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Resumen

Algortimo para Clustering Interpretable usando la Teoŕıa de
Dempster-Shafer

El clustering es un método de aprendizaje no supervisado cuyo objetivo es identificar
conjuntos de datos con caracteŕısticas similares. La calidad de un modelo de clustering
se mide a menudo por su validez en lugar de su precisión, utilizando indicadores como el
Índice de Rand y el Coeficiente de Correlación. En los últimos años, ha surgido un interés
creciente en crear modelos de clustering no solo válidos, sino también interpretables. La
interpretabilidad se refiere a la capacidad del modelo para permitir que un usuario humano
comprenda cómo y por qué el modelo llega a un resultado espećıfico.

Los algoritmos de clustering actuales, como el K-means, son populares por su simplicidad
y escalabilidad, pero a menudo son considerados como “cajas negras” debido a la falta de
transparencia en sus resultados. Esto ha llevado a un enfoque creciente en la interpretación
de los modelos de clustering y en el desarrollo de técnicas de explicación de modelos, como
SHAP (SHapley Additive exPlanations), para proporcionar una interpretación clara de cómo
se generan los resultados del clustering.

La solución propuesta en este proyecto es el desarrollo de un algoritmo de clustering que
genera etiquetas para los datos y, utilizando el clasificador DS (Dempster-Shafer), produce
reglas claras que aseguran la interpretabilidad para los usuarios. El desarrollo se realiza en
dos etapas: la selección de etiquetas óptimas para el entrenamiento y la consolidación del
algoritmo de clustering, incluyendo el entrenamiento y la predicción del clasificador DS para
cada punto de datos.

El algoritmo DSClustering implementado logra una combinación efectiva de técnicas
de clustering con interpretación mejorada a través de la generación automática de reglas
categóricas y ajustes precisos en el proceso de entrenamiento del clasificador. El algoritmo se
destaca por su capacidad para ofrecer resultados de clustering fiables y comprensibles, lo que
mejora la transparencia y la confianza en la toma de decisiones basada en los datos. Esta
combinación de validez y transparencia en los resultados de clustering representa un avance
significativo en el campo del aprendizaje automático.

i



Abstract

Clustering is an unsupervised learning method aimed at identifying data sets with similar
characteristics. The quality of a clustering model is often assessed by its validity rather
than its accuracy, using measures such as the Rand Index and the Correlation Coefficient.
Recently, there has been an increasing interest in creating not only valid but also interpretable
clustering models. Interpretability refers to the model’s ability to enable a human user to
understand the how and why behind the model’s specific outcomes.

Current clustering algorithms, like K-means, are favored for their simplicity and scalabil-
ity, yet they are often viewed as“black boxe” due to their opaque results. This has led to a
growing focus on understanding and interpreting clustering models, and in developing model
explanation techniques, such as SHAP (SHapley Additive exPlanations), to provide a clear
understanding of how clustering results are produced.

The proposed solution in this project involves the development of a clustering algorithm
that generates labels for data and, using the DS (Dempster-Shafer) classifier, creates clear
rules ensuring interpretability for users. The development occurs in two stages: selecting
optimal labels for training and consolidating the clustering algorithm, including training and
predicting with the DS classifier for each data point.

The implemented DSClustering algorithm achieves an effective combination of cluster-
ing techniques with enhanced interpretation through the automatic generation of categorical
rules and precise adjustments in the training process of the classifier. The algorithm stands
out for its ability to provide reliable and comprehensible clustering results, enhancing trans-
parency and trust in data-driven decision-making. This blend of validity and transparency
in clustering outcomes marks a significant advancement in the field of machine learning.
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We are each a patchwork quilt of those who have loved us, those who have believed in our
futures, those who showed us empathy and kindness or told us the truth even when it wasn’t
easy to hear. Those who told us we could do it when there was absolutely no proof of that.

- Taylor Swift
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Chapter 1

Introduction

1.1 Motivation

Due to the enormous amount of data generated from various sources, professionals from
different fields, particularly in the field of data science, have created models that allow pre-
dicting unknown characteristics of a sample based on known features. Classification models
are used to predict discrete features, while regression models are used to predict continuous
values. These are known as supervised learning methods. Within unsupervised methods,
there is clustering, whose objective is to identify datasets with similar characteristics.

When evaluating the quality of a model, the primary indicator considered is the accuracy
of the machine learning model, measured as the difference between the predicted value and the
previously unknown real value of a feature. For a classification model, the main performance
indicators are accuracy, sensitivity, area under the ROC curve, and the F1 score [32]. For
clustering models, there is a subtle difference because there is no real value to compare
against. Therefore, their validity is evaluated instead of accuracy. The main indicators shift
to the Dunn’s Index [10], the Silhouette score[37] and the Correlation Coefficient [2].

In recent years, there has been an increased interest in creating highly accurate models
that are also easy to understand in terms of the reasons for a certain prediction or grouping.
In this context, the concept of interpretability emerges, referring to the model’s ability to
allow a human user to understand how and why the model arrives at a specific result. Despite
the importance of interpretability, there is still a lack of agreement on its formal definition
and how to measure it. Nevertheless, many authors agree that interpretability is crucial when
users seek more information about the phenomenon generating the analyzed data [17], [27].

Both high performance and interpretability are desirable characteristics of a data science
tool, although experience shows that high-performance methods generally have low inter-
pretability, and vice versa. In fact, highly accurate regression methods such as gradient
boosting and random forest are considered black-box algorithms due to their inherent lack
of interpretability [16]. On the one hand, linear regression models and decision trees are
recognized for their high inherent interpretability [12], however, linear models have the limi-
tation of being unable to learn non-linear relationships between attributes, and decision trees
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should have a small depth to be really interpretable; according to Peñafiel et al. (2020) [24],
these characteristics make them less accurate.

In the work done by Peñafiel et al. (2020) [24], a classifier called Dempster-Shafer (DS
classifier) has been created using Dempster-Shafer’s theory of plausibility (Shafer, 1976) [29].
This model has proven to be equally effective as other black-box models in terms of accuracy
while also having the advantage of being easily interpretable. Interpretability in this context
refers to the model’s ability to provide simple and understandable rules used for predicting
outcomes through machine learning.

Due to the growing demand for clustering solutions that are both highly valid and inter-
pretable, there is a need to continue developing methods that combine both features without
seriously compromising the quality of any of them. Therefore, an interesting hypothesis from
a research point of view is that it is feasible to generate a clustering algorithm that allows
obtaining comparable results in terms of validity and interpretative ability compared to pop-
ular clustering algorithms such as k-means, DBSCAN, and agglomerative clustering but it
is highly interpretable at the same time. This approach could help users better understand
the clustering process and instill greater confidence in the results obtained.

The gap that this research aims to fill lies in the development of a clustering algorithm
that provides a unique balance between validity and interpretability, a rare combination in
current clustering methods. Unlike existing interpretable clustering algorithms, which often
compromise validity, the proposed algorithm maintains high validity while providing simple
rules for user understanding. It is also the only one that provides a measure of uncertainty
for each cluster assignment. This dual approach increases user confidence and understanding
of the underlying data patterns by addressing the need for reliable clustering solutions that
are not only valid, but also transparent and understandable.

First, a standard clustering process is performed on the data, so that each of them is
assigned to a cluster. Then, depending on the user’s preference, the algorithm with the best
silhouette score or the most frequent (most repeated) cluster for each data instance is chosen.
Then, considering each cluster as a class, an interpretable classifier (DS classifier) is trained
with this labelled data, which generates rules to assign the samples to a certain class, so that
we have the rules of how the discovered clusters are formed.

Therefore, this work represents a contribution in the field of data science, as it offers
a novel approach to clustering that combines the best of both worlds: the reliability of
the best-known clustering methods and the clarity of interpretable models provided by the
Dempster-Shafer classification method (known as DS classifier) developed by Peñafiel et al.
(2020) [24], to obtain an interpretable clustering method.
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1.2 Objectives

General Objective

The objective of this work is to create a clustering algorithm that balances the validity of
clustering and model interpretation, and introduces at the same time a measure of uncer-
tainty for each cluster assignment. This will improve the interpretation and reliability of the
clustering process. Established metrics will be used to assess the performance of the method.
The algorithm will be designed in order to maximize intra-cluster similarity and minimize
inter-cluster similarity. It will also focus on interpretability, allowing users to understand the
logic behind the clustering and to appreciate the level of certainty for the rules used in order
to assign a sample to a cluster.

Specific Objectives

1. Establish a representative test dataset to evaluate the performance of the proposed
clustering algorithm. This dataset should be large and diverse enough to cover different
types of data and distributions, allowing the evaluation of the algorithm’s ability to
adapt to various situations and provide valid results. To achieve this goal, data must
be carefully selected, and a cleaning and preprocessing process must ensure the quality
and consistency of the dataset.

2. Define a method to adapt the Dempster-Shafer classifier to the clustering problem.
Since this classifier has been primarily developed for classification problems rather than
clustering, the peculiarities of the clustering problem must be considered, and ways to
maximize validity in data clustering must be explored.

3. Develop an interpretability model specific to the suggested clustering algorithm. Inter-
pretability is a key aspect in evaluating clustering algorithms, allowing an understand-
ing of how data grouping is achieved and how much effort is required to understand
the generated model. To achieve this goal, specific metrics must be defined to measure
the model’s complexity and its ability to explain clustering results.

4. Conduct comparative experiments between the proposed clustering algorithm and other
reference clustering methods. In these experiments, both the validity of clustering
and the interpretability of the model must be evaluated using the previously defined
metrics. This will determine if the proposed clustering algorithm offers an adequate
balance between validity and interpretability and how it compares to other reference
clustering methods.

5. Identify areas of improvement for the suggested clustering algorithm and explore new
possibilities to enhance its validity and interpretability. Based on the results obtained
in comparative experiments and evaluation metrics, weaknesses of the algorithm must
be identified, and ways to optimize its performance must be explored. This will ensure
that the proposed clustering algorithm remains relevant and useful in the future.
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1.3 Document Structure

This document consists of 7 chapters, along with a Table of Contents and indexes for Tables
and Figures, to aid in understanding the document and the analysis of the obtained results.

In Chapter 1, which corresponds to the current chapter, motivations and objectives for
the study of the area were presented, providing context to the problem.

In Chapter 2, the necessary background, concepts, and technologies are detailed to un-
derstand the problem and the solution.

In Chapter 3, the design is summarized, and the reasoning behind the decisions made is
described. Additionally, the developed pipeline and clustering architecture are discussed.

In Chapter 4, label selection are discussed in detail.

In Chapter 5, the implementation of clustering is explained in detail.

In Chapter 6, specific experiments conducted, along with the data used in each, are
indicated. Additionally, results are shown and explained using tables and graphs to compare
the outcomes.

In Chapter 7, conclusions are drawn for the work done in this thesis. Accomplished
objectives and those not fully achieved are described. In addition to this, possible options
for future work based on the development of this thesis are suggested.
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Chapter 2

State of the Art

This chapter presents relevant topics to understand the solution developed throughout this
work and to comprehend the addressed problem.

Currently, interpretable clustering algorithms are a rapidly developing research area. Tra-
ditional clustering algorithms are often considered ”black boxes” due to the lack of trans-
parency in the results, leading to increased attention to the interpretation of clustering al-
gorithms [19]. Furthermore, model interpretation has become an active research area to
enhance the transparency and interpretability of machine learning models [21].

2.1 Frameworks to explain models

According to various authors, model explanation is an important area in the development
of interpretable clustering methods, especially in medical applications, where understanding
results is crucial for clinical decision-making. A promising solution is the use of model
explanation techniques[33][6] to provide a clear interpretation of how clustering results are
generated [19].

