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El streaming de video domina el uso de datos en Internet, pero entregar una calidad
constante es complicado. El método Dynamic Adaptive Streaming over HTTP (DASH),
a pesar de su popularidad, sufre interrupciones por búferes vacíos. Para mejorar esto, se
propone el protocolo Adaptive Scalable Video Streaming (ASViS), que utiliza codificación
de video escalable y un enfoque User Datagram Protocol (UDP), priorizando la entrega
puntual. ASViS se adapta a la red como Transmission Control Protocol (TCP), pero es
innovador al descartar datos basándose en su relevancia temporal para evitar información
obsoleta, cumpliendo con el Request for Comments (RFC) 8085 y previniendo la saturación
de la red. Se desarrolló un modelo para prever su comportamiento en distintas condiciones
de red y evaluar la influencia de varios parámetros en su rendimiento. La ventaja de ASViS
radica en maximizar la calidad de imagen ajustándose a la Scalable Video Coding (SVC) y
a las capas de datos disponibles, superando así las limitaciones de DASH y apuntando a un
servicio de streaming más fiable y de alta calidad. Esta innovación promete un significativo
avance para el streaming de video, buscando mejorar la experiencia del usuario.
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Multimedia video streaming, identified as the dominant internet data consumption ser-
vice, brings forth challenges in consistently delivering optimal video quality. Dynamic Adap-
tive Streaming over HTTP (DASH), while prevalent, often encounters buffering problems,
causing video pauses due to empty video buffers. This study introduces the Adaptive Scalable
Video Streaming (ASViS) protocol as a solution. ASViS incorporates scalable video coding,
a flow-controlled User Datagram Protocol (UDP), and deadline-based criteria. A model is
developed to predict the behavior of ASViS across varying network conditions. Additionally,
the effects of diverse parameters on ASViS performance are evaluated. ASViS adjusts data
flow similarly to the Transmission Control Protocol (TCP), based on bandwidth availability.
Data are designed to be discarded by ASViS according to video frame deadlines, preventing
outdated information transmission. Compliance with RFC 8085 ensures the internet is not
overwhelmed. With its scalability feature, ASViS achieves the highest possible image quality
per frame, aligning with Scalable Video Coding (SVC) and the available data layers. The
introduction of ASViS offers a promising approach to address the challenges faced by DASH,
potentially providing more consistent and higher-quality video streaming.

ii



Agradecimientos
En 2007, al comenzar a estudiar ingeniería, pensé: "Espero salir luego de la universidad".
Hoy, siendo ya 2024, sigo vinculado a distintas universidades, como docente, funcionario y,
por supuesto, como alumno. Mirando atrás, quizás era un poco inocente, o al menos mis
planes tomaron un gran y agradable giro.

Quisiera utilizar este espacio para agradecer a mi familia, que ha sido un pilar fundamental
durante todo este proceso, apoyándome, escuchándome y siendo más sabios que yo en saber
cuándo hacer una pausa para cuidar de mi salud mental.

A lo largo de mi vida como alumno he tenido muchos profesores, y desafortunadamente el
espacio no me permite nombrar a todos los excelentes docentes que me guiaron, me inspiraron
y me proporcionaron las herramientas que hoy me convierten en investigador. Sin embargo,
me gustaría hacer una excepción y mencionar a mi madre, una mente brillante y disciplinada,
que sabe que las recompensas se consiguen con esfuerzo.

También quisiera agradecer especialmente a mi tutor y amigo Claudio Estévez, quien
tuvo la paciencia de guiarme y apoyarme tanto moral, disciplinaria como operativamente.
Sin él no hubiera logrado llegar hasta aquí hoy; hizo mucho más de lo que se espera de un
tutor o incluso de un docente, y las páginas disponibles no me alcanzan para agradecerle lo
suficiente.

Y finalmente, quisiera aprovechar también para agradecer al comité de postgrado, que
con sus amables y constantes recordatorios sobre la urgencia de ciertos procesos, junto con
su gestión, ayudaron a reencausar los esfuerzos para poder llegar hasta aquí.

iii



Table of Content

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1. General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2. Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Foundations and Innovations in Video Streaming Technologies 4
2.1. Thesis Work Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Communications Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1. Conceptual Network Layers Models . . . . . . . . . . . . . . . . . . . 7
2.2.1.1. TCP/IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1.2. Open Systems Interconnection (OSI) . . . . . . . . . . . . . 8

2.2.2. TCP Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3. Video Codification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1. H.264 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1.1. Scalable Video Coding . . . . . . . . . . . . . . . . . . . . . 11

2.3.2. H.265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2.1. SHVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3. Group of Pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4. Video Quality Measure . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.4.1. Peak Signal-to-Noise Ratio . . . . . . . . . . . . . . . . . . 16
2.3.4.2. Video Multimethod Assessment Fusion . . . . . . . . . . . . 18

2.4. Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1. Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.2. DASH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.2.1. ABR Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.2.1.1. Throughput-based algorithms . . . . . . . . . . . . . . . . 21
2.5.2.1.2. Buffer-based algorithms . . . . . . . . . . . . . . . . . . . 23
2.5.2.1.3. Hybrid algorithms . . . . . . . . . . . . . . . . . . . . . . 24
2.5.2.1.4. Model Predictive Control . . . . . . . . . . . . . . . . . . 25

3. Methodology 27
3.1. Connection between Methodology and Experiments with Specific Objectives 27
3.2. ASViS Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1. Modeling ASViS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2. Optimization Method for τ Configuration . . . . . . . . . . . . . . . 34

4. Experimental Setups and Results 36
4.1. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iv



4.2. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5. Conclusion 50
5.1. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Bibliography 52

v



Table index
2.1. Comparison of the scalable coding features between H.264 and H.265 (adapted

from [35]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2. Mapping Y-PSNR to MOS (adapted from [76]). . . . . . . . . . . . . . . . . . 17
4.1. Video parameters for all experiments. . . . . . . . . . . . . . . . . . . . . . . . 37
4.2. EPS for each layer for ASViS theoretical experiment. . . . . . . . . . . . . . . 37
4.3. 7 τ gap configurations to ASViS. . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4. MAPE comparison from theoretical and experimental results of ASViS. . . . . 39
4.5. Average layer size for both LSCs. . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6. Video quality results and τG coordinates for different layer size configurations. 44
4.7. Chunk properties of each bitrate level R. . . . . . . . . . . . . . . . . . . . . . 45
4.8. Detailed results of experiment 5. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vi



Illustrations Index
2.1. TCP/IP OSI models comparison. . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2. Evolution of TCP protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3. Partitioning Structure of the Coding Tree Unit (CTU) in HEVC. . . . . . . . 13
2.4. Hierarchical structure of GOP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5. Display and coding order to GOP of SVC codification. . . . . . . . . . . . . . 16
2.6. Netflix experiment analyzing PSNR vs bitrate for 100 videos which a resolution

of 1080p (adapted from [73]). . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7. Outline of the VMAF algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8. DASH architecture (adapted from [86]). . . . . . . . . . . . . . . . . . . . . . . 20
2.9. Taxonomy of different ABR algorithms approach. . . . . . . . . . . . . . . . . 22
3.1. Layers and discarding criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2. Packet selection process flowchart of DSCA. . . . . . . . . . . . . . . . . . . . 30
3.3. Iterative process of ASViS to send or discard a packet. . . . . . . . . . . . . . 33
4.1. Results of the arrival time of frames for theoretical and experimental scenarios. 38
4.2. Arrival time of frames across varying τG settings compared to the ’no protocol’

condition in Scenario 01, with RTT of 0.05 seconds, packet loss rate of 0.01, and
a 1-second buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3. Arrival time of frames across varying τG settings compared to the ’no protocol’
condition in Scenario 02, with RTT of 0.1 seconds, packet loss rate of 0.01, and
a 3-second buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4. Y-PSNR performance for G and no protocol condition in Scenario 01. . . . . . 41
4.5. Y-PSNR performance for G and no protocol condition in Scenario 02. . . . . . 41
4.6. Variations in video buffer size relative to playout percentage for Scenario 01,

illustrating the influence of ASViS under network conditions with RTT of 0.05
seconds, packet loss rate of 0.01, and a 1-second buffer. . . . . . . . . . . . . . 42

4.7. Variations in video buffer size relative to playout percentage for Scenario 02,
demonstrating ASViS performance in a network environment with RTT of 0.1
seconds, packet loss rate of 0.01, and a 3-second buffer. . . . . . . . . . . . . . 42

4.8. Video quality results of MM method for BB, EI, and EB layers for experiment 3. 43
4.9. Video quality results of MM method for BB, EI, and EB layers for LSC2 of

experiment 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.10. Comparison between normalized layer sizes and optimal τ ranges. . . . . . . . 45
4.11. VB size comparison through video playout for ASViS and MPC. . . . . . . . . 46
4.12. Estimated bitrate distribution for ASViS and MPC. . . . . . . . . . . . . . . . 46
4.13. Video quality behavior of Y-PSNR for ASViS and MPC. . . . . . . . . . . . . 47
4.14. Video quality behavior of VMAF for ASViS and MPC. . . . . . . . . . . . . . 47
4.15. Boxplot and histogram for Y-PSNR comparison of ASViS and MPC. . . . . . 48
4.16. Boxplot and histogram for a VMAF comparison of ASViS and MPC. . . . . . 48

vii



Acronyms List

AAHCC: Adaptation-Aware Hybrid Client-Cache.
ACK: Acknowledgments.
ABMA+: Adaptation and Buffer Management Algorithm.
ASViS: Adaptive Scalable Video Streaming.
AIMD: Additive Increase/Multiplicative Decrease.
AVC: Advanced Video Coding.
AI: Artificial Intelligence.
AVQ: Average Video Quality.
AVQV: Average Video Quality Variation.
BL: Base Layer.
BL-B: Base Layer Bi-predicted.
BL-I: Base Layer Interpredicted.
BL-P: Base Layer Predicted.
B-frames: Bi-predicted frames.
BOLA: Buffer Occupancy based Lyapunov Algorithm.
BTV: Buffer Threshold Values.
BM: Buffer Map.
CPU: Central Processing Unit.
CTU: Coding Tree Unit.
CU: Coding Units.
CA: Congestion Avoidance.
cwnd: Congestion Window.
CARA: Content-aware Rate Adaptation Algorithm.
CABAC: Context Adaptive Binary Arithmetic Coding.
CAVLC: Context-Adaptive Variable Length Coding.
CS2P: Cross Session Stateful Predictor.
DSCA: Deadline-sensitive Criteria Algorithm.
DL: Dependency Level.
DLM: Detail Loss Metric.
DCT: Discrete Cosine Transform.
DFT: Discrete Fourier Transform.
DASH: Dynamic Adaptive Streaming over HTTP.
EL: Enhancement Layer.
EL-B: Enhancement Layer Bi-predicted.
EL-I: Enhancement Layer Interpredicted.
EL-P: Enhancement Layer Predicted.
EPS: Estimated Packet Size.
XML: Extensible Markup Language.
FESTIVE: Fair, Efficient, and Stable Adaptive.
FRC: Fast Recovery.
FRT: Fast Retransmit.
UHD: Full Ultra High Definition.

1



GOP: Group Of Pictures.
HEVC: High Efficiency Video Coding.
I-frames: Intra-frames.
IPA: Intra-Prediction Angle.
IPM: Inter-Prediction Motion.
ITU-T: International Telecommunication Union - Telecommunication.
ISP: Internet Service Provider.
JSVM: Joint Scalable Video Model.
LTE: Long Term Evolution.
MSS: Maximum Segment Size.
MM: Multi-Dimensional Multi-Section.
MSE: Mean Squared Error.
MOS: Media Opinion Score.
MPD: Media Presentation Description.
MAPE: Mean Absolute Percentage Error.
MAOMDV: Modified Ad Hoc On-Demand Multipath Distance Vector.
MDSR: Modified Dynamic Source Routing.
MPEG: Moving Picture Experts Group.
MAODV: Multicast Ad Hoc On-Demand Distance Vector.
NZ: Non-Zero.
OSI: Open Systems Interconnection.
OSCAR: Optimized Stall-Cautious Adaptive BitRate.
PSNR: Peak Signal-to-Noise Ratio.
P-frames: Predicted Frames.
PU: Prediction Unit.
QoS: Quality of Service.
QP: Quantization Parameter.
QS: Quantization Steps.
QoE: Quality of Experience.
RANs: Radio Access Networks.
RD: Rate-Distortion.
Re: Rebuffering.
RFC: Request for Comments.
RMD: Rough Mode Decision.
RTT: Round-Trip Time.
SHVC: Scalable High Efficiency Video Coding Extension.
SVC: Scalable Video Coding.
SARA: Segment-Aware Rate Adaptation.
SACK: Selective Acknowledgment.
SS: Slow Start.
SDN: Software-Defined Networking.
SSP: Streaming Service Providers.
SVM: Support Vector Machine.
SVB: Specific Value of Buffer.
TI: Temporal Information.
TCP: Transmission Control Protocol.
TU: Transform Unit.

2



UDP: User Datagram Protocol.
VLCs: Variable-Length Codings.
VB: Video Buffer.
VL: Video Levels.
VMAF: Video Multimethod Assessment Fusion.
VQA: Video Quality Assessment.
VIF: Visual Information Fidelity



1. Introduction
This introductory chapter outlines the motivation behind the study, focusing on the chal-
lenges posed by the rapid expansion of internet access and the explosive growth of multimedia
content, particularly video streaming services. It highlights the need for a robust, efficient,
and quality-adaptive video transmission mechanism due to issues like packet loss, variable
delays, and network oversaturation. The chapter introduces ASViS (Adaptive Scalable Video
Streaming), a novel cross-layer solution designed to bridge the transport and application lay-
ers, offering a sophisticated algorithm for data transmission based on layer-discarding policy
and deadline-sensitive criteria. ASViS aims to enhance video streaming quality and consis-
tency over current methods by optimizing bandwidth usage and alleviating network conges-
tion. The objectives section lays out the general aim to design a transport layer protocol
that adjusts video stream rate to available bandwidth while maintaining high-quality video
and outlines specific goals such as analyzing SVC layers impact on video quality, designing
a deadline-sensitive curfew-based algorithm, and implementing machine learning techniques
for automatic curfew adjustments.

1.1. Motivation
The current era of digital communication is marked by a rapid expansion of Internet

access, a phenomenon propelled by the widespread adoption of advanced access technolo-
gies. This includes the deployment of fiber optic networks, evolution in radio access networks
(RANs), proliferation of local wireless networks, and the advent of satellite broadband. How-
ever, these technologies, despite their advancements, introduce a spectrum of challenges.

