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ARREGLO DE MOTORES DE PROPELENTE SÓLIDO PARA EL PROBLEMA DE
ATERRIZAJE SUAVE EN LA LUNA: ESTUDIO DE LOS REQUISITOS DE ACTITUD Y

DISEÑO DEL SISTEMA DE CONTROL DE TRAYECTORIA

Este trabajo presenta el diseño de un sistema inteligente de control para el problema del
aterrizaje suave en la Luna utilizando motores de propulsión sólida (SPM). Aunque los
SPM tienen problemas de controlabilidad y el hecho de que no se pueden apagar, se
caracterizan por su confiabilidad, simplicidad y rentabilidad. En consecuencia, nuestra
principal contribución es abordar estos inconvenientes mediante la formulación de un
problema de optimización de aterrizaje bidimensional utilizando un arreglo de SPM. El
arreglo se estudia sobre una plataforma CubeSat con diferentes números de motores y
para tres tipos de sección transversal del grano propulsor (PGCS). Los parámetros de
los motores y control fueron optimizados inicialmente mediante un algoritmo genético
(GA) debido a la no linealidad del problema y las incertidumbres de las variables de
estado. Se analizan dos enfoques de diseño para el control, donde el diseño robusto
basado en las incertidumbres de las variables muestra el mejor desempeño. Se utilizaron
simulaciones de Monte Carlo para demostrar la eficacia del diseño robusto. Esto disminuye
la velocidad de impacto (IV) a medida que aumenta el número de motores, aterrizando
a 2,97 m/s utilizando una disposición de 10 motores con un PGCS regresivo. Finalmente,
se presentan los requisitos del sistema de control de actitud para mantener la estabilidad
direccional del empuje.
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SOLID PROPELLANT ENGINE ARRANGEMENT FOR THE MOON SOFT LANDING
PROBLEM: STUDY OF ATTITUDE REQUIREMENTS AND DESIGN OF THE

TRAJECTORY CONTROL SYSTEM

This work presents the design of an intelligent control system for the problem of soft
landing on the Moon using solid propellant engines (SPE). Although SPEs have control-
lability problems and the fact that they cannot be turned off, they are characterized by
their reliability, simplicity, and cost-effectiveness. Consequently, our main contribution
is to address these drawbacks by formulating a two-dimensional landing optimization
problem using an array of SPEs. The arrangement is studied on a CubeSat platform with
different numbers of engines and for three types of propellant grain cross-section (PGCS).
The engine and control parameters were initially optimized by a genetic algorithm (GA)
due to the non-linearity of the problem and the uncertainties of the state variables. Two
design approaches for control are analyzed, where the robust design based on the uncer-
tainties of the variables shows the best performance. Monte Carlo simulations were used
to demonstrate the effectiveness of the robust design. This decreases the impact velocity
(IV) as the number of engines increases, landing at 2.97 m/s using an arrangement of 10
engines with a regressive PGCS. Finally, the requirements of the attitude control system to
maintain the directional stability of the thrust are presented.
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1. Introduction

1.1 Motivation

Throughout history, landing on a different celestial body than our planet has captured our
imagination. The first to accomplish this feat was the lander of the Soviet Union’s Luna
program on February 3, 1966, named Luna 9. Luna 9 was the twelfth soft landing attempt
by the Soviets; it was also the first to transmit photographs from the lunar surface. Sub-
sequently, the lunar surface was reached by Surveyor-I, which was built by the National
Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL)
on May 30, 1966. Unlike the modules of Soviet lunar landers, Surveyor was a lander with
a large solid-propellant retro-rocket engine (comprising over 60% of the spacecraft’s total
mass) at the center [1]. Solid propellant engines (SPE) were used on many early exploration
missions for landing and orbital maneuvers. However, the maneuvers began to require
more precision and control for the new landing missions, which increased the challenges
and control requirements. Under this scenario, the SPEs presented flight controllability
issues, since they are not re-ignitable and have a thrust defined by the geometry of the pro-
pellant grain cross-section (PGCS) [2]. Consequently, in later space missions liquid fuels
began to be used, which increased the costs of the mission and the technological require-
ments to be applied. To mitigate the costs of new missions, miniaturization has brought
about the creation of small modules, which are taking a relevant role in exploration. And
with the increase in computing power of new controllers, it creates the opportunity and
need to revisit the use of solid propellants in space exploration.

Currently, the large-scale space exploration that is projected for the coming years makes
us rethink the use of SPE in space missions. Maggi et al. [3] examine the opportunities
that might arise using SPEs in future space activities, which can reduce its cost with a
simple propulsion system that is characterized by reliable operation, easy handling, safe
storability, and simplicity of design and development. In this context, SPEs should have
a central role in space exploration in the short and medium-term future. Additionally,
as mentioned by Okninski A. [4], the SPEs reduce the number of mechanical parts, such
as valves, tanks, and electrical components for control, decreasing the complexity of
operation required by the propulsion system (See Figure 1.1). Figure 1.1 presents results
of a dedicated ESA study comparing liquid and solid propulsion for de-orbit-relative
costs, mass budget differences due to required spacecraft velocity increase (delta-V) and
expected reliability have been computed for different spacecraft sizes. As summarize on
[5] and in Figure 1.1, Solid propellant is a promising technology to space development.
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Figure 1.1: ESA Solid Propellant Autonomous DE-Orbit System (SPADES) study com-
parison regarding use of different chemical propulsion systems. For satellites of different
mass scales, the required propellant mass, percentage cost, reliability and electrical power
required are shown. Extracted from [4].

Chavers et al. [6] explain that every effort must be made to reduce the mass needed for
the spacecraft in future exploration missions, and a low-weight module with solid-state
propulsion could contribute to this reduction if the propulsion technology is small. Ac-
companied by the technology miniaturization and advanced additive manufacturing,
this allows for the consideration of small rovers and landers (<100 kg), where each com-
ponent must use a reduced amount of volume. This consideration returns to the initial
philosophy presented by the Mars Pathfinder (MPF) mission: an economic small lander
that used three SPEs simultaneously to generate braking thrust on Mars [7]. By then, the
landing of the MPF module was not smooth, and it needed an airbag system for the small
rover inside to survive the impact on the surface, which was to a velocity between 12.5
and 25 m/s.

Small landers and rovers present a different opportunity than the large spacecraft
philosophy for exploration. The small spacecraft philosophy focuses on having many
low-cost systems A rather than one expensive single system B. While System B exhibits
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better performance, autonomy, and precision than small systems A, as demonstrated by the
Mars Science Laboratory (MSL) and Phoenix missions [8], the low-cost systems A allows
larger areas to be explored simultaneously. Otherwise, the simultaneous exploration is one
of the focuses of recent space projects such as the Heracles mission by the European Space
Agency (ESA) and the Artemis project by NASA. One of ESA’s priorities is the Deployment
of geophysical instruments and the build-up a global geophysical network [9]. In parallel, Artemis
is prioritizing capabilities that support lunar resource analysis and prospecting to inform
future human spaceflight objectives and includes activities for Commercial Lunar Payload
Services [10]. On the other hand, Jamanca-Lino et al. [11] present the importance of
exploring Ilmenite deposits to produce oxygen on the moon, which is crucial to obtaining
water, and rocket fuel, and promoting commercial activities between the Earth and the
Moon. Commercial activities, geophysical instrument networks, and research on space
mining presented by the Chinese Lunar Exploration Program (CLEP), need to reduce the
costs of the mission, presenting the motivation to investigate the effectiveness of using a
small lander with SPEs for the soft-landing problem.

1.1.1 Challenge of SPEs in soft control

Despite the advantages mentioned above, SPEs have control problems to perform smooth
movements during flight derived from uncertainties. Maggi et al. describes that the
specific impulse of the solid propellant can vary by 10% of the estimated nominal value,
without considering the uncertainties of the engine that add a transient noise. This value
can be affected too by environmental conditions, corrosion, and burn erosion. But even
having a smaller uncertainty in the specific impulse, the altitude and velocity of the lander
also have uncertainties that affect the control of the ignition point in this type of engine.
The uncertainties in these parameters are one of the main reasons (along with the fact that
the propellant is not re-ignitable) why SPEs are not currently used for soft-landing.

Okninski A. [4] mentions some challenges for de-orbit control and which in this work
are considered relevant for a soft landing process. The key points are:

• Limiting the inert mass of the system and minimising the necessary SPE size. Ef-
fect: use of high performance propellant and a high propellant mass fraction SPEs
(efficient material selection - in particular low-regression-rate ablative insulation).

• Limitar el nivel de empuje para limitar las aceleraciones de la nave espacial durante
el disparo del SRM; las aceleraciones máximas dependen del diseño de la nave
espacial. Aceleraciones superiores a 1 g son aceptables para los CubeSats típicos
y para muchos otros satélites pequeños sin paneles solares ni antenas plegables.
Effect: very low-burn-rate propellant and an end-burning configuration of the SPE
(especially for spacecraft with appendages), use of clusters of SPEs in case of high
total impulse requirements.

Low burn rate and low thrust propellants should be sought, which is achieved with
an End-Burning type configuration. Furthermore, the use of arrays or clusters reappears
again, showing an increase in total impulse. However, little or no documentation exists
on the control problems associated with thrusts applied outside the center of mass, a
problem that appears with SPE arrangements. Therefore, to improve the use of SPE
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in space maneuvers, this work propose that all the thrust required in the mission can
be separated into a series of independent engines (clusters). Each engine in the array
must have a lower thrust and active time than the complete engine, and is controlled
by an independent control function. This property makes the propulsion system more
controllable. However, the arrangement generates forces that are not collinear with the
center of mass of the module, generating residual torques. These torques, which are
not exactly predictable in direction and magnitude, must be counteracted by an internal
control torque. On the other hand, the use of a CubeSat-type platform as a small lander
is present as constraint, which are standardized satellites of low mass and small size [12].
To solve this nonlinearity problem, the use of a control system trained by evolutionary
algorithms is proposed.

1.2 Hypothesis

This research is within the framework of resuming the use of SPEs in space missions in
which soft controls are required. In particular, the work focuses on a promising use of SPEs
with respect to soft landings of small modules. An ideal optimization case only requires
a single motor to begin braking the module from a single position in space. But real life is
not ideal. In this situation, a control function must be designed in a way that optimizes the
landing trajectory including the main engine problems: Non-reignitable, specific impulse
variation, ignition dead times, among others; and uncertainties in state parameters such
as position and velocity.Therefore, the hypotheses that give rise to this research are the
following.

H1 The total thrust of a single SPE can be divided into multiple smaller and independent
thrusts generated by an array of SPEs, increasing control system flexibility and
accuracy for a landing scenario.

H2 There is a control system capable of solving the soft landing problem with an SPE
arrangement, and at the same time controlling the attitude of the module optimally
with a rotational actuator such as reaction wheels (based on the ranges of the residual
torques and the agility of the dynamic response).

H3 Using the proposed control system and a CubeSat mass reference, it is possible to
implement the SPE arrangement as a solution for modules based on 12U CubeSat
platforms using a reaction wheel as the rotation actuator.

H4 Using an evolutionary algorithm to optimize the robust control design, the SPE
geometry can also be optimized based on references from a 12U Cubesat.

1.3 Objectives

1.3.1 General objectives

The general objective is to design a robust control system to use an SPE arrangement in
the moon soft landing problem, considering the uncertainties of the environment and the
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perturbations induced by each engine on attitude and orbital dynamics. The strategy
seeks to provide a new alternative to the CubeSat-based soft landing problem, reducing
barriers to entry in space exploration.

1.3.2 Specific objectives

The specific objectives required to fulfill the work are:

SO1 Design a simulator to propagate the dynamic response of the lander to thrust in a
1-dimensional scenario.

SO2 Design and evaluate a robust control function to demonstrate the effectiveness of
soft-landing in a 1-dimensional scenario and for three types of PGCS: Regressive,
Neutral, and Progressive.

SO3 Model the problem in 2-dimensions to include effects of orbit energy, Delta velocity
requirements, module orientation and characterize worst-case residual torque sce-
narios. With these results, the mechanical requirements for some actuator (such as
reaction wheels) are presented together with the dynamic requirements in relation
to the minimum response time of the module rotation.

SO4 Collect and document data about the uncertainties of the attitude state parameters
based on the available sensors in lunar missions or similar parameters.

SO5 Design a robust control system for trajectory, merging with an attitude control to work
simultaneously. This control system considers the uncertainties of the state variables
as prior control information and uses the information from the state variables as
updated information. Monte Carlo simulations are used to validate the control
system in the evaluation stage.

SO6 Design the engines and propose a rotation hardware system (such as reaction wheel,
or monopropellant thrust) based on the optimized results obtained and the available
space in the structure of a CubeSat 12U.

1.4 Organization

To develop the work of this Thesis, a description of each chapter and its relevance is
broken down. Chapter 2 presents a description of the opportunities for small modules,
the advantages of using engine arrangements in solid and liquid state fuels, a description
of the reported methods to solve the landing problem, control methods for solid fuels,
and optimization approaches for the landing problem. A description of the SPE control
issues is present with an example in 2.5. Chapter 3 presents a description of the problem
with a mathematical formulation. This contemplates the dynamics formulation in one
dimension and in higher dimensions for both orbit (trajectory) and attitude. In addition,
the mathematical model of the solid-state motor is presented, as are the parameters that
present uncertainties within the simulation. In this chapter, some methods are mentioned
to solve optimization problems and how evolutionary algorithms are used to solve com-
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plex problems. The solution is used to design the control such as a linear function. To
improve the result of linear function, it is proposed to use a neural networks as control
functions, and the optimization results are used as input data in the training of the artificial
neural network (ANN), but the development of this work is not solve. Chapter 4 regroups
the relevant points from chapter 3 for the development of this work. Consequently, Monte
Carlos simulation cases used to test the proposed hypotheses are proposed. On the other
hand, attitude control algorithms are used to counteract the residual torques of the engines.
The optimization method is described by one and two dimensional dynamics. Chapter 5
presents the results of the trajectory simulation cases to one and two dimensional dynamic.
Preliminary results raise attitude and control requirements to counteract residual torques.
Then, the performance of the SPEs on landing is shown. Finally, Chapter 6 summarizes
the findings presented in Chapters 4 and 5 and offers conclusions on the performance
of SPEs, and the quantification of uncertainty in reentry prediction. Opportunities for
improvement and future research are presented. The summary of this development is
presented in Figure 1.2.

Figure 1.2: Thesis organization diagram

1.5 Contributions

1.5.1 National

The construction of any space module entails costs in the process of design, manufacturing,
and development of human capital that are relatively more expensive compared to other
areas of engineering. From the experience learned in the SPEL laboratory, it is observed
that the most crucial factor is human capital and, therefore, good personnel management
must be carried out to exploit the resources. In this sense, the design and construction
of SPEs has proven to be more agile, requiring fewer initial resources compared to liquid
fuel engines. This has been demonstrated in university developments by the University
of Concepción, the University of Chile and the Pontifical Catholic University of Chile.
However, SPEs have other problems related to control flexibility during flight and the fact
that once turned on they cannot be turned off or on again, in short, the advantages of
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agility are outweighed by the fact that they are hardly controllable.

Dividing the thrusts into more individual engines (increasing controllability, as shown
by E. Obreque et al. [13]) allows us to continue working along the lines of SPE but thinking
about more complex missions, for example, controlling the orbit of a CubeSat, performing
a reentry, changing from low to high orbits, or landing on other celestial bodies. To achieve
this, it is necessary to have an understanding of the limits of the engine and to know as
much information as possible regarding the uncertainties, since these will be used to create
a controller capable of controlling a space module based on an array of SPEs. The design
of an intelligent controller capable of reducing the risk of the mission and meeting the
objective will contribute to the development of SPEs in Chile.

1.5.2 International

At an international level, there are works done to automate space control processes, and
for spacecraft to "learn" about their dynamics in space. In this sense, this work aims to
initiate the development of a new mission strategy based on an array of SPEs. On the
other hand, the proposed control design will not only deliver the control order or action,
but it will also deliver the probability of success of the mission if that action is generated.
This is crucial for systems where the actuator is limited to a finite number of actions and
must be used accurately and reliably.
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2. State of the art

This chapter presents a review of space exploration missions and the potential of small
modules. The need to approach the optimization problem from another perspective
is shown due to the difficulties of solid propellant engines. Given that the result is
susceptible to uncertainties, a robust design must be thought of that uses the available
information on uncertainties. Finally, since the location of the SPEs in the module is not
precisely known and the timing of any ignition is not perfect, orientation effects must be
considered. Therefore, the methods used to estimate the attitude of the module and the
control method are mentioned.

2.1 Literature review

2.1.1 New opportunity for landing

Recent projects have found an attractive research point in the unexplored areas of the
Moon. One of the explorations is led by the CLEP with the Chang’e landers series. The
lander called Chang’e 4 was the first space mission to soft-land on the far side of the Moon
On 3 January 2019 [14, 15, 16, 17]. A summary of this mission is shown in Table 2.1 along
with other lander and small lander missions, which have prompted new missions such as
Chang’e 5 [18], Luna 25 [19], Smart Lander for Investigation Moon (SLIM) [20], the Altair
lunar lander [21], and XL-1 [6]. The XL-1 is a small, single-use lander capable of placing a
100-kg payload on the lunar surface. XL-1 is sized for launch as a secondary or ride-share
payload on Falcon 9, Atlas V, or Delta IV launch vehicles. These launch vehicles have
standardized spaces available for spacecraft, and the most recently known dimensions are
those based on CubeSat Design Specification (CDS).

Based on the standardization of CubeSat, new studies and opportunities for lunar ex-
ploration have arisen. Astrobotic Technology presents a project called CubeRover to send
one kilogram of payload per $4.5 M, which focuses on planetary exploration using a Cube-
Sat 2U as rover [25]. Himangshu Kalita et al. [26] introduce a new lander perspective with
a 27U lunar module with stored dimensions of 34 x 35 x 36 cm and a mass of 54 kg. The
main components used in this module are commercial and among them is the ecological
High-Performance Green Propellant (HPGP), which provides a higher specific thrust and
a higher density of propellant. On the other hand, the architecture of HPGP propulsion
systems consists of commercial off-the-shelf (COTS) components, enabling a simplified
transition away from hydrazine and allowing the overall mission cost to be reduced.
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Table 2.1: Lander mission summary [7, 22, 23, 24].