The authors propose a unified framework for interpreting predictions called SHAP1 (SHap-
ley Additive exPlanations). This framework can be used to explain the output of any ma-
chine learning model, including clustering models. The SHAP framework provides a way
to attribute the prediction of an individual data point to its features, allowing a better un-
derstanding of how the model is making predictions. Therefore, SHAP can be used as a
technique to explain clustering models and provide an interpretation of their results.

1https://github.com/slundberg/shap
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2.2 Popular Clustering Methods

2.2.1 K-means Clustering

K-means clustering [5] is a data clustering method used to identify subgroups in the data,
where data points in the same subgroup are very similar, while points in different subgroups
are very different. It is an iterative algorithm that attempts to partition the dataset into
K distinct, non-overlapping subgroups, where each data point belongs to a single group.
The goal is to make intra-cluster data points as similar as possible while keeping groups as
different (distant) as possible.

The process begins by randomly selecting ’k’ points in the dataset as initial cluster centers
or centroids, where a centroid is the central point or geometric mean of all points in a cluster.
Each data point is then assigned to the nearest centroid based on a distance metric such as
Euclidean distance, effectively partitioning the data set into k clusters. After this assignment,
the centroids are recalculated as the average of all points in each cluster. This process of
centroid assignment and recalibration is repeated iteratively until the centroids stabilize, i.e.,
their positions do not change significantly, or a specified number of iterations is reached. This
results in a partitioning of the dataset where the variance within each cluster is minimized,
ideally reflecting meaningful groupings in the data.

The K-means algorithm is considered one of the most used due to its simplicity. To apply
the K-means algorithm, it is recommended to scale or standardize the data. Additionally,
the elbow method can be used to select the optimal number of groups.

The K-means algorithm has several advantages[9], such as its simplicity, scalability, and
guaranteed convergence. It is also easy to adapt to new examples and generalizes to groups
of different shapes. However, it also has some disadvantages, such as the need to manually
choose the number of groups and dependence on initial values. Additionally, it struggles with
clustering data of different sizes and densities.

In general, the K-means algorithm is a useful technique for data exploration and identify-
ing subgroups in the data. Its simplicity and scalability make it easy to implement, and it can
adapt to a variety of situations. However, it’s essential to consider its limitations and explore
other clustering techniques if the data does not fit well with the algorithm’s assumptions.

2.2.2 DBSCAN Clustering

The DBSCAN algorithm is a density-based clustering method used to examine spatial data[31].
DBSCAN can find arbitrary-shaped clusters without being affected by noise and can identify
the densest part of data samples while ignoring less dense areas or noise. The DBSCAN
algorithm is straightforward and defines clusters by estimating local density. The clustering
process can be divided into four stages[7]:

1. For each observation,, look at the number of points within a maximum distance ε from
it. This region is called the ε-neighborhood of the observation.
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2. If an observation has at least a certain number of neighbors, including itself, it is con-
sidered a core observation. In this case, a high-density observation has been detected.

3. All observations in the ε-neighborhood of a core observation are considered part of the
same cluster.

4. Repeat the process for all cluster observations until no more core observations are
found.

DBSCAN can find clusters with arbitrary shapes and has a notion of noise, being robust
in detecting outliers[36]. Additionally, it is the fastest clustering method but is only suitable
when a very clear search distance can be used, and it works well with all potential clusters.

2.2.3 Agglomerative Clustering

Agglomerative clustering [11] is a cluster analysis method that aims to group clusters to form
a new one or separate an existing one to give rise to two others. This method is based on the
main idea that closer objects are more related than those far apart, connecting ”objects” to
form ”groups” based on their distance [35].

In agglomerative clustering, you start with each object in its own cluster and merge
the closest clusters until all objects belong to the same cluster[22]. This process is done
iteratively, and the final result is a dendrogram that shows how the objects were grouped.

The effectiveness of agglomerative clustering depends largely on the choice of the distance
measure and the method of cluster merging. Some of the most common merging methods are
the single-linkage method, the complete-linkage method, and the average-linkage method.

2.3 Existing Interpretable Clusterings

In recent years, several interpretable clustering methods have been proposed, such as the
Explanatory Hierarchical Clustering (EHC), which utilizes a traditional hierarchical cluster-
ing algorithm and provides a clear explanation of the resulting groups [3]. It proposes a
modification to the hierarchical clustering algorithm to incorporate prior knowledge in the
form of relative constraints.

It introduces a hierarchical algorithm that finds a clustering solution satisfying the given
constraints. Relative constraints can be used to represent any hierarchical knowledge of
the domain and are easy to represent [18]. A constrained clustering approach is suggested,
enabling the incorporation of prior knowledge to support analysis and draw meaningful con-
clusions. This approach can be employed to validate clustering by taking an independent
sample or many independent samples from the underlying population.

The challenge of using algorithms based on decision trees with reduced depth to build
interpretable models is that, while these algorithms are easy to interpret, their validity may
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decrease due to the lack of complexity in the rules defining the classification used to interpret
the rules defined by clustering. This means that by reducing the depth of the tree, the
amount of information that can be used for prediction is limited, potentially resulting in less
valid clustering.

Furthermore, reducing the depth of the tree can lead to the loss of important information
and the generation of simplified rules that do not adequately represent the data. This can
result in a misinterpretation of the model’s results and, ultimately, incorrect decision-making.

On the other hand, there is a type of interpretable clustering based on hyperplanes [14].
In this approach, multiple convex polyhedra are used to represent the clusters, and each
polyhedron is defined by a set of hyperplanes. Each hyperplane divides the space into two
parts, and points falling in the same part are assigned to the same cluster. The advantage
of this approach is that convex polyhedra are easy to interpret as they can be visualized in
the feature space. Additionally, the hyperplanes defining the polyhedra can be interpreted
as logical rules describing the characteristics of points belonging to each cluster.

However, this approach also has some weaknesses. Firstly, choosing the number of polyhe-
dra and hyperplanes can be challenging and may require manual adjustments. Additionally,
convex polyhedra may not be able to represent clusters with complex or non-convex shapes.
Finally, the approach can be computationally expensive, as it requires the optimization of
multiple convex polyhedra.

2.4 Dempster Shafer Clustering

The Dempster-Shafer theory, also known as the theory of belief functions, is a general frame-
work for reasoning with uncertainty, with applications in fields such as artificial intelligence,
statistics, and computer science. Developed independently by Arthur P. Dempster and later
expanded by Glenn Shafer, it offers an alternative to traditional probability theory by allow-
ing for the combination of evidence from different sources and the representation of various
degrees of belief [30].

In contrast to probability theory, which requires precise probabilities for each event, the
Dempster-Shafer theory allows for ”belief functions” that do not need to sum to one, enabling
the representation of a range of belief and the expression of uncertainty. This is achieved
through two functions: the belief function and the plausibility function. The belief function
provides a measure of the total belief that supports a given set of outcomes, while the
plausibility function measures how much belief could potentially be placed in the same set
of outcomes if more evidence were available [38].

Clustering algorithms using Dempster-Shafer theory offer an intriguing approach to ad-
dressing the challenge of grouping data into coherent sets. Based on the evidence theory
developed by Dempster and Shafer, these algorithms provide a unique perspective for ana-
lyzing complex data, where the precise assignment of elements to groups can be challenging
due to ambiguity or overlap between data features.
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2.4.1 Evidential Clustering of Proximity Data

The Evidential Clustering of Proximity Data [8] is a specific approach within clustering
algorithms that leverages Dempster-Shafer theory. This method is based on calculating the
proximity between objects to assign the degree of conflict generated between them. Proximity
is determined using a distance measure, such as Euclidean or Mahalanobis, capturing the
similarity or relationship between the features of the objects.

Once the proximity between objects is calculated, belief functions are employed to as-
sign the degree of conflict between them. These functions allow for more flexible handling
of uncertainty and lack of information compared to traditional clustering methods. By as-
signing degrees of conflict, overlap or ambiguity between objects can be captured, which is
particularly useful in complex datasets where boundaries between groups may be fuzzy.

In summary, the Evidential Clustering of Proximity Data uses object proximity to calcu-
late the degree of conflict and employs belief functions to assign this degree. This approach
addresses uncertainty and overlap in the data, providing a more robust form of grouping that
can capture subtle relationships between objects.

2.4.2 Evidential C-means and Constrained evidential C-means

The Evidential C-means and the Constrained Evidential C-means are clustering algorithms
based on the fuzzy C-means method, incorporating Dempster-Shafer theory (DS) to achieve
a semi-supervised approach and integrate auxiliary information. These algorithms are known
as fuzzy and hard clustering, respectively.

The Evidential C-means [20] is a fuzzy variant of the C-means algorithm, where each
object is assigned a degree of membership to each group, represented by a belief distribu-
tion. These membership degrees are calculated using Dempster-Shafer theory, enabling the
capture of uncertainty associated with assigning objects to groups. By combining proximity
information between objects and belief functions, a fuzzy partition reflecting uncertainty in
object-group assignment is obtained.

On the other hand, the Constrained Evidential C-means [1] is a hard variant of the C-
means algorithm, imposing an additional constraint on the assignment of objects to groups.
This constraint is based on auxiliary information, such as labels or similarity constraints
between objects. Dempster-Shafer theory is used to integrate this auxiliary information into
the clustering process, allowing the generation of partitions more consistent with provided
prior knowledge or constraints.

In summary, Evidential C-means and Constrained Evidential C-means are clustering al-
gorithms based on the C-means method, utilizing Dempster-Shafer theory to make them
semi-supervised and integrate auxiliary information. Evidential C-means focuses on gener-
ating fuzzy partitions, while Constrained Evidential C-means aims to generate partitions
consistent with provided constraints or auxiliary information. These algorithms offer a ro-
bust form of clustering by capturing uncertainty and enabling the incorporation of prior
knowledge.
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Despite the advantages offered by DS-based algorithms in terms of handling uncertainty
and integrating auxiliary information, it is essential to recognize that none of these algorithms
directly address the interpretability issue or provide guidance on how to make them more
interpretable. While the generality achieved by using different data sources is mentioned, ad-
ditional strategies such as visualization techniques, relevant feature selection, and appropriate
evaluation metrics must be explored to ensure that clustering results are understandable and
useful in decision-making.

2.5 Analysis in Cluster Validation

2.5.1 Silhouette

Silhouette analysis is a method used to determine the quality of clustering in unsupervised
learning. It provides a concise graphical representation of how well each object lies within its
cluster, which is crucial for validating the consistency within clusters of data. The silhouette
value is a measure of how similar an object is to its own cluster (cohesion) compared to other
clusters (separation).

The Silhouette score for each data point is a number between -1 and +1. Here’s how it’s
calculated:

• Cohesion (a): For each data point, the average distance between the point and all other
points in the same cluster is calculated. This measures how close each point in a cluster
is to the points in its own cluster.

• Separation (b): For the same data point, calculate the average distance from all points
in the nearest cluster to which the point does not belong. This measures how far each
point is from points in other clusters.

• Silhouette Value (s): The silhouette value for each point is then calculated using the
formula:

s =
b− a

max(a, b)
(2.1)

– If s is close to +1, it indicates the data point is well clustered and far from other
clusters.

– If s is close to 0, it suggests the data point is on or very close to the decision
boundary between two neighboring clusters.

– If s is close to −1, it indicates that the data point has been assigned to the wrong
cluster.

