ≥ 2−Mα.
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This shows that AN,M also holds. Then, the decreasing property of (AN,M)n∈N trivially gives
that

⋃
M≥N AN,M = AN,N , for all N ∈ N. Using this, we have

P

( ⋃
M∈N

AN,M

)
≤

N∑
n=0

P(AN,n) ≤
N∑

n=0

∑
t∈Dn\{1}

P
(
|hN

t+2−n − hN
t | ≥ 2−nα

)
≤

N∑
n=0

2n+1 exp

(
− 2−2nα

2(2−n + δN)

)

≤
N∑

n=0

2n+1 exp
(
−2n(1−2α)−2

)
.

A tough calculation shows that the previous sum is bounded by 2N+1 exp(−2(N+1)(1−2α)−2), and
then we have

P

( ⋃
M∈N

AN,M

)
≤ 2N+2 exp(−2(N+1)γ−2).

Since 1− 2α > 0, the terms seen as a function of N given by the previous bound give a finite
series in N . By Borel-Cantelli’s lemma, there exists a finite random variable N0 ∈ N such that for
all N ≥ N0, M ∈ N and t ∈ DM \ {1},

|hN
t+2−M − hN

t | ≤ 2−Mα.

Finally, the same technique used in Lemma 2.10 in [Le 16] and continuity of hN , allows us to
show that for all N ≥ N0, s, t ∈ [0, 1],

|hN
t − hN

s | ≤
2

1− 2−α
|t− s|α.

The following theorem is the main result of this section. It states that the properties of hN

give the convergence in distribution to the Brownian motion. We use all the previous lemmas to
prove that the hypothesis of Lemma 2.24 hold for hN .

Theorem 2.27. (Convergence to Brownian motion I) The process hN converges in distribu-
tion to (Bt)t≥0 for the topology of the uniform convergence on compact sets when N → ∞.

Proof. We prove that the hypothesis 1. and 2. of Lemma 2.24 hold for (hN
t )t∈[0,1]. Let s, t ∈ [0, 1]

be such that s < t. Then, for all λ1, λ2 ∈ R we have that the Laplace transform of (hN
s , h

N
t )

satisfies

E
[
exp

(
λ1h

N
s + λ2h

N
t

)]
= E

[
exp

(
(λ1 + λ2)h

N
s

)
E
[
exp

(
λ2(h

N
t − hN

s )
)
|FAN

σ(s)

]]
= E

[
exp

(
(λ1 + λ2)h

N
s

)
exp

(
λ2
2

2
(GD\AN

σ(s)
−GD\AN

σ(t)
)(x, x)

)]
.
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Using Lemma 2.23, we conclude that if N → ∞ we get

lim
N→∞

E
[
exp

(
λ1h

N
s + λ2h

N
t

)]
= exp

(
1

2
(λ1, λ2)

⊤
(
s s
s t

)
(λ1, λ2)

)
,

which is the Laplace transform of (Bs, Bt), with s < t. Inductively, this result is generalized to
every finite set of times 0 ≤ t0 < · · · < tk ≤ 1, concluding the first point of Lemma 2.24.

To prove 2. of Lemma 2.24, denote by k0 > 0 the α-Hölder constant of hN , N ≥ N0, given by
Lemma 2.26. Let δ > 0 and note that

P

 sup
|t−s|≤δ
t,s∈[0,1]

|hN
t − hN

s | ≥ η

 ≤ P

 sup
|t−s|≤δ
t,s∈[0,1]

|hN
t − hN

s |
|t− s|α ≥ δ−αη


≤ 1k0≥δ−αη

∑
M≤N

P(N0 = M) +
∑
M>N

P(N0 = M).

Taking superior limit gives

lim sup
N→∞

P

 sup
|t−s|≤δ
t,s∈[0,1]

|hN
t − hN

s | ≥ η

 ≤ 1k0≥δ−αη,

and then this quantity goes to zero as δ → 0.

The previous arguments can be generalized to any time horizon T < ∞, for which the same
conclusions on the process (hN

t )t∈[0,T ] hold. From this we conclude that the desired result.

Let us anticipate that Theorem 2.27 also holds for d ≥ 3, as we shall see in the next subsection
using the pre-second algorithm. As such, it is the basic block to answer the conjecture about the
existence of the exit sets of the GFF in higher dimensions. We will see that Theorem 2.27 allows
us to recognize the law of the observable of the exit sets.

2.5.2 Second algorithm

In this section, just like the first algorithm, we use the pre-second algorithm to generate an explo-
ration process such that the growth of the observable process is uniformly controlled. The main
advantage is that this procedure works for arbitrary dimension d, and then the convergence of the
harmonic function process ((hN

t )t≥0 in the previous section) to the Brownian motion is general-
ized. The property that makes this possible is that the pre-second algorithm grows the exploration
process using tiny hypercubes (recall that this not allows giant pieces of A to appear instantly).
However, to get an appropriate time reparametrization and exploration process, we have to order
the hypercubes in a very specific way, as we shall see. Note that we only need to show that there
exists an exploration process of A satisfying (2.16), because the rest of the proof for the conver-
gence is analogous to the first algorithm. The following Lemma ensures that we can achieve such
condition. See Figure 2.9 for an illustration.
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Lemma 2.28. Fix δ ∈ (0, 1) and define (rk)k∈N as rk = r02
−k for each k ∈ N. There exist a

deterministic sequence (εk)k∈N such that εk → 0 and for each k ∈ N, if (Ak
n)n∈N is the exploration

process of A given by Proposition 2.20 using hypercubes with side-length εk, then

(GD\Ak
n
−GD\Ak

n+1
)(x, x) ≤ δ,

for all n ∈ N such that d(x,Ak
n) ≥ rk.

Proof. Let ε > 0 and (An)n∈N be the exploration process of A given by Proposition 2.20 using
hypercubes with side-length ε. Fix k ∈ N. Let n ∈ N be such that d(x,An) ≥ rk and note that

(GD\An −GD\An+1)(x, x) = Ex [GRd(x,BτAn+1 )−GRd(x,BτAn ) + gD(x,BτAn )− gD(x,BτAn+1 )] .