In parallel, the world of multimedia content, especially video streaming services, has
experienced explosive growth. Platforms offering pre-recorded and live video streams are
now commonplace, yet this surge in multimedia content brings to the forefront numerous
network-related challenges. These include increased packet loss rates, the stochastic nature of
wireless channels, network oversaturation, unstable throughput, and variable delays. These
issues severely impact the fidelity of the original content. Although the implementation
of "media-friendly" and "TCP friendly rate control" has contributed to improved designs,
the overwhelming growth of multimedia content necessitates a more robust, efficient flow-
controlled, quality-adaptive video transmission mechanism [1].It is important to note that all
streaming applications based on UDP should incorporate congestion avoidance mechanisms,
as stated in RFC 8085, sec. 1, p. 4 [2].

Moreover, the intricacies of video content delivery, particularly those revolving around
DASH and Adaptive Bitrate (ABR) algorithms, compound these challenges. Variability in
frame bitrates, competition among diverse flows in the last mile of Internet Service Provider
(ISP) networks, and the cascading effect of downloading high bitrate chunks that deplete
the buffer are significant issues. The conservative nature of existing ABR algorithms, often
designed to minimize rebuffering events, can result in suboptimal average bitrates and a
consequent decline in video quality.

To further elaborate on the urgency and relevance of addressing the outlined challenges
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in video streaming technologies, consider the global shift towards remote work, online ed-
ucation, and digital entertainment. This transformation has exponentially increased the
demand for high-quality, reliable video streaming services. The COVID-19 pandemic has
particularly underscored the importance of digital communication platforms, revealing sig-
nificant gaps in current technologies when faced with unprecedented levels of internet traffic
[3, 4]. For instance, the transition to online learning has highlighted the critical need for
efficient, adaptive video streaming to ensure educational content is accessible to students in
varying internet conditions [5, 6]. Similarly, the entertainment industry has seen a surge
in online viewership, placing additional strain on existing network infrastructures. These
scenarios illustrate the pressing need for innovative solutions that can adapt to fluctuating
network conditions without compromising video quality or user experience. Addressing these
challenges is not just about enhancing current technologies; it is about reimagining the future
of digital communication to meet the evolving demands of a world increasingly reliant on
virtual connections.

1.2. Hypothesis
This thesis posits that the introduction of ASViS will effectively address the critical chal-

lenges of increased packet loss rates, the stochastic nature of wireless channels, network
oversaturation, unstable throughput, and variable delays identified in the realm of video
streaming. ASViS, a novel cross-layer solution designed to operate between the transport
and application layers, introduces a groundbreaking algorithm that manages data transmis-
sion based on a sophisticated layer-discarding policy and deadline-sensitive criteria. This
marks a significant departure from traditional ABR algorithms that rely on TCP reliability
mechanisms.

ASViS uniquely uses packet loss as a metric to calibrate flow rate, incorporating aspects
of TCP methodology while avoiding retransmissions. Supported by a well-defined discarding
policy, ASViS efficiently detects missing data at the application layer, such as absent frame
fragments, utilizing UDP. This approach circumvents the need for sequential tracking and
acknowledgments characteristic of TCP, thereby reducing associated delays. The research
posits two primary hypotheses for validation:

• ASViS will significantly enhance video streaming quality and consistency over current
DASH and ABR methods. By bridging transport and application layers with its inno-
vative algorithm, ASViS is expected to reduce rebuffering incidents and elevate overall
video quality in diverse network conditions.

• ASViS will optimize bandwidth usage and alleviate network congestion through its
unique flow rate regulation approach. This UDP-based strategy will enable efficient
data loss detection and facilitate informed retransmission decisions at the receiver,
enhancing the end-user streaming experience.

These hypotheses frame the expected impact of ASViS in addressing the aforementioned
challenges within the broader context of multimedia content delivery and network efficiency.
Central to ASViS is its innovative method for flow rate regulation, akin to TCP congestion
window, and the integration of a selective acknowledgment protocol, crucial for ensuring
accurate RTT measurements and throughput estimation. ASViS, adhering to RFC 8085
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guidelines, promises not only to mitigate network congestion but also to significantly enhance
the quality of video streaming experiences, positioning it as a transformative solution in
multimedia content delivery.

1.3. Objectives

1.3.1. General Objective
To enhance the streaming experience across fluctuating network conditions by optimizing

the quality and efficiency of video transmissions. This objective aims to ensure the delivery of
high-quality video content, improving reliability and user satisfaction by effectively managing
variable bandwidth and minimizing video rebuffering and delays.

1.3.2. Specific Objectives
• Evaluate how different SVC layers influence the quality of video streaming to determine

the optimal configuration that ensures the best user experience.

• Develop and refine algorithms that dynamically adjust video streaming to available
bandwidth and network conditions, aiming to minimize buffering and enhance video
quality.

• Integrate machine learning to automatically fine-tune streaming parameters in real
time, aligning closely with changing network conditions to meet and exceed quality
targets.

• Perform advanced simulations to validate and optimize the streaming protocol under
various network scenarios, ensuring the protocol consistently delivers high-quality video.

3



2. Foundations and Innovations in Video Stream-
ing Technologies

Over recent years, a marked transformation in the realm of digital communication has been
observed, with multimedia video streaming emerging as the predominant internet data ser-
vice. Some had predicted that by 2020, video traffic would account for 82% of global online
traffic [7]. Contrary to these predictions, it is reported in [8] that in the first half of 2022, video
streaming constituted 65.93% of total internet traffic, with Netflix and YouTube contributing
13.74% and 10.51%, respectively. Furthermore, a 23% increase in total traffic volume was
observed in 2022 compared to 2021, attributed to the significant growth of various streaming
services. Current data regarding video streaming consumption on mobile networks indicates
that 71% of the traffic was video-related [9]. Projections suggest that this figure is expected
to reach 80% by 2028. Such statistics underscore the undeniable growth trend. This evo-
lution has been attributed not only to technological innovations but also to the integration
of intelligent devices. Platforms, such as Zoom, Microsoft Teams, Netflix, YouTube, and
Amazon Prime, have been recognized as significant players in this revolution. Moreover, un-
expected external events, notably the Coronavirus disease pandemic, have acted as catalysts,
propelling an unprecedented demand for online communication and entertainment platforms.
This surge, documented as a 20-40% increase in video streaming [3, 4], occasionally strained
available bandwidth capacities, necessitating temporary transitions from high definition to
standard definition by some service providers [10].

DASH is an open standard for transmitting video that adapts to both the network and
device. In this evolving landscape the DASH protocol, operating over the TCP, has been
identified as the primary delivery model for video streaming services [11, 12, 13]. This open-
source standard, celebrated for its flexibility and codec-agnostic features, has established itself
as an indispensable tool for most streaming entities [14, 15]. DASH divides the video into
multiple fixed-length chunks [16], each encoded at different qualities, frame rates, and res-
olutions. Nevertheless, challenges associated with DASH, including buffering interruptions,
have signaled an imperative need for refined protocols that can mitigate such disruptions[12].
The most common problems are focused on coding, ABR, and congestion control, which are
described below.

• Not all frames have the same bitrate due to differences in complexity in terms of motion
or elements. Therefore, even with a constant bandwidth, it is necessary to consider
bitrate oscillations [17, 18].

• In the last mile of the ISP, the video stream competes with many different flows, and
since TCP transmissions are the majority of flows, this inevitably becomes a bottleneck.
This leads to events such as packet loss and inflation of end-to-end RTT delays[19].

• Downloading certain high bitrate chunks can deplete the buffer, forcing the next chunks
to have a low bitrate to maintain smoothness[20, 21]. This is known as the cascading
effect.
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• ABR algorithms have a conservative policy to avoid or minimize rebuffering events
[21]. In [22], it shows the YouTube behavior to variations in bandwidth, particularly
for wireless access, where the ABR algorithm does not increase the video quality until
several seconds pass. These can lead to a lower average bitrate.

• Once the ABR algorithm chooses a certain bitrate to download, it cannot be canceled.
Therefore, if during this interval, the network bandwidth fluctuates, and the buffer is
empty, this can lead to rebufferings [23].

• Using ABR in conjunction with SVC makes the video clips independent, which forces
downloading the clips with a higher bitrate to have better video quality.

• ABR algorithms have an expensive computation overhead, especially in the latest pro-
posals [20, 21]. This implementation can be problematic, especially in the case of mobile
devices that have limited computational resources [20]. That is relevant because, as of
2020, mobile devices are 43% of online video views [24]. That is one reason why ABR
algorithms are generally implemented on the server side.

Through an ABR algorithm, the client fills the local disk with chunks sent from the
server, stores the content before it starts to play, and helps tolerate network outages without
interrupting the playback by using the stored content in the local disk [25]. For simplicity,
the video content stored before the playout on the client side is called a video buffer (VB).
Also, the VB definition helps to avoid confusion with the buffer term in the context of UDP
and TCP transmission. The video player employs an ABR algorithm to select and switch
the content quality based on instantaneous network conditions. The main objectives ABR
algorithms are [25, 26, 27]:

1. Deliver the highest possible video quality.

2. Avoid rebuffering.

3. Minimize playout delay.

4. Minimize quality switches.

It may seem impractical to achieve all these objectives simultaneously; hence, ABR al-
gorithms aim to strike a balance between these points and achieve the best possible Quality
of Experience (QoE). From the perspective of the Streaming Service Providers (SSP), QoE
is one of the most critical factors for measuring service satisfaction among users. This is
because the content is now accessible on a wide range of devices and access points. Recent
studies indicate that rebuffering, initial delay, and variations in video quality significantly
impact QoE perception [25, 26, 28, 29]. The effects of these factors also depend on user sub-
jectivity [27]. Therefore, the primary objective of the SSP is to maximize QoE. In an ideal
situation, the SSP would deliver the highest possible video quality and framerate without
any rebuffering. However, bandwidth is limited, and network conditions can fluctuate over
time, with different technologies used to access the internet.

One of the traditional codecs that have been used in DASH in recent years is H.264 or
Advanced Video Coding (AVC) [30, 31]. AVC provides various techniques and tools to create
compression with loss. It exploits the similarity between adjacent pixels and the movement
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of specific structures or objects in successive frames, creating a structure of dependent frames
known as Group Of Pictures (GOP). With time, the need for video scalability led to SVC as an
extension of AVC. SVC can encode videos using the same techniques as AVC, creating a Base
Layer (BL) that can be independently decoded, and adds another layer called Enhancement
Layer (EL), which depends on the BL [32, 33, 34]. EL provides scalability in terms of quality,
framerate, and resolution. If an EL is lost, the BL can be independently decoded with basic
video quality, which gives SVC better resilience to packet loss compared to AVC [33].

The structure of independent and dependent layers has been implemented in subsequent
evolution and new encoding algorithms used by SSPs such as H.265 or High Efficiency Video
Coding (HEVC) with its Scalable High Efficiency Video Coding extension (SHVC) [35, 36,
37], Video Predictor 9 (VP9) [38, 39] and AV1 [38, 40, 41]. However, these codecs face
challenges such as high royalty payment for H.265 [42, 43], discontinuation of VP9 in favor
of AV1 [40], and AV1 still maturing [38], even though it is slowly starting to gain popularity.

Advancements in the field of video streaming have been significantly influenced by the in-
tegration of artificial intelligence (AI). Video encoding has been enhanced through algorithms
powered by AI, which dynamically adjust encoding parameters, resulting in optimized data
compression while maintaining visual quality [44, 45, 46]. ABR algorithms have been refined
through machine learning techniques, predicting network conditions to facilitate smoother
streaming and reduced rebuffering [29, 47]. Furthermore, the assessment of video quality has
been advanced by predictive models that effectively gauge user-perceived quality, enabling
swift feedback for real-time adjustments [48, 49]. These AI-driven improvements have not
only enhanced operational efficiency but have also enriched user experience by customizing
streaming to meet individual demands and viewing contexts.

In parallel with AI advancements, the deployment of high-speed networks such as 5G and
satellite networks like Starlink has broadened the horizons for video streaming [50, 51]. The
high data transmission capacity and reduced latency associated with 5G have paved the way
for high-definition streaming on mobile devices, whereas satellite networks have extended
streaming reach to previously disconnected areas. Nonetheless, these advancements present
unique challenges, including efficient broadband spectrum management and adaptation to
increased network variability. Consequently, the development of solutions that optimize video
streaming on these emerging platforms has been necessitated, ensuring that the technology
can fulfill the promise of uninterrupted, global access to quality content.

In future research and development, ongoing optimization of ABR algorithms is seen
as pivotal. As video encoding technologies advance and high-quality content demand in-
creases, these algorithms must be refined to balance video quality, buffering minimization,
and network variation adaptation more effectively. Furthermore, the integration of ABR with
emerging networks like 5G is identified as a promising development area. The deployment of
5G promises significantly higher data transmission speeds and reduced latency, potentially
revolutionizing video streaming on mobile devices and in previously inaccessible locations.
However, challenges such as efficient broadband spectrum management and adaptation to in-
creased network variability are presented by this integration, necessitating the development
of solutions that leverage 5G capabilities fully. Such advancements are anticipated not only
to enhance end-user streaming experience but also to open new avenues for interactive and
real-time content, marking the beginning of a new era in digital video streaming.
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2.1. Thesis Work Contribution
In this thesis, ASViS, an innovative algorithm for scalable and adaptable video trans-

mission, has been introduced, marking a significant advancement in the field of Adaptive
Bitrate (ABR) algorithms. The primary contribution of this research lies in the development
and empirical validation of a theoretical model that optimizes video quality and minimizes
transmission interruptions, even under fluctuating network conditions. Through a series of
meticulous experiments, it has been demonstrated that ASViS surpasses conventional ABR
methods, such as MPC, in terms of video quality, bandwidth efficiency, and transmission
stability. Specifically, ASViS is shown to have a remarkable ability to adapt dynamically
to network variations, prioritizing the transmission of critical video layers and proactively
adjusting the sending rate in response to changing conditions. This approach not only im-
proves user experience by reducing startup times and rebuffering but also suggests a more
efficient utilization of network resources. The relevance of this thesis extends beyond tech-
nological advancements, proposing a model that can be integrated with current and future
video encoding technologies, and providing a solid foundation for future research in video
transmission optimization in next-generation networks like 5G.

2.2. Communications Protocols

2.2.1. Conceptual Network Layers Models

2.2.1.1. TCP/IP

TCP/IP refers to a set of data communication protocols, that was developed around 1973
as part of the Advanced Research Projects Agency Network project of the United States
Department of Defense. In some cases, TCP/IP is called the Internet Protocol Suite. In
general, it determines two things: first, how the computers are connected to the Internet,
and second, how should be the information interchanged, describing how the data must be
framed, encapsulated, packeted, encoded, transmitted, received, decoded, and, finally, used
by the layers of the application [52]. Maybe the most relevant characteristics of TCP/IP are
its simplicity and robustness. For that reason is considered a practical way to understand
communications, which allows it to be implemented in many environments. The traditional
scheme of TCP/IP is a protocol stack, in this, each layer is dependent on its top layer. This
is described next [53, 54]:

• Application: This layer provides the interface, session establishment and coordination,
and communication protocols between users and software applications.