By averaging the silhouette scores of all the points, you can get an overall measure of how
well the clusters are separated. High average silhouette values indicate well-separated and
well-defined clusters, while low values indicate overlapping clusters. This analysis is often
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used to determine the optimal number of clusters by comparing the average silhouette scores
for different values of k in k-means clustering, or to validate the quality of clusters formed
by any clustering algorithm. [26]

2.5.2 Dunn’s index

Dunn’s index is a metric used in clustering analysis to evaluate the quality of the clusters
formed. It measures the ratio between the smallest distance between observations in different
clusters to the largest intra-cluster distance. A higher Dunn’s index indicates well-separated
clusters.

Dunn’s index is calculated as follows:

1. Inter-cluster Distance: First, determine the smallest distance between observations in
different clusters. This could be the distance between the closest points in different
clusters, or the distance between cluster centroids, depending on the variant of the
index used.

2. Intra-cluster Distance: Next, find the largest distance between observations within the
same cluster. This distance usually represents the diameter of the largest cluster.

3. Dunn’s Index: The index is then the ratio of the smallest inter-cluster distance to the
largest intra-cluster distance.

Dunn′s Index =
Smallest Inter − cluster Distance

Largest Intra− cluster Distance
(2.2)

A higher Dunn’s Index indicates a better clustering solution, where clusters are compact
(small intra-cluster distances) and well-separated (large inter-cluster distances).

It’s particularly useful for identifying sets of clusters where the members of each cluster
are close to each other (high intra-cluster similarity) and far from members of other clusters
(high inter-cluster dissimilarity). The index is beneficial for determining the optimal number
of clusters in a dataset, as it helps in identifying a clear separation between clusters.

11



2.6 Tradeoff Between Clustering Validity and Inter-

pretability

Figure 2.1: Interpretability goal for DS clustering

At present, interpretability in clustering algorithms remains a qualitative rather than a quan-
titative measure. Unlike validity, which can be measured by various statistical indices and
scores, interpretability lacks a universally accepted metric for quantification. There have
been efforts to quantify interpretability, such as Sandhya Saisubramanian’s study ”Balancing
the Tradeoff Between Clustering Value and Interpretability” [28], but a definitive metric has
yet to emerge. It’s inherently subjective, often judged on how the clustering results can be
understood and explained by human analysts. The goal in developing new clustering methods
is to create a model that maintains validity levels similar to those of popular clustering tech-
niques, where performance is context dependent, and to significantly improve interpretability,
as indicated by the shift in the figure 2.1. This means that while maintaining comparable
validity (which can vary depending on the context of the data), the new algorithm aims to
make the clustering results more accessible and understandable to users, thereby facilitating
better decision making and insights.

The interpretability of popular clustering algorithms is subject to personal judgement.
The qualitative nature of interpretability in clustering stems from the fact that different al-
gorithms present results in unique ways that may resonate differently with different observers.
For example, K-means, with its straightforward centroid-based approach, is generally consid-
ered to be highly interpretable due to its simplicity and the ease with which one can visualise
the partitioning of the data. Conversely, DBSCAN’s density-based grouping can result in
complex cluster shapes that may be less immediately clear, but offer deeper insights to those
familiar with the domain-specific nuances of the data. In addition, agglomerative clustering
provides a hierarchical view of data groupings that can be highly informative, but may re-
quire a more sophisticated level of analysis to fully appreciate. The interpretability of such
a method is therefore highly individualistic, relying on the analyst’s ability to decipher and
communicate the meaning of the hierarchical structure.

In conclusion, although interpretable clustering algorithms are an area of ongoing research,
there is a growing emphasis on developing methods that allow greater understanding and
transparency in clustering results, especially in medical applications where interpretation is
crucial.

12



Considering the data presented in the state of the art, emphasizing the importance of
interpretability in clustering algorithms and recognizing the limitations in some existing
methods, an opportunity for improvement in generating more understandable and trans-
parent results is identified. With the aim of contributing to this opportunity, the proposal
involves creating a new clustering algorithm that integrates elements of interpretation, sim-
plicity, and effectiveness in data clustering. The goal is to overcome the limitations observed
in other approaches, with interpretability being a central aspect in the formulation of the
new algorithm.
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Chapter 3

Description of the Solution

In this chapter, the problem that motivates this work and the proposed solution, along with
the technologies used, are explained in a general manner.

3.1 Description

The challenge of finding new clustering algorithms lies in the quest for methods that not
only generate valid clusters but are also inherently interpretable. Most advanced clustering
algorithms tend to produce effective results but often lack a clear and understandable inter-
pretation of the generated clusters. This issue is crucial, especially in applications where an
intuitive understanding of the results is essential for informed decision-making. In practice,
the lack of interpretability can constrain the adoption of these algorithms in environments
where understanding the clusters is fundamental.

The current solution is based on significant prior work carried out by Sergio Peñafiel
in his thesis entitled “Intepretable method for general classification using Dempster-Shafer
theory”. In this work, he developed a classification algorithm that overcomes the problems
of interpretability associated with such algorithms without compromising precision.

By comparing this classifier with typical classifiers such as KNN or NB, it was found to
have similar accuracy to classical classification methods. The results obtained in controlled
scenarios were as expected, with the model often achieving perfect classifications. In all cases,
the accuracy was not less than 10% of the best model compared.

In view of these results, the question arises: why not apply this algorithm, which has
shown such promising results, to other purposes such as clustering?
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3.2 Proposed Solution

The proposed solution involves the development of a clustering algorithm capable of gener-
ating labels for the provided data. Additionally, utilizing the DS classifier, the algorithm
generates clear rules that ensure interpretability for users. It works on two simple stages.
The fisrt one is called Label Selection and consists of applying a smart clustering technique
(which will be detailed later) in order to find the clusters. Then it considers each cluster as a
class and assigns to each sample a label indicating which class the sample belongs according
to the clustering process. The second stage consists of training an interpretable classifier
using the already labelled data in order to have an explanation about what are the criteria
or rules that are used to assign one sample to a class (cluster). In this case we will use the
DS classifier which produces rules for explaining the classification process, thus explaining
what are the rules for assigning a sample to a cluster.

The diagram in the figure 3.1 graphically represents the process flow of the clustering
method described above, that takes user input and data and produces labels (clusters) and
rules.

Figure 3.1: General DS clustering diagram

Below, each element is explained in detail.

• Data: This is the basic input to the system. It consists of the samples to be clustered.

• User Input: This input sets meta-parameters that influence the clustering process. It
consists of 2 main parameters:

– Most Voted Label: this can be set to True (default value) in order to make the
process to use the most voted label strategy for assigning a cluster label to a
sample and False in order to use the best label, which will be explained later.

– Number of clusters: To set a specific number of clusters the process should find.

• Label Selection: This stage involves selecting appropriate labels for the data based
on the data itself and user input. It includes clustering the data points with specific
characteristics or identifiers using popular clustering techniques.
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• DS classifier: This is the component where the classification algorithm based on
Dempster-Shafer theory operates. It takes as input the data original data plus the in-
formation about to which cluster was it assigned in the previous step. This information
is used to train the classification model, which will produce the rules for classifying a
sample with already assigned and selected labels.

• Labels: These are the clusters assigned to each instance of the data by the DS clus-
terubg process.

• Rules: The decision rules used to reproduce the operation of the clustering model are
derived from the DS classifier, based on Dempster-Shafer theory.

Now lets take a closer look at the Label Selection stage. This process takes the data to be
clustered, the number of clusters and the label assignment policy defined by the user as input
and runs three clustering algorithms independently: Kmeans, DBscan and Agglomerative.
Each of the clustering process will assign one data sample to a cluster. The final label a
sample gets is determined according to the user preferred policy declared at the beginning of
the process and taken as an input by the process. There are two possible strategies to choose
from: most voted label or best value.

The principal components of this stage, which are shown in figure 3.2 are:

Figure 3.2: Label Selection Diagram

• KMeans, DBSCAN, Agglomerative: These are three different clustering algo-
rithms. Each algorithm will be applied to the dataset to generate a set of labels.
KMeans is a centroid-based clustering algorithm, DBSCAN is a density-based cluster-
ing algorithm, and Agglomerative is a hierarchical clustering algorithm.

• Optional Parameters: These are the optional parameters that can be set for each
clustering algorithm to influence their behaviour, such as the number of clusters or the
strategy to use to assign the labels to the data saples
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• Set of Parameter Options: Refers to the different parameter settings that can be
applied to the clustering algorithms to choose the best ones based on the silhouette
score. The parameters consist of three sets of options. The first set determines the
number of clusters forKmeans andAgglomerativemethods. The second set includes
eps values, and the third set includesmin samples used to identify the optimalDBscan.

• All Labes is a Dataframe with KMeans, DBSCAN, and Agglomerative with Best
Silhouette Scores: After the clustering algorithms have been run, a dataframe (a table-
like structure used for handling data) is created which includes the results of all three
clustering algorithms. The best silhouette score is used to determine the quality of the
clustering.

• Label Assignment Strategy chooses the Best Label or Most Voted according to the
input given by the user in order to determine the final label for each data sample. There
are two implemented strategies and the user can chose which one to use. One strategy
is to use the label assigned by the algorithm which obtained the best silhouette score
considering all data samples (hence all data instances will receive the label assigned
by that algorithm). The other one is to use the label receives the most votes (i.e., the
label that is most frequently assigned to the data instance by the three algorithms).

• Labels for Training: These are the final selected labels that will be used for further
training in a supervised learning context, i.e, the DSClassifier.

K-means, DBSCAN and Agglomerative Clustering have been chosen as popular clustering
algorithms over others for several compelling reasons. Firstly, these methods are examples
of different approaches to clustering, providing a broad view of the range of clustering tech-
niques. K-means is known for its simplicity and efficiency, making it very suitable for a wide
range of applications, especially when dealing with large datasets and the need for fast, gen-
eralisable clusters. DBSCAN is characterised by its ability to identify clusters of arbitrary
shape and its robustness to outliers, overcoming the limitations of distance-based clustering
methods such as K-means. Agglomerative Clustering, representing hierarchical clustering
methods, provides a detailed insight into the data structure through its dendrogram, allow-
ing for a more nuanced understanding of cluster relationships. Together, these algorithms
cover a significant portion of clustering needs, from simple partitioning to complex hierar-
chical and density-based clustering, making them a comprehensive guide to many practical
applications.

The second stage centers on training an inherent interpretable classifier, in this case the
DS classifier, which will be able to predict with a certain accuracy to which class a data
sample belongs. The accuracy will depend on how “good” the clusters are in terms of clearly
differentiating them from each other. Subsequently, the presentation of the rules providing
interpretability for the clustering algorithm will be produced by the algorithm, which adds
the interpretability component to the developed model. Since the classifier is a supervised
machine learning method. Therefore, it is essential to have a control group. For this purpose,
it was decided to use the features chosen by the user as “best label” or “most vote”, since it
is expected that the best performing or most repeated features among the different methods
will be the most suitable clusters for the data.
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The process implemented by the DS classifier is described in figure 3.3, showing the main
elements and steps.

• Create Model: This process uses the data and user input to create a DS classifier.
This model incorporate the Dempster-Shafer theory to manage uncertainty and make
predictions.

• Categoric Rules: These are rules derived from the data that determine how instances
are classified. They are based on the attributes or features within the data, and in this
case, on the labels obtained by the clustering algorithms.

To achieve this, we use the 3 clusterings already obtained from popular clustering
methods and provide them as input to the model. Since they are clusters, they are
considered as categorical variables that contribute to the training of the classifier. It is
important to emphasise that this process is independent of the clustering method used
for training. Furthermore, since they are created variables, their rules are not included
in the final result presented to the user. This means that they are only used to improve
the performance of the classifier when attempting to predict the final cluster for each
data instance, thereby improving the accuracy and effectiveness of the classifier.