Let Qn be the hypercube added from times n to n+ 1. Then, note that BτAn+1 ̸= BτAn if and
only if B hits An+1 ∩Qn first. This implies that

Ex [GRd(x,BτAn+1 )−GRd(x,BτAn )] ≤ Ex [1B hits QnGRd(x,BτAn+1 )]

≤
{
ln(r−1

k )Px(B hits Qn), if d = 2,

r2−d
k Px(B hits Qn), if d ≥ 3.

Analogously, we have that

Ex[gD(x,BτAn )− gD(x,BτAn+1 )] ≤
{
ln(r−1

k )Px(B hits Qn), if d = 2,

r2−d
k Px(B hits Qn), if d ≥ 3.

However, Px(B hits Qn) ≤ Px(B hits Q) for some Q ∈ Qε,D such that d(x,Q) = rk. From this,
we conclude that we have to choose εk such that{

2 ln(r−1
k )Px(B hits Q) = δ, if d = 2,

2r2−d
k Px(B hits Q) = δ, if d ≥ 3.

As the first factor of the previous inequalities goes to infinity as k → ∞, then εk → 0 necessarily.
This concludes the proof.

x

rk rk+1

A
εk

εk+1

∂D

Figure 2.9: Illustration of Lemma 2.28.
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Construction of the second algorithm

We proceed similarly to the construction of the pre-second algorithm presented in Section 2.4.2.
Fix δ ∈ (0, 1) and let (εk)k∈N and (rk)k∈N be the sequences given by Lemma 2.28. For each k ∈ N,
define the family of paths of hypercubes with side-length εk that are at distance rk from x by

Pk :=
{
(Qi)i ∈ Pεk,D : min

i
d(x,Qi) ≥ rk

}
,

where Pεk,D was defined in Section 2.4.2. Using this, define P :=
⋃

k∈N Pk. Note that P is
countable as it is the countable union of countable sets. Fix an enumeration of P = {Γk}k∈N and
put the diagonal order on P as in Table 2.1. Finally, define (Aδ

n)n∈N as in Proposition 2.20 using
the ordered sequence of hypercubes in P .

Proposition 2.29. (Second algorithm) Suppose that A is pathwise-connected.

• If d(x,A) > 0, then Aδ
n ↗ A. In such case, OAδ

n
(x) → OA(x) a.s.

• If d(x,A) = 0, the algorithm never ends and x ∈ ⋃n∈N A
δ
n

Proof. For the first bullet point, we can take k ∈ N sufficiently large to ensure that B(x, rk)∩A = ∅.
In this case, any point in A can be connected to the boundary using paths in Pk, from which
A =

⋃
n∈N A

δ
n follows. To see the convergence of the observable, observe that for all n ∈ N,

OA(x)−OAδ
n
(x) = (GD\Aδ

n
−GD\A)(x, x) = Ex[GD\Aδ

n
(x,BτA)].

We have that GD\Aδ
n
(x,BτA) is uniformly bounded in n as d(x,A) > 0. On the other hand,

BτA ∈ An for all n ∈ N sufficiently large, in which case GD\Aδ
n
(x,BτA) = 0. By dominated

convergence theorem, we have the desired result.

The second bullet point is proved analogously to the second bullet point of Proposition 2.22.

Define the time reparametrization σδ : [0,∞) → N by

σδ(t) := min{n ∈ N : OAδ
n
(x) ≥ t}.

Analogously to the previous section, define τδ := limt→∞OAσ(t)
(x). By Proposition 2.29 we

have that

τδ =

{
OA(x), if x ∈ D \ A,
∞, if x ∈ A.

(2.17)

In the first case, we add deterministic sets to A in order to keep growing the observable linearly.
Then we have, simply by construction, that for all t ≥ 0,

t ≤ OAδ
σ(t)

(x) ≤ t+ δ.

From this point, we can proceed in a completely analogous way to the first algorithm to show
the following theorem.

68



Theorem 2.30. (Convergence to Brownian motion II) Let (δN)N∈N be a sequence such that
δN ≤ 2−N for all N ∈ N. For all N ∈ N, define the process hN = (hN

t )t≥0 by

hN
t :=

h
A

δN
σδN

(t)

(x), if t ∈ DN ,

linearly interpolated, if t ∈ [0,∞) \DN .

Then, hN converges in distribution to (Bt)t≥0 for the topology of the uniform convergence on
compact sets when N → ∞.

2.5.3 Observable of the TVS and FPS

Theorems 2.27 and 2.30 have important consequences involving the observable of the exit sets.
In fact, these results allow us to identify the law of OA−a,b

and OA−a (for arbitrary dimension) if
the explorability hypothesis is added. To do this, we have to look back at the random times τδ
defined in (2.15) and (2.17). Then, using the convergence of (hN

t )t≥0 to (Bt)t≥0, we conclude that
OA−a,b

(x) and OA−a(x) are distributed like τ−a,b and τ−a, respectively.

Corollary 2.31. Let d ≥ 2 and a, b > 0. Assume that A−a,b and A−a are pathwise-connected and
explorable for the GFF. Then,

• OA−a,b
(x) = τ−a,b in distribution.

• OA−a(x) = τ−a in distribution.

Proof. For the first bullet point, we have that −a ≤ hN
t ≤ b for all t ≥ 0 and by Theorem 2.30

this process converges in distribution to a Brownian motion when N → ∞ on every compact set
[0, T ]. From this we conclude that limN→∞ τδN = OA−a,b

(x) is a.s. finite and has the distribution
of τ−a,b. The last statement holds because there is no extreme value of the Brownian motion that
is strict, so we cannot have two distinct times with the exact same value (−a or b in our case).
The case A = A−a is completely analogous.

Both conclusions of Corollary 2.31 are known results in d = 2, that we can be recover using
the theory of explorable sets. Moreover, this result tells us that explorability is a key additional
hypothesis (apart from 1. and 2. of Definitions 1.62 and 1.63) in order to prove or disprove the
existence of the exit sets of the GFF in d ≥ 3. In fact, knowing the exact law of the observable
allows us to make precise estimates and calculations that reveal the geometry of these sets. In
the next chapter, we discuss how can we use such information to generate a proof scheme for the
non-existence part of the conjecture about the exit sets.