Landing
year: 1966 1976-77 1997 2004 2019 2020 2022

Mission: Luna 9 Viking 1&2 MPF
MER-A
MER-B Chang’e-4 Chang’e-5 Luna 25

CBT Moon Mars Mars Mars Moon Moon Moon
IEV [km/s] 2.6 4.7 7.26 5.4 - 5.5 1.7 1.7 ∼

Entry
mass [kg] 1584 992 584 827 – 832 3780 3735.4 1750

Entry
attitude
control

- 3-axis RCS
2 rpm spin -

passive

2 rpm spin-

passive
- -

TDD
Amine-

based and
nitric acid

Monoprop.
N2H4

Solid
rockets

Solid
rockets

Unified-
bipropellant

system

Unified-
bipropellant

system
-

TDVC unknown throttled sep. cutoff sep. cutoff
pintle-type

flowrate
regulating

pintle-type
flowrate

regulating -
throttled

throttled

TVV, m/s 2.4 12.5 5.5 - 8 1.5 1.99 1.5 - 3
TDM, kg ∼780 590 360 539 1080 1837.4
ULM, kg 99 244 92 173 140 ∼300 ∼30
3-sigma
LEMaA

km
NA 280 200 80 26.7 - -

3-sigma
LEMiA

km
NA 100 100 12 13.5 - -

– CBT: Celestial Body target

– IEV: Inertial entry velocity

– LEMaA: Landed ellipse major axis

– LEMiA: Landed ellipse minor axis

– RCS: Reaction control system

– rpm: Revolution per minutes

– TDD: Terminal descent decelerator

– TDVC: Terminal descent velocity control

– TVV: Touchdown vertical velocity

– TDM: Touchdown mass

– ULM: Useful landed mass

However, this propellant still has low levels of methane toxicity, requiring a specialized
laboratory with experts in these technologies. Furthermore, they require additional ele-
ments such as tanks and valves to work, which take up extra volume in the lander [27].
Other works by Himangshu Kalita et al. [28, 26] present some opportunities for CubeSat
science missions, such as visual navigation, environmental sampling, geographic and geo-
physical surveys, and performing in situ analysis and instrument configuration. Another
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Figure 2.1: NRHO family for the Lunar Gateway station. Extracted from [30].

important advance in this matter is presented by the Japan Aerospace Exploration Agency
(JAXA) with its 6U CubeSat lander called OMOTENASHI [29]. They propose to transport
the module as a secondary payload in NASA’s Space Launch System (SLS) Exploration
Mission 1 (EM-1) launch, launch that has been postponed until August 2022. OMOTE-
NASHI consists of scientific instrumentation with an SPE in the propulsion system, which
is used to slow down the module in orbit and start descending. Then the speed of the
module decreases to a speed close to 50 m/s. As the SPE cannot be controlled and there
are uncertainties in the position and ignition point, a shock absorption mechanisms are
needed, for which they employ three types of technology, namely, an airbag, a crushable
material, and epoxy filling. On the other hand, it has 2 commercial gaseous propulsion
systems (MiPS-VACCO) to control the attitude of the module in flight and correct SPE
errors. This shows that there are two possible ways to get to the moon, one with NASA’s
SLS, and one as a Lunar Gateway payload.

Accompanying the mentioned new opportunities in lunar exploration, the Lunar Gate-
way is expected to operate in the future like a space station. The Lunar Gateway will be a
station orbiting the Moon in an expected position of Near Halo Rectilinear Orbit (NHRO)
as shown in Figure 2.1. NHRO provides vital support for a sustainable, long-term human
return to the lunar surface, which is a critical component of NASA’s Artemis program [10].
According to the Artemis program, the colonization of the Moon requires a better under-
standing of the lunar surface that needs to be explored. In this sense, this exploration can
be done with multi-rovers that present a simultaneous sample of the lunar environment,
such as geographic information and magnetic fields. For example, the moon’s magnetic
field does not have a magnetic dipole like Earth’s, and it has magnetic fields with high tran-
sients in some regions [31]. This information is critical to the Lunar Gateway’s navigation
systems, which require an accurate model of the magnetic field based on simultaneous
data collection from multiple landers and multiple rovers. However, to land a larger
number of rovers in different locations, it is necessary to reduce the costs, mass of the
module, volume of the components, and dimensions of the landers and rovers. That is
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why CubeSat-based landers could play a fundamental role in the future. And to reduce
costs and technological complexities, the use of SPE arrays in CubeSat is explored.

2.1.2 Arrangement of engines

Past missions have generated a set of propulsion system improvements that can now
be applied to solid propellants. The Viking module featured a propulsion system based
on a multi-nozzle engine arrangement, called the VLC-REA, or Viking Lander Capsule
Rocket Engine Assembly [32, 1]. The VLC-REA used liquid propellant in a complex nozzle
configuration that demonstrated higher performance by replacing the operation of a single
nozzle with an arrangement of nozzles. Then, the arrangement reduced the temperature
reached in the structural walls and reduced the mass of the engines [33]. However, the
MPF mission first investigated this feature in 1967 with a simplified model in order to
improve the lander’s performance and reduce the total mass required. MPF used three
SPEs as retro-rocket engines, which ignited simultaneously to decelerate. Then, an airbag
system was used to prevent damage when impacting the surface of Mars at 12.5 m/s (as
shown in Table 2.1). As the firing of the engines was simultaneous, an energy damping
system was necessary to avoid impact damage, since the SPEs cannot land smoothly if
used in the traditional way. However, benefiting from the physical advantages of using
an array of engines such as the VLC-REA and the MPF, it is proposed to independently
control the ignition of each engine in the array, allowing greater control flexibility. Recent
examples of the use of an array of micro-SPEs can be seen in orbital and attitude control
systems for CubeSat satellites [34, 35, 36], but not for soft-landing problem.

2.1.3 Powered descend control

Previous work and analysis were made on the landing problem. The use of Pontryagin’s
principle to find the optimal control on the Moon landing is presented by [37, 38]. They
present a simple way to design a switching function for optimal ignition control with
constant thrust in one degree of freedom. Recently, the optimal pinpoint and soft-landing
problem have been solved and reported by [39, 40, 41, 42, 43, 44, 45], but they assume the
use of a propulsion system with a controllable thrust profile. The thrust profile can be
controlled using liquid propellants such as hydrazine, which has been used with differ-
ent actuation technologies: the Throttlable method and Pulse Width Modulation (PWM)
where the flow is controlled by valves [46]. Either requires sophisticated technologies and
expensive, which are other important challenges to be solved in future space exploration
missions. Guidance and control systems using solid propellant are reported by Xiaohua
Zhang et al. [47], where a piece-wise affine MPC-based attitude control for a CubeSat
during orbital maneuver is presented. But the focus of that work is on external control
rather than propellant. They consider the uncertainties of the residual force and torque
that the engine generates and design an attitude control to counteract them in an orbital
maneuver. Limited documentation and technological development exist regarding soft
control with SPEs, because traditional SPEs have a predefined thrust profile that depends
on Propelling Grain Cross-Sections (PGCS) and cannot be controlled in flight (traditional
SPE). The next subsection explains what the PGCS is and how it is involved in the land-
ing problem. Then, in section 2.2, the general optimization concept is developed to be
formalized in this work.
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Generally, to solve the soft-landing problem on the Moon, the final position of the
module with respect to the target location and the mass of the propellant used are opti-
mized. What is sought in the optimization is to minimize the error with respect to the
target and minimize the propellant used by the SPEs. Additionally, aspects related to the
attitude of the module must be considered, since its rotational dynamics should respond
to the residual torques in a certain period of time. Starting with the control of trajectories,
conceptual examples can be taken of Meditch [37], Apollo guidance [48], and Change’s
5. Regarding the attitude and trajectory control and its optimization in the pointing pro-
cess, the reference [45] presents a fusion of optimization methods. It uses Pontryagin’s
Maximum Principle (PMP) to obtain the optimal control law that minimizes the action
time of control. Then, Sánchez-Sánchez and Izzo present the training of an artificial neural
network (ANN) based on the results of the PMP for a given number of trajectories and
simulations. With the ANN, the chattering presented by the PMP is improved, and the
convergence of the results is ensured by becoming the system controller. Other work in
control matter with ANN is present in [49, 50]. They show that the design of the control
begins with the identification of the plant system, which is done through the ANN. For
identification, a Reinforcement ANN can be used with data obtained in real time, or a
network architecture of the Multilayer Perceptron type with previously obtained data,
then the ANN associated with the control system is derived.

As an example, Chang’E 5 module show a guidance flow of the estimation and con-
trol system separated into 3 main blocks: Optimal guidance calculation (OGC), Optimal
guidance assessment (OGA), and Environmental uncertainty learning (EUL). In the EUL
part, the engine-specific impulse and constant maximum thrust are estimated using online
acceleration measurements with the least square method. In the OGC part, a linear tan-
gent thrust parameters for the guidance is determined from a target delta velocity Vgo and
adaptive parameters. With guidance parameters, the direction command of the constant
thrust is determined online. Regarding the sensors available in the Chinese module for
the ADCS, there are accelerometers, start tracker (STT), Inertial measurement unit (IMU),
laser altimeter, Radar velocimeter, and gamma sensor for the last 30 meters. These sensors
will be used to estimate state variables such as position, velocity, orientation and angular
velocity. A description of the proposed module is detailed in the following subsection,
which incorporate the main component needed for the mission.

The drawback of these methods with respect to the presented problem is that there is
only one ignition per motor, we can learn something after pushing the motor, but we cannot
apply this knowledge in the next step, because the state of the module, its properties and
the new engine to burn are different. That is why it is more important to use these tools in
a robust design approach, so that the control does not need updating during descent. For
this to work, the control design must consider the problems of the SPEs and how they are
affected by uncertainties. A description of SPEs is presented in the next section.

2.1.4 SPEs and PGCS

In a SPE, the PGCS is the transverse geometry of a propellant grain that best represents the
progression of burning area Ab, some of these geometries are shown in the 2D examples in
Figure 2.3. PGCS can be modeled mathematically according to D. P. Mishra [51] and other
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Figure 2.2: Diagram of Chang’E-5 LAM intelligent guidance. Extracted from [23].

advanced research presented by [52], where a three-dimensional grain burn is modeled
and simulated. Knowing the model is important to capture important engine phenomena
such as axial pressure drop, shock wave propagation, and erosive burning effects. Among
these engine features is the model of the engine’s thrust with relation to time, a key feature
known as the thrust profile. This thrust profile model is required for the development of
this study and the control system design, and some free software such as OpenMotor may
be utilized to simulate the thrust. More detail will be discussed in the subsection 3.1.3.

EndBurning Star BATES

Figure 2.3: Example of solid propellant engine with EndBurning, Star and BATES PGCS.

The analytical methods present in the literature are generally based on static assump-
tions oriented to engine design, that is, the combustion temperature is constant, and the
pressure does not change explicitly in time, but rather varies as a function of the rate of
change of the burning area (see equation (3.16)). These approximations can be improved
by introducing explicitly time-dependent pressure variations, as shown by Pasquale M
Sforza [53] in chapter 12, but it is an approximation for the engine design stage and not
for the full transition stage. Despite this, for this work a detailed model of the thrust and
the PGCS profile is not required to find a control function. However, approximations that
represent the types of burning are required, such as regressive, neutral and progressive
(see Figure 2.4); and the characteristics of the propellant, such as delay times, action times,
combustion time and dead times. Considering all these variations present in an SPE, it is
necessary to explore new approaches to solve the landing problem. Some of these tools
must be flexible to the variations and uncertainties of the states, allowing robustness in the
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control design. Consequently, the following section delves into the concept of optimization
applied to spatial dynamics concepts.
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Figure 2.4: Example of Regressive, Neutral, and Progressive thrust, respectively.

Since the methods present in the literature are not designed for the soft landing problem
with SPEs, it is necessary to reformulate the optimization problem to find a solution. This
solution must be robust to the uncertainties of the thrust states and variables so that they
do not greatly affect the control performance. The main problem is shown in Figure 2.5,
showing that theoretically there is only one ignition point, and if this is not satisfied, soft
landing is not feasible. For this reason, an optimization that designs a robust control to
uncertainties should be considered [54].

A
ltitu

d
e

Descent Velocity 0,0

Ideal Ignition Point
Trajectories

Impact trajectories
Survived trajectory

Figure 2.5: Optimal ignition point, if this is not satisfied the module will impact the surface.
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2.2 Optimal Control Problem

2.2.1 General Definition

Optimal control theory has become an important field in aerospace engineering and pro-
vides indispensable tools for all types of missions. In space engineering it is important
that each action consumes the least amount of energy, or fuel, or generates the least impact
on the dynamics of the system, and mathematics helps us face these challenges. However,
none of these processes are trivial and require extensive analysis that sometimes ends up
becoming an iterative process of trial and error. Fortunately, control theory presents us
with an elegant way to solve nominal type problems (without uncertainties or noise), so
that the solution guarantees strong local optimization. There is a wide variety of reports in
this area focused on the space sector [55, 56, 57], and to understand the basic concepts that
give rise to this principle, the general formulation of an optimization problem is presented.

The general optimal control problem in Bolza [57] form is considered as



min
u(.),x(.)

J = ϕ(x f , t f ) +
∫ t f

t0

L(x(t),u(t))dt

s.t.
ẋ = f (x(t),u(t), t),

x(t0) = x0, t ∈ [t0, t f ],

u(t) ∈ U,

Ψ(x f , t f ) = 0,

(2.1)

with bold variables as vector. The nomenclature used is listed below.

• J ∈ R: Scalar cost to be minimized.

• ϕ : Rn
× R → R: Terminal cost evaluation that is assumed to be continuously

differentiable.

• L : Rn
×R→ R: Integrative evaluation cost function.

• f : Rn
×Rm

×R→ R : Equality constraints of the state rates.

• x ∈ Rn: State variables of n dimension.

• u ∈ Rm: Control variable of m dimension in the set of admissible controlsU.

• t ∈ R: Time.

• Ψ : Rn
×R→ Rn: Terminal manifolds
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2.2.2 Numerical Techniques

To solve optimization problems, a series of numerical tools have been developed, which
can be grouped into four categories called Direct Method, Indirect Method, Dynamic
Programming and Deep Learning or simply Learning, as shown in Figure 2.6 [58].

Figure 2.6: Optimal control methods including direct, indirect, dynamic programming
and deep learning.

In a direct method, the optimal control is parameterized as a finite dimensional problem,
that is, transform the problem in a Nonlinear Programming problem (NLP). Then, it is
solved numerically by well-developed algorithms for constrained parameter optimization.
Some numerical method are: Direct shooting method, Collocation Method, Differential
inclusion method, Gradient Methods, and method based on Evolutionary Computation
[59]. A method belonging to the gradient family in the adjoint method, which has proven
to be a powerful tool in optimization. However, preliminary analyzes showed little
robustness when adding all the variables, uncertainties and noises to the optimization. It
is proposed to revisit this method in the future, considering keeping the uncertainties and
noises constant throughout a simulation, and repeating the same exercise a considerable
number of times until the greatest number of possible combinations are represented [60].
In an indirect method, the problem is transformed into a boundary condition problem
and necessary optimization conditions are satisfied. Some well-known tools are indirect
shooting, indirect collocation, Evolutionary Computation, forward-backward integration,
among others. Dynamic programming method was developed in the fifties and sixties of
the 19th century, most prominently by Bellman [61], and now it attracts much attention due
to the popularity of Reinforcement Learning. Thanks to the Bellman principle, optimal
control problem can be transformed into the Hamilton–Jacobi–Bellman (HJB) equation.
Solving HJB equation is not an easy task and faces the well-known Bellman curse of
dimensionality. Some tools focus on discretizing the state space in a simple way, using
Differential Dynamic Programming, or iterative LQR. Learning-based methods are recent
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and make use of artificial neural networks (ANN) to find the solution to the optimization
problem, in particular, the Bolza formulation problem [58].

The main advantages of indirect methods are the high accuracy of the solution and
the guarantee that the solution satisfies the optimization conditions. However, they are
frequently subject to serious convergence problems that depend on the estimated initial
conditions. Direct methods are less susceptible to convergence problems than indirect
methods but are less precise. They do not directly satisfy the necessary conditions, and
their accompanying estimate is sometimes deficient. Dynamic programming methods are
less numerically robust and less suitable for handling nonlinearity in state and constraints.
On the other hand, they are still sensitive to the increase in the dimension of the state.
Finally, according to [58], ANN-based learning methods are more robust and deliver
better results than the methods already presented. However, they require relatively large
structures (32 to 64 internal nodes) for the capabilities of a computer on board a satellite
or lander. In any case, the continuous increase in technological capabilities gives us the
opportunity to explore these methods in the future. For the moment, this work seeks a
control law that does not contain matrices with dimensions greater than 10x10.

The Bolza problem is an ideal form for studying space trajectory optimization in which
a function (such as the steering law for the thrust vector) is used to control a launch vehicle
into orbit using the least amount of propellant. Of the methods presented, the best known
and most used in aerospace matters belongs to the indirect methods, that is, it transforms
the problem into a two-point boundary value problem (TPBVP) and which must satisfy
optimization conditions. There are different approaches to transform the optimization
problem that derive from the works of Euler-Lagrange, Legendre, Jacobi, Weierstrass, and
Bliss [56]. These approaches seek to define necessary conditions for the solution to exist
and be locally weak or strong. Euler-Lagrange, Legendre, and Jacobi define necessary
conditions for the optimal solution to be a weak local minimum (necessary to find a strong
local minimum). On the other hand, Weierstrass’s work defines the necessary conditions
for a strong local optimum. However, as mentioned in [57], “the Weierstrass condition’s
"set of all admissible controls" is limited to continuously differentiable, unbounded func-
tions, which are by no means the only feasible controls in practice or in principle”.

In this way, a more general theorem emerges, which includes boundary conditions in the
control, and which depends on measurable or estimable variables. This theorem is known
as the Minimum Principle, and was developed by Pontryagin et al. [62]. Pontryagin’s
Minimum Principle is a much stronger statement than the Weierstrass condition because it
provides the most general continuity restrictions on the control and on the functions of the
Bolza problem. On the other hand, the solution explicitly defines an activation function
that is, in essence, a control law.

2.2.3 Pontryagin’s Minimum Principle

For the development of this principle, the Hamiltonian of Euler-Lagrange’s work is defined
as

H(t,x,u,λ) = λ0L(x,u) + λTf (t,x,u), (2.2)
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where λ is a time-varying multiplier vector know as Lagrange multipliers, co-state or the
vector of adjoint variables. In this work, λ is called co-state. The arguments for time-
dependent variables are omitted for simplicity. The following formulation derives from
the first differential condition [63].

According to the multiplier rule [63, 64], there exist continuous co-state functions λ ∈
[t0, t f ] such that:

λ̇ = −
∂H
∂x

(2.3)

at each t ∈ [t0, t f ] on arcs where u is continuous (piecewise continuous: PWC), and λ0

is a constant such that:
[λ0, λ1(t), · · · , λn(t)] , 0 (2.4)

at each t ∈ [t0, t f ]. Nevertheless, some components may be zero.

Then, if x∗, u∗ provide a strong local minimum to the equation (2.1), the following
condition is necessary

u∗(t) = arg min
ū∈U
H(t,x∗,u,λ). (2.5)

The terminal constraints for optimal trajectories are of the form

Ψ(x f , t f ) = 0, (2.6)

which for aerospace application may describe an orbital intercept, rendezvous, etc. Then,
the boundary conditions are given in terms of

Φ = λ0ϕ(x f , t f ) + νTΨ(x f , t f ), (2.7)

where ν is a constant Lagrange multiplier vector. Using the definition of equation (2.1),
the transversality conditions are defined as

λ(t f ) =
(
λ0

∂ϕ
∂x f
+ νT ∂Ψ

∂x f

)
H(x f ,u f , t f ,λ f ) = −

(
λ0

∂ϕ
∂t f
+ νT ∂Ψ

∂t f

)
, if t f is undefined.