• Training: This step involves training the DS classifier using a portion of the data.
Training allows the model to learn from the data, adjust its parameters, and improve
its categoric rules for making predictions.

• Predict: After the model has been trained, it can make predictions (assign a sample
to a class/cluster) on the whole data

• Labels: These are the output from the classifier for each instance of the data after
the prediction step. Labels are the classifier’s conclusions about which cluster each
instance belongs to.

• Rules: These may be the specific decision rules or logic that the classifier uses to
assign labels to data instances. These rules are likely based on the categoric rules
refined during training.
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Figure 3.3: DS classifier usage diagram

It is important to note that all features of the DS classifier are applicable and inherited
by DS clustering, more information can be found in the github documentation of the DS
classifier library.1

Based on the concepts discussed in the previous chapter, the validity of the clustering
algorithm’s results will depend on the silhouette score. This metric will be used to measure
the validity of the clusters formed by the algorithm. As the silhouette score is a measure of
how well a data point has been assigned to its cluster, it allows for a quantitative assessment
of the degree to which the clusters are distinct and well-separated.

The interpretability will be evaluated qualitatively, with the silhouette score providing
a quantitative validation. Acknowledging the lack of a quantitative benchmark for inter-
pretability, as previously discussed, the focus will shift to evaluating the clustering results
based on human intuition and logic. This qualitative assessment will draw on domain exper-
tise to determine the extent to which the clustering outcomes are meaningful, insightful, and
align with the intuitive understanding of the data’s structure and relationships.

1https://github.com/Sergio-P/DSGD
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Chapter 4

Solution Implementation

In this chapter, a detailed description of the implementation of the interpretable clustering
algorithm is provided.

4.1 Tools used

The tools to be used in the development of this work include:

• Python: is a high-level programming language widely used due to its ability to leverage
a vast array of libraries. Specifically, it is the language in which the DS classifier
is written. Throughout the development of this work, the following libraries were
employed:

– Pandas: Pandas is a powerful Python library designed for data analysis and ma-
nipulation. It provides flexible data structures, such as DataFrames, enabling
efficient organization and analysis of tabular data.1

– Numpy: Numpy is a fundamental library for numerical computing in Python,
offering a set of functions and operations that facilitate efficient manipulation of
arrays and multidimensional matrices.2

– Scikit-learn (Sklearn): Sklearn is a machine learning library for Python that pro-
vides simple and efficient tools for predictive analysis and data mining. It includes
a variety of supervised and unsupervised learning algorithms. 3

– Matplotlib: Matplotlib is a 2D visualization library for Python that allows the
creation of high-quality graphs. It provides an interface for generating static plots,
interactive graphs, and custom visualizations.4

1https://pandas.pydata.org/
2https://numpy.org/
3https://scikit-learn.org/stable/
4https://matplotlib.org/
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– DSGD: DSGD corresponds to the library containing the DS classifier designed by
Sergio Peñafiel. This classifier ensures inherent interpretability for our clustering
algorithm.5

The successful implementation of the proposed solution is facilitated by the use of these
tools, which form the essential technological infrastructure for processing data efficiently
and presenting results derived from the clustering algorithm. Proper integration and precise
handling of these tools are of vital importance to achieve the objectives outlined in this
project.

To ensure the correctness of the code and compliance with PEP8 standards6, the flake8,
isort, trailing-whitespace, and mixed-line-ending hooks will be used. The development will
take place in Google Colab7 and will be subsequently saved on GitHub, where the repository
name is CDSGD8. Finally, the solution will undergo thorough testing, primarily focusing on
the validity of the assigned labels and the interpretability of the rules. Pandas and Matplotlib
will be used for calculations, label management, and visualizing label assignments, comparing
them with popular clustering algorithms.

For the implementation of this algorithm, the functions performed for the previously
mentioned DSclassifier algorithm were taken into account.

Overall, the entire code has been developed using Python as the main programming
language, which provides high flexibility and ease of use.

This chapter has a unique section that thoroughly addresses the functions for generating
clusters using the classifier as a base.

4.2 DS clustering

This chapter section can be divided into four main subsections: Data Preparation, Automatic
Generation of Categorical Rules, Classifier Fitting, and Label and Rule Retrieval.

4.2.1 Data Preparation

The initial step involves creating the DS clustering class, which accepts a dataframe contain-
ing the data for clustering. This leads to label selection as explained in the previous chapter,
using the “select best clustering()” function to gather labels generated by popular clustering
methods.

Depending on user preference, one can choose labels with the best silhouette score (DS
clustering Best Labels) or those most frequently occurring for each data instance(DS clus-

5https://github.com/Sergio-P/DSGD
6https://peps.python.org/pep-0008/
7https://colab.research.google.com
8https://github.com/ricardo-valdivia/CDSGD
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tering Most Voted Label). This selection is facilitated by the “most voted” attribute, which
defaults to false, prioritizing the best labels.

...

if not most_voted:

best = selector.get_best_labels ()

else:

best = selector.get_most_voted ()

...

Listing 4.1: The script decides whether to use the best labels from the selected clustering
algorithm or the most voted label across different algorithms.

Upon obtaining the labels, we can initialize the classifier with the number of classes equal
to the clusters defined by the clustering methods, which was given by the user as parameter,
that would be defined as ”DS clustering with number of clusters”. This setup, paves the way
for later generating automatic rules, drawing the expertise of popular clustering labels and
the model fit.

4.2.2 Labels Selection

This section provides a comprehensive description of the initial phase of the project, which
primarily involves the selection of labels intended for training the classifier. The overarching
goal of this phase is to lay the foundation for generating clusters in the subsequent stages of
the project, aiming to ensure optimal training conditions for the classifier.

The ClusteringSelector is a class created for identifying the optimal clustering algorithm
for a given dataset. It compares various clustering methods such as K-Means, Agglomerative
Clustering, and DBSCAN, and selects the most effective one based on performance metrics.

class ClusteringSelector:

.

.

.

def __init__(self , data , cluster=None):

self.data = data

self.best_algorithm = None

self.best_params = [0]*5

self.best_labels = None

self.cluster = cluster

self.kmeans_labels = None

self.agglomerative_labels = None

self.dbscan_labels = None

.

.

.

Listing 4.2: This piece of code shows the initialization of the ClusteringSelector class, setting
up necessary attributes for later use.

The selection of labels is a crucial part of the clustering process. Here is how Cluster-
ingSelector manages it for the “best value” strategy:
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• Initialization of Algorithms: It initializes multiple clustering algorithms with different
parameters. This includes determining the number of clusters, linkage criteria, and
other relevant parameters.

• Algorithm Evaluation: Each algorithm is applied to the dataset, and its performance
is evaluated using metrics such as silhouette scores. The silhouette score is a measure
of how similar an object is to its own cluster compared to other clusters.

• Label Selection: The algorithm with the highest performance score is selected. The
labels generated by this algorithm are considered the best representation of the data
clusters.

def select_best_clustering(self):

# Test Parameters

n_clusters_values = [2, 3, 4] if self.cluster is None else [self.cluster]

# ... [code for initializing and evaluating clustering algorithms] ...

# Comparing scores and selecting best algorithm

if kmeans_score > best_score_kmeans:

self.best_params [0] = n_clusters

best_score_kmeans = kmeans_score

self.kmeans_labels = kmeans_labels

# ... [similar code for other algorithms] ...

Listing 4.3: This section shows how the class tests different clustering algorithms and pa-
rameters, then selects the best based on performance metrics.

For implementing the ”Most Repeated Label” strategy the ClusteringSelector can deter-
mine the most repeated label across different algorithms. This process involves:

• Data Normalization or Standardization

Prior to applying clustering algorithms, normalizing or standardizing the data is essen-
tial. This step is critical for the following reasons:

– Uniformity of Scale: Ensures all features contribute equally to the analysis.

– Accuracy Improvement: Reduces distortions caused by differences in feature scales.

• Label Comparison: Comparing the labels assigned to each instance by the different
algorithms.

• Majority Voting: Selecting the label that appears most frequently for each data in-
stance. This approach enhances the reliability of the clustering assignment.

def get_most_voted(self):

labels_df = self.get_cluster_labels_df ()

row_modes = labels_df.mode(axis =1)

# ... [code to determine the most repeated label] ...

return np.array(row_modes [0])

Listing 4.4: This method calculates the most frequently occurring label for each data instance
across different clustering results.
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Using ClusteringSelector streamlines the process of selecting optimal clustering labels,
ensuring that the best algorithm is chosen for a given dataset. The methodology of selecting
the most repeated label and prior data normalization are vital steps contributing to the
validity and reliability of clustering outcomes.

4.2.3 Automatic Generation of Categorical Rules

For the automatic generation of categorical rules, the “generate categorical rules()” function,
inherited from the classifier’s model, is employed.

This function receives a dataframe with labels from popular clustering methods, which
contain categorical values (the cluster to which each instance belongs to). This approach is
akin to integrating “expert information”, leading to the creation of automatic rules. These
rules enhance the classifier’s performance, enabling it to yield more valid clusters.

This process not only leverages the intrinsic categorization from the clustering labels but
also enriches the classifier’s ability to discern and apply nuanced distinctions within the data.

4.2.4 Classifier Fitting

This is one of the most crucial parts of the entire algorithm as it handles the training or
fitting of the DSClassifier model.

In this section, we utilize the “train test split’ function from the scikit-learn library in
Python, as its shown in the Listing 4.5. This function is typically used to divide the data
into two subsets: one for training and the other for testing. In our case, we use the training
data to carry out the training of the classifier, and then all the data is used to perform the
clustering.

The function receives a dataframe containing all the user-provided data, along with the
clusters concatenated from the label selection module discussed in the previous section.

The “best” variable is used as the target for real cluster values, which could be the
best labels according to silhouette scores or the most repeated labels in each data instance,
depending on the user’s choice when initializing the class.
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X_train , _, y_train , _ = train_test_split(self.df_with_labels.values ,

self.best ,

test_size =0.6,

random_state =42)

Listing 4.5: This script separates the data between training and testing using a data frame
with the initial data and the generated labels, and using as an objective the best selection
according to the user

It’s important to note that we use a 60% test size. This means 40% of the data is used
for training, and 60% is reserved for testing. A larger test size provides a substantial amount
of data to evaluate the clustering model and helps avoid overfitting.

Overfitting occurs when a model closely fits the specific patterns of the training data,
which can lead to poor performance on new data. By using a majority of the data for
testing, the model’s ability to generalize and perform on unseen data is rigorously assessed.

This approach is especially beneficial in clustering scenarios where validating a large and
diverse set of data points is critical for determining the robustness and effectiveness of the
clustering results.

4.2.5 Label and Rule Retrieval

The last and most critical part of the solution pertains to the model’s assignment of clusters.
This is achieved through a “predict()” method embedded within the classifier, which, upon
receiving the full range of user-inputted data, deploys the classifier’s training to accurately
deliver the predicted clusters. This step signifies the completion of the primary phase or the
initial goal of this algorithm’s development, which is clustering.

def predict(self):

_, _, _ = self.fit()

self.y_pred = super (). predict(self.df_with_labels.values)

return self.y_pred

Listing 4.6: This script shows how predicts the cluster labels for given data points

A notable feature of this solution is its interpretability, which is a direct result of the
designed interpretable classifier. This classifier offers a set of rules that play a pivotal role
in the model’s decision-making process when assigning clusters to each data instance. The
interpretability of these rules is crucial as it mirrors the demonstrated interpretability in
the classification algorithm. By providing a clear and understandable set of guidelines or
conditions under which the model operates, users can comprehend why certain decisions are
made, thereby enhancing trust and transparency in the model’s functioning.

find_most_important_rules(self , classes=None , threshold =0.2)

print_most_important_rules(self , classes=None , threshold =0.2):

Listing 4.7: This script shows the two initializations for the functions that deliver and display
rules
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For a deeper dive into the specific functions, “print most important rules()” displays the
rules with the highest significance for the current model to the user. On the other hand,
“find most important rules()” extracts the most critical rules, which are fundamental in defin-
ing the model’s behavior.