Why should be the explorability a reasonable property to add to the exit sets in d ≥ 2? Recall
the construction of A−a,b in d = 2 (discussed in Section 1.3.2). Such construction is essentially
an exploration procedure using SLE type curves coupled with the GFF. This tells us that such
algorithmic procedure of the SLE should satisfy, for instance, the hypothesis of Theorem 2.15,
giving that A−a,b is explorable. The case of A−a is similar. In d = 2, they are proved to be the
limit (in a specific sense) of a class of discrete Brownian-like loop-soups (which are Poisson point
measures on Brownian-like loops) when the grid size goes to 0. The Le Jan-Lupu isomorphism
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(see [Lup16]) shows that these loops can be coupled with the discrete GFF, so they also can be
interpreted as an exploration procedure of the topography of the discrete GFF. It is expected that
this algorithmic procedure also satisfies the hypothesis of Theorem 2.15.

These claims are not treated in this thesis and they are left as future work. In the next chapter,
we explain how these claims help us to formulate a proof scheme whose achievement gives that the
TVS does not exist in ≥ 3 and the FPS does not exist in d ≥ 7.

2.5.4 Non-existence of the TVS in d = 2 when a+ b <
√
2λ

In this section, we show how Corollary 2.31 in d = 2 provides a new proof for the non-existence
of A−a,b in the case a+ b <

√
2λ, where λ = π/2. This is not the full known result, but we aim to

show that the explorability is useful for the study of the exit sets of the GFF.

We take a = b and D = D = {x ∈ R2 : |x| ≤ 1} for simplicity. First, note that the observable
can be written in terms of the conformal radius

OA−a,a(x) = ln

(
CR(x,D)

CR(x,D \ A−a,a)

)
.

By the Koebe’s quarter theorem we have that

ln

(
d(x, ∂D)

4d(x,A−a,a)

)
≤ OA−a,a(x) ≤ ln

(
4d(x, ∂D)
d(x,A−a,a)

)
,

and therefore

P
(
d(x,A−a,a) ≤ 4−1d(x, ∂D)e−t

)
≤ P(OA−a,a(x) ≥ t). (2.18)

On the other hand, if A−a,a is explorable and pathwise-connected, Corollary 2.31 and the
Markov-Chebyshev inequality give that for all β < 1

2
(λ/a)2

P(OA−a,a(x) ≥ t) ≤ cos(a
√

2β)−1e−βt. (2.19)

By (2.18) and (2.19) we conclude that

P (d(x,A−a,a) ≤ ε) ≤ (4d(x, ∂D)−1)β cos(a
√

2β)−1εβ. (2.20)

Note that if 2a <
√
2λ, we can take 1 < β < 1

2
(λ/a)2 in the previous intequality.

Now we use (2.20) to count the dyadic hypercubes contained in some compact set K strictly
contained in D, that intersect A−a,a. This is a standard argument to bound the Minkowski dimen-
sion of sets, and therefore its Hausdorff dimension (see Chapter 4 of [MP10] and Exercise 4.3, for
instance). If xQ denotes the center of Q, we have that

E[#{Q ∈ Dn : Q ⊆ K and Q ∩ A−a,a ̸= ∅}] =
∑
Q∈Dn
Q⊆K

P(Q ∩ A−a,a ̸= ∅)

≤
∑
Q∈Dn
Q⊆K

P(d(xQ,A−a,a) ≤ 2−n
√
2)

≲ 22n2−nβ = 2n(2−β),
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where ≲ means ≤ up to a multiplicative constant. By our choice of β, we have that 2 − β < 1,
concluding that the Hausdorff dimension of A−a,a is strictly smaller than 1 (as K ⊊ D is arbitrary).
This implies that A−a,a cannot be connected to the boundary (in which case, it has to contain at
least a continuous curve whose dimension is 1). We conclude that A−a,a does not exist in d = 2
when 2a < λ

√
2.

71



Chapter 3

Existence of the TVS and FPS

We return to the very first question of this thesis, namely,

Do TVS and FPS exist in d ≥ 3?

In this chapter, our aim is to propose a technique to prove non-existence of TVS in d ≥ 3 and
FPS in d ≥ 7.

To present such technique, we study the polar sets in d ≥ 3. First, we prove that every polar
stopping set of the GFF is trivial. On the other hand, we study a dyadic approximation of sets in
Rd with d ≥ 3, in order to estimate the amount of hypercubes where the associated observable is
greater than a given exponential bound. Our aim is to prove that such quantity grows exponentially
fast with the discretization level for non-polar sets. However, this behavior is not proved yet and
it is proposed as future work.

The previous claim, combined with the theory of explorable sets applied to the TVS and FPS,
forms our technique. Roughly speaking, the theory of explorable sets developed in Chapter 2
allows us to state that the law of the observable of the TVS and FPS in d ≥ 3 is that of

τ−a,b := inf{t ≥ 0 : Bt ∈ {−a, b}}, and

τ−a := inf{t ≥ 0 : Bt = −a},

respectively (this is was a known result d = 2 that we extended to all dimensions using explorable
sets). This provides polynomial bounds on the amount of hypercubes where the observable is big
that crash with its conjectured exponential growth. Then, this argument discards the existence of
TVS and FPS in the corresponding appropriate dimensions.

We start this chapter with some preliminaries on potential theory to introduce the capacity of
sets and related results. Then we describe the mentioned technique, and end with some progress
in the potential theory part.
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3.1 Preliminaries on potential theory

This brief section is based on chapters 3 and 8 of [MP10]. Polarity is a notion about the size
of subsets of Rd, through the eyes of Brownian motion. More precisely, a set is called polar if
Brownian motion does not hit it, and this is what we understand as an small set. We remark and
insist that polarity strongly depends on the dimension. For instance, a line in R2 is not polar,
but it is in R3. This represents a huge source of difficulties when one tries to apply probabilistic
2-dimensional techniques in d = 3.

Definition 3.1. A set A ⊆ Rd is called polar if for all x ∈ Rd, Px(Bt ∈ A for some t > 0) = 0.

The appropiate notion to measure polarity is the notion of capacity. Intuitively, a probability
measure in a “small” set cannot distribute mass in a very homogeneous way, inducing Dirac masses
eventually or regions with high mass concentration. For a given kernel, this could mean that its
integral against an arbitrary probability measure in the set is large. This motivates the definition
of capacity.