• Transport: This layer ensures the transfer of data streams and flow control using two
protocols: TCP guarantees data integrity by checking for corrupted data, while UDP
does not check reliability.

• Internet: This layer is connectionless and responsible for exchanging messages between
networks, defining data encapsulation, determining paths between networks, Internet
addressing, packet delivery across multiple networks, and fragmentation and reassembly
of packets.
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• Data Link: This layer identifies network protocols, synchronizes frames with the Logical
Link Control, performs connection, and defines permissions for data exchange through
the Media Access Control. It adds header frames to packets.

• Physical: This is the lowest layer responsible for physical interfaces using cables or
wireless signals, sending a series of 0s and 1s and controlling the bit rate.

2.2.1.2. Open Systems Interconnection (OSI)

The OSI model is more extended and refined than TCP/IP, it was proposed to be a common
frame for new network kinds and protocols, allowing different networks can be interoperabil-
ity. His major advantage is the agnostic model to the technologies or protocols used in the
telecommunications process [52, 54]. The OSI model presents a 7 layers abstraction model,
highly correlated with the TCP/IP model, Figure 2.1.

• Application: The closest to the users and the software, provides the high levels protocols
to send and receive data

• Presentation: Defines how the data must be codified, encrypted, and compress data.

• Session: This layer is in charge of authentication, creation, maintenance, ensuring, and
closing sessions between devices to ensure the correct data transference.

• Transport: Can divide the data into packets with a fixed length or reassembles the
packets to extract the data. Is responsible, as well, for sending the data at a determined
connection speed and finally for checking the integrity of the data.

• Network: It layer discovers the path across the physical network between two devices
to route the packets, uses network addresses, and split the packets into packets with a
fixed length. It is very similar to the TCP/IP model.

• Datalink: It layer is equal to the TCP/IP model.

• Physical: It layer is equal to the TCP/IP model.

2.2.2. TCP Congestion Control
At the beginning of the Internet, the foreseeable growth of telecommunications and the

need for methods that will allow reliable communication gave way to the TCP part of the
TCP/IP model. TCP provides a way to be aware of network capacity variations and was
developed with intrinsical congestion control to prevent it.

The first formal version of TCP was TCP Tahoe in 1988, which included Slow Start
(SS), Congestion Avoidance (CA), and Fast Retransmit (FRT ). TCP Reno was developed
a few years later and included all mechanisms from TCP Tahoe as well as a new congestion
control technique called Fast Recovery (FRC). TCP Vegas is another version that includes
a new method to detect the congestion based on the packet delay (instead of the packet loss).
Posteriorly TCP New Reno modified the FRC mechanism [55, 56]. The evolution of TCP
can be seen in Figure 2.2.
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Figure 2.1: TCP/IP OSI models comparison.

TCP uses cumulative Acknowledgments (ACK) to identify if the packets were successfully
received on the receiver side or not and to know that it is expecting the next one, if the
ACK is undetected, the packets are resent. The Congestion Window (cwnd) is the number
of packets that TCP can send before receiving an ACK, which helps to avoid overcharge data
between the sender and the receiver. Duplicated ACK is sent when the receiver receives an
out-of-order packet. The first step is SS, the cwnd grows exponentially after receiving an
ACK, that growth can be stopped in 2 situations [55, 57]:

• If a SS threshold (ssthresh) is reached the algorithm changes to the CA phase, in that
the growth is linear after each RTT .

• When the sender receives 3 Duplicated ACK it assumes that the packets are lost, so
changes to the FRC with a ssthresh = cwnd and cwnd = ssthresh + 3 and adopts
a linear growth after each RTT , at this stage, it only resends the packages that were
lost. After that, the algorithm changes to CA, maintains the ssthresh, and cwnd =
ssthresh.

When TCP RENO detects a timeout, it change to SS using the previous cwnd to define
a new ssthresh = cwnd/2. The Additive Increase/Multiplicative Decrease (AIMD) behavior
is the core in terms of congestion control because it provides the ability to react quickly
against congestion events.

2.3. Video Codification
Uncompressed video is commonly referred to as RAW video. It is essentially a sequence

of images that have not been compressed or processed in any way. In order to achieve
higher compression ratios and reduce the bit rate of RAW videos, video coding techniques
are employed. This saves bandwidth and space required for data storage. The video coding
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Figure 2.2: Evolution of TCP protocols.

process involves three main steps: redundancy elimination, quantization, and coding of the
coefficients. The two most widely used standards in video coding are the Moving Picture
Experts Group (MPEG) 4 part 10, also known as H.264, and its successor, HEVC or H.265.

Furthermore, video coding plays a crucial role in the streaming and transmission of videos
over the internet. The use of video coding algorithms enables the efficient transmission of
high-quality videos without consuming excessive bandwidth. However, the constant evolution
of video coding standards is necessary to keep up with the ever-increasing demand for better
video quality and efficiency.

2.3.1. H.264
The H.264 video coding standard, also known as AVC, was designed by the Joint Video

Team (JVT) in 2003 [31] and is one of the most widely used and sophisticated video com-
pression solutions. It consists of four main steps: motion estimation, transform coding,
quantization, and entropy coding [58].

The motion estimation process eliminates redundancy by utilizing spatial and temporal
correlation between neighboring pixels and successive video frames. Each video frame is
divided into macroblocks of size 16×16, which can be further divided into smaller blocks
(16x8, 8x16, 8x8, 8x4, 4x8, and 4x4) for motion estimation of moving objects [58, 31]. Larger
macroblocks are suitable for homogeneous movement, while smaller blocks are useful for fast
movement or detailed objects. Using this information, a new macroblock is predicted by
spatial or temporal prediction.

The transform coding process involves converting a block of NxN pixels into a block of
NxN coefficients using a Discrete Cosine Transform (DCT). This process groups the energy
of the image into a few significant values, with high-frequency coefficients tending to zero
and entire coefficients obtained. Zigzag exploration is used to extract relevant data, with the
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highest value being found at low frequencies near the upper-left edge of the block.
Quantization is a lossy compression method used to encode the DCT coefficients by

removing non-significant data. H.264 has 52 different quantization steps (QS), each of which
increases the quantization level by 12.5%, providing fine control between quality and size. The
quantizers are selected by the Quantization Parameter (QP). Equation 2.1 shows a simplified
version of quantization, where Z is the quantized coefficient, Qstep is the QS, and Y are the
coefficients to transform. Different step levels are used according to the desired quality, and
the result is rearranged into arrays by zigzag, ensuring the highest energy coefficients are in
the first place.

Z = round

(
Y

Qstep

)
(2.1)

Entropy coding creates an adequate bit flow for transmission and can use two alterna-
tives: Context-Adaptive Variable Length Coding (CAVLC) and Context Adaptive Binary
Arithmetic Coding (CABAC).

• CAVLC is designed to exploit the characteristics of non-zero (NZ) DCT coefficients.
After the quantization process, the blocks mostly contain zeros, and the zero strings
can be compactly represented by run-level coding. Conversely, the frequency of NZ
coefficients is high, and they are typically ±1. CAVLC uses seven fixed variable-length
codings (VLCs) to encode these NZ coefficients. Each table has a high range of values,
and the same NZ string can be coded differently with different VLC tables. CAVLC
uses two modes for coding: the regular mode and the escape mode. The regular mode
is used when the NZ string values are within the range of the table; otherwise, the
escape mode is used. The transition threshold for the next NZ string is adaptive and
is based on the current NZ string values.

• Although CABAC is more efficient than CAVLC, it is complex and expensive in pro-
cessing. The encoding process has three steps: binarization, context modeling, and
binary arithmetic coding. In the binarization step, non-integer coefficients are mapped
to a binary sequence. This step uses a lookup table to obtain a fixed symbol rate for
each symbol of an alphabet. In the context modeling step, the NZ coefficients previously
coded are used to estimate the conditional probabilities of the next NZ coefficients to be
coded. Finally, in the binary arithmetic coding step, the symbol is encoded according
to the conditional probabilities model.

2.3.1.1. Scalable Video Coding

SVC is an extension of the H.264/AVC standard, developed by the International Telecom-
munication Union - Telecommunication (ITU-T) H-series recommendations for the coding
of moving video. It allows for the generation of multilayer streams from a single layer cod-
ing, which in turn increases the complexity of the encoding/decoding process. SVC has the
unique characteristic of partitioning the compressed video frames into distinct incremental
layers, which can be temporal, spatial, or quality-based [59]. Each substream obtained by
dropping packets from the original bitstream results in a lower frame rate, lower resolution,
or lower quality video signal. These substreams are categorized into BL and EL, with the
BL containing independent layers and the EL containing dependent layers.
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The layers are combined to form a single video stream, which should not be confused
with a solution consisting of multiple distinct-quality copies semaphored by a throughput-
sensing system. The SVC coding mechanism partitions the spatial frequency information into
multiple packets, where the lowest frequencies form the base layer and subsequent frequencies
form the upper layers. The upper layers are useless without the lower layers, as the higher
frequencies do not contribute significant information without the lower frequencies. The
highest layer, which contains the highest frequency content, will appear as noise without the
remaining data. For this reason, the decoder discards higher-level layers if any intermediate
layer is missing.

In the context of video streaming, scalability refers to packeted layered coding that sup-
ports the discarding of higher layers in a manner that is still decodable. This increases the
granularity of the packed packets, thereby losing less information if packets are lost. In con-
trast, for the single-layer case, if a whole frame is sent partitioned in standard-sized packets
and a single packet is lost, the affected frame would be incomplete and therefore, undecodable.
The temporal scalability of SVC supports the decimation of bi-directional frames with de-
pendencies, forming another valid bitstream that represents the source content with a lower
frame rate. The quality scalability enables the reconstruction of substreams by removing
higher spatial frequency content [30].

2.3.2. H.265
H.265, also known as MPEG-H Part 2, was developed by the Video Coding Experts

Group and the MPEG to meet the growing demand for video consumption, likely due to
the increasing availability of high-speed internet and streaming services like Amazon Prime,
Netflix, and YouTube. HEVC supports Full Ultra High Definition (UHD) and offers over
50% improvement compared to its predecessor [60, 61, 62].

In image partitioning, HEVC uses the Coding Tree Unit (CTU), which is a logical unit
composed of three blocks: luminance and two chromas (Cn and Cr), as well as an associated
element, as shown in Figure 2.3 [60]. While CTUs are similar to the macroblocks in H.264,
they are larger and more flexible. Each CTU contains between 16x16 and 64x64 pixels [63].

CTUs can be divided into smaller units down to 8x8, and these divisions are called Coding
Units (CU). The CU consists of two units: the Transform Unit (TU) and the Prediction Unit
(PU). The TU contains information on the Discrete Fourier Transform (DFT) matrix and
quantized blocks, while the PU stores prediction data for either Intra-Prediction Angle (IPA)
or Inter-Prediction Motion (IPM). The CU and PU can range from a maximum size of 32x32
to a minimum of 4x4 pixels.

For the motion estimation process, HEVC can use the inter prediction mode and introduce
the merge mode, which creates a motion vectors region by copying temporal and spatial axis
information. Later, a motion vector machine selects the best motion vector from a list of
candidate vectors. The sizes of the motion vector prediction are very flexible and can be
asymmetric or symmetric. The motion vector prediction uses two main references, L0 and
L1, each with 16 references.

The motion estimation process can also use the intra-frame prediction, which consists
of three steps: Rough Mode Decision (RMD), Most Probable Mode (MPM), and Rate-
Distortion (RD) optimization. RMD selects an initial best candidate list from 35 predictors,
MPM adds the coding modes of above and to the left of the current PU to the list, and RD
optimization chooses the minimum RD cost in the candidate list as the best coding mode.
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These trade-offs between distortion (objective video quality) and bit rate require an extensive
amount of processing.

For the transformation process to the frequency domain, HEVC uses DCT to eliminate
spatial redundancy. HEVC can use many transforms, including 8x8, 16x16, 32x32, and
4x4. For intra-frame prediction, the 4x4 mode is based on Discrete Sine Transform (DST).
In general, CABAC remains essentially unchanged but introduces enhancements in coding
efficiency and computational complexity compared to H.264. CABAC improves compression
efficiency by 9% to 14% [64]. However, the support for CAVLC is abandoned.

Figure 2.3: Partitioning Structure of the Coding Tree Unit (CTU) in
HEVC.

2.3.2.1. SHVC

SHVC is a video coding standard that has been developed as an extension to the HEVC
standard to provide enhanced video quality, higher bit depths, wider color gamuts, and
higher frame rates. The primary advantage of SHVC over HEVC is its scalability, achieved by
encoding one video in multiple layers, where each layer provides a specific enhancement[35].
This scalability can be achieved in three ways: temporal, spatial, and quality. Temporal
scalability allows control over the frame rate, spatial scalability controls the spatial resolution,
and quality scalability manipulates the fidelity of the video [36, 37].

The ability to adapt to network conditions is another major advantage of utilizing SVC
or SHVC. Network conditions can change rapidly, and video quality can suffer if the codec is
not designed to handle such changes. With SVC and SHVC, the video can adapt to network
conditions, resulting in a better viewing experience for users. This ability to adapt also
makes SHVC an ideal choice for streaming high-quality videos over the internet or other
networks[35].

13



One of the principal novelties of SHVC is transcoding, which is the process of reencoding
a video with different parameters. This technique is useful when the video needs to be
converted to a different format or compressed to a lower bit rate to save storage space or
reduce network bandwidth. Another novelty of SHVC is simulcast, which is the process of
encoding multiple videos, each with a different resolution, frame rate, bit depth, etc., and
transmitting them simultaneously [36, 37]. This allows viewers to choose the version of the
video that best suits the capabilities of their devices, network speed, or personal preference.

In summary, SHVC is an advanced video coding standard that offers scalability, adapt-
ability, and advanced features like transcoding and simulcast. These features make SHVC
an ideal choice for applications that require high-quality video and the ability to adapt to
changing network conditions. The main differences between SVC and SHVC are described
in table 2.1.

Table 2.1: Comparison of the scalable coding features between H.264
and H.265 (adapted from [35]).

Scalability
features

Standard
SVC SHVC

Temporal x x
Spatial x x
Quality x x
Hybrid codec x
Bit depth x
Color gamut x
Simulcast x

2.3.3. Group of Pictures
GOP is a set of consecutive frames in a coded video stream, and at the same time, it is

the structure in which the predicted frames are arranged. The compression process can lead
to two types of prediction based on the similarity between adjacent pixels (spatial) and the
motion of objects (temporal) [65].

