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Abstract

Multiple hypothesis testing issues have appeared in the economics field over the last decade, pro-
viding a broad palette of methods designed to address this problem. The social sciences, in general,
have greatly benefited from these advancements. Issues related to testing multiple hypotheses with
a single treatment variable have been growing in economics over the last decades. However, other
methods for constructing indices were in use before Anderson’s. Until today, researchers have not
provided, or at least discussed, a structured set of ground rules to properly use these methods. In this
thesis, we generate a statistical framework, primarily in the context of program evaluation, to assess
the performance of different indexing techniques currently employed in the social sciences literature.
Specifically, we evaluate the index proposed by Anderson (2008), the index produced from Principal
Component Analysis and finally, a simple sum of the standardized variables index. We find that the
way such indices are generated can lead to important differences in decisions related to rejecting or
not rejecting null hypotheses of the significance of grouped outcomes.
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1 Introduction

Statistical inference is critical to all kind of experimental researchers. Nowadays, we may say that the

quintessential for economic analysis is the instrument calledHypothesis Test (HT). In this context, imagine

that you want to assess a training program impact. To do this, we can hypothesize that it will have a

positive impact on worker’s technical abilities. To prove our hypothesis, the customary procedure is to

define a null hypothesis H0 (stating that the training program will not affect workers’ technical abilities)

and an alternative hypothesis H1 (indicating that it will indeed have an impact on workers abilities).

Therefore, if the null hypothesis gets rejected (when it is actually false), it should provide evidence to

support our statement regarding the causal effect within our experiment. Nevertheless, there still exists

the possibility of some error being committed in our procedure. There are two errors that appears from

the latter insight. The likelihood of erroneously rejectH0 when its true (called Type I error), or not reject

H0 when its false (called Type II error). Ideally it will be better if both Type I and II errors does not occur.

For the last example, we implicitly assume that just one hypothesis was studied. But what would

happen if we conducted an experiment involving multiple hypotheses? Here is where the concept of

Multiple Hypotheses Testing comes into play (herein called MHT). When conducting MHT, it is crucial

to be careful to avoid falsely rejecting toomany null hypotheses. Furthermore, if we reject null hypotheses

without taking into account the fact that multiple tests were performed, the ideal correction of errors will

not be achieved. Now, from a formal statistical point of view there are two possibilities to deal with

multiple comparisons, which have been widely studied by statisticians. We can either adjust p-values

while keeping the significance level unchanged or, conversely, adjust the pre-specified significance level

while keeping p-values the same.1

In this thesis, our aim is to develop a practical framework that sheds lights upon indexing and addresses

the common concerns associated with MHT. Essentially, our goal is to produce a guide that outlines key

points about program evaluation using indexes from an empirical standpoint, with a primary focus on

conducting simulations and using adequate real-life data used in others papers.

The usual approach in the generality of papers is that they use different indexing techniques without

any prior rules to determine which method for creating an index is better for the particular study. Con-

sequently, the question of which index should be implemented has been left entirely to the discretion of

researchers. Recently, it has become more common to use MHT in economic literature. The reason is that

1Others variations have also been developed, such as Bayesian or quasi-Bayesian methods, to account for MHT.
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it allows researchers to distinguish significant coefficients that may appears by chance, i.e., regardless of

the presence or absence of treatment effects.2

At present, there are specific ways to conduct valid inference for cases with multiple hypotheses. Two

important approaches are Generalized Error Rate (GER) Correction Strategies (Lehmann and Romano,

2005) and Dimension Reduction (DR) techniques using indexes. The latter is our main focus of study.3

There are two usual practices to control error rates: Family-Wise Error Rate (FWER) and False Discovery

Rate (FDR).4 Finally, the difference between GER and DR is that the former consider the total number of

hypotheses conducted by the researcher, but reports the p−values based on the number of reported results.

On the other hand, DR consider a reduction on the number of hypotheses to take into account MHT.

Another direction that the literature has taken is to assess the need for adjustment using a game between

two agents: a social planner (who could be a policymaker or a academic journal editor) and a researcher,

where a economic model with incentives is developed (Sterling, 1959; Viviano et al., 2023; Tetenov,

2016). Particularly, in economics and social sciences, there is a focus on positive results that affects topics

like transparency and reproducibility in empirical research (Yong, 2012). Hence, these aspects have been

receiving renewed attention in recent decades.5 AsWasserstein and Lazar (2016); Greenland et al. (2016)

indicates, some erroneous conventions about p−values are related to statistical misinterpretation in the

scientific discipline. Performing multiple tests and only presenting the p-values that yield the desired

outcome is considered tremendously problematic. Furthermore, excessive exploratory analysis can lead

to inappropriate practices. Nevertheless, the use of multiple test procedures cannot protect against the

bias caused by data fishing (Bender R, 2001). Given the above, some journals and researchers advocate

guidelines for authors and reviewers that performs econometric analysis (Simmons et al., 2011; Miguel

et al., 2014). The downside is that some of these practices increase the odds of Type I errors that may not

be present in other samples, but equally problematic in surveys.

2These procedures have been in use since the 1950s, and they are even mandatory for some journals or institutions (Food
and Administration, 2022).

3There is a third way of account for multiple hypothesis is through Machine Learning techniques that reframe the problem
of estimation as one of prediction. This method is rather new in economics and discussions on the econometrics context can
be found in (Mullainathan and Spiess, 2017).

4For GER methods, there is vast literature discussing ways to adjust inference, aiming to reduce the general rate of false
positives (Bonferroni, 1935; Holm, 1979;Westfall and Young, 1993; Romano andWolf, 2005; Benjamini and Hochberg, 1995;
Benjamini and Yekutieli, 2001).

5Discussions of related topics such as transparency, reproducibility and credibility in economics can be found in (Chris-
tensen and Miguel (2018); Miguel (2021)). Others practical problems related to hypothesis testing are Cherry-Picking,
p−hacking, Harking and data-snooping or data-dredging. Explanations and examples in the field of Biostatistics are presented
in (Andrade, 2021).
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There is a broad range of experiments where DR techniques can be implemented. The customary

procedure includes transforming outcomes into indexes since researchers are often allowed to extract a

lot of outcomes of interest (for example, see Cohen et al. (2023); Chong and Valdivia (2023)). 6 In Polit-

ical Science, (Denny et al., 2023) explored how extortion can alter political preferences using ICW and

a simple Average (SA) to construct the indexes.7 Data DR techniques have been in use for a while in

economics. For example, Principal Component Analysis is broadly used to measure wealth, researchers

argue that this method is employed due to the difficulties in obtaining accurate income data (e.g., (Vyas

and Kumaranayake, 2006; Houweling et al., 2003)). For Index tests, the two more commonly used meth-

ods are the index generated using ICW, as provided by Anderson (2008), and the index generated from

Principal component Analysis8. In addition, we will use the simplest index as baseline. This index can

be created by summing of standardized variables of interest (hereinafter Summary index or SI).

Finally, our focus on indexing methodologies arises from the dramatic use of MHT corrections in the

field of economics, specially in some sub-fields such as evaluation program, socioeconomic studies, etc.

(Viviano et al., 2023) reports that, since 2014, the use of MHT corrections increased from 0 to 39% in

“top 5” economic journals, with 54% of this increment involving index adjustment9. Aditionally, Figure

A1 illustrates the trend in four top journals between 1958 and 2008.

The thesis is organized as follows. Section 2 delves in Multiple Hypothesis Testing, offering a review

of literature related to controlling FWER and FDR, which will be later linked to results in Section 4.

Additionally, provides a discussion not attained in the literature about the relationship between Index and

MHT. Section 3 explains the different index tests, their procedures, and includes some practical comments

involving MHT. Section 4 presents Monte Carlo simulations to assess indexes performance in various

scenarios, particularly providing a comparative measure for FWER and the power of the index tests in

each scenario. Section 5 describes an empirical experiment using papers related to program evaluation.

Finally, Section 6 provides insightful discussions about practical concerns regarding indexes.

6For instance, in psychology, Baghumyan (2023) conducted a experiment about discrimination using only an index gen-
erated with the ICW method. On the other hand, Evans et al. (2023) evaluated child development in Mexico, using indexes
generated through Principal Component Analysis (PCA), Inverse Covariance Weighting (ICW) and the Sum of Standardized
(SS) variables.

7There are some specific branches that includes Factor Analysis in the index construction analyses. However, given
that the spirit of Factor Analysis (and variations, for example, in macroeconomics the name Dynamic Factor Analysis is not
uncommon) is somewhat upside down compared to indexes that do not rely on a structural model. That is why FA is not a
research topic in this thesis.

8For an introduction to this topic, see Hotelling (1933); Anderson (1963).
9Allee et al. (2022) found 95 studies that implemented Principal Component Analysis in the accounting research field.
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2 From Hypothesis Testing to Multiple Hypothesis Testing

The following section introduces the concept of Multiple Hypothesis testing. This discussion aims to

achieve two goals. First, it presents the most well-known method to correct for problems of multiple

hypotheses, called the FWER correction, and demonstrates that can be used as benchmark for our simu-

lations with index tests. Second, it develop an argument to highlight important questions that researchers

are not asking in the current literature, which are potentially relevant to the investigation results and their

consequences.

2.1 Motivation

Consider a null hypothesis H0 and suppose we have data X with distribution P is available to deal with

the following problem: given an observation x ∈ X , how do we decide whether to accept or reject

a hypothesis about P? In a simple HT, there are four possible scenarios summarized in Table 1. To

minimize the probability of falsely rejecting H0 when it is true, we typically choose a low and arbitrary

value for the odds of making a Type I error10.

Table 1: Possible scenarios associated with simple Hypothesis Test

Null Hypothesis (H0) is:

True False

Reject Type I error, Pr = α Correct, Pr = 1− β
Decision upon H0:

No Reject Correct, Pr = 1− α Type II error, Pr = β

Note: There are two kinds of errors when HT are performed. Type I and II errors, their probabilities are α
and β, respectively.

Now, the idea presented above does not take into account the Type II error. Therefore, it does not

provide any correction for β. As a result, the power of a test becomes crucial, defined as the probability

that the null hypothesis is correctly rejected when the alternative hypothesis is true, denoted by 1− β.