Definition 3.2. Let A ⊆ Rd be measurable, K : Rd × Rd → [0,∞] a measurable function (some-
times called kernel) and µ a measure in A. We define the K-energy of µ as

IK(µ) :=

∫∫
A2

Kdµ2.

With the above, we define the K-capacity of A as

CapK(A) := [inf{IK(µ) : µ probability measure in A}]−1

= sup{IK(µ)−1 : µ probability measure in A}

The following result formalizes the intuition made in the previous paragraph about the size of
sets. In fact, one can informally think that:

small set (polar or nearly) ⇐⇒ large energy ⇐⇒ small capacity.

Theorem 3.3. A closed set A is polar iff CapK(A) = 0, where K : Rd × Rd → [0,∞] is the
potential kernel defined as

K(x, y) =

{
log(|x− y|), if d = 2,

|x− y|2−d, if d ≥ 3.

There is a better result about polarity in terms of the probability of a Brownian motion to hit
the set. The idea is to use an special kernel that takes into account the starting point. This is the
so-called Martin kernel.

Definition 3.4. Let x0 ∈ Rd. We define the Martin kernel from x0 as

Mx0(x, y) =

{
GRd(x, y)/GRd(x0, y), if x ̸= y,

∞, if x = y.
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Then we have an estimate for Px0(∃t ∈ (0, T ] such that Bt ∈ A) in terms of the capacity given
by the Martin kernel.

Theorem 3.5. Let x0 ∈ Rd and A ⊆ Rd be closed. Then

1

2
CapMx0

(A) ≤ Px0(∃t ∈ (0, T ] such that Bt ∈ A) ≤ CapMx0
(A).

By this result, it is clear that a set is polar iff CapM(A) = 0.

What can be said about stopping sets of the GFF that are polar? The following result states
that they induce trivial markovian decompositions, as one might expect.

Proposition 3.6. If A is a stopping set for the GFF that is almost surely polar, then ΦA ≡ 0 and
it is independent from Φ.

Proof. It suffices to show that if A is almost surely polar, then GD\A = GD. For all x, y ∈ D we

can write GD\A(x, y) =

∫ ∞

0

pD\A(t, x, y)dt, where pD\A is the transition density of the Brownian

motion in D \ A, that is,

pD\A(t, x, y) = (2πt)−d/2e−
|x−y|2

2t − Ex[p(t− τD\A, BτD\A , y)1t≥τD\A ]

By polarity of A, Px(Bt /∈ A for all t > 0) = 1 for all x ∈ D. Then, τD\A = τD under Px,
concluding that GD\A = GD. Using this, note that for all f ∈ C∞

0 (D),

E[⟨ΦA, f⟩2] = E[E[⟨ΦA, f⟩2|FA]] = E
[∫∫

D2

f(x)(GD −GD\A)(x, y))f(y)dxdy

]
= 0,

so that ⟨ΦA, f⟩ = 0 for all f ∈ C∞
0 (D), implying ΦA ≡ 0. For the independence, if g : R → R is

bounded measurable, for all f ∈ H1
0 (D) we have by the equality ΦA = Φ that

E[g(⟨Φ, f⟩∇)|A] = E[E[g(⟨Φ, f⟩∇)|FA]|A] = E[g(⟨ΦA, f⟩∇)] = E[g(⟨Φ, f⟩∇)].

3.2 Non-existence scheme description

In this section, we describe the technique that partially answers the question that guides this
thesis. Specifically, its achievement concludes with the non-existence of TVS in d ≥ 3 and FPS in
d ≥ 7. Let us mention that d = 6 is a critical dimension that requires a more delicate treatment.
On the other hand, the existence of the FPS in d ∈ {3, 4, 5} still completely open and it will not
be treated in the remaining of this thesis.

Let us define what we understand by non-existence of the TVS and FPS. By Proposition 3.6,
if we prove that the TVS and FPS are polar, then its associated harmonic function is identically
zero. This means that non-existence here means that they are a.s. the empty set.
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Before describing the technique, let us introduce some notation that will be used in the remain-
ing of this chapter. From now on, we consider the following elements:

• A closed non-polar set A ⊆ D.

• The observable of A given by OA(x) = (GD −GD\A)(x, x).

• ForQ = [j1+2−n]×· · ·×[jd+2−n] ∈ Dn, the center ofQ is xQ := (j1+2−(n+1), . . . , jd+2−(n+1)).

• NQ := N(Q− xQ) + xQ, the hypercube with center xQ and edge length N2−n.

• For α > 0, Hn,α,A := {xQ ∈ D : Q ∈ Dn,OA(xQ) ≥ α}.

Recall that for fixed x ∈ D, OA(x) becomes a random variable when A is a random set. The
cases of interest are A = A−a,b and A = A−a for fixed a, b > 0, where we expect to apply our
technique. Let us now detail how such argument should work in order to discard the existence of
A−a,b in d ≥ 3 and A−a in d ≥ 7.

In this section we use the notation a ≲ b to say that a ≤ cb for some constant c.

Non-existence of A−a,b in d ≥ 3

We proceed in two steps as follows:

• Step 1: Non-polarity of A−a,b implies explicit exponential growing rate of #Hn,αn,A−a,b

If A−a,b is a.s. non-polar, then, for some αn ≳ 2n(d−2) and ε > 0, #Hn,αn,A−a,b
≳ 2n(d−2−ε).

• Step 2: A−a,b is explorable for the GFF

If A−a,b is explorable, then OA−a,b
(x) = τ−a,b in distribution, for each x ∈ D (Corollary 2.31).

Now we note that achieving steps 1 and 2 leads to contradiction. In fact, consider the following
Lemma about the tail of the exit time of a band for standard Brownian motion.

Lemma 3.7. For all c > 0, there exists p ∈ (0, 1) such that P0(τ−c,c ≥ N) ≤ pN for all N ∈ N.

Proof. Consider the events

An =

{
sup

n≤t≤n+1
|Bt −Bn| ≤ 2c

}
, for each n ∈ {0, . . . , N − 1}.