Moreover, the model allows for explicit explanations for particular data instances. This
functionality permits a detailed analysis of the rules applied to each instance of data provided
by the user, thus offering greater insight into how each cluster was assigned to each data point.

def predict_explain(self , x):

pred , cls , rls , builder = super (). predict_explain(x)

builder = builder.replace("Class", "Cluster")

rls = rls[~rls[’rule’].str.contains(’K-Means Labels|DBSCAN Labels|’ +

’Agglomerative Labels ’,

case=False , regex=True)]

return pred , cls , rls , builder

Listing 4.8: This script shows how it’s generated the explanation for an instance of the data

In the broader scope of clustering evaluation, the “metrics()” method plays a crucial role.
It is designed to retrieve specific metrics based on the clustering results. This function can
accept the anticipated real values for the clusters and provide two types of statistics. If real
values are incorporated, one can evaluate the precision of the underlying classification model.

...

if y is not None:

y = ClusteringSelector.normalize_labels(self.y_pred , y)

print("Information of DSClassifier")

print("\nAccuracy: %.1f%%" % (accuracy_score(y, self.y_pred) * 100.))

print("F1 Macro: %.3f" % (f1_score(y, self.y_pred , average="macro")))

print("F1 Micro: %.3f" % (f1_score(y, self.y_pred , average="micro")))

print("\nConfusion Matrix:")

print(confusion_matrix(y, self.y_pred ))

print("------------------")

print("Clustering Metrics")

rand_index = adjusted_rand_score(y, self.y_pred)

pearson_corr , _ = pearsonr(self.y_pred , y)

print("Rand_index: ", rand_index)

print("Pearson: ", pearson_corr)

print("------------------------------------------------")

print("Silhoutte:" , (silhouette_score(self.data , self.y_pred)

if len(set(self.y_pred )) > 2 else 0))

Listing 4.9: This snippet displays the statistics or metrics for both the base classifier and the
clustering algorithm, as applicable.

The metrics for clustering evaluation include the Rand index and the Pearson correlation
coefficient, which require real values for each cluster to compute. These metrics are significant
as they offer a quantitative measure of the clustering performance. The Rand index measures
the extent to which the clustering correctly identifies pairs of items as being in the same
or different clusters, while the Pearson correlation coefficient assesses the linear correlation
between the predicted and actual cluster assignments.

Independent of whether actual cluster values are provided, the silhouette score is also
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given by this function. This score is a measure of how similar an object is to its own
cluster (cohesion) compared to other clusters (separation). The silhouette score provides a
concise and effective way to evaluate the quality of the clustering, as it encapsulates both
the tightness of the clustering and the separation between different clusters. This holistic
approach to evaluating clustering results makes the algorithm versatile and robust in various
data scenarios.

Finally, a crucial aspect to consider is that when displaying the rules or explanations
for each data instance, the categorical rules generated from the information provided by the
labels created by popular clustering techniques are not shown. This is because these rules
are used solely as an information base to enable the classification model to more accurately
predict which cluster will be assigned to each piece of data.
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Chapter 5

Experiments and results

To validate the utility of the new clustering algorithm, various tests were conducted to
evaluate typical clustering metrics. Additionally, its results were compared with those of
standard algorithms commonly used for this task.

5.1 Explanation of Experiments and Data Used

For conducting the experiments, different control datasets were created, which are described
as follows:

1. Uniform: Represents a straight line with y=0, where data points with x<0 belong to
cluster 0 and those with x>0 belong to cluster 1.

2. Rectangle Uniform: Consists of 2 rectangles of data contained within -1<x<1, where
the first for values of y<-0.15 corresponds to cluster 0 and those with y>0.15 to cluster
1.

3. Gaussian Distribution: Comprises 2 normal distributions centered at [1.2, 0.2] and [0.2,
0.9], with their respective clusters being 0 and 1.

4. Gaussian Mix Distribution: A set of 3 normal distributions centered at [-0.8, 0.6], [0.6,
-0.6], and [-1.2, -0.6], with their respective clusters being 0, 1, and 2.

28



The visualizations of these datasets are provided below.

Figure 5.1: Left: Uniform line, Right: Two uniform rectangles

Figure 5.2: Left: Gaussian distribution of two clusters, Right: Gaussian distribution of three
clusters

For the first and second sets, random.uniform from the NumPy library was used, and
for the third and fourth, random.normal from the same library was employed.

Furthermore, popular datasets such as:

1. Iris: A classic dataset for pattern recognition, featuring measurements of iris flowers
for species classification.

2. Wines: Consists of physicochemical properties of various wine samples, used for quality
assessment and classification.

3. Breast Cancer: Contains features computed from digitized images of breast mass, used
for cancer diagnosis.
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were also utilized in the experiments.

Figure 5.3: Iris dataset clusters

Figure 5.4: Wine dataset Clusters

Figure 5.5: Breast Cancer dataset Clusters

And finally, the last datasets to be used, correspond to real datasets for which there is no
specific clustering, these are:

1. Customer Behavior

2. Airline Passenger Satisfaction
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With these datasets as input, various types of clustering algorithms were applied. Specif-
ically, popular clustering algorithms such as KMeans, DBSCAN, and Agglomerative Clus-
tering were utilized. Additionally, the newly developed DSclustering algorithm was tested
under three potential scenarios in which a user might employ it, namely:

1. DS clustering: Best Labels: Utilizing the best-generated clusters.

2. DS clustering: Most Voted label: Using the most frequently repeated labels for each
instance.

3. DS clustering: Best Label with number of cluster: Providing the expected number of
clusters.

The results of applying these algorithms will be detailed in the following sections. To
conclude the experiments, a comparison will be made among all the applied algorithms, and
an analysis will be conducted on the rules generated by the DS clustering across the different
datasets.

5.2 Results

5.2.1 Validation of the Clustering

To evaluate the results of the newly designed clustering algorithm, experiments were con-
ducted assessing three important metrics relevant to clustering algorithms: the silhouette
index, Pearson correlation coefficient, and Rand index. These results were compared with
three popular clustering algorithms and across three potential usage scenarios of DS cluster-
ing for users. This aims to answer the following questions:

• How does the clustering algorithm perform in terms of the validity of its results?

• Do the results of this algorithm compare favorably with those of popular classes for
certain data types?

One of the main hypotheses that emerge is that the DS clustering algorithm should
yield results similar to those of popular clustering algorithms. This is because it uses these
algorithms as a foundation, particularly their outcomes, as expert experience to feed the
necessary rules for predicting the labels.

The results presented in Table 5.1 suggest that the DS clustering algorithm is expected
to yield results similar to those of popular clustering algorithms.
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Dataset method Rand Index Silhouette Pearson
KMeans 0.968192 0.6092 -0.984111
DBSCAN 0.0 0.0 0.0

Uniform Agglomerative 0.626526 0.6008 -0.807947
line DSC Best Labels 0.444714 0.574601 0.478302

DSC Most Voted label 0.252542 0.323917 0.679125
DSC with number of cluster 0.984032 0.6090 0.992022
KMeans 1.0 0.4396 1.0
DBSCAN 0.0 0.0 0.0

Uniform Agglomerative 1.0 0.4396 1.0
Rectangle DSC Best Labels 0.503001 0.495606 -0.065668

DSC Most Voted label 0.503082 0.495662 -0.064969
DSC with number of cluster 1.0 0.43963 -1.0
KMeans 0.984032 0.6435 -0.992000
DBSCAN 0.0 0.0 0.0

Gaussian Agglomerative 0.984032 0.64351 -0.992000
Distribution DSC Best Labels 0.968192 0.4653 0.984031

DSC Most Voted label 0.948585 0.475981 0.961466
DSC with number of cluster 0.984032 0.64352 0.992000
KMeans 1.0 0.684170 -0.5
DBSCAN 0.570609 0.6048 9.11e-18

Gaussian mix Agglomerative 1.0 0.684170 0.5
Distribution DSC Best Labels 0.869085 0.558766 0.219600

DSC Most Voted label 0.869085 0.558766 0.219600
DSC with number of cluster 0.570609 0.6048 9.11e-18

Iris

KMeans 0.730238 0.552819 0.224350
DBSCAN 0.520619 0.486034 0.367712
Agglomerative 0.731199 0.554324 0.205441
DSC Best Labels 0.546422 0.509248 0.750098
DSC Most Voted label 0.546422 0.509248 0.750098
DSC with number of cluster 0.695636 0.478250 0.126230

Wine

KMeans 0.371114 0.571138 -0.029116
DBSCAN 0.0 0.0 0.0
Agglomerative 0.368402 0.564480 0.572525
DSC Best Labels 0.313358 0.370674 -0.226526
DSC Most Voted label 0.276761 0.324729 -0.252627
DSC with number of cluster 0.304176 0.584262 -0.673827

Breast Cancer

KMeans 0.519788 0.6972 -0.697773
DBSCAN 0.0 0.0 0.0
Agglomerative 0.390288 0.6899 0.742352
DSC Best Labels 0.0 0.0 0.0
DSC Most Voted label 0.0 0.0 0.0
DSC with number of cluster 0.0 0.0 0.0

Table 5.1: Comparison of metrics for different clustering methods on various datasets
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Observations from the majority of the datasets in these experiments show that the results
of the designed class algorithm are quite close to those of other algorithms. For example,
specifically looking at the results for uniform rectangles, DS clustering for best labels and
most voted label performs better in terms of the silhouette measure than popular clustering
methods.

However, for other datasets, the results are lower in terms of various metrics, which is
expected. The performance of class algorithms can vary depending on the types of data used.

For example, the wine dataset, although rich in chemical composition data, may be
inherently unsuitable for clustering due to the complexity and subtle variances in its charac-
teristics, characterised by measurements that are closely related to the intrinsic qualities of
wine, which may not have clear boundaries or groupings. In addition, the overlap in chemical
characteristics between different types of wine can blur the distinctions needed to form well-
defined clusters. The high dimensionality of the data can also obscure underlying patterns,
making it difficult for clustering algorithms to identify clear separations. As a result, the
structure of the dataset may not lend itself to clean clustering, leading to unsatisfactory and
ambiguous grouping results.

So K-means, DBSCAN and Agglomerative Clustering may give poor results on the Wine
dataset for several reasons. Firstly, K-means assumes clusters to be approximately equal
in size and spherical in shape, which may not match the distribution of the Wine dataset,
which has inherently non-spherical and unevenly sized clusters. Secondly, DBSCAN relies on
a density-based approach, which can struggle with high-dimensional data; the Wine dataset,
with its complex and high-dimensional chemical composition data, may not have well-defined
density clusters, making parameter tuning difficult. Thirdly, agglomerative clustering, a
hierarchical method, can also stumble if the data contains noise and outliers, which are
common in real-world datasets like Wine, where outliers can significantly distort the hierarchy
of cluster formation. As our model is based on K-means, DBSCAN and Agglomerative
Clustering, it inherits their limitations.

One of the reasons for “bad results” when using best labels, for example for “Breast Cancer
dataset” is that DBSCAN can in some cases distort the silhouette score measurements. In
the absence of additional information, the generation of a single cluster can be considered a
good result, even if it is not the expected one. It is important to remember that clustering is
an exploratory tool and the validity of any cluster found depends on the individual applying
it.