A Type I error occurs whenever we test an hypothesis on an outcome. Consider the case where we

are solely interested in controlling the Type I error. In such a scenario, if a test over a -it may be said-

10Called size of a test, α, where α takes on conventional values such as {0.01, 0.05, 0.1}
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second outcome is performed, there exists the possibility of committing none, one or two Type I errors.

To generalize, we can calculate the odds of incurring at least one Type I error. The easiest way to do this

is by assuming that each hypothesis test is independent of the others. Thus, the last-mentioned probability

can be obtained from:

P (V ≥ 1) = 1− P (V = 0) ≥ 1− (1− α)M > α (1)

Where M ∈ {2, 3, . . . } is the number of variables being tested and V is the number of Type I errors

made.11 Evidently, the probability increases with the value ofM . For that reason, we encounter a different

problem than in simple HT. 12 Amultiple testing framework, similar to the simplest case, can be classified

based on the significance of a test. In this manners, discoveries can be defined as true or false. Refer to

Table 2 to formalize the idea13:

Table 2: Outcomes when testingM hypotheses

Null Hypothesis Alternative Hypothesis Total
(H0) is true (H1 is true)

Test is declared significant V S R
Test is declared non significant U T M −R
Total M0 M −M0 M

Note: For a given hypothesis, the null could be true or false, and the corresponding test could reject or fail to reject
the null. Notation follows V as the number of false positives (Type I error or False Discoveries), S is the number
of true positives (True Discoveries), T is the number of false negatives (Type II error), U is the number of true
negatives and R = V + S: Number of rejected null hypotheses (Discoveries).

Multiple hypothesis testing has been widely studied, leading to the development of numerous proce-

dures to alleviate its main problem. Indexing techniques have arisen as a solution to the same problem

11A more detailed way (without assuming independence) of seeing this formula is P (V ≥ 1):

P (V ≥ 1) = 1− P (V = 0)

= 1− P (do not erroneously reject any null hypotheses)

= 1−

 M⋃
j=1

{do not erroneously rejectH0j}

 .

12To illustrate this, we calculate the probability obtained from Equation 1 for various significance levels and different
number of hypotheses tested. The results are presented in Figure A2. Note that when the number of hypotheses increases, it
raise the probability of make at least one Type I error, sooner or later depending on the significance level predefined.

13Note that is not a formal framework for the MHT issue, before formalize it, we will discuss some insights about MHT
and inference, taking somewhat philosophical approach.
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(though not as generalized like MHT) but from a different framework. As of today, there is no a clear

connection between indexing and MHT in terms of comparability, despite both methods addressing the

same problem.

In this context, the literature almost does not provides profound discussions about indexing and neither

about its relationship with MHT. Thus, the next subsection opens up an insightful discussion about how

the creation of indexes could affect the research goals.

2.2 When to (and not to) adjust?

The introduction of MHT methods corrects -at some level- latent issues in research evaluation method-

ologies given that it provides a framework to properly control GERs to avoid erroneous conclusions, and

hopefully trying to make the right choice as often as possible, i.e., diminishing the probability of making

a Type II error.

Then, the first natural question is, when do we encounter a MHT problem? List et al. (2016) outlines

the prevalent cases in which MHT should be considered:

“In this setting, different null hypotheses arise naturally for at least three different reasons:

when there are multiple outcomes of interest and it is desired to determine on which of these

outcomes a treatment has an effect; when the effect of a treatment may be heterogeneous in

that it varies across subgroups defined by observed characteristics (e.g., gender or age) and

it is desired to determine for which of these subgroups a treatment has an effect; and finally

when there are multiple treatments of interest and it is desired to determine which treatments

have an effect relative to either the control or relative to each of the other treatments.”

Now, an important issue that emerges is whether we actually need to adjust our experiment. There

is no direct consensus about which experiments need to be adjusted, but there are some insights that can

help shed light on the issue.

For a basic example, consider a 2 × 2 framework where we have an old and new teaching method,

students’ gender (male, female) and some measure of student academic achievement. The study’s objec-

tive is to approve the new teaching method’s effectiveness. In this context, we want to assess whether

the teaching method exhibit an effect or not. It is important to note that other contrasts (or groupings)
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are primary descriptive or mostly independent of the main objective. Therefore, any further investiga-

tion into gender effects interacted with teaching methods becomes secondary. Consequently, in this case,

multiplicity adjustments have arguably become unnecessary since a harmful erroneous discovery is re-

stricted to the teaching method effect (Frane, 2015). Furthermore, it is worth noting that there are authors

who criticize the use of MHT and presents arguments against correcting hypothesis testing with MHT

procedures (e.g. Rothman (1990)). Streiner (2015) discusses both viewpoints, those in favor and against

it, highlighting compelling issues in both positions.

To understand when and how MHT should be used appropriately, one option is consider the intended

audience for the experiment’s results, such as policymakers or journal editors. Another idea is to clarify

grouping in empirical research is to provide a pre-specified analysis plan.1415 Now, the decision of includ-

ing MHT should be considered carefully. For the first case (pre-analysis plan) it may even be mandatory.

Recently, PAP have gained traction in empirical microeconomics. Researchers in this field publish their

hypotheses and methods for dealing with multiple hypotheses (if necessary) on recognized public plat-

forms like the AEA RCT Registry, prior to collecting the data. This approach aims to increase the power

of their studies (Anderson and Magruder, 2022).

The next relevant question is, how indexing relate to MHT? A slightly different framework for multi-

ple comparison involves making overall decisions regarding a set of outcomes. As explained by Viviano

et al. (2023), a policymaker might need to decide whether to implement a reform based on its effects on

both education and health, for example.16 In this case, it is optimal to report a single test based on an

index created from the outcomes. Consequently, in the case of indexing, we depart from specific MHT

procedures, and the question of adjustment for multiple comparisons does not arise (or is significantly

reduced). This simplification reduces the dimension of the problem to that of the simple HTs.

Index test seems to offer an appealing solution for situations like the one mentioned above. Never-

theless, adopting this approach raises another kind of questions. For instance, let’s consider the scenario

where we create an index from five outcomes and our goal is to determine if a treatment variable had an

effect on the index. The customary procedure would be to conduct a hypothesis test of the treatment on

14For guidance on creating a pre-analysis plan in economics, refer to Olken (2015).
15Anyway, the latter approaches reveal two distinct types of data. Data that its actually gathered with a specified plan

before any assessment, such as Randomized Controlled Trials (RCTs). The second type of data that it is collected without
prior hypotheses in mind. Nevertheless, regardless the researcher’s intentions in either case are confirmatory or exploratory,
a distinction that can be blurry in practice.

16However, this may not apply if policymakers are interested in only one of the outcomes or more than one independently.
In such cases, other MHT procedures not involving indexing may be more appropriate.
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the index. Now, if we find that the effect is statistically significant, what does this means? Does it imply

that all the variables were affected by the treatment or, just one, two or maybe three out of the total were

affected? Currently, the literature on indexing has not adequately addressed this issue. The use of index

techniques is generally employed with little more justification than to correct for MHT.

Let’s think again about the teaching example. Suppose the treatment variable represents the students

who received the new teaching method, also, we have five different measure of academic achievement.

We then create an index from these five variables. Is the statistical performance of the index the same if

we are interested in finding at least one significant effect as if we want that at least half of the variables to

show some effect from the treatment? What would happen if all (or none of) the variables had an effect

from treatment? In Section 4, we address these questions.

Finally, there are not conclusive statements about how and when to adjust, rather than insights for

specific situations as the aforementioned (Streiner and Norman, 2011). Even though this section discusses

the problem in an incentive/pre-conception framework, it leaves aside specific statistical limitations that

could come to light from the MHT procedures revised later. That is why, an important point to note in

classical hypothesis testing is the inherent subjectivity in the interpretation of data (as somewhat discussed

in the insights from this section) to provide a more accurate and flexible statistical assessment (Berger

and Berry, 1988).

2.3 Multiple testing and how to address the issue

Let us formalize, following the notation from Lehmann and Romano (2022), the generalization for si-

multaneously testing M ∈ N hypotheses Hm (m = 1, . . . ,M). Suppose data X is available from some

model P ∈ Ω. The multiple testing problem can be denoted as:

Hm : θ ∈ wm i = 1, . . . ,M (2)

Givenw as a subset ofΩ. Let T = T (θ) denote the set of true null hypotheses when θ is the true probability

distribution. Then,m ∈ T (θ) if and only if θ ∈ wm.

The literature has been primarily focused on two approaches: Familywise Error Rate (FWER), which

studies the probability of rejecting at least one null hypothesis in a family where the null hypotheses are
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true.17 This approach jointly consider all hypotheses as a family in order to control the odds of making at

least one Type I error at a level α.18

FWER = P (reject any Hm withm ∈ T (θ)) ≤ α ∀θ ∈ Ω (3)

Second, the False Discovery Rate (FDR) (proposed by (Benjamini and Hochberg, 1995)), is defined as

the expected proportion of errors among the rejected hypotheses. Let the False Discovery Proportion

(FDP) be defined as FDP = V /R · D{V > 0}, where D{·} denotes the indicator function. Then, the

FDR is given by the expected value of the FDP and the goal is to control it to be a small proportion for

some γ ∈ [0, 1).

FDR = E(FDP ) ≤ γ for any θ (4)

Table A1 indicates methods developed for both approaches19. Nonetheless, FWER literature comes

with criticism. It is been proved that diminishing the Type I Error rate provokes greater Type II errors rate

(Smith et al., 2006), and it is known that the FWER is too conservative and negatively affects the power

of tests. Furthermore, the FWER has been criticised as too conservative in cases when too many multiple

hypotheses are tested at the same time (Chen et al., 2017).

The methods presented in this final subsection consider essentially all the hypotheses that the re-

searcher is interested in testing. Therefore, it produces p−values for every hypothesis tested, this could

beM or subset of hypotheses. Nonetheless, one goal of DRmethods is to shrink the number of hypotheses

to the minimum. As mentioned before, GER methods are best suited for questions related to indepen-

dently assess the statistical significance of variables of interest. Principally, they are applied individually

to each variable in a variety of hypotheses.