• Intra prediction involves creating a predicted macroblock with the adjacent macroblocks
and coding the residual information between the predicted and the current macroblock.

• Inter prediction involves finding similarities between previously encoded macroblocks
(k) and the current one (k+1), creating a motion vector that indicates the position of
macroblock k on k+1.

These two types of prediction, intra and inter, can be arranged into three different types
of frames, which are related and may be necessary to decode the others [12, 66, 67].

• Intra-frames or I-frames: These frames contain all the information of the original image,
can be decoded independently, and only contain intra-predicted macroblocks.

• Bi-predicted frames or B-frames: These frames are based on the previous and subse-
quent frames and only contain inter-predicted macroblocks.
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• Predicted frames or P-frames: These frames are based on the previous frames and
contain both intra-predicted and inter-predicted macroblocks.

The GOP must contain at least one I-frame, which has the least amount of compression.
A GOP can contain P-frames and B-frames. P-frames require one I-frame or P-frame to
decode the data. B-frames require two frames (preceding and succeeding in display order) of
any type to decode the data. The scenario with I-P-B frames is illustrated in Figure 2.4a,
while the scenario with I-B frames is illustrated in Figure 2.4b .

(a) (b)

Figure 2.4: Hierarchical structure of GOP.

The GOP size is a manipulable parameter that indirectly defines the size of the frames
because there exists a dependency between frames to decode certain data. In this case, we
refer to this as the Dependency Level (DL). In Figure 2.4, frames at the highest DL have
the highest frame size, and descending in the DL also decreases the frame size. However, the
frame size depends on a series of characteristics of both the codec and pictures, so this DL
is not a linear relation.

In the SVC context, we can differentiate between Base Layer Interpredicted (BL-I), En-
hancement Layer Interpredicted (EL-I), Base Layer Bi-predicted (BL-B), Enhancement Layer
Bi-predicted (EL-B), Base Layer Predicted (BL-P), and Enhancement Layer Predicted (EL-
P). Figure 2.5 depicts the GOP structure when SVC coding is considered. It considers a
GOP size of 8 frames (IBBBBBBB) and two quality layers (base and enhancement). The
B-frame decoding dependencies are also illustrated, and P-frames are not considered in this
scenario. These dependencies are important as they explain how a missing frame at the
decoder will impact the video quality. For instance, if frame 3 (encoding order) is missing,
it will impact the decoding of frames 4 and 5, resulting in artifacts. This behavior is called
error propagation. If frame 5 is missing, there is no error propagation, as this frame does not
serve as a reference to any other frame.

2.3.4. Video Quality Measure
Defining a video quality measure is a controversial topic, as concepts such as good, fair or

poor quality depend on a series of subjective factors. Attempting to translate the subjective
measure into an objective one is complicated. Furthermore, the images that compose a
video are degraded during several stages such as capture, quantization, compression, and
transmission, among others[68, 69].
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Figure 2.5: Display and coding order to GOP of SVC codification.

Despite the aforementioned difficulties, the main idea behind defining a video quality
measure is to replicate how the human eye can transform light into biological signals. Pho-
toreceptors are an essential compound of the retina that react to light, converting it into
biological signals, and consequently, help us to obtain a visual representation of the world
around us. In general, photoreceptors are classified into rod cells, associated with lumi-
nance recognition, and cone cells, associated with color recognition. The human eye has a
significant difference in the total amount of photoreceptor kinds: rod cells are around 120
million, representing approximately 95% of the total, and cone cells are around 6-7 million,
accounting for approximately 5%[70, 71].

Due to the reasons mentioned above, the human eye is more sensitive to brightness than
color, and frequently, video quality assessment tools consider only the brightness components,
i.e., the luminance or luma channel. The existing tools find an automated way to emulate
human perception. Despite this, the subjectivity involved in quality assessment makes it
challenging to develop an algorithm that provides an objective measure of video quality.

2.3.4.1. Peak Signal-to-Noise Ratio

PSNR is a widely used metric for measuring video quality, especially in DASH, and is one of
the most common approaches for measuring QoE [18, 72]. One example is shown in Figure
2.6 [73], where Netflix encoded 100 different 1080p videos using h.264 with the same QP rate
control, and plotted the resulting bitrate [kbps] on the x-axis and the Y-PSNR [dB] on the
y-axis.

PSNR is the ratio between the maximum energy of a signal and the noise, expressed
in [dB]. Although PSNR can calculate the components of luminance and chrominance,
the most widely used parameter is luminance (Y), as the human eye is more sensitive to
brightness[69, 74]. The first step in obtaining PSNR is to calculate the Mean Squared Error
(MSE), given by [75]:

MSE = 1
mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (2.2)

where I(i, j) and K(i, j) are the pixel values of the original and reconstructed image,
respectively, and m and n are the sizes of the video. PSNR can then be calculated using
Equation 2.3, where MAXI is the maximum pixel value of the frame:
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Figure 2.6: Netflix experiment analyzing PSNR vs bitrate for 100
videos which a resolution of 1080p (adapted from [73]).

PSNR = 10log10

(
MAX2

I

MSE

)
(2.3)

Although PSNR is a widely used metric, there are problems associated with transferring
a value in [dB] to a subjective assessment. A more interesting approach is the Media Opinion
Score (MOS), which is a subjective estimate of video quality and is represented by an average
quality judgment of a group of testing subjects. The most common experiment to measure
MOS involves having subjects watch a video and rate the perceived quality on a scale of 1 to
5. Although this experiment is expensive and time-consuming, a relationship was established
between Y-PSNR and MOS, as shown in Table 2.2 [76], providing a good estimation of the
perception of video quality across five categories: excellent, good, fair, poor, and bad.

Table 2.2: Mapping Y-PSNR to MOS (adapted from [76]).

Y-PSNR (dB) MOS
>37 Excellent

31-37 Good
25-31 Fair
20-25 Poor
<20 Bad

While PSNR has been a foundational metric in video quality assessment, its capability
to fully represent the subjective perception of end users has been a topic of scrutiny. This is
due to its focus on mathematical differences at the pixel level, which does not always align
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with human perception. Especially in adaptive streaming systems, there is a pressing need
for metrics that can more accurately reflect human experiences.

2.3.4.2. Video Multimethod Assessment Fusion

In response to these limitations, Netflix introduced VMAF, a video quality metric crafted to
mirror human perception more accurately [69, 77]. By amalgamating various video quality
evaluation methods using a support vector machine (SVM), VMAF produces a perceptual
quality score [29, 68, 78]. This integrated approach ensures the holistic representation of
individual measures, bolstering its correlation with subjective assessments. Validations across
a multitude of video resolutions and datasets indicate VMAF scores, ranging between 0 and
100, align closely with subjective evaluations [78, 79].

The first step in VMAF is to extract two types of video quality measures, spatial and
temporal, as feature maps [78]. The spatial information is obtained by the mean detail loss
metric (DLM) and visual information fidelity (VIF).The temporal measure is obtained using
temporal information (TI). The DLM feature calculates the detail losses weighted over four
different scales. Then, VIF obtains the losses and visual information fidelity and computes
them into four different scales. The TI feature compares the luminance compound difference
between a pair of frames to capture temporal effects due to movement and is quantified by
six different features [78]. The average value of each feature is then obtained and used to
feed a pre-trained SVM model, which obtains a predicted per-frame quality score from 0 for
low quality to 100 for the highest quality [79].

The VMAF model was trained by SVM regression with a video database VMAF+, it is
a large video quality assessment (VQA) dataset composed of 522 videos with different levels
of scaling and compression [80]. In the supervised learning step, the VMAF model obtains
suitable weights for the elementary metrics and learns from ground truth scores [79]. VMAF,
equal to other state of art video quality measures, only analyzes the luma compounds of the
video channel [80]. The outline of the VMAF algorithm is shown in Figure 2.7.

Figure 2.7: Outline of the VMAF algorithm.

2.4. Machine Learning
Machine Learning is a branch of artificial intelligence that studies techniques to perform

tasks using learned experience as opposed to explicitly programming an inflexible input-
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output function. There are different types of machine learning: supervised, unsupervised,
and reinforced learning.

Supervised learning is mainly concerned with data regression and classification based
on a labeled database. The system is fed the labeled data and the output is a correlation
(numerical or class) of the newly acquired information and the previously collected data.
Unsupervised learning is mainly concerned with association and clusterization. In this case,
there is no labeled data, and the techniques are oriented to find patterns or similar traits.
Reinforced learning is, in short, a system that performs a task by trial and error. It is given
an objective and taught to distinguish a desirable outcome and by exhaustive attempts, it
searches for a specified goal.

The integration of Machine Learning in the DASH standard, has been revolutionizing the
delivery and quality of these services. For instance, segment prefetching has been addressed
in a notable study, where ML predictions are utilized to adjust video segment bitrates to
changing network conditions, achieving nearly 90% prediction accuracy and significantly en-
hancing user experience and bandwidth utilization [81]. Additionally, an innovative approach
has been employed, utilizing Multi-access Edge Computing alongside ML classification mod-
els to select media segments for prefetching, thereby improving QoS and QoE in 5G network
environments [82]. Moreover, a method based on Deep and Reinforcement Learning opti-
mizes QoE by maintaining consistent video quality, demonstrating substantial improvements
in wireless network environments [83]. Finally, with the advent of 5G communication tech-
nologies, another study in [84] has used ML models to estimate key QoE indicators from
network-level QoS metrics, achieving a QoE prediction accuracy above 91%. These advance-
ments underscore the capacity of ML to enhance both technical efficiency and user experience
in the realm of video streaming . Because of the nature of the task, the focus of this work is
centered on Supervised Learning. The technique that is most appealing to us is Supervised
Regression. Explained ahead on 3.2.2.

2.5. Related Work

2.5.1. Previous work
This work builds upon [32], where the authors proposed a rate control algorithm that ad-

justs the transmission rate by discarding parts of a scalable video bitstream over TCP. The
cross-layer interaction between SVC and TCP, along with a discarding policy based on differ-
ent thresholds, enables the system to react quickly to network changes, reduce unnecessary
traffic, and prevent unnecessary frame discarding. Many components of the proposed pro-
tocol are inherited from this work. However, some differences include reducing the variance
of the congestion window to improve flow control smoothness, further protecting I-frames,
introducing a dynamic curfew, theoretical modeling, a detailed analysis of quantization level
effects, layer size analysis to minimize the number of packets used, and delay likelihood anal-
ysis based on curfew parameters, among others. The use of SVC and the discarding policy
(explained in 3.2) are inherited from [32]. This work laid the foundation for the current work.
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2.5.2. DASH
Video streaming involves distributing video and audio content over a network of comput-

ers. Typically, the video content is stored in a buffer before playback begins, and the buffer
needs to be large enough to hold one GOP due to the relationship between decoding order
and display order. Each GOP can be independently decoded without the need for previous
or later GOPs.

In recent years, DASH has become the core of the SSP [20]. It was developed to provide
robustness, flexibility, and avoid market fragmentation [72, 85]. DASH provides only general
specifications for available multimedia content and how it should be packaged, along with a
series of best practices. The logical implementations are typically provided by third parties.
The DASH architecture is illustrated in Figure 2.8 [86]).

Each video is divided into multiple packets, each containing between 1 to 10 seconds
of content. Each packet is encoded at multiple bitrates or qualities, referred to as Video
Levels (VL) or chunks. A Media Presentation Description (MPD) is an Extensible Markup
Language (XML) document that describes each chunk, and both the MPD and chunks are
hosted on the DASH server. When a connection is established, the client receives the MPD,
and information about the codec, quality, bitrates, chunk size, and other details stored on the
server. On the client-side, DASH implements bitrate adaptation logic through an adaptation
engine. The client continuously measures criteria such as buffer playout level, battery levels,
Central Processing Unit (CPU) occupation, available bandwidth, etc., to select the most
suitable chunks to download. The client then sends delivery requests and gets chunks via
HTTP messages [18, 21, 86].

Figure 2.8: DASH architecture (adapted from [86]).

DASH has some intrinsic complications. The standard does not specify how to adapt
the VL efficiently to the available bandwidth in real-time, and most streaming technologies
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work on the best-effort model [87]. DASH attempts to send chunks at the highest resolution
possible while also limited by network bandwidth. When the user perceives switches of VL
or/and rebuffering, their QoE decreases.

Furthermore, in recent years, Radio Access Network (RAN) technologies such as Long
Term Evolution (LTE), LTE Advanced, and most recently 5G have become more common.
However, RAN has several intrinsic characteristics such as latency, packet drops and losses,
handover, jitter, multipath, etc., that make it problematic to work with DASH. The above-
mentioned reasons highlight the complications and limitations of DASH. However, the core
of DASH is its ABR algorithms, which constantly monitor a series of network characteristics
to deliver smooth playback.

2.5.2.1. ABR Algorithms

The primary objective of dynamic algorithms for delivering multimedia content is to minimize
rebuffering events, maximize video quality by sending chunks with the highest possible qual-
ity, and reduce changes in the viewing experience [28]. In summary, an efficient adaptation
of video quality to the available bandwidth in real-time.

In general, ABR algorithms need to ensure a certain level of buffer occupancy to avoid
buffer overflow or an empty buffer. This is one of the major challenges in accurately predicting
when to send chunks, as these chunks are downloaded before the video buffer content is
displayed. Another pending challenge is that the network changes dynamically, and making
a throughput estimation based on previous conditions is complicated.

Traditional measures such as packet loss, jitter, delay, or available throughput do not
suffice to accurately reflect the experience of the viewer [28]. It is necessary to consider
requirements such as avoiding cascading effects, maintaining smoothness in video quality
during playout, and avoiding rebuffering events, but as mentioned in Section Foundations
and Innovations in Video Streaming Technologies, achieving these goals at the same time is
intrinsically contradictory.

One client can require the highest quality/bitrate chunks even if it does not have enough
bandwidth, leading to rebuffering events. In a similar situation, but in a network with fluctu-
ations (such as a typical wireless connection), choosing the highest quality can lead to quality
switching and cascading effects, even if there is not enough bandwidth. Additionally, ABR
algorithms are intrinsically conservative, avoiding switching video quality when conditions
are favorable [21, 22]. In some cases, the available throughput is almost enough for a certain
bitrate but well above the next available bitrate, so the algorithm needs to consider a risk
trade-off between smoothness or rebuffering [21].

The literature presents many proposals to enhance the performance of streaming solutions.
In general, the approach of the ABR algorithm can be classified as throughput-based, buffer-
based, or hybrid-based [27, 88]. We present some of the proposals to enhance ABR algorithms,
which can be seen in Figure 2.9.