The silhouette score, which measures how similar an object is to its own cluster compared
to other clusters, can be misleading in such scenarios. If DBSCAN produces a single cluster or
assigns many points as outliers, the silhouette score may not reflect a nuanced understanding
of the structure of the data. This is particularly true when no external information is available
to guide the interpretation of the results.

Furthermore, the interpretative nature of clustering underlines the subjective aspect of
analysing the results. What constitutes a ”good” clustering result can vary significantly
between different users or applications. Some may value the detailed partitioning of data
into many small clusters, while others may prefer a broader overview with fewer, larger
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clusters. Therefore, the effectiveness and appropriateness of using best labels or relying
heavily on metrics such as the silhouette score should be evaluated in the context of the
specific goals and knowledge of the dataset at hand. So automated metrics and labels can
provide valuable insights, they should not replace critical analysis and domain expertise when
evaluating clustering results. The exploratory nature of clustering means that its success is
determined not only by algorithmic outputs, but also by how well the results align with the
user’s objectives and understanding of the data.

With these results, we can try to answer the first questions of this subsection. The metrics
obtained for some of the clusterings carried out are very valid and similar to other clustering
methods, especially those carried out with ”DS clustering: with number of clusters”. It’s
important to point out that other methods can, in certain cases, perform quite similarly to
popular clusterings, in terms of silhouette score, they are quite close. It’s worth remembering
that the main focus of this development is to achieve an algorithm that can be similar in
validity to popular clusterings, but much more interpretable, which is what we’ll be looking
at in the next section.

In the context of the comparison, it is worth noting that DS clustering shows versatile per-
formance on different datasets. This means that, like all other existing clustering algorithms,
it can achieve good results and generate valid clusters if the dataset supports good cluster-
ing. In particular, its ability to perform well on silhouette scores indicates its effectiveness
in identifying well-separated clusters, a crucial aspect in many practical applications.

5.2.2 Interpretability

To evaluate the interpretability gained through the use of rules provided by the classification
model, three datasets will be presented. In each, DS Clustering is applied with a different
type of usage (Best Label, Most Voted, and giving the number of clusters).
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Uniform Rectangles

Figure 5.6: Clusters of Uniform Rectangles

Cluster Rule Importance 0 1 2 3 Unc

0

R16: 0.011 < y < 0.440 0.537 0.406 0.000 0.000 0.305 0.289
R10: x < -0.410 0.436 0.291 0.000 0.364 0.000 0.345
R28: Negative x - -0.025, y - 0.011 0.409 0.256 0.396 0.000 0.000 0.347
R11: -0.410 < x < -0.025 0.400 0.264 0.000 0.343 0.000 0.394
R17: y > 0.440 0.379 0.229 0.000 0.000 0.399 0.372

1

R28: Negative x - -0.025, y - 0.011 0.509 0.256 0.396 0.000 0.000 0.347
R12: -0.025 < x < 0.360 0.420 0.091 0.248 0.000 0.375 0.286
R13: x > 0.360 0.419 0.000 0.284 0.000 0.333 0.383
R14: y < -0.417 0.410 0.000 0.290 0.290 0.000 0.421
R15: -0.417 < y < 0.011 0.401 0.000 0.282 0.287 0.000 0.431

2

R10: x < -0.410 0.488 0.291 0.000 0.364 0.000 0.345
R11: -0.410 < x < -0.025 0.456 0.264 0.000 0.343 0.000 0.394
R14: y < -0.417 0.410 0.000 0.290 0.290 0.000 0.421
R15: -0.417 < y < 0.011 0.404 0.000 0.282 0.287 0.000 0.431
R27: Positive x - -0.025, y - 0.011 0.375 0.000 0.000 0.257 0.291 0.452

3

R12: -0.025 < x < 0.360 0.517 0.091 0.248 0.000 0.375 0.286
R17: y > 0.440 0.500 0.229 0.000 0.000 0.399 0.372
R16: 0.011 < y < 0.440 0.466 0.406 0.000 0.000 0.305 0.289
R13: x > 0.360 0.454 0.000 0.284 0.000 0.333 0.383
R27: Positive x - -0.025, y - 0.011 0.400 0.000 0.000 0.257 0.291 0.452

Table 5.2: Most Important Rules for Each Cluster of Uniform Rectangles

Observing the points in Figure 5.6 and comparing them with the rules in Table 5.2, we can
see how the rules effectively separate the data for each cluster identified by the algorithm.
This makes it easy to interpret that if a value falls within a certain range of X, it can be
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readily assigned to a specific cluster efficiently. The key is to choose the cluster with the
highest value in the table. This value represents a higher ”probability” of belonging to that
cluster.

An additional benefit of using this classifier is that it also provides the uncertainty of
whether a certain value within the range defined by the presented rule belongs to one of the
aforementioned clusters. Thus, the decision-making process of the cluster is highly detailed
and transparent, making it easy for the user to identify which cluster to assign a specific data
instance. For example, if we take a value located at 0.5 on the X-axis and 0.2 on the Y-axis,
the given rules indicate that it belongs to cluster number 3, as its Y value is greater than
0.44 (rule number 17) and its X value is greater than 0.360 (rule number 13).

Gaussian Mix Distribution

Figure 5.7: Clusters of Gaussian Mix Distribution
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Cluster Rule Score 0 1 2 3 Unc

0

R16: y > 0.187 0.545 0.360 0.000 0.000 0.465 0.175
R10: -1.010 < x < -0.468 0.532 0.321 0.000 0.373 0.186 0.119
R27: Negative x - -0.468, y - -0.213 0.385 0.240 0.163 0.000 0.213 0.384
R11: -0.468 < x < 0.074 0.348 0.348 0.000 0.000 0.000 0.652
R15: -0.213 < y < 0.187 0.279 0.085 0.406 0.425 0.000 0.083

1

R15: -0.213 < y < 0.187 0.610 0.085 0.406 0.425 0.000 0.083
R13: y < -0.612 0.516 0.000 0.365 0.362 0.000 0.272
R14: -0.612 < y < -0.213 0.504 0.000 0.363 0.338 0.000 0.299
R12: x > 0.074 0.402 0.000 0.402 0.000 0.000 0.598
R27: Negative x - -0.468, y - -0.213 0.317 0.240 0.163 0.000 0.213 0.384

2

R15: -0.213 < y < 0.187 0.625 0.085 0.406 0.425 0.000 0.083
R10: -1.010 < x < -0.468 0.573 0.321 0.000 0.373 0.186 0.119
R13: y < -0.612 0.513 0.000 0.365 0.362 0.000 0.272
R9: x < -1.010 0.506 0.000 0.000 0.358 0.357 0.285
R14: -0.612 < y < -0.213 0.487 0.000 0.363 0.338 0.000 0.299
R26: Positive x - -0.468, y - -0.213 0.267 0.043 0.063 0.220 0.000 0.675

3

R16: y > 0.187 0.620 0.360 0.000 0.000 0.465 0.175
R9: x < -1.010 0.505 0.000 0.000 0.358 0.357 0.285
R10: -1.010 < x < -0.468 0.405 0.321 0.000 0.373 0.186 0.119
R27: Negative x - -0.468, y - -0.213 0.363 0.240 0.163 0.000 0.213 0.384

Table 5.3: Most Important Rules for Each Cluster of Gaussian Mix Distribution

Unlike the previous results, the following experiment considers data that are not separated
by a specific straight line but rather form a mass or a density of data to which the clustering
algorithm is applied. We can observe how the algorithm is still capable of detecting the
existence of clusters, separating them, and generating rules to assign a cluster to each data
instance.

The importance of this experiment is to highlight that the rules can become more complex.
In this case, we can see in Table 5.3 how rule number 27 includes two parameters, to which
a range is applied or a parameter is verified. This is necessary because, as we recently
mentioned, the data are no longer delimited by straight lines. It’s essential to establish a
more consistent and robust rule when assigning a cluster. This gives us indications that the
model works effectively, even as we introduce more complex data.
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Wine Dataset

Figure 5.8: Clusters of Wine Dataset

Lastly, this experiment involves a dataset that is not synthetically generated for this process
and generally does not yield as good results when applying clustering algorithms. It is
noteworthy that the rules also consider values for any feature, how its shown in Table .1, not
just for the X and Y axes.

An important aspect to highlight is that the validity of the clusters generated by this
algorithm can still be improved. This means enhancing the metrics evaluated in Table 1,
aiming not only to improve the obtained labels but also the generated rules. This approach
would lead to a more robust and interpretable clustering algorithm.

5.3 Real World Datasets

5.3.1 Consumer Behavior Dataset

This subsection delves into a detailed experiment using a complete data set from Kaggle1.
The data set, which reflects real-world purchasing habits, provides fertile ground to apply
and compare various clustering techniques. This could be useful in the real world to discover
different groups or patterns in consumer behavior, which can provide valuable information
for market segmentation, targeted marketing, and understanding customer preferences. The

1https://www.kaggle.com/datasets/zeesolver/consumer-behavior-and-shopping-habits-dataset/

?select=shopping_behavior_updated.csv
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analysis will use, like the previous part, both traditional clustering methods and a novel
approach, thus contributing to a broader understanding of the results of the new proposed
clustering algorithm.

Data Preprocessing

The preprocessing stage is crucial in shaping the dataset for effective clustering analysis.

We removed columns such as

• Customer ID

• Item Purchased

• Review Rating

• Subscription Status

• Discount Applied

• Promo Code Used

• Location

• Size

These columns were deemed less relevant for clustering purposes due to their individual-
specific nature or lack of aggregatable information.

To accommodate clustering algorithms, we applied Label Encoding2, transforming cate-
gorical variables into a numerical format. This step was essential to ensure compatibility
with the clustering algorithms, which predominantly operate on numerical data, thus setting
the stage for a more nuanced and structured analysis.

Analysis and Results

The comparative analysis of the clustering algorithms focused primarily on their performance
as indicated by the Silhouette Score. The scores are those shown in table 5.4.

The KMeans and DSClustering algorithm with a predefined number of clusters showed the
highest silhouette scores, indicating strong cluster formation with well-defined separations.
In contrast, DBSCAN’s zero score suggests an inability to form meaningful clusters, possibly
due to its sensitivity to parameter settings and data density. The DSClustering Best Label
and Agglomerative Clustering scores, while lower than those of KMeans, still demonstrate
reasonable cluster formation.

2https://www.geeksforgeeks.org/ml-label-encoding-of-datasets-in-python/
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The remarkable performance of DSClustering with a number of clusters, achieving a Sil-
houette Score close to that of the widely recognized KMeans method, stands out not only
for synthetic datasets but also in real-world scenarios. This proximity in scoring suggests
once again that DSClustering is capable of generating clusters as valid and distinct as those
produced by an established algorithm like KMeans. Furthermore, it indicates the robustness
and effectiveness of DSClustering in handling complex, real-world data without predefined
data labels or class categories. In the context of a real dataset, where predefined catego-
rizations and the true grouping are unknown, the fact that DSClustering achieves results
comparable to KMeans is a promising indication of its potential in practical applications
such as consumer behavior analysis and market segmentation.