It is easily seen by the independence and stationarity of the increments of Brownian motion that
these events are independent and P(An) = P(A0) =: p ∈ (0, 1) for all n ∈ {1, . . . , N − 1}. Then

P0(τ−c,c ≥ N) ≤ P

(
N−1⋂
n=0

An

)
=

N−1∏
n=0

P(An) = pN .
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Step 2 and Lemma 3.7 lead to some p ∈ (0, 1) such that for all Q ∈ Dn and N ∈ N,

P(OA−a,b
(xQ) ≥ N) = P0(τ−a,b ≥ N) ≤ pN .

Then, up to constants we have that

E
[
#Hn,αn,A−a,b

]
=
∑
xQ∈D

P(OA−a,b
(xQ) ≥ αn) ≲ 2ndpαn .

But by Step 1, we know that #Hn,αn,A−a,b
grows exponentially fast with full probability, which

contradicts the polynomial rate found in the previous calculation.

We conclude that the wrong assumption was that A−a,b is non-polar, so it has to be polar
necessarily. Then, Proposition 3.6 applies, from where we conclude that A−a,b is trivial, as required.

Non-existence of A−a in d ≥ 7

The same scheme formulated for A−a,b applies to A−a, but there is an important restriction on
the dimension d. In fact, consider Step 1 and 2 applied to A−a. Step 2 gives that OA−a(x) is
distributed like τ−a under P0. Then, consider the following Lemma.

Lemma 3.8. For all c > 0 and N ∈ N, P(τ−c ≥ N) ≤ c(2/π)1/2N−1/2.

Proof. The probability density function of τ−c is given by

fτ−c(t) =
c√
2πt3

exp

(
−c2

2t

)
1t>0.

See Corollary 2.22 of [Le 16], for instance. Then

P(τ−c ≥ N) =

∫ ∞

N

c√
2πt3

exp

(
−c2

2t

)
dt ≤

∫ ∞

N

c√
2πt3

dt,

and the desired bound is the result of the last integral.

By the previous Lemma, and analogously to A−a,b, we have for all ε > 0 that

2n(d−2−ε) ≲ E
[
#Hn,αn,A−a

]
=
∑
xQ∈D

P(OA−a(xQ) ≥ αn) ≲ 2n(d/2+1).

These bounds break if d − 2 > d/2 + 1, that is, d ≥ 7. If the previous restriction on d holds,
the non-existence of A−a in such dimensions is proved.

However, Step 1 is incomplete for both exit sets at this point. In the next section, we present
partial results for Step 1 and discuss conditions to obtain the desired result.
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3.3 Estimates for non-polar sets

This section is devoted to prove the following result, that is kind of artificial, but it states what
we need to complete Step 1.

Proposition 3.9. Suppose that there exists δ < d− 2, such that for all n ∈ N and Q ∈ Dn,

IGRd
(µ1A∩Q)

µ(A ∩Q)2
≲ 2δn. (3.1)

Then #Hn,αn,A grows exponentially fast with n, where αn is an appropriate function.

We start with some estimates involving the rate of explosion of the observable, required to
implement the technique described in the previous section. Note that OA(x) = ∞ if x ∈ A. Now,
we want to study the values of OA(x) when x is near A, which is done through the points xQ

defined previously.

See Annex B to recall that

GD(x, y) = cd|x− y|2−d − cdEx[|BτD − y|2−d],

GD\A(x, y) = cd|x− y|2−d − cdEx[|BτD\A − y|2−d],

so that

OA(x) = (GD −GD\A)(x, x) = cdEx[|BτD\A − x|2−d]− cdEx[|BτD − x|2−d].

Lemma 3.10. Let n,N ∈ N with N >
√
d, Q ∈ Dn such that A ∩ Q is non-polar and µ be a

probability measure on A with IGRd
(µ) < ∞ (whose existence is ensured by Theorem 3.3). Then,

OA(xQ) ≥ c2d2
2(n+1)(d−2)−1d2−dN2−d µ(A ∩Q)2

IGRd
(µ1A∩Q)

− cd2
(n+1)(d−2) dd−2

N2(d−2)
− cdd(xQ, ∂D)2−d (3.2)

Proof. The desired inequality is trivially satisfied if xQ ∈ A because we already know that
OA(xQ) = ∞ in such case, so from now on we assume that xQ ∈ D \ A. In such case, we
have

ExQ
[|BτD\A − xQ|2−d] ≥ ExQ

[|BτD\A − xQ|2−d1τA∩Q≤τNQ
] ≥ 2(n+1)(d−2)N2−dd

2−d
2 PxQ

(τA∩Q ≤ τNQ).

On the other side, diam(D)2−d ≤ ExQ
[|BτD − xQ|2−d] ≤ d(xQ, ∂D)2−d under PxQ

, so that

OA(xQ) ≥ cd2
(n+1)(d−2)N2−dd

2−d
2 PxQ

(τA∩Q ≤ τNQ)− cdd(xQ, ∂D)2−d.

Claim. PxQ
(τA∩Q ≤ τNQ) ≥ PxQ

(τA∩Q < ∞)− d
d−2
2

Nd−2
.
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Using the claim, we obtain the new bound

OA(xQ) ≥ cd2
(n+1)(d−2)N2−dd

2−d
2

(
PxQ

(τA∩Q < ∞)− d
d−2
2

Nd−2

)
− cdd(xQ, ∂D)2−d

≥ cd2
(n+1)(d−2)N2−dd

2−d
2 PxQ

(τA∩Q < ∞)− cd2
(n+1)(d−2) dd−2

N2(d−2)
− cdd(xQ, ∂D)2−d

Finally, we bound PxQ
(τA∩Q < ∞). If M = MxQ

is the Martin kernel starting from xQ, by
Theorem 3.5 and the definition of capacity we have

PxQ
(τA∩Q < ∞) ≥ 1

2
CapM(A ∩Q) ≥ 1

2
IM

(
µ1A∩Q

µ(A ∩Q)

)−1

≥ cd2
(n+1)(d−2)−1d

2−d
2

µ(A ∩Q)2

IGRd
(µ1A∩Q)

.