Finally, as mentioned earlier, FWER aims to control the probability of committing at least one Type

17We say that FWER is weakly controlled at level α. A different approach is to strongly control FWER at level α, i.e., if
FWER ≤ α for possible constellations of T and TC , where TC denotes the set of false null hypotheses when θ is the true
probability distribution.

18This proposition can be generalized to the probability of k or more false discoveries. In the literature this is denoted by
k-Familywise Error Rate (Lehmann and Romano, 2022).

19Exists a thirdmethod called positive FDR (pFDR), introduced by Storey (2003). Later research in this setting can be found
in Goeman and Solari (2011). Fourth, The Closure Method (introduced by Marcus et al. (1976)) that rejects a intersection
of hypotheses if and only if every joint hypothesis that contains the intersection is rejected. Some procedures are Simes’s
identity, Hommel’s method and other classical joint tests like Fisher’s F test. More details about this method can be found in
Lehmann and Romano (2022). Finally, Bayesian (and quasi-Bayesian) approaches as well have been developed, introduction
and explanations can be found in Efron et al. (2001); Berry and Hochberg (1999). Explanations, advantages and caveats of the
main methods use in each approach can be found in Goeman and Solari (2014).
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I error. In Section 4, where we present statistical simulations, we will introduce some scenarios with

only one variable providing a true effect, i.e., rejecting the null hypothesis for the effect of this variable

(on a dependent variable, as will be explained in detail later) would be the lower bound of the FWER’s

probability. Then, the proportion of rejected tests will be our simple comparative measure between MHT

and index tests.

3 Index Tests

Indexing methods, as mentioned before, provide a solution to avoid the use of MHT techniques. Their

goal is to reduce the probability of incurring in false positives, following the principles of FWER. The

fundamental principle of indexing techniques involves dimensional reduction of data. This process con-

sists in finding an index that summarizes all the information of interest, effectively reducingN outcomes

to one outcome that contains the majority of the important information. But, ¿how do you decide which

outcome is more or less relevant? In this section, we explain how the indexes generated from Anderson,

Principal Components and Summary methods proceed to create an index. These indexes rely on different

principles to weight and aggregate outcomes, and those methods are summarized in Table 3.

Table 3: Indexing corrections

Indexes

Methods Comments

Summary index Simple sum of the variables
(Hotelling, 1933) Principal Component weighting
(Anderson, 2008) Inverse Covariance weighting

Finally, consider that the primary focus of this study is on the use of Index as dependent variables

in estimation. Therefore, we have excluded the analysis of Index tests when used as a regressors or

independent variables. The reason for this exclusion is that when using it as the dependent variable,

philosophical issues as the ones mentioned in Subsection 2.2, arise. Contrarily, when the index is used as

a regressor, probably the most convenient way to manage MHT problems is through GER techniques.
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3.1 Methods

Let’s formalize, consider Yi ∈ {AIi, PCIi, SIi} which is an index formed from variables ymi where

m ∈ {1, . . . ,M} indexes each variable of interest and i ∈ {1, . . . , I} represents the corresponding ob-

servations. Then, the construction of Yi will depend in the method used. Next, we present three indexing

techniques.

In practice, we begin by limiting the total number of variables being tested. Hence, we choose a

specific subset of outcomes ymi ,m ∈ {1, . . . ,M}, based on a priori notion of importance. These outcomes

will be summarized into one index. This method permits us to avoid the MHT affairs discussed earlier

in section 2.3. As mentioned before, the set of outcomes will depend entirely on the experiment context

and should be judged on a case-by-case basis.

3.1.1 Anderson (2008)

In his groundbreaking paper, Multiple inference and gender differences in the effects of early interven-

tion: A reevaluation of the Abecedarian, Perry Preschool, and Early Training Projects, Anderson (2008)

proposed an index test. This procedure constructs the index using the inverse of the covariance matrix

formed from the transformed variables of interest. Anderson, provides the following steps to implement

the corresponding test:

1. For all outcomes, switch signs where necessary so that the positive direction always

indicates a “better” outcome.

2. Define J groupings of outcomes (also referred to as areas or domains). Demean all

outcomes and convert them to effect sizes by dividing each outcome by its control

group standard deviation (denoted by σym
j for outcomem in area j). Each outcome ymj

is assigned to one of these J areas, givingMj outcomes in each area j, withm indexing

outcomes within an area.

3. Create a new variable, AIij , that is a weighted average of ỹmij for individual i in area

j. When constructing AIij , weight its inputs—outcomes ỹmij— by the inverse of the

covariance matrix of the transformed outcomes in area j (the outcome weight are called

12



wm
j ).

AIij =
1

Wij

∑
m∈Mij

wm
j

ymij − ymj
σy
jk

(5)

Σ̂−1
j is the inverted covariance matrix,

Σ̂−1
j =


cj11 cj12 . . . cj1M

cj21 cj22 . . . . . .
...

... . . . . . .

cjM1
... . . . cjMM

 (6)

that satisfiesWij =
∑

m∈Mij
wm

j . And Σ̂j consists of elements,

Σ̂jkn =

Njkn∑
i=1

yijk − yjk
σy
jk

yijn − yjn
σy
jn

(7)

Njmn is the number of observations not missing for both outcome k and outcome n in

area j. Now, a simple way to do this is to set the weight on each outcome equal to the

sum of its row entries in the inverted covariance matrix for area j. Formally,

AIij = (1′Σ̂−1
j 1)−1(1′Σ̂−1

j ỹij) (8)

Where 1 is a column vector of 1’s and ỹij is a column vector of all outcomes for individ-

ual i in area j. Note that this is an efficient generalized least squares (GLS) estimator.20

The Anderson index is useful for minimizing the noise resulting from random errors that are uncorre-

lated across indicators. It also provides an efficient estimation of the treatment effect. Moreover, it offers

flexibility to aggregate information from the observed measures that may not be highly correlated or may

come from different domains. This process assigns a higher weight to the drawing characteristics that

possess more independent information or having lower covariance with respect to other characteristics.

20Stata’s swindex command (Schwab et al., 2021) can be used to obtain the preceding GLS estimator in Stata.
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3.1.2 Principal Components (PC)

Principal Component analysis is a statistical method that reduce the dimensionality of data through spec-

tral decomposition. For a more detailed introduction about Principal Component Analysis, refer to Ap-

pendix C.

Let C be the M × M correlation matrix, λm and vm represents the corresponding eigenvalues and

eigenvectors form ∈ {1, . . . ,M}:

1. First, get the eigenvectors and eigenvalues from the covariance matrix of the variables

of interest. The spectral decomposition of C is given by C = V ΛV ′ =
∑M

i=1 λivmv
′
m.

The columns of V represents the eigenvectors. They satisfy with orthonormality v′ivj =

δij , and the sign of principal components is not defined. However, the eigenvectors

satisfies 1′vm > 0.

2. Next, order the eigenvalues from the smallest to the largest 0 ≤ λ1 ≤ λ2 ≤ . . . ≤

λM . After that, select the eigenvector associated with the larger eigenvalues. These

eigenvectors are our Principal Components.

3. The subsequent step is to compute the standardized variables. First, to put us in the right

framework, think of PC as a fixed-effects factor analysis with homoskedastic residuals

Z = AL′ + E, where L consists of the larger eigenvectors (also called loadings), the

columns of A represents the standardized variables of interest (the component scores),

E accounts for the homoskedastic errors and Z is the weighted sum of the compo-

nent scores and the loadings. Since we are using a correlation matrix, the principal-

component scores are in standardized units. So, the standardized variables will be de-

noted as am withm = {1, . . . ,M}.

4. Finally, to construct the PC index, select the column of L′ that contains the largest

eigenvector, vM , and perform a matrix-vector product with A. Therefore, our index

will be,

PCI = v1M ∗ a1 + v2M ∗ a2 + · · ·+ vMM ∗ aM (9)

Where vjM is the jth−element of theM × 1 eigenvector and am = (ymi − y) /σm
y are

aM × 1 vector of the standardized variables of interest.21

21Stata’s pca command (TX: StataCorp LLC., 2021) can be used to obtain the Principal Components Index in Stata.
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3.1.3 Summary

The Summary index groups all the variables of interest in the simplest way. Denote SI as the Summary

index.

1. First, obtain the standardized variables from the outcomes of interest, denoted as ŷm =

(ymi − y)/σm
y .

2. To generate the index, simply add the standardized variables. Suppose there are M

outcomes, then the Summary index is calculated as:

SI =
M∑

m=1

ŷm (10)

It is clear that this index assigns the sameweight to all variables. The purpose of creating this last index

is to use it as a baseline for comparison with the other two more sophisticated procedures. Additionally,

some researchers compute the average of the standardized variables instead of simply adding them. For

inference purposes, this make no difference since it is just a rescaling by a constant.

3.1.4 Inference

Consider a variable that assigns treatment Treati to a fraction of the sample, then, the simplest underlying

relationship is

Yi = τTreati + εi (11)

In this framework, often a researcher wants to test the two-sided hypothesis: H0 : τ = 0 against H1 :

τ ̸= 0. Then, we can estimate the average treatment effect τ̂ and its corresponding standard deviation

σ. Therefore, the last step for any of the last methods is the same. Regress the the new variable Y ∈

{AI, PCI, SI} on the treatment variable Treat. A standard t-test t̂ = τ̂−0
s.e(τ̂)

, where s.e(τ̂) = στ/
√
I

with στ as the sample standard deviation of τ̂ , assesses the significance of the coefficient against zero.

Therefore, the statistical problem comes back to that of a simple null hypothesis, and the possible scenarios

for hypothesis testing are the same as shown in Table 1.
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3.2 Some advantages (and disadvantages) from indexing

The aggregation of related variables into a single index (or a small number of indexes) it is intended to

conserve the underlying components of the economic relationship between the outcomes of interest. In

principle, reduces the number of hypotheses tested.

Advantages (and possible disadvantages) of indexing rather than MHT procedures are:

1. Ease of general interpretations: Indexes provides a simple and intuitive measure for a set of hy-

pothesis, making it easier for researchers or policymakers to focus on a single, relevant question. In

contrast, error correction can be more complex and challenging to understand. On the other hand,

magnitudes of index values may also be difficult to interpret, often requiring to consider effect sizes.