Dataset Method Silhouette
KMeans 0.26837
DBSCAN 0.0

Consumer Behavior Agglomerative 0.24299
DSC Best Labels 0.22165
DSC Most Voted label 0.12827
DSC with number of cluster 0.26830

Table 5.4: Comparison of metrics for different clustering methods on Consumer Behavior
dataset

Next, we present the graphs generated by the application of the six clustering models
analyzed. It’s important to emphasize that in these visualizations, the ’Age’ feature is used on
the x-axis, while the y-axis represents a merged representation of the remaining data features.
This approach was adopted to retain a logical interpretation of the groups formed, allowing us
to observe how age correlates with other combined features. At the same time, this method
enables us to condense the entire dataset into a comprehensible and visually interpretable
format. Such a representation is crucial for understanding the clustering behavior and for
drawing meaningful insights from the complex, multidimensional nature of the data.
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Figure 5.9: Left: Agglomerative Clustering, Right: Kmeans clustering, Below: DBScan
Clustering

In the figure 5.9, we observe the clustering results from the popular methods, where both
Agglomerative Clustering and KMeans reveal a fairly clear structure of three clusters. The
delineation of these clusters is particularly more defined in the case of KMeans, indicating its
effectiveness in segregating distinct groups within the dataset. However, for DBSCAN, due
to the high density of the data, it fails to achieve a clear separation of clusters. This outcome
highlights DBSCAN’s sensitivity to data density and its limitations in distinguishing separate
groups under such conditions. The contrast in these results underscores the importance of
selecting an appropriate clustering algorithm that aligns with the specific characteristics and
density of the dataset under analysis.

In Figure 5.10, we can observe the cluster formations as executed by the three models
of the DSclustering algorithm. Across all three models, there are quite distinct patterns,
but a structure of three clusters predominates, especially in the model where the number of
clusters is predefined. This particular model was also the one we observed to have the best
Silhouette Score result.

This graphical and empirical evidence showcases the usability of the DSclustering algo-
rithm for clustering tasks in datasets that are neither controlled nor synthetic. The fact
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that the DSclustering algorithm, especially the variant with a predefined number of clusters,
closely mirrors the cluster structures identified by more established methods like KMeans,
reinforces its validity. It demonstrates the algorithm’s capability to discern meaningful pat-
terns in real-world data, confirming its potential as a valuable tool for clustering in practical,
complex data environments

Figure 5.10: Left: DSClustering with Best Labels, Right: DSClustering with Most Voted
Labels, Below: DSClustering with number of clusters

The analysis reveals critical insights into the effectiveness of different clustering method-
ologies applied to consumer behavior data. The superior performance of KMeans and DSClus-
tering with a predefined number of clusters underscores their suitability for datasets with
distinct, separable groups. The underperformance of DBSCAN highlights its limitations in
handling diverse data densities and structures, as commonly found in consumer datasets.
The moderate success of DSClustering Best Label and Agglomerative Clustering suggests
their potential in specific contexts, though they may not be universally applicable.
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DS clustering Rules

The key rules generated by the three models of DSClustering, which provide interpretability
to the model, are presented in table 5.5, 5.6 y 5.7. It’s crucial to remember that this aspect
of interpretability was demonstrated by Sergio Peñafiel in his thesis and is now being applied
in this analysis. The interpretability offered by these rules is a significant advancement in
understanding the clustering process and its outcomes.

For instance, in the model where the number of clusters is predefined, the rules enable
us to comprehend the clustering logic more clearly. It’s important to note, however, that
for the visualizations, the features are combined, which means that directly correlating these
rules with the graphical representation is not straightforward. Nonetheless, we can observe
the separation between ages for clusters 2 and 3, as indicated by the rules. This separation
aligns with the visual clusters in the graphs, affirming the relevance of the rules in guiding
our understanding of how the algorithm segments the data.

The ability of DSClustering to generate these interpretable rules is a testament to its
utility in practical clustering applications. It not only facilitates the formation of distinct
clusters but also provides a clear rationale behind each grouping. This dual capability of
clustering and interpretability, as illustrated in Sergio Peñafiel’s thesis, enhances the prac-
tical value of DSClustering in real-world data analysis, bridging the gap between complex
algorithmic processes and actionable insights.

As we already seen, rules generated in the context of clustering analysis serve as guide-
lines for determining the cluster assignment for a specific data instance. They operate by
evaluating each rule and considering, in this case, the probability that the instance belongs to
a particular cluster or the uncertainty of it not belonging to that cluster. This probabilistic
and uncertainty-based approach allows for a nuanced understanding of how each data point
fits within the overall clustering structure.
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N° C Rule Score C 1 C 2 C 3 C 4 Unc

1

Purchase Amount (USD) < 23.892 0.675 0.474 0.000 0.000 0.487 0.039
23.892 < Purchase Amount (USD) <
39.685

0.653 0.537 0.025 0.000 0.232 0.206

15.940 < Age < 26.107 0.632 0.465 0.252 0.000 0.139 0.143
Previous Purchases > 34.214 0.550 0.548 0.000 0.004 0.000 0.448
26.107 < Age < 36.274 0.546 0.298 0.000 0.279 0.423 0.000

2

Purchase Amount (USD) > 55.477 0.676 0.000 0.467 0.512 0.000 0.021
Age < 15.940 0.638 0.049 0.578 0.000 0.077 0.296
24.450 < Previous Purchases < 34.214 0.595 0.150 0.400 0.331 0.003 0.116
Shipping Type = 5 0.588 0.000 0.464 0.094 0.188 0.254
39.685 < Purchase Amount (USD) <
55.477

0.529 0.010 0.351 0.437 0.000 0.203

3

Purchase Amount (USD) > 55.477 0.708 0.000 0.467 0.512 0.000 0.021
14.686 < Previous Purchases < 24.450 0.684 0.000 0.233 0.503 0.197 0.068
Category = 3 0.592 0.000 0.141 0.521 0.011 0.327
39.685 < Purchase Amount (USD) <
55.477

0.590 0.010 0.351 0.437 0.000 0.203

Age > 36.274 0.570 0.009 0.000 0.565 0.000 0.426

4

Previous Purchases < 14.686 0.720 0.000 0.117 0.212 0.574 0.097
Purchase Amount (USD) < 23.892 0.684 0.474 0.000 0.000 0.487 0.039
26.107 < Age < 36.274 0.650 0.298 0.000 0.279 0.423 0.000
Color > 16.722 0.447 0.000 0.192 0.047 0.343 0.418
Negative Previous Purchases - 24.450,
Frequency of Purchases - 2.935

0.438 0.158 0.006 0.000 0.364 0.473

Table 5.5: Most Important Rules for Each Cluster Using DSClustering Best Labels
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N° C Rule Score C 1 C 2 C 3 C 4 Unc

1

Age < 15.940 0.551 0.543 0.000 0.000 0.016 0.441
Previous Purchases > 34.214 0.499 0.495 0.006 0.001 0.000 0.498
Purchase Amount (USD) > 55.477 0.433 0.256 0.041 0.435 0.000 0.268
15.940 < Age < 26.107 0.359 0.227 0.039 0.014 0.288 0.431
Negative Purchase Amount (USD) -
39.685, Previous Purchases - 24.450

0.338 0.332 0.013 0.000 0.000 0.655

3

Age > 36.274 0.687 0.000 0.048 0.611 0.113 0.228
39.685 < Purchase Amount (USD) <
55.477

0.623 0.092 0.033 0.563 0.000 0.312

14.686 < Previous Purchases < 24.450 0.573 0.000 0.018 0.435 0.301 0.246
Purchase Amount (USD) > 55.477 0.564 0.256 0.041 0.435 0.000 0.268
Positive Age - 26.107, Purchase
Amount (USD) - 39.685

0.420 0.000 0.055 0.316 0.187 0.442

4

Previous Purchases < 14.686 0.686 0.000 0.030 0.201 0.580 0.189
Purchase Amount (USD) < 23.892 0.632 0.096 0.000 0.000 0.585 0.319
26.107 < Age < 36.274 0.505 0.058 0.000 0.085 0.439 0.418
14.686 < Previous Purchases < 24.450 0.476 0.000 0.018 0.435 0.301 0.246
Positive Purchase Amount (USD) -
39.685, Previous Purchases - 24.450

0.438 0.000 0.001 0.148 0.370 0.481

Table 5.6: Most Important Rules for Each Cluster Using DSClustering Most Voted Labels

As illustrated in Tables 5.5 and 5.6, each rule is accompanied by probabilities and uncer-
tainties for cluster membership. This information is critical in deciphering the logic behind
the cluster assignments. However, our focus will be primarily on analyzing Table 5.7, which
presents the results of DSClustering with a predefined number of clusters. This particular
model has demonstrated the best performance in terms of the Silhouette Score. Likewise, it
is important to highlight how in table 5.6, there are no rules for cluster 2 and this is also
reflected in the graph, since there is no point for these data instances that belong to that
cluster.

The higher Silhouette Score of this model indicates that it has been more effective in
distinguishing between clusters, creating more defined and well-separated groupings within
the dataset.

The correspondence between the rule ”26.107 < Age” and the division observed in clusters
2 and 3 in the graph is a significant aspect of our analysis. This observation demonstrates
how rules generated by the DSClustering model can reflect discernible patterns within the
visualized data.

In the figure 5.10, if we notice that the separation between clusters 2 and 3 indeed occurs
around the age of 26.107 years, this validates the mentioned rule. This coincidence suggests
that age is a determining factor in differentiating these two clusters. In other words, the
rule ”26.107 < Age” appears to be a good indicator for distinguishing between the groups
represented by clusters 2 and 3.
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N°C Rule Score C 0 C 1 C 2 Unc

1

Purchase Amount (USD) < 23.892 0.503 0.503 0.000 0.000 0.497
Age < 15.940 0.460 0.253 0.587 0.000 0.161
23.892 < Purchase Amount (USD) < 39.685 0.453 0.453 0.000 0.000 0.547
Payment Method = 0 0.278 0.159 0.000 0.326 0.514
26.107 < Age < 36.274 0.252 0.111 0.000 0.464 0.425

2

39.685 < Purchase Amount (USD) < 55.477 0.772 0.000 0.597 0.401 0.002
Age < 15.940 0.702 0.253 0.587 0.000 0.161
Purchase Amount (USD) > 55.477 0.607 0.000 0.370 0.626 0.004
15.940 < Age < 26.107 0.494 0.100 0.444 0.008 0.449
Negative Age - 26.107, Purchase Amount
(USD) - 39.685

0.404 0.086 0.363 0.000 0.551

3

Purchase Amount (USD) > 55.477 0.790 0.000 0.370 0.626 0.004
39.685 < Purchase Amount (USD) < 55.477 0.633 0.000 0.597 0.401 0.002
Age > 36.274 0.597 0.043 0.000 0.576 0.381
26.107 < Age < 36.274 0.517 0.111 0.000 0.464 0.425
Payment Method = 0 0.398 0.159 0.000 0.326 0.514

Table 5.7: Most Important Rules for Each Cluster Using DSClustering with number of cluster

The practical implication of this observation is twofold. On one hand, it underlines the
usefulness of the rules generated by the DSClustering model in interpreting and validating
the results of the clustering analysis. On the other hand, it highlights the importance of age
as a distinctive factor in consumer behavior represented in the dataset.

In summary, the alignment between the generated rule and the distribution observed
in the graph not only reinforces confidence in the interpretability of the clustering model
but also provides valuable insights into the underlying characteristics that define consumer
behavior patterns in the analyzed dataset.

5.3.2 Airline Passenger Satisfaction

This subsection delves into a detailed experiment using a complete data set from Kaggle3.
The data set, This dataset contains an airline passenger satisfaction survey, provides another
fertile ground to apply and compare clustering models. This can be used to identify patterns
among the groups that are either satisfied or dissatisfied with traveling.

3https://www.kaggle.com/datasets/teejmahal20/airline-passenger-satisfaction?select=

train.csv
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Analysis and Results

The comparative analysis of the clustering algorithms focused primarily on their performance
as indicated by the Silhouette Score. The scores are those shown in table 5.8.