Proof. (Claim) Note that

PxQ
(τA∩Q < ∞) = PxQ

(τA∩Q ≤ τNQ) + PxQ
(τA∩Q < ∞, τNQ < τA∩Q),

where we used that PxQ
(τA∩Q < ∞|τA∩Q ≤ τNQ) = 1 by the transcience of Brownian motion in

d ≥ 3. Now, we estimate the probability PxQ
(τNQ < τA∩Q, τA∩Q < ∞). We start by noting that

{τNQ < τA∩Q, τA∩Q < ∞} ⊆ {B hits ∂(NQ) and returns to B(0,
√
d2−n)}.

Then, using the Strong Markov property of Brownian motion,

PxQ
(τNQ < τA∩Q, τA∩Q < ∞) ≤ ExQ

[
PBτNQ

(B returns to B(0,
√
d2−n))

]
(!)
= ExQ

[
d

d−2
2 2−n(d−2)

|BτNQ
|d−2

]
≤ d

d−2
2

Nd−2
.

In the equality marked with (!) we used the following Lemma.

Lemma 3.11. (Corollary 3.19 in [MP10]) For any x /∈ B(x, r),

Px(τ
B(x,r) < ∞) =

{
1, d ∈ {1, 2}
rd−2

|x|d−2 , d ≥ 3.

Note that if we set N = 2n, then (3.2) becomes

OA(xQ) ≥ c2d2
(n+2)(d−2)−1d2−d µ(A ∩Q)2

IGRd
(µ1A∩Q)

− cd2
−(n−1)(d−2)dd−2 − cdd(xQ, ∂D)2−d, (3.3)

which is good since such choice of N leaves the main term partially diverging with n and the
middle just drops to zero with n (the third term plays no role as it is constant in n).
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Having such a bound, now we ask for an estimate of the amount of hypercubes Q such that
(3.3) is satisfied. For each n ∈ N and µ probability measure with finite GRd-energy, define

Pn := {Q ∈ Dn : µ(A ∩Q) > 0}.

Observe that every Q ∈ Pn is non-polar, since µ(A∩Q) > 0 implies that A∩Q has non-empty
interior (this comes from the fact that any finite measure on Rd is regular, see Theorem 1.9.5 of
[San18] for instance).

Proposition 3.12. #Pn ≥ 2n(d−2)d
2−d
2

IGRd
(µ)

.

Proof. Note that

IGRd
(µ) ≥

∑
Q∈Pn

∫∫
(A∩Q)2

GRddµ⊗2 ≥
∑
Q∈Pn

(
√
d2−n)2−dµ(A ∩Q)2 = 2n(d−2)d

2−d
2

∑
Q∈Pn

µ(A ∩Q)2.

Using that
∑

Q∈Pn
µ(A ∩Q) = 1, it only remains to note

∑
Q∈Pn

µ(A ∩Q)2 ≥ 1

#Pn

(∑
Q∈Pn

µ(A ∩Q)

)2

=
1

#Pn

.

Bound (3.3) would be nice if the quantity µ(A ∩ Q)2IGRd
(µ1A∩Q)−1, which depends on n and

µ, had appropriate asymptotic behavior when n → ∞. In fact, the hypothesis of Theorem 3.9
plugged in such inequality proves that result.

As discussed in the previous section, if (3.1) holds, then we can conclude Step 1 of the technique
that we want to implement for the non-existence of the TVS. However, we have not reach such rate
yet and propose it as future work within many other interesting questions that appeared during
this work.
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Conclusions and future work

At the end of this thesis, we were not able to prove the non-existence part of the conjecture about
the existence of the exit sets in higher dimensions. However, we can properly say that there exists
significant evidence supporting the non-existence of the TVS in d ≥ 3 and FPS in d ≥ 7. Before
this thesis, some arguments were given in the existent literature (see [Wer21], for instance). In
this thesis we formulate completely new arguments through the theory of explorable sets and the
proof scheme presented in Chapter 3. In this sense, and as future work, we propose to complete
the step 2 of the non-existence proof scheme. Such question actually concerns the potential theory
of Brownian motion, on which fine estimates on some objects have to be determined.

More generally, we propose to still developing the theory of explorable sets. For instance, it
would be interesting to decide if there is a weaker hypothesis than the uniform separation that
ensures that the limit of explorable sets is explorable; or if there are better algorithms to explore
explorable sets (for instance, monotonic with respect to the parameters). We also propose to apply
the theory of explorable sets to decide the existence of FPS in d ∈ {3, 4, 5}. This is already a work
in progress of our group, where we are focused in the Brownian loop-soup approximation of the
FPS in the discrete setting, where we expect to prove that if the FPS is assumed to be explorable,
then Theorem 2.15 holds. This would enable us to prove the existence of the FPS in d ∈ {3, 4, 5}
(under the mentioned additional hypothesis). This tells us that in general it is interesting to
determine what random sets of the literature are explorable (for the corresponding filtrations).
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Annexes

Annex A: Other examples of Gaussian variables

In this brief appendix section we present further remarkable examples of Hilbert spaces and their
Gaussian variables, as a complement of Chapter I where the only Gaussian variable presented and
studied was the GFF.

A.1 Square-summable real sequences

Take H = ℓ2(R) = {(an)n∈N :
∑

n∈N a
2
n < ∞} and recall that its standard inner product is

⟨(an)n∈N, (bn)n∈N⟩ℓ2(R) =
∑
n∈N

anbn, for all (an)n∈N, (bn)n∈N ∈ ℓ2(R).

The orthonormal basis is given by the sequences (en)n∈N defined by for all n ∈ N as

en,m =

{
1, if m = n,

0, if m ̸= n.

Consider formula (1.3) and note that Xn = αn for all n ∈ N. In this case, we still can define a
bigger Hilbert space that contains X. For β ∈ R, define

hβ := {(an)n∈N :
∑
n∈N

a2nn
β < ∞}. (3.4)

and endow it with the inner product

⟨(an)n∈N, (bn)n∈N⟩hβ =
∑
n∈N

anbnn
β, for all (an)n∈N, (bn)n∈N ∈ hβ. (3.5)

Then, note that if β < −1, then ℓ2 ⊆ hβ and furthermore, a.s. X ∈ hβ. In fact,

E
[
⟨X,X⟩2hβ

]
= E

[∑
n∈N

α2
nn

β

]
=
∑
n∈N

E[α2
n]n

β =
∑
n∈N

nβ < ∞,

implying that a.s. ⟨X,X⟩hβ < ∞, that is, a.s. X ∈ hβ.
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A.2 Square-integrable functions

Take D ⊆ Rd open and

H = L2(D) = {f : D → R : f is measurable with

∫
D

f 2dx < ∞}/{a.e. equality}.