2. Robustness to over-testing: Since each index represents a single overall test, adding more outcomes

to the index does not increas the odds of a false positive (Anderson, 2008).22 On the contrary,

indexing cast a shadow over impacts on specific outcomes of interest and how different groupings

can affect the index results.

3. Computational efficiency: Indexes can be more efficient than error correction methods, particularly

when dealing with a large set of hypotheses. Error correction methods often require of multiples

calculation and adjustment, consumingmore time and programming resources. In contrast, creating

an index is relatively straightforward, and the statistical evaluation is entirely conventional.

4. Power: Indexes can be more powerful than error correction methods by reducing random error in

each outcome measure (Anderson, 2008).

Furthermore, Indexing relies on the ability to classify outcomes as better than others, which may not

always be clear.

4 Simulations

In this section we construct two main scenarios to evaluate the behaviour of inference on index tests.

Much of the literature that uses corrections for MHT and indexing techniques focuses on program evalu-
22Several works in the educational field have discussed the issue of simultaneous inference with large numbers of outcomes

(Williams et al., 1999).
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ation. Therefore, the two main models (presented in this section) mimic situations that require assessing

a treatment effect on the index.

4.1 Settings

To assess the performance of the index tests that we are interested, the idea is to construct Monte Carlo

experiments in a variety of statistical frameworks. The analyses consider a total of S simulations, I

observations andM outcomes in each simulation s. The primary data generating process used is:

ymis = α + τTreatis + εmis (12)

Where ymis is the outcomem ∈ {1, . . . ,M} for observation i ∈ {1, . . . , I} of simulation s ∈ {1, . . . , S}.

Moreover, Treatis is a simulated treatment variable, εis ∼ N(0, 1) is the error component extracted from

the Cholesky decomposition of a simulated correlation matrix and ρ is the level of correlation. The use of

Cholesky decomposition allows the errors εmis to be correlated with each other, and therefore, it traspases

the correlation to the outcomes. The error distribution is

ε ∼




0

0
...

0

 ,


1 ρ . . . ρ

ρ 1 . . . ρ
...

... . . . ...

ρ . . . ρ 1



 (13)

The procedure consists of three main steps. First, the outcomes of interest are generated. Second, the

indexes are constructed from the outcomes. Finally, assess the statistical significance of the effect of a

treatment variable on the index. Moreover, we chose to use ten variables for each index test in all the

experiment performed in this thesis. This can be done with any case that satisfies M > 1, since as

mentioned in Section 3, index test are robust to over-testing.

To start, produce M outcomes following equation (12). To create the variables, first we have to

simulate the errors. Note that the Cholesky decomposition provides a lower triangular matrix G, that

satisfies C = GG′, where C. is the correlation matrix of ε. Then, we create the random variables

bm ∼ N(0, 1) withm ∈ {1, . . . ,M}. Finally, obtain εmis as the dot product between the row formed from

i-th observation of each bm and the column vector g′m, where gm is them-th row from the lower triangular

17



matrix G. As mentioned before, this procedure generate correlated outcomes.

In addition, we set α = 1 and consider two different values of the treatment variable, τ = 0 and τ =

0.5. We also generate another outcome with τ = 0.5 and a random independent error ϵs ∼ N(0, 1). This

additional outcome is created to establish a separate simulated statistical context for multiple comparisons.

In summary ymis is given by:

ymis =


ymis if α = 1, τ = 0, εmis ∼ N(0, 1), ∀m ∈ {1, . . . , 10}, i ∈ {1, . . . , I}, s ∈ {1, . . . , S}

yrmis if α = 1, τ = 0.5, εmis ∼ N(0, 1), ∀m ∈ {1, . . . , 10}, i ∈ {1, . . . , I}, s ∈ {1, . . . , S}

yr11mis if α = 1, τ = 0.5, ϵs ∼ N(0, 1), ∀i ∈ {1, . . . , I}, s ∈ {1, . . . , S}

(14)

Note that each εm ∼ N(0, C) with m ∈ {1, . . . ,M}, are independent from the error used to construct

yr11mis , i.e., there are no correlation between yr11mis and the other outcomes yrmis .

After generating the outcomes, we construct the three aforementioned index tests for each simulation

s, i.e., we simply follow the methods described in Subsection 3.1. We propose four different scenarios to

evaluate the performance of each index. The scenarios are the following:

(a) Only null effects (none):

• α = 1, τ = 0, εmi ∼ N(0, 1) for everym ∈ {1, . . . , 10}

(b) Only distinct from zero effects (all):

• α = 1, τ = 0.5, εmi ∼ N(0, 1) for everym ∈ {1, . . . , 10}

(c) A correlated distinct from zero effect (correlated):

• α = 1, τ = 0, εmi ∼ N(0, 1) for every n ∈ {1, . . . , 9}

• α = 1, τ = 0.5, εmi ∼ N(0, 1) for yrmis , withm = 10

(d) An independent distinct from zero effect (independent):

• α = 1, τ = 0, εmi ∼ N(0, 1) for everym ∈ {1, . . . , 9}

• α = 1, τ = 0.5, ϵi ∼ N(0, 1) for yr11mis

For simplicity, the scenarios will be called none, all, correlated and independent. Now, we will consider

every case using ymis , yrmis , and yr11si . Now, none and all presents two mainstream cases. The first one

was designed to simulate a futile treatment (i.e., does not produced any effect) on the outcomes. In the
18



second case, there was an actual treatment effect (set at τ = 0.5). For these cases, we expect results

consistent with conventional hypothesis testing. Consequently, the null hypothesis for case none should

be rejected 5% of the time. On the other hand, for case all the null should be always rejected.

The last two cases are also of interest. Cases correlated and independent are an analogous for the

FWER presented in Section 2. Since this cases simulates an experiment in which we should at least

have one significant hypothesis. The goal is to evaluate the behaviour of the different index tests for a

correlated or independent variable that actually received an effect from the treatment.

In this spirit, we could simulate two or more variables that received positive treatment, but selecting

just one variable with positive effects offers two advantages. First, as mentioned earlier, FWER represents

the probability of making at least one Type I error. Our case thus mirrors the base scenario of this proba-

bility and provides a benchmark for comparison upon the usual features of interest. Second, concerning

the results between indices, we will be able to assess if differences arise driven solely by the treatment

of one outcome. Therefore, unifying our variables of interest and their analysis could be significantly

obscured if only one variable receives treatment.

4.2 Empirical performance

In one (of many)MHT-index framework wewould like to assess the effect of some treatment (say variable

Treatsi ) on an outcome, in this case an index Y s
i , as we mentioned at the beginning of this section. Hence,

to evaluate its performance on inference matters, the natural step is to calculate how many times we get

to falsely reject the null hypothesis for each simulation s.

Then, the prevailing andmost simple practice is to estimate the followingmodel usingOLS estimation:

Y s
i = β0 + β1Treat

s
i + εsi i ∈ {1, . . . , I} (15)

Where Y s
i is the Anderson, PC or Summary index, Treatsi is the treatment variable, and εsi is the error

component. The primary objective is to calculate the t statistic associated with the treatment variable.

Subsequently, the main goal is to evaluate how many times the null hypothesis H0 is rejected when it is

actually true. The experiment follows the conventional null H0 : β1 = 0, which is rejected if t > |1.96|

(so we decide α = 5% significance level). Furthermore, a t-statistic is obtained for each simulation.

Then, all these results are used to create histograms depicting the distribution of the tests. One histogram
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for every scenery described in Section 4.

Now, the Monte Carlo experiment described above relies on certain inputs that need to be determined

in order to establish appropriate statistical frameworks for MHT. The total number of simulations and

observations in each simulation will be set at 1000. As mentioned early, the index will be generated using

M = 10 variables. Another critical factor in the experiment is the level of correlation ρ, used to generate

the variables of interest. Finally, the values of β0 and β1 could also be set for different values.

4.2.1 Model 1

Herein denote as Model 1 the simulations generated following equation 15. This design will perform the

simulations for different correlations between variables yis of ρ ∈ {0.01, 0.05, . . . , 0.95, 0.99}.

In first place, Figure 1 show the distribution for the Anderson Index (Figures 2 and 3 present for PC

and Summary indexes, respectively), at correlation level ρ = 0.9. For case none, where the true value of

the parameter is β1 = 0, the indexes erroneously rejectH0 5% of the time, as we can observe in the distri-

bution, which closely resembles a normal distribution. Secondly, case all, with a true parameter value of

β1 = 0.5 the distributions are completely shifted to the right, indicating that the indexes does correctly re-

jectH0. In the third case correlated, the t statistic distribution shift slightly to the right, showing moderate

rejection behavior. On the other hand, in scenery independent, the indexes have very distinct behaviors.

The Anderson index shows a distribution entirely shifted to the right, indicating completely rejection of

the null hypothesis. Principal Component Index presents a distribution similar to scenario none. In the

same way, the Summary index behaves similarly to scenario correlated, with moderate rejections. In

summary, AI rejects the null in every simulation, PCI rejects a smaller percentage of null hypotheses,

and SI rejects a higher proportion compared to weighted methods.

To distinguish more clearly the difference between cases for every value of ρ, results for all the levels

of correlation are shown in Table 4, that presents the proportion of rejected tests over the total simulations

S = 1000. Note that cases none and all perform in the expected way. For none there is a 5% likelihood

of rejecting the null, and for all there is a 100% of rejecting the null. These results are independent for

the level of correlation between variables.

More interesting cases are correlated and independent. For correlated, depending on the level of

correlation ρ the proportion of nulls rejected differ widely. Low levels of ρ provokes greater proportions
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Figure 1: Performance of Anderson index for ρ = 0.9
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Cases none and all behaved as expected. In the correlated case the t-test distribution slightly shifted to the right. Conversely,
the independent case distribution is completely shifted away to the right.

Figure 2: Performance of Principal Component index for ρ = 0.9
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(c) correlated
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Cases none and all behaved as expected. In the correlated case the t-test distribution slightly shifted to the right. Finally, the
independent case distribution is pretty similar to the none distribution.
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Figure 3: Performance of Summary Index for ρ = 0.9
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Cases none and all behaved as expected. For both the correlated and independent cases, the t-test distribution slightly shifted
to the right.

of rejection. Conversely, high levels of correlation reduces significantly the proportion of tests rejected.