The KMeans and DSClustering algorithm with a predefined number of clusters showed the
highest silhouette scores, indicating strong cluster formation with well-defined separations.
In contrast, DBSCAN’s zero score suggests an inability to form meaningful clusters, possibly
due to its sensitivity to parameter settings and data density. The DSClustering Best Label
and most voted are 0.0, this could be for multiple reasons but primarly beacause DBSCAN’s
zero score.

This is one of the typical cases encountered in data exploration, where the user must
explicitly indicate the number of clusters to achieve better results or performance. In clus-
tering, as already mentioned, this requirement can stem from various factors, such as data
density, the correlation among features, and it’s an aspect that can be refined through the
statistical analysis conducted in tandem with the clustering process.

Delving deeper, the necessity for specifying the number of clusters beforehand highlights
the importance of understanding the data’s inherent structure before applying clustering
algorithms. Data density, for instance, affects how tightly or loosely grouped the data points
are, influencing the optimal number of clusters. Similarly, the correlation between features
can reveal natural groupings within the data, guiding the selection of an appropriate number
of clusters.

Pre-clustering statistical analysis plays a crucial role in this context. Techniques such as
principal component analysis (PCA) can reduce dimensionality and highlight the underly-
ing patterns in the data, while correlation matrices can help identify relationships between
variables. These analyses provide valuable insights into the data’s structure, informing the
choice of the number of clusters and enhancing the clustering algorithm’s effectiveness.

Dataset Method Silhouette
KMeans 0.689
DBSCAN 0.0

Airline Passenger Satisfaction Agglomerative 0.685
DSC Best Labels 0.0
DSC Most Voted label 0.0
DSC with number of cluster 0.688

Table 5.8: Comparison of metrics for different clustering methods on Airline Passenger Sat-
isfaction dataset

Next, we present the plots generated by applying the six clustering models analysed. It is
important to emphasise that in these visualisations the ’Flight Distance’ function is used on
the x-axis, while the y-axis represents a merged representation of the remaining data features.
This approach was adopted in order to maintain a logical interpretation of the groups formed,
allowing us to observe how flight distance correlates with other combined features. This is
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the first indication of how people can be grouped on the basis of their satisfaction with the
trip.

Taking this further, using ’flight distance’ on the x-axis and a composite of other char-
acteristics on the y-axis provides a unique perspective on people’s preferences. By analysing
these clusters, we can begin to uncover patterns and trends that may not be immediately
apparent when looking at data characteristics in isolation. For example, certain clusters may
reveal that passengers travelling longer distances have different expectations or satisfaction
levels than those on shorter flights. This nuanced understanding enables airlines and ser-
vice providers to tailor their offerings more effectively, ensuring that customer satisfaction is
optimised across different travel experiences. In addition, this clustering analysis can serve
as a fundamental step in developing personalised marketing strategies and improving overall
service quality, demonstrating the power of data-driven insights to improve customer loyalty
and satisfaction.

Figure 5.11: Left: Agglomerative Clustring, Right: Kmeans clustering, Below: DBScan
Clsutering

In the figure 5.11, we observe the clustering results from the popular methods, where both
Agglomerative Clustering and KMeans reveal a fairly clear structure of twoclusters. For the
DBSCAN algorithm, the dense nature of the dataset hinders its ability to distinctly separate
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the clusters. The variation in outcomes underscores the necessity of choosing a clustering
algorithm that is well-suited to the dataset’s unique attributes and density, emphasizing the
critical role of algorithm selection in achieving meaningful clustering results.

In Figure 5.12, we can observe the cluster formations as executed by the three models
of the DSclustering algorithm. Just the model where the number of cluster is predefined
has distinct clusters, this particular model was also the one we observed to have the best
Silhouette Score result.

Figure 5.12: Left: DSClustering with Best Labels, Right: DSClustering with Most Voted
Labels, Below: DSClustering with number of clusters

Here we can again observe the effectiveness of the models, while repeating the theme that
KMeans and DS clustering with number of clusters have better performance, it is shown
that Agglomerative and DS clustering Best Label and most voted, are not applicable to this
particular dataset and have similar constraints and limitations as DBSCAN.
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DS clustering Rules

Next we will present the rules generated by DS clustering: with number of clusters in figure
5.9, this given that it is the only one of the 3 models that generated a distinction of clusters.

N° C Rule Score 0 1 Unc

0

522.383 < Flight Distance < 1196.568 0.571 0.571 0 0.429
Flight Distance < 522.383 0.499 0.499 0 0.501
Positive Customer Type - 0.186, Flight Dis-
tance - 1196.568

0.322 0.322 0 0.678

Customer Type = 1 0.313 0.313 0 0.687
Negative Type of Travel - 0.306, Class - 0.591 0.295 0.286 0.018 0.696

1

Food and Drink = 0 0.624 0 0.624 0.376
Flight Distance > 1870.752 0.608 0 0.608 0.392
Negative Customer Type - 0.186, Flight Dis-
tance - 1196.568

0.345 0 0.345 0.655

Negative Type of Travel - 0.306, Flight Dis-
tance - 1196.568

0.303 0 0.303 0.697

On-board service = 0 0.280 0 0.280 0.720

Table 5.9: Rules generated for Airline Passenger Survey with DS clustering: with number of
clusters

This observation regarding the Flight Distance rule as a significant factor in clustering
by satisfaction levels sheds light on the nuanced relationship between travel logistics and
passenger satisfaction. The dataset’s goal to categorize individuals based on their satisfaction
reveals an intriguing trend: as travel distance increases, the likelihood of a passenger rating
their experience as satisfactory decreases, potentially due to the compounded effects of various
service-related aspects like in-flight meals or customer service quality.

The specific rule range of 522.383 < Flight Distance < 1196.568 serves as a critical thresh-
old, indicating a zone where passengers’ satisfaction begins to waver more noticeably. This
range could represent short to medium-haul flights, where passengers might have heightened
expectations for comfort and service that are not fully met, affecting their overall satisfaction.
It suggests that airlines need to pay particular attention to these flight segments, possibly by
enhancing service offerings or improving the overall travel experience to mitigate the negative
impact of longer flight durations on passenger satisfaction.

Moreover, this insight can guide airlines in tailoring their customer experience strategies,
emphasizing the importance of understanding how different segments of travelers perceive
their journey. For instance, providing additional amenities or improving service efficiency for
flights within this critical range could significantly enhance passenger satisfaction. It also
highlights the potential for airlines to adopt a more data-driven approach in service design,
focusing on the specific needs and expectations of passengers across various flight distances
to ensure a consistently satisfactory travel experience.
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5.4 General Discussion

The DSClustering algorithm demonstrated consistent performance across a variety of datasets.
It effectively leveraged the strengths of KMeans, DBSCAN, and Agglomerative Clustering,
incorporating a unique rule-based approach that proved robust for various clustering tasks.

If we make a qualitative comparison with the SHAP model, although they share features,
such as that rules are additive, and have a weight or importance, we should consider that
SHAP is easier to interpret if and only if users are familiar with the importance of features
in machine learning models and want to understand the contribution of each feature to
specific predictions, but this requires a lot of prior knowledge about the data. The DS
classifier employs Dempster-Shafer theory, which is useful in contexts where uncertainty and
the combination of evidence from multiple sources are important.

The results produced by DS clustering and its rules can be more easily understood as they
provide information on the uncertainty of the rules generated. Additionally, if there is prior
knowledge, such as that required for SHAP, these data characteristics can be incorporated
as expert experience to be considered during rule generation.

With all the results presented throughout this work, we can list the following conclusions
obtained according to the results of the experiments:

• The algorithm’s ability to achieve high silhouette scores across datasets indicates its
effectiveness in identifying well-separated clusters, a critical aspect in many practical
applications.

• The adaptability of DSClustering to different datasets, along with its versatility in han-
dling both simple and complex data structures, was a notable strength. This adapt-
ability was evident in its ability to generate meaningful and interpretable rules, even
with complex datasets.

• A key advantage of the DSClustering algorithm was its interpretability. The use of
rules provided clear guidelines for cluster assignment, enhancing transparency and user
trust in the model.
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Chapter 6

Conclusion

6.1 Work Performed

The project successfully developed the DS clustering algorithm, which incorporates the
strengths of traditional clustering methods and enhances them with a rule-based approach.

The algorithm was tested on a range of datasets, from simple uniform lines to more
complex structures like Gaussian mix distributions. It demonstrated strong performance
across these varying datasets. One of the primary objectives, ensuring the interpretability of
the clustering results, was achieved. The algorithm provided clear and understandable rules
for each cluster assignment.

With respect to the specific objectives raised in Section 1.2, it can be said that were
achieved almost in their entirety, in addition to this, the objectives served as a basis for step-
by-step development of work, were the project adeptly adapted the DS classifier, initially
designed for classification, to address clustering challenges, focusing on maximizing data
clustering validity. Concurrently, a specialized interpretability model was developed for this
new clustering algorithm, emphasizing the ease of understanding the data grouping process.

Through comparative experiments against established clustering methods, the project not
only validated the effectiveness of the adapted classifier but also demonstrated its superior
balance between clustering validity and model interpretability, underscoring its potential
against traditional clustering techniques

Finally, it is important to highlight that DS clustering is an innovation in the field of data
analysis for clustering, as it not only explains the clusters obtained for each data instance, but
also provides probabilities for each feature. This is achieved with a similar level of validity
to the popular clusterings mentioned above, allowing us to say that the main advantage of
using this method is the inherent interpretability it offers. This interpretability not only
facilitates our understanding of the clustering process, but also provides crucial information
by quantifying the uncertainty associated with each clustering decision. This is a measure
that is not available in other interpretable clustering methods.
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6.2 Future Work

Despite having achieved the objectives, there are some details that can be perfected to
improve both the accuracy and performance of the system, such as:

• Future work could focus on improving the precision of the clustering results further,
enhancing the metrics evaluated in the initial experiments. And for example, addin
dunn’s score to the ClusteringSelector

• Testing the algorithm on larger and more diverse datasets would provide deeper insights
into their scalability and robustness.

• Applying the DS clustering algorithm to real-world scenarios could provide practical
insights and highlight areas for further refinement.

• Exploring more sophisticated methods for rule generation could improve the algorithm’s
interpretability, especially in complex data scenarios.

• Developing methods for the automated tuning of the algorithm’s parameters could
enhance its usability and effectiveness in different data environments.

• One of the foremost tasks for future work is to compare the current clustering models,
particularly DS clustering, with the ICOT algorithm[34]. ICOT stands out for its
use of interpretable trees in clustering, offering a unique approach to understanding
data groupings. A comparative analysis with ICOT would provide a benchmark for
evaluating the effectiveness of our models

• Another important aspect to address in future work is the time efficiency of the model,
especially considering that DSClustering requires training a classifier. This process can
be more time-consuming compared to other clustering algorithms, which may limit its
applicability in scenarios where rapid data processing is crucial.

53



Bibliography

[1] V. Antoine, B. Quost, M.-H. Masson, and T. Denœux. Cecm: Constrained evidential
c-means algorithm. Computational Statistics Data Analysis, 56(4):894–914, 2012.
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[22] University of Valencia. AnÁlisis cluster. https://www.uv.es/ceaces/multivari/

cluster/CLUSTER2.htm, n.d.

[23] Karl Pearson. On the criterion that a given system of deviations from the probable in
the case of a correlated system of variables is such that it can be reasonably supposed to
have arisen from random sampling. Philosophical Magazine Series 5, 50(302):157–175,
1900.
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ANNEX

Experiments and results
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Table .1: Most Important Rules for Each Cluster of Wine Dataset
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