Recall that the standard inner product of L2(D) is

⟨f, g⟩L2(D) :=

∫
D

f(x)g(x)dx, for all f, g ∈ L2(D).

The Gaussian variable of L2(D) is called (Gaussian) white noise (in D) and it is denoted
W = (⟨W, f⟩L2(D))f∈L2(D).

Proposition 3.13. Let D1, D2 ⊆ D disjoint domains. Then

(⟨W, f⟩L2(D))supp(f)⊆D1 and (⟨W, f⟩L2(D))supp(f)⊆D2

are two independent white noises in D1 and D2, respectively.

Proof. The independence comes from the fact that for all f, g ∈ L2(D) such that supp(f) ⊆ D1 and
supp(g) ⊆ D2 we have E[⟨W, f⟩L2(D)⟨W, g⟩L2(D)] = ⟨f, g⟩L2(D) = 0. To check that (⟨W, f⟩)supp(f)⊆D1

is a white noise, we note that the linearity with respect to f holds by definition of W and the
variance is

E[⟨W, f⟩2] = ⟨f, f⟩L2(D) =

∫
D

f(x)2dx =

∫
D1

f(x)2dx = ⟨f, f⟩L2(D1),

that is, it is just given by the inner product of L2(D1). Analogously for (⟨W, f⟩)supp(f)⊆D2 .

The previous property gives the name “white noise” to W . Intuitively, a white noise is any
sequence of values that chaotically oscillates everywhere, giving no defined shape or regularity.
For instance, a television without signal is an example of “visual white noise”, where black dots
appears and disappears randomly all the time on every place of the screen. If you focus on two
separated areas of the screen, you’ll see the same statistical behaviour on each one and there is no
mutual influence between them.

Other interesting fact about the Gaussian white noise is that it can be interpreted as the
derivative of the Brownian motion in the distributional sense. Formally, let (Bt)t∈[0,∞) be a standard
Brownian motion. Define the distribution B′ by

⟨B′, f⟩ := ⟨B, f ′⟩L2([0,∞)) =

∫
[0,∞)

Btf
′(t)dt, for all f ∈ L2([0,∞)). (3.6)

Proposition 3.14. (⟨B′, f⟩)f∈L2(D) is the Gaussian white noise in [0,∞).
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Proof. Linearity with respect to f is clear from the linearity of the integral. On the other side, if
f ∈ C∞

0 ([0,∞)), using (3.6) we have

⟨B′, f⟩ =
∫
[0,∞)

Btf
′(t) =

∫
[0,∞)

f(t)dBt ∼ N (0, ⟨f, f⟩L2([0,∞))),

where we used that the integration by parts and the fact that the stochastic integral is a centered
normal random variable with covariance given by the quadratic variation. As the previous calculus
holds for any f ∈ C∞

0 ([0,∞)), we move up to L2(D) just by density of C∞
0 ([0,∞)).

Again, the previous proposition makes sense with the usual meaning of white noise. In fact,
Brownian motion has no derivative in the usual sense, because it chaotically oscillates everywhere.
However, common sense would tell us that if any kind of derivative could be defined in any sense,
numerically it should be no more that ∞ or −∞ randomly and everywhere in time. That is
precisely what a Gaussian white noise is, and let us remark how can we gave meaning to B′ as the
Gaussian variable of a suitable Hilbert space.
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Annex B: On the Laplacian’s Green’s function

There are many ways to introduce the Green’s function associated to the Laplacian with zero
boundary condition. We choose the probabilistic point of view because it fits better with the
interpretation of the objects treated in this thesis.

Consider the Laplace equation in Rd, ∆u = 0. A standard calculation shows that the radially
symmetric solutions u(x) = v(r) of this equation, where r = |x|, are of the form

v(r) =

{
b log(r) + c, if d = 2,

br2−d + c, if d ≥ 3,

where b, c ∈ R are constants. We then obtain the Green’s function of Rd, by choosing the values
of b and c that makes such function the inverse operator of −∆.

Definition 3.15. We define the Green’s function of Rd as GRd : Rd × Rd → [0,∞] by

GRd(x, y) =

{
(2π)−1 log (|x− y|−1) , if d = 2,

cd|x− y|2−d, if d ≥ 3,
(3.7)

where cd = (2π)−d/2
∫∞
0

td/2−2e−tdt for d ≥ 3.

Now we want to define the Green’s function of D ⊆ Rd associated to the Laplacian operator
with zero boundary condition in ∂D. The boundary condition implies the requirement on such
function to be zero whenever one of its inputs lies in ∂D. This is achieved just by subtracting the
unique harmonic function on D with boundary values given by GRd .

Definition 3.16. We define the Green’s function of D as GD : D ×D → [0,∞] given by

GD(x, y) := GRd(x, y)− gD(x, y), (3.8)

where for each y ∈ D, gD(·, y) : D \ {y} → R+ is the unique solution of{
∆gD(x, y) = 0, x ∈ D \ {y},
gD(x, y) = GRd(x, y), x ∈ ∂D.

Remark 3.17. Note that solving the Laplace equation for gD in the previous definition gives the
probabilistic representation

gD(x, y) = Ex[GRd(BτD , y)]. (3.9)

This fact is used exhaustively throughout this thesis.

Proposition 3.18. (Properties of GD)

• GD is finite off and infinite on the diagonal {(x, x) : x ∈ D}.

• GD is symmetric, that is, GD(x, y) = GD(y, x) for all x, y ∈ D.
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We also state the announced connection between GD and −∆.

Theorem 3.19. If F ∈ C∞
0 (D;R), then the function f : D → R defined by

f(x) =

∫
D

F (y)GD(x, y)dy, (3.10)

is continuous on D, smooth on D and satisfies −∆f = F , f = 0 in ∂D.