AI is the only test that attain a proportion less than 5%, for PCI and SI the proportion is never less than

10%. Finally, case independent presents substantial differences depending on the index tests used. AI

rejects the null in more than 50% of the tests performed, increasing as the level of correlation goes up.

For correlation greater than 60% the proportion of tests rejected tends to 1. Contrarily, PCI performs

similar to AI for really low levels of correlation, though the differences arise quickly. However, if the

level of correlation grows the proportion of rejected nulls rapidly tends to 5%. Finally, the performance

of SI is pretty similar for cases correlated and independent, following the tendency of less rejection as

the correlation increase.

4.2.2 Model 2

An interesting extension from Model 1 is to include a grouping variable. In this case, the effect of inter-

est will be the interaction between the treatment variable and the grouping variable. Let Groupsi be an

indicator variable that randomly splits the sample into two groups. The new data generating process for
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Table 4: Proportion of tests rejected for the three indexes in each scenario.

(a) (b) (c) (d)

ρ AI PCI SI AI PCI SI AI PCI SI AI PCI SI
1% 0.047 0.053 0.045 1.000 1.000 1.000 0.623 0.548 0.671 0.675 0.499 0.666
5% 0.056 0.061 0.056 1.000 1.000 1.000 0.496 0.493 0.546 0.813 0.134 0.584
10% 0.058 0.061 0.060 1.000 1.000 1.000 0.382 0.390 0.429 0.866 0.075 0.459
20% 0.042 0.040 0.041 1.000 1.000 1.000 0.281 0.291 0.314 0.940 0.061 0.349
40% 0.053 0.055 0.055 1.000 1.000 1.000 0.156 0.188 0.202 0.988 0.059 0.234
60% 0.049 0.052 0.052 1.000 1.000 1.000 0.119 0.159 0.167 1.000 0.053 0.195
80% 0.055 0.057 0.057 1.000 1.000 1.000 0.091 0.159 0.166 1.000 0.056 0.186
90% 0.050 0.051 0.051 1.000 1.000 1.000 0.030 0.127 0.133 0.999 0.052 0.149
95% 0.038 0.043 0.043 1.000 1.000 1.000 0.009 0.120 0.125 1.000 0.047 0.143
99% 0.052 0.049 0.049 1.000 1.000 1.000 0.000 0.110 0.118 1.000 0.049 0.134

Note: Simulations were performed using N = 1000 observations and S = 1000 simulations. Case none presents only null
effects, case all only distinct from zero effects, case correlated a correlated distinct from zero effect and case independent an
independent distinct from zero effect. Simulations were done usingmodel (1). The simulated correlationmatrix is symmetrical
with all off-diagonal values equal.

the outcomes is:

ymis = α1 + α2Treatis + α3Groupis + τTreatis ×Groupis + εis (16)

Now we will be interested in the estimation of the interaction between the treatment and the grouping

variable, i.e, τ 23. The experiment performed using the latter equation will be called Model 2. Like Model

1, we execute it for ρ ∈ {0.01, 0.05, 0.1, . . . , 0.9, 0.95, 0.99}. Results are presented in Table 5. For case

none, at low levels of correlation the proportion of rejection is approximately 5%. But, for greater values

of ρ, the null is rejected approximately 6-7% of the time. Therefore, index tests are able to control the

odds of committing a Type I error almost as good as in Model 1. For case all, at low and medium levels

of correlation the results are identical to that of Model 1. Nevertheless, for ρ > 0.5, index tests reject the

null approximately 95% of the time. For cases correlated and independent, the performances of PCI and

SI are pretty similar to those of Model 1. The difference is that the proportion of rejected nulls are lower

and tends to 6-7% as ρ goes higher. At last, AI presents a totally different behaviour in this cases. First,

in case correlated, the performance is the other way around in comparison to Model 1, i.e., AI rejects

more times the null as ρ goes higher. Second, in case independent, the proportion of rejected nulls are

much lower independently of the level of correlation.
23In any case, the researcher could be interested in the parameter α2. However, in this work we do not analyze that

possibility.
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Table 5: Proportion of tests rejected for the three indexes in each scenario.

(a) (b) (c) (d)

ρ AI PCI SI AI PCI SI AI PCI SI AI PCI SI
1% 0.049 0.049 0.048 1.000 1.000 1.000 0.075 0.270 0.227 0.094 0.268 0.226
5% 0.050 0.049 0.049 1.000 1.000 1.000 0.064 0.209 0.184 0.126 0.167 0.183
10% 0.053 0.055 0.056 1.000 1.000 1.000 0.062 0.168 0.159 0.169 0.117 0.153
20% 0.061 0.057 0.058 1.000 1.000 1.000 0.061 0.132 0.124 0.256 0.083 0.128
40% 0.057 0.059 0.058 1.000 1.000 1.000 0.056 0.087 0.090 0.420 0.066 0.104
60% 0.063 0.063 0.063 0.992 0.996 0.996 0.065 0.078 0.080 0.548 0.065 0.093
80% 0.068 0.062 0.062 0.976 0.978 0.978 0.117 0.081 0.082 0.632 0.063 0.090
90% 0.069 0.068 0.068 0.968 0.973 0.973 0.263 0.070 0.075 0.671 0.062 0.079
95% 0.069 0.065 0.065 0.958 0.966 0.966 0.647 0.072 0.071 0.686 0.062 0.074
99% 0.066 0.065 0.065 0.957 0.963 0.963 0.992 0.072 0.074 0.691 0.060 0.071

Note: Simulations were performed using N = 1000 observations and S = 1000 simulations. Case none presents only null
effects, case all only distinct from zero effects, case correlated a correlated distinct from zero effect and case independent an
independent distinct from zero effect. Simulations were done usingmodel (2). The simulated correlationmatrix is symmetrical
with all off-diagonal values equal.

The conclusions emerge straightforwardly from the latter results: our indices of primary interest, AI

and PCI, exhibit distinct behaviors across all degrees of correlation. This observation also holds true for

the indices in cases none and all. The fairest reasoning suggests that variables should be economically

related, but not necessarily statistically correlated. Therefore, the rejection of the null hypothesis could

primarily be driven by the level of correlation. This is just one aspect of the story (the choice of index is

also crucial), but it suffices to grasp the importance of the analyses conducted here. Next we describe a

few more exercises to allow for greater flexibility in the assumptions already set. As will be detailed, the

experiment support the same conclusions made here but to a (little) broader extent.

4.2.3 Other extensions

In the models described above we examined the behaviour of the index tests, principally, through variation

of the level of correlation. However, the degree of correlation ρ is the same for every off-diagonal value

of the correlation matrix C (Equation 13). Nonetheless there are a variety of ways of constructing a

correlation matrix. In this subsection, we construct extensions for Model 1.

(a) A first approach is to set different levels of correlation for a sub-matrix of C. Consider the same

quantity of simulations S = 1000, observations N = 1000 and variables M = 10. Consequently,

these new correlation matrices have 10 rows and 10 columns. Think about two levels of correlation
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δ and ρ, now we are interested in the case when δ differ from ρ. In this context, two new inputs

that need to be decided. How many variables present a correlation level δ?, and which will be the

values of δ and ρ?

To answer the above question, we propose three correlation matrices that allows two, three and

four variables to show a correlation level that differs from ρ. The proposed correlation matrices

are presented in Appendix B. To evaluate the performance of the index tests in this context we also

need to determine the values of ρ and δ. For this extension, we choose a variety of gaps for the

correlation levels in each experiment. The combinations are listed in Table 6:

Table 6: Combinations of δ and ρ to simulate different correlations (%)

δ 1 5 10 20 40 60
ρ 99 95 90 80 60 40

Results using the three aforementioned scenarios are presented in Tables A2, A3 and A4, respec-

tively. For the three cases, independently of the combinations used for correlations, cases none and

all have the same expected responses than in Model 1. Hence, the behaviour of the indexes are

proper in those scenarios. Results for case correlated are a little more tricky. For two and three

variables with correlation level δ, AI and SI shows (SI even with four variables) a decay in the

proportion of rejection as the gap between δ and ρ decrease. But, if we add a fourth variable, AI

behave more erratically increasing the proportion of rejected tests for any combinations of δ and

ρ. On the contrary, the PCI presents the contrary behaviour compared to the other two indexes.

Ultimately, for case independent, AI has constant behaviour, independent of the correlation matrix

used, where the level of rejection is at least 80% for any combination of ρ and δ. SI show a con-

siderably lower proportion of rejected tests (never fewer than 20% approximately), that decreases

when the divergence gets smaller. But, the most impressive behaviour is performed by the PCI

because, independent of the correlation matrix used and also independent of the combinations of

correlations, the proportion of rejected tests is always in the range of 4− 7%.

(b) A second extension consider a variation of the SI , and it was presented by Kling et al. (2007).

In this case, to create the index, before adding the variables together, all the outcomes have to

be transformed into effect sizes (herein known as Kling Index, or KI). Therefore, consider M

outcomes, all distributed ymi ∼ N(µm
i , σ

m
i ) and all observations were classified by a treatment

variable T . Two straightforward steps to create this index:
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1. Obtain the effect sizes y∗m:

y∗mi =
ymi − µC,m

i

σC,m
i

(17)

Where µC,m
i and σC,m

i represent the mean and standard deviation of the variable of

interest for the control group.

2. Perform a sum of the variables

SSI =
M∑

m=1

y∗mi (18)

This indexing techniques will be used to compared with the already presented methods in the repli-

cation section.