2.5.2.1.1. Throughput-based algorithms

This approach monitors the instantaneous throughput while receiving chunks and smooths
the throughput to compensate for short-time network fluctuations, thus avoiding estimation
errors. It requests the next chunks with a bitrate equal or lesser to the measured throughput
[23, 89, 90]. However, due to the time-variant nature of the network, the available capacity
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Figure 2.9: Taxonomy of different ABR algorithms approach.

can be under or overestimated, especially when the throughput-based approach is used with
TCP because of its AIMD characteristic [89]. Moreover, network capacity estimation is often
done above the HTTP layer, leading to imprecise information [89].

In [91], researchers proposed the Cross Session Stateful Predictor (CS2P) by analyzing a
dataset of 20 million sessions and discovering that sessions with similar key features exhibit
similar available bitrate and variability behavior. They created and trained the CS2P with
this information, which yielded better results than the ABR algorithm used by the iQiyi
SSP, in terms of average bitrate and QoE. However, the proposed algorithm requires the
implementation of MPC [92], specifically the FastMPC implementation, whose complexity
can make it difficult to implement on the client side and can cause a computational overload
on the server-side. Fair, Efficient, and Stable adapTIVE (FESTIVE) algorithm was designed
with a throughput-based approach and is based on the principle that multiple DASH players
using the same link can generate a bottleneck that leads to fairness, efficiency, and stability
issues [27]. FESTIVE consists of three components: bandwidth estimation, bitrate selection,
and chunk scheduling. Additionally, it presents a general framework for robust video adap-
tation based on a randomized chunk scheduling, stateful bitrate selection, delayed update
approach, and the harmonic mean of the throughput of the last 20 seconds.

Multipath routing is a solution for congested networks, where video content is spread from
a source node to a destination node over multiple paths through the network [93]. To achieve
this, routing protocols such as modified dynamic source routing (MDSR), modified ad hoc
on-demand multipath distance vector (MAOMDV), multicast ad hoc on-demand distance
vector (MAODV), etc. are used. The main concepts of multipath routing protocols are
computing multiple paths between an origin and destination, securing data integrity with a
multipath forwarding algorithm, and an end-host protocol to ensure the use of multiple paths.
However, the biggest challenge in implementing multipath routing is configuring networks
with quality assurance, which can be problematic on a large scale.

Reference [18, 94] proposes an approach to solving the problems caused by the mismatch
between TCP and the adaptive bursty nature of DASH traffic using a networking architecture
based on software-defined networking (SDN) with specific support for DASH streaming. Net-
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work application controllers are used to assist DASH clients in bitrate selection and network
management. A dynamic queue-based mechanism for Quality of Service (QoS) provision-
ing is used, and network controllers provide a complete overview of network conditions and
can signal target bitrates to DASH clients while maintaining dynamic traffic control in the
network, ensuring stable and high-quality video delivery.

Other solutions, such as ClipStream [95], rely on a throughput-based approach and stream
over UDP, offering similar properties to TCP at the application layer. The idea behind
ClipStream is that not all frames have the same importance; I-frames are more relevant than
B-frames. Therefore, ClipStream uses reliable transport for I-frames and unreliable transport
for B-frames. In the presence of losses in the unreliable stream, ClipStream employs Forward
Error Correction (FEC) to recover lost packets. While ClipStream shows good performance,
its implementation relies on UDP, which can be problematic to pass through firewalls or
Network Address Translation.

Reference [96] presents the Optimized Stall-Cautious Adaptive bitRate (OSCAR) algo-
rithm, which adapts to throughput variations and video quality in a probabilistic framework.
Throughput variations are modeled as a random variable and are used to estimate a packet
stall probability. OSCAR focuses on using a sliding look-ahead window for the future when
selecting the quality chunk to adapt proactively to the available bitrate. One of the draw-
backs of the OSCAR algorithm is that it is a multivariable problem, making it challenging
to implement on a large scale.

2.5.2.1.2. Buffer-based algorithms

This approach aims to manage throughput variability and ensure frame deadlines. Clients
download certain chunks and store them in a buffer before playout. To manage this, a buffer
threshold is used, and when the playback buffer level is above it, the client can request a
better video bitrate from the server. Conversely, when the playback buffer level is low, clients
need to request a lower video bitrate from the server. However, when the playback buffer level
is almost empty and network conditions are poor, rebuffering events or switches to the lowest
video quality can occur [23, 89, 90]. This approach is frequently used, and even Netflix uses
a buffer-based approach [21, 25, 97]. However, it exhibits a conservative behavior, starting
with a low bitrate and taking a long time to reach the optimal bitrate [91].

The Content-aware rate adaptation algorithm (CARA) buffer-based uses information
about the content, packet size in the next selection process, and variance in length of the
playout buffer [72]. The process to change the bitrate is carried out in three steps:

• The analysis of the MPD file measures packet throughput at the same time as the
network bandwidth.

• An estimation of the expected buffer occupancy with the next chunks avoids buffer
underflow and overflow.

• The video bitrate is selected based on the buffering region.

CARA is stable in networks with poor stability conditions and provides high-quality
smoothness playout. The stability is based on the content-aware approach with information
about the actual packet.

Segment-aware rate adaptation (SARA) [88, 98, 99] is a hybrid/control theory-based
algorithm that considers the influence of the actual packet size over the measured bandwidth
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to choose an appropriate representation for the next packet. The buffer, which contains
the previously downloaded packets, has three Buffer Threshold Values (BTV) based on the
packet number. The bitrate changes depend on the buffer fullness and are performed in four
phases:

• Fast start: With a buffer level below the first BTV, the lowest VL is selected to reduce
the time to display the video content on the client-side.

• Additive increase: With a buffer level greater than the first BTV, the VL only changes
gradually, 1 step up or down. This ensures that the buffer fullness does not fall below
the first BTV, and it is a conservative approach.

• Aggressive switching: With a buffer level between the first and the third BTV, the
bitrate can increase or decrease freely. The idea is to guarantee a gradual and steady
increase in video quality.

• Delayed Download: When the buffer level is over the third BTV, requests for new
chunks are sent only when the BTV is below the third threshold. In many cases, these
steps are unnecessary when the content is paused, and no new content needs to be
downloaded.

SARA uses a modified version of the MDP with information about the size of chunks
and other details. This solution performs better than a basic adaptation algorithm in low
network bandwidth situations.

The Adaptation and Buffer Management Algorithm (ABMA+) [27, 100] employs a pre-
computed buffer map (BM) to avoid online computational overload, thereby mitigating issues
encountered with overly complex ABR algorithms. ABMA+ predicts the probability of video
playout rebuffering for available bitrate representations and selects the maximum bitrate rep-
resentation that meets a threshold probability. The BM determines the playout buffer size
needed to achieve a desired rebuffering probability based on packet download time measured
during content download.

Buffer Occupancy based Lyapunov Algorithm (BOLA) was introduced in [21]. It aims to
optimize the utility function between average bitrate and rebuffering event duration, taking
into account various factors such as content quality, device type, and SSP. BOLA also explic-
itly defines the relationship between video bitrate and rebuffering probability from the SSP
perspective. Although BOLA is effective at reducing rebuffering events, its bitrate selection
is deemed overly conservative [101].

2.5.2.1.3. Hybrid algorithms

This approach aims to leverage the main advantages of previous proposals. In [102], the
hybrid approach of YouTube that combines server and client-side strategies is described,
where ABR bitrates are determined while using a large buffer [103].

One technique at the application layer is zippy pacing [27], which works on the idea of
delivering video data just in time. This technique delays the delivery of a chunk until the
previous one has been sent. The server sends video chunks with no delay until a specific
value of buffer (SVB). Afterwards, the algorithm calculates a pacing delay to maintain the
buffer size as close as possible to the SVB. Zippy pacing enables the server to avoid sending
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unnecessary chunks, control the target playout buffer, and consider future throughput. Thus,
the method allows the server to efficiently control the bandwidth while maintaining the QoE.

In [104], the author proposes an adaptation-aware hybrid client-cache (AAHCC) frame-
work. The proposal considers that, in most research, the client and the cache are independent
entities. AAHCC is a hybrid approach that uses a cache pre-fetching scheme to prefetch bi-
trates. It uses an ABR algorithm based on the forecasted throughput at the cache and client
throughput measurements. The framework has a DASH request handler to attend the MPD
requests and chunk packets petition from the DASH clients and a cache manager to update/-
maintain the requests and prefetch the next chunks to maintain the session. The results show
that AAHCC can predict the bitrate for future packets correctly, which reduces the number
of unused prefetches.

Pensieve is a proposal which learns ABR algorithms automatically [21, 91]. The system
uses observations collected by client video players to train a neural network model that selects
bitrates for future video chunks without any explicit rules or assumptions of the operating
environment. The approach uses reinforcement learning techniques [21, 91] to develop a
series of control policies of both throughputs and buffer through experience. Pensieve learns
gradually to make ABR decisions based on the performance of past decisions in the form of
reward signals, which helps to adapt to a wide range of environments and QoE specifications.

Reference [105] presents the queuing theory approach to DASH rate adaptation. They
model the DASH client as an M/D/1/K queue with three parameters: the packet arrival
rate, the service rate, and the capacity of the queue. These parameters implicitly include
the playback speed, chunk duration, and buffer size. The packet arrival follows a Poisson
distribution, and packets are serviced with a deterministic service rate.

2.5.2.1.4. Model Predictive Control

A hybrid approach known as MPC has been proposed in [106] as a state-of-the-art solution
for the QoE optimization problem [107]. The video ABR algorithm is solved by formulating
a stochastic optimal control problem using both throughput and VB approaches to achieve a
trade-off between them [108]. A sliding look-ahead window is used to predict a series of key
parameters, and the obtained prediction is then utilized to solve the optimization problem
to achieve higher QoE [108]. The key parameters for QoE are composed of chunk k encoded
at bitrate level R denoted by Rk, perceived video quality represented by q, throughput
represented by C, the size of chunk k encoded at bitrate level Rk denoted by dk(Rk), and
VB occupancy on the client side represented by B. A more detailed description of these key
parameters can be found in [109]. The QoE is expressed using four metrics, namely average
video quality (AVQ), average video quality variation (AVQV), rebuffering (Re), and startup
delay. The AVQ is the perceived quality q (measured, for example, by PSNR) over all chunks
k encoded at bitrate levels R:

AV Q = 1
K

K∑
k=1

q(Rk) (2.4)

The AVQV is the weighted video quality difference between consecutive chunks:

AV QV = 1
K − 1

K−1∑
k=1

q(Rk+1)− q(Rk) (2.5)
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The Re is expressed as a combination of the download time of chunk k, dk(Rk), divided
by the throughput Ck, less the VB occupancy Bk:

Re =
K∑

k=1
(dk(Rk)

Ck

−Bk)+ (2.6)

Rebuffering occurs when the download time of a chunk is higher than the occupancy level
of the VB on the client side. Finally, the startup delay Ts is the time the user has to wait
until the playout, frequently used to fill the VB and test the connection.

The combined QoE metrics for chunk 1 through K are expressed in Equation 2.7, where
the weight parameters λ, β, and βs can be customized based on the relevance of each compo-
nent. The notation (x)+ = max {x, 0} ensures that the rebuffer parameter in Equation 2.6
is not negative.

QoEk
1 = AV Q− λ ∗ AV QV (K − 1)− β ∗Re− βs ∗ Ts (2.7)

The MPC approach has demonstrated its effectiveness in improving user QoE by taking
into account both video quality and rebuffering behavior in video streaming. In summary,
MPC is a QoE optimization solution for video streaming that considers the trade-off between
throughput and buffer approaches by predicting variables over a look-ahead horizon. The
approach defines four key parameters, and it formulates a stochastic optimal control problem
that minimizes the combined metrics for chunks 1 through K. By considering the importance
of video quality and rebuffering behavior, MPC has proven to be an effective solution to
enhance user QoE in video streaming.
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3. Methodology
The methodology chapter elaborates on the development and implementation of the ASViS
protocol, aimed at optimizing video transmission over fluctuating network conditions. It
introduces an advanced algorithm at the application layer, which employs a layer-discarding
policy and deadline-sensitive criteria for dynamic adaptation to network changes, ensuring
prioritized data transmission. This approach, underpinned by the use of SVC and UDP for
data transmission, addresses the first specific research objective by demonstrating a robust
and effective adaptive video transmission solution. The modeling of ASViS, targeting the
second specific objective, showcases its capability to adapt dynamically and maintain video
quality, even with limited bandwidth. Optimization and evaluation of ASViS, critical for the
third specific objective, involve detailed analysis and a multidimensional method, highlighting
ASViS efficiency over traditional ABR protocols. This comprehensive methodology ensures
not only improved video transmission efficiency under variable network conditions but also a
consistent, high-quality user experience, aligning the experiments with the research objectives
to contribute meaningfully to the field of adaptive video streaming.

3.1. Connection between Methodology and Experiments
with Specific Objectives

The methodology adopted in this study focuses on the design and implementation of the
ASViS protocol, an inter-layer solution designed to optimize adaptive scalable video trans-
mission under fluctuating network conditions. ASViS implements an advanced algorithm
at the application layer that manages the sent information, based on a layer discard policy
and deadline-sensitive criteria. This innovative approach allows for dynamic adaptation to
changing network conditions, prioritizing data transmission based on the importance of video
layers and time constraints.

• Design and Implementation of ASViS: The design and implementation process of ASViS,
SVC and UDP for data transmission, is fundamental to achieving the first specific ob-
jective of this research. The configuration of the ’flow window’ or ’fwnd’, similar to
TCP congestion window, along with the implementation of a Selective Acknowledgment
(SACK) mechanism for Round-Trip Time (RTT) estimation and available bandwidth
calculation, demonstrates our ability to develop a robust and effective solution for
adaptive video transmission.

• Modeling of ASViS: The modeling of ASViS directly addresses the second specific ob-
jective. This model manages packet discards when bandwidth is limited, implementing
flow control at the application layer and mapping video data to packet data. The sim-
ulation of video transmission under various network conditions validated the efficacy
of ASViS, highlighting its ability to dynamically adapt and maintain video quality.

• Optimization and Evaluation of ASViS Configuration: Optimizing ASViS parameters,
including the τ setting to manage curfew gaps between layers, is essential for meeting
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the third specific objective. This optimization was conducted through detailed analysis
and a multidimensional method, ensuring the adaptability and efficiency of the protocol
under variable network conditions. The evaluation of these configurations through
the experiments described in Chapter 5 demonstrated the superiority of ASViS over
conventional ABR protocols, providing a consistent and high-quality user experience.

Each stage of the adopted methodology has been carefully designed to address the specific
objectives of this research, from the development of the protocol to its optimization and
evaluation. This comprehensive approach ensures that ASViS not only improves the efficiency
of video transmission under fluctuating network conditions but also provides a consistent
and high-quality user experience. Aligning our experiments with these specific objectives
reinforces the validity and relevance of our findings, significantly contributing to the field of
adaptive video streaming.