How can we relate GD with a Brownian motion in D? The following result gives an alternative
expression for GD in terms of the transition density of the Brownian motion in D. Recall that the
transition density of Brownian motion in Rd is defined by

pRd(t, x, y) = (2πt)−d/2 exp

(
−|x− y|2

2t

)
,

and that the transition density of Brownian motion in D ⊆ Rd is defined by

pD(t, x, y) = pRd(t, x, y)− Ex[pRd(t− τD, BτD , y)1t≥τD ].

Proposition 3.20. If d ≥ 3, GD(x, y) =

∫ ∞

0

pD(t, x, y)dt for all x, y ∈ D.

Proof. Let us start with the case D = Rd. For all x, y ∈ Rd, x ̸= y,∫ ∞

0

pRd(t, x, y)dt =

∫ ∞

0

(2πt)−d/2 exp

(
−|x− y|2

2t

)
dt =

∫ ∞

0

(
2πs

|x− y|2
)−d/2

e−s

( |x− y|2
2s2

)
ds

=

(
(2π)−d/2

∫ ∞

0

sd/2−2e−sds

)
|x− y|2−d = cd|x− y|2−d.

Now if D ⊆ Rd, using the previous basic case we have∫ ∞

0

Ex[pRd(t− τD, BτD , y)1t≥τD ]dt = Ex

[∫ ∞

0

pRd(t− τD, BτD , y)1t≥τDdt

]
= Ex

[∫ ∞

0

pRd(s, BτD , y)ds

]
= Ex [GRd(BτD , y)] .

The previous relation also gives the probabilistic interpretation of the Green’s function as the
density of brownian functionals.

Proposition 3.21. If f : D → R is measurable and x ∈ D, then

Ex

[∫ τD

0

f(Bt)dt

]
=

∫
D

f(y)GD(x, y)dy. (3.11)
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In particular, if f = 1A is the indicator function of A, then

Ex

[∫ τD

0

1A(Bt)dt

]
=

∫
A

GD(x, y)dy, (3.12)

This quantity is the expected time that Brownian motion passes inside A (before exiting D).

Proof. By Fubini’s theorem used several times,

Ex

[∫ τD

0

f(Bt)dt

]
= Ex

[∫ ∞

0

f(Bt)1t≤τDdt

]
=

∫ ∞

0

Ex[f(Bt)1t≤τD ]dt

=

∫ ∞

0

∫
D

f(y)pD(t, x, y)dydt =

∫
D

f(y)GD(x, y)dy.

Let us take a closer look to the function GD − GD\C for closed C. Let x ∈ D \ C be fixed.
Then we can show that the function y 7→ (GD −GD\C)(x, y) satisfies the following problem:{

∆(GD −GD\C)(x, y) = 0, for all y ∈ D \ C,

(GD −GD\C)(x, y) = GD(x, y), for all y ∈ ∂(D \ C).

From this we get the representation

(GD −GD\C)(x, y) = Ey[GD(x,BτC )].

We are interested in the case x = y, where we obtain the so-called observable of C seen from
x. In such case, we have

(GD −GD\C)(x, x) = Ex[GD(x,BτC )].

This representation is useful for many calculations made in this thesis.
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Notation index

Sets, topology and metric spaces

• N = {0, 1, 2, . . . }.

• R+ = [0,∞), Q+ = Q ∩ R+.

• R∗
+ = (0,∞), Q∗

+ = Q ∩ R∗
+.

• Mε =
{∏d

i=1[niε, (ni + 1)ε) : (n1, . . . , nd) ∈ Zd
}
= uniform grid partition of Rd.

• Dn = M2−n = dyadic partition of Rd.

• Dn = {k2−n : k ∈ Z} = dyadic numbers of level n.

• int(A) =
⋃

O open set
with O⊆A

O = topological interior of A.

• A =
⋂

C closed set
with A⊆C

C = topological closure of A.

• ∂A = A \ int(A) = topological boundary of A.

• d(x,B) = inf
y∈B

d(x, y) = distance between (the point) x and (the set) B.

• d(A,B) = inf
x∈A
y∈B

d(x, y) = distance between (the sets) A and B.

• Aε = {x ∈ A : d(x,A) ≤ ε} = ε-fattening of A.

• |x| = (x2
1 + · · ·+ x2

d)
1
2 = the euclidian norm of x = (x1, . . . , xd) ∈ Rd.

• [x, y] = {λx+ (1− λ)y : λ ∈ [0, 1]} = straight line segment from x to y.
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Functions

Let D ⊆ Rd.

• supp(f) = {x ∈ D : f(x) ̸= 0} = the support of f .

• |A| = determinant of the matrix A.

• ∆ =
d∑

i=1

∂2

∂x2
i

= the laplacian operator.

• C(A,B) = set of continuous function from A to B.

• C∞
0 (D) = {f : D → R : f ∈ C∞ with supp(f) compact}.

• GRd(x, y) = Laplacian’s Green’s function of Rd =

{
(2π)−1 log(|x− y|−1), if d = 2,

cd|x− y|2−d, if d ≥ 3.

• GD(x, y) = GRd(x, y)− gD(x, y) = Laplacian’s Green’s function of D.

Measure theory and probability

Let (Ω,F ,P) be a probability space and G be another σ-algebra on Ω.

• #A = counting measure of A.

• σ(C ) =
⋂

T σ-algebra
with C⊆T

T = the σ-algebra generated by the family C ⊆ P(Ω).

• F ∧ G = σ(F ∪ G) = the smallest σ-algebra for which all sets in F and G are measurable.

• FP
= the completion of F .

• a.s. = almost surely.

• N (µ, σ2) = normal random variable with mean µ ∈ R and variance σ2 ≥ 0.

• N (µ,Σ) = normal random vector with mean µ ∈ Rd and covariance matrix Σ.

• B = (Bt)t≥0 = Brownian motion (starting point is always given explicitly within its law).

• Px = probability measure under which brownian motion starts at x ∈ Rd.

• Ex[X] =
∫
Ω
XdPx = expectation of X under Px.

• τA = inf{t ≥ 0 : Bt /∈ A} = the first time brownian motion exits A.

• τA = inf{t ≥ 0 : Bt ∈ A} = the first time brownian motion arrives A.
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