Ultimately, another parameter set by us is the number of observations N in each sample (for each

simulation s). Essentially, this case would be a simply evaluation of a lot of t−tests performance for a

varying number of observations. This kind of experiment has already been reviewed in simple hypothesis

testing literature.24

4.3 Statistical Power

Another important matter when performing hypothesis tests is to analyze the power of each test. For this

purpose, we carry out a procedure similar to the one exposed in Section 4. Hence, to simulate the power

of the index tests, we need to estimate the proportion of correctly rejected null hypotheses. To this end,

we define the following variable:

propIs =

1 if p-value ≤ 0.05, ∀s ∈ {1, . . . , S}

0 if p-value > 0.05, ∀s ∈ {1, . . . , S}
(19)

propIs is the dummy variable for the index I ∈ {AI, PCI, SI} that is equal to one if H0 is rejected in

simulation s (a 5% significance level is used throughout the entire thesis). Moreover, denote the statistical

24For the sake of completeness, to evaluate the results of index tests, again consider Model 1 as baseline. Now, we re-
examine the Monte Carlo experiment using S = 1000 simulations, M = 10 variables and vary the number of observations,
with values N ∈ {50, 100, 500}. Tables A5, A6 and A7 display the results.
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power as:

PowerI =

∑S
s propI

s

S
(20)

PowerI is the proportion of properly rejected null hypotheses for each index test. The numerator is given

by the sum of all rejected nulls, and the denominator is the total quantity of simulations.

The procedure also have three main steps: first, generate the variables, construct the index tests and fi-

nally assess the statistical significance. Consider Model 1 and let α = 1, τ ∈ {0.01, 0.06, . . . , 0.91, 0.96}

and ρ ∈ {0.01, 0.05, 0.1, 0.2, 0.6, 0.8, 0.9, 0.95, 0.99}. Note that we construct the outcomes considering

just the case of effects distinct from zero. Then, generate ymis for m ∈ {1, . . . ,M}, i ∈ {1, . . . , I} and

s ∈ {1, . . . , S}, with the following parameters (I, S,M) = (1000, 1000, 10). Thus, obtain the three

indexes that summarize the information of ymis , m ∈ {1, . . . , 10} in the same way as the last subsection.

Perform t−tests for each simulation and obtain the corresponding p-values. Finally, contrasts the p-values

with the standard 5% significance level.

Figure 4 shows the results of the last setting, the proportion of properly rejected hypotheses for the

different values of τ and ρ. The proportion of null hypotheses correctly rejected converge rapidly ap-

proaches 100%, as the value of τ increases. Nonetheless, the degree of correlation is also of interest to

this tendency. With greater value of ρ, increasing statistical power occurs more slowly. But, an important

caveat is that, independently of the value of ρ, for β > 0.2 the power of the index tests is extremely high.

At last, the difference in power between the three indexes it seems negligible, except for ρ = 0.01 where

PCI clearly expose less power.

Note that Figure 4 shows the values of β ∈ (0, 0.3). To present a little more complete display about

the power test behaviour for any value of β, Table 7 list the mean of propI at the different levels of

correlation ρ, keeping β constant. Although is not strictly accurate measure of power, it shed lights upon

the quick changes in power performed by the three indexes.

Observe that the right side of Table 7 displays the results for Model 2, which follows the same simula-

tion procedure to obtain the power of the Index tests as described earlier in this Subsection, but considers

Equation 16 instead. Also, the plots of power for values of β between 0 and 0.3 are presented in Figure

A3. Similarly to the Model 1, greater the value of ρ, the convergence of β → 1 is slower. Furthermore,

another difference is that the speed of convergence of Model 2 is more moderated, so for this case, the

power converge to one for values of β > 0.6. Finally, notice that AI has slightly less power than PCI

and SI , for any correlation level. However, the difference seems negligible.
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Figure 4: Power of Index Tests for different levels of correlation using Model (1).
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(c) ρ = 10%
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(d) ρ = 20%
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(e) ρ = 60%
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(f) ρ = 80%
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(g) ρ = 90%
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(h) ρ = 95%
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(i) ρ = 99%
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Subfigures (a) to (i) display the power of the three indices for different correlation levels. Greater correlation indicates a slower
convergence to maximum power for the three indices. Nevertheless, the maximum power is achieved when the treatment effect
is 0.3 or greater for all cases.
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Table 7: Mean of propI for any level of correlation ρ, for a given β.

Model 1 Model 2

τ probAI probPC probSI probAI probPC probSI
0.01 0.062 0.062 0.063 0.057 0.058 0.058
0.06 0.376 0.347 0.381 0.131 0.144 0.145
0.11 0.684 0.679 0.692 0.318 0.336 0.338
0.16 0.885 0.887 0.890 0.507 0.527 0.528
0.21 0.967 0.969 0.969 0.647 0.671 0.670
0.26 0.995 0.995 0.995 0.770 0.797 0.797
0.31 1.000 1.000 1.000 0.848 0.868 0.868
0.36 1.000 1.000 1.000 0.915 0.931 0.931
0.41 1.000 1.000 1.000 0.957 0.967 0.967
0.46 1.000 1.000 1.000 0.975 0.981 0.981
0.51 1.000 1.000 1.000 0.996 0.998 0.998
0.56 1.000 1.000 1.000 0.997 0.998 0.998
0.61 1.000 1.000 1.000 1.000 1.000 1.000
0.66 1.000 1.000 1.000 1.000 1.000 1.000
0.71 1.000 1.000 1.000 1.000 1.000 1.000
0.76 1.000 1.000 1.000 1.000 1.000 1.000
0.81 1.000 1.000 1.000 1.000 1.000 1.000
0.86 1.000 1.000 1.000 1.000 1.000 1.000
0.91 1.000 1.000 1.000 1.000 1.000 1.000
0.96 1.000 1.000 1.000 1.000 1.000 1.000

Note: Simulations were performed using N = 1000 observations and S =

1000 simulations. Left side of the table present the results for Model (1),
the right side present for Model (2).
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For these statistical scenarios, indices converge to maximum power very quickly, but it suggests that

we should be mindful of the treatment effect. If the treatment is performing poorly, we may also be losing

power. Additionally, power may not be sustained with a similar convergence for various reasons, such as

the number of observations or the assumed data generation process. Finally, we can note that the power

demonstrated by these indices seems very promising, but it is important to remember that there are many

other statistical cases that arise in empirical research.

5 Empirical Applications

To assess the statistical results from the different indexing techniques described throughout this thesis,

we replicate two published papers that implemented indices in their respective research. These papers are

consistent with our previous analyses using treatment effects on indices. Therefore, each paper obtains

treatment effects at some point with a specific indexing technique.

We implement the following steps to evaluate the index performance. First, we replicate the results

from the paper related to indexing. Second, we create the other types of indices. Third, we run the exact

same regressions as in the main analysis of each paper but using the index left out by the researchers.

The main results can be divided in three parts: first, the different magnitudes (and signs), and second, the

statistical significance of the treatment effect on the index.

1. ‘Acting Wife’: Marriage Market Incentives and Labor Market Investment:

Bursztyn et al. (2017) studied the relation between marriage market incentives and labor market in-

vestments. They conducted a field experiment to assess the behavior of single vs nonsingle women

regarding job preferences and skills (their primary experiment). Bursztyn et al. (2017) stated, “Our

main results come from two field experiments that directly test whether single women respond to the

studied trade-off by explicitly changing their behavior, making themselves look less professionally

appealing.” They utilized the Kling Index as their dependent variable, constructing it by summing

4 variables for this purpose.

For Table 8 the comparison of interest is across columns. Therefore, each panel represents a dif-

ferent sample set, as implemented in the paper. Two main results are: (1) the sign of the treatment

effect is consistent, and (2) the significance level of the treatment is the same, both results do not

depend on the indexing techniques used. Nevertheless, a crucial point that Table 8 highlights is
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Table 8: Replication Table 4 from (Bursztyn et al., 2017)

Indexing techniques

(1) (2) (3) (4)

Panel A: Single women
Treatment -0.56*** -0.79*** -1.15*** -2.94***

(0.13) (0.25) (0.30) (0.74)
[0.000] [0.002] [0.000] [0.000]

IndexMean -0.06 -0.14 -0.22 -0.41
N 59 60 59 59
Panel B: Non-single women
Treatment -0.15 -0.19 -0.34 -0.79

(0.14) (0.27) (0.33) (0.80)
[0.286] [0.473] [0.308] [0.326]

IndexMean 0.00 -0.00 -0.00 -0.01
N 51 52 51 51
Panel C: Single men
Treatment 0.04 0.07 0.04 0.21

(0.12) (0.21) (0.27) (0.66)
[0.722] [0.711] [0.872] [0.750]

IndexMean 0.15 0.41 0.44 0.99
N 103 104 103 103
Panel D: Non-single men
Treatment 0.09 0.16 0.16 0.47

(0.10) (0.19) (0.23) (0.56)
[0.380] [0.384] [0.483] [0.402]

IndexMean -0.05 -0.04 -0.07 -0.24
N 130 131 130 130
Standard errors in parentheses, p-values in brackets
* p < 0.1, ** p < 0.05, *** p < 0.01

Note: Each column represents a regression performed with a different indexing technique.
Model (1) use Kling Index, Model (2) use Anderson Index, Model (3) use Principal Com-
ponent Index and Model (4) use Summary Index. Each index represent job preferences
and skill.
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the difference in magnitude depending on the index performed. Clearly, Columns (1) and (2) are

similar, which is explained because the Kling Index is the Anderson Index but using equal weights

to generate the index. Principal Component Index escapes a little from the first two. Finally, Sum-

mary Index shows more extreme magnitudes for every sample.

2. Iron Deficiency and Schooling Attainment in Peru:

In the second paper, Chong et al. (2016) explored the relationship between nutritional deficien-

cies and intergenerational poverty. Chong et al. (2016) mentioned “The answer to this question

is not only important for evaluating the returns to costly supplementation efforts such as Weekly

Iron and Folic Acid Supplementation (WIFS), but is critical for understanding the myriad of ways

in which micronutrient deficiencies contribute to poverty and underdevelopment.” To conduct the

experiment they incentivized iron pills consumption among adolescents in rural Peru. For statis-

tical analyses, they constructed the Kling Index as their dependent variable for perceived upward

mobility, summing two variables for this purpose. Subsequently, they estimated the following re-

gression:

Yi = a+ β1Ti + wXi + e (21)

Where Yi is the outcome of interest, Ti is a binary variable for assignment to the treatment group

and Xi is a set of controls.

For Table 9, the outcomes of interest are across rows. Each column represents a different regression.