3.2. ASViS Overview
ASViS, or adaptive scalable video streaming, is a cross-layer solution that bridges the gap

between the transport and application layers. Within the application layer, an algorithm is
implemented that manages the dispatched information, relying on a layer-discarding policy
and deadline-sensitive criteria. While packet loss assists in determining the flow rate, reflect-
ing the behavior of TCP, retransmissions are not essential. Based on the layer-discarding
policy, certain packets might be omitted. Utilizing UDP, the system detects missing frame
fragments at the application layer. Since there is no requirement to track sequence numbers
or acknowledge every packet, UDP becomes a preferred choice. The flow rate is managed
by adjusting the number of packets dispatched over a time span. This approach, similar to
the congestion window of TCP, is termed here as the flow window or fwnd. ASViS supports
SACK; however, it is dispatched only when deemed essential. SACK packets are vital for
measuring RTT, which is required for estimating available throughput. Lost packets might
be retransmitted if the time and priority permit. The flow window is principally employed
to fulfill with RFC 8085 requirements which emphasize preventing network saturation [2].

Scalability is an important factor in the growth of any technology. When referring to
ASViS, scalability is characterized by several factors: 1. Since ASViS is based on SVC,
which itself is part of H.264 (and newer), it can easily evolve to higher resolutions (8K, 16K,
etc.). 2. SVC does not have a fixed amount of layers, to prove our concept this work uses
four SVC layers, but more can be used. As technology progresses and resolutions increase,
it is beneficial to also increase the amount of SVC layers used, since it would create more
granularity (i.e., more quality options to choose from). There are other aspects not covered
in this work, in which ASViS can scale (such as GOP size, block compression size, etc.) that
are inherent to the compression standards. All these degrees of scalability allow ASViS to
maintain itself relevant in the future.

Compared to traditional video streaming methods based on TCP, which often rely heavily
on retransmissions and sequence acknowledgments, ASViS, with its refined layer-discarding
policy and strategic use of UDP, offers a more efficient and adaptable approach. This method-
ology not only reduces overhead but also aligns closely with the RFC 8085 guidelines. These
guidelines are a series of recommendations on UDP usage and best practices designed to
prevent network congestion. By complying with these guidelines, stability and efficiency in
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network operations are ensured. The adherence of ASViS to this standard is underscored by
its significance.

A deadline-sensitive approach is employed, which operates on a time-based metric. This
metric is focused on the residual time to meet the playout frame deadline. In SVC codifi-
cation, by default, all layers of a frame share the same deadline. This approach introduces
differentiation, suggesting the omission of certain layers based on pre-set criteria using the
deadline as a reference. A significant challenge in video streaming emerges when throughput
is below the video bitrate. Stream prioritization becomes essential, with low-priority data
being discarded as deemed necessary. The inherent structure of SVC layers, where higher
layers rely on foundational ones, designates a higher priority to base layers. As the deadline
becomes imminent, high-layer data are omitted, and if the situation demands, additional
layers are also removed.

The proposed layer-discarding policy suggests having differentiated deadlines for distinct
layers. To distinguish it from the frame deadline, the layer deadline is referred to as curfew.
Higher layers (lower priority) have earlier curfews, and lower layers (higher priority) have
more lenient curfews. The curfew spacing is an important design parameter. The algorithm
may accept a low-priority layer at the cost of running out of time to process a subsequent
higher-priority layer if a late curfew (short present-to-deadline period) is used. However, if the
curfew is too early, the algorithm response may be premature, and higher-layer (enhancement)
packets can be unnecessarily discarded. The decision-making process is a critical part of the
proposed solution. It differentiates discarding criteria to specific layers for an SVC video with
two layers (BI, BB, EI, and EB), as shown in Figure 3.1 where all layers of a frame have a
defined threshold.

• Data received after the deadline are discarded, regardless of their priority.

• Only BI layers are considered for data that arrives between the deadline and the first
curfew.

• At the second threshold, both BI and BB layers are accepted.

• When the third threshold is reached, BI, BB, and EI layers are permitted.

• Beyond the third threshold, all layers, inclusive of EB, are accepted.

Deadline-sensitive Criteria Algorithm (DSCA). The decision-making process, shown
in Figure 3.2, consists of reading a packet and extracting the frame (I or B) and layer (base
or enhancement) information. Based on this it computes the curfew, which considers the cur-
rent time, frame deadline, travel time, and priority. The curfew is computed only on packets
that are inside the current fwnd, as later packets depend on current decisions. Higher priority
packets have curfews closer to the deadline, while lower priority packets are discarded earlier
to increase the chances of a higher priority packet arriving on time. If a packet inside the
current fwnd is discarded, a later packet is pushed to an earlier time increasing its probability
of successfully arriving before the deadline. This is the fundamental principle, increasing the
chances of successfully arriving before the deadline.

In the realm of digital video streaming, the importance of scalability and future-proofing
for protocols such as ASViS is underscored by the rapid advancements in video resolution
and network technology. It is recognized that ASViS is designed to adapt seamlessly to
these advancements, owing to its foundational reliance on Scalable Video Coding (SVC). As
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Figure 3.1: Layers and discarding criteria.

Figure 3.2: Packet selection process flowchart of DSCA.

resolutions progress towards higher standards, including 8K and beyond, the architecture of
ASViS facilitates the integration of such advancements. This integration is achieved through
the flexible nature of SVC layer structure, which is utilized by ASViS for effective video
stream management. The protocol ability to incorporate an increasing number of SVC layers
enhances its granularity in video quality, thereby ensuring compatibility with future video
codecs and resolutions.

When the implications of implementing ASViS are considered, particularly in terms of
cost, scalability, and user experience, it is observed that the protocol could significantly
impact video streaming services and their consumers. The cost-effectiveness of ASViS is
attributed to its efficient use of network resources, while its scalability ensures that it remains
relevant in the face of evolving video technologies. From the perspective of user experience,
ASViS promises to enhance the quality of video streaming, adapting to varying network
conditions without significant degradation in video quality.
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Moreover, the efficiency of ASViS, especially regarding network resource utilization and
responsiveness to changing network conditions, is a focal point of its design. The algorithm
is structured to minimize unnecessary network load, thereby optimizing the consumption
of bandwidth. In response to fluctuations in network conditions, ASViS demonstrates a
high degree of adaptability, adjusting packet management strategies in real-time to maintain
optimal video streaming quality. This responsiveness not only conserves network resources
but also ensures a consistent and high-quality user experience, regardless of the variability
in network performance.

3.2.1. Modeling ASViS
The quality of received video is contingent on available bandwidth. ASViS is designed to

manage packet discards when bandwidth is limited. At the application layer, flow control is
implemented, similar to TCP behavior. However, unlike TCP, ASViS allows the sender to
decide on packet discards, which is why UDP is utilized. The receiver responds with SACK,
enabling the sender to adjust the flow upon detecting packet losses.

The initial step is to map the video data to the packet data. The simulation assumes
that each video frame is sent in its own assigned packet or several packets if the video frame
is larger than the maximum segment size (MSS). Nevertheless, two video frames are not
encapsulated in a single packet to avoid losing multiple frames with a single packet loss. To
avoid confusion, the term frame is strictly used in the sense of a video image, not a data-link
layer unit.

The bitstream of the video is given by bS = dT

tT
, where dT is the total data to be trans-

mitted, including all the layers, and tT is the total encoding time. The total data can be
expressed as:

dT =
FT∑

f=1

L∑
l=1

d⟨f,l⟩. (3.1)

FT is the total amount of frames and L is the total amount of layers per frame. d⟨f,l⟩
is the amount of data needed to transmit the lth layer of the f th frame. The bitstream is
varied according to the available bandwidth, considering discarded packets, so the effective
bitstream bF is:

bF = dF

tT

and dF =
FT∑

f=1

lF∑
l=1

d⟨f,l⟩. (3.2)

The value dF reflects the total data successfully transmitted, accounting for the layer-
discarding decisions made based on ASViS flow control policies. lF is the number of layers
transmitted for frame f , where lF could have a value of 0 if the whole frame is discarded.
Since the transport layer is flow-controlled it is necessary to determine the number of packets
required. The flow can be controlled on a packet or byte basis. In most cases, protocols
operate on a packet basis. The amount of packets necessary to transmit all the frames that
are not discarded (arrive successfully) is:

S⟨f,l⟩ =
⌈

d⟨f,l⟩

MSS

⌉
. (3.3)
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To simplify the frame and layer indexing to a single indexing variable the following con-
version can be made: q = L (f − 1) + l, where L is the total amount of layers, l is the
layer index per frame spanning from 1 to L, and f is the frame index varying from 1 to FT .
Therefore, q spans from 1 to L FT , and (3) becomes Sq = ⌈dq/MSS⌉. The fwnd varies with
each RTT cycle depending on whether packets arrive successfully at the client-side. The fwnd
is represented by a vector where each entry corresponds to an RTT cycle w, where W is the
total number of cycles, i.e., −−−→fwnd = {fwnd1, ... , fwndw, ... , fwndW}; w ∈ N.

Given the packet q, the function Cq outputs the RTT cycle w where the last packet of
layer q is found. For better accuracy, a packet-acceptance pattern should be included, which
is a set of ones and zeros representing true and false statements, respectfully, responding to
whether the packet successfully arrived at the destination and before the deadline. This is
represented by the vector −→X ∈ {0, 1}. There is a correlation between the number of ones in
−→
X and the overall quality of the video.

To model the behavior of the packet-acceptance pattern, it is necessary to perform an
iterative computation to determine if that layer is to be discarded or retained. The first
step involves determining the deadline and curfew of the layer. To determine this the RTT
cycle is needed, and given by Cq:

Cq = arg min
w


w∑

n=1
fwndn −

q∑
q̂=1

Sq̂Xq̂ > 0

 . (3.4)

Sq is the number of packets required to send layer q. Xq is the qth value of the packet-
acceptance pattern vector, but for this stage we assume Xq = 1. All values earlier than Xq−1
(inclusive) are known.

Second step. With the RTT cycle Cq information, the arrival time of the packet q (or
tAq) is computed as:

tAq = RTT ·
(

Cq

∣∣∣∣
Xq=1

− 1/2
)

. (3.5)

Third step. The deadline of frame f (or Df ) is a straight-forward computation obtained
using the buffer time tB and the frame rate r, hence Df = f

r
+ tB. It is beneficial to obtain a

deadline expression in terms of the packet index q (or Dq). Since all layers of a frame have
the same deadline the relation f = ⌊q/L⌋ is sufficient to compute Dq. Substituting gives:

Dq =
⌊

q

L

⌋ 1
r

+ tB, (3.6)

Fourth step. To retrieve the priority of packet q (or pq) for P levels of priority, it is
necessary to know the GOP pattern. As mentioned earlier and shown in Fig.2.5, the GOP
pattern is IBBBBBBB. To obtain the priority level of this pattern as a function of layer q
the following expression is used:

pq =


2(q − 1) if q ≤ L

2 Π(L) if q > L & Π(L G) < L

2 Π(L)+1 if q > L & Π(L G) ≥ L

, (3.7)

where Π(λ) = mod(q − L − 1, λ) and G is the GOP size, in this case, G = 8. pq spans
from 0 to P − 1, where the lower values have higher priorities. Note: q is in the coding order
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(see Fig.2.5).
Fifth step. Once the priority is found, the curfew Γq is determined on Equation 3.8,

where the number of priority levels is obtained by P = L T where T is the number of frame
types. Here, we work with I and B frames, so T = 2.

Γq = mod(pq, P )·τ (3.8)

τ is a positive value in units of RTT that determines the time spacing between priority
levels, it is a design parameter. The greater the value the more conservative the algorithm,
and the lower is riskier. Increasing τ increases the chances of having a smooth video stream,
lowering τ attempts to transmit a higher quality (more layers) stream but with a higher
probability of loss due to limited bandwidth.

Final iteration step. The packet-acceptance pattern set can be obtained as the trans-
mission conditions are met using:

Xq =

1 if Dq − tAq − Γq ≥ 0
0 if otherwise

. (3.9)

The value of Xq, which at the beginning of the iteration was assumed to be 1, is now
determined. This value is used for the subsequent iteration. A visual representation of the
iterative process of the proposed solution, ASViS, for each one of the packets that compose
a video frame, also can be seen on Figure 3.3, where we can see how we need the information
of both transport and application layer to take the decision.

Figure 3.3: Iterative process of ASViS to send or discard a packet.

In the modeling of ASViS, emphasis is placed on the dynamic optimization of video
quality, adapting to available bandwidth. Adaptability is achieved through a sophisticated
decision-making process, considering the urgency and importance of each packet based on
frame deadlines and layer priorities. A selective acknowledgment strategy is implemented,
enabling effective assessment of network conditions and adjustment of transmission strate-
gies. This approach ensures optimal utilization of network resources, highlighting the models
adaptability and efficiency under diverse network conditions.

In the model, a comprehensive packet-acceptance pattern is incorporated, determined
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through iterative computations. This pattern plays a crucial role in deciding whether spe-
cific layers of video data should be transmitted or discarded. Decisions are continuously
revised based on real-time analysis of network conditions and packet reception success rates.
Furthermore, video frames are managed in distinct packets without overlap, minimizing the
risk of compounded frame losses. This methodical packetization aligns with the protocols
objective of maintaining high video quality, even in challenging network scenarios.

3.2.2. Optimization Method for τ Configuration
In the study presented in [110], a proof-of-concept is demonstrated in which video quality

is maintained without re-buffering. However, an in-depth formal analysis for optimizing the
parameter τ , representing curfew gaps, is not provided. An exploration into varying τ values
within a reasonable range reveals that the maximum Y-PSNR is indicative of optimal video
quality.

For optimization scenarios aiming at a single objective such as a root, maximum, or
minimum, the bisection method is commonly employed [111, 112]. However, its limitation
in potentially identifying local maxima instead of the global maximum is acknowledged.
Therefore, a multi-section variant of the bisection method is utilized in this study.

A multi-dimensional multi-section (MM) method is introduced, extending the bisection
method for multi-dimensional optimization while minimizing the likelihood of identifying
local maxima. Unlike traditional bisection methods, which divide the search space into two
[111, 112], a more expansive search technique is adopted here to mitigate the risk of mistaking
local maxima for global ones.