(2.8)

To solve the TPBVP problem, any of the methods mentioned in Figure 2.6 can be used.
However, as will be seen later, some deterministic methods require changes in the defini-
tion of the problem to stabilize the numerical solution.

2.2.4 Evolutionary Computation

These types of techniques are based on the iterative evolution of initial candidate solutions,
through the application of algorithms disturbed by random and deterministic signals.
Depending on the technique, each algorithm has its own operators, schemes and strategies.
Given the diversity of techniques within evolutionary computing, two main families used
in these types of problems are presented: (i) Evolutionary Algorithms (EA), and (ii) Swarm
Intelligence (SI). In EAs, there is the best-known algorithm called Genetic Algorithm (GA).
And in SI, the best known is Particle Swarm Optimization (PSO).
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The GA has already proven to be an important tool for optimizing a robust control
design [65, 66]. Gao et al. [67] present an optimization formulated as a minimax problem
so that system performance is optimized in the worst-case of uncertainty. Their strategies
integrate the objective functions of the subsystems to obtain a systematic optimization
using a set of weights. However, in the landing problem, worst-case uncertainties do not
necessarily lead to worst-case landings. The landing process is a non-linear process that
must be considered as a set of cases within the uncertainties. In this context, a second
approach is presented by Sekaj [68]. In his work, the cost function used in the robust design
is the sum of all the sub-cost functions of population simulations carried out, where the
populations differed by the standard deviation of the initial state uncertainties. This robust
design philosophy is implemented in this work. However, due to the large number of
variables to be optimized and explored, the genetic algorithm may be inefficient with
respect to work time due to the number of operations required in the optimization. On the
other hand, according to [69] the Particle Swarm Optimization (PSO) algorithm is a better
tool for optimizing large numbers of variables and for continuous problems.

Genetic Algorithm

A genetic algorithm (GA) is a search and optimization technique inspired by the process of
natural selection. It is used to find approximate solutions to complex problems where an
optimal solution is not known in advance. Genetic algorithms are commonly employed
in various fields, including computer science, engineering, and biology.

A GA consists of the following key components:

1. Population: A collection of potential solutions to the problem, represented as indi-
viduals or chromosomes.

2. Fitness Function: A function that quantifies the quality or suitability of each indi-
vidual within the population. It guides the search for the optimal solution.

3. Selection: The process of choosing individuals from the current population to create
a new generation. It favors individuals with higher fitness.

4. Crossover (Recombination): The process of combining genetic information from
two or more individuals to create new individuals. It introduces diversity into the
population.

5. Mutation: A small random perturbation applied to some individuals to introduce
novel genetic material and maintain diversity.

6. Termination Condition: A stopping criterion, such as a maximum number of gen-
erations or reaching a desired fitness level.

The GA proceeds in the following manner:

1. Initialize a random population of individuals.

2. Evaluate the fitness of each individual using the fitness function.

19



3. Select individuals from the current population to form the next generation, favoring
those with higher fitness.

4. Apply crossover and mutation operators to create new individuals.

5. Replace the current population with the new generation.

6. Repeat steps 2-5 for a specified number of generations or until a termination condition
is met.

7. The best individual in the final population is the approximate solution to the problem.

For more information about GAs used in the design of robust controllers, the reader is
referred to [67, 68]

Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm is an optimization technique inspired
by the social behavior of birds and fish in search of resources. It is used to find approximate
solutions to optimization problems in multidimensional spaces. In PSO, the solution is
represented as a "swarm" of particles, where each particle represents a possible solution to
the problem. Each particle moves through the search space following two main influences:
its personal experience and the collective experience of the swarm. The PSO proceeds in
the following manner:

1. Initialize swarm by given position and velocity to each particle.

2. Evaluate the fitness of each individual using the fitness function.

3. Update local Best and Update global Best

4. Update particle velocity

5. Update Particle position

6. Repeat steps 2-5 for a specified number of generations or until a termination condition
is met.

7. The best individual in the final population is the approximate solution to the problem.

In PSO the solution is modelled in the form of particles which can move throughout the
search space. Particles position can be find out by its position vector and its movement by
its velocity [70].

pid(k + 1) = pid(k) + vid, (2.9)

where pid is the local position of the particle id, k is the current step, vid is the velocity of
the particle id. The vid is defined as

vid(k + 1) = w · vid(k) + c1R1(pL
id − pid(k)) + c2R2(pG

− pid(k)), (2.10)

where pG is the global best position of the particles, pL
id is the best local position of the
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particle, c1 and c2 are two positive acceleration constants numbers, and R1 with R2 are two
random numbers with uniform distribution such as R1,R2 ∈ [0, 1].

In improved versions of PSO, the inertial weight decreases linearly from the current
iteration to the next. For this, two different parameters are required: wmax and wmin. The
following relationship is used to control inertial weight [71]:

w(k + 1) = wmax −
(wmax − wmin)

MaxIter
· k. (2.11)

The values of the PSO parameters are listed below, and they are constants in this work.

• wmax = 0.8

• wmin = 0.01

• c1 = 1.2

• c2 = 1.5.

.
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3. Theoretical framework

3.1 Problem definition

To access the opportunities to reach the moon, we must go through three processes sepa-
rated by the following stages: Entry, Descent, and Landing (EDL). The entry is the stage
where the lander leaves its orbit. The descent is the stage where the parachute slows down
the fall (not used for moon landings). Third, the landing, which is the stage where the mod-
ule is controlled by the propulsion system to land. The full process is illustrated in Figure
3.1, where it is shown the orbit, landing, and the touch-down at a velocity close to zero on
the target location. Landing at a location with precision close to a prescribed target is one
of the main research challenges in the new generation of expensive exploration missions.
Because these missions, such as InSight and Mars Science Laboratory (MSL), have unique
and expensive landers and rovers, they reduce risk by calculating the trajectory with the
greatest precision. On the other hand, great precision allows for exploring Martian caves
and valleys, returning samples from other planets, and setting up permanent outposts
throughout the Solar System, as mentioned by [72]. For lunar applications, accuracy is
important to get close to interesting craters from a mining point of view or in the study of
oxygen formation. In this sense, the focus of this research is not to improve the precision
with respect to the state of the art but to present the effectiveness of using SPEs in the EDL
process and to quantify the performance of the best precision achieved in soft-landing. On
the other hand, it seeks to identify parameters that help us identify the engine’s design,
its dimensions, and if it can be integrated into a CubeSat platform. In addition to this, the
technical requirements must be studied from the point of view of trajectory and attitude
problems.

3.1.1 Trajectory and Attitude problem

In order for the lander to start "slowing down", the SPEs must start their ignition at a
certain value of position and velocity to generate the correct thrust. Each thrust pulse
resulting from the engine array is generated with at least two individual engines, used
to cancel the torque generated by each individual engine. But due to uncertainties in the
parameters of the engines and the position with respect to the center of mass, the torque is
not completely removed, leaving residual torques that must be removed. Elimination of
this residual torque is accomplished by the lander’s attitude control system, which must
adapt to changes in mass, inertia, and residual torque direction uncertainties. For this, the
attitude determination and control systems (ADCS) must be created together, as can be
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Figure 3.1: The dashed line represents the principal NRHO, and the continuous line
represents the EDL process.

seen in the example of the Chang’E 5 module [23] as shown in Figure 2.2. This diagram
will be used as a reference, but with radical changes in the braking process, mainly due to
differences in the controllability of SPEs in contrast to liquid propellants. Without proper
attitude control, the thrust generated by the SPEs will throw the module off its correct
trajectory, for this reason, they must work together.

3.1.2 Landing module description

The lander is a 12U CubeSat structure dedicate to be the landing module, which has a
square engine arrangement. The engines are limited to the maximum use of the last 8
units (8U) of the structure, but at least a space equivalent to 1U must be left for scientific
instrumentation. Figure 3.2 shows the engine array into the 12U structure. The available
space and mass on the 12U structure is 20 x 20 x 30 cm and 24 kg respectively as shown in
the Figure 3.3. The main components that are needed during the flight are shown in the
Table 3.1.

34
0.

50
 m

m

Top view

Front view

Nozzle of the engines

Case of the engines

CubeSat
structure

226.30 mm

1 engine 2 engines 9 engines 16 engines

Figure 3.2: Example of 12U landers with engine arrangements. From left to right, 4
examples are shown: For a configuration of one, two, nine and sixteen engines.
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Table 3.1: Basic components summary

Component Specification Mass (kg) Used space
Main structure Aluminum 2.0 12U (available)

On board computer (OBC)
Embedded system.
Telemetry and command handling 0.1 0.125U

Battery Gomspace ref. Li-Ion battery pack x8, 77 Wh 0.5 0.5U

EPS
Gomspace ref.
(Photovoltaic power conversion up to 30 W) 0.15 0.25U

Solar Panel Gomspace ref. Body mounted, output ∼40W 1.8 External

Avionic
Basic sensor and actuator. The final mass of the
reaction wheels must be determined. 1.0 2U

Telecommunication (COM) X-Band, P-band, S-Band 0.5 0.5U
Total basic 6.05 3.875U

Availability for instrumentation
and SPE array ∼17.9 8.125U

3.1.3 Dynamic model

The dimensions will be analyzed under 2 approaches to demonstrate the effectiveness
of soft landing in steps. The first consideration will be in 1-dimension, which is used
to obtain preliminary results and demonstrate that the robust design satisfies the control
requirements with an SPE array. The second stage uses 2-dimensional dynamics and
attitude. The latter are used to analyze the aforementioned attitude problem.

1-Dimension

According to the reference frames in Figure 3.3, the 1-dimensional (1D) model during the
landing process is defined as

ÿ = gm +
F
m

(3.1)

ṁ = −
F

Isp · ge
, (3.2)

where y is the altitude, gm is the Moon gravitational acceleration, and m is the mass module.
ge is the earth gravity acceleration at zero altitude, respectively.

2-Dimension and attitude

The 2-dimensional (2D) model is based on the orbital trajectory by the Two Body Problem
similar to Chang’E 3 analysis [73], which is shown in Figure 3.4. The inertial reference
frame O is in 2D dynamic model, which is fixed on the lunar center of mass. The moving
frame of reference R has the same orientation as the frame O, but it moves together with
the center of mass of the body. On the other hand, the reference frame B is also in the
center of mass, but it can rotate with respect to R. Then, the equations that define the
behavior of the dynamics are presented below.

R̈i
=

F
m

ui
F −

µm

R3 Ri (3.3)

ṁ = −
F

Isp · ge
. (3.4)
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Figure 3.3: Example of a lander with 10 thrusters in the engine array in a 1-dimensional
dynamic model. The inertial reference frame is fixed on the lunar surface, and is perpen-
dicular and positive to it. This configuration frees up space equivalent to 4U for electronic
components.
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Figure 3.4: Relation between the inertial reference frame O, moving reference frame R,
and body-fixed frame B in the landing process.

25



Here, Ri = (xi, yi) is the position vector from center of mass of the moon interpreted in
the inertial frame, µm is the standard gravitational parameter of the moon, and ui

F is the
unit vector of thrust represented in theR reference frame (the subscript i is preserved since
it is inertial with respect to rotation). The propulsion system is fixed on the body-fixed
frameB, therefore the thrust unit vector ui

F is given by the orientation of theBwith respect
to R, i.e,

ui
F =

[
cosθ − sinθ
sinθ cosθ

]
ub

F. (3.5)

Here θ is the angle of Bwith respect to R, which is obtained by attitude dynamics.

The attitude dynamics of the module is derived for the total angular moment conserva-
tion, where the angular moment is defined as H = Jω with J and ω are the inertial matrix
and angular velocity, respectively. The total angular moment conservation for lander with
reaction wheel is HT = HL+HRW, where HL and HRW are the angular moment of lander and
reaction wheel, respectively. Then, using the Euler equation for rigid bodies interpreted
in B, HT becomes

Ḣb
T = Jb

Lω̇
i
b + Jb

RW(ω̇i
b +

˙ωb
RW) = τb, (3.6)

where ωi
b is the absolute angular velocity of B with respect to R, Jb

L and Jb
RW is the inertia

of lander and reaction wheel in B, respectively. ωb
RW is the angular velocity of the reaction

wheel with respect to B. τ b is the total external torque interpreted in B. Solving for the
angular acceleration of the module, equation (3.6) gives

θ̈ = ω̇i
b = −

Jb
RW

˙ωb
RW − τ

b

Jb
T

, (3.7)

with Jb
T = Jb

L + Jb
RW as total inertial matrix.

Thrust description

The thrust F is defined by the summation of all solid propellants during flight. Each
engine has a predefined thrust profile that is derived from the PGCS. As part of the SPE
array, these engines can be activated at different times, influencing the total thrust of the
array. Then, the total thrust is defined as the sum of all engine thrust profiles working at a
determinate time, and it has the ability to generate multi-level thrust magnitude F(t). The
total thrust generated by the arrangement with a number of Ne engines is

F(t) =
Ne∑
k=1

Fk(t∗k), (3.8)

where Fk(t∗k) is the thrust profile of each k-engine defined by the solid propellant burn area,
and t∗k = t− tig,k is the current action time that start at the ignition time tig,k for a given time
t in the simulation.

To find the best performance of the thrust profile of each engine, we compared three
different PGCS: Regressive, Neutral, and Progressive. These are related to star-regressive
burning, tubes with rod-neutral burning, and star-progressive or tubular burning (BATES),
respectively [51, 74]. In each type of PGCS, we assume that the engines have the same
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Table 3.2: Advantages and disadvantages of different PGCS

Advantages Disadvantages

EndBurn
- Neutral burning.

- Long action time.

- Stable and neutral thrust.

- Low thrust.

- The chamber wall must be

thick (greater weight) due to

direct and long exposure of

high-pressure and high-tempe-

rature combustion gases.

Star

- Neutral, progressive

and regressive burning

area.

- The shape of the star

can be modified depending

on the thrust requirements.

- Low weight.

- Short action time.

- The shape is more difficult

to manufacture compared to

the others.

BATES
- Progressive burning.

- High final thrust.

- Low weight.

- Very low thrust at the start

of ignition.

- Short action time.

maximum thrust max(Fk) and Isp in the arrangement. The mathematical model of the
PGCS is based in the equation of the next subsection 3.1.3. However, a lag time tl must be
added with first-order approximations.

PGCS model

To simulate the progression of the burning area for a given PGCS, computational tools such
as OpenMotor can be used. OpenMotor is a software based on a static theoretical model
[75] and the Fast Marching Method (FMM) to propagate the burned area. According to
Chen Cheng et al. [76], FMM is a fast solution of the implicit Level Set Method (LSM) on
the premise that burning speed is always positive and remains unchanged with respect
to time. Then, with the defined PGCS combustion model, the mass flow ṁ and thrust
are obtained by means of the specific impulse Isp of the propellant mixture, which can be
obtained using a chemical reaction model of the stoichiometric equation or experimentally.
To complete the thrust profile model, other properties related to the general behavior of the
solid propellant in the engine must be known. Some of these important properties of the
mixture are the burn rate ṙ (linear combustion rate), chamber pressure Pc and temperature
Tc, characteristic velocity C∗, coefficient of thrust CF, the specific heat ratio γ, and the
throat area At. Below is a summary of the main equations related to SPE, starting with the
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properties of the mass, that is,

ṙ = aPn
c + b, (burn rate) (3.9)

ṁg = ρpAbṙ, (propellant mass generation) (3.10)

ṁn =
AtPcΓ
√
RTc

;Γ =
√
γ

(
2

γ + 1

) γ+1
2(γ−1)

, (nozzle mass f low rate) (3.11)

ṁ =
d(PcVc/RTc)

dt
=

Vc

RTc

dPc

dt
+

Pc

RTc

dVc

dt
, (total mass f low rate), (3.12)

where R is the gas constant for the propellant. The total mass flow rate inside the engine
is defined as (by assuming that Tc does not vary with time)

ṁ = ṁg − ṁn =
Vc

RTc

dPc

dt
+

Pc

RTc

dVc

dt
(3.13)

= ρpAbṙ −
AtPcΓ
√
RTc

=
Vc

RTc

dPc

dt
+

Pc

RTc

dVc

dt
. (3.14)

For ideal gases and considering that the thrust of the combustion chamber changes due to
the burning of the propellant, the derivative of the volume is

Pc

RTc

dVc

dt
= ρgAbṙ (3.15)

with ρg as the gas density. Then, the change in pressure with time is

Vc

RTc

dPc

dt
= Abṙ(ρp − ρg) −

AtPc

C∗
; C∗ =

√
RTc/Γ. (3.16)

Now the thrust profile F can be obtained as

F = CFPcAt, (3.17)

where CF is defined as

CF =

√√√
2γ2

γ − 1

(
2

γ + 1

) γ+1
γ−1

1 − (Pe

Pc

) γ−1
γ

 + Ae

At

(Pe − Pa

Pc

)
. (3.18)

Here, Pe is the exit pressure of the engine, Pa is the ambient pressure, and Ae is the exit
area of the engine as show the Figure 3.5.

Torque description

The total external torque τ represented in the body frame is defined as follows:

τb = τb
F + τ

b
D, (3.19)

with τb
F as the torque of SPE arrangement, and τb

D are the disturbance torques. These are
defined as follows:

τb
F =

Ne∑
k=1

Fk(t∗k)(d
b
k × ub

F,k) (3.20)

τD ∈ [min τD,max τD], (3.21)
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Figure 3.5: Convergent–divergent nozzle. Extracted from [51].

where ub
F,k should be the same for all engines, but it is separated so that each engine records

the random uncertainties of positioning and orientation. The min τD and max τD are the
minimum and maximum value, respectively, of known uncertainties. The reaction wheel
torque is internal, and it is explained below.

Reaction wheel torque model

Based on an ideal model according to the following references [77, 78], the ideal torque of
the reaction wheel (with three degree of freedom) is

τb
RW = Jb

RWω̇
b
RW. (3.22)

If we consider that the angular acceleration response is first order, we have

ω̇b
RW =

ω∗RW − ω
b
RW

κL
(3.23)

τb
RW = Jb

RW

ω∗RW − ω
b
RW

κL
, (3.24)

where ω∗RW is the target velocity of control, and κL is the lag coefficient for the first order
model. Then, replacing the equation (3.22) into equation (3.7), becomes in

ω̇i
b = −

τb
RW − τ

b

Jb
T

. (3.25)

3.1.4 Uncertain parameters

There are four categories of groups where unknown parameters are found as disturbances.
Each of them is briefly detailed below.

Altitude and velocity

The initial altitude and velocity of the system will always have an uncertainty component
derived from sensors, mathematical models, and/or estimation filters. This uncertainty
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is translated into a range of unknown parameters. That is why, in the initial physical
conditions, we will assume Gaussian noises, such that

ŷ0 = y0 +N(0, σalt), v̂0 = v0 +N(0, σvel). (3.26)

Here, σalt and σvel are the standard deviations for altitude and velocity, respectively. For the
2-dimensional problem, the uncertainties in each component of the vector R are considered.

Specific impulse with bias and noise

As mentioned in the first section, the value of the specific impulse of a certain propellant
can vary by up to 10% from the theoretical one [3]. Therefore, the Isp,k of each engine will
be updated once as expressed below.

Isp,k = Isp +N(0, σbias). (3.27)

The standard deviation, σbias, is calculated as follows.

σbias =
Isp · 10%

g f
. (3.28)

where g f is a factor which is selected in function of the desired percentage within the
distribution, as shown in the Table 3.3. For this analysis, the parameter g f = 3 was
selected.

Table 3.3: Percentage within the distribution concerning g f .

g f Confidence interval Percentage within the distribution
1 +1s 68.27 %
2 +2s 95.45 %
3 +3s 99.73 %

Now, a noise signal corresponding to an erosive burn, humidity condition, and internal
burning zone has been added. We assume that the noise has the same Gaussian distribution
as before, and its new mean value is the Isp,k calculated by the last subsection. The σnoise

is represented by the 3% of the theoretical Isp with g f = 3. The noise is updated in each
iteration of the simulation, such as

Îsp,k(t) = Isp,k +N(0, σnoise)(t). (3.29)

A comparison of a normalized thrust with and without noise is shown in Figure 3.6.

Ignition dead time

It corresponds to the dead time produced in the control signal due to electrical effects, and
to the initial response of the igniter. This value is randomly selected in a uniform density
in [0, 2] s. It is important to note that the dead time is different and independent of the lag
time to increase the thrust, an example of ignition with dead time is shown in Figure 3.7.
To define the ignition dead time td of each engine, the next equation is used
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Figure 3.6: Regressive unitary thrust with bias and noise.

td = Unif(0, 2). (3.30)

This parameter could be decreased depending on the available technology, but decreas-
ing the ignition response is a more difficult task because it depends on the atmospheric
condition of the igniter.

0 1 2 3 4
Time [s]

0

100

200

300

400

500

600

700

800

Th
ru

st
 [N

]

Model thrust with dead time
Ideal thrust

Figure 3.7: Progressive thrust with dead time.

31



SPE arrangement distribution

The distribution of the engines is assumed to be known and symmetrical to simplify the
calculations. In Figure 3.8 you can see the example of an arrangement of two engines, but
the number of engines still needs to be worked out for landing from orbit. The uncertainties
are in the position of each engine with respect to the center of mass and the orientation of
each engine with respect to the body-fixed frame.

𝑑𝑘 𝑑𝑘 𝛿𝑑𝑘𝛿𝛼𝑘

Figure 3.8: Example of SPE arrangement distribution with 2 engines. The distance of each
engine from the center of mass is dk and has a position uncertainty of δdk. On the other
hand, the pointing of each has a deviation of δαk with respect to the vector ub

F.

Both uncertainties are considered to have a Gaussian distribution, where σα is the
standard deviation of the angle α and σd is the standard deviation of the position. Then,
the final position d̂k in B and the final orientation ûi

F,k in R for the k-th engine are defined
as

d̂b
k = db

k + δdk; δdk = N(0, σd) (3.31)

ûi
F,k =

[
cosθ − sinθ
sinθ cosθ

] [
cos δαk − sin δαk

sin δαk cos δαk

]
ub

F; δαk = N(0, σα). (3.32)

By trigonometric property and considering that for the ideal case ub
k = (0, 1), equation

(3.32) becomes

ûi
k =

[
cos (θ + δαk) − sin (θ + δαk)
sin (θ + δαk) cos (θ + δαk)

]
ub

F

= (− sin (θ + δαk), cos (θ + δαk)). (3.33)

Finally, equations (3.20) and (3.3) become

R̈i
=

1
m

Ne∑
k=1

Fk(t∗k)û
i
F −

µm

R3 Ri, (3.34)

τb
F =

Ne∑
k=1

Fk(t∗k)(d̂
b
k × ûb

F,k). (3.35)

32



4. Methodology

This chapter presents the methodology proposed to tackle the soft landing problem using
SPEs. From the previous chapters, we know that an ideal nonlinear optimization problem
can be solved by PMP. The PMP method transforms the optimization problem into a
TPBVP that satisfies the necessary condition of optimality. Meditch et al. [37] applied
the PMP in a simplified example, showing that thrust ignition can be solved by a linear
function of states. However, solutions to TPBVP are not robust to the dimensions of the
states, and conditional controls like SPE, on the other hand, have chattering problems in
control. To tackle this problem, I propose using evolutionary computational (EC) tools
to solve the TPBVP using the boundary condition in a cost function. The solution to the
optimal control problem transformed in TPBVP by PMP and solved by EC is used to
design and train a robust control.

The first exploration is done based on studying the use of EC in the search for locally
strong optimal solutions. Therefore, it is proposed to study a simplified one-dimensional
case, as shown by the equation (3.1), and the complexity is in the activation of different
numbers of thrusters independently. The advantage of this is that it will allow us to
demonstrate the optimization method from the point of view of evolutionary algorithms,
which do not always give local optimization results. However, using the TPBVP conditions
ensures local optimization only by reducing the errors of the boundary conditions. As
mentioned by Meditch et al. The approximate solution of the simplified problem is a linear
function that depends on the height and the speed of descent. Therefore, the exploration
shows that the evolutionary algorithms achieve similar results when solving the TPBVP
directly, as when solving only the linear function.

The second part of the exploration is done based on studying the theoretical feasibility
of landing with SPEs. From the previous result, the use of EC for the optimization problem
is demonstrated, ensuring the boundary conditions and the linear control function. There-
fore, the next step is to face the challenge of SPE with uncertainties. This control proposal
should be explored by designing through two approaches: a Classic design and a Robust
design, both solved through an evolutionary algorithm. The exploration is carried out
for the simplified case of the equation (3.1), and its importance lies in demonstrating the
theoretical feasibility of dividing the total thrust required into subthrusts. Furthermore,
this validates the robust design method through a random path evaluation. To avoid
adding noise to the methodology of this second exploration, the robust design technique
mentioned by Sekaj [68] is used, which uses GA.
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Figure 4.1: Summary of Methodology.

.

4.1 Task

This thesis proposal focuses on relatively low-cost small landers in the context of recent
lunar exploration projects that propose to pave the way for future colonies, scientific
research, and commercial activities. To achieve the proposed objectives, a series of tasks
and processes must be followed that will allow us to learn from the problem and record
intermediate results. Each of the actors mentioned above proposed a design strategy to
land on the Moon or Mars, but this research differs in the propulsion system [39, 40, 41, 42,
43, 44, 45]. As the SPE-based propulsion system cannot be controlled, only analyzes for a
single ignition point were found in the literature, and then they used gas micro-propulsion
systems to correct uncertainties and an airbag system to cushion the fall. No references
were found for designing system controllers with SPE arrays. For that reason, I propose
a plan that divide the main problem into smaller subproblems that allow me to advance
step by step towards the final goal. Some of these milestones are listed below. Then, in the
Advanced Work section, preliminary results are shown in order to satisfy parts of these
problems. Much of this progress was achieved in recent years of research, culminating in
a study of the state of the art, design of a work methodology, and the publication of an
article [13].

1. Design a landing scenario in one dimension.

2. Incorporate uncertainties and boundary conditions.

3. Design a robust controller for an array of SPEs to improve landing accuracy over the
accuracy achieved by a simple SPE.
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4. Analyze different types of PGCS.

5. Design a landing scenario in two dimensions.

6. Collect and document data for orientation and guidance uncertainties in lunar mis-
sions.

7. Quantify the maximum residual torque generated by the arrangement of motors.

8. Design an orientation controller to eliminate residual torques.

9. Design a landing control for the stage in two dimensions based on PSO and ANNs.

10. Integrate the two controllers: orientation and trajectory.

11. Perform sensitivity analysis of the relevant variables involved.

4.2 Preliminary analysis

4.2.1 Optimal problem - PMP

Assuming a nominal case, this problem can be solved with Pontryagin’s minimal principle.
For this, the following optimization problem is defined based on [37]

min
F

Jc = t f , (4.1)

which minimize the final time t f subject to the dynamics of the equation (3.1). According
with [37, 79], minimizing the final time is analogous to maximizing the final mass of the
module. The terminal constrain of equation (2.6) required that y(t f ) = y f = 0, v(t f ) = v f = 0,
and λm(t f ) = (λm) f = 0.

Using the Pontryagin’s principle [80] we define the state x = (x1, x2, x3) = (y, v,m) such
that the Hamiltonian is,

H(t) = λyẋ1 + λvẋ2 + λmẋ3

= λyv + λv

( F
m
− g

)
+ λm

−F
ve
. (4.2)

Now, we can rewrite the equation (4.2) with (3.8) as,

H(t) = H0 +

Ne∑
k=1

Fk(t∗k)
(
λv

m
−
λm

ve

)

= H0 +

Ne∑
k=1

Fk(t∗k)Φ, (4.3)

where H0 = λyv − λvg is the part of the Hamiltonian that does not explicitly depend on
thrust, and Φ is the switching function (sf) defined as,

Φ =

(
λv

m
−
λm

ve

)
. (4.4)
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Using the condition of equation (2.5),Φ can be used as the ignition signal, which is obtained
such that,

Fk(t∗k) =

Fk(t∗k), if Φ < 1
0, otherwise

. (4.5)

The co-state differential equations are,

λ̇y = −
∂H
∂y
= 0

λ̇v = −
∂H
∂v
= −λy (4.6)

λ̇m = −
∂H
∂m
=
λv

m2

Ne∑
k=1

Fk(t∗k).

If Ne = 1, and Fk=1 is constant, [37] gives an approximate and analytical solution. The
results of this simulation can be seen in Figures 4.2 and 4.3, where different values of mass
flow and burn time are used.
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Figure 4.2: State response for different mass flow α with tb = 64.

The Figures show examples with 3 different initial heights, where the dotted lines
represent the free fall, and the solid line the trajectory after activating a constant thrust.
When the burn time is constant, different descent trajectories are generated. The opposite
is true when the mass flow is constant (constant thrust), where changing the burning time
only affects the entry point to the main descent trajectory.

4.2.2 TPBVP solved by EC

The above solution can be solved with traditional and deterministic methods, as presented
in Figure 2.6. However, for problems with conditioned forces and independent actuators,
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Figure 4.3: State response for different burn time tb with α = 4.46[kg/s].

traditional methods diverge. To solve this, it is proposed to use evolutionary methods,
initially to solve the TPBVP derived from the PMP method, and subsequently show
independence of the evolutionary method with respect to the PMP. To increase the degree
of difficulty, the constant thrust was changed to a regressive one, whose burning time is
limited to 5 seconds.

The key to this problem is to find the correct cost function associated with the boundary
conditions and the ignition control function. For this, the problem is broken down step by
step until the optimization is independent of the PMP method.

TPBVP solved by EC and PMP conditions

To solve this problem we must consider the transversality condition of the Euler-Lagrange
theorem, which adds a boundary condition for the co-state λm. Therefore, the cost function
for an evolutionary optimization is,

J =
√

(y(t f ) − y f )2 + (v(t f ) − v f )2 + (λm(t f ) − (λm) f )2. (4.7)

Using an evolutionary method, such as GA, the results in Figures 4.4 are obtained.
The initial use of GA is based only on the state of the art, with more reports of it as a
robust control design method [68, 81]. However, PSO is more efficient for continuous and
higher dimensional problems and will therefore be used in the ultimate multidimensional
exploration of this Thesis.

As can be seen, the optimization of a simplified scenario manages to satisfy the opti-
mization conditions of the PMP using the co-states as the ignition activation function. In
addition, the regressive thrust with burn time equal to 5 seconds can be observed. The
objective now is to make the search for ignition points independent of the PMP using EC.
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Figure 4.4: OCP based on PMP conditions and transformation to TPBVP. Solution opti-
mized by evolutionary algorithm and minimizing the cost function of equation (4.7).

TPBVP solved only by EC

To search for an independent solution, a linear activation function β is defined, such that,

β(t) = αy(t) + γv(t). (4.8)

Here α and γ are gains to adjust the point where ignition is generated based on the
following condition.

Fk(t∗k) =

Fk(t∗k), if β < 0
0, otherwise

. (4.9)

On the other hand, the cost function is defined as

J = (y(t f ) − y f )2 + (v(t f ) − v f )2 +

(
t f

t f ree

)2

, (4.10)

where t f ree is the free fall time. This time is used to reduce the magnitude of the final time
t f with respect to altitude and velocity error, and it is obtained by solving the following
polynomial:

|gm|

2
t2

f ree − v0t f ree − y0 = 0. (4.11)

The solution to this problem is shown in Figure 4.5.
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Figure 4.5: OCP based on the boundary conditions of the states. Solution optimized by
evolutionary algorithm and minimizing the cost function of equation (4.10).

4.3 1D Analysis

In section 4.2, a method similar to that proposed by PMP is developed, but with an
independent mathematical formulation. For this, a cost function is defined that satisfies
the boundary conditions, and a control function that fulfills the same function as Phi. For
that case, a function β is defined that only activates one thrust, but this must be expanded
for a greater number of SPEs. In the development that follows, it is expanded to different
numbers of SPE considering the mentioned uncertainties. On the other hand, the use of
GAs for the robust design is defined in greater detail and compared with a classic design,
that is, designing the control for the nominal case. The comparison of these approaches
(robust and classical) allows us to further demonstrate the potential of ECs in problems
with uncertainties, where the actuators have conditions prior to flight control.

4.3.1 Design of control function for 1D

For the purpose of this step, a simple expression that is a candidate to be the control
function is select for different numbers of SPE, which is defined as

βk(t) = αky(t) + γkv(t). (4.12)

The control function βk(t) generates the following instructions: when βk(t) is greater than
zero, the k-engine stay off; when βk(t) is less than zero, the k-engine begin the ignition as
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shown in the Figure 4.6. It is important to note that this function, being a straight line in
the Cartesian plane, does not represent the real trajectory or velocity. This function only
represents the ignition point at the instant tig,k, i.e., βk(t) ≤ 0.
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Figure 4.6: Example of activation of each engine. When the control function β(t) is less
than zero, crossing the red line, the engine turns on at the instant tig,k of the simulation.
The ignition delay seen in the figure is due to the dead time of the propellant.

Boundary Conditions

The initial condition is defined by

y(0) = y0 [m], v(0) = 0 [m/s],m(0) = m0 [kg], (4.13)

and the desired final condition is

y(tland) =yland = 0 [m]
v(tland) =vland = 0 [m/s] (4.14)

m(tland) =mland ( f ree) [kg],

where tland is the time when the module first touches the surface. To estimate this value,
it is important to note that due to the discretization of the simulation, the value closest to
zero will be considered as the final point of contact with the surface. That is, if at time tk

the height is yk = 0.2 m and the position at time tk+1 is yk+1 = −0.1 m, it is considered as
final surface contact the value −0.1 m, and the landing time is tk+1.

Optimal problem

Two optimization approaches are carried out to contrast them: a direct optimization (for
classic control design), and a stochastic optimization (for robust control design). The first
approach considers a direct cost function as follows:

min
ṁ,ta,αk=1,··· ,αk=Ne ,γk=1,··· ,γk=Ne

Jc =A(y(tland) − yland)2 + B(v(tland) − vland)2

+ C
(

tland

t f ree

)2

; c ∈ [1, 2, · · · ,Nc] (4.15)
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where A,B,C are gain parameters, Nc is the number of trajectories, and t f ree is the free fall
time. This time is used to reduce the magnitude of the landing time tland with respect to
altitude and velocity error, and it is obtained by solving the following polynomial:

gm

2
t2

f ree + v0t f ree + y0 = 0 (4.16)

The stochastic optimization approach is defined with an average cost function as fol-
lows:

min
ṁ,ta,αk=1,··· ,αk=Ne ,γk=1,··· ,γk=Ne

J =b1µJ(Jc) + b2σJ(Jc); c ∈ [1, 2, · · · ,Nc] (4.17)

with Nc = 30. See more details in subsection 4.3.1.

Genetic algorithm

In order for the GA to recreate the natural evolutionary process and find an optimal
solution, it is necessary to define the terminology involved in the general process. First,
the first generation of population must be created, which is usually formed randomly
according to the range of the variables. This first generation is evaluated in the landing
process by calculating a cost function that delivers an error value with respect to the target.
Subsequently, each of the cost functions associated with the population’s individuals are
compared to form a second generation. This process is divided into Selection, to choose
the best individuals called parents; Crossover, to create new individuals from two parents;
and Mutation, to randomly affect a parameter within an individual (ṁ for example) and
prevent them from getting stuck. The full process is shown in Figure 4.7, accompanied by
equation (4.18) and the definition of the population set P.

For the selection process, 20% of the individuals with the lowest cost function (which
are landings with low error relative to the target) are selected directly. The remaining
80% is selected using the roulette wheel method. For the crossover. we use two types of
operators alternately to accelerate the optimization: the one Point crossover, and arithmetic
crossover. The one point crossover cuts the individual of two parents randomly selected to
create two children (the position of the cut is also chosen randomly). Arithmetic crossover
assigns weights to both parents and then performs an arithmetic sum for each parameter
within the individual. For this project, weights of 0.3 and 0.7 were used to create two
children, respectively. For the mutation process, each parameter within the individual
is randomly assigned a probability of mutating from 0 to 1, if one of this is less than the
probability of mutation, then that parameter mutates within the value ranges. To continue,
the specific definitions of individual parameters and cost functions are introduced in the
following sections.

Individual parameters

The parameters to be optimized are the control gains, the mass flow ṁ, and the action time
ta. To solve, we propose the following format for a GA individual Gi:

Gi =
[
ṁ, ta, αk=1, · · · , αk=Ne , γk=1, · · · , γk=Ne

]
i , (4.18)

where i represent the i-th individual of a generation ng of population Png = [G1, · · · ,GNi],
with Ni the number of individuals in the population.
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Landing simulation

Cost function for each 

Selection

Crossover

Mutation

Figure 4.7: Representation of the evolutionary process of the GA, where the landing
simulation is used to create a new generation of populationP to solve the optimal problem.

Individual cost function

For the hypothesis H1, 30 trajectories obtained from the uncertainties are defined, and
they are used in the optimization stage. A cost function related to the target (touching the
surface with zero speed) is calculated for each of the trajectories. For each individual of the
GA, the trajectories must be simulated (differentiated from each other by the uncertainties).
The 30 cost functions are defined as,

Jc =A(y(tland) − yland)2 + B(v(tland) − vland)2

+ C
(

tland

t f ree

)2

; c ∈ [1, 2, · · · ,Nc] (4.19)

where A,B,C are gain parameters, Nc is the number of trajectories, and t f ree is the free fall
time. This time is used to reduce the magnitude of the landing time tland with respect to
altitude and velocity error, and it is obtained by solving the following polynomial:

gm

2
t2

f ree + v0t f ree + y0 = 0 (4.20)

The equation (4.19) is called as Direct Cost Function (DCF). but the optimization measure-
ment of each individual is defined by an Average Cost Function (ACF) defined as

J =b1µc(Jc) + b2σc(Jc). (4.21)

Here µc(Jc) and σc(Jc) is the mean and standard deviation, respectively, of all costs Jc

associated with a single individual. The mean is calculated as

µc =
1

Nc

Nc∑
j=1

Jc, (4.22)
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and the standard deviation σc is defined as

σc =

√√√
1

Nc

Nc∑
j=1

(Jc − µc)2. (4.23)

The parameters b1 and b2 are gains. The benefit of this feature is that the selection of the
best individual is based on statistical parameters that show how close all cases are to the
expected landing state.

4.3.2 First Approach: Controller Optimization without Trajectory Un-
certainties

This subsection presents the optimization for an ideal scenario without uncertainties on the
training. For this scenario, we solve the optimization problem with cost function present
in the Equation (4.19), that is, a single trajectory. The full process of optimization for this
case is shown in Figure 4.8. The solutions obtained by the OC and the Ne engines are then
evaluated on an uncertain scenario. Each number of engines has a particular solution and
is independent of another, so it is evaluated independently. These evaluations show the
landing point for all trajectories and are used to form a velocity and altitude distribution.
Subsequently, this information is used to obtain the mean and the standard deviation of
the landing state for an arrangement configuration of the different numbers of engines.

Figure 4.8: First approach: Optimization for scenarios without uncertainties in the training
process.
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4.3.3 Second Approach: Controller Optimization with Trajectory Un-
certainties

As a counterpart to the previous subsection, in this scenario we use the information
corresponding to the uncertainties to improve the landing of the model. Therefore, we
optimize based on the recursion of the training using different initial conditions of the
states for each number of engines and generation of the GA.

The optimization process begins by iterating from an array of engines from k = 1, · · · ,Ne,
and with an initial population of candidate solutions in the GA. In each generation of
the GA, we evaluate for different Ne. Then, the number of engines is fixed to generate
Ncase of initial states defined by Equations (3.26), (3.27) and (3.30). Each of these initial
states create a j-th trajectory with j = 1, · · · ,Ncase. These cases are then evaluated in
the dynamic model passing for all the individuals of the generation. In the dynamic
model, the continuous noise of the specific impulse is added at each time step of the
simulation. When the simulation ends, the cost of each trajectory is calculated separately
according to Equation (4.19) and stored in a vector that regroups the costs of all the cases
(trajectories). When all cases have been simulated, the ACF is calculated to execute the
selection, crossing, and mutation process of the GA. Once some criteria for stopping the
GA have been satisfied, the number k of engines in the arraignment is increased, and the
same process mentioned above is carried out again until Ne. The full process is shown in
Figure 4.9.

Figure 4.9: Second approach: Optimization for scenarios with uncertainties in the training
process.
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4.3.4 Thrust Model

To avoid complicating the first exploratory feasibility analysis, it is proposed to use a
simpler mathematical model for propulsion. The calculations in Section 3.1.3 require
numerical propagation and the definition of engine designs, among others. This is why
the mathematical model presented below is used in this analysis.

PGCS-Regressive

The regressive thrust profile is modeled with a hyperbolic tangent function (HTF) at the
beginning, a negatively sloping linear function in the middle, and again with an HTF at
the end. The mathematical model for the unitary thrust Tk(t∗k)/max(Tk) is



(
1+tanh

((
t∗
τd
−ζ

)
s
))

2 t∗k ≤ τd + τl

κrt∗k + cr t∗k ≤ τr1+tanh

− (t∗k−ta−2τd)
τd

−ζ

s


2 t∗k ≤ τd + ta + τl

0 otherwise,

(4.24)

where τl is the lag time to reach 99.99% of the thrust, τd is the delay time to reach 10.0% of
the thrust, and τr is the final point in the linear regression. The parameters κr, ζ, s, and cr

are calculated as

s =
arctanh

(
f1 · 2 − 1

)
− arctanh

(
q% · 2 − 1

)(
(τl+τd)
τd
− 1

) , (4.25)

ζ = 1 −
arctanh

(
q% · 2 − 1

)
s

, (4.26)

κr = −
f1 − f2

τr − τd − τl
, (4.27)

cr = f1 − κr (τd + τl) , (4.28)

where q% is the percentage of maximum combustion chamber pressure when the action
time ta starts and ends according to [51]. For a q% = 0.1 (typical value), the action time
corresponds to 80% of the total burning time.

We assume a maximum regression value of 99.9% of the thrust ( f1 = 0.999), and a final
value in the regressive curve of 30% ( f2 = 0.3). Now, τi is defined as

τr = ta + 2τd −

(
arctanh

(
2 f2 − 1

)
s

+ ζ

)
τd. (4.29)

Example: For an ignition time tig,k = 0 of a single engine, τd = 0.2, τl = 0.5, ta = 5 s, the
Equation (4.24) result in the thrust profile shown in Figure 4.10.
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Figure 4.10: An example of regressive unitary thrust.

PGCS-Neutral

The neutral star grain (θd = θneutral) is used because of its advantages in order to increase
the initial surface area [82] and to keep a semi-constant thrust. The typical thrust profile
for the star design is a backward-neutral burn area. As the burning area progresses, its
surface area decreases as the outer portion of the grain expands, exposing more surface
area. This trade-off yields the thrust profile depicted in Figure 4.11. The mathematical
model for the unitary thrust Tk(t − tig,k)/max(Tk) is

(
1+tanh

((
t∗k
τd
−ζ

)
s
))

2 t∗k ≤ τd +
ta
21+tanh

− (t∗k−ta−2τd)
τd

−ζ

s


2 t∗k ≤ τd + ta + τl

0 otherwise

. (4.30)

PGCS-Progressive

For progressive solid propellant, the BATES PGCS is the most widely known shape. The
whole grain is in the shape of a solid cylinder with a circular hole in the center along
the cylinder. Another progressive thrust is obtained by star-progressive. The progressive
thrust is shown in Figure 4.12.

The mathematical model for the unitary thrust Tk(t − tig,k)/max(Tk) is

(
1+tanh

((
t∗k
τd
−ζ

)
s
))

2 t∗k ≤ τp

κpt∗k + cp t∗k ≤ τd + ta − τl1+tanh

− (t∗k−ta−2τd)
τd

−ζ

s


2 t∗k ≤ τd + ta + τl

0 otherwise

, (4.31)
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Figure 4.11: An example of neutral unitary thrust.

where κp = −κr, τp is the starting point in the linear progression. τp and cp are defined as

τp =

(
arctanh

(
2 f2 − 1

)
s

+ ζ

)
τd, (4.32)

cp = f2 − κpτp. (4.33)
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Figure 4.12: An example of progressive unitary thrust.

Now, in section 5.1 the reader will be able to see the results of the analysis in a descending
dimension. These results was published in [13].
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4.4 Plane coordinate analysis

4.4.1 Expansion of Mission and Requirements

Taking the results from the methodology of the Section 4.3, it is shown that an SPE
array performs better when using a robustly designed control [13]. However, solving the
problem of landing a module at a height of 2,000 m and passing another to an orbital
landing at a height of 262 km (peri-moon equal to 2,000 km), is a more complex scenario.
Among the new complexities added are:

1. The mass required by the propellant is greater than the landing from 2000 m.

2. Residual torque must be quantified and how it affects the reaction wheel flywheel
design.

3. An orientation change is required to leave the orbit and then orient the module
vertically.

Point 1

First, it is necessary to know if the required mass of propellant satisfies the restrictions in
Table 3.1. To do this, we use Tsiolkovsky’s rocket equation, which relates the amount of
velocity desired to change with the mass needed in the process. An approximation of the
speed ∆v needed to land in the worst case is calculated as,

∆v = ∆ve + ∆v f , (4.34)

where ∆ve and ∆v f are the velocity of an elliptical orbit and the free fall velocity, respec-
tively. For energy conservation, both are defined as

∆ve =

√
µm

( 2
R
−

1
RA

)
, (4.35)

∆v f =

√
2µm

( 1
Rm
−

1
R

)
. (4.36)

Here, R is the module of the vector Ri, Rm is the moon radius, and RA is the semi-major axis
of the ellipse defined as RA = Rp + Ra. The apolune Ra and perilune Rp are 68000 km and
2000 km, respectively (RA = 35000km). The approximation of equation (4.34) considers that
the module completely slows down its speed in the elliptical orbit, and then uses another
thrust to slow down the speed acquired in the free-fall descent (in a straight line). This ∆v
is the worst case shown in Figure 4.13a, where the maximum velocity required is 3316 m/s.
Using the Tsiolkovsky equation, the approximate mass required can be calculated. This is
defined as

∆v = Isp · ge ln
m0

m f
; mp = m0 −m f , (4.37)

where m0 and m f are the initial and final mass of the CubeSat module, respectively.

Now, for different values of R belonging to the path of the ellipse, there is the graph in
Figure 4.13b that show the mass required. The red line represents the limit of available
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(a) Simplified case to estimate the worst case
of mass required in the descent and landing
of the lunar module. The required ∆v ve-
locity is calculated for different release dis-
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(b) Mass of propellant mp required according
to the distance R from center of mass for dif-
ferent values of Isp and release distances from
the orbit according to the center of mass of
the moon. The mass available on the Cube-
Sat for the propellant is reduced depending
on the make of the engine.

Figure 4.13: Balance of energy and mass to land a CubeSat of an orbit NRHO.

mass in our 12U CubeSat module, while the other lines represent the limit of propellant,
taking into account the structural parts needed to build the assembly (ignition systems,
engine casing and nozzle). This value considers the manufacturing technology used in the
engines. For amateur technologies, the structural mass corresponds to 30% of the mass of
the propellant mp (for conventional and small engines), therefore, the available mass mp is
very low and does not intersect the values of Isp displayed. Using manufacturing advances
such as the Space Shuttle Solid Rocket Booster (SRB) and the JAXA SS-520 sounding rocket
[83], whose structural mass corresponds to 20% and 10% of the propellant respectively,
the available mass limit mp is higher. This value now matches some typical Isp values of
conventional blends. In this graph we can see that the higher the specific impulse, the
lower the mass required (a characteristic that occurs in plasma thrusters, recently used in
CubeSat satellite maneuvers where the mission time is long or is not a critical component
since the thrust is considerably lower than an SPE).

Another important component is that the reference values that we can find in the
literature, such as [53, 51] consider calculations and experiments at sea level. The selection
of the propellant must consider this calculation correction, since the SPE will work in a
vacuum environment (slightly increasing the Isp). The theoretical specific impulse can be
calculated as follows,

Isp =
1
ge

CFC∗. (4.38)

The specific impulse calculated for terrestrial applications is assigned as Ie
sp. On the other

hand, it can be assumed that the design is optimal at sea level, that is, Pe = Pa. This mainly
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affects the equation (3.18), which for an Earth mission is defined as,

Ce
F =

√√√
2γ2

γ − 1

(
2

γ + 1

) γ+1
γ−1

1 − (Pe

Pc

) γ−1
γ

. (4.39)

The parameters ge and C∗ remain constant for missions on earth as well as in a vacuum
if it is true that the speed of the fluid at the nozzle throat is equal to the speed of sound.
Then, the coefficient of thrust in vacuum (Pv

a = 0 atm) Cv
F is defined as

Cv
F =

√√√
2γ2

γ − 1

(
2

γ + 1

) γ+1
γ−1

1 − (Pe

Pc

) γ−1
γ

 + Ae

At

(Pe

Pc

)
. (4.40)

Finally, the relationship between the specific impulse of ground missions at sea level and
missions in vacuum, Ie

sp and Iv
sp respectively, is defined as

Iv
sp = Ie

sp ∗
Cv

F

Ce
F

= Ie
sp

(
1 +

Ae

At

Pe

Pc

1
Ce

F

)
. (4.41)

On the other hand, the output area Ae is obtained from the conservation of mass with the
following expression

Ae

At
=

Γ√
2γ
γ−1

(
Pe
Pc

) 2
γ

[
1 −

(
Pe
Pc

) γ−1
γ

] . (4.42)

Substituting the equation (4.42) in equation (4.41), the following expression is found

Iv
sp = Ie

sp


1 +

Γ√
2γ
γ−1

(
Pe
Pc

) 2
γ

[
1 −

(
Pe
Pc

) γ−1
γ

] Pe

Pc

1
Ce

F


Iv
sp

Ie
sp
= 1 +

1[
1 −

(
Pe
Pc

) γ−1
γ

] γ − 1
2γ

. (4.43)

This equation is valid considering that the flow reaches the speed of sound at the throat
of the engine forming a normal shock wave. This occurs when

Pth = Pc

(
2

γ + 1

)γ/(γ−1)

(4.44)

according with Figure 3.5. Therefore, Figure 4.14 shows the ratio between Iv
sp/Ie

sp for a
range of the pressure ratio Pc/Pe from 10 to 100.
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Figure 4.14: Variation of the specific impulse in vacuum according to the specific impulse
calculated at sea level. It can be seen that the percentage increase is greater in low pressure
rockets, that is, smaller engines.

With what is presented in this subsection, it can be seen that with a specific impulse
greater than 220 s and with the development of an advanced manufacturing of the SPE
combustion chamber, the mass of propellant required is within the margins of Figure
4.13b. On the other hand, if the pressure ratio of the SPEs belonging to the array is around
30 (PC/Pe), an increase in Isp of up to 10% is expected. We can see this in the results
presented by [84], from where the data to solve this work is taken. There are a variety
of solid propellant fuels to use in this development. Before selecting a specific one, or
taking its characteristics as references, there are some important considerations. The first
of these is the ecological and safety trends in space exploration that exist today, and one of
the propellants is known as “Green Propellant” [85]. This is important for interplanetary
exploration, since the goal is to contaminate the places to be explored as little as possible,
especially with highly toxic propellants such as hydrazine.

To use the propellant in a civil launcher, the propellant must be of hazard class 1.3
(non-detonable) and the burning rate must be adjustable in the range of 7 to 15 mm/s
at 7 MPa, with a pressure exponent less than 0.5 [84]. Some examples of propellant for
different configurations are presented by the author, and are shown in Table 4.1. For this
work, the properties of HTPB 1912 are used, where the specific impulse equal to 280 and
a density of 1.81 g/cm3 is taken as a reference. This propellant is not experimental and
has been used in several applications. Its performance corresponds in a minimum total
mass of 14.5 kg, of which approximately 8 kg correspond to orbital braking.

Point 2

The torques generated by the SPE arrangement are analyzed for the case of Figure 3.8, that
is, two SPEs symmetrically separated and oriented in the same direction. Based on the
equations (3.35) and (3.33), the residual torques of two engines are generated for different
values of d̂k and types of PGCS. This is seen in Figure 4.15, where the values used in the
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Table 4.1: Delivered vacuum specific impulse for HTPB/Al/AP and optimized HTP-
B/Al/ADN/AN propellants (Vacuum specific impulse) [84].

Propellant Oxidizer (%) Al (%) HTPB (%) Isp (s) Tc (K) ρ (g/cm3)
HTPB 1912 69 (AP) 19 12 280 3550 1,81
ADN/AN 100/0 70/0 17 13 291 3395 1,70
ADN/AN 80/20 53,6/13,4 20 13 287 3335 1,70
ADN/AN 60/40 39/26 22 13 283 3254 1,70
ADN/AN 50/50 32/32 23 13 281 3208 1,70

simulation are shown in Table 4.2.

Table 4.2: Uncertainties in SPE position to respect to center of mass.

Parameters Value
σd 0.1 mm
σα 0.5°
td Unif(0, 0.5)

Figure 4.15 shows 6 cases of residual torques generated from the aforementioned equa-
tions. Although it is not possible to see a clear pattern of distribution, the following
observations can be drawn for each type of PGCS. Regarding the maximum value of the
torques, this is more affected by the torsion arm dk than by the type of PGCS. That is why
the worst scenario occurs with dk = 0.05m in the 3 types of PGCS.

• Neutral: The initial and final torque peaks have similar values, and they are oppo-
sites. On the other hand, the central area of the residual torque has a constant value
close to zero in most cases.

• Progressive: Initial and final peaks differ in level due to burn-in behavior, and they
are opposites. It can be seen that the initial torque is less than the final torque, and
in the central zone the torque is close to zero, but it changes both backward and
forward.

• Regressive: Initial and final peaks differ in level due to burn back behavior, and they
are opposites. It can be seen that the initial torque is greater than the final torque,
and in the central zone the torque is close to zero, but it changes both backward and
forward.

From a control point of view, the progressive PGCS type appears to be more controllable
(by a reaction wheel). This is because the initial torque is small at the beginning of the
thrust, allowing the rest of the thrust to be applied correctly. As the highest residual
torque is at the end of the burn, this could be corrected with time before starting a new
thrust. However, based on the results obtained in hypothesis H1 (shown in Figure 5.6), the
progressive PGCS has a lower performance than the regressive one on the moon landing.
This is why it must be solved in such a way that the solution remains optimal with respect
to the soft landing.
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(a) Neutral - dk = 0.03m
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(b) Neutral - dk = 0.04m
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(c) Neutral - dk = 0.05m
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(d) Progressive - dk = 0.03m
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(e) Progressive - dk = 0.04m
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(f) Progressive - dk = 0.05m
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(g) Regressive - dk = 0.03m

� � � � � �� ��

������

������

������

������

�����

�����

�����

�����


�
��
�

��	
�
�

(h) Regressive - dk = 0.04m
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(i) Regressive - dk = 0.05m

Figure 4.15: Random residual torque for different types of PGCS and distance from the
center of mass dk. Each graph shows 6 random torques for each configuration.

Point 3

To understand the problem in its final state and the critical points of ignition control and
change of orientation, the landing problem is divided into 3 stages: 1) Entry, 2) Descending,
and 3) landing (EDL process of the Figure 3.1).

• The first entry stage is where the module must be slowed down to leave the initial
orbit and begin to decay by gravity. For this stage, the module must burn only one
engine with a required initial orientation. The SPE required for this stage is the
largest, and can weigh between 3 and 5 kg.

• For the second stage, the module must make a controlled descent from orbital release
to close to 2,000 m. This stage is the one that presents the greatest orientation chal-
lenge, since it must rotate the module from its orbital orientation to the orientation
required in the descent. Orbital orientation requires that the thrust be tangent to the
orbit, whereas in descent the thrust must be parallel to the trajectory.
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• For the third stage, the module is expected to be close to 2000 with a speed of less
than 50 m/s. At this point, the decrease is similar to that presented in the SO1 and
SO2 objectives, but considering the effects of attitude. Since the array has a larger
number of motors at this stage, the residual torques are expected to be constant, and
therefore the reaction wheel response must be in accordance with the requirements.
A point in favor that we can find at this stage is that the mass and inertia of the
module will have already decreased due to the burning of the previous SPE (from
stage 1 and 2). This decrease in inertia will help make the reaction wheel response
less demanding and the reaction wheel dimension smaller.

4.4.2 Uncertainties and Boundary Conditions

Based on the literature studied [86, 72, 21, 3], the uncertainties and requirements for the
mission are grouped in Table 4.4, and 4.3, respectively. According to the uncertainties and
the action plan to carry out the control mission, the information presented in Figure 4.16
is regrouped. It can be seen that initially the mission starts from an elliptical orbit with
uncertainties of 100 meters with respect to the nominal orbit, and for the speed an error of
10 m/s. Then, an ignition begins that makes it descend in free fall with a tangential speed
close to zero (desirable). The error in the descent stage is 50 m in position, and 5 m/s in
speed. Once an altitude close to 2000 m is reached, the main engine burns out, which will
slow down a large part of the free fall speed. Subsequently, comes the soft landing stage.
At this point the height error decreases drastically to 0.1 m thanks to the relative sensors
that exist. Likewise, the speed error decreases to 0.5 m/s. In this last stage the remaining
engines will be activated to make the soft landing.

Table 4.3: Placeholder Touchdown conditions.

Parameters Value
Error of position landing ||⃗e|| > 10 [m]
Error landing velocity || ˙⃗e|| > 0.5 [m/s]
Horizontal landing velocity > 0.5 [m/s]
Error of angular orientation > 1 [deg]
Error of angular rate > 5 [deg]

Table 4.4: Parameters with uncertainties.

Parameters Value Details
σpos 100, 50, 0.1 m The standard deviation of position for the First, Second,

and for the Third stage
σvel 10, 5, 0.5 m/s The standard deviation of velocity for the First, Second,

and for the Third stage
Isp : σbias (10% at 3σ) Bias in specific impulse
Isp : σnoise (3% at 3σ) Noise in the specific impulse
τd 0.2 s Thrust dead time of each motor
τl 0.5 s Thrust lag time of each motor
σd 0.1 mm The standard deviation of engine position
σα 0.5° The standard deviation of engine pointing
td Unif(0, 0.5) Ignition dead time (for electrical signal)
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Figure 4.16: General mission stages with state errors in each process.

4.4.3 Optimization and Control Design

The optimal control design is separated into 2 studies. The first of them contemplates
the optimization of the first and second landing stages (Entry and Descending stage), and
the second contemplates the soft and vertical landing stage (landing stage). The concept
for the first study is detailed in Figure 4.17, where all possible descent configuration
combinations can be seen. That is, explore whether braking will be better for a forward,
backward, or neutral PGCS, and at which orbital locus the burn should be initiated. After
this, the module must change its orientation to vertical and explore the next configuration
of the SPE, and a new position and speed of burning. This exploration allows to optimize
the base configuration and is solved with the use of the PSO algorithm. The same process
is then applied to the final stage of landing.

Unlike the control function presented in section 2.2.1 by [13], we propose as future
work a function of the ANN type. This idea is based on the concept presented in Figure
4.18, where the use of an ANN can be better adjusted to the soft landing requirements,
increasing the flexibility of the ignition point of each engine.

The flexibility is associated with the type of actuator, such as an SPE. These engines only
have one ignition point, if a control condition is not satisfied there is no other option to
start it. These have a defined thrust and burn time prior to flight, but that may vary slightly
due to environmental conditions. Together with these variations, uncertainties about state
parameters such as position and speed are added, therefore, it is more feasible to miss
the ideal ignition point. The focus of this work is to work on a line where the ignition
point is a control function that covers a larger domain, as presented in [13]. But this still
has room for improvement, and that is why an Artificial Neural Network is proposed as
the control function of each engine. On the other hand, the method presented in [87, 88]
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Figure 4.17: The Figure shows the optimization formulation of the PGCS type and the
ignition points for the three landing stages: Orbital braking and release, and Descent stage
up to 2000 m (Where the 3rd landing stage begins). The optimization is performed based
on the error between the final landing state and the target state, associated with a soft
landing. On the other hand, consider minimizing the mass used in the descent of these
first two stages.

applied sparsity techniques to decrease the dimension of the matrices using regulators,
which is an important key in space missions that require decrease the complexity of control
functions.
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Figure 4.18: Landing process with one Solid propellant engine, showing that the robust
optimization tackles the problem of the uncertainties in the trajectories. Figure a) shows an
ideal optimization (without uncertainties) that has only one point of ignition, any trajectory
that is not ideal will impact the surface. Figure B) shows the linear control function present
in [13], which is calculated from a population of trajectories controlled by the same control
function, this allows more trajectories to survive (more flexible control). Figure C) shows
an ANN proposed as future work and that is the control function. This is not limited to a
linear function and can explore more dimensions of the function in a local area.

Now, the main concept aimed at is to use the PSO algorithm to find the ignition point
of each motor and its trajectories and save the control activation. The present proposed
step by step solution is:

1. Create Np different trajectories from a normal random noise uncertainties in position
and velocity. Each trajectory is a module that has Ne numbers of engines.

2. For each trajectory, search the best position of ignition point and the PGCS configu-
ration of the engine with PSO algorithm.

3. Save the position R⃗, velocity ˙⃗R, mass m, the orientation θ, and the angular velocity
θ̇ at the moment that each engine ignited to create a set of data for training X,Y.
This data set is created for each engine of the module and for each trajectory, and it
is defined as the algorithm 1, where β is the ignition variable control. β = 1 if the
ignition results in a soft-landing trajectory, and β = 0 otherwise. β̂ is a measure of
the dispersion associated to the desired landing trajectory (for each engine), and it is
defined as

β̂p
i = σ((β)p

i ). (4.45)

with x̃ defined as error state x̃ = [⃗e, ˙⃗e]. The error of the state are defined as e⃗ =
R⃗target − R⃗(t), and ˙⃗e = ˙⃗Rtarget −

˙⃗R(t). σ is the standard deviation operator of the vector
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state x̃ (This formulation could be modified to improve the importance of β̂).

4. Training the proposed ANN with the dataset created by PSO.

Algorithm 1 Optimization process to create the data set needed to train the ANN

Require: Np Initial population
Ensure: R⃗target − R⃗ < 10[m]

Ensure: ˙⃗Rtarget −
˙⃗R < 0.5[m]

X = []
Y = []
for p→ Np do

for i→ Ne do

X
p
i →


R⃗
˙⃗R

m
θ
θ̇



p

i

∼ Y
p
i →

[
β̂
β

]p

i

end for
X.append(Xp

i )
Y.append(Yp

i )
end for

Using training data from each SPE, the landing control system is complemented by a
PID controller to drive the reaction wheel. The complete control process is shown in the
example diagram in Figure 4.19.
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Figure 4.19: Block diagram of the final operation of the ignition control system. The ANNs
of each engine are independent so as not to affect the system in case an SPE fails, or one
wants to replace one with different properties. The X, Y data set should be used relative
to the target values.

Regarding the training data, it is expected to find an ANN that resolves the ignition
points in a range of state space as shown Figure 4.18. In this case, if the trajectory never
passed through the ignition zone, then it will fail. If it passes through the ignition zone,
then the module has an opportunity to continue attempting a soft landing with the next
engine.

4.4.4 Simulation Framework

For this development, the dynamics and knowledge we have of the models are expanded.
That is why to carry out the simulation it is proposed to create a pseudo simulator that
involves the transition of the Dynamics, the propagation of the Module states, and the
propagation and updating of the SPE state. The general simulation flow of the system to
be solved is shown in Figure 4.20. The entire simulation framework is based on python.

Details of the main elements are defined below.

• Core: The core is the central part of the simulator that functions as the user interface.
By defining variables, the user can change the orbit types, simulation times, and the
parameters of the evolutionary methods used. This element is the interconnection
between the module simulations and the mathematical tools.

• Module: The module is a class that represents the lander, contains its characteristics,
and manages time propagation. The propagation is carried out for each instance
of the class separately, and during the cycle calls are made to the control and the
measurement of the states. In the same way, this module is the one that sends the
activation signal to the thusters.

• Dynamics: This class is responsible for managing and propagating the module
states. The class is fed with mathematical tools, such as Runge Kutta, to give rise to
the simulation. Each module created from the Module.py class has an instance of
the Dynamics.py class, which allows the historical data of each Module to be saved
separately.

• Thrust: This class is responsible for simulating the thrust of the SPEs. The propellant
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Figure 4.20: Simulator framework outline. The interconnection of the main classes and
tools used in this work is shown.

class can be selected to work based on a mathematical model (as proposed in section
4.3.4), through input data, or through the rocket and propellant equations in section
3.1.3. In addition, it contains a class of the base type that is responsible for simulating
the random ignition dead times for each instance of the engine created.

• Control and Sensor: These functions are part of the module class and are defined by
the user. For control, you can define specific ignitions that depend on the position and
angular displacement, or define to activate the neural network that will be trained
in this work. To simulate the sensing, the error defined in section 4.4.2 is added to
the nominal states.

• Math Tools: This tool works as an almanac of useful functions for any dynamic prob-
lem. Some of them are coordinate changes, rotations, etc. In addition, it contains the
base structure of integrators such as Runge-Kutta 4 (RK 4), and Runge–Kutta–Fehlberg
4(5) (RK 4(5)).

It is important to note that the default simulation uses the RK 4(5) integration method,
but every time the SPEs are activated it changes to a fine step with RK 4. On the other
hand, all trajectory simulations are optimized independent of orientation, where

ûi
k = −

Ṙi

|Ṙi
|

. (4.46)

In a subsequent analysis, the conditions that this imposes on orientation control will be
extracted.
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4.5 Mechanical considerations

4.5.1 Disposition

The preliminary mechanical arrangement of each SPE is shown in Figure 4.21. It shows
the arrangement of SPEs with the tentative distances of each engine with respect to the
center of mass. Two of the black motors will be used for Entry simultaneously. The large
red motor and the remaining 2 black ones will be used to brake the module on the Descent.
Finally, each pair of golden engines will be used for soft landing. An attempt is made to
reduce the diameters to a minimum to avoid residual torques that are too large.

Figure 4.21: Preliminary design of SPEs arrangement with the tentative distances of each
engine from the center of mass. The dimensions of the SPEs are not final.

4.5.2 Structural

Depending on the diameter and length configuration of the motors, they must withstand
the maximum propellant pressure. As an example, simulations of mechanical stress at
pressure levels expected in the process are shown. The graphs in Figures 4.22a and 4.22b
show thrust curves for a progressive and neutral engine. Figures 4.23a and 4.23b show the
pressures of the combustion chamber, where the maximum pressures of each of them are
around 9 MPa and 6 MPa, respectively.

A preliminary design of the engines was made using CAD to simulate the pressure
inside and calculate the safety factor of the design. The material used is 440 C stainless
steel. The result of the progressive type motor is shown in Figure 4.22a. On the other
hand, the result of the neutral motor is shown in Figure 4.25.

As can be seen in Figure 4.24, there are points that have safety factors of 1.3 and that
implies that they will withstand the pressures. However, it is recommended to perform a
transient analysis to see thermal and pressure transient effects. This may require a higher
base safety factor (recommended >2). However, in Figure 4.25 all the safety factors of
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(a) Simulation of main Engines 10 MPa (b) Simulation of main Engines 7 MPa

(a) Simulation of main Engines 10 MPa (b) Simulation of main Engines 7 MPa

the motor are greater than 2. This opens up a whole process of development, design and
manufacturing of optimized motors, which could reduce the mass to a minimum.

4.5.3 Engine design

From the theory of rocket engines, necessary conditions arise for the operation of the
engine to achieve the best performance. A well-known example of this is the diameter
of the nozzle, which must reach the sonic velocity with a normal shock wave. This
condition comes from equation (4.44), which relates the pressure of the nozzle with respect
to the pressure in the combustion chamber, that is, the pressures of Figures 4.23a and
4.23b. Once the shock wave is reached in the throat, the system is not affected by the
physical phenomena that are happening downstream. Therefore, increasing the pressure
in the combustion chamber, as progressive burning does, only affects the throat. This is
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Figure 4.24: Simulation of main Engines with an internal pressure of 10 MPa. The propel-
lant mass is 6.11 kg, and the engine case mass is 3.975 kg.

Figure 4.25: Simulation of main Engines with an internal pressure of 7 MPa. The propellant
mass is 1.05 kg, and the engine case mass is 0.805 kg.
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important, since the exploratory optimization analysis of this work seeks to reduce the
mass of propellant used. Since the evolutionary algorithm will search for the ignition
point with different propellant lengths and diameters, the throat diameter with the best
performance must be recalculated for each possible solution.

From the above, the important thing is to calculate the initial pressure that the propellant
will generate in a stable state. For this we consider the variation of the equation 3.16 equal
to zero, resulting in

Pc =

[
Ab

At

a(ρp − ρg)

Γ/
√
RTc

]1/(1−n)

. (4.47)

This equation indicates that the smaller the diameter of the throat (smaller throat area
At), the pressure is greater, and the thrust is greater. However, if the pressure is higher,
the mass of the motor casing increases significantly when the pressure reaches 10 MPa.
According to Adde Y. et al. [89], a parameter Kn = Ab/At can be defined which relates
the mass generated inside the combustion chamber, and that which can exit through the
throat. Experimentally, it has been found that values of Kn greater than 2 provide desired
performance. Depending on the technology and desired thrust levels, this can go up to
220. Then, considering a maximum pressure restriction of 7MPa, the engine design has the
following condition depending on whether it is the solution candidate of the evolutionary
algorithm,

At =
Ab

Kn
, such that, max

Kn∈(2,220)
Pc =

[
Kn

a(ρp − ρg)

Γ/
√
RTc

]1/(1−n)

with Pc < 7MPa. (4.48)

The higher Kn value is, the higher the pressure will be, and the more mass the casing
will have to have. In this way, in this work Kn is optimized between [0 - 150]. On the
other hand, by limiting the value of Kn, the value of the maximum combustion pressure
is also limited. This helps to reduce the thrust of the engines and therefore, the maximum
residual torques.
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5. Simulation and Results

5.1 One Dimensional Simulation

Based on the case studies, the simulations are separated into two evaluation scenarios
using the Monte Carlo method: one that evaluates the first approach, and a second that
evaluates the trajectories with the second approach. As both cases must be evaluated, we
regroup the simulation data in the Table 5.1, which is also used in the optimization of the
scenario with uncertainties. The altitude and velocity states are selected according to the
final stage of soft-landing process, such as mentioned by [39, 86, 29]. The optimization
parameters are shown in Table 5.2, where the limits of the mass flows of each individual
are calculated as follows:

ṁmin =
|g|m0

vek
, ṁmax =

2ṁ∗
k
, k = 1, · · · ,Ne, (5.1)

where ṁ∗ is the theoretical optimal mass flow obtained from Pontryagin’s principle for a
constant thrust and action time [37, 38]. For simplicity, the action time used in ṁ∗ is equal
to the mean between the min (ta,k) and max (ta,k), which is equal to 10.5 s. As expressed in
the Equation (5.1), the mass flows must be updated according to the number k of engines
in the array.

Table 5.1: Simulation parameters.

Parameters Value

y0 2000 m
v0 0 m/s
σalt 50 m
σvel 5 m/s
Isp 300 s
σbias 10.83 s (10% at 3σ)
σnoise 3.25 s (3% at 3σ)
m0 24 kg

g Acceleration of the moon 1.67 [m/s2]
∆t of simulation 0.1 s

Numerical method Runge-Kutta 4th Order
τd 0.2 s
τl 0.5 s
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Table 5.2: Optimization parameters.

Parameters Value

Ne 10
Ncase 30 in trained

Ra,Rb,Rc 0.1, 1.0, 10.0
b1, b2 1.0, 1.0
αk ∈ [0.0, 1.0]
γk ∈ [0.0, γmax]
ta,k ∈ [1.0, 20.0] s
ṁ ∈ [ṁmin, ṁmax]

Probability of mutation 0.25
Number of individuals 40
Number of generations 300

center 0.7

The limits of the αk and γk control parameters are selected based on the dynamic model
and the linear function defined in the plane. The limits of αk were chosen between 0 and
1 to normalize one of the parameters of the linear function. On the other hand, for any
speed and altitude value, the control function must cut the height axis between the initial
speed y0 and the final speed yland. To understand the relationship that exists between the
control variables, it is useful to express the Equation (4.12) as,

y(t) = −
γk

αk
v(t) (5.2)

where we can see that if αk is small, the slope tends to infinity. To counter this, the value
of γk must also tend to zero. Then, the minimum value of γk is zero.

The worst-case scenario is when αk stagnates at its maximum value, where the slope
only depends on γk. If this value is not high enough, the maximum slope will not be able
to reach optimal ranges. However, if it is too high, it could take a long time for GA to find
an optimal solution. To satisfy these two points, we define that the control line must pass
through the point that contains the initial altitude and the final velocity in free fall. In this
way, the maximum value of γk is defined as follows.

γmax =
y0√

v2
0 + 2|g|y0

. (5.3)

This analysis is performed with a simulator developed in Python, which is available
in the Space Exploration and Planetary Laboratory (SPEL) repository (https://github.
com/spel-uchile/SolidPropellantforLanding (accessed on 20 September 2022)).

5.1.1 Optimization and Evaluation of First Approach

In this section, the best result obtained with the DCF approach in the scenario of the
Section 4.3.2 is present. These optimal parameters are evaluated in a scenario with all the
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mentioned uncertainties. In this evaluation, it is possible to differentiate the point with
the lowest impact velocity, resulting in the control and optimization parameters shown in
Tables 5.3 and 5.4 for Regressive PGCS.

The behavior of the altitude and the velocity of the lander are shown in Figure 5.1, while
the distribution is shown in Figure 5.2. Here, it is possible to see that the impact velocity is
−5.87 m/s with a standard deviation of 2.49 m/s. Additionally, the green and red circles in
Figure 5.1 represent the ignition time and the shutdown time of each engine, respectively.

Table 5.3: Design parameters of the best result obtained from the optimization scenario
without uncertainties.

Parameters Value
PGCS Regressive

Ne 9
ṁ 14.15 times 10−3 kg/s
ta 15.75 s

vland −5.87 m/s
Std Dev. of vland 2.49 m/s

Mass used 1.51 kg
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Figure 5.1: Behavior of altitude and velocity in the evaluation of the best individual
G obtained from the optimization without uncertainties in training. The SPEs array
has Ne = 9 and Regressive PGCS. Color map is used to differentiate different random
trajectories.

In Figure 5.3, we present the performance for different numbers of engines and PGCS.
Although the result shows a certain pattern to improve the landing process, it has an
undefined pattern for a certain number of engines and type of PGCS. On the other hand,
the standard deviation of the results does not decrease as a function of the number of
engines. This randomness is one of the main reasons why it is necessary to use the method
presented in Section 4.3.3. These results are presented in the next subsection.
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Figure 5.2: Distribution of altitude and velocity landing in the evaluation of the best result
obtained from the optimization without uncertainties in training. The SPEs array has
Ne = 9 and Regressive PGCS. The vertical axis shows the frequency of the values.
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Figure 5.3: First approach: performance comparison for an array between 1 and 10 con-
figuration engines, and for the three types of PGCS: Regressive, Neutral and Progressive.
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Table 5.4: Control parameters from the best result obtained in the scenario without opti-
mization uncertainties. The SPEs array has Ne = 9 and Regressive PGCS.

k αk γk

1 0.511 3.632
2 0.992 4.393
3 0.300 10.071
4 0.755 19.199
5 0.531 20.431
6 0.795 11.292
7 0.560 17.099
8 0.323 8.667
9 0.729 16.382

5.1.2 Optimization and Evaluation of Second Approach

In this scenario, all the information corresponding to the uncertainties is used to optimize
the landing. Such optimization shows poor performance if performed with a single
engine, but it improves as the number of engines in the array increases. This not only
decreases the landing velocity, but also decreases the standard deviation in the evaluation.
The evaluation of the optimization result shows that the best configuration is given for
a number of engines equal to Ne = 10 and a Regressive PGCS. The altitude and velocity
variables of the best result are shown in Figure 5.4, while the distribution of the landing
parameters is shown in Figure 5.5. The optimization obtained is grouped in Table 5.5 for
the arrangement of engines, where for Ne = 10 shown a landing velocity of −2.97 m/s and
standard deviation of 0.993 m/s. Additionally, the control parameters are in Table 5.6.

Table 5.5: Design parameters of the best result obtained from the optimization scenario
with uncertainties.

Parameters Value

PGCS Regressive
Ne 10
ṁ 10.16 × 10−3 kg/s
ta 20.0 s

vland −2.97 m/s
Std Dev. of vland 0.99 m/s

Mass used 1.35 kg
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Figure 5.4: Behavior of altitude and velocity in the evaluation of the best G obtained
from the optimization with uncertainties and Ne = 10. Color map is used to differentiate
different random trajectories.
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Figure 5.5: Distribution of altitude and velocity landing in the evaluation of the best result
obtained from the optimization with uncertainties and Ne = 10. The vertical axis shows
the frequency of the values.
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Table 5.6: Control parameters from the best result obtained in the scenario with optimiza-
tion uncertainties.

k αk γk

1 0.639 12.111
2 0.138 11.165
3 0.862 4.742
4 0.551 12.844
5 0.999 11.465
6 0.091 6.036
7 0.768 22.285
8 0.608 5.219
9 0.624 17.851
10 0.867 24.439

As supported by Figure 5.6, we see that the pattern of the performance curves shows
asymptotic behavior. This pattern indicates a relationship between the increase in the
number of engines and the increase in landing performance. Therefore, Ne = 10 is a local
optimum based on the limits summed up in this work.
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Figure 5.6: Second approach: Performance comparison for an array between 1 and 10 con-
figuration engines, and for the three types of PGCS: Regressive, Neutral and Progressive.

5.1.3 Discussion

The optimization carried out with the first approach of Figure 4.8 generated worse sce-
narios in the evaluation with landing velocity over the 5.87 m/s. Even so, the regressive
PGCS simulation in Figure 5.3 shows better performance than the other types of PGCS. In
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this scenario, it is possible to see that the ignition points of the k-engines of the simulations
(the group of green circles in Figure 5.1) do not belong exactly to the control function line.
This phenomenon is caused by the dead time td and it is observed when td > 0. In this
way, while there is uncertainty about the dead time, all engines start their ignitions below
the control function. By not considering this in the classic design of the controller, we can
see that the impact velocity distribution of the evaluation has values greater than 10 m/s
(see Figure 5.2). Using the approach presented in Figure 4.8, it is not possible to see a clear
pattern in the performance of the landing system based on an arrangement of SPEs.

With the second approach summarized in Figure 4.9, we can see an improvement in
the performance of the propulsion system. Figure 5.6 shows a performance curve that
improves asymptotically with increasing the number of engines. This not only decreases
the impact velocity to −2.97, −4.13, −4.77 m/s for Regressive, Progressive, and Neutral,
respectively, but also decreases the standard deviation to 0.99, 1.55, 1.87 m/s. This is
reflected in the impact velocity distribution for the 60 cases evaluated in simulation, which
are shown in Figure 5.5. Additionally, to demonstrate the asymptotic behavior of the
performance, an auxiliary simulation is performed with Ne = 16. Figure 5.7 shows the
behavior of the altitude and velocity, meanwhile Figure 5.8 shows the distribution. From
this distribution, it can be seen that the mean landing speed is −2.04 m/s and the standard
deviation is 0.48 m/s. Although these values are above the landing speed of −1.7 m/s of
the Chang’E 5 module [23], they are well below what was the landing of the MPF with
−12.5 m/s, and the CubeSat OMOTENASHI with −30 m/s. Finally, the total mass used by
the propellant in the soft-landing stage is 1.35 kg , which corresponds to 5.62% of the 12U
CubeSat mass.
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Figure 5.7: Behavior of altitude and velocity in the evaluation of the best G obtained
from the optimization with uncertainties and Ne = 16. Color map is used to differentiate
different random trajectories.

With respect to the dead time, the evaluation of the second approach shows that the
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Figure 5.8: Distribution of altitude and velocity landing in the evaluation of the best result
obtained from the optimization with uncertainties and Ne = 16. The vertical axis shows
the frequency of the values.

control design is robust to the ignition dead times. This improvement is more evident in a
regressive PGCS, which can be designed as a star type, or with a tubular grain of variable
cross-sectional area. Lastly, a star-type burn configuration can work with a thinner-walled
engine to withstand the temperatures and pressures of the combustion chamber. This
helps to decrease the weight of the engines, as mentioned in Table 3.2. However, this
configuration has a small action time ta compared to the results in the Tables 5.3 and 5.5.

73



5.2 Planar Coordinate Simulation

As mentioned above, control optimization and design will be carried out in separate parts.
The first stage is the release of the module into orbit, the second is vertical braking, and
the third is soft landing. For orbital release it is necessary to find the best cost function
that helps us minimize the mass used, that is, look for a representation of what is shown
in Figure 4.13a. Braking requires a push in a radial direction with a large amount of force,
and a large amount of mass used. The last stage requires finer thrust elements, compared
to the previous ones, and with a greater degree of orientation control.

5.2.1 Entry

According to the requirements of this point, a cost function can be defined that minimizes
the energy eM of the module. However, as will be seen later, this mainly affects the height
at which the module orbits, since the height dimension is orders of magnitude greater
than the speed. That said, a cost function must be defined that penalizes the speed of the
module more, as shown below.

J = eM + ηv2
aux, (5.4)

where η es a gain, en vaux is an auxiliary velocity. For the example case below, and the
input stage of the module, vaux is defined as the tangential velocity vT in orbit. This speed
needs to be decreased to avoid horizontal speeds upon landing. Within the optimization,
the tangential velocity is calculated as,

vaux = vT = cos(ψ − π/2)vx − sin(ψ − π/2)vy, (5.5)

where ψ is the positional angle with respect to cartesian plane, vx and vy are the x and
Y components of cartesian velocity, respectively. ψ is calculated with cartesian position as

ψ = arctan(Ry/Rx). (5.6)

Below are simulations optimized for values of η = (0, 1, 100, 10000) and with J = v2
t . In

Figure 5.9 you can see how this affects the energy and tangential speed of the module for
different types of PGCS. The optimization of this example is done with PSO. As can be seen,
there is no appreciable difference with the type of PGCS, but a difference can be observed
by changing the cost function. On the other hand, Figure 5.10 shows the tangential
speed of different modules (represented by the blue lines) for different conditions of the
cost function. Therefore, if it is required to immediately decrease the tangential velocity
(analogous to horizontal velocity) upon landing, a cost function J = vT is needed.

Note: the different trajectories of the modules in Figures 5.9 and 5.10 were created from
the same initial condition, but considering the measurement uncertainties mentioned in
section 4.4.2.
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Figure 5.9: Evolution of the total energy of different modules represented by each blue
line. They are shown for different types of PGCS, and for different values of η.
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Figure 5.10: Tangential velocity for different modules and conditions of the cost function.
The result is shown for the three types of PGCS mentioned in this work.
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From the results presented, the cost function is selected where only the tangential
speed is considered. On the other hand, it is important to look for the minimum thrust
that manages to satisfy the cost function while minimizing the mass used. For this, the
cost function is modified as

J =
(

v2
T

m(t f )

)
, (5.7)

where m(t f ) is the final mass.

The next step of the exploration, using a PSO algorithm, focuses on finding the external
diameter and length of each SPE. Due to design concepts, it is defined that the input stage is
carried out by two neutral-type SPEs. The main reason is for its stability and for decreasing
the thrust level in exchange for increasing the burning time. This feature decreases residual
torque compared to other types of PGCS. Figure 5.11 shows the convergences of the
particles of the algorithm for ten different trajectories, where P1 is the ignition point
(angle) with range in [0, 2π] rad, P2 is the external diameter of the propellant with range in
[0.03, 0.05] m, and P3 is the length with range in [0.15, 0.2] m. As can be seen, the ignition
points are close to the apolune as expected from Figure 4.13b when the mass decreases.
As these simulations include the uncertainties of the parameters, the ignition points are
not unique, but they continue to remain within the same zone. On the other hand, the
dimensions of the engine do not have a clear point of convergence, and in reality they seek
to compensate the diameter for the height until the required thrust is achieved. However,
the average diameter is above 0.04 m, and the height is below 0.18 m.

In Figure 4.5.1 it is mentioned that in this stage two SPEs from the ends are considered.
Now, from the results obtained, it is known that they must be of the neutral type. This
implies that the residual torques will be able to decrease their torque level thanks to the
low thrust of a neutral SPE. Along these same lines and considering the results of the
previous simulation, it is defined that the diameter of the motors will be 0.04 m and 0.2 m
long. The main reason is that by decreasing the diameter, the thrust and residual torques
also decrease. And to compensate for the loss of momentum, the length of the engine is
increased.

From the above, the results for a fixed diameter of 0.04 m and length of 0.2 m are shown
in Figures 5.15 and 5.16. The optimization result is shown in annex 7.1.5.
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Figure 5.11: Solution of the optimization problem of the equation (5.7). The blue lines
show the positions of each particle in the algorithm and the red line is the global best
solution.
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Figure 5.12: Evaluation of the cost function of the optimization problem of the equation
(5.7). The blue lines show the individual evaluation of each particle and the red linear is
the best cost evaluation.
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Figure 5.13: State solution for 10 trajectories.
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Figure 5.14: Orbit solution for 10 trajectories.
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Figure 5.15: State solution for 50 trajectories optimized with a fixed dimension of SPE.
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Figure 5.16: Orbit solution for 50 trajectories optimized with a fixed dimension of SPE.

The question that arises now is what is the effect in terms of torque and why the
Neutral type burn is more convenient. From Figures 5.9 and 5.10 it is observed that in
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terms of the trajectory, there are no important differences between the different types of
PGCS. However, from the equation (4.47) it is known that if the burning area is very large,
the pressure will also be large, which will make the motor casing more massive. Large
burn areas are typical of progressive and regressive PCGS, at least at one point in time.
Therefore, Neutral burning is essential at this stage. In the subsection 5.2.1 are all possible
residual torque scenarios with the dimensions obtained in the results above.

Attitude Requirements at Entry

As mentioned above, this stage considers using 2 black motors simultaneously (these are
shown in Figure 4.21). As the SPEs are not in the center of mass, they generate different
torques according to the uncertainty variables mentioned in Table 4.4. To observe which
element generates higher residual torques, a separate sensitivity analysis is presented for
each uncertainty and for the arrangement of the two black motors. Figures 5.17 and 5.18
show 1000 Monte Carlos simulations around the uncertainties of the residual torques. The
SPEs are considered to be aligned with the axis ẑb.
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Figure 5.17: Violin plots for the residual torque distributions of each variable mentioned
in Table 4.4. High torques of 4 Nm can be seen but the largest amount is concentrated
around zero.

Figure 5.18 shows a close-up view of the distribution generated by each normalized
variable. Although all variables generate torques close to 4 Nm, the population distribution
is slightly different. For the uncertainties in the angle, the distribution has a lower standard
deviation than the rest of the group, and all the uncertainties together generate the highest
standard deviation of the group.

In the entry (or reentry) stage, the module must point in the opposite direction than the
unit velocity vector, that is, the target vector must be equal to −v̂. Then the angular error
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Figure 5.18: Normalized graph of the distribution of residual torques with an approach to
the most populated areas.

with respect to ẑb axis in body frame is defined as

θerror = arccos(< ẑb,−v̂b >) = arccos(< ẑi,−v̂i >). (5.8)

5.2.2 Descent

For the descent stage the cost function changes to the radial velocity vR of the module.
Taking as reference the component perpendicular to the equation (5.5), the following cost
function is defined,

J = 0.1 · (||R|| − Rm) +
(

v2
R

m(t f )

)
, (5.9)

where (||R||−Rm) is the altitude of the module. This term is added to force the optimiza-
tion to explore low altitude areas, otherwise it remains at high altitudes where the radial
velocity is low without turning on the SPE.

On the other hand, the simulations are separated so that the cost function is more
focused on the ignition point of interest. That is, first the entry point is optimized, and
then the best trajectory is taken as the starting point of the new trajectory search. As an
example, Figure 5.19 shows the PSO optimization results for the input case. Then, the
continuation of the best trajectory is shown in Figure 5.21.
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Figure 5.19: Evolution of the best candidate for PSO optimization. The bar shows the
iteration it belongs to. This result seeks to minimize the tangential velocity.
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Figure 5.20: PSO orbital solution. The initial simulation point begins 0.01 degrees before
the ignition point to include the effects of numerical integration on the ignition position.
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Figure 5.21: Evolution of the best candidate for PSO optimization. The bar shows the
iteration it belongs to. This result seeks to minimize the radial velocity with the mechanical
constraint of the section 4.5.1 and using the final state condition of the Figure 5.19.
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Figure 5.22: PSO orbital solution for radial velocity optimization.
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Zooming in on the results in Figure 5.21, it can be seen that the module has not yet
reached the surface (2000 m) and that the descent velocity is 1480 m/s. This can be seen in
Figure 5.23. Finally, the entry and descent process is shown in the following Figures.

0.28 0.30 0.32 0.34 0.36 0.38
Time [min] +4.5e3

2

4

6

8

10

Al
tit

ud
e 

[k
m

]

0

10

20

30

40

50

Ite
ra

tio
n

0.300 0.325 0.350 0.375 0.400 0.425 0.450
Time [min] +4.5e3

1440

1460

1480

1500

1520

1540

Ra
di

al
 V

el
oc

ity
 [m

/s
]

0

10

20

30

40

50

Ite
ra

tio
n

Figure 5.23: Altitude and radial velocity for descent stage optimization.

Taking the results from Figures 5.16, 5.20, and 5.24, the optimizations (derived inde-
pendently) are grouped in Figure 5.24 and 5.25. The optimal ignition point, defined by the
color yellow, shows the entry and descent trajectory to reduce the tangential and radial
velocities, respectively.
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Figure 5.24: PSO optimization for Entry and Descent stages.
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Figure 5.25: PSO orbital solution for entry and descent optimization.

The optimization process is shown in the appendix 7.1.5.
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6. Conclusions

In this work, a methodology to solve the soft-landing problem with an array of solid pro-
pellant engines (SPEs) was presented for the last stage of EDL. This study was performed
by using a 1-dimensional dynamic model and for different numbers of engines in the
array, where each one is controlled independently by a linear control function βk(t). This
linear function is designed with two gains, αk and γk for each engine, which are optimized
by GA using two different approaches following the current stage of art. Consequently,
the optimization based on the second approach, robust design, presents better results in
the evaluation simulations that considered the uncertainties of the variables. The results
show that the SPEs array generates an asymptotic increase in performance as the number
of engines increases, which also helped to decrease the standard deviation of the impact
velocity distribution. For a range of Ne ∈ [0, 10], the lowest impact velocity is −2.97 m/s
with a standard deviation of 0.993 m/s for Ne = 10. These findings show that the regressive
propellant grain cross-sections (PGCS) allow landings with lower impact velocities than
those obtained with progressive and neutral PGCS. On the other hand, this approach is
independent of the thrust profile modeled in this work and can be replaced by measured
thrust data.

It was extended in the analysis to an orbit in the Cartesian plane, considering the
residual torques that are generated during ignition. Considering the increase in variables
and calculation times of the GA optimizer, it was changed to a continuous optimizer such
as the PSO, which showed greater agility for eccentric orbits. This included creating a
Simulation Framework that changed the RungeKutta integration steps from fixed-fine to
variable, depending on whether the module was near an ignition point. For this scenario,
it was found that considering the uncertainties there is an approximate arc of 10° where
the first ignition point can be generated without increasing the tangential speed (Figure
5.16). On the other hand, the simulations show that the residual torque is lower for an
END-Burning type thrust, in line with the results of [4]. But even with this type of thrust
(small, but long lasting compared to the other burns), residual torques greater than 400
mNm are generated as seen in Figure 5.18. This value is comparable with commercial
reaction wheels, however, it must be taken into account the torque peaks that reach 4mN
as shown in the Figure 5.17.

Finally, a simulator framework was implemented to continue researching and devel-
oping tests of algorithms involving SPEs. The simulator allows you to optimize certain
engine geometry in the ranges defined by the user. On the other hand, the simulator has
the potential to be applied for other types of missions, such as small spacecraft orbital
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maneuvers, where the ignition point can also be optimized by changing the cost function.

The algorithms used to model, simulate, and optimize the control scenarios in 1D were
uploaded to a GitHub repository with a free license (https://github.com/spel-uchile/
SolidPropellantforLanding).

The algoritm used to solve the proposed work in 2D was uploaded to a GitHub repos-
itory (https://github.com/EliasObreque/SP_Landing/tree/Thesis)
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7. Future work

Future work seeks to reduce the residual torque generated by the engines, either by
improving the ignition electronics or creating a hybrid drive. However, the latter would
be to control the attitude.

7.1 Hybrid propulsion

This is a current work that is about to be published. We are working on testing very
low-cost and robust commercial automobile injectors.

7.1.1 Automotive fuel injector

This section presents a brief description of automobile injectors based on M. B. Çelik et al.
[90]. One of the main features of the new electronically controlled automotive injectors is
that they are ideal for controlling the flow rate necessary to improve combustion efficiency.
The current injectors were designed to have low noise and low specific fuel consumption.
An example of the injector is shown in Figure 7.1, where the electrical/hydraulic connector,
coil, armature, and sealing are presented.

Figure 7.1: Typical High-pressure injector. Source [90].

The electrical connector is used to control the state of the coil that opens and closes the
fuel outlet. When the coil is energized, the armature allows mass flow, and then a spring
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returns it to its initial closed state.

Summarizing, the propulsion systems are widely used in CubeSat-type satellite mis-
sions, opening a door for the development of accessible and low-cost micro-propulsion
systems. In this line, automotive fuel injectors can play an important role thanks to their re-
liability, durability, effectiveness in long-term use, and ability to work under high-pressure
conditions. On the other hand, they are low-cost commercial systems that are accessible
at any car mechanic store. In the development of this article, we show our preliminary
evaluation of an injector used as a valve and tested at ambient pressure and vacuum. The
methodology used for the tests, the calculation of metrics, the analysis of the results, and
the conclusions are also presented.

7.1.2 Methodology

The methodology section contains the hypotheses of our work, the approach of the exper-
iments, and the acquisition of data. For final operating conditions, it is expected that the
injector can be adapted to work with liquid or gaseous sources. Therefore, in the first test,
we introduced the injector operation at ambient pressure with liquid alcohol, and then we
switched to pressurized air in the vacuum tests. The change from liquid to gas is mainly
done to prevent damage in the vacuum chamber, but also to show that the injector can
work for both liquid and gas source.

Hypothesis The following hypotheses start the investigation of this article.

1. By pressurizing liquid alcohol to over 1 atm and using the injector as a valve, mea-
surable micro-thrusts, and mass flow can be created in atmospheric conditions to
quantify the performance of the injector.

2. A latex balloon can be used to pressurize the liquid alcohol with minimal pressure
difference. This pressure is the elastic pressure of the latex.

3. Automotive fuel injector has a heritage in environments with high differential pres-
sure and then could work in a vacuum environment.

4. In the vacuum test, the pressurized balloon and its joint with the injector must be
isolated. It is proposed to add an airtight acrylic chamber on the outside of the latex
balloon in order to seal the pressurized balloon under vacuum conditions and to
observe the behavior of the latex balloon in the event of possible leaks.

7.1.3 Experimentation

Components The electrical components used to measure the thrust are shown in Table
7.1, and Figure 7.2 to 7.4. The load cell is used to measure the mass variation produced
by the propellant, which is then amplified by the HX711 component. Additionally, for
proper function of the injector, a stable circuit is required during propulsion tests. Figure
7.4 shows the control board to carry out the injector activation tests. The power supply is
made with 12 [V] with an average consumption of 0.25 [A] (3 [W]).

91



The main circuit is made up of several elements, with the ne555 oscillator in Zone I
being the most prominent. This oscillator is capable of controlling the output frequency as
a function of a variable resistor in Zone II and a fixed capacitor. The frequency range that
it can generate is between approximately 2 and 159 [Hz]. The circuit has a power stage
in Zone V that allows controlling the current consumed by the injector (A critical element
in CubeSat satellites). This power stage uses a TIP3055 and is directly connected to the
output of the injector located in Zone IV of the image. Together, these components allow
a controlled and efficient injector activation tests.

Table 7.1: Electronic components.

Name Work
Load cell of max 100 g Used to measure analogically the thrust of the injector
HX711 Used to amplify the analog signal and convert to digital signal

Figure 7.2: Load cell of 100 (g) max.

Figure 7.3: Analog digital converter HX711

Zone I
Oscillator

Zone V
TIP3055

Zone II
Variable 
frequency drive

Zone IV
Injector

Zone III
Voltage

Figure 7.4: Injector control circuit.

To increase the data sampling, a modification was made to the HX711 device, as directed
by the vendor. This can be seen in Figure 7.5c, where a pin need to be up as shown in
Figure 7.5a, and then, it needs to be soldered to high voltage as shown in Figure 7.5b with
modification.

The injector used is identified with the model 1.0 12V BER. 3P/B/998CC from a OPEL
Corsa vehicle, and is shown in Figure 7.6. Incorporating the pressurizing latex balloon,
the preliminary injection system is shown in Figure 7.7.
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(a) Pin disconnected (b) Welded pin (c) Modified component

Figure 7.5: HX711 Circuit Modification

Figure 7.6: Injector model: 1.0 12V BER. 3P/B/998CC.

Figure 7.7: Injector with pressurized latex balloon.

Test bench A test bench is building with an acrylic platform as a support to measure
the thrust in atmospheric conditions, and a PVC cylinder is used to keep the injector in a
vertical position to avoiding measurement errors produced by a horizontal measurement
(the platform is shown in Figure 7.8). This test bench measures the resistor difference of
the load cell, which has a direct relationship with the vertical normal force divided per the
gravity acceleration of the system (the static mass). Different known masses were used to
calibrate the voltage signal from the resistor with the corresponding mass. On the other
hand, the normal force depends on the current system mass and the thrust generated by
the injector. The mathematical model is derived from the Free body diagram shown in
Figure 7.9, N is the normal force, W is the weight, T is the Thrust, and y is the relative
displacement.

The dynamics presented consider only vertical elements, since the horizontal defor-
mation of the load cell is not significant in the dynamics. The system was previously
calibrated to associate the voltage difference (resistance variation) as a function of the
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graduated static masses. The resistance change is measured with two centrally placed
load cell voltage gates, generating potential differences in the circuit. To avoid torsion and
angular strain calculations, the calibration relates the voltage measurement to the normal
force N, i.e. N = mm/g with mm as the measured mass and g the acceleration of gravity.
The dynamics of the system is

Figure 7.8: Vertical test bench configuration.

𝑁

𝑊

𝑇

𝑦

Figure 7.9: Free body diagram of the injector system and the Load Cell.

N −W − T = mÿ + cẏ + ky, (7.1)

where T = ṁIspge with Isp as the specific impulse, and ge the gravity acceleration in sea
level. c and k are the damping and equivalent spring rate of the load cell (beam embedded
in one end), respectively. Now the expected mass measured mm is

mm =
mÿ + cẏ + ky +mg + ṁIspge

g
. (7.2)

Generally, the terms associated with the free response of the load cell, such as the beam
embedded in one end, are usually not considered.
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Vacuum test For this test, we use the knowledge acquired in the PlantSat mission of the
space and planetary exploration laboratory (SPEL) of the University of Chile. This mission
contemplated the manufacture of a transparent hermetic container to carry a plant into
space, allowing the entry of light and the acquisition of images, as seen in Figure 7.10. In
this process, containers with different dimensions were created, but they differed mainly
by the number of O’rings used. Experimentally, the configuration with two O’rings was
found to have no significant leakage within 3 months, and once the vibration tests had
passed, it was selected to go on the satellite that is currently located in orbit. This leaves
us with two interesting versions of test chambers: the fly version with two O’ring and
without leaks, and a version with only one O’ring and significant leaky.

Figure 7.10: Container Payload in PlantSat mission. Knowledge of design and manufac-
turing is used in this work.

In conclusion, the version with leaks is used in this work to observe the robustness of
the system in the face of a possible drainage in space. In addition, the behavior of the latex
balloon in that condition can be observed. On the other hand, this vacuum test helps to
observe the behavior of the injector in a vacuum environment and quantify the pressure
released in each control pulse. The setup for the experiment is shown in Figure 7.11 and
7.12.

Figure 7.11: Preparation of vacuum chamber for air injector propulsion tests.
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Figure 7.12: Propulsion system based on an injector in a vacuum chamber.

7.1.4 Preliminary Results

Test bench For the test under ambient pressure and liquid alcohol conditions, 12 consecu-
tive push pulses were performed. The measurement was performed approximately every
12ms, generating thrusts every 1 minute. The duration of the discharge was 15 seconds
and 45 seconds of rest. The results can be seen in Figure 7.13, where the mass measured
decrease as mass is released.

0 200 400 600 800 1000
Time [s]

−50

−40

−30

−20

−10

0

M
ea

su
re
d 
m
as
s [

g]

Figure 7.13: Original mass measured every 12 ms. Pushes are performed every 1 minute,
with a rest window of 45 seconds, and a continuous push window of 15 seconds.

As can be seen, the signal is very sensitive to sensor noise, in addition, the initial oscil-
lations of the system generate wave measurements of the mass as described in equations
(7.2). For this reason, different levels of low-pass filters are implemented until finding a
signal that does not depend in great manner on the initial oscillations, as shown in Figure
7.14. The selected cutoff frequency is 10 Hz, as it is the cleanest and does not lose track of
the signal. However, it is important to note that there is more information available in the
signal that can be useful in describing injector performance, but the focus of this article
is more exploratory on automotive injector capabilities in micro-thrust and vacuum tests.
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With the implementation of the filter and losing information of the oscillatory response of
the load cell, we can eliminate the terms that depend on y in the equation (7.2).
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Figure 7.14: The injector is zooming in on the moment the second pulse is generated. The
original mass is shown with different frequency values for a low pass filter.

Vacuum test For the vacuum test, the liquid alcohol was exchanged for air inside a latex
balloon. In addition, the balloon is protected with a hermetic system made of acrylic to see
the behavior of the balloon inside the vacuum chamber. To quantify the proper functioning
of the injector under vacuum conditions, the same pressure sensor of the vacuum chamber
was used, since the thrust generated by the air is imperceptible by the load cell. The results
of this experiment are shown in Figure 7.15.
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Figure 7.15: Vacuum injector test. The vacuum chamber performs ambient-internal pres-
sure measurements every 5 seconds. The graph is displayed on a logarithmic scale to
highlight three injector tests, each 20 seconds long.

In the test, small leaks were observed in the acrylic receiver, interpreted by an increase in
the size of the balloon as shown in Figure 7.16. This caused the emptying of the chamber
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not to reach the minimum. However, the injector and the air contained in the balloon
remained stable, since three consecutive impulses could be generated.

Figure 7.16: Automobile injector vacuum test. From left to right, and downwards, the
presence of leaks in the acrylic container is observed as the volume of the balloon inside
increases. However, the air inside the balloon remains stable and the three pulses in
Figures 7.15 can be generated.

7.1.5 Analysis of preliminary results

Test bench Using the reduced equation (7.2), the mass measured by the data acquisition
system can help us estimate the thrust generated by the injector. For this, the measured
mass is defined as follows

mm(t) = m + ṁIsp (with ge = g). (7.3)

Considering that the mass m varies according to the mass flow as

m(t) = m0 − ṁt, (7.4)

replacing equation (7.4) into (7.3), and with m0 = 0 for calibraton, it results in the following
expression

mm(t) = m0 − ṁt + ṁIsp

mm(t) = ṁ(Isp − 1). (7.5)

Equation (7.5) is a good approximation to obtain the mass flow of the system and to
find information about the approximate thrust levels. In order to incorporate the data, the
12 pulses of the test are broken down as shown in Figure 7.17. In these graphs, the slope
of the mass variation in each pulse can be seen it. In addition, a red line resulting from
the equation (7.5) without thrust is added and incorporated into the graph to compare the
actual flows. As long as the thrust curve is above the red line, the injector will generate
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thrust with positive efficiency. On the other hand, the red line is an approximation of the
mass variation of each push with a duration of 15 seconds. The results of the mass flows
are shown in the Table 7.2. Additionally, equation (7.5) shows that the specific impulse
Isp is responsible for maintaining the level of thrust above the initial mass of the pulse,
finding the moment in which this phenomenon is generated gives us an indication of the
specific impulse as shown in Figure 7.18.

Figure 7.17: Measured mass of each pulse. The red line is an approximation of the
theoretical no-thrust mass flow and is added as a visual aid to view injector efficiency.

Using the thrust definition (T = ṁIspge), the maximum thrust in each peak of the pulses
can be calculated as

Tmax = ge((mm)max + ṁ∆tmax), (7.6)

where (mm)max is the maximum mass measured, and ∆tmax is the time when the maximum
value is reached from the pulse start. Figure 7.18 shows a close-up of the area where each
peak is generated for a better understanding. The resulting mean ∆tmax and the mean
maximum thrust are shown in Table 7.3.

Using these equations, the parameters presented in Table 7.2 can be extracted.

Table 7.2: Injector performance at ambient conditions.

Parameters Value
Mean mass peak 0.230 [g]
Standard deviation (s.t.d) of mass peaks 0.048 [g]
Mean specific impulse 0.592 [s]
Standard deviation of specific impulse 0.101 [s]
Mean Mass flow 0.263 [g/s]
Standard deviation of mass flow 0.011 [g/s]

To calculate the exit velocity ve of the gases, the density ρ of the alcohol equal to 789
[kg/m3] is considered, with 4 exit holes with a diameter equal to 0.1 mm. Thus, the output
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Figure 7.18: A close-up of the peaks of each thrust is shown. The green "x"’s are the
starting points, and the red "x"’s are the maximum level of thrust for the signal with a 10
Hz low-pass filter. The dashed lines represent the cutoff generated by the specific impulse
value.

Table 7.3: Thrust performance at ambient conditions.

Parameters Value
Mean ∆tmax 0.161 [s]
Standard deviation of ∆tmax 0.035 [s]
Mean maximum thrust 2.681 [mN]
Standard deviation of maximum thrust 0.482 [mN]

velocity is equal to 10.616 [m/s] with a standard deviation of 0.449 [m/s]. Considering that
the speed of sound in liquid media, such as alcohol, is greater than 1000 m/s, it can be
mentioned that the injector flow was not supersonic. Then, the exit pressure is equal to
ambient pressure and the internal over pressure p0 of the latex balloon can be calculated
according to Bernoulli as follows,

p0 =
1
2
ρv2

e = 44562.284 [Pa] (s.t.d. 3812.818 [Pa]). (7.7)

Vacuum test As was presented in Figure 7.15, the vacuum test highlights 3 points of
interest that are shown in Figure 7.19. If the base pressure of the chamber is considered
(represented by the segmented line), we can calculate the differential pressure generated
by the impulses, which are summarized in Table 7.4. It is important to note that the
pressures recorded by the vacuum chamber correspond to the total internal pressure, and
not the gas outlet pressure from the injector. If we wanted to make an estimate of the force,
we can make the following assumptions.

It is important to note that the pressures recorded by the vacuum chamber correspond to
the total internal pressure, and not the gas exit pressure pe from the injector. If we wanted
to make an estimate of the force, we can make the assumption that the overpressure
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Figure 7.19: Approach to points of interest. The Figure shows the maximum pressure
points measured by the chamber, and the average internal pressure, represented by the
dotted line. The measured pressure difference is related to the thrust that the injector can
generate.

Table 7.4: Pressure release performance at vacuum conditions.

Parameters Value
Mean pressure released 46.926333 [mPa]
Standard deviation of pressure 5.158103 [mPa]

generated by the latex balloon is of a magnitude similar to that estimated by equation
(7.7). Then, according to [?], it is known that the critical pressure p∗ for supersonic flow in
a reservoir is defined as,

p∗

p0
=

(
2

γ + 1

) γ
γ−1

, (7.8)

where p0 is the reservoir pressure, and γ is the coefficient of adiabatic expansion equal to
1.4. Assuming that the absolute reservoir pressure is equal to the atmospheric pressure
added to the overpressure of the latex balloon calculated in equation (7.7), the following
expression is developed,

p∗ = (44562.284 + 101315)
( 2
1.4 + 1

) 1.4
1.4−1

= 77069.445. (7.9)

Since the chamber pressure is much less than the critical pressure, we can assume that
the flow is released under supersonic conditions. Then the following equations can help
us estimate the thrust level,
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pe = p∗ = p0

(
2

γ + 1

) γ
γ−1

(7.10)

ve =

√(
2γ
γ + 1

)
p0

ρ0
(7.11)

ṁ =
√
γp0ρ0Ae

(
2

γ + 1

) γ+1
2(γ−1)

(7.12)

F = ṁve + (pe − pa)Ae, (7.13)

where Ae = 3.141e − 5 [m], ρ0 = 1.225 [kg/m3], pa is the vacuum chamber pressure, and F
is the estimated thrust. The result is as follows,

pe = 77069.445 [Pa]
ve = 372.734[m/s]
ṁ = 9.092e − 3 [kg/s]
F = 5.810 [N].

These preliminary data show a significant difference in the orders of magnitude of the
thrusts in ambient conditions with alcohol with respect to the vacuum condition with air.
This may be due to the fact that perhaps the elastic pressure generated by the latex balloon
was diminished by the leaks of the acrylic container, and also due to a possible leak of the
reservoir pressure p0.

These last calculations raise an important requirement for future tests, where it is
necessary to improve the measurement of the thrust in the vacuum chamber. However,
despite the fact that the estimate is overestimated, this work presents a successful vacuum
test using an automobile injector.
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Annex: Extended results

Entry simulation

Optimization results at the entry stage. Point P1 corresponds to the ignition point. P2 is
the diameter in centimeters (constant). P3 is the length of the motor (constant).
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Figure A1: Solution of the optimization problem of the equation (5.7). The blue lines show
the positions of each particle in the algorithm and the red line is the global best solution.
Part 1/2.
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Figure A2: Solution of the optimization problem of the equation (5.7). The blue lines show
the positions of each particle in the algorithm and the red line is the global best solution.
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Figure A3: Evaluation of the cost function of the optimization problem of the equation
(5.7). The blue lines show the individual evaluation of each particle and the red linear is
the best cost evaluation.
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Entry simulation: Torque

Torque due to mounting angle error:
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Figure A4: Torque due to mounting angle error

Torque due to mounting position error:
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Figure A5: Torque due to mounting position error

Torque due to dead time:
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Figure A6: Torque due to dead time
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Torque due to Isp bias:
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Figure A7: Torque due to Isp bias

Torque due to Isp noise:
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Figure A8: Torque due to Isp noise

Torque due to all:

0 10 20 30 40 50
Time [s]

4000

3000

2000

1000

0

1000

2000

3000

R
es

id
ua

l T
or

qu
e 

[m
N

m
]

Figure A9: Torque due to all uncertainties
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Entry and Descent simulation

Optimization results at the entry and descent stage with Kn. Point P1 corresponds to the
ignition point. P2 is the diameter in centimeters. P3 is the length of the motor. P4 is the Kn

ratio.
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Figure A10: Solution of the optimization problem of the equation (5.7) with Kn. The blue
lines show the positions of each particle in the algorithm and the red line is the global best
solution.
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Figure A11: Evaluation of the cost function of the optimization problem of the equation
(5.7) with Kn. The blue lines show the positions of each particle in the algorithm and the
red line is the global best solution.
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Figure A12: Solution of the optimization problem of the equation (5.9) with Kn. The blue
lines show the positions of each particle in the algorithm and the red line is the global best
solution.
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Figure A13: Evaluation of the cost function of the optimization problem of the equation
(5.9) with Kn. The blue lines show the positions of each particle in the algorithm and the
red line is the global best solution.

118


	Introduction
	Motivation
	Challenge of SPEs in soft control

	Hypothesis
	Objectives
	General objectives
	Specific objectives

	Organization
	Contributions
	National
	International


	State of the art
	Literature review
	New opportunity for landing
	Arrangement of engines
	Powered descend control
	SPEs and PGCS

	Optimal Control Problem
	General Definition
	Numerical Techniques
	Pontryagin’s Minimum Principle
	Evolutionary Computation


	Theoretical framework
	Problem definition
	Trajectory and Attitude problem
	Landing module description
	Dynamic model
	Uncertain parameters


	Methodology
	Task
	Preliminary analysis
	Optimal problem - PMP
	TPBVP solved by EC

	1D Analysis
	Design of control function for 1D
	First Approach: Controller Optimization without Trajectory Uncertainties
	Second Approach: Controller Optimization with Trajectory Uncertainties
	Thrust Model

	Plane coordinate analysis
	Expansion of Mission and Requirements
	Uncertainties and Boundary Conditions
	Optimization and Control Design
	Simulation Framework

	Mechanical considerations
	Disposition
	Structural
	Engine design


	Simulation and Results
	One Dimensional Simulation
	Optimization and Evaluation of First Approach
	Optimization and Evaluation of Second Approach
	Discussion

	Planar Coordinate Simulation
	Entry
	Descent


	Conclusions
	Future work
	Hybrid propulsion
	Automotive fuel injector
	Methodology
	Experimentation
	Preliminary Results
	Analysis of preliminary results


	Bibliography
	Annex: Extended results