Here, the results are not as consistent as the above exercise. Depending on the analyzed column,

the result for each index can greatly differ. Columns (1) and (3) focus on anemic adolescents. Note

that indices appear to be positive, but the Principal Component Index shows a negative impact from

the treatment variable. Finally, every index rejects the null at 1%. However, the PC Index is not

able to reject at any level. Another interesting feature of Column (3) is that the AI and the SI are

not able to reject the null at 1%, similar to the Kling Index. Columns (2) and (4) presents similar

results to the ones exposed in the above replication. In this case, the magnitude and sign of each

treatment effect go in similar directions. It is worth noting that Columns (2) and (4), according to

the literature, are not expected to receive any effect from treatment. Conversely, Column (1) and

(3) are the sample of interest since they involve anemic subjects.

As showed above in both replication cases, the different indexing techniques seems to perform ap-

propriately depending on the empirical case, i.e., each test present similar conclusions above treatment
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Table 9: Replication Table 6 from Chong et al. (2016)

Index of perceived upward mobility

(1) (2) (3) (4)

Panel A: Kling Index
Treatment 0.175*** 0.008 0.170*** 0.025

(0.062) (0.058) (0.064) (0.058)
[0.006] [0.889] [0.01] [0.662]

N 81 121 81 121
Panel B: Anderson Index
Treatment 0.521*** 0.059 0.499*** 0.110

(0.198) (0.187) (0.206) (0.188)
[0.01] [0.750] [0.02] [0.561]

N 81 121 81 121
Panel C: Principal Component Index
Treatment -0.269 0.167 -0.311 0.135

(0.263) (0.187) (0.271) (0.186)
[0.310] [0.374] [0.256] [0.470]

N 81 121 81 121
Panel D: Summary Index
Treatment 0.814*** 0.087 0.782*** 0.166

(0.306) (0.289) (0.318) (0.291)
[0.01] [0.764] [0.02] [0.571]

N 81 121 81 121
Standard errors in parentheses, p-values in brackets
* p < 0.1, ** p < 0.05, *** p < 0.01

Note: Each column represents a regression performed with a different set of regressors and different
samples. Column (1) regress the treatment variable and a male student identificator on the dependent
variable for the anemic part of the sample. Column (2) does the same but for the non-anemic sample.
Column (3) add as regressors monthly income, electricity in home and mother’s years of schooling
for the anemic sample. Column (4) repeat the exercise for the non-anemic sample.
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effects on the outcome of interest. However, some differences (that can be subjectively large) arise in

terms of magnitude, sign and statistical significance. These contrasts can appear in one or more features.

Concerning to Chong et al. (2016),WIFS programs to improve adolescents health are extremely costly.

Then, the statistical significance may be of relevance in public policy. Whether a policymaker wishes

to implement the WIFS program or not, since the treatment effects appears to be effective, it would

be imperative to note that the statistical significance of the treatment effect lies greatly in the indexing

techniques used.

6 Discussion & Conclusion

The analysis conducted in this thesis highlights statistical performance of the different index tests. Our

results shows that the choice of the aggregationmethod is not irrelevant, important features likemagnitude

or statistical significance can differ greatly. In this final section, we further discuss concerns raised up

from our previous results and more.

A remarkable performance is showed by the power of index tests, which, independently of the method

used, all present a rapid convergence rate to maximum power, obviously in our statistically-made frame-

work. Therefore, every method proved to be a useful ally to overcome lack of power difficulties that may

arise with GERs methods. Nonetheless, other features of index tests raise some concerns, specifically the

magnitude and statistical significance of treatment effects.

The issue of magnitude can be tricky, since depending on the method used, the way of interpreting

indices and their magnitudes may differ. First, the magnitude will depend on how the dependent variables

of interest are transformed, as shown previously, they can be standardized or transform into effect sizes.

The literature seems to agree that methods which transform their variables of interest into effect sizes are

more appealing to draw conclusions from the magnitude, allowing researchers to have understandable

treatment effects. Second, regardless of the transformation upon the dependent variables before generat-

ing the index, the resultant treatment effect will normally differ as shown through this thesis. Therefore,

presenting results of two ormore of the previously discussed indices will not provide a clear understanding

of the magnitude of the treatment effect.

Our simulations showed that depending on the context and the index technique used, the statistical

significance of the treatment effect can vary considerably. However, there are cases where inference is
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consistent through these methods. The more iconic cases visited in this thesis were performed in a FWER

fashion, highlighting that, even though this method addresses some concerns regarding the multiplicity of

statistical tests by simply reducing the number of tests, is not a definitive answer. As mentioned earlier,

the statistical significance issue is not a simple one, and context plays an important role. Therefore, the

statistical significance of treatment effects should be carefully take into consideration.

But the final and most important question remains: which indexing techniques should researchers

use to fulfill their needs? The answer is rather difficult, but both the Anderson Index and the Principal

Components Index seem to perform appropriately depending on the statistical correlation between the

variables that form the index. However, this answer is somewhat naive, since in real life there are myriad

cases in terms of correlation. Also, as mentioned before, in terms of power, both techniques perform

exceptionally well, so this aspect can be set aside. Therefore, a careful approach can be achieved by pre-

senting different indexing methods, as shown throughout this work, to further enhance the corresponding

hypothesis.

Now, we can always think deeply about what we are trying to achieve when using indices. Next, we

list some practical concerns to help clarify and promote the correct use of this practice.

6.1 Practical concerns

Here, we list some relevant questions to ease the used of index tests in empirical research:

(a) What kind of conclusion do I want from the index?

Depending on the subjective relevance that the researcher assigns to their variables of interest, the

results from indexing could differ greatly fromwhat is expected. The rejection of the null hypothesis

would not necessarily indicate that the treatment had an effect on a large number of the variables

of interest; instead, one true effect could be driving the rejection result.

(b) What variables can I aggregate together?

A potential drawback is that the index may combine outcomes that are only weakly related and may

obscure impacts on specific outcomes that are of interest to particular scholars. Although note that

these specific outcomes could also be separately reported for completeness. Questions as: does it

make sense to put these variables together? To whom it will be presented the overall effect? can

help clarify this issue.
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(c) Thinking carefully about using variables with no variation

Variation among the variables of interest is essential for generating appropriate weights that con-

stitute the aggregated index. For example, as mentioned by Vyas and Kumaranayake (2006), for

PC-based asset indexes we want to avoid asset variables that does not include the necessary varia-

tion to include all Socio-Economic Status clusters (e.g. not being able to distinguish between poor

and very poor).

Other issues could also be of relevance. For example, what should you do if there are missing values

for some components? Exclusion of observations based on missing data from one (or various) variables

of interest could significantly lower sample sizes and may lead to bias.

The use of Index Tests has spread quickly in the last decades, with relevant improvements in the

techniques in terms of convenience and power. Currently, most authors do not consider carefully what

happens when we unify our variables of interest and make inference over them, the common practice

seems to be performed by habit more than scientific rigor. Moreover, depending on the customs of the

field researchers are more inclined to use some techniques than the others. This thesis calls to attention

statistical details that should not be ignored, as the results from indexing are deepening policy-related

field that can draw erroneous conclusion from this methods.

Finally, there are some questions that fall beyond the scope of this thesis. Here are some important

issues that we leave for future research. First, in our simulations, we set only one variable with a positive

effect from the treatment, arguing that it resembles FWER’s probability. But howmight the results change

if we add one, two, or three variables with this characteristic? And what is the connection between

the number of treated dependent variables and the success of using indices?. Second, the empirical

applications chosen for this work lack a sufficient number of observations; the sample sizes are rather low.

Therefore, further replication could be done with larger datasets to test the performance of the indices and

help understand the generality of our results. Lastly, an exhaustive understanding of the mathematical

construction of the indices is needed to reveal why the simulations behave so erratically and differently

for at least the two main indices of interest, Anderson and Principal Components.
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A Appendix

Figure A1: Figure 1 from Benjamini (2010)
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Figure A2: Likelihood of incurring at least one Type I error
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Table A1: Multiple testing corrections for FWER and FDR

Methods Comments

FWER

Single-step methods

(Bonferroni, 1935) 1st generation, does not account for correlation among outcomes.
(Šidák, 1967) Assumes p−values mutually independent.
(Tukey, 1953) Balanced data, ANOVA, p−values are not mutually independent.

Stepwise methods

(Holm, 1979) Step-down. No dependence assumptions.
(Hochberg, 1988) Step-up. More power than Holm, 1979.
(Hommel, 1988) More power than Hochberg, 1998.

(Westfall and Young, 1993) Step-down, arbitrary dependence, preserve correlation.
(Romano and Wolf, 2005) Step-down, arbitrary dependence, preserve correlation (Resampling).

FDR

(Benjamini and Hochberg, 1995) Provides decision rule (accept/reject) for input values of α. Steup.
(Storey, 2002) Asymptotic method. More power than BH.

(Benjamini and Yekutieli, 2001) Provides decision rule for input values of α.
(Benjamini et al., 2006) More power than Benjamini and Yekutieli, 2001.

Note: Stepdown procedures defines whether the test that looks most significant should be rejected. Stepup procedures looks first
at the smallest value of a test statistic when the individual tests reject for large values. Comparisons between FWER techniques
can be found in (Blakesley et al., 2009). Explanations and insights about -almost all- error rates in the literature can be found in
(Benjamini, 2010).

Table A2: Proportion of tests rejected using C1.

(a) (b) (c) (d)

ρ(δ) AI PCI SI AI PCI SI AI PCI SI AI PCI SI
1%(99%) 0.064 0.039 0.059 1.000 1.000 1.000 0.681 0.057 0.613 0.748 0.062 0.620
5%(95%) 0.061 0.043 0.056 1.000 1.000 1.000 0.549 0.097 0.495 0.813 0.062 0.531
10%(90%) 0.062 0.044 0.050 1.000 1.000 1.000 0.460 0.215 0.418 0.899 0.064 0.458
20%(80%) 0.059 0.055 0.059 1.000 1.000 1.000 0.308 0.236 0.294 0.951 0.063 0.330
40%(60%) 0.046 0.054 0.052 1.000 1.000 1.000 0.176 0.188 0.208 0.992 0.066 0.236
60%(40%) 0.055 0.056 0.056 1.000 1.000 1.000 0.079 0.156 0.164 0.999 0.061 0.188

Note: Simulations were performed using N = 1000 observations and S = 1000 simulations. Case (a) presents only null effects, case
(b) only distinct from zero effects, case (c) a correlated distinct from zero effect and case (d) an independent distinct from zero effect.
Simulations were done using model (1) and correlation matrix C1. The simulated correlation matrix is symmetrical with correlations
δ2,1, δ1,2 different from the rest.
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Table A3: Proportion of tests rejected using C2.