Various applications show a monotonic increase up to a maximum, followed by a mono-
tonic decrease, making traditional methods effective. However, for systems exhibiting oscil-
latory magnitudes, a more cautious approach is warranted. In this study, multiple points per
dimension are probed in each iteration, with the step size and search region being adjusted
based on the identified maximum. Achieving satisfactory result precision within a reasonable
computational time is a non-trivial task, particularly due to the discrete nature of the data.
The algorithmic details of the Multi-probe Bisection Method are presented in Algorithm 1.
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Algorithm 1 multi-dimensional Multi-section Method (3D example)
1: [m1, m2, m3]← [0, 0, 0]
2: [M1, M2, M3]← upper limit of τ1, τ2, τ3
3: rangex ← (Mx + mx)/2 for x = 1, 2, 3
4: N ← number of steps
5: stepx ← rangex/(N − 1) for x = 1, 2, 3
6: Q← empty matrix (1× 0)
7: listτ1,τ2,τ3 ← empty matrix (3× 0)
8: while error tolerance (init i← 0 before loop)
9: for τ1 from m1 to M1 step step1

10: for τ2 from m2 to M2 step step2
11: for τ3 from m3 to M3 step step3
12: if [τ1, τ2, τ3] is found in listτ1,τ2,τ3 then skip
13: else (increase i← i + 1)
14: add [τ1, τ2, τ3] to listτ1,τ2,τ3 in row i
15: run test of video quality
16: add quality result to Q in row i
17: end if
18: end for
19: end for
20: end for
21: rangex ← rangex/2 for x = 1, 2, 3
22: stepx ← stepx/2 for x = 1, 2, 3
23: QMAX ← max(Q)
24: iMAX ← indices of Q where Q = QMAX

25: listMAX
τ1,τ2,τ3 extract rows iMAX from listτ1,τ2,τ3

26: mx ← min(τx) − rangex for x = 1, 2, 3
27: where τx belongs to listMAX

τ1,τ2,τ3

28: Mx ← max(τx) + rangex for x = 1, 2, 3
29: where τx belongs to listMAX

τ1,τ2,τ3

30: end while



4. Experimental Setups and Results
Experiments were conducted in a structured manner to evaluate the performance of the
ASViS algorithm in comparison to conventional methods. Each investigation was targeted
towards elucidating specific attributes and behaviors. The performance of ASViS is in-
fluenced by several specific parameters, which will be elaborated upon in the subsequent
sections. Notably, network conditions, such as RTT, packet loss, and buffer conditions, have
been identified. Additionally, variations in τ parameters across different layers and alter-
ations in the size of each layer have been observed to impact performance. A thorough
examination of these factors and their implications on ASViS functionality is included in
the following discussions. The first experiment juxtaposed a theoretical model of ASViS,
particularly in assessing the anticipated arrival time of frames at the client side, against an
empirical counterpart. The purpose was to determine the accuracy of the theoretical model
in simulating network dynamics. The second experiment delved into the perceived video
quality by modulating the parameter τ . By setting a continuum of equidistant benchmarks,
the Y-PSNR was gauged, revealing a complex interrelation between the τ values and the
Y-PSNR attained. In the third analysis, the objective was to discern the optimal curfew
gaps, represented as the set of taus, suitable for static initial network scenarios. Here, the
MM method paved the way to unearthing superior video quality. Unlike assuming uniform
curfew gaps, this study hypothesized better outcomes from distinct-sized intervals, with the
Y-PSNR being the primary metric of evaluation. The fourth exploration sought to validate
the theory that layer-based deadline gaps echo the proportions of the layer sizes. The culmi-
nating experiment instituted a face-off between two ABR protocols, ASViS and MPC. Using
a spectrum of metrics, from VB behavior and throughput to video quality, this comparative
study decoded the operational nuances of ASViS juxtaposed with the MPC algorithm.

The video utilized for simulations comes from Xiph video repository, specifically the
352x288 .yuv file, encoded at 30 fps. The JSVM facilitated video coding and decoding on
SVC. Video details and parameters are provided in Table 4.1. Insights into parameters of
coded video files are provided by the JSVM trace file, which facilitates video reconstruction
using specific layers or packets. The ASViS algorithm was implemented using MATLAB and
JSVM. Different network conditions were simulated based on the layer information extracted
from the JSVM trace file, determining whether packets were transmitted or discarded. Fur-
thermore, MATLAB was employed in conjunction with JSVM for tasks associated with video
encoding/decoding. Additionally, the results were organized and processed using MATLAB.
JSVM works using the operating system command prompt. It is easy to link JSVM to MAT-
LAB using the matlab system command. The video quality of different ABR algorithms
was gauged using PSNR and for VMAF testing, version 0.6.1 was employed from github,
incorporating default pre-trained machine learning coefficients.

4.1. Results
The objective of the first experiment is to compare the network behavior outcomes of a

theoretical ASViS model with those of an experimental test. Both scenarios employ UDP
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Table 4.1: Video parameters for all experiments.

Parameter Details

File bus_cif.y4m

Rate 30 fps
Length 150 frames
Number of layers 2
Quantization Layer 1 - BL 40
Quantization Layer 2 - EL 20
GOP 8
Resolution width 352, height 288
Amount of BI/EI 19
Amount of BBI/EB 121
Y-PSNR (Orig. Encoded) 40.62 [dB]
VMAF (Orig. Encoded) 99.97 [%]

transmission rules equipped with flow control to prevent congestion. In the theoretical model,
the determination of which packets are discarded is based on the estimated packet size (EPS)
and network conditions as utilized by the ASViS algorithm. The EPS values are informed
by the mean layer size information derived from a trace file, which is created for JSVM. The
size in MSS for each layer is presented in Table 4.2. For the experimental model, the actual
size of each layer, influenced by its content, whether it is BL or EL, and its classification as
I or B, is utilized. This results in a variety of sizes for each layer. The size in [kB] for each
layer is presented in Table 4.2. Both models operate with the same network transmission
parameters: RTT 0.05 s, packet loss rate 0.01, and buffer 3 s. Results are calculated based
on 100 pseudo-random seeds.

Table 4.2: EPS for each layer for ASViS theoretical experiment.

Layer EPS [kB]

BI 7154
BB 584
EI 36500
EB 11388

Within the ASViS model, the behavior can shift from conservative to risky by adjusting
the τ values. For a video comprising four layers, it might be presumed that there would be
four distinct τ values representing BI, BB, EI, and EB. However, in this experiment, the τ
value for the BI layer is set at 0 due to its importance. This ensures its transmission until
the deadline is reached. Seven configurations, each with an equidistant and incremental τ
gap (τG) based on layer priorities, are outlined in Table 4.3.

The results, both theoretical and experimental, appear in Figure 4.1. This representation
showcases the estimated arrival time of each frame at the client end. The gradient of the
slope conveys the transmission rate; a gentler slope indicates a higher rate, whereas a steeper
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Table 4.3: 7 τ gap configurations to ASViS.

τG τ2 - BB [RTT] τ3 - EI [RTT] τ4 - EB [RTT]

τG1 1 2 3
τG2 2 4 6
τG3 3 6 9
τG4 4 8 12
τG5 5 10 15
τG6 6 12 18
τG7 7 14 21

RTT of 0.05 s.

one suggests a slower rate. A significant gap between theoretical and experimental results is
observed for τG7. This discrepancy can be attributed to various factors, including differences
in average vs. actual packet size and video complexity variations.

0 50 100 150

Frame in sent order [#]

0

1

2

3

4

5

6

7

8

A
rr

iv
al

 t
im

e 
[s

]

Deadline

G
1
 Exp

G
1
 Theo

G
2
 Exp

G
2
 Theo

G
3
 Exp

G
3
 Theo

G
4
 Exp

G
4
 Theo

G
5
 Exp

G
5
 Theo

G
6
 Exp

G
6
 Theo

G
7
 Exp

G
7
 Theo

Figure 4.1: Results of the arrival time of frames for theoretical and
experimental scenarios.

To determine the accuracy of the correlation between models, the mean absolute per-
centage error (MAPE) is employed. Table 4.4 provides a detailed breakdown, pointing out
a maximum prediction error of approximately 14.2% for τG6. Given the inherent variability
of the practical experiments due to packet losses and the intricate characteristics of each
frame, along with the nuances of the various layers and complexities associated with net-
work conditions in empirical analyses, the accuracy of the theoretical model is underscored.
It is noteworthy that high fidelity is achieved by the theoretical model, aligning well with
the experimental results. This contributes to a reduction in the need for exhaustive and
computationally demanding empirical tests, thereby facilitating more streamlined behavioral
predictions based on the theoretical model. It is important to stress that this does not replace
empirical benchmarks, but can significantly reduce the amount of energy, resources, and time
devoted to more practical tests.

The objective of the second experiment is to examine the impact of varying tau values
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Table 4.4: MAPE comparison from theoretical and experimental re-
sults of ASViS.

τG MAPE [%]

τG1 6.5
τG2 7.3
τG3 9.3
τG4 10.7
τG5 10.1
τG6 14.2
τG7 13.7

on the video quality performance of ASViS, focusing specifically on the experimental results.
For this purpose, two network scenarios are considered. Scenario 01 operates with a RTT of
0.05 seconds, a packet loss rate of 0.01, and a 1-second buffer. Scenario 02 is characterized by
an RTT of 0.1 seconds, a packet loss rate of 0.01, and a 3-second buffer. Both scenarios are
analyzed using 100 pseudo-random seeds for each tau value. The configuration of τG values
follows the format specified in Table 4.3. Additionally, this study evaluates the behavior of
SVC in scenarios without ASViS, referred to as the ’no protocol’ condition.

Figure 4.2, depicts the scenario 01 with a shorter round-trip time (RTT) of 0.05 seconds
and a streamlined 1-second buffer, which manifests a notable punctuality in frame arrival
times across the various τG configurations, aligning more closely with the deadline frame.
This scenario illustrates the protocol proficiency in a more constrained environment where
timely data throughput is paramount. Conversely, Figure 4.3, denoted as Scenario 02, illus-
trates a contrasting setting with an RTT of 0.1 seconds coupled with a 3-second buffer. Here,
despite the inherent latency challenges, the ASViS protocol demonstrates a robust capacity
for maintaining video streaming efficiency, as evidenced by the frame arrival times, which
consistently surpass the ’no protocol’ scenario, albeit with a slightly more staggered pattern
due to the increased buffer size. The comparative analysis of both scenarios elucidates the
adaptive strength of ASViS, affirming its capability to enhance the streaming experience by
dynamically adjusting to varied network conditions while substantially outperforming the ’no
protocol’ case in terms of consistent and timely frame delivery.

Figure 4.4 and Figure 4.5 illustrate the impact of network conditions on video quality
within the ASViS protocol. Contrary to initial expectations, Scenario 2, as shown in Fig-
ure 4.5, with its higher RTT and larger buffer, demonstrates a marginal advantage in the
’no protocol’ baseline with a Y-PSNR of 37.3 dB compared to scenario 1 at 35.1 dB, sug-
gesting that increased buffering may mitigate packet loss and enhance quality when ASViS
is not in use. However, under the ASViS regime, scenario 1 shown in Figure 4.4 consistently
outperforms scenario 2 across all τG levels, with Y-PSNR readings declining from 39.7 dB
at τG1 to 38.8 dB at τG7, indicating that the protocol effectively leverages tighter network
constraints to maintain higher video quality. In contrast, scenario 2 experiences a steeper de-
scent in quality, descending to 35.5 dB at τG7, highlighting the relative sensitivity of ASViS
to increased RTT and buffer conditions, this data underscores the protocol adeptness in fine-
tuning video transmission, particularly in less buffered environments, while also revealing
room for optimization in scenarios with more significant latency.
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Figure 4.2: Arrival time of frames across varying τG settings compared
to the ’no protocol’ condition in Scenario 01, with RTT of 0.05 seconds,
packet loss rate of 0.01, and a 1-second buffer.
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Figure 4.3: Arrival time of frames across varying τG settings compared
to the ’no protocol’ condition in Scenario 02, with RTT of 0.1 seconds,
packet loss rate of 0.01, and a 3-second buffer.

Analysis of video playout buffer stability across scenarios 1 and 2 is captured in Figure 4.6
and Figure 4.7, underscoring the effectiveness of the ASViS protocol. In Scenario 1, shown
in Figure 4.6, ASViS consistently maintains buffer size well above the level observed in the
absence of the protocol, with the τG7 configuration demonstrating an exemplary buffer size
at full video playout. This robust performance in a low-latency environment reflects the
protocol proficient buffer management capabilities. Figure 4.7 illustrates that in the higher
latency environment of Scenario 2, ASViS significantly outperforms the ’no protocol’ scenario,
which suffers from complete buffer depletion after only a quarter of video playback. With
ASViS, the ascending trend in buffer size across increasing τG values signifies the protocol
strong adaptive response, effectively circumventing the potential for rebuffering incidents.
These observations corroborate the pivotal role of ASViS in ensuring a smooth streaming
experience, dynamically optimizing buffer capacity to address varying network conditions.

In the third experiment, the objective is to pinpoint optimal τ values to maximize specific
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Figure 4.5: Y-PSNR performance for G and no protocol condition in
Scenario 02.

criteria. For this experiment, the optimization objective is the performance of ASViS, based
on the average amount of sent layer outcomes, using the MM method. It is crucial to note
that these optimal values might not always be integers, suggesting a broad range of potential
τ values. The foundational setup for this experiment involved fixed parameters such as an
RTT of 0.05 s, a packet loss rate of 1/200, and a buffer of 1 s. For BI, a fixed value of τ1 at 0
seconds (representing the deadline) was applied. In contrast, for the layers BB, EI, and EB,
the values τ2, τ3, and τ4 were adjusted, respectively. Performance was evaluated based on
the maximum number of layers transmitted, with a combined limit of 300 layers: 19 for BI,
19 for EI, 141 for BB, and 141 for EB. This evaluation determined the local maxima within
each quadrant. For each point, ten pseudo-random seeds were probed, and the average of
the maximums was obtained. A consistent search range, spanning from 0 to 8 seconds, was
employed for each τ .

The visualization of these results is provided in a 3D plot, as seen in Figure 4.8. The
axes, labeled as G2, G3, and G4, represent the gaps (G) or intervals between consecutive τ
values, excluding τ1. These represent the intervals from the deadline to τ2, from τ2 to τ3, and
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Figure 4.6: Variations in video buffer size relative to playout percent-
age for Scenario 01, illustrating the influence of ASViS under network
conditions with RTT of 0.05 seconds, packet loss rate of 0.01, and a
1-second buffer.
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Figure 4.7: Variations in video buffer size relative to playout percent-
age for Scenario 02, demonstrating ASViS performance in a network
environment with RTT of 0.1 seconds, packet loss rate of 0.01, and a
3-second buffer.

finally from τ3 to τ4. It is crucial to recognize that these intervals are sequential and do not
intersect. The overall time span between the deadline and IG4 is the collective sum of τ2,
τ3, and τ4. Based on the fixed conditions of the RTT and packet loss, optimal performance
metrics were identified as τ1 0 RTT, τ2 0 RTT, τ3 1 RTT, and τ4 2 RTT (RTT of 0.05 s) for
the layers BI, BB, EI, and EB, respectively.