(a) (b) (c) (d)

ρ(δ) AI PCI SI AI PCI SI AI PCI SI AI PCI SI
1%(99%) 0.053 0.047 0.052 1.000 1.000 1.000 0.748 0.058 0.493 0.801 0.062 0.510
5%(95%) 0.054 0.054 0.052 1.000 1.000 1.000 0.628 0.078 0.435 0.841 0.067 0.441
10%(90%) 0.048 0.059 0.052 1.000 1.000 1.000 0.518 0.099 0.375 0.902 0.068 0.396
20%(80%) 0.049 0.046 0.046 1.000 1.000 1.000 0.367 0.170 0.295 0.961 0.051 0.338
40%(60%) 0.039 0.043 0.042 1.000 1.000 1.000 0.195 0.177 0.200 0.992 0.045 0.223
60%(40%) 0.050 0.053 0.052 1.000 1.000 1.000 0.030 0.169 0.177 0.998 0.053 0.204

Note: Simulations were performed using N = 1000 observations and S = 1000 simulations. Case (a) presents only null effects, case
(b) only distinct from zero effects, case (c) a correlated distinct from zero effect and case (d) an independent distinct from zero effect.
Simulations were done using model (1) and correlation matrix C2. The simulated correlation matrix is symmetrical with correlations
δ2,1, δ3,1, δ1,2, δ1,3 different from the rest.

Table A4: Proportion of tests rejected using C3.

(a) (b) (c) (d)

ρ(δ) AI PCI SI AI PCI SI AI PCI SI AI PCI SI
1%(99%) 0.055 0.057 0.061 1.000 1.000 1.000 0.812 0.058 0.392 0.851 0.060 0.397
5%(95%) 0.042 0.056 0.049 1.000 1.000 1.000 0.736 0.064 0.383 0.892 0.061 0.402
10%(90%) 0.042 0.049 0.046 1.000 1.000 1.000 0.565 0.062 0.280 0.920 0.058 0.300
20%(80%) 0.046 0.041 0.046 1.000 1.000 1.000 0.442 0.116 0.272 0.960 0.050 0.303
40%(60%) 0.058 0.057 0.056 1.000 1.000 1.000 0.228 0.159 0.186 0.991 0.055 0.218
60%(40%) 0.051 0.041 0.041 1.000 1.000 1.000 0.999 0.170 0.171 0.995 0.043 0.206

Note: Simulations were performed using N = 1000 observations and S = 1000 simulations. Case (a) presents only null effects, case
(b) only distinct from zero effects, case (c) a correlated distinct from zero effect and case (d) an independent distinct from zero effect.
Simulations were done using model (1) and correlation matrix C3. The simulated correlation matrix is symmetrical with correlations
δ2,1, δ1,2, δ3,1, δ1,3, δ3,2, δ2,3, δ4,1, δ1,4, δ4,2, δ2,4, δ4,3, δ3,4 different from the rest.
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Table A5: Proportion of tests rejected for the three indexes in each scenario.

(a) (b) (c) (d)

ρ AI PCI SI AI PCI SI AI PCI SI AI PCI SI
1% 0.046 0.063 0.052 0.991 0.868 0.999 0.071 0.122 0.091 0.068 0.124 0.084
5% 0.052 0.046 0.048 0.968 0.960 0.994 0.061 0.104 0.080 0.070 0.081 0.086
10% 0.048 0.056 0.053 0.937 0.949 0.970 0.056 0.093 0.078 0.096 0.081 0.080
20% 0.051 0.049 0.060 0.822 0.900 0.911 0.056 0.074 0.070 0.108 0.063 0.078
40% 0.033 0.054 0.055 0.561 0.730 0.732 0.029 0.069 0.067 0.127 0.061 0.069
60% 0.032 0.053 0.053 0.401 0.590 0.592 0.025 0.055 0.056 0.126 0.054 0.063
80% 0.025 0.058 0.059 0.285 0.480 0.484 0.012 0.049 0.051 0.163 0.060 0.058
90% 0.022 0.055 0.055 0.217 0.421 0.420 0.008 0.051 0.052 0.144 0.055 0.048
95% 0.015 0.053 0.054 0.214 0.437 0.436 0.002 0.053 0.056 0.151 0.055 0.055
99% 0.018 0.062 0.061 0.197 0.418 0.418 0.000 0.063 0.063 0.171 0.061 0.064

Note: Simulations were performed using N = 50 observations and S = 1000 simulations. Case (a) presents only null effects,
case (b) only distinct from zero effects, case (c) a correlated distinct from zero effect and case (d) an independent distinct from
zero effect. Simulations were done using model (1). The simulated correlation matrix is symmetrical with all off-diagonal values
equal.

Table A6: Proportion of tests rejected for the three indexes in each scenario.

(a) (b) (c) (d)

ρ AI PCI SI AI PCI SI AI PCI SI AI PCI SI
1% 0.048 0.048 0.053 1.000 0.983 1.000 0.093 0.161 0.127 0.112 0.168 0.130
5% 0.052 0.051 0.055 1.000 1.000 1.000 0.095 0.130 0.115 0.141 0.112 0.114
10% 0.048 0.048 0.047 0.999 0.999 0.999 0.060 0.088 0.084 0.148 0.075 0.096
20% 0.027 0.041 0.040 0.992 0.996 0.997 0.048 0.068 0.065 0.174 0.051 0.073
40% 0.059 0.071 0.070 0.926 0.958 0.958 0.062 0.086 0.087 0.258 0.073 0.095
60% 0.033 0.058 0.059 0.834 0.878 0.880 0.038 0.071 0.072 0.302 0.066 0.082
80% 0.035 0.060 0.059 0.687 0.772 0.773 0.016 0.062 0.063 0.334 0.065 0.068
90% 0.037 0.067 0.067 0.589 0.697 0.697 0.007 0.064 0.067 0.326 0.070 0.069
95% 0.032 0.052 0.051 0.593 0.715 0.715 0.002 0.059 0.059 0.345 0.052 0.058
99% 0.034 0.050 0.050 0.584 0.689 0.689 0.000 0.061 0.062 0.372 0.052 0.067

Note: Simulations were performed using N = 100 observations and S = 1000 simulations. Case (a) presents only null effects,
case (b) only distinct from zero effects, case (c) a correlated distinct from zero effect and case (d) an independent distinct from
zero effect. Simulations were done using model (1). The simulated correlation matrix is symmetrical with all off-diagonal values
equal.
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Figure A3: Power of Index Tests for different levels of correlation using Model (2).
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(b) ρ = 5%
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(c) ρ = 10%
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(d) ρ = 20%
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(e) ρ = 60%
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(f) ρ = 80%
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(g) ρ = 90%
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(h) ρ = 95%
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(i) ρ = 99%
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Subfigures (a) to (i) display the power of the three indices for different correlation levels. Greater correlation indicates a slower
convergence to maximum power for the three indices. Nevertheless, the maximum power is achieved when the treatment effect
is 0.6 or greater for all cases.
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Table A7: Proportion of tests rejected for the three indexes in each scenario.

(a) (b) (c) (d)

ρ AI PCI SI AI PCI SI AI PCI SI AI PCI SI
1% 0.057 0.052 0.058 1.000 1.000 1.000 0.346 0.402 0.396 0.393 0.398 0.389
5% 0.048 0.051 0.047 1.000 1.000 1.000 0.288 0.326 0.322 0.499 0.131 0.346
10% 0.055 0.052 0.055 1.000 1.000 1.000 0.190 0.228 0.227 0.577 0.084 0.256
20% 0.059 0.054 0.055 1.000 1.000 1.000 0.165 0.177 0.189 0.720 0.072 0.222
40% 0.039 0.043 0.042 1.000 1.000 1.000 0.087 0.120 0.122 0.835 0.049 0.137
60% 0.063 0.067 0.066 1.000 1.000 1.000 0.074 0.124 0.128 0.921 0.067 0.136
80% 0.038 0.046 0.046 1.000 1.000 1.000 0.047 0.104 0.111 0.963 0.048 0.129
90% 0.044 0.046 0.046 1.000 1.000 1.000 0.019 0.072 0.075 0.969 0.047 0.085
95% 0.052 0.054 0.054 1.000 1.000 1.000 0.005 0.077 0.082 0.968 0.055 0.093
99% 0.046 0.052 0.052 0.999 0.999 0.999 0.000 0.076 0.080 0.974 0.054 0.085

Note: Simulations were performed using N = 500 observations and S = 1000 simulations. Case (a) presents only null effects,
case (b) only distinct from zero effects, case (c) a correlated distinct from zero effect and case (d) an independent distinct from
zero effect. Simulations were done using model (1). The simulated correlation matrix is symmetrical with all off-diagonal values
equal.

C3 =



1 δ2,1 δ3,1 δ4,1 ρ . . . ρ
δ2,1 1 δ2,3 δ2,4 ρ . . . ρ
δ3,1 δ3,2 1 δ3,4 ρ . . . ρ
δ4,1 δ4,2 δ4,3 1 ρ . . . ρ

ρ ρ ρ ρ
. . . . . . ρ

...
... . . . . . . ...

...
...

ρ . . . . . . . . . . . . ρ 1


(22)

C Index Methods

C.1 What is PCA?

In mathematical terms, consideringN correlated variables, Principal Components Analysis create uncor-
related components. To better understanding, consider the following system of equations,

PC1 = a11X1 + . . . a1MXN (23)
... (24)

PCM = aM1X1 + · · ·+ aMNXN (25)

Where aMN represents the weight for theM th principal component and theN th variable. The weight for
each PCm (m ∈ {1, . . . ,M}) are given by the eigenvectors of the correlation matrix C. The variance for
each PC is given by the corresponding eigenvalue λm. Therefore, ordered eigenvalues prokoves that the
largest eigenvector related to the largest eigenvalue explain the most of the variation in the original data.
Furthermore, subsequents PCs will be orthogonal and will explain additional but less variation than the
first PC.
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