For Experiment 4, a hypothesis was formulated stating that the gaps in layered-based
deadlines (represented by τ values) are dependent on and proportional to the layer sizes. The
video detailed in Table 4.1 features relatively small base layers and large enhancement layers
due to quantization in each layer. To test this hypothesis, the configuration was reversed (i.e.,
small enhancement layers and large base layers) for testing purposes and used the network
conditions from Experiment 3. The same three-dimensional maximum value search using the
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Figure 4.8: Video quality results of MM method for BB, EI, and EB
layers for experiment 3.

MM method was then performed. The details of each layer size configuration (LSC) can be
found in Table 4.5. This table represents the average accumulated size per layer in a GOP
structure of IB×7. LSC1 corresponds to Experiment 3, while LSC2 is the same video from
Table 4.1, but with a quantization of 20 for both BL and EL.

Table 4.5: Average layer size for both LSCs.

Layer LSC1[kB] LSC2[kB]

BI 6.97 19.31
BB 36.13 23.43
EI 0.46 1.73
EB 10.29 6.66

Performance, based on the percentage of sent layer outcomes and derived using the MM
method for LSC2, is presented in Figure 4.9. A preliminary comparison of the two 3D
coordinates results, Figure 4.8 and Figure 4.9, reveals significant differences in the optimal τ
values between the two LSCs. Detailed coordinates, referencing τ2, τ3, and τ4, are provided
in Table 4.6.

A thorough examination of the results between LSC1 and LSC2, and the corresponding
layer sizes, has revealed a distinct association between the τ values and the sizes of layers.
As depicted in Figure 4.10, the normalized layer sizes and the τ values for scenarios LSC1
and LSC2 are juxtaposed. It has been discerned from the blue markers that layer 2 holds
a predominant role in both configurations. Conversely, the red markers have indicated that
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Figure 4.9: Video quality results of MM method for BB, EI, and EB
layers for LSC2 of experiment 4.

Table 4.6: Video quality results and τG coordinates for different layer
size configurations.

τG [RTT] Sent Layers [%]

τG τ2 - BB τ3 - EI τ4 - EB BI EI BB EB

LSC1 0 1 2 100 96.6 60.2 26.6
LSC2 0 0.5 0.75 98.7 94.53 42.7 21.4

RTT of 0.05 s.

elevated τ values are associated with more diminutive layers. A noticeable inverse correlation
between the layer sizes and τ values is evident: as the magnitude of a layer amplifies, the
optimal τ for video quality is observed to wane. The pivotal influence of layer sizes on video
quality, in the context of τ , is underscored by this relationship.

In the fifth experiment, a comparison was made between the performance of the ABR
algorithms, MPC and ASViS, using various parameters. Traditional TCP behavior, which is
typical for ABR algorithms, was exhibited under the network conditions for MPC. In con-
trast, UDP with flow control was employed by ASViS, consistent with previous experiments.
Network transmission parameters from Experiment 3 were replicated, and the τG values for
the ASViS protocol were derived from the same experiment. 100 simulations were executed
for both ABR algorithms, and the results presented were the mean values obtained from all
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Figure 4.10: Comparison between normalized layer sizes and optimal
τ ranges.

simulations.
A chunk size of 4 GOP was designated for MPC, equivalent to 32 frames or roughly

1 second of playout, given a frame rate of 30 fps. Four bitrate levels, labeled as R, were
used, each integrating various layers. Comprehensive details of each R can be accessed in
Table 4.7. An average across all chunks served as a reference for AVQ of Y-PSNR in this
MPC implementation, accompanied by a chunk size (d(K)) specified in bits. The initial Ts

spanned from 0.1 s to 5 s, incremented by 0.2 s. The estimated throughput (C) was calculated
as the harmonic mean throughput of the previous five chunks, with weight assignments of
λ = 1, β = 3000, and βs = 3000, aligning with the recommendations in [106].

Table 4.7: Chunk properties of each bitrate level R.

Layer Metrics

BI BB EI EB AVQ Y-PSNR [dB] d(R) [Mb]

R1 X X - - 28.4 0.32
R2 X X X - 37.7 1.45
R3 X X - X 31.0 2.70
R4 X X X X 41.6 3.83

As illustrated in Figure 4.11, the relationship between the VB size variation and video
playout was mapped. Results indicated that a mean VB size of 1.5 s with a standard deviation
of 0.5 s was achieved by MPC, whereas ASViS achieved a mean of 0.45 s with a deviation
of 0.08 s. Notably, greater stability after 20% of video playout was observed with ASViS,
despite its reduced mean VB size.

Figure 4.12 portrays the anticipated bitrate distribution for both MPC and ASViS. This
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Figure 4.11: VB size comparison through video playout for ASViS and
MPC.

visualization aids in comprehending the adaptability of each algorithm to network conditions.
An in-depth analysis confirmed that the bitrate estimated distribution for ASViS predomi-
nantly focuses on values higher than those for MPC, a pattern that contrasts with its mean
and standard deviation provided in Table 4.8.

0 2 4 6 8

Bitrate [Mb/s]

0

0.1

0.2

0.3

0.4

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y MPC

ASViS

Figure 4.12: Estimated bitrate distribution for ASViS and MPC.

Subsequent evaluations explored video quality throughout the entire video playback. The
Y-PSNR findings are presented in Figure 4.13, whereas VMAF results can be found in Fig-
ure 4.14. Both algorithms exhibited comparable video quality from frames 40 to 130. How-
ever, at the commencement and conclusion of the video playback, the quality of MPC was
observed to be inferior to that of ASViS. This discrepancy is attributed to the conservative
approach of MPC and its slower adaptation to network conditions compared to ASViS.

Furthermore, a noteworthy distinction between the results of frames 74 and 84 was ob-
served in Figure 4.14, owing to the capability of VMAF to discern details overlooked by
Y-PSNR. Detailed analysis revealed that frames 74 and 84, corresponding to a B4 frame as
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Figure 4.13: Video quality behavior of Y-PSNR for ASViS and MPC.

cross-referenced with Figure 2.4b, were dropped by ASViS.
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Figure 4.14: Video quality behavior of VMAF for ASViS and MPC.

The video quality metrics, presented in Figure 4.13 and Figure 4.14, were analyzed using
a distinctive approach involving a boxplot and its corresponding histogram. The boxplot
delineates the median, the 25th percentile at the bottom, and the 75th percentile at the
top. Whiskers extend to cover values not deemed outliers. Notably, since no outliers were
observed, there are no ’+’ markers. The results for Y-PSNR and VMAF are displayed in
Figure 4.15 and Figure 4.16 respectively. Although Y-PSNR and VMAF are founded on
different philosophies, both metrics consistently show the superiority of ASViS over MPC.
For a comprehensive understanding of the mean and deviation values of Y-PSNR, VMAF,
and bitrate, one can refer to Table 4.8. It becomes evident that, in terms of VMAF, Y-PSNR,
and bitrate, the ASViS algorithm holds an edge over MPC.
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Figure 4.15: Boxplot and histogram for Y-PSNR comparison of ASViS
and MPC.

Figure 4.16: Boxplot and histogram for a VMAF comparison of ASViS
and MPC.

Table 4.8: Detailed results of experiment 5.

ASViS MPC

mean std mean std

Y-PSNR [dB] 41.1 2.4 39.2 6.0
VMAF [%] 98.5 4.7 92.8 9.0
Bitrate [Mb/s] 3.1 1.2 2.6 1.3

4.2. Discussion
The initial experiment demonstrates a close alignment between theoretical and observed

behaviors of ASViS, with mean absolute percentage errors ranging between 6.5% and 14.2%.
These findings substantiate the capability of the model to predict the experimental behavior
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of ASViS, thus eliminating the need for time-consuming emulations or tests.
In the comparative assessment of Experiment 2, the ASViS protocol demonstrates pro-

ficient management of video quality under varying network conditions. Scenario 1, charac-
terized by a lower RTT and a smaller buffer, illustrates the capacity of ASViS to ensure
uninterrupted streaming while maintaining commendable quality. In contrast, Scenario 2,
with a higher RTT and a larger buffer, reveals the ability of the protocol to manage buffer size
effectively, using various τG configurations to prevent buffer depletion and reduce playback
disruptions. Collectively, these outcomes highlight the adaptability of ASViS in enhanc-
ing the viewing experience across a spectrum of network environments without substantial
compromise in video quality.

The third experiment leverages the MM method to discern specific τ coordinates that
yield improved video quality under given network conditions. It reveals that optimal video
quality can span a broad range of τ values and might be envisioned as a multi-dimensional
solution.

In the fourth experiment, a pronounced inverse correlation is found between the τ values
and layer sizes. This discovery is pivotal, suggesting that service providers can sidestep the
task of pinpointing optimal values for individual videos. They can instead modify layer
deadlines in proportion to layer sizes, ensuring nearly optimal outcomes.

Findings of the fifth experiment spotlight the superiority of ASViS over MPC in multiple
aspects. ASViS records a 5.8% and 4.6% higher Y-PSNR and VMAF, respectively, than
MPC. Moreover, ASViS displays a consistently compact video buffer size compared to MPC.
It also boasts more efficient network utilization, with a bitrate surpassing that of MPC,
and steadier performance, reflected in a reduced standard deviation. In conclusion, these
promising results position ASViS as a skillful ABR algorithm.

ASViS outperforms traditional techniques due to its advanced data management and
scalability. By employing an algorithm that prioritizes information based on layer-discarding
policies and deadline-sensitive criteria, alongside the strategic use of UDP, ASViS optimizes
video transmission efficiently adapting to network conditions. Its foundation on SVC ensures
adaptability to future resolutions and technologies, maintaining its relevance. Experiments
highlight its effectiveness, showing significant improvements in Y-PSNR and VMAF, and
more efficient network utilization. This blend of adaptability, efficient flow management, and
optimized layer selection policies contributes to its superiority in adaptive video streaming.
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5. Conclusion
In the current landscape, robust ABR algorithms are vital to meet the vast demands of video
streaming on global networks. These algorithms must ensure superior video quality, prevent
stalls, and adapt swiftly to network fluctuations. The introduction of the novel concept of
ASViS has been demonstrated through experiments to efficiently control video stream flow
in bandwidth-limited scenarios. When SVC integrates with ASViS, it not only enhances the
user QoE but also reduces network congestion. Such improvements arise from aligning the
encoding rate with available throughput and discarding less critical layers.

Based on the tests conducted and the information gathered, it is suggested that the
integration of DASH with ASViS enables the server to better adapt to real-time conditions,
transmitting only the layers that the client can handle according to their bandwidth capacity.
The ASViS proposal is found to be dynamically adaptable to network conditions and device
capabilities, allowing for a more efficient use of bandwidth and an enhanced user experience,
reducing start-up times and rebuffering. Furthermore, in terms of storage, it is necessary for
the server to store only a single version of the scalable video. DASH is agnostic in terms of
encoding, so the integration of SVC does not necessitate significant changes to the existing
DASH infrastructure. Likewise, the new generation of video codec solutions, such as H.265,
VP9, and AOMedia Video 1, inherently possess the scalable encoding model.

In the conclusions drawn, ASViS is portrayed as a transformative solution to ABR al-
gorithms, with inherent limitations of DASH being addressed. Through the experiments
conducted, the proficiency of ASViS in managing video stream flow, enhancing user QoE,
and mitigating network congestion was validated. A noteworthy alignment was observed
between theoretical and experimental behaviors, as evidenced by the mean absolute per-
centage errors, further emphasizing the reliability of ASViS. With its dynamic adaptability,
bandwidth utilization was optimized, video quality was elevated, and interruptions were
minimized, setting it apart from algorithms like MPC. In the tested scenarios, the efficacy of
ASViS was demonstrated, marking a significant advancement in video streaming.

Upon reflection, the specific objectives set at the beginning of this research have been
successfully met. The implementation and evaluation of the ASViS protocol demonstrated
its capability to optimize adaptive scalable video transmission under fluctuating network con-
ditions, fulfilling the first specific objective. Through the modeling of ASViS, we addressed
the second objective, showcasing how the protocol effectively manages packet discards to
maintain video quality. Finally, the optimization of ASViS settings, particularly the adjust-
ment of the τ parameter, has met the third specific objective, optimizing bandwidth use
and enhancing user experience in variable network scenarios. These achievements underscore
the success of ASViS in tackling the challenges posed by video transmission in the current
internet era.

In the conclusion of our study, we underscore the significant technical achievements of
ASViS, highlighting its innovative approach to adaptive scalable video streaming. Key ac-
complishments include the establishment of a cross-layer solution that enhances video quality
under fluctuating network conditions, a strategic implementation of layer-discarding policies
that optimizes bandwidth utilization, and the successful adaptation to future video res-
olutions and technologies through its foundational reliance on SVC. These advancements
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not only demonstrate the superior performance of ASViS over traditional ABR streaming
methods but also its readiness to meet the evolving demands of digital video distribution.
Collectively, these technical achievements underscore the potential of ASViS to revolutionize
video streaming by offering a more efficient, adaptable, and quality-focused solution.

5.1. Future Work
In specific experimental contexts, the potential of ASViS has been demonstrated, yet

its performance across broader and more challenging scenarios is anticipated to be an area
of significant interest. In the realm of 5G mobile networks, characterized by high download
speeds and reduced latency, it is hypothesized that ultra-high-definition video streaming with
minimal interruptions could be facilitated by ASViS. In contrast, challenges are expected in
regions with underdeveloped internet infrastructure or in satellite networks with inherent high
latency. In such scenarios, it is theorized that smooth, albeit lower-quality video playback,
might be prioritized by ASViS. Further exploration is deemed necessary to ascertain the
resilience of ASViS in conditions that are less than ideal.

A crucial direction for future research involves the comparative analysis of ASViS with
other leading ABR protocols, such as FESTIVE and Pensieve. These protocols represent
significant benchmarks in the field of adaptive bitrate streaming. Through comprehensive
comparative studies, the performance of ASViS against these protocols is to be assessed,
particularly focusing on efficiency, adaptability, and quality of service under similar network
conditions. Such comparisons are considered vital to identify areas where ASViS either excels
or requires improvements, offering insights crucial for its further development.

Furthermore, the conduct of more exhaustive tests on ASViS is proposed, involving videos
with varying resolutions and different frame rates. These tests are to be designed to emulate
realistic network conditions, particularly those prevalent in mobile networks. Insights gained
from such extensive testing will be instrumental in refining ASViS, ensuring its robustness
and effectiveness as a solution in the evolving landscape of video streaming technologies